Sample records for dynamics surface analysis

  1. Characterization of treated porcelain surfaces via dynamic contact angle analysis. (United States)

    Phoenix, R D; Shen, C


    Successful porcelain repair requires conditioning of porcelain surfaces. Conditioning is intended to facilitate wetting by repair materials and improve interfacial bonding. The objective of this investigation was to determine the effects of selected surface treatments upon the wettability of a representative feldspathic porcelain. Dynamic contact angle analysis and scanning electron microscopy were used to characterize the effects of such treatments. Standardized porcelain specimens were subjected to the following five treatment regimens: (1) control (no treatment); (2) airborne particle abrasion using 50 microns aluminum oxide; (3) etching with ammonium bifluoride gel; (4) etching with acidulated phosphate fluoride gel; and (5) etching with hydrofluoric acid gel. Following treatment, specimens were cleansed and dried. Advancing contact angles were quantified using dynamic contact angle analysis. Mean values and 95% confidence intervals were (in degrees): control, 63.8 +/- 2.7; ammonium bifluoride, 39.4 +/- 2.0; airborne particle abrading, 29.1 +/- 2.9; acidulated phosphate fluoride, 24.9 +/- 1.7; and hydrofluoric acid, 16.5 +/- 1.2. Significant differences were found between all treatment groups (P = .05). Subsequent scanning electron microscopy examination of treated surfaces indicated lesser contact angles were associated with surfaces displaying deeper and wider grooves. Apparently, the resultant increase in surface area produces increased wettability. It is inferred that an increase in surface area may correspond to enhanced resin-porcelain bonding.

  2. Land Surface Microwave Emissivity Dynamics: Observations, Analysis and Modeling (United States)

    Tian, Yudong; Peters-Lidard, Christa D.; Harrison, Kenneth W.; Kumar, Sujay; Ringerud, Sarah


    Land surface microwave emissivity affects remote sensing of both the atmosphere and the land surface. The dynamical behavior of microwave emissivity over a very diverse sample of land surface types is studied. With seven years of satellite measurements from AMSR-E, we identified various dynamical regimes of the land surface emission. In addition, we used two radiative transfer models (RTMs), the Community Radiative Transfer Model (CRTM) and the Community Microwave Emission Modeling Platform (CMEM), to simulate land surface emissivity dynamics. With both CRTM and CMEM coupled to NASA's Land Information System, global-scale land surface microwave emissivities were simulated for five years, and evaluated against AMSR-E observations. It is found that both models have successes and failures over various types of land surfaces. Among them, the desert shows the most consistent underestimates (by approx. 70-80%), due to limitations of the physical models used, and requires a revision in both systems. Other snow-free surface types exhibit various degrees of success and it is expected that parameter tuning can improve their performances.

  3. Bayesian inversion analysis of nonlinear dynamics in surface heterogeneous reactions. (United States)

    Omori, Toshiaki; Kuwatani, Tatsu; Okamoto, Atsushi; Hukushima, Koji


    It is essential to extract nonlinear dynamics from time-series data as an inverse problem in natural sciences. We propose a Bayesian statistical framework for extracting nonlinear dynamics of surface heterogeneous reactions from sparse and noisy observable data. Surface heterogeneous reactions are chemical reactions with conjugation of multiple phases, and they have the intrinsic nonlinearity of their dynamics caused by the effect of surface-area between different phases. We adapt a belief propagation method and an expectation-maximization (EM) algorithm to partial observation problem, in order to simultaneously estimate the time course of hidden variables and the kinetic parameters underlying dynamics. The proposed belief propagation method is performed by using sequential Monte Carlo algorithm in order to estimate nonlinear dynamical system. Using our proposed method, we show that the rate constants of dissolution and precipitation reactions, which are typical examples of surface heterogeneous reactions, as well as the temporal changes of solid reactants and products, were successfully estimated only from the observable temporal changes in the concentration of the dissolved intermediate product.

  4. Elasto-dynamic analysis of spinning nanodisks via a surface energy-based model (United States)

    Kiani, Keivan


    Using the surface elasticity theory of Gurtin and Murdoch, in-plane vibrations of annular nanodisks due to their rotary motion are explored. By the imposition of non-classical boundary conditions on the innermost and outermost surfaces and employing Hamilton’s principle, the unknown elasto-dynamic fields of the bulk zone are determined via the finite element method. The roles of both nanodisk geometry and surface effect on the natural frequencies are addressed. Subsequently, forced vibrations of spinning nanodisks with fixed-free and free-free boundary conditions are comprehensively examined. The obtained results show that the maximum dynamic elastic fields grow in a parabolic manner as the steady angular velocity increases. By increasing the outermost radius, the maximum dynamic elastic field is magnified and the influence of the surface effect on the results reduced. This work can be considered as a pivotal step towards optimal design and dynamic analysis of nanorotors with disk-like parts, which are one of the basic building blocks of the upcoming advanced nanotechnologies.

  5. Dynamics at Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sylvia Ceyer, Nancy Ryan Gray


    The 2009 Gordon Conference on Dynamics at Surfaces is the 30th anniversary of a meeting held every two years that is attended by leading researchers in the area of experimental and theoretical dynamics at liquid and solid surfaces. The conference focuses on the dynamics of the interaction of molecules with either liquid or solid surfaces, the dynamics of the outermost layer of liquid and solid surfaces and the dynamics at the liquid-solid interface. Specific topics that are featured include state-to-state dynamics, non-adiabatic interactions in molecule-metal systems, photon induced desorption from semiconductor and metal surfaces, ultrafast x-ray and electron diffraction as probes of the dynamics of ablation, ultrafast vibrational spectroscopy of water surface dynamics, dynamics of a single adsorbate, growth at nano-scale mineral surfaces, dynamics of atom recombination on interstellar dust grains and the dynamics of the interaction of water with lipid bilayers. The conference brings together investigators from a variety of scientific disciplines including chemistry, physics, materials science, geology and biophysics.

  6. Surface analysis. (United States)

    Kinsella, T


    Surface analysis techniques are important tools to use in the verification of surface cleanliness and medical device functionality. How these techniques can be employed and some example applications are described.

  7. Analysis of Static and Dynamic Properties of Micromirror with the Application of Response Surface Method

    Directory of Open Access Journals (Sweden)

    A Martowicz


    Full Text Available The paper presents the results of an application of response surface method to aid the analysis of variation of static and dynamic properties of micromirror. The multiphysics approach was taken into account to elaborate finite element model of electrostatically actuated microdevice and coupled analyses were carried out to yield the results. Used procedure of metamodel fitting is described and its quality is discussed. Elaborated approximations were used to perform the sensitivity analysis as well as to study the propagation of variation introduced by uncertain and control parameters. The input parameters deal with geometry, material properties and control voltage. As studied output characteristics there were chosen the resultant static vertical displacement of reflecting surfaces and the resonance frequency related to the first normal mode of vibration.

  8. Evaluation of a novel spine and surface topography system for dynamic spinal curvature analysis during gait.

    Directory of Open Access Journals (Sweden)

    Marcel Betsch

    Full Text Available INTRODUCTION: The assessment of spinal deformities with rasterstereography can enhance the understanding, as well as can reduce the number of x-rays needed. However, to date this technique only allows measurements under static conditions. Since it would be of great value to be able to also analyze the spine in dynamic conditions, the present study evaluated a novel rasterstereographic system. MATERIALS AND METHODS: A new rasterstereographic device was evaluated in a comparison with the gold standard in motion analysis, the VICON system. After initial testing using 12 flat infrared markers adhered to a solid plate, the two systems were evaluated with the markers adhered onto the backs of 8 test subjects. Four triangles were defined using the markers, and the sides of each triangle were measured under static and dynamic conditions. RESULTS: On the solid plate, the sides of the 4 triangles were measured with a measuring tape and then by the two optical systems. Rasterstereography showed a high accuracy in marker detection on the solid plate. Under dynamic conditions, with the subjects walking on a treadmill, the rasterstereographically-measured side lengths were compared with the lengths measured by the VICON system as an assessment of marker detection. No significant differences (p>0.05 were found between the systems, differing only 0.07-1.1% for all sides of the four triangles with both systems. DISCUSSION: A novel rasterstereographic measurement device that allows surface and spine topography under dynamic conditions was assessed. The accuracy of this system was with one millimeter on a solid plate and during dynamic measurements, to the gold standard for motion detection. The advantage of rasterstereography is that it can be used to determine a three-dimensional surface map and also allows the analysis of the underlying spine.

  9. Design and Dynamics Analysis of a Bio-Inspired Intermittent Hopping Robot for Planetary Surface Exploration

    Directory of Open Access Journals (Sweden)

    Long Bai


    Full Text Available A small, bio-inspired and minimally actuated intermittent hopping robot for planetary surface exploration is proposed in this paper. The robot uses a combined-geared six-bar linkage/spring mechanism, which has a possible rich trajectory and metamorphic characteristics and, due to this, the robot is able to recharge, lock/release and jump by using just a micro-power motor as the actuator. Since the robotic system has a closed-chain structure and employs underactuated redundant motion, the constrained multi-body dynamics are derived with time-varying driving parameters and ground unilateral constraint both taken into consideration. In addition, the established dynamics equations, mixed of higher order differential and algebraic expressions, are solved by the immediate integration algorithm. A prototype is implemented and experiments are carried out. The results show that the robot, using a micro-power motor as the actuator and solar cells as the power supply, can achieve a biomimetic multi-body hopping stance and a nonlinearly increasing driving force. Typically, the robot can jump a horizontal distance of about 1 m and a vertical height of about 0.3 m, with its trunk and foot moving stably during takeoff. In addition, the computational and experimental results are consistent as regards the hopping performance of the robot, which suggests that the proposed dynamics model and its solution have general applicability to motion prediction and the performance analysis of intermittent hopping robots.

  10. Design and Dynamics Analysis of a Bio-inspired Intermittent Hopping Robot for Planetary Surface Exploration

    Directory of Open Access Journals (Sweden)

    Long Bai


    Full Text Available A small, bio‐inspired and minimally actuated intermittent hopping robot for planetary surface exploration is proposed in this paper. The robot uses a combined‐geared six‐bar linkage/spring mechanism, which has a possible rich trajectory and metamorphic characteristics and, due to this, the robot is able to recharge, lock/release and jump by using just a micro‐ power motor as the actuator. Since the robotic system has a closed‐chain structure and employs underactuated redundant motion, the constrained multi‐body dynamics are derived with time‐varying driving parameters and ground unilateral constraint both taken into consideration. In addition, the established dynamics equations, mixed of higher order differential and algebraic expressions, are solved by the immediate integration algorithm. A prototype is implemented and experiments are carried out. The results show that the robot, using a micro‐power motor as the actuator and solar cells as the power supply, can achieve a biomimetic multi‐body hopping stance and a nonlinearly increasing driving force. Typically, the robot can jump a horizontal distance of about 1 m and a vertical height of about 0.3 m, with its trunk and foot moving stably during takeoff. In addition, the computational and experimental results are consistent as regards the hopping performance of the robot, which suggests that the proposed dynamics model and its solution have general applicability to motion prediction and the performance analysis of intermittent hopping robots.

  11. Dynamic analysis of the photoenhancement process of colloidal quantum dots with different surface modifications

    Energy Technology Data Exchange (ETDEWEB)

    Valledor Llopis, Marta; Campo Rodriguez, Juan Carlos; Ferrero Martin, Francisco J [Departamento de Ingenieria Electrica, Electronica, C y S Universidad de Oviedo, Campus de Gijon s/n, 33204 Gijon, Asturias, (Spain); Coto, Ana Maria; Fernandez-Argueelles, Maria T; Costa-Fernandez, J M; Sanz-Medel, A [Departamento de Quimica Fisica y Analitica, Universidad de Oviedo, Campus del Cristo, 33006 Oviedo, Asturias (Spain)


    Photoinduced fluorescence enhancement of colloidal quantum dots (QDs) is a hot topic addressed in many studies due to its great influence on the bioanalytical performance of such nanoparticles. However, understanding of this process is not a simple task, and it cannot be explained by a general mechanism as it greatly depends on the QDs' nature, solubilization strategies, surrounding environment, etc. In this vein, we have critically compared the behavior of CdSe QDs (widely used in bioanalytical applications) with different surface modifications (ligand exchange and polymer coating), in different controlled experimental conditions, in the presence-absence of the ZnS layer and in different media when exposed for long times to intense UV irradiation. Thus six different types of colloidal QDs were finally studied. This research was carried out from a novel perspective, based on the analysis of the dynamic behavior of the photoactivation process (of great interest for further applications of QDs as labels in biomedical applications). The results showed a different behavior of the studied colloidal QDs after UV irradiation in terms of their photoluminescence characteristics, potential toxicity due to metal release to the environment, nanoparticle stability and surface coating degradation.

  12. Multiscale analysis of surface soil moisture dynamics in a mesoscale catchment utilizing an integrated ecohydrological model (United States)

    Korres, W.; Reichenau, T. G.; Schneider, K.


    Soil moisture is one of the fundamental variables in hydrology, meteorology and agriculture, influencing the partitioning of solar energy into latent and sensible heat flux as well as the partitioning of precipitation into runoff and percolation. Numerous studies have shown that in addition to natural factors (rainfall, soil, topography etc.) agricultural management is one of the key drivers for spatio-temporal patterns of soil moisture in agricultural landscapes. Interactions between plant growth, soil hydrology and soil nitrogen transformation processes are modeled by using a dynamically coupled modeling approach. The process-based ecohydrological model components of the integrated decision support system DANUBIA are used to identify the important processes and feedbacks determining soil moisture patterns in agroecosystems. Integrative validation of plant growth and surface soil moisture dynamics serves as a basis for a spatially distributed modeling analysis of surface soil moisture patterns in the northern part of the Rur catchment (1100 sq km), Western Germany. An extensive three year dataset (2007-2009) of surface soil moisture-, plant- (LAI, organ specific biomass and N) and soil- (texture, N, C) measurements was collected. Plant measurements were carried out biweekly for winter wheat, maize, and sugar beet during the growing season. Soil moisture was measured with three FDR soil moisture stations. Meteorological data was measured with an eddy flux station. The results of the model validation showed a very good agreement between the modeled plant parameters (biomass, green LAI) and the measured parameters with values between 0.84 and 0.98 (Willmotts index of agreement). The modeled surface soil moisture (0 - 20 cm) showed also a very favorable agreement with the measurements for winter wheat and sugar beet with an RMSE between 1.68 and 3.45 Vol.-%. For maize, the RMSE was less favorable particularly in the 1.5 months prior to harvest. The modeled soil

  13. A method for a categorized and probabilistic analysis of the surface electromyogram in dynamic contractions



    The human motor system permits a wide variety of complex movements. Thereby, the inter- individual variability as well as the biomechanical aspects of the performed movement itself contribute to the challenge of the interpretation of sEMG signals in dynamic contractions. A procedure for the systematic analysis of sEMG recordings during dynamic contraction was introduced, which includes categorization of the data in combination with the analysis of frequency distributions of the sEMG with a pr...

  14. A method for a categorized and probabilistic analysis of the surface electromyogram in dynamic contractions



    The human motor system permits a wide variety of complex movements. Thereby, the inter-individual variability as well as the biomechanical aspects of the performed movement itself contribute to the challenge of the interpretation of sEMG signals in dynamic contractions. A procedure for the systematic analysis of sEMG recordings during dynamic contraction was introduced, which includes categorization of the data in combination with the analysis of frequency distributions of the sEMG with a pro...

  15. Dynamical evolution of the surface microrelief under multiple-pulse-laser irradiation: An analysis based on surface-scattered waves (United States)

    Barborica, A.; Mihailescu, I. N.; Teodorescu, V. S.


    We introduce a theoretical analysis of the temporal and spatial evolution of the surface topography of solids following interference between incident and scattered pulsed laser beams. The essential role played by the nonlinear delayed feedback in the laser-radiation-surface system is considered. We show that it finally determines the surface topography evolution from pulse to pulse. In order to complete the analysis, numerical calculations have been conducted under the hypothesis of strong attenuation of laser radiation into the sample and of a limited heat diffusion during the action of a laser pulse. We predict an evolution from very simple to complex (chaotic) structures under multiple-pulse-laser irradiation of solid surfaces. This evolution is determined by some key irradiation parameters; initial surface microrelief, incident laser intensity, and the number of applied laser pulses. Experiments were performed in order to check the main predictions of the theoretical analysis. The system of transversal excited atmospheric pressure-CO2 laser radiation (λ=10.6 μm)-interacting with fused silica was chosen as appropriate for performing test experiments. Optical microscopy studies of laser-treated zones evidenced special modifications of the surface topography in good accordance with the conclusions following from the theoretical analysis. The theoretical analysis is also in good agreement with some available data from the literature, at the same time providing a coherent interpretation of previously unexplained behaviors.

  16. Dynamic gravimetry in studying the adsorption of proteins onto metal surfaces: analysis and limitations. (United States)

    Sandu, C; Lund, D; Almas, K; Walling, D


    The paper describes the physical and mathematical fundamentals of dynamic gravimetry in liquid phase. First, a relation is developed to calculate the apparent weight of a vertical thin cylinder partially immersed Into a liquid. It emphasizes the magnitude of buoyancy forces and surface-tension forces (which act upon fine threads used to suspend a solid object completely immersed into a liquid). Next, the basic relation of dynamic gravimetry is derived to estimate the absolute mass of adsorbed material onto the surface of a submerged solid object. This relation encompasses, apart from the term related to the measured output signal of the balance, three correction terms which originate from the surface tension effects, buoyancy effect of the submerged object, and buoyancy effect due to the adsorbed material.The following sections address adsorption at the air-liquid interface as well as the molecular diffusion process (both being intermingled with concentration and density gradients in the system). Special attention is given to the errors connected with a series of relaxation processes in which the external menisci, the plate-beam system, and the surface tension are involved once their equilibrium conditions are disturbed. The time constants of these relaxation processes can not be exactly predicted. The paper concludes with an experimental illustration of dynamic gravimetry, with the adsorption of beta-lactoglobulin onto stainless steel plates. The validity of predictions based upon the physico-mathematical fundamentals is reconciled with the analytical and technical aspects and difficulties specific to dynamic gravimetry.

  17. Analysis of Surface Texturization of Solar Cells by Molecular Dynamics Simulations

    Directory of Open Access Journals (Sweden)

    Hsiao-Yen Chung


    Full Text Available The purpose of this paper is to develop a simple new model, based on the classic molecular dynamics simulation (MD, alternative to complex electron-photon interactions to analyze the surface texturization of solar cells. This methodology can easily propose the absorptance differences between texturing and nontexturing solar cells. To verify model feasibility, this study simulates square, pyramidal, and semicircular texturization surfaces. Simulations show that surface texturization effectively increases the absorptance of incident light for solar cells, and this paper presents optimal texturization shapes. The MD model can also be potentially used to predict the efficiency promotion in any optical reflection-absorption cases.

  18. SAR Analysis of the ocean surface : aplication to the NW mediterranean marine pollution and dynamic features


    Redondo Apraiz, José Manuel; Platonov, A.; Grau Barceló, Joan


    The interaction between multiple scales in nature and mainly in turbulent flows produces fractals or multifractal structures. We use multi-fractal analysis to investigate the scales and influence of stratification in different types of surface eddies in the ocean, and specially, near the coastline. We will also show and discuss the structure and residence time in oil spills and slicks in the ocean surface. This method, of multifractal analysis on the intensity SAR signals, as an example will ...

  19. A Monte Carlo/response surface strategy for sensitivity analysis: application to a dynamic model of vegetative plant growth (United States)

    Lim, J. T.; Gold, H. J.; Wilkerson, G. G.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)


    We describe the application of a strategy for conducting a sensitivity analysis for a complex dynamic model. The procedure involves preliminary screening of parameter sensitivities by numerical estimation of linear sensitivity coefficients, followed by generation of a response surface based on Monte Carlo simulation. Application is to a physiological model of the vegetative growth of soybean plants. The analysis provides insights as to the relative importance of certain physiological processes in controlling plant growth. Advantages and disadvantages of the strategy are discussed.

  20. Integrating aerodynamic surface modeling for computational fluid dynamics with computer aided structural analysis, design, and manufacturing (United States)

    Thorp, Scott A.


    This presentation will discuss the development of a NASA Geometry Exchange Specification for transferring aerodynamic surface geometry between LeRC systems and grid generation software used for computational fluid dynamics research. The proposed specification is based on a subset of the Initial Graphics Exchange Specification (IGES). The presentation will include discussion of how the NASA-IGES standard will accommodate improved computer aided design inspection methods and reverse engineering techniques currently being developed. The presentation is in viewgraph format.

  1. Molecular dynamics analysis of a equilibrium nanoscale droplet on a solid surface with periodic roughness (United States)

    Furuta, Yuma; Surblys, Donatas; Yamaguchi, Yastaka


    Molecular dynamics simulations of the equilibrium wetting behavior of hemi-cylindrical argon droplets on solid surfaces with a periodic roughness were carried out. The rough solid surface is located at the bottom of the calculation cell with periodic boundary conditions in surface lateral directions and mirror boundary condition at the top boundary. Similar to on a smooth surface, the change of the cosine of the droplet contact angle was linearly correlated to the potential well depth of the inter-atomic interaction between liquid and solid on a surface with a short roughness period while the correlation was deviated on one with a long roughness period. To further investigate this feature, solid-liquid, solid-vapor interfacial free energies per unit projected area of solid surface were evaluated by using the thermodynamic integration method in independent quasi-one-dimensional simulation systems with a liquid-solid interface or vapor-solid interface on various rough solid surfaces at a constant pressure. The cosine of the apparent contact angles estimated from the density profile of the droplet systems corresponded well with ones calculated from Young's equation using the interfacial energies evaluated in the quasi-one dimensional systems.

  2. Dynamic analysis of new type elastic screen surface with multi degree of freedom and experimental validation

    Institute of Scientific and Technical Information of China (English)

    宋宝成; 刘初升; 彭利平; 李珺


    A feasible method was proposed to improve the vibration intensity of screen surface via application of a new type elastic screen surface with multi degree of freedom (NTESSMDF). In the NTESSMDF, the primary robs were coupled to the main screen structure with ends embedded into the elastomers, and the secondary robs were attached to adjacent two primary robs with elastic bands. The dynamic model of vibrating screen with NTESSMDF was established based on Lagrange’s equation and the equivalent stiffnesses of the elastomer and elastic band were calculated. According to numerical simulation using the 4th order Runge-Kutta method, the vibration intensity of screen surface can be enhanced substantially with an averaged acceleration amplitude increasing ratio of 72.36%. The primary robs and secondary robs vibrate inversely in steady state, which would result in the friability of materials and avoid stoppage. The experimental results validate the dynamic characteristics with acceleration amplitude rising by 62.93%on average, which demonstrates the feasibility of NTESSMDF.

  3. Synoptic-scale analysis of mechanisms driving surface chlorophyll dynamics in the North Atlantic

    DEFF Research Database (Denmark)

    Ferreira, Ana Sofia; Hatun, H.; Counillon, F.


    algorithms to ocean colour data. We construct indicator fields and time series which, in various combinations, provide models consistent with the principle dynamics previously proposed. Using a multimodel inference approach, we investigate the evidence supporting these models and how it varies in space. We...... show that, in terms of bottom-up processes alone, there is a dominant physical mechanism, namely mixed-layer shoaling, that best predicts the interannual variation in the initial increase in surface chlorophyll across large sectors of the North Atlantic. We further show that different regions...

  4. Analysis of Pyramidal Surface Texturization of Silicon Solar Cells by Molecular Dynamics Simulations

    Directory of Open Access Journals (Sweden)

    Hsiao-Yen Chung


    Full Text Available The purpose of this paper is to explore the relations between surface texturization and absorptance of multicrystalline silicon solar cells by a simple new model, based on the classic molecular (MD dynamics simulation, alternative to complex electron-photon interactions to analyze the surface texturization of solar cells. In this study, the large tilted angle leads to the lower efficiency of solar cell. To consider the effect of incident angle, a range of high efficiency exists due to the increasing probability of second reflection. Furthermore, the azimuth angle of incident light also affects the efficiency of solar cells. Our results agree well with previous studies. This MD model can potentially be used to predict the efficiency promotion in any optical reflection-absorption cases.

  5. Adsorption/desorption phenomena on pure and Teflon AF-coated titania surfaces studied by dynamic contact angle analysis. (United States)

    Rupp, F; Axmann, D; Ziegler, C; Geis-Gerstorfer, J


    As a result of inflammatory processes, plaque formation on dental titanium implants often leads to clinically pathogenic situations. This special biofilm formation on (bio)materials in contact with saliva is initiated by ionic and protein interactions. In this interfacial process, albumin becomes a main constituent of dental pellicle. Interfacial reactions change the surface characteristics. They determine the following steps of macromolecular adsorption and bacterial adhesion. This work focuses on the dynamic contact angle analysis (DCA), which is a tool for online measurements of dynamic changes of wettability without disturbing the interface during detection. Repeatability of the DCA method has been assessed according to the Bland and Altman method. The kinetics and equilibrium data of shifts in the wetting tension hysteresis indicate ionic influences at the titanium/bovine serum albumin (BSA) interface: the Ca-mediated increase of the BSA adsorption on titanium and the adsorption maximum at the isoelectric point (IEP) of BSA. Ti was surface modified by Teflon AF polymeric coatings. The result of the assessment gives reason to consider Teflon AF as a reference material for DCA repeatability studies. This surface modification caused drastic changes in the dynamic interfacial reactions. Shifts in the wetting tensions during DCA adsorption-desorption experiments clearly demonstrated the partially irreversible adsorption of BSA on Teflon AF. In contrast, reversible adsorption behavior was detected on pure Ti surfaces. These findings strengthen the hypothesis that the analysis of dynamic changes in wetting tension and wetting tension hysteresis is a sensitive analytical method for the detection of dynamic interfacial changes at biomaterial/biosystem interfaces during the initial steps of biofilm formation.

  6. A method for a categorized and probabilistic analysis of the surface electromyogram in dynamic contractions

    Directory of Open Access Journals (Sweden)

    Sylvie Charlotte Frieda Anneliese von Werder


    Full Text Available The human motor system permits a wide variety of complex movements. Thereby, the inter- individual variability as well as the biomechanical aspects of the performed movement itself contribute to the challenge of the interpretation of sEMG signals in dynamic contractions. A procedure for the systematic analysis of sEMG recordings during dynamic contraction was introduced, which includes categorization of the data in combination with the analysis of frequency distributions of the sEMG with a probabilistic approach. Using the example of elbow flexion and extension the procedure was evaluated with 10 healthy subjects. The recorded sEMG signals of brachioradialis were categorized into a combination of constant and variable movement factors, which originate from the performed movement. Subsequently, for each combination of movement factors cumulative frequency distributions were computed for each subject separately. Finally, the probability of the difference of muscular activation in varying movement conditions was assessed. The probabilistic approach was compared to a deterministic analysis of the same data. Both approaches observed a significant change of muscular activation of brachioradialis during concentric and eccentric contractions exclusively for flexion and extension angles exceeding 30°. However, with the probabilistic approach additional information on the likelihood that the tested effect occurs can be provided.Especially for movements under uncontrollable boundary conditions, this information to assess the confidence of the detected results is of high relevance. Thus, the procedure provides new insights into the quantification and interpretation of muscular activity.

  7. Probing Chemical Dynamics at Surfaces

    Institute of Scientific and Technical Information of China (English)



    An account is given of recent progress concerning chemical reaction dynamics at surfaces. The goal is to elucidate the reaction dynamics at the molecular level, both as time and distance is concerned. The methods of study include molecular beam scattering, scanning tunnelling microscopy, and (femtosecond) laser spectroscopy. Systems studied include elementary interactions of NO, CO, and O2 at single crystal metal surfaces.

  8. Analysis of local properties during a scratch test on a polymeric surface using molecular dynamics simulations. (United States)

    Solar, M; Meyer, H; Gauthier, C


    This work demonstrates a possible route to connect a particle (chain) based understanding with continuum mechanical questions about contact mechanics. The bond orientation, chain conformation and stress field of a polymer film were analyzed during scratch tests (tangential contact) using a molecular dynamics (MD) simulation approach. Scratch tests with a conical tip at constant scratching velocity were simulated on linear amorphous polymer surfaces at various temperatures and roughnesses of the tip and for various interactions between the tip and the particles of the polymer chains. The second Legendre polynomial (computed for small domains around the tip) gave the bond orientation inside the polymer film during sliding of the tip. The gyration tensor (layer-resolved in the direction of the polymer film thickness) provided information about the conformation of the polymer chains. These results allowed us to argue in favor of Briscoe's hypothesis (thin film sheared vs. "bulk" compressive behavior) concerning the friction properties of the polymer surfaces. Finally, the first stress measurements of the virial stress tensor (in sub-boxes placed in the MD cell) revealed a complex combination between compressive hydrostatic pressure and shear stress, which may be interpreted as a complex sheared domain at the interface.

  9. Non-destructive image analysis of soil surface porosity and bulk density dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Pires, L.F., E-mail: lfpires@uepg.b [Laboratory of Soil Physics and Environmental Sciences, State University of Ponta Grossa, UEPG, C.E.P. 84.030-900, Ponta Grossa, PR (Brazil); Cassaro, F.A.M. [Laboratory of Soil Physics and Environmental Sciences, State University of Ponta Grossa, UEPG, C.E.P. 84.030-900, Ponta Grossa, PR (Brazil); Bacchi, O.O.S.; Reichardt, K. [Laboratory of Soil Physics, Center for Nuclear Energy in Agriculture, USP/CENA, C.P. 96, C.E.P. 13.400-970, Piracicaba, SP (Brazil)


    A gamma-ray computed tomography (CT) scanner was used to evaluate changes in the structure of clayey soil samples with surface compaction submitted to wetting and drying (W-D) cycles. The obtained results indicate that W-D cycles promoted an increasing of about 10% in soil porosity with a decreasing of about 6% in soil bulk density of this compacted region. With the use of the CT it was also possible to define the thickness of the compacted region that in our case was of about 8.19 mm. This last information is very important, for instance, to estimate hydraulic parameters in infiltration models. Finally, CT analysis showed that the compacted region remained at the surface samples, even after the application of the W-D cycles. -- Research highlights: {yields} Gamma-ray tomography allowed non-destructive analysis of soil bulk density and porosity changes. {yields} Soil porosity increased about 10% with the wetting and drying cycles. {yields} Soil bulk density in the compacted region decreased about 6% with the wetting and drying cycles. {yields} Detailed bulk density and porosity analysis changes were obtained for layers of 1.17 mm.

  10. In situ analysis of dynamic laminar flow extraction using surface-enhanced Raman spectroscopy (United States)

    Wang, Fei; Wang, Hua-Lin; Qiu, Yang; Chang, Yu-Long; Long, Yi-Tao


    In this study, we performed micro-scale dynamic laminar flow extraction and site-specific in situ chloride concentration measurements. Surface-enhanced Raman spectroscopy was utilized to investigate the diffusion process of chloride ions from an oil phase to a water phase under laminar flow. In contrast to common logic, we used SERS intensity gradients of Rhodamine 6G to quantitatively calculate the concentration of chloride ions at specific positions on a microfluidic chip. By varying the fluid flow rates, we achieved different extraction times and therefore different chloride concentrations at specific positions along the microchannel. SERS spectra from the water phase were recorded at these different positions, and the spatial distribution of the SERS signals was used to map the degree of nanoparticle aggregation. The concentration of chloride ions in the channel could therefore be obtained. We conclude that this method can be used to explore the extraction behaviour and efficiency of some ions or molecules that enhance the SERS intensity in water or oil by inducing nanoparticle aggregation.

  11. Dynamic contact interactions of fractal surfaces (United States)

    Jana, Tamonash; Mitra, Anirban; Sahoo, Prasanta


    Roughness parameters and material properties have significant influence on the static and dynamic properties of a rough surface. In the present paper, fractal surface is generated using the modified two-variable Weierstrass-Mandelbrot function in MATLAB and the same is imported to ANSYS to construct the finite element model of the rough surface. The force-deflection relationship between the deformable rough fractal surface and a contacting rigid flat is studied by finite element analysis. For the dynamic analysis, the contacting system is represented by a single degree of freedom spring mass-damper-system. The static force-normal displacement relationship obtained from FE analysis is used to determine the dynamic characteristics of the rough surface for free, as well as for forced damped vibration using numerical methods. The influence of fractal surface parameters and the material properties on the dynamics of the rough surface is also analyzed. The system exhibits softening property for linear elastic surface and the softening nature increases with rougher topography. The softening nature of the system increases with increase in tangent modulus value. Above a certain value of yield strength the nature of the frequency response curve is observed to change its nature from softening to hardening.

  12. The liquid surface of chiral ionic liquids as seen from molecular dynamics simulations combined with intrinsic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lísal, Martin, E-mail: [E. Hála Laboratory of Thermodynamics, Institute of Chemical Process Fundamentals of the ASCR, v. v. i., 165 02 Prague 6-Suchdol, Czech Republic and Department of Physics, Faculty of Science, J. E. Purkinje University, 400 96 Ústí n. Lab. (Czech Republic)


    We present molecular-level insight into the liquid/gas interface of two chiral room-temperature ionic liquids (RTILs) derived from 1-n-butyl-3-methylimidazolium bromide ([bmim][Br]); namely, (R)-1-butyl-3-(3-hydroxy-2-methylpropyl)imidazolium bromide (hydroxypropyl) and 1-butyl-3-[(1R)-nopyl]imidazolium bromide (nopyl). We use our currently developed force field which was validated against the experimental bulk density, heat of vaporization, and surface tension of [bmim][Br]. The force field for the RTILs adopts the Chemistry at Harvard Molecular Mechanics (CHARMM) parameters for the intramolecular and repulsion-dispersion interactions along with the reduced partial atomic charges based on ab initio calculations. The net charges of the ions are around ±0.8e, which mimic the anion to cation charge transfer and many-body effects. Molecular dynamics simulations in the slab geometry combined with the intrinsic interface analysis are employed to provide a detailed description of the RTIL/gas interface in terms of the structural and dynamic properties of the interfacial, sub-interfacial, and central layers at a temperature of 300 K. The focus is on the comparison of the liquid/gas interface for the chiral RTILs with the interface for parent [bmim][Br]. The structure of the interface is elucidated by evaluating the surface roughness, intrinsic atomic density profiles, and orientation ordering of the cations. The dynamics of the ions at the interfacial region is characterized by computing the survival probability, and normal and lateral self-diffusion coefficients in the layers.

  13. The liquid surface of chiral ionic liquids as seen from molecular dynamics simulations combined with intrinsic analysis (United States)

    Lísal, Martin


    We present molecular-level insight into the liquid/gas interface of two chiral room-temperature ionic liquids (RTILs) derived from 1-n-butyl-3-methylimidazolium bromide ([bmim][Br]); namely, (R)-1-butyl-3-(3-hydroxy-2-methylpropyl)imidazolium bromide (hydroxypropyl) and 1-butyl-3-[(1R)-nopyl]imidazolium bromide (nopyl). We use our currently developed force field which was validated against the experimental bulk density, heat of vaporization, and surface tension of [bmim][Br]. The force field for the RTILs adopts the Chemistry at Harvard Molecular Mechanics (CHARMM) parameters for the intramolecular and repulsion-dispersion interactions along with the reduced partial atomic charges based on ab initio calculations. The net charges of the ions are around ±0.8e, which mimic the anion to cation charge transfer and many-body effects. Molecular dynamics simulations in the slab geometry combined with the intrinsic interface analysis are employed to provide a detailed description of the RTIL/gas interface in terms of the structural and dynamic properties of the interfacial, sub-interfacial, and central layers at a temperature of 300 K. The focus is on the comparison of the liquid/gas interface for the chiral RTILs with the interface for parent [bmim][Br]. The structure of the interface is elucidated by evaluating the surface roughness, intrinsic atomic density profiles, and orientation ordering of the cations. The dynamics of the ions at the interfacial region is characterized by computing the survival probability, and normal and lateral self-diffusion coefficients in the layers.

  14. On understanding the relationship between structure in the potential surface and observables in classical dynamics: A functional sensitivity analysis approach (United States)

    Judson, Richard S.; Rabitz, Herschel


    The relationship between structure in the potential surface and classical mechanical observables is examined by means of functional sensitivity analysis. Functional sensitivities provide maps of the potential surface, highlighting those regions that play the greatest role in determining the behavior of observables. A set of differential equations for the sensitivities of the trajectory components are derived. These are then solved using a Green's function method. It is found that the sensitivities become singular at the trajectory turning points with the singularities going as η-3/2, with η being the distance from the nearest turning point. The sensitivities are zero outside of the energetically and dynamically allowed region of phase space. A second set of equations is derived from which the sensitivities of observables can be directly calculated. An adjoint Green's function technique is employed, providing an efficient method for numerically calculating these quantities. Sensitivity maps are presented for a simple collinear atom-diatom inelastic scattering problem and for two Henon-Heiles type Hamiltonians modeling intramolecular processes. It is found that the positions of the trajectory caustics in the bound state problem determine regions of the highest potential surface sensitivities. In the scattering problem (which is impulsive, so that ``sticky'' collisions did not occur), the positions of the turning points of the individual trajectory components determine the regions of high sensitivity. In both cases, these lines of singularities are superimposed on a rich background structure. Most interesting is the appearance of classical interference effects. The interference features in the sensitivity maps occur most noticeably where two or more lines of turning points cross. The important practical motivation for calculating the sensitivities derives from the fact that the potential is a function, implying that any direct attempt to understand how local

  15. Computational Fluid Dynamics Analysis on Radiation Error of Surface Air Temperature Measurement (United States)

    Yang, Jie; Liu, Qing-Quan; Ding, Ren-Hui


    Due to solar radiation effect, current air temperature sensors inside a naturally ventilated radiation shield may produce a measurement error that is 0.8 K or higher. To improve air temperature observation accuracy and correct historical temperature of weather stations, a radiation error correction method is proposed. The correction method is based on a computational fluid dynamics (CFD) method and a genetic algorithm (GA) method. The CFD method is implemented to obtain the radiation error of the naturally ventilated radiation shield under various environmental conditions. Then, a radiation error correction equation is obtained by fitting the CFD results using the GA method. To verify the performance of the correction equation, the naturally ventilated radiation shield and an aspirated temperature measurement platform are characterized in the same environment to conduct the intercomparison. The aspirated temperature measurement platform serves as an air temperature reference. The mean radiation error given by the intercomparison experiments is 0.23 K, and the mean radiation error given by the correction equation is 0.2 K. This radiation error correction method allows the radiation error to be reduced by approximately 87 %. The mean absolute error and the root mean square error between the radiation errors given by the correction equation and the radiation errors given by the experiments are 0.036 K and 0.045 K, respectively.

  16. 2D dynamic studies combined with the surface curvature analysis to predict Arias Intensity amplification (United States)

    Torgoev, Almaz; Havenith, Hans-Balder


    A 2D elasto-dynamic modelling of the pure topographic seismic response is performed for six models with a total length of around 23.0 km. These models are reconstructed from the real topographic settings of the landslide-prone slopes situated in the Mailuu-Suu River Valley, Southern Kyrgyzstan. The main studied parameter is the Arias Intensity (Ia, m/sec), which is applied in the GIS-based Newmark method to regionally map the seismically-induced landslide susceptibility. This method maps the Ia values via empirical attenuation laws and our studies investigate a potential to include topographic input into them. Numerical studies analyse several signals with varying shape and changing central frequency values. All tests demonstrate that the spectral amplification patterns directly affect the amplification of the Ia values. These results let to link the 2D distribution of the topographically amplified Ia values with the parameter called as smoothed curvature. The amplification values for the low-frequency signals are better correlated with the curvature smoothed over larger spatial extent, while those values for the high-frequency signals are more linked to the curvature with smaller smoothing extent. The best predictions are provided by the curvature smoothed over the extent calculated according to Geli's law. The sample equations predicting the Ia amplification based on the smoothed curvature are presented for the sinusoid-shape input signals. These laws cannot be directly implemented in the regional Newmark method, as 3D amplification of the Ia values addresses more problem complexities which are not studied here. Nevertheless, our 2D results prepare the theoretical framework which can potentially be applied to the 3D domain and, therefore, represent a robust basis for these future research targets.

  17. Dynamical analysis of a weakly coupled nonlinear dielectric waveguide -- surface-plasmon model as a new type of Josephson Junction

    CERN Document Server

    Ekşioğlu, Yasa; Güven, Kaan


    We propose that a weakly-coupled nonlinear dielectric waveguide -- surface-plasmon system can be formulated as a new type of Josephson junction. Such a system can be realized along a metal - dielectric interface where the dielectric medium hosts a nonlinear waveguide (e.g. fiber) for soliton propagation. We demonstrate that the system is in close analogy to the bosonic Josephson-Junction (BJJ) of atomic condensates at very low temperatures, yet exhibits different dynamical features. In particular, the inherently dynamic coupling parameter between soliton and surface-plasmon generates self-trapped oscillatory states at nonzero fractional populations with zero and $\\pi$ time averaged phase difference. The salient features of the dynamics are presented in the phase space.

  18. Confinement Vessel Dynamic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    R. Robert Stevens; Stephen P. Rojas


    A series of hydrodynamic and structural analyses of a spherical confinement vessel has been performed. The analyses used a hydrodynamic code to estimate the dynamic blast pressures at the vessel's internal surfaces caused by the detonation of a mass of high explosive, then used those blast pressures as applied loads in an explicit finite element model to simulate the vessel's structural response. Numerous load cases were considered. Particular attention was paid to the bolted port connections and the O-ring pressure seals. The analysis methods and results are discussed, and comparisons to experimental results are made.

  19. Dynamic contact angle measurements on superhydrophobic surfaces (United States)

    Kim, Jeong-Hyun; Kavehpour, H. Pirouz; Rothstein, Jonathan P.


    In this paper, the dynamic advancing and receding contact angles of a series of aqueous solutions were measured on a number of hydrophobic and superhydrophobic surfaces using a modified Wilhelmy plate technique. Superhydrophobic surfaces are hydrophobic surfaces with micron or nanometer sized surface roughness. These surfaces have very large static advancing contact angles and little static contact angle hysteresis. In this study, the dynamic advancing and dynamic receding contact angles on superhydrophobic surfaces were measured as a function of plate velocity and capillary number. The dynamic contact angles measured on a smooth hydrophobic Teflon surface were found to obey the scaling with capillary number predicted by the Cox-Voinov-Tanner law, θD3 ∝ Ca. The response of the dynamic contact angle on the superhydrophobic surfaces, however, did not follow the same scaling law. The advancing contact angle was found to remain constant at θA = 160∘, independent of capillary number. The dynamic receding contact angle measurements on superhydrophobic surfaces were found to decrease with increasing capillary number; however, the presence of slip on the superhydrophobic surface was found to result in a shift in the onset of dynamic contact angle variation to larger capillary numbers. In addition, a much weaker dependence of the dynamic contact angle on capillary number was observed for some of the superhydrophobic surfaces tested.

  20. Dynamic contact angle cycling homogenizes heterogeneous surfaces. (United States)

    Belibel, R; Barbaud, C; Mora, L


    In order to reduce restenosis, the necessity to develop the appropriate coating material of metallic stent is a challenge for biomedicine and scientific research over the past decade. Therefore, biodegradable copolymers of poly((R,S)-3,3 dimethylmalic acid) (PDMMLA) were prepared in order to develop a new coating exhibiting different custom groups in its side chain and being able to carry a drug. This material will be in direct contact with cells and blood. It consists of carboxylic acid and hexylic groups used for hydrophilic and hydrophobic character, respectively. The study of this material wettability and dynamic surface properties is of importance due to the influence of the chemistry and the potential motility of these chemical groups on cell adhesion and polymer kinetic hydrolysis. Cassie theory was used for the theoretical correction of contact angles of these chemical heterogeneous surfaces coatings. Dynamic Surface Analysis was used as practical homogenizer of chemical heterogeneous surfaces by cycling during many cycles in water. In this work, we confirmed that, unlike receding contact angle, advancing contact angle is influenced by the difference of only 10% of acidic groups (%A) in side-chain of polymers. It linearly decreases with increasing acidity percentage. Hysteresis (H) is also a sensitive parameter which is discussed in this paper. Finally, we conclude that cycling provides real information, thus avoiding theoretical Cassie correction. H(10)is the most sensible parameter to %A.

  1. Dynamic Defrosting on Nanostructured Superhydrophobic Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Boreyko, Jonathan B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Srijanto, Bernadeta R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Univ. of Tennessee, Knoxville, TN (United States). Dept. of Materials Science & Engineering; Nguyen, Trung Dac [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). National Center for Computational Sciences; Vega, Carlos [Univ. Complutense Madrid (Spain). Dept. de Quimica Fisica; Fuentes-Cabrera, Miguel [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computer Science and Mathematics Division; Collier, C. Patrick [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS)


    Water suspended on chilled superhydrophobic surfaces exhibits delayed freezing; however, the interdrop growth of frost through subcooled condensate forming on the surface seems unavoidable in humid environments. It is therefore of great practical importance to determine whether facile defrosting is possible on superhydrophobic surfaces. Here in this paper, we report that nanostructured superhydrophobic surfaces promote the growth of frost in a suspended Cassie state, enabling its dynamic removal upon partial melting at low tilt angles (<15°). The dynamic removal of the melting frost occurred in two stages: spontaneous dewetting followed by gravitational mobilization. This dynamic defrosting phenomenon is driven by the low contact angle hysteresis of the defrosted meltwater relative to frost on microstructured superhydrophobic surfaces, which forms in the impaled Wenzel state. Dynamic defrosting on nanostructured superhydrophobic surfaces minimizes the time, heat, and gravitational energy required to remove frost from the surface, and is of interest for a variety of systems in cold and humid environments.

  2. Dynamic Analysis of Shells

    Directory of Open Access Journals (Sweden)

    Charles R. Steele


    Full Text Available Shell structures are indispensable in virtually every industry. However, in the design, analysis, fabrication, and maintenance of such structures, there are many pitfalls leading to various forms of disaster. The experience gained by engineers over some 200 years of disasters and brushes with disaster is expressed in the extensive archival literature, national codes, and procedural documentation found in larger companies. However, the advantage of the richness in the behavior of shells is that the way is always open for innovation. In this survey, we present a broad overview of the dynamic response of shell structures. The intention is to provide an understanding of the basic themes behind the detailed codes and stimulate, not restrict, positive innovation. Such understanding is also crucial for the correct computation of shell structures by any computer code. The physics dictates that the thin shell structure offers a challenge for analysis and computation. Shell response can be generally categorized by states of extension, inextensional bending, edge bending, and edge transverse shear. Simple estimates for the magnitudes of stress, deformation, and resonance in the extensional and inextensional states are provided by ring response. Several shell examples demonstrate the different states and combinations. For excitation frequency above the extensional resonance, such as in impact and acoustic excitation, a fine mesh is needed over the entire shell surface. For this range, modal and implicit methods are of limited value. The example of a sphere impacting a rigid surface shows that plastic unloading occurs continuously. Thus, there are no short cuts; the complete material behavior must be included.

  3. The dynamic specification of surfaces and boundaries. (United States)

    Cunningham, D W; Shipley, T F; Kellman, P J


    Sequential changes in small separated texture elements can produce perception of a moving form with continuous boundaries. This process of spatiotemporal boundary formation may exist to provide a robust means of detecting moving objects that occlude more distant textured surfaces. Whereas most research on spatiotemporal boundary formation has been focused on boundary and shape perception, two experiments are reported here on the perception of surface qualities in spatiotemporal boundary formation. In experiment 1 a free-report procedure was used to investigate whether surface perception can be determined by dynamic information alone, apart from static spatial differences. Results showed that dynamic information was sufficient to determine the appearance of a surface. This dynamic information may play an important role in other aspects of perception. In experiment 2, it was shown that dynamically specifying an extended, opaque surface facilitated edge perception. Implications for the relation of boundary and surface perception and for theories of perceptual transparency are discussed.

  4. Molecular dynamics analysis of the friction between a water-methanol liquid mixture and a non-polar solid crystal surface (United States)

    Nakaoka, Satoshi; Yamaguchi, Yasutaka; Omori, Takeshi; Joly, Laurent


    We performed molecular dynamics analysis of the momentum transfer at the solid-liquid interface for a water-methanol liquid mixture between parallel non-polar solid walls in order to understand the strong decrease of the friction coefficient (FC) induced by the methanol adsorption at the surface observed in our previous work [S. Nakaoka et al., Phys. Rev. E 92, 022402 (2015)]. In particular, we extracted the individual contributions of water and methanol molecules to the total FC and found that the molecular FC for methanol was larger than that for water. We further showed that the reduction of the total solid-liquid FC upon the increase of the methanol molar fraction in the first adsorption layer occurred as a result of a decrease in the molecular number density as well as a decrease in the molecular FCs of both molecules. Analysis of the molecular orientation revealed that the decrease of the molecular FC of methanol resulted from changes of the contact feature onto the solid surface. Specifically, methanol molecules near the solid surface had their C-O bond parallel to the surface with both CH3 and O sites contacting the solid at low methanol molar fraction, while they had their C-O bond outward from the surface with only the CH3 site contacting the solid at higher methanol molar fraction. The mechanisms discussed in this work could be used to search for alternative water additives to further reduce the solid-liquid friction.

  5. Dynamics in Epistasis Analysis. (United States)

    Awdeh, Aseel; Phenix, Hilary; Kaern, Mads; Perkins, Theodore


    Finding regulatory relationships between genes, including the direction and nature of influence between them, is a fundamental challenge in the field of molecular genetics. One classical approach to this problem is epistasis analysis. Broadly speaking, epistasis analysis infers the regulatory relationships between a pair of genes in a genetic pathway by considering the patterns of change in an observable trait resulting from single and double deletion of genes. While classical epistasis analysis has yielded deep insights on numerous genetic pathways, it is not without limitations. Here, we explore the possibility of dynamic epistasis analysis, in which, in addition to performing genetic perturbations of a pathway, we drive the pathway by a time-varying upstream signal. We explore the theoretical power of dynamical epistasis analysis by conducting an identifiability analysis of Boolean models of genetic pathways, comparing static and dynamic approaches. We find that even relatively simple input dynamics greatly increases the power of epistasis analysis to discriminate alternative network structures. Further, we explore the question of experiment design, and show that a subset of short time-varying signals, which we call dynamic primitives, allow maximum discriminative power with a reduced number of experiments.

  6. Quantitative Hydrocarbon Surface Analysis (United States)

    Douglas, Vonnie M.


    The elimination of ozone depleting substances, such as carbon tetrachloride, has resulted in the use of new analytical techniques for cleanliness verification and contamination sampling. The last remaining application at Rocketdyne which required a replacement technique was the quantitative analysis of hydrocarbons by infrared spectrometry. This application, which previously utilized carbon tetrachloride, was successfully modified using the SOC-400, a compact portable FTIR manufactured by Surface Optics Corporation. This instrument can quantitatively measure and identify hydrocarbons from solvent flush of hardware as well as directly analyze the surface of metallic components without the use of ozone depleting chemicals. Several sampling accessories are utilized to perform analysis for various applications.

  7. Dynamic Factor Models for the Volatility Surface

    DEFF Research Database (Denmark)

    van der Wel, Michel; Ozturk, Sait R.; Dijk, Dick van

    The implied volatility surface is the collection of volatilities implied by option contracts for different strike prices and time-to-maturity. We study factor models to capture the dynamics of this three-dimensional implied volatility surface. Three model types are considered to examine desirable...... features for representing the surface and its dynamics: a general dynamic factor model, restricted factor models designed to capture the key features of the surface along the moneyness and maturity dimensions, and in-between spline-based methods. Key findings are that: (i) the restricted and spline......-based models are both rejected against the general dynamic factor model, (ii) the factors driving the surface are highly persistent, (iii) for the restricted models option Delta is preferred over the more often used strike relative to spot price as measure for moneyness....

  8. Causal Dynamics of Discrete Surfaces

    Directory of Open Access Journals (Sweden)

    Pablo Arrighi


    Full Text Available We formalize the intuitive idea of a labelled discrete surface which evolves in time, subject to two natural constraints: the evolution does not propagate information too fast; and it acts everywhere the same.

  9. Uncertainty and Sensitivity in Surface Dynamics Modeling (United States)

    Kettner, Albert J.; Syvitski, James P. M.


    Papers for this special issue on 'Uncertainty and Sensitivity in Surface Dynamics Modeling' heralds from papers submitted after the 2014 annual meeting of the Community Surface Dynamics Modeling System or CSDMS. CSDMS facilitates a diverse community of experts (now in 68 countries) that collectively investigate the Earth's surface-the dynamic interface between lithosphere, hydrosphere, cryosphere, and atmosphere, by promoting, developing, supporting and disseminating integrated open source software modules. By organizing more than 1500 researchers, CSDMS has the privilege of identifying community strengths and weaknesses in the practice of software development. We recognize, for example, that progress has been slow on identifying and quantifying uncertainty and sensitivity in numerical modeling of earth's surface dynamics. This special issue is meant to raise awareness for these important subjects and highlight state-of-the-art progress.

  10. Surface Aesthetics and Analysis. (United States)

    Çakır, Barış; Öreroğlu, Ali Rıza; Daniel, Rollin K


    Surface aesthetics of an attractive nose result from certain lines, shadows, and highlights with specific proportions and breakpoints. Analysis emphasizes geometric polygons as aesthetic subunits. Evaluation of the complete nasal surface aesthetics is achieved using geometric polygons to define the existing deformity and aesthetic goals. The relationship between the dome triangles, interdomal triangle, facet polygons, and infralobular polygon are integrated to form the "diamond shape" light reflection on the nasal tip. The principles of geometric polygons allow the surgeon to analyze the deformities of the nose, define an operative plan to achieve specific goals, and select the appropriate operative technique.

  11. The Dynamic Surface Tension of Water. (United States)

    Hauner, Ines M; Deblais, Antoine; Beattie, James K; Kellay, Hamid; Bonn, Daniel


    The surface tension of water is an important parameter for many biological or industrial processes, and roughly a factor of 3 higher than that of nonpolar liquids such as oils, which is usually attributed to hydrogen bonding and dipolar interactions. Here we show by studying the formation of water drops that the surface tension of a freshly created water surface is even higher (∼90 mN m(-1)) than under equilibrium conditions (∼72 mN m(-1)) with a relaxation process occurring on a long time scale (∼1 ms). Dynamic adsorption effects of protons or hydroxides may be at the origin of this dynamic surface tension. However, changing the pH does not significantly change the dynamic surface tension. It also seems unlikely that hydrogen bonding or dipole orientation effects play any role at the relatively long time scale probed in the experiments.

  12. Dynamic Wetting on Graphene-Coated Surface: Molecular Dynamics Investigation (United States)

    Hung, Shih-Wei; Shiomi, Junichiro


    Wettability of graphene-coated surface gained significant attention recently due to discussion on the ``transparency'' (whether the wetting characteristics follow that of graphene or the underlying surface) and practical applications of graphene. In terms of static contact angle, the wettability of graphene-coated surfaces have been widely studied by experiments, simulations, and theory in recent years. However, the studies of dynamic wetting on graphene-coated surfaces are limited. In the present study, molecular dynamics simulation was performed to study the dynamic wetting of water droplet on graphene-coated surfaces from a microscopic point of view. The results show that the degree of similarity between the spreading behavior on graphene-coated surface and that on pure graphene (or that on the underlying surface) depends on time, i.e. how nonequilibrium the interface dynamics is. We also found that this feature can be altered by introducing defects into graphene. The work is partially supported by Grant-in-Aid for JSPS Fellows 26-04364 and JST CREST.

  13. Dynamics of nanoscale droplets on moving surfaces. (United States)

    Ritos, Konstantinos; Dongari, Nishanth; Borg, Matthew K; Zhang, Yonghao; Reese, Jason M


    We use molecular dynamics (MD) simulations to investigate the dynamic wetting of nanoscale water droplets on moving surfaces. The density and hydrogen bonding profiles along the direction normal to the surface are reported, and the width of the water depletion layer is evaluated first for droplets on three different static surfaces: silicon, graphite, and a fictitious superhydrophobic surface. The advancing and receding contact angles, and contact angle hysteresis, are then measured as a function of capillary number on smooth moving silicon and graphite surfaces. Our results for the silicon surface show that molecular displacements at the contact line are influenced greatly by interactions with the solid surface and partly by viscous dissipation effects induced through the movement of the surface. For the graphite surface, however, both the advancing and receding contact angles values are close to the static contact angle value and are independent of the capillary number; i.e., viscous dissipation effects are negligible. This finding is in contrast with the wetting dynamics of macroscale water droplets, which show significant dependence on the capillary number.

  14. The Dynamic Stiffness of Surface Footings for Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Vahdatirad, Mohammadjavad; Andersen, Lars; Clausen, Johan;


    This study concerns the dynamic stiffness of foundations for large offshore wind turbines. Especially, the purpose of the analysis is to quantify the uncertainties related to the first natural frequency of a turbine supported by a surface footing on layered soil. The dynamic properties...... due to sediment transportation. Further, the stiffness and density of the materials within a single layer is subject to uncertainties. This leads to uncertainties of the dynamic stiffness of the foundation and therefore the natural frequencies. The aim of the study is to quantify the level...... of uncertainties and discuss the utilization of reliability-based design of surface footings for wind turbines....

  15. Structural dynamics analysis (United States)

    Housner, J. M.; Anderson, M.; Belvin, W.; Horner, G.


    Dynamic analysis of large space antenna systems must treat the deployment as well as vibration and control of the deployed antenna. Candidate computer programs for deployment dynamics, and issues and needs for future program developments are reviewed. Some results for mast and hoop deployment are also presented. Modeling of complex antenna geometry with conventional finite element methods and with repetitive exact elements is considered. Analytical comparisons with experimental results for a 15 meter hoop/column antenna revealed the importance of accurate structural properties including nonlinear joints. Slackening of cables in this antenna is also a consideration. The technology of designing actively damped structures through analytical optimization is discussed and results are presented.

  16. Surface analysis in microelectronics. (United States)

    Pignataro, S


    The contribution given by surface analysis to solve some problems encountered in the production of electronic power devices have been discussed. Mainly two types of problems have been faced. One of these deal with interfacial chemistry. Three examples have been investigated. The first applies to the improvement of the quality and the reliability of plastic packages through the optimization of the resin/metal and resin/die adhesion. The second relies to the adhesion between polyimide and silicon nitride used in the multilevel technology. The third example refers to the so called die-attach process and related problems. Another area of interest in microelectronics is that of the erosion of various types of surfaces and the possibility of wrong etching. A few examples of the application of surface analytical techniques for these problems will be presented. XPS and SIMS working in imaging and multipoint analysis mode, scanning acoustic microscopy, contact angle measurements as well as peeling and tensile strength measurements are the main tools used to obtain useful data.

  17. Surface dielectric relaxation: probing technique and its application to thermal activation dynamics of polymer surface. (United States)

    Ishii, Masashi


    For dynamic analyses of a polymer surface, a dielectric relaxation measurement technique with parallel electrodes placed away from the surface was developed. In this technique, a liquid heating medium was filled in the space between the polymer surface and the electrodes. The construction that maintains the surface can clarify the physical interactions between the liquid and the bare surface and controlling the temperature of the liquid reveals the thermal activation property of the surface. The dielectric relaxation spectrum of the surface convoluted into the bulk and liquid spectra can be obtained by a reactance analysis and the surface spectrum is expressed with an equivalent resistance-capacitance parallel circuit. On the basis of the electromechanical analogy, the electric elements can be converted into mechanical elements that indicate the viscoelasticity of the polymer surface. Using these measurement and analysis techniques, the electric and mechanical properties of the surface of a gelatinized chloroprene rubber sample were analyzed.

  18. Hydration dynamics near a model protein surface

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Daniela; Hura, Greg; Head-Gordon, Teresa


    The evolution of water dynamics from dilute to very high concentration solutions of a prototypical hydrophobic amino acid with its polar backbone, N-acetyl-leucine-methylamide (NALMA), is studied by quasi-elastic neutron scattering and molecular dynamics simulation for both the completely deuterated and completely hydrogenated leucine monomer. We observe several unexpected features in the dynamics of these biological solutions under ambient conditions. The NALMA dynamics shows evidence of de Gennes narrowing, an indication of coherent long timescale structural relaxation dynamics. The translational water dynamics are analyzed in a first approximation with a jump diffusion model. At the highest solute concentrations, the hydration water dynamics is significantly suppressed and characterized by a long residential time and a slow diffusion coefficient. The analysis of the more dilute concentration solutions takes into account the results of the 2.0M solution as a model of the first hydration shell. Subtracting the first hydration layer based on the 2.0M spectra, the translational diffusion dynamics is still suppressed, although the rotational relaxation time and residential time are converged to bulk-water values. Molecular dynamics analysis shows spatially heterogeneous dynamics at high concentration that becomes homogeneous at more dilute concentrations. We discuss the hydration dynamics results of this model protein system in the context of glassy systems, protein function, and protein-protein interfaces.

