WorldWideScience

Sample records for dynamics md calculation

  1. Classical MD calculations with parallel computers

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Mitsuhiro [Nagoya Univ. (Japan)

    1998-03-01

    We have developed parallel computation codes for a classical molecular dynamics (MD) method. In order to use them on work station clusters as well as parallel super computers, we use MPI (message passing interface) library for distributed-memory type computers. Two algorithms are compared: (1) particle parallelism technique: easy to install, effective for rather small number of processors. (2) region parallelism technique: take some time to install, effective even for many nodes. (J.P.N.)

  2. ProtoMD: A prototyping toolkit for multiscale molecular dynamics

    Science.gov (United States)

    Somogyi, Endre; Mansour, Andrew Abi; Ortoleva, Peter J.

    2016-05-01

    ProtoMD is a toolkit that facilitates the development of algorithms for multiscale molecular dynamics (MD) simulations. It is designed for multiscale methods which capture the dynamic transfer of information across multiple spatial scales, such as the atomic to the mesoscopic scale, via coevolving microscopic and coarse-grained (CG) variables. ProtoMD can be also be used to calibrate parameters needed in traditional CG-MD methods. The toolkit integrates 'GROMACS wrapper' to initiate MD simulations, and 'MDAnalysis' to analyze and manipulate trajectory files. It facilitates experimentation with a spectrum of coarse-grained variables, prototyping rare events (such as chemical reactions), or simulating nanocharacterization experiments such as terahertz spectroscopy, AFM, nanopore, and time-of-flight mass spectroscopy. ProtoMD is written in python and is freely available under the GNU General Public License from github.com/CTCNano/proto_md.

  3. Molecular Dynamics Simulations and XAFS (MD-XAFS)

    Energy Technology Data Exchange (ETDEWEB)

    Schenter, Gregory K.; Fulton, John L.

    2017-01-20

    MD-XAFS (Molecular Dynamics X-ray Adsorption Fine Structure) makes the connection between simulation techniques that generate an ensemble of molecular configurations and the direct signal observed from X-ray measurement.

  4. Carbon and proton Overhauser DNP from MD simulations and ab initio calculations: TEMPOL in acetone.

    Science.gov (United States)

    Küçük, Sami Emre; Biktagirov, Timur; Sezer, Deniz

    2015-10-14

    A computational analysis of the Overhauser effect is reported for the proton, methyl carbon, and carbonyl carbon nuclei of liquid acetone doped with the nitroxide radical TEMPOL. A practical methodology for calculating the dynamic nuclear polarization (DNP) coupling factors by accounting for both dipole-dipole and Fermi-contact interactions is presented. The contribution to the dipolar spectral density function of nuclear spins that are not too far from TEMPOL is computed through classical molecular dynamics (MD) simulations, whereas the contribution of distant spins is included analytically. Fermi contacts are obtained by subjecting a few molecules from every MD snapshot to ab initio quantum mechanical calculations. Scalar interaction is found to be an essential part of the (13)C Overhauser DNP. While mostly detrimental to the carbonyl carbon of acetone it is predicted to result in large enhancements of the methyl carbon signal at magnetic fields of 9 T and beyond. In contrast, scalar coupling is shown to be negligible for the protons of acetone. The additional influence of proton polarization on the carbon DNP (three-spin effect) is also analyzed computationally. Its effect, however, is concluded to be practically insignificant for liquid acetone.

  5. Parallel Cascade Selection Molecular Dynamics (PaCS-MD) to generate conformational transition pathway.

    Science.gov (United States)

    Harada, Ryuhei; Kitao, Akio

    2013-07-21

    Parallel Cascade Selection Molecular Dynamics (PaCS-MD) is proposed as a molecular simulation method to generate conformational transition pathway under the condition that a set of "reactant" and "product" structures is known a priori. In PaCS-MD, the cycle of short multiple independent molecular dynamics simulations and selection of the structures close to the product structure for the next cycle are repeated until the simulated structures move sufficiently close to the product. Folding of 10-residue mini-protein chignolin from the extended to native structures and open-close conformational transition of T4 lysozyme were investigated by PaCS-MD. In both cases, tens of cycles of 100-ps MD were sufficient to reach the product structures, indicating the efficient generation of conformational transition pathway in PaCS-MD with a series of conventional MD without additional external biases. Using the snapshots along the pathway as the initial coordinates, free energy landscapes were calculated by the combination with multiple independent umbrella samplings to statistically elucidate the conformational transition pathways.

  6. Molecular Dynamics Calculations

    Science.gov (United States)

    1996-01-01

    The development of thermodynamics and statistical mechanics is very important in the history of physics, and it underlines the difficulty in dealing with systems involving many bodies, even if those bodies are identical. Macroscopic systems of atoms typically contain so many particles that it would be virtually impossible to follow the behavior of all of the particles involved. Therefore, the behavior of a complete system can only be described or predicted in statistical ways. Under a grant to the NASA Lewis Research Center, scientists at the Case Western Reserve University have been examining the use of modern computing techniques that may be able to investigate and find the behavior of complete systems that have a large number of particles by tracking each particle individually. This is the study of molecular dynamics. In contrast to Monte Carlo techniques, which incorporate uncertainty from the outset, molecular dynamics calculations are fully deterministic. Although it is still impossible to track, even on high-speed computers, each particle in a system of a trillion trillion particles, it has been found that such systems can be well simulated by calculating the trajectories of a few thousand particles. Modern computers and efficient computing strategies have been used to calculate the behavior of a few physical systems and are now being employed to study important problems such as supersonic flows in the laboratory and in space. In particular, an animated video (available in mpeg format--4.4 MB) was produced by Dr. M.J. Woo, now a National Research Council fellow at Lewis, and the G-VIS laboratory at Lewis. This video shows the behavior of supersonic shocks produced by pistons in enclosed cylinders by following exactly the behavior of thousands of particles. The major assumptions made were that the particles involved were hard spheres and that all collisions with the walls and with other particles were fully elastic. The animated video was voted one of two

  7. A comparison of the American Society of Cataract and Refractive Surgery post-myopic LASI K/PRK intraocular lens (IOL) calculator and the Ocular MD IOL calculator.

    Science.gov (United States)

    Demill, David L; Moshirfar, Majid; Neuffer, Marcus C; Hsu, Maylon; Sikder, Shameema

    2011-01-01

    To compare the average values of the American Society of Cataract and Refractive Surgery (ASCRS) and Ocular MD intraocular lens (IOL) calculators to assess their accuracy in predicting IOL power in patients with prior laser-in-situ keratomileusis (LASIK) or photorefractive keratectomy. In this retrospective study, data from 21 eyes with previous LASIK or photorefractive keratectomy for myopia and subsequent cataract surgery was used in an IOL calculator comparison. The predicted IOL powers of the Ocular MD SRK/T, Ocular MD Haigis, and ASCRS averages were compared. The Ocular MD average (composed of an average of Ocular MD SRK/T and Ocular MD Haigis) and the all calculator average (composed of an average of Ocular MD SRK/T, Ocular MD Haigis, and ASCRS) were also compared. Primary outcome measures were mean arithmetic and absolute IOL prediction error, variance in mean arithmetic IOL prediction error, and the percentage of eyes within ±0.50 and ±1.00 D. The Ocular MD SRK/T and Ocular MD Haigis averages produced mean arithmetic IOL prediction errors of 0.57 and -0.61 diopters (D), respectively, which were significantly larger than errors from the ASCRS, Ocular MD, and all calculator averages (0.11, -0.02, and 0.02 D, respectively, all P < 0.05). There was no statistically significant difference between the methods in absolute IOL prediction error, variance, or the percentage of eyes with outcomes within ±0.50 and ±1.00 D. The ASCRS average was more accurate in predicting IOL power than the Ocular MD SRK/T and Ocular MD Haigis averages alone. Our methods using combinations of these averages which, when compared with the individual averages, showed a trend of decreased mean arithmetic IOL prediction error, mean absolute upper limit of IOL prediction error, and variance, while increasing the percentage of outcomes within ±0.50 D.

  8. A Comparison of the American Society of Cataract and Refractive Surgery post-myopic LASIK/PRK Intraocular Lens (IOL calculator and the Ocular MD IOL calculator

    Directory of Open Access Journals (Sweden)

    Hsu M

    2011-09-01

    Full Text Available David L DeMill1, Majid Moshirfar1, Marcus C Neuffer1, Maylon Hsu1, Shameema Sikder21John A Moran Eye Center, University of Utah, Salt Lake City, UT, USA; 2Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USABackground: To compare the average values of the American Society of Cataract and Refractive Surgery (ASCRS and Ocular MD intraocular lens (IOL calculators to assess their accuracy in predicting IOL power in patients with prior laser-in-situ keratomileusis (LASIK or photorefractive keratectomy.Methods: In this retrospective study, data from 21 eyes with previous LASIK or photorefractive keratectomy for myopia and subsequent cataract surgery was used in an IOL calculator comparison. The predicted IOL powers of the Ocular MD SRK/T, Ocular MD Haigis, and ASCRS averages were compared. The Ocular MD average (composed of an average of Ocular MD SRK/T and Ocular MD Haigis and the all calculator average (composed of an average of Ocular MD SRK/T, Ocular MD Haigis, and ASCRS were also compared. Primary outcome measures were mean arithmetic and absolute IOL prediction error, variance in mean arithmetic IOL prediction error, and the percentage of eyes within ±0.50 and ±1.00 D.Results: The Ocular MD SRK/T and Ocular MD Haigis averages produced mean arithmetic IOL prediction errors of 0.57 and –0.61 diopters (D, respectively, which were significantly larger than errors from the ASCRS, Ocular MD, and all calculator averages (0.11, –0.02, and 0.02 D, respectively, all P < 0.05. There was no statistically significant difference between the methods in absolute IOL prediction error, variance, or the percentage of eyes with outcomes within ±0.50 and ±1.00 D.Conclusion: The ASCRS average was more accurate in predicting IOL power than the Ocular MD SRK/T and Ocular MD Haigis averages alone. Our methods using combinations of these averages which, when compared with the individual averages, showed a trend of decreased mean arithmetic IOL

  9. Effects of Fatty Acids on Low-Sulfur Diesel Lubricity:Experimental Investigation, DFT Calculation and MD Simulation

    Institute of Scientific and Technical Information of China (English)

    Luo Hui; Fan Weiyu; Li Yang; Zhao Pinhui; Nan Guozhi

    2013-01-01

    The continuous reduction in sulfur content of fuels would lead to diesel fuel with poor lubricity which could re-sult in engine pump failure. In the present work, fatty acids were adopted as lubricity additives to low-sulfur diesel fuel. It was attempted to correlate the molecular structures of fatty acids, such as carbon chain length, degree of saturation and hy-droxylation, to their lubricity enhancement, which was evaluated by the High-Frequency Reciprocating Rig (HFRR) meth-od. The efifciency order was supported by the density functional theory (DFT) calculations and the molecular dynamics (MD) simulations. The lubricity enhancing properties of fatty acids are mainly determined by the cohesive energy of adsorbed iflms formed on iron surface. The greater the cohesive energy, the more efifciently the fatty acid would enhance the lubricity of low-sulfur diesel fuel.

  10. QM/MD studies of the dynamics of the MTSL spin label in Aurora-A kinase protein activation loop

    CERN Document Server

    Concilio, Maria Grazia; Bayliss, Richard; Burgess, Selena

    2015-01-01

    Molecular dynamics(MD)simulations using a graphics processing unit (GPU) has been employed in order to determine the conformational space of the methane-thiosulfonate spin label (MTSL) attached to the activation loop of the Aurora-A kinase protein and compared with quantum mechanical (QM) methods rooted on density functional theory (DFT). MD provided a wealth of information about interactions between the MTSL and the residues of the protein and on the different motional contributions to the overall dynamics of the MTSL. Data obtained from MD were seen to be in good agreement with those obtained from QM but the dynamics of the system revealed more interactions than those observed from QM methods. A strong correlation between the tumbling of the protein and the transitions of the X4 and X5 dihedral angles of the MTSL, was observed with a consequent effect also the distribution of the nitroxide(NO)group in the space. Theoretical EPR spectra calculated from opportunely selected MD frames showing interactions betw...

  11. Dynamics Calculation of DTL

    Institute of Scientific and Technical Information of China (English)

    LI; Jin-hai

    2012-01-01

    <正>The DTL is very important accelerator structure, and it is necessary for the proton linac accelerator. We did the dynamics simulation for the 20 MeV DTL, and obtained the physical and mechanical parameters. The input energy of the DTL is 3 MeV, and the pulsed beam current is 50 mA.

  12. Dynamics Calculation of Spoke

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Compared with ellipse cavity, the spoke cavity has many advantages, especially for the low and medium beam energy. It will be used in the superconductor accelerator popular in the future. Based on the spoke cavity, we design and calculate an accelerator

  13. MD1405: Demonstration of forced dynamic aperture measurements at injection

    CERN Document Server

    Carlier, Felix Simon; Persson, Tobias Hakan Bjorn; Tomas Garcia, Rogelio; CERN. Geneva. ATS Department

    2017-01-01

    Accurate measurements of dynamic aperture become more important for the LHC as it advances into increasingly nonlinear regimes of operations, as well as for the High Luminosity LHC where machine nonlinearities will have a significantly larger impact. Direct dynamic aperture measurements at top energy in the LHC are challenging, and conventional single kick methods are not viable. Dynamic aperture measurements under forced oscillation of AC dipoles have been proposed as s possible alternative observable. A first demonstration of forced DA measurements at injections energy is presented.

  14. Microscopic dynamical description of proton-induced fission with the Constrained Molecular Dynamics (CoMD) Model

    CERN Document Server

    Vonta, N; Veselsky, M; Bonasera, A

    2015-01-01

    The microscopic description of nuclear fission still remains a topic of intense basic research. Un- derstanding nuclear fission, apart from a theoretical point of view, is of practical importance for energy production and the transmutation of nuclear waste. In nuclear astrophysics, fission sets the upper limit to the nucleosynthesis of heavy elements via the r-process. In this work we initiated a systematic study of intermediate energy proton-induced fission using the Constrained Molecu- lar Dynamics (CoMD) code. The CoMD code implements an effective interaction with a nuclear matter compressibility of K=200 (soft EOS) with several forms of the density dependence of the nucleon-nucleon symmetry potential. Moreover, a constraint is imposed in the phase-space occu- pation for each nucleon restoring the Pauli principle at each time step of the collision. A proper choice of the surface parameter of the effective interaction has been made to describe fission. In this work, we present results of fission calculation...

  15. Lipid Dynamics Studied by Calculation of 31P Solid-State NMR Spectra Using Ensembles from Molecular Dynamics Simulations

    DEFF Research Database (Denmark)

    Hansen, Sara Krogh; Vestergaard, Mikkel; Thøgersen, Lea;

    2014-01-01

    We present a method to calculate 31P solid-state NMR spectra based on the dynamic input from extended molecular dynamics (MD) simulations. The dynamic information confered by MD simulations is much more comprehensive than the information provided by traditional NMR dynamics models based on......, for example, order parameters. Therefore, valuable insight into the dynamics of biomolecules may be achieved by the present method. We have applied this method to study the dynamics of lipid bilayers containing the antimicrobial peptide alamethicin, and we show that the calculated 31P spectra obtained...

  16. Current Tools and Methods in Molecular Dynamics (MD) Simulations for Drug Design.

    Science.gov (United States)

    Hernández-Rodríguez, Maricarmen; Rosales-Hernández, Martha C; Mendieta-Wejebe, Jessica E; Martínez-Archundia, Marlet; Basurto, José Correa

    2016-01-01

    Molecular Dynamics (MD) simulations is a computational method that employs Newton's laws to evaluate the motions of water, ions, small molecules, and macromolecules or more complex systems, for example, whole viruses, to reproduce the behavior of the biological environment, including water molecules and lipid membranes. Specifically, structural motions, such as those that are dependent of the temperature and solute/ solvent are very important to study the recognition pattern of ligandprotein or protein-protein complexes, in that sense, MD simulations are very useful because these motions can be modeled using this methodology. Furthermore, MD simulations for drug design provide insights into the structural cavities required to design novel structures with higher affinity to the target. Also, the employment of MD simulations to drug design can help to refine the three-dimensional (3D) structure of targets in order to obtain a better sampling of the binding poses and more reliable affinity values with better structural advantages, because they incorporate some biological conditions that include structural motions compared to traditional docking procedures. This work analyzes the concepts and applicability of MD simulations for drug design because molecular structural motions are considered, and these help to identify hot spots, decipher structural details in the reported protein sites, as well as to eliminate sites that could be structural artifacts which could be originated from the structural characterization conditions from MD. Moreover, better free energy values for protein ligand recognition can also be obtained, and these can be validated under experimental procedures due to the robustness of the MD simulation methods.

  17. Structure and Dynamics in Amphiphilic Bilayers: NMR and MD simulation Studies

    OpenAIRE

    2013-01-01

    Solid-state nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations were employed to study molecular structure and dynamics in amphiphilic bilayers. This thesis reports on method development and practical applications to two types of bilayer systems: simple cell membrane models composed of phosphatidylcholine lipids and cholesterol; and liquid crystals composed of ethyleneoxide-based surfactants often used in technological applications and in fundamental studies ...

  18. Multiscale MD Simulations of Folding Dynamics and Mobility of Beta-Amyloid Peptide on Lipid Bilayer Surfaces

    Science.gov (United States)

    van Tilburg, Scott; Cheng, Kelvin

    2013-03-01

    Early interaction events of beta-amyloid peptides with the neuronal membranes play a key role in the pathogenesis of Alzheimer's disease. We have used multiscale Molecular Dynamics (MD) simulations to study the protein folding dynamics and lateral mobility of beta-amyloid protein on the cholesterol-enriched and -depleted lipid nano-domains. Several independent simulation replicates of all-atom and coarse-grained MD simulations of beta-amyloid on different lipid bilayer nano-domains have been generated. Using Define Secondary Structure of Proteins (DSSP) algorithm and mean-square-distance (MSD) analysis, the protein conformation and the lateral diffusion coefficients of protein, as well as the lipid and water, were calculated as a function of simulation time up to 200 nanoseconds for atomistic and 2 microseconds for coarse-grained simulations per replicate in different bilayer systems. Subtle differences in the conformation and mobility of the protein were observed in lipid bilayers with and without cholesterol. The structural dynamics information obtained from this work will provide useful insights into understanding the role of protein/lipid interactions in the membrane-associated aggregation of protein on neuronal membranes. HHMI-Trinity University and NIH RC1-GM090897-02

  19. Dynamics of biopolymers on nanomaterials studied by quasielastic neutron scattering and MD simulations

    Science.gov (United States)

    Dhindsa, Gurpreet K.

    Neutron scattering has been proved to be a powerful tool to study the dynamics of biological systems under various conditions. This thesis intends to utilize neutron scattering techniques, combining with MD simulations, to develop fundamental understanding of several biologically interesting systems. Our systems include a drug delivery system containing Nanodiamonds with nucleic acid (RNA), and two specific model proteins, beta-Casein and Inorganic Pyrophosphatase (IPPase). RNA and nanodiamond (ND) both are suitable for drug-delivery applications in nano-biotechnology. The architecturally flexible RNA with catalytic functionality forms nanocomposites that can treat life-threatening diseases. The non-toxic ND has excellent mechanical and optical properties and functionalizable high surface area, and thus actively considered for biomedical applications. In this thesis, we utilized two tools, quasielastic neutron scattering (QENS) and Molecular Dynamics Simulations to probe the effect of ND on RNA dynamics. Our work provides fundamental understanding of how hydrated RNA motions are affected in the RNA-ND nanocomposites. From the experimental and Molecular Dynamics Simulation (MD), we found that hydrated RNA motion is faster on ND surface than a freestanding one. MD Simulation results showed that the failure of Stokes Einstein relation results the presence of dynamic heterogeneities in the biomacromolecules. Radial pair distribution function from MD Simulation confirmed that the hydrophilic nature of ND attracts more water than RNA results the de-confinement of RNA on ND. Therefore, RNA exhibits faster motion in the presence of ND than freestanding RNA. In the second project, we studied the dynamics of a natively disordered protein beta-Casein which lacks secondary structures. In this study, the temperature and hydration effects on the dynamics of beta-Casein are explored by Quasielastic Neutron Scattering (QENS). We investigated the mean square displacement (MSD) of

  20. Solvation structure and dynamics of Na+ in liquid ammonia studied by ONIOM-XS MD simulations

    Science.gov (United States)

    Sripradite, Jarukorn; Tongraar, Anan; Kerdcharoen, Teerakiat

    2015-12-01

    The molecular dynamics (MD) technique based on the ONIOM-XS method, known as the ONIOM-XS MD, has been applied to investigate the solvation structure and dynamics of Na+ in liquid ammonia. Regarding the ONIOM-XS MD results, it is observed that Na+ is able to order the surrounding ammonia molecules to form its specific first and second solvation shells with the average coordination numbers of 5.1 and 11.2, respectively. The first solvation shell of Na+ is rather well-defined, forming a preferred 5-fold coordinated complex with a distorted square pyramidal geometry. In this respect, the most preferential Na+(NH3)5 species could convert back and forth to the lower probability Na+(NH3)6 and Na+(NH3)4 configurations. The second solvation shell of Na+ is detectable, in which a number of ammonia molecules, ranging from 7 to 14, are involved in this layer and they are arranged according to recognizable influence of the ion.

  1. SN2 and SN2' reaction dynamics of cyclopropenyl chloride with halide ion : A direct ab initio molecular dynamics (MD) study

    OpenAIRE

    Tachikawa, Hiroto

    2005-01-01

    Direct ab initio molecular dynamics (MD) calculations have been carried out for the reaction of cyclopropenyl chloride with halide ion (F–) (F– + (CH)3Cl → F(CH)3 + Cl–) in gas phase. Both SN2 and SN2′ channels were found as product channels. These channels are strongly dependent on the collision angle of F– to the target (CH)3Cl molecule. The collision at one of the carbon atoms of the C=C double bond leads to the SN2′ reaction channel; whereas the collision at the methylene carbon atom lead...

  2. Parallel cascade selection molecular dynamics for efficient conformational sampling and free energy calculation of proteins

    Science.gov (United States)

    Kitao, Akio; Harada, Ryuhei; Nishihara, Yasutaka; Tran, Duy Phuoc

    2016-12-01

    Parallel Cascade Selection Molecular Dynamics (PaCS-MD) was proposed as an efficient conformational sampling method to investigate conformational transition pathway of proteins. In PaCS-MD, cycles of (i) selection of initial structures for multiple independent MD simulations and (ii) conformational sampling by independent MD simulations are repeated until the convergence of the sampling. The selection is conducted so that protein conformation gradually approaches a target. The selection of snapshots is a key to enhance conformational changes by increasing the probability of rare event occurrence. Since the procedure of PaCS-MD is simple, no modification of MD programs is required; the selections of initial structures and the restart of the next cycle in the MD simulations can be handled with relatively simple scripts with straightforward implementation. Trajectories generated by PaCS-MD were further analyzed by the Markov state model (MSM), which enables calculation of free energy landscape. The combination of PaCS-MD and MSM is reported in this work.

  3. Characterization of Bitumen Micro-Mechanical Behaviors Using AFM, Phase Dynamics Theory and MD Simulation.

    Science.gov (United States)

    Hou, Yue; Wang, Linbing; Wang, Dawei; Guo, Meng; Liu, Pengfei; Yu, Jianxin

    2017-02-21

    Fundamental understanding of micro-mechanical behaviors in bitumen, including phase separation, micro-friction, micro-abrasion, etc., can help the pavement engineers better understand the bitumen mechanical performances at macroscale. Recent researches show that the microstructure evolution in bitumen will directly affect its surface structure and micro-mechanical performance. In this study, the bitumen microstructure and micro-mechanical behaviors are studied using Atomic Force Microscopy (AFM) experiments, Phase Dynamics Theory and Molecular Dynamics (MD) Simulation. The AFM experiment results show that different phase-structure will occur at the surface of the bitumen samples under certain thermodynamic conditions at microscale. The phenomenon can be explained using the phase dynamics theory, where the effects of stability parameter and temperature on bitumen microstructure and micro-mechanical behavior are studied combined with MD Simulation. Simulation results show that the saturates phase, in contrast to the naphthene aromatics phase, plays a major role in bitumen micro-mechanical behavior. A high stress zone occurs at the interface between the saturates phase and the naphthene aromatics phase, which may form discontinuities that further affect the bitumen frictional performance.

  4. Characterization of Bitumen Micro-Mechanical Behaviors Using AFM, Phase Dynamics Theory and MD Simulation

    Directory of Open Access Journals (Sweden)

    Yue Hou

    2017-02-01

    Full Text Available Fundamental understanding of micro-mechanical behaviors in bitumen, including phase separation, micro-friction, micro-abrasion, etc., can help the pavement engineers better understand the bitumen mechanical performances at macroscale. Recent researches show that the microstructure evolution in bitumen will directly affect its surface structure and micro-mechanical performance. In this study, the bitumen microstructure and micro-mechanical behaviors are studied using Atomic Force Microscopy (AFM experiments, Phase Dynamics Theory and Molecular Dynamics (MD Simulation. The AFM experiment results show that different phase-structure will occur at the surface of the bitumen samples under certain thermodynamic conditions at microscale. The phenomenon can be explained using the phase dynamics theory, where the effects of stability parameter and temperature on bitumen microstructure and micro-mechanical behavior are studied combined with MD Simulation. Simulation results show that the saturates phase, in contrast to the naphthene aromatics phase, plays a major role in bitumen micro-mechanical behavior. A high stress zone occurs at the interface between the saturates phase and the naphthene aromatics phase, which may form discontinuities that further affect the bitumen frictional performance.

  5. Non-monotonic dynamics of water in its binary mixture with 1,2-dimethoxy ethane: A combined THz spectroscopic and MD simulation study

    Science.gov (United States)

    Das Mahanta, Debasish; Patra, Animesh; Samanta, Nirnay; Luong, Trung Quan; Mukherjee, Biswaroop; Mitra, Rajib Kumar

    2016-10-01

    A combined experimental (mid- and far-infrared FTIR spectroscopy and THz time domain spectroscopy (TTDS) (0.3-1.6 THz)) and molecular dynamics (MD) simulation technique are used to understand the evolution of the structure and dynamics of water in its binary mixture with 1,2-dimethoxy ethane (DME) over the entire concentration range. The cooperative hydrogen bond dynamics of water obtained from Debye relaxation of TTDS data reveals a non-monotonous behaviour in which the collective dynamics is much faster in the low Xw region (where Xw is the mole fraction of water in the mixture), whereas in Xw ˜ 0.8 region, the dynamics gets slower than that of pure water. The concentration dependence of the reorientation times of water, calculated from the MD simulations, also captures this non-monotonous character. The MD simulation trajectories reveal presence of large amplitude angular jumps, which dominate the orientational relaxation. We rationalize the non-monotonous, concentration dependent orientational dynamics by identifying two different physical mechanisms which operate at high and low water concentration regimes.

  6. Kinetic Cooperativity, Loop Dynamics, and Allostery from NMR and MD simulations

    Science.gov (United States)

    Bruschweiler, Rafael

    The hallmark of glucokinase (GCK), which catalyzes the phosphorylation of glucose during glycolysis, is its kinetic cooperativity whose understanding at atomic detail has remained open since its discovery over 40 years ago. I will discuss how the origin of kinetic cooperativity is rooted in intramolecular protein dynamics using NMR relaxation data of 17 isoleucines distributed over all parts of GCK. Residues of glucose-free GCK located in the small domain display a distinct exchange behavior involving multiple conformers that are substantially populated, whereas in the glucose-bound form these dynamic processes are quenched. The conformational exchange process directly competes with the enzymatic turnover at physiological glucose concentrations, thereby generating the sigmoidal rate dependence that defines kinetic cooperativity. The flexible nature of protein loops and the timescales of their dynamics are critical for many biologically important events at the molecular level, such as protein interaction and recognition processes. Based on a library of proteins, rules about loop dynamics in terms of amplitude and timescales can be derived using molecular dynamics (MD) simulations and NMR data. These rules have been implemented in the new web server ToeLoop (for Timescales Of Every Loop) that permits the prediction of loop dynamics based on an average 3D protein structure (http://spin.ccic.ohio-state.edu/index.php/loop/index).

  7. Property Analysis of Exfoliated Graphite Nanoplatelets Modified Asphalt Model Using Molecular Dynamics (MD Method

    Directory of Open Access Journals (Sweden)

    Hui Yao

    2017-01-01

    Full Text Available This Molecular Dynamics (MD simulation paper presents a physical property comparison study between exfoliated graphite nanoplatelets (xGNP modified and control asphalt models, including density, glass transition temperature, viscosity and thermal conductivity. The three-component control asphalt model consists of asphaltenes, aromatics, and saturates based on previous references. The xGNP asphalt model was built by incorporating an xGNP and control asphalt model and controlling mass ratios to represent the laboratory prepared samples. The Amber Cornell Extension Force Field (ACEFF was used with assigned molecular electro-static potential (ESP charge from NWChem analysis. After optimization and ensemble relaxation, the properties of the control and xGNP modified asphalt models were computed and analyzed using the MD method. The MD simulated results have a similar trend as the test results. The property analysis showed that: (1 the density of the xGNP modified model is higher than that of the control model; (2 the glass transition temperature of the xGNP modified model is closer to the laboratory data of the Strategic Highway Research Program (SHRP asphalt binders than that of the control model; (3 the viscosities of the xGNP modified model at different temperatures are higher than those of the control model, and it coincides with the trend in the laboratory data; (4 the thermal conductivities of the xGNP modified asphalt model are higher than those of the control asphalt model at different temperatures, and it is consistent with the trend in the laboratory data.

  8. Dynamics Calculation of Travel Wave Tube

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    During the dynamics calculating of the travel tube, we must obtain the field map in the tube. The field map can be affected by not only the beam loading, but also the attenuation coefficient. The calculation of the attenuation coefficient

  9. Multiple Simulated Annealing-Molecular Dynamics (MSA-MD) for Conformational Space Search of Peptide and Miniprotein.

    Science.gov (United States)

    Hao, Ge-Fei; Xu, Wei-Fang; Yang, Sheng-Gang; Yang, Guang-Fu

    2015-10-23

    Protein and peptide structure predictions are of paramount importance for understanding their functions, as well as the interactions with other molecules. However, the use of molecular simulation techniques to directly predict the peptide structure from the primary amino acid sequence is always hindered by the rough topology of the conformational space and the limited simulation time scale. We developed here a new strategy, named Multiple Simulated Annealing-Molecular Dynamics (MSA-MD) to identify the native states of a peptide and miniprotein. A cluster of near native structures could be obtained by using the MSA-MD method, which turned out to be significantly more efficient in reaching the native structure compared to continuous MD and conventional SA-MD simulation.

  10. Prediction of drug-packaging interactions via molecular dynamics (MD) simulations.

    Science.gov (United States)

    Feenstra, Peter; Brunsteiner, Michael; Khinast, Johannes

    2012-07-15

    The interaction between packaging materials and drug products is an important issue for the pharmaceutical industry, since during manufacturing, processing and storage a drug product is continuously exposed to various packaging materials. The experimental investigation of a great variety of different packaging material-drug product combinations in terms of efficacy and safety can be a costly and time-consuming task. In our work we used molecular dynamics (MD) simulations in order to evaluate the applicability of such methods to pre-screening of the packaging material-solute compatibility. The solvation free energy and the free energy of adsorption of diverse solute/solvent/solid systems were estimated. The results of our simulations agree with experimental values previously published in the literature, which indicates that the methods in question can be used to semi-quantitatively reproduce the solid-liquid interactions of the investigated systems.

  11. Evaluation of e-textbooks. DynaMed, MD Consult and UpToDate.

    Science.gov (United States)

    Goodyear-Smith, Felicity; Kerse, Ngaire; Warren, Jim; Arroll, Bruce

    2008-10-01

    To evaluate the acceptability and utilisation of three electronic textbooks: DynaMed, MD Consult (including FirstConsult) and UpToDate. Two hundred general practitioners accessed three e-textbooks through a web portal. General practitioners completed an electronic survey and used a random selection during a telephone interview to answer four clinical questions: screening, diagnosis, treatment and prognosis. One hundred and twenty-two GPs made at least one hit through the study website. Eighty-four GPs completed the emailed questionnaire and 77 completed the telephone interview (36% of enrolled, 61% of users). Fifty-one percent of users accessed the e-textbooks less than 10 times over 8 months. There was no significant difference in preference for, or usage levels of, the three e-textbooks. During the telephone interview the three texts performed similarly in terms of time to answer and satisfaction with answer. There was no clear 'winner' between the three e-textbooks.

  12. Towards a Discrete Element Method (DEM) for modeling anisotropic, nano- and colloidal scale particles in Molecular Dynamics (MD)

    Science.gov (United States)

    Marson, Ryan; Spellings, Matthew; Anderson, Joshua; Glotzer, Sharon

    2014-03-01

    Faceted shapes, such as polyhedra, are commonly created in experimental systems of nanoscale, colloidal, and granular particles. Many interesting physical phenomena, like crystalline nucleation and growth, vacancy motion, and glassy dynamics, are challenging to model in these systems because they require detailed dynamical information at the individual particle level. Within the granular materials community the Discrete Element Method has been used extensively to model systems of anisotropic particles under gravity, with friction. We report the first implementation of DEM MD intended for thermodynamic nanoscale simulation. Our method is implemented in parallel on the GPU within the HOOMD-Blue framework. By decomposing the force calculation into its components, this implementation can take advantage of massive data parallelism, enabling optimal use of the GPU for even relatively small systems while achieving a speedup of 60 times over a single CPU core. This method is a natural extension of classical molecular dynamics into the realm of faceted particles, and allows simulation of disparate size scales ranging from the nanoscale to granular particulates, all within the same framework.

  13. Equilibrium Molecular Dynamics (MD Simulation Study of Thermal Conductivity of Graphene Nanoribbon: A Comparative Study on MD Potentials

    Directory of Open Access Journals (Sweden)

    Asir Intisar Khan

    2015-12-01

    Full Text Available The thermal conductivity of graphene nanoribbons (GNRs has been investigated using equilibrium molecular dynamics (EMD simulation based on Green-Kubo (GK method to compare two interatomic potentials namely optimized Tersoff and 2nd generation Reactive Empirical Bond Order (REBO. Our comparative study includes the estimation of thermal conductivity as a function of temperature, length and width of GNR for both the potentials. The thermal conductivity of graphene nanoribbon decreases with the increase of temperature. Quantum correction has been introduced for thermal conductivity as a function of temperature to include quantum effect below Debye temperature. Our results show that for temperatures up to Debye temperature, thermal conductivity increases, attains its peak and then falls off monotonically. Thermal conductivity is found to decrease with the increasing length for optimized Tersoff potential. However, thermal conductivity has been reported to increase with length using 2nd generation REBO potential for the GNRs of same size. Thermal conductivity, for the specified range of width, demonstrates an increasing trend with the increase of width for both the concerned potentials. In comparison with 2nd generation REBO potential, optimized Tersoff potential demonstrates a better modeling of thermal conductivity as well as provides a more appropriate description of phonon thermal transport in graphene nanoribbon. Such comparative study would provide a good insight for the optimization of the thermal conductivity of graphene nanoribbons under diverse conditions.

  14. Evidence of dynamic crossover phenomena in water and other glass-forming liquids: experiments, MD simulations and theory

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S H; Zhang, Y; Lagi, M [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Chong, S H [Institute for Molecular Science, Okazaki 444-8585 (Japan); Baglioni, P [Department of Chemistry and CSGI, University of Florence, Sesto Fiorentino, I-50019 Florence (Italy); Mallamace, F, E-mail: sowhsin@mit.ed [Dipartimento di Fisica, Universita di Messina and IRCCS Neurolesi ' Bonino-Pulejo' , I-98166 Messina (Italy)

    2009-12-16

    In a recent quasi-elastic neutron scattering experiment on water confined in a Portland cement paste, we find that this 3D confined water shows a dynamic crossover phenomenon at T{sub L} = 227 +- 5 K. The DSC heat-flow scan upon cooling and an independent measurement of specific heat at constant pressure of confined water in silica gel show a prominent peak at the same temperature. We show in this paper that this type of behavior is common to many other glassy liquids, which also show the crossover temperature in coincidence with the temperature of a small specific heat peak. We also demonstrate with MD simulations that the dynamic crossover phenomenon in confined water is an intrinsic property of bulk water, and is not due to the confinement effect. Recently, an extended version of the mode coupling theory (MCT) including the hopping effect was developed. This theory shows that, instead of a structural arrest transition at T{sub C} predicted by the idealized MCT, a fragile-to-strong dynamic crossover phenomenon takes place instead at T{sub C}, confirming both the experimental and the numerical results. The coherent and incoherent alpha relaxation times can be scaled with the calculated viscosity, showing the same crossover phenomenon. We thus demonstrated with experiments, simulations and theory that a genuine change of dynamical behavior of both water and many glassy liquids happens at the crossover temperature T{sub L}, which is 10-30% higher than the calorimetric glass transition temperature T{sub g}.

  15. Protein dynamics at Eph receptor-ligand interfaces as revealed by crystallography, NMR and MD simulations

    Directory of Open Access Journals (Sweden)

    Qin Haina

    2012-01-01

    Full Text Available Abstract Background The role of dynamics in protein functions including signal transduction is just starting to be deciphered. Eph receptors with 16 members divided into A- and B- subclasses are respectively activated by 9 A- and B-ephrin ligands. EphA4 is the only receptor capable of binding to all 9 ephrins and small molecules with overlapped interfaces. Results We first determined the structures of the EphA4 ligand binding domain (LBD in two crystals of P1 space group. Noticeably, 8 EphA4 molecules were found in one asymmetric unit and consequently from two crystals we obtained 16 structures, which show significant conformational variations over the functionally critical A-C, D-E, G-H and J-K loops. The 16 new structures, together with previous 9 ones, can be categorized into two groups: closed and open forms which resemble the uncomplexed and complexed structures of the EphA4 LBD respectively. To assess whether the conformational diversity over the loops primarily results from the intrinsic dynamics, we initiated 30-ns molecular dynamics (MD simulations for both closed and open forms. The results indicate that the loops do have much higher intrinsic dynamics, which is further unravelled by NMR H/D exchange experiments. During simulations, the open form has the RMS deviations slightly larger than those of the closed one, suggesting the open form may be less stable in the absence of external contacts. Furthermore, no obvious exchange between two forms is observed within 30 ns, implying that they are dynamically separated. Conclusions Our study provides the first experimental and computational result revealing that the intrinsic dynamics are most likely underlying the conformational diversity observed for the EphA4 LBD loops mediating the binding affinity and specificity. Interestingly, the open conformation of the EphA4 LBD is slightly unstable in the absence of it natural ligand ephrins, implying that the conformational transition from the

  16. A combined EPR and MD simulation study of a nitroxyl spin label with restricted internal mobility sensitive to protein dynamics

    Science.gov (United States)

    Oganesyan, Vasily S.; Chami, Fatima; White, Gaye F.; Thomson, Andrew J.

    2017-01-01

    EPR studies combined with fully atomistic Molecular Dynamics (MD) simulations and an MD-EPR simulation method provide evidence for intrinsic low rotameric mobility of a nitroxyl spin label, Rn, compared to the more widely employed label MTSL (R1). Both experimental and modelling results using two structurally different sites of attachment to Myoglobin show that the EPR spectra of Rn are more sensitive to the local protein environment than that of MTSL. This study reveals the potential of using the Rn spin label as a reporter of protein motions.

  17. MD Simulations of tRNA and Aminoacyl-tRNA Synthetases: Dynamics, Folding, Binding, and Allostery

    Directory of Open Access Journals (Sweden)

    Rongzhong Li

    2015-07-01

    Full Text Available While tRNA and aminoacyl-tRNA synthetases are classes of biomolecules that have been extensively studied for decades, the finer details of how they carry out their fundamental biological functions in protein synthesis remain a challenge. Recent molecular dynamics (MD simulations are verifying experimental observations and providing new insight that cannot be addressed from experiments alone. Throughout the review, we briefly discuss important historical events to provide a context for how far the field has progressed over the past few decades. We then review the background of tRNA molecules, aminoacyl-tRNA synthetases, and current state of the art MD simulation techniques for those who may be unfamiliar with any of those fields. Recent MD simulations of tRNA dynamics and folding and of aminoacyl-tRNA synthetase dynamics and mechanistic characterizations are discussed. We highlight the recent successes and discuss how important questions can be addressed using current MD simulations techniques. We also outline several natural next steps for computational studies of AARS:tRNA complexes.

  18. Phenol-benzene complexation dynamics: quantum chemistry calculation, molecular dynamics simulations, and two dimensional IR spectroscopy.

    Science.gov (United States)

    Kwac, Kijeong; Lee, Chewook; Jung, Yousung; Han, Jaebeom; Kwak, Kyungwon; Zheng, Junrong; Fayer, M D; Cho, Minhaeng

    2006-12-28

    Molecular dynamics (MD) simulations and quantum mechanical electronic structure calculations are used to investigate the nature and dynamics of the phenol-benzene complex in the mixed solvent, benzene/CCl4. Under thermal equilibrium conditions, the complexes are continuously dissociating and forming. The MD simulations are used to calculate the experimental observables related to the phenol hydroxyl stretching mode, i.e., the two dimensional infrared vibrational echo spectrum as a function of time, which directly displays the formation and dissociation of the complex through the growth of off-diagonal peaks, and the linear absorption spectrum, which displays two hydroxyl stretch peaks, one for the complex and one for the free phenol. The results of the simulations are compared to previously reported experimental data and are found to be in quite reasonable agreement. The electronic structure calculations show that the complex is T shaped. The classical potential used for the phenol-benzene interaction in the MD simulations is in good accord with the highest level of the electronic structure calculations. A variety of other features is extracted from the simulations including the relationship between the structure and the projection of the electric field on the hydroxyl group. The fluctuating electric field is used to determine the hydroxyl stretch frequency-frequency correlation function (FFCF). The simulations are also used to examine the number distribution of benzene and CCl4 molecules in the first solvent shell around the phenol. It is found that the distribution is not that of the solvent mole fraction of benzene. There are substantial probabilities of finding a phenol in either a pure benzene environment or a pure CCl4 environment. A conjecture is made that relates the FFCF to the local number of benzene molecules in phenol's first solvent shell.

  19. Structure and dynamics of La(III) in aqueous solution An ab initio QM/MM MD approach

    Science.gov (United States)

    Hofer, Thomas S.; Scharnagl, Harald; Randolf, Bernhard R.; Rode, Bernd M.

    2006-08-01

    Ab initio QM/MM MD simulations have allowed to clarify some of the ambiguities arising from various studies on the hydrated La(III) ion. Both nine- and ten-coordinated hydrates co-exist and interchange in a dissociative process on the nano- or even subnanosecond scale, and thus much faster than any other trivalent main group or transition metal ions. The weak ion-ligand bond (53 N/m) supplies a reasonable explanation for it. The simulation results for La(III) are also compared to those for the isoelectronic ions Cs(I) and Ba(II) obtained by the same ab initio MD procedure, leading to conclusions on the influence of central ion charge on structural and dynamic properties of hydrate complexes.

  20. Non-linear beam dynamics tests in the LHC: LHC dynamic aperture MD on Beam 2 (24th of June 2012)

    CERN Document Server

    Maclean, E H; Persson, T H B; Redaelli, S; Schmidt, F; Tomas, R; Uythoven, J

    2013-01-01

    This MD note summarizes measurements performed on LHC Beam 2 during the non-linear machine development (MD) of 24 June 2012. The aim of the measurement was to observe the dynamic aperture of LHC Beam 2, and obtain turn-by-turn (TbT) betatron oscillation data, enabling the study of amplitude detuning and resonance driving terms (RDTs). The regular injections required by the MD also represented an opportunity to test a new coupling feedback routine based on the analysis of injection oscillation data. Initial measurements were performed on the nominal state of the LHC at injection. On completion of this study the Landau octupoles were turned off and corrections for higher-order chromaticities were implemented to reduce the non-linearity of the machine as far as possible. A second set of measurements were then performed. All studies were performed using the LHC aperture kicker (MKA).

  1. Structural and Dynamic Analysis on IDPs by Modified AWSEM-MD

    Science.gov (United States)

    Wu, Hao; Papoian, Garegin; Papoian Theoretical Biophysics Group Team

    Unlike globular proteins, intrinsically disordered proteins (IDPs) lack both secondary and tertiary structures and can play key roles in various biological processes, including transcriptional regulation, molecular recognition and cellular signaling. These functions can be potentially elucidated by structural heterogeneity of IDPs. Because of their flexibility and disordered nature, it has been difficult to investigate IDPs both computationally and experimentally. In particular, it is desirable to develop coarse-grained, yet accurate models of IDPs, such that simulations exploring sufficient conformational ensembles could be carried out within feasible times. To achieve this goal, we modified the associative memory, water mediated, structure and energy model (AWSEM-MD), which is typically used for folding of globular proteins or binding studies. We tested modified AWSEM-MD on several well-studied IDPs and found the transient secondary structure propensity is consistent with NMR experimental results. The rugged free energy landscapes obtained also show structural heterogeneity of these IDPs. Our proposed extension of AWSEM-MD may allow simulating a wider range of IDPs with high accuracy and computational efficiency.

  2. Bias in Dynamic Monte Carlo Alpha Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Sweezy, Jeremy Ed [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nolen, Steven Douglas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Adams, Terry R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Trahan, Travis John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-06

    A 1/N bias in the estimate of the neutron time-constant (commonly denoted as α) has been seen in dynamic neutronic calculations performed with MCATK. In this paper we show that the bias is most likely caused by taking the logarithm of a stochastic quantity. We also investigate the known bias due to the particle population control method used in MCATK. We conclude that this bias due to the particle population control method is negligible compared to other sources of bias.

  3. MD SIMULATION FOR NANOCRYSTALS

    Institute of Scientific and Technical Information of China (English)

    马新玲; 杨卫

    2003-01-01

    Molecular dynamic (MD) provided an ab initio simulation for nano-scale mechanical behavior of materials, provided that the inter-atomic potential is accurately prescribed. MD is particularly suitable in simulating the formation, the deformation, and the evolution of nanocrystals under a fast strain rate. To tackle large scale system and nano-seconds time duration, parallel algorithm is desired. The present paper reviews the recent advances in MD simulation for nanocrystals with attention focused on the applications toward nanomechanics. The examined issues are: formation of nanocrystalline metals, nanoindentation on nanocrystals, fast deformation of nanocrystals, orderdisorder transition, and nano-particle impact.

  4. A Molecular Dynamics (MD and Quantum Mechanics/Molecular Mechanics (QM/MM Study on Ornithine Cyclodeaminase (OCD: A Tale of Two Iminiums

    Directory of Open Access Journals (Sweden)

    James W. Gauld

    2012-10-01

    Full Text Available Ornithine cyclodeaminase (OCD is an NAD+-dependent deaminase that is found in bacterial species such as Pseudomonas putida. Importantly, it catalyzes the direct conversion of the amino acid L-ornithine to L-proline. Using molecular dynamics (MD and a hybrid quantum mechanics/molecular mechanics (QM/MM method in the ONIOM formalism, the catalytic mechanism of OCD has been examined. The rate limiting step is calculated to be the initial step in the overall mechanism: hydride transfer from the L-ornithine’s Cα–H group to the NAD+ cofactor with concomitant formation of a Cα=NH2+ Schiff base with a barrier of 90.6 kJ mol−1. Importantly, no water is observed within the active site during the MD simulations suitably positioned to hydrolyze the Cα=NH2+ intermediate to form the corresponding carbonyl. Instead, the reaction proceeds via a non-hydrolytic mechanism involving direct nucleophilic attack of the δ-amine at the Cα-position. This is then followed by cleavage and loss of the α-NH2 group to give the Δ1-pyrroline-2-carboxylate that is subsequently reduced to L-proline.

  5. A combined molecular dynamics and kinetic Monte Carlo calculation to study sputter erosion and beam assisted deposition

    CERN Document Server

    Betz, G

    2002-01-01

    To extend the time scale in molecular dynamics (MD) calculations of sputtering and ion assisted deposition we have coupled our MD calculations to a kinetic Monte Carlo (KMC) calculation. In this way we have studied surface erosion of Cu(1 0 0) under 200-600 eV Cu ion bombardment and growth of Cu on Cu(1 0 0) for deposition at thermal energies up to energies of 100 eV per atom. Target temperatures were varied from 100 to 400 K. The coupling of the MD calculation to a KMC calculation allows us to extend our calculations from a few ps, a time scale typical for MD, to times of up to seconds until the next Cu particle will impinge/be deposited on the crystal surface of about 100 nm sup 2 in size. The latter value of 1 s is quite realistic for a typical experimental sputter erosion or deposition experiment. In such a calculation thermal diffusion processes at the surface and annealing of the surface after energetic ion bombardment can be taken into account. To achieve homo-epitaxial growth of a film the results cle...

  6. Improving the accuracy of dynamic mass calculation

    Directory of Open Access Journals (Sweden)

    Oleksandr F. Dashchenko

    2015-06-01

    Full Text Available With the acceleration of goods transporting, cargo accounting plays an important role in today's global and complex environment. Weight is the most reliable indicator of the materials control. Unlike many other variables that can be measured indirectly, the weight can be measured directly and accurately. Using strain-gauge transducers, weight value can be obtained within a few milliseconds; such values correspond to the momentary load, which acts on the sensor. Determination of the weight of moving transport is only possible by appropriate processing of the sensor signal. The aim of the research is to develop a methodology for weighing freight rolling stock, which increases the accuracy of the measurement of dynamic mass, in particular wagon that moves. Apart from time-series methods, preliminary filtration for improving the accuracy of calculation is used. The results of the simulation are presented.

  7. Molecular dynamics simulation method for calculating fluence-dependent range profiles

    CERN Document Server

    Peltola, J; Keinonen, J

    2003-01-01

    Molecular dynamics has proven to be successful in calculating range profiles for low energy (keV) ions implanted into crystalline materials. However, for high fluences the structure of the material changes during the implantation process. The crystalline material becomes amorphized, which changes the range profiles. This damage build-up process has usually been taken into account with probabilities for changing the crystal structure during the simulation, and typically only BCA methods have been used. We present a fast MD method that simulates the damage build-up process in silicon, without bringing any free parameters to the simulation. Damage accumulation during the implantation is simulated by changing the material structure in front of path of the incoming ion. The amorphization level at each depth is proportional to the nuclear deposited energy in that depth region. The amorphization states are obtained from MD simulations of cascade damage. Silicon was used as a target material because of the large amou...

  8. Molecular dynamics simulation of proton transport with quantum mechanically derived proton hopping rates (Q-HOP MD)

    Science.gov (United States)

    Lill, Markus A.; Helms, Volkhard

    2001-11-01

    A very efficient scheme is presented to simulate proton transport by classical molecular dynamics simulation coupled with quantum mechanically derived proton hopping. Simulated proton transfer rates and proton diffusion constants for an excess proton in a box of water molecules are in good agreement with experimental data and with previous simulations that employed empirical valence bond (EVB) theory. For the first time, the proton occupancy of an aspartic acid residue in water was computed directly by MD simulations. Locally enhanced sampling or multi copy techniques were used to facilitate proton release in simulations of an imidazole ring in a solvent box. Summarizing, a quasiclassical description of proton transfer dynamics has been able to capture important kinetic and thermodynamic features of these systems at less than 50% computational overhead compared to standard molecular dynamics simulations. The method can be easily generalized to simulate the protonation equilibria of a large number of titratable sites. This should make it an attractive method to study proton transport in large biological systems.

  9. Multi-scale calculation based on dual domain material point method combined with molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Dhakal, Tilak Raj [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-27

    This dissertation combines the dual domain material point method (DDMP) with molecular dynamics (MD) in an attempt to create a multi-scale numerical method to simulate materials undergoing large deformations with high strain rates. In these types of problems, the material is often in a thermodynamically non-equilibrium state, and conventional constitutive relations are often not available. In this method, the closure quantities, such as stress, at each material point are calculated from a MD simulation of a group of atoms surrounding the material point. Rather than restricting the multi-scale simulation in a small spatial region, such as phase interfaces, or crack tips, this multi-scale method can be used to consider non-equilibrium thermodynamic e ects in a macroscopic domain. This method takes advantage that the material points only communicate with mesh nodes, not among themselves; therefore MD simulations for material points can be performed independently in parallel. First, using a one-dimensional shock problem as an example, the numerical properties of the original material point method (MPM), the generalized interpolation material point (GIMP) method, the convected particle domain interpolation (CPDI) method, and the DDMP method are investigated. Among these methods, only the DDMP method converges as the number of particles increases, but the large number of particles needed for convergence makes the method very expensive especially in our multi-scale method where we calculate stress in each material point using MD simulation. To improve DDMP, the sub-point method is introduced in this dissertation, which provides high quality numerical solutions with a very small number of particles. The multi-scale method based on DDMP with sub-points is successfully implemented for a one dimensional problem of shock wave propagation in a cerium crystal. The MD simulation to calculate stress in each material point is performed in GPU using CUDA to accelerate the

  10. Direct NOE simulation from long MD trajectories

    Science.gov (United States)

    Chalmers, G.; Glushka, J. N.; Foley, B. L.; Woods, R. J.; Prestegard, J. H.

    2016-04-01

    A software package, MD2NOE, is presented which calculates Nuclear Overhauser Effect (NOE) build-up curves directly from molecular dynamics (MD) trajectories. It differs from traditional approaches in that it calculates correlation functions directly from the trajectory instead of extracting inverse sixth power distance terms as an intermediate step in calculating NOEs. This is particularly important for molecules that sample conformational states on a timescale similar to molecular reorientation. The package is tested on sucrose and results are shown to differ in small but significant ways from those calculated using an inverse sixth power assumption. Results are also compared to experiment and found to be in reasonable agreement despite an expected underestimation of water viscosity by the water model selected.

  11. The Secure Dynamic Source Routing Protocol in MANET using MD5 Hash Function

    Directory of Open Access Journals (Sweden)

    Radha S. Savankar

    2012-06-01

    Full Text Available Dynamic Source Routing (DSR is a routing protocol designed specifically for use in mobile ad hoc networks. The protocol allows nodes to dynamically discover a source route across multiple network hops to any destination in the ad hoc network. The protocol is composed of the two mechanisms of Route Discovery and Route Maintenance, which work together to allow nodes to discover and maintain source routes to arbitrary destinations in the ad hoc network. When using source routing, each packet to be routed carries in its header the complete, ordered list of nodes through which the packet must pass. A key advantage of source routing is that intermediate hops do not need to maintain routing information in order to route the packets they receive, since the packets themselves already contain all of the necessary routing information. This, coupled with the dynamic, on-demand nature of Route Discovery, completely eliminates the need for periodic router advertisements and link status packets, reducing the overhead of DSR, especially during periods when the network topology is stable and these packets serve only as keep-alives

  12. Accurate schemes for calculation of thermodynamic properties of liquid mixtures from molecular dynamics simulations

    Science.gov (United States)

    Caro, Miguel A.; Laurila, Tomi; Lopez-Acevedo, Olga

    2016-12-01

    We explore different schemes for improved accuracy of entropy calculations in aqueous liquid mixtures from molecular dynamics (MD) simulations. We build upon the two-phase thermodynamic (2PT) model of Lin et al. [J. Chem. Phys. 119, 11792 (2003)] and explore new ways to obtain the partition between the gas-like and solid-like parts of the density of states, as well as the effect of the chosen ideal "combinatorial" entropy of mixing, both of which have a large impact on the results. We also propose a first-order correction to the issue of kinetic energy transfer between degrees of freedom (DoF). This problem arises when the effective temperatures of translational, rotational, and vibrational DoF are not equal, either due to poor equilibration or reduced system size/time sampling, which are typical problems for ab initio MD. The new scheme enables improved convergence of the results with respect to configurational sampling, by up to one order of magnitude, for short MD runs. To ensure a meaningful assessment, we perform MD simulations of liquid mixtures of water with several other molecules of varying sizes: methanol, acetonitrile, N, N-dimethylformamide, and n-butanol. Our analysis shows that results in excellent agreement with experiment can be obtained with little computational effort for some systems. However, the ability of the 2PT method to succeed in these calculations is strongly influenced by the choice of force field, the fluidicity (hard-sphere) formalism employed to obtain the solid/gas partition, and the assumed combinatorial entropy of mixing. We tested two popular force fields, GAFF and OPLS with SPC/E water. For the mixtures studied, the GAFF force field seems to perform as a slightly better "all-around" force field when compared to OPLS+SPC/E.

  13. Injection MD

    CERN Document Server

    Bartmann, W; Bracco, C; Drosdal, L; Gianfelice, E; Goddard, B; Kain, V; Papaphilippou, Y; Vanbavinckhove, G

    2012-01-01

    This note summarizes the results obtained at injection during the 2nd MD block and the floating MD block in July. Highlights are presented for injection in the LHC with the Q20 SPS optics, influence of the supercycle and injection with 25 ns bunch spacing. Beams were successfully injected into the LHC using the Q20 optics [1, 3]. Small corrections were needed to steer the beam in the transfer lines. Dispersion measurements were conducted for both beams. The horizontal normalized dispersion in TI2 was a factor 2 smaller for Q20 with respect to Q26, for TI8 on the other hand the opposite was observed. The results for injection loss dependency on super cycle composition show only a small increase in losses for beam 2. The losses observed must therefore mainly come from other sources such as shot-by-shot stability or quality of scraping. For the injection with 25 ns bunch spacing bunches were injected for both beams. For B1 up to the maximum of 288 bunches. For B2 on the other only up to 144 bunches were injected...

  14. New scoring functions for virtual screening from molecular dynamics simulations with a quantum-refined force-field (QRFF-MD). Application to cyclin-dependent kinase 2.

    Science.gov (United States)

    Ferrara, Ph; Curioni, A; Vangrevelinghe, E; Meyer, T; Mordasini, T; Andreoni, W; Acklin, P; Jacoby, E

    2006-01-01

    A recently introduced new methodology based on ultrashort (50-100 ps) molecular dynamics simulations with a quantum-refined force-field (QRFF-MD) is here evaluated in its ability both to predict protein-ligand binding affinities and to discriminate active compounds from inactive ones. Physically based scoring functions are derived from this approach, and their performance is compared to that of several standard knowledge-based scoring functions. About 40 inhibitors of cyclin-dependent kinase 2 (CDK2) representing a broad chemical diversity were considered. The QRFF-MD method achieves a correlation coefficient, R(2), of 0.55, which is significantly better than that obtained by a number of traditional approaches in virtual screening but only slightly better than that obtained by consensus scoring (R(2) = 0.50). Compounds from the Available Chemical Directory, along with the known active compounds, were docked into the ATP binding site of CDK2 using the program Glide, and the 650 ligands from the top scored poses were considered for a QRFF-MD analysis. Combined with structural information extracted from the simulations, the QRFF-MD methodology results in similar enrichment of known actives compared to consensus scoring. Moreover, a new scoring function is introduced that combines a QRFF-MD based scoring function with consensus scoring, which results in substantial improvement on the enrichment profile.

  15. Understanding self-assembly of charged-neutral block copolymer (BCP) and surfactant complexes using molecular dynamics (MD) simulation

    Science.gov (United States)

    Goswami, Monojoy; Sumpter, Bobby; Kilbey, Michael

    Here we report the formation of phase separated BCP-surfactant complexes resulting from the electrostatic self-assembly of charge-neutral block copolymers with oppositely charged surfactants. Complexation behaviors of oppositely charged polyelectrolytes has gained considerable attention in the field of soft condensed matter physics due to their potential application as functional nanomaterials for batteries, wastewater treatment and drug delivery systems. Numerous experiments have examined the self-assembled structures resulting from complexation of charge-neutral BCP and surfactants, however, there is a lack of comprehensive understanding at the fundamental level. To help bridge this gap, we use, MD simulations to study self-assembly and dynamics of the BCP-surfactant complex at the molecular level. Our results show an overcharging effect in BCPs with hydrophobic neutral blocks and a formation of core-shell colloidal structure. Hydrophilic neutral blocks, on the other hand, show stable, hairy colloidal structures with neutral blocks forming a loosely-bound, fuzzy outer layer. Our results qualitatively agree with previous SANS and SAXS experiments. This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Materials Science and Engineering Division.

  16. Molecular dynamics (MD) study on the electrochemical properties of electrolytes in lithium-ion battery (LIB) applications

    Science.gov (United States)

    Salami, Negin

    While the high energy density and the power along with longer cycle life and less requirements of maintenance distinguish the rechargeable lithium-ion batteries (LIBs) from other energy storage devices, development of an electrolyte of LIBs with optimized properties still constitutes a challenge towards next-generation LIB systems with robust electrochemical performance. The electrolytes serve as the medium to provide ionic conduction path between the electrodes as their basic function. Conductivity of the solutions are mainly affected by their transport properties and the electrolyte electrode/separator interfacial phenomena. Although many contributions on thermodynamic properties of the electrolytes consist of alkyl carbonates mixed with salts have been previously studied, relatively little information is known regarding the correlation between interfacial properties of the electrolyte -electrode/separator with electrochemical properties of the cell. In this study, therefore, we present the impacts of salt concentration and temperature-dependent properties of LIBs on wetting behavior of various electrolytes, i.e., ethyl methyl carbonate (EMC), diethyl carbonate (DEC), and propylene carbonate (PC), in contact with the graphite anode and polyethylene (PE)/polypropylene (PP) separator using molecular dynamics (MD) computational technique. The results based on MD computations affirm the general consistent dependency of interfacial tension energies to polarity of the solvents in DEC, EMC, and PC electrolytes contained 1 M LiPF6 salt. The PC systems interestingly showed inverse trend due to the special stacking motifs of PC layers that may increase the interfacial electrostatic interactions. Temperature did not show significant effect on the interfacial energies of linear solvents whereas PC exhibited more tendency to interact with the graphite anode at T = 25 C compared to the similar solution at 0 C. Moreover, the electrolytes that incorporated same solvents had

  17. PLUMED: A portable plugin for free-energy calculations with molecular dynamics

    Science.gov (United States)

    Bonomi, Massimiliano; Branduardi, Davide; Bussi, Giovanni; Camilloni, Carlo; Provasi, Davide; Raiteri, Paolo; Donadio, Davide; Marinelli, Fabrizio; Pietrucci, Fabio; Broglia, Ricardo A.; Parrinello, Michele

    2009-10-01

    Here we present a program aimed at free-energy calculations in molecular systems. It consists of a series of routines that can be interfaced with the most popular classical molecular dynamics (MD) codes through a simple patching procedure. This leaves the possibility for the user to exploit many different MD engines depending on the system simulated and on the computational resources available. Free-energy calculations can be performed as a function of many collective variables, with a particular focus on biological problems, and using state-of-the-art methods such as metadynamics, umbrella sampling and Jarzynski-equation based steered MD. The present software, written in ANSI-C language, can be easily interfaced with both Fortran and C/C++ codes. Program summaryProgram title: PLUMED Catalogue identifier: AEEE_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEE_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Lesser GPL No. of lines in distributed program, including test data, etc.: 107 505 No. of bytes in distributed program, including test data, etc.: 2 052 759 Distribution format: tar.gz Programming language: ANSI-C Computer: Any computer capable of running an executable produced by GCC compiler Operating system: Linux/Unix RAM: Depending on the number of atoms, the method chosen and the collective variables used Classification: 23 External routines: Must be interfaced with a MD code (such as GROMACS, NAMD, DL_POLY or SANDER). Nature of problem: Calculation of free-energy surfaces for biological and condensed matter systems. Solution method: Implementation of various enhanced sampling techniques. Unusual features: PLUMED is not a stand-alone program but it must be interfaced with a MD code (such as GROMACS, NAMD, DL_POLY or SANDER) that needs to be recompiled. Each interface is provided in a patch form. Running time: Depending on the number of atoms, the method chosen and the

  18. Accelerating Calculations of Reaction Dissipative Particle Dynamics in LAMMPS

    Science.gov (United States)

    2017-05-17

    and generally requires more time to solve per particle . This means that roughly half of the MPI processes will have higher reaction run times, while...ARL-TR-8018 ● MAY 2017 US Army Research Laboratory Accelerating Calculations of Reaction Dissipative Particle Dynamics in LAMMPS...Research Laboratory Accelerating Calculations of Reaction Dissipative Particle Dynamics in LAMMPS by Christopher P Stone Computational

  19. Structure and dynamics of Ni2+ in liquid ammonia: A quantum mechanical charge field molecular dynamics (QMCF-MD) study

    Science.gov (United States)

    Saleh, Muhammad; Hofer, Thomas S.

    2016-09-01

    An investigation of structural and dynamical properties of Ni2+ in liquid ammonia has been carried out via Quantum Mechanical Charge Field Molecular Dynamics. By extending the quantum mechanical region to include first and second solvation shell, a more realistic representation of the system was achieved yielding improved results on present computational facilities. The structural results obtained from the 16 ps trajectory agree well with experimental investigations for various nitrogen-containing Ni2+ systems. Detailed analysis of mean residence time and vibrational properties highlights a rather flexible structure of the first and second shells compared to Ni2+ in aqueous solution.

  20. Dynamics Calculation of CH-DTL

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    CH-DTL is a new development of accelerator structure, which has high shunt impedance and simple structure. The beam dynamics of CH-DTL is based on KONUS method, whose characteristic is that the longitudinal focus is small or none,

  1. Reorientational eigenmode dynamics: a combined MD/NMR relaxation analysis method for flexible parts in globular proteins.

    Science.gov (United States)

    Prompers, J J; Brüschweiler, R

    2001-08-01

    An approach is presented for the interpretation of heteronuclear NMR spin relaxation data in mobile protein parts in terms of reorientational eigenmode dynamics. The method is based on the covariance matrix of the spatial functions of the nuclear spin interactions that cause relaxation expressed as spherical harmonics of rank 2. The approach was applied to characterize the dynamics of a loop region of ubiquitin. The covariance matrix was determined from a conformational ensemble generated by a 5 ns molecular dynamics simulation. It was found that the time correlation functions of the dominant eigenmodes decay in good approximation with a single correlation time. From the reorientational eigenmodes, their eigenvalues, and correlation times, NMR relaxation data were calculated in accordance with Bloch-Wangsness-Redfield relaxation theory and directly compared with experimental (15)N relaxation parameters. Using a fitting procedure, agreement between calculated and experimental data was improved significantly by adjusting eigenvalues and correlation times of the dominant modes. The presented procedure provides detailed information on correlated reorientational dynamics of flexible parts in globular proteins. The covariance matrix was linked to the covariance matrix of backbone dihedral angle fluctuations, allowing one to study the motional behavior of these degrees of freedom on nano- and subnanosecond time scales.

  2. QM/MM-MD simulations of conjugated polyelectrolytes

    DEFF Research Database (Denmark)

    Sjöqvist, Jonas; Linares, Mathieu; Mikkelsen, Kurt Valentin

    2014-01-01

    description of the solvent in its electronic ground state as well as the chromophore in its electronic ground and excited states, (ii) a conformational sampling by means of classical molecular dynamics (MD) in the respective electronic states, and (iii) spectral response calculations by means of the quantum...

  3. Molecular dynamics simulation and quantum mechanical calculations on α-D-N-acetylneuraminic acid.

    Science.gov (United States)

    Priyadarzini, Thanu R K; Subashini, Balakrishnan; Selvin, Jeyasigamani F A; Veluraja, Kasinadar

    2012-04-01

    N-Acetylneuraminic acid is a sugar molecule of biological significance due to its pivotal role in molecular recognition processes. The three dimensional structure and conformation of α-Neu5Ac in biological environments can be clearly observed by molecular dynamics (MD) simulation and quantum mechanical (QM) calculations. A 10ns MD simulation on α-Neu5Ac yields two conformational models which are stabilized by water mediated hydrogen bond between O-8/O-9 hydroxyl oxygen and carbonyl of carboxylate group. The average life time of the conformers and the residual time of water which mediates the hydrogen bonding interactions are computed. Based on the amphiprotic nature of water, water mediation of each conformer is divided into two different modes, one donor-one acceptor mode and two donor modes. According to the analysis of simulation trajectories, the preferred mode of water mediation for conformers is the one donor-one acceptor mode. The energy and geometry of the MD derived conformational models of α-Neu5Ac are optimized using HF/6-31G(∗) basis set of Gaussian03. QM calculations also resulted that α-Neu5Ac is preferentially stabilized by water mediated hydrogen bonding between O-8 hydroxyl and the carboxylate group where the mediation is one donor-one acceptor type. The optimized geometry of α-Neu5Ac which is in good agreement with the crystal structure of α-D-N-acetyl-1-O-methylneuraminic acid methyl ester is deposited in the public domain database 3DSDSCAR (http://3dsdscar.org). This optimized structure can be used by biotechnologists, biophysicists and glycobiologists for modelling the sialylglycans and also to design drugs using sialic acid analog inhibitors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Numerical Calculation of Artillery-Fuze System Dynamic Characteristics

    Institute of Scientific and Technical Information of China (English)

    WANG Ya-bin; LIU Ming-jie; TAN Hui-min

    2007-01-01

    A numerical calculation method based on the finite element analysis of dynamic characteristics of artillery-fuze system is discussed in detail. Pretension element is used to mesh the couple structure between artillery and fuze to analyze the change of dynamic characteristics of artillery-fuze system when pre-tightening force varies between artillery and fuze. Numerical calculation of the finite element analysis and actual hammering test of a artillery-fuze system are carried out with the same input to verify the accuracy of numerical calculation. The results show that the finite element model of artillery-fuze system is credibl e and the calculation accuracy is perfect.

  5. EMC/FDTD/MD simulation of carrier transport and electrodynamics in two-dimensional electron systems

    OpenAIRE

    Sule, N.; Willis, K. J.; Hagness, S. C.; Knezevic, I.

    2014-01-01

    We present the implementation and application of a multiphysics simulation technique to carrier dynamics under electromagnetic excitation in supported two-dimensional electronic systems. The technique combines ensemble Monte Carlo (EMC) for carrier transport with finite-difference time-domain (FDTD) for electrodynamics and molecular dynamics (MD) for short-range Coulomb interactions among particles. We demonstrate the use of this EMC/FDTD/MD technique by calculating the room-temperature dc an...

  6. Free Energy Calculations using a Swarm-Enhanced Sampling Molecular Dynamics Approach.

    Science.gov (United States)

    Burusco, Kepa K; Bruce, Neil J; Alibay, Irfan; Bryce, Richard A

    2015-10-26

    Free energy simulations are an established computational tool in modelling chemical change in the condensed phase. However, sampling of kinetically distinct substates remains a challenge to these approaches. As a route to addressing this, we link the methods of thermodynamic integration (TI) and swarm-enhanced sampling molecular dynamics (sesMD), where simulation replicas interact cooperatively to aid transitions over energy barriers. We illustrate the approach by using alchemical alkane transformations in solution, comparing them with the multiple independent trajectory TI (IT-TI) method. Free energy changes for transitions computed by using IT-TI grew increasingly inaccurate as the intramolecular barrier was heightened. By contrast, swarm-enhanced sampling TI (sesTI) calculations showed clear improvements in sampling efficiency, leading to more accurate computed free energy differences, even in the case of the highest barrier height. The sesTI approach, therefore, has potential in addressing chemical change in systems where conformations exist in slow exchange.

  7. Calculation of the dynamic air flow resistivity of fibre materials

    DEFF Research Database (Denmark)

    Tarnow, Viggo

    1997-01-01

    The acoustic attenuation of acoustic fiber materials is mainly determined by the dynamic resistivity to an oscillating air flow. The dynamic resistance is calculated for a model with geometry close to the geometry of real fibre material. The model constists of parallel cylinders placed randomly. ......-consistent procedure gives the same results as the more complicated procedure based on average over Voronoi cells. Graphs of the dynamic resistivity versus frequency are given for fiber densities and diameters typical for acoustic fiber materials.......The acoustic attenuation of acoustic fiber materials is mainly determined by the dynamic resistivity to an oscillating air flow. The dynamic resistance is calculated for a model with geometry close to the geometry of real fibre material. The model constists of parallel cylinders placed randomly...

  8. Steinberg ``AUDIOMAPS'' Music Appreciation-Via-Understanding: Special-Relativity + Expectations ``Quantum-Theory'': a Quantum-ACOUSTO/MUSICO-Dynamics (QA/MD)

    Science.gov (United States)

    Fender, Lee; Steinberg, Russell; Siegel, Edward Carl-Ludwig

    2011-03-01

    Steinberg wildly popular "AUDIOMAPS" music enjoyment/appreciation-via-understanding methodology, versus art, music-dynamics evolves, telling a story in (3+1)-dimensions: trails, frames, timbres, + dynamics amplitude vs. music-score time-series (formal-inverse power-spectrum) surprisingly closely parallels (3+1)-dimensional Einstein(1905) special-relativity "+" (with its enjoyment-expectations) a manifestation of quantum-theory expectation-values, together a music quantum-ACOUSTO/MUSICO-dynamics(QA/MD). Analysis via Derrida deconstruction enabled Siegel-Baez "Category-Semantics" "FUZZYICS"="CATEGORYICS ('TRIZ") Aristotle SoO DEduction , irrespective of Boon-Klimontovich vs. Voss-Clark[PRL(77)] music power-spectrum analysis sampling-time/duration controversy: part versus whole, shows QA/MD reigns supreme as THE music appreciation-via-analysis tool for the listener in musicology!!! Connection to Deutsch-Hartmann-Levitin[This is Your Brain on Music, (06)] brain/mind-barrier brain/mind-music connection is subtle/compelling/immediate!!!