  19. A Novel Method to Magnetic Flux Linkage Optimization of Direct-Driven Surface-Mounted Permanent Magnet Synchronous Generator Based on Nonlinear Dynamic Analysis

    Directory of Open Access Journals (Sweden)

    Qian Xie


    Full Text Available This paper pays attention to magnetic flux linkage optimization of a direct-driven surface-mounted permanent magnet synchronous generator (D-SPMSG. A new compact representation of the D-SPMSG nonlinear dynamic differential equations to reduce system parameters is established. Furthermore, the nonlinear dynamic characteristics of new D-SPMSG equations in the process of varying magnetic flux linkage are considered, which are illustrated by Lyapunov exponent spectrums, phase orbits, Poincaré maps, time waveforms and bifurcation diagrams, and the magnetic flux linkage stable region of D-SPMSG is acquired concurrently. Based on the above modeling and analyses, a novel method of magnetic flux linkage optimization is presented. In addition, a 2 MW D-SPMSG 2D/3D model is designed by ANSYS software according to the practical design requirements. Finally, five cases of D-SPMSG models with different magnetic flux linkages are simulated by using the finite element analysis (FEA method. The nephograms of magnetic flux density are agreement with theoretical analysis, which both confirm the correctness and effectiveness of the proposed approach.

  20. Dynamic Contingency Analysis Tool

    Energy Technology Data Exchange (ETDEWEB)


    The Dynamic Contingency Analysis Tool (DCAT) is an open-platform and publicly available methodology to help develop applications that aim to improve the capabilities of power system planning engineers to assess the impact and likelihood of extreme contingencies and potential cascading events across their systems and interconnections. Outputs from the DCAT will help find mitigation solutions to reduce the risk of cascading outages in technically sound and effective ways. The current prototype DCAT implementation has been developed as a Python code that accesses the simulation functions of the Siemens PSS�E planning tool (PSS/E). It has the following features: It uses a hybrid dynamic and steady-state approach to simulating the cascading outage sequences that includes fast dynamic and slower steady-state events. It integrates dynamic models with protection scheme models for generation, transmission, and load. It models special protection systems (SPSs)/remedial action schemes (RASs) and automatic and manual corrective actions. Overall, the DCAT attempts to bridge multiple gaps in cascading-outage analysis in a single, unique prototype tool capable of automatically simulating and analyzing cascading sequences in real systems using multiprocessor computers.While the DCAT has been implemented using PSS/E in Phase I of the study, other commercial software packages with similar capabilities can be used within the DCAT framework.

  1. Dynamic Contingency Analysis Tool

    Energy Technology Data Exchange (ETDEWEB)


    The Dynamic Contingency Analysis Tool (DCAT) is an open-platform and publicly available methodology to help develop applications that aim to improve the capabilities of power system planning engineers to assess the impact and likelihood of extreme contingencies and potential cascading events across their systems and interconnections. Outputs from the DCAT will help find mitigation solutions to reduce the risk of cascading outages in technically sound and effective ways. The current prototype DCAT implementation has been developed as a Python code that accesses the simulation functions of the Siemens PSS/E planning tool (PSS/E). It has the following features: It uses a hybrid dynamic and steady-state approach to simulating the cascading outage sequences that includes fast dynamic and slower steady-state events. It integrates dynamic models with protection scheme models for generation, transmission, and load. It models special protection systems (SPSs)/remedial action schemes (RASs) and automatic and manual corrective actions. Overall, the DCAT attempts to bridge multiple gaps in cascading-outage analysis in a single, unique prototype tool capable of automatically simulating and analyzing cascading sequences in real systems using multiprocessor computers.While the DCAT has been implemented using PSS/E in Phase I of the study, other commercial software packages with similar capabilities can be used within the DCAT framework.

  2. Dynamics of Ferrofluidic Drops Impacting Superhydrophobic Surfaces

    CERN Document Server

    Bolleddula, D A; Alliseda, A; Bhosale, P; Berg, J C


    This is a fluid dynamics video illustrating the impact of ferrofluidic droplets on surfaces of variable wettability. Surfaces studied include mica, teflon, and superhydrophobic. A magnet is placed beneath each surface, which modifies the behavior of the ferrofluid by applying additional downward force apart from gravity resulting in reduced droplet size and increased droplet velocity. For the superhydrophobic droplet a jetting phenomena is shown which only occurs in a limited range of impact speeds, higher than observed before, followed by amplified oscillation due to magnetic field as the drop stabilizes on the surface.

  3. Simulation of Gas-Surface Dynamical Interactions (United States)


    Brenig, Z. Phys. B 36, 81 (1979). [39] J. Böheim and W. Brenig, Z. Phys. B 41, 243 (1981). [40] G. B. Arfken and H. J. Weber, Mathematical Methods for...excitation of the substrate have to be taken into account. In this lecture, the quantum and classical methods required for the simulation of gas-surface...well-defined conditions [2]. In this chapter, I will briefly review the theoretical methods necessary to determine the dynamics of processes at surfaces

  4. Dynamic Surface Tensions of Fluorous Surfactant Solutions

    Institute of Scientific and Technical Information of China (English)

    高艳安; 侯万国; 王仲妮; 李干佐; 韩布兴; 张高勇; 吕锋锋


    Dynamic surface properties of aqueous solutions of cationic fluorous surfactant CF3CF2CF20(CF(CF3)CF2O)2CF(CF3)CONH(CHE)3N+(C2H5)2CH3I- (abbrev. FC-4 ) were reported. The critical micelle concentration (cmc)(3.6×10-5 mol/L) and equilibdum surface tensions γeq were measured by Krtlss K12 tension apparatus. Dynamic surface tension γ(t) was measured in the range of 15 ms to 200 s using the MBP tensiometer. The surface excess Γ,as a function of concentration, was obtained from equilibrium tensiometry using the Gibbs equation. Data from these experiments were combined to analyze the γ(t) decays according to the asymptotic Ward and Tordai equation.The results show that at the initial adsorption stage, the dynamic surface tension data were all consistent with this diffusion-controlled mechanism, and at the end of the adsorption process, there were some evidences for an adsorption barrier, suggesting a mixed diffusion-controlled adsorption mechanism. Using measured quantities, the barrier strength was estimated as between 25 and 35 kJ/mol at 25℃. The surface pressure plays an important role in contributing to the barrier.

  5. Multi-temporal and multi-platforms remote sensing data for the analysis of open-pit mining earth surface dynamics (United States)

    Feng, Zengwen; Chen, Jianping; Li, Ke; Tarolli, Paolo


    Open-pit mining activities can affect the earth surface processes inducing soil erosion, landslides, and subsidence. The recognition and the analysis of mining induced Earth surface changes and the related processes represent, therefore, a challenge for a sustainable environmental planning for those regions affected by an intense mining activity. The purpose of this study is to monitor the effects of open-pit mining and the associated landform processes using multi-temporal and multi-platforms remote sensing data. The study area consists in an open-pit mine located in Miyun county, northern Beijing. For the study area different datasets are available for different years: a GeoEye image (2011, res. 1m/pix), two pairs of Cartosat - 1 stereo pairs (2009, 2012, res. 2.5m/pix) from which we extracted two DSMs (res. 5m/pix), an UAV aerial photograph (2014, res. 0.07m) and the derived DSM (2014, res. 0.1m). We also obtained a DTM (2014, res. 1m) from terrestrial laser scanner (TLS) and a DSM (2014, res. 0.5m) using the Structure from Motion (SfM) technique by a camera. These data served as the basis to recognize, through the application of morphometric indicators, the areas subject to erosion and landsliding. A volumetric estimate of soil loss from 2009 to 2014 has been also quantified using the multiple DSMs provided by the multi-platform. The recognition and the analysis of earth surface dynamics using low-cost multi-temporal and multi-platforms remote sensing such as SfM and UAVs represents a useful tool to mitigate the environmental consequences open-pit mining, and to mitigate the related natural disaster and risk.

  6. Dynamic Defrosting on Scalable Superhydrophobic Surfaces. (United States)

    Murphy, Kevin R; McClintic, William T; Lester, Kevin C; Collier, C Patrick; Boreyko, Jonathan B


    Recent studies have shown that frost can grow in a suspended Cassie state on nanostructured superhydrophobic surfaces. During defrosting, the melting sheet of Cassie frost spontaneously dewets into quasi-spherical slush droplets that are highly mobile. Promoting Cassie frost would therefore seem advantageous from a defrosting standpoint; however, nobody has systematically compared the efficiency of defrosting Cassie ice versus defrosting conventional surfaces. Here, we characterize the defrosting of an aluminum plate, one-half of which exhibits a superhydrophobic nanostructure while the other half is smooth and hydrophobic. For thick frost sheets (>1 mm), the superhydrophobic surface was able to dynamically shed the meltwater, even at very low tilt angles. In contrast, the hydrophobic surface was unable to shed any appreciable meltwater even at a 90° tilt angle. For thin frost layers (≲1 mm), not even the superhydrophobic surface could mobilize the meltwater. We attribute this to the large apparent contact angle of the meltwater, which for small amounts of frost serves to minimize coalescence events and prevent droplets from approaching the capillary length. Finally, we demonstrate a new mode of dynamic defrosting using an upside-down surface orientation, where the melting frost was able to uniformly detach from the superhydrophobic side and subsequently pull the frost from the hydrophobic side in a chain reaction. Treating surfaces to enable Cassie frost is therefore very desirable for enabling rapid and low-energy thermal defrosting, but only for frost sheets that are sufficiently thick.

  7. 皮带传动中动弧角曲面的分析%The analysis of the dynamic arc angle surface in belt transmission

    Institute of Scientific and Technical Information of China (English)

    屈翔; 邱香; 廖林清; 谢明; 张君


    通过推导,得到皮带初拉力、皮带有效拉力和皮带动弧角这三个重要参数形成曲面所列应的曲面方程,并定义为动弧角曲面方程,在已知其中任意两参数的情况下,可计算第三参数的大小.分析动弧角曲面特性,研究当量摩擦系数对动弧角曲面的影响,及曲面三参数之间的重要关系.%Three parameters including belt initiol tension ,effective belt tension and dynamic arc angle are derived to form the arc angle surface which is correspondent to an arc angle surface equation and this equation is defined as the dynamic arc angle surface equotion.In the eqution,with two of the three parmaeters known,the third paramter can be calculated out. The characteristics of the dynamic arc angle surface is analyzed and the effect of the equivalent coefficient of friction on the dynamic arc angle surface as well as the relationship among the three parameters of the arc angle surface is studied.

  8. Dynamic air layer on textured superhydrophobic surfaces

    KAUST Repository

    Vakarelski, Ivan Uriev


    We provide an experimental demonstration that a novel macroscopic, dynamic continuous air layer or plastron can be sustained indefinitely on textured superhydrophobic surfaces in air-supersaturated water by a natural gas influx mechanism. This type of plastron is an intermediate state between Leidenfrost vapor layers on superheated surfaces and the equilibrium Cassie-Baxter wetting state on textured superhydrophobic surfaces. We show that such a plastron can be sustained on the surface of a centimeter-sized superhydrophobic sphere immersed in heated water and variations of its dynamic behavior with air saturation of the water can be regulated by rapid changes of the water temperature. The simple experimental setup allows for quantification of the air flux into the plastron and identification of the air transport model of the plastron growth. Both the observed growth dynamics of such plastrons and millimeter-sized air bubbles seeded on the hydrophilic surface under identical air-supersaturated solution conditions are consistent with the predictions of a well-mixed gas transport model. © 2013 American Chemical Society.

  9. Dynamic air layer on textured superhydrophobic surfaces. (United States)

    Vakarelski, Ivan U; Chan, Derek Y C; Marston, Jeremy O; Thoroddsen, Sigurdur T


    We provide an experimental demonstration that a novel macroscopic, dynamic continuous air layer or plastron can be sustained indefinitely on textured superhydrophobic surfaces in air-supersaturated water by a natural gas influx mechanism. This type of plastron is an intermediate state between Leidenfrost vapor layers on superheated surfaces and the equilibrium Cassie-Baxter wetting state on textured superhydrophobic surfaces. We show that such a plastron can be sustained on the surface of a centimeter-sized superhydrophobic sphere immersed in heated water and variations of its dynamic behavior with air saturation of the water can be regulated by rapid changes of the water temperature. The simple experimental setup allows for quantification of the air flux into the plastron and identification of the air transport model of the plastron growth. Both the observed growth dynamics of such plastrons and millimeter-sized air bubbles seeded on the hydrophilic surface under identical air-supersaturated solution conditions are consistent with the predictions of a well-mixed gas transport model.

  10. Surface magnetic domains dynamic in machined steel

    Directory of Open Access Journals (Sweden)

    Blažek D.


    Full Text Available This contribution deals with an observation of the magnetic dynamic of different types of the machined surface of bearing steel. The Bakhausen noise (BN measurements are presented here as commonly introduced in industry for quality control due to the extremely sensitivity of the magnetic domains wall dynamics to the microstructure of material. The results of magneto-optical measurements are presented with the goal to explain the observed BN anisotropy. It is shown that BN anisotropy is associated with uniaxal magnetic anisotropy introduced by hard milling which causes the principally different magnetic reversals processes in orthogonal directions.

  11. Molecular Dynamics Simulations for Predicting Surface Wetting

    Directory of Open Access Journals (Sweden)

    Jing Chen


    Full Text Available The investigation of wetting of a solid surface by a liquid provides important insights; the contact angle of a liquid droplet on a surface provides a quantitative measurement of this interaction and the degree of attraction or repulsion of that liquid type by the solid surface. Molecular dynamics (MD simulations are a useful way to examine the behavior of liquids on solid surfaces on a nanometer scale. Thus, we surveyed the state of this field, beginning with the fundamentals of wetting calculations to an examination of the different MD methodologies used. We highlighted some of the advantages and disadvantages of the simulations, and look to the future of computer modeling to understand wetting and other liquid-solid interaction phenomena.

  12. [Oligoglycine surface structures: molecular dynamics simulation]. (United States)

    Gus'kova, O A; Khalatur, P G; Khokhlov, A R; Chinarev, A A; Tsygankova, S V; Bovin, N V


    The full-atomic molecular dynamics (MD) simulation of adsorption mode for diantennary oligoglycines [H-Gly4-NH(CH2)5]2 onto graphite and mica surface is described. The resulting structure of adsorption layers is analyzed. The peptide second structure motives have been studied by both STRIDE (structural identification) and DSSP (dictionary of secondary structure of proteins) methods. The obtained results confirm the possibility of polyglycine II (PGII) structure formation in diantennary oligoglycine (DAOG) monolayers deposited onto graphite surface, which was earlier estimated based on atomic-force microscopy measurements.

  13. Dynamic Surface Control and Its Application to Lateral Vehicle Control

    Directory of Open Access Journals (Sweden)

    Bongsob Song


    Full Text Available This paper extends the design and analysis methodology of dynamic surface control (DSC in Song and Hedrick, 2011, for a more general class of nonlinear systems. When rotational mechanical systems such as lateral vehicle control and robot control are considered for applications, sinusoidal functions are easily included in the equation of motions. If such a sinusoidal function is used as a forcing term for DSC, the stability analysis faces the difficulty due to highly nonlinear functions resulting from the low-pass filter dynamics. With modification of input variables to the filter dynamics, the burden of mathematical analysis can be reduced and stability conditions in linear matrix inequality form to guarantee the quadratic stability via DSC are derived for the given class of nonlinear systems. Finally, the proposed design and analysis approach are applied to lateral vehicle control for forward automated driving and backward parallel parking at a low speed as well as an illustrative example.

  14. Satellite dynamics on the Laplace surface

    CERN Document Server

    Tremaine, Scott; Namouni, Fathi


    The orbital dynamics of most planetary satellites is governed by the quadrupole moment from the equatorial bulge of the host planet and the tidal field from the Sun. On the Laplace surface, the long-term orbital evolution driven by the combined effects of these forces is zero, so that orbits have a fixed orientation and shape. The "classical" Laplace surface is defined for circular orbits, and coincides with the planet's equator at small planetocentric distances and with its orbital plane at large distances. A dissipative circumplanetary disk should settle to this surface, and hence satellites formed from such a disk are likely to orbit in or near the classical Laplace surface. This paper studies the properties of Laplace surfaces. Our principal results are: (i) if the planetary obliquity exceeds 68.875 deg there is a range of semimajor axes in which the classical Laplace surface is unstable; (ii) at some obliquities and planetocentric distances there is a distinct Laplace surface consisting of nested eccentr...

  15. Critical bifurcation surfaces of 3D discrete dynamics

    Directory of Open Access Journals (Sweden)

    Michael Sonis


    Full Text Available This paper deals with the analytical representation of bifurcations of each 3D discrete dynamics depending on the set of bifurcation parameters. The procedure of bifurcation analysis proposed in this paper represents the 3D elaboration and specification of the general algorithm of the n-dimensional linear bifurcation analysis proposed by the author earlier. It is proven that 3D domain of asymptotic stability (attraction of the fixed point for a given 3D discrete dynamics is bounded by three critical bifurcation surfaces: the divergence, flip and flutter surfaces. The analytical construction of these surfaces is achieved with the help of classical Routh–Hurvitz conditions of asymptotic stability. As an application the adjustment process proposed by T. Puu for the Cournot oligopoly model is considered in detail.

  16. The influence of external dynamic loads on the lifetime of rolling element bearings: Experimental analysis of the lubricant film and surface wear (United States)

    Jacobs, William; Van Hooreweder, Brecht; Boonen, Rene; Sas, Paul; Moens, David


    Precise prediction of the lifetime of rolling element bearings is a crucial step towards a reliable design of many rotating machines. For bearings subjected to highly varying loads, recent research emphasises a strong reduction of the actual bearing lifetime w.r.t. the classically calculated bearing lifetime. This paper experimentally analyses the influence of external dynamic loads on the lifetime of rolling element bearings. A novel bearing test rig is introduced. The test rig is able to apply a fully controlled multi-axial static and dynamic load on a single test bearing. Also, different types and sizes of bearings can be tested. Two separate investigations are conducted. First, the behaviour of the lubricant film between the rolling elements and raceways is analysed. Increased metallic contact or breakdown of the film during dynamic excitation is investigated based on the measured electrical resistance through the bearing. The study shows that the lubricant film thickness follows the imposed variations of the load. Variations of the lubricant film thickness are similar to the variations when the magnitude of the static bearing load is changed. Second, wear of the raceway surfaces is analysed. Surface wear is investigated after a series of accelerated lifetime tests under high dynamic load. Due to sliding motion between asperities of the contacting surfaces in the bearing, polishing of the raceway honing structure occurs. This polishing is clearly observed on SEM images of the inner raceway after a test duration of only 0.5% of the calculated L10 life. Polishing wear of the surfaces, such as surface induced cracks and material delamination, is expected when the bearing is further exposed to the high dynamic load.

  17. Analysis of structure and vibrational dynamics of the BeTe(001) surface using X-ray diffraction, Raman spectroscopy, and density functional theory

    DEFF Research Database (Denmark)

    Kumpf, C.; Müller, A.; Weigand, W.;


    The atomic structure and lattice dynamics of epitaxial BeTe(001) thin films are derived from surface x-ray diffraction and Raman spectroscopy. On the Te-rich BeTe(001) surface [1 (1) over bar0]-oriented Te dimers are identified. They cause a (2 X 1) superstructure and induce a pronounced buckling...... in the underlying Te layer. The Be-rich surface exhibits a (4 X 1) periodicity with alternating Te dimers and Te-Be-Te trimers. A vibration eigenfrequency of 165 cm(-1) is observed for the Te-rich surface, while eigenmodes at 157 and 188 cm(-1) are found for the Be-rich surface. The experimentally derived atomic...... geometry and the vibration modes are in very good agreement with the results of density functional theory calculations....

  18. Measurement of dynamic surface tension by mechanically vibrated sessile droplets (United States)

    Iwata, Shuichi; Yamauchi, Satoko; Yoshitake, Yumiko; Nagumo, Ryo; Mori, Hideki; Kajiya, Tadashi


    We developed a novel method for measuring the dynamic surface tension of liquids using mechanically vibrated sessile droplets. Under continuous mechanical vibration, the shape of the deformed droplet was fitted by numerical analysis, taking into account the force balance at the drop surface and the momentum equation. The surface tension was determined by optimizing four parameters: the surface tension, the droplet's height, the radius of the droplet-substrate contact area, and the horizontal symmetrical position of the droplet. The accuracy and repeatability of the proposed method were confirmed using drops of distilled water as well as viscous aqueous glycerol solutions. The vibration frequency had no influence on surface tension in the case of pure liquids. However, for water-soluble surfactant solutions, the dynamic surface tension gradually increased with vibration frequency, which was particularly notable for low surfactant concentrations slightly below the critical micelle concentration. This frequency dependence resulted from the competition of two mechanisms at the drop surface: local surface deformation and surfactant transport towards the newly generated surface.

  19. Adsorbed water on iron surface by molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, F.W.; Campos, T.M.B.; Cividanes, L.S., E-mail:; Simonetti, E.A.N.; Thim, G.P.


    Graphical abstract: - Highlights: • We developed a new force field to describe the Fe–H{sub 2}O interaction. • We developed a new force field to describe the flexible water model at low temperature. • We analyze the orientation of water along the iron surface. • We calculate the vibrational spectra of water near the iron surface. • We found a complex relationship between water orientation and the atomic vibrational spectra at different sites of adsorption along the iron surface. - Abstract: The adsorption of H{sub 2}O molecules on metal surfaces is important to understand the early process of water corrosion. This process can be described by computational simulation using molecular dynamics and Monte Carlo. However, this simulation demands an efficient description of the surface interactions between the water molecule and the metallic surface. In this study, an effective force field to describe the iron-water surface interactions was developed and it was used in a molecular dynamics simulation. The results showed a very good agreement between the simulated vibrational-DOS spectrum and the experimental vibrational spectrum of the iron–water interface. The water density profile revealed the presence of a water double layer in the metal interface. Furthermore, the horizontal mapping combined with the angular distribution of the molecular plane allowed the analysis of the water structure above the surface, which in turn agrees with the model of the double layer on metal surfaces.

  20. Dynamic bioactive stimuli-responsive polymeric surfaces (United States)

    Pearson, Heather Marie

    This dissertation focuses on the design, synthesis, and development of antimicrobial and anticoagulant surfaces of polyethylene (PE), polypropylene (PP), and poly(tetrafluoroethylene) (PTFE) polymers. Aliphatic polymeric surfaces of PE and PP polymers functionalized using click chemistry reactions by the attachment of --COOH groups via microwave plasma reactions followed by functionalization with alkyne moieties. Azide containing ampicillin (AMP) was synthesized and subsequently clicked into the alkyne prepared PE and PP surfaces. Compared to non-functionalized PP and PE surfaces, the AMP clicked surfaces exhibited substantially enhanced antimicrobial activity against Staphylococcus aureus bacteria. To expand the biocompatibility of polymeric surface anticoagulant attributes, PE and PTFE surfaces were functionalized with pH-responsive poly(2-vinyl pyridine) (P2VP) and poly(acrylic acid) (PAA) polyelectrolyte tethers terminated with NH2 and COOH groups. The goal of these studies was to develop switchable stimuli-responsive polymeric surfaces that interact with biological environments and display simultaneous antimicrobial and anticoagulant properties. Antimicrobial AMP was covalently attached to --COOH terminal ends of protected PAA, while anticoagulant heparin (HEP) was attached to terminal --NH2 groups of P2VP. When pH 5.5, they collapse while the PAA segments extend. Such surfaces, when exposed to Staphylococcus aureus, inhibit bacterial growth due to the presence of AMP, as well as are effective anticoagulants due to the presence of covalently attached HEP. Comparison of these "dynamic" pH responsive surfaces with "static" surfaces terminated with AMP entities show significant enhancement of longevity and surface activity against microbial film formation. The last portion of this dissertation focuses on the covalent attachment of living T1 and Φ11 bacteriophages (phages) on PE and PTFE surface. This was accomplished by carbodiimide coupling between --COOH

  1. Global Analysis of Nonlinear Dynamics

    CERN Document Server

    Luo, Albert


    Global Analysis of Nonlinear Dynamics collects chapters on recent developments in global analysis of non-linear dynamical systems with a particular emphasis on cell mapping methods developed by Professor C.S. Hsu of the University of California, Berkeley. This collection of contributions prepared by a diverse group of internationally recognized researchers is intended to stimulate interests in global analysis of complex and high-dimensional nonlinear dynamical systems, whose global properties are largely unexplored at this time. This book also: Presents recent developments in global analysis of non-linear dynamical systems Provides in-depth considerations and extensions of cell mapping methods Adopts an inclusive style accessible to non-specialists and graduate students Global Analysis of Nonlinear Dynamics is an ideal reference for the community of nonlinear dynamics in different disciplines including engineering, applied mathematics, meteorology, life science, computational science, and medicine.  

  2. Computer-based image analysis in radiological diagnostics and image-guided therapy 3D-Reconstruction, contrast medium dynamics, surface analysis, radiation therapy and multi-modal image fusion

    CERN Document Server

    Beier, J


    This book deals with substantial subjects of postprocessing and analysis of radiological image data, a particular emphasis was put on pulmonary themes. For a multitude of purposes the developed methods and procedures can directly be transferred to other non-pulmonary applications. The work presented here is structured in 14 chapters, each describing a selected complex of research. The chapter order reflects the sequence of the processing steps starting from artefact reduction, segmentation, visualization, analysis, therapy planning and image fusion up to multimedia archiving. In particular, this includes virtual endoscopy with three different scene viewers (Chap. 6), visualizations of the lung disease bronchiectasis (Chap. 7), surface structure analysis of pulmonary tumors (Chap. 8), quantification of contrast medium dynamics from temporal 2D and 3D image sequences (Chap. 9) as well as multimodality image fusion of arbitrary tomographical data using several visualization techniques (Chap. 12). Thus, the softw...

  3. Dynamic Maintenance and Visualization of Molecular Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bajaj, C L; Pascucci, V; Shamir, A; Holt, R J; Netravali, A N


    Molecular surface computations are often necessary in order to perform synthetic drug design. A critical step in this process is the computation and update of an exact boundary representation for the molecular surface (e.g. the Lee-Richards surface). In this paper they introduce efficient techniques for computing a molecular surface boundary representation as a set of NURBS (non-uniform rational B-splines) patches. This representation introduces for molecules the same geometric data structure used in the solid modeling community and enables immediate access to a wide range of modeling operations and techniques. Furthermore, this allows the use of any general solid modeling or visualization system as a molecular modeling interface. However, using such a representation in a molecular modeling environment raises several efficiency and update constraints, especially in a dynamic setting. For example, changes in the probe radius result in both geometric and topological changes to the set of patches. The techniques provide the option of trading accuracy of the representation for the efficiency of the computation, while still tracking the changes in the set of patches. In particular, they discuss two main classes of dynamic updates: one that keeps the topology of the molecular configuration fixed, and a more complicated case where the topology may be updated continuously. In general the generated output surface is represented in a format that can be loaded into standard solid modeling systems. It can also be directly triangulated or rendered, possibly at different levels of resolution, by a standard graphics library such as OpenGL without any additional effort.

  4. Dynamical Casimir effect for surface plasmon polaritons

    Energy Technology Data Exchange (ETDEWEB)

    Hizhnyakov, V.; Loot, A., E-mail:; Azizabadi, S.Ch.


    The emission of photon pairs by a metal–dielectric interface placed between the mirrors of the resonator and excited by a plane wave is considered. The excitation causes oscillations in time of the optical length of surface plasmon polaritons in the interface. This leads to the dynamical Casimir effect – the generation of pairs of surface plasmon polariton quanta, which transfer to photons outside the interface. In the case of a properly chosen interface, the yield of two-photon emission may exceed that of the usual spontaneous parametric down-conversion. - Highlights: • The theory of dynamical Casimir effect (DCE) in the metal–dielectric interface excited by a monochromatic wave is proposed. • It is shown that the field enhancement associated with surface plasmon polaritons strongly enhances the yield of the DCE. • The numerical calculations of the enhancement factor are made. • The scheme of experimental setup to observe the DCE in the metal–dielectric interface is proposed. • Additional methods to enhance the DCE in the metal–dielectric interface are discussed.

  5. Surface analysis the principal techniques

    CERN Document Server

    Vickerman, John C


    This completely updated and revised second edition of Surface Analysis: The Principal Techniques, deals with the characterisation and understanding of the outer layers of substrates, how they react, look and function which are all of interest to surface scientists. Within this comprehensive text, experts in each analysis area introduce the theory and practice of the principal techniques that have shown themselves to be effective in both basic research and in applied surface analysis. Examples of analysis are provided to facilitate the understanding of this topic and to show readers how they c

  6. Interactions between nonlinear spur gear dynamics and surface wear (United States)

    Ding, Huali; Kahraman, Ahmet


    In this study, two different dynamic models, a finite elements-based deformable-body model and a simplified discrete model, and a surface wear model are combined to study the interaction between gear surface wear and gear dynamic response. The proposed dynamic gear wear model includes the influence of worn surface profiles on dynamic tooth forces and transmission error as well as the influence of dynamic tooth forces on wear profiles. This paper first introduces the nonlinear dynamic models that include gear backlash and time-varying gear mesh stiffness, and a wear model separately. It presents a comparison to experiments for validation of the dynamic models. The dynamic models are combined with the wear model to study the interaction of surface wear and dynamic behavior in both linear and nonlinear response regimes. At the end, several sets of simulation results are used to demonstrate the two-way relationship between nonlinear gear dynamics and surface wear.

  7. From analysis to surface

    DEFF Research Database (Denmark)

    Bemman, Brian; Meredith, David


    of Sheer Pluck (1984), a twelve-tone composition for guitar by Milton Babbitt (1916–2011). This analysis focuses on the all-partition array structure on which the piece is based. Having pre- sented this analysis, we formalize some constraints on the structure of the piece and explore some computational...

  8. Surface Temperature Data Analysis (United States)

    Hansen, James; Ruedy, Reto


    Small global mean temperature changes may have significant to disastrous consequences for the Earth's climate if they persist for an extended period. Obtaining global means from local weather reports is hampered by the uneven spatial distribution of the reliably reporting weather stations. Methods had to be developed that minimize as far as possible the impact of that situation. This software is a method of combining temperature data of individual stations to obtain a global mean trend, overcoming/estimating the uncertainty introduced by the spatial and temporal gaps in the available data. Useful estimates were obtained by the introduction of a special grid, subdividing the Earth's surface into 8,000 equal-area boxes, using the existing data to create virtual stations at the center of each of these boxes, and combining temperature anomalies (after assessing the radius of high correlation) rather than temperatures.

  9. Numerical study of three-dimensional free surface dynamics

    Institute of Scientific and Technical Information of China (English)

    Baozeng Yue; Zhaolin Wang


    The dynamic problem of three-dimensional free surface is numerically studied in this paper.The ALE (Arbitrary Lagrange-Euler) kinematic description is introduced into the control equation system.The ALE description method is used to track free surface.Accurate formulations for calculating the normal vector on the free surface are presented.The discrete numerical equations by finite element method are developed by Galerkin weighted residual method.The boundary condition about free-surface tension is represented in the form of weak integration that can be computed by a differential geometry method derived in the present paper.The effect of contact angle is incorporated in the numerical algorithm.Furthermore, the numerical computations are performed and the comparison between computational and analytical results validated the effectiveness of the method.The results of this paper provide a fundamental understandings of the dynamics of liquid free surfaces,in which the surface tension and contact angle boundary conditions are taken into account.Finally,numerical simulation of largescale amplitude sloshing of liquid in a cylindrical container is performed and a numerical analysis of the effect of an annular ring-shaped rigid damping baffle on liquid sloshing oscillations in a cylindrical tank is also carried out.

  10. Static and dynamic friction of hierarchical surfaces (United States)

    Costagliola, Gianluca; Bosia, Federico; Pugno, Nicola M.


    Hierarchical structures are very common in nature, but only recently have they been systematically studied in materials science, in order to understand the specific effects they can have on the mechanical properties of various systems. Structural hierarchy provides a way to tune and optimize macroscopic mechanical properties starting from simple base constituents and new materials are nowadays designed exploiting this possibility. This can be true also in the field of tribology. In this paper we study the effect of hierarchical patterned surfaces on the static and dynamic friction coefficients of an elastic material. Our results are obtained by means of numerical simulations using a one-dimensional spring-block model, which has previously been used to investigate various aspects of friction. Despite the simplicity of the model, we highlight some possible mechanisms that explain how hierarchical structures can significantly modify the friction coefficients of a material, providing a means to achieve tunability.

  11. Droplet Impact Dynamics on Micropillared Hydrophobic Surfaces

    CERN Document Server

    Patil, Nagesh D; Sharma, Atul


    The effect of pitch of the pillars and impact velocity are studied for the impact dynamics of a microliter water droplet on a micropillared hydrophobic surface. The results are presented qualitatively by the high-speed photography and quantitatively by the temporal variation of wetted diameter and droplet height. A characterization of the transient quantitative results is a novel aspect of our work. Three distinct regimes, namely, non-bouncing, complete bouncing and partial bouncing are presented. A critical pitch as well as impact velocity exists for the transition from one regime to another. This is explained with a demonstration of Cassie to Wenzel wetting transition in which the liquid penetrates in the grooves between the pillars at larger pitch or impact velocity. The regimes are demarcated on a map of pitch and impact velocity. A good agreement is reported between the present measurements and published analytical models.

  12. Dynamic electrowetting of sessile drops on soft surfaces

    CERN Document Server

    Dey, Ranabir; DasGupta, Sunando; Chakraborty, Suman


    Electrically-mediated dynamic wetting behaviour of sessile liquid drops on dielectric films is governed by the combined interplay of the wetting line friction and the internal viscous dissipation. We show here that such classical description of the electrospreading phenomenon, as prevalent in the contemporary literature, fails to address the electro-capillarity induced dynamic wetting of sessile drops on soft dielectrics. We first delineate the temporal variations of the macroscopic dynamic contact angle, and the contact radius, during electrowetting on rheologically tunable soft surfaces, at different applied electric potentials; subsequently, we prove through a scaling analysis, and an energy conservation approach, that the dielectric elasticity dependent, microscale elastocapillary deformation of the soft substrate, near the three-phase contact line, plays the integral role in dictating the macroscopic electrowetting behaviour. Interestingly, under such electro-elastocapillary phenomenon on soft dielectric...

  13. Analysis of surface and root-zone soil moisture dynamics with ERS scatterometer and the hydrometeorological model SAFRAN-ISBA-MODCOU at Grand Morin watershed (France

    Directory of Open Access Journals (Sweden)

    T. Paris Anguela


    Full Text Available Spatial and temporal variations of soil moisture strongly affect flooding, erosion, solute transport and vegetation productivity. Its characterization, offers an avenue to improve our understanding of complex land surface-atmosphere interactions. In this paper, soil moisture dynamics at soil surface (first centimeters and root-zone (up to 1.5 m depth are investigated at three spatial scales: local scale (field measurements, 8×8 km2 (hydrological model and 25×25 km2 scale (ERS scatterometer in a French watershed. This study points out the quality of surface and root-zone soil moisture data for SIM model and ERS scatterometer for a three year period. Surface soil moisture is highly variable because is more influenced by atmospheric conditions (rain, wind and solar radiation, and presents RMSE up to 0.08 m3 m−3. On the other hand, root-zone moisture presents lower variability with small RMSE (between 0.02 and 0.06 m3 m−3. These results will contribute to satellite and model verification of moisture, but also to better application of radar data for data assimilation in future.

  14. Dynamic conduction and repolarisation changes in early arrhythmogenic right ventricular cardiomyopathy versus benign outflow tract ectopy demonstrated by high density mapping & paced surface ECG analysis.

    Directory of Open Access Journals (Sweden)

    Malcolm C Finlay

    Full Text Available AIMS: The concealed phase of arrhythmogenic right ventricular cardiomyopathy (ARVC may initially manifest electrophysiologically. No studies have examined dynamic conduction/repolarization kinetics to distinguish benign right ventricular outflow tract ectopy (RVOT ectopy from ARVC's early phase. We investigated dynamic endocardial electrophysiological changes that differentiate early ARVC disease expression from RVOT ectopy. METHODS: 22 ARVC (12 definite based upon family history and mutation carrier status, 10 probable patients without right ventricular structural anomalies underwent high-density non-contact mapping of the right ventricle. These were compared to data from 14 RVOT ectopy and 12 patients with supraventricular tachycardias and normal hearts. Endocardial & surface ECG conduction and repolarization parameters were assessed during a standard S1-S2 restitution protocol. RESULTS: Definite ARVC without RV structural disease could not be clearly distinguished from RVOT ectopy during sinus rhythm or during steady state pacing. Delay in Activation Times at coupling intervals just above the ventricular effective refractory period (VERP increased in definite ARVC (43 ± 20 ms more than RVOT ectopy patients (36 ± 14 ms, p = 0.03 or Normals (25 ± 16 ms, p = 0.008 and a progressive separation of the repolarisation time curves between groups existed. Repolarization time increases in the RVOT were also greatest in ARVC (definite ARVC: 18 ± 20 ms; RVOT ectopy: 5 ± 14, Normal: 1 ± 18, p<0.05. Surface ECG correlates of these intracardiac measurements demonstrated an increase of greater than 48 ms in stimulus to surface ECG J-point pre-ERP versus steady state, with an 88% specificity and 68% sensitivity in distinguishing definite ARVC from the other groups. This technique could not distinguish patients with genetic predisposition to ARVC only (probable ARVC from controls. CONCLUSIONS: Significant changes in dynamic conduction and repolarization

  15. Modeling Apple Surface Temperature Dynamics Based on Weather Data

    Directory of Open Access Journals (Sweden)

    Lei Li


    Full Text Available The exposure of fruit surfaces to direct sunlight during the summer months can result in sunburn damage. Losses due to sunburn damage are a major economic problem when marketing fresh apples. The objective of this study was to develop and validate a model for simulating fruit surface temperature (FST dynamics based on energy balance and measured weather data. A series of weather data (air temperature, humidity, solar radiation, and wind speed was recorded for seven hours between 11:00–18:00 for two months at fifteen minute intervals. To validate the model, the FSTs of “Fuji” apples were monitored using an infrared camera in a natural orchard environment. The FST dynamics were measured using a series of thermal images. For the apples that were completely exposed to the sun, the RMSE of the model for estimating FST was less than 2.0 °C. A sensitivity analysis of the emissivity of the apple surface and the conductance of the fruit surface to water vapour showed that accurate estimations of the apple surface emissivity were important for the model. The validation results showed that the model was capable of accurately describing the thermal performances of apples under different solar radiation intensities. Thus, this model could be used to more accurately estimate the FST relative to estimates that only consider the air temperature. In addition, this model provides useful information for sunburn protection management.

  16. On near-free-surface dynamics of thin polymer films (United States)

    Qi, Dongping

    In the present studies of four projects we developed several novel techniques to investigate near-free-surface dynamics of thin polymer films. In the first project, we studied the dynamical properties of the first 2-3 nm region of glassy isotactic poly (methyl methacrylate) (i-PMMA) films by means of the nano surface hole relaxation technique. We found that for the measured surface relaxation times there is a strong substrate property dependence, which can propagate into i-PMMA films for a distance of more than 100nm. An unexpected molecular weight (Mw) dependence of the near surface relaxation time is found for thick i-PMMA films, which, together with the finding that the free surface could be assigned a local surface glass transition temperature of ˜40K below bulk T g, indicates a viscous liquid regime while the rest of the underneath bulk part is in the glassy state. In the second project, the nano gold sphere embedding technique was used to study the nearfree-surface dynamics of polystyrene (PS) films within wide temperature and time windows. Three sections of measurements are conducted in this project. In the first section, we studied the Mw dependence of the near-free-surface dynamics of PS films and found that at temperatures above bulk Tg there exists a Mw dependence which can be explained using the Rouse dynamics for melt polymers. However, at a temperature of 16K below bulk T g no w M dependence is discernible, which is in contrast to that for i-PMMA films where even at a temperature of ˜36K below bulk Tg a Mw dependence of the near free surface dynamics is still observed. In the second section of this work, we studied the nano gold sphere embedding behavior within a wide temperature and time window, and for the first time the depth dependence of the near-free-surface dynamics with the nanometer scale resolution was observed. By an embedding-model-free data analysis the results show that when the measurement temperature is above a temperature of ˜378K

  17. Analysis of surface and root-zone soil moisture dynamics with ERS scatterometer and the hydrometeorological model SAFRAN-ISBA-MODCOU at Grand Morin watershed (France

    Directory of Open Access Journals (Sweden)

    T. Paris Anguela


    Full Text Available Spatial and temporal variations of soil moisture strongly affect flooding, erosion, solute transport and vegetation productivity. Its characterization, offers an avenue to improve our understanding of complex land surface–atmosphere interactions. In this paper, soil moisture dynamics at soil surface (first centimeters and root-zone (up to 1.5 m depth are investigated at three spatial scales: local scale (field measurements, 8×8 km2 (hydrological model and 25×25 km2 scale (ERS scatterometer in a French watershed. This study points out the quality of surface and root-zone soil moisture data for SIM model and ERS scatterometer for a three year period. Surface soil moisture is highly variable because is more influenced by atmospheric conditions (rain, wind and solar radiation, and presents RMS errors up to 0.08 m3 m−3. On the other hand, root-zone moisture presents lower variability with small RMS errors (between 0.02 and 0.06 m3 m-3. These results will contribute to satellite and model verification of moisture, but also to better application of radar data for data assimilation in future.

  18. Enabling dynamics in face analysis

    NARCIS (Netherlands)

    Dibeklioğlu, H.


    Most of the approaches in automatic face analysis rely solely on static appearance. However, temporal analysis of expressions reveals interesting patterns. For a better understanding of the human face, this thesis focuses on temporal changes in the face, and dynamic patterns of expressions. In addit

  19. Dynamic analysis of process reactors

    Energy Technology Data Exchange (ETDEWEB)

    Shadle, L.J.; Lawson, L.O.; Noel, S.D.


    The approach and methodology of conducting a dynamic analysis is presented in this poster session in order to describe how this type of analysis can be used to evaluate the operation and control of process reactors. Dynamic analysis of the PyGas{trademark} gasification process is used to illustrate the utility of this approach. PyGas{trademark} is the gasifier being developed for the Gasification Product Improvement Facility (GPIF) by Jacobs-Siffine Engineering and Riley Stoker. In the first step of the analysis, process models are used to calculate the steady-state conditions and associated sensitivities for the process. For the PyGas{trademark} gasifier, the process models are non-linear mechanistic models of the jetting fluidized-bed pyrolyzer and the fixed-bed gasifier. These process sensitivities are key input, in the form of gain parameters or transfer functions, to the dynamic engineering models.

  20. High-precision drop shape analysis (HPDSA) of quasistatic contact angles on silanized silicon wafers with different surface topographies during inclining-plate measurements: Influence of the surface roughness on the contact line dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Heib, F., E-mail: [Department of Physical Chemistry, Saarland University, 66123 Saarbrücken (Germany); Hempelmann, R. [Department of Physical Chemistry, Saarland University, 66123 Saarbrücken (Germany); Munief, W.M.; Ingebrandt, S. [Department of Informatics and Microsystem Technology, University of Applied Sciences, Kaiserslautern, 66482 Zweibrücken (Germany); Fug, F.; Possart, W. [Department of Adhesion and Interphases in Polymers, Saarland University, 66123 Saarbrücken (Germany); Groß, K.; Schmitt, M. [Department of Physical Chemistry, Saarland University, 66123 Saarbrücken (Germany)


    Highlights: • Analysis of the triple line motion on surfaces with nanoscale surface topographies. • Analysis of the triple line motion is performed in sub-pixel resolution. • A special fitting and statistical approach for contact angle analysis is applied. • The analyses result set of contact angle data which is independent of “user-skills”. • Characteristically density distributions in dependence on the surface properties. - Abstract: Contact angles and wetting of solid surfaces are strongly influenced by the physical and chemical properties of the surfaces. These influence quantities are difficult to distinguish from each other if contact angle measurements are performed by measuring only the advancing θ{sub a} and the receding θ{sub r} contact angle. In this regard, time-dependent water contact angles are measured on two hydrophobic modified silicon wafers with different physical surface topographies. The first surface is nearly atomically flat while the second surface is patterned (alternating flat and nanoscale rough patterns) which is synthesized by a photolithography and etching procedure. The different surface topographies are characterized with atomic force microscopy (AFM), Fourier transform infrared reflection absorption spectroscopy (FTIRRAS) and Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR). The resulting set of contact angle data obtained by the high-precision drop shape analysis approach is further analyzed by a Gompertzian fitting procedure and a statistical counting procedure in dependence on the triple line velocity. The Gompertzian fit is used to analyze overall properties of the surface and dependencies between the motion on the front and the back edge of the droplets. The statistical counting procedure results in the calculation of expectation values E(p) and standard deviations σ(p) for the inclination angle φ, contact angle θ, triple line velocity vel and the covered distance of the triple

  1. Dynamic analysis of double-row self-aligning ball bearings due to applied loads, internal clearance, surface waviness and number of balls (United States)

    Zhuo, Yaobin; Zhou, Xiaojun; Yang, Chenlong


    In this paper, a three degrees of freedom (dof) model was established for a double-row self-aligning ball bearing (SABB) system, and was applied to study the dynamic behavior of the system during starting process and constant speed rotating process. A mathematical model was developed concerning stiffness and damping characteristics of the bearing, as well as three-dimensional applied load, rotor centrifugal force, etc. Balls and races were all considered as nonlinear springs, and the contact force between ball and race was calculated based on classic Hertzian elastic contact deformation theory and deformation compatibility theory. The changes of each ball's contact force and loaded angle of each row were taken into account. In order to solve the nonlinear dynamical equilibrium equations of the system, these equations were rewritten as differential equations and the fourth order Runge-Kutta method was used to solve the equations iteratively. In order to verify accuracy of the dynamical model and correctness of the numerical solution method, a kind of SABB-BRF30 was chosen for case studies. The effects of several important governing parameters, such as radial and axial applied loads, normal internal, inner and outer races waviness, and number of balls were investigated. These parametric studies led to a complete characterization of the shaft-bearing system vibration transmission. The research provided a theoretical reference for new type bearing design, shaft-bearing system kinetic analysis, optimal design, etc.

  2. Static Analysis for Dynamic XML

    DEFF Research Database (Denmark)

    Christensen, Aske Simon; Møller, Anders; Schwartzbach, Michael Ignatieff


    We describe the summary graph lattice for dataflow analysis of programs that dynamically construct XML documents. Summary graphs have successfully been used to provide static guarantees in the JWIG language for programming interactive Web services. In particular, the JWIG compiler is able to check...... validity of dynamically generated XHTML documents and to type check dynamic form data. In this paper we present summary graphs and indicate their applicability for various scenarios. We also show that the expressive power of summary graphs is similar to that of the regular expression types from XDuce......, but that the extra structure in summary graphs makes them more suitable for certain program analyses....

  3. Static Analysis for Dynamic XML

    DEFF Research Database (Denmark)

    Christensen, Aske Simon; Møller, Anders; Schwartzbach, Michael Ignatieff


    We describe the summary graph lattice for dataflow analysis of programs that dynamically construct XML documents. Summary graphs have successfully been used to provide static guarantees in the JWIG language for programming interactive Web services. In particular, the JWIG compiler is able to check...... validity of dynamically generated XHTML documents and to type check dynamic form data. In this paper we present summary graphs and indicate their applicability for various scenarios. We also show that the expressive power of summary graphs is similar to that of the regular expression types from XDuce...

  4. Process analysis and optimization models defining recultivation surface mines

    Directory of Open Access Journals (Sweden)

    Dimitrijević Bojan V.


    Full Text Available Surface mines are generally open and very dynamic systems influenced by a large number of technical, economic, environmental and safety factors and limitations in all stages of the life cycle. In this paper the dynamic compliance period surface mining phases and of the reclamation. Also, an analysis of the reclamation of surface mines, and process flow management project recultivation is determined by the principled management model reclamation. The analysis of the planning process is defined by the model optimization recultivation surface mine.

  5. Molecular dynamics analysis of multiphase interfaces based on in situ extraction of the pressure distribution of a liquid droplet on a solid surface. (United States)

    Nishida, S; Surblys, D; Yamaguchi, Y; Kuroda, K; Kagawa, M; Nakajima, T; Fujimura, H


    Molecular dynamics simulations of a nanoscale liquid droplet on a solid surface are carried out in order to examine the pressure tensor field around the multiphase interfaces, and to explore the validity of Young's equation. By applying the virial theorem to a hemicylindrical droplet consisting of argon molecules on a solid surface, two-dimensional distribution of the pressure tensor is obtained. Tensile principal pressure tangential to the interface is observed around the liquid-vapor transition layer, while both tensile and compressive principal pressure tangential to the interface exists around the solid-liquid transition layer due to the inhomogeneous density distribution. The two features intermix inside the overlap region between the transition layers at the contact line. The contact angle is evaluated by using a contour line of the maximum principal pressure difference. The interfacial tensions are calculated by using Bakker's equation and Young-Laplace equation to the pressure tensor distribution. The relation between measured contact angle and calculated interfacial tensions turns out to be consistent with Young's equation, which is known as the description of the force balance at the three-phase interface.

  6. Europan Ocean Dynamics Inferred from Surface Geology (United States)

    Schmidt, B. E.; Soderlund, K. M.; Blankenship, D. D.; Wicht, J.


    Europa possesses a global liquid water ocean that mediates heat exchange from the silicate interior to the outer icy shell. Since no direct observations of ocean dynamics are presently available, possible oceanographic processes must be inferred remotely through their implications for surface geology. For example, regions of disrupted ice known as chaos terrain are thought to represent locations of high heat flow from the ocean into the ice shell and tend to be concentrated at low latitudes. Since ocean currents can reorganize the flow of heat from the interior and potentially deliver regionally-varying basal heat to the ice shell, we hypothesize that oceanic heat transfer may peak near the equator. We also suggest that Europan ocean convection may be strongly turbulent with three-dimensional plumes, behavior that is fundamentally different from the prevailing assumption in the literature that Europa's ocean is organized into coherent, columnar structures that are aligned with the rotation axis. Towards testing these hypotheses, we simulate turbulent thermal convection in a thin, rotating spherical shell with Europa-relevant conditions. The small-scale, poorly-organized convective motions in our simulation homogenize the system's absolute angular momentum at low latitudes. Zonal flows develop with retrograde (westward) flow near the equator and prograde (eastward) flow near the rotation axis in order to conserve angular momentum. This angular momentum transport is achieved through Hadley-like cells with upwelling flow near the equator, poleward flow near the outer boundary, downwelling at mid-latitudes, and equatorward return flow near the inner boundary. These circulation cells, which control the mean ocean temperature and the mean flux of heat from the ocean into the ice shell, cause heat to be preferentially emitted in a low latitude. Mean ocean temperatures also have implications for vertical gradients in salinity since seawater is able to maintain more

  7. High-precision drop shape analysis (HPDSA) of quasistatic contact angles on silanized silicon wafers with different surface topographies during inclining-plate measurements: Influence of the surface roughness on the contact line dynamics (United States)

    Heib, F.; Hempelmann, R.; Munief, W. M.; Ingebrandt, S.; Fug, F.; Possart, W.; Groß, K.; Schmitt, M.


    Contact angles and wetting of solid surfaces are strongly influenced by the physical and chemical properties of the surfaces. These influence quantities are difficult to distinguish from each other if contact angle measurements are performed by measuring only the advancing θa and the receding θr contact angle. In this regard, time-dependent water contact angles are measured on two hydrophobic modified silicon wafers with different physical surface topographies. The first surface is nearly atomically flat while the second surface is patterned (alternating flat and nanoscale rough patterns) which is synthesized by a photolithography and etching procedure. The different surface topographies are characterized with atomic force microscopy (AFM), Fourier transform infrared reflection absorption spectroscopy (FTIRRAS) and Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR). The resulting set of contact angle data obtained by the high-precision drop shape analysis approach is further analyzed by a Gompertzian fitting procedure and a statistical counting procedure in dependence on the triple line velocity. The Gompertzian fit is used to analyze overall properties of the surface and dependencies between the motion on the front and the back edge of the droplets. The statistical counting procedure results in the calculation of expectation values E(p) and standard deviations σ(p) for the inclination angle φ, contact angle θ, triple line velocity vel and the covered distance of the triple line dis relative to the first boundary points XB,10. Therefore, sessile drops during the inclination of the sample surface are video recorded and different specific contact angle events in dependence on the acceleration/deceleration of the triple line motion are analyzed. This procedure results in characteristically density distributions in dependence on the surface properties. The used procedures lead to the possibility to investigate influences on contact

  8. Hydrodynamic Boundary Conditions and Dynamic Forces between Bubbles and Surfaces (United States)

    Manor, Ofer; Vakarelski, Ivan U.; Tang, Xiaosong; O'Shea, Sean J.; Stevens, Geoffrey W.; Grieser, Franz; Dagastine, Raymond R.; Chan, Derek Y. C.


    Dynamic forces between a 50μm radius bubble driven towards and from a mica plate using an atomic force microscope in electrolyte and in surfactant exhibit different hydrodynamic boundary conditions at the bubble surface. In added surfactant, the forces are consistent with the no-slip boundary condition at the mica and bubble surfaces. With no surfactant, a new boundary condition that accounts for the transport of trace surface impurities explains variations of dynamic forces at different speeds and provides a direct connection between dynamic forces and surface transport effects at the air-water interface.

  9. Static Analysis of Dynamic Languages

    DEFF Research Database (Denmark)

    Madsen, Magnus

    on the behaviour of these languages. A common theme is the reliance on static program analysis to over-approximate the behaviour of programs written in these languages. Specifically, the use of whole-program dataflow analysis. The research challenge of this line of work is the adaption of existing- and invention......Dynamic programming languages are highly popular and widely used. Java- Script is often called the lingua franca of the web and it is the de facto standard for client-side web programming. On the server-side the PHP, Python and Ruby languages are prevalent. What these languages have in common...... is an expressive power which is not easily captured by any static type system. These, and similar dynamic languages, are often praised for their ease-of-use and flexibility. Unfortunately, this dynamism comes at a great cost: The lack of a type system implies that most errors are not discovered until run...

  10. Analysis of truck platoon dynamics

    NARCIS (Netherlands)

    Verhoeff, L.; Zuurbier, J.; Lupker, H.A.


    This paper presents the analysis of truck platoon dynamics using a simulation environment. In this case the platoon consists of a number of trucks following each other using driver algorithms. MADYMO (a multibody and FE software package) and MATLAB/SIMULINK are coupled to allow for these driver algo

  11. Dynamics of inelastic and reactive gas-surface collisions

    Energy Technology Data Exchange (ETDEWEB)

    Smoliar, Laura Ann [Univ. of California, Berkeley, CA (United States)


    The dynamics of inelastic and reactive collisions in atomic beam-surface scattering are presented. The inelastic scattering of hyperthermal rare gaseous atoms from three alkali halide surfaces (LiF, NaCl, GI)was studied to understand mechanical energy transfer in unreactive systems. The dynamics of the chemical reaction in the scattering of H(D) atoms from the surfaces of LIF(001) and the basal plane of graphite were also studied.

  12. Deterministic nature of the underlying dynamics of surface wind fluctuations

    Directory of Open Access Journals (Sweden)

    R. C. Sreelekshmi


    Full Text Available Modelling the fluctuations of the Earth's surface wind has a significant role in understanding the dynamics of atmosphere besides its impact on various fields ranging from agriculture to structural engineering. Most of the studies on the modelling and prediction of wind speed and power reported in the literature are based on statistical methods or the probabilistic distribution of the wind speed data. In this paper we investigate the suitability of a deterministic model to represent the wind speed fluctuations by employing tools of nonlinear dynamics. We have carried out a detailed nonlinear time series analysis of the daily mean wind speed data measured at Thiruvananthapuram (8.483° N,76.950° E from 2000 to 2010. The results of the analysis strongly suggest that the underlying dynamics is deterministic, low-dimensional and chaotic suggesting the possibility of accurate short-term prediction. As most of the chaotic systems are confined to laboratories, this is another example of a naturally occurring time series showing chaotic behaviour.

  13. Deterministic nature of the underlying dynamics of surface wind fluctuations (United States)

    Sreelekshmi, R. C.; Asokan, K.; Satheesh Kumar, K.


    Modelling the fluctuations of the Earth's surface wind has a significant role in understanding the dynamics of atmosphere besides its impact on various fields ranging from agriculture to structural engineering. Most of the studies on the modelling and prediction of wind speed and power reported in the literature are based on statistical methods or the probabilistic distribution of the wind speed data. In this paper we investigate the suitability of a deterministic model to represent the wind speed fluctuations by employing tools of nonlinear dynamics. We have carried out a detailed nonlinear time series analysis of the daily mean wind speed data measured at Thiruvananthapuram (8.483° N,76.950° E) from 2000 to 2010. The results of the analysis strongly suggest that the underlying dynamics is deterministic, low-dimensional and chaotic suggesting the possibility of accurate short-term prediction. As most of the chaotic systems are confined to laboratories, this is another example of a naturally occurring time series showing chaotic behaviour.

  14. Essentials of applied dynamic analysis

    CERN Document Server

    Jia, Junbo


    This book presents up-to-date knowledge of dynamic analysis in engineering world. To facilitate the understanding of the topics by readers with various backgrounds, general principles are linked to their applications from different angles. Special interesting topics such as statistics of motions and loading, damping modeling and measurement, nonlinear dynamics, fatigue assessment, vibration and buckling under axial loading, structural health monitoring, human body vibrations, and vehicle-structure interactions etc., are also presented. The target readers include industry professionals in civil, marine and mechanical engineering, as well as researchers and students in this area.

  15. Stability of Surface Nanobubbles: A Molecular Dynamics Study

    NARCIS (Netherlands)

    Maheshwari, Shantanu; Hoef, van der Martin; Zhang, Xuehua; Lohse, Detlef


    The stability and growth or dissolution of a single surface nanobubble on a chemically patterned surface are studied by molecular dynamics simulations of binary mixtures consisting of Lennard-Jones (LJ) particles. Our simulations reveal how pinning of the three-phase contact line on the surface can

  16. Co-GISAXS technique for investigating surface growth dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Rainville, Meliha G.; Hoskin, Christa; Ulbrandt, Jeffrey G.; Narayanan, Suresh; Sandy, Alec R.; Zhou, Hua; Headrick, Randall L.; Ludwig, Jr., Karl F.


    Detailed quantitative measurement of surface dynamics during thin film growth is a major experimental challenge. Here X-ray Photon Correlation Spectroscopy with coherent hard X-rays is used in a Grazing-Incidence Small-Angle X-ray Scattering (i.e. Co-GISAXS) geometry as a new tool to investigate nanoscale surface dynamics during sputter deposition of a-Si and a-WSi2 thin films. For both films, kinetic roughening during surface growth reaches a dynamic steady state at late times in which the intensity autocorrelation function g2(q,t) becomes stationary. The g2(q,t) functions exhibit compressed exponential behavior at all wavenumbers studied. The overall dynamics are complex, but the most surface sensitive sections of the structure factor and correlation time exhibit power law behaviors consistent with dynamical scaling.

  17. Dynamics of condensation on lubricant impregnated surfaces (United States)

    Anand, Sushant; Paxson, Adam; Rykaczewski, Konrad; Beysens, Daniel; Varanasi, Kripa


    Replacing the filmwise condensation mode with dropwise condensation promises large improvements in heat transfer that will lead to large cost savings in material, water consumption and decreased size of the systems. In this regards, use of superhydrophobic surfaces fabricated by texturing surfaces with nano/microstructures has been shown to lead decrease in contact line pinning of millimetric drops resulting in fast shedding. However, these useful properties are lost during condensation where droplets that nucleate within texture grow by virtue of condensation to large sized droplets while still adhering to the surface. Recently we have shown that liquid impregnated surfaces can overcome many limitations of conventional superhydrophobic surfaces during condensation. Here we discuss aspects related to condensation on lubricant surfaces, such as behavior of growing droplets. We compare the characteristics of droplets condensing on these surfaces with their behavior on conventional un-impregnated superhydrophobic surfaces and show how use of lubricant impregnated surfaces may lead to large enhancement in heat transfer and energy efficiencies.

  18. Multichannel analysis of surface waves (United States)

    Park, C.B.; Miller, R.D.; Xia, J.


    The frequency-dependent properties of Rayleigh-type surface waves can be utilized for imaging and characterizing the shallow subsurface. Most surface-wave analysis relies on the accurate calculation of phase velocities for the horizontally traveling fundamental-mode Rayleigh wave acquired by stepping out a pair of receivers at intervals based on calculated ground roll wavelengths. Interference by coherent source-generated noise inhibits the reliability of shear-wave velocities determined through inversion of the whole wave field. Among these nonplanar, nonfundamental-mode Rayleigh waves (noise) are body waves, scattered and nonsource-generated surface waves, and higher-mode surface waves. The degree to which each of these types of noise contaminates the dispersion curve and, ultimately, the inverted shear-wave velocity profile is dependent on frequency as well as distance from the source. Multichannel recording permits effective identification and isolation of noise according to distinctive trace-to-trace coherency in arrival time and amplitude. An added advantage is the speed and redundancy of the measurement process. Decomposition of a multichannel record into a time variable-frequency format, similar to an uncorrelated Vibroseis record, permits analysis and display of each frequency component in a unique and continuous format. Coherent noise contamination can then be examined and its effects appraised in both frequency and offset space. Separation of frequency components permits real-time maximization of the S/N ratio during acquisition and subsequent processing steps. Linear separation of each ground roll frequency component allows calculation of phase velocities by simply measuring the linear slope of each frequency component. Breaks in coherent surface-wave arrivals, observable on the decomposed record, can be compensated for during acquisition and processing. Multichannel recording permits single-measurement surveying of a broad depth range, high levels of

  19. Can foot anthropometric measurements predict dynamic plantar surface contact area?

    Directory of Open Access Journals (Sweden)

    Collins Natalie


    Full Text Available Abstract Background Previous studies have suggested that increased plantar surface area, associated with pes planus, is a risk factor for the development of lower extremity overuse injuries. The intent of this study was to determine if a single or combination of foot anthropometric measures could be used to predict plantar surface area. Methods Six foot measurements were collected on 155 subjects (97 females, 58 males, mean age 24.5 ± 3.5 years. The measurements as well as one ratio were entered into a stepwise regression analysis to determine the optimal set of measurements associated with total plantar contact area either including or excluding the toe region. The predicted values were used to calculate plantar surface area and were compared to the actual values obtained dynamically using a pressure sensor platform. Results A three variable model was found to describe the relationship between the foot measures/ratio and total plantar contact area (R2 = 0.77, p R2 = 0.76, p Conclusion The results of this study indicate that the clinician can use a combination of simple, reliable, and time efficient foot anthropometric measurements to explain over 75% of the plantar surface contact area, either including or excluding the toe region.

  20. Temperature dependent droplet impact dynamics on flat and textured surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Azar Alizadeh; Vaibhav Bahadur; Sheng Zhong; Wen Shang; Ri Li; James Ruud; Masako Yamada; Liehi Ge; Ali Dhinojwala; Manohar S Sohal (047160)


    Droplet impact dynamics determines the performance of surfaces used in many applications such as anti-icing, condensation, boiling and heat transfer. We study impact dynamics of water droplets on surfaces with chemistry/texture ranging from hydrophilic to superhydrophobic and across a temperature range spanning below freezing to near boiling conditions. Droplet retraction shows very strong temperature dependence especially for hydrophilic surfaces; it is seen that lower substrate temperatures lead to lesser retraction. Physics-based analyses show that the increased viscosity associated with lower temperatures can explain the decreased retraction. The present findings serve to guide further studies of dynamic fluid-structure interaction at various temperatures.

  1. Dynamic Equilibrium Mechanism for Surface Nanobubble Stabilization

    NARCIS (Netherlands)

    Brenner, Michael P.; Lohse, Detlef


    Recent experiments have convincingly demonstrated the existence of surface nanobubbles on submerged hydrophobic surfaces. However, classical theory dictates that small gaseous bubbles quickly dissolve because their large Laplace pressure causes a diffusive outflux of gas. Here we suggest that the bu

  2. Dynamic Analysis of a Pendulum Dynamic Automatic Balancer

    Directory of Open Access Journals (Sweden)

    Jin-Seung Sohn


    Full Text Available The automatic dynamic balancer is a device to reduce the vibration from unbalanced mass of rotors. Instead of considering prevailing ball automatic dynamic balancer, pendulum automatic dynamic balancer is analyzed. For the analysis of dynamic stability and behavior, the nonlinear equations of motion for a system are derived with respect to polar coordinates by the Lagrange's equations. The perturbation method is applied to investigate the dynamic behavior of the system around the equilibrium position. Based on the linearized equations, the dynamic stability of the system around the equilibrium positions is investigated by the eigenvalue analysis.

  3. Variable Dynamic Testbed Vehicle: Dynamics Analysis (United States)

    Lee, A. Y.; Le, N. T.; Marriott, A. T.


    The Variable Dynamic Testbed Vehicle (VDTV) concept has been proposed as a tool to evaluate collision avoidance systems and to perform driving-related human factors research. The goal of this study is to analytically investigate to what extent a VDTV with adjustable front and rear anti-roll bar stiffnesses, programmable damping rates, and four-wheel-steering can emulate the lateral dynamics of a broad range of passenger vehicles.

  4. Identifying Differences and Similarities in Static and Dynamic Contact Angles between Nanoscale and Microscale Textured Surfaces Using Molecular Dynamics Simulations. (United States)

    Slovin, Mitchell R; Shirts, Michael R


    We quantify some of the effects of patterned nanoscale surface texture on static contact angles, dynamic contact angles, and dynamic contact angle hysteresis using molecular dynamics simulations of a moving Lennard-Jones droplet in contact with a solid surface. We observe static contact angles that change with the introduction of surface texture in a manner consistent with theoretical and experimental expectations. However, we find that the introduction of nanoscale surface texture at the length scale of 5-10 times the fluid particle size does not affect dynamic contact angle hysteresis even though it changes both the advancing and receding contact angles significantly. This result differs significantly from microscale experimental results where dynamic contact angle hysteresis decreases with the addition of surface texture due to an increase in the receding contact angle. Instead, we find that molecular-kinetic theory, previously applied only to nonpatterned surfaces, accurately describes dynamic contact angle and dynamic contact angle hysteresis behavior as a function of terminal fluid velocity. Therefore, at length scales of tens of nanometers, the kinetic phenomena such as contact line pinning observed at larger scales become insignificant in comparison to the effects of molecular fluctuations for moving droplets, even though the static properties are essentially scale-invariant. These findings may have implications for the design of highly hierarchical structures with particular wetting properties. We also find that quantitatively determining the trends observed in this article requires the careful selection of system and analysis parameters in order to achieve sufficient accuracy and precision in calculated contact angles. Therefore, we provide a detailed description of our two-surface, circular-fit approach to calculating static and dynamic contact angles on surfaces with nanoscale texturing.

  5. Fast Surface Dynamics of Metallic Glass Enable Superlatticelike Nanostructure Growth (United States)

    Chen, L.; Cao, C. R.; Shi, J. A.; Lu, Z.; Sun, Y. T.; Luo, P.; Gu, L.; Bai, H. Y.; Pan, M. X.; Wang, W. H.


    Contrary to the formation of complicated polycrystals induced by general crystallization, a modulated superlatticelike nanostructure, which grows layer by layer from the surface to the interior of a Pd40Ni10Cu30P20 metallic glass, is observed via isothermal annealing below the glass transition temperature. The generation of the modulated nanostructure can be solely controlled by the annealing temperature, and it can be understood based on the fast dynamic and liquidlike behavior of the glass surface. The observations have implications for understanding the glassy surface dynamics and pave a way for the controllable fabrication of a unique and sophisticated nanostructure on a glass surface to realize the properties' modification.

  6. Dynamics of Surface Exchange Reactions Between Au and Pt for HER and HOR

    DEFF Research Database (Denmark)

    Abrams, Billie; Vesborg, Peter Christian Kjærgaard; Bonde, Jacob Lindner;


    Cyclic voltammetric analysis of the Pt-on-Au system for hydrogen evolution and oxidation reactions (HER/HOR) indicates that dynamic surface exchange reactions occur between Pt and Au. HER/HOR activities depend on the dominant surface species present, which is controllable by the potential applied...


    Institute of Scientific and Technical Information of China (English)



    The dynamic scaling properties of growing surfaces with growth inhomogeneities are studied by applying a dy namic renormalization-group analysis to the generalized Kardar-Parisi-Zhang(hereafter abbreviated to KPZ) equation, which contains an additional term of growth inhomogeneities. In a practical crystal growth process, these growth inho mogeneities can be induced by surface impurities and defects and are modeled by a screened Coulomb function in this paper. Our results show that the existence of the growth inhomogeneities can significantly change the dynamic scaling properties of a growing surface and can lead to a rougher surface.

  8. Molecular dynamics simulation of wetting on modified amorphous silica surface (United States)

    Chai, Jingchun; Liu, Shuyan; Yang, Xiaoning


    The microscopic wetting of water on amorphous silica surfaces has been investigated by molecular dynamics simulation. Different degrees of surface hydroxylation/silanization were considered. It was observed that the hydrophobicity becomes enhanced with an increase in the degree of surface silanization. A continuous transformation from hydrophilicity to hydrophobicity can be attained for the amorphous silica surfaces through surface modification. From the simulation result, the contact angle can exceed 90° when surface silanization percentage is above 50%, showing a hydrophobic character. It is also found that when the percentage of surface silanization is above 70% on the amorphous silica surface, the water contact angle almost remains unchanged (110-120°). This phenomenon is a little different from the wetting behavior on smooth quartz plates in previous experimental report. This change in the wettability on modified amorphous silica surfaces can be interpreted in terms of the interaction between water molecules and the silica surfaces.

  9. Colloidal dynamics near a particle-covered surface

    NARCIS (Netherlands)

    Eral, Burak; Mugele, Friedrich Gunther; Duits, Michael H.G.


    How the diffusive dynamics of colloidal spheres changes in the vicinity of a particle-coated surface is of importance for industrial challenges such as fouling and sedimentation as well as for fundamental studies into confinement effects. We addressed this question by studying colloidal dynamics in


    Institute of Scientific and Technical Information of China (English)

    J.P.Gong; G.Kagata; Y.Iwasaki; Y.Osada


    The sliding friction of various kinds of hydrogels has been studied and it was found that the frictional behaviors of the hydrogels do not conform to Amonton's law F =μW which well describes the friction of solids. The frictional force and its dependence on the load are quite different depending on the chemical structures of the gels, surface properties of the opposing substrates, and the measurement condition. The gel friction is explained in terms of interfacial interaction, either attractive or repulsive, between the polymer chain and the solid surface. According to this model, the friction is ascribed to the viscous flow of solvent at the interface in the repulsive case. In the attractive case, the force to detach the adsorbing chain from the substrate appears as friction. The surface adhesion between glass particles and gels measured by AFM showed a good correlation with the friction, which supported the repulsion-adsorption model proposed by the authors.

  11. Formal analysis of design process dynamics

    NARCIS (Netherlands)

    Bosse, T.; Jonker, C.M.; Treur, J.


    This paper presents a formal analysis of design process dynamics. Such a formal analysis is a prerequisite to come to a formal theory of design and for the development of automated support for the dynamics of design processes. The analysis was geared toward the identification of dynamic design

  12. Formal analysis of design process dynamics

    NARCIS (Netherlands)

    Bosse, T.; Jonker, C.M.; Treur, J.


    This paper presents a formal analysis of design process dynamics. Such a formal analysis is a prerequisite to come to a formal theory of design and for the development of automated support for the dynamics of design processes. The analysis was geared toward the identification of dynamic design prope

  13. Colorado Front Range Surface Ozone Analysis (United States)

    McClure-Begley, A.; Petropavlovskikh, I. V.; Oltmans, S. J.; Kofler, J.; Petron, G.; Cothrel, H.


    The Colorado Front Range is a unique geographical region for air quality studies, including research of surface level ozone. Not only does surface ozone play a critical role in regulating the oxidation capacity of the atmosphere, but is a primary contributor to local smog and leads to public health complications and altered ecosystem functioning. The high frequency of sunny days, increasing population and pollution, and Mountain/Valley air dynamics of this region provide atmospheric conditions suitable for production and accumulation of ozone at the surface. This region of Colorado is currently in an ozone non-attainment status due to an assortment of contributing factors. Precursor emissions from pollution, wild-fires, and gas and oil production; along with stratosphere-troposphere exchange, can all result in high ozone episodes over the Colorado Front Range. To understand the dynamics of ozone accumulation in this region, Thermo-Scientific ozone monitors have been continuously sampling ozone from 4 different altitudes since the early 2000s. Analysis of ozone data in relation to Nitrogen Oxides (NOx), Methane (CH4), Carbon Monoxide (CO), wind-conditions and back-trajectory air mass origins help to address local ozone precursor emissions and resulting high ozone episodes. Increased ozone episodes are scrutinized with regards to dominant wind direction to determine main precursor emission sources. Analysis of this data reveals a strong influence of precursor emissions from the North-East wind sector, with roughly 50% of ozone exceedances originating from winds prevailing from this direction. Further, correlation with methane is enhanced when prevailing winds are from the North-East; indicative of influence from natural gas processes and feedlot activity. Similar analysis is completed for the North-West wind sector exceedances, with strong correlation to carbon monoxide; likely related to emissions from biomass burning events and forest fires. In depth analysis of

  14. Substitution dynamical systems spectral analysis

    CERN Document Server

    Queffélec, Martine


    This volume mainly deals with the dynamics of finitely valued sequences, and more specifically, of sequences generated by substitutions and automata. Those sequences demonstrate fairly simple combinatorical and arithmetical properties and naturally appear in various domains. As the title suggests, the aim of the initial version of this book was the spectral study of the associated dynamical systems: the first chapters consisted in a detailed introduction to the mathematical notions involved, and the description of the spectral invariants followed in the closing chapters. This approach, combined with new material added to the new edition, results in a nearly self-contained book on the subject. New tools - which have also proven helpful in other contexts - had to be developed for this study. Moreover, its findings can be concretely applied, the method providing an algorithm to exhibit the spectral measures and the spectral multiplicity, as is demonstrated in several examples. Beyond this advanced analysis, many...


    The feasibility of applying a Newtonian system identification technique to a nonlinear three degree of freedom system of equations describing the...steering and maneuvering of a surface ship is investigated. The input to the system identification program is provided by both analog and digital

  16. Riemann Surfaces: Vector Bundles, Physics, and Dynamics

    DEFF Research Database (Denmark)

    Sikander, Shehryar

    We construct quantum representation of a subgroup of the mapping class group of a genus two surface. Our construction relies on realizing this subgroup as the orbifold fundamental group of a Teichmueller curve, pulling back the Hitchin connection to this Tecihmueller curve, and computing the mono...

  17. Invariant algebraic surfaces for a virus dynamics (United States)

    Valls, Claudia


    In this paper, we provide a complete classification of the invariant algebraic surfaces and of the rational first integrals for a well-known virus system. In the proofs, we use the weight-homogeneous polynomials and the method of characteristic curves for solving linear partial differential equations.

  18. Chemical Dynamics at Surfaces of Metal Nanomaterials (United States)


    H. J.; Molecules: Wen, X. W lecular heat X. W.; Zhe spectroscop o, X. M.; -Cysteine D . B. 2013, K. J.; Wen, and Dyna Mode Mu try C 2012, heng...Two Distinctive Energy Dissipation Pathways of Monolayer Molecules on Metal Nanoparticle Surfaces. To be submitted 2014. (13) Li, J. B.; Wang , J. K

  19. Simplified Dynamic Analysis of Grinders Spindle Node (United States)

    Demec, Peter


    The contribution deals with the simplified dynamic analysis of surface grinding machine spindle node. Dynamic analysis is based on the use of the transfer matrix method, which is essentially a matrix form of method of initial parameters. The advantage of the described method, despite the seemingly complex mathematical apparatus, is primarily, that it does not require for solve the problem of costly commercial software using finite element method. All calculations can be made for example in MS Excel, which is advantageous especially in the initial stages of constructing of spindle node for the rapid assessment of the suitability its design. After detailing the entire structure of spindle node is then also necessary to perform the refined dynamic analysis in the environment of FEM, which it requires the necessary skills and experience and it is therefore economically difficult. This work was developed within grant project KEGA No. 023TUKE-4/2012 Creation of a comprehensive educational - teaching material for the article Production technique using a combination of traditional and modern information technology and e-learning.

  20. Sperm cell surface dynamics during activation and fertilization

    NARCIS (Netherlands)

    Boerke, A.


    Before the sperm cell can reach the oocyte it needs to be activated and to undergo a series of preparative steps. The sperm surface dynamics was studied in relation to this activation process and the modifications and removal of sperm surface components havebeen investigated. Bicarbonate-induced rad

  1. Dynamics of fibronectin adsorption on TiO2 surfaces. (United States)

    Sousa, S R; Brás, M Manuela; Moradas-Ferreira, P; Barbosa, M A


    In the present work we analyze the dynamics of fibronectin (FN) adsorption on two different stable titanium oxides, with varied surface roughness, and chemically similar to those used in clinical practice. The two types of titanium oxide surfaces used were TiO2 sputtered on Si (TiO2 sp) and TiO2 formed on commercially pure titanium after immersion in H2O2 (TiO2 cp). Surface characterization was previously carried out using different techniques (Sousa, S. R.; Moradas-Ferreira, P.; Melo, L. V.; Saramago, B.; Barbosa, M. A. Langmuir 2004, 20 (22), 9745-9754). Imaging and roughness analysis before and after FN adsorption used atomic force microscopy (AFM) in tapping mode, in air, and in magnetic alternating current mode, in liquid (water). FN adsorption as a function of time was followed by X-ray photoelectron spectroscopy (XPS), by radiolabeling of FN with 125I (125I-FN), and by ellipsometry. Exchangeability studies were performed using FN and HSA. AFM roughness analysis revealed that, before FN adsorption, both TiO2 surfaces exhibited a lower root-mean-square (Rq) and maximum peak with the depth of the maximum valley (Rmax) roughness in air than in water, due to TiO2 hydration. After protein adsorption, the same behavior was observed for the TiO2 sp substrate, while Rq and Rmax roughness values in air and in water were similar in the case of the TiO2 cp substrate, for the higher FN concentration used. Surface roughness was always significantly higher on the TiO2 cp surfaces. AFM led to direct visualization of adsorbed FN on both surfaces tested, indicating that after 10 min of FN incubation the TiO2 sp surface was partially covered by FN. The adsorbed protein seems to form globular aggregates or ellipsoids, and FN aggregates coalesce, forming clusters as the time of adsorption and the concentration increase. Radiolabeling of FN revealed that a rapid adsorption occurs on both surfaces and the amount adsorbed increased with time, reaching a maximum after 60 min of

  2. Surface hopping in laser-driven molecular dynamics (United States)

    Fiedlschuster, T.; Handt, J.; Gross, E. K. U.; Schmidt, R.


    A theoretical justification of the empirical surface hopping method for the laser-driven molecular dynamics is given by utilizing the formalism of the exact factorization of the molecular wave function [Abedi et al., Phys. Rev. Lett. 105, 123002 (2010), 10.1103/PhysRevLett.105.123002] in its quantum-classical limit. Employing an exactly solvable H2+-like model system, it is shown that the deterministic classical nuclear motion on a single time-dependent surface in this approach describes the same physics as stochastic (hopping-induced) motion on several surfaces, provided Floquet surfaces are applied. Both quantum-classical methods do describe reasonably well the exact nuclear wave-packet dynamics for extremely different dissociation scenarios. Hopping schemes using Born-Oppenheimer surfaces or instantaneous Born-Oppenheimer surfaces fail completely.

  3. Surface hopping methodology in laser-driven molecular dynamics

    CERN Document Server

    Fiedlschuster, T; Gross, E K U; Schmidt, R


    A theoretical justification of the empirical surface hopping method for the laser-driven molecular dynamics is given utilizing the formalism of the exact factorization of the molecular wavefunction [Abedi et al., PRL $\\textbf{105}$, 123002 (2010)] in its quantum-classical limit. Employing an exactly solvable $\\textrm H_2^{\\;+}$-like model system, it is shown that the deterministic classical nuclear motion on a single time-dependent surface in this approach describes the same physics as stochastic (hopping-induced) motion on several surfaces, provided Floquet surfaces are applied. Both quantum-classical methods do describe reasonably well the exact nuclear wavepacket dynamics for extremely different dissociation scenarios. Hopping schemes using Born-Oppenheimer surfaces or instantaneous Born-Oppenheimer surfaces fail completely.

  4. Dynamic analysis of archimedes curved surface wedge PCE clutch%阿基米德曲面楔块的PCE型离合器动力学特性分析

    Institute of Scientific and Technical Information of China (English)

    严宏志; 吴凯; 何明生; 谭援强


    根据离合器设计理论,设计了阿基米德曲面楔块的PCE型离合器和单圆弧曲面楔块的PCE型离合器.在对两种PCE型离合器进行三维几何造型基础上,建立其动力学模型,对比分析了阿基米德曲面楔块的PCE型离合器与单圆弧曲面楔块的PCE型离合器的楔合时同、楔入冲击力及稳态楔合力等参数,结果表明阿基米德曲面楔块的PCE型离合器具有楔入迅速、冲击较小、稳态楔合力小的特点,具有较好的综合性能.文中研究为阿基米德曲面楔块的PCE型离合器的设计及应用提供了重要依据.%The Archimedes curved surface wedge PCE clutch and the single arc curved surface wedge PCE clutch were designed according to the theory of clutch design. The dynamic model of two kinds of PCE clutches were established on the basis of their three dimensional geometric models. A comparative analysis was done on the engagement time, impact of engagement, steady state engage ment force and other parameters of the Archimedes curved surface wedge PCE clutch and the single arc curved surface wedge PCE clutch. The results indicate that the Archimedes curved surface wedge PCE clutch has the characteristics as quick engagement, lower impact and low steady state engagement force , which is good in comprehensive property. This study provides an important basis for the Archimedes curved surface wedge PCE clutch design and ap plication.

  5. Ab initio study of proton dynamics on perovskite oxide surfaces

    Directory of Open Access Journals (Sweden)

    Fuyuki Shimojo


    Full Text Available First-principles studies of the proton dynamics in perovskite oxides and the water adsorption on various oxide surfaces are briefly reviewed. Recent progress in the study of the microscopic mechanism of the proton absorption from perovskite oxide surfaces is also presented. It is shown that dopant ions on the surface and oxygen vacancies in the inside just below the surface play an important role for the proton absorption, while oxygen vacancies on the surface are influential for the dissociative adsorption of water molecules.

  6. 3D vesicle dynamics simulations with a linearly triangulated surface (United States)

    Boedec, G.; Leonetti, M.; Jaeger, M.


    Simulations of biomembranes have gained an increasing interest in the past years. Specificities of these membranes propose new challenges for the numerics. In particular, vesicle dynamics are governed by bending forces as well as a surface incompressibility constraint. A method to compute the bending force density resultant onto piecewise linearly triangulated surface meshes is described. This method is coupled with a boundary element method solver for inner and outer fluids, to compute vesicle dynamics under external flows. The surface incompressibility constraint is satisfied by the construction of a projection operator.

  7. Surface Characterization of Plasma-modified Poplar Veneer: Dynamic Wettability

    Directory of Open Access Journals (Sweden)

    Lijuan Tang


    Full Text Available The dynamic wettability of plasma-modified poplar veneer was investigated with sessile adhesive droplets using a wetting model. Dynamic contact angle, instantaneous and equilibrium contact angles, and their rates of change (K-value were used to illustrate the dynamic wetting process. The experiment consisted of selecting treatment parameters (type of gas, power that would lead to the increased wettability of wood. Three resin systems, urea-formaldehyde (UF, phenol-formaldehyde (PF, and diphenylmethylene diisocyanate (MDI, were evaluated. Based on the wetting model, the K-value was used to interpret the kinetics of wetting. The higher the K-value, the faster the contact angle reaches equilibrium, and the faster the liquid penetrates and spreads. Therefore, the model was helpful for characterizing the dynamic wettability of wood surfaces modified with different plasma treatments. The K-values of plasma-treated veneer surfaces at different plasma power levels and with different gases (such as O2, N2, Ar, air, and NH3 were 458% to 653% and 332% to 528% higher than those of untreated veneer surfaces, respectively. In addition, the K-values of the three resins on the oxygen plasma-treated veneer surfaces were 38% to 1204% higher than those on the untreated veneer surfaces. Therefore, this method was helpful for characterizing the dynamic wettability of veneer surfaces modified with plasma treatment.

  8. Dynamic friction of self-affine surfaces (United States)

    Schmittbuhl, Jean; Vilotte, Jean-Pierre; Roux, Stéphane


    We investigate the velocity dependence of the friction between two rigid blocks limited by a self-affine surface such as the one generated by a crack. The upper solid is subjected either to gravity or to an external elastic stiffness, and is driven horizontally at constant velocity, V, while the lower solid is fixed. For low velocities, the apparent friction coefficient is constant. For high velocities, the apparent friction is shown to display a velocity weakening. The weakening can be related to the variation of the mean contact time due to the occurrence of jumps during the motions. The cross-over between these two regimes corresponds to a characteristic velocity which depends on the geometry of the surfaces and on the mean normal force. In the case of simple gravity loading, the velocity dependence of the apparent friction at high velocities is proportional to 1/V^2 where V is the imposed tangential velocity. In the case of external elastic stiffness, two velocity weakening regimes can be identified, the first is identical to the gravity case with a 1/V^2 dependence, the second appears at higher velocities and is characterized by a 1/V variation. The characteristic velocity of this second cross-over depends on the roughness and the elastic stiffness. The statistical distribution of ballistic flight distances is analysed, and is shown to reveal in all cases the self-affinity of the contacting surfaces. Nous analysons la dépendence en vitesse du frottement entre deux solides limités par une surface rugueuse auto-affine comme celle d'une surface de fracture. Le solide supérieur est soumis soit à la gravité, soit à une raideur élastique externe, et est entraîné à vitesse horizontale constante V sur le solide inférieur fixe. A faible vitesse, le coefficient de friction apparent, est constant. A forte vitesse, le coefficient de friction apparent devient inversement proportionnel à la vitesse. Cette dépendance peut être reliée à la variation du temps

  9. Memory effects in nonadiabatic molecular dynamics at metal surfaces

    DEFF Research Database (Denmark)

    Olsen, Thomas; Schiøtz, Jakob


    We study the effect of temporal correlation in a Langevin equation describing nonadiabatic dynamics at metal surfaces. For a harmonic oscillator, the Langevin equation preserves the quantum dynamics exactly and it is demonstrated that memory effects are needed in order to conserve the ground state...... energy of the oscillator. We then compare the result of Langevin dynamics in a harmonic potential with a perturbative master equation approach and show that the Langevin equation gives a better description in the nonperturbative range of high temperatures and large friction. Unlike the master equation...... the temporal correlation function and dynamical friction within density functional theory....

  10. Dynamic stability of passive dynamic walking on an irregular surface. (United States)

    Su, Jimmy Li-Shin; Dingwell, Jonathan B


    Falls that occur during walking are a significant health problem. One of the greatest impediments to solve this problem is that there is no single obviously "correct" way to quantify walking stability. While many people use variability as a proxy for stability, measures of variability do not quantify how the locomotor system responds to perturbations. The purpose of this study was to determine how changes in walking surface variability affect changes in both locomotor variability and stability. We modified an irreducibly simple model of walking to apply random perturbations that simulated walking over an irregular surface. Because the model's global basin of attraction remained fixed, increasing the amplitude of the applied perturbations directly increased the risk of falling in the model. We generated ten simulations of 300 consecutive strides of walking at each of six perturbation amplitudes ranging from zero (i.e., a smooth continuous surface) up to the maximum level the model could tolerate without falling over. Orbital stability defines how a system responds to small (i.e., "local") perturbations from one cycle to the next and was quantified by calculating the maximum Floquet multipliers for the model. Local stability defines how a system responds to similar perturbations in real time and was quantified by calculating short-term and long-term local exponential rates of divergence for the model. As perturbation amplitudes increased, no changes were seen in orbital stability (r(2)=2.43%; p=0.280) or long-term local instability (r(2)=1.0%; p=0.441). These measures essentially reflected the fact that the model never actually "fell" during any of our simulations. Conversely, the variability of the walker's kinematics increased exponentially (r(2)>or=99.6%; pwalking stability are related to each other and to risk of falling.

  11. Expansion of epicyclic gear dynamic analysis program (United States)

    Boyd, Linda Smith; Pike, James A.


    The multiple mesh/single stage dynamics program is a gear tooth analysis program which determines detailed geometry, dynamic loads, stresses, and surface damage factors. The program can analyze a variety of both epicyclic and single mesh systems with spur or helical gear teeth including internal, external, and buttress tooth forms. The modifications refine the options for the flexible carrier and flexible ring gear rim and adds three options: a floating Sun gear option; a natural frequency option; and a finite element compliance formulation for helical gear teeth. The option for a floating Sun incorporates two additional degrees of freedom at the Sun center. The natural frequency option evaluates the frequencies of planetary, star, or differential systems as well as the effect of additional springs at the Sun center and those due to a flexible carrier and/or ring gear rim. The helical tooth pair finite element calculated compliance is obtained from an automated element breakup of the helical teeth and then is used with the basic gear dynamic solution and stress postprocessing routines. The flexible carrier or ring gear rim option for planetary and star spur gear systems allows the output torque per carrier and ring gear rim segment to vary based on the dynamic response of the entire system, while the total output torque remains constant.

  12. The Dynamics and Structures of Adsorbed Surfaces

    DEFF Research Database (Denmark)

    Nielsen, M; Ellenson, W. D.; McTague, J. P.


    Reviews neutron scattering work performed on films of simple gas atoms and molecules adsorbed primarily on graphite surfaces. Exfoliated graphite substrates such as Grafoil were first used in this kind of measurements about five years ago and new results have been reported at an increasing pace...... of molecules such as NH3 or the internal modes of adsorbed molecules such as C4H10. Neutron scattering measurements where substrates other than graphite products are used as the adsorbents will not be reviewed here. However, the power of the technique will be demonstrated in an example of H2 physisorbed...

  13. Static and dynamic contact angles of water droplet on a solid surface using molecular dynamics simulation. (United States)

    Hong, Seung Do; Ha, Man Yeong; Balachandar, S


    The present study investigates the variation of static contact angle of a water droplet in equilibrium with a solid surface in the absence of a body force and the dynamic contact angles of water droplet moving on a solid surface for different characteristic energies using the molecular dynamics simulation. With increasing characteristic energy, the static contact angle in equilibrium with a solid surface in the absence of a body force decreases because the hydrophobic surface changes its characteristics to the hydrophilic surface. In order to consider the effect of moving water droplet on the dynamic contact angles, we apply the constant acceleration to an individual oxygen and hydrogen atom. In the presence of a body force, the water droplet changes its shape with larger advancing contact angle than the receding angle. The dynamic contact angles are compared with the static contact angle in order to see the effect of the presence of a body force.

  14. Surface and interface analysis an electrochemists toolbox

    CERN Document Server

    Holze, Rudolf


    A broad, almost encyclopedic overview of spectroscopic and other analytical techniques useful for investigations of phase boundaries in electrochemistry is presented. The analysis of electrochemical interfaces and interphases on a microscopic, even molecular level, is of central importance for an improved understanding of the structure and dynamics of these phase boundaries. The gained knowledge will be needed for improvements of methods and applications reaching from electrocatalysis, electrochemical energy conversion, biocompatibility of metals, corrosion protection to galvanic surface treatment and finishing. The book provides an overview as complete as possible and enables the reader to choose methods most suitable for tackling his particular task. It is nevertheless compact and does not flood the reader with the details of review papers.


    Institute of Scientific and Technical Information of China (English)

    彭世济; 卢明银; 张达贤


    It is stipulated in the China national document, named"The Economical Appraisal Methods for Construction Projects" that dynamic analysis should dominate the project economical appraisal methods.This paper has set up a dynamic investment forecast model for Yuanbaoshan Surface Coal Mine. Based on this model, the investment reliability using simulation and analytic methods has been analysed, anti the probability that the designed internal rate of return can reach 8.4%, from economic points of view, have been also studied.

  16. Analysis of the probabilistic characteristics of the dynamic stress of the highspeed railway subgrade surface%高速铁路路基面动应力概率特性研究

    Institute of Scientific and Technical Information of China (English)



    路基动应力特性在高铁路基设计中非常重要,因此对其进行研究具有一定的意义.通过列车-轨道-路基三维有限元数值方法,计算得到了在京津城际轨道不平顺谱下路基面横向各位置处的动应力.利用概率统计理论,统计得到了3种列车速度下路基面横向各位置处动应力的均值和变异系数;并通过对路基面中心位置处动应力计算结果进行统计分析得到了京津城际轨道不平顺谱下路基动应力的最优概率分布模型.结果表明,在京津城际轨道不平顺谱下,路基面动应力均值沿横向呈现“M”型分布,变异系数沿横向逐渐减小.列车速度对路基动应力均值及变异系数具有一定的放大效应,且路基动应力沿纵向近似服从对数正态分布.%This paper intends to provide its analysis of the probabilistic characteristic features of the dynamic stress of the highspeed railway subgrade surface of Beijing-Tianjin inter-city communal railway in the broadwise direction of 6 nodes and in the longitudinal direction of 321 nodes of the subgrade surface under the track irregularity spectrum.According to the vehicle-tracksubgrade dimensional finite element model,there can be found three typical high-speed railway driving speeds,known as 150km/h,250 km/h and 350 km/h.However,based on the reliability theory and the probability statistics theory,the mean value and coefficients of the variations(COVs) of the dynamic stress of subgrade in the said direction can be gained by calculating the dynamic stress of the subgrade in the aforementioned situations.And,finally,we have worked out the mean values and the coefficient of variations (COVs) of the dynamic stress of the subgrade in the broadwise direction of the subgrade surface through comparison of the probability distribution of the dynamic stress of the subgrade in the central position of subgrade surface and the histogram of the data predicted of log-normal distribution

  17. Molecular dynamics simulation of annealed ZnO surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Min, Tjun Kit; Yoon, Tiem Leong [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Lim, Thong Leng [Faculty of Engineering and Technology, Multimedia University, Melaka Campus, 75450 Melaka (Malaysia)


    The effect of thermally annealing a slab of wurtzite ZnO, terminated by two surfaces, (0001) (which is oxygen-terminated) and (0001{sup ¯}) (which is Zn-terminated), is investigated via molecular dynamics simulation by using reactive force field (ReaxFF). We found that upon heating beyond a threshold temperature of ∼700 K, surface oxygen atoms begin to sublimate from the (0001) surface. The ratio of oxygen leaving the surface at a given temperature increases as the heating temperature increases. A range of phenomena occurring at the atomic level on the (0001) surface has also been explored, such as formation of oxygen dimers on the surface and evolution of partial charge distribution in the slab during the annealing process. It was found that the partial charge distribution as a function of the depth from the surface undergoes a qualitative change when the annealing temperature is above the threshold temperature.

  18. Dynamics and Instabilities of Free Surface and Vortex Flows

    DEFF Research Database (Denmark)

    Tophøj, Laust Emil Hjerrild


    This PhD thesis consists of two main parts. The first part describes the dynamics of an ideal fluid on a stationary free surface of a given shape. It turns out that one can formulate a set of self-contained equations of momentum conservation for the tangential flow, with no reference to the flow...... of the fluid bulk. With these equations, one can in principle predict the surface flow on a given free surface, once its shape has been measured. The equations are expressed for a general surface using Riemannian geometry and their solutions are discussed, including some difficulties that may arise...

  19. Adaptive Fuzzy Dynamic Surface Control for Uncertain Nonlinear Systems

    Institute of Scientific and Technical Information of China (English)

    Xiao-Yuan Luo; Zhi-Hao Zhu; Xin-Ping Guan


    In this paper, a robust adaptive fuzzy dynamic surface control for a class of uncertain nonlinear systems is proposed. A novel adaptive fuzzy dynamic surface model is built to approximate the uncertain nonlinear functions by only one fuzzy logic system. The approximation capability of this model is proved and the model is implemented to solve the problem that too many approximators are used in the controller design of uncertain nonlinear systems. The shortage of "explosion of complexity" in backstepping design procedure is overcome by using the proposed dynamic surface control method. It is proved by constructing appropriate Lyapunov candidates that all signals of closed-loop systems are semi-globaily uniformly ultimate bounded. Also, this novel controller stabilizes the states of uncertain nonlinear systems faster than the adaptive sliding mode controller (SMC). Two simulation examples are provided to illustrate the effectiveness of the control approach proposed in this paper.

  20. Dynamic forces between bubbles and surfaces and hydrodynamic boundary conditions. (United States)

    Manor, Ofer; Vakarelski, Ivan U; Stevens, Geoffrey W; Grieser, Franz; Dagastine, Raymond R; Chan, Derek Y C


    A bubble attached to the end of an atomic force microscope cantilever and driven toward or away from a flat mica surface across an aqueous film is used to characterize the dynamic force that arises from hydrodynamic drainage and electrical double layer interactions across the nanometer thick intervening aqueous film. The hydrodynamic response of the air/water interface can range from a classical fully immobile, no-slip surface in the presence of added surfactants to a partially mobile interface in an electrolyte solution without added surfactants. A model that includes the convection and diffusion of trace surface contaminants can account for the observed behavior presented. This model predicts quantitatively different interfacial dynamics to the Navier slip model that can also be used to fit dynamic force data with a post hoc choice of a slip length.

  1. Generalized surface momentum balances for the analysis of surface dilatational data

    NARCIS (Netherlands)

    Sagis, L.M.C.


    Dilatational rheological properties of interfaces are often determined using drop tensiometers, in which the interface of the droplet is subjected to oscillatory area changes. A dynamic surface tension is determined either by image analysis of the droplet profile or by measuring the capillary pressu

  2. Molecular dynamics simulations of peptides on calcite surface


    Yang, Mingjun; Rodger, Mark; Harding, John; Stipp, Susan S.L.


    Abstract A series of Molecular Dynamics (MD) simulations has been carried out to investigate the interaction between peptides and a calcite (1 0 -1 4) surface in water. A 16-amino acid and a 17-amino acid peptide have been built and three different configurations for each peptide are used as starting configurations. The dynamic behaviour of these peptides has been investigated by calculating their radii of gyration and distribution of dihedral angles. For comparison, the simulatio...

  3. Ionization dynamics of water dimer on ice surface (United States)

    Tachikawa, Hiroto


    The solid surface provides an effective two-dimensional reaction field because the surface increases the encounter probability of bi-molecular collision reactions. Also, the solid surface stabilizes a reaction intermediate because the excess energy generated by the reaction dissipates into the bath modes of surface. The ice surface in the universe is one of the two dimensional reaction fields. However, it is still unknown how the ice surface affects to the reaction mechanism. In the present study, to elucidate the specific property of the ice surface reaction, ionization dynamics of water dimer adsorbed on the ice surface was theoretically investigated by means of direct ab-initio molecular dynamics (AIMD) method combined with ONIOM (our own n-layered integrated molecular orbital and molecular mechanics) technique, and the result was compared with that of gas phase reaction. It was found that a proton is transferred from H2O+ to H2O within the dimer and the intermediate complex H3O+(OH) is formed in both cases. However, the dynamic features were different from each other. The reaction rate of the proton transfer on the ice surface was three times faster than that in the gas phase. The intermediate complex H3O+(OH) was easily dissociated to H3O+ and OH radical on the ice surface, and the lifetime of the complex was significantly shorter than that of gas phase (100 fs vs. infinite). The reason why the ice surface accelerates the reaction was discussed in the present study.

  4. Dynamic wetting of ro1ling oil on aluminum surfaces

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ya-jun; ZHOU Hong-hui


    Static and dynamic contact angles of stock oil and its solutions with additives(fatty acid, fatty alcohol, fatty methyl ester usually used in rolling aluminum) were measured on aluminum surface (Alloy 1145) by sessile drop technique on an OCA35 dynamic contact angle tester. The effect of additive on the drop spreading was investigated as well. It is shown that the drop spreads very quickly in the first 500 ms after the lubricant contacts with the aluminum surface, and then does slowly later. The dynamic contact angle decreases exponentially with time. In contrast to the stock oil, although addition of polarity additive of long chain alkyl into stock oil is able to decrease the surface tension of solutions, it weakens the wetting dynamic, which results from the adsorption at the expanding solid/liquid interface. Among the same long chain polarity organic compounds used, dynamic wetting decreases in the order of fatty acid, fatty alcohol and fatty ester. The blend of fatty alcohol and fatty methyl ester can improve the oil wetting dynamics and promote the lubricant spreading.

  5. Dynamic Topography at Earth's Surface: Fact or Fiction? (Invited) (United States)

    Lithgow-Bertelloni, C. R.; Silver, P. G.


    Contributions to Earth’s surface topography range from short-wavelength uncompensated features due to tectonic activity, to variations in crustal structure and long-wavelength deflections of the lithosphere caused by mantle dynamics. The latter we call dynamic topography. Dynamic topography elevates or depresses the surface even if the density anomaly giving rise to flow is deep in the mantle. Dynamic topography is also a major contributor to Earth’s gravitational potential and to surface deformation. However, direct observations of dynamic topography are elusive, because signals are obscured by the isostatic contribution due to crustal and lithospheric structure. The only seemingly unequivocal signals of dynamically supported topography have been found over mantle upwellings on both continents (Africa [Lithgow-Bertelloni and Silver, 1998] and Arabia [Daradich et al., 2004]) and oceanic basins (North-Atlantic [Conrad et al., 2004]). Recent work on Africa’s geomorphic history [Moore et al., 2009] and North Atlantic gravity and topography have called even these results into questions. In downwelling regions (near slabs) no clear signals have been found. I will explore why this dichotomy may exist and relate it to the need for dynamic topography in mantle flow models, with an eye towards the effects of phase transitions, lateral variations in viscosity and layered convection. I will also present recent results on dynamic topography over flat slab segments that overturn the conventional wisdom and explain basin topography in the Andean foreland. Along with the new models I will discuss a recent global lithospheric structure model with which to compute the residual topography, i.e. the “observed” dynamic topography.

  6. Investigation of drop dynamic contact angle on copper surface (United States)

    Orlova, Evgenija; Feoktistov, Dmitriy; Kuznetsov, Geniy


    This paper presents experimental results of the studying the effect of surface roughness, microstructure and flow rate on the dynamic contact angle at spreading of distilled non deaerate water drop on a solid horizontal substrates. Copper substrates with different roughness have been investigated. For each substrate static contact angles depending on volume flow rate have been obtained using shadow system. Increasing the volume flow rate resulted in an increase of the static contact angle. It was found that with increasing surface roughness dynamic contact angle arises. Also difference in formation of the equilibrium contact angle at low and high rates of drop growth has been detected.

  7. Investigation of drop dynamic contact angle on copper surface

    Directory of Open Access Journals (Sweden)

    Orlova Evgenija


    Full Text Available This paper presents experimental results of the studying the effect of surface roughness, microstructure and flow rate on the dynamic contact angle at spreading of distilled non deaerate water drop on a solid horizontal substrates. Copper substrates with different roughness have been investigated. For each substrate static contact angles depending on volume flow rate have been obtained using shadow system. Increasing the volume flow rate resulted in an increase of the static contact angle. It was found that with increasing surface roughness dynamic contact angle arises. Also difference in formation of the equilibrium contact angle at low and high rates of drop growth has been detected.

  8. Fractal analysis of the hierarchic structure of fossil coal surface

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, A.D.; Vasilenko, T.A.; Kirillov, A.K. [National Academy of Sciences, Donetsk (Ukraine)


    The fractal analysis is described as method of studying images of surface of fossil coal, one of the natural sorbent, with the aim of determining its structural surface heterogeneity. The deformation effect as a reduction in the dimensions of heterogeneity boundaries is considered. It is shown that the theory of nonequilibrium dynamic systems permits to assess a formation level of heterogeneities involved into a sorbent composition by means of the Hurst factor.

  9. Retraction dynamics of aquous drops upon impact on nonwetting surfaces

    CERN Document Server

    Bartolo, D; Bonn, D; Bartolo, Denis; Josserand, Christophe; Bonn, Daniel


    We study the impact and subsequent retraction dynamics of liquid droplets upon high-speed impact on hydrophobic surfaces. Performing extensive experiments, we show that the drop retraction rate is a material constant and does not depend on the impact velocity. We show that when increasing the Ohnesorge number, $\\Oh=\\eta/\\sqrt{\\rho R_{\\rm I} \\gamma}$, the retraction, i.e. dewetting, dynamics crosses over from a capillaro-inertial regime to a capillaro-viscous regime. We rationalize the experimental observations by a simple but robust semi-quantitative model for the solid-liquid contact line dynamics inspired by the standard theories for thin film dewetting.

  10. Potential energy surfaces and reaction dynamics of polyatomic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yan-Tyng.


    A simple empirical valence bond (EVB) model approach is suggested for constructing global potential energy surfaces for reactions of polyatomic molecular systems. This approach produces smooth and continuous potential surfaces which can be directly utilized in a dynamical study. Two types of reactions are of special interest, the unimolecular dissociation and the unimolecular isomerization. For the first type, the molecular dissociation dynamics of formaldehyde on the ground electronic surface is investigated through classical trajectory calculations on EVB surfaces. The product state distributions and vector correlations obtained from this study suggest very similar behaviors seen in the experiments. The intramolecular hydrogen atom transfer in the formic acid dimer is an example of the isomerization reaction. High level ab initio quantum chemistry calculations are performed to obtain optimized equilibrium and transition state dimer geometries and also the harmonic frequencies.

  11. Nanoparticles dynamics on a surface: fractal pattern formation and fragmentation

    DEFF Research Database (Denmark)

    Dick, Veronika V.; Solov'yov, Ilia; Solov'yov, Andrey V.


    In this paper we review our recent results on the formation and the post-growth relaxation processes of nanofractals on surface. For this study we developed a method which describes the internal dynamics of particles in a fractal and accounts for their diffusion and detachment. We demonstrate...... that these kinetic processes determine the final shape of the islands on surface after post-growth relaxation. We consider different scenarios of fractal relaxation and analyze the time evolution of the island's morphology....

  12. Laser scanning dynamic measurement of the curved surface (United States)

    Hong, Xin; Zheng, Wenxue


    A new measurement of the curved surface has been developed. The paper provides an effective, real time and dynamic optical measurement which is suitable for the measurement of airfoil, turbine blade, car and tank's curved surface. The system consists of a laser probe, a charge couple device (CCD), a computer, three servomotors. Consideration is also given to the design of the laser probe and CCD driving circuit.

  13. Nanoparticles dynamics on a surface: fractal pattern formation and fragmentation

    DEFF Research Database (Denmark)

    Dick, Veronika V.; Solov'yov, Ilia; Solov'yov, Andrey V.


    In this paper we review our recent results on the formation and the post-growth relaxation processes of nanofractals on surface. For this study we developed a method which describes the internal dynamics of particles in a fractal and accounts for their diffusion and detachment. We demonstrate...... that these kinetic processes determine the final shape of the islands on surface after post-growth relaxation. We consider different scenarios of fractal relaxation and analyze the time evolution of the island's morphology....

  14. Dynamical analysis of highly excited molecular spectra

    Energy Technology Data Exchange (ETDEWEB)

    Kellman, M.E. [Univ. of Oregon, Eugene (United States)


    The goal of this program is new methods for analysis of spectra and dynamics of highly excited vibrational states of molecules. In these systems, strong mode coupling and anharmonicity give rise to complicated classical dynamics, and make the simple normal modes analysis unsatisfactory. New methods of spectral analysis, pattern recognition, and assignment are sought using techniques of nonlinear dynamics including bifurcation theory, phase space classification, and quantization of phase space structures. The emphasis is chaotic systems and systems with many degrees of freedom.

  15. A molecular dynamics study on surface properties of supercooled water

    Institute of Scientific and Technical Information of China (English)

    L(U) Yongjun; WEI Bingbo


    Molecular dynamics simulations were performed to study the surface properties of water in a temperature range from 228 to 293 K by using the extended simple point charge (SPC/E) and four-site TIP4P potentials. The calculated surface tension increases with the decrease of temperature, and moreover the slopes of the surface tension-temperature curves show a weak rise below 273 K, whereas no obvious anomalies appear near 228 K, which accords with the previous experiments. Compared with the measured values, the SPC/E potential shows a good agreement, and the TIP4P potential scription of the surface structure of supercooled water for the SPC/E. When simulating the orientational distributions of water molecules near the surface, the SPC/E potential produces higher ordering and larger surface potentials than the TIP4P potential.

  16. Static and Dynamic Wetting Behavior of Triglycerides on Solid Surfaces. (United States)

    Michalski; Saramago


    Triglyceride wetting properties on solid surfaces of different hydro-phobicities were investigated using three different methods, namely, the sessile drop method for static contact angle measurements, the Wilhelmy method for dynamic contact angle measurements, and the captive bubble method to investigate thin triglyceride film stability. For solid surfaces having a surface free energy higher than the surface tension of triglycerides (tributyrin, tricaprylin, and triolein), a qualitative correlation was observed between wetting and solid/triglyceride relative hydrophobicities. On surfaces presenting extreme hydrophobic or hydrophilic properties, medium-chain triglycerides had a behavior similar to that of long-chain unsaturated ones. On a high-energy surface (glass), tricaprylin showed an autophobic effect subsequent to molecular adsorption in trident conformation on the solid, observed with the three methods. Thin triglyceride films between an air bubble and a solid surface were stable for a short time, for solids with a surface free energy larger than the triglyceride surface tension. If the solid surface had a lower surface free energy, the thin film collapsed after a time interval which increased with triglyceride viscosity. Copyright 2000 Academic Press.

  17. Molecular Dynamics Simulations of Surface Processes: Oxygen Recombination on Silica Surfaces at High Temperature (United States)


    size-scalable cluster approach with SixOy clusters of increasing size cleaved from the β- cristobalite unit cell. In this study the hybrid Hartree...values of the β- cristobalite cell and extending the Molecular Dynamics Simulations of Surface Processes: Oxygen Recombination on Silica Surfaces at... cristobalite surface is reported as a function of the distance of the N atom from the Si active atom. The dashed line shows the interaction

  18. 基于地表冲击荷载作用下的城市地下空间结构动力响应分析%Dynamic analysis of urban underground space structure subjected to surface explosion

    Institute of Scientific and Technical Information of China (English)

    王晓睿; 张树君; 黄至全


    In order to study the dynamic response of subway station structure subjected to surface ground explosion, a simplified model of airblast forces is demonstrated in detail. Whereafter, the improved concrete dynamic Cam-Clay model of soil and the concrete damaged plasticity constitutive model are used for the dynamic analysis of subway station when 100 kg TNT detonates on ground surface. Meanwhile, the influences of soil stiffness and buried depth on dynamic response of subway station are taken into consideration. Finally, the dynamic response of station structural subjected to far-field explosion wave is analyzed. The results show that, the central roof of station has small tension damage. When the buried depth is less than 5 m, the dynamic stress is larger. The smaller the covering soil stiffness is, the more energy of the explosion the covering soil absorb. As the frequency of the explosion waves is very larger, the dynamic stress of the station subjected to far-field explosion wave is smaller. The results will be benefit anti-explosion design of underground structures.%由于地震效应、重载车辆的震动效应或由于不同爆炸物引起的强烈冲击效应,都会给城市地下空间结构带来较大的影响.通过土体的混凝土改进剑桥动力本构模型和混凝土塑性损伤本构模型,建立地表爆炸冲压荷载简化计算模型,对城市地下空间结构在TNT当量100 kg的炸药爆炸冲压荷载作用下进行了动力分析,研究了结构埋深、土体刚度对结构动力响应的影响,分析了远场爆炸地震波作用下地下空间结构的动力响应.计算结果表明,地下空间结构中部顶板产生了轻微的拉伸损伤:当埋深小于5m时,结构动应力响应较大;结构覆盖土刚度越小,土对爆炸能量的吸收作用越显著;由于爆炸产生的地震波频率高,其对结构动应力的影响较小.研究结果对地下结构的抗爆设计具有一定的参考意义.

  19. What determines water-bridge lifetimes at the surface of DNA? Insight from systematic molecular dynamics analysis of water kinetics for various DNA sequences. (United States)

    Yonetani, Yoshiteru; Kono, Hidetoshi


    The lifetime during which a water molecule resides at the surface of a biomolecule varies according to the hydration site. What determines this variety of lifetimes? Despite many previous studies, there is still no uniform picture quantitatively explaining this phenomenon. Here we calculate the lifetime for a particular hydration pattern in the DNA minor groove, the water bridge, for various DNA sequences to show that the water-bridge lifetime varies from 1 to ~300ps in a sequence-dependent manner. We find that it follows 1/k(V(step))P(m), where P(m) and V(step) are two crucial factors, namely the probability of forming a specific hydrogen bond in which more than one donor atom participates, and the structural fluctuation of DNA, respectively. This relationship provides a picture of the water kinetics with atomistic detail and shows that water dissociation occurs when a particular hydrogen-bonding pattern appears. The rate constant of water dissociation k can be described as a function of the structural fluctuations of DNA. This picture is consistent with the model of Laage and Hynes proposing that hydrogen-bond switching occurs when an unusual number of hydrogen bonds are formed. The two new factors suggested here are discussed in the context of the surface's geometry and electrostatic nature, which were previously proposed as the determinants of water lifetimes.

  20. Dynamics Analysis of Wind Energy Production Development (United States)

    Berg, V. I.; Zakirzakov, A. G.; Gordievskaya, E. F.


    The paper presents the analysis of the introduction experience and dynamics development of the world wind energy production. Calculated the amount of wind energy sources investments and the production capacity growth dynamics of the wind turbines. The studies have shown that the introduction dynamics of new wind energy sources is higher than any other energy source.

  1. Global Analysis of Minimal Surfaces

    CERN Document Server

    Dierkes, Ulrich; Tromba, Anthony J


    Many properties of minimal surfaces are of a global nature, and this is already true for the results treated in the first two volumes of the treatise. Part I of the present book can be viewed as an extension of these results. For instance, the first two chapters deal with existence, regularity and uniqueness theorems for minimal surfaces with partially free boundaries. Here one of the main features is the possibility of 'edge-crawling' along free parts of the boundary. The third chapter deals with a priori estimates for minimal surfaces in higher dimensions and for minimizers of singular integ

  2. Nonlinear dynamics of incommensurately contacting surfaces : a model study

    NARCIS (Netherlands)

    Consoli, Luca


    This PhD thesis is about the nonlinear dynamics of contacting surfaces. More specifically, it deals with the problem of modelling at the microscopic level some of the contributions that lead to the macroscopic effect of dry sliding friction. In chapter 1, we try to give an overview of the physical q

  3. Using Dynamic Geometry Software for the Intersection Surfaces (United States)

    Koparan, Timur; Yilmaz, Gül Kaleli


    The purpose of this study is to define prospective teacher views about using dynamic geometry software for intersection surfaces. The study was conducted as a case study. For this purpose, data collection tool was developed based on the opinion of two experts. The data collection tool consists of 4 open-ended questions related to the intersection…

  4. Molecular dynamics simulation of liquid-vapor surface tension

    Institute of Scientific and Technical Information of China (English)

    王德; ZENG; Danling; 等


    A molecular dynamics simulation model is established based on the well-known Lennard-Jones 12-6 potential function to determine the surface tension of a Lennard-Jones liquid-vapor interface.The simulation is carried out with argon as the working fluid of a given molecular number at different temperature and different truncated radius.It is found that the surface tension of a Lennard-Jones fluid is likely to be bigger for a bigger truncated radius,and tends to be constant after the truncated radius increased to a certain value.It is also found that the surface tension becomes smaller as the temperature increases.

  5. Reaction dynamics of molecular hydrogen on silicon surfaces

    DEFF Research Database (Denmark)

    Bratu, P.; Brenig, W.; Gross, A.


    between the two surfaces. These results indicate that tunneling, molecular vibrations, and the structural details of the surface play only a minor role for the adsorption dynamics. Instead, they appear to be governed by the localized H-Si bonding and Si-Si lattice vibrations. Theoretically, an effective...... of the preexponential factor by about one order of magnitude per lateral degree of freedom. Molecular vibrations have practically no effect on the adsorption/desorption dynamics itself, but lead to vibrational heating in desorption with a strong isotope effect. Ab initio calculations for the H-2 interaction......Experimental and theoretical results on the dynamics of dissociative adsorption and recombinative desorption of hydrogen on silicon are presented. Using optical second-harmonic generation, extremely small sticking probabilities in the range 10(-9)-10(-5) could be measured for H-2 and D-2 on Si(111...

  6. Thin film surface reconstruction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Imperatori, P. [CNR, Monterotondo Stazione, Rome (Italy). Istituto di Chimica dei materiali


    The study of the atomic structure of surfaces and interfaces is a fundamental step in the knowledge and the development of new materials. Among the several surface-sensitive techniques employed to characterise the atomic arrangements, grazing incidence x-ray diffraction (GIXD) is one of the most powerful. With a simple data treatment, based on the kinematical theory, and using the classical methods of x-ray bulk structure determination, it gives the atomic positions of atoms at a surface or an interface and the atomic displacements of subsurface layers for a complete determination of the structure. In this paper the main features of the technique will be briefly reviewed and selected of application to semiconductor and metal surfaces will be discussed.

  7. Gap Surface Plasmon Waveguide Analysis

    DEFF Research Database (Denmark)

    Nielsen, Michael Grøndahl; Bozhevolnyi, Sergey I.


    Plasmonic waveguides supporting gap surface plasmons (GSPs) localized in a dielectric spacer between metal films are investigated numerically and the waveguiding properties at telecommunication wavelengths are presented. Especially, we emphasize that the mode confinement can advantageously...


    DEFF Research Database (Denmark)

    Seah, M. P.; De Chiffre, Leonardo


    Surface physical analysis, i.e. topography characterisation, encompasses measurement, visualisation, and quantification. This is critical for both component form and for surface finish at macro-, micro- and nano-scales. The principal methods of surface topography measurement are stylus profilomet...

  9. Bubble dynamics and heat transfer for pool boiling on hydrophilic, superhydrophobic and biphilic surfaces (United States)

    Teodori, E.; Palma, T.; Valente, T.; Moita, A. S.; Moreira, A. L. N.


    This paper proposes a detailed analysis of bubble dynamics to describe pool boiling heat transfer in extreme wetting scenarios (superhydrophobic vs hydrophilic). A mechanistic approach, based on extensive post-processing allows quantifying the relative advantage of the superhydrophobic surfaces to endorse the onset of boiling at very low superheats (1-2K) vs their worse heat transfer performance associated to the swift formation of an insulating vapour film. Based on this analysis, a simple biphilic surface is created. The results suggest that for high heat fluxes, bubble dynamics is dominated by the emission of very small bubbles, which seems to affect the interaction mechanisms, precluding the emission of the large bubbles from the surface, thus compromising the good performance of the biphilic surfaces.

  10. Manufacturing in space: Fluid dynamics numerical analysis (United States)

    Robertson, S. J.; Nicholson, L. A.; Spradley, L. W.


    Natural convection in a spherical container with cooling at the center was numerically simulated using the Lockheed-developed General Interpolants Method (GIM) numerical fluid dynamic computer program. The numerical analysis was simplified by assuming axisymmetric flow in the spherical container, with the symmetry axis being a sphere diagonal parallel to the gravity vector. This axisymmetric spherical geometry was intended as an idealization of the proposed Lal/Kroes growing experiments to be performed on board Spacelab. Results were obtained for a range of Rayleigh numbers from 25 to 10,000. For a temperature difference of 10 C from the cooling sting at the center to the container surface, and a gravitional loading of 0.000001 g a computed maximum fluid velocity of about 2.4 x 0.00001 cm/sec was reached after about 250 sec. The computed velocities were found to be approximately proportional to the Rayleigh number over the range of Rayleigh numbers investigated.

  11. Quantum Trajectory Approach to Molecular Dynamics Simulation with Surface Hopping

    CERN Document Server

    Feng, Wei; Li, Xin-Qi; Fang, Weihai


    The powerful molecular dynamics (MD) simulation is basically based on a picture that the atoms experience classical-like trajectories under the exertion of classical force field determined by the quantum mechanically solved electronic state. In this work we propose a quantum trajectory approach to the MD simulation with surface hopping, from an insight that an effective "observation" is actually implied in theMDsimulation through tracking the forces experienced, just like checking the meter's result in the quantum measurement process. This treatment can build the nonadiabatic surface hopping on a dynamical foundation, instead of the usual artificial and conceptually inconsistent hopping algorithms. The effects and advantages of the proposed scheme are preliminarily illustrated by a two-surface model system.