  9. Steinberg ``AUDIOMAPS" Music Appreciation-Via-Understanding: Special-Relativity + Expectations "Quantum-Theory": a Quantum-ACOUSTO/MUSICO-Dynamics (QA/MD)

    Science.gov (United States)

    Steinberg, R.; Siegel, E.

    2010-03-01

    ``AUDIOMAPS'' music enjoyment/appreciation-via-understanding methodology, versus art, music-dynamics evolves, telling a story in (3+1)-dimensions: trails, frames, timbres, + dynamics amplitude vs. music-score time-series (formal-inverse power- spectrum) surprisingly closely parallels (3+1)-dimensional Einstein(1905) special-relativity ``+'' (with its enjoyment- expectations) a manifestation of quantum-theory expectation- values, together a music quantum-ACOUSTO/MUSICO-dynamics (QA/MD). Analysis via Derrida deconstruction enabled Siegel- Baez ``Category-Semantics'' ``FUZZYICS''=``CATEGORYICS (``SON of 'TRIZ") classic Aristotle ``Square-of-Opposition" (SoO) DEduction-logic, irrespective of Boon-Klimontovich versus Voss- Clark[PRL(77)] music power-spectrum analysis sampling- time/duration controversy: part versus whole, shows that ``AUDIOMAPS" QA/MD reigns supreme as THE music appreciation-via- analysis tool for the listener in musicology!!! Connection to Deutsch-Hartmann-Levitin[This is Your Brain on Music,(2006)] brain/mind-barrier brain/mind-music connection is both subtle and compelling and immediate!!!

  10. CALCULATION AND IMPROVEMENT OF DYNAMIC CHARACTERISTICS OF CENTRIFUGE

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The modeling of the rotor-support system of a typical centrifuge is discussed. The impedance matching method, cooperating with Riccati transfer matrix method and modal analysis method are adopted to calculate its dynamic characteristics. The influences of the main parts to the critical speeds are analyzed. Based on the analysis, a critical speed in the operating speed range is tuned successfully, and thus the dynamic characteristics of the centrifuge are much improved.

  11. Gravitation Field Calculations on a Dynamic Lattice by Distributed Computing

    Science.gov (United States)

    Mähönen, Petri; Punkka, Veikko

    A new method of calculating numerically time evolution of a gravitational field in General Relatity is introduced. Vierbein (tetrad) formalism, dynamic lattice and massively parallelized computation are suggested as they are expected to speed up the calculations considerably and facilitate the solution of problems previously considered too hard to be solved, such as the time evolution of a system consisting of two or more black holes or the structure of worm holes.

  12. Gravitational field calculations on a dynamic lattice by distributed computing.

    Science.gov (United States)

    Mähönen, P.; Punkka, V.

    A new method of calculating numerically time evolution of a gravitational field in general relativity is introduced. Vierbein (tetrad) formalism, dynamic lattice and massively parallelized computation are suggested as they are expected to speed up the calculations considerably and facilitate the solution of problems previously considered too hard to be solved, such as the time evolution of a system consisting of two or more black holes or the structure of worm holes.

  13. Forming the Calculated Dynamic Transmission Systems of Wheeled Vehicles

    Directory of Open Access Journals (Sweden)

    A. B. Fominykh

    2017-01-01

    Full Text Available To calculate dynamic loading of transmission parts of wheeled vehicles, it is necessary to build up the appropriate calculated dynamic systems and determine their inertial, elastic, and damping parameters.The initial point of this process is to form an initial dynamic system. Hereafter, to cut the time of computations there is a need to reduce the number of masses of this system, and sometimes simplify its structure. The main requirement to be fulfilled in this case is that the calculated dynamical system is to be equivalent to the initial one (in terms of similarity of the vibrational process characteristics in these systems, i.e., the frequencies and modes of oscillations of both systems, their amplitude-frequency characteristics. This is possible when the energy characteristics of the corresponding systems are equal, i.e. their kinetic and potential energies, dissipative functions, and external force energies.Usually, when forming the initial and calculated dynamic systems, all types of friction are reduced to a linearly viscous one. However, it disables us to investigate the motion of these systems if there is an arbitrary, in particular, poly-harmonic action (for example, on the side of the internal combustion engine, since in this case the linear friction coefficients given will depend on the frequency and amplitude of the oscillations.The paper is aimed at determining the equivalent parameters of calculated dynamic systems of wheeled vehicles, including the dissipative parameters for the general case of friction.On the basis of energy principles, the expressions are obtained to determine the equivalent inertial, elastic, and damping parameters of the calculated dynamical systems of wheeled vehicles when the structure is changed and the number of masses of the system is decreased. The presented technique enables us to investigate the motion of these systems under arbitrary, including poly-harmonic, action on the system, using the

  14. A large scale molecular dynamics calculation of a lipid bilayer

    Energy Technology Data Exchange (ETDEWEB)

    Okazaki, Susumu [Tokyo Inst. of Tech. (Japan)

    1998-03-01

    Long time molecular dynamics simulations for the dipalmitoylphosphatidylcholine lipid bilayer in the liquid crystal phase could successfully be performed in the isothermal-isobaric ensemble using the Nose-Parrinello-Rahman extended system method. Three independent 2 ns calculations show excellent convergence to the same equilibrium state of the system in about 0.5 ns. Various structural properties such a atomic distribution, order parameter, gauche fraction in the alkyl chains, and bent structure of the head group and sn-2 chain were satisfactorily reproduced. Dynamic quantities such as trans-gauche transition were qualitatively in good correspondence the experiment. The calculations presented a microscopic picture of the whole molecular conformations, including the finding that there is not a collective tilt in bilayer. Some interesting dynamical observations concerning large structural fluctuations and pendulum motion of the alkyl chains were also made. (author)

  15. Calculated disturbances for evaluation of dynamical properties of freight cars

    Directory of Open Access Journals (Sweden)

    I.A. Mashchenko

    2013-08-01

    Full Text Available Purpose. To form realizations of the calculated disturbances for studying the dynamic properties of railway vehicles. Methodology. Records of the track-test car for one of the typical track sections of the Pridneprovsk railroad are the basic data for building the disturbance components. To derive the true geometric parameters of the railway gauge the records of the track-test car using a double-point metering circuit are transformed considering the transfer function of the measuring system. A model of the calculated disturbances is presented as the four components: a symmetric vertical irregularity determined as a semi-sum of vertical irregularities of the right and left rails; an oblique-symmetric vertical irregularity of the track determined as a semi-difference of vertical irregularities of the right and left rails; horizontal irregularities of the right and left rails. Acceptability criterion of the constructed disturbances is a relationship between the values of the dynamical properties factors of cars and the corresponding experimental data. Findings. The three techniques for the calculated disturbances forming are proposed. The first technique uses records of the track-test car for the track with a sufficiently high amount for given track conditions as components of the calculated disturbances. In so doing symmetrical vertical components of disturbances resulting from records of settling are corrected with the mass and stiffness parameters of the car under consideration. The second technique uses building and applying the theoretical realizations of irregularities corresponding to a real track according to a spectral analysis. The third technique ensures a polyharmonic model of disturbances, the parameters of which are the values of the basic frequencies and amplitudes that are typical for irregularities of a railway track. A possibility of practical applying of the constructed models of disturbances are presented using an example for

  16. VERIFICATION OF TORSIONAL OSCILLATING MECHANICAL SYSTEM DYNAMIC CALCULATION RESULTS

    Directory of Open Access Journals (Sweden)

    Peter KAŠŠAY

    2014-09-01

    Full Text Available On our department we deal with optimization and tuning of torsional oscillating mechanical systems. When solving these problems we often use results of dynamic calculation. The goal of this article is to compare values obtained by computation and experimentally. For this purpose, a mechanical system built in our laboratory was used. At first, classical HARDY type flexible coupling has been applied into the system, then we used a pneumatic flexible shaft coupling developed by us. The main difference of these couplings over conventional flexible couplings is that they can change their dynamic properties during operation, by changing the pressure of the gaseous medium in their flexible elements.

  17. Cryptanalysis of MD2

    DEFF Research Database (Denmark)

    Knudsen, Lars Ramkilde; Mathiassen, John Erik; Muller, Frédéric

    2010-01-01

    This paper considers the hash function MD2 which was developed by Ron Rivest in 1989. Despite its age, MD2 has withstood cryptanalytic attacks until recently. This paper contains the state-of-the-art cryptanalytic results on MD2, in particular collision and preimage attacks on the full hash...

  18. VERIFICATION OF TORSIONAL OSCILLATING MECHANICAL SYSTEM DYNAMIC CALCULATION RESULTS

    OpenAIRE

    2014-01-01

    On our department we deal with optimization and tuning of torsional oscillating mechanical systems. When solving these problems we often use results of dynamic calculation. The goal of this article is to compare values obtained by computation and experimentally. For this purpose, a mechanical system built in our laboratory was used. At first, classical HARDY type flexible coupling has been applied into the system, then we used a pneumatic flexible shaft coupling developed by us...

  19. Harvesting graphics power for MD simulations

    NARCIS (Netherlands)

    van Meel, J.A.; Arnold, A.; Frenkel, D.; Portegies Zwart, S.F.; Belleman, R.G.

    2008-01-01

    We discuss an implementation of molecular dynamics (MD) simulations on a graphic processing unit (GPU) in the NVIDIA CUDA language. We tested our code on a modern GPU, the NVIDIA GeForce 8800 GTX. Results for two MD algorithms suitable for short-ranged and long-ranged interactions, and a congruentia

  20. METHOD FOR CALCULATION OF STRESSED STATE SUBSTANTIATED BY DYNAMIC MICROTWIN

    Directory of Open Access Journals (Sweden)

    V. V. Vlashevich

    2014-01-01

    Full Text Available Method for calculation of the stressed state in a dynamic twin has been developed on the basis of a non-thin non-coherent micro-twin model with continuous distribution of twinning dislocations at twin boundaries. In this case there is no additional generation with the help of twinning dislocation source. The model takes into account that the twin has coherent and noncoherent boundary sections. The developed model has made it possible to take into consideration a form of non-coherent sections of twinning boundaries in calculations of stressed and deformed state at dynamic twins. It has been established that localized stresses are migrating together with non-coherent sections of the twin. Normal stresses σxx change their sign in relation to direction of the twin development. Shear stresses σxy are alternating in signs in relation to an axis which is perpendicular to the direction of the twin development and which is passing through a mid-point of non-coherent twin section. Distribution of stresses σyy и σyz has similar configuration. Stresses σzx in the second and fourth quarters of XOY plane are negative and the stresses in the first and third quarters are positive. Distribution of stresses σzz practically does not differ from distribution of stresses σyy according to configuration but numerical values of stress tensor component data are different.The results have been obtained without thin twin model that permits to consider only elastic stage of the twinning process. The executed stress calculations at dynamic twin are important for forecasting at the accumulation stage of damage origination which is caused by twinning destruction and permit to improve forecasting accuracy of technical system resources on the basis of twinning materials such as alloys based on iron, copper, zinc, aluminium, titanium.

  1. Advanced Dynamics Analytical and Numerical Calculations with MATLAB

    CERN Document Server

    Marghitu, Dan B

    2012-01-01

    Advanced Dynamics: Analytical and Numerical Calculations with MATLAB provides a thorough, rigorous presentation of kinematics and dynamics while using MATLAB as an integrated tool to solve problems. Topics presented are explained thoroughly and directly, allowing fundamental principles to emerge through applications from areas such as multibody systems, robotics, spacecraft and design of complex mechanical devices. This book differs from others in that it uses symbolic MATLAB for both theory and applications. Special attention is given to solutions that are solved analytically and numerically using MATLAB. The illustrations and figures generated with MATLAB reinforce visual learning while an abundance of examples offer additional support. This book also: Provides solutions analytically and numerically using MATLAB Illustrations and graphs generated with MATLAB reinforce visual learning for students as they study Covers modern technical advancements in areas like multibody systems, robotics, spacecraft and des...

  2. Impact of sulfation pattern on the conformation and dynamics of sulfated fucan oligosaccharides as revealed by NMR and MD.

    Science.gov (United States)

    Queiroz, Ismael N L; Wang, Xiaocong; Glushka, John N; Santos, Gustavo R C; Valente, Ana P; Prestegard, James H; Woods, Robert J; Mourão, Paulo A S; Pomin, Vitor H

    2015-05-01

    Sulfated fucans from sea urchin egg jelly express well-defined chemical structures that vary with species. This species specificity regulates the sperm acrosome reaction, a critical step to assure intra-specific fertilization. In addition, these polysaccharides are involved in other biological activities such as anticoagulation. Although sulfation patterns are relevant to the levels of response in both activities, conformation and dynamics of these glycans are also contributing factors. However, data about these features of sulfated fucans are very rare. To address this, we have employed nuclear magnetic resonance experiments combined with molecular dynamics on structurally defined oligosaccharides derived from two sulfated fucans. The results have indicated that the oligosaccharides are flexible in solution. Ring conformation of their composing units displays just the (1)C4 chair configuration. In a particular octasaccharide, composed of two tetrasaccharide sequences, inter-residual hydrogen bonds play a role to decrease dynamics in these repeating units. Conversely, the linking disaccharide [-3)-α-L-Fucp-2(OSO3(-))-(1-3)-α-L-Fucp-4(OCO3(-))-(1-] located right between the two tetrasaccharide units has amplified motions suggested to be promoted by electrostatic repulsion of sulfates on opposite sides of the central glycosidic bond. This conjunction of information about conformation and dynamics of sulfated fucan oligosaccharides provides new insights to explain how these glycans behave free in solution and influenced by sulfation patterns. It may also serve for future studies concerning structure-function relationship of sulfated fucans, especially those involving sea urchin fertilization and anticoagulation.

  3. Molecular dynamics simulations and MM-PBSA calculations of the lectin from snowdrop (Galanthus nivalis).

    Science.gov (United States)

    Liu, Zhen; Zhang, Yizheng

    2009-12-01

    Galanthus nivalis agglutinin (GNA), a mannose-specific lectin from snowdrop bulbs, is a member of the monocot mannose-specific lectin family and exhibits antiviral activity toward HIV. In the present study, molecular dynamics (MD) simulations were performed to study the interaction between GNA and its carbohydrate ligand over a specific time span. By analysis of the secondary structures, it was observed that the GNA conformation maintains rather stable along the trajectories and the high fluctuations were only centered on the carbohydrate recognition domains. Our MD simulations also reproduced most of the hydrogen bonds observed in the x-ray crystal structure. Furthermore, the obtained MD trajectories were used to estimate the binding free energy of the complex using the molecular mechanics/Poisson Boltzmann surface area (MM-PBSA) method. It was revealed by the inspection of the binding free energy components that the major contributions to the complex stability arose from electrostatic interactions.

  4. Nonlinear damping calculation in cylindrical gear dynamic modeling

    Science.gov (United States)

    Guilbault, Raynald; Lalonde, Sébastien; Thomas, Marc

    2012-04-01

    The nonlinear dynamic problem posed by cylindrical gear systems has been extensively covered in the literature. Nonetheless, a significant proportion of the mechanisms involved in damping generation remains to be investigated and described. The main objective of this study is to contribute to this task. Overall, damping is assumed to consist of three sources: surrounding element contribution, hysteresis of the teeth, and oil squeeze damping. The first two contributions are considered to be commensurate with the supported load; for its part however, squeeze damping is formulated using expressions developed from the Reynolds equation. A lubricated impact analysis between the teeth is introduced in this study for the minimum film thickness calculation during contact losses. The dynamic transmission error (DTE) obtained from the final model showed close agreement with experimental measurements available in the literature. The nonlinear damping ratio calculated at different mesh frequencies and torque amplitudes presented average values between 5.3 percent and 8 percent, which is comparable to the constant 8 percent ratio used in published numerical simulations of an equivalent gear pair. A close analysis of the oil squeeze damping evidenced the inverse relationship between this damping effect and the applied load.

  5. A Hamiltonian replica exchange molecular dynamics (MD) method for the study of folding, based on the analysis of the stabilization determinants of proteins.

    Science.gov (United States)

    Meli, Massimiliano; Colombo, Giorgio

    2013-06-06

    Herein, we present a novel Hamiltonian replica exchange protocol for classical molecular dynamics simulations of protein folding/unfolding. The scheme starts from the analysis of the energy-networks responsible for the stabilization of the folded conformation, by means of the energy-decomposition approach. In this framework, the compact energetic map of the native state is generated by a preliminary short molecular dynamics (MD) simulation of the protein in explicit solvent. This map is simplified by means of an eigenvalue decomposition. The highest components of the eigenvector associated with the lowest eigenvalue indicate which sites, named "hot spots", are likely to be responsible for the stability and correct folding of the protein. In the Hamiltonian replica exchange protocol, we use modified force-field parameters to treat the interparticle non-bonded potentials of the hot spots within the protein and between protein and solvent atoms, leaving unperturbed those relative to all other residues, as well as solvent-solvent interactions. We show that it is possible to reversibly simulate the folding/unfolding behavior of two test proteins, namely Villin HeadPiece HP35 (35 residues) and Protein A (62 residues), using a limited number of replicas. We next discuss possible implications for the study of folding mechanisms via all atom simulations.

  6. A Hamiltonian Replica Exchange Molecular Dynamics (MD Method for the Study of Folding, Based on the Analysis of the Stabilization Determinants of Proteins

    Directory of Open Access Journals (Sweden)

    Massimiliano Meli

    2013-06-01

    Full Text Available Herein, we present a novel Hamiltonian replica exchange protocol for classical molecular dynamics simulations of protein folding/unfolding. The scheme starts from the analysis of the energy-networks responsible for the stabilization of the folded conformation, by means of the energy-decomposition approach. In this framework, the compact energetic map of the native state is generated by a preliminary short molecular dynamics (MD simulation of the protein in explicit solvent. This map is simplified by means of an eigenvalue decomposition. The highest components of the eigenvector associated with the lowest eigenvalue indicate which sites, named “hot spots”, are likely to be responsible for the stability and correct folding of the protein. In the Hamiltonian replica exchange protocol, we use modified force-field parameters to treat the interparticle non-bonded potentials of the hot spots within the protein and between protein and solvent atoms, leaving unperturbed those relative to all other residues, as well as solvent-solvent interactions. We show that it is possible to reversibly simulate the folding/unfolding behavior of two test proteins, namely Villin HeadPiece HP35 (35 residues and Protein A (62 residues, using a limited number of replicas. We next discuss possible implications for the study of folding mechanisms via all atom simulations.

  7. Corrosion protection properties and interfacial adhesion mechanism of an epoxy/polyamide coating applied on the steel surface decorated with cerium oxide nanofilm: Complementary experimental, molecular dynamics (MD) and first principle quantum mechanics (QM) simulation methods

    Science.gov (United States)

    Bahlakeh, Ghasem; Ramezanzadeh, Bahram; Saeb, Mohammad Reza; Terryn, Herman; Ghaffari, Mehdi

    2017-10-01

    The effect of cerium oxide treatment on the corrosion protection properties and interfacial interaction of steel/epoxy was studied by electrochemical impedance spectroscopy, (EIS) classical molecular dynamics (MD) and first principle quantum mechanics (QM) simulation methods X-ray photoelectron spectroscopy (XPS) was used to verify the chemical composition of the Ce film deposited on the steel. To probe the role of the curing agent in epoxy adsorption, computations were compared for an epoxy, aminoamide and aminoamide modified epoxy. Moreover, to study the influence of water on interfacial interactions the MD simulations were executed for poly (aminoamide)-cured epoxy resin in contact with the different crystallographic cerium dioxide (ceria, CeO2) surfaces including (100), (110), and (111) in the presence of water molecules. It was found that aminoamide-cured epoxy material was strongly adhered to all types of CeO2 substrates, so that binding to ceria surfaces followed the decreasing order CeO2 (111) > CeO2 (100) > CeO2 (110) in both dry and wet environments. Calculation of interaction energies noticed an enhanced adhesion to metal surface due to aminoamide curing of epoxy resin; where facets (100) and (111) revealed electrostatic and Lewis acid-base interactions, while an additional hydrogen bonding interaction was identified for CeO2 (110). Overall, MD simulations suggested decrement of adhesion to CeO2 in wet environment compared to dry conditions. Additionally, contact angle, pull-off test, cathodic delamination and salt spray analyses were used to confirm the simulation results. The experimental results in line with modeling results revealed that Ce layer deposited on steel enhanced substrate surface free energy, work of adhesion, and interfacial adhesion strength of the epoxy coating. Furthermore, decrement of adhesion of epoxy to CeO2 in presence of water was affirmed by experimental results. EIS results revealed remarkable enhancement of the corrosion

  8. Molecular dynamics simulations to calculate glass transition temperature and elastic constants of novel polyethers.

    Science.gov (United States)

    Sarangapani, Radhakrishnan; Reddy, Sreekantha T; Sikder, Arun K

    2015-04-01

    Molecular dynamics simulations studies are carried out on hydroxyl terminated polyethers that are useful in energetic polymeric binder applications. Energetic polymers derived from oxetanes with heterocyclic side chains with different energetic substituents are designed and simulated under the ensembles of constant particle number, pressure, temperature (NPT) and constant particle number, volume, temperature (NVT). Specific volume of different amorphous polymeric models is predicted using NPT-MD simulations as a function of temperature. Plots of specific volume versus temperature exhibited a characteristic change in slope when amorphous systems change from glassy to rubbery state. Several material properties such as Young's, shear, and bulk modulus, Poisson's ratio, etc. are predicted from equilibrated structures and established the structure-property relations among designed polymers. Energetic performance parameters of these polymers are calculated and results reveal that the performance of the designed polymers is comparable to the benchmark energetic polymers like polyNIMMO, polyAMMO and polyBAMO. Overall, it is worthy remark that this molecular simulations study on novel energetic polyethers provides a good guidance on mastering the design principles and allows us to design novel polymers of tailored properties.

  9. Structure and water exchange dynamics of hydrated oxo halo ions in aqueous solution using QMCF MD simulation, large angle X-ray scattering and EXAFS

    Science.gov (United States)

    Eklund, Lars; Hofer, Tomas S.

    2014-01-01

    Theoretical ab initio quantum mechanical charge field molecular dynamics (QMCF MD) has been applied in conjunction with experimental large angle X-ray scattering (LAXS) and EXAFS measurements to study structure and dynamics of the hydrated oxo chloro anions chlorite, ClO2−, chlorate, ClO3−, and perchlorate, ClO4−. In addition, the structures of the hydrated hypochlorite, ClO−, bromate, BrO3−, iodate, IO3− and metaperiodate, IO4−, ions have been determined in aqueous solution by means of LAXS. The structures of the bromate, metaperiodate, and orthoperiodate, H2IO63−, ions have been determined by EXAFS as solid sodium salts and in aqueous solution as well. The results show clearly that the only form of periodate present in aqueous solution is metaperiodate. The Cl-O bond distances in the hydrated oxo chloro anions as determined by LAXS and obtained in the QMCF MD simulations are in excellent agreement, being 0.01–0.02 Å longer than in solid anhydrous salts due to hydration through hydrogen bonding to water molecules. The oxo halo anions, all with unit negative charge, have low charge density making them typical structure breakers, thus the hydrogen bonds formed to the hydrating water molecules are weaker and more short-lived than those between water molecules in pure water. The water exchange mechanism of the oxo chloro anions resembles those of the oxo sulfur anions with a direct exchange at the oxygen atoms for perchlorate and sulfate. The water exchange rate for the perchlorate ion is significantly faster, τ0.5=1.4 ps, compared to the hydrated sulfate ion and pure water, τ0.5=2.6 and 1.7 ps, respectively. The angular radial distribution functions show that the chlorate and sulfite ions have a more complex water exchange mechanism. As the chlorite and chlorate ions are more weakly hydrated than the sulfite ion the spatial occupancy is less well-defined and it is not possible to follow any well-defined migration pattern as it is difficult to

  10. Exploring the interaction between human focal adhesion kinase and inhibitors: a molecular dynamic simulation and free energy calculations.

    Science.gov (United States)

    Zhan, Jiu-Yu; Zhang, Ji-Long; Wang, Yan; Li, Ye; Zhang, Hong-Xing; Zheng, Qing-Chuan

    2016-11-01

    Focal adhesion kinase is an important target for the treatment of many kinds of cancers. Inhibitors of FAK are proposed to be the anticancer agents for multiple tumors. The interaction characteristic between FAK and its inhibitors is crucial to develop new inhibitors. In the present article, we used Molecular Dynamic (MD) simulation method to explore the characteristic of interaction between FAK and three inhibitors (PHM16, TAE226, and ligand3). The MD simulation results together with MM-GB/SA calculations show that the combinations are enthalpy-driven process. Cys502 and Asp564 are both essential residues due to the hydrogen bond interactions with inhibitors, which was in good agreement with experimental data. Glu500 can form a non-classical hydrogen bond with each inhibitor. Arg426 can form electrostatic interactions with PHM16 and ligand3, while weaker with TAE226. The electronic static potential was employed, and we found that the ortho-position methoxy of TAE226 has a weaker negative charge than the meta-position one in PHM16 or ligand3. Ile428, Val436, Ala452, Val484, Leu501, Glu505, Glu506, Leu553, Gly563 Leu567, Ser568 are all crucial residues in hydrophobic interactions. The key residues in this work will be available for further inhibitor design of FAK and also give assistance to further research of cancer.

  11. Muscular Dystrophy (MD)

    Science.gov (United States)

    ... fight respiratory infections. Some individuals may benefit from occupational therapy and assistive technology. Some ... (MD) are a group of more than 30 genetic diseases characterized by progressive weakness and degeneration of the ...

  12. Evaluation of the Gibbs Free Energy Changes and Melting Temperatures of DNA/DNA Duplexes Using Hybridization Enthalpy Calculated by Molecular Dynamics Simulation.

    Science.gov (United States)

    Lomzov, Alexander A; Vorobjev, Yury N; Pyshnyi, Dmitrii V

    2015-12-10

    A molecular dynamics simulation approach was applied for the prediction of the thermal stability of oligonucleotide duplexes. It was shown that the enthalpy of the DNA/DNA complex formation could be calculated using this approach. We have studied the influence of various simulation parameters on the secondary structure and the hybridization enthalpy value of Dickerson-Drew dodecamer. The optimal simulation parameters for the most reliable prediction of the enthalpy values were determined. The thermodynamic parameters (enthalpy and entropy changes) of a duplex formation were obtained experimentally for 305 oligonucleotides of various lengths and GC-content. The resulting database was studied with molecular dynamics (MD) simulation using the optimized simulation parameters. Gibbs free energy changes and the melting temperatures were evaluated using the experimental correlation between enthalpy and entropy changes of the duplex formation and the enthalpy values calculated by the MD simulation. The average errors in the predictions of enthalpy, the Gibbs free energy change, and the melting temperature of oligonucleotide complexes were 11%, 10%, and 4.4 °C, respectively. We have shown that the molecular dynamics simulation gives a possibility to calculate the thermal stability of native DNA/DNA complexes a priori with an unexpectedly high accuracy.

  13. Comprehensive Peptide Ion Structure Studies Using Ion Mobility Techniques: Part 1. An Advanced Protocol for Molecular Dynamics Simulations and Collision Cross-Section Calculation

    Science.gov (United States)

    Ghassabi Kondalaji, Samaneh; Khakinejad, Mahdiar; Tafreshian, Amirmahdi; J. Valentine, Stephen

    2017-02-01

    Collision cross-section (CCS) measurements with a linear drift tube have been utilized to study the gas-phase conformers of a model peptide (acetyl-PAAAAKAAAAKAAAAKAAAAK). Extensive molecular dynamics (MD) simulations have been conducted to derive an advanced protocol for the generation of a comprehensive pool of in-silico structures; both higher energy and more thermodynamically stable structures are included to provide an unbiased sampling of conformational space. MD simulations at 300 K are applied to the in-silico structures to more accurately describe the gas-phase transport properties of the ion conformers including their dynamics. Different methods used previously for trajectory method (TM) CCS calculation employing the Mobcal software [1] are evaluated. A new method for accurate CCS calculation is proposed based on clustering and data mining techniques. CCS values are calculated for all in-silico structures, and those with matching CCS values are chosen as candidate structures. With this approach, more than 300 candidate structures with significant structural variation are produced; although no final gas-phase structure is proposed here, in a second installment of this work, gas-phase hydrogen deuterium exchange data will be utilized as a second criterion to select among these structures as well as to propose relative populations for these ion conformers. Here the need to increase conformer diversity and accurate CCS calculation is demonstrated and the advanced methods are discussed.

  14. Comprehensive Peptide Ion Structure Studies Using Ion Mobility Techniques: Part 1. An Advanced Protocol for Molecular Dynamics Simulations and Collision Cross-Section Calculation.

    Science.gov (United States)

    Ghassabi Kondalaji, Samaneh; Khakinejad, Mahdiar; Tafreshian, Amirmahdi; J Valentine, Stephen

    2017-05-01

    Collision cross-section (CCS) measurements with a linear drift tube have been utilized to study the gas-phase conformers of a model peptide (acetyl-PAAAAKAAAAKAAAAKAAAAK). Extensive molecular dynamics (MD) simulations have been conducted to derive an advanced protocol for the generation of a comprehensive pool of in-silico structures; both higher energy and more thermodynamically stable structures are included to provide an unbiased sampling of conformational space. MD simulations at 300 K are applied to the in-silico structures to more accurately describe the gas-phase transport properties of the ion conformers including their dynamics. Different methods used previously for trajectory method (TM) CCS calculation employing the Mobcal software [1] are evaluated. A new method for accurate CCS calculation is proposed based on clustering and data mining techniques. CCS values are calculated for all in-silico structures, and those with matching CCS values are chosen as candidate structures. With this approach, more than 300 candidate structures with significant structural variation are produced; although no final gas-phase structure is proposed here, in a second installment of this work, gas-phase hydrogen deuterium exchange data will be utilized as a second criterion to select among these structures as well as to propose relative populations for these ion conformers. Here the need to increase conformer diversity and accurate CCS calculation is demonstrated and the advanced methods are discussed. Graphical Abstract ᅟ.

  15. Comprehensive Peptide Ion Structure Studies Using Ion Mobility Techniques: Part 1. An Advanced Protocol for Molecular Dynamics Simulations and Collision Cross-Section Calculation

    Science.gov (United States)

    Ghassabi Kondalaji, Samaneh; Khakinejad, Mahdiar; Tafreshian, Amirmahdi; J. Valentine, Stephen

    2017-05-01

    Collision cross-section (CCS) measurements with a linear drift tube have been utilized to study the gas-phase conformers of a model peptide (acetyl-PAAAAKAAAAKAAAAKAAAAK). Extensive molecular dynamics (MD) simulations have been conducted to derive an advanced protocol for the generation of a comprehensive pool of in-silico structures; both higher energy and more thermodynamically stable structures are included to provide an unbiased sampling of conformational space. MD simulations at 300 K are applied to the in-silico structures to more accurately describe the gas-phase transport properties of the ion conformers including their dynamics. Different methods used previously for trajectory method (TM) CCS calculation employing the Mobcal software [1] are evaluated. A new method for accurate CCS calculation is proposed based on clustering and data mining techniques. CCS values are calculated for all in-silico structures, and those with matching CCS values are chosen as candidate structures. With this approach, more than 300 candidate structures with significant structural variation are produced; although no final gas-phase structure is proposed here, in a second installment of this work, gas-phase hydrogen deuterium exchange data will be utilized as a second criterion to select among these structures as well as to propose relative populations for these ion conformers. Here the need to increase conformer diversity and accurate CCS calculation is demonstrated and the advanced methods are discussed.

  16. Insights into regioselective metabolism of mefenamic acid by cytochrome P450 BM3 mutants through crystallography, docking, molecular dynamics, and free energy calculations

    DEFF Research Database (Denmark)

    Capoferri, Luigi; Leth, Rasmus; Ter Haar, Ernst

    2016-01-01

    of the protein mutant M11 was expressed, purified, and crystallized, and its X-ray structure was used as template for modeling. A multistep approach was used that combines molecular docking, molecular dynamics (MD) simulation, and binding free-energy calculations to address protein flexibility. In this way......, preferred binding modes that are consistent with oxidation at the experimentally observed sites of metabolism (SOMs) were identified. Whereas docking could not be used to retrospectively predict experimental trends in regioselectivity, we were able to rank binding modes in line with the preferred SOMs...

  17. MD-2 binds cholesterol.

    Science.gov (United States)

    Choi, Soo-Ho; Kim, Jungsu; Gonen, Ayelet; Viriyakosol, Suganya; Miller, Yury I

    2016-02-19

    Cholesterol is a structural component of cellular membranes, which is transported from liver to peripheral cells in the form of cholesterol esters (CE), residing in the hydrophobic core of low-density lipoprotein. Oxidized CE (OxCE) is often found in plasma and in atherosclerotic lesions of subjects with cardiovascular disease. Our earlier studies have demonstrated that OxCE activates inflammatory responses in macrophages via toll-like receptor-4 (TLR4). Here we demonstrate that cholesterol binds to myeloid differentiation-2 (MD-2), a TLR4 ancillary molecule, which is a binding receptor for bacterial lipopolysaccharide (LPS) and is indispensable for LPS-induced TLR4 dimerization and signaling. Cholesterol binding to MD-2 was competed by LPS and by OxCE-modified BSA. Furthermore, soluble MD-2 in human plasma and MD-2 in mouse atherosclerotic lesions carried cholesterol, the finding supporting the biological significance of MD-2 cholesterol binding. These results help understand the molecular basis of TLR4 activation by OxCE and mechanisms of chronic inflammation in atherosclerosis.

  18. Free Energy Perturbation Hamiltonian Replica-Exchange Molecular Dynamics (FEP/H-REMD) for Absolute Ligand Binding Free Energy Calculations.

    Science.gov (United States)

    Jiang, Wei; Roux, Benoît

    2010-07-01

    Free Energy Perturbation with Replica Exchange Molecular Dynamics (FEP/REMD) offers a powerful strategy to improve the convergence of free energy computations. In particular, it has been shown previously that a FEP/REMD scheme allowing random moves within an extended replica ensemble of thermodynamic coupling parameters "lambda" can improve the statistical convergence in calculations of absolute binding free energy of ligands to proteins [J. Chem. Theory Comput. 2009, 5, 2583]. In the present study, FEP/REMD is extended and combined with an accelerated MD simulations method based on Hamiltonian replica-exchange MD (H-REMD) to overcome the additional problems arising from the existence of kinetically trapped conformations within the protein receptor. In the combined strategy, each system with a given thermodynamic coupling factor lambda in the extended ensemble is further coupled with a set of replicas evolving on a biased energy surface with boosting potentials used to accelerate the inter-conversion among different rotameric states of the side chains in the neighborhood of the binding site. Exchanges are allowed to occur alternatively along the axes corresponding to the thermodynamic coupling parameter lambda and the boosting potential, in an extended dual array of coupled lambda- and H-REMD simulations. The method is implemented on the basis of new extensions to the REPDSTR module of the biomolecular simulation program CHARMM. As an illustrative example, the absolute binding free energy of p-xylene to the nonpolar cavity of the L99A mutant of T4 lysozyme was calculated. The tests demonstrate that the dual lambda-REMD and H-REMD simulation scheme greatly accelerates the configurational sampling of the rotameric states of the side chains around the binding pocket, thereby improving the convergence of the FEP computations.

  19. Mimicking titration experiments with MD simulations: A protocol for the investigation of pH-dependent effects on proteins

    Science.gov (United States)

    Socher, Eileen; Sticht, Heinrich

    2016-03-01

    Protein structure and function are highly dependent on the environmental pH. However, the temporal or spatial resolution of experimental approaches hampers direct observation of pH-induced conformational changes at the atomic level. Molecular dynamics (MD) simulation strategies (e.g. constant pH MD) have been developed to bridge this gap. However, one frequent problem is the sampling of unrealistic conformations, which may also lead to poor pKa predictions. To address this problem, we have developed and benchmarked the pH-titration MD (pHtMD) approach, which is inspired by wet-lab titration experiments. We give several examples how the pHtMD protocol can be applied for pKa calculation including peptide systems, Staphylococcus nuclease (SNase), and the chaperone HdeA. For HdeA, pHtMD is also capable of monitoring pH-dependent dimer dissociation in accordance with experiments. We conclude that pHtMD represents a versatile tool for pKa value calculation and simulation of pH-dependent effects in proteins.

  20. Structural investigations into the binding mode of novel neolignans Cmp10 and Cmp19 microtubule stabilizers by in silico molecular docking, molecular dynamics, and binding free energy calculations.