  12. Modeling the effect of dynamic surfaces on membrane penetration (United States)

    van Lehn, Reid; Alexander-Katz, Alfredo


    The development of nanoscale materials for targeted drug delivery is an important current pursuit in materials science. One task of drug carriers is to release therapeutic agents within cells by bypassing the cell membrane to maximize the effectiveness of their payload and minimize bodily exposure. In this work, we use coarse-grained simulations to study nanoparticles (NPs) grafted with hydrophobic and hydrophilic ligands that rearrange in response to the amphiphilic lipid bilayer. We demonstrate that this dynamic surface permits the NP to spontaneously penetrate to the bilayer midplane when the surface ligands are near an order-disorder transition. We believe that this work will lead to the design of new drug carriers capable of non-specifically accessing cell interiors based solely on their dynamic surface properties. Our work is motivated by existing nanoscale systems such as micelles, or NPs grafted with highly mobile ligands or polymer brushes.

  13. Dynamic Behaviors of Contact Lines on Micropillared Hydrophobic Surfaces

    Directory of Open Access Journals (Sweden)

    Chen-chuan Tan


    Full Text Available The dynamic characteristics of contact lines on inclined micropillared surfaces were investigated in this paper. It was observed that the contact lines varied gradually to a ladder shape with the droplet sliding on micropillared surfaces under Wenzel state. The dynamic deformation of contact lines would be more obvious under Wenzel state and Cassie impregnating state; however it is negligible when the droplet is in one-dimensional scenario. Droplet layers formed during droplet sliding were left behind and evaporated quickly and disappeared. Based on these characteristics, the comparison of experimental data with theoretical models was discussed. It was found that energy barrier played an important role in analyzing wetting characteristics. Because of ignoring the role of energy barrier, the model of sliding angle cannot predict the sliding angle on micropillared surfaces very well, especially when the area fraction is small. This work is helpful to propose a more accuracy sliding angle model.

  14. Surface accumulation of spermatozoa: a fluid dynamic phenomenon

    CERN Document Server

    Smith, David J


    Recent mathematical fluid dynamics models have shed light into an outstanding problem in reproductive biology: why do spermatozoa cells show a 'preference' for swimming near to surfaces? In this paper we review quantitative approaches to the problem, originating with the classic paper of Lord Rothschild in 1963. A recent 'boundary integral/slender body theory' mathematical model for the fluid dynamics is described, and we discuss how it gives insight into the mechanisms that may be responsible for the surface accumulation behaviour. We use the simulation model to explore these mechanisms in more detail, and discuss whether simplified models can capture the behaviour of sperm cells. The far-field decay of the fluid flow around the cell is calculated, and compared with a stresslet model. Finally we present some new findings showing how, despite having a relatively small hydrodynamic drag, the sperm cell 'head' has very significant effects on surface accumulation and trajectory.

  15. Dissociative chemisorption dynamics of small molecules on metal surfaces

    Institute of Scientific and Technical Information of China (English)

    JIANG Bin; XIE DaiQian


    Much progress has been achieved for both experimental and theoretical studies on the dissociative chemisorption of molecules on surfaces.Quantum state-resolved experimental data has provided unprecedented details for these fundamental steps in heterogeneous catalysis,while the quantitative dynamics is still not fully understood in theory.An in-depth understanding of experimental observations relies on accurate dynamical calculations,in which the potential energy surface and adequate quantum mechanical implementation are desired.This article summarizes the current methodologies on the construction of potential energy surfaces and the quantum mechanical treatments,some of which are promising for future applications.The challenges in this field are also addressed.

  16. Mesoscale dynamics on the Sun's surface from HINODE observations

    CERN Document Server

    Roudier, T; Brito, D; Rincon, F; Malherbe, J M; Meunier, N; Berger, T; Frank, Z; 10.1051/0004-6361:200811101


    Aims: The interactions of velocity scales on the Sun's surface, from granulation to supergranulation are still not understood, nor are their interaction with magnetic fields. We thus aim at giving a better description of dynamics in the mesoscale range which lies between the two scales mentioned above. Method: We analyse a 48h high-resolution time sequence of the quiet Sun photosphere at the disk center obtained with the Solar Optical Telescope onboard Hinode. The observations, which have a field of view of 100 \\arcsec$\\times$ 100 \\arcsec, typically contain four supergranules. We monitor in detail the motion and evolution of granules as well as those of the radial magnetic field. Results: This analysis allows us to better characterize Trees of Fragmenting Granules issued from repeated fragmentation of granules, especially their lifetime statistics. Using floating corks advected by measured velocity fields, we show their crucial role in the advection of the magnetic field and in the build up of the network. Fi...

  17. Analysis of laser alloyed surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, D.C.; Augustyniak, W.M.; Buene, L.; Draper, C.W.; Poate, J.M.


    Surface alloys of precious metals have many advantages over bulk alloys, the most obvious of which is cost reduction due to the reduced consumption of precious metal. There are several techniques for producing surface alloys. In this paper the laser irradiation technique is presented. The following lasers: CW CO/sub 2/, Q-switched Nd-YAG, frequency double Q-switched Nd-YAG, and pulsed ruby were used to irradiate and melt thin solid films of precious metals on metal substrates. This causes the surfaces to melt to a depth of approximately 10,000A. Alloying then takes place in the liquid phase where most metals are miscible. The high quench rates obtainable by this method of melting can result in the forming of metastable alloys. This melting and regrowth process is well understood and has been discussed in the literature over the last few years. This paper deals with two binary alloy systems, Au-Ni and Pd-Ti. Surface alloys of Au-Ni with a wide range of concentrations have been produced by laser irradiation of thin Au films on Ni. These films have been analyzed using Rutherford backscattering (RBS) and channeling. Many thin film metals other than Au have also been successfully alloyed using these methods. An example of a potential application is the laser surface alloying of Pd to Ti for corrosion passivation.

  18. Dynamic Hurricane Data Analysis Tool (United States)

    Knosp, Brian W.; Li, Peggy; Vu, Quoc A.


    A dynamic hurricane data analysis tool allows users of the JPL Tropical Cyclone Information System (TCIS) to analyze data over a Web medium. The TCIS software is described in the previous article, Tropical Cyclone Information System (TCIS) (NPO-45748). This tool interfaces with the TCIS database to pull in data from several different atmospheric and oceanic data sets, both observed by instruments. Users can use this information to generate histograms, maps, and profile plots for specific storms. The tool also displays statistical values for the user-selected parameter for the mean, standard deviation, median, minimum, and maximum values. There is little wait time, allowing for fast data plots over date and spatial ranges. Users may also zoom-in for a closer look at a particular spatial range. This is version 1 of the software. Researchers will use the data and tools on the TCIS to understand hurricane processes, improve hurricane forecast models and identify what types of measurements the next generation of instruments will need to collect.


    DEFF Research Database (Denmark)

    Seah, M. P.; De Chiffre, Leonardo


    Surface physical analysis, i.e. topography characterisation, encompasses measurement, visualisation, and quantification. This is critical for both component form and for surface finish at macro-, micro- and nano-scales. The principal methods of surface topography measurement are stylus profilometry...... representing some average property of the surface under examination. Measurement methods, as well as their application and limitations, are briefly reviewed, including standardisation and traceability issues....

  20. Fast and Slow Wetting Dynamics on nanostructured surfaces (United States)

    Nandyala, Dhiraj; Rahmani, Amir; Cubaud, Thomas; Colosqui, Carlos


    This talk will present force-displacement and spontaneous drop spreading measurements on diverse nanostructured surfaces (e.g., mesoporous titania thin films, nanoscale pillared structures, on silica or glass substrates). Experimental measurements are performed for water-air and water-oil systems. The dynamics of wetting observed in these experiments can present remarkable crossovers from fast to slow or arrested dynamics. The emergence of a slow wetting regime is attributed to a multiplicity of metastable equilibrium states induced by nanoscale surface features. The crossover point can be dramatically advanced or delayed by adjusting specific physical parameters (e.g., viscosity of the wetting phases) and geometric properties of the surface nanostructure (e.g., nanopore/pillar radius and separation). Controlling the crossover point to arrested dynamics can effectively modify the degree of contact angle hysteresis and magnitude of liquid adhesion forces observed on surfaces of different materials. This work is supported by a SEED Award from The Office of Brookhaven National Laboratory Affairs at Stony Brook University.

  1. Efficient modelling of droplet dynamics on complex surfaces (United States)

    Karapetsas, George; Chamakos, Nikolaos T.; Papathanasiou, Athanasios G.


    This work investigates the dynamics of droplet interaction with smooth or structured solid surfaces using a novel sharp-interface scheme which allows the efficient modelling of multiple dynamic contact lines. The liquid-gas and liquid-solid interfaces are treated in a unified context and the dynamic contact angle emerges simply due to the combined action of the disjoining and capillary pressure, and viscous stresses without the need of an explicit boundary condition or any requirement for the predefinition of the number and position of the contact lines. The latter, as it is shown, renders the model able to handle interfacial flows with topological changes, e.g. in the case of an impinging droplet on a structured surface. Then it is possible to predict, depending on the impact velocity, whether the droplet will fully or partially impregnate the structures of the solid, or will result in a ‘fakir’, i.e. suspended, state. In the case of a droplet sliding on an inclined substrate, we also demonstrate the built-in capability of our model to provide a prediction for either static or dynamic contact angle hysteresis. We focus our study on hydrophobic surfaces and examine the effect of the geometrical characteristics of the solid surface. It is shown that the presence of air inclusions trapped in the micro-structure of a hydrophobic substrate (Cassie-Baxter state) result in the decrease of contact angle hysteresis and in the increase of the droplet migration velocity in agreement with experimental observations for super-hydrophobic surfaces. Moreover, we perform 3D simulations which are in line with the 2D ones regarding the droplet mobility and also indicate that the contact angle hysteresis may be significantly affected by the directionality of the structures with respect to the droplet motion.

  2. Dynamic Tracking of Ischemia in the Surface Electrocardiogram (United States)

    Shusterman, Vladimir; Goldberg, Anna; Schindler, Daniel M.; Fleischmann, Kirsten E.; Lux, Robert L.; Drew, Barbara J.


    Accurate detection of the earliest signs of ischemia on the surface electrocardiogram (ECG) is essential for timely diagnosis and management of potentially life-threatening ischemic events. Yet, accuracy of ischemia analysis in ECG monitors remains suboptimal due to a number of confounding factors, including changes in body position and other artifacts. Hence, the goals of this study were 1) to examine the duration and time course of ischemic events and 2) to compare ECG changes caused by “true” ischemic events with those caused by changes in body position. Continuous, 12-lead Holter ECGs obtained from patients who presented to the Emergency Department (ED) with chest pain and enrolled in the IMMEDIATE AIM Study were analyzed. Holter recordings were initiated within the 1st 40 min after patients' arrival to the ED. Here we present preliminary results. Methods Twelve patients (age:59±16, 5 female, 2 with a final diagnosis of non-STEMI, 4 with unstable angina, and 6 with other cardiovascular disease) in whom ischemic ST-deviations were identified on Holter data, underwent four consecutive, 2-min recordings in the following body positions: 1) supine, 2) on the left side, 3) on the right side, and 4) sitting (or standing) upright. After baseline correction, beat-to-beat changes in QRS and STT-segments were examined in all 8 channels and the root-mean-square (RMS)-curve using an adaptive algorithm that computes the slope, amplitude, duration, area, and the Karhunen-Loeve derived representation of the corresponding segment. To prevent possible biases towards patients with more frequent ischemic events, a single, index event was chosen for analysis in each patient. There were 3 ST-elevation events and 9 ST-depression events; these events reached the maximum ST-deviation 11±8 hours (mean ± standard deviation) after the beginning of the recording. Results and Conclusions In most patients with transient myocardial ischemia, the microvolt-level, sub-threshold deviation

  3. The global distribution and dynamics of surface soil moisture (United States)

    McColl, Kaighin A.; Alemohammad, Seyed Hamed; Akbar, Ruzbeh; Konings, Alexandra G.; Yueh, Simon; Entekhabi, Dara


    Surface soil moisture has a direct impact on food security, human health and ecosystem function. It also plays a key role in the climate system, and the development and persistence of extreme weather events such as droughts, floods and heatwaves. However, sparse and uneven observations have made it difficult to quantify the global distribution and dynamics of surface soil moisture. Here we introduce a metric of soil moisture memory and use a full year of global observations from NASA's Soil Moisture Active Passive mission to show that surface soil moisture--a storage believed to make up less than 0.001% of the global freshwater budget by volume, and equivalent to an, on average, 8-mm thin layer of water covering all land surfaces--plays a significant role in the water cycle. Specifically, we find that surface soil moisture retains a median 14% of precipitation falling on land after three days. Furthermore, the retained fraction of the surface soil moisture storage after three days is highest over arid regions, and in regions where drainage to groundwater storage is lowest. We conclude that lower groundwater storage in these regions is due not only to lower precipitation, but also to the complex partitioning of the water cycle by the surface soil moisture storage layer at the land surface.

  4. Bouncing dynamics of impact droplets on the convex superhydrophobic surfaces (United States)

    Shen, Yizhou; Liu, Senyun; Zhu, Chunling; Tao, Jie; Chen, Zhong; Tao, Haijun; Pan, Lei; Wang, Guanyu; Wang, Tao


    Bouncing dynamics of impact droplets on solid surfaces intensively appeal to researchers due to the importance in many industrial fields. Here, we found that droplets impacting onto dome convex superhydrophobic surfaces could rapidly bounce off with a 28.5% reduction in the contact time, compared with that on flat superhydrophobic surfaces. This is mainly determined by the retracting process of impact droplets. Under the action of dome convexity, the impact droplet gradually evolves into an annulus shape with a special hydrodynamic distribution. As a consequence, both the inner and external rims of the annulus shape droplet possess a higher retracting velocity under the actions of the inertia force and the surface energy change, respectively. Also, the numerical simulation provides a quantitative evidence to further verify the interpretation on the regimes behind the rapidly detached phenomenon of impact droplets.

  5. Molecular Dynamic Simulations on Surface Tension of Methanol (United States)

    Obeidat, Abdalla


    Molecular dynamic simulations have been performed to study the surface tension of methanol at low temperatures. Six different models of methanol have been studied to compute the surface tension of different models. The models have been used to predict the surface tensions are: OPLS, Gromos 96, H1, J1, J2, and van Leeuwen model. Our results show that the most accurate model compared to true methanol was van Leeuwen model. The results were fitted to a straight line to predict other data of surface tension at specific temperature. The simulation were performed using the Gromacs package at temperatures: 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, and 300 K. This work is supported by JUST.

  6. Surface computing and collaborative analysis work

    CERN Document Server

    Brown, Judith; Gossage, Stevenson; Hack, Chris


    Large surface computing devices (wall-mounted or tabletop) with touch interfaces and their application to collaborative data analysis, an increasingly important and prevalent activity, is the primary topic of this book. Our goals are to outline the fundamentals of surface computing (a still maturing technology), review relevant work on collaborative data analysis, describe frameworks for understanding collaborative processes, and provide a better understanding of the opportunities for research and development. We describe surfaces as display technologies with which people can interact directly, and emphasize how interaction design changes when designing for large surfaces. We review efforts to use large displays, surfaces or mixed display environments to enable collaborative analytic activity. Collaborative analysis is important in many domains, but to provide concrete examples and a specific focus, we frequently consider analysis work in the security domain, and in particular the challenges security personne...

  7. Dynamical Analysis of the Global Warming

    Directory of Open Access Journals (Sweden)

    J. A. Tenreiro Machado


    Full Text Available Global warming is a major concern nowadays. Weather conditions are changing, and it seems that human activity is one of the main causes. In fact, since the beginning of the industrial revolution, the burning of fossil fuels has increased the nonnatural emissions of carbon dioxide to the atmosphere. Carbon dioxide is a greenhouse gas that absorbs the infrared radiation produced by the reflection of the sunlight on the Earth’s surface, trapping the heat in the atmosphere. Global warming and the associated climate changes are being the subject of intensive research due to their major impact on social, economic, and health aspects of human life. This paper studies the global warming trend in the perspective of dynamical systems and fractional calculus, which is a new standpoint in this context. Worldwide distributed meteorological stations and temperature records for the last 100 years are analysed. It is shown that the application of Fourier transforms and power law trend lines leads to an assertive representation of the global warming dynamics and a simpler analysis of its characteristics.

  8. Characteristics of dynamic contact-angle in presence of surface-charge

    CERN Document Server

    Acharya, Palash V; Chakraborty, Suman


    We account for the presence of surface charges towards describing variations in the dynamic contact angle of an advancing liquid-gas meniscus. Starting from the thin-film based formalism, we present closed-form analytical expressions relating the dynamic contact-angle with the capillary number (essentially normalized contact-line speed) and other interfacial parameters. Specifically, our analysis presents, within the realm of hydrodynamic paradigm, a connection between the micro- and macro-scale physics at the vicinity of the contact-line region, taking the combined confluence of viscous and capillary forces along with van der Waals and electrostatic interactions. This connection rationalizes the hitherto reported anomalous window of the magnitude of the microscopic length scales required to corroborate experimental data for ionic liquids. Moreover, our analysis shows the possibility of a transition from strong to weak influence of surface charge in a dynamic fashion with contact-line speed along with other e...

  9. Finite Dynamic Elements and Modal Analysis

    Directory of Open Access Journals (Sweden)

    N.J. Fergusson


    Full Text Available A general modal analysis scheme is derived for forced response that makes use of high accuracy modes computed by the dynamic element method. The new procedure differs from the usual modal analysis in that the modes are obtained from a power series expansion for the dynamic stiffness matrix that includes an extra dynamic correction term in addition to the static stiffness matrix and the consistent mass matrix based on static displacement. A cantilevered beam example is used to demonstrate the relative accuracies of the dynamic element and the traditional finite element methods.

  10. Applications of surface analysis and surface theory in tribology (United States)

    Ferrante, John


    Tribology, the study of adhesion, friction and wear of materials, is a complex field which requires a knowledge of solid state physics, surface physics, chemistry, material science, and mechanical engineering. It has been dominated, however, by the more practical need to make equipment work. With the advent of surface analysis and advances in surface and solid-state theory, a new dimension has been added to the analysis of interactions at tribological interfaces. In this paper the applications of tribological studies and their limitations are presented. Examples from research at the NASA Lewis Research Center are given. Emphasis is on fundamental studies involving the effects of monolayer coverage and thick films on friction and wear. A summary of the current status of theoretical calculations of defect energetics is presented. In addition, some new theoretical techniques which enable simplified quantitative calculations of adhesion, fracture, and friction are discussed.

  11. Dynamics of electron in a surface quantum well

    Institute of Scientific and Technical Information of China (English)

    Wang Li-Fei; Yang Guang-Can


    This paper studies the quantum dynamics of electrons in a surface quantum well in the time domain with autocorrelation of wave packet. The evolution of the wave packet for different manifold eigenstates with finite and infinite lifetimes is investigated analytically. It is found that the quantum coherence and evolution of the surface electronic wave packet can be controlled by the laser central energy and electric field. The results show that the finite lifetime of excited states expedites the dephasing of the coherent electronic wave packet significantly. The correspondence between classical and quantum mechanics is shown explicitly in the system.

  12. Coffee-stain growth dynamics on dry and wet surfaces

    CERN Document Server

    Boulogne, François; Stone, Howard A


    The drying of a drop containing particles often results in the accumulation of the particles at the contact line. In this work, we investigate the drying of an aqueous colloidal drop surrounded by a hydrogel that is also evaporating. We combine theoretical and experimental studies to understand how the surrounding vapor concentration affects the particle deposit during the constant radius evaporation mode. In addition to the common case of evaporation on an otherwise dry surface, we show that in a configuration where liquid is evaporating from a flat surface around the drop, the singularity of the evaporative flux at the contact line is suppressed and the drop evaporation is homogeneous. For both conditions, we derive the velocity field and we establish the temporal evolution of the number of particles accumulated at the contact line. We predict the growth dynamics of the stain and the drying timescales. Thus, dry and wet conditions are compared with experimental results and we highlight that only the dynamic...

  13. Surface hopping investigation of the relaxation dynamics in radical cations

    Energy Technology Data Exchange (ETDEWEB)

    Assmann, Mariana; Matsika, Spiridoula, E-mail: [Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122 (United States); Weinacht, Thomas [Department of Physics, Stony Brook University, Stony Brook, New York 11794 (United States)


    Ionization processes can lead to the formation of radical cations with population in several ionic states. In this study, we examine the dynamics of three radical cations starting from an excited ionic state using trajectory surface hopping dynamics in combination with multiconfigurational electronic structure methods. The efficiency of relaxation to the ground state is examined in an effort to understand better whether fragmentation of cations is likely to occur directly on excited states or after relaxation to the ground state. The results on cyclohexadiene, hexatriene, and uracil indicate that relaxation to the ground ionic state is very fast in these systems, while fragmentation before relaxation is rare. Ultrafast relaxation is facilitated by the close proximity of electronic states and the presence of two- and three-state conical intersections. Examining the properties of the systems in the Franck-Condon region can give some insight into the subsequent dynamics.

  14. Modeling of surface cleaning by cavitation bubble dynamics and collapse. (United States)

    Chahine, Georges L; Kapahi, Anil; Choi, Jin-Keun; Hsiao, Chao-Tsung


    Surface cleaning using cavitation bubble dynamics is investigated numerically through modeling of bubble dynamics, dirt particle motion, and fluid material interaction. Three fluid dynamics models; a potential flow model, a viscous model, and a compressible model, are used to describe the flow field generated by the bubble all showing the strong effects bubble explosive growth and collapse have on a dirt particle and on a layer of material to remove. Bubble deformation and reentrant jet formation are seen to be responsible for generating concentrated pressures, shear, and lift forces on the dirt particle and high impulsive loads on a layer of material to remove. Bubble explosive growth is also an important mechanism for removal of dirt particles, since strong suction forces in addition to shear are generated around the explosively growing bubble and can exert strong forces lifting the particles from the surface to clean and sucking them toward the bubble. To model material failure and removal, a finite element structure code is used and enables simulation of full fluid-structure interaction and investigation of the effects of various parameters. High impulsive pressures are generated during bubble collapse due to the impact of the bubble reentrant jet on the material surface and the subsequent collapse of the resulting toroidal bubble. Pits and material removal develop on the material surface when the impulsive pressure is large enough to result in high equivalent stresses exceeding the material yield stress or its ultimate strain. Cleaning depends on parameters such as the relative size between the bubble at its maximum volume and the particle size, the bubble standoff distance from the particle and from the material wall, and the excitation pressure field driving the bubble dynamics. These effects are discussed in this contribution.

  15. Dynamics at Solid State Surfaces and Interfaces Volume 2 Fundamentals

    CERN Document Server

    Bovensiepen, Uwe; Wolf, Martin


    This two-volume work covers ultrafast structural and electronic dynamics of elementary processes at solid surfaces and interfaces, presenting the current status of photoinduced processes. Providing valuable introductory information for newcomers to this booming field of research, it investigates concepts and experiments, femtosecond and attosecond time-resolved methods, as well as frequency domain techniques.The whole is rounded off by a look at future developments.

  16. Investigation of drop dynamic contact angle on copper surface


    Orlova Evgenija; Feoktistov Dmitriy; Kuznetsov Geniy


    This paper presents experimental results of the studying the effect of surface roughness, microstructure and flow rate on the dynamic contact angle at spreading of distilled non deaerate water drop on a solid horizontal substrates. Copper substrates with different roughness have been investigated. For each substrate static contact angles depending on volume flow rate have been obtained using shadow system. Increasing the volume flow rate resulted in an increase of the static contact angle. It...

  17. Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurements (United States)


    2. REPORT DATE 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 6. AUTHOR(S) 7. PERFORMING ORGANIZATION NAME(S) AND...WORK UNIT NUMBER 1. REPORT DATE (DD-MM-YYYY) 16. SECURITY CLASSIFICATION OF: PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 31-03-2015...Final March 2013 -- February 2015 Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurements N00014-13-1-0352 Yue, Dick K.P

  18. Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurement (United States)


    Radiometric Measurement Lian Shen Department of Mechanical Engineering & St. Anthony Falls Laboratory University of Minnesota Minneapolis, MN...information if it does not display a currently valid OMB control number. 1. REPORT DATE 30 SEP 2013 2. REPORT TYPE 3. DATES COVERED 00-00-2013 to 00-00...2013 4. TITLE AND SUBTITLE Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurement 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  19. On the dynamics of homogeneous turbulence near a surface (United States)

    Flores, Oscar; Riley, James J.


    It is becoming increasing clear that stably-stratified flows can support a stratified turbulence k - 5 / 3 inertial range, different from Kolmogorov's. Stratification inhibits vertical motions, but the large-scale quasi-horizontal motions produce strong vertical shearing and small-scale instabilities. The result is a k - 5 / 3 horizontal spectrum for the horizontal velocities at scales larger than the Ozmidov scale, the largest scale that can overturn. For smaller scales, the classical Kolmogorov k - 5 / 3 applies. Inspired by data taken near the water surface in a tidal river, we here explore to what extent the dynamics of the nonlinear spectral energy transfer of near-surface turbulence with no mean shear (i.e., horizontally isotropic turbulence bounded by free-slip and no-slip surfaces) is analogous to stably stratified turbulence. To that end, we perform DNS of decaying isotropic turbulence with Reλ ~ 100 , but bounded by a non-slip surface and a free slip surface. The behavior of the flow near the free-slip surface is similar to stratified turbulence, with a tentative k - 5 / 3 range, but the same is not true for the no-slip surface at the present Reynolds numbers. This research was supported by ARO and NSF. Chickadel et al. (2011) to appear in IEEE Geosci. Remote Sens. Lett.

  20. Dynamic Melting of Freezing Droplets on Ultraslippery Superhydrophobic Surfaces. (United States)

    Chu, Fuqiang; Wu, Xiaomin; Wang, Lingli


    Condensed droplet freezing and freezing droplet melting phenomena on the prepared ultraslippery superhydrophobic surface were observed and discussed in this study. Although the freezing delay performance of the surface is common, the melting of the freezing droplets on the surface is quite interesting. Three self-propelled movements of the melting droplets (ice- water mixture) were found including the droplet rotating, the droplet jumping, and the droplet sliding. The melting droplet rotating, which means that the melting droplet rotates spontaneously on the superhydrophobic surface like a spinning top, is first reported in this study and may have some potential applications in various engineering fields. The melting droplet jumping and sliding are similar to those occurring during condensation but have larger size scale and motion scale, as the melting droplets have extra-large specific surface area with much more surface energy available. These self-propelled movements make all the melting droplets on the superhydrophobic surface dynamic, easily removed, which may be promising for the anti-icing/frosting applications.

  1. An efficient threshold dynamics method for wetting on rough surfaces (United States)

    Xu, Xianmin; Wang, Dong; Wang, Xiao-Ping


    The threshold dynamics method developed by Merriman, Bence and Osher (MBO) is an efficient method for simulating the motion by mean curvature flow when the interface is away from the solid boundary. Direct generalization of MBO-type methods to the wetting problem with interfaces intersecting the solid boundary is not easy because solving the heat equation in a general domain with a wetting boundary condition is not as efficient as it is with the original MBO method. The dynamics of the contact point also follows a different law compared with the dynamics of the interface away from the boundary. In this paper, we develop an efficient volume preserving threshold dynamics method for simulating wetting on rough surfaces. This method is based on minimization of the weighted surface area functional over an extended domain that includes the solid phase. The method is simple, stable with O (Nlog ⁡ N) complexity per time step and is not sensitive to the inhomogeneity or roughness of the solid boundary.

  2. Observation of dynamic water microadsorption on Au surface

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaokang, E-mail:; Gupta, Gaurav; Gao, Weixiang; Tran, Van; Nguyen, Bang; McCormick, Eric; Cui, Yongjie; Yang, Yinbao; Hall, Craig; Isom, Harold [TriQuint Semiconductor, Inc., 500 W Renner Road, Richardson, Texas 75080 (United States)


    Experimental and theoretical research on water wettability, adsorption, and condensation on solid surfaces has been ongoing for many decades because of the availability of new materials, new detection and measurement techniques, novel applications, and different scales of dimensions. Au is a metal of special interest because it is chemically inert, has a high surface energy, is highly conductive, and has a relatively high melting point. It has wide applications in semiconductor integrated circuitry, microelectromechanical systems, microfluidics, biochips, jewelry, coinage, and even dental restoration. Therefore, its surface condition, wettability, wear resistance, lubrication, and friction attract a lot of attention from both scientists and engineers. In this paper, the authors experimentally investigated Au{sub 2}O{sub 3} growth, wettability, roughness, and adsorption utilizing atomic force microscopy, scanning electron microscopy, reflectance spectrometry, and contact angle measurement. Samples were made using a GaAs substrate. Utilizing a super-hydrophilic Au surface and the proper surface conditions of the surrounding GaAs, dynamic microadsorption of water on the Au surface was observed in a clean room environment. The Au surface area can be as small as 12 μm{sup 2}. The adsorbed water was collected by the GaAs groove structure and then redistributed around the structure. A model was developed to qualitatively describe the dynamic microadsorption process. The effective adsorption rate was estimated by modeling and experimental data. Devices for moisture collection and a liquid channel can be made by properly arranging the wettabilities or contact angles of different materials. These novel devices will be very useful in microfluid applications or biochips.

  3. Biofilm attachment reduction on bioinspired, dynamic, micro-wrinkling surfaces (United States)

    Epstein, Alexander K.; Hong, Donggyoon; Kim, Philseok; Aizenberg, Joanna


    Most bacteria live in multicellular communities known as biofilms that are adherent to surfaces in our environment, from sea beds to plumbing systems. Biofilms are often associated with clinical infections, nosocomial deaths and industrial damage such as bio-corrosion and clogging of pipes. As mature biofilms are extremely challenging to eradicate once formed, prevention is advantageous over treatment. However, conventional surface chemistry strategies are either generally transient, due to chemical masking, or toxic, as in the case of leaching marine antifouling paints. Inspired by the nonfouling skins of echinoderms and other marine organisms, which possess highly dynamic surface structures that mechanically frustrate bio-attachment, we have developed and tested a synthetic platform based on both uniaxial mechanical strain and buckling-induced elastomer microtopography. Bacterial biofilm attachment to the dynamic substrates was studied under an array of parameters, including strain amplitude and timescale (1-100 mm s-1), surface wrinkle length scale, bacterial species and cell geometry, and growth time. The optimal conditions for achieving up to ˜ 80% Pseudomonas aeruginosa biofilm reduction after 24 h growth and ˜ 60% reduction after 48 h were combinatorially elucidated to occur at 20% strain amplitude, a timescale of less than ˜ 5 min between strain cycles and a topography length scale corresponding to the cell dimension of ˜ 1 μm. Divergent effects on the attachment of P. aeruginosa, Staphylococcus aureus and Escherichia coli biofilms showed that the dynamic substrate also provides a new means of species-specific biofilm inhibition, or inversely, selection for a desired type of bacteria, without reliance on any toxic or transient surface chemical treatments.

  4. Dynamic Blowout Risk Analysis Using Loss Functions. (United States)

    Abimbola, Majeed; Khan, Faisal


    Most risk analysis approaches are static; failing to capture evolving conditions. Blowout, the most feared accident during a drilling operation, is a complex and dynamic event. The traditional risk analysis methods are useful in the early design stage of drilling operation while falling short during evolving operational decision making. A new dynamic risk analysis approach is presented to capture evolving situations through dynamic probability and consequence models. The dynamic consequence models, the focus of this study, are developed in terms of loss functions. These models are subsequently integrated with the probability to estimate operational risk, providing a real-time risk analysis. The real-time evolving situation is considered dependent on the changing bottom-hole pressure as drilling progresses. The application of the methodology and models are demonstrated with a case study of an offshore drilling operation evolving to a blowout. © 2017 Society for Risk Analysis.

  5. Study of Dynamic Features of Surface Plasma in High-Power Disk Laser Welding

    Institute of Scientific and Technical Information of China (English)

    王腾; 高向东; Katayatna SEIJI; 金小莉


    High-speed photography was used to obtain the dynamic changes in the surface plasma during a high-power disk laser welding process. A color space clustering algorithm to extract the edge information of the surface plasma region was developed in order to improve the accuracy of image processing. With a comparative analysis of the plasma features, i.e., area and height, and the characteristics of the welded seam, the relationship between the surface plasma and the stability of the laser welding process was characterized, which provides a basic understanding for the real-time monitoring of laser welding.

  6. Contact Analysis of Nominally Flat Surfaces (United States)


    specifically surface topography. Starting with the Weierstrass- Mandelbrot Equation (fractal equation), the engineers approximated the power spectrum, and...Komvopoulos, the Weierstrass- Mandelbrot function was used to model the surface topography. A finite element analysis was performed using the commercial... Mandelbrot of Poland. Mandelbrot was the first to point out the feasibility of modeling natural, physical objects with the concept. The property

  7. Liquid Droplet Impact Dynamics on Micro-Patterned Superhydrophobic Surfaces

    CERN Document Server

    Clavijo, Cristian; Crockett, Julie


    The video exhibits experimental qualitative and quantitative results of water/glycerol (50%/50% by mass) droplet impact on two types of micro-patterned superhydrophobic surfaces. The two types of surfaces used were 80% cavity fraction ribs and posts with a periodic spacing of 40 {\\mu}m and 32 {\\mu}m, respectively. All surfaces were manufactured through photolithography. The impact Weber number is used as the dynamic parameter to compare splash and rebound behaviors between the two types of surfaces. While droplets exhibit similar dynamics at low Weber numbers, rebound jet speed (normalized by droplet impact speed) is notably higher on posts than ribs for all Weber numbers tested here (5 265. On posts, satellite droplets also follow a specific path but in a different orientation. Satellite droplets form in locations aligned with the post lattice structure. This behavior is observed for 600 < We < 750. Jet rebound exhibits an interesting phenomenon on ribs under certain conditions. Due to the uneven shear...

  8. The dynamics of internal working surfaces in MHD jets

    CERN Document Server

    De Colle, Fabio; Esquivel, Alejandro


    The dynamical effects of magnetic fields in models of radiative, Herbig-Haro (HH) jets have been studied in a number of papers. For example, magnetized, radiative jets from variable sources have been studied with axisymmetric and 3D numerical simulations. In this paper, we present an analytic model describing the effect of a toroidal magnetic field on the internal working surfaces that result from a variability in the ejection velocity. We find that for parameters appropriate for HH jets the forces associated with the magnetic field dominate over the gas pressure force within the working surfaces. Depending on the ram pressure radial cross section of the jet, the magnetic field can produce a strong axial pinch, or, alternatively, a broadening of the internal working surfaces. We check the validity of the analytic model with axisymmetric numerical simulations of variable, magnetized jets.

  9. Introducing fluid dynamics using dimensional analysis

    DEFF Research Database (Denmark)

    Jensen, Jens Højgaard


    Many aspects of fluid dynamics can be introduced using dimensional analysis, combined with some basic physical principles. This approach is concise and allows exploration of both the laminar and turbulent limits—including important phenomena that are not normally dealt with when fluid dynamics...

  10. Wavelet Denoising and Surface Electromyography Analysis


    Hussain, M.S.; Md. Mamun


    In this research, Surface Electromyography (SEMG) signal analysis from the right rectus femoris muscle is performed during walk. Wavelet Transform (WT) has been applied for removing noise from the surface SEMG. Gaussianity tests are conducted to understand changes in muscle contraction and to quantify the effectiveness of the noise removal process. Results show that the proposed method can effectively remove noise from the raw SEMG signals for further analysis.

  11. Spreading dynamics of droplet on an inclined surface (United States)

    Shen, Chaoqun; Yu, Cheng; Chen, Yongping


    A three-dimensional unsteady theoretical model of droplet spreading process on an inclined surface is developed and numerically analyzed to investigate the droplet spreading dynamics via the lattice Boltzmann simulation. The contact line motion and morphology evolution for the droplet spreading on an inclined surface, which are, respectively, represented by the advancing/receding spreading factor and droplet wetted length, are evaluated and analyzed. The effects of surface wettability and inclination on the droplet spreading behaviors are examined. The results indicate that, dominated by gravity and capillarity, the droplet experiences a complex asymmetric deformation and sliding motion after the droplet comes into contact with the inclined surfaces. The droplet firstly deforms near the solid surface and mainly exhibits a radial expansion flow in the start-up stage. An evident sliding-down motion along the inclination is observed in the middle stage. And the surface-tension-driven retraction occurs during the retract stage. Increases in inclination angle and equilibrium contact angle lead to a faster droplet motion and a smaller wetted area. In addition, increases in equilibrium contact angle lead to a shorter duration time of the middle stage and an earlier entry into the retract stage.

  12. Nonlinear Dynamics of Biofilm Growth on Sediment Surfaces (United States)

    Molz, F. J.; Murdoch, L. C.; Faybishenko, B.


    Bioclogging often begins with the establishment of small colonies (microcolonies), which then form biofilms on the surfaces of a porous medium. These biofilm-porous media surfaces are not simple coatings of single microbes, but complex assemblages of cooperative and competing microbes, interacting with their chemical environment. This leads one to ask: what are the underlying dynamics involved with biofilm growth? To begin answering this question, we have extended the work of Kot et al. (1992, Bull. Mathematical Bio.) from a fully mixed chemostat to an idealized, one-dimensional, biofilm environment, taking into account a simple predator-prey microbial competition, with the prey feeding on a specified food source. With a variable (periodic) food source, Kot et al. (1992) were able to demonstrate chaotic dynamics in the coupled substrate-prey-predator system. Initially, deterministic chaos was thought by many to be mainly a mathematical phenomenon. However, several recent publications (e.g., Becks et al, 2005, Nature Letters; Graham et al. 2007, Int. Soc Microb. Eco. J.; Beninca et al., 2008, Nature Letters; Saleh, 2011, IJBAS) have brought together, using experimental studies and relevant mathematics, a breakthrough discovery that deterministic chaos is present in relatively simple biochemical systems. Two of us (Faybishenko and Molz, 2013, Procedia Environ. Sci)) have numerically analyzed a mathematical model of rhizosphere dynamics (Kravchenko et al., 2004, Microbiology) and detected patterns of nonlinear dynamical interactions supporting evidence of synchronized synergetic oscillations of microbial populations, carbon and oxygen concentrations driven by root exudation into a fully mixed system. In this study, we have extended the application of the Kot et al. model to investigate a spatially-dependent biofilm system. We will present the results of numerical simulations obtained using COMSOL Multi-Physics software, which we used to determine the nature of the

  13. Condensation and Wetting Dynamics on Micro/Nano-Structured Surfaces (United States)

    Olceroglu, Emre

    -condensable gases (NCGs), a novel characterization technique has been developed based on image tracking of droplet growth rates. The full-field dynamic characterization of superhydrophobic surfaces during condensation has been achieved using high-speed microscopy coupled with image-processing algorithms. This method is able to resolve heat fluxes as low as 20 W/m 2 and heat transfer coefficients of up to 1000 kW/m2, across an array of 1000's of microscale droplets simultaneously. Nanostructured surfaces with mixed wettability have been used to demonstrate delayed flooding during superhydrophobic condensation. These surfaces have been optimized and characterized using optical and electron microscopy, leading to the observation of self-organizing microscale droplets. The self-organization of small droplets effectively delays the onset of surface flooding, allowing the superhydrophobic surfaces to operate at higher supersaturations. Additionally, hierarchical surfaces have been fabricated and characterized showing enhanced droplet growth rates as compared to existing models. This enhancement has been shown to be derived from the presence of small feeder droplets nucleating within the microscale unit cells of the hierarchical surfaces. Based on the experimental observations, a mechanistic model for growth rates has been developed for superhydrophobic hierarchical surfaces. While superhydrophobic surfaces exhibit high heat transfer rates they are inherently unstable due to the necessity to maintain a non-wetted state in a condensing environment. As an alternative condensation surface, a novel design is introduced here using ambiphilic structures to promote the formation of a thin continuous liquid film across the surface which can still provide the benefits of superhydrophobic condensation. Preliminary results show that the ambiphilic structures restrain the film thickness, thus maintaining a low thermal resistance while simultaneously maximizing the liquid-vapor interface available for

  14. Stability Analysis of MEMS Gyroscope Dynamic Systems


    M. Naser-Moghadasi; S. A. Olamaei; F. Setoudeh


    In this paper, the existence of a common quadratic Lyapunov function for stability analysis of MEMS Gyroscope dynamic systems has been studied then a new method based on stochastic stability of MEMS Gyroscope system has been proposed.


    African Journals Online (AJOL)

    static and dynamic analysis of structures [2, 3,4]. ... than by the expected complexity of their behavior. This fact has been .... The computational cost of extracting the vibration modes can be reduced by applying one of the condensation.

  16. Dynamic Wireless Power Transfer - Grid Impacts Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Markel, Tony; Meintz, Andrew; Gonder, Jeff


    This presentation discusses the current status of analysis of the electricity grid impacts of a dynamic wireless power transfer system deployed to the Atlanta region on select high traffic roadway segments.

  17. Coupling surface and mantle dynamics: A novel experimental approach (United States)

    Kiraly, Agnes; Faccenna, Claudio; Funiciello, Francesca; Sembroni, Andrea


    Recent modeling shows that surface processes, such as erosion and deposition, may drive the deformation of the Earth's surface, interfering with deeper crustal and mantle signals. To investigate the coupling between the surface and deep process, we designed a three-dimensional laboratory apparatus, to analyze the role of erosion and sedimentation, triggered by deep mantle instability. The setup is constituted and scaled down to natural gravity field using a thin viscous sheet model, with mantle and lithosphere simulated by Newtonian viscous glucose syrup and silicon putty, respectively. The surface process is simulated assuming a simple erosion law producing the downhill flow of a thin viscous material away from high topography. The deep mantle upwelling is triggered by the rise of a buoyant sphere. The results of these models along with the parametric analysis show how surface processes influence uplift velocity and topography signals.


    NARCIS (Netherlands)



    A simple model for the treatment of boundaries in molecular dynamics simulations is presented. The method involves the positioning of boundary atoms on a surface that surrounds a system of interest. The boundary atoms interact with the inner region and represent the effect of atoms outside the surfa

  19. Dynamic Response Analysis of Motorized Spindle System

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li; LUO Yi-chao; XU Juan; XIAO Ru-feng; LI Xian-hui


    As to motorized spindle system, this paper builds a simplified 3D model of spindle and bearing, performs structure modal analysis, reveals its dynamic characteristics under the free model;furthermore, modifies bearing radial stiffness and number of model, and studies the change of modal parameters. On this basis, through the harmonic response analysis of the finite element model, dy-namic response characteristic caused by imbalance of monitored spindle system and law of vibration response to different amount of unbalance is analyzed.

  20. Finite element contact analysis of fractal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Prasanta; Ghosh, Niloy [Department of Mechanical Engineering, Jadavpur University, Kolkata 700032 (India)


    The present study considers finite element analysis of non-adhesive, frictionless elastic/elastic-plastic contact between a rigid flat plane and a self-affine fractal rough surface using the commercial finite element package ANSYS. Three-dimensional rough surfaces are generated using a modified two-variable Weierstrass-Mandelbrot function with given fractal parameters. Parametric studies are done to consider the general relations between contact properties and key material and surface parameters. The present analysis is validated with available experimental results in the literature. Non-dimensional contact area and displacement are obtained as functions of non-dimensional load for varying fractal surface parameters in the case of elastic contact and for varying rates of strain hardening in the case of elastic-plastic contact of fractal surfaces.

  1. Random Matrix Theory in molecular dynamics analysis. (United States)

    Palese, Luigi Leonardo


    It is well known that, in some situations, principal component analysis (PCA) carried out on molecular dynamics data results in the appearance of cosine-shaped low index projections. Because this is reminiscent of the results obtained by performing PCA on a multidimensional Brownian dynamics, it has been suggested that short-time protein dynamics is essentially nothing more than a noisy signal. Here we use Random Matrix Theory to analyze a series of short-time molecular dynamics experiments which are specifically designed to be simulations with high cosine content. We use as a model system the protein apoCox17, a mitochondrial copper chaperone. Spectral analysis on correlation matrices allows to easily differentiate random correlations, simply deriving from the finite length of the process, from non-random signals reflecting the intrinsic system properties. Our results clearly show that protein dynamics is not really Brownian also in presence of the cosine-shaped low index projections on principal axes.

  2. Surface hopping from the perspective of quantum-classical Liouville dynamics

    CERN Document Server

    Kapral, Raymond


    Fewest-switches surface hopping is studied in the context of quantum-classical Liouville dynamics. Both approaches are mixed quantum-classical theories that provide a way to describe and simulate the nonadiabatic quantum dynamics of many-body systems. Starting from a surface-hopping solution of the quantum-classical Liouville equation, it is shown how fewest-switches dynamics can be obtained by dropping terms that are responsible for decoherence and restricting the nuclear momentum changes that accompany electronic transitions to those events that occur between population states. The analysis provides information on some of the elements that are essential for the construction of accurate and computationally tractable algorithms for nonadiabatic processes.

  3. Dynamic Analysis of a Military- Tracked Vehicle

    Directory of Open Access Journals (Sweden)

    V. Balamurugan


    Full Text Available 'The ride dynamic characteristics of a typical medium weight, high speed military-tracked vehicle for negotiating rough cross-counlry terrain have been studied. The vehicle is modelled using finiteelement simulation method with beam and shell elements. An eigenvalue analysis has been done to estimate natural modes ofNibration of the vehicle. The dynamic response of certain salient locations is obtained by carrying out a transient dynamic analysis using implicit Newmark beta method. A constant forwar vehicle speed and non-deformable sinusoidal terrain profile are assumed.

  4. String Analysis for Dynamic Field Access

    DEFF Research Database (Denmark)

    Madsen, Magnus; Andreasen, Esben


    In JavaScript, and scripting languages in general, dynamic field access is a commonly used feature. Unfortunately, current static analysis tools either completely ignore dynamic field access or use overly conservative approximations that lead to poor precision and scalability. We present new string...... domains to reason about dynamic field access in a static analysis tool. A key feature of the domains is that the equal, concatenate and join operations take Ο(1) time. Experimental evaluation on four common JavaScript libraries, including jQuery and Prototype, shows that traditional string domains...

  5. Sensitivity Analysis of Fire Dynamics Simulation

    DEFF Research Database (Denmark)

    Brohus, Henrik; Nielsen, Peter V.; Petersen, Arnkell J.


    equations require solution of the issues of combustion and gas radiation to mention a few. This paper performs a sensitivity analysis of a fire dynamics simulation on a benchmark case where measurement results are available for comparison. The analysis is performed using the method of Elementary Effects......In case of fire dynamics simulation requirements to reliable results are most often very high due to the severe consequences of erroneous results. At the same time it is a well known fact that fire dynamics simulation constitutes rather complex physical phenomena which apart from flow and energy...

  6. Surface roughness length dynamic over several different surfaces and its effects on modeling fluxes

    Institute of Scientific and Technical Information of China (English)


    <正>Roughness length and zero-plane displacement over three typical surfaces were calculated iteratively by least-square method, which are Yucheng Experimental Station for agriculture surfaces, Qianyanzhou Experimental Station for complex and undulant surfaces, and Changbai Mountains Experimental Station for forest surfaces. On the basis of roughness length dynamic, the effects of roughness length dynamic on fluxes were analyzed with SEBS model. The results indicate that, aerodynamic roughness length changes with vegetation conditions (such as vegetation height, LAI), wind speed, friction velocity and some other factors. In Yucheng and Changbai Mountains Experimental Station, aerodynamic roughness length over the fetch of flux tower changes with vegetation height and LAI obviously, that is, with the increase of LAI, roughness length increases to the peak value firstly, and then decreases. In Qianyanzhou Experimental Station, LAI changes slightly, so the relationship between roughness length and LAI is not obvious. The aerodynamic roughness length of Yucheng and Changbai Mountains Experimental Station changes slightly with wind direction, while aerodynamic roughness length of Qianyanzhou Experimental Station changes obviously with wind direction. The reason for that is the terrain in Yucheng and Changbai Mountains Experimental Station is relatively flat, while in Qianyanzhou Experimental Station the terrain is very undulant and heterogeneous. With the increase of wind speed, aerodynamic roughness length of Yucheng Experimental Station changes slightly, while it decreases obviously in Qianyanzhou Experimental Station and Changbai Mountains Experimental Station. Roughness length dynamic takes great effects on fluxes calculation, and the effects are analyzed by SEBS model. By comparing 1 day averaged roughness length in Yucheng Experimental Station and 5 day averaged roughness length of Qianyanzhou and Changbai Mountains Experimental Station with roughness length

  7. Thermal dynamics of silver clusters grown on rippled silica surfaces (United States)

    Bhatnagar, Mukul; Ranjan, Mukesh; Jolley, Kenny; Lloyd, Adam; Smith, Roger; Mukherjee, Subroto


    Silver nanoparticles have been deposited on silicon rippled patterned templates at an angle of incidence of 70° to the surface normal. The templates are produced by oblique incidence argon ion bombardment and as the fluence increases, the periods and heights of the structures increase. Structures with periods of 20 nm, 35 nm and 45 nm have been produced. Moderate temperature vacuum annealing shows the phenomenon of cluster coalescence following the contour of the more exposed faces of the ripple for the case of 35 nm and 45 nm but not at 20 nm where the silver aggregates into larger randomly distributed clusters. In order to understand this effect, the morphological changes of silver nanoparticles deposited on an asymmetric rippled silica surface are investigated through the use of molecular dynamics simulations for different deposition angles of incidence between 0° and 70° and annealing temperatures between 500 K and 900 K. Near to normal incidence, clusters are observed to migrate over the entire surface but for deposition at 70°, a similar patterning is observed as in the experiment. The random distribution of clusters for the periodicity ≈ of 20 nm is linked to the geometry of the silica surface which has a lower ripple height than the longer wavelength structures. Calculations carried out on a surface with such a lower ripple height also demonstrate a similar effect.

  8. Droplets impact on textured surfaces: Mesoscopic simulation of spreading dynamics (United States)

    Wang, Yuxiang; Chen, Shuo


    Superhydrophobic surfaces have attracted much attention due to their excellent water-repellent property. In the present study, droplets in the ideal Cassie state were focused on, and a particle-based numerical method, many-body dissipative particle dynamics, was employed to explore the mechanism of droplets impact on textured surfaces. A solid-fluid interaction with three linear weight functions was used to generate different wettability and a simple but efficient method was introduced to compute the contact angle. The simulated results show that the static contact angle is in good agreement with the Cassie-Baxter formula for smaller ∅S and Fa, but more deviation will be produced for larger ∅S and Fa, and it is related to the fact that the Cassie-Baxter theory does not consider the contact angle hysteresis effect in their formula. Furthermore, high impact velocity can induce large contact angle hysteresis on textured surfaces with larger ∅S and Fa. The typical time-based evolutions of the spreading diameter were simulated, and they were analyzed from an energy transformation viewpoint. These results also show that the dynamical properties of droplet, such as rebounding or pinning, contact time and maximum spreading diameters, largely depend on the comprehensive effects of the material wettability, fraction of the pillars and impact velocities of the droplets.

  9. Dynamic effects induced transition of droplets on biomimetic superhydrophobic surfaces. (United States)

    Jung, Yong Chae; Bhushan, Bharat


    Superhydrophobic surfaces have considerable technological potential for various applications because of their extreme water-repellent properties. Dynamic effects, such as the bouncing and vibration of a droplet, can destroy the composite solid-air-liquid interface. The impact pressure of a bouncing droplet and the inertia force of a vibrating droplet affect the transition from a solid-air-liquid interface to a solid-liquid interface. Therefore, it is necessary to study the dynamic effect of droplets under various system parameters (impact velocity and frequency and amplitude of vibration). A new model for the prediction of the wetting and dewetting process during droplet vibration based on the relationship between the adhesion force and the inertia force of a droplet is proposed. To investigate whether micro-, nano-, and hierarchical structures can resist the destabilizing factors responsible for the transition, a study of bouncing and vibration of a water droplet is systematically conducted on various surfaces. The physics of wetting phenomena for water droplet studies is of fundamental importance in the geometrical design of superhydrophobic surfaces.

  10. Dynamical modeling and characterization of a surface micromachined microengine

    Energy Technology Data Exchange (ETDEWEB)

    Miller, S.L.; Sniegowski, J.J.; LaVigne, G.L.; McWhorter, P.J.


    The practical implementation of the surface micromachined microengine [1,2] to perform useful microactuation tasks requires a thorough understanding of the dynamics of the engine. This understanding is necessary in order to create appropriate drive signals, and to experimentally measure fundamental quantities associated with the engine system. We have developed and applied a dynamical model of the microengine and used it to accomplish three objectives: (1) drive inertial loads in a controlled fashion, i.e. specify and achieve a desired time dependent angular position of the output gear,( 2) minimize stress and frictional forces during operation, and (3) as a function of time, experimentally determine forces associated with the output gear, such as the load torque being applied to the output gear due to friction.

  11. Diffusion Dynamics of Cux Cluster on Cu(111) Surface

    Institute of Scientific and Technical Information of China (English)

    Jian-feng Tang; Mai-chang Xu; Xue-song Li; Wo-yun Long


    The diffusion dynamics of small two-dimensional atomic clusters Cux(1≤x≤8) on Cu(111) surface were studied using the molecular dynamics simulations and a modified analytic embedded-atom method in the temperature range from 200 K to 800 K.The cluster size and temperature dependence of the diffusion coefficients and migration energies are presented.Our simulations show that the diffusion migration energy of the Cu7 cluster is the highest and the prefactor for the CuT cluster is almost three orders of magnitude larger than that for single atom diffusion.This conclusion is consistent with the experimental results for similar metals.In addition,the dependence of cluster diffusion on film growth is also discussed.

  12. Dynamic Analysis of Structures Using Neural Networks

    Directory of Open Access Journals (Sweden)

    N. Ahmadi


    Full Text Available In the recent years, neural networks are considered as the best candidate for fast approximation with arbitrary accuracy in the time consuming problems. Dynamic analysis of structures against earthquake has the time consuming process. We employed two kinds of neural networks: Generalized Regression neural network (GR and Back-Propagation Wavenet neural network (BPW, for approximating of dynamic time history response of frame structures. GR is a traditional radial basis function neural network while BPW categorized as a wavelet neural network. In BPW, sigmoid activation functions of hidden layer neurons are substituted with wavelets and weights training are achieved using Scaled Conjugate Gradient (SCG algorithm. Comparison the results of BPW with those of GR in the dynamic analysis of eight story steel frame indicates that accuracy of the properly trained BPW was better than that of GR and therefore, BPW can be efficiently used for approximate dynamic analysis of structures.

  13. Surface heterogeneity impacts on boundary layer dynamics via energy balance partitioning

    Directory of Open Access Journals (Sweden)

    N. A. Brunsell


    Full Text Available The role of land-atmosphere interactions under heterogeneous surface conditions is investigated in order to identify mechanisms responsible for altering surface heat and moisture fluxes. Twelve coupled land surface – large eddy simulation scenarios with four different length scales of surface variability under three different horizontal wind speeds are used in the analysis. The base case uses Landsat ETM imagery over the Cloud Land Surface Interaction Campaign (CLASIC field site for 3 June 2007. Using wavelets, the surface fields are band-pass filtered in order to maintain the spatial mean and variances to length scales of 200 m, 1600 m, and 12.8 km as lower boundary conditions to the model. The simulations exhibit little variation in net radiation. Rather, a change in the partitioning of the surface energy between sensible and latent heat flux is responsible for differences in boundary layer dynamics. The sensible heat flux is dominant for intermediate surface length scales. For smaller and larger scales of surface heterogeneity, which can be viewed as being more homogeneous, the latent heat flux becomes increasingly important. The results reflect a general decrease of the Bowen ratio as the surface conditions transition from heterogeneous to homogeneous. Air temperature is less sensitive to surface heterogeneity than water vapor, which implies that the role of surface heterogeneity in modifying the local temperature gradients in order to maximize convective heat fluxes. More homogeneous surface conditions, on the other hand, tend to maximize latent heat flux. Scalar vertical profiles respond predictably to the partitioning of surface energy. Fourier spectra of the vertical wind speed, air temperature and specific humidity (w, T and q and associated cospectra (w'T', w'q' and T'q', however, are insensitive to the length scale of surface heterogeneity, but the near surface spectra are sensitive to the


    Directory of Open Access Journals (Sweden)

    V. A. Knyaz


    Full Text Available The quality and condition of a road surface is of great importance for convenience and safety of driving. So the investigations of the behaviour of road materials in laboratory conditions and monitoring of existing roads are widely fulfilled for controlling a geometric parameters and detecting defects in the road surface. Photogrammetry as accurate non-contact measuring method provides powerful means for solving different tasks in road surface reconstruction and analysis. The range of dimensions concerned in road surface analysis can have great variation from tenths of millimetre to hundreds meters and more. So a set of techniques is needed to meet all requirements of road parameters estimation. Two photogrammetric techniques for road surface analysis are presented: for accurate measuring of road pavement and for road surface reconstruction based on imagery obtained from unmanned aerial vehicle. The first technique uses photogrammetric system based on structured light for fast and accurate surface 3D reconstruction and it allows analysing the characteristics of road texture and monitoring the pavement behaviour. The second technique provides dense 3D model road suitable for road macro parameters estimation.

  15. Photogrammetric Techniques for Road Surface Analysis (United States)

    Knyaz, V. A.; Chibunichev, A. G.


    The quality and condition of a road surface is of great importance for convenience and safety of driving. So the investigations of the behaviour of road materials in laboratory conditions and monitoring of existing roads are widely fulfilled for controlling a geometric parameters and detecting defects in the road surface. Photogrammetry as accurate non-contact measuring method provides powerful means for solving different tasks in road surface reconstruction and analysis. The range of dimensions concerned in road surface analysis can have great variation from tenths of millimetre to hundreds meters and more. So a set of techniques is needed to meet all requirements of road parameters estimation. Two photogrammetric techniques for road surface analysis are presented: for accurate measuring of road pavement and for road surface reconstruction based on imagery obtained from unmanned aerial vehicle. The first technique uses photogrammetric system based on structured light for fast and accurate surface 3D reconstruction and it allows analysing the characteristics of road texture and monitoring the pavement behaviour. The second technique provides dense 3D model road suitable for road macro parameters estimation.

  16. Reactive surface organometallic complexes observed using dynamic nuclear polarization surface enhanced NMR spectroscopy

    KAUST Repository

    Pump, Eva


    Dynamic Nuclear Polarization Surface Enhanced NMR Spectroscopy (DNP SENS) is an emerging technique that allows access to high-sensitivity NMR spectra from surfaces. However, DNP SENS usually requires the use of radicals as an exogenous source of polarization, which has so far limited applications for organometallic surface species to those that do not react with the radicals. Here we show that reactive surface species can be studied if they are immobilized inside porous materials with suitably small windows, and if bulky nitroxide bi-radicals (here TEKPol) are used as the polarization source and which cannot enter the pores. The method is demonstrated by obtaining significant DNP enhancements from highly reactive complelxes [(equivalent to Si-O-)W(Me)(5)] supported on MCM-41, and effects of pore size (6.0, 3.0 and 2.5 nm) on the performance are discussed.

  17. Molecular Dynamics Simulations of Water Nanodroplets on Silica Surfaces

    DEFF Research Database (Denmark)

    Zambrano, Harvey A; Walther, Jens Honore; Jaffe, Richard L.


    and DNA microarrays technologies.4,5,6,7,8 Although extensive experimental, theoretical and computational work has been devoted to study the nature of the interaction between silica and water,2,9-16 at the molecular level a complete understanding of silica-water systems has not been reached. Contact angle...... computations of water droplets on silica surfaces offers a useful fundamental and quantitative measurement in order to study chemical and physical properties of water-silica systems.3,16,17,18 For hydrophobic systems the static and dynamic properties of the fluid-solid interface are influenced by the presence...

  18. DNSC08 mean sea surface and mean dynamic topography models

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Knudsen, Per


    -2004. It is the first global MSS without a polar gap including all of the Arctic Ocean by including laser altimetry from the ICESat mission. The mean dynamic topography (MDT) is the quantity that bridges the geoid and the mean sea surface constraining large-scale ocean circulation. Here we present a new high......-resolution 1 min global MDT called DNSC08 MDT derived from the slightly smoothed difference between the DNSC08 MSS and the EGM2008 geoid. The derivation and quality control of the new DNSC08 MSS and DNSC08 MDT is presented in this paper along with suggestions for time period standardization of the MSS and MDT...