    Science.gov (United States)

    Tripathi, Shubhandra; Kumar, Akhil; Kumar, B Sathish; Negi, Arvind S; Sharma, Ashok

    2016-06-01

    Microtubule stabilizers provide an important mode of treatment via mitotic cell arrest of cancer cells. Recently, we reported two novel neolignans derivatives Cmp10 and Cmp19 showing anticancer activity and working as microtubule stabilizers at micromolar concentrations. In this study, we have explored the binding site, mode of binding, and stabilization by two novel microtubule stabilizers Cmp10 and Cmp19 using in silico molecular docking, molecular dynamics (MD) simulation, and binding free energy calculations. Molecular docking studies were performed to explore the β-tubulin binding site of Cmp10 and Cmp19. Further, MD simulations were used to probe the β-tubulin stabilization mechanism by Cmp10 and Cmp19. Binding affinity was also compared for Cmp10 and Cmp19 using binding free energy calculations. Our docking results revealed that both the compounds bind at Ptxl binding site in β-tubulin. MD simulation studies showed that Cmp10 and Cmp19 binding stabilizes M-loop (Phe272-Val288) residues of β-tubulin and prevent its dynamics, leading to a better packing between α and β subunits from adjacent tubulin dimers. In addition, His229, Ser280 and Gln281, and Arg278, Thr276, and Ser232 were found to be the key amino acid residues forming H-bonds with Cmp10 and Cmp19, respectively. Consequently, binding free energy calculations indicated that Cmp10 (-113.655 kJ/mol) had better binding compared to Cmp19 (-95.216 kJ/mol). This study provides useful insight for better understanding of the binding mechanism of Cmp10 and Cmp19 and will be helpful in designing novel microtubule stabilizers.

  1. A series method applied to engineering calculations in structural dynamics

    OpenAIRE

    Reyes Márquez, Auxiliadora; Reyes Perales, José Antonio; Cortés Molina, Mónica; García Alonso, Fernando Luis

    2014-01-01

    This paper shows an application of the Φ-functions series method to calculate the response of structures in face of an earthquake, modelled by a 2DOF. The Φ-functions series method is an adaptation of the ideas of Scheifele to integrate forced and damped oscillators. This algorithm presents the advantage of integrating precisely the perturbed problem with only two Φ-functions. Method coefficients are calculated by simple algebraic recurrences in which the perturbation function is involved. Re...

  2. Modeling of amorphous SiCxO6/5 by classical molecular dynamics and first principles calculations

    Science.gov (United States)

    Liao, Ningbo; Zhang, Miao; Zhou, Hongming; Xue, Wei

    2017-02-01

    Polymer-derived silicon oxycarbide (SiCO) presents excellent performance for high temperature and lithium-ion battery applications. Current experiments have provided some information on nano-structure of SiCO, while it is very challenging for experiments to take further insight into the molecular structure and its relationship with properties of materials. In this work, molecular dynamics (MD) based on empirical potential and first principle calculation were combined to investigate amorphous SiCxO6/5 ceramics. The amorphous structures of SiCO containing silicon-centered mix bond tetrahedrons and free carbon were successfully reproduced. The calculated radial distribution, angular distribution and Young’s modulus were validated by current experimental data, and more details on molecular structure were discussed. The change in the slope of Young’s modulus is related to the glass transition temperature of the material. The proposed modeling approach can be used to predict the properties of SiCO with different compositions.

  3. Modeling the tetraphenylalanine-PEG hybrid amphiphile: from DFT calculations on the peptide to molecular dynamics simulations on the conjugate.

    Science.gov (United States)

    Zanuy, David; Hamley, Ian W; Alemán, Carlos

    2011-07-21

    The conformational properties of the hybrid amphiphile formed by the conjugation of a hydrophobic peptide with four phenylalanine (Phe) residues and hydrophilic poly(ethylene glycol), have been investigated using quantum mechanical calculations and atomistic molecular dynamics simulations. The intrinsic conformational preferences of the peptide were examined using the building-up search procedure combined with B3LYP/6-31G(d) geometry optimizations, which led to the identification of 78, 78, and 92 minimum energy structures for the peptides containing one, two, and four Phe residues. These peptides tend to adopt regular organizations involving turn-like motifs that define ribbon or helical-like arrangements. Furthermore, calculations indicate that backbone···side chain interactions involving the N-H of the amide groups and the π clouds of the aromatic rings play a crucial role in Phe-containing peptides. On the other hand, MD simulations on the complete amphiphile in aqueous solution showed that the polymer fragment rapidly unfolds maximizing the contacts with the polar solvent, even though the hydrophobic peptide reduce the number of waters of hydration with respect to an individual polymer chain of equivalent molecular weight. In spite of the small effect of the peptide in the hydrodynamic properties of the polymer, we conclude that the two counterparts of the amphiphile tend to organize as independent modules.

  4. Finite-temperature elastic constants of paramagnetic materials within the disordered local moment picture from ab initio molecular dynamics calculations

    Science.gov (United States)

    Mozafari, E.; Shulumba, N.; Steneteg, P.; Alling, B.; Abrikosov, Igor A.

    2016-08-01

    We present a theoretical scheme to calculate the elastic constants of magnetic materials in the high-temperature paramagnetic state. Our approach is based on a combination of disordered local moments picture and ab initio molecular dynamics (DLM-MD). Moreover, we investigate a possibility to enhance the efficiency of the simulations of elastic properties using the recently introduced method: symmetry imposed force constant temperature-dependent effective potential (SIFC-TDEP). We have chosen cubic paramagnetic CrN as a model system. This is done due to its technological importance and its demonstrated strong coupling between magnetic and lattice degrees of freedom. We have studied the temperature-dependent single-crystal and polycrystalline elastic constants of paramagentic CrN up to 1200 K. The obtained results at T = 300 K agree well with the experimental values of polycrystalline elastic constants as well as the Poisson ratio at room temperature. We observe that the Young's modulus is strongly dependent on temperature, decreasing by ˜14 % from T = 300 K to 1200 K. In addition we have studied the elastic anisotropy of CrN as a function of temperature and we observe that CrN becomes substantially more isotropic as the temperature increases. We demonstrate that the use of Birch law may lead to substantial errors for calculations of temperature induced changes of elastic moduli. The proposed methodology can be used for accurate predictions of mechanical properties of magnetic materials at temperatures above their magnetic order-disorder phase transition.

  5. Propriedades dinâmicas de fluidos por simulação computacional: métodos híbridos atomístico-contínuo Computer simulations of dynamical properties of fluids: atomistic-continuum hybrid methods

    Directory of Open Access Journals (Sweden)

    Luciano T. Costa

    2010-01-01

    Full Text Available Computational methods for the calculation of dynamical properties of fluids might consider the system as a continuum or as an assembly of molecules. Molecular dynamics (MD simulation includes molecular resolution, whereas computational fluid dynamics (CFD considers the fluid as a continuum. This work provides a review of hybrid methods MD/CFD recently proposed in the literature. Theoretical foundations, basic approaches of computational methods, and dynamical properties typically calculated by MD and CFD are first presented in order to appreciate the similarities and differences between these two methods. Then, methods for coupling MD and CFD, and applications of hybrid simulations MD/CFD, are presented.

  6. Solution structure of the octamer motif in immunoglobulin genes via restrained molecular dynamics calculations.

    Science.gov (United States)

    Weisz, K; Shafer, R H; Egan, W; James, T L

    1994-01-11

    The solution structure of the DNA decamer d(CATTTGCATC)-d(GATGCAAATG), comprising the octamer motif of immunoglobulin genes, is determined by restrained molecular dynamics (rMD) simulations. The restraint data set includes interproton distances and torsion angles for the deoxyribose sugar ring which were previously obtained by a complete relaxation matrix analysis of the two-dimensional nuclear Overhauser enhancement (2D NOE) intensities and by the quantitative simulation of cross-peaks in double-quantum-filtered correlated (2QF-COSY) spectra. The influence of torsion angles and the number of experimental distance restraints on the structural refinement has been systematically examined. Omitting part of the experimental NOE-derived distances results in reduced restraint violations and lower R factors but impairs structural convergence in the rMD refinement. Eight separate restrained molecular dynamics simulations were carried out for 20 ps each, starting from either energy-minimized A- or B-DNA. Mutual atomic root-mean-square (rms) differences among the refined structures are well below 1 A and comparable to the rms fluctuations of the atoms about their average position, indicating convergence to essentially identical structures. The average refined structure was subjected to an additional 100 ps of rMD simulations and analyzed in terms of average torsion angles and helical parameters. The B-type duplex exhibits clear sequence-dependent variations in its geometry with a narrow minor groove at the T3.A3 tract and a large positive roll at the subsequent TG.CA step. This is accompanied by a noticeable bend of the global helix axis into the major groove. There is also evidence of significant flexibility of the sugar-phosphate backbone with rapid interconversion among different conformers.

  7. Insight into herbicide resistance of W574L mutant Arabidopsis thaliana acetohydroxyacid synthase:molecular dynamics simulations and binding free energy calculations

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Acetohydroxyacid synthase(AHAS) is the target enzyme of several classes of herbicides,such as sulfonylureas and imidazolinones.Now many mutant AHASs with herbicide resistance have emerged along with extensive use of herbicides,therefore it is imperative to understand the detailed interaction mechanism and resistance mechanism so as to develop new potent inhibitors for wild-type or resistant AHAS.With the aid of available crystal structures of the Arabidopsis thaliana(At) AHAS-inhibitor complex,molecular dynamics(MD) simulations were used to investigate the interaction and resistance mechanism directly and dynamically at the atomic level.Nanosecond-level MD simulations were performed on six systems consisting of wild-type or W574L mutant AtAHAS in the complex with three sulfonylurea inhibitors,separately,and binding free energy was calculated for each system using the MM-GBSA method.Comprehensive analyses from structural and energetic aspects confirmed the importance of residue W574,and also indicated that W574L mutation might alert the structural charactersistic of the substrate access channel and decrease the binding affinity of inhibitors,which cooperatively weaken the effective channel-blocked effect and finally result in weaker inhibitory effect of inhibitor and corresponding herbicide resistance of W574L mutant.To our knowledge,it is the first report about MD simulations study on the AHAS-related system,which will pave the way to study the interactions between herbicides and wild-type or mutant AHAS dynamically,and decipher the resistance mechanism at the atomic level for better designing new potent anti-resistance herbicides.

  8. Dynamic simulation of flash drums using rigorous physical property calculations

    Directory of Open Access Journals (Sweden)

    F. M. Gonçalves

    2007-06-01

    Full Text Available The dynamics of flash drums is simulated using a formulation adequate for phase modeling with equations of state (EOS. The energy and mass balances are written as differential equations for the internal energy and the number of moles of each species. The algebraic equations of the model, solved at each time step, are those of a flash with specified internal energy, volume and mole numbers (UVN flash. A new aspect of our dynamic simulations is the use of direct iterations in phase volumes (instead of pressure for solving the algebraic equations. It was also found that an iterative procedure previously suggested in the literature for UVN flashes becomes unreliable close to phase boundaries and a new alternative is proposed. Another unusual aspect of this work is that the model expressions, including the physical properties and their analytical derivatives, were quickly implemented using computer algebra.

  9. Calculated pKa Variations Expose Dynamic Allosteric Communication Networks.

    Science.gov (United States)

    Lang, Eric J M; Heyes, Logan C; Jameson, Geoffrey B; Parker, Emily J

    2016-02-17

    Allosteric regulation of protein function, the process by which binding of an effector molecule provokes a functional response from a distal site, is critical for metabolic pathways. Yet, the way the allosteric signal is communicated remains elusive, especially in dynamic, entropically driven regulation mechanisms for which no major conformational changes are observed. To identify these dynamic allosteric communication networks, we have developed an approach that monitors the pKa variations of ionizable residues over the course of molecular dynamics simulations performed in the presence and absence of an allosteric regulator. As the pKa of ionizable residues depends on their environment, it represents a simple metric to monitor changes in several complex factors induced by binding an allosteric effector. These factors include Coulombic interactions, hydrogen bonding, and solvation, as well as backbone motions and side chain fluctuations. The predictions that can be made with this method concerning the roles of ionizable residues for allosteric communication can then be easily tested experimentally by changing the working pH of the protein or performing single point mutations. To demonstrate the method's validity, we have applied this approach to the subtle dynamic regulation mechanism observed for Neisseria meningitidis 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase, the first enzyme of aromatic biosynthesis. We were able to identify key communication pathways linking the allosteric binding site to the active site of the enzyme and to validate these findings experimentally by reestablishing the catalytic activity of allosterically inhibited enzyme via modulation of the working pH, without compromising the binding affinity of the allosteric regulator.

  10. Development of a dynamic calculation tool forsimulation of ditching

    OpenAIRE

    Pilorget, Marc

    2011-01-01

    The present document is the final master thesis report written by Marc PILORGET,student at SUPAERO (home institution) and KTH (Royal Institute of Technology,Exchange University). This six months internship was done at DASSAULT AVIATION(Airframe engineering department) based in Saint-Cloud, France. It spanned from the 5thof July to the 23rd of December. The thesis work aims at developing an SPH (SmoothParticle Hydrodynamics) calculation method for ditching and implementing it in the finiteelem...

  11. Calculations of the dynamic dipole polarizabilities for the Li+ ion

    Science.gov (United States)

    Zhang, Yong-Hui; Tang, Li-Yan; Zhang, Xian-Zhou; Shi, Ting-Yun

    2016-10-01

    The B-spline configuration-interaction method is applied to the investigations of dynamic dipole polarizabilities for the four lowest triplet states (2 3S, 33S, 23P, and 33P) of the Li+ ion. The accurate energies for the triplet states of n 3S, n 3P, and n 3D, the dipole oscillator strengths for 23S(33S) → n 3P, 23P(33P) → n 3S, and 23P(33P) → n 3D transitions, with the main quantum number n up to 10 are tabulated for references. The dynamic dipole polarizabilities for the four triplet states under a wide range of photon energy are also listed, which provide input data for analyzing the Stark shift of the Li+ ion. Furthermore, the tune-out wavelengths in the range from 100 nm to 1.2 μm for the four triplet states, and the magic wavelengths in the range from 100 nm to 600 nm for the 23S → 33S, 23S → 23P, and 23S → 33P transitions are determined accurately for the experimental design of the Li+ ion. Project supported by the National Basic Research Program of China (Grant No. 2012CB821305) and the National Natural Science Foundation of China (Grant Nos. 11474319, 11274348, and 91536102).

  12. Molecular-dynamics calculation of the vacancy heat of transport

    Energy Technology Data Exchange (ETDEWEB)

    Schelling, Patrick K.; Ernotte, Jacques; Shokeen, Lalit; Tucker, William C. [Advanced Material Processing and Analysis Center and Department of Physics, University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida 32816 (United States); Woods Halley, J. [Department of Physics, University of Minnesota, 116 Church Street SE, Minneapolis, Minnesota 555455 (United States)

    2014-07-14

    We apply the recently developed constrained-dynamics method to elucidate the thermodiffusion of vacancies in a single-component material. The derivation and assumptions used in the method are clearly explained. Next, the method is applied to compute the reduced heat of transport Q{sub v}{sup *}−h{sub fv} for vacancies in a single-component material. Results from simulations using three different Morse potentials, with one providing an approximate description of Au, and an embedded-atom model potential for Ni are presented. It is found that the reduced heat of transport Q{sub v}{sup *}−h{sub fv} may take either positive or negative values depending on the potential parameters and exhibits some dependence on temperature. It is also found that Q{sub v}{sup *}−h{sub fv} may be correlated with the activation entropy. The results are discussed in comparison with experimental and previous simulation results.

  13. The calculation of robot dynamics using articulated-body inertias

    Science.gov (United States)

    Featherstone, R.

    1983-05-01

    This paper describes a new method for calculating the acceleration of a robot in response to given actuator forces. The method is applicable to open-loop kinematic chains containing revolute and prismatic joints. The algorithm is based on recursive formulas involving quantities called articulated-body inertias, which represent the inertia properties of collections of rigid bodies connected together by joints allowing constrained relative motion between the bodies. A new, matrix-based notation is introduced to represent articulated-body inertias and other spatial quantities. This notation is used to develop the algorithm, and results in a compact representation of the equations. The new algorithm has a computational requirement that varies linearly with the number of joints, and its efficiency is compared with other published algorithms.

  14. Body drop into a fluid tank and dynamic loads calculation

    Directory of Open Access Journals (Sweden)

    Komarov Aleksandr Andreevich

    2014-05-01

    Full Text Available The theory of a body striking a fluid began intensively developing due to the tasks of hydroplanes landing. For the recent years the study of a stroke and submersion of bodies into fluid became even more current. We face them in the process of strength calculation of ship hulls and other structures in modern technology. These tasks solution represents great mathematical difficulty even in case of the mentioned simplifications. These difficulties emerge due to the unsteady character of fluid motion in case of body submersion, and also jet and spray phenomena, which lead to discontinuous motions. On the basis of G.V. Logvinovich’s concept the problem of loads determination with consideration for air gap is solved for both a body and reservoir enclosing structures when a body falls into a fluid. Numerical method is based on the decay of an arbitrary discontinuity.

  15. A Brownian Dynamics Approach to ESR Line Shape Calculations

    Science.gov (United States)

    Wright, Matthew P.

    The work presented in this thesis uses a Monte Carlo technique to simulate spectra for 14N spin-labels and 15N spin labels. The algorithm presented here also has the capability to produce simulated spectra for any admixture of 14N and 15N. The algorithm makes use of `iterative loops' to model Brownian rotational diffusion and for the repeated evaluation of the spectral correlation function (relaxation function). The method described in this work starts with a derivation of an angular dependent "Spin Hamiltonian" that when diagonalized yields orientation dependent eigenvalues. The resulting eigenvalue equations are later used to calculate the energy trajectories of a nitroxide spin-label undergoing rotational diffusion. The energy trajectories are then used to evaluate the relaxation function. The absorption spectrum is obtained by applying a Fourier transform to the relaxation function. However, the application of the Fourier transform to the relaxation function produces "leakage" effects that manifest as spurious peaks in the first derivative spectrum. To counter "leakage" effects a data windowing function was applied to the relaxation function prior to the Fourier transform. In order to test the accuracy of this algorithm, simulated spectra for 14N, and 15N spin labels diffusing in a glycerol-water mixture as well as a 14N-15N admixture diffusing in the same solvent were produced and compared to experimental spectra. An attempt to quantify the level of agreement was made by calculating the mean square residual of the simulated and experimental spectra. The main spectral features were reproduced with reasonable fidelity by the simulated spectra.

  16. Calculating Free Energies Using Scaled-Force Molecular Dynamics Algorithm

    Science.gov (United States)

    Darve, Eric; Wilson, Micahel A.; Pohorille, Andrew

    2000-01-01

    One common objective of molecular simulations in chemistry and biology is to calculate the free energy difference between different states of the system of interest. Examples of problems that have such an objective are calculations of receptor-ligand or protein-drug interactions, associations of molecules in response to hydrophobic, and electrostatic interactions or partition of molecules between immiscible liquids. Another common objective is to describe evolution of the system towards a low energy (possibly the global minimum energy), 'native' state. Perhaps the best example of such a problem is folding of proteins or short RNA molecules. Both types of problems share the same difficulty. Often, different states of the system are separated by high energy barriers, which implies that transitions between these states are rare events. This, in turn, can greatly impede exploration of phase space. In some instances this can lead to 'quasi non-ergodicity', whereby a part of phase space is inaccessible on timescales of the simulation. A host of strategies has been developed to improve efficiency of sampling the phase space. For example, some Monte Carlo techniques involve large steps which move the system between low-energy regions in phase space without the need for sampling the configurations corresponding to energy barriers (J-walking). Most strategies, however, rely on modifying probabilities of sampling low and high-energy regions in phase space such that transitions between states of interest are encouraged. Perhaps the simplest implementation of this strategy is to increase the temperature of the system. This approach was successfully used to identify denaturation pathways in several proteins, but it is clearly not applicable to protein folding. It is also not a successful method for determining free energy differences. Finally, the approach is likely to fail for systems with co-existing phases, such as water-membrane systems, because it may lead to spontaneous

  17. Development of a model for the rational design of molecular imprinted polymer: Computational approach for combined molecular dynamics/quantum mechanics calculations

    Energy Technology Data Exchange (ETDEWEB)

    Dong Cunku [Department of Chemistry, Harbin Institute of Technology, Harbin 150090 (China); Li Xin, E-mail: lixin@hit.edu.cn [Department of Chemistry, Harbin Institute of Technology, Harbin 150090 (China); Guo Zechong [School of Municipal Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China); Qi Jingyao, E-mail: jyq@hit.edu.cn [School of Municipal Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China)

    2009-08-04

    A new rational approach for the preparation of molecularly imprinted polymer (MIP) based on the combination of molecular dynamics (MD) simulations and quantum mechanics (QM) calculations is described in this work. Before performing molecular modeling, a virtual library of functional monomers was created containing forty frequently used monomers. The MD simulations were first conducted to screen the top three monomers from virtual library in each porogen-acetonitrile, chloroform and carbon tetrachloride. QM simulations were then performed with an aim to select the optimum monomer and progen solvent in which the QM simulations were carried out; the monomers giving the highest binding energies were chosen as the candidate to prepare MIP in its corresponding solvent. The acetochlor, a widely used herbicide, was chosen as the target analyte. According to the theoretical calculation results, the MIP with acetochlor as template was prepared by emulsion polymerization method using N,N-methylene bisacrylamide (MBAAM) as functional monomer and divinylbenzene (DVB) as cross-linker in chloroform. The synthesized MIP was then tested by equilibrium-adsorption method, and the MIP demonstrated high removal efficiency to the acetochlor. Mulliken charge distribution and {sup 1}H NMR spectroscopy of the synthesized MIP provided insight on the nature of recognition during the imprinting process probing the governing interactions for selective binding site formation at a molecular level. We think the computer simulation method first proposed in this paper is a novel and reliable method for the design and synthesis of MIP.

  18. The accurate calculation of the band gap of liquid water by means of GW corrections applied to plane-wave density functional theory molecular dynamics simulations.

    Science.gov (United States)

    Fang, Changming; Li, Wun-Fan; Koster, Rik S; Klimeš, Jiří; van Blaaderen, Alfons; van Huis, Marijn A

    2015-01-07

    Knowledge about the intrinsic electronic properties of water is imperative for understanding the behaviour of aqueous solutions that are used throughout biology, chemistry, physics, and industry. The calculation of the electronic band gap of liquids is challenging, because the most accurate ab initio approaches can be applied only to small numbers of atoms, while large numbers of atoms are required for having configurations that are representative of a liquid. Here we show that a high-accuracy value for the electronic band gap of water can be obtained by combining beyond-DFT methods and statistical time-averaging. Liquid water is simulated at 300 K using a plane-wave density functional theory molecular dynamics (PW-DFT-MD) simulation and a van der Waals density functional (optB88-vdW). After applying a self-consistent GW correction the band gap of liquid water at 300 K is calculated as 7.3 eV, in good agreement with recent experimental observations in the literature (6.9 eV). For simulations of phase transformations and chemical reactions in water or aqueous solutions whereby an accurate description of the electronic structure is required, we suggest to use these advanced GW corrections in combination with the statistical analysis of quantum mechanical MD simulations.

  19. Calculation of the local rupture speed of dynamically propagating earthquakes

    Directory of Open Access Journals (Sweden)

    Andrea Bizzarri

    2014-01-01

    Full Text Available The velocity at which a propagating earthquake advances on the fault surface is of pivotal importance in the contest of the source dynamics and in the modeling of the ground motions generation. In this paper the problem of the determination of the rupture speed (v_r is considered. The comparison of different numerical schemes to compute vr from the rupture time (t_r shows that, in general, central finite differences schemes are more accurate than forward or backward schemes, regardless the order of accuracy. Overall, the most efficient and accurate algorithm is the five–points stencil method at the second–order of accuracy. It is also shown how the determination of t_r can affect v_r ; numerical results indicate that if the fault slip velocity threshold (v_l used to define t_r is too high (v_l ≥ 0.1 m/s the details of the rupture are missed, for instance the rupture tip bifurcation occurring for 2–D supershear rupture. On the other hand, for v_l ≤ 0.01 m/s the results appear to be stable and independent on the choice of v_l . Finally, it is demonstrated that in the special case of the linear slip–weakening friction law the definitions of t_r from the threshold criterion on the fault slip velocity and from the achievement of the maximum yield stress are practically equivalent.

  20. The molecular mechanism of bisphenol A (BPA as an endocrine disruptor by interacting with nuclear receptors: insights from molecular dynamics (MD simulations.

    Directory of Open Access Journals (Sweden)

    Lanlan Li

    Full Text Available Bisphenol A (BPA can interact with nuclear receptors and affect the normal function of nuclear receptors in very low doses, which causes BPA to be one of the most controversial endocrine disruptors. However, the detailed molecular mechanism about how BPA interferes the normal function of nuclear receptors is still undiscovered. Herein, molecular dynamics simulations were performed to explore the detailed interaction mechanism between BPA with three typical nuclear receptors, including hERα, hERRγ and hPPARγ. The simulation results and calculated binding free energies indicate that BPA can bind to these three nuclear receptors. The binding affinities of BPA were slightly lower than that of E2 to these three receptors. The simulation results proved that the binding process was mainly driven by direct hydrogen bond and hydrophobic interactions. In addition, structural analysis suggested that BPA could interact with these nuclear receptors by mimicking the action of natural hormone and keeping the nuclear receptors in active conformations. The present work provided the structural evidence to recognize BPA as an endocrine disruptor and would be important guidance for seeking safer substitutions of BPA.

  1. Arnold Aberman, MD.

    Science.gov (United States)

    Aberman, A

    1995-10-01

    When the United States embarked on its effort to provide universal health insurance, the Canadian Medicare System was cited as a possible model for American health care. Often touted as an example of low-cost, high quality medicine, the Canadian system has mirrored the problems of health care across its southern border. With rocketing health care expenditures and financing having largely been decentralized to the individual provinces, local officials have struggled to cut costs and services. A central focus of these efforts has been a move to decrease the numbers of physicians, most notably a 10% decrease in medical school class size in 1993. While some Western provinces have experimented with the privatization of health care, the Canadian system still remains the epitome of government operated fee-for-service medicine. Given the likelihood of dramatic change in the American Medicare system, Canadian academic centers offer a unique perspective on the impact of capitation, evolving relationships with government payors, and the flip side of market oriented reforms. At the helm of one of Canada's largest schools is Arnold Aberman, MD, dean of the University of Toronto Faculty of Medicine. Born in Montreal, Quebec, Aberman received his MD from McGill University, but then did his residency both in Canada and the US, followed by a pulmonary fellowship at Albert Einstein College of Medicine and the Cardiovascular Research Institute of the University of California, San Francisco. Interviewed at his office in Toronto, Aberman reflected on the trials and tribulations confronting medicine on both sides of the 48th parallel.

  2. Hugoniot curve calculation of nitromethane decomposition mixtures:A reactive force field molecular dynamics approach

    Institute of Scientific and Technical Information of China (English)

    郭峰; 张红; 胡海泉; 程新路; 张利燕

    2015-01-01

    We investigate the Hugoniot curve, shock–particle velocity relations, and Chapman–Jouguet conditions of the hot dense system through molecular dynamics (MD) simulations. The detailed pathways from crystal nitromethane to reacted state by shock compression are simulated. The phase transition of N2 and CO mixture is found at about 10 GPa, and the main reason is that the dissociation of the C–O bond and the formation of C–C bond start at 10.0–11.0 GPa. The unreacted state simulations of nitromethane are consistent with shock Hugoniot data. The complete pathway from unreacted to reacted state is discussed. Through chemical species analysis, we find that the C–N bond breaking is the main event of the shock-induced nitromethane decomposition.

  3. Multidimensional Recurrence Quantification Analysis (MdRQA) for the Analysis of Multidimensional Time-Series: A Software Implementation in MATLAB and Its Application to Group-Level Data in Joint Action.

    Science.gov (United States)

    Wallot, Sebastian; Roepstorff, Andreas; Mønster, Dan

    2016-01-01

    We introduce Multidimensional Recurrence Quantification Analysis (MdRQA) as a tool to analyze multidimensional time-series data. We show how MdRQA can be used to capture the dynamics of high-dimensional signals, and how MdRQA can be used to assess coupling between two or more variables. In particular, we describe applications of the method in research on joint and collective action, as it provides a coherent analysis framework to systematically investigate dynamics at different group levels-from individual dynamics, to dyadic dynamics, up to global group-level of arbitrary size. The Appendix in Supplementary Material contains a software implementation in MATLAB to calculate MdRQA measures.

  4. Online rapid sampling microdialysis (rsMD) using enzyme-based electroanalysis for dynamic detection of ischaemia during free flap reconstructive surgery.

    Science.gov (United States)

    Rogers, M L; Brennan, P A; Leong, C L; Gowers, S A N; Aldridge, T; Mellor, T K; Boutelle, M G

    2013-04-01

    We describe an enzyme-based electroanalysis system for real-time analysis of a clinical microdialysis sampling stream during surgery. Free flap tissue transfer is used widely in reconstructive surgery after resection of tumours or in other situations such as following major trauma. However, there is a risk of flap failure, due to thrombosis in the flap pedicle, leading to tissue ischaemia. Conventional clinical assessment is particularly difficult in such 'buried' flaps where access to the tissue is limited. Rapid sampling microdialysis (rsMD) is an enzyme-based electrochemical detection method, which is particularly suited to monitoring metabolism. This online flow injection system analyses a dialysate flow stream from an implanted microdialysis probe every 30 s for levels of glucose and lactate. Here, we report its first use in the monitoring of free flap reconstructive surgery, from flap detachment to re-vascularisation and overnight in the intensive care unit. The on-set of ischaemia by both arterial clamping and failure of venous drainage was seen as an increase in lactate and decrease in glucose levels. Glucose levels returned to normal within 10 min of successful arterial anastomosis, whilst lactate took longer to clear. The use of the lactate/glucose ratio provides a clear predictor of ischaemia on-set and subsequent recovery, as it is insensitive to changes in blood flow such as those caused by topical vasodilators, like papaverine. The use of storage tubing to preserve the time course of dialysate, when technical difficulties arise, until offline analysis can occur, is also shown. The potential use of rsMD in free flap surgery and tissue monitoring is highly promising.

  5. Free energy calculations on Transthyretin dissociation and ligand binding from Molecular Dynamics Simulations

    DEFF Research Database (Denmark)

    Sørensen, Jesper; Hamelberg, Donald; McCammon, J. Andrew

    experimental results have helped to explain this aberrant behavior of TTR, however, structural insights of the amyloidgenic process are still lacking. Therefore, we have used all-atom molecular dynamics simulation and free energy calculations to study the initial phase of this process. We have calculated...... the free energy changes of the initial tetramer dissociation under different conditions and in the presence of thyroxine....

  6. Free energy calculations on Transthyretin dissociation and ligand binding from Molecular Dynamics Simulations

    DEFF Research Database (Denmark)

    Sørensen, Jesper; Hamelberg, Donald; McCammon, J. Andrew

    experimental results have helped to explain this aberrant behavior of TTR, however, structural insights of the amyloidgenic process are still lacking. Therefore, we have used all-atom molecular dynamics simulation and free energy calculations to study the initial phase of this process. We have calculated...... the free energy changes of the initial tetramer dissociation under different conditions and in the presence of thyroxine....

  7. Multi-Loop Calculations of Anomalous Exponents in the Models of Critical Dynamics

    Directory of Open Access Journals (Sweden)

    Adzhemyan L. Ts.

    2016-01-01

    Full Text Available The Renormalization group method (RG is applied to the investigation of the E model of critical dynamics, which describes the transition from the normal to the superfluid phase in He4. The technique “Sector decomposition” with R’ operation is used for the calculation of the Feynman diagrams. The RG functions, critical exponents and critical dynamical exponent z, which determines the growth of the relaxation time near the critical point, have been calculated in the two-loop approximation in the framework of ε-expansion. The relevance of a fixed point for helium, where the dynamic scaling is weakly violated, is briefly discussed.

  8. Dynamical mean field theory-based electronic structure calculations for correlated materials.

    Science.gov (United States)

    Biermann, Silke

    2014-01-01

    We give an introduction to dynamical mean field approaches to correlated materials. Starting from the concept of electronic correlation, we explain why a theoretical description of correlations in spectroscopic properties needs to go beyond the single-particle picture of band theory.We discuss the main ideas of dynamical mean field theory and its use within realistic electronic structure calculations, illustrated by examples of transition metals, transition metal oxides, and rare-earth compounds. Finally, we summarise recent progress on the calculation of effective Hubbard interactions and the description of dynamical screening effects in solids.

  9. MD on UFOs at MKIs and MKQs

    CERN Document Server

    Baer, T; Bartmann, W; Bracco, C; Carlier, E; Dehning, B; Garrel, N; Goddard, B; Jackson, S; Jimenez, M; Kain, V; Mertens, V; Misiowiec, M; Nordt, A; Papotti, G; Uythoven, J; Wenninger, J; Zerlauth, M; Zamantzas, C; Zimmermann, F

    2012-01-01

    UFOs ("Unidentified Falling Objects") are expected to be one of the major known performance limitation of the LHC. In this MD, the production mechanism and the dynamics of UFOs at the injection kicker magnets (MKIs) and the tune kicker magnets (MKQs) were studied. This was done by pulsing the MKIs and MKQs on a gap in the partly filled machine. During the MD, in total 58 UFO-type beam loss patterns were observed directly after pulsing the MKIs. None were observed after pulsing the MKQs, which provides important input for possible mitigation strategies. The temporal and spatial distribution of the UFO events could be determined by using a dedicated BLM Study Buffer, the implications for the UFO dynamics are discussed.

  10. Precise integration method without inverse matrix calculation for structural dynamic equations

    Institute of Scientific and Technical Information of China (English)

    Wang Mengfu; F. T. K. Au

    2007-01-01

    The precise integration method proposed for linear time-invariant homogeneous dynamic systems can provide accurate numerical results that approach an exact solution at integration points. However, difficulties arise when the algorithm is used for non-homogeneous dynamic systems due to the inverse matrix calculation required. In this paper, the structural dynamic equalibrium equations are converted into a special form, the inverse matrix calculation is replaced by the Crout decomposition method to solve the dynamic equilibrium equations, and the precise integration method without the inverse matrix calculation is obtained. The new algorithm enhances the present precise integration method by improving both the computational accuracy and efficiency. Two numerical examples are given to demonstrate the validity and efficiency of the proposed algorithm.

  11. Volterra methods for constructing structural dynamic observables for nonlinear systems: An extended calculation

    Energy Technology Data Exchange (ETDEWEB)

    Manson, G; Worden, K, E-mail: graeme.manson@sheffield.ac.u, E-mail: k.worden@sheffield.ac.u [Dynamics Research Group, Department of Mechanical Engineering, University of Sheffield, Mappin St, Sheffield S1 3JD (United Kingdom)

    2009-08-01

    Although a great deal of work has been carried out on structural dynamic systems under random excitation, there has been a comparatively small amount of this work concentrating on the calculation of the quantities commonly measured in structural dynamic tests. Among the existing work, the Volterra series, a means of predicting nonlinear system response for weakly nonlinear systems, has allowed the computation of various measurable quantities of interest for structural dynamics, including: auto- and cross-spectra, FRFs, coherences and higher-order spectra. These calculations are quite intensive and are typically only possible using computer algebra. A previous calculation by the authors for the coherence for a Duffing oscillator yielded results which showed some qualitatitive disagreement with numerical simulation; the object of the current paper is simply to extend the calculation in order to see if better agreement can be achieved.

  12. ADT fast losses MD

    CERN Document Server

    Priebe, A; Dehning, B; Redaelli, S; Salvachua Ferrando, BM; Sapinski, M; Solfaroli Camillocci, M; Valuch, D

    2013-01-01

    The fast beam losses in the order of 1 ms are expected to be a potential major luminosity limitation for higher beam energies after the LHC long shutdown (LS1). Therefore a Quench Test is planned in the winter 2013 to estimate the quench limit in this timescale and revise the current models. This experiment was devoted to determination the LHC Transverse Damper (ADT) as a system for fast losses induction. A non-standard operation of the ADT was used to develop the beam oscillation instead of suppressing them. The sign flip method had allowed us to create the fast losses within several LHC turns at 450 GeV during the previous test (26th March 2012). Thus, the ADT could be potentially used for the studies of the UFO ("Unidentied Falling Object") impact on the cold magnets. Verification of the system capability and investigations of the disturbed beam properties were the main objectives of this MD. During the experiment, the pilot bunches of proton beam were excited independently in the horizontal and vertical ...

  13. Retraction statement: Dynamics of Cytochrome C Oxidase Activity in Acute Ischemic Stroke' by Selaković, V.M., Jovanović, M.D., Mihajlović, R.R. and Radenović, L.L.J.

    Science.gov (United States)

    2016-10-01

    The above article from Acta Neurologica Scandinavica, published online on 7 April 2005 in Wiley Online Library (wileyonlinelibrary.com) and in Volume 111, pp. 329-332, has been retracted by agreement between the journal Editor in Chief, Professor Elinor Ben-Menachem, and John Wiley & Sons Ltd. The article has been retracted because a similar article had previously been published in the Jugoslovenska medicinska biohemija in 2003. The authors presumed that since the journal was no longer existing, they felt the need to re-publish their work in Acta Neuorologica Scandinavica. However, in the consideration of the Journal, this constitutes dual publication. References SelakovićVM, JovanovićMD, MihajlovićR, RadenovićLLJ. Cytochrome c oxidase in patients with acute ischaemic brain disease. Jugoslovenska medicinska biohemija. 2003;22:329-334. SelakovićVM, JovanovićMD, MihajlovićRR, RadenovićLLJ. Dynamics of cytochrome c oxidase activity in acute ischemic stroke. Acta Neurol Scand. 2005;111:329-332.

  14. Unraveling the dynamics and structure of functionalized self-assembled monolayers on gold using 2D IR spectroscopy and MD simulations.

    Science.gov (United States)

    Yan, Chang; Yuan, Rongfeng; Pfalzgraff, William C; Nishida, Jun; Wang, Lu; Markland, Thomas E; Fayer, Michael D

    2016-05-03

    Functionalized self-assembled monolayers (SAMs) are the focus of ongoing investigations because they can be chemically tuned to control their structure and dynamics for a wide variety of applications, including electrochemistry, catalysis, and as models of biological interfaces. Here we combine reflection 2D infrared vibrational echo spectroscopy (R-2D IR) and molecular dynamics simulations to determine the relationship between the structures of functionalized alkanethiol SAMs on gold surfaces and their underlying molecular motions on timescales of tens to hundreds of picoseconds. We find that at higher head group density, the monolayers have more disorder in the alkyl chain packing and faster dynamics. The dynamics of alkanethiol SAMs on gold are much slower than the dynamics of alkylsiloxane SAMs on silica. Using the simulations, we assess how the different molecular motions of the alkyl chain monolayers give rise to the dynamics observed in the experiments.

  15. Phase transition study of confined water molecules inside carbon nanotubes: hierarchical multiscale method from molecular dynamics simulation to ab initio calculation.

    Science.gov (United States)

    Javadian, Soheila; Taghavi, Fariba; Yari, Faramarz; Hashemianzadeh, Seyed Majid

    2012-09-01

    In this study, the mechanism of the temperature-dependent phase transition of confined water inside a (9,9) single-walled carbon nanotube (SWCNT) was studied using the hierarchical multi-scale modeling techniques of molecular dynamics (MD) and density functional theory (DFT). The MD calculations verify the formation of hexagonal ice nanotubes at the phase transition temperature T(c)=275K by a sharp change in the location of the oxygen atoms inside the SWCNT. Natural bond orbital (NBO) analysis provides evidence of considerable intermolecular charge transfer during the phase transition and verifies that the ice nanotube contains two different forms of hydrogen bonding due to confinement. Nuclear quadrupole resonance (NQR) and nuclear magnetic resonance (NMR) analyses were used to demonstrate the fundamental influence of intermolecular hydrogen bonding interactions on the formation and electronic structure of ice nanotubes. In addition, the NQR analysis revealed that the rearrangement of nano-confined water molecules during the phase transition could be detected directly by the orientation of ¹⁷O atom EFG tensor components related to the molecular frame axes. The effects of nanoscale confinements in ice nanotubes and water clusters were analyzed by experimentally observable NMR and NQR parameters. These findings showed a close relationship between the phase behavior and orientation of the electronic structure in nanoscale structures and demonstrate the usefulness of NBO and NQR parameters for detecting phase transition phenomena in nanoscale confining environments.

  16. DEVELOPMENT OF CALCULATING MODEL APPLICABLE FOR CYLINDER WALL DYNAMIC HEAT TRANSFER

    Institute of Scientific and Technical Information of China (English)

    ZHONG Minjun; SHI Tielin

    2007-01-01

    In the calculation of submarine air conditioning load of the early stage, the obtained heat is regarded as cooling load. The confusion of the two words causing the cooling load figured out is abnormally high, and the change of air conditioning cooling load can not be indicated. In accordance with submarine structure and heat transfer characteristics of its inner components, Laplace transformation to heat conduction differential equation of cylinder wall is carried out. The dynamic calculation of submarine conditioning load based on this model is also conducted, and the results of calculation are compared with those of static cooling load calculation. It is concluded that the dynamic cooling load calculation methods can illustrate the change of submarine air conditioning cooling load more accurate than the static one.

  17. Equation of State of Al Based on Quantum Molecular Dynamics Calculations

    Science.gov (United States)

    Minakov, Dmitry V.; Levashov, Pavel R.; Khishchenko, Konstantin V.

    2011-06-01

    In this work, we present quantum molecular dynamics calculations of the shock Hugoniots of solid and porous samples as well as release isentropes and values of isentropic sound velocity behind the shock front for aluminum. We use the VASP code with an ultrasoft pseudopotential and GGA exchange-correlation functional. Up to 108 particles have been used in calculations. For the Hugoniots of Al we solve the Hugoniot equation numerically. To calculate release isentropes, we use Zel'dovich's approach and integrate an ordinary differential equation for the temperature thus restoring all thermodynamic parameters. Isentropic sound velocity is calculated by differentiation along isentropes. The results of our calculations are in good agreement with experimental data. Thus, quantum molecular dynamics results can be effectively used for verification or calibration of semiempirical equations of state under conditions of lack of experimental information at high energy densities. This work is supported by RFBR, grants 09-08-01129 and 11-08-01225.

  18. Modification of 56ACARBO force field for molecular dynamic calculations of chitosan and its derivatives.

    Science.gov (United States)

    Naumov, Vladimir S; Ignatov, Stanislav K

    2017-08-01

    The GROMOS 56ACARBO force field for the description of carbohydrates was modified for calculations of chitosan (poly-1,4-(N-acetyl)-β-D-glucopyranosamine-2) with protonated and non-protonated amino groups and its derivatives. Additional parameterization was developed on the basis of quantum chemical calculations. The modified force field (56ACARBO_CHT) allows performing the molecular dynamic calculations of chitosans with different degrees of protonation corresponding to various acidity of medium. Test calculations of the conformational transitions in the chitosan rings and polymeric chains as well as the chitosan nanocrystal dissolution demonstrate good agreement with experimental data. Graphical abstract The GROMOS 56ACARBO_CHT force field allows performing the molecular dynamic calculations of chitosans with different types of amio-group: free, protonated, substituted.

  19. Efficient electronic structure calculation for molecular ionization dynamics at high x-ray intensity

    Directory of Open Access Journals (Sweden)

    Yajiang Hao

    2015-07-01

    Full Text Available We present the implementation of an electronic-structure approach dedicated to ionization dynamics of molecules interacting with x-ray free-electron laser (XFEL pulses. In our scheme, molecular orbitals for molecular core-hole states are represented by linear combination of numerical atomic orbitals that are solutions of corresponding atomic core-hole states. We demonstrate that our scheme efficiently calculates all possible multiple-hole configurations of molecules formed during XFEL pulses. The present method is suitable to investigate x-ray multiphoton multiple ionization dynamics and accompanying nuclear dynamics, providing essential information on the chemical dynamics relevant for high-intensity x-ray imaging.

  20. Efficient electronic structure calculation for molecular ionization dynamics at high x-ray intensity

    CERN Document Server

    Hao, Yajiang; Hanasaki, Kota; Son, Sang-Kil; Santra, Robin

    2015-01-01

    We present the implementation of an electronic-structure approach dedicated to ionization dynamics of molecules interacting with x-ray free-electron laser (XFEL) pulses. In our scheme, molecular orbitals for molecular core-hole states are represented by linear combination of numerical atomic orbitals that are solutions of corresponding atomic core-hole states. We demonstrate that our scheme efficiently calculates all possible multiple-hole configurations of molecules formed during XFEL pulses. The present method is suitable to investigate x-ray multiphoton multiple ionization dynamics and accompanying nuclear dynamics, providing essential information on the chemical dynamics relevant for high-intensity x-ray imaging.

  1. Insights into regioselective metabolism of mefenamic acid by cytochrome P450 BM3 mutants through crystallography, docking, molecular dynamics, and free energy calculations.

    Science.gov (United States)

    Capoferri, Luigi; Leth, Rasmus; ter Haar, Ernst; Mohanty, Arun K; Grootenhuis, Peter D J; Vottero, Eduardo; Commandeur, Jan N M; Vermeulen, Nico P E; Jørgensen, Flemming Steen; Olsen, Lars; Geerke, Daan P

    2016-03-01

    Cytochrome P450 BM3 (CYP102A1) mutant M11 is able to metabolize a wide range of drugs and drug-like compounds. Among these, M11 was recently found to be able to catalyze formation of human metabolites of mefenamic acid and other nonsteroidal anti-inflammatory drugs (NSAIDs). Interestingly, single active-site mutations such as V87I were reported to invert regioselectivity in NSAID hydroxylation. In this work, we combine crystallography and molecular simulation to study the effect of single mutations on binding and regioselective metabolism of mefenamic acid by M11 mutants. The heme domain of the protein mutant M11 was expressed, purified, and crystallized, and its X-ray structure was used as template for modeling. A multistep approach was used that combines molecular docking, molecular dynamics (MD) simulation, and binding free-energy calculations to address protein flexibility. In this way, preferred binding modes that are consistent with oxidation at the experimentally observed sites of metabolism (SOMs) were identified. Whereas docking could not be used to retrospectively predict experimental trends in regioselectivity, we were able to rank binding modes in line with the preferred SOMs of mefenamic acid by M11 and its mutants by including protein flexibility and dynamics in free-energy computation. In addition, we could obtain structural insights into the change in regioselectivity of mefenamic acid hydroxylation due to single active-site mutations. Our findings confirm that use of MD and binding free-energy calculation is useful for studying biocatalysis in those cases in which enzyme binding is a critical event in determining the selective metabolism of a substrate.

  2. MD5算法研究%MD5 Algorithm

    Institute of Scientific and Technical Information of China (English)

    张裔智; 赵毅; 汤小斌

    2008-01-01

    随着网络技术的迅速发展,信息加密技术已成为保障网络安全的一种重要手段,加密算法已经成为人们的一个研究热点.本文对MD5算法进行了深入研究,介绍MD5算法的产生背景、应用及其算法流程,并提出了MD5算法的一个改进方案.

  3. Structural, stability, dynamic and binding properties of the ALS-causing T46I mutant of the hVAPB MSP domain as revealed by NMR and MD simulations.

    Directory of Open Access Journals (Sweden)

    Shixiong Lua

    Full Text Available T46I is the second mutation on the hVAPB MSP domain which was recently identified from non-Brazilian kindred to cause a familial amyotrophic lateral sclerosis (ALS. Here using CD, NMR and molecular dynamics (MD simulations, we characterized the structure, stability, dynamics and binding capacity of the T46I-MSP domain. The results reveal: 1 unlike P56S which we previously showed to completely eliminate the native MSP structure, T46I leads to no significant disruption of the native secondary and tertiary structures, as evidenced from its far-UV CD spectrum, as well as Cα and Cβ NMR chemical shifts. 2 Nevertheless, T46I does result in a reduced thermodynamic stability and loss of the cooperative urea-unfolding transition. As such, the T46I-MSP domain is more prone to aggregation than WT at high protein concentrations and temperatures in vitro, which may become more severe in the crowded cellular environments. 3 T46I only causes a 3-fold affinity reduction to the Nir2 peptide, but a significant elimination of its binding to EphA4. 4 EphA4 and Nir2 peptide appear to have overlapped binding interfaces on the MSP domain, which strongly implies that two signaling networks may have a functional interplay in vivo. 5 As explored by both H/D exchange and MD simulations, the MSP domain is very dynamic, with most loop residues and many residues on secondary structures highly fluctuated or/and exposed to bulk solvent. Although T46I does not alter overall dynamics, it does trigger increased dynamics of several local regions of the MSP domain which are implicated in binding to EphA4 and Nir2 peptide. Our study provides the structural and dynamic understanding of the T46I-causing ALS; and strongly highlights the possibility that the interplay of two signaling networks mediated by the FFAT-containing proteins and Eph receptors may play a key role in ALS pathogenesis.

  4. The effect of dynamical quark mass on the calculation of a strange quark star's structure

    Institute of Scientific and Technical Information of China (English)

    Gholam Hossein Bordbar; Babak Ziaei

    2012-01-01

    We discuss the dynamical behavior of strange quark matter components,in particular the effects of density dependent quark mass on the equation of state of strange quark matter.The dynamical masses of quarks are computed within the Nambu-Jona-Lasinio model,then we perform strange quark matter calculations employing the MIT bag model with these dynamical masses.For the sake of comparing dynamical mass interaction with QCD quark-quark interaction,we consider the one-gluon-exchange term as the effective interaction between quarks for the MIT bag model.Our dynamical approach illustrates an improvement in the obtained equation of state values.We also investigate the structure of the strange quark star using TolmanOppenheimer-Volkoff equations for all applied models.Our results show that dynamical mass interaction leads to lower values for gravitational mass.

  5. New Systematic CFD Methods to Calculate Static and Single Dynamic Stability Derivatives of Aircraft

    Directory of Open Access Journals (Sweden)

    Bai-gang Mi

    2017-01-01

    Full Text Available Several new systematic methods for high fidelity and reliability calculation of static and single dynamic derivatives are proposed in this paper. Angle of attack step response is used to obtain static derivative directly; then translation acceleration dynamic derivative and rotary dynamic derivative can be calculated by employing the step response motion of rate of the angle of attack and unsteady motion of pitching angular velocity step response, respectively. Longitudinal stability derivative calculations of SACCON UCAV are taken as test cases for validation. Numerical results of all cases achieve good agreement with reference values or experiments data from wind tunnel, which indicate that the proposed methods can be considered as new tools in the process of design and production of advanced aircrafts for their high efficiency and precision.

  6. Molecular dynamics simulations of barrier crossings in the condensed phase

    NARCIS (Netherlands)

    den Otter, Wouter K.

    1998-01-01

    The isomerisation rates of a calix[4]arene in vacuo and in two solvents have been computed by means of molecular dynamics simulations (MD). In MD the equations of classical mechanics are used to calculate the motion of the reacting molecule and the surrounding solvent molecules. Thus, the intricate

  7. Calculations of Bose-Einstein correlations from Relativistic Quantum Molecular Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, J.P.; Berenguer, M.; Fields, D.E.; Jacak, B.V.; Sarabura, M.; Simon-Gillo, J.; Sorge, H.; van Hecke, H. [Los Alamos National Lab., NM (United States); Pratt, S. [Michigan State Univ., East Lansing, MI (United States)

    1993-10-01

    Bose-Einstein correlation functions which are in good agreement with pion data can be calculated from an event generator. Here pion and (preliminary) kaon data from CERN experiment NA44 are compared to the calculations. The dynamics of 200 GeV/nucleon {sup 32}S + Pb collisions are calculated, without correlations due to interference patterns of a many-body wavefunction for identical particles, using the Relativistic Quantum Molecular Dynamics model (RQMD). The model is used to generate the phase-space coordinates of the emitted hadrons at the time they suffer their last strong interaction (freeze-out). Using the freeze-out position and momentum of pairs of randomly selected identical particles, a two-particle symmetrized wave-function is calculated and used to add two-body correlations. Details of the technique have been described previously. The method is similar to that used in the Spacer program.

  8. Calculation of the coefficient and dynamics of water diffusion in graphite joints

    Institute of Scientific and Technical Information of China (English)

    WANG Jun; LIU Wen-bin

    2006-01-01

    The coefficient and dynamics of water diffusion in adhesive-graphite joints were calculated insitu with energy dispersive X-ray (EDX) analysis, a method that is significantly simpler than elemental analysis. Water diffusion coefficient and dynamics of adhesive-graphite joints treated by different surface treatment methods were also investigated. Calculation results indicated that the water diffusion rate in adhesive-graphite joints treated by sandpaper was higher than that treated by chemical oxidation or by silane couple agent. Also the durability of graphite joints treated by coupling agent is superior to that treated by chemical oxidation or sandpaper burnishing.

  9. Mathematical Models For Calculating The Value Of Dynamic Viscosity Of A Liquid

    Directory of Open Access Journals (Sweden)

    Ślęzak M.

    2015-06-01

    Full Text Available The objective of this article is to review models for calculating the value of liquid dynamic viscosity. Issues of viscosity and rheological properties of liquid ferrous solutions are important from the perspective of modelling, along with the control of actual production processes related to the manufacturing of metals, including iron and steel. Conducted analysis within literature indicates that there are many theoretical considerations concerning the effect of viscosity of liquid metals solutions. The vast majority of models constitute a group of theoretical or semi-empirical equations, where thermodynamic parameters of solutions, or some parameters determined by experimental methods, are used for calculations of the dynamic viscosity coefficient.

  10. A New Parallel Algorithm in Power Flow Calculation: Dynamic Asynchronous Parallel Algorithm

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Based on the general methods in power flow calculation of power system and onconceptions and classifications of parallel algorithm, a new approach named DynamicAsynchronous Parallel Algorithm that applies to the online analysis and real-time dispatching and controlling of large-scale power network was put forward in this paper. Its performances of high speed and dynamic following have been verified on IEEE-14 bus system.

  11. Accelerated molecular dynamics force evaluation on graphics processing units for thermal conductivity calculations

    OpenAIRE

    Fan, Zheyong; Siro, Topi; Harju, Ari

    2012-01-01

    In this paper, we develop a highly efficient molecular dynamics code fully implemented on graphics processing units for thermal conductivity calculations using the Green-Kubo formula. We compare two different schemes for force evaluation, a previously used thread-scheme where a single thread is used for one particle and each thread calculates the total force for the corresponding particle, and a new block-scheme where a whole block is used for one particle and each thread in the block calcula...

  12. Continuum-atomistic simulation of picosecond laser heating of copper with electron heat capacity from ab initio calculation

    Science.gov (United States)

    Ji, Pengfei; Zhang, Yuwen

    2016-03-01

    On the basis of ab initio quantum mechanics (QM) calculation, the obtained electron heat capacity is implemented into energy equation of electron subsystem in two temperature model (TTM). Upon laser irradiation on the copper film, energy transfer from the electron subsystem to the lattice subsystem is modeled by including the electron-phonon coupling factor in molecular dynamics (MD) and TTM coupled simulation. The results show temperature and thermal melting difference between the QM-MD-TTM integrated simulation and pure MD-TTM coupled simulation. The successful construction of the QM-MD-TTM integrated simulation provides a general way that is accessible to other metals in laser heating.

  13. Continuum-atomistic simulation of picosecond laser heating of copper with electron heat capacity from ab initio calculation

    CERN Document Server

    Ji, Pengfei

    2016-01-01

    On the basis of ab initio quantum mechanics (QM) calculation, the obtained electron heat capacity is implemented into energy equation of electron subsystem in two temperature model (TTM). Upon laser irradiation on the copper film, energy transfer from the electron subsystem to the lattice subsystem is modeled by including the electron-phonon coupling factor in molecular dynamics (MD) and TTM coupled simulation. The results show temperature and thermal melting difference between the QM-MD-TTM integrated simulation and pure MD-TTM coupled simulation. The successful construction of the QM-MD-TTM integrated simulation provide a general way that is accessible to other metals in laser heating.

  14. Theoretical studies on FGFR isoform selectivity of FGFR1/FGFR4 inhibitors by molecular dynamics simulations and free energy calculations.

    Science.gov (United States)

    Fu, Weitao; Chen, Lingfeng; Wang, Zhe; Kang, Yanting; Wu, Chao; Xia, Qinqin; Liu, Zhiguo; Zhou, Jianmin; Liang, Guang; Cai, Yuepiao

    2017-02-01

    The activation and overexpression of fibroblast growth factor receptors (FGFRs) are highly correlated with a variety of cancers. Most small molecule inhibitors of FGFRs selectively target FGFR1-3, but not FGFR4. Hence, designing highly selective inhibitors towards FGFR4 remains a great challenge because FGFR4 and FGFR1 have a high sequence identity. Recently, two small molecule inhibitors of FGFRs, ponatinib and AZD4547, have attracted huge attention. Ponatinib, a type II inhibitor, has high affinity towards FGFR1/4 isoforms, but AZD4547, a type I inhibitor of FGFR1, displays much reduced inhibition toward FGFR4. In this study, conventional molecular dynamics (MD) simulations, molecular mechanics/generalized Born surface area (MM/GBSA) free energy calculations and umbrella sampling (US) simulations were carried out to reveal the principle of the binding preference of ponatinib and AZD4547 towards FGFR4/FGFR1. The results provided by MM/GBSA illustrate that ponatinib has similar binding affinities to FGFR4 and FGFR1, while AZD4547 has much stronger binding affinity to FGFR1 than to FGFR4. A comparison of the individual energy terms suggests that the selectivity of AZD4547 towards FGFR1 versus FGFR4 is primarily controlled by the variation of the van der Waals interactions. The US simulations reveal that the PMF profile of FGFR1/AZD4547 has more peaks and valleys compared with that of FGFR4/AZD4547, suggesting that the dissociation process of AZD4547 from FGFR1 are easily trapped into local minima. Moreover, it is observed that FGFR1/AZD4547 has much higher PMF depth than FGFR4/AZD4547, implying that it is more difficult for AZD4547 to escape from FGFR1 than from FGFR4. The physical principles provided by this study extend our understanding of the binding mechanisms and provide valuable guidance for the rational design of FGFR isoform selective inhibitors.

  15. Transport coefficients of normal liquid helium-4 calculated by path integral centroid molecular dynamics simulation

    Science.gov (United States)

    Imaoka, Haruna; Kinugawa, Kenichi

    2017-03-01

    Thermal conductivity, shear viscosity, and bulk viscosity of normal liquid 4He at 1.7-4.0 K are calculated using path integral centroid molecular dynamics (CMD) simulations. The calculated thermal conductivity and shear viscosity above lambda transition temperature are on the same order of magnitude as experimental values, while the agreement of shear viscosity is better. Above 2.3 K the CMD well reproduces the temperature dependences of isochoric shear viscosity and of the time integral of the energy current and off-diagonal stress tensor correlation functions. The calculated bulk viscosity, not known in experiments, is several times larger than shear viscosity.

  16. Calculation of dynamic load impact on reinforced concrete arches in the ground

    Directory of Open Access Journals (Sweden)

    Barbashev Nikita Petrovich

    2016-01-01

    Full Text Available Concrete arches are widely used in the construction of underground facilities. The analysis of their work under dynamic loads (blasting, shock, seismic will improve the efficiency of design and application. The article addresses the problems of calculation of reinforced concrete arches in the ground in terms of the action of dynamic load - compression wave. The calculation is made basing on the decision of a closed system of equations that allows performing the calculation of elastic-plastic curved concrete structures under dynamic loads. Keeping in mind the properties of elastic-plastic reinforcement and concrete in the process of design variations, σ-ε diagrams are variable. The calculation is performed by the direct solution of differential equations in partial derivatives. The result is based on a system of ordinary differential equations of the second order (expressing the transverse and longitudinal oscillations of the structure and the system of algebraic equations (continuity condition of deformation. The computer program calculated three-hinged reinforced concrete arches. The structural calculations were produced by selection of the load based on the criteria of reaching the first limit state: ultimate strain of compressed concrete; ultimate strain tensile reinforcement; the ultimate deformation of the structure. The authors defined all the characteristics of the stress-strain state of the structure. The presented graphs show the change of bending moment and shear force in time for the most loaded section of the arch, the dependence of stresses and strains in concrete and reinforcement, stress changes in time for the cross-sectional height. The peculiarity of the problem is that the action of the load provokes the related dynamic forces - bending moment and longitudinal force. The calculations allowed estimating the carrying capacity of the structure using the criteria of settlement limit states. The decisive criterion was the

  17. A close examination of the structure and dynamics of HC(NH2)2PbI3by MD simulations and group theory

    KAUST Repository

    Carignano, M. A.

    2016-06-22

    The formamidinium lead iodide hybrid perovskite is studied using first principles molecular dynamics simulations and further analyzed using group theory. The simulations are performed on large supercells containing 768 atoms under isothermal and fully anisotropic isobaric conditions. Two trajectories, one at 300 K and another at 450 K, were extended for over 50 ps in order to perform a detailed assessment of the rotational dynamics of organic cations. The characteristic rotations of the cation are analyzed by defining two rotation axes. It is found that the formamidinium molecules rotate preferentially around the direction parallel to the line connecting the two nitrogen atoms. The rotational dynamics shows some characteristics already observed in methylammonium lead iodide, like the heterogeneous dynamics at room temperature that disappears at 450 K. The orientational probability of the molecules is explored in terms of an expansion in cubic harmonics up to the 12th order. It reveals a strong directionality at room temperature that relaxes when increasing the temperature. These findings are further rationalized using Landau and group theories suggesting a mixed displacive/order-disorder structural instability at lower temperatures.

  18. Nonadiabatic quantum dynamics calculations for the N + NH --> N(2) + H reaction.

    Science.gov (United States)

    Yang, Huan; Hankel, M; Varandas, Antonio; Han, Keli

    2010-09-01

    Nonadiabatic quantum dynamics calculations on the two coupled potential energy surfaces (PESs) (1(2)A' and 2(2)A') and also adiabatic quantum calculations on the lowest adiabatic PES are reported for the title reaction. Reaction probabilities for total angular momenta, J, varying from 0 to 160, are calculated to obtain the integral cross section (ICS) for collision energies ranging from 0.05 to 1.0 eV. Calculations using both the close coupling and the Centrifugal Sudden (CS) approximation are carried out to evaluate the role of Coriolis coupling effects for this reaction. The results of the nonadiabatic calculations show that the nonadiabatic effects in the title reaction for the initial state of NH (v = 0, j = 0) could be neglected, at least in the collision energy range considered in this study.

  19. Implementation of a microcanonical variational transition state theory for direct dynamics calculations of rate constants

    Institute of Scientific and Technical Information of China (English)

    王艳; 钱英; 冯文林; 刘若庄

    2003-01-01

    An implementation of the variational quantum RRKM program is presented to utilize the direct ab initio dynamics approach for calculating k(E, J), k(E) and k(T) within the framework of the microcanonical transition state (μTST) and microcanonical variational TST (μVT) theories. An algorithm including tunneling contributions in Beyer-Swinehart method for calculating microcanonical rate constants is also proposed. An efficient piece-wise interpolation method is developed to evaluate the Boltzmann integral in calculation of thermal rate constants. Calculations on several test reactions, namely the H(D)2CO→H(D)2 + CO, CH2CO→CH2 + CO and CH4 + H→CH3 + H2 reactions, show that the results are in good agreement with the previous rate constants calculations. This approach would require much less computational resource.

  20. Theoretical investigation of loratadine reactivity in order to understand its degradation properties: DFT and MD study.

    Science.gov (United States)

    Armaković, Stevan; Armaković, Sanja J; Abramović, Biljana F

    2016-10-01

    Antihistamines are frequently used pharmaceuticals that treat the symptoms of allergic reactions. Loratadine (LOR) is an active component of the second generation of selective antihistaminic pharmaceutical usually known as Claritin. Frequent usage of this type of pharmaceuticals imposes the need for understanding their fundamental reactive properties. In this study we have theoretically investigated reactive properties of LOR using both density functional theory (DFT) calculations and molecular dynamics (MD) simulations. DFT study is used for collecting information related to the molecule stability, structure, frontier molecular orbitals, quantum molecular descriptors, charge distribution, molecular electrostatic potential surfaces, charge polarization, and local reactivity properties according to average local ionization energy surfaces. Based on these results, N24 atom of pyridine ring and oxygen atom O1 were identified with nucleophilic nature. In order to collect the information necessary for the proposition of degradation compounds we also calculated bond dissociation energies (BDE) for hydrogen abstraction and single acyclic bonds as well. According to BDE, the oxidation is likely to occur in the piperidine and cycloheptane rings. MD simulations were used in order to understand the interactions with water through radial distribution functions (RDF). Based on RDFs the most important interactions with solvent are determined for carbon atom C5, chlorine atom Cl15, and oxygen atom O1. Collected results based on DFT calculations and MD simulations provided information important for suggestion of possible degradation compounds. Covalent and noncovalent interactions between LOR and (•)OH have also been investigated.

  1. Calculation of noise distribution in mesoscopic dynamics models for phase separation of multicomponent complex fluids

    NARCIS (Netherlands)

    vanVlimmeren, BAC; Fraaije, JGEM

    1996-01-01

    We present a simple method for the numerical calculation of the noise distribution in multicomponent functional Langevin models. The topic is of considerable importance, in view of the increased interest in the application of mesoscopic dynamics simulation models to phase separation of complex

  2. A very simple dynamic soil acidification model for scenario analyses and target load calculations

    NARCIS (Netherlands)

    Posch, M.; Reinds, G.J.

    2009-01-01

    A very simple dynamic soil acidification model, VSD, is described, which has been developed as the simplest extension of steady-state models for critical load calculations and with an eye on regional applications. The model requires only a minimum set of inputs (compared to more detailed models) and

  3. Predicting First Graders' Development of Calculation versus Word-Problem Performance: The Role of Dynamic Assessment

    Science.gov (United States)

    Seethaler, Pamela M.; Fuchs, Lynn S.; Fuchs, Douglas; Compton, Donald L.

    2012-01-01

    The purpose of this study was to assess the value of dynamic assessment (DA; degree of scaffolding required to learn unfamiliar mathematics content) for predicting 1st-grade calculations (CAs) and word problems (WPs) development, while controlling for the role of traditional assessments. Among 184 1st graders, predictors (DA, Quantity…

  4. Modeling of the Electro-Mechanical Response of Carbon Nanotubes: Molecular Dynamics and Transport Calculations

    Science.gov (United States)

    Svizhenko, Alexel; Anantram, M. P.; Maiti, Amitesh

    2003-01-01

    This paper presents viewgraphs on the modeling of the electromechanical response of carbon nanotubes, utilizing molecular dynamics and transport calculations. The topics include: 1) Simulations of the experiment; 2) Effect of diameter, length and temperature; and 3) Study of sp3 coordination-"The Table experiment".

  5. Comparison of inverse dynamics calculated by two- and three-dimensional models during walking

    DEFF Research Database (Denmark)

    Alkjaer, T; Simonsen, E B; Dyhre-Poulsen, P

    2001-01-01

    The purpose of the study was to compare joint moments calculated by a two- (2D) and a three-dimensional (3D) inverse dynamics model to examine how the different approaches influenced the joint moment profiles. Fifteen healthy male subjects participated in the study. A five-camera video system rec...

  6. A New Calculation Method of Dynamic Kill Fluid Density Variation during Deep Water Drilling

    Directory of Open Access Journals (Sweden)

    Honghai Fan

    2017-01-01

    Full Text Available There are plenty of uncertainties and enormous challenges in deep water drilling due to complicated shallow flow and deep strata of high temperature and pressure. This paper investigates density of dynamic kill fluid and optimum density during the kill operation process in which dynamic kill process can be divided into two stages, that is, dynamic stable stage and static stable stage. The dynamic kill fluid consists of a single liquid phase and different solid phases. In addition, liquid phase is a mixture of water and oil. Therefore, a new method in calculating the temperature and pressure field of deep water wellbore is proposed. The paper calculates the changing trend of kill fluid density under different temperature and pressure by means of superposition method, nonlinear regression, and segment processing technique. By employing the improved model of kill fluid density, deep water kill operation in a well is investigated. By comparison, the calculated density results are in line with the field data. The model proposed in this paper proves to be satisfactory in optimizing dynamic kill operations to ensure the safety in deep water.

  7. The comparison of solar water heating system operation parameters calculated using traditional method and dynamic simulations

    Directory of Open Access Journals (Sweden)

    Sornek Krzysztof

    2016-01-01

    Full Text Available The proper design of renewable energy based systems is really important to provide their efficient and safe operation. The aim of this paper is to compare the results obtained during traditional static calculations, with the results of dynamic simulations. For this reason, simulations of solar water heating (SWH system, designed for a typical residential building, were conducted in the TRNSYS (Transient System Simulation Tool. Carried out calculations allowed to determine the heat generation in the discussed system as well as to estimate the efficiency of considered installation. Obtained results were compared with the results from other available tool based on the static calculations. It may be concluded, that using dynamic simulations at the designing stage of renewable energy based systems may help to avoid many exploitation problems (including low efficiency, overheating etc. and allows to provide safe exploitation of such installations.

  8. Chiral recognition of Propranolol enantiomers by β-Cyclodextrin: Quantum chemical calculation and molecular dynamics simulation studies

    Energy Technology Data Exchange (ETDEWEB)

    Ghatee, Mohammad Hadi, E-mail: ghatee@susc.ac.ir; Sedghamiz, Tahereh

    2014-12-05

    Highlights: • Enantiomeric recognition of Propranolol studied by β-Cyclodextrin complexations. • Complexes characterized by PM3 and molecular dynamics (MD) simulation methods. • Results support more stability of R-enantiomer complex in gas and in aqueous solution phases. • Gas phase complexes are unlikely free-energy-wise, though solution phase’s are more likely. • Higher molecular diffusion in aqueous solution phase is inherent to S-enantiomer. - Abstract: Enantiomeric recognition of Propranolol by complexation with β-Cyclodextrin was studied by PM3 method and molecular dynamics (MD) simulation. Gas phase results show that the R-enantiomer complex is more stable than the S-enantiomer complex by 8.54 kJ/mol (Hartree–Fock energy). Using polarized continuum model, solution phase of R-enantiomer complex was found to be more stable than S-enantiomer complex by 25.95 kJ/mol. Both complexes hardly occur at room temperature free-energy-wise, though, complexation with R-enantiomer is more favorable than with S-enantiomer enthalpy-wise. Also, complexes were studied by molecular dynamics simulation in gas and solution phases. More stability of R-enantiomer complex in gas phase is confirmed by MD van der Waals energy (5.04 kJ/mol) and closely by the counterpart PM3 binding energy (8.54 kJ/mol). Simulation in solution phase indicates more stability of R-enantiomer complex. Finally, simulated transport property provides insight into the high anisotropic atoms motion according to which S-Propranolol found possessing significantly higher dynamics.

  9. NMR and MD Studies Reveal That the Isolated Dengue NS3 Protease Is an Intrinsically Disordered Chymotrypsin Fold Which Absolutely Requests NS2B for Correct Folding and Functional Dynamics.

    Directory of Open Access Journals (Sweden)

    Garvita Gupta

    Full Text Available Dengue genome encodes a two component protease complex (NS2B-NS3pro essential for the viral maturation/infectivity, thus representing a key drug target. Previously, due to its "complete insolubility", the isolated NS3pro could not be experimentally studied and it remains elusive what structure it adopts without NS2B and why NS2B is indispensable. Here as facilitated by our previous discovery, the isolated NS3pro has been surprisingly deciphered by NMR to be the first intrinsically-disordered chymotrypsin-like fold, which exists in a loosely-packed state with non-native long-range interactions as revealed by paramagnetic relaxation enhancement (PRE. The disordered NS3pro appears to be needed for binding a human host factor to trigger the membrane remodeling. Moreover, we have in vitro refolded the NS3pro in complex with either NS2B (48-100 or the full-length NS2B (1-130 anchored into the LMPC micelle, and the two complexes have similar activities but different dynamics. We also performed molecular dynamics (MD simulations and the results revealed that NS2B shows the highest structural fluctuations in the complex, thus providing the dynamic basis for the observation on its conformational exchange between open and closed states. Remarkably, the NS2B cofactor plays a central role in maintaining the correlated motion network required for the catalysis as we previously decoded for the SARS 3CL protease. Indeed, a truncated NS2B (48-100;Δ77-84 with the flexible loop deleted is able to trap the NS2B-NS3pro complex in a highly dynamic and catalytically-impotent state. Taken together, our study implies potential strategies to perturb the NS2B-NS3pro interface for design of inhibitors for treating dengue infection.

  10. MD SIMULATION OF SUBTILISIN BPN' IN A CRYSTAL ENVIRONMENT

    NARCIS (Netherlands)

    HEINER, AP; BERENDSEN, HJC; VANGUNSTEREN, WF

    1992-01-01

    In this paper we present a molecular dynamics (MD) simulation of subtilisin BPN' in a crystalline environment containing four protein molecules and solvent. Conformational and dynamic properties of the molecules are compared with each other and with respect to the X-ray structure to test the validit

  11. A Modified approach for calculating dynamic shear modulus of stiff specimens by resonant column tests

    Institute of Scientific and Technical Information of China (English)

    Yuan Xiaoming; Sun Jing; Sun Rui

    2006-01-01

    An error analysis of the dynamic shear modulus of stiff specimens from tests performed by a new resonant column device developed by the Institute of Engineering Mechanics, China was conducted. A modified approach for calculating the dynamic shear modulus of the stiff specimens is presented. The error formula of the tests was deduced and parameters that impact the accuracy of the test were identified. Using six steel specimens with known standard stiffness as a base, a revised dynamic shear modulus calculation for stiff specimens was formulated by comparing three of the models.The maximum error between the test results and the calculated results shown by curves from both the free-vibration and the resonant-vibration tests is less than 6%. The free-vibration and resonant-vibration tests for three types of stiff samples with a known modulus indicate that the maximum deviation between the actual and the tested value using the modified approach were less than 10%. As a result, the modified approach presented here is shown to be reliable and the new device can be used for testing dynamic shear modulus of any stiff materials at low shear strain levels

  12. Structural, Electronic and Dynamical Properties of Curium Monopnictides: Density Functional Calculations

    Science.gov (United States)

    Roondhe, Basant; Upadhyay, Deepak; Som, Narayan; Pillai, Sharad B.; Shinde, Satyam; Jha, Prafulla K.