  19. Surface conductivity dependent dynamic behaviour of an ultrafine atmospheric pressure plasma jet for microscale surface processing (United States)

    Abuzairi, Tomy; Okada, Mitsuru; Bhattacharjee, Sudeep; Nagatsu, Masaaki


    An experimental study on the dynamic behaviour of microcapillary atmospheric pressure plasma jets (APPJs) with 5 μm tip size for surfaces of different conductivity is reported. Electrical and spatio-temporal characteristics of the APPJs are monitored using high voltage probe, current monitor and high speed intensified charge couple device camera. From these experimental results, we presented a simple model to understand the electrical discharge characteristics of the capillary APPJs with double electrodes, and estimated the velocity of the ionization fronts in the jet and the electron density to be 3.5-4.2 km/s and 2-7 × 1017 m-3. By analyzing the dynamics of the microcapillary APPJs for different substrate materials, it was found that the surface irradiation area strongly depended on the substrate conductivity and permittivity, especially in the case of polymer-like substrate, surface irradiation area was significantly broadened probably due to the repelling behaviour of the plasma jets from the accumulated electrical charges on the polymer surface. The effect of applying a substrate bias in the range from -900 V to +900 V on the plasma irradiation onto the substrates was also investigated. From the knowledge of the present results, it is helpful for choosing the substrate materials for microscale surface modification.


    Directory of Open Access Journals (Sweden)

    Salvatore Barbagallo


    Full Text Available Reliable estimation of surface sensible and latent heat flux is the most important process to appraise energy and mass exchange among atmosphere and biosphere. In this study the surface energy fluxes were measured over an irrigated orange orchard during 2005-2008 monitoring periods using a Surface Renewal- Energy Balance approach. The experimental area is located in a representative orchard growing area of eastern Sicily (Italy. The performance of Surface Renewal (SR analysis for estimating sensible heat flux (H was analysed and evaluated in terms of correlation with H fluxes from the eddy covariance (EC method. Study revealed that the mean available energy (RN- G and latent heat flux (LE were of about 300 W m-2 and 237 W m-2, respectively, during dry periods and unstable-case atmospheric conditions. The estimated crop coefficient Kc values for the orchard crop averaged close to 0.80, which is considerably higher than previous FAO studies that found the value to be 0.65 for citrus with 70% of ground cover. The intercepted photosynthetically active radiation (LI PAR by the crop was measured and relationships between LAI and crop coefficient (Kc were established.

  1. Sub-surface imaging of carbon nanotube-polymer composites using dynamic AFM methods. (United States)

    Cadena, Maria J; Misiego, Rocio; Smith, Kyle C; Avila, Alba; Pipes, Byron; Reifenberger, Ron; Raman, Arvind


    High-resolution sub-surface imaging of carbon nanotube (CNT) networks within polymer nanocomposites is demonstrated through electrical characterization techniques based on dynamic atomic force microscopy (AFM). We compare three techniques implemented in the single-pass configuration: DC-biased amplitude modulated AFM (AM-AFM), electrostatic force microscopy (EFM) and Kelvin probe force microscopy (KPFM) in terms of the physics of sub-surface image formation and experimental robustness. The methods were applied to study the dispersion of sub-surface networks of single-walled nanotubes (SWNTs) in a polyimide (PI) matrix. We conclude that among these methods, the KPFM channel, which measures the capacitance gradient (∂C/∂d) at the second harmonic of electrical excitation, is the best channel to obtain high-contrast images of the CNT network embedded in the polymer matrix, without the influence of surface conditions. Additionally, we propose an analysis of the ∂C/∂d images as a tool to characterize the dispersion and connectivity of the CNTs. Through the analysis we demonstrate that these AFM-based sub-surface methods probe sufficiently deep within the SWNT composites, to resolve clustered networks that likely play a role in conductivity percolation. This opens up the possibility of dynamic AFM-based characterization of sub-surface dispersion and connectivity in nanostructured composites, two critical parameters for nanocomposite applications in sensors and energy storage devices.

  2. Dynamic and Impure Perovskite Structured Metal Oxide Surfaces

    DEFF Research Database (Denmark)

    Hansen, Karin Vels; Norrman, Kion; Traulsen, Marie Lund


    on the electrode surfaces. An experimental test of the suggestion that the segregation might happen in the vacuum in the analysis equipment gave a negative result. Formation of particles containing significant amounts of S and Cr from segregation of the trace impurities in the acquired powders were observed...

  3. Topological Fluid Dynamics For Free and Viscous Surfaces

    DEFF Research Database (Denmark)

    Balci, Adnan

    In an incompressible fluid flow, streamline patterns and their bifurcations are investigated close to wall for two-dimensional system and close to free and viscous surfaces in three-dimensional system. Expanding the velocity field in a Taylor series, we conduct a local analysis at the given...

  4. Drops subjected to surface acoustic waves: flow dynamics (United States)

    Brunet, Philippe; Baudoin, Michael; Bou Matar, Olivier; Dynamique Des Systèmes Hors Equilibre Team; Aiman-Films Team


    Ultrasonic acoustic waves of frequency beyond the MHz are known to induce streaming flow in fluids that can be suitable to perform elementary operations in microfluidics systems. One of the currently appealing geometry is that of a sessile drop subjected to surface acoustic waves (SAW). Such Rayleigh waves produce non-trival actuation in the drop leading to internal flow, drop displacement, free-surface oscillations and atomization. We recently carried out experiments and numerical simulations that allowed to better understand the underlying physical mechanisms that couple acoustic propagation and fluid actuation. We varied the frequency and amplitude of actuation, as well as the properties of the fluid, and we measured the effects of these parameters on the dynamics of the flow. We compared these results to finite-elements numerical simulations.

  5. Pseudospectral Gaussian quantum dynamics: Efficient sampling of potential energy surfaces (United States)

    Heaps, Charles W.; Mazziotti, David A.


    Trajectory-based Gaussian basis sets have been tremendously successful in describing high-dimensional quantum molecular dynamics. In this paper, we introduce a pseudospectral Gaussian-based method that achieves accurate quantum dynamics using efficient, real-space sampling of the time-dependent basis set. As in other Gaussian basis methods, we begin with a basis set expansion using time-dependent Gaussian basis functions guided by classical mechanics. Unlike other Gaussian methods but characteristic of the pseudospectral and collocation methods, the basis set is tested with N Dirac delta functions, where N is the number of basis functions, rather than using the basis function as test functions. As a result, the integration for matrix elements is reduced to function evaluation. Pseudospectral Gaussian dynamics only requires O ( N ) potential energy calculations, in contrast to O ( N 2 ) evaluations in a variational calculation. The classical trajectories allow small basis sets to sample high-dimensional potentials. Applications are made to diatomic oscillations in a Morse potential and a generalized version of the Henon-Heiles potential in two, four, and six dimensions. Comparisons are drawn to full analytical evaluation of potential energy integrals (variational) and the bra-ket averaged Taylor (BAT) expansion, an O ( N ) approximation used in Gaussian-based dynamics. In all cases, the pseudospectral Gaussian method is competitive with full variational calculations that require a global, analytical, and integrable potential energy surface. Additionally, the BAT breaks down when quantum mechanical coherence is particularly strong (i.e., barrier reflection in the Morse oscillator). The ability to obtain variational accuracy using only the potential energy at discrete points makes the pseudospectral Gaussian method a promising avenue for on-the-fly dynamics, where electronic structure calculations become computationally significant.

  6. Dynamic growth of slip surfaces in catastrophic landslides. (United States)

    Germanovich, Leonid N; Kim, Sihyun; Puzrin, Alexander M


    This work considers a landslide caused by the shear band that emerges along the potential slip (rupture) surface. The material above the band slides downwards, causing the band to grow along the slope. This growth may first be stable (progressive), but eventually becomes dynamic (catastrophic). The landslide body acquires a finite velocity before it separates from the substrata. The corresponding initial-boundary value problem for a dynamic shear band is formulated within the framework of Palmer & Rice's (Proc. R. Soc. Lond. A332, 527-548. (doi:10.1098/rspa.1973.0040)) approach, which is generalized to the dynamic case. We obtain the exact, closed-form solution for the band velocity and slip rate. This solution assesses when the slope fails owing to a limiting condition near the propagating tip of the shear band. Our results are applicable to both submarine and subaerial landslides of this type. It appears that neglecting dynamic (inertia) effects can lead to a significant underestimation of the slide size, and that the volumes of catastrophic slides can exceed the volumes of progressive slides by nearly a factor of 2. As examples, we consider the Gaviota and Humboldt slides offshore of California, and discuss landslides in normally consolidated sediments and sensitive clays. In particular, it is conceivable that Humboldt slide is unfinished and may still displace a large volume of sediments, which could generate a considerable tsunami. We show that in the case of submarine slides, the effect of water resistance on the shear band dynamics may frequently be limited during the slope failure stage. For a varying slope angle, we formulate a condition of slide cessation.

  7. Nonlinear Dynamical Analysis of Fibrillation (United States)

    Kerin, John A.; Sporrer, Justin M.; Egolf, David A.


    The development of spatiotemporal chaotic behavior in heart tissue, termed fibrillation, is a devastating, life-threatening condition. The chaotic behavior of electrochemical signals, in the form of spiral waves, causes the muscles of the heart to contract in an incoherent manner, hindering the heart's ability to pump blood. We have applied the mathematical tools of nonlinear dynamics to large-scale simulations of a model of fibrillating heart tissue to uncover the dynamical modes driving this chaos. By studying the evolution of Lyapunov vectors and exponents over short times, we have found that the fibrillating tissue is sensitive to electrical perturbations only in narrow regions immediately in front of the leading edges of spiral waves, especially when these waves collide, break apart, or hit the edges of the tissue sample. Using this knowledge, we have applied small stimuli to areas of varying sensitivity. By studying the evolution of the effects of these perturbations, we have made progress toward controlling the electrochemical patterns associated with heart fibrillation. This work was supported by the U.S. National Science Foundation (DMR-0094178) and Research Corporation.

  8. Molecular Dynamics Simulations of Slip on Curved Surfaces

    Directory of Open Access Journals (Sweden)

    Ross D.A.


    Full Text Available We present Molecular Dynamics (MD simulations of liquid water confined within nanoscale geometries, including slit-like and cylindrical graphitic pores. These equilibrium results are used for calculating friction coefficients, which in turn can be used to calculate slip lengths. The slip length is a material property independent of the fluid flow rate. It is therefore a better quantity for study than the fluid velocity at the wall, also known as the slip velocity. Once the slip length has been found as a function of surface curvature, it can be used to parameterise Lattice Boltzmann (LB simulations. These larger scale simulations are able to tell us about how fluid transport is affected by slip in complex geometries; not just limited to single pores. Applications include flow and transport in nano-porous engine valve deposits and gas shales. The friction coefficient is found to be a function of curvature and is higher for fluid on convex surfaces and lower for concave surfaces. Both concave and convex surfaces approach the same value of the friction coefficient, which is constant above some critical radius of curvature, here found to be 7.4 ± 2.9 nm. The constant value of the friction coefficient is 10,000 ± 600 kg m−2 s−1, which is equivalent to a slip length of approximately 67 ± 4 nm.

  9. Reaction dynamics of small molecules at metal surfaces

    CERN Document Server

    Samson, P A


    directed angular distributions suggest the influence of a trapping mechanism, recombining molecules scattering through a molecularly adsorbed state, with a transition state of large d sub N sub N responsible for the product vibrational excitation. Although N sub 2 dissociation on Fe(100) forms a simple overlayer structure, on Fe(110), molecular chemisorption does not occur at or above room temperature and the sticking is extremely small (approx 10 sup - sup 6 to 10 sup - sup 7). Activated nitrogen bombardment can be used to prepare a 'surface nitride' with a structure related to the geometry of bulk Fe sub 4 N. Scanning tunnelling microscopy yields atomic scale features that cannot be explained by simple overlayers. It is proposed that the uppermost iron layer reconstructs to generate quasi-octahedral sites between the top two layers, with sub-surface nitrogen in these sites forming a model for the 'surface nitride' structure. The dissociation-desorption dynamics of D sub 2 upon the Sn/Pt(111) surface alloy a...

  10. Dynamic surface tension of surfactant TA: experiments and theory. (United States)

    Otis, D R; Ingenito, E P; Kamm, R D; Johnson, M


    A bubble surfactometer was used to measure the surface tension of an aqueous suspension of surfactant TA as a function of bubble area over a range of cycling rates and surfactant bulk concentrations. Results of the surface tension-interfacial area loops exhibited a rich variety of phenomena, the character of which varied systematically with frequency and bulk concentration. A model was developed to interpret and explain these data and for use in describing the dynamics of surface layers under more general circumstances. Surfactant was modeled as a single component with surface tension taken to depend on only the interfacial surfactant concentration. Two distinct mechanisms were considered for the exchange of surfactant between the bulk phase and interface. The first is described by a simple kinetic relationship for adsorption and desorption that pertains only when the interfacial concentration is below its maximum equilibrium value. The second mechanism is "squeeze-out" by which surfactant molecules are expelled from an interface compressed past a maximum packing state. The model provided good agreement with experimental measurements for cycling rates from 1 to 100 cycles/min and for bulk concentrations between 0.0073 and 7.3 mg/ml.

  11. Trajectory Surface-Hopping Dynamics Including Intersystem Crossing in [Ru(bpy)3](2). (United States)

    Atkins, Andrew J; González, Leticia


    Surface-hopping dynamics coupled to linear response TDDFT and explicit nonadiabatic and spin-orbit couplings have been used to model the ultrafast intersystem crossing (ISC) dynamics in [Ru(bpy)3](2+). Simulations using an ensemble of trajectories starting from the singlet metal-to-ligand charge transfer ((1)MLCT) band show that the manifold of (3)MLCT triplet states is first populated from high-lying singlet states within 26 ± 3 fs. ISC competes with an intricate internal conversion relaxation process within the singlet manifold to the lowest singlet state. Normal-mode analysis and principal component analysis, combined with further dynamical simulations where the nuclei are frozen, unequivocally demonstrate that it is not only the high density of states and the large spin-orbit couplings of the system that promote ISC. Instead, geometrical relaxation involving the nitrogen atoms is required to allow for state mixing and efficient triplet population transfer.

  12. Contact angle dynamics in droplet impact on flat surfaces: Effect of surface wettability (United States)

    Bayer, Ilker


    Contact angle dynamics is examined experimentally during spreading/recoiling of mm-sized water droplets impacting orthogonally on various flat surfaces with We = O(0.1)-O(10), Ca = O(0.001)- O(0.01), Oh = O(0.001) and Bo = O(0.1). In this impact regime, inertial, viscous, and capillary phenomena act in unison to influence contact angle dynamics. The wetting properties of the target surfaces range from wettable to non-wettable. The objective of the work is to provide insight into the dynamic behavior of the apparent (macroscopic) contact angle θ and its dependence on contact line velocity VCL at various degrees of surface wetting for droplets impacting with low to moderate Weber numbers. The hydrodynamic wetting theory of Cox (1998) is implemented to relate the microscopic wetting parameters to the observed θ vs. VCL data. It is concluded that Cox's model works well in the fast spreading regime, but proves inadequate for slow spreading where solid/liquid interactions are dominant. In addition, the molecular-kinetic theory of wetting by Blake and Haynes (1969) is tested with good results. This study offers guidance for numerical or analytical studies, which require special attention to the boundary conditions at the contact line, and more specifically the functional dependence of contact angle on contact line speed.

  13. Dynamics and vibrations progress in nonlinear analysis

    CERN Document Server

    Kachapi, Seyed Habibollah Hashemi


    Dynamical and vibratory systems are basically an application of mathematics and applied sciences to the solution of real world problems. Before being able to solve real world problems, it is necessary to carefully study dynamical and vibratory systems and solve all available problems in case of linear and nonlinear equations using analytical and numerical methods. It is of great importance to study nonlinearity in dynamics and vibration; because almost all applied processes act nonlinearly, and on the other hand, nonlinear analysis of complex systems is one of the most important and complicated tasks, especially in engineering and applied sciences problems. There are probably a handful of books on nonlinear dynamics and vibrations analysis. Some of these books are written at a fundamental level that may not meet ambitious engineering program requirements. Others are specialized in certain fields of oscillatory systems, including modeling and simulations. In this book, we attempt to strike a balance between th...

  14. Coffee-stain growth dynamics on dry and wet surfaces (United States)

    Boulogne, François; Ingremeau, François; Stone, Howard A.


    The drying of a drop containing particles often results in the accumulation of the particles at the contact line. In this work, we investigate the drying of an aqueous colloidal drop surrounded by a hydrogel that is also evaporating. We combine theoretical and experimental studies to understand how the surrounding vapor concentration affects the particle deposit during the constant radius evaporation mode. In addition to the common case of evaporation on an otherwise dry surface, we show that in a configuration where liquid is evaporating from a flat surface around the drop, the singularity of the evaporative flux at the contact line is suppressed and the drop evaporation is homogeneous. For both conditions, we derive the velocity field and we establish the temporal evolution of the number of particles accumulated at the contact line. We predict the growth dynamics of the stain and the drying timescales. Thus, dry and wet conditions are compared with experimental results and we highlight that only the dynamics is modified by the evaporation conditions, not the final accumulation at the contact line.

  15. Cell-surface translational dynamics of nicotinic acetylcholine receptors

    Directory of Open Access Journals (Sweden)

    Francisco J Barrantes


    Full Text Available Synapse efficacy heavily relies on the number of neurotransmitter receptors available at a given time. In addition to the equilibrium between the biosynthetic production, exocytic delivery and recycling of receptors on the one hand, and the endocytic internalization on the other, lateral diffusion and clustering of receptors at the cell membrane play key roles in determining the amount of active receptors at the synapse. Mobile receptors traffic between reservoir compartments and the synapse by thermally driven Brownian motion, and become immobilized at the peri-synaptic region or the synapse by: a clustering mediated by homotropic inter-molecular receptor-receptor associations; b heterotropic associations with non-receptor scaffolding proteins or the subjacent cytoskeletal meshwork, leading to diffusional trapping, and c protein-lipid interactions, particularly with the neutral lipid cholesterol. This review assesses the contribution of some of these mechanisms to the supramolecular organization and dynamics of the paradigm neurotransmitter receptor of muscle and neuronal cells -the nicotinic acetylcholine receptor (nAChR. Currently available information stemming from various complementary biophysical techniques commonly used to interrogate the dynamics of cell-surface components is critically discussed. The translational mobility of nAChRs at the cell surface differs between muscle and neuronal receptors in terms of diffusion coefficients and residence intervals at the synapse, which cover an ample range of time regimes. A peculiar feature of brain 7 nAChR is its ability to spend much of its time confined peri-synaptically, vicinal to glutamatergic (excitatory and GABAergic (inhibitory synapses. An important function of the 7 nAChR may thus be visiting the territories of other neurotransmitter receptors, differentially regulating the dynamic equilibrium between excitation and inhibition, depending on its residence time in each domain.

  16. Spectral analysis of bedform dynamics

    DEFF Research Database (Denmark)

    Winter, Christian; Ernstsen, Verner Brandbyge; Noormets, Riko

    . An assessment of bedform migration was achieved, as the growth and displacement of every single constituent can be distinguished. It can be shown that the changes in amplitude remain small for all harmonic constituents, whereas the phase shifts differ significantly. Thus the harmonics can be classified....... The proposed method overcomes the above mentioned problems of common descriptive analysis as it is an objective and straightforward mathematical process. The spectral decomposition of superimposed dunes allows a detailed description and analysis of dune patterns and migration....

  17. Dynamics of gas-surface interactions atomic-level understanding of scattering processes at surfaces

    CERN Document Server

    Díez Muniño, Ricardo


    This book gives a representative survey of the state of the art of research on gas-surface interactions. It provides an overview of the current understanding of gas surface dynamics and, in particular, of the reactive and non-reactive processes of atoms and small molecules at surfaces. Leading scientists in the field, both from the theoretical and the experimental sides, write in this book about their most recent advances. Surface science grew as an interdisciplinary research area over the last decades, mostly because of new experimental technologies (ultra-high vacuum, for instance), as well as because of a novel paradigm, the ‘surface science’ approach. The book describes the second transformation which is now taking place pushed by the availability of powerful quantum-mechanical theoretical methods implemented numerically. In the book, experiment and theory progress hand in hand with an unprecedented degree of accuracy and control. The book presents how modern surface science targets the atomic-level u...

  18. Standardization of surface contamination analysis systems (United States)

    Boothe, Richard E.


    Corrosion products, oils and greases can potentially degrade material bonding properties. The Marshall Space Flight Center (MSFC) Surface Contamination Analysis Team (SCAT) utilizes a variety of analytical equipment to detect identify and quantify contamination on metallic and non-metallic substrates. Analysis techniques include FT-IR Microscopy (FT-IR), Near Infrared Optical Fiber Spectrometry (NIR), Optically Stimulated Electron Emission (OSEE), Ultraviolet Fluorescence (UVF) and Ellipsometry. To insure that consistent qualitative and quantitative information are obtained, standards are required to develop analysis techniques, to establish instrument sensitivity to potential contaminants, and to develop calibration curves. This paper describes techniques for preparing and preserving contamination standards. Calibration of surface contamination analysis systems is discussed, and methods are presented for evaluating the effects of potential contaminants on bonding properties.

  19. Analytical signal analysis of strange nonchaotic dynamics. (United States)

    Gupta, Kopal; Prasad, Awadhesh; Singh, Harinder P; Ramaswamy, Ramakrishna


    We apply an analytical signal analysis to strange nonchaotic dynamics. Through this technique it is possible to obtain the spectrum of instantaneous intrinsic mode frequencies that are present in a given signal. We find that the second-mode frequency and its variance are good order parameters for dynamical transitions from quasiperiodic tori to strange nonchaotic attractors (SNAs) and from SNAs to chaotic attractors. Phase fluctuation analysis shows that SNAs and chaotic attractors behave identically within short time windows as a consequence of local instabilities in the dynamics. In longer time windows, however, the globally stable character of SNAs becomes apparent. This methodology can be of great utility in the analysis of experimental time series, and representative applications are made to signals obtained from Rössler and Duffing oscillators.

  20. Dynamic Viscoelasticity and Surface Properties of Porcine Left Anterior Descending Coronary Arteries. (United States)

    Burton, Hanna E; Freij, Jenny M; Espino, Daniel M


    The aim of this study was, for the first time, to measure and compare quantitatively the viscoelastic properties and surface roughness of coronary arteries. Porcine left anterior descending coronary arteries were dissected ex vivo. Viscoelastic properties were measured longitudinally using dynamic mechanical analysis, for a range of frequencies from 0.5 to 10 Hz. Surface roughness was calculated following three-dimensional reconstructed of surface images obtained using an optical microscope. Storage modulus ranged from 14.47 to 25.82 MPa, and was found to be frequency-dependent, decreasing as the frequency increased. Storage was greater than the loss modulus, with the latter found to be frequency-independent with a mean value of 2.10 ± 0.33 MPa. The circumferential surface roughness was significantly greater (p surface roughness, ranging from 0.73 to 2.83 and 0.35 to 0.92 µm, respectively. However, if surface roughness values were corrected for shrinkage during processing, circumferential and longitudinal surface roughness were not significantly different (1.04 ± 0.47, 0.89 ± 0.27 µm, respectively; p > 0.05). No correlation was found between the viscoelastic properties and surface roughness. It is feasible to quantitatively measure the viscoelastic properties of coronary arteries and the roughness of their endothelial surface.

  1. 智能斜极面交流接触器动态优化设计与分析%Dynamic Optimization Design and Analysis for Intelligent Inclined Surface Alternating Current Contactor

    Institute of Scientific and Technical Information of China (English)

    鲍光海; 张培铭


    采用ANSYS电磁场分析软件与基于遗传算法的人工鱼群优化算法对智能平极面交流接触器进行以快速分断、提高零电流分断准确性与稳定性为目标的动态优化计算,并验证了优化算法的正确性.考虑到斜极面交流电磁系统的优越性,对平极面交流接触器与斜极面交流接触器静态特性进行比较分析,提出了智能斜极面交流接触器的结构方案.根据上述优化算法,对智能斜极面交流接触器进行了智能动态优化设计.优化结果表明:智能斜极面交流接触器与智能平极面交流接触器相比,其用铜量减小45%,用铁量减小23%,而且具有更好的动态特性、更高的零电流分断准确性与稳定性.%We conducted dynamic optimized calculation of electromagnetic mechanism for the goal of breaking quickly and zero current break stability by using artificial fish swarm optimization algorithm based on genetic algorithm, and verifies the validity of optimization algorithm. According to the advantage of inclined surface alternating current contactor, the proposal of intelligent inclined surface alternating current contactor was proposed. The method of intelligent dynamic optimization design was used to optimization design the intelligent inclined surface alternating current contactor base on the previous optimized algorithm. The optimization results showed that the coil volume of intelligent incline surface alternating current contactor decrease 45% than that of flat surface,and the iron core volume decrease 23 %. Moreover, its dynamic characteristics were better than those of intelligent flat surface alternating current contactor.

  2. A molecular dynamics study on surface properties of supercooled water

    Institute of Scientific and Technical Information of China (English)

    Lü; Yongjun


    [1]Basu J K,Hazra S,Sanyal M K.Growth mechanism of Langmuir-Blodgett films.Phys Rev Lett,1999,82:4675-4678[2]Taylor R S,Shields R L.Molecular-dynamics simulations of the ethanol liquid-vapor interface.J Chem Phys,2003,119:12569-12576[3]Velev O D,Gurkov T D,Ivanov I B,et al.Abnormal thickness and stability of nonequilibrium liquid films.Phys Rev Lett,1995,75:264-267[4]Weng J G,Park S,Lukes J R,et al.Molecular dynamics investigation of thickness effect on liquid films.J Chem Phys,2000,113:5917-5923[5]Zakharov V V,Brodskaya E N,Laaksonen A.Surface tension of water droplets:A molecular dynamics study of model and size dependencies.J Chem Phys,1997,107:10675-10683[6]Wang J Z,Chen M,Guo Z Y.A two-dimensional molecular dynamics simulation of liquid-vapor nucleation.Chin Sci Bull,2003,48(7):623-626[7]Guissani Y,Guillot B.A computer simulation study of the liquid-vapor coexistence curve of water.J Chem Phys,1993,98:8221-8235[8]Wilson M A,Pohorille A,Pratt L R.Surface potential of the water liquid-vapor interface.J Chem Phys,1988,88:3281-3285[9]Alejandre J,Tildesley D J,Chapela G A.Molecular dynamics simulation of the orthobaric densities and surface tension of water.J Chem Phys,1995,102:4574-4583[10]Matsumoto M,Kataoka Y.Study on liquid-vapor interface of water (Ⅰ):Simulational results of thermodynamic properties and orientational structure.J Chem Phys,1988,88:3233-3245[11]Floriano M A,Angell C A.Surface tension and molar surface free energy and entropy of water to-27.2℃.J Phys Chem,1990,94:4199-4202[12]Jorgensen W L,Chandrasekhar J,Madura J D.Comparison of simple potential functions for simulating liquid water.J Chem Phys,1993,79:926-935[13]Berendsen H J C,Grigera J R,Straatsma T P.The missing term in effective pair potentials.J Phys Chem,1987,91:6269-6271[14]Arbuckle B W,Clancy P.Effects of the Ewald sum on the free energy of the extended simple point charge model for water.J Chem Phys,2002,116:5090-5098[15]Tarazona P,Chacon E,Reinaldo-Falagan M,et al

  3. Linear Stability Analysis of Dynamical Quadratic Gravity

    CERN Document Server

    Ayzenberg, Dimitry; Yunes, Nicolas


    We perform a linear stability analysis of dynamical, quadratic gravity in the high-frequency, geometric optics approximation. This analysis is based on a study of gravitational and scalar modes propagating on spherically-symmetric and axially-symmetric, vacuum solutions of the theory. We find dispersion relations that do no lead to exponential growth of the propagating modes, suggesting the theory is linearly stable on these backgrounds. The modes are found to propagate at subluminal and superluminal speeds, depending on the propagating modes' direction relative to the background geometry, just as in dynamical Chern-Simons gravity.

  4. Immobilizing live Escherichia coli for AFM studies of surface dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Lonergan, N.E.; Britt, L.D.; Sullivan, C.J., E-mail:


    Atomic force microscopy (AFM) is a probe-based technique that permits high resolution imaging of live bacterial cells. However, stably immobilizing cells to withstand the probe-based lateral forces remains an obstacle in AFM mediated studies, especially those of live, rod shaped bacteria in nutrient media. Consequently, AFM has been under-utilized in the research of bacterial surface dynamics. The aim of the current study was to immobilize a less adherent Escherichia coli strain in a method that both facilitates AFM imaging in nutrient broth and preserves overall cell viability. Immobilization reagents and buffers were systematically evaluated and the cell membrane integrity was monitored in all sample preparations. As expected, the biocompatible gelatin coated surfaces facilitated stable cell attachment in lower ionic strength buffers, yet poorly immobilized cells in higher ionic strength buffers. In comparison, poly-L-lysine surfaces bound cells in both low and high ionic strength buffers. The benefit of the poly-L-lysine binding capacity was offset by the compromised membrane integrity exhibited by cells on poly-L-lysine surfaces. However, the addition of divalent cations and glucose to the immobilization buffer was found to mitigate this unfavorable effect. Ultimately, immobilization of E. coli cells on poly-L-lysine surfaces in a lower ionic strength buffer supplemented with Mg{sup 2+} and Ca{sup 2+} was determined to provide optimal cell attachment without compromising the overall cell viability. Cells immobilized in this method were stably imaged in media through multiple division cycles. Furthermore, permeability assays indicated that E. coli cells recover from the hypoosmotic stress caused by immobilization in low ionic strength buffers. Taken together, this data suggests that stable immobilization of viable cells on poly-L-lysine surfaces can be accomplished in lower ionic strength buffers that are supplemented with divalent cations for membrane

  5. Dynamic Event Tree Analysis Through RAVEN

    Energy Technology Data Exchange (ETDEWEB)

    A. Alfonsi; C. Rabiti; D. Mandelli; J. Cogliati; R. A. Kinoshita; A. Naviglio


    Conventional Event-Tree (ET) based methodologies are extensively used as tools to perform reliability and safety assessment of complex and critical engineering systems. One of the disadvantages of these methods is that timing/sequencing of events and system dynamics is not explicitly accounted for in the analysis. In order to overcome these limitations several techniques, also know as Dynamic Probabilistic Risk Assessment (D-PRA), have been developed. Monte-Carlo (MC) and Dynamic Event Tree (DET) are two of the most widely used D-PRA methodologies to perform safety assessment of Nuclear Power Plants (NPP). In the past two years, the Idaho National Laboratory (INL) has developed its own tool to perform Dynamic PRA: RAVEN (Reactor Analysis and Virtual control ENvironment). RAVEN has been designed in a high modular and pluggable way in order to enable easy integration of different programming languages (i.e., C++, Python) and coupling with other application including the ones based on the MOOSE framework, developed by INL as well. RAVEN performs two main tasks: 1) control logic driver for the new Thermo-Hydraulic code RELAP-7 and 2) post-processing tool. In the first task, RAVEN acts as a deterministic controller in which the set of control logic laws (user defined) monitors the RELAP-7 simulation and controls the activation of specific systems. Moreover, RAVEN also models stochastic events, such as components failures, and performs uncertainty quantification. Such stochastic modeling is employed by using both MC and DET algorithms. In the second task, RAVEN processes the large amount of data generated by RELAP-7 using data-mining based algorithms. This paper focuses on the first task and shows how it is possible to perform the analysis of dynamic stochastic systems using the newly developed RAVEN DET capability. As an example, the Dynamic PRA analysis, using Dynamic Event Tree, of a simplified pressurized water reactor for a Station Black-Out scenario is presented.

  6. Rotor dynamic analysis of main coolant pump

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chong Won; Seo, Jeong Hwan; Kim, Choong Hwan; Shin, Jae Chul; Wang, Lei Tian [Korea Advanced Institute of Science and Technology, Taejon (Korea)


    A rotor dynamic analysis program DARBS/MCP, for the main coolant pump of the integral reactor, has been developed. The dynamic analysis model of the main coolant pump includes a vertical shaft, three grooved radial journal bearings and gaps that represent the structure-fluid interaction effects between the rotor and the lubricant fluid. The electromagnetic force from the motor and the hydro-dynamic force induced by impeller are the major sources of vibration that may affect the rotor system stability. DARBS/MCP is a software that is developed to effectively analyze the dynamics of MCP rotor systems effectively by applying powerful numerical algorithms such as FEM with modal truncation and {lambda}-matrix method for harmonic analysis. Main design control parameters, that have much influence to the dynamic stability, have been found by Taguchi's sensitivity analysis method. Design suggestions to improve the stability of MCP rotor system have been documented. The dynamic bearing parameters of the journal bearings used for main coolant pump have been determined by directly solving the Reynolds equation using FDM method. Fluid-structure interaction effect that occurs at the small gaps between the rotor and the stator were modeled as equivalent seals, the electromagnetic force effect was regarded as a linear negative radial spring and the impeller was modeled as a rigid disk with hydrodynamic and static radial force. Although there exist critical speeds in the range of operational speeds for type I and II rotor systems, the amplitude of vibration appears to be less than the vibration limit set by the API standards. Further more, it has been verified that the main design parameters such as the clearance and length of journal bearings, and the static radial force of impeller should be properly adjusted, in order to the improve dynamic stability of the rotor system. (author). 39 refs., 81 figs., 17 tabs.

  7. Structural Dynamics and Data Analysis (United States)

    Luthman, Briana L.


    This project consists of two parts, the first will be the post-flight analysis of data from a Delta IV launch vehicle, and the second will be a Finite Element Analysis of a CubeSat. Shock and vibration data was collected on WGS-5 (Wideband Global SATCOM- 5) which was launched on a Delta IV launch vehicle. Using CAM (CAlculation with Matrices) software, the data is to be plotted into Time History, Shock Response Spectrum, and SPL (Sound Pressure Level) curves. In this format the data is to be reviewed and compared to flight instrumentation data from previous flights of the same launch vehicle. This is done to ensure the current mission environments, such as shock, random vibration, and acoustics, are not out of family with existing flight experience. In family means the peaks on the SRS curve for WGS-5 are similar to the peaks from the previous flights and there are no major outliers. The curves from the data will then be compiled into a useful format so that is can be peer reviewed then presented before an engineering review board if required. Also, the reviewed data will be uploaded to the Engineering Review Board Information System (ERBIS) to archive. The second part of this project is conducting Finite Element Analysis of a CubeSat. In 2010, Merritt Island High School partnered with NASA to design, build and launch a CubeSat. The team is now called StangSat in honor of their mascot, the mustang. Over the past few years, the StangSat team has built a satellite and has now been manifested for flight on a SpaceX Falcon 9 launch in 2014. To prepare for the final launch, a test flight was conducted in Mojave, California. StangSat was launched on a Prospector 18D, a high altitude rocket made by Garvey Spacecraft Corporation, along with their sister satellite CP9 built by California Polytechnic University. However, StangSat was damaged during an off nominal landing and this project will give beneficial insights into what loads the CubeSat experienced during the crash

  8. Repository surface design site layout analysis

    Energy Technology Data Exchange (ETDEWEB)

    Montalvo, H.R.


    The purpose of this analysis is to establish the arrangement of the Yucca Mountain Repository surface facilities and features near the North Portal. The analysis updates and expands the North Portal area site layout concept presented in the ACD, including changes to reflect the resizing of the Waste Handling Building (WHB), Waste Treatment Building (WTB), Carrier Preparation Building (CPB), and site parking areas; the addition of the Carrier Washdown Buildings (CWBs); the elimination of the Cask Maintenance Facility (CMF); and the development of a concept for site grading and flood control. The analysis also establishes the layout of the surface features (e.g., roads and utilities) that connect all the repository surface areas (North Portal Operations Area, South Portal Development Operations Area, Emplacement Shaft Surface Operations Area, and Development Shaft Surface Operations Area) and locates an area for a potential lag storage facility. Details of South Portal and shaft layouts will be covered in separate design analyses. The objective of this analysis is to provide a suitable level of design for the Viability Assessment (VA). The analysis was revised to incorporate additional material developed since the issuance of Revision 01. This material includes safeguards and security input, utility system input (size and location of fire water tanks and pump houses, potable water and sanitary sewage rates, size of wastewater evaporation pond, size and location of the utility building, size of the bulk fuel storage tank, and size and location of other exterior process equipment), main electrical substation information, redundancy of water supply and storage for the fire support system, and additional information on the storm water retention pond.

  9. Applied surface analysis in magnetic storage technology (United States)

    Windeln, Johannes; Bram, Christian; Eckes, Heinz-Ludwig; Hammel, Dirk; Huth, Johanna; Marien, Jan; Röhl, Holger; Schug, Christoph; Wahl, Michael; Wienss, Andreas


    This paper gives a synopsis of today's challenges and requirements for a surface analysis and materials science laboratory with a special focus on magnetic recording technology. The critical magnetic recording components, i.e. the protective carbon overcoat (COC), the disk layer structure, the read/write head including the giant-magnetoresistive (GMR) sensor, are described and options for their characterization with specific surface and structure analysis techniques are given. For COC investigations, applications of Raman spectroscopy to the structural analysis and determination of thickness, hydrogen and nitrogen content are discussed. Hardness measurements by atomic force microscopy (AFM) scratching techniques are presented. Surface adsorption phenomena on disk substrates or finished disks are characterized by contact angle analysis or so-called piezo-electric mass adsorption systems (PEMAS), also known as quartz crystal microbalance (QCM). A quickly growing field of applications is listed for various X-ray analysis techniques, such as disk magnetic layer texture analysis for X-ray diffraction, compositional characterization via X-ray fluorescence, compositional analysis with high lateral resolution via electron microprobe analysis. X-ray reflectometry (XRR) has become a standard method for the absolute measurement of individual layer thicknesses contained in multi-layer stacks and thus, is the successor of ellipsometry for this application. Due to the ongoing reduction of critical feature sizes, the analytical challenges in terms of lateral resolution, sensitivity limits and dedicated nano-preparation have been consistently growing and can only be met by state-of-the-art Auger electron spectrometers (AES), transmission electron microscopy (TEM) analysis, time-of-flight-secondary ion mass spectroscopy (ToF-SIMS) characterization, focused ion beam (FIB) sectioning and TEM lamella preparation via FIB. The depth profiling of GMR sensor full stacks was significantly

  10. Coupled slow and fast surface dynamics in an electrocatalytic oscillator: Model and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Melke A. [Institute of Chemistry of São Carlos, University of São Paulo, PO Box 780, 13560-970, São Carlos, SP (Brazil); Fritz Haber Institute of the Max Planck Society, Department of Physical Chemistry, Faradayweg 4-6, D-14195 Berlin (Germany); Nagao, Raphael [Institute of Chemistry of São Carlos, University of São Paulo, PO Box 780, 13560-970, São Carlos, SP (Brazil); Eiswirth, Markus [Fritz Haber Institute of the Max Planck Society, Department of Physical Chemistry, Faradayweg 4-6, D-14195 Berlin (Germany); Ertl Center for Electrochemistry and Catalysis, GIST, Cheomdan-gwagiro 261, Buk-gu, Gwangju 500-712 (Korea, Republic of); Varela, Hamilton, E-mail: [Institute of Chemistry of São Carlos, University of São Paulo, PO Box 780, 13560-970, São Carlos, SP (Brazil); Fritz Haber Institute of the Max Planck Society, Department of Physical Chemistry, Faradayweg 4-6, D-14195 Berlin (Germany); Ertl Center for Electrochemistry and Catalysis, GIST, Cheomdan-gwagiro 261, Buk-gu, Gwangju 500-712 (Korea, Republic of)


    The co-existence of disparate time scales is pervasive in many systems. In particular for surface reactions, it has been shown that the long-term evolution of the core oscillator is decisively influenced by slow surface changes, such as progressing deactivation. Here we present an in-depth numerical investigation of the coupled slow and fast surface dynamics in an electrocatalytic oscillator. The model consists of four nonlinear coupled ordinary differential equations, investigated over a wide parameter range. Besides the conventional bifurcation analysis, the system was studied by means of high-resolution period and Lyapunov diagrams. It was observed that the bifurcation diagram changes considerably as the irreversible surface poisoning evolves, and the oscillatory region shrinks. The qualitative dynamics changes accordingly and the chaotic oscillations are dramatically suppressed. Nevertheless, periodic cascades are preserved in a confined region of the resistance vs. voltage diagram. Numerical results are compared to experiments published earlier and the latter reinterpreted. Finally, the comprehensive description of the time-evolution in the period and Lyapunov diagrams suggests further experimental studies correlating the evolution of the system's dynamics with changes of the catalyst structure.

  11. Dynamic analysis and design of offshore structures

    CERN Document Server

    Chandrasekaran, Srinivasan


    This book  attempts to provide readers with an overall idea of various types of offshore platform geometries. It covers the various environmental loads encountered by these structures, a detailed description of the fundamentals of structural dynamics in a class-room style, estimate of damping in offshore structures and their applications in the preliminary analysis and design. Basic concepts of structural dynamics are emphasized through simple illustrative examples and exercises. Design methodologies and guidelines, which are FORM based concepts are explained through a few applied example structures. Each chapter also has tutorials and exercises for self-learning. A dedicated chapter on stochastic dynamics will help the students to extend the basic concepts of structural dynamics to this advanced domain of research. Hydrodynamic response of offshore structures with perforated members is one of the recent research applications, which is found to be one of the effective manner of retrofitting offshore structur...


    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Andreasen, Jan Lasson; Tosello, Guido

    This document is used in connection with three exercises of 3 hours duration as a part of the course VISION ONLINE – One week course on Precision & Nanometrology. The exercises concern surface texture analysis for functionality control, in connection with three different case stories. This docume...... contains a short description of each case story, 3-D roughness parameters analysis and relation with the product’s functionality.......This document is used in connection with three exercises of 3 hours duration as a part of the course VISION ONLINE – One week course on Precision & Nanometrology. The exercises concern surface texture analysis for functionality control, in connection with three different case stories. This document...

  13. Adaptive Dynamic Surface Control for Generator Excitation Control System

    Directory of Open Access Journals (Sweden)

    Zhang Xiu-yu


    Full Text Available For the generator excitation control system which is equipped with static var compensator (SVC and unknown parameters, a novel adaptive dynamic surface control scheme is proposed based on neural network and tracking error transformed function with the following features: (1 the transformation of the excitation generator model to the linear systems is omitted; (2 the prespecified performance of the tracking error can be guaranteed by combining with the tracking error transformed function; (3 the computational burden is greatly reduced by estimating the norm of the weighted vector of neural network instead of the weighted vector itself; therefore, it is more suitable for the real time control; and (4 the explosion of complicity problem inherent in the backstepping control can be eliminated. It is proved that the new scheme can make the system semiglobally uniformly ultimately bounded. Simulation results show the effectiveness of this control scheme.

  14. A molecular dynamics investigation of surface reconstruction on magnetite (001) (United States)

    Rustad, J. R.; Wasserman, E.; Felmy, A. R.


    Molecular dynamics calculations using analytical potential functions with polarizable oxygen ions have been used to identify a novel mode of reconstruction on the half-occupied tetrahedral layer termination of the magnetite (Fe 3O 4) (001) surface. In the proposed reconstruction, the twofold coordinated iron ion in the top monolayer rotates downward to occupy a vacant half-octahedral site in the plane of the second-layer iron ions. At the same time, half of the tetrahedral iron ions in the third iron layer are pushed upward to occupy an adjacent octahedral vacancy at the level of the second-layer iron ions. The other half of the third-layer iron ions remain roughly in their original positions. The proposed reconstruction is consistent with recent low-energy electron diffraction and X-ray photoelectron spectroscopy results. It also provides a compelling interpretation for the arrangement of atoms suggested by high-resolution scanning-tunneling microscopy studies.

  15. Immobilizing live Escherichia coli for AFM studies of surface dynamics. (United States)

    Lonergan, N E; Britt, L D; Sullivan, C J


    Atomic force microscopy (AFM) is a probe-based technique that permits high resolution imaging of live bacterial cells. However, stably immobilizing cells to withstand the probe-based lateral forces remains an obstacle in AFM mediated studies, especially those of live, rod shaped bacteria in nutrient media. Consequently, AFM has been under-utilized in the research of bacterial surface dynamics. The aim of the current study was to immobilize a less adherent Escherichia coli strain in a method that both facilitates AFM imaging in nutrient broth and preserves overall cell viability. Immobilization reagents and buffers were systematically evaluated and the cell membrane integrity was monitored in all sample preparations. As expected, the biocompatible gelatin coated surfaces facilitated stable cell attachment in lower ionic strength buffers, yet poorly immobilized cells in higher ionic strength buffers. In comparison, poly-l-lysine surfaces bound cells in both low and high ionic strength buffers. The benefit of the poly-l-lysine binding capacity was offset by the compromised membrane integrity exhibited by cells on poly-l-lysine surfaces. However, the addition of divalent cations and glucose to the immobilization buffer was found to mitigate this unfavorable effect. Ultimately, immobilization of E. coli cells on poly-l-lysine surfaces in a lower ionic strength buffer supplemented with Mg(2+) and Ca(2+) was determined to provide optimal cell attachment without compromising the overall cell viability. Cells immobilized in this method were stably imaged in media through multiple division cycles. Furthermore, permeability assays indicated that E. coli cells recover from the hypoosmotic stress caused by immobilization in low ionic strength buffers. Taken together, this data suggests that stable immobilization of viable cells on poly-l-lysine surfaces can be accomplished in lower ionic strength buffers that are supplemented with divalent cations for membrane stabilization

  16. A Dynamic Model for Energy Structure Analysis

    Institute of Scientific and Technical Information of China (English)


    Energy structure is a complicated system concerning economic development, natural resources, technological innovation, ecological balance, social progress and many other elements. It is not easy to explain clearly the developmental mechanism of an energy system and the mutual relations between the energy system and its related environments by the traditional methods. It is necessary to develop a suitable dynamic model, which can reflect the dynamic characteristics and the mutual relations of the energy system and its related environments. In this paper, the historical development of China's energy structure was analyzed. A new quantitative analysis model was developed based on system dynamics principles through analysis of energy resources, and the production and consumption of energy in China and comparison with the world. Finally, this model was used to predict China's future energy structures under different conditions.

  17. Dynamic Analysis of The Intelligent Sprayer Boom

    DEFF Research Database (Denmark)

    Wiggers, Sine Leergaard; Maagaard, Jørgen; Terp, Christian Istjord

    As part of the 3 year project “The intelligent Sprayer Boom”, financed by The Danish National Advanced Technology Foundation, the dynamics of the sprayer boom is to be analysed. In order to minimize the amount of herbicides used to kill the weeds in agriculture a new sprayer boom is being developed...... called “The intelligent sprayer boom”. For the sprayer boom the primary challenge is to hit the weeds with precision from a movable platform. Since the sprayer boom is mounted on a tractor the system will react to bumps in the field. The intelligent sprayer boom has an integrated camera technology...... system to work properly. At the University of Southern Denmark (SDU) a patent for an active damping system of the sprayer boom has been obtained. The subject of this paper is analysis of the dynamics of the Sprayer boom. The analysis is based on a Multibody Dynamics model of the sprayer boom and is made...

  18. Comparing dynamic surface tilt with velocity using an LDV (United States)

    Bruce, Robert A.


    If a laser Doppler vibrometer (LDV) probe beam is normally incident on a resonating metal strip with a mirror-finish, the retro-reflected beam has corresponding dynamic deflections. These lateral beam offsets are proportional to the dynamic surface tilt and can be measured along with the LDV velocity using a separating beam-splitter and a two-dimensional position sensitive detector (PSD). On a thin unbound strip resonating with 'pure mode' deformation, these derivative motions, velocity and tilt, are completely complementary. On a thin unbound plate resonating with 'hybrid mode' deformation, velocity and now two orthogonal tilts are nearly complementary. Maximal tilt has zero velocity, and maximum deformation or velocity has zero tilt. Intermediate values range in complementary fashion except near 'cross-nodes' zones. Here both motion types drop to zero at these cross-node locations. Both velocity and tilt signals are compared simultaneously using a special test fixture. This fixture consists of a stainless steel strip supported on its edges in the center, which can be excited by small speakers at the ends. Two comparison/calibration approaches are demonstrated with a pure 3-0 mode. Significant modal details are also demonstrated by analyzing multiple modes from pulsed excitation, and mapping a 3-1 mode-shape using the combined sensing approaches.

  19. Decomposition of surface EMG signals from cyclic dynamic contractions. (United States)

    De Luca, Carlo J; Chang, Shey-Sheen; Roy, Serge H; Kline, Joshua C; Nawab, S Hamid


    Over the past 3 decades, various algorithms used to decompose the electromyographic (EMG) signal into its constituent motor unit action potentials (MUAPs) have been reported. All are limited to decomposing EMG signals from isometric contraction. In this report, we describe a successful approach to decomposing the surface EMG (sEMG) signal collected from cyclic (repeated concentric and eccentric) dynamic contractions during flexion/extension of the elbow and during gait. The increased signal complexity introduced by the changing shapes of the MUAPs due to relative movement of the electrodes and the lengthening/shortening of muscle fibers was managed by an incremental approach to enhancing our established algorithm for decomposing sEMG signals obtained from isometric contractions. We used machine-learning algorithms and time-varying MUAP shape discrimination to decompose the sEMG signal from an increasingly challenging sequence of pseudostatic and dynamic contractions. The accuracy of the decomposition results was assessed by two verification methods that have been independently evaluated. The firing instances of the motor units had an accuracy of ∼90% with a MUAP train yield as high as 25. Preliminary observations from the performance of motor units during cyclic contractions indicate that during repetitive dynamic contractions, the control of motor units is governed by the same rules as those evidenced during isometric contractions. Modifications in the control properties of motoneuron firings reported by previous studies were not confirmed. Instead, our data demonstrate that the common drive and hierarchical recruitment of motor units are preserved during concentric and eccentric contractions.

  20. Adaptive dynamic surface control of flexible-joint robots using self-recurrent wavelet neural networks. (United States)

    Yoo, Sung Jin; Park, Jin Bae; Choi, Yoon Ho


    A new method for the robust control of flexible-joint (FJ) robots with model uncertainties in both robot dynamics and actuator dynamics is proposed. The proposed control system is a combination of the adaptive dynamic surface control (DSC) technique and the self-recurrent wavelet neural network (SRWNN). The adaptive DSC technique provides the ability to overcome the "explosion of complexity" problem in backstepping controllers. The SRWNNs are used to observe the arbitrary model uncertainties of FJ robots, and all their weights are trained online. From the Lyapunov stability analysis, their adaptation laws are induced, and the uniformly ultimately boundedness of all signals in a closed-loop adaptive system is proved. Finally, simulation results for a three-link FJ robot are utilized to validate the good position tracking performance and robustness against payload uncertainties and external disturbances of the proposed control system.

  1. Surface analysis with STM and AFM

    CERN Document Server

    Magonov, Sergi N


    Scanning tunneling microscopy (STM) and atomic force microscopy (AFM) are powerful tools for surface examination. In the past, many STM and AFM studies led to erroneous conclusions due to lack of proper theoretical considerations and of an understanding of how image patterns are affected by measurement conditions. For this book, two world experts, one on theoretical analysis and the other on experimental characterization, have joined forces to bring together essential components of STM and AFM studies: The practical aspects of STM, the image simulation by surface electron density plot calculat

  2. Surface analysis of nanostructured carbonaceous materials (United States)

    Wepasnick, Kevin Andrew

    microscopy (STM), auger electron spectroscopy (AES), and XPS. Chemical and structural analysis of the clusters reveal that the oxidation state of the metal is tunable based on preparation conditions and that the oxidation state affects the mobility and structure of the clusters upon the graphite surfaces. Collectively, the results of these studies have shown the value of understanding the surface chemistry of a material in understanding their behavior even at the nanoscopic level.

  3. Mytoe: automatic analysis of mitochondrial dynamics.

    NARCIS (Netherlands)

    Lihavainen, E.; Makela, J.; Spelbrink, J.N.; Ribeiro, A.S.


    SUMMARY: We present Mytoe, a tool for analyzing mitochondrial morphology and dynamics from fluorescence microscope images. The tool provides automated quantitative analysis of mitochondrial motion by optical flow estimation and of morphology by segmentation of individual branches of the network-like

  4. Dynamical Analysis of DTNN with Impulsive Effect

    Directory of Open Access Journals (Sweden)

    Chao Chen


    Full Text Available We present dynamical analysis of discrete-time delayed neural networks with impulsive effect. Under impulsive effect, we derive some new criteria for the invariance and attractivity of discrete-time neural networks by using decomposition approach and delay difference inequalities. Our results improve or extend the existing ones.

  5. Dynamic Scaling of Ramified Clusters Formed on Liquid Surfaces

    Institute of Scientific and Technical Information of China (English)

    WU Feng-Min; XU You-Sheng; LI Qiao-Wen


    A comprehensive simulation model -deposition,diffusion, rotation, reaction and aggregation model is presented to simulate the formation processes of ramified clusters on liquid surfaces, where clusters can diffuse and rotate easily. The mobility (including diffusion and rotation) of clusters is related to its mass, which is given by Dm = Dos-γD and θm =′θos-γθ, respectively. The influence of the reaction probability on the kinetics and structure formation is included in the simulation model. We concentrate on revealing dynamic scaling during ramified cluster formation. For this purpose, the time evolution of the cluster density and the weight-average cluster size as well as the cluster-size distribution scaling function at different time are determined for various conditions. The dependence of the cluster density on the deposition flux and time-dependence of fractal dimension are also investigated. The obtained results are helpful in understanding the formation of clusters or thin film growth on liquid surfaces.

  6. Theoretical and experimental study on surface tension and dynamic surface tension of aqueous lithium bromide and water with additive

    Institute of Scientific and Technical Information of China (English)

    程文龙; 陈则韶; 秋泽淳; 胡芃; 柏木孝夫


    The surface tensions of water and aqueous lithium bromide (LiBr) with 2-ethyl-1-hexa- nol (2EH) and 1-octanol were measured using Wilhelmy plate method, and the oscillation of surface tension under the open condition for LiBr solution was observed. The dynamic surface tensions of water and LiBr solution in the presence of the 2EH and 1-octanol vapor were measured in this paper. The results showed that the additives vapor could obviously affect surface tension. For water, the dynamic surface tension was also affected by the mass of the tested liquid; however, for LiBr solution, the dynamic surface tension was not related to the mass of the tested solution. According to the experimental results, the hypothesis that surface tension varies linearly with the surface excess concentration is advanced, which could overcome the limit of Gibbs equation. The equations of surface absorption and desorption are modified, the units of the adsorption coefficient and desorption coefficient are unified; the effects of the liquid and vapor of additive on the surface tension are unified; the theoretical relations of the static surface tension and dynamic surface tension with the relative contents of the liquid and vapor of additive are obtained under the combined actions of them; the theoretical equations are validated by the experiments results.

  7. Interferometer for measuring the dynamic surface topography of a human tear film (United States)

    Primeau, Brian C.; Greivenkamp, John E.


    The anterior refracting surface of the eye is the thin tear film that forms on the surface of the cornea. Following a blink, the tear film quickly smoothes and starts to become irregular after 10 seconds. This irregularity can affect comfort and vision quality. An in vivo method of characterizing dynamic tear films has been designed based upon a near-infrared phase-shifting interferometer. This interferometer continuously measures light reflected from the tear film, allowing sub-micron analysis of the dynamic surface topography. Movies showing the tear film behavior can be generated along with quantitative metrics describing changes in the tear film surface. This tear film measurement allows analysis beyond capabilities of typical fluorescein visual inspection or corneal topography and provides better sensitivity and resolution than shearing interferometry methods. The interferometer design is capable of identifying features in the tear film much less than a micron in height with a spatial resolution of about ten microns over a 6 mm diameter. This paper presents the design of the tear film interferometer along with the considerations that must be taken when designing an interferometer for on-eye diagnostics. Discussions include eye movement, design of null optics for a range of ocular geometries, and laser emission limits for on-eye interferometry.

  8. Continuous Compressed Sensing for Surface Dynamical Processes with Helium Atom Scattering (United States)

    Jones, Alex; Tamtögl, Anton; Calvo-Almazán, Irene; Hansen, Anders


    Compressed Sensing (CS) techniques are used to measure and reconstruct surface dynamical processes with a helium spin-echo spectrometer for the first time. Helium atom scattering is a well established method for examining the surface structure and dynamics of materials at atomic sized resolution and the spin-echo technique opens up the possibility of compressing the data acquisition process. CS methods demonstrating the compressibility of spin-echo spectra are presented for several measurements. Recent developments on structured multilevel sampling that are empirically and theoretically shown to substantially improve upon the state of the art CS techniques are implemented. In addition, wavelet based CS approximations, founded on a new continuous CS approach, are used to construct continuous spectra. In order to measure both surface diffusion and surface phonons, which appear usually on different energy scales, standard CS techniques are not sufficient. However, the new continuous CS wavelet approach allows simultaneous analysis of surface phonons and molecular diffusion while reducing acquisition times substantially. The developed methodology is not exclusive to Helium atom scattering and can also be applied to other scattering frameworks such as neutron spin-echo and Raman spectroscopy.

  9. Investigation of dynamic characteristics of a rotor system with surface coatings (United States)

    Yang, Yang; Cao, Dengqing; Wang, Deyou


    A Jeffcott rotor system with surface coatings capable of describing the mechanical vibration resulting from unbalance and rub-impact is formulated in this article. A contact force model proposed recently to describe the impact force between the disc and casing with coatings is employed to do the dynamic analysis for the rotor system with rubbing fault. Due to the variation of penetration, the contact force model is correspondingly modified. Meanwhile, the Coulomb friction model is applied to simulate the friction characteristics. Then, the case study of rub-impact with surface coatings is simulated by the Runge-Kutta method, in which a linear interpolation method is adopted to predict the rubbing instant. Moreover, the dynamic characteristics of the rotor system with surface coatings are analyzed in terms of bifurcation plot, waveform, whirl orbit, Poincaré map and spectrum plot. And the effects of the hardness of surface coatings on the response are investigated as well. Finally, compared with the classical models, the modified contact force model is shown to be more suitable to solve the rub-impact of aero-engine with surface coatings.

  10. The dynamical properties of Rydberg hydrogen atom near a metal surface

    Institute of Scientific and Technical Information of China (English)

    GE Meihua; ZHANG Yanhui; WANG Dehua; DU Mengli; LIN Shenglu


    The dynamical properties of Rydberg hydrogen atom near a metal surface are presented by using the methods of phase space analysis and closed orbit theory. Transforming the coordinates of the Hamiltonian, we find that the phase space of the system is divided into vibrational and rotational region. Both the Poincaré surface of section and the closed orbit theory verify the same conclusion clearly. In this paper we choose the atomic principal quantum number as n = 20. The dynamical character of the exited hydrogen atom depends sensitively on the atom-surface distance d. When d is sufficiently large, the atom-surface potential can be expressed by the traditional van der Waals force and the system is integrable. When d becomes smaller, there exists a critical value dc. For d > dc, the system is near-integrable and the motion is regular. While chaotic motion appears for d < dc, and the system tends to be non-integrable. The trajectories become unstable and the electron might be captured onto the metal surface.

  11. Water Organization and Dynamics on Mineral Surfaces Interrogated by Graph Theoretical Analyses of Intermolecular Chemical Networks

    Directory of Open Access Journals (Sweden)

    Abdullah Ozkanlar


    Full Text Available Intermolecular chemical networks defined by the hydrogen bonds formed at the α-quartz|water interface have been data-mined using graph theoretical methods so as to identify and quantify structural patterns and dynamic behavior. Using molecular-dynamics simulations data, the hydrogen bond (H-bond distributions for the water-water and water-silanol H-bond networks have been determined followed by the calculation of the persistence of the H-bond, the dipole-angle oscillations that water makes with the surface silanol groups over time, and the contiguous H-bonded chains formed at the interface. Changes in these properties have been monitored as a function of surface coverage. Using the H-bond distribution between water and the surface silanol groups, the actual number of waters adsorbed to the surface is found to be 0.6 H2O/10 Å2, irrespective of the total concentration of waters within the system. The unbroken H-bond network of interfacial waters extends farther than in the bulk liquid; however, it is more fluxional at low surface coverages (i.e., the H-bond persistence in a monolayer of water is shorter than in the bulk Concentrations of H2O at previously determined water adsorption sites have also been quantified. This work demonstrates the complementary information that can be obtained through graph theoretical analysis of the intermolecular H-bond networks relative to standard analyses of molecular simulation data.

  12. Surface analysis methods in materials science

    CERN Document Server

    Sexton, Brett; Smart, Roger


    The idea for this book stemmed from a remark by Philip Jennings of Murdoch University in a discussion session following a regular meeting of the Australian Surface Science group. He observed that a text on surface analysis and applica­ tions to materials suitable for final year undergraduate and postgraduate science students was not currently available. Furthermore, the members of the Australian Surface Science group had the research experience and range of coverage of sur­ face analytical techniques and applications to provide a text for this purpose. A of techniques and applications to be included was agreed at that meeting. The list intended readership of the book has been broadened since the early discussions, particularly to encompass industrial users, but there has been no significant alter­ ation in content. The editors, in consultation with the contributors, have agreed that the book should be prepared for four major groups of readers: - senior undergraduate students in chemistry, physics, metallur...

  13. Analysis of fluid dynamics to the riser of a FCC cold pilot plant aided with response surface methodology; Analise da fluidodinamica em um riser de FCC de uma unidade piloto a frio com auxilio da metodologia de superficie de resposta

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Kamylla A.L. dos; Luna-Finkler, Christine L.; Lima Filho, Hilario J.B. de [Universidade Federal de Pernambuco (UFPE), Vitoria de Santo Antao, PE (Brazil); Benachour, Mohand; Dantas, Carlos Costa; Santos, Valdemir A. dos [Universidade Catolica de Pernambuco (UNICAP), Recife, PE (Brazil)


    It was planned and executed the implementation of a Central Composite Rotatable Design (CCRD) to the riser of a FCC (Fluid Catalytic Cracking) cold pilot plant, to identify the basic fluid dynamic characteristics of this type of reactor. The Fluid Catalytic Cracking is the major process in oil refineries in the world. It is realized in a vertical cylindrical reactor called riser, with a short contact time between the cracking catalyst and vacuum gas oil vapors. The constant evolution of the FCC process has required the analysis of fluid dynamics using computational fluid dynamics (CFD) software. However, analysis of images produced by the application of CFD to study of risers requires preliminary concepts of the relationship between response variables and independent variables. With the CCRD implementation was performed a total of 12 experiments, being 4 full factorial, 4 axial points and 4 central points. The dependent variables were the velocities of the components (cracking catalyst and compressed air) and the pressure drop in the riser. There was a great contribution of solids flow rate for the solid phase velocity and for the pressure drop. The effects of interaction between the flow rate phases are considerably senses in pressure drop through the riser, however, for the velocities of both phases this interaction becomes negligible. (author)

  14. He atom-surface scattering: Surface dynamics of insulators, overlayers and crystal growth

    Energy Technology Data Exchange (ETDEWEB)


    Investigations in this laboratory have focused on the surface structure and dynamics of ionic insulators and on epitaxial growth onto alkali halide crystals. In the later the homoepitaxial growth of NaCl/NaCl(001) and the heteroepitaxial growth of KBr/NaCl(001), NaCl/KBr(001) and KBr/RbCl(001) have been studied by monitoring the specular He scattering as a function of the coverage and by measuring the angular and energy distributions of the scattered He atoms. These data provide information on the surface structure, defect densities, island sizes and surface strain during the layer-by-layer growth. The temperature dependence of these measurements also provides information on the mobilities of the admolecules. He atom scattering is unique among surface probes because the low-energy, inert atoms are sensitive only to the electronic structure of the topmost surface layer and are equally applicable to all crystalline materials. It is proposed for the next year to exploit further the variety of combinations possible with the alkali halides in order to carry out a definitive study of epitaxial growth in the ionic insulators. The work completed so far, including measurements of the Bragg diffraction and surface dispersion at various stages of growth, appears to be exceptionally rich in detail, which is particularly promising for theoretical modeling. In addition, because epitaxial growth conditions over a wide range of lattice mismatches is possible with these materials, size effects in growth processes can be explored in great depth. Further, as some of the alkali halides have the CsCl structure instead of the NaCl structure, we can investigate the effects of the heteroepitaxy with materials having different lattice preferences. Finally, by using co-deposition of different alkali halides, one can investigate the formation and stability of alloys and even alkali halide superlattices.

  15. Applications of granular-dynamics numerical simulations to asteroid surfaces (United States)

    Richardson, D. C.; Michel, P.; Schwartz, S. R.; Yu, Y.; Ballouz, R.-L.; Matsumura, S.


    Spacecraft images and indirect observations including thermal inertia measurements indicate most small bodies have surface regolith. Evidence of granular flow is also apparent in the images. This material motion occurs in very low gravity, therefore in a totally different gravitational environment than on the Earth. Upcoming sample-return missions to small bodies, and possible future manned missions, will involve interaction with the surface regolith, so it is important to develop tools to predict the surface response. We have added new capabilities to the N-body gravity tree code pkdgrav [1,2] that permit the simulation of granular dynamics, including multi-contact physics and friction forces, using the soft-sphere discrete-element method [3]. The numerical approach has been validated through comparison with laboratory experiments (e.g., [3,4]). (1) We carried out impacts into granular materials using different projectile shapes under Earth's gravity [5] and compared the results to laboratory experiments [6] in support of JAXA's Hayabusa 2 asteroid sample-return mission. We tested different projectile shapes and confirmed that the 90-degree cone was the most efficient at excavating mass when impacting 5-mm-diameter glass beads. Results are sensitive to the normal coefficient of restitution and the coefficient of static friction. Preliminary experiments in micro-gravity for similar impact conditions show both the amount of ejected mass and the timescale of the impact process increase, as expected. (2) It has been found (e.g., [7,8]) that ''fresh'' (unreddened) Q-class asteroids have a high probability of recent planetary encounters (˜1 Myr; also see [9]), suggesting that surface refreshening may have occurred due to tidal effects. As an application of the potential effect of tidal interactions, we carried out simulations of Apophis' predicted 2029 encounter with the Earth to see whether regolith motion might occur, using a range of plausible material parameters

  16. Nonlinear dynamics and quantitative EEG analysis. (United States)

    Jansen, B H


    Quantitative, computerized electroencephalogram (EEG) analysis appears to be based on a phenomenological approach to EEG interpretation, and is primarily rooted in linear systems theory. A fundamentally different approach to computerized EEG analysis, however, is making its way into the laboratories. The basic idea, inspired by recent advances in the area of nonlinear dynamics and chaos theory, is to view an EEG as the output of a deterministic system of relatively simple complexity, but containing nonlinearities. This suggests that studying the geometrical dynamics of EEGs, and the development of neurophysiologically realistic models of EEG generation may produce more successful automated EEG analysis techniques than the classical, stochastic methods. A review of the fundamentals of chaos theory is provided. Evidence supporting the nonlinear dynamics paradigm to EEG interpretation is presented, and the kind of new information that can be extracted from the EEG is discussed. A case is made that a nonlinear dynamic systems viewpoint to EEG generation will profoundly affect the way EEG interpretation is currently done.

  17. Nonlinear dynamic analysis of sandwich panels (United States)

    Lush, A. M.


    Two analytical techniques applicable to large deflection dynamic response calculations for pressure loaded composite sandwich panels are demonstrated. One technique utilizes finite element modeling with a single equivalent layer representing the face sheets and core. The other technique utilizes the modal analysis computer code DEPROP which was recently modified to include transverse shear deformation in a core layer. The example problem consists of a simply supported rectangular sandwich panel. Included are comparisons of linear and nonlinear static response calculations, in addition to dynamic response calculations.

  18. Flight Dynamics Analysis Branch 2005 Technical Highlights (United States)


    This report summarizes the major activities and accomplishments carried out by the Flight Dynamics Analysis Branch (FDAB), Code 595, in support of flight projects and technology development initiatives in Fiscal Year (FY) 2005. The report is intended to serve as a summary of the type of support carried out by the FDAB, as well as a concise reference of key accomplishments and mission experience derived from the various mission support roles. The primary focus of the FDAB is to provide expertise in the disciplines of flight dynamics including spacecraft navigation (autonomous and ground based); spacecraft trajectory design and maneuver planning; attitude analysis; attitude determination and sensor calibration; and attitude control subsystem (ACS) analysis and design. The FDAB currently provides support for missions and technology development projects involving NASA, other government agencies, academia, and private industry.

  19. Interfacial layers from the protein HFBII hydrophobin: dynamic surface tension, dilatational elasticity and relaxation times. (United States)

    Alexandrov, Nikola A; Marinova, Krastanka G; Gurkov, Theodor D; Danov, Krassimir D; Kralchevsky, Peter A; Stoyanov, Simeon D; Blijdenstein, Theodorus B J; Arnaudov, Luben N; Pelan, Eddie G; Lips, Alex


    The pendant-drop method (with drop-shape analysis) and Langmuir trough are applied to investigate the characteristic relaxation times and elasticity of interfacial layers from the protein HFBII hydrophobin. Such layers undergo a transition from fluid to elastic solid films. The transition is detected as an increase in the error of the fit of the pendant-drop profile by means of the Laplace equation of capillarity. The relaxation of surface tension after interfacial expansion follows an exponential-decay law, which indicates adsorption kinetics under barrier control. The experimental data for the relaxation time suggest that the adsorption rate is determined by the balance of two opposing factors: (i) the barrier to detachment of protein molecules from bulk aggregates and (ii) the attraction of the detached molecules by the adsorption layer due to the hydrophobic surface force. The hydrophobic attraction can explain why a greater surface coverage leads to a faster adsorption. The relaxation of surface tension after interfacial compression follows a different, square-root law. Such behavior can be attributed to surface diffusion of adsorbed protein molecules that are condensing at the periphery of interfacial protein aggregates. The surface dilatational elasticity, E, is determined in experiments on quick expansion or compression of the interfacial protein layers. At lower surface pressures (<11 mN/m) the experiments on expansion, compression and oscillations give close values of E that are increasing with the rise of surface pressure. At higher surface pressures, E exhibits the opposite tendency and the data are scattered. The latter behavior can be explained with a two-dimensional condensation of adsorbed protein molecules at the higher surface pressures. The results could be important for the understanding and control of dynamic processes in foams and emulsions stabilized by hydrophobins, as well as for the modification of solid surfaces by adsorption of such


    Institute of Scientific and Technical Information of China (English)


    Under certain conditions, the dynamic equatioins of membrane shells and the dynamic equations of flexural shells are obtained from dynamic equations of Koiter shells by the method of asymptotic analysis.

  1. Atomistic interactions of clusters on surfaces using molecular dynamics and hyper molecular dynamics

    CERN Document Server

    Sanz-Navarro, C F


    The work presented in this thesis describes the results of Molecular Dynamics (MD) simulations applied to the interaction of silver clusters with graphite surfaces and some numerical and theoretical methods concerning the extension of MD simulations to longer time scales (hyper-MD). The first part of this thesis studies the implantation of clusters at normal incidence onto a graphite surface in order to determine the scaling of the penetration depth (PD) against the impact energy. A comparison with experimental results is made with good agreement. The main physical observations of the impact process are described and analysed. It is shown that there is a threshold impact velocity above which the linear dependence on PD on impact energy changes to a linear dependence on velocity. Implantation of silver clusters at oblique incidence is also considered. The second part of this work analyses the validity and feasibility of the three minimisation methods for the hyper-MD simulation method whereby time scales of an...


    Institute of Scientific and Technical Information of China (English)

    WANGShidao; HUANGPeizhu


    Along with underground mining, movement and deformation of overburden gradually extends in all directions and up to the ground surface and finally forms a surface subsidence basin. The surface movement progressively stabilizes until coal mining is completed and forms a stable movement basin. Two types of basins, i.e. static and dynamic subsidence basins are distinguished in the paper, a classification of the basins and a description of their characteristics are presented. Based on the analysis of measured data by Yanzhou Coal Mining Bureau, during mining operation, the movement characteristics of surface point, subsidence equation, subsidence rate equation and the law of distribution of movement parameters of surface point relative to principal section of movement basin are addressed in this paper. Moreover the calculating formula of the movement parameters for an arbitrary surface point and the expression for calculating the maximum subsidence rate are also proposed. On the basis of the findings, the movement deformation formula for an arbitrary surface point in any directions during mining operation is highlighted.

  3. 基于齿面摩擦的人字齿轮副动力学特性分析%Dynamic characteristics analysis of double helical gear pairs considering teeth surface sliding friction

    Institute of Scientific and Technical Information of China (English)

    陆凤霞; 王浩飞; 朱如鹏; 鲍和云; 姜慧卉


    建立了考虑齿面摩擦、时变啮合刚度、齿侧间隙和综合传递误差的16自由度人字齿轮副三维空间弯曲-扭转-轴向耦合的非线性动力学模型,应用牛顿第二运动定律,建立系统的振动微分方程。根据人字齿轮副的啮合特性,通过数值积分方法分析了轮齿的啮合力,时变摩擦力和摩擦力矩,并采用基于弹流润滑理论(EHL)的摩擦因数计算模型计算了齿面摩擦因数。为了分析齿面摩擦对人字齿轮副周期振动及分岔特性的影响规律,比较了有无考虑齿面摩擦时系统的周期振动时域响应、振动位移分岔图及最大 lyapunov 指数变化图。结果表明,齿面摩擦导致齿轮副垂直于啮合平面方向的振动位移加剧,且减弱了齿轮副沿啮合线方向的振动。同时,齿面摩擦的存在使得系统提前进入混沌,且抑制了系统的混沌运动。文章的研究成果有助于进一步认识齿面摩擦对人字齿轮传动周期振动及非线性振动特性的影响,为人字齿轮传动设计提供技术依据。%A three-dimensional nonlinear dynamic model of a double helical gear pair with 16-DOF was established taking teeth surface sliding friction,time-varying meshing stiffness,gear backlashes and gear mesh errors into account. The dynamic equations of the system were established with Newton Second Law.The tooth meshing force,tooth friction and friction torque were calculated with numerical integration according to the meshing characteristics of the double helical gear pair.The teeth surface friction coefficient was calculated with the model based on EHL.The effects of teeth surface friction on the dynamic behaviors of the system were analyzed.The results showed that the teeth surface sliding friction can lead to increase in vibration displacements in the direction perpendicular to the line of action and decrease in vibration along the line of action;the bifurcation of the

  4. Integrability of dynamical systems algebra and analysis

    CERN Document Server

    Zhang, Xiang


    This is the first book to systematically state the fundamental theory of integrability and its development of ordinary differential equations with emphasis on the Darboux theory of integrability and local integrability together with their applications. It summarizes the classical results of Darboux integrability and its modern development together with their related Darboux polynomials and their applications in the reduction of Liouville and elementary integrabilty and in the center—focus problem, the weakened Hilbert 16th problem on algebraic limit cycles and the global dynamical analysis of some realistic models in fields such as physics, mechanics and biology. Although it can be used as a textbook for graduate students in dynamical systems, it is intended as supplementary reading for graduate students from mathematics, physics, mechanics and engineering in courses related to the qualitative theory, bifurcation theory and the theory of integrability of dynamical systems.

  5. Cluster analysis of word frequency dynamics (United States)

    Maslennikova, Yu S.; Bochkarev, V. V.; Belashova, I. A.


    This paper describes the analysis and modelling of word usage frequency time series. During one of previous studies, an assumption was put forward that all word usage frequencies have uniform dynamics approaching the shape of a Gaussian function. This assumption can be checked using the frequency dictionaries of the Google Books Ngram database. This database includes 5.2 million books published between 1500 and 2008. The corpus contains over 500 billion words in American English, British English, French, German, Spanish, Russian, Hebrew, and Chinese. We clustered time series of word usage frequencies using a Kohonen neural network. The similarity between input vectors was estimated using several algorithms. As a result of the neural network training procedure, more than ten different forms of time series were found. They describe the dynamics of word usage frequencies from birth to death of individual words. Different groups of word forms were found to have different dynamics of word usage frequency variations.

  6. Surface analysis of stone and bone tools (United States)

    Stemp, W. James; Watson, Adam S.; Evans, Adrian A.


    Microwear (use-wear) analysis is a powerful method for identifying tool use that archaeologists and anthropologists employ to determine the activities undertaken by both humans and their hominin ancestors. Knowledge of tool use allows for more accurate and detailed reconstructions of past behavior, particularly in relation to subsistence practices, economic activities, conflict and ritual. It can also be used to document changes in these activities over time, in different locations, and by different members of society, in terms of gender and status, for example. Both stone and bone tools have been analyzed using a variety of techniques that focus on the observation, documentation and interpretation of wear traces. Traditionally, microwear analysis relied on the qualitative assessment of wear features using microscopes and often included comparisons between replicated tools used experimentally and the recovered artifacts, as well as functional analogies dependent upon modern implements and those used by indigenous peoples from various places around the world. Determination of tool use has also relied on the recovery and analysis of both organic and inorganic residues of past worked materials that survived in and on artifact surfaces. To determine tool use and better understand the mechanics of wear formation, particularly on stone and bone, archaeologists and anthropologists have increasingly turned to surface metrology and tribology to assist them in their research. This paper provides a history of the development of traditional microwear analysis in archaeology and anthropology and also explores the introduction and adoption of more modern methods and technologies for documenting and identifying wear on stone and bone tools, specifically those developed for the engineering sciences to study surface structures on micro- and nanoscales. The current state of microwear analysis is discussed as are the future directions in the study of microwear on stone and bone tools.

  7. The estimation of dynamic contact angle of ultra-hydrophobic surfaces using inclined surface and impinging droplet methods

    Directory of Open Access Journals (Sweden)

    Jasikova Darina


    Full Text Available The development of industrial technology also brings with optimized surface quality, particularly where there is contact with food. Application ultra-hydrophobic surface significantly reduces the growth of bacteria and facilitates cleaning processes. Testing and evaluation of surface quality are used two methods: impinging droplet and inclined surface method optimized with high speed shadowgraphy, which give information about dynamic contact angle. This article presents the results of research into new methods of measuring ultra-hydrophobic patented technology.

  8. Dynamical analysis of sea-breeze hodograph rotation in Sardinia

    Directory of Open Access Journals (Sweden)

    N. Moisseeva


    Full Text Available This study investigates the diurnal evolution of sea-breeze rotation over an island in the mid-latitudes. Earlier research on sea-breezes in Sardinia shows that the onshore winds around various coasts of the island exhibit both the theoretically predicted clockwise rotation as well as seemingly anomalous anti-clockwise rotation. A non-hydrostatic fully compressible numerical model (WRF is used to simulate wind fields on and around the island on previously-studied sea-breeze days and is shown to accurately capture the circulation on all coasts. Diurnal rotation of wind is examined and patterns of clockwise and anti-clockwise rotation are identified. A dynamical analysis is performed by extracting individual forcing terms from the horizontal momentum equations. Analysis of several regions around the island shows that the direction of rotation is a result of a complex interaction between near-surface and synoptic pressure gradient, Coriolis and advection forcings. An idealized simulation is performed over an artificial island with dramatically simplified topography, yet similar dimensions and latitude to Sardinia. Dynamical analysis of the idealized case reveals a rather different pattern of hodograph rotation to the real Sardinia, yet similar underlying dynamics. The research provides new insights into the dynamics underlying sea-breeze hodograph rotation, especially in coastal zones with complex topography and/or coastline.

  9. Coupled Flow-Structure-Biochemistry Simulations of Dynamic Systems of Blood Cells Using an Adaptive Surface Tracking Method


    Hoskins, M.H.; Kunz, R.F.; Bistline, J.E.; Dong, C.


    A method for the computation of low Reynolds number dynamic blood cell systems is presented. The specific system of interest here is interaction between cancer cells and white blood cells in an experimental flow system. Fluid dynamics, structural mechanics, six-degree-of freedom motion control and surface biochemistry analysis components are coupled in the context of adaptive octree-based grid generation. Analytical and numerical verification of the quasi-steady assumption for the fluid mecha...

  10. RAVEN, a New Software for Dynamic Risk Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cristian Rabiti; Andrea Alfonsi; Joshua Cogliati; Diego Mandelli; Robert Kinoshita


    RAVEN is a generic software driver to perform parametric and probabilistic analysis of code simulating complex systems. Initially developed to provide dynamic risk analysis capabilities to the RELAP-7 code [1] is currently being generalized with the addition of Application Programming Interfaces (APIs). These interfaces are used to extend RAVEN capabilities to any software as long as all the parameters that need to be perturbed are accessible by inputs files or directly via python interfaces. RAVEN is capable to investigate the system response probing the input space using Monte Carlo, grid strategies, or Latin Hyper Cube schemes, but its strength is its focus toward system feature discovery like limit surfaces separating regions of the input space leading to system failure using dynamic supervised learning techniques. The paper will present an overview of the software capabilities and their implementation schemes followed by same application examples.

  11. Fuzzy Dynamic Analysis of a 2D Frame

    Directory of Open Access Journals (Sweden)

    P. Štemberk


    Full Text Available This paper deals with the dynamic analysis of a 2D concrete frame with uncertainties which are an integral part of any real structure. The uncertainties can be modeled by a stochastic or a fuzzy approach. The fuzzy approach is used and the influence of uncertain input data (modulus of elasticity and density on output data is studied. Fuzzy numbers are represented by ?-cuts. In order to reduce the volume of computation in the fuzzy approach, the response surface function concept is applied. In this way the natural frequencies and mode shapes described by fuzzy numbers are obtained. The results of fuzzy dynamic analysis can be used, e.g., in seismic design of structures based on the response spectrum. 

  12. Dynamic analysis and assessment for sustainable development

    Institute of Scientific and Technical Information of China (English)


    The assessment of sustainable development is crucial for constituting sustainable development strategies. Assessment methods that exist so far usually only use an indicator system for making sustainable judgement. These indicators rarely reflect dynamic characteristics. However, sustainable development is influenced by changes in the social-economic system and in the eco-environmental system at different times. Besides the spatial character, sustainable development has a temporal character that can not be neglected; therefore the research system should also be dynamic. This paper focuses on this dynamic trait, so that the assessment results obtained provide more information for judgements in decision-making processes. Firstly the dynamic characteristics of sustainable development are analyzed, which point to a track of sustainable development that is an upward undulating curve. According to the dynamic character and the development rules of a social, economic and ecological system, a flexible assessment approach that is based on tendency analysis, restrictive conditions and a feedback system is then proposed for sustainable development.

  13. He atom surface spectroscopy: Surface lattice dynamics of insulators, metals and metal overlayers

    Energy Technology Data Exchange (ETDEWEB)


    During the first three years of this grant (1985--1988) the effort was devoted to the construction of a state-of-the-art He atom scattering (HAS) instrument which would be capable of determining the structure and dynamics of metallic, semiconductor or insulator crystal surfaces. The second three year grant period (1988--1991) has been dedicated to measurements. The construction of the instrument went better than proposed; it was within budget, finished in the proposed time and of better sensitivity and resolution than originally planned. The same success has been carried over to the measurement phase where the concentration has been on studies of insulator surfaces, as discussed in this paper. The experiments of the past three years have focused primarily on the alkali halides with a more recent shift to metal oxide crystal surfaces. Both elastic and inelastic scattering experiments were carried out on LiF, NaI, NaCl, RbCl, KBr, RbBr, RbI, CsF, CsI and with some preliminary work on NiO and MgO.

  14. Analysis of the influence of tool dynamics in diamond turning

    Energy Technology Data Exchange (ETDEWEB)

    Fawcett, S.C.; Luttrell, D.E.; Keltie, R.F.


    This report describes the progress in defining the role of machine and interface dynamics on the surface finish in diamond turning. It contains a review of literature from conventional and diamond machining processes relating tool dynamics, material interactions and tool wear to surface finish. Data from experimental measurements of tool/work piece interface dynamics are presented as well as machine dynamics for the DTM at the Center.

  15. Surface sediment dynamics along the shore of Hammamet Gulf (Tunisia, southern Mediterranean) (United States)

    Atoui, Abdelfattah; Brahim, Mouldi; Sammari, Chérif; Aleya, Lotfi


    In the summer of 2015 the authors analysed grain size and surface sediment composition through high spatial resolution from samples taken at 53 stations along the Hammamet coast (southern Mediterranean Sea). The Acoustic Doppler Current Profiler deployed in this study showed that the surface current flows toward the north-east, parallel to the coast at a maximum speed along the main axis of about 5.9 cm s-1. Near the bottom the current flows toward the north-west at a maximum speed of 2.2 cm s-1. The tide plays a relatively small role in water circulation in Hammamet Gulf. Spatial distribution of particle size, along with speed and current direction analysis, furnish an overview of the gulf's sediment dynamics and transport. The sands are categorised as moderately sorted, well sorted or very well sorted. Particle size distribution of surface sediments from the coast to a depth of 25 m offshore shows a decreasing trend in the offshore direction. Mineralogical analysis shows that Hammamet's coastal sands are composed of two main minerals: quartz and calcite. Magnesium calcite and aragonite are present in small amounts. Sediment dynamics along the Hammamet Gulf shores are complex, being subject to the effect of swells and secondarily of tides. We encourage the implementation of responsible environmental management procedures in order to help preserve the site.

  16. Contact angle dynamics in droplets impacting on flat surfaces with different wetting characteristics (United States)

    Bayer, Ilker S.; Megaridis, Constantine M.


    no universal expression to relate contact angle with contact line speed. Finally, analysis of the spreading dynamics on the non-wettable surfaces shows that it conforms to the Cassie-Baxter regime (only partial liquid/solid contact is maintained). The present results offer guidance for numerical or analytical studies, which require careful attention to the implementation of boundary conditions at the moving contact line, including the need to specify the dependence of contact angle on contact line speed.

  17. Exploring the free energy surface using ab initio molecular dynamics (United States)

    Samanta, Amit; Morales, Miguel A.; Schwegler, Eric


    Efficient exploration of configuration space and identification of metastable structures in condensed phase systems are challenging from both computational and algorithmic perspectives. In this regard, schemes that utilize a set of pre-defined order parameters to sample the relevant parts of the configuration space [L. Maragliano and E. Vanden-Eijnden, Chem. Phys. Lett. 426, 168 (2006); J. B. Abrams and M. E. Tuckerman, J. Phys. Chem. B 112, 15742 (2008)] have proved useful. Here, we demonstrate how these order-parameter aided temperature accelerated sampling schemes can be used within the Born-Oppenheimer and the Car-Parrinello frameworks of ab initio molecular dynamics to efficiently and systematically explore free energy surfaces, and search for metastable states and reaction pathways. We have used these methods to identify the metastable structures and reaction pathways in SiO2 and Ti. In addition, we have used the string method [W. E, W. Ren, and E. Vanden-Eijnden, Phys. Rev. B 66, 052301 (2002); L. Maragliano et al., J. Chem. Phys. 125, 024106 (2006)] within the density functional theory to study the melting pathways in the high pressure cotunnite phase of SiO2 and the hexagonal closed packed to face centered cubic phase transition in Ti.

  18. Management Strategies and Dynamic Financial Analysis


    Eling, Martin; Parnitzke, Thomas; Schmeiser, Hato


    Dynamic financial analysis (DFA) has become an important tool in analyzing the financial situation of insurance companies. Constant development and documentation of DFA tools has occurred during the last years. However, several questions concerning the implementation of DFA systems have not been answered in the DFA literature to date. One such important issue is the consideration of management strategies in the DFA context. The aim of this paper is to study the effects of different management...

  19. Validation of a laboratory method for evaluating dynamic properties of reconstructed equine racetrack surfaces.

    Directory of Open Access Journals (Sweden)

    Jacob J Setterbo

    Full Text Available BACKGROUND: Racetrack surface is a risk factor for racehorse injuries and fatalities. Current research indicates that race surface mechanical properties may be influenced by material composition, moisture content, temperature, and maintenance. Race surface mechanical testing in a controlled laboratory setting would allow for objective evaluation of dynamic properties of surface and factors that affect surface behavior. OBJECTIVE: To develop a method for reconstruction of race surfaces in the laboratory and validate the method by comparison with racetrack measurements of dynamic surface properties. METHODS: Track-testing device (TTD impact tests were conducted to simulate equine hoof impact on dirt and synthetic race surfaces; tests were performed both in situ (racetrack and using laboratory reconstructions of harvested surface materials. Clegg Hammer in situ measurements were used to guide surface reconstruction in the laboratory. Dynamic surface properties were compared between in situ and laboratory settings. Relationships between racetrack TTD and Clegg Hammer measurements were analyzed using stepwise multiple linear regression. RESULTS: Most dynamic surface property setting differences (racetrack-laboratory were small relative to surface material type differences (dirt-synthetic. Clegg Hammer measurements were more strongly correlated with TTD measurements on the synthetic surface than the dirt surface. On the dirt surface, Clegg Hammer decelerations were negatively correlated with TTD forces. CONCLUSIONS: Laboratory reconstruction of racetrack surfaces guided by Clegg Hammer measurements yielded TTD impact measurements similar to in situ values. The negative correlation between TTD and Clegg Hammer measurements confirms the importance of instrument mass when drawing conclusions from testing results. Lighter impact devices may be less appropriate for assessing dynamic surface properties compared to testing equipment designed to simulate hoof

  20. Solid Launcher Dynamical Analysis and Autopilot Design

    Directory of Open Access Journals (Sweden)

    Ping Sun


    Full Text Available The dynamics of a small solid launch vehicle has been investigated. This launcher consists of a liquid upper stage and three fundamental solid rocket boosters aligned in series. During the ascent flight phase, lateral jets and grid fins are adopted by the flight control system to stable the attitude of the launcher. The launcher is a slender and aerodynamically unstable vehicle with sloshing tanks. A complete set of six-degrees-of-freedom dynamic models of the launcher, incorporation its rigid body, aerodynamics, gravity, sloshing, mass change, actuator, and elastic body, is developed. Dynamic analysis results of the structural modes and the bifurcation locus are calculated on the basis of the presented models. This complete set of dynamic models is used in flight control system design. A methodology for employing numerical optimization to develop the attitude filters is presented. The design objectives include attitude tracking accuracy and robust stability with respect to rigid body dynamics, propellant slosh, and flex. Later a control approach is presented for flight control system of the launcher using both State Dependent Riccati Equation (SDRE method and Fast Output Sampling (FOS technique. The dynamics and kinematics for attitude stable problem are of typical nonlinear character. SDRE technique has been well applied to this kind of highly nonlinear control problems. But in practice the system states needed in the SDRE method are sometimes difficult to obtain. FOS method, which makes use of only the output samples, is combined with SDRE to accommodate the incomplete system state information. Thus, the control approach is more practical and easy to implement. The resulting autopilot can provide stable control systems for the vehicle.

  1. Deformation analysis of optical flat surface with finite element method (United States)

    Fu, Pengqiang; Ren, Boyuan; Wang, Yiwen; Zhang, Dewei; Zhang, Longjiang; Su, Xing


    Proposing a new method for testing the ultra-precision aerostatic spindle motion accuracy based on analyzing the online real-time dynamic interference image. Optical flat crystal as the testing standard will be installed at the end of the ultra precision aerostatic spindle and will motion along with the spindle. On the other end of the spindle, the tool will be installed for online processing. The image data of optical flat crystal collected by the high-precision dynamic interferometer will be processed for analyzing the spindle error. For collecting higher accuracy image data, the installation way of optical flat crystal is one of the key technologies. Base on this, the effects of the clamping means on the surface accuracy of optical flat crystal is studied. At first, the finite element model of the optical flat crystal`s clamping structure were established. Secondly, the influence of the material of the supporting annulus, preload lateral clamping and spindle speed on the surface accuracy of optical flat crystal had been analyzed. At last, the improved and optimized structure of the optical flat crystal has been presented. As the analysis results shown, the RMS value of reference surface is 9.47nm and the deformation values of the central region is 0.17nm which satisfies the requirement of surface accuracy and installation of optical flat crystal. It has a very important theoretical and practical significance to establish spindle online testing system and research rotary error generating mechanism of ultra-precision spindle to improve surface accuracy of ultra-precision machining.

  2. Super-resolution restoration applied to the characterisation of dynamic surface changes on the Martian surface (United States)

    Tao, Yu; Muller, Jan-Peter


    Higher spatial resolution imaging data is always desirable to the international community of planetary scientists interested in improving understanding of surface formation processes. We have previously developed a novel Super-resolution restoration (SRR) technique using Gotcha sub-pixel matching [Shin & Muller, PR, 2012], orthorectification, segmentation, and 4th order PDE-TV, called GPT SRR [Tao & Muller, PSS, 2016]. This technique is able to restore 5cm-12.5cm near rover scale images (Navcam at a range of ≥5m) from multi-angle repeat-pass 25cm resolution MRO HiRISE images [Tao & Muller, ISPRS, 2016].We have successfully applied the GPT-SRR to the MER and MSL missions (, as well as the alleged site of the Beagle-2 spacecraft ( In this work, we further apply GPT-SRR on areas with known dynamic changes, including Recurring Slope Lineae (RSL), Gullies, and Polar Dune Flows. We restore static surface and meanwhile track the dynamic features to characterise the "change", including directions and speed of the changes. We also demonstrate that such repeat images can be used to image the MER-A rover stuck in the sands.AcknowledgementsThe research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under iMars grant agreement no. 607379 as well as partial funding from the STFC "MSSL Consolidated Grant" ST/K000977/1.

  3. Analysis of cell surface antigens by Surface Plasmon Resonance imaging

    NARCIS (Netherlands)

    Stojanovic, I.; Schasfoort, R.B.M.; Terstappen, L.W.M.M.


    Surface Plasmon Resonance (SPR) is most commonly used to measure bio-molecular interactions. SPR is used significantly less frequent for measuring whole cell interactions. Here we introduce a method to measure whole cells label free using the specific binding of cell surface antigens expressed on th

  4. Analysis of cell surface antigens by Surface Plasmon Resonance imaging

    NARCIS (Netherlands)

    Stojanovic, Ivan; Schasfoort, Richardus B.M.; Terstappen, Leonardus Wendelinus Mathias Marie


    Surface Plasmon Resonance (SPR) is most commonly used to measure bio-molecular interactions. SPR is used significantly less frequent for measuring whole cell interactions. Here we introduce a method to measure whole cells label free using the specific binding of cell surface antigens expressed on th

  5. Dynamic Analysis of The Intelligent Sprayer Boom

    DEFF Research Database (Denmark)

    Wiggers, Sine Leergaard; Maagaard, Jørgen; Terp, Christian Istjord

    and not the surroundings. However this requires that the boom movements are predictable and based on data from field tests. At field tests a first version of the newly developed camera system was tested in 2010. At the field test it was found that the vertical boom movements where too big for the camera weed prediction...... system to work properly. At the University of Southern Denmark (SDU) a patent for an active damping system of the sprayer boom has been obtained. The subject of this paper is analysis of the dynamics of the Sprayer boom. The analysis is based on a Multibody Dynamics model of the sprayer boom and is made...... in Matlab. The model is made in order to analyse the boom movements. The purpose of the model is to support the development of the patented active damping system for the sprayer boom. The Multibody Dynamics model has been made based on data retrieved from a CAD model and a Finite Element model...

  6. Structural dynamic analysis of composite beams (United States)

    Suresh, J. K.; Venkatesan, C.; Ramamurti, V.


    In the treatment of the structural dynamic problem of composite materials, two alternate types of formulations, based on the elastic modulus and compliance quantities, exist in the literature. The definitions of the various rigidities are observed to differ in these two approaches. Following these two types of formulation, the structural dynamic characteristics of a composite beam are analyzed. The results of the analysis are compared with those available in the literature. Based on the comparison, the influence of the warping function in defining the coupling terms in the modulus approach and also on the natural frequencies of the beam has been identified. It is found from the analysis that, in certain cases, the difference between the results of the two approaches is appreciable. These differences may be attributed to the constraints imposed on the deformation and flexibility of the beam by the choice of the description of the warping behaviour. Finally, the influence of material properties on the structural dynamic characteristics of the beam is studied for different composites for various angles of orthotropy.

  7. Evaluating road surface conditions using dynamic tire pressure sensor (United States)

    Zhao, Yubo; Wu, H. Felix; McDaniel, J. Gregory; Wang, Ming L.


    In order to best prioritize road maintenance, the level of deterioration must be known for all roads in a city's network. Pavement Condition Index (PCI) and International Roughness Index (IRI) are two standard methods for obtaining this information. However, IRI is substantially easier to measure. Significant time and money could be saved if a method were developed to estimate PCI from IRI. This research introduces a new method to estimate IRI and correlate IRI with PCI. A vehicle-mounted dynamic tire pressure sensor (DTPS) system is used. The DTPS measures the signals generated from the tire/road interaction while driving. The tire/road interaction excites surface waves that travel through the road. DTPS, which is mounted on the tire's valve stem, measures tire/road interaction by analyzing the pressure change inside the tire due to the road vibration, road geometry and tire wall vibration. The road conditions are sensible to sensors in a similar way to human beings in a car. When driving on a smooth road, tire pressure stays almost constant and there are minimal changes in the DTPS data. When driving on a rough road, DTPS data changes drastically. IRI is estimated from the reconstructed road profile using DTPS data. In order to correlate IRI with PCI, field tests were conducted on roads with known PCI values in the city of Brockton, MA. Results show a high correlation between the estimated IRI values and the known PCI values, which suggests that DTPS-based IRI can provide accurate predictions of PCI.

  8. Conformational Dynamics and Antigenicity in the Disordered Malaria Antigen Merozoite Surface Protein 2 (United States)

    Andrew, Dean; Krishnarjuna, Bankala; Nováček, Jiří; Žídek, Lukáš; Sklenář, Vladimír; Richards, Jack S.; Beeson, James G.; Anders, Robin F.; Norton, Raymond S.


    Merozoite surface protein 2 (MSP2) of Plasmodium falciparum is an abundant, intrinsically disordered protein that is GPI-anchored to the surface of the invasive blood stage of the malaria parasite. Recombinant MSP2 has been trialled as a component of a malaria vaccine, and is one of several disordered proteins that are candidates for inclusion in vaccines for malaria and other diseases. Nonetheless, little is known about the implications of protein disorder for the development of an effective antibody response. We have therefore undertaken a detailed analysis of the conformational dynamics of the two allelic forms of MSP2 (3D7 and FC27) using NMR spectroscopy. Chemical shifts and NMR relaxation data indicate that conformational and dynamic properties of the N- and C-terminal conserved regions in the two forms of MSP2 are essentially identical, but significant variation exists between and within the central variable regions. We observe a strong relationship between the conformational dynamics and the antigenicity of MSP2, as assessed with antisera to recombinant MSP2. Regions of increased conformational order in MSP2, including those in the conserved regions, are more strongly antigenic, while the most flexible regions are minimally antigenic. This suggests that modifications that increase conformational order may offer a means to tune the antigenicity of MSP2 and other disordered antigens, with implications for vaccine design. PMID:25742002

  9. Conformational dynamics and antigenicity in the disordered malaria antigen merozoite surface protein 2.

    Directory of Open Access Journals (Sweden)

    Christopher A MacRaild

    Full Text Available Merozoite surface protein 2 (MSP2 of Plasmodium falciparum is an abundant, intrinsically disordered protein that is GPI-anchored to the surface of the invasive blood stage of the malaria parasite. Recombinant MSP2 has been trialled as a component of a malaria vaccine, and is one of several disordered proteins that are candidates for inclusion in vaccines for malaria and other diseases. Nonetheless, little is known about the implications of protein disorder for the development of an effective antibody response. We have therefore undertaken a detailed analysis of the conformational dynamics of the two allelic forms of MSP2 (3D7 and FC27 using NMR spectroscopy. Chemical shifts and NMR relaxation data indicate that conformational and dynamic properties of the N- and C-terminal conserved regions in the two forms of MSP2 are essentially identical, but significant variation exists between and within the central variable regions. We observe a strong relationship between the conformational dynamics and the antigenicity of MSP2, as assessed with antisera to recombinant MSP2. Regions of increased conformational order in MSP2, including those in the conserved regions, are more strongly antigenic, while the most flexible regions are minimally antigenic. This suggests that modifications that increase conformational order may offer a means to tune the antigenicity of MSP2 and other disordered antigens, with implications for vaccine design.

  10. Analysis of static and dynamic pile-soil-jacket behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Azadi, Mohammad Reza Emami


    In the offshore industry, recent extreme storms, severe earthquakes and subsidence of the foundation of jacket platforms have shown that new models and methods must take into account the jacket- pile-soil foundation interaction as well as the non-linear dynamic performance/loading effects. This thesis begins with a review of the state of art pile-soil interaction model, recognizing that most existing pile-soil models have been established based on large diameter pile tests on specific sites. The need for site independent and mechanistic pile-soil interaction models led to the development of new (t-z) and (p-y) disk models. These are validated using the available database from recent large diameter pile tests in the North Sea and Gulf of Mexico. The established static disk models are applied for non-linear static analysis of the jacket-pile-soil system under extreme wave loading. Dynamic pile-soil interaction is studied and a new disk-cone model is developed for the non-linear and non-homogeneous soils. This model is applied to both surface and embedded disks in a soil layer with non-linear properties. Simplified non-linear as well as more complex analysis methods are used to study the dynamic response of the jacket platform under extreme sea and seismic loading. Ductility spectra analysis is introduced and used to study the dynamic performance of the jacket systems near collapse. Case studies are used to illustrate the effects of structural, foundation failure characteristics as well as dynamic loading effects on the overall performance of the jacket-pile-soil systems near ultimate collapse. 175 refs., 429 figs., 70 tabs.

  11. Microscopic Receding Contact Line Dynamics on Pillar and Irregular Superhydrophobic Surfaces (United States)

    Yeong, Yong Han; Milionis, Athanasios; Loth, Eric; Bayer, Ilker S.


    Receding angles have been shown to have great significance when designing a superhydrophobic surface for applications involving self-cleaning. Although apparent receding angles under dynamic conditions have been well studied, the microscopic receding contact line dynamics are not well understood. Therefore, experiments were performed to measure these dynamics on textured square pillar and irregular superhydrophobic surfaces at micron length scales and at micro-second temporal scales. Results revealed a consistent “slide-snap” motion of the microscopic receding line as compared to the “stick-slip” dynamics reported in previous studies. Interface angles between 40–60° were measured for the pre-snap receding lines on all pillar surfaces. Similar “slide-snap” dynamics were also observed on an irregular nanocomposite surface. However, the sharper features of the surface asperities resulted in a higher pre-snap receding line interface angle (~90°). PMID:25670630

  12. 2011 Dynamics at Surfaces Gordon Research Conference (August 7-12, 2011, Salve Regina University, Newport, Rhode Island)

    Energy Technology Data Exchange (ETDEWEB)

    Greg Sitz


    The 2011 Gordon Conference on Dynamics at Surfaces is the 32nd anniversary of a meeting held every two years that is attended by leading researchers in the area of experimental and theoretical dynamics at liquid and solid surfaces. The conference focuses on the dynamics of the interaction of molecules with either liquid or solid surfaces, the dynamics of the outermost layer of liquid and solid surfaces and the dynamics at the liquid-solid interface. Specific topics that are featured include state-to-state scattering dynamics, chemical reaction dynamics, non-adiabatic effects in reactive and inelastic scattering of molecules from surfaces, single molecule dynamics at surfaces, surface photochemistry, ultrafast dynamics at surfaces, and dynamics at water interfaces. The conference brings together investigators from a variety of scientific disciplines including chemistry, physics, materials science, geology, biophysics, and astronomy.

  13. Dynamic Analysis of Power System Voltage Stability. (United States)

    Gebreselassie, Assefa

    This thesis investigates the effects of loads and voltage regulators on the dynamic voltage stability of power systems. The analysis focuses on the interactions of machine flux dynamics with loads and voltage control devices. The results are based on eigenvalue analysis of the linearized models and time simulation of the nonlinear models, using models from the Power System Toolbox, a Matlab -based package for the simulation and small signal analysis of nonlinear power systems. The voltage stability analysis results are developed using a single machine single load system with typical machine and network parameters and the NPCC 10-machine system. Dynamic models for generators, exciters and loads are used. The generator is modeled with a pair of poles and one damper circuit in both the d-axis and the q-axis. Saturation effects are included in the model. The IEEE Type DC1 DC commutator exciter model is used for all the exciters. Five different types of loads: constant impedance, constant current, constant power, a first order induction motor model (slip model) and a third order induction motor model (slip-flux model) are considered. The modes of instability and the stability limits of the different representation of loads are examined for two different operating modes of the exciters. The first, when all the exciters are on automatic control and the second when some exciters are on manual control. Modal participation factors are used to determine the characteristics of the critical modes. The characteristics of the unstable modes are verified by performing time simulation of the nonlinear models. Oscillatory and non-oscillatory instabilities are experienced by load buses when all the exciters are on automatic control and some exciters are on manual control respectively, for loads which are predominantly constant power and induction motors. It is concluded that the mode of instability does not depend on the type of loads but on the operating condition of the exciters

  14. A dynamic tester to evaluate the thermal and moisture behaviour of the surface of textiles. (United States)

    Li, Wenbin; Xu, Weilin; Wang, Hao; Wang, Xin


    The thermal and moisture behaviour of the microclimate of textiles is crucial in determining the physiological comfort of apparel, but it has not been investigated sufficiently due to the lack of particular evaluation techniques. Based on sensing, temperature controlling and wireless communicating technology, a specially designed tester has been developed in this study to evaluate the thermal and moisture behaviour of the surface of textiles in moving status. A temperature acquisition system and a temperature controllable hotplate have been established to test temperature and simulate the heat of human body, respectively. Relative humidity of the surface of fabric in the dynamic process has been successfully tested through sensing. Meanwhile, wireless communication technology was applied to transport the acquired data of temperature and humidity to computer for further processing. Continuous power supply was achieved by intensive contact between an elastic copper plate and copper ring on the rotating shaft. This tester provides the platform to evaluate the thermal and moisture behaviour of textiles. It enables users to conduct a dynamic analysis on the temperature and humidity together with the thermal and moisture transport behaviour of the surface of fabric in moving condition. Development of this tester opens the door of investigation on the micro-climate of textiles in real time service, and eventually benefits the understanding of the sensation comfort and wellbeing of apparel wearers.

  15. Statistical Modification Analysis of Helical Planetary Gears based on Response Surface Method and Monte Carlo Simulation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jun; GUO Fan


    Tooth modification technique is widely used in gear industry to improve the meshing performance of gearings. However, few of the present studies on tooth modification considers the influence of inevitable random errors on gear modification effects. In order to investigate the uncertainties of tooth modification amount variations on system’s dynamic behaviors of a helical planetary gears, an analytical dynamic model including tooth modification parameters is proposed to carry out a deterministic analysis on the dynamics of a helical planetary gear. The dynamic meshing forces as well as the dynamic transmission errors of the sun-planet 1 gear pair with and without tooth modifications are computed and compared to show the effectiveness of tooth modifications on gear dynamics enhancement. By using response surface method, a fitted regression model for the dynamic transmission error(DTE) fluctuations is established to quantify the relationship between modification amounts and DTE fluctuations. By shifting the inevitable random errors arousing from manufacturing and installing process to tooth modification amount variations, a statistical tooth modification model is developed and a methodology combining Monte Carlo simulation and response surface method is presented for uncertainty analysis of tooth modifications. The uncertainly analysis reveals that the system’s dynamic behaviors do not obey the normal distribution rule even though the design variables are normally distributed. In addition, a deterministic modification amount will not definitely achieve an optimal result for both static and dynamic transmission error fluctuation reduction simultaneously.

  16. Surface effects of Rayleigh-Taylor instability: Feedback between drip dynamics and crustal deformation (United States)

    Wang, H.; Currie, C. A.


    For many continental plates, significant vertical motion of Earth's surface has occurred within the plate interior which can not be clearly linked to plate tectonic processes. For example, several craton areas exhibit anomalous basins, e.g., the Williston basin, Illinois basin and Michigan basin in North America. In orogenic belts, there are examples of local areas (~100 km wide) where the surface has undergone subsidence and then uplift of >1 km, such as the Arizaro basin (central Andes) and Wallowa Mountains (northeast Oregon). Given the near-circular shape of the surface deflection, it has been suggested that they may be related to gravitational foundering of dense lower lithosphere, i.e., Rayleigh-Taylor instability (or 'RT drip'). In order to investigate the surface effects of an RT drip, we use two methods: (1) 2D thermal-mechanical numerical models to study links between drip dynamics and crustal deformation and (2) a theoretical analysis of the crustal deformation induced by stresses from the RT drip. The numerical models consist of a continental lithosphere overlying a sublithospheric mantle. A high-density material is placed in the mantle lithosphere or lower crust to initiate a drip event, and a stress-free boundary condition allows the development of surface topography during model evolution. A reasonable range of crustal viscosity and thickness is tested to study the RT drip in different tectonic settings, from a cold craton to a hot orogen with thick crust. Four types of surface deflection are observed: (1) subsidence; (2) subsidence followed by uplift; (3) uplift; and (4) little deflection. When the crust is relatively strong or thin, the surface has a negative elevation, forming a basin. For a weak or thick crust, the RT drip induces crustal flow, leading to crustal thickening that can uplift the surface; an extremely weak crust decouples the surface and RT drip and the surface is unperturbed. Our theoretical analysis considers the surface

  17. Constant mean curvature surfaces via integrable dynamical system

    CERN Document Server

    Konopelchenko, B G


    It is shown that the equation which describes constant mean curvature surface via the generalized Weierstrass-Enneper inducing has Hamiltonian form. Its simplest finite-dimensional reduction has two degrees of freedom, integrable and its trajectories correspond to well-known Delaunay and do Carmo-Dajzcer surfaces (i.e., helicoidal constant mean curvature surfaces).

  18. Electron dynamics at surfaces induced by highly charged ions

    NARCIS (Netherlands)

    Morgenstern, R


    Energy spectra of electrons resulting from hydrogen-like multiply charged N6+ and Q(7+) ions on various surfaces are presented and discussed. Por metal target surfaces thr formation and decay of hollow atoms during the approach towards the surface is rather well understood in terms of the classical

  19. Electron dynamics at surfaces induced by highly charged ions

    NARCIS (Netherlands)

    Morgenstern, R

    Energy spectra of electrons resulting from hydrogen-like multiply charged N6+ and Q(7+) ions on various surfaces are presented and discussed. Por metal target surfaces thr formation and decay of hollow atoms during the approach towards the surface is rather well understood in terms of the classical

  20. Mapping Carrier Dynamics on Material Surfaces in Space and Time using Scanning Ultrafast Electron Microscopy

    KAUST Repository

    Sun, Jingya


    Selectively capturing the ultrafast dynamics of charge carriers on materials surfaces and at interfaces is crucial to the design of solar cells and optoelectronic devices. Despite extensive research efforts over the past few decades, information and understanding about surface-dynamical processes, including carrier trapping and recombination remains extremely limited. A key challenge is to selectively map such dynamic processes, a capability that is hitherto impractical by time-resolved laser techniques, which are limited by the laser’s relatively large penetration depth and consequently they record mainly bulk information. Such surface dynamics can only be mapped in real space and time by applying four-dimensional (4D) scanning ultrafast electron microscopy (S-UEM), which records snapshots of materials surfaces with nanometer spatial and sub-picosecond temporal resolutions. In this method, the secondary electron (SE) signal emitted from the sample’s surface is extremely sensitive to the surface dynamics and is detected in real time. In several unique applications, we spatially and temporally visualize the SE energy gain and loss, the charge carrier dynamics on the surface of InGaN nanowires and CdSe single crystals and its powder film. We also provide the mechanisms for the observed dynamics, which will be the foundation for future potential applications of S-UEM to a wide range of studies on material surfaces and device interfaces.

  1. Dynamic Deposition of Nanocopper Film on the β-SiCp Surface by Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Hu Ming


    Full Text Available The uniform nanocopper film was deposited on the surface of micron β-SiC particle by magnetron sputtering technology successfully. The surface morphology and phase constitution of the β-SiC particle with nanocopper film were analyzed and dynamic deposition behavior was investigated in detail. The concept of dynamic deposition was put forward to interpret formation mechanism of copper nanofilm on the surface of β-SiC particles.

  2. Surface current dynamics under sea breeze conditions observed by simultaneous HF radar, ADCP and drifter measurements (United States)

    Sentchev, Alexei; Forget, Philippe; Fraunié, Philippe


    Ocean surface boundary layer dynamics off the southern coast of France in the NW Mediterranean is investigated by using velocity observations by high-frequency (HF) radars, surface drifting buoys and a downward-looking drifting acoustic Doppler current profiler (ADCP). The analysis confirms that velocities measured by HF radars correspond to those observed by an ADCP at the effective depth z f = k -1, where k is wavenumber of the radio wave emitted by the radar. The radials provided by the radars were in a very good agreement with in situ measurements, with the relative errors of 1 and 9 % and root mean square (RMS) differences of 0.02 and 0.04 m/s for monostatic and bistatic radar, respectively. The total radar-based velocities appeared to be slightly underestimated in magnitude and somewhat biased in direction. At the end of the survey period, the difference in the surface current direction, based on HF radar and ADCP data, attained 10°. It was demonstrated that the surface boundary layer dynamics cannot be reconstructed successfully without taking into the account velocity variation with depth. A significant misalignment of ˜30° caused by the sea breeze was documented between the HF radar (HFR-derived) surface current and the background current. It was also found that the ocean response to a moderate wind forcing was confined to the 4-m-thick upper layer. The respective Ekman current attained the maximum value of 0.15 m/s, and the current rotation was found to be lagging the wind by approximately 40 min, with the current vector direction being 15-20° to the left of the wind. The range of velocity variability due to wind forcing was found comparable with the magnitude of the background current variability.

  3. Surface Management System Departure Event Data Analysis (United States)

    Monroe, Gilena A.


    This paper presents a data analysis of the Surface Management System (SMS) performance of departure events, including push-back and runway departure events.The paper focuses on the detection performance, or the ability to detect departure events, as well as the prediction performance of SMS. The results detail a modest overall detection performance of push-back events and a significantly high overall detection performance of runway departure events. The overall detection performance of SMS for push-back events is approximately 55%.The overall detection performance of SMS for runway departure events nears 100%. This paper also presents the overall SMS prediction performance for runway departure events as well as the timeliness of the Aircraft Situation Display for Industry data source for SMS predictions.

  4. Dynamic analysis of the Milad Tower (United States)

    Wilhelm, Edwin; Ford, Mitchell; Coelho, Darren; Lawler, Lachlan; Ansourian, Peter; Alonso-Marroquin, Fernando; Tahmasebinia, Faham


    This report involves the modelling of the Milad Tower using the finite element analysis program Strand7. A dynamic analysis was performed on the structure in order to understand the deflections and stresses as a result of earthquake and wind loading. In particular, Linear Static as well as Natural Frequency and Spectral Response solvers were used to determine the behaviour of the structure under loading. The findings of the report highlight that the structure was modelled accurately with the outputs representing realistic values. The report suggests that the design of the beams, columns, slabs and all structural members was sufficient enough to support the tower during maximum loading cases. The governing load case was earthquake loading.

  5. Nondestructive Analysis of Telescope Surfaces and Coatings (United States)

    Scott, Julie; Kintzel, Edward; Strolger, Louis; Wolff, Schuyler


    The Department of Physics and Astronomy at Western Kentucky University has a Large Chamber Scanning Electron Microscope (LCSEM) available for materials analysis. As one of 10 in the world, the capability exists for nondestructive analysis of large samples. Currently we are investigating using the LCSEM to quantify reflectivity and long-term integrity for large segments of optical elements and detectors for ground and space-based environments. Comparisons of reflectance ratios as a function of surface roughness for Al-Coated optical mirrors may be confirmed with the LCSEM. Long-term structural integrity of Al-coated thinned mirror segments at ground-based facilities due to weather (oxidation) and spaced-based high-radiation environments can be investigated. Fatigue behavior of these metallic films from active/adaptive actuation will be simulated using the LCSEM. New research possibilities across a broad multidisciplinary spectrum will be key to the success of the LCSEM facility. These partnerships will lead to the development of new and existing technologies.


    Institute of Scientific and Technical Information of China (English)



    Under certain conditions, starting from the three-dimensional dynamic equations of elastic shells the author gives the justification of dynamic equations of flexural shells by means of themethod of asymptotic analysis.

  7. Analyses of Recent Sediment Surface Dynamic of a Namibian Kalahari Salt Pan Based on Multitemporal Landsat and Hyperspectral Hyperion Data

    Directory of Open Access Journals (Sweden)

    Robert Milewski


    Full Text Available This study combines spaceborne multitemporal and hyperspectral data to analyze the spatial distribution of surface evaporite minerals and changes in a semi-arid depositional environment associated with episodic flooding events, the Omongwa salt pan (Kalahari, Namibia. The dynamic of the surface crust is evaluated by a change-detection approach using the Iterative-reweighted Multivariate Alteration Detection (IR-MAD based on the Landsat archive imagery from 1984 to 2015. The results show that the salt pan is a highly dynamic and heterogeneous landform. A change gradient is observed from very stable pan border to a highly dynamic central pan. On the basis of hyperspectral EO-1 Hyperion images, the current distribution of surface evaporite minerals is characterized using Spectral Mixture Analysis (SMA. Assessment of field and image endmembers revealed that the pan surface can be categorized into three major crust types based on diagnostic absorption features and mineralogical ground truth data. The mineralogical crust types are related to different zones of surface change as well as pan morphology that influences brine flow during the pan inundation and desiccation cycles. These combined information are used to spatially map depositional environments where the more dynamic halite crust concentrates in lower areas although stable gypsum and calcite/sepiolite crusts appear in higher elevated areas.

  8. Dynamic characterization and analysis of space shuttle SRM solid propellant (United States)

    Hufferd, W. L.


    The dynamic response properties of the space shuttle solid rocket moter (TP-H1148) propellant were characterized and the expected limits of propellant variability were established. Dynamic shear modulus tests conducted on six production batches of TP-H1148 at various static and dynamic strain levels over the temperature range from 40 F to 90 F. A heat conduction analysis and dynamic response analysis of the space shuttle solid rocket motor (SRM) were also conducted. The dynamic test results show significant dependence on static and dynamic strain levels and considerable batch-to-batch and within-batch variability. However, the results of the SRM dynamic response analyses clearly demonstrate that the stiffness of the propellant has no consequential on the overall SRM dynamic response. Only the mass of the propellant needs to be considered in the dynamic analysis of the space shuttle SRM.

  9. Analysis of forward and inverse problems in chemical dynamics and spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rabitz, H. [Princeton Univ., NJ (United States)


    The overall scope of this research concerns the development and application of forward and inverse analysis tools for problems in chemical dynamics and chemical kinetics. The chemical dynamics work is specifically associated with relating features in potential surfaces and resultant dynamical behavior. The analogous inverse research aims to provide stable algorithms for extracting potential surfaces from laboratory data. In the case of chemical kinetics, the focus is on the development of systematic means to reduce the complexity of chemical kinetic models. Recent progress in these directions is summarized below.

  10. Examination of surface nucleation during the growth of long alkane crystals by molecular dynamics simulation (United States)

    Bourque, Alexander; Rutledge, Gregory


    Crystal growth from the melt of n-pentacontane (C50) was studied by molecular dynamics simulation using a validated united atom model. By quenching below the melting temperature of C50 (370 K), propagation of the crystal growth front into the C50 melt from a crystalline polyethylene surface was observed. By tracking the location of the midpoint in the orientational order parameter profile between the crystal and melt, crystal growth rates between 0.015-0.040 m/s were observed, for quench depths of 10 to 70 K below the melting point. In this work, surface nucleation is identified with the formation of 2D clusters of crystalline sites within layers parallel to the propagating growth front, by analogy to the formation of 3D clusters in primary, homogeneous nucleation. These surface nucleation events were tracked over several layers and numerous simulations, and a mean first passage time analysis was employed to estimate critical nucleus sizes, induction times and rates for surface nucleation. Based on new insights provided by the detailed molecular trajectories obtained from simulation, the classical theory proposed by Lauritzen and Hoffman is re-examined.

  11. Quantification of surface displacements and electromechanical phenomena via dynamic atomic force microscopy (United States)

    Balke, Nina; Jesse, Stephen; Yu, Pu; Carmichael, Ben; Kalinin, Sergei V.; Tselev, Alexander


    Detection of dynamic surface displacements associated with local changes in material strain provides access to a number of phenomena and material properties. Contact resonance-enhanced methods of atomic force microscopy (AFM) have been shown capable of detecting ˜1-3 pm-level surface displacements, an approach used in techniques such as piezoresponse force microscopy, atomic force acoustic microscopy, and ultrasonic force microscopy. Here, based on an analytical model of AFM cantilever vibrations, we demonstrate a guideline to quantify surface displacements with high accuracy by taking into account the cantilever shape at the first resonant contact mode, depending on the tip-sample contact stiffness. The approach has been experimentally verified and further developed for piezoresponse force microscopy (PFM) using well-defined ferroelectric materials. These results open up a way to accurate and precise measurements of surface displacement as well as piezoelectric constants at the pm-scale with nanometer spatial resolution and will allow avoiding erroneous data interpretations and measurement artifacts. This analysis is directly applicable to all cantilever-resonance-based scanning probe microscopy (SPM) techniques.