    2017-03-01

    The structural, electronic, dynamical and thermodynamical properties of CmX (X = N, P, As, Sb, and Bi) compounds are studied using first principles calculations within density functional theory. The Perdew-Burke-Ernzerhof spin polarized generalized gradient approximation and Perdew-Wang (PW) spin polarized local density approximation as the exchange correlational functionals are used in these calculations. There is a good agreement between the present and previously reported data. The calculated electronic density of states suggests that the curium monopnictides are metallic in nature, which is consistent with earlier studies. The significant values of magnetic moment suggest their magnetic nature. The phonon dispersion curves and phonon density of states are also calculated, which depict the dynamical stability of these compounds. There is a significant separation between the optical and acoustical phonon branches. The temperature dependence of the thermodynamical functions are also calculated and discussed. Internal energy and vibrational contribution to the Helmholtz free energy increases and decreases, respectively, with temperature. The entropy increases with temperature. The specific heat at constant volume and Debye temperature obey Debye theory. The temperature variation of the considered thermodynamical functions is in line with those of other crystalline solids.

  13. Dynamic circuit and Fourier series methods for moment calculation in electrodynamic repulsive magnetic levitation systems

    Science.gov (United States)

    Knowles, R.

    1982-07-01

    A general theory of moments for electrodynamic magnetic levitation systems has been developed using double Fourier series and dynamic circuit principles. Both employ Parseval's theorem using either wave constant derivatives or the polar waveconstant principle of the Fourier-Bessel/double Fourier series equivalence. A method for calculating angular derivatives of moments and forces is explained, and for all of these methods comparisons are made with experimental results obtained for single and split rail configurations. Extensions of dynamic circuit theory for tilted nonflat and circular magnets are also explained.

  14. A 3-dimensional finite-difference method for calculating the dynamic coefficients of seals

    Science.gov (United States)

    Dietzen, F. J.; Nordmann, R.

    1989-01-01

    A method to calculate the dynamic coefficients of seals with arbitrary geometry is presented. The Navier-Stokes equations are used in conjunction with the k-e turbulence model to describe the turbulent flow. These equations are solved by a full 3-dimensional finite-difference procedure instead of the normally used perturbation analysis. The time dependence of the equations is introduced by working with a coordinate system rotating with the precession frequency of the shaft. The results of this theory are compared with coefficients calculated by a perturbation analysis and with experimental results.

  15. Dynamical Calculations of bar K and MULTI-bar K Nuclei

    Science.gov (United States)

    Gazda, D.; Mareš, J.; Friedman, E.; Gal, A.

    We report on our recent calculations of bar K and multi-bar K nuclei. Calculations were performed fully self-consistently across the periodic table using the relativistic mean-field approach. We aimed at detailed analysis of dynamical processes and various thresholds that determine the K- absorption width. Further, we studied the behavior of the nuclear medium under the influence of increasing strangeness in order to search for bar K condensation precursor phenomena. Last, we explored possibly self-bound strange hadronic configurations consisting of neutrons and bar K0 mesons and studied their properties.

  16. Research on feasibility of computational fluid dynamics (CFD) method for traffic signs board calculation

    Science.gov (United States)

    Chao, S.; Jiao, C. W.; Liu, S.

    2016-08-01

    At this stage of the development of China's highway, the quantity and size of traffic signs are growing with the guiding information increasing. In this paper, a calculation method is provided for special sign board with reducing wind load measures to save construction materials and cost. The empirical model widely used in China is introduced for normal sign structure design. After that, this paper shows a computational fluid dynamics method, which can calculate both normal and special sign structures. These two methods are compared and analyzed with examples to ensure the applicability and feasibility of CFD method.

  17. Chiral recognition of Propranolol enantiomers by β-Cyclodextrin: Quantum chemical calculation and molecular dynamics simulation studies

    Science.gov (United States)

    Ghatee, Mohammad Hadi; Sedghamiz, Tahereh

    2014-12-01

    Enantiomeric recognition of Propranolol by complexation with β-Cyclodextrin was studied by PM3 method and molecular dynamics (MD) simulation. Gas phase results show that the R-enantiomer complex is more stable than the S-enantiomer complex by 8.54 kJ/mol (Hartree-Fock energy). Using polarized continuum model, solution phase of R-enantiomer complex was found to be more stable than S-enantiomer complex by 25.95 kJ/mol. Both complexes hardly occur at room temperature free-energy-wise, though, complexation with R-enantiomer is more favorable than with S-enantiomer enthalpy-wise. Also, complexes were studied by molecular dynamics simulation in gas and solution phases. More stability of R-enantiomer complex in gas phase is confirmed by MD van der Waals energy (5.04 kJ/mol) and closely by the counterpart PM3 binding energy (8.54 kJ/mol). Simulation in solution phase indicates more stability of R-enantiomer complex. Finally, simulated transport property provides insight into the high anisotropic atoms motion according to which S-Propranolol found possessing significantly higher dynamics.

  18. Wettability of graphitic-carbon and silicon surfaces: MD modeling and theoretical analysis

    Science.gov (United States)

    Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G. P.

    2015-07-01

    The wettability of graphitic carbon and silicon surfaces was numerically and theoretically investigated. A multi-response method has been developed for the analysis of conventional molecular dynamics (MD) simulations of droplets wettability. The contact angle and indicators of the quality of the computations are tracked as a function of the data sets analyzed over time. This method of analysis allows accurate calculations of the contact angle obtained from the MD simulations. Analytical models were also developed for the calculation of the work of adhesion using the mean-field theory, accounting for the interfacial entropy changes. A calibration method is proposed to provide better predictions of the respective contact angles under different solid-liquid interaction potentials. Estimations of the binding energy between a water monomer and graphite match those previously reported. In addition, a breakdown in the relationship between the binding energy and the contact angle was observed. The macroscopic contact angles obtained from the MD simulations were found to match those predicted by the mean-field model for graphite under different wettability conditions, as well as the contact angles of Si(100) and Si(111) surfaces. Finally, an assessment of the effect of the Lennard-Jones cutoff radius was conducted to provide guidelines for future comparisons between numerical simulations and analytical models of wettability.

  19. Piezoelectricity in two-dimensional materials: Comparative study between lattice dynamics and ab initio calculations

    Science.gov (United States)

    Michel, K. H.; ćakır, D.; Sevik, C.; Peeters, F. M.

    2017-03-01

    The elastic constant C11 and piezoelectric stress constant e1 ,11 of two-dimensional (2D) dielectric materials comprising h-BN, 2 H -MoS2 , and other transition-metal dichalcogenides and dioxides are calculated using lattice dynamical theory. The results are compared with corresponding quantities obtained with ab initio calculations. We identify the difference between clamped-ion and relaxed-ion contributions with the dependence on inner strains which are due to the relative displacements of the ions in the unit cell. Lattice dynamics allows us to express the inner-strain contributions in terms of microscopic quantities such as effective ionic charges and optoacoustical couplings, which allows us to clarify differences in the piezoelectric behavior between h-BN and MoS2. Trends in the different microscopic quantities as functions of atomic composition are discussed.

  20. Determination of Inelastic Mean Free Path by Electron Holography Along with Electron Dynamic Calculation

    Institute of Scientific and Technical Information of China (English)

    王岩国; 刘红荣; 杨奇斌; 张泽

    2003-01-01

    Off-axis electron holography in a field emission gun transmission-electron microscope and electron dynamic calculation are used to determine the absorption coefficient and inelastic mean free path (IMFP) of copper.Dependence of the phase shift of the exit electron wave on the specimen thickness is established by electron dynamic simulation. The established relationship makes it possible to determine the specimen thickness with the calculated phase shift by match of the phase shift measured in the reconstructed phase image. Based on the measured amplitudes in reconstructed exit electron wave and reference wave in the vacuum, the examined IMFP of electron with energy of 200kV in Cu is obtained to be 96nm.

  1. Lattice dynamics and spin-phonon interactions in multiferroic RMn2O5: Shell model calculations

    Science.gov (United States)

    Litvinchuk, A. P.

    2009-08-01

    The results of the shell model lattice dynamics calculations of multiferroic RMn2O5 materials (space group Pbam) are reported. Theoretical even-parity eigenmode frequencies are compared with those obtained experimentally in polarized Raman scattering experiments for R=Ho,Dy. Analysis of displacement patterns allows to identify vibrational modes which facilitate spin-phonon coupling by modulating the Mn-Mn exchange interaction and provides explanation of the observed anomalous temperature behavior of phonons.

  2. Lattice dynamics of wurtzite CdS: Neutron scattering and ab-initio calculations

    Science.gov (United States)

    Debernardi, A.; Pyka, N. M.; Göbel, A.; Ruf, T.; Lauck, R.; Kramp, S.; Cardona, M.

    1997-08-01

    We have measured the phonon dispersion of wurtzite CdS by inelastic neutron scattering in a single crystal made from the nonabsorbing isotope 114Cd. One of the two silent B 1-modes occurs at 3.96 THz ( k = 0 ). It is significantly lower and less dispersive than so far assumed. Previous semiempirical lattice dynamical models need to be reanalyzed. However, the observed dispersion branches compare favorably with an ab-initio calculation.

  3. Communication: Constant uncertainty molecular dynamics: A simple and efficient algorithm to incorporate quantum nature into a real-time molecular dynamics simulation.

    Science.gov (United States)

    Hasegawa, Taisuke

    2016-11-07

    We propose a novel molecular dynamics (MD) algorithm for approximately dealing with a nuclear quantum dynamics in a real-time MD simulation. We have found that real-time dynamics of the ensemble of classical particles acquires quantum nature by introducing a constant quantum mechanical uncertainty constraint on its classical dynamics. The constant uncertainty constraint is handled by the Lagrange multiplier method and implemented into a conventional MD algorithm. The resulting constant uncertainty molecular dynamics (CUMD) is applied to the calculation of quantum position autocorrelation functions on quartic and Morse potentials. The test calculations show that CUMD gives better performance than ring-polymer MD because of the inclusion of the quantum zero-point energy during real-time evolution as well as the quantum imaginary-time statistical effect stored in an initial condition. The CUMD approach will be a possible starting point for new real-time quantum dynamics simulation in condensed phase.

  4. Communication: Constant uncertainty molecular dynamics: A simple and efficient algorithm to incorporate quantum nature into a real-time molecular dynamics simulation

    Science.gov (United States)

    Hasegawa, Taisuke

    2016-11-01

    We propose a novel molecular dynamics (MD) algorithm for approximately dealing with a nuclear quantum dynamics in a real-time MD simulation. We have found that real-time dynamics of the ensemble of classical particles acquires quantum nature by introducing a constant quantum mechanical uncertainty constraint on its classical dynamics. The constant uncertainty constraint is handled by the Lagrange multiplier method and implemented into a conventional MD algorithm. The resulting constant uncertainty molecular dynamics (CUMD) is applied to the calculation of quantum position autocorrelation functions on quartic and Morse potentials. The test calculations show that CUMD gives better performance than ring-polymer MD because of the inclusion of the quantum zero-point energy during real-time evolution as well as the quantum imaginary-time statistical effect stored in an initial condition. The CUMD approach will be a possible starting point for new real-time quantum dynamics simulation in condensed phase.

  5. Calculation of static and dynamic linear magnetic response in approximate time-dependent density functional theory.

    Science.gov (United States)

    Krykunov, Mykhaylo; Autschbach, Jochen

    2007-01-14

    We report implementations and results of time-dependent density functional calculations (i) of the frequency-dependent magnetic dipole-magnetic dipole polarizability, (ii) of the (observable) translationally invariant linear magnetic response, and (iii) of a linear intensity differential (LID) which includes the dynamic dipole magnetizability. The density functional calculations utilized density fitting. For achieving gauge-origin independence we have employed time-periodic magnetic-field-dependent basis functions as well as the dipole velocity gauge, and have included explicit density-fit related derivatives of the Coulomb potential. We present the results of calculations of static and dynamic magnetic dipole-magnetic dipole polarizabilities for a set of small molecules, the LID for the SF6 molecule, and dispersion curves for M-hexahelicene of the origin invariant linear magnetic response as well as of three dynamic polarizabilities: magnetic dipole-magnetic dipole, electric dipole-electric dipole, and electric dipole-magnetic dipole. We have also performed comparison of the linear magnetic response and magnetic dipole-magnetic dipole polarizability over a wide range of frequencies for H2O and SF6.

  6. Calculation of heat capacities of light and heavy water by path-integral molecular dynamics

    Science.gov (United States)

    Shiga, Motoyuki; Shinoda, Wataru

    2005-10-01

    As an application of atomistic simulation methods to heat capacities, path-integral molecular dynamics has been used to calculate the constant-volume heat capacities of light and heavy water in the gas, liquid, and solid phases. While the classical simulation based on conventional molecular dynamics has estimated the heat capacities too high, the quantum simulation based on path-integral molecular dynamics has given reasonable results based on the simple point-charge/flexible potential model. The calculated heat capacities (divided by the Boltzmann constant) in the quantum simulation are 3.1 in the vapor H2O at 300 K, 6.9 in the liquid H2O at 300 K, and 4.1 in the ice IhH2O at 250 K, respectively, which are comparable to the experimental data of 3.04, 8.9, and 4.1, respectively. The quantum simulation also reproduces the isotope effect. The heat capacity in the liquid D2O has been calculated to be 10% higher than that of H2O, while it is 13% higher in the experiment. The results demonstrate that the path-integral simulation is a promising approach to quantitatively evaluate the heat capacities for molecular systems, taking account of quantum-mechanical vibrations as well as strongly anharmonic motions.

  7. Spur Gears Static and Dynamic Meshing Simulation and Tooth Stress Calculation

    Directory of Open Access Journals (Sweden)

    Jammal Ali

    2015-01-01

    Full Text Available Gear meshing is a complicated process, and is subjected to the simulation process in the following paper. A flexible quasi-static and dynamic finite element analysis (FEA models were built, to calculate contact principal and shear stresses. Full sized 3D spur gears are simulated under different boundary conditions. The first model, was a quasi-static analysis, where torque was used as input; and the second model, which was transient dynamic analysis, where rotational speed was used as input. The static analysis showed high stress concentration at the tooth contact point and under the contacting surface. The dynamic analysis provided the highest stress value at the different stages of gear engagement points along the line of action. Analytical and simulation result were in agreement in general, and the use of the new simulation model was discussed.

  8. Extreme genetic code optimality from a molecular dynamics calculation of amino acid polar requirement

    Science.gov (United States)

    Butler, Thomas; Goldenfeld, Nigel; Mathew, Damien; Luthey-Schulten, Zaida

    2009-06-01

    A molecular dynamics calculation of the amino acid polar requirement is used to score the canonical genetic code. Monte Carlo simulation shows that this computational polar requirement has been optimized by the canonical genetic code, an order of magnitude more than any previously known measure, effectively ruling out a vertical evolution dynamics. The sensitivity of the optimization to the precise metric used in code scoring is consistent with code evolution having proceeded through the communal dynamics of statistical proteins using horizontal gene transfer, as recently proposed. The extreme optimization of the genetic code therefore strongly supports the idea that the genetic code evolved from a communal state of life prior to the last universal common ancestor.

  9. Extreme genetic code optimality from a molecular dynamics calculation of amino acid polar requirement.

    Science.gov (United States)

    Butler, Thomas; Goldenfeld, Nigel; Mathew, Damien; Luthey-Schulten, Zaida

    2009-06-01

    A molecular dynamics calculation of the amino acid polar requirement is used to score the canonical genetic code. Monte Carlo simulation shows that this computational polar requirement has been optimized by the canonical genetic code, an order of magnitude more than any previously known measure, effectively ruling out a vertical evolution dynamics. The sensitivity of the optimization to the precise metric used in code scoring is consistent with code evolution having proceeded through the communal dynamics of statistical proteins using horizontal gene transfer, as recently proposed. The extreme optimization of the genetic code therefore strongly supports the idea that the genetic code evolved from a communal state of life prior to the last universal common ancestor.

  10. Defining Dynamic Characteristics of Multilink Pendulum System with Comparison of the Calculated and Experimental Results

    Directory of Open Access Journals (Sweden)

    V. A. Gribkov

    2015-01-01

    Full Text Available We consider the multilink pendulum system consisting of six physical pendulums. A pendulum (carrier has inertia parameters, which significantly exceed the remaining (carried ones placed on the carrier. In addition to the system under analysis, in particular, the paper presents a design scheme for a two-stage liquid fuel rocket using pendulums as the analogues of fluctuating fuel. Pendulum models also find application to solve problems of stabilization of space tether systems. The objective of the study is to determine dynamic characteristics of the said sixmembered pendulum system, as well as to identify specific dynamic properties inherent in objects of this kind. Dynamic characteristics of the system are determined by calculations. A physical model of the pendulum allowed us to compare the calculated and experimental results. To conduct the frequency tests of the pendulum model three pilot units have been created. The first two units turned out to be inappropriate for fulfilling the experimental tasks for various reasons. The third unit enabled us to obtain desirable experimental results. The "calculation–experiment” discrepancy on the natural frequencies of the pendulum model for the majority of frequencies was less than 5%. We analyzed the dynamic features of multilink pendulum systems "carried by the carrier unit links". The analysis results are applicable to the above-noted object classes of rocket and space technology.

  11. Accurate calculation of chemical shifts in highly dynamic H2@C60 through an integrated quantum mechanics/molecular dynamics scheme.

    Science.gov (United States)

    Jiménez-Osés, Gonzalo; García, José I; Corzana, Francisco; Elguero, José

    2011-05-20

    A new protocol combining classical MD simulations and DFT calculations is presented to accurately estimate the (1)H NMR chemical shifts of highly mobile guest-host systems and their thermal dependence. This strategy has been successfully applied for the hydrogen molecule trapped into C(60) fullerene, an unresolved and challenging prototypical case for which experimental values have never been reproduced. The dependence of the final values on the theoretical method and their implications to avoid over interpretation of the obtained results are carefully described.

  12. Follicle-stimulating hormone encapsulation in the cholesterol-modified chitosan nanoparticles via molecular dynamics simulations and binding free energy calculations.

    Science.gov (United States)

    Yahyaei, Mohammad; Mehrnejad, Faramarz; Naderi-Manesh, Hossein; Rezayan, Ali Hossein

    2017-09-30

    Follicle-stimulating hormone (FSH) is widely applied in the modern ovarian stimulation techniques. However, it must be administered daily because of its short half-life. Recently, the cholesterol (CS) modified chitosan (CTS) nanogels have attracted significant interest as promising controlled release protein delivery because of their ability to minimize the aggregation and irreversible denaturation of proteins. Herein, we report a molecular dynamics (MD) simulation investigation on the molecular mechanisms of FSH encapsulation in the CS-CTS nanogels. The MD simulations have been performed using the GROMACS software for up to 200ns simulation time. Furthermore, the binding free energy has been calculated by the molecular mechanics [MM] with Poisson-Boltzmann [PB] and surface area solvation (MM/PBSA) method by using the g_mmpbsa tool. Our findings suggest that the main driving force of the formation of the CS-CTS nanogels is the hydrophobic interactions between the CS-CS moieties in water. The results have also indicated that the CS-CTS nanogel formation can occur through the hydrogen bonding in addition to the hydrophobic interactions. The obtained data demonstrate that the FSH encapsulation into the CS-CTS nanogels is a gradual process driven by the hydrophobic interactions between the hydrophobic patch of FSH and the hydrophobic nanodomains of the nanogel. Our results also reveal that except in the hydrophobic patch region, the flexibility of FSH was reduced in the presence of the nanogel. This study provides the elucidation of the nanogel-FSH interactions at the molecular level and presents new perspective for the ideal design and applications of the CS-CTS nanogel in protein delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. A method of moments for calculating dynamic responses beyond linear response theory

    Institute of Scientific and Technical Information of China (English)

    Kang Yan-Mei; Xu Jian-Xue; Xie Yong

    2005-01-01

    A method of moments for calculating the dynamic response of periodically driven overdamped nonlinear stochastic systems in the general response sense is proposed, which is a modification of the method of moments confined within linear response theory. The calculating experience suggests that the proposed technique is simple and efficient in implementation, and the comparison with stochastic simulation shows that the first three orders of susceptibilities calculated by the proposed technique have high accuracy. The dependence of the spectral amplification parameters at the first three harmonics on the noise intensity is also investigated, and another observed phenomenon of stochastic resonance in the systems induced by the location of a single periodic orbit is disclosed and explained.

  14. Leaf trajectory calculation for dynamic multileaf collimation to realize optimized fluence profiles

    Energy Technology Data Exchange (ETDEWEB)

    Dirkx, M.L.P.; Heijmen, B.J.M.; Santvoort, J.P.C. van [University Hospital Rotterdam/Daniel den Hoed Cancer Center, Groene Hilledijk 301, 3075 EA Rotterdam (Netherlands)

    1998-05-01

    An algorithm for the calculation of the required leaf trajectories to generate optimized intensity modulated beam profiles by means of dynamic multileaf collimation is presented. This algorithm iteratively accounts for leaf transmission and collimator scatter and fully avoids tongue-and-groove underdosage effects. Tests on a large number of intensity modulated fields show that only a limited number of iterations, generally less than 10, are necessary to minimize the differences between optimized and realized fluence profiles. To assess the accuracy of the algorithm in combination with the dose calculation algorithm of the Cadplan 3D treatment planning system, predicted absolute dose distributions for optimized fluence profiles were compared with dose distributions measured on the MM50 Racetrack Microtron and resulting from the calculated leaf trajectories. Both theoretical and clinical cases yield an agreement within 2%, or within 2 mm in regions with a high dose gradient, showing that the accuracy is adequate for clinical application. (author)

  15. Leaf trajectory calculation for dynamic multileaf collimation to realize optimized fluence profiles

    Science.gov (United States)

    Dirkx, M. L. P.; Heijmen, B. J. M.; van Santvoort, J. P. C.

    1998-05-01

    An algorithm for the calculation of the required leaf trajectories to generate optimized intensity modulated beam profiles by means of dynamic multileaf collimation is presented. This algorithm iteratively accounts for leaf transmission and collimator scatter and fully avoids tongue-and-groove underdosage effects. Tests on a large number of intensity modulated fields show that only a limited number of iterations, generally less than 10, are necessary to minimize the differences between optimized and realized fluence profiles. To assess the accuracy of the algorithm in combination with the dose calculation algorithm of the Cadplan 3D treatment planning system, predicted absolute dose distributions for optimized fluence profiles were compared with dose distributions measured on the MM50 Racetrack Microtron and resulting from the calculated leaf trajectories. Both theoretical and clinical cases yield an agreement within 2%, or within 2 mm in regions with a high dose gradient, showing that the accuracy is adequate for clinical application.

  16. Electronic Properties of the Zirconium Crystal with Vacancies and Dynamics of Vacancies: ab-initio Calculations and Molecular Dynamics

    Directory of Open Access Journals (Sweden)

    V.O. Kharchenko

    2015-06-01

    Full Text Available Within this paper we have the studied structural and electronic properties of zirconium crystal with vacancies from the first principles. We have defined the optimal values for the lattice constants. The corresponding densities of states and energetic spectrum were calculated. These results gave a possibility to define the Fermi structure of the zirconium crystal with vacancies. In the framework of the molecular dynamics simulations we have studied the dynamics of the ensemble of periodically located vacancies in the zirconium crystal with an increase in temperature. We have analyzed the reconstruction of atomic structure and change in the total volume of the crystal with the temperature growth. The dependencies of the volume expansion coefficient for the pure zirconium without vacancies end zirconium crystal with different vacancies concentration on the temperature were studied.

  17. An image-guidance system for dynamic dose calculation in prostate brachytherapy using ultrasound and fluoroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Nathanael, E-mail: nkuo8@jhmi.edu; Prince, Jerry L. [Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Dehghan, Ehsan [Philips Research North America, Briarcliff Manor, New York 10510 (United States); Deguet, Anton [Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Mian, Omar Y.; Le, Yi; Song, Danny Y. [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland 21231 (United States); Burdette, E. Clif [Acoustic MedSystems Inc., Savoy, Illinois 61974 (United States); Fichtinger, Gabor [School of Computing, Queen' s University, Kingston, Ontario K7L3N6 (Canada); Lee, Junghoon [Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218 and Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland 21231 (United States)

    2014-09-15

    Purpose: Brachytherapy is a standard option of care for prostate cancer patients but may be improved by dynamic dose calculation based on localized seed positions. The American Brachytherapy Society states that the major current limitation of intraoperative treatment planning is the inability to localize the seeds in relation to the prostate. An image-guidance system was therefore developed to localize seeds for dynamic dose calculation. Methods: The proposed system is based on transrectal ultrasound (TRUS) and mobile C-arm fluoroscopy, while using a simple fiducial with seed-like markers to compute pose from the nonencoded C-arm. Three or more fluoroscopic images and an ultrasound volume are acquired and processed by a pipeline of algorithms: (1) seed segmentation, (2) fiducial detection with pose estimation, (3) seed matching with reconstruction, and (4) fluoroscopy-to-TRUS registration. Results: The system was evaluated on ten phantom cases, resulting in an overall mean error of 1.3 mm. The system was also tested on 37 patients and each algorithm was evaluated. Seed segmentation resulted in a 1% false negative rate and 2% false positive rate. Fiducial detection with pose estimation resulted in a 98% detection rate. Seed matching with reconstruction had a mean error of 0.4 mm. Fluoroscopy-to-TRUS registration had a mean error of 1.3 mm. Moreover, a comparison of dose calculations between the authors’ intraoperative method and an independent postoperative method shows a small difference of 7% and 2% forD{sub 90} and V{sub 100}, respectively. Finally, the system demonstrated the ability to detect cold spots and required a total processing time of approximately 1 min. Conclusions: The proposed image-guidance system is the first practical approach to dynamic dose calculation, outperforming earlier solutions in terms of robustness, ease of use, and functional completeness.

  18. Calculating gravitationally self-consistent sea level changes driven by dynamic topography

    Science.gov (United States)

    Austermann, J.; Mitrovica, J. X.

    2015-12-01

    We present a generalized formalism for computing gravitationally self-consistent sea level changes driven by the combined effects of dynamic topography, geoid perturbations due to mantle convection, ice mass fluctuations and sediment redistribution on a deforming Earth. Our mathematical treatment conserves mass of the surface (ice plus ocean) load and the solid Earth. Moreover, it takes precise account of shoreline migration and the associated ocean loading. The new formalism avoids a variety of approximations adopted in previous models of sea level change driven by dynamic topography, including the assumption that a spatially fixed isostatic amplification of `air-loaded' dynamic topography accurately accounts for ocean loading effects. While our approach is valid for Earth models of arbitrary complexity, we present numerical results for a set of simple cases in which a pattern of dynamic topography is imposed, the response to surface mass loading assumes that Earth structure varies only with depth and that isostatic equilibrium is maintained at all times. These calculations, involving fluid Love number theory, indicate that the largest errors in previous predictions of sea level change driven by dynamic topography occur in regions of shoreline migration, and thus in the vicinity of most geological markers of ancient sea level. We conclude that a gravitationally self-consistent treatment of long-term sea level change is necessary in any effort to use such geological markers to estimate ancient ice volumes.

  19. An efficient method for calculation of dynamic logarithmic gains in biochemical systems theory.

    Science.gov (United States)

    Shiraishi, Fumihide; Hatoh, Yuji; Irie, Toshinori

    2005-05-07

    Biochemical systems theory (BST) characterizes a given biochemical system based on the logarithmic gains, rate-constant sensitivities and kinetic-order sensitivities defined at a steady state. This paper describes an efficient method for calculation of the time courses of logarithmic gains, i.e. dynamic logarithmic gains L(Xi, Xj; t), which expresses the percentage change in the value of a dependent variable Xi at a time t in response to an infinitesimal percentage change in the value of an independent variable Xj at t=0. In this method, one first recasts the ordinary differential equations for the dependent variables into an exact canonical nonlinear representation (GMA system) through appropriate transformations of variables. Owing to the structured mathematical form of this representation, the recast system can be fully described by a set of numeric parameters, and the differential equations for the dynamic logarithmic gains can be set up automatically without resource to computer algebra. A simple general-purpose computer program can thus be written that requires only the relevant numeric parameters as input to calculate the time courses of the variables and of the dynamic logarithmic gains for both concentrations and fluxes. Unlike other methods, the proposed method does not require to derive any expression for the partial differentiation of flux expressions with respect to each independent variable. The proposed method has been applied to two kinds of reaction models to elucidate its usefulness.

  20. Calculation of the neutron electric dipole moment with two dynamical flavors of domain wall fermions

    CERN Document Server

    Berruto, F; Orginos, K; Soni, A

    2005-01-01

    We present a study of the neutron electric dipole moment ($\\vec d_N$) within the framework of lattice QCD with two flavors of dynamical lig ht quarks. The dipole moment is sensitive to the topological structure of the gaug e fields, and accuracy can only be achieved by using dynamical, or sea quark, calc ulations. However, the topological charge evolves slowly in these calculations, le ading to a relatively large uncertainty in $\\vec d_N$. It is shown, using quenched configurations, that a better sampling of the charge d istribution reduces this problem, but because the CP even part of the fermion determinant is absent, both the topological charge dis tribution and $\\vec d_N$ are pathological in the chiral limit. We discuss the statistical and systematic uncertainties arising from the topological charge distr ibution and unphysical size of the quark mass in our calculations and prospects fo r eliminating them. Our calculations employ the RBC collaboration two flavor domain wall fermion and DBW2 gauge action l...

  1. Modeling Nanocomposites for Molecular Dynamics (MD) Simulations

    Science.gov (United States)

    2015-01-01

    Thermal Expansion and Diffusion Coefficients of Carbon Nanotube- Polymer Composites,” Nano Letters, Volume 2, Numbers 6, pp. 647-650, June 2002...are combined with an epoxy. Epoxy is a thermosetting polymer that, like the carbon fiber, has poor thermal conductivity; however, carbon fiber...a typical size for SWNTs [5]. PE is a simple hydrocarbon, yet it is applicable since polymers generally have low thermal conductivities. Its

  2. New quinolone derivative: Spectroscopic characterization and reactivity study by DFT and MD approaches

    Science.gov (United States)

    Ranjith, P. K.; Mary, Y. Sheena; Panicker, C. Yohannan; Anto, P. L.; Armaković, Stevan; Armaković, Sanja J.; Musiol, Robert; Jampilek, Josef; Van Alsenoy, C.

    2017-05-01

    The spectral characterization of ethyl-4-hydroxy-2-oxo-1, 2-dihydroquinoline-3-carboxylate (EHODQ3C) was performed by FT-IR and FT-Raman spectroscopic techniques and density functional theory computations have been carried using B3LYP/6-311++G(d,p) method. On the basis of potential energy distribution the vibrational assignments of the wavenumbers were proposed. Splitting of the Nsbnd H stretching mode and downshifted from the computed value which indicates the weakening of the Nsbnd H bond. NBO analysis was performed to study donor acceptor interactions. DFT calculations and molecular dynamics (MD) simulations have been combined in order to investigate fundamental reactive properties of the title molecule. To determine important reactive molecule sites we have calculated average local ionization energies (ALIE) and Fukui functions. Sensitivity towards autoxidation mechanism has been investigated by calculation of bond dissociation energies, while stability of title molecule in water has been investigated by calculation of radial distribution functions (RDF) after (MD) simulations. EHODQ3C exhibits inhibitory activity against ACP reductase and appears to be highly selective.

  3. Calculation technique for simulation of wave and fracture dynamics in a reinforced sheet

    CERN Document Server

    Ayzenberg-Stepanenko, M; Osharovich, G

    2011-01-01

    Mathematical models and computer algorithms are developed to calculate dynamic stress concentration and fracture wave propagation in a reinforced composite sheet. The composite consists of a regular system alternating extensible fibers and pliable adhesive layers. In computer simulations, we derive difference algorithms preventing or minimizing the parasite distortions caused by the mesh dispersion and obtain precise numerical solutions in the plane fracture problem of a pre-stretched sheet along the fibers. Interactive effects of microscale dynamic deformation and multiple damage in fibers and adhesive are studied. Two engineering models of the composite are considered: the first assumes that adhesive can be represented by inertionless bonds of constant stiffness, while in the second one an adhesive is described by inertial medium perceived shear stresses. Comparison of results allows the evaluation of facilities of models in wave and fracture patterns analysis.

  4. Calculating rotating hydrodynamic and magneto-hydrodynamic waves to understand magnetic effects on dynamical tides

    CERN Document Server

    Wei, Xing

    2016-01-01

    For understanding magnetic effects on dynamical tides, we study the rotating magneto-hydrodynamic (MHD) flow driven by harmonic forcing. The linear responses are analytically derived in a periodic box under the local WKB approximation. Both the kinetic and Ohmic dissipations at the resonant frequencies are calculated and the various parameters are investigated. Although magnetic pressure may be negligible compared to thermal pressure, magnetic field can be important for the first-order perturbation, e.g. dynamical tides. It is found that magnetic field splits the resonant frequency, namely the rotating hydrodynamic flow has only one resonant frequency but the rotating MHD flow has two, one positive and the other negative. In the weak field regime the dissipations are asymmetric around the two resonant frequencies and this asymmetry is more striking with a weaker magnetic field. It is also found that both the kinetic and Ohmic dissipations at the resonant frequencies are inversely proportional to the Ekman num...

  5. MD 751: Train Instability Threshold

    CERN Document Server

    Carver, Lee Robert; Metral, Elias; Salvant, Benoit; Levens, Tom; Nisbet, David; Zobov, M; CERN. Geneva. ATS Department

    2016-01-01

    The purpose of this MD is to measure the octupole current thresholds for stability for a single bunch, and then make an immediate comparison (with the same operational settings) for a train of 72 bunches separated by 25ns. From theory, the expected thresholds should be similar. Any discrepancy between the two cases will be of great interest as it could indicate the presence of additional mechanisms that contribute to the instability threshold, for example electron cloud.

  6. Nonadiabatic nuclear dynamics of the ammonia cation studied by surface hopping classical trajectory calculations

    Science.gov (United States)

    Belyaev, Andrey K.; Domcke, Wolfgang; Lasser, Caroline; Trigila, Giulio

    2015-03-01

    The Landau-Zener (LZ) type classical-trajectory surface-hopping algorithm is applied to the nonadiabatic nuclear dynamics of the ammonia cation after photoionization of the ground-state neutral molecule to the excited states of the cation. The algorithm employs a recently proposed formula for nonadiabatic LZ transition probabilities derived from the adiabatic potential energy surfaces. The evolution of the populations of the ground state and the two lowest excited adiabatic states is calculated up to 200 fs. The results agree well with quantum simulations available for the first 100 fs based on the same potential energy surfaces. Three different time scales are detected for the nuclear dynamics: Ultrafast Jahn-Teller dynamics between the excited states on a 5 fs time scale; fast transitions between the excited state and the ground state within a time scale of 20 fs; and relatively slow partial conversion of a first-excited-state population to the ground state within a time scale of 100 fs. Beyond 100 fs, the adiabatic electronic populations are nearly constant due to a dynamic equilibrium between the three states. The ultrafast nonradiative decay of the excited-state populations provides a qualitative explanation of the experimental evidence that the ammonia cation is nonfluorescent.

  7. Crystal and electronic structures of substituted halide perovskites based on density functional calculation and molecular dynamics

    Science.gov (United States)

    Takaba, Hiromitsu; Kimura, Shou; Alam, Md. Khorshed

    2017-03-01

    Durability of organo-lead halide perovskite are important issue for its practical application in a solar cells. In this study, using density functional theory (DFT) and molecular dynamics, we theoretically investigated a crystal structure, electronic structure, and ionic diffusivity of the partially substituted cubic MA0.5X0.5PbI3 (MA = CH3NH3+, X = NH4+ or (NH2)2CH+ or Cs+). Our calculation results indicate that a partial substitution of MA induces a lattice distortion, resulting in preventing MA or X from the diffusion between A sites in the perovskite. DFT calculations show that electronic structures of the investigated partially substituted perovskites were similar with that of MAPbI3, while their bandgaps slightly decrease compared to that of MAPbI3. Our results mean that partial substitution in halide perovskite is effective technique to suppress diffusion of intrinsic ions and tune the band gap.