  12. Aero-Thermo-Dynamic Mass Analysis (United States)

    Shiba, Kota; Yoshikawa, Genki


    Each gas molecule has its own molecular weight, while such a microscopic characteristic is generally inaccessible, and thus, it is measured indirectly through e.g. ionization in conventional mass analysis. Here, we present a novel approach to the direct measurement of molecular weight through a nanoarchitectonic combination of aerodynamics, thermodynamics, and mechanics, transducing microscopic events into macroscopic phenomena. It is confirmed that this approach can provide molecular weight of virtually any gas or vaporizable liquid sample in real-time without ionization. Demonstrations through analytical calculations, numerical simulations, and experiments verify the validity and versatility of the novel mass analysis realized by a simple setup with a flexible object (e.g. with a bare cantilever and even with a business card) placed in a laminar jet. Owing to its unique and simple working principle, this aero-thermo-dynamic mass analysis (AMA) can be integrated into various analytical devices, production lines, and consumer mobile platforms, opening new chapters in aerodynamics, thermodynamics, mechanics, and mass analysis.

  13. Luminescence labeling and dynamics of growth active crystal surface structures (United States)

    Bullard, Theresa Vivian

    One aspect of the multifaceted proposal by A. G. Cairns-Smith (CS), that imperfect crystals have the capacity to act as primitive genes by transferring the disposition of their imperfections from one crystal to another, is investigated. An experiment was designed in a model crystalline system unrelated to the composition of the pre-biotic earth but suited to a well-defined test. Plates of potassium hydrogen phthalate were studied in order to ascertain whether, according to CS, parallel screw dislocations could serve as an information store with cores akin to punches in an old computer card. Evidence of screw dislocations was obtained from their associated growth hillocks through differential interference contrast microscopy, atomic force microscopy, and luminescence labeling of hillocks in conjunction with confocal laser scanning microscopy. Inheritance was evaluated by the corresponding patterns of luminescence developed in 'daughter' crystals grown from seed in the presence of fluorophores. The dispositions and evolution of growth active hillock patterns were quantified by fractal correlation analysis and statistical analysis. Along the way, we came to realize that transferring information encoded in the disposition of screw dislocations is complicated by several factors that lead to 'mutations' in the information stored in the pattern of defects. These observations forced us to confront the fundamental mechanisms that give rise to screw dislocations. It became clear that inter-hillock correlations play a significant role in the appearance of new dislocations through growth, and cause the overall pattern of hillocks to be non-random. Tendencies for clustering and correlations along various crystallographic directions were observed. Investigations into the dye-crystal surface chemistries and interactions with hillock steps also ensued through a combination of experimental techniques and force-field calculations. It was established that certain dye molecules not

  14. Friction and diffusion dynamics of adsorbates at surfaces

    NARCIS (Netherlands)

    Fusco, C.


    A theoretical study of the motion of adsorbates (e. g. atoms, molecules or clusters) on solid surfaces is presented, with a focus on surface diffusion and atomic-scale friction. These two phenomena are inextricably linked, because when an atomic or molecular adsorbate diffuses, or is pulled, it unav

  15. First principle and ReaxFF molecular dynamics investigations of formaldehyde dissociation on Fe(100) surface. (United States)

    Yamada, Takahiro; Phelps, Donald K; van Duin, Adri C T


    Detailed formaldehyde adsorption and dissociation reactions on Fe(100) surface were studied using first principle calculations and molecular dynamics (MD) simulations, and results were compared with available experimental data. The study includes formaldehyde, formyl radical (HCO), and CO adsorption and dissociation energy calculations on the surface, adsorbate vibrational frequency calculations, density of states analysis of clean and adsorbed surfaces, complete potential energy diagram construction from formaldehyde to atomic carbon (C), hydrogen (H), and oxygen (O), simulation of formaldehyde adsorption and dissociation reaction on the surface using reactive force field, ReaxFF MD, and reaction rate calculations of adsorbates using transition state theory (TST). Formaldehyde and HCO were adsorbed most strongly at the hollow (fourfold) site. Adsorption energies ranged from -22.9 to -33.9 kcal/mol for formaldehyde, and from -44.3 to -66.3 kcal/mol for HCO, depending on adsorption sites and molecular direction. The dissociation energies were investigated for the dissociation paths: formaldehyde → HCO + H, HCO → H + CO, and CO → C + O, and the calculated energies were 11.0, 4.1, and 26.3 kcal/mol, respectively. ReaxFF MD simulation results were compared with experimental surface analysis using high resolution electron energy loss spectrometry (HREELS) and TST based reaction rates. ReaxFF simulation showed less reactivity than HREELS observation at 310 and 523 K. ReaxFF simulation showed more reactivity than the TST based rate for formaldehyde dissociation and less reactivity than TST based rate for HCO dissociation at 523 K. TST-based rates are consistent with HREELS observation.

  16. Ab initio dynamics of field emission from diamond surfaces (United States)

    Miyamoto, Yoshiyuki; Miyazaki, Takehide; Takeuchi, Daisuke; Okushi, Hideyo; Yamasaki, Satoshi


    We propose a new interpretation of the efficiency of field emission, which is understood based on the concept of electron affinity. We use time-dependent density functional theory to simulate field emission from clean and chemically modified diamond (001) surfaces under applied electric fields. We find that the emission efficiency is governed by the self-consistent electrostatic potential (VSCF) at the surface rather than by the sign of the electron affinity, which is determined by VSCF in the vacuum region far from the surface. We resolve the paradox that the emission efficiency of a clean (001) surface with positive electron affinity is even higher than that of a H/OH-co-terminated (001) surface with negative electron affinity.


    Institute of Scientific and Technical Information of China (English)

    HanJinyan; YuZhiwei


    A surface spline function is used to fit a coal seam surface in structural analysis in coal geology. From the surface spline function, the first and second partial derivatives can also be derived and used to structural analysis, especially for recognition of the concealed structures. The detection of structures related to faulting is emphasized.

  18. Dynamics of transportan in bicelles is surface charge dependent

    Energy Technology Data Exchange (ETDEWEB)

    Barany-Wallje, Elsa; Andersson, August; Graeslund, Astrid; Maeler, Lena [Stockholm University, Department of Biochemistry and Biophysics, Arrhenius Laboratories (Sweden)], E-mail:


    In this study we investigated the dynamic behavior of the chimeric cell-penetrating peptide transportan in membrane-like environments using NMR. Backbone amide {sup 15}N spin relaxation was used to investigate the dynamics in two bicelles: neutral DMPC bicelles and partly negatively charged DMPG-containing bicelles. The structure of the peptide as judged from CD and chemical shifts is similar in the two cases. Both the overall motion as well as the local dynamics is, however, different in the two types of bicelles. The overall dynamics of the peptide is significantly slower in the partly negatively charged bicelle environment, as evidenced by longer global correlation times for all measured sites. The local motion, as judged from generalized order parameters, is for all sites in the peptide more restricted when bound to negatively charged bicelles than when bound to neutral bicelles (increase in S{sup 2} is on average 0.11 {+-} 0.07). The slower dynamics of transportan in charged membrane model systems cause significant line broadening in the proton NMR spectrum, which in certain cases limits the observation of {sup 1}H signals for transportan when bound to the membrane. The effect of transportan on DMPC and DHPC motion in zwitterionic bicelles was also investigated, and the motion of both components in the bicelle was found to be affected.

  19. Dynamic surface tracking controller design for a constrained hypersonic vehicle based on disturbance observer

    Directory of Open Access Journals (Sweden)

    Fang Wang


    Full Text Available The tracking control problem of a flexible air-breathing hypersonic vehicle subjects to aerodynamic parameter uncertainty and input constraint is investigated by combining nonlinear disturbance observer and dynamic surface control. To design controller simply, a control-oriented model is firstly derived and divided into two subsystems, velocity subsystem and altitude subsystem based on the engineering backgrounds of flexible air-breathing hypersonic vehicle. In every subsystem, compounded disturbances are included to consider aerodynamic uncertainty and the effect of the flexible modes. Then, disturbance observer is not only used to handle the compounded disturbance but also to handle the input constraint, where the estimation error converges to a random small region through appropriately choosing the observer parameters. To sequel, the disturbance observer–based robust control scheme and the disturbance observer-based dynamic surface control scheme are developed for the velocity subsystem and altitude subsystem, respectively. Besides, novel filters are designed to alleviate the problem of “explosion of terms” induced by backstepping method. On the basis of Lyapunov stability theory, the presented control scheme can assure that tracking error converges to an arbitrarily small neighborhood around zero by rigorous theoretical analysis. At last, simulation result shows the effectiveness of the presented control method.

  20. Surface analysis of selected hydrophobic materials (United States)

    Wisniewska, Sylwia Katarzyna

    This dissertation contains a series of studies on hydrophobic surfaces by various surface sensitive techniques such as contact angle measurements, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Hydrophobic surfaces have been classified as mineral surfaces, organic synthetic surfaces, or natural biological surfaces. As a model hydrophobic mineral surface, elemental sulfur has been selected. The sulfur surface has been characterized for selected allotropic forms of sulfur such as rhombic, monoclinic, plastic, and cyclohexasulfur. Additionally, dextrin adsorption at the sulfur surface was measured. The structure of a dextrin molecule showing hydrophobic sites has been presented to support the proposed hydrophobic bonding nature of dextrin adsorption at the sulfur surface. As a model organic hydrophobic surface, primary fatty amines such as dodecylamine, hexadecylamine, and octadecylamine were chosen. An increase of hydrophobicity, significant changes of infrared bands, and surface topographical changes with time were observed for each amine. Based on the results it was concluded that hydrocarbon chain rearrangement associated with recrystallization took place at the surface during contact with air. A barley straw surface was selected as a model of biological hydrophobic surfaces. The differences in the contact angles for various straw surfaces were explained by the presence of a wax layer. SEM images confirmed the heterogeneity and complexity of the wax crystal structure. AFM measurements provided additional structural details including a measure of surface roughness. Additionally, straw degradation as a result of conditioning in an aqueous environment was studied. Significant contact angle changes were observed as soon as one day after conditioning. FTIR studies showed a gradual wax layer removal due to straw surface decomposition. SEM and AFM images revealed topographical changes and biological

  1. Dynamics of Defrosting on Hydrophobic and Superhydrophobic Surfaces (United States)

    Murphy, Kevin; McClintic, William; Lester, Kevin; Collier, Patrick; Boreyko, Jonathan


    It has recently been demonstrated that frost can grow in a suspended Cassie state on nanostructured superhydrophobic surfaces, which has implications for enhanced defrosting rates. However, to date there have been no direct comparisons of the defrosting kinetics of Cassie frost versus frost on conventional surfaces. Here, we fabricate a hybrid aluminum plate where half of the top face exhibits a superhydrophobic nanostructure while the other half is smooth and hydrophobic. By growing frost to varying thicknesses and melting at several tilt angles, we reveal the advantages and disadvantages of each surface with regards to the extent and speed of the shedding of melt water. For sufficiently thick frost layers, the Cassie state of frost on the superhydrophobic surface uniquely enabled the rapid and effective shedding of melt water even at low tilt angles. On the other hand, the hydrophobic surface was more effective at removing very thin frost sheets, as the reduced contact angle of water on the surface facilitated the coalescence of droplets to grow the melt water beyond the capillary length for gravitational removal. Therefore, the utilization of superhydrophobic versus hydrophobic surfaces for defrosting applications depends upon the context of the system conditions.

  2. NGC 1300 Dynamics: III. Orbital analysis

    CERN Document Server

    Patsis, P A; Grosbol, P


    We present the orbital analysis of four response models, that succeed in reproducing morphological features of NGC 1300. Two of them assume a planar (2D) geometry with $\\Omega_p$=22 and 16 \\ksk respectively. The two others assume a cylindrical (thick) disc and rotate with the same pattern speeds as the 2D models. These response models reproduce most successfully main morphological features of NGC 1300 among a large number of models, as became evident in a previous study. Our main result is the discovery of three new dynamical mechanisms that can support structures in a barred-spiral grand design system. These mechanisms are presented in characteristic cases, where these dynamical phenomena take place. They refer firstly to the support of a strong bar, of ansae type, almost solely by chaotic orbits, then to the support of spirals by chaotic orbits that for a certain number of pat tern revolutions follow an n:1 (n=7,8) morphology, and finally to the support of spiral arms by a combination of orbits trapped arou...

  3. Evaporation dynamics of water droplets on inclined surfaces (United States)

    Kim, Jin Young; Hwang, In Gyu; Weon, Byung Mook


    When a water droplet is gently placed on a flat substrate, particularly which is tilted at an inclined angle, usually there are advancing and receding angles inside the droplet formed by inclination under gravitational force. Evaporation dynamics of an nonspherical inclined droplet at inclinations would deviate from that of a spherical droplet. Here we study on evaporation dynamics rates of inclined droplets by measuring mass changes with time and their lifetimes. We find that the lifetime of an evaporating inclined droplets becomes longer as the gravitational influence becomes stronger. The lifetime depends on the pinning-depinning transitions and the depinning onset times, which are changed by the gravitational influence. This The dependence inclination-induced evaporation behavior would be useful important in understanding evaporation dynamics of inclined droplets. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B01007133).

  4. Dynamic Analysis of Mobile Device Applications

    Energy Technology Data Exchange (ETDEWEB)

    Corey Thuen


    The On-Device Dynamic Analysis of Mobile Applications (ODAMA) project was started in an effort to protect mobile devices used in Industrial Control Systems (ICS) from cyber attack. Because mobile devices hide as much of the “computer” as possible, the user’s ability to assess the software running on their system is limited. The research team chose Google’s Android platform for this initial research because it is open source and it would give us freedom in our approach, including the ability to modify the mobile device’s operating system itself. The research team concluded that a Privileged Application was the right approach, and the result was ODAMA. This project is an important piece of the work to secure the expanding use of mobile devices with our nation’s critical infrastructure.

  5. Pharmaceutical applications of dynamic mechanical thermal analysis. (United States)

    Jones, David S; Tian, Yiwei; Abu-Diak, Osama; Andrews, Gavin P


    The successful development of polymeric drug delivery and biomedical devices requires a comprehensive understanding of the viscoleastic properties of polymers as these have been shown to directly affect clinical efficacy. Dynamic mechanical thermal analysis (DMTA) is an accessible and versatile analytical technique in which an oscillating stress or strain is applied to a sample as a function of oscillatory frequency and temperature. Through cyclic application of a non-destructive stress or strain, a comprehensive understanding of the viscoelastic properties of polymers may be obtained. In this review, we provide a concise overview of the theory of DMTA and the basic instrumental/operating principles. Moreover, the application of DMTA for the characterization of solid pharmaceutical and biomedical systems has been discussed in detail. In particular we have described the potential of DMTA to measure and understand relaxation transitions and miscibility in binary and higher-order systems and describe the more recent applications of the technique for this purpose.

  6. Reliability Analysis of Dynamic Stability in Waves

    DEFF Research Database (Denmark)

    Søborg, Anders Veldt


    exhibit sufficient characteristics with respect to slope at zero heel (GM value), maximum leverarm, positive range of stability and area below the leverarm curve. The rule-based requirements to calm water leverarm curves are entirely based on experience obtained from vessels in operation and recorded......-4 per ship year such brute force Monte-Carlo simulations are not always feasible due to the required computational resources. Previous studies of dynamic stability of ships in waves typically focused on the capsizing event. In this study the objective is to establish a procedure that can identify...... the distribution of the exceedance probability may be established by an estimation of the out-crossing rate of the "safe set" defined by the utility function. This out-crossing rate will be established using the so-called Madsen's Formula. A bi-product of this analysis is a set of short wave time series...

  7. Fractal Analysis on Human Behaviors Dynamics

    CERN Document Server

    Fan, Chao; Zha, Yi-Long


    The study of human dynamics has attracted much interest from many fields recently. In this paper, the fractal characteristic of human behaviors is investigated from the perspective of time series constructed with the amount of library loans. The Hurst exponents and length of non-periodic cycles calculated through Rescaled Range Analysis indicate that the time series of human behaviors is fractal with long-range correlation. Then the time series are converted to complex networks by visibility graph algorithm. The topological properties of the networks, such as scale-free property, small-world effect and hierarchical structure imply that close relationships exist between the amounts of repetitious actions performed by people during certain periods of time, especially for some important days. Finally, the networks obtained are verified to be not fractal and self-similar using box-counting method. Our work implies the intrinsic regularity shown in human collective repetitious behaviors.

  8. Simulation and Experiment of Dynamic Properties of Joint Surfaces Based on Fractal Theory

    Directory of Open Access Journals (Sweden)

    Haitao Liu


    Full Text Available Dynamic properties of joint surfaces are researched, micro behavior is also analyzed and a mathematical model based on fractal theory is built, and the relationships between normal dynamic characteristics of joints and surface pressure, surface roughness, and real contact area were simulated. The contact pressure in joint, equivalent stiffness, and damping in joint were nonstrict proportional relationship, higher surface quality of the contact joint surface, can increase normal stiffness and reduce normal damping in joint. Experiments are arranged according to the theoretical model in order to analyze the share of every major factor that affects dynamic properties of joint surfaces. Two common materials HT200 and 2Cr13 under different processing methods, surface roughness, and surface areas are used, and law curves were built between the dynamic behavior of fixed joints and preload, processing method of contact surface, surface roughness; the correctness of the theory simulation results was confirmed. A spring-damping element joints finite model was built based on the pressure distribution contours. Based on the experimental data, we simulated the model of HT200 specimen by ANSYS, at the same time, compared our model, traditional model, and experimental result, and proved that the spring-damping distribution model based on pressure has a better simulative precision.


    Erem, B; Stovicek, P; Brooks, D H


    The dynamical structure of electrical recordings from the heart or torso surface is a valuable source of information about cardiac physiological behavior. In this paper, we use an existing data-driven technique for manifold identification to reveal electrophysiologically significant changes in the underlying dynamical structure of these signals. Our results suggest that this analysis tool characterizes and differentiates important parameters of cardiac bioelectric activity through their dynamic behavior, suggesting the potential to serve as an effective dynamic constraint in the context of inverse solutions.

  10. Coupled Wavepackets for Non-Adiabatic Molecular Dynamics: A Generalization of Gaussian Wavepacket Dynamics to Multiple Potential Energy Surfaces

    CERN Document Server

    White, Alexander; Mozyrsky, Dmitry


    Accurate simulation of the non-adiabatic dynamics of molecules in excited electronic states is key to understanding molecular photo-physical processes. Here we present a novel method, based on a semiclassical approximation, that is as efficient as the commonly used mean field Ehrenfest or ad hoc Surface Hopping methods and properly accounts for interference and decoherence effects. This novel method is an extension of Hellers Thawed Gaussian wavepacket dynamics that includes coupling between potential energy surfaces. The accuracy of the method can be systematically improved.

  11. Dynamic analysis of stochastic transcription cycles.

    Directory of Open Access Journals (Sweden)

    Claire V Harper


    Full Text Available In individual mammalian cells the expression of some genes such as prolactin is highly variable over time and has been suggested to occur in stochastic pulses. To investigate the origins of this behavior and to understand its functional relevance, we quantitatively analyzed this variability using new mathematical tools that allowed us to reconstruct dynamic transcription rates of different reporter genes controlled by identical promoters in the same living cell. Quantitative microscopic analysis of two reporter genes, firefly luciferase and destabilized EGFP, was used to analyze the dynamics of prolactin promoter-directed gene expression in living individual clonal and primary pituitary cells over periods of up to 25 h. We quantified the time-dependence and cyclicity of the transcription pulses and estimated the length and variation of active and inactive transcription phases. We showed an average cycle period of approximately 11 h and demonstrated that while the measured time distribution of active phases agreed with commonly accepted models of transcription, the inactive phases were differently distributed and showed strong memory, with a refractory period of transcriptional inactivation close to 3 h. Cycles in transcription occurred at two distinct prolactin-promoter controlled reporter genes in the same individual clonal or primary cells. However, the timing of the cycles was independent and out-of-phase. For the first time, we have analyzed transcription dynamics from two equivalent loci in real-time in single cells. In unstimulated conditions, cells showed independent transcription dynamics at each locus. A key result from these analyses was the evidence for a minimum refractory period in the inactive-phase of transcription. The response to acute signals and the result of manipulation of histone acetylation was consistent with the hypothesis that this refractory period corresponded to a phase of chromatin remodeling which significantly

  12. Change of Dynamic Contact Angle of a Drop Spreading over Copper Surface

    Directory of Open Access Journals (Sweden)

    Feoktistov D.V.


    Full Text Available This work presents the comparison between the change of a dynamic contact angle during drop spreading over copper surfaces obtained in the experiment and calculated by using empirical correlations (Bracke et al., Jiang et al., Seebergh et al.. It is found that these correlations are applicable for the case of drop spreading over a smooth surface or over a rough surface into the low capillary number region (2.5·10−7. Dynamic contact angles obtained experimentally increase with increasing capillary number, besides it increases significantly on more rough surfaces. However the calculated values of angles do not depend on Ca.

  13. Dynamics of hydration water and coupled protein sidechains around a polymerase protein surface (United States)

    Qin, Yangzhong; Yang, Yi; Wang, Lijuan; Zhong, Dongping


    Water-protein coupled interactions are essential to the protein structural stability, flexibility and dynamic functions. The ultimate effects of the hydration dynamics on the protein fluctuations remain substantially unexplored. Here, we investigated the dynamics of both hydration water and protein sidechains at 13 different sites around the polymerase β protein surface using a tryptophan scan with femtosecond spectroscopy. Three types of hydration-water relaxations and two types of protein sidechain motions were determined, reflecting a highly dynamic water-protein interactions fluctuating on the picosecond time scales. The hydration-water dynamics dominate the coupled interactions with higher flexibility.

  14. Autonomous Aerobraking Using Thermal Response Surface Analysis (United States)

    Prince, Jill L.; Dec, John A.; Tolson, Robert H.


    Aerobraking is a proven method of significantly increasing the science payload that can be placed into low Mars orbits when compared to an all propulsive capture. However, the aerobraking phase is long and has mission cost and risk implications. The main cost benefit is that aerobraking permits the use of a smaller and cheaper launch vehicle, but additional operational costs are incurred during the long aerobraking phase. Risk is increased due to the repeated thermal loading of spacecraft components and the multiple attitude and propulsive maneuvers required for successful aerobraking. Both the cost and risk burdens can be significantly reduced by automating the aerobraking operations phase. All of the previous Mars orbiter missions that have utilized aerobraking have increasingly relied on onboard calculations during aerobraking. Even though the temperature of spacecraft components has been the limiting factor, operational methods have relied on using a surrogate variable for mission control. This paper describes several methods, based directly on spacecraft component maximum temperature, for autonomously predicting the subsequent aerobraking orbits and prescribing apoapsis propulsive maneuvers to maintain the spacecraft within specified temperature limits. Specifically, this paper describes the use of thermal response surface analysis in predicting the temperature of the spacecraft components and the corresponding uncertainty in this temperature prediction.

  15. Surface dynamics and mechanics in liquid crystal polymer coatings (United States)

    Liu, Danqing; Broer, Dirk J.


    Based on liquid crystal networks we developed `smart' coatings with responsive surface topographies. Either by prepatterning or by the formation of self-organized structures they can be switched on and off in a pre-designed manner. Here we provide an overview of our methods to generate coatings that form surface structures upon the actuation by light. The coating oscillates between a flat surface and a surface with pre-designed 3D micro-patterns by modulating a light source. With recent developments in solid state lighting, light is an attractive trigger medium as it can be integrated in a device for local control or can be used remotely for flood or localized exposure. The basic principle of formation of surface topographies is based on the change of molecular organization in ordered liquid crystal polymer networks. The change in order leads to anisotropic dimensional changes with contraction along the director and expansion to the two perpendicular directions and an increase in volume by the formation of free volume. These two effects work in concert to provide local expansion and contraction in the coating steered by the local direction of molecular orientation. The surface deformation, expressed as the height difference between the activated regions and the non-activated regions divided by the initial film thickness, is of the order of 20%. Switching occurs immediately when the light is switched `on' and `off' and takes several tens of seconds.

  16. Employing a cylindrical single crystal in gas-surface dynamics. (United States)

    Hahn, Christine; Shan, Junjun; Liu, Ying; Berg, Otto; Kleijn, Aart W; Juurlink, Ludo B F


    We describe the use of a polished, hollow cylindrical nickel single crystal to study effects of step edges on adsorption and desorption of gas phase molecules. The crystal is held in an ultra-high vacuum apparatus by a crystal holder that provides axial rotation about a [100] direction, and a crystal temperature range of 89 to 1100 K. A microchannel plate-based low energy electron diffraction/retarding field Auger electron spectrometer (AES) apparatus identifies surface structures present on the outer surface of the cylinder, while a separate double pass cylindrical mirror analyzer AES verifies surface cleanliness. A supersonic molecular beam, skimmed by a rectangular slot, impinges molecules on a narrow longitudinal strip of the surface. Here, we use the King and Wells technique to demonstrate how surface structure influences the dissociation probability of deuterium at various kinetic energies. Finally, we introduce spatially-resolved temperature programmed desorption from areas exposed to the supersonic molecular beam to show how surface structures influence desorption features.

  17. Surface Operations Data Analysis and Adaptation Tool Project (United States)

    National Aeronautics and Space Administration — This effort undertook the creation of a Surface Operations Data Analysis and Adaptation (SODAA) tool to store data relevant to airport surface research and...

  18. Dynamics of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of Cochin estuary, India

    Digital Repository Service at National Institute of Oceanography (India)

    Ramzi, A.;; Rahman, K.H.; Gireeshkumar, T.R.; Balachandran, K.K.; Jacob, C.; Chandramohanakumar, N.

    Polycyclic aromatic hydrocarbons (PAHs) showed significant seasonal dynamics in surface sediments of a tropical ecosystem (Cochin estuary, south west coast of India). Concentrations ranged from 304 to 5874 ngg-1 in pre-monsoon, 493 to 14...

  19. Quantum Nuclear Extension of Electron Nuclear Dynamics on Folded Effective-Potential Surfaces

    DEFF Research Database (Denmark)

    Hall, B.; Deumens, E.; Ohrn, Y.;


    A perennial problem in quantum scattering calculations is accurate theoretical treatment of low energy collisions. We propose a method of extracting a folded, nonadiabatic, effective potential energy surface from electron nuclear dynamics (END) trajectories; we then perform nuclear wave packet...

  20. Fluid dynamics and noise in bacterial cell—cell and cell—surface scattering

    National Research Council Canada - National Science Library

    Knut Drescher; Jörn Dunkel; Luis H. Cisneros; Sujoy Ganguly; Raymond E. Goldstein


    .... While the importance of stochastic fluctuations has been appreciated for chemotaxis, it is currently believed that deterministic long-range fluid dynamical effects govern cell—cell and cell—surface scattering...

  1. Electrically modulated dynamic spreading of drops on soft surfaces (United States)

    Dey, Ranabir; Daga, Ashish; DasGupta, Sunando; Chakraborty, Suman


    The intricate interaction between the deformability of a substrate and the dynamic spreading of a liquid drop on the same, under the application of an electrical voltage, has remained far from being well understood. Here, we demonstrate that electrospreading dynamics on soft substrates is dictated by the combined interplay of electrocapillarity, the wetting line friction, and the viscoelastic energy dissipation at the contact line. Our results reveal that during such electro-elastocapillarity mediated spreading of a sessile drop, the contact radius evolution exhibits a universal power-law in a substrate elasticity based non-dimensional time, with an electrical voltage dependent spreading exponent. Simultaneously, the macroscopic dynamic contact angle variation follows a general power-law in the contact line velocity, normalized by elasticity dependent characteristic velocity scale. These findings will be beneficial for comprehending droplet spreading dynamics stemming from the combination of electrically modulated spreading and "soft wetting." Hence, our results are likely to provide the foundation for the development of a plethora of applications involving droplet manipulations by exploiting the interplay between electrically triggered spreading and substrate-compliance over interfacial scales.

  2. INTRODUCTION: Surface Dynamics, Phonons, Adsorbate Vibrations and Diffusion (United States)

    Bruch, L. W.


    understanding of the underlying factors determining the optical quality of GaInNAs, such as composition, growth and annealing conditions. We are still far from establishing an understanding of the band structure and its dependence on composition. Fundamental electronic interactions such as electron-electron and electron-phonon scattering, dependence of effective mass on composition, strain and orientation, quantum confinement effects, effects of localized nitrogen states on high field transport and on galvanometric properties, and mechanisms for light emission in these materials, are yet to be fully understood. Nature and formation mechanisms of grown-in and processing-induced defects that are important for material quality and device performance are still unknown. Such knowledge is required in order to design strategies to efficiently control and eliminate harmful defects. For many potential applications (such as solar cells, HBTs) it is essential to get more information on the transport properties of dilute nitride materials. The mobility of minority carriers is known to be low in GaInNAs and related material. The experimental values are far from reaching the theoretical ones, due to defects and impurities introduced in the material during the growth. The role of the material inhomogeneities on the lateral carrier transport also needs further investigation. From the device's point of view most attention to date has been focused on the GaInNAs/GaAs system, mainly because of its potential for optoelectronic devices covering the 1.3-1.55 µm data and telecommunications wavelength bands. As is now widely appreciated, these GaAs-compatible structures allow monolithic integration of AlGaAs-based distributed Bragg reflector mirrors (DBRs) for vertical cavity surface-emitting lasers with low temperature sensitivity and compatibility with AlOx-based confinement techniques. In terms of conventional edge-emitting lasers (EELs), the next step is to extend the wavelength range for cw room

  3. Dynamic Chest Image Analysis: Model-Based Perfusion Analysis in Dynamic Pulmonary Imaging

    Directory of Open Access Journals (Sweden)

    Kiuru Aaro


    Full Text Available The "Dynamic Chest Image Analysis" project aims to develop model-based computer analysis and visualization methods for showing focal and general abnormalities of lung ventilation and perfusion based on a sequence of digital chest fluoroscopy frames collected with the dynamic pulmonary imaging technique. We have proposed and evaluated a multiresolutional method with an explicit ventilation model for ventilation analysis. This paper presents a new model-based method for pulmonary perfusion analysis. According to perfusion properties, we first devise a novel mathematical function to form a perfusion model. A simple yet accurate approach is further introduced to extract cardiac systolic and diastolic phases from the heart, so that this cardiac information may be utilized to accelerate the perfusion analysis and improve its sensitivity in detecting pulmonary perfusion abnormalities. This makes perfusion analysis not only fast but also robust in computation; consequently, perfusion analysis becomes computationally feasible without using contrast media. Our clinical case studies with 52 patients show that this technique is effective for pulmonary embolism even without using contrast media, demonstrating consistent correlations with computed tomography (CT and nuclear medicine (NM studies. This fluoroscopical examination takes only about 2 seconds for perfusion study with only low radiation dose to patient, involving no preparation, no radioactive isotopes, and no contrast media.

  4. Improved sampling and validation of frozen Gaussian approximation with surface hopping algorithm for nonadiabatic dynamics

    CERN Document Server

    Lu, Jianfeng


    In the spirit of the fewest switches surface hopping, the frozen Gaussian approximation with surface hopping (FGA-SH) method samples a path integral representation of the non-adiabatic dynamics in the semiclassical regime. An improved sampling scheme is developed in this work for FGA-SH based on birth and death branching processes. The algorithm is validated for the standard test examples of non-adiabatic dynamics.

  5. Direct measurement of the surface dynamics of supercooled liquid-glycerol by optical scanning a film

    Institute of Scientific and Technical Information of China (English)

    Zhang Fang; Zhang Guo-Feng; Dong Shuang-Li; Sun Jian-Hu; Chen Rui-Yun; Xiao Lian-Tuan; Jia Suo-Tang


    The surface dynamics of supercooled liquid-glycerol is studied by scanning the thickness of the glycerol film with single photon detection. Measurements are performed at room temperature well above the glycerol's glass transition temperature. It is shown that the surface dynamics of the glycerol film is very sensitive to the temperature. The linear relationship between the thickness of the film and the viscosity predicted by the Vogel-Fulcher-Tammann-Hesse (VFTH) law is also presented experimentally.

  6. The Community Surface Dynamics Modeling System: Experiences on Building a Collaborative Modeling Platform (United States)

    Overeem, I.; Hutton, E.; Kettner, A.; Peckham, S. D.; Syvitski, J. P.


    The Community Surface Dynamics Modeling System - CSDMS- develops a software platform with shared and coupled modules for modeling earth surface processes as a community resource. The framework allows prediction of water, sediment and nutrient transport through the landscape and seacape. The underlying paradigm is that the Earth surface we live on is a dynamic system; topography changes with seasons, with landslides and earthquakes, with erosion and deposition. The Earth Surface changes due to storms and floods, and important boundaries, like the coast, are ever-moving features. CSDMS sets out to make better predictions of these changes. Earth surface process modeling bridges the terrestrial, coastal and marine domains and requires understanding of the system over a range of time scales, which inherently needs interdisciplinarity. Members of CSDMS (~830 in July 2012) are largely from academic institutions (˜75%), followed by federal agencies (˜17%), and oil and gas companies (˜5%). Members and governmental bodies meet once annually and rely additionally on web-based information for communication. As an organization that relies on volunteer participation, CSDMS faces challenges to scientific collaboration. Encouraging volunteerism among its members to provide and adapt metadata and model code to be sufficiently standardized for coupling is crucial to building an integrated community modeling system. We here present CSDMS strategies aimed at providing the appropriate technical tools and cyberinfrastructure to support a variety of user types, ranging from advanced to novice modelers. Application of these advances in science is key, both into the educational realm and for managers and decision-makers. We discuss some of the implemented ideas to further organizational transparency and user engagement in small-scale governance, such as advanced trackers and voting systems for model development prioritization through the CSDMS wiki. We analyzed data on community

  7. Composition-dependent metallic glass alloys correlate atomic mobility with collective glass surface dynamics. (United States)

    Nguyen, Duc; Zhu, Zhi-Guang; Pringle, Brian; Lyding, Joseph; Wang, Wei-Hua; Gruebele, Martin


    Glassy metallic alloys are richly tunable model systems for surface glassy dynamics. Here we study the correlation between atomic mobility, and the hopping rate of surface regions (clusters) that rearrange collectively on a minute to hour time scale. Increasing the proportion of low-mobility copper atoms in La-Ni-Al-Cu alloys reduces the cluster hopping rate, thus establishing a microscopic connection between atomic mobility and dynamics of collective rearrangements at a glass surface made from freshly exposed bulk glass. One composition, La60Ni15Al15Cu10, has a surface resistant to re-crystallization after three heating cycles. When thermally cycled, surface clusters grow in size from about 5 glass-forming units to about 8 glass-forming units, evidence of surface aging without crystal formation, although its bulk clearly forms larger crystalline domains. Such kinetically stable glass surfaces may be of use in applications where glassy coatings stable against heating are needed.

  8. A stochastic, local mode study of neon-liquid surface collision dynamics. (United States)

    Packwood, Daniel M; Phillips, Leon F


    Equations of motion for a fast, light rare gas atom passing over a liquid surface are derived and used to infer the dynamics of neon collisions with squalane and perfluorinated polyether surfaces from experimental data. The equations incorporate the local mode model of a liquid surface via a stochastic process and explicitly account for impulsive collisional energy loss to the surface. The equations predict angular distributions for scattering of neon that are in good quantitative agreement with experimental data. Our key dynamical conclusions are that experimental angular distributions derive mainly from local mode surface topography rather than from structural features of individual surface molecules, and that the available data for these systems can be accounted for almost exclusively by single collisions between neon atoms and the liquid surface.

  9. Boundary slip study on hydrophilic, hydrophobic, and superhydrophobic surfaces with dynamic atomic force microscopy. (United States)

    Bhushan, Bharat; Wang, Yuliang; Maali, Abdelhamid


    Slip length has been measured using the dynamic atomic force microscopy (AFM) method. Unlike the contact AFM method, the sample surface approaches an oscillating sphere with a very low velocity in the dynamic AFM method. During this process, the amplitude and phase shift data are recorded to calculate the hydrodynamic damping coefficient, which is then used to obtain slip length. In this study, a glass sphere with a large radius was glued to the end of an AFM cantilever to measure the slip length on rough surfaces. Experimental results for hydrophilic, hydrophobic, and superhydrophobic surfaces show that the hydrodynamic damping coefficient decreases from the hydrophilic surface to the hydrophobic surface and from the hydrophobic one to the superhydrophobic one. The slip lengths obtained on the hydrophobic and superhydrophobic surfaces are 43 and 236 nm, respectively, which indicates increasing boundary slip from the hydrophobic surface to the superhydrophobic one.

  10. Examining Urban Impervious Surface Distribution and Its Dynamic Change in Hangzhou Metropolis

    Directory of Open Access Journals (Sweden)

    Longwei Li


    Full Text Available Analysis of urban distribution and its expansion using remote sensing data has received increasing attention in the past three decades, but little research has examined spatial patterns of urban distribution and expansion with buffer zones in different directions. This research selected Hangzhou metropolis as a case study to analyze spatial patterns and dynamic changes based on time-series urban impervious surface area (ISA datasets. ISA was developed from Landsat imagery between 1991 and 2014 using a hybrid approach consisting of linear spectral mixture analysis, decision tree classifiers, and post-processing. The spatial patterns of ISA distribution and its dynamic changes in eight directions—east, southeast, south, southwest, west, northwest, north, and northeast—at the temporal scale were analyzed with a buffer zone-based approach. This research indicated that ISA can be extracted from Landsat imagery with both producer and user accuracies of over 90%. ISA in Hangzhou metropolis increased from 146 km2 in 1991 to 868 km2 in 2014. Annual ISA growth rates were between 15.6 km2 and 48.8 km2 with the lowest growth rate in 1994–2000 and the highest growth rate in 2005–2010. Urban ISA increase before 2000 was mainly due to infilling within the urban landscape, and, after 2005, due to urban expansion in the urban-rural interfaces. Urban expansion in this study area has different characteristics in various directions that are influenced by topographic factors and urban development policies.

  11. Accelerating solving the dynamic multi-objective nework design problem using response surface methods

    NARCIS (Netherlands)

    Wismans, Luc J.J.; Berkum, van Eric C.; Bliemer, Michiel C.J.


    Multi objective optimization of externalities of traffic solving a network design problem in which Dynamic Traffic Management measures are used, is time consuming while heuristics are needed and solving the lower level requires solving the dynamic user equilibrium problem. Use of response surface me

  12. Effects of surface reflectance on local second order shape estimation in dynamic scenes

    NARCIS (Netherlands)

    Dövencioglu, D.N.; Wijntjes, M.W.A.; Ben-Sharar, O.; Doerschner, K.


    In dynamic scenes, relative motion between the object, the observer, and/or the environment projects as dynamic visual information onto the retina (optic flow) that facilitates 3D shape perception. When the object is diffusely reflective, e.g. a matte painted surface, this optic flow is directly lin

  13. Mathematical analysis and calculation of molecular surfaces (United States)

    Quan, Chaoyu; Stamm, Benjamin


    In this article we derive a complete characterization of the Solvent Excluded Surface (SES) for molecular systems including a complete characterization of singularities of the surface. The theory is based on an implicit representation of the SES, which, in turn, is based on the signed distance function to the Solvent Accessible Surface (SAS). All proofs are constructive so that the theory allows for efficient algorithms in order to compute the area of the SES and the volume of the SES-cavity, or to visualize the surface. Further, we propose to refine the notion of SAS and SES in order to take inner holes in a solute molecule into account or not.

  14. Molecular dynamics simulation study of water adsorption on hydroxylated graphite surfaces. (United States)

    Picaud, Sylvain; Collignon, B; Hoang, Paul N M; Rayez, J C


    In this paper, we present results from molecular dynamic simulations devoted to the characterization of the interaction between water molecules and hydroxylated graphite surfaces considered as models for surfaces of soot emitted by aircraft. The hydroxylated graphite surfaces are modeled by anchoring several OH groups on an infinite graphite plane. The molecular dynamics simulations are based on a classical potential issued from quantum chemical calculations. They are performed at three temperatures (100, 200, and 250 K) to provide a view of the structure and dynamics of water clusters on the model soot surface. These simulations show that the water-OH sites interaction is quite weak compared to the water-water interaction. This leads to the clustering of the water molecules above the surface, and the corresponding water aggregate can only be trapped by the OH sites when the temperature is sufficiently low, or when the density of OH sites is sufficiently high.

  15. Direct visualization of photoinduced glassy dynamics on the amorphous silicon carbide surface by STM movies (United States)

    Nguyen, Duc; Nienhaus, Lea; Haasch, Richard T.; Lyding, Joseph; Gruebele, Martin


    Glassy dynamics can be controlled by light irradiation. Sub- and above-bandgap irradiation cause numerous phenomena in glasses including photorelaxation, photoexpansion, photodarkening and pohtoinduced fluidity. We used scanning tunneling microscopy to study surface glassy dynamics of amorphous silicon carbide irradiated with above- bandgap 532 nm light. Surface clusters of ~ 4-5 glass forming unit in diameter hop mostly in a two-state fashion, both without and with irradiation. Upon irradiation, the average surface hopping activity increases by a factor of 3. A very long (~1 day) movie of individual clusters with varying laser power density provides direct evidence for photoinduced enhanced hopping on the glass surfaces. We propose two mechanisms: heating and electronic for the photoenhanced surface dynamics.

  16. The hydrophobic effect: Molecular dynamics simulations of water confined between extended hydrophobic and hydrophilic surfaces

    DEFF Research Database (Denmark)

    Jensen, Morten Østergaard; Mouritsen, Ole G.; Peters, Günther H.J.


    experimental data from x-ray reflectivity measurements, reveal a uniform weak de-wetting characteristic for the extended hydrophobic surface, while the hydrophilic surface is weakly wetted. These microscopic data are consistent with macroscopic contact angle measurements. Specific water orientation is present......-correlation functions reveal that water molecules have characteristic diffusive behavior and orientational ordering due to the lack of hydrogen bonding interactions with the surface. These observations suggest that the altered dynamical properties of water in contact with extended hydrophobic surfaces together......Structural and dynamic properties of water confined between two parallel, extended, either hydrophobic or hydrophilic crystalline surfaces of n-alkane C36H74 or n-alcohol C35H71OH, are studied by molecular dynamics simulations. Electron density profiles, directly compared with corresponding...

  17. Dynamic response of AFM cantilevers to dissimilar functionalized silica surfaces in aqueous electrolyte solutions. (United States)

    Wu, Yan; Misra, Sambit; Karacor, M Basar; Prakash, Shaurya; Shannon, Mark A


    The dynamic response of an oscillating microcantilever with a gold-coated tip interacting with dissimilar functionalized silica surfaces was studied in electrolyte solutions with pH ranging from 4 to 9. Silica surfaces were chemically modified, yielding dissimilar surfaces with -Br, -NH(2), and -CH(3) functional group terminations. The relative hydrophobicity of the surfaces was characterized by contact angle measurements. The surface charge of the functionalized surfaces was first probed with commonly used static AFM measurements and serves as a reference to the dynamic response data. The amplitude and phase of the cantilever oscillation were monitored and used to calculate the effective interaction stiffness and damping coefficient, which relate to the electrical double layer interactions and also to distance-dependent hydrodynamic damping at the solid/water interface. The data for the dynamic response of the AFM over silica surfaces as a function of chemical functionalization and electrolyte pH show that the effective stiffness has a distinctive dependence on the surface charge of functionalized silica surfaces. The hydrodynamic damping also correlates strongly with the relative hydrophobicity of the surface. The data reported here indicate that interfacial properties can be strongly affected by changing the chemical composition of surfaces.

  18. Dynamics of freely suspended lyotropic films. I. An inelastic light scattering study of thermal surface fluctuations (United States)

    Young, Charles Y.; Clark, Noel A.


    We have studied the spectrum and intensity of light scattered by thermal surface displacement fluctuations on freely suspended lyotropic films. Films consisted of a liquid core and surface soap layers and were drawn from solution containing water, glycerol, NaCl, and the ionic surfactant hexadecyltrimethyl ammonium bromide (HTAB). Two modes were observed: a propagating undulation mode in which the film surfaces move together and a damped peristaltic mode having oppositely moving surface soap layers. Dispersion relations for these modes, obtained from the dependence of the scattered light intensity correlation function on film thickness h and wave vector k, confirm the macroscopic hydrodynamic description of film motion. In particular, the overdamped peristaltic mode is shown to involve Poiseuille flow of the fluid core with the flow velocity zero within 2 Å of the surfactant-solution interface, indicating no significant slip or rigid interfacial water layer. No evidence of dispersion in the effective viscosity of the fluid core h(k,w) over the range 0surface waves in fluids. The dynamic surface tension term s(k,w) for k˜106 cm-1 and w˜6×10 sec-1 was found to be the same as the static value within experimental error. Analysis of the total scattered intensity and of the peristaltic mode dynamics allows the determination of R(h), that part of the film pressure due to electrostatic repulsive and van der Waals attractive forces. The measured R(h) are well represented by the sum of a repulsive screened electrostatic interaction and an attractive van der Waals term. The screened electrostatic interaction is consistent with the concentration of NaCl used and the attractive part of R could be fitted equally well by the simple nonretarded van der Waals form for a uniform dielectric slab, or the Ninham

  19. Passivhaus: indoor comfort and energy dynamic analysis. (United States)

    Guida, Antonella; Pagliuca, Antonello; Cardinale, Nicola; Rospi, Gianluca


    The research aims to verify the energy performance as well as the indoor comfort of an energy class A+ building, built so that the sum of the heat passive contributions of solar radiation, transmitted through the windows, and the heat generated inside the building, are adeguate to compensate for the envelope loss during the cold season. The building, located in Emilia Romagna (Italy), was built using a wooden structure, an envelope realized using a pinewood sandwich panels (transmittance U = 0.250 W/m2K) and, inside, a wool flax insulation layer and thermal window frame with low-emissivity glass (U = 0524 W/m2K). The building design and construction process has followed the guidelines set by "CasaClima". The building has been modeled in the code of dynamic calculation "Energy Plus" by the Design Builder application and divided it into homogenous thermal zones, characterized by winter indoor temperature set at 20 ° (+ / - 1 °) and summer indoor temperature set at 26 ° (+ / - 1 °). It has modeled: the envelope, as described above, the "free" heat contributions, the air conditioning system, the Mechanical Ventilation system as well as home automation solutions. The air conditioning system is an heat pump, able to guarantee an optimization of energy consumption (in fact, it uses the "free" heat offered by the external environment for conditioning indoor environment). As regards the air recirculation system, it has been used a mechanical ventilation system with internal heat cross-flow exchanger, with an efficiency equal to 50%. The domotic solutions, instead, regard a system for the control of windows external screening using reeds, adjustable as a function of incident solar radiation and a lighting management system adjusted automatically using a dimmer. A so realized building meets the requirement imposed from Italian standard UNI/TS 11300 1, UNI/TS 11300 2 and UNI/TS 11300 3. The analysis was performed according to two different configurations: in "spontaneous


    Institute of Scientific and Technical Information of China (English)

    Junwei Li; Kyunghui Oh; Hyuk Yu


    The time evolution of oxygen plasma treated polystyrene (PS) surfaces was investigated upon storing them in the air under controlled humidity conditions. The methods of water contact angle, X-ray photoelectron spectroscopy (XPS), sum frequency generation (SFG) vibrational spectroscopy, and atomic force microscopy (AFM) were used to infer the surface properties and structure. Chemical groups containing oxygen were formed on the PS surface with the plasma treatment,demonstrated by water contact angle and XPS. The surface polarity decayed markedly on time, as assessed by steady increase in the water contact angle as a function of storage time, from zero to around 60°. The observed decay is interpreted as arising from surface rearrangement processes to burying polar groups away from the uppermost layer of the surfaces, which is in contact with air. On the other hand, XPS results show that the chemical composition in the first 3 nm surface layer is unaffected by the surface aging, and the depth profile of oxygen is essentially the same with time. A possible change of PS surface roughness was examined by AFM, and it showed that the increase of water contact angle during surface aging could not be attributed to surface roughness. Thus, it is concluded that surface aging is attributable to surface reorganization and the motion of oxygen containing groups is confined within the XPS probing depth. SFG spectroscopy, which is intrinsically interface-specific, was used to detect the chemical structure of PS surface at the molecular level after various aging times.The results are interpreted as follows. During the aging of the plasma treated PS surfaces, the oxygen containing groups undergo reorientation processes toward the polymer bulk and/or parallel to the surface, while the CH2 moiety stands up on the PS surface. Our results indicate that the surface configuration changes do not require large length scale segmental motions or migration of macromolecules. Motions that are

  1. Body surface adaptations to boundary-layer dynamics. (United States)

    Videler, J J


    Evolutionary processes have adapted nektonic animals to interact efficiently with the water that surrounds them. Not all these adaptations serve the same purpose. This paper concentrates on reduction of drag due to friction in the boundary layer close to the body surface. Mucus, compliant skins, scales, riblets and roughness may influence the flow velocity gradient, the type of flow and the thickness of the boundary layer around animals, and may seriously affect their drag in a positive or negative way. The long-chain polymers found in mucus decrease the pressure gradient and considerably reduced drag due to friction. The effect is probably due to channelling of the flow particles in the direction of the main flow, resulting in a reduction of turbulence. Compliant surfaces could probably reduce drag by equalising and distributing pressure pulses. However, the existing evidence that drag reduction actually occurs is not convincing. There is no indication that instantaneous heating, reducing the viscosity in the boundary layer, is used by animals as a drag-reducing technique. Small longitudinal ridges on rows of scales on fish can reduce shear stress in the boundary by a maximum of 10% compared with the shear stress of a smooth surface. The mechanism is based on the impedance of cross flow under well-defined conditions. The effect has been visualized with the use of particle image velocimetry techniques. The function of the swords and spears of several fast, pelagic, predatory fish species is still enigmatic. The surface structure of the sword of a swordfish is shown to be both rough and porous. The height of the roughness elements on the tip of the sword is close to the critical value for the induction of a laminar-to-turbulent flow transition at moderate cruising speeds. A flow tank is described that is designed to visualize the effects of surface imperfections on flow in the boundary layer in direct comparison with a smooth flat wall. The flow in a 1 m long, 10 cm

  2. Molecular dynamics modeling of a nanomaterials-water surface interaction (United States)

    Nejat Pishkenari, Hossein; Keramati, Ramtin; Abdi, Ahmad; Minary-Jolandan, Majid


    In this article, we study the formation of nanomeniscus around a nanoneedle using molecular dynamics simulation approach. The results reveal three distinct phases in the time-evolution of meniscus before equilibrium according to the contact angle, meniscus height, and potential energy. In addition, we investigated the correlation between the nanoneedle diameter and nanomeniscus characteristics. The results have applications in various fields such as scanning probe microscopy and rheological measurements.

  3. Morphology of surface damage resulting from static and dynamic contacts


    Vongbandit, Pratip


    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University. Contact fatigue damages resulting either from static or dynamic contact are of interest for understanding the failure modes and mechanisms leading to improvement of the components’ performances in tribological applications. The objective of this research was to ascertain how and to what extent the counterface materials, loading conditions, contact configuration, lubrication, and the environme...

  4. A dynamic cell adhesion surface regulates tissue architecture in growth plate cartilage. (United States)

    Romereim, Sarah M; Conoan, Nicholas H; Chen, Baojiang; Dudley, Andrew T


    The architecture and morphogenetic properties of tissues are founded in the tissue-specific regulation of cell behaviors. In endochondral bones, the growth plate cartilage promotes bone elongation via regulated chondrocyte maturation within an ordered, three-dimensional cell array. A key event in the process that generates this cell array is the transformation of disordered resting chondrocytes into clonal columns of discoid proliferative cells aligned with the primary growth vector. Previous analysis showed that column-forming chondrocytes display planar cell divisions, and the resulting daughter cells rearrange by ∼90° to align with the lengthening column. However, these previous studies provided limited information about the mechanisms underlying this dynamic process. Here we present new mechanistic insights generated by application of a novel time-lapse confocal microscopy method along with immunofluorescence and electron microscopy. We show that, during cell division, daughter chondrocytes establish a cell-cell adhesion surface enriched in cadherins and β-catenin. Rearrangement into columns occurs concomitant with expansion of this adhesion surface in a process more similar to cell spreading than to migration. Column formation requires cell-cell adhesion, as reducing cadherin binding via chelation of extracellular calcium inhibits chondrocyte rearrangement. Importantly, physical indicators of cell polarity, such as cell body alignment, are not prerequisites for oriented cell behavior. Our results support a model in which regulation of adhesive surface dynamics and cortical tension by extrinsic signaling modifies the thermodynamic landscape to promote organization of daughter cells in the context of the three-dimensional growth plate tissue.

  5. Spatiotemporal dynamics of surface water networks across a global biodiversity hotspot—implications for conservation (United States)

    Tulbure, Mirela G.; Kininmonth, Stuart; Broich, Mark


    The concept of habitat networks represents an important tool for landscape conservation and management at regional scales. Previous studies simulated degradation of temporally fixed networks but few quantified the change in network connectivity from disintegration of key features that undergo naturally occurring spatiotemporal dynamics. This is particularly of concern for aquatic systems, which typically show high natural spatiotemporal variability. Here we focused on the Swan Coastal Plain, a bioregion that encompasses a global biodiversity hotspot in Australia with over 1500 water bodies of high biodiversity. Using graph theory, we conducted a temporal analysis of water body connectivity over 13 years of variable climate. We derived large networks of surface water bodies using Landsat data (1999-2011). We generated an ensemble of 278 potential networks at three dispersal distances approximating the maximum dispersal distance of different water dependent organisms. We assessed network connectivity through several network topology metrics and quantified the resilience of the network topology during wet and dry phases. We identified ‘stepping stone’ water bodies across time and compared our networks with theoretical network models with known properties. Results showed a highly dynamic seasonal pattern of variability in network topology metrics. A decline in connectivity over the 13 years was noted with potential negative consequences for species with limited dispersal capacity. The networks described here resemble theoretical scale-free models, also known as ‘rich get richer’ algorithm. The ‘stepping stone’ water bodies are located in the area around the Peel-Harvey Estuary, a Ramsar listed site, and some are located in a national park. Our results describe a powerful approach that can be implemented when assessing the connectivity for a particular organism with known dispersal distance. The approach of identifying the surface water bodies that act as

  6. Dynamic modeling of wave driven unmanned surface vehicle in longitudinal profile based on D-H approach

    Institute of Scientific and Technical Information of China (English)

    田宝强; 俞建成; 张艾群


    Wave driven unmanned surface vehicle (WUSV) is a new concept ocean robot drived by wave energy and solar energy, and it is very suitable for the vast ocean observations with incomparable endurance. Its dynamic modeling is very important because it is the theoretical foundation for further study in the WUSV motion control and efficiency analysis. In this work, the multibody system of WUSV was described based on D-H approach. Then, the driving principle was analyzed and the dynamic model of WUSV in longitudinal profile is established by Lagrangian mechanics. Finally, the motion simulation of WUSV and comparative analysis are completed by setting different inputs of sea state. Simulation results show that the WUSV dynamic model can correctly reflect the WUSV longitudinal motion process, and the results are consistent with the wave theory.

  7. In Situ Atomic Scale Visualization Of Surface Kinetics Driven Dynamics Of Oxide Growth On A Ni–Cr Surface

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Langli; Zou, Lianfeng; Schreiber, Daniel K.; Olszta, Matthew J.; Baer, Donald R.; Bruemmer, Stephen M.; Zhou, Guangwen; Wang, Chong M.


    We report in situ atomic-scale visualization of the dynamical three-dimensional (3D) growth of NiO during initial oxidation of Ni-10at%Cr using environmental transmission electron microscopy (ETEM). Despite the thermodynamic preference for Cr2O3 formation, cubic NiO oxides nucleated and grew epitaxially as the dominating oxide phase on the Ni-Cr (100) surface during initial oxidation. The growth of NiO islands proceeds through step-by-step adatom mechanism in 3D, which is sustained by surface diffusion of Ni and O atoms. Although the shapes of oxide islands are controlled by strain energy between oxide and alloy substrate, local surface kinetic variations can lead to the change of surface planes of oxide islands. These results demonstrate that surface diffusion dominates initial oxidation of Ni-Cr in these test conditions.

  8. Dynamic Mechanism of Interannual Sea Surface Height Variability in the North Pacific Subtropical Gyre

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yong-Chui; ZHANG Li-Feng; L(U) Qing-Ping


    In this study, the dynamic mechanisms of interannual sea surface height (SSH) variability are investigated based on the first-mode baroclinic Rossby wave model, with a focus on the effects of different levels of wind stress curl (WSC)、 Maximum covariance analysis (MCA) of WSC and SSH anomalies displays a mode with significant WSC anomalies located primarily in the mid-latitude eastern North Pacific and central tropical Pacific with corresponding SSH anomalies located to the west. This leading mode can be attributed to Ekman pumping induced by local wind stress and the westward-propagating Rossby wave driven by largescale wind stress. It is further found that in the middle latitudes, the SSH anomalies are largely determined by WSC variations associated with the North Pacific Gyre Oscillation (NPGO)、 rather than the Pacific Decadal Oscillation (PDO). The sensitivity of the predictive skill of the linear first-mode baroclinic model to different wind products is also examined.

  9. Trajectory tracking control for underactuated unmanned surface vehicles with dynamic uncertainties

    Institute of Scientific and Technical Information of China (English)

    廖煜雷; 张铭钧; 万磊; 李晔


    The trajectory tracking control problem for underactuated unmanned surface vehicles (USV) was addressed, and the control system took account of the uncertain influences induced by model perturbation, external disturbance, etc. By introducing the reference, trajectory was generated by a virtual USV, and the error equation of trajectory tracking for USV was obtained, which transformed the tracking problem of underactuated USV into the stabilization problem of the trajectory tracking error equation. A backstepping adaptive sliding mode controller was proposed based on backstepping technology and method of dynamic slide model control. By means of theoretical analysis, it is proved that the proposed controller ensures that the solutions of closed loop system have the ultimate boundedness property. Simulation results are presented to illustrate the effectiveness of the proposed controller.



    Cherednychenko N. A.; Lutsenko Y. V.; Trunev A. P.


    Based on local semantic information models, we have examined the dependence of the dynamics of the displacement of the pole positions of celestial objects. We have also developed and differentiated an analysis of ASK-pole modeling of dynamics within sixty-year cycles of reference points and substantiated reasons for the population inversion and singular states in the dynamics of the pole

  11. Introducing Dynamic Analysis Using Malthus's Principle of Population. (United States)

    Pingle, Mark


    Declares the use of dynamic models is increasing in macroeconomics. Explains how to introduce dynamic models to students whose technical skills are modest or varied. Chooses Malthus's Principle of Population as a natural context for introducing dynamic analysis because it provides a method for reviewing the mathematical tools and theoretical…

  12. Body surface adaptations to boundary-layer dynamics

    NARCIS (Netherlands)

    Videler, J.J.


    Evolutionary processes have adapted nektonic animals to interact efficiently with the water that surrounds them. Not all these adaptations serve the same purpose. This paper concentrates on reduction of drag due to friction in the boundary layer close to the body surface. Mucus, compliant skins, sca

  13. Modified Contact Line Dynamics about a Surface-Piercing Hydrofoil (United States)

    Grivel, Morgane; Jeon, David; Gharib, Morteza


    The contact line around a surface-piercing hydrofoil is modified by introducing alternating hydrophobic and hydrophilic bands along one side of the body. These bands are either aligned perpendicular or parallel to the flow direction. The other side of the hydrofoil is un-patterned and retains its original, uniformly hydrophilic properties. The hydrofoil is mounted onto air bearings, such that it can freely move side-to-side in the water tunnel. A force sensor is attached to the setup via a universal joint in order to measure the forces acting on the body for several Reynolds numbers (ranging from 104 to 105) and angles of attack (ranging from -10o to 10o) . Cameras are also used to record the resulting flow structures and free surface elevation. The generation of wave trains and an altered free-surface elevation (also associated with the generation of surface waves) are observed over a wide range flow conditions. Force measurements elucidate how introducing these flow features impacts the forces acting on the hydrofoil, specifically with regards to the generation of lateral forces due to the asymmetric wetting conditions on either side of the hydrofoil. Work is funded by ONR Grant N00014-11-1-0031 and NSF GRFP Grant DGE-1144469.

  14. Droplet evaporation dynamics on a superhydrophobic surface with negligible hysteresis. (United States)

    Dash, Susmita; Garimella, Suresh V


    We report on experiments of droplet evaporation on a structured superhydrophobic surface that displays very high contact angle (CA ∼ 160 deg), and negligible contact angle hysteresis (contact-angle mode, with contact radius shrinking for almost the entire duration of evaporation. Experiments conducted on Teflon-coated smooth surface (CA ∼ 120 deg) as a baseline also support an evaporation process that is dominated by a constant-contact-angle mode. The experimental results are compared with an isothermal diffusion model for droplet evaporation from the literature. Good agreement is observed for the Teflon-coated smooth surface between the analytical expression and experimental results in terms of the total time for evaporation, transient volume, contact angle, and contact radius. However, for the structured superhydrophobic surface, the experiments indicate that the time taken for complete evaporation of the droplet is greater than the predicted time, across all droplet volumes. This disparity is attributed primarily to the evaporative cooling at the droplet interface due to the high aspect ratio of the droplet and also the lower effective thermal conductivity of the substrate due to the presence of air gaps. This hypothesis is verified by numerically evaluating the temperature distribution along the droplet interface. We propose a generalized relation for predicting the instantaneous volume of droplets with initial CA > 90 deg, irrespective of the mode of evaporation.