  8. Dynamical analysis of tRNA Gln-GlnRS complex using normal mode calculation

    Science.gov (United States)

    Nakamura, Shugo; Ikeguchi, Mitsunori; Shimizu, Kentaro

    2003-04-01

    We applied normal mode calculation in internal coordinates to a complex of glutamine transfer RNA (tRNA Gln) and glutaminyl-tRNA synthetase (GlnRS). Calculated deviations of atoms agreed well with those obtained from X-ray data. The differences of motions corresponding to low mode frequencies between the free state and the complex state were analyzed. For GlnRS, many motions in the free state were conserved in the complex state, while the dynamics of tRNA Gln was largely affected by the complex formation. Superimposed images of the conserved and non-conserved motions of tRNA Gln clearly indicated the restricted direction of motions in the complex.

  9. Time-reversed particle dynamics calculation with field line tracing at Titan - an update

    Science.gov (United States)

    Bebesi, Zsofia; Erdos, Geza; Szego, Karoly; Juhasz, Antal; Lukacs, Katalin

    2014-05-01

    We use CAPS-IMS Singles data of Cassini measured between 2004 and 2010 to investigate the pickup process and dynamics of ions originating from Titan's atmosphere. A 4th order Runge-Kutta method was applied to calculate the test particle trajectories in a time reversed scenario, in the curved magnetic environment. We evaluated the minimum variance directions along the S/C trajectory for all Cassini flybys during which the CAPS instrument was in operation, and assumed that the field was homogeneous perpendicular to the minimum variance direction. We calculated the magnetic field lines with this method along the flyby orbits and we could determine those observational intervals when Cassini and the upper atmosphere of Titan could be magnetically connected. We used three ion species (1, 2 and 16 amu ions) for time reversed tracking, and also considered the categorization of Rymer et al. (2009) and Nemeth et al. (2011) for further features studies.

  10. Cis/trans Coordination in olefin metathesis by static and molecular dynamic DFT calculations

    KAUST Repository

    Poater, Albert

    2014-05-25

    In regard to [(N-heterocyclic carbene)Ru]-based catalysts, it is still a matter of debate if the substrate binding is preferentially cis or trans to the N-heterocyclic carbene ligand. By means of static and molecular dynamic DFT calculations, a simple olefin, like ethylene, is shown to be prone to the trans binding. Bearing in mind the higher reactivity of trans isomers in olefin metathesis, this insight helps to construct small alkene substrates with increased reactivity. © 2014 Springer Science+Business Media New York.

  11. Dynamic mathematical model and numerical calculation method on spontaneous combustion of loose coal

    Institute of Scientific and Technical Information of China (English)

    WEN Hu(文虎)

    2003-01-01

    Through the experiment of coal spontaneous combustion and relationship particle size with oxidation character of loose coal, some calculation formula of characteristic parameters is got in the process of coal spontaneous combustion. According to these theories of porous medium hydrodynamics, mass transfer and heat transfer, mathematical models of air leak field, oxygen concentration field and temperature field are set up. Through experimental and theoretical analysis, 3-D dynamic mathematical model of coal spontaneous combustion is set up. The method of ascertaining boundary condition of model is analyzed, and finite difference method is adopted to solve 2-D mathematical model.

  12. Structure of thallium and lead calculated from Shaw local pseudopotential and molecular dynamics

    Directory of Open Access Journals (Sweden)

    Gasser J. G.

    2011-05-01

    Full Text Available Recently, we (Es Sbihi Phil. Mag 2010 have successfully calculated, by molecular dynamics, the static structure factor of liquid bismuth at different temperatures. Our results were in very good agreement with the Waseda experimental data. Our assumption was to consider the true density of states which presents a gap as measured by Indlekofer (J. Non-Cryst. Solids 1989 and calculated by Hafner-Jank (Phys. Rev. B 1990 for liquid bismuth. The number of electrons at the Fermi energy has been calculated with three conduction electrons for bismuth (number of p electrons. With this assumption, the structures were determined with an effective ion-ion potential constructed from the Shaw local Optimised Model Potential (OMP and the Ichimaru-Utsumi dielectric function. In the present paper, we generalize our assumptions to liquid thallium and lead which also present such a gap. Their calculated structures are also very close to the experimental ones. This confirms that the number of conduction electrons on the Fermi sphere is consistent with the number of p electrons as has been even shown for our electronic transport properties of liquid lead (A. Ben Abdellah, Phys. Rev. B 2003.

  13. Compressive Loads on the Lumbar Spine During Lifting: 4D WATBAK versus Inverse Dynamics Calculations

    Directory of Open Access Journals (Sweden)

    M. H. Cole

    2005-01-01

    Full Text Available Numerous two- and three-dimensional biomechanical models exist for the purpose of assessing the stresses placed on the lumbar spine during the performance of a manual material handling task. More recently, researchers have utilised their knowledge to develop specific computer-based models that can be applied in an occupational setting; an example of which is 4D WATBAK. The model used by 4D WATBAK bases its predications on static calculations and it is assumed that these static loads reasonably depict the actual dynamic loads acting on the lumbar spine. Consequently, it was the purpose of this research to assess the agreement between the static predictions made by 4D WATBAK and those from a comparable dynamic model. Six individuals were asked to perform a series of five lifting tasks, which ranged from lifting 2.5 kg to 22.5 kg and were designed to replicate the lifting component of the Work Capacity Assessment Test used within Australia. A single perpendicularly placed video camera was used to film each performance in the sagittal plane. The resultant two-dimensional kinematic data were input into the 4D WATBAK software and a dynamic biomechanical model to quantify the compression forces acting at the L4/L5 intervertebral joint. Results of this study indicated that as the mass of the load increased from 2.5 kg to 22.5 kg, the static compression forces calculated by 4D WATBAK became increasingly less than those calculated using the dynamic model (mean difference ranged from 22.0% for 2.5 kg to 42.9% for 22.5 kg. This study suggested that, for research purposes, a validated three-dimensional dynamic model should be employed when a task becomes complex and when a more accurate indication of spinal compression or shear force is required. Additionally, although it is clear that 4D WATBAK is particularly suited to industrial applications, it is suggested that the limitations of such modelling tools be carefully considered when task-risk and employee

  14. Calculation of the neutron electric dipole moment with two dynamical flavors of domain wall fermions

    Energy Technology Data Exchange (ETDEWEB)

    F. Berruto; T. Blum; K. Orginos; A. Soni

    2005-12-08

    We present a study of the neutron electric dipole moment ({rvec d}{sub N}) within the framework of lattice QCD with two flavors of dynamical light quarks. The dipole moment is sensitive to the topological structure of the gauge fields, and accuracy can only be achieved by using dynamical, or sea quark, calculations. However, the topological charge evolves slowly in these calculations, leading to a relatively large uncertainty in {rvec d}{sub N}. It is shown, using quenched configurations, that a better sampling of the charge distribution reduces this problem, but because the CP even part of the fermion determinant is absent, both the topological charge distribution and {rvec d}{sub N} are pathological in the chiral limit. We discuss the statistical and systematic uncertainties arising from the topological charge distribution and unphysical size of the quark mass in our calculations and prospects for eliminating them. Our calculations employ the RBC collaboration two flavor domain wall fermion and DBW2 gauge action lattices with inverse lattice spacing a{sup -1} {approx} 1.7 GeV, physical volume V {approx} (2 fm){sup 3}, and light quark mass roughly equal to the strange quark mass (m{sub sea} = 0.03 and 0.04). We determine a value of the electric dipole moment that is zero within (statistical) errors, |{rvec d}{sub N}| = -0.04(20) e-{theta}-fm at the smaller sea quark mass. Satisfactory results for the magnetic and electric form factors of the proton and neutron are also obtained and presented.

  15. Biomolecular recognition mechanisms studied by NMR spectroscopy and MD simulations

    NARCIS (Netherlands)

    Hsu, Shang-Te Danny

    2004-01-01

    This thesis describes the use of solution Nuclear Magnetic Resonance (NMR) spectroscopy and Molecular Dynamics (MD) simulations to study the mechanism of biomolecular recognition with two model systems: i) lipid II-binding lantibiotics (lanthionine-containing antibiotics) and ii) the human immunodef

  16. Dynamic calculation model and seismic response for frame supporting structure with prestressed anchors

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A dynamic calculation model of frame supporting structures with prestressed anchors for the slope stability is proposed. The frame and soil are closely contacted in the role of prestressed anchors and they cannot be separated along the whole slope. The lateral displacement of frame and soil is nearly in phase. The movement characteristic satisfies the theory of elastic foundation beam. The frame is treated with elastic foundation beam in this model. The influence of prestressed anchors is simplified as linear spring and damped system related with velocity. Under the condition of horizontal earthquake excitation, the equation of vibration response is established by using the model of dynamic Winkler beam and the analytical solutions are obtained for simple harmonic vibration. This method is applied to a case record for illustration of its capability, in order to verify the method, 3D nonlinear FEM (ADINA) is used to analyze the seismic performance of this case, the comparative results show that the design and the analysis are safe and credible by using the proposed method. The calculation model provides a new way for earthquake analysis and seismic design of slope stability supported by frame structure with prestressed anchors.

  17. Accelerated molecular dynamics simulations of protein folding.

    Science.gov (United States)

    Miao, Yinglong; Feixas, Ferran; Eun, Changsun; McCammon, J Andrew

    2015-07-30

    Folding of four fast-folding proteins, including chignolin, Trp-cage, villin headpiece and WW domain, was simulated via accelerated molecular dynamics (aMD). In comparison with hundred-of-microsecond timescale conventional molecular dynamics (cMD) simulations performed on the Anton supercomputer, aMD captured complete folding of the four proteins in significantly shorter simulation time. The folded protein conformations were found within 0.2-2.1 Å of the native NMR or X-ray crystal structures. Free energy profiles calculated through improved reweighting of the aMD simulations using cumulant expansion to the second-order are in good agreement with those obtained from cMD simulations. This allows us to identify distinct conformational states (e.g., unfolded and intermediate) other than the native structure and the protein folding energy barriers. Detailed analysis of protein secondary structures and local key residue interactions provided important insights into the protein folding pathways. Furthermore, the selections of force fields and aMD simulation parameters are discussed in detail. Our work shows usefulness and accuracy of aMD in studying protein folding, providing basic references in using aMD in future protein-folding studies.

  18. 76 FR 53346 - Airworthiness Directives; The Boeing Company Model DC-9-81 (MD-81), DC-9-82 (MD-82), DC-9-83 (MD...

    Science.gov (United States)

    2011-08-26

    ... Model DC-9-81 (MD- 81), DC-9-82 (MD-82), DC-9-83 (MD-83), DC-9-87 (MD-87), and MD-88 Airplanes AGENCY... Jersey Avenue, SE., Washington, DC 20590. Hand Delivery: Deliver to Mail address above between 9 a.m. and...) This AD applies to The Boeing Company Model DC-9-81 (MD-81), DC-9-82 (MD-82), DC-9-83 (MD-83),...

  19. 76 FR 41651 - Airworthiness Directives; The Boeing Company Model DC-9-81 (MD-81), DC-9-82 (MD-82), DC-9-83 (MD...

    Science.gov (United States)

    2011-07-15

    ... Model DC-9-81 (MD- 81), DC-9-82 (MD-82), DC-9-83 (MD-83), DC-9-87 (MD-87), and MD-88 Airplanes AGENCY... Ground Floor, Room W12-140, 1200 New Jersey Avenue, SE., Washington, DC 20590. FOR FURTHER INFORMATION...) This AD applies to The Boeing Company Model DC-9-81 (MD-81), DC-9-82 (MD-82), DC-9-83 (MD-83),...

  20. The molecular mechanism studies of chirality effect of PHA-739358 on Aurora kinase A by molecular dynamics simulation and free energy calculations

    Science.gov (United States)

    Cheng, Yuanhua; Cui, Wei; Chen, Quan; Tung, Chen-Ho; Ji, Mingjuan; Zhang, Fushi

    2011-02-01

    Aurora kinase family is one of the emerging targets in oncology drug discovery and several small molecules targeting aurora kinases have been discovered and evaluated under early phase I/II trials. Among them, PHA-739358 (compound 1r) is a 3-aminopyrazole derivative with strong activity against Aurora A under early phase II trial. Inhibitory potency of compound 1r (the benzylic substituent at the pro-R position) is 30 times over that of compound 1s (the benzylic substituent at the pro-S position). In present study, the mechanism of how different configurations influence the binding affinity was investigated using molecular dynamics (MD) simulations, free energy calculations and free energy decomposition analysis. The predicted binding free energies of these two complexes are consistent with the experimental data. The analysis of the individual energy terms indicates that although the van der Waals contribution is important for distinguishing the binding affinities of these two inhibitors, the electrostatic contribution plays a more crucial role in that. Moreover, it is observed that different configurations of the benzylic substituent could form different binding patterns with protein, thus leading to variant inhibitory potency of compounds 1r and 1s. The combination of different molecular modeling techniques is an efficient way to interpret the chirality effects of inhibitors and our work gives valuable information for the chiral drug design in the near future.

  1. Nonadiabatic nuclear dynamics of the ammonia cation studied by surface hopping classical trajectory calculations

    CERN Document Server

    Belyaev, Andrey K; Lasser, Caroline; Trigila, Giulio

    2014-01-01

    The Landau--Zener (LZ) type classical-trajectory surface-hopping algorithm is applied to the nonadiabatic nuclear dynamics of the ammonia cation after photoionization of the ground-state neutral molecule to the excited states of the cation. The algorithm employs the recently proposed formula for nonadiabatic LZ transition probabilities derived from the adiabatic potential energy surfaces. The evolution of the populations of the ground state and the two lowest excited adiabatic states is calculated up to 200 fs. The results agree well with quantum simulations available for the first 100 fs based on the same potential energy surfaces. Four different time scales are detected for the nuclear dynamics: Ultrafast Jahn--Teller dynamics between the excited states on a 5 fs time scale; fast transitions between the excited state and the ground state within a time scale of 20 fs; relatively slow partial conversion of a first-excited-state population to the ground state within a time scale of 100 fs; and nearly constant ...

  2. Molecular dynamics calculation of thermophysical properties for a highly reactive liquid.

    Science.gov (United States)

    Wang, H P; Luo, B C; Wei, B

    2008-10-01

    In order to further understand the physical characteristics of liquid silicon, the thermophysical properties are required over a broad temperature range. However, its high reactivity brings about great difficulties in the experimental measurement. Here we report the thermophysical properties by molecular dynamics calculation, including density, specific heat, diffusion coefficient, and surface tension. The calculation is performed with a system consisting of 64,000 atoms, and employing the Stillinger-Weber (SW) potential model and the modified embedded atom method (MEAM) potential model. The results show that the density increases as a quadratic function of undercooling, and the value calculated by SW potential model is only 2-4 % smaller than the reported experimental data. The specific heat is obtained to be 30.95 J mol;{-1}K;{-1} by SW potential model and 32.50 J mol;{-1}K;{-1} by MEAM potential model, both of which are constants in the corresponding ranges of temperature. The self-diffusion coefficient is exponentially dependent on the temperature and consistent with the Arrhenius equation. The surface tension increases linearly with the rise of undercooling and agrees well with the reported experimental results. This work provides reasonable data in much wider temperature range, especially for the undercooled metastable state.

  3. AUTOMATED CALCULATIONS OF THE DYNAMICS OF TURBOGENERATOR ELECTROMAGNETIC PROCESSES IN SOFTWARE ENVIRONMENT FEMM

    Directory of Open Access Journals (Sweden)

    V.I. Milykh

    2015-12-01

    Full Text Available Attention is paid to the popular FEMM (Finite Element Method Magnetics program which is effective in the numerical calculations of the magnetic fields of electrical machines. The principles of the automated calculations providing the analysis of the dynamics of electromagnetic processes in turbo-generators are presented. This is realized in the form of a script on the algorithmic language Lua integrated with FEMM. The temporal functions of electromagnetic quantities are obtained by multi-position calculations of the magnetic field with ensuring its rotation together with the turbo-generator rotor. The developed program is universal in terms of the geometry and dimensions of turbo-generators, as well as the modes of their work with a minimum of input data in numerical form. This paper shows "extraction" of discrete temporal functions: the magnetic flux linkage of the phase stator winding; forces acting on the current-carrying and ferromagnetic elements of the structure; the magnetic induction at the fixed points; electromagnetic moment. This list can be expanded as part of the created program, as well as the use of the program can be extended to other types of electrical machines. The obtaining of a change period of any functions is provided by rotating the rotor to 60°.

  4. Quantum dynamics calculations using symmetrized, orthogonal Weyl-Heisenberg wavelets with a phase space truncation scheme. III. Representations and calculations.

    Science.gov (United States)

    Poirier, Bill; Salam, A

    2004-07-22

    In a previous paper [J. Theo. Comput. Chem. 2, 65 (2003)], one of the authors (B.P.) presented a method for solving the multidimensional Schrodinger equation, using modified Wilson-Daubechies wavelets, and a simple phase space truncation scheme. Unprecedented numerical efficiency was achieved, enabling a ten-dimensional calculation of nearly 600 eigenvalues to be performed using direct matrix diagonalization techniques. In a second paper [J. Chem. Phys. 121, 1690 (2004)], and in this paper, we extend and elaborate upon the previous work in several important ways. The second paper focuses on construction and optimization of the wavelength functions, from theoretical and numerical viewpoints, and also examines their localization. This paper deals with their use in representations and eigenproblem calculations, which are extended to 15-dimensional systems. Even higher dimensionalities are possible using more sophisticated linear algebra techniques. This approach is ideally suited to rovibrational spectroscopy applications, but can be used in any context where differential equations are involved.

  5. Magnetic materials at finite temperatures: thermodynamics and combined spin and molecular dynamics derived from first principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Eisenbach, Markus [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Perera, Meewanage Dilina N. [Univ. of Georgia, Athens, GA (United States). Center for Simulational Physics; Landau, David P [Univ. of Georgia, Athens, GA (United States). Center for Simulational Physics; Nicholson, Don M. [Univ. of North Carolina, Asheville, NC (United States). Dept. of Physics; Yin, Junqi [Univ. of Tennessee, Knoxville, TN (United States). National Inst. for Computational Sciences; Brown, Greg [Florida State Univ., Tallahassee, FL (United States). Dept. of Physics

    2015-01-01

    We present a unified approach to describe the combined behavior of the atomic and magnetic degrees of freedom in magnetic materials. Using Monte Carlo simulations directly combined with first principles the Curie temperature can be obtained ab initio in good agreement with experimental values. The large scale constrained first principles calculations have been used to construct effective potentials for both the atomic and magnetic degrees of freedom that allow the unified study of influence of phonon-magnon coupling on the thermodynamics and dynamics of magnetic systems. The MC calculations predict the specific heat of iron in near perfect agreement with experimental results from 300K to above Tc and allow the identification of the importance of the magnon-phonon interaction at the phase-transition. Further Molecular Dynamics and Spin Dynamics calculations elucidate the dynamics of this coupling and open the potential for quantitative and predictive descriptions of dynamic structure factors in magnetic materials using first principles-derived simulations.

  6. Revisiting FPGA Acceleration of Molecular Dynamics Simulation with Dynamic Data Flow Behavior in High-Level Synthesis

    CERN Document Server

    Cong, Jason; Kianinejad, Hassan; Wei, Peng

    2016-01-01

    Molecular dynamics (MD) simulation is one of the past decade's most important tools for enabling biology scientists and researchers to explore human health and diseases. However, due to the computation complexity of the MD algorithm, it takes weeks or even months to simulate a comparatively simple biology entity on conventional multicore processors. The critical path in molecular dynamics simulations is the force calculation between particles inside the simulated environment, which has abundant parallelism. Among various acceleration platforms, FPGA is an attractive alternative because of its low power and high energy efficiency. However, due to its high programming cost using RTL, none of the mainstream MD software packages has yet adopted FPGA for acceleration. In this paper we revisit the FPGA acceleration of MD in high-level synthesis (HLS) so as to provide affordable programming cost. Our experience with the MD acceleration demonstrates that HLS optimizations such as loop pipelining, module duplication a...

  7. Generalized equations of finite difference method in the problems of dynamic load calculation for thin bending plates

    Directory of Open Access Journals (Sweden)

    Gabbasov Radek Fatykhovich

    Full Text Available Bending plate is widely used in the construction of large-span structures. Its advantage is light weight, industrial production, low cost and easy installation. Implementing the algorithm for calculating bending plates in engineering practice is an important issue of the construction science. The generalized equations of finite difference method is a new trend in the calculation of building construction. FDM with generalized equation provides additional options for an engineer along with other methods (FEM. In the article the algorithm for dynamic calculation of thin bending plates basing on FDM was developed. The computer programs for dynamic calculation were created on the basis of the algorithm. The authors come to the conclusion that the more simple equations of FDM can be used in case of solving the impulse load problems in dynamic load calculation of thin bending plate.

  8. CoMD Implementation Suite in Emerging Programming Models

    Energy Technology Data Exchange (ETDEWEB)

    2014-09-23

    CoMD-Em is a software implementation suite of the CoMD [4] proxy app using different emerging programming models. It is intended to analyze the features and capabilities of novel programming models that could help ensure code and performance portability and scalability across heterogeneous platforms while improving programmer productivity. Another goal is to provide the authors and venders with some meaningful feedback regarding the capabilities and limitations of their models. The actual application is a classical molecular dynamics (MD) simulation using either the Lennard-Jones method (LJ) or the embedded atom method (EAM) for primary particle interaction. The code can be extended to support alternate interaction models. The code is expected ro run on a wide class of heterogeneous hardware configurations like shard/distributed/hybrid memory, GPU's and any other platform supported by the underlying programming model.

  9. An Efficient Hybrid DSMC/MD Algorithm for Accurate Modeling of Micro Gas Flows

    KAUST Repository

    Liang, Tengfei

    2013-01-01

    Aiming at simulating micro gas flows with accurate boundary conditions, an efficient hybrid algorithmis developed by combining themolecular dynamics (MD) method with the direct simulationMonte Carlo (DSMC)method. The efficiency comes from the fact that theMD method is applied only within the gas-wall interaction layer, characterized by the cut-off distance of the gas-solid interaction potential, to resolve accurately the gas-wall interaction process, while the DSMC method is employed in the remaining portion of the flow field to efficiently simulate rarefied gas transport outside the gas-wall interaction layer. A unique feature about the present scheme is that the coupling between the two methods is realized by matching the molecular velocity distribution function at the DSMC/MD interface, hence there is no need for one-toone mapping between a MD gas molecule and a DSMC simulation particle. Further improvement in efficiency is achieved by taking advantage of gas rarefaction inside the gas-wall interaction layer and by employing the "smart-wall model" proposed by Barisik et al. The developed hybrid algorithm is validated on two classical benchmarks namely 1-D Fourier thermal problem and Couette shear flow problem. Both the accuracy and efficiency of the hybrid algorithm are discussed. As an application, the hybrid algorithm is employed to simulate thermal transpiration coefficient in the free-molecule regime for a system with atomically smooth surface. Result is utilized to validate the coefficients calculated from the pure DSMC simulation with Maxwell and Cercignani-Lampis gas-wall interaction models. ©c 2014 Global-Science Press.

  10. CALCULATION OF THE UNIQUE HIGH-RISE BUILDING FOR EARTHQUAKES IN NONLINEAR DYNAMIC FORMULATION

    Directory of Open Access Journals (Sweden)

    Mkrtychev Oleg Vartanovich

    2016-06-01

    Full Text Available The article contains the calculation of a 80-storey high-rise building on 3-component accelerograms with different dominant frequencies. The “Akhmat Tower” belongs to the complex “Grozny-city 2” and is classified as a unique construction, its height is 400 m. During the construction unique high-rise buildings and high-rise buildings in seismic areas an additional computational studies are required, which should take into account the nonlinear nature of the design. For the case of linear instrumental-synthesized accelerograms, it is necessary to apply nonlinear dynamic methods. The studies were conducted using the software LS-DYNA, implementing the methods of direct integration of the equations of motion by the explicit scheme. The constructive scheme of the building frame is braced, the spatial stability is ensured by load-bearing interior walls, columns and hard disks, and frame metal coatings. The choice of the type and dimensions of the finite element and the step of integration is due to the ability to perform calculations in reasonable time, and to the required accuracy of calculation. For this aim the issues of convergence of the solutions on a number of settlement schemes were investigated with the terms of thickened mesh of finite elements: 0.5 m; 1 m; 2 m; 3 m. As a result of the research it was obtained that the best is to split into finite elements with a characteristic size of 2 m. The calculation of the building is made on rigid foundation. The authors used accelerograms normalized for earthquakes of 8 and 9 points on the MSK-64 scale. The destruction of the elements in the process of loading, and the interaction of the elements during their contact was taken into account, i.e. the calculation was made taking into account physical, geometrical and structural nonlinearities. The article analyzes the results of the calculation. The authors evaluated the seismic stability of the building. Possible ways to improve the seismic

  11. Ab initio molecular orbital calculation considering the quantum mechanical effect of nuclei by path integral molecular dynamics

    Science.gov (United States)

    Shiga, Motoyuki; Tachikawa, Masanori; Miura, Shinichi

    2000-12-01

    We present an accurate calculational scheme for many-body systems composed of electrons and nuclei, by path integral molecular dynamics technique combined with the ab initio molecular orbital theory. Based upon the scheme, the simulation of a water molecule at room temperature is demonstrated, applying all-electron calculation at the Hartree-Fock level of theory.

  12. Quantitative calculation of reaction performance in sonochemical reactor by bubble dynamics

    Science.gov (United States)

    Xu, Zheng; Yasuda, Keiji; Liu, Xiao-Jun

    2015-10-01

    In order to design a sonochemical reactor with high reaction efficiency, it is important to clarify the size and intensity of the sonochemical reaction field. In this study, the reaction field in a sonochemical reactor is estimated from the distribution of pressure above the threshold for cavitation. The quantitation of hydroxide radical in a sonochemical reactor is obtained from the calculation of bubble dynamics and reaction equations. The distribution of the reaction field of the numerical simulation is consistent with that of the sonochemical luminescence. The sound absorption coefficient of liquid in the sonochemical reactor is much larger than that attributed to classical contributions which are heat conduction and shear viscosity. Under the dual irradiation, the reaction field becomes extensive and intensive because the acoustic pressure amplitude is intensified by the interference of two ultrasonic waves. Project supported by the National Natural Science Foundation of China (Grant Nos. 11404245, 11204129, and 11211140039).

  13. Calculation of the electrostatic potential of lipid bilayers from molecular dynamics simulations: methodological issues

    DEFF Research Database (Denmark)

    Gurtovenko, Andrey A; Vattulainen, Ilpo

    2009-01-01

    that it is employed in conjunction with tin-foil boundary conditions, which exactly balance a nonzero surface charge of a periodically replicated multibilayer system. Furthermore, we show that vacuum boundary conditions give qualitatively similar potential profiles for asymmetric lipid bilayers as compared......The electrostatic properties of lipid membranes are of profound importance as they are directly associated with membrane potential and, consequently, with numerous membrane-mediated biological phenomena. Here we address a number of methodological issues related to the computation...... of the electrostatic potential from atomic-scale molecular dynamics simulations of lipid bilayers. We discuss two slightly different forms of Poisson equation that are normally used to calculate the membrane potential: (i) a classical form when the potential and the electric field are chosen to be zero on one...

  14. Quantitative calculation of reaction performance in sonochemical reactor by bubble dynamics

    Institute of Scientific and Technical Information of China (English)

    徐峥; 安田启司; 刘晓峻

    2015-01-01

    In order to design a sonochemical reactor with high reaction efficiency, it is important to clarify the size and intensity of the sonochemical reaction field. In this study, the reaction field in a sonochemical reactor is estimated from the distribution of pressure above the threshold for cavitation. The quantitation of hydroxide radical in a sonochemical reactor is obtained from the calculation of bubble dynamics and reaction equations. The distribution of the reaction field of the numerical simulation is consistent with that of the sonochemical luminescence. The sound absorption coefficient of liquid in the sonochemical reactor is much larger than that attributed to classical contributions which are heat conduction and shear viscosity. Under the dual irradiation, the reaction field becomes extensive and intensive because the acoustic pressure amplitude is intensified by the interference of two ultrasonic waves.

  15. Lattice dynamics calculations for ferropericlase with internally consistent LDA+U method

    Science.gov (United States)

    Fukui, Hiroshi; Tsuchiya, Taku; Baron, Alfred Q. R.

    2012-12-01

    Vibrational densities of states and phonon dispersion relations for Mg0.875Fe0.125O ferropericlase in the high- and low-spin (HS and LS) states were calculated from first principles lattice dynamics using the internally consistent LDA+Utechnique. Finite-temperature thermodynamic properties were determined based on the quasi-harmonic approximation including the HS and LS mixing entropy and the magnetic entropy effects, which gave pressure and temperature variations of the low-spin fraction. Our results suggest that for thermodynamic modeling of the earth's interior, the effect of the mixed spin state cannot be ignored in the lower mantle, especially the lowermost part. The anomaly in the seismic wave velocity due to the spin crossover transition of ferropericlase, if it exists, is difficult to detect because of the wide pressure range of the transition, which is broadened by the temperature effect and the damping of the amplitude of the slow seismic wave.

  16. Time-dependent density functional theory scheme for efficient calculations of dynamic (hyper)polarizabilities

    Science.gov (United States)

    Andrade, Xavier; Botti, Silvana; Marques, Miguel A. L.; Rubio, Angel

    2007-05-01

    The authors present an efficient perturbative method to obtain both static and dynamic polarizabilities and hyperpolarizabilities of complex electronic systems. This approach is based on the solution of a frequency-dependent Sternheimer equation, within the formalism of time-dependent density functional theory, and allows the calculation of the response both in resonance and out of resonance. Furthermore, the excellent scaling with the number of atoms opens the way to the investigation of response properties of very large molecular systems. To demonstrate the capabilities of this method, they implemented it in a real-space (basis-set-free) code and applied it to benchmark molecules, namely, CO, H2O, and para-nitroaniline. Their results are in agreement with experimental and previous theoretical studies and fully validate their approach.

  17. Calculation of two-particle quantities in the typical medium dynamical cluster approximation

    Science.gov (United States)

    Zhang, Y.; Zhang, Y. F.; Yang, S. X.; Tam, K.-M.; Vidhyadhiraja, N. S.; Jarrell, M.

    2017-04-01

    The mean-field theory for disordered electron systems without interaction is widely and successfully used to describe equilibrium properties of materials over the whole range of disorder strengths. However, it fails to take into account the effects of quantum coherence and information of localization. Vertex corrections due to multiple backscatterings may drive the electrical conductivity to zero and make expansions around the mean field in strong disorder problematic. Here, we present a method for the calculation of two-particle quantities which enables us to characterize the metal-insulator transitions in disordered electron systems by using the typical medium dynamical cluster approximation. We show how to include vertex corrections and information about the mobility edge in the typical mean-field theory. We successfully demonstrate the application of the developed method by showing that the conductivity formulated in this way properly characterizes the metal-insulator transition in disordered systems.

  18. Calculation of Spur Gear Dynamic Transmission Error in Consideration of the Progressive Engagement of Compliant Profile-modified Teeth

    Directory of Open Access Journals (Sweden)

    Dimitriou Konstantinos

    2015-01-01

    Full Text Available A simple yet accurate model is developed for the dynamical simulation of profile-modified gears, considering the effects of progressive tooth engagement, stiffness, elastohydrodynamic lubricant film formation and hysteresis. The real path of contact, stiffness and elastohydrodynamic lubricant film thickness are calculated for various operating conditions and the results are input to the dynamical simulation, resulting in a prediction of the dynamic transmission error.

  19. A QM/MM-MD study on protein electronic properties: Circular dichroism spectra of oxytocin and insulin

    Science.gov (United States)

    Kitagawa, Yuya; Akinaga, Yoshinobu; Kawashima, Yukio; Jung, Jaewoon; Ten-no, Seiichiro

    2012-06-01

    A QM/MM (quantum-mechanical/molecular-mechanical) molecular-dynamics approach based on the generalized hybrid-orbital (GHO) method, in conjunction with the second-order perturbation (MP2) theory and the second-order approximate coupled-cluster (CC2) model, is employed to calculate electronic property accounting for a protein environment. Circular dichroism (CD) spectra originating from chiral disulfide bridges of oxytocin and insulin at room temperature are computed. It is shown that the sampling of thermal fluctuation of molecular geometries facilitated by the GHO-MD method plays an important role in the obtained spectra. It is demonstrated that, while the protein environments in an oxytocin molecule have significant electrostatic influence on its chiral center, it is compensated by solvent induced charges. This gives a reasonable explanation to experimental observations. GHO-MD simulations starting from different experimental structures of insulin indicate that existence of the disulfide bridges with negative dihedral angles is crucial.

  20. A QM/MM-MD study on protein electronic properties: Circular dichroism spectra of oxytocin and insulin

    Energy Technology Data Exchange (ETDEWEB)

    Kitagawa, Yuya [Graduate School of System Informatics, Kobe University, Kobe 657-8501 (Japan); CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012 (Japan); Akinaga, Yoshinobu [RIKEN Advanced Institute for Computational Science, Kobe 650-0047 (Japan); Kawashima, Yukio [Department of Chemistry, Graduate School of Sciences, Kyushu University, Fukuoka 812-8581 (Japan); Institute of Advanced Research, Kyushu University, Fukuoka 812-8581 (Japan); Jung, Jaewoon [RIKEN Advanced Institute for Computational Science, Kobe 650-0047 (Japan); Ten-no, Seiichiro, E-mail: tenno@cs.kobe-u.ac.jp [Graduate School of System Informatics, Kobe University, Kobe 657-8501 (Japan); CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012 (Japan)

    2012-06-05

    A QM/MM (quantum-mechanical/molecular-mechanical) molecular-dynamics approach based on the generalized hybrid-orbital (GHO) method, in conjunction with the second-order perturbation (MP2) theory and the second-order approximate coupled-cluster (CC2) model, is employed to calculate electronic property accounting for a protein environment. Circular dichroism (CD) spectra originating from chiral disulfide bridges of oxytocin and insulin at room temperature are computed. It is shown that the sampling of thermal fluctuation of molecular geometries facilitated by the GHO-MD method plays an important role in the obtained spectra. It is demonstrated that, while the protein environments in an oxytocin molecule have significant electrostatic influence on its chiral center, it is compensated by solvent induced charges. This gives a reasonable explanation to experimental observations. GHO-MD simulations starting from different experimental structures of insulin indicate that existence of the disulfide bridges with negative dihedral angles is crucial.

  1. The effect of walking speed on local dynamic stability is sensitive to calculation methods

    DEFF Research Database (Denmark)

    Stenum, Jan; Bruijn, Sjoerd M; Jensen, Bente Rona

    2014-01-01

    Local dynamic stability has been assessed by the short-term local divergence exponent (λS), which quantifies the average rate of logarithmic divergence of infinitesimally close trajectories in state space. Both increased and decreased local dynamic stability at faster walking speeds have been......% and 140% of preferred walking speed) for 3min each, while upper body accelerations in three directions were sampled. From these time-series, λS was calculated by three different methods using: (a) a fixed time interval and expressed as logarithmic divergence per stride-time (λS-a), (b) a fixed number...... of strides and expressed as logarithmic divergence per time (λS-b) and (c) a fixed number of strides and expressed as logarithmic divergence per stride-time (λS-c). Mean preferred walking speed was 1.16±0.09m/s. There was only a minor effect of walking speed on λS-a. λS-b increased with increasing walking...

  2. Open Quantum Dynamics Calculations with the Hierarchy Equations of Motion on Parallel Computers.

    Science.gov (United States)

    Strümpfer, Johan; Schulten, Klaus

    2012-08-14

    Calculating the evolution of an open quantum system, i.e., a system in contact with a thermal environment, has presented a theoretical and computational challenge for many years. With the advent of supercomputers containing large amounts of memory and many processors, the computational challenge posed by the previously intractable theoretical models can now be addressed. The hierarchy equations of motion present one such model and offer a powerful method that remained under-utilized so far due to its considerable computational expense. By exploiting concurrent processing on parallel computers the hierarchy equations of motion can be applied to biological-scale systems. Herein we introduce the quantum dynamics software PHI, that solves the hierarchical equations of motion. We describe the integrator employed by PHI and demonstrate PHI's scaling and efficiency running on large parallel computers by applying the software to the calculation of inter-complex excitation transfer between the light harvesting complexes 1 and 2 of purple photosynthetic bacteria, a 50 pigment system.

  3. Mathematical simulation and calculation of the soil compaction under dynamic loads

    Science.gov (United States)

    Zolotarevskaya, D. I.