  15. The Dynamics of Pendulums on Surfaces of Constant Curvature

    Energy Technology Data Exchange (ETDEWEB)

    Coulton, P. [Eastern Illinois University, Mathematics Department (United States)], E-mail:; Foote, R. [Wabash College (United States)], E-mail:; Galperin, G. [Eastern Illinois University, Mathematics Department (United States)], E-mail:


    We define the notion of a pendulum on a surface of constant curvature and study the motion of a mass at a fixed distance from a pivot. We consider some special cases: first a pivot that moves with constant speed along a geodesic, and then a pivot that undergoes acceleration along a fixed geodesic.

  16. Dynamics of Molten Metal Droplets Falling on a Solid Surface (United States)

    Chandra, Sanjeev; Aziz, Shiraz


    Experiments were done to photograph the impact of molten tin droplets impacting on a stainless steel surface. Initial droplet temperature was maintained at 240 C (slightly above the melting point of tin, 232 C). Impact velocity was varied from 1 m/s to 4 m/s and initial surface temperatures from 25 C to 240 C. Droplet dimensions and the evolution of liquid-solid contact angle during impact were measured from photographs. Droplets were observed to spread into the shape of a flat disc after impact. Once they reached their maximum extension they either stayed in that position or recoiled off the surface. A simple energy conservation model is proposed to predict the maximum spread diameter. Droplet recoil was attributed to surface tension pulling back the periphery of the splat. Increasing droplet impact velocity produced splashing, with a ring of satellite droplets breaking loose from the periphery. A model based on the Rayleigh-Taylor instability was used to predict the number of droplets that broke loose after impact.

  17. Body surface adaptations to boundary-layer dynamics

    NARCIS (Netherlands)

    Videler, J.J.


    Evolutionary processes have adapted nektonic animals to interact efficiently with the water that surrounds them. Not all these adaptations serve the same purpose. This paper concentrates on reduction of drag due to friction in the boundary layer close to the body surface. Mucus, compliant skins,

  18. Analysis of the surface energy of pharmaceutical powders by inverse gas chromatography. (United States)

    Grimsey, Ian M; Feeley, Jane C; York, Peter


    The behavior of pharmaceutical solids, during either processing or use, can be noticeably affected by the surface energetics of the constituent particles. Several techniques exist to measure the surface energy, for example, sessile drop, and dynamic contact angle measurements. Inverse gas chromatography (IGC) is an alternative technique where the powder surface is characterized by the retention behavior of minute quantities of well-characterized vapors that are injected into a column containing the material of interest. Recently published articles using IGC on pharmaceutical powders have ranged from linking surface energetic data with triboelectric charging to studying the effect of surface moisture on surface energetics. Molecular modelling has also recently been used to explore the links between IGC data and the structural and chemical factors that influence surface properties, thereby achieving predictive knowledge regarding powder behavior during processing. In this minireview, the reported applications of IGC in the analysis of pharmaceutical powders are summarized and the major findings highlighted.

  19. Platelet reactions to modified surfaces under dynamic conditions. (United States)

    Rhodes, N P; Shortland, A P; Rattray, A; Williams, D F


    The influence of surfaces on the reactions of platelets in whole blood under laminar flow was investigated in a cone and plate viscometer. Citrated whole blood was exposed to steel, PMMA and PMMA modified with PEO at low (500 s(-1)) and high (4000 s(-1)) wall shear rates at room temperature for a period of 100 s. Treated blood samples were fixed with paraformaldehyde, stained with a monoclonal antibody for CD41 (platelet GPIIb/IIIa) conjugated with phycoerythrin and analyzed by flow cytometry. The reactions of platelets (microparticle generation and formation of platelet-platelet, platelet-red blood cell and red blood cell-microparticle aggregates) to these environments were quantified. Additionally, the size of platelet-platelet aggregates was assessed. The percentage platelet aggregation and numbers of microparticles generated were independent of surface type at any shear rate. The composition of the aggregates formed was influenced by the surface: at low and high shear rates PMMA caused the generation of platelet-platelet aggregates of the greatest size. The numbers of red blood cell-platelet and red blood cell-microparticle aggregates also varied depending on the surface. Fewer red blood cell-platelet aggregates were formed at higher shear rates, whereas the reverse was true for red blood cell-microparticle aggregates. It is concluded that these variations may help to explain the differential effects of surfaces to the induction of distant thrombotic events: microparticles may be protected from loss from the blood stream by their association with red blood cells at high shear rates.

  20. Global coupled equations for dynamic analysis of planishing mill

    Institute of Scientific and Technical Information of China (English)

    蔡敢为; 钟掘


    The dynamic properties of rolling mill are significantly influenced by many coupling factors. Accordingto the coupled mechanical and electric dynamics theory, the global coupled equations for the dynamic analysis ofplanishing mill CM04 of Shanghai Baosteel Group Corporation were derived, by using finite element methods. Theseelasto-dynamic equations establish the coupling relations among the stand vibration system, torsional vibration sys-tem, driving motors, etc. It provides theoretical basis to a certain extent for globally dynamic simulation, analysis ofstability of motion, prediction of abnormal operating mode, globally optimum design and control, etc.

  1. Atomic force microscopy analysis of different surface treatments of Ti dental implant surfaces (United States)

    Bathomarco, Ti R. V.; Solorzano, G.; Elias, C. N.; Prioli, R.


    The surface of commercial unalloyed titanium, used in dental implants, was analyzed by atomic force microscopy. The morphology, roughness, and surface area of the samples, submitted to mechanically-induced erosion, chemical etching and a combination of both, were compared. The results show that surface treatments strongly influence the dental implant physical and chemical properties. An analysis of the length dependence of the implant surface roughness shows that, for scan sizes larger than 50 μm, the average surface roughness is independent of the scanning length and that the surface treatments lead to average surface roughness in the range of 0.37 up to 0.48 μm. It is shown that the implant surface energy is sensitive to the titanium surface area. As the area increases there is a decrease in the surface contact angle.

  2. Atomic force microscopy analysis of different surface treatments of Ti dental implant surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bathomarco, R.V.; Solorzano, G.; Elias, C.N.; Prioli, R


    The surface of commercial unalloyed titanium, used in dental implants, was analyzed by atomic force microscopy. The morphology, roughness, and surface area of the samples, submitted to mechanically-induced erosion, chemical etching and a combination of both, were compared. The results show that surface treatments strongly influence the dental implant physical and chemical properties. An analysis of the length dependence of the implant surface roughness shows that, for scan sizes larger than 50 {mu}m, the average surface roughness is independent of the scanning length and that the surface treatments lead to average surface roughness in the range of 0.37 up to 0.48 {mu}m. It is shown that the implant surface energy is sensitive to the titanium surface area. As the area increases there is a decrease in the surface contact angle.

  3. Structures and ultrafast dynamics of interfacial water assemblies on smooth hydrophobic surfaces (United States)

    Yang, Ding-Shyue; He, Xing


    Using time-averaged and ultrafast electron diffraction, structures and ultrafast dynamics of interfacial water assemblies on smooth hydrophobic surfaces are reported. The lack of hydrophilic interaction and topographical template effect from the support surface leads to the formation of small, mostly randomly-oriented, ice crystallites with the cubic structure. Dynamically, following the substrate photoexcitation, interfacial water assemblies undergo four stages of changes-ultrafast melting, nonequilibrium isotropic phase transformation, annealing, and restructuring-which are closely correlated with the substrate dynamics. The connectivity and cooperative nature of the hydrogen-bonded network is considered crucial for water assemblies to withstand large structural motions without sublimation on ultrashort times.

  4. Effect of Surface Oxidation on Interfacial Water Structure at a Pyrite (100) Surface as Studied by Molecular Dynamics Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jiaqi; Miller, Jan D.; Dang, Liem X.; Wick, Collin D.


    In the first part of this paper, a Scanning Electron Microscopy and contact angle study of a pyrite surface (100) is reported describing the relationship between surface oxidation and the hydrophilic surface state. In addition to these experimental results, the following simulated surface states were examined using Molecular Dynamics Simulation (MDS): fresh unoxidized (100) surface; polysulfide at the (100) surface; elemental sulfur at the (100) surface. Crystal structures for the polysulfide and elemental sulfur at the (100) surface were simulated using Density Functional Theory (DFT) quantum chemical calculations. The well known oxidation mechanism which involves formation of a metal deficient layer was also described with DFT. Our MDS results of the behavior of interfacial water at the fresh and oxidized pyrite (100) surfaces without/with the presence of ferric hydroxide include simulated contact angles, number density distribution for water, water dipole orientation, water residence time, and hydrogen-bonding considerations. The significance of the formation of ferric hydroxide islands in accounting for the corresponding hydrophilic surface state is revealed not only from experimental contact angle measurements but also from simulated contact angle measurements using MDS. The hydrophilic surface state developed at oxidized pyrite surfaces has been described by MDS, on which basis the surface state is explained based on interfacial water structure. The Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences (BES), of the DOE funded work performed by Liem X. Dang. Battelle operates the Pacific Northwest National Laboratory for DOE. The calculations were carried out using computer resources provided by BES.

  5. Digital Elevation Map Reconstruction for Port-based Dynamic Simulation of Contacts on Irregular Surfaces

    NARCIS (Netherlands)

    Wassink, Martin; Carloni, Raffaella; Poulakis, Pantelis; Stramigioli, Stefano


    This paper presents a method to utilize a port-based multibody contact model for simulating dynamic interaction between irregular surfaces. The existing compliant contact model requires an analytic parametrization of the surfaces involved in the interaction, the definition of a Gauss frame in each o

  6. Testing the hypothesis of modified dynamics with low surface brightness galaxies and other evidence

    NARCIS (Netherlands)

    McGaugh, SS; de Blok, WJG


    The rotation curves of low surface brightness galaxies provide a unique data set with which to test alternative theories of gravitation over a large dynamic range in size, mass, surface density, and acceleration. Many clearly fail, including any in which the mass discrepancy appears at a particular

  7. Dynamics of Protonated Peptide Ion Collisions with Organic Surfaces: Consonance of Simulation and Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Pratihar, Subha; Barnes, George L.; Laskin, Julia; Hase, William L.


    In this Perspective mass spectrometry experiments and chemical dynamics simulations are described which have explored the atomistic dynamics of protonated peptide ions, peptide-H+, colliding with organic surfaces. These studies have investigated surface-induced dissociation (SID) for which peptide-H+ fragments upon collision with the surface, peptide-H+ physisorption on the surface, soft landing (SL), and peptide-H+ reaction with the surface, reactive landing (RL). The simulations include QM+MM and QM/MM direct dynamics. For collisions with self-assembled monolayer (SAM) surfaces there is quite good agreement between experiment and simulation in the efficiency of energy transfer to the peptide-H+ ion’s internal degrees of freedom. Both the experiments and simulations show two mechanisms for peptide-H+ fragmentation, i.e. shattering and statistical, RRKM dynamics. Mechanisms for SL are probed in simulations of collisions of protonated dialanine with a perfluorinated SAM surface. RL has been studied experimentally for a number of peptide-H+ + surface systems, and qualitative agreement between simulation and experiment is found for two similar systems.

  8. Formation of Surface Nanobubbles and the Universality of Their Contact Angles: A Molecular Dynamics Approach

    NARCIS (Netherlands)

    Weijs, J.H.; Snoeijer, J.H.; Lohse, D.


    We study surface nanobubbles using molecular dynamics simulation of ternary (gas, liquid, solid) systems of Lennard-Jones fluids. They form for a sufficiently low gas solubility in the liquid, i.e., for a large relative gas concentration. For a strong enough gas-solid attraction, the surface nanobub

  9. Static and dynamic aspects of the rms local slope of growing random surfaces

    NARCIS (Netherlands)

    Palasantzas, George


    In this work, we investigated static and dynamic aspects of the rms local surface slope ‘‘ρ’’ for self-affine random surfaces. The rms local slope is expressed as a function of the rms roughness amplitude σ, the in-plane correlation length ξ, and the roughness exponent H (0 0).

  10. Analysis of Asteroid (216) Kleopatra Using Dynamical and Structural Constraints (United States)

    Hirabayashi, Masatoshi; Scheeres, Daniel J.


    This paper evaluates a dynamically and structurally stable size for Asteroid (216) Kleopatra. In particular, we investigate two different failure modes: material shedding from the surface and structural failure of the internal body. We construct zero-velocity curves in the vicinity of this asteroid to determine surface shedding, while we utilize a limit analysis to calculate the lower and upper bounds of structural failure under the zero-cohesion assumption. Surface shedding does not occur at the current spin period (5.385 hr) and cannot directly initiate the formation of the satellites. On the other hand, this body may be close to structural failure; in particular, the neck may be situated near a plastic state. In addition, the neck's sensitivity to structural failure changes as the body size varies. We conclude that plastic deformation has probably occurred around the neck part in the past. If the true size of this body is established through additional measurements, this method will provide strong constraints on the current friction angle for the body.

  11. Analysis of Asteroid (216) Kleopatra using dynamical and structural constraints

    CERN Document Server

    Hirabayashi, Masatoshi


    Given the spin state by Magnusson (1990), the shape model by Ostro et al. (2000), and the mass by Descamps et al. (2011), this paper evaluates a dynamically and structurally stable size of Asteroid (216) Kleopatra. In particular, we investigate two different failure modes: material shedding from the surface and structural failure of the internal body. We construct zero-velocity curves in the vicinity of this asteroid to determine surface shedding, while we utilize a limit analysis to calculate the lower and upper bounds of structural failure under the zero-cohesion assumption. Surface shedding does not occur at the current spin period (5.385 hr) and cannot directly initiate the formation of the satellites. On the other hand, this body may be close to structural failure; in particular, the neck may be situated near a plastic state. In addition, the neck's sensitivity to structural failure changes as the body size varies. We conclude that plastic deformation has probably occurred around the neck part in the pas...

  12. Dynamical models for sand ripples beneath surface waves

    DEFF Research Database (Denmark)

    Andersen, Ken Haste; Chabanol, M.-L.; v. Hecke, M.


    We introduce order parameter models for describing the dynamics of sand ripple patterns under oscillatory flow. A crucial ingredient of these models is the mass transport between adjacent ripples, which we obtain from detailed numerical simulations for a range of ripple sizes. Using this mass...... transport function, our models predict the existence of a stable band of wave numbers limited by secondary instabilities. Small ripples coarsen in our models and this process leads to a sharply selected final wave number, in agreement with experimental observations....

  13. Water on titanium dioxide surface: a revisiting by reactive molecular dynamics simulations. (United States)

    Huang, Liangliang; Gubbins, Keith E; Li, Licheng; Lu, Xiaohua


    The behavior of surface water, especially the adsorption and dissociation characteristics, is a key to understanding and promoting photocatalytic and biomedical applications of titanium dioxide materials. Using molecular dynamics simulations with the ReaxFF force field, we study the interactions between water and five different TiO2 surfaces that are of interest to both experiments and theoretical calculations. The results show that TiO2 surfaces demonstrate different reactivities for water dissociation [rutile (011) > TiO2-B (100) > anatase (001) > rutile (110)], and there is no water dissociation observed on the TiO2-B (001) surface. The simulations also reveal that the water dissociation and the TiO2 surface chemistry change, and the new surface Ti-OH and O-H functional groups affect the orientation of other near-surface water molecules. On the reactive surface, such as the rutile (110) surface, water dissociated and formed new Ti-OH and O-H bonds on the surface. Those functional groups enhanced the hydrogen bond networking with the near-surface water molecules and their configurations. On the nonreactive TiO2-B (001) surface where no molecular or dissociative water adsorption is observed, near-surface water can also form hydrogen bonds with surface oxygen atoms of TiO2, but their distance to the surface is longer than that on the rutile (011) surface.

  14. Self-Consistent Procedure For Treatment Of The Ionization Dynamics Of Rydberg Atoms Approaching Solid Surfaces In The Electric Field (United States)

    Nedeljkovic, N. N.; Božnic, D. K.; Dojcilovic, R. J.; Pajovic, J. D.


    The self-consistent procedure for the analysis of the ionization dynamics of slow hydrogenlike Rydberg atoms approaching solid surface in a weak electric field has been developed. The complex energy eigenvalue problem is solved in the critical region of the ion-surface distances R using an etalon equation method. The problem of motion of a representative member of the atomic beam is resolved by including the R-dependent expression for the perpendicular velocity into the expression for the ionization probability iteratively. The results of the procedure were employed to calculate the averaged ionization probabilities which were compared to the available experimental results.

  15. Input dynamics of pesticide transformation products into surface water (United States)

    Kern, Susanne; Singer, Heinz; Hollender, Juliane; Schwarzenbach, René P.; Fenner, Kathrin


    Some pesticide transformation products have been observed to occur in higher concentrations and more frequently than the parent active pesticide in surface water and groundwater. These products are often more mobile and sometimes more stable than the parent pesticide. If they also represent the major product into which the parent substance is transformed, these transformation products may dominate observed pesticide occurrences in surface water and groundwater. Their potential contribution to the overall risk to the aquatic environment caused by the use of the parent pesticide should therefore not be neglected in chemical risk and water quality assessments. The same is true for transformation products of other compound classes that might reach the soil environment, such as veterinary pharmaceuticals. However, the fate and input pathways of transformation products of soil-applied chemicals into surface water are not yet well understood, which largely prevents their appropriate inclusion into chemical risk and water quality assessments. Here, we studied whether prioritization methods based on available environmental fate data from pesticide registration dossiers in combination with basic fate models could help identify transformation products which can be found in relevant concentrations in surface and groundwater and which should therefore be included into monitoring programs. A three-box steady state model containing air, soil, and surface water compartments was used to predict relative inputs of pesticide transformation products into surface waters based on their physico-chemical and environmental fate properties. The model predictions were compared to monitoring data from a small Swiss river located in an intensely agricultural catchment (90 km2) which was flow-proportionally sampled from May to October 2008 and screened for 74 pesticides as well as 50 corresponding transformation products. Sampling mainly occurred during high discharge, but additional samples

  16. Direct numerical simulation of the dynamics of sliding rough surfaces

    CERN Document Server

    Dang, Viet Hung; Scheibert, Julien; Bot, Alain Le


    The noise generated by the friction of two rough surfaces under weak contact pressure is usually called roughness noise. The underlying vibration which produces the noise stems from numerous instantaneous shocks (in the microsecond range) between surface micro-asperities. The numerical simulation of this problem using classical mechanics requires a fine discretization in both space and time. This is why the finite element method takes much CPU time. In this study, we propose an alternative numerical approach which is based on a truncated modal decomposition of the vibration, a central difference integration scheme and two algorithms for contact: The penalty algorithm and the Lagrange multiplier algorithm. Not only does it reproduce the empirical laws of vibration level versus roughness and sliding speed found experimentally but it also provides the statistical properties of local events which are not accessible by experiment. The CPU time reduction is typically a factor of 10.

  17. Molecular dynamics simulations on surface properties of silicon dioxide melts

    CERN Document Server

    Röder, A


    In the present thesis the surface properties of a silicon dioxide melt were studied. As first systems drops (i.e. sytems without periodic boundary conditions) of N=432, 1536, as well as 4608 atoms were considered. The second analyzed geometry corresponds to that of a thin film, i. e. periodic boundary conditions in x- and y-direction were present, while in z-direction one had a free surface. In this case a system of N=1152 atoms was considered. As model potential the two-body potential proposed by Beest, Kramer, and van Santen was applied. For both geometries five temperatures were considered, which lied in the range of 3000 K

  18. Entropy of Null Surfaces and Dynamics of Spacetime

    CERN Document Server

    Padmanabhan, T; Paranjape, Aseem


    The null surfaces of a spacetime act as one-way membranes and can block information for a corresponding family of observers (time-like curves). Since lack of information can be related to entropy, this suggests the possibility of assigning an entropy to the null surfaces of a spacetime. We motivate and introduce such an entropy functional in terms of the normal to the null surface and a fourth-rank divergence free tensor $P_{ab}^{cd}$ with the algebraic symmetries of the curvature tensor. Extremising this entropy then leads to field equations for the background metric of the spacetime. When $P_{ab}^{cd}$ is constructed from the metric alone, these equations are identical to Einstein's equations with an undetermined cosmological constant (which arises as an integration constant). More generally, if $P_{ab}^{cd}$ is allowed to depend on both metric and curvature in a polynomial form, one recovers the Lanczos-Lovelock gravity. In all these cases: (a) We only need to extremise the entropy associated with the null...

  19. Research on impervious surface dynamic changes based on Landsat satellite images in Nantong, China (United States)

    Lu, Xiu; Li, Jia; Duan, Ping; Wang, Jinliang; Zhang, Chi


    In this paper, the decision tree classification based on the CART algorithm (Classification and Regression Tree) is used to extract the impervious surface area of Nantong city in Jiangsu Province in China. Impervious surface dynamic change nearly 25 years in Nantong city is researched using four periods Landsat images of 1990, 2003, 2008, and 2014. The results show that the classification precision based on the CART algorithm is higher, which can more accurately extract the impervious surface. During the 25 years, the trend of the impervious surface of Nantong is increased year by year. Urban construction and expansion is one of the driving forces of the impervious surface increase.

  20. Improving the Vegetation Dynamic Simulation in a Land Surface Model by Using a Statistical-dynamic Canopy Interception Scheme

    Institute of Scientific and Technical Information of China (English)

    LIANG Miaoling; XIE Zhenghui


    Canopy interception of incident precipitation, as a critical component of a forest's water budget, can affect the amount of water available to the soil, and ultimately vegetation distribution and function. In this paper, a statistical-dynamic approach based on leaf area index and statistical canopy interception is used to parameterize the canopy interception process. The statistical-dynamic canopy interception scheme is implemented into the Community Land Model with dynamic global vegetation model (CLM-DGVM) to improve its dynamic vegetation simulation. The simulation for continental China by the land surface model with the new canopy interception scheme shows that the new one reasonably represents the precipitation intercepted by the canopy. Moreover, the new scheme enhances the water availability in the root zone for vegetation growth, especially in the densely vegetated and semi-arid areas, and improves the model's performance of potential vegetation simulation.

  1. Hybrid Dynamic Network Data Envelopment Analysis

    Directory of Open Access Journals (Sweden)

    Ling Li


    Full Text Available Conventional DEA models make no hypothesis concerning the internal operations in a static situation. To open the “black box” and work with dynamic assessment issues synchronously, we put forward a hybrid model for evaluating the relative efficiencies of a set of DMUs over an observed time period with a composite of network DEA and dynamic DEA. We vertically deal with intermediate products between divisions with assignable inputs in the network structure and, horizontally, we extend network structure by means of a dynamic pattern with unrelated activities between two succeeding periods. The hybrid dynamic network DEA model proposed in this paper enables us to (i pry into the internal operations of DEA by another network structure, (ii obtain dynamic change of period efficiency, and (iii gain the overall dynamic efficiency of DMUs over the entire observed periods. We finally illustrate the calculation procedure of the proposed approach by a numerical example.

  2. Production TTR modeling and dynamic buckling analysis

    Institute of Scientific and Technical Information of China (English)

    Hugh Liu; John Wei; Edward Huang


    In a typical tension leg platform (TLP) design,the top tension factor (TTF),measuring the top tension of a top tensioned riser (TTR) relative to its submerged weight in water,is one of the most important design parameters that has to be specified properly.While a very small TTF may lead to excessive vortex induced vibration (ⅤⅣ),clashing issues and possible compression close to seafloor,an unnecessarily high TTF may translate into excessive riser cost and vessel payload,and even has impacts on the TLP sizing and design in general.In the process of a production TTR design,it is found that its outer casing can be subjected to compression in a worst-case scenario with some extreme metocean and hardware conditions.The present paper shows how finite element analysis (FEA) models using beam elements and two different software packages (Flexcom and ABAQUS) are constructed to simulate the TTR properly,and especially the pipe-in-pipe effects.An ABAQUS model with hybrid elements (beam elements globally + shell elements locally) can be used to investigate how the outer casing behaves under compression.It is shown for the specified TTR design,even with its outer casing being under some local compression in the worst-case scenario,dynamic buckling would not occur; therefore the TTR design is adequate.

  3. Dynamic Analysis of Foundation Supporting Rotary Machine

    Directory of Open Access Journals (Sweden)

    Utkarsh S. Patel


    Full Text Available With the advancement of technology in the field of industry, high speed machinery has been developed. As the speed of machinery has increased, vibrations also increased. Machines transmit vibrations to the structure supporting them. Hence, it is important to design and develop such structure which sustains the vibrations of machinery. Hence, in this study it has been aimed to execute the study on foundations supporting rotary type of machine like blower. In this paper, the most important parameters like frequency and amplitude are considered while execution of analysis of machine foundation supporting blower type machine. This paper shows, better interface between foundation designer and machine manufacturer for better performance of machine. The design aids/approaches for foundation design is also described in this paper and an attempt has been made to study the dynamic behaviour of a foundation structure for blower type machine subjected to forces due to operation of blower machine. Two different types of foundations for Rotary type Machine that is Blower have been studied in this paper

  4. Jerk analysis in rail vehicle dynamics

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Sharma


    Full Text Available The acceleration and deceleration of trains are essential for satisfactory performance of train services and for effective utilisation of line capacity by railways for a given network. However, it increases the risk of unbalancing the passengers. Therefore, in this paper, the jerk was analysed in the vehicle in order to examine its effect on safety and comfort to the passengers. For the purpose of this analysis, a rake with 24 ICF coaches fitted with CBC (H type tight lock and low preload draft gear hauled by WDP4 locomotive was considered. It was modelled using Universal Mechanism – a multibody dynamic software. Also, in addition, the vehicle is considered to be subjected to external forces such as rolling resistance, longitudinal wheel resistance, and gravitational force. The tractive and braking efforts for the locomotives are also considered with realistic track conditions between Lucknow and Kanpur of India. The presented results suggest that the CBC with balanced type draft gear reduces the jerk in the train.

  5. A dynamic human motion: coordination analysis. (United States)

    Pchelkin, Stepan; Shiriaev, Anton S; Freidovich, Leonid B; Mettin, Uwe; Gusev, Sergei V; Kwon, Woong; Paramonov, Leonid


    This article is concerned with the generic structure of the motion coordination system resulting from the application of the method of virtual holonomic constraints (VHCs) to the problem of the generation and robust execution of a dynamic humanlike motion by a humanoid robot. The motion coordination developed using VHCs is based on a motion generator equation, which is a scalar nonlinear differential equation of second order. It can be considered equivalent in function to a central pattern generator in living organisms. The relative time evolution of the degrees of freedom of a humanoid robot during a typical motion are specified by a set of coordination functions that uniquely define the overall pattern of the motion. This is comparable to a hypothesis on the existence of motion patterns in biomechanics. A robust control is derived based on a transverse linearization along the configuration manifold defined by the coordination functions. It is shown that the derived coordination and control architecture possesses excellent robustness properties. The analysis is performed on an example of a real human motion recorded in test experiments.

  6. Dynamical Networks for Smog Pattern Analysis

    CERN Document Server

    Zong, Linqi; Zhu, Jia


    Smog, as a form of air pollution, poses as a serious problem to the environment, health, and economy of the world[1-4] . Previous studies on smog mostly focused on the components and the effects of smog [5-10]. However, as the smog happens with increased frequency and duration, the smog pattern which is critical for smog forecast and control, is rarely investigated, mainly due to the complexity of the components, the causes, and the spreading processes of smog. Here we report the first analysis on smog pattern applying the model of dynamical networks with spontaneous recovery. We show that many phenomena such as the sudden outbreak and dissipation of smog and the long duration smog can be revealed with the mathematical mechanism under a random walk simulation. We present real-world air quality index data in accord with the predictions of the model. Also we found that compared to external causes such as pollution spreading from nearby, internal causes such as industrial pollution and vehicle emission generated...

  7. N-body dynamics on closed surfaces: the axioms of mechanics (United States)

    Boatto, Stefanella; Dritschel, David G.; Schaefer, Rodrigo G.


    A major challenge for our understanding of the mathematical basis of particle dynamics is the formulation of N-body and N-vortex dynamics on Riemann surfaces. In this paper, we show how the two problems are, in fact, closely related when considering the role played by the intrinsic geometry of the surface. This enables a straightforward deduction of the dynamics of point masses, using recently derived results for point vortices on general closed differentiable surfaces M endowed with a metric g. We find, generally, that Kepler's Laws do not hold. What is more, even Newton's First Law (the law of inertia) fails on closed surfaces with variable curvature (e.g. the ellipsoid).

  8. Time-resolved interference unveils nanoscale surface dynamics in evaporating sessile droplet (United States)

    Verma, Gopal; Singh, Kamal P.


    We report a simple optical technique to measure time-resolved nanoscale surface profile of an evaporating sessile fluid droplet. By analyzing the high contrast Newton-ring like dynamical fringes formed by interfering Fresnel reflections, we demonstrated λ/100 ≈ 5 nm sensitivity in surface height (at 0.01-160 nm/s rate) of an evaporating water drop. The remarkably high sensitivity allowed us to precisely measure its transient surface dynamics during contact-line slips, weak perturbations on the evaporation due to external magnetic field and partial confinement of the drop. Further, we measured evaporation dynamics of a sessile water drop on soft deformable surface to demonstrate wide applicability of this technique.

  9. N-body dynamics on closed surfaces: the axioms of mechanics. (United States)

    Boatto, Stefanella; Dritschel, David G; Schaefer, Rodrigo G


    A major challenge for our understanding of the mathematical basis of particle dynamics is the formulation of N-body and N-vortex dynamics on Riemann surfaces. In this paper, we show how the two problems are, in fact, closely related when considering the role played by the intrinsic geometry of the surface. This enables a straightforward deduction of the dynamics of point masses, using recently derived results for point vortices on general closed differentiable surfaces M endowed with a metric g. We find, generally, that Kepler's Laws do not hold. What is more, even Newton's First Law (the law of inertia) fails on closed surfaces with variable curvature (e.g. the ellipsoid).

  10. Analysis of modern positioning systems, used for dynamic positioning purposes



    This article contains the detailed analysis of the modern position systems used for dynamic positioning basing on their expediency perspective. The accuracy issue related to determining vessel’s positions using dynamic positioning has been contemplated. The analysis included not only advantages but disadvantages of each determining position system as well summarizing the results for further consideration and possible application purposes. The accuracy of ship’s positioning using the dynamic p...

  11. Dynamic analysis of rail vehicle axle

    Indian Academy of Sciences (India)

    Ferhat Dikmen; Meral Bayraktar; Rahmi Guclu


    In this paper, in order to obtain the dynamic forces on the passenger coach axle, a full rail vehicle model with 19-dof (degrees of freedom) has been considered. For a specific example, the variations of these dynamic forces with velocity of the passenger coach, suspension characteristics and way conditions have been examined. Dynamic forces found in the resonance regions at the range of 2–5 m/s (7.2–18 km/h) has been discussed. Theoretical results obtained for the dynamic forces have been successfully compared with the experimental results of German Railways (Deutsche Bahn-DB).

  12. Modeling And Analysis Of The Surface Roughness And Geometrical Error Using Taguchi And Response Surface Methodology

    Directory of Open Access Journals (Sweden)



    Full Text Available This experimental work presents a technique to determine the better surface quality by controlling the surface roughness and geometrical error. In machining operations, achieving desired surface quality features of the machined product is really a challenging job. Because, these quality features are highly correlated and areexpected to be influenced directly or indirectly by the direct effect of process parameters or their interactive effects. Thus The four input process parameters such as spindle speed, depth of cut, feed rate, and stepover have been selected to minimize the surface roughness and geometrical error simultaneously by using the robustdesign concept of Taguchi L9(34 method coupled with Response surface concept. Mathematical models for surface roughness and geometrical error were obtained from response surface analysis to predict values of surface roughness and geometrical error. S/N ratio and ANOVA analyses were also performed to obtain for significant parameters influencing surface roughness and geometrical error.

  13. Molecularly engineered surfaces for cell biology: from static to dynamic surfaces. (United States)

    Gooding, J Justin; Parker, Stephen G; Lu, Yong; Gaus, Katharina


    Surfaces with a well-defined presentation of ligands for receptors on the cell membrane can serve as models of the extracellular matrix for studying cell adhesion or as model cell surfaces for exploring cell-cell contacts. Because such surfaces can provide exquisite control over, for example, the density of these ligands or when the ligands are presented to the cell, they provide a very precise strategy for understanding the mechanisms by which cells respond to external adhesive cues. In the present feature article, we present an overview of the basic biology of cell adhesion before discussing surfaces that have a static presentation of immobile ligands. We outline the biological information that such surfaces have given us, before progressing to recently developed switchable surfaces and surfaces that mimic the lipid bilayer, having adhesive ligands that can move around the membrane and be remodeled by the cell. Finally, the feature article closes with some of the biological information that these new types of surfaces could provide.

  14. An assessment of the dynamic stability of microorganisms on patterned surfaces in relation to biofouling control. (United States)

    Halder, Partha; Nasabi, Mahyar; Jayasuriya, Niranjali; Shimeta, Jeff; Deighton, Margaret; Bhattacharya, Satinath; Mitchell, Arnan; Bhuiyan, Muhammed Ali


    Microstructure-based patterned surfaces with antifouling capabilities against a wide range of organisms are yet to be optimised. Several studies have shown that microtopographic features affect the settlement and the early stages of biofilm formation of microorganisms. It is speculated that the fluctuating stress-strain rates developed on patterned surfaces disrupt the stability of microorganisms. This study investigated the dynamic interactions of a motile bacterium (Escherichia coli) with microtopographies in relation to initial settlement. The trajectories of E. coli across a patterned surface of a microwell array within a microchannel-based flow cell system were assessed experimentally with a time-lapse imaging module. The microwell array was composed of 256 circular wells, each with diameter 10 μm, spacing 7 μm and depth 5 μm. The dynamics of E. coli over microwell-based patterned surfaces were compared with those over plain surfaces and an increased velocity of cell bodies was observed in the case of patterned surfaces. The experimental results were further verified and supported by computational fluid dynamic simulations. Finally, it was stated that the nature of solid boundaries and the associated microfluidic conditions play key roles in determining the dynamic stability of motile bacteria in the close vicinity over surfaces.

  15. Dynamics of formation of the Exclusion Zone near hydrophilic surfaces (United States)

    De Ninno, Antonella


    EZ water is unable to host solutes, what provides the root of the name Exclusion Zone, and its formation law points towards a diffusive process. These peculiarities have attracted the interest of scientists because it challenges all the theories which have tried to describe the structure of liquid water. The mixture of H-bond stable and H-bond distorted structures envisaged by very recent experimental findings, cannot account for the long-lived hexagonal configuration observed near the Nafion surface. A theoretical account for the phenomenology of H-bond is provided which looks able to explain many among the most striking feature of this water.

  16. Double symbolic joint entropy in nonlinear dynamic complexity analysis (United States)

    Yao, Wenpo; Wang, Jun


    Symbolizations, the base of symbolic dynamic analysis, are classified as global static and local dynamic approaches which are combined by joint entropy in our works for nonlinear dynamic complexity analysis. Two global static methods, symbolic transformations of Wessel N. symbolic entropy and base-scale entropy, and two local ones, namely symbolizations of permutation and differential entropy, constitute four double symbolic joint entropies that have accurate complexity detections in chaotic models, logistic and Henon map series. In nonlinear dynamical analysis of different kinds of heart rate variability, heartbeats of healthy young have higher complexity than those of the healthy elderly, and congestive heart failure (CHF) patients are lowest in heartbeats' joint entropy values. Each individual symbolic entropy is improved by double symbolic joint entropy among which the combination of base-scale and differential symbolizations have best complexity analysis. Test results prove that double symbolic joint entropy is feasible in nonlinear dynamic complexity analysis.

  17. Effect of dynamic temperature stimulus to plantar surface of the foot in the standing position

    Directory of Open Access Journals (Sweden)

    Ryo Watanabe


    Full Text Available We have previously found that a vertical force or tactile sensation occurs when the temperature of a participant's skin changes rapidly. In this illusion, upward motion, pressure or force sensation is elicited when stimulus temperature rises rapidly, whereas in the opposite case, downward motion or pulling sensation is elicited. In this paper, we applied this phenomenon to the sole (plantar surface of the foot to present the sensation of ground slope. To investigate this, we conducted an experiment that measured the correlation between stimulation temperature and front-back direction position of the center of gravity (COG. Participants stood on a thermal stimulator on Nintendo Wii Balance Board (WBB and they remained standing during 30 s dynamic temperature stimulus. In result of analysis, it was suggested that dynamic thermal change in sole might influence standing position and the effect pattern was anomalous in case of the participants who reported a swaying sensation without a haptic sensation. This behavior might be applied to the diagnosis of the presence of thermoesthesia of the patients who might have disease with absence of thermoesthesia.

  18. Surface Response to Regional Uplift of Madagascar Reveals Short Wavelength Dynamic Topography (United States)

    Stephenson, S.; White, N.


    The physiography of Madagascar is characterized by high elevation but low relief topography with 42% of the landscape at an elevation grgeater than 500 m. Eocene marine limestones crop out at an elevation of 400 m, extensive low relief erosion surfaces capped by laterites occur at elevations of up to 2 km, and longitudinal river profiles are disequilibrated. Together, these observations suggest that Madagascar underwent regional uplift in Neogene times. Inverse modeling of drainage networks suggests that regional uplift is diachronous and has occurred on wavelengths of 1000 km. The existence of deeply incised river channels together with low-temperature thermochronologic measurements (i.e. AFT, AHe) implies that erosion occurred in response to regional Neogene uplift. Admittance analysis of long wavelength free-air gravity and topography shows that admittance, Z = 45 ± 5 mGal/km. The history of Neogene volcanism and a lack of significant tectonic shortening both suggest that uplift is dynamically supported. Here we present a suite of U-Th dates of emergent coral reef deposits from northern Madagascar, whose margins are sometimes considered `stable'. Elevation of these coeval coral reefs decreases from 7.2 m at the northern tip of Madagascar to sea level 100 km to the south. The existence of a spatial gradient suggests that differential vertical motions occurred during Late Quaternary times. These results raise significant questions about the reliability both of emergent coral reefs as global sea-level markers and the length-scale of variations in dynamic topography.

  19. Dynamical and scale invariance of charged particles slipping on a rough surface with periodic excitation (United States)

    Zhang, Hao; Luo, Pengcheng; Ding, Huifang


    This letter deals with the dynamical and scaling invariance of charged particles slipping on a rough surface with periodic excitation. A variant of the Fermi-Ulam model (FUM) is proposed to describe the transport behavior of the particles when the electric field force Fe is smaller or larger than the friction force Ff, i.e., A 0. For these two cases, the stability of fixed points is analyzed with the help of the eigenvalue analysis method, and further the invariant manifolds are constructed to investigate the dynamical invariance such as energy diffusion for some initial conditions in the case A > 0 and decay process in the case A law of the statistical behavior. It follows that both the FA phenomenon for A > 0 and the velocity decay process for A < 0 satisfy scaling invariance with respect to the nondimensional acceleration A. Besides, for A < 0, the transient number nx is proposed to evaluate the speed of the velocity decay process. More importantly, nx is found to possess the attribute of scaling invariance with respect to both the initial velocity V0 and the nondimensional acceleration A. These results are very useful for the in-depth understanding of the energy transport properties of charged particle systems.

  20. Dynamical characteristics of surface EMG signals of hand grasps via recurrence plot. (United States)

    Ouyang, Gaoxiang; Zhu, Xiangyang; Ju, Zhaojie; Liu, Honghai


    Recognizing human hand grasp movements through surface electromyogram (sEMG) is a challenging task. In this paper, we investigated nonlinear measures based on recurrence plot, as a tool to evaluate the hidden dynamical characteristics of sEMG during four different hand movements. A series of experimental tests in this study show that the dynamical characteristics of sEMG data with recurrence quantification analysis (RQA) can distinguish different hand grasp movements. Meanwhile, adaptive neuro-fuzzy inference system (ANFIS) is applied to evaluate the performance of the aforementioned measures to identify the grasp movements. The experimental results show that the recognition rate (99.1%) based on the combination of linear and nonlinear measures is much higher than those with only linear measures (93.4%) or nonlinear measures (88.1%). These results suggest that the RQA measures might be a potential tool to reveal the sEMG hidden characteristics of hand grasp movements and an effective supplement for the traditional linear grasp recognition methods.

  1. Bio-diatomite dynamic membrane reactor for micro-polluted surface water treatment. (United States)

    Chu, Huaqiang; Cao, Dawen; Dong, Bingzhi; Qiang, Zhimin


    This work investigated the feasibility of treating micro-polluted surface water for drinking water production with a bio-diatomite dynamic membrane reactor (BDDMR) at lab-scale in continuous-flow mode. Results indicate that the BDDMR was effective in removing COD(Mn), DOC, UV(254), NH(3)-N and trihalomethanes' formation potential (THMFP) at a hydraulic retention time (HRT) of 3.5h due to its high concentrations of mixed liquor suspended solids (MLSS) and mixed liquor volatile suspended solids (MLVSS). The removal of pollutants was mainly ascribed to microbial degradation in BDDMR because the dynamic membrane alone was much less effective in pollutant removal. Though the diatomite particles (5-20microm) were much smaller in size than the aperture of the stainless steel support mesh (74microm), microorganisms and their extracellular polymer substances could bind these particles tightly to form bio-diatomite particles which were completely retained by the support mesh. The analysis of molecular weight (MW) distribution by gel permeation chromatography (GPC) shows that the BDDMR could effectively remove the hydrophilic fraction of dissolved organic materials present in the raw water. Copyright 2009 Elsevier Ltd. All rights reserved.

  2. Robust passive dynamics of the musculoskeletal system compensate for unexpected surface changes during human hopping. (United States)

    van der Krogt, Marjolein M; de Graaf, Wendy W; Farley, Claire T; Moritz, Chet T; Richard Casius, L J; Bobbert, Maarten F


    When human hoppers are surprised by a change in surface stiffness, they adapt almost instantly by changing leg stiffness, implying that neural feedback is not necessary. The goal of this simulation study was first to investigate whether leg stiffness can change without neural control adjustment when landing on an unexpected hard or unexpected compliant (soft) surface, and second to determine what underlying mechanisms are responsible for this change in leg stiffness. The muscle stimulation pattern of a forward dynamic musculoskeletal model was optimized to make the model match experimental hopping kinematics on hard and soft surfaces. Next, only surface stiffness was changed to determine how the mechanical interaction of the musculoskeletal model with the unexpected surface affected leg stiffness. It was found that leg stiffness adapted passively to both unexpected surfaces. On the unexpected hard surface, leg stiffness was lower than on the soft surface, resulting in close-to-normal center of mass displacement. This reduction in leg stiffness was a result of reduced joint stiffness caused by lower effective muscle stiffness. Faster flexion of the joints due to the interaction with the hard surface led to larger changes in muscle length, while the prescribed increase in active state and resulting muscle force remained nearly constant in time. Opposite effects were found on the unexpected soft surface, demonstrating the bidirectional stabilizing properties of passive dynamics. These passive adaptations to unexpected surfaces may be critical when negotiating disturbances during locomotion across variable terrain.

  3. Sharpening our Understanding but Blurring the Boundaries: Dynamic Observations of Surface Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Donald R.


    Every now and then, reading a specific paper stimulates--in my mind at least--a variety of associations and connections that highlight advances that have been made and suggests links between areas that I may not have previously connected. The recent series of papers by McCarty and Bartelt (and co-workers) using low energy electron microscopy (LEEM) to study the dynamics of surface reconstruction of TiO2 , and NiAl sent my thinking in a variety loosely connected directions. Paraphrasing the response of one of my colleagues - the work causes us to think dynamically where we have often thought statically about what happens when surfaces reconstruct. The measurements also highlight the importance of newer techniques to help us visualize and understand phenomena that may have puzzled us for years. The dynamic interactions between surface structure and both the defect structure (and history) of the substrate and the nature of the environment of the specimen highlight an aspect of phenomena that drive surface reconstruction not normally considered and suggests additional and delightful challenges we face in understanding the bulk stability and surface structures of nano-sized objects. Since the physical arrangement of the atoms controls every aspect of the physics and chemistry of a surface or interface, the atomic geometry is a fundamental defining characteristic of a surface. , Details of the structure of a surface, including altered atomic positions, the presence of steps and various types of defects can significantly change the chemistry of a surface and impact processes ranging from the formation of interfaces in electronic components to the efficiency of a catalyst. Because of its importance there has been considerable effort devoted to understanding and predicting surface structures. However, dynamical aspects of surface reconstruction and the significance of material defects in the process have not been part of the standard picture.

  4. Laser pulse heating of surfaces and thermal stress analysis

    CERN Document Server

    Yilbas, Bekir S; Al-Aqeeli, Nasser; Al-Qahtani, Hussain M


    This book introduces laser pulse heating and thermal stress analysis in materials surface. Analytical temperature treatments and stress developed in the surface region are also explored. The book will help the reader analyze the laser induced stress in the irradiated region and presents solutions for the stress field. Detailed thermal stress analysis in different laser pulse heating situations and different boundary conditions are also presented. Written for surface engineers.

  5. Evolution of continental-scale drainage in response to mantle dynamics and surface processes: An example from the Ethiopian Highlands (United States)

    Sembroni, Andrea; Molin, Paola; Pazzaglia, Frank J.; Faccenna, Claudio; Abebe, Bekele


    Ethiopia offers an excellent opportunity to study the effects and linkage between mantle dynamics and surface processes on landscape evolution. The Ethiopian Highlands (NW Ethiopia), characterized by a huge basaltic plateau, is part of the African Superswell, a wide region of dynamically-supported anomalously high topography related to the rising of the Afar plume. The initiation and steadiness of dynamic support beneath Ethiopia has been explored in several studies. However the presence, role, and timing of dynamic support beneath Ethiopia and its relationship with continental flood basalts volcanism and surface processes are poorly defined. Here, we present a geomorphological analysis of the Ethiopian Highlands supplying new constraints on the evolution of river network. We investigated the general topographic features (filtered topography, swath profiles, local relief) and the river network (river longitudinal profiles) of the study area. We also apply a knickpoint celerity model in order to provide a chronological framework to the evolution of the river network. The results trace the long-term progressive capture of the Ethiopian Highlands drainage system and confirm the long-term dynamic support of the area, documenting its impact on the contrasting development of the Blue Nile and Tekeze basins.

  6. Influence of statistical surface models on dynamic scattering of high-frequency signals from the ocean surface (A)

    DEFF Research Database (Denmark)

    Bjerrum-Niese, Christian; Jensen, Leif Bjørnø


    Temporal variations of scattering of high-frequency, monochromatic signals from the ocean surface has been studied numerically. In the high-frequency domain the dynamic scattering can be modeled by a coherence function of the scattered pressure field, which is based on the Kirchhoff integral...... for the Pierson–Moskowitz spectrum (for a fully developed sea) with computations for the JONSWAP spectrum (for fetch-limited seas). The following results, among other issues, have been obtained: As the fetch decreases, the surface waves become shorter, leading to increasing frequency shifting of the scattered...... signal. [Work sponsored by the Danish Technical Research Council and the EU/MAST programme.]...

  7. Analysis of the dynamic hysteresis characteristic of finger seal

    Institute of Scientific and Technical Information of China (English)

    LEI Yanni; CHEN Guoding


    The research about hysteresis characteristic of finger seal (FS), which was carried out based on the model with static loads, could not reflect the dynamics behavior of FS system when the rotor runs at high speed. To solve this problem, the relations between the dynamics parameters, structure parameters as well as working parameters in the system were given out through the analysis of finite element analysis result. A mass-spring-damper dynamics model of FS system was proposed and the hysteresis characteristic of the FS system was analyzed. This work shows that the dynamics characteristic analysis of the FS is necessary and the dynamics model proposed in this paper is valid. This dynamics model is the basis for the optimization design of FS system.

  8. High-speed collision of copper nanoparticle with aluminum surface: Molecular dynamics simulation (United States)

    Pogorelko, Victor V.; Mayer, Alexander E.; Krasnikov, Vasiliy S.


    We investigate the effect of the high-speed collision of copper nanoparticles with aluminum surface by means of molecular dynamic simulations. Studied diameter of nanoparticles is varied within the range 7.2-22 nm and the velocity of impact is equal to 500 or 1000 m/s. Dislocation analysis shows that a large quantity of dislocations is formed within the impact area. Overall length of dislocations is determined, first of all, by the impact velocity and by the size of incident copper nanoparticle, in other words, by the kinetic energy of the nanoparticle. Dislocations occupy the total volume of the impacted aluminum single crystal layer (40.5 nm in thickness) in the form of intertwined structure in the case of large kinetic energy of the incident nanoparticle. Decrease in the initial kinetic energy or increase in the layer thickness lead to restriction of the penetration depth of the dislocation net; formation of separate dislocation loops is observed in this case. Increase in the initial system temperature slightly raises the dislocation density inside the bombarded layer and considerably decreases the dislocation density inside the nanoparticle. The temperature increase also leads to a deeper penetration of the copper atoms inside the aluminum. Additional molecular dynamic simulations show that the deposited particles demonstrate a very good adhesion even in the case of the considered relatively large nanoparticles. Medium energy of the nanoparticles corresponding to velocity of about 500 m/s and elevated temperature of the system about 700-900 K are optimal parameters for production of high-quality layers of copper on the aluminum surface. These conditions provide both a good adhesion and a less degree of the plastic deformation. At the same time, higher impact velocities can be used for combined treatment consisting of both the plastic deformation and the coating.

  9. A study of surface semi-geostrophic turbulence: freely decaying dynamics

    CERN Document Server

    Ragone, Francesco


    In this study we give a characterization of semi-geostrophic turbulence by performing freely decaying simulations of the semi-geostrophic equations for the case of constant uniform potential vorticity, a set of equations known as surface semi-geostrophic approximation. The equations are formulated as conservation laws for potential temperature and potential vorticity, with a nonlinear Monge-Amp\\'{e}re type inversion equation for the streamfunction, expressed in a transformed coordinate system that follows the geostrophic flow. We perform model studies of turbulent surface semi-geostrophic flows in a doubly-periodic domain in the horizontal limited in the vertical by two rigid lids, allowing for variations of potential temperature at one of the boundaries, and we compare them with the corresponding surface quasi-geostrophic case. Results show that, while surface quasi-geostrophic dynamics is dominated by a symmetric population of cyclones-anticyclones, surface semi-geostrophic dynamics features a prominent rol...

  10. Surface and step dynamics of a semi-infinite insulating antiferromagnet system

    CERN Document Server

    Tamine, M


    We have carried out a theoretical study of the localized spin-wave modes near the surface step of the insulating Heisenberg antiferromagnet. In this work, we study the full magnetic problem arising from the absence of translational symmetry due to the presence of a magnetic surface and step. The calculation concerns in particular the spin fluctuation dynamics and employs the matching procedure in the random-phase approximation. Only the nearest neighbours exchange interactions are considered between the spins in the model. The analytical formalism presented here determines the bulk and evanescent spin fluctuation fields in the two-dimensional plane normal to the surface and step regions. The results are used to calculate the localized modes of magnons associated with the step and surface terraces. The present model may be generalized to treat the spin fluctuations dynamics of other extended surface imperfections or nanostructures, provided they preserve the translation symmetry of the ordered spins along a di...

  11. LDA and molecular dynamics determination of Ag deposition onto (1 0 0) surfaces in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Mazzone, A.M


    This study analyzes the effects of the surface morphology on the deposition of Ag onto Si using LDA and isothermal molecular dynamics. The (1 0 0) silicon surface has either a bulk termination or the dimerization pattern experimentally observed. Small clusters representing a section of these surfaces have been used in LDA calculations to find preferred adsorption sites. Isothermal molecular dynamics describe the motions of the diffusing adatoms in a temperature range from T=10 to 1000 K. Both calculations indicate that Ag and Si do not mix and the deposited structure is formed by linear chains located in the trench between surface atoms. However, MD calculations show that, due to the relaxation of the surface and to thermal lattice vibrations, the stable state of the deposited atoms may considerably differ from the one calculated from LDA. This result has both a practical and a methodological significance.

  12. The Dynamics of Flat Surface Internal Geophysical Waves with Currents (United States)

    Compelli, Alan; Ivanov, Rossen I.


    A two-dimensional water wave system is examined consisting of two discrete incompressible fluid domains separated by a free common interface. In a geophysical context this is a model of an internal wave, formed at a pycnocline or thermocline in the ocean. The system is considered as being bounded at the bottom and top by a flatbed and wave-free surface respectively. A current profile with depth-dependent currents in each domain is considered. The Hamiltonian of the system is determined and expressed in terms of canonical wave-related variables. Limiting behaviour is examined and compared to that of other known models. The linearised equations as well as long-wave approximations are presented.

  13. Surface wave dynamics in orbital shaken cylindrical containers (United States)

    Reclari, M.; Dreyer, M.; Tissot, S.; Obreschkow, D.; Wurm, F. M.; Farhat, M.


    Be it to aerate a glass of wine before tasting, to accelerate a chemical reaction, or to cultivate cells in suspension, the "swirling" (or orbital shaking) of a container ensures good mixing and gas exchange in an efficient and simple way. Despite being used in a large range of applications this intuitive motion is far from being understood and presents a richness of patterns and behaviors which has not yet been reported. The present research charts the evolution of the waves with the operating parameters identifying a large variety of patterns, ranging from single and multiple crested waves to breaking waves. Free surface and velocity fields measurements are compared to a potential sloshing model, highlighting the existence of various flow regimes. Our research assesses the importance of the modal response of the shaken liquids, laying the foundations for a rigorous mixing optimization of the orbital agitation in its applications.

  14. Surface wave dynamics in orbital shaken cylindrical containers

    CERN Document Server

    Reclari, Martino; Tissot, Stéphanie; Obreschkow, Danail; Wurm, Florian Maria; Farhat, Mohamed


    Be it to aerate a glass of wine before tasting, to accelerate a chemical reaction or to cultivate cells in suspension, the "swirling" (or orbital shaking) of a container ensures good mixing and gas exchange in an efficient and simple way. Despite being used in a large range of applications this intuitive motion is far from being understood and presents a richness of patterns and behaviors which has not yet been reported. The present research charts the evolution of the waves with the operating parameters identifying a large variety of patterns, ranging from single and multiple crested waves to breaking waves. Free surface and velocity fields measurements are compared to a potential sloshing model, highlighting the existence of various flow regimes. Our research assesses the importance of the modal response of the shaken liquids, laying the foundations for a rigorous mixing optimization of the orbital agitation in its applications. Copyright (2014) American Institute of Physics. This article may be downloaded ...

  15. The Dynamics of Flat Surface Internal Geophysical Waves with Currents

    CERN Document Server

    Compelli, Alan


    A two-dimensional water wave system is examined consisting of two discrete incompressible fluid domains separated by a free common interface. In a geophysical context this is a model of an internal wave, formed at a pycnocline or thermocline in the ocean. The system is considered as being bounded at the bottom and top by a flatbed and wave-free surface respectively. A current profile with depth-dependent currents in each domain is considered. The Hamiltonian of the system is determined and expressed in terms of canonical wave-related variables. Limiting behaviour is examined and compared to that of other known models. The linearised equations as well as long-wave approximations are presented.

  16. Dynamic corona characteristics of water droplets on charged conductor surface (United States)

    Xu, Pengfei; Zhang, Bo; Wang, Zezhong; Chen, Shuiming; He, Jinliang


    The formation of the Taylor cone of a water droplet on the surface of the conductor in a line-ground electrode system is captured using a high-speed camera, while the corona current is synchronously measured using a current measurement system. Repeated Taylor cone deformation is observed, yielding regular groupings of corona current pulses. The underlying mechanism of this deformation is studied and the correlation between corona discharge characteristics and cone deformation is investigated. Depending on the applied voltage and rate of water supply, the Taylor cone may be stable or unstable and has a significant influence on the characteristics of the corona currents. If the rate of water supply is large enough, the Taylor cone tends to be unstable and generates corona-current pulses of numerous induced current pulses with low amplitudes. In consequence, this difference suggests that large rainfall results in simultaneously lower radio interference and higher corona loss.

  17. Magellan: initial analysis of venus surface modification. (United States)

    Arvidson, R E; Baker, V R; Elachi, C; Saunders, R S; Wood, J A


    Initial Magellan observations reveal a planet with high dielectric constant materials exposed preferentially in elevated regions with high slopes, ejecta deposits extending up to 1000 kilometers to the west of several impact craters, windblown deposits and features in areas where there are both obstacles and a source of particulate material, and evidence for slow, steady degradation by atmosphere-surface interactions and mass movements.

  18. Molecular dynamics of fluid flow at solid surfaces (United States)

    Koplik, Joel; Banavar, Jayanth R.; Willemsen, Jorge F.


    Molecular dynamics techniques are used to study the microscopic aspects of several slow viscous flows past a solid wall, where both fluid and wall have a molecular structure. Systems of several thousand molecules are found to exhibit reasonable continuum behavior, albeit with significant thermal fluctuations. In Couette and Poiseuille flow of liquids it is found that the no-slip boundary condition arises naturally as a consequence of molecular roughness, and that the velocity and stress fields agree with the solutions of the Stokes equations. At lower densities slip appears, which can be incorporated into a flow-independent slip-length boundary condition. The trajectories of individual molecules in Poiseuille flow are examined, and it is also found that their average behavior is given by Taylor-Aris hydrodynamic dispersion. An immiscible two-fluid system is simulated by a species-dependent intermolecular interaction. A static meniscus is observed whose contact angle agrees with simple estimates and, when motion occurs, velocity-dependent advancing and receding angles are observed. The local velocity field near a moving contact line shows a breakdown of the no-slip condition and, up to substantial statistical fluctuations, is consistent with earlier predictions of Dussan [AIChE J. 23, 131 (1977)].

  19. Cluster beam steering onto silicon surfaces studied by molecular dynamics

    CERN Document Server

    Mazzone, A M


    The purpose of this study is to investigate the effects of the impact conditions on cluster deposition in silicon and is motivated by recent results obtained using a variable incidence angle during deposition of metallic clusters and atoms. Therefore deposition of silicon clusters with a kinetic energy in the range from 0.5 to 10 eV/atom directed at normal and grazing incidence onto crystalline silicon has been studied using a molecular dynamics simulation method. The influence of other relevant parameters, such as the interatomic forces and the cluster size and shape, has also been investigated. This study shows that the physics of deposition is almost entirely dictated by the nature of the interatomic forces. When using potentials with the four-fold coordination typical of bulk a clear dependence on the size N is observed and the spreading index eta decreases with the increase of N for all incidence conditions. The cluster binding strength is perceptibly increased when using a potential accounting for the c...

  20. Surface-water dynamics and land use influence landscape connectivity across a major dryland region. (United States)

    Bishop-Taylor, Robbi; Tulbure, Mirela G; Broich, Mark


    Landscape connectivity is important for the long-term persistence of species inhabiting dryland freshwater ecosystems, with spatiotemporal surface-water dynamics (e.g., flooding) maintaining connectivity by both creating temporary habitats and providing transient opportunities for dispersal. Improving our understanding of how landscape connectivity varies with respect to surface-water dynamics and land use is an important step to maintaining biodiversity in dynamic dryland environments. Using a newly available validated Landsat TM and ETM+ surface-water time series, we modelled landscape connectivity between dynamic surface-water habitats within Australia's 1 million km2 semi-arid Murray Darling Basin across a 25-year period (1987 to 2011). We identified key habitats that serve as well-connected 'hubs', or 'stepping-stones' that allow long-distance movements through surface-water habitat networks. We compared distributions of these habitats for short- and long-distance dispersal species during dry, average and wet seasons, and across land-use types. The distribution of stepping-stones and hubs varied both spatially and temporally, with temporal changes driven by drought and flooding dynamics. Conservation areas and natural environments contained higher than expected proportions of both stepping-stones and hubs throughout the time series; however, highly modified agricultural landscapes increased in importance during wet seasons. Irrigated landscapes contained particularly high proportions of well-connected hubs for long-distance dispersers, but remained relatively disconnected for less vagile organisms. The habitats identified by our study may serve as ideal high-priority targets for land-use specific management aimed at maintaining or improving dispersal between surface-water habitats, potentially providing benefits to biodiversity beyond the immediate site scale. Our results also highlight the importance of accounting for the influence of spatial and temporal