    2011-04-01

    The deformation and compaction of loamy sandy soddy-podzolic soils under linear dynamic changes in the compressive stresses and in the course of the soil creeping were studied in field experiments. The rheological properties of these soils occurring in the viscoelastic state were described by a first-order differential equation relating the compressive stresses, the rates of their changes, and the velocities of the relative vertical compressive deformation. Regression equations were derived for the viscoelastic properties of the studied soil as functions of its density, moisture, and linear compaction velocity. Methods were proposed for the calculation of indices of the stress-strain state and the compaction of soils under specified conditions of changes in their compressive stresses with time and in the course of the soil creeping after the initial linear increase in load. Corresponding computer programs were developed. The effect of the main factors due to the linear increase in the compressive loads and in the course of the soil creeping on the rheological properties, the stress-strain state, and the density of soils was quantitatively estimated. The calculation showed that the values of the soil deformation and the density under compressive stresses lower than the ultimate strength were stabilized with time, and the properties of the viscoelastic soil approached elastic ones.

  4. CHARACTERISTICS OF MOVEMENT OF SURFACE POINT IN DYNAMIC SUBSIDENCE BASIN AND ITS DEFORMATION CALCULATION

    Institute of Scientific and Technical Information of China (English)

    WANGShidao; HUANGPeizhu

    1995-01-01

    Along with underground mining, movement and deformation of overburden gradually extends in all directions and up to the ground surface and finally forms a surface subsidence basin. The surface movement progressively stabilizes until coal mining is completed and forms a stable movement basin. Two types of basins, i.e. static and dynamic subsidence basins are distinguished in the paper, a classification of the basins and a description of their characteristics are presented. Based on the analysis of measured data by Yanzhou Coal Mining Bureau, during mining operation, the movement characteristics of surface point, subsidence equation, subsidence rate equation and the law of distribution of movement parameters of surface point relative to principal section of movement basin are addressed in this paper. Moreover the calculating formula of the movement parameters for an arbitrary surface point and the expression for calculating the maximum subsidence rate are also proposed. On the basis of the findings, the movement deformation formula for an arbitrary surface point in any directions during mining operation is highlighted.

  5. 76 FR 39251 - Airworthiness Directives; The Boeing Company Model DC-9-81 (MD-81), DC-9-82 (MD-82), DC-9-83 (MD...

    Science.gov (United States)

    2011-07-06

    ... Model DC-9-81 (MD- 81), DC-9-82 (MD-82), DC-9-83 (MD-83), DC-9-87 (MD-87), and MD-88 Airplanes AGENCY... Jersey Avenue, SE., Washington, DC 20590. FOR FURTHER INFORMATION CONTACT: Roger Durbin, Aerospace.... Applicability (c) This AD applies to all The Boeing Company Model DC-9-81 (MD- 81), DC-9-82 (MD-82), DC-9-83...

  6. 76 FR 1993 - Airworthiness Directives; The Boeing Company Model DC-9-81 (MD-81), DC-9-82 (MD-82), DC-9-83 (MD...

    Science.gov (United States)

    2011-01-12

    ... Model DC-9-81 (MD- 81), DC-9-82 (MD-82), DC-9-83 (MD-83), DC-9-87 (MD-87), and MD-88 Airplanes AGENCY... Ground Floor, Room W12-140, 1200 New Jersey Avenue, SE., Washington, DC 20590. FOR FURTHER INFORMATION.... Applicability (c) This AD applies to The Boeing Company Model DC-9-81 (MD-81), DC-9-82 (MD-82), DC-9-83...

  7. 76 FR 13543 - Airworthiness Directives; The Boeing Company Model DC-9-81 (MD-81), DC-9-82 (MD-82), DC-9-83 (MD...

    Science.gov (United States)

    2011-03-14

    ... Model DC-9-81 (MD- 81), DC-9-82 (MD-82), DC-9-83 (MD-83), DC-9-87 (MD-87), and MD-88 Airplanes AGENCY... Floor, Room W12-140, 1200 New Jersey Avenue, SE., Washington, DC 20590. Hand Delivery: Deliver to Mail... stabilizer is similar in design and loading to that of the Model DC-9-81 (MD-81), DC- 9-82 (MD-82),...

  8. Cavity Voltage Phase Modulation MD

    CERN Document Server

    Mastoridis, Themistoklis; Molendijk, John; Timko, Helga; CERN. Geneva. ATS Department

    2016-01-01

    The LHC RF/LLRF system is currently configured for extremely stable RF voltage to minimize transient beam loading effects. The present scheme cannot be extended beyond nominal beam current since the demanded power would exceed the peak klystron power and lead to saturation. A new scheme has therefore been proposed: for beam currents above nominal (and possibly earlier), the cavity phase modulation by the beam will not be corrected (transient beam loading), but the strong RF feedback and One-Turn Delay feedback will still be active for loop and beam stability in physics. To achieve this, the voltage set point will be adapted for each bunch. The goal of this MD was to test a new algorithm that would adjust the voltage set point to achieve the cavity phase modulation that would minimize klystron forward power.

  9. Hydrophobic Interactions Are a Key to MDM2 Inhibition by Polyphenols as Revealed by Molecular Dynamics Simulations and MM/PBSA Free Energy Calculations.

    Science.gov (United States)

    Verma, Sharad; Grover, Sonam; Tyagi, Chetna; Goyal, Sukriti; Jamal, Salma; Singh, Aditi; Grover, Abhinav

    2016-01-01

    p53, a tumor suppressor protein, has been proven to regulate the cell cycle, apoptosis, and DNA repair to prevent malignant transformation. MDM2 regulates activity of p53 and inhibits its binding to DNA. In the present study, we elucidated the MDM2 inhibition potential of polyphenols (Apigenin, Fisetin, Galangin and Luteolin) by MD simulation and MM/PBSA free energy calculations. All polyphenols bind to hydrophobic groove of MDM2 and the binding was found to be stable throughout MD simulation. Luteolin showed the highest negative binding free energy value of -173.80 kJ/mol followed by Fisetin with value of -172.25 kJ/mol. It was found by free energy calculations, that hydrophobic interactions (vdW energy) have major contribution in binding free energy.

  10. Hydrophobic Interactions Are a Key to MDM2 Inhibition by Polyphenols as Revealed by Molecular Dynamics Simulations and MM/PBSA Free Energy Calculations.

    Directory of Open Access Journals (Sweden)

    Sharad Verma

    Full Text Available p53, a tumor suppressor protein, has been proven to regulate the cell cycle, apoptosis, and DNA repair to prevent malignant transformation. MDM2 regulates activity of p53 and inhibits its binding to DNA. In the present study, we elucidated the MDM2 inhibition potential of polyphenols (Apigenin, Fisetin, Galangin and Luteolin by MD simulation and MM/PBSA free energy calculations. All polyphenols bind to hydrophobic groove of MDM2 and the binding was found to be stable throughout MD simulation. Luteolin showed the highest negative binding free energy value of -173.80 kJ/mol followed by Fisetin with value of -172.25 kJ/mol. It was found by free energy calculations, that hydrophobic interactions (vdW energy have major contribution in binding free energy.

  11. A METHOD FOR CALCULATING THE LYAPUNOV EXPONENT SPECTRUM OF A PERIODICALLY EXCITED ON-AUTONOMOUS DYNAMICAL SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Cheng Changjun; Fan Xiaojun

    2000-01-01

    The relation between the Lyapunov exponent spectrun of a periodically excited non-autono mous dynamical system and the Lyapunov exponent spectrum of the corresponding autonomous system is given and the validity of the relation is verified theoretically and computationally. A direct method for calculating the Lyapunov exponent spectrum of non-autonomous dynamical systems is suggested in this paper, which makes it more convenient to calculate the Lyapunov exponent spectrum of the dynamical system periodically excited. Following the defi nition of the Lyapunov dimension D(LA) of the autonomous system, the definition of the Lyapunov dimension Dl of the non-autonomous dynamical system is also given, and the difference be- tween them is the integer 1, namely, D(A)L - DL = 1. For a quasi-poriodically excited dynamical system, similar conclusions are formed.

  12. A dynamic model for performance calculations of grid-connected horizontal axis wind turbines. Pt. 2; Validation

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, A.; Sheinman, Y. (Technion-Israel Inst. of Tech., Haifa (Israel). Faculty of Aerospace Engineering)

    1991-01-01

    The first part of this paper included a description of a dynamic model for performance calculations of grid-connected horizontal axis wind turbines. In the second part (the present paper) the validation of the model is presented. A small part of the validation includes a comparison between the manufacturer's power curve and the results of the calculations. The majority of the validation is based on a comparison between the output power as calculated by the dynamic model and actual field measurements. The dynamic measurements require a special data acquisition system. Such a system was developed and tested, and is described in the paper. The comparisons include the power as a function of time and also the produced energy. In general, good agreement between the calculations and measurements is obtained. The accuracy of the new dynamic model is much better than the accuracy of the commonly used ''static'' method that ignores dynamic effects. The importance of including dynamic effects is presented. (author).

  13. An extension of the computer program for dynamical calculations of RHEED intensity oscillations. Heterostructures

    Science.gov (United States)

    Daniluk, Andrzej

    2007-01-01

    A practical computing algorithm working in real time has been developed for calculations of the reflection high-energy electron diffraction from the molecular beam epitaxy growing surface. The calculations are based on a dynamical diffraction theory in which the electrons are scattered on a potential, which is periodic in the direction perpendicular to the surface. New version program summaryTitle of program:RHEED_v2 Catalogue identifier:ADUY_v1_1 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUY_v1_1 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Catalogue identifier of previous version:ADUY Authors of the original program:A. Daniluk Does the new version supersede the original program:Yes Computer for which the new version is designed and others on which it has been tested: Pentium-based PC Operating systems or monitors under which the new version has been tested: Windows 9x, XP, NT, Linux Programming language used:C++ Memory required to execute with typical data:more than 1 MB Number of bits in a word:64 bits Number of processors used:1 Number of bytes in distributed program, including test data, etc.:1 074 131 No. of lines in distributed program, including test data, etc.:3408 Distribution format:tar.gz Nature of physical problem: Reflection high-energy electron diffraction (RHEED) is a very useful technique for studying the growth and the surface analysis of thin epitaxial structures prepared by the molecular beam epitaxy (MBE). RHEED rocking curves recorded from heteroepitaxial layers are used for the non-destructive evaluation of epilayer thickness and composition with a high degree of accuracy. Rocking curves from such heterostructures are often very complex because the thickness fringes from every layer beat together. Simulations based on dynamical diffraction theory are generally used to interpret the rocking curves of such structures from which very small changes in thickness and composition can be

  14. Alpha Eigenvalue Estimation from Dynamic Monte Carlo Calculation for Subcritical Systems

    Energy Technology Data Exchange (ETDEWEB)

    Shaukat, Nadeem; Shim, Hyung Jin; Jang, Sang Hoon [Seoul National University, Seoul (Korea, Republic of)

    2016-05-15

    The dynamic Monte Carlo (DMC) method has been used in the TART code for the α eigenvalue calculations. A unique method has been equipped to measure the α in time-stepwise Monte Carlo simulations. For off-critical systems, the neutron population is allowed to change exponentially over a period of time. The neutron population is uniformly combed to return it to the neutron population started with at the beginning of time boundary. In this study, the conventional dynamic Monte Carlo method has been implemented in the McCARD. There is an exponential change of neutron population at the end of each time boundary for off-critical systems. In order to control this exponential change at the end of each time boundary, a conventional time cut-off controlling population strategy is included in the DMC module implemented in the McCARD. the conventional combing method to control the neutron population for off-critical systems is implemented. Instead of considering the cycles, the simulation is divided in time intervals. At the end of each time interval, neutron population control is applied on the banked neutrons. Randomly selected neutrons are discarded, until the size of neutron population matches the initial neutron histories at the beginning of time simulation. The prompt neutron decay constant α is estimated from DMC algorithm for subcritical systems. The effectiveness of the results is examined for two-group infinite homogeneous problems with varying the k-value. From the comparisons with the analytical solutions, it is observed that the results are quite comparable with each other for each k-value.

  15. Dynamical properties measurements for asteroid, comet and meteorite material applicable to impact modeling and mitigation calculations

    Energy Technology Data Exchange (ETDEWEB)

    Furnish, M.D.; Boslough, M.B. [Sandia National Labs., Albuquerque, NM (United States); Gray, G.T. III [Los Alamos National Lab., NM (United States); Remo, J.L. [Quantametrics, Inc., St. James, NY (United States)

    1994-07-01

    We describe methods for measuring dynamical properties for two material categories of interest in understanding large-scale extraterrestrial impacts: iron-nickel and underdense materials (e.g. snow). Particular material properties measured by the present methods include Hugoniot release paths and constitutive properties (stress vs. strain). The iron-nickel materials lend themselves well to conventional shock and quasi-static experiments. As examples, a suite of experiments is described including six impact tests (wave profile compression/release) over the stress range 2--20 GPa, metallography, quasi-static and split Hopkinson pressure bar (SHPB) mechanical testing, and ultrasonic mapping and sound velocity measurements. Temperature sensitivity of the dynamic behavior was measured at high and low strain rates. Among the iron-nickel materials tested, an octahedrite was found to have behavior close to that of Armco iron under shock and quasi-static conditions, while an ataxite exhibited a significantly larger quasi-static yield strength than did the octahedrite or a hexahedrite. The underdense materials pose three primary experimental difficulties. First, the samples are friable; they can melt or sublimate during storage, preparation and testing. Second, they are brittle and crushable; they cannot withstand such treatment as traditional machining or launch in a gun system. Third, with increasing porosity the calculated Hugoniot density becomes rapidly more sensitive to errors in wave time-of-arrival measurements. Carefully chosen simulants eliminate preservation (friability) difficulties, but the other difficulties remain. A family of 36 impact tests was conducted on snow and snow simulants at Sandia, yielding reliable Hugoniot and reshock states, but limited release property information. Other methods for characterizing these materials are discussed.

  16. Dynamical properties measurements for asteroid, comet and meteorite material applicable to impact modeling and mitigation calculations

    Science.gov (United States)

    Furnish, M. D.; Boslough, M. B.; Gray, G. T., III; Remo, J. L.

    We describe methods for measuring dynamical properties for two material categories of interest in understanding large-scale extraterrestrial impacts: iron-nickel and underdense materials (e.g. snow). Particular material properties measured by the present methods include Hugoniot release paths and constitutive properties (stress vs. strain). The iron-nickel materials lend themselves well to conventional shock and quasi-static experiments. As examples, a suite of experiments is described including six impact tests (wave profile compression/release) over the stress range 2-20 GPa, metallography, quasi-static and split Hopkinson pressure bar (SHPB) mechanical testing, and ultrasonic mapping and sound velocity measurements. Temperature sensitivity of the dynamic behavior was measured at high and low strain rates. Among the iron-nickel materials tested, an octahedrite was found to have behavior close to that of Armco iron under shock and quasi-static conditions, while an ataxite exhibited a significantly larger quasi-static yield strength than did the octahedrite or a hexahedrite. The underdense materials pose three primary experimental difficulties. First, the samples are friable; they can melt or sublimate during storage, preparation and testing. Second, they are brittle and crushable; they cannot withstand such treatment as traditional machining or launch in a gun system. Third, with increasing porosity the calculated Hugoniot density becomes rapidly more sensitive to errors in wave time-of-arrival measurements. Carefully chosen simulants eliminate preservation (friability) difficulties, but the other difficulties remain. A family of 36 impact tests was conducted on snow and snow simulants at Sandia, yielding reliable Hugoniot and reshock states, but limited release property information. Other methods for characterizing these materials are discussed.

  17. First-Principles Calculation of the Optical Properties of an Amphiphilic Cyanine Dye Aggregate

    NARCIS (Netherlands)

    Haverkort, Frank; Stradomska, Anna; Vries, Alex H. de; Knoester, Jasper

    2014-01-01

    Using a first-principles approach, we calculate electronic and optical properties of molecular aggregates of the dye amphi-pseudoisocyanine, whose structures we obtained from molecular dynamics (MD) simulations of the self-aggregation process. Using quantum chemistry methods, we translate the struct

  18. Interactive software tool to comprehend the calculation of optimal sequence alignments with dynamic programming.

    Science.gov (United States)

    Ibarra, Ignacio L; Melo, Francisco

    2010-07-01

    Dynamic programming (DP) is a general optimization strategy that is successfully used across various disciplines of science. In bioinformatics, it is widely applied in calculating the optimal alignment between pairs of protein or DNA sequences. These alignments form the basis of new, verifiable biological hypothesis. Despite its importance, there are no interactive tools available for training and education on understanding the DP algorithm. Here, we introduce an interactive computer application with a graphical interface, for the purpose of educating students about DP. The program displays the DP scoring matrix and the resulting optimal alignment(s), while allowing the user to modify key parameters such as the values in the similarity matrix, the sequence alignment algorithm version and the gap opening/extension penalties. We hope that this software will be useful to teachers and students of bioinformatics courses, as well as researchers who implement the DP algorithm for diverse applications. The software is freely available at: http:/melolab.org/sat. The software is written in the Java computer language, thus it runs on all major platforms and operating systems including Windows, Mac OS X and LINUX. All inquiries or comments about this software should be directed to Francisco Melo at fmelo@bio.puc.cl.

  19. Dynamical mean-field theory and path integral renormalisation group calculations of strongly correlated electronic states

    Energy Technology Data Exchange (ETDEWEB)

    Heilmann, D.B.

    2007-02-15

    The two-plane HUBBARD model, which is a model for some electronic properties of undoped YBCO superconductors as well as displays a MOTT metal-to-insulator transition and a metal-to-band insulator transition, is studied within Dynamical Mean-Field Theory using HIRSCH-FYE Monte Carlo. In order to find the different transitions and distinguish the types of insulator, we calculate the single-particle spectral densities, the self-energies and the optical conductivities. We conclude that there is a continuous transition from MOTT to band insulator. In the second part, ground state properties of a diagonally disordered HUBBARD model is studied using a generalisation of Path Integral Renormalisation Group, a variational method which can also determine low-lying excitations. In particular, the distribution of antiferromagnetic properties is investigated. We conclude that antiferromagnetism breaks down in a percolation-type transition at a critical disorder, which is not changed appreciably by the inclusion of correlation effects, when compared to earlier studies. Electronic and excitation properties at the system sizes considered turn out to primarily depend on the geometry. (orig.)

  20. All-atom molecular dynamics calculation study of entire poliovirus empty capsids in solution

    Science.gov (United States)

    Andoh, Y.; Yoshii, N.; Yamada, A.; Fujimoto, K.; Kojima, H.; Mizutani, K.; Nakagawa, A.; Nomoto, A.; Okazaki, S.

    2014-10-01

    Small viruses that belong, for example, to the Picornaviridae, such as poliovirus and foot-and-mouth disease virus, consist simply of capsid proteins and a single-stranded RNA (ssRNA) genome. The capsids are quite stable in solution to protect the genome from the environment. Here, based on long-time and large-scale 6.5 × 106 all-atom molecular dynamics calculations for the Mahoney strain of poliovirus, we show microscopic properties of the viral capsids at a molecular level. First, we found equilibrium rapid exchange of water molecules across the capsid. The exchange rate is so high that all water molecules inside the capsid (about 200 000) can leave the capsid and be replaced by water molecules from the outside in about 25 μs. This explains the capsid's tolerance to high pressures and deactivation by exsiccation. In contrast, the capsid did not exchange ions, at least within the present simulation time of 200 ns. This implies that the capsid can function, in principle, as a semipermeable membrane. We also found that, similar to the xylem of trees, the pressure of the solution inside the capsid without the genome was negative. This is caused by coulombic interaction of the solution inside the capsid with the capsid excess charges. The negative pressure may be compensated by positive osmotic pressure by the solution-soluble ssRNA and the counter ions introduced into it.

  1. All-atom molecular dynamics calculation study of entire poliovirus empty capsids in solution

    Energy Technology Data Exchange (ETDEWEB)

    Andoh, Y.; Yoshii, N.; Yamada, A.; Kojima, H.; Mizutani, K.; Okazaki, S., E-mail: okazaki@apchem.nagoya-u.ac.jp [Department of Applied Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Fujimoto, K. [Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Nojihigashi, Kusatsu, Shiga 525-8577 (Japan); Nakagawa, A. [Institute for Protein Research, Osaka University, Yamadaoka, Suita, Osaka 565-0871 (Japan); Nomoto, A. [Institute of Microbial Chemistry, Kamiosaki, Shinagawa-ku, Tokyo 141-0021 (Japan)

    2014-10-28

    Small viruses that belong, for example, to the Picornaviridae, such as poliovirus and foot-and-mouth disease virus, consist simply of capsid proteins and a single-stranded RNA (ssRNA) genome. The capsids are quite stable in solution to protect the genome from the environment. Here, based on long-time and large-scale 6.5 × 10{sup 6} all-atom molecular dynamics calculations for the Mahoney strain of poliovirus, we show microscopic properties of the viral capsids at a molecular level. First, we found equilibrium rapid exchange of water molecules across the capsid. The exchange rate is so high that all water molecules inside the capsid (about 200 000) can leave the capsid and be replaced by water molecules from the outside in about 25 μs. This explains the capsid's tolerance to high pressures and deactivation by exsiccation. In contrast, the capsid did not exchange ions, at least within the present simulation time of 200 ns. This implies that the capsid can function, in principle, as a semipermeable membrane. We also found that, similar to the xylem of trees, the pressure of the solution inside the capsid without the genome was negative. This is caused by coulombic interaction of the solution inside the capsid with the capsid excess charges. The negative pressure may be compensated by positive osmotic pressure by the solution-soluble ssRNA and the counter ions introduced into it.

  2. Calculation of the distribution of eigenvalues and eigenvectors in Markovian state models for molecular dynamics.

    Science.gov (United States)

    Hinrichs, Nina Singhal; Pande, Vijay S

    2007-06-28

    Markovian state models (MSMs) are a convenient and efficient means to compactly describe the kinetics of a molecular system as well as a formalism for using many short simulations to predict long time scale behavior. Building a MSM consists of grouping the conformations into states and estimating the transition probabilities between these states. In a previous paper, we described an efficient method for calculating the uncertainty due to finite sampling in the mean first passage time between two states. In this paper, we extend the uncertainty analysis to derive similar closed-form solutions for the distributions of the eigenvalues and eigenvectors of the transition matrix, quantities that have numerous applications when using the model. We demonstrate the accuracy of the distributions on a six-state model of the terminally blocked alanine peptide. We also show how to significantly reduce the total number of simulations necessary to build a model with a given precision using these uncertainty estimates for the blocked alanine system and for a 2454-state MSM for the dynamics of the villin headpiece.

  3. Quantum Molecular Dynamical Calculations of PEDOT 12-Oligomer and its Selenium and Tellurium Derivatives

    Science.gov (United States)

    Mirsakiyeva, Amina; Hugosson, Håkan W.; Crispin, Xavier; Delin, Anna

    2016-12-01

    We present simulation results, computed with the Car-Parrinello molecular dynamics method, at zero and ambient temperature (300 K) for poly(3,4-ethylenedioxythiophene) [PEDOT] and its selenium and tellurium derivatives PEDOS and PEDOTe, represented as 12-oligomer chains. In particular, we focus on structural parameters such as the dihedral rotation angle distribution, as well as how the charge distribution is affected by temperature. We find that for PEDOT, the dihedral angle distribution shows two distinct local maxima whereas for PEDOS and PEDOTe, the distributions only have one clear maximum. The twisting stiffness at ambient temperature appears to be larger the lighter the heteroatom (S, Se, Te) is, in contrast to the case at 0 K. As regards point charge distributions, they suggest that aromaticity increases with temperature, and also that aromaticity becomes more pronounced the lighter the heteroatom is, both at 0 K and ambient temperature. Our results agree well with previous results, where available. The bond lengths are consistent with substantial aromatic character both at 0 K and at ambient temperature. Our calculations also reproduce the expected trend of diminishing gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital with increasing atomic number of the heteroatom.

  4. Average hydrodynamic correction for the Brownian dynamics calculation of flocculation rates in concentrated dispersions

    Science.gov (United States)

    Urbina-Villalba, German; García-Sucre, Máximo; Toro-Mendoza, Jhoan

    2003-12-01

    In order to account for the hydrodynamic interaction (HI) between suspended particles in an average way, Honig et al. [J. Colloid Interface Sci. 36, 97 (1971)] and more recently Heyes [Mol. Phys. 87, 287 (1996)] proposed different analytical forms for the diffusion constant. While the formalism of Honig et al. strictly applies to a binary collision, the one from Heyes accounts for the dependence of the diffusion constant on the local concentration of particles. However, the analytical expression of the latter approach is more complex and depends on the particular characteristics of each system. Here we report a combined methodology, which incorporates the formula of Honig et al. at very short distances and a simple local volume-fraction correction at longer separations. As will be shown, the flocculation behavior calculated from Brownian dynamics simulations employing the present technique, is found to be similar to that of Batchelor’s tensor [J. Fluid. Mech. 74, 1 (1976); 119, 379 (1982)]. However, it corrects the anomalous coalescence found in concentrated systems as a result of the overestimation of many-body HI.

  5. Investigating dynamic parameters in HWZPR ased on the experimental and calculated results

    Energy Technology Data Exchange (ETDEWEB)

    Nasrazadani, Zahra; Behfamia, Manochehar; Khosandi, Jamshid; Mirvakili, Mohammad [Reactors Research School, Nuclear Science And Technology Research Institute, Atomic Energy Organization of Iran, Esfahan (Iran, Islamic Republic of)

    2016-10-15

    The neutron decay constant, α, and effective delayed neutron fraction, β{sub eff}, are important parameters for the control of the dynamic behavior of nuclear reactors. For the heavy water zero power reactor (HWZPR), this document describes the measurements of the neutron decay constant by noise analysis methods, including variance to mean (VTM) ratio and endogenous pulse source (EPS) methods. The measured α is successively used to determine the experimental value of the effective delayed neutron fraction as well. According to the experimental results, β{sub eff} of the HWZPR reactor under study is equal to 7.84e-3. This value is finally used to validate the calculation of the effective delayed neutron fraction by the Monte Carlo methods that are discussed in the document. Using the Monte Carlo N-Particle (MCNP)-4C code, a β{sub eff} value of 7.58e-3 was obtained for the reactor under study. Thus, the relative difference between the β{sub eff} values determined experimentally and by Monte Carlo methods was estimated to be < 4%.

  6. Equilibrium Limit of Boundary Scattering in Carbon Nanostructures: Molecular Dynamics Calculations of Thermal Transport

    Science.gov (United States)

    Haskins, Justin; Kinaci, Alper; Sevik, Cem; Cagin, Tahir

    2012-01-01

    It is widely known that graphene and many of its derivative nanostructures have exceedingly high reported thermal conductivities (up to 4000 W/mK at 300 K). Such attractive thermal properties beg the use of these structures in practical devices; however, to implement these materials while preserving transport quality, the influence of structure on thermal conductivity should be thoroughly understood. For graphene nanostructures, having average phonon mean free paths on the order of one micron, a primary concern is how size influences the potential for heat conduction. To investigate this, we employ a novel technique to evaluate the lattice thermal conductivity from the Green-Kubo relations and equilibrium molecular dynamics in systems where phonon-boundary scattering dominates heat flow. Specifically, the thermal conductivities of graphene nanoribbons and carbon nanotubes are calculated in sizes up to 3 microns, and the relative influence of boundary scattering on thermal transport is determined to be dominant at sizes less than 1 micron, after which the thermal transport largely depends on the quality of the nanostructure interface. The method is also extended to carbon nanostructures (fullerenes) where phonon confinement, as opposed to boundary scattering, dominates, and general trends related to the influence of curvature on thermal transport in these materials are discussed.

  7. Electron transport calculations in warm dense matter using scattering cross sections

    CERN Document Server

    Burrill, D J; Charest, M R J; Starrett, C E

    2015-01-01

    The Ziman formulation of electrical conductivity is tested in warm and hot dense matter using the pseudo-atom molecular dynamics method. Several implementation options that have been widely used in the literature are systematically tested through a comparison to accurate but expensive Kohn-Sham density functional theory molecular dynamics (KS-DFT-MD) calculations. The comparison is made for several elements and mixtures and for a wide range of temperatures and densities, and reveals a preferred method that generally gives very good agreement with the KSDFT-MD results, but at a fraction of the computational cost.

  8. Comparison of the Green-Kubo and homogeneous non-equilibrium molecular dynamics methods for calculating thermal conductivity

    Science.gov (United States)

    Dongre, B.; Wang, T.; Madsen, G. K. H.

    2017-07-01

    Different molecular dynamics methods like the direct method, the Green-Kubo (GK) method and homogeneous non-equilibrium molecular dynamics (HNEMD) method have been widely used to calculate lattice thermal conductivity ({κ }{\\ell }). While the first two methods have been used and compared quite extensively, there is a lack of comparison of these methods with the HNEMD method. Focusing on the underlying computational parameters, we present a detailed comparison of the GK and HNEMD methods for both bulk and vacancy Si using the Stillinger-Weber potential. For the bulk calculations, we find both methods to perform well and yield {κ }{\\ell } within acceptable uncertainties. In case of the vacancy calculations, HNEMD method has a slight advantage over the GK method as it becomes computationally cheaper for lower {κ }{\\ell } values. This study could promote the application of HNEMD method in {κ }{\\ell } calculations involving other lattice defects like nanovoids, dislocations, interfaces.

  9. MD 1691: Active halo control using tune ripple at injection

    CERN Document Server

    Garcia Morales, Hector; Bruce, Roderik; Redaelli, Stefano; Fitterer, Miriam; Fiascaris, Maria; Nisbet, David; Thiesen, Hugues; Valentino, Gianluca; Xu, Chen; CERN. Geneva. ATS Department

    2017-01-01

    In this MD we performed halo excitation through tune ripple. This consists in an excitation that introduces new resonance sidebands around the existing resonance lines. In presence of sufficient detuning with amplitude, these sidebands can in principle affect only the dynamics of the halo particles at large amplitudes. Tune ripple was induced through a current modulation of the warm trim quadrupoles in IR7. This is the first time this method is experimentally tested at the LHC.

  10. Influence of inverse dynamics methods on the calculation of inter-segmental moments in vertical jumping and weightlifting

    Directory of Open Access Journals (Sweden)

    Cleather Daniel J

    2010-11-01

    Full Text Available Abstract Background A vast number of biomechanical studies have employed inverse dynamics methods to calculate inter-segmental moments during movement. Although all inverse dynamics methods are rooted in classical mechanics and thus theoretically the same, there exist a number of distinct computational methods. Recent research has demonstrated a key influence of the dynamics computation of the inverse dynamics method on the calculated moments, despite the theoretical equivalence of the methods. The purpose of this study was therefore to explore the influence of the choice of inverse dynamics on the calculation of inter-segmental moments. Methods An inverse dynamics analysis was performed to analyse vertical jumping and weightlifting movements using two distinct methods. The first method was the traditional inverse dynamics approach, in this study characterized as the 3 step method, where inter-segmental moments were calculated in the local coordinate system of each segment, thus requiring multiple coordinate system transformations. The second method (the 1 step method was the recently proposed approach based on wrench notation that allows all calculations to be performed in the global coordinate system. In order to best compare the effect of the inverse dynamics computation a number of the key assumptions and methods were harmonized, in particular unit quaternions were used to parameterize rotation in both methods in order to standardize the kinematics. Results Mean peak inter-segmental moments calculated by the two methods were found to agree to 2 decimal places in all cases and were not significantly different (p > 0.05. Equally the normalized dispersions of the two methods were small. Conclusions In contrast to previously documented research the difference between the two methods was found to be negligible. This study demonstrates that the 1 and 3 step method are computationally equivalent and can thus be used interchangeably in

  11. A study of dynamic finite size scaling behavior of the scaling functions—calculation of dynamic critical index of Wolff algorithm

    Science.gov (United States)

    Gündüç, Semra; Dilaver, Mehmet; Aydın, Meral; Gündüç, Yiğit

    2005-02-01

    In this work we have studied the dynamic scaling behavior of two scaling functions and we have shown that scaling functions obey the dynamic finite size scaling rules. Dynamic finite size scaling of scaling functions opens possibilities for a wide range of applications. As an application we have calculated the dynamic critical exponent (z) of Wolff's cluster algorithm for 2-, 3- and 4-dimensional Ising models. Configurations with vanishing initial magnetization are chosen in order to avoid complications due to initial magnetization. The observed dynamic finite size scaling behavior during early stages of the Monte Carlo simulation yields z for Wolff's cluster algorithm for 2-, 3- and 4-dimensional Ising models with vanishing values which are consistent with the values obtained from the autocorrelations. Especially, the vanishing dynamic critical exponent we obtained for d=3 implies that the Wolff algorithm is more efficient in eliminating critical slowing down in Monte Carlo simulations than previously reported.

  12. Fast Collision Attack on MD5

    NARCIS (Netherlands)

    M.M.J. Stevens (Marc)

    2006-01-01

    textabstractIn this paper, we present an improved attack algorithm to find two-block collisions of the hash function MD5. The attack uses the same differential path of MD5 and the set of sufficient conditions that was presented by Wang et al. We present a new technique which allows us to

  13. Fast Collision Attack on MD5

    NARCIS (Netherlands)

    Stevens, M.M.J.

    2006-01-01

    In this paper, we present an improved attack algorithm to find two-block collisions of the hash function MD5. The attack uses the same differential path of MD5 and the set of sufficient conditions that was presented by Wang et al. We present a new technique which allows us to deterministically fulfi

  14. First thoughts on MD priorities for 2012

    CERN Document Server

    Zimmermann, F; Assmann, R

    2012-01-01

    In 2012, 22 days of beam time will be allocated for LHC MDs. In this paper, after recalling the 2011 LHC MD experience, the MD rrequests for 2012 are reviewed. Three primary MD themes for 2012 can be identified: 1)pushing performance in 2012, 2)preparing for 2014/15, and 3)towards maximum luminosity. Example topics include emittance growth in collision or enhanced satellites for theme 1), 25 ns operation for 2), and ATS optics for 3). Structures lists of MD requests and topics for each theme as well as some initial thoughts on the MD priorities are presented. For certain topics, "start-of-fill MDs" are proposed in order to most efficiently use of the available beam time.

  15. 76 FR 52225 - Airworthiness Directives; The Boeing Company Model DC-9-81 (MD-81), DC-9-82 (MD-82), DC-9-83 (MD...

    Science.gov (United States)

    2011-08-22

    ... Model DC-9-81 (MD- 81), DC-9-82 (MD-82), DC-9-83 (MD-83), DC-9-87 (MD-87), and MD-88 Airplanes AGENCY... Ground Floor, Room W12-140, 1200 New Jersey Avenue, SE., Washington, DC 20590. FOR FURTHER INFORMATION... ADs (b) None. Applicability (c) This AD applies to The Boeing Company Model DC-9-81 (MD-81),...

  16. Influence of Chirality of Crizotinib on Its MTH1 Protein Inhibitory Activity: Insight from Molecular Dynamics Simulations and Binding Free Energy Calculations.

    Directory of Open Access Journals (Sweden)

    Yuzhen Niu

    Full Text Available As a promising target for the treatment of lung cancer, the MutT Homolog 1 (MTH1 protein can be inhibited by crizotinib. A recent work shows that the inhibitory potency of (S-crizotinib against MTH1 is about 20 times over that of (R-crizotinib. But the detailed molecular mechanism remains unclear. In this study, molecular dynamics (MD simulations and free energy calculations were used to elucidate the mechanism about the effect of chirality of crizotinib on the inhibitory activity against MTH1. The binding free energy of (S-crizotinib predicted by the Molecular Mechanics/Generalized Born Surface Area (MM/GBSA and Adaptive biasing force (ABF methodologies is much lower than that of (R-crizotinib, which is consistent with the experimental data. The analysis of the individual energy terms suggests that the van der Waals interactions are important for distinguishing the binding of (S-crizotinib and (R-crizotinib. The binding free energy decomposition analysis illustrated that residues Tyr7, Phe27, Phe72 and Trp117 were important for the selective binding of (S-crizotinib to MTH1. The adaptive biasing force (ABF method was further employed to elucidate the unbinding process of (S-crizotinib and (R-crizotinib from the binding pocket of MTH1. ABF simulation results suggest that the reaction coordinates of the (S-crizotinib from the binding pocket is different from (R-crizotinib. The results from our study can reveal the details about the effect of chirality on the inhibition activity of crizotinib to MTH1 and provide valuable information for the design of more potent inhibitors.

  17. Calculation of the effect of inertia on the dynamic viscosity of dilute emulsions in a pure straining motion

    NARCIS (Netherlands)

    Oosterbroek, M.; Tropper, R.; Mellema, J.

    1980-01-01

    The dynamic viscosity of a dilute emulsion is calculated for a pure straining motion. The emulsion consists of almost spherical drops of a Newtonian fluid immersed in another Newtonian fluid. The oscillating velocity field of the flow is derived from the Navier-Stokes equation, in which the linear

  18. Calculations of the dynamical Debye-Scherrer electron diffraction pattern from small particles of gold and silver

    Energy Technology Data Exchange (ETDEWEB)

    Hall, B.D. (Inst. de Micro- et Optoelectronique, EPFL, Lausanne (Switzerland)); Reinhard, D. (Inst. de Physique Experimentale, EPFL, Lausanne (Switzerland)); Ugarte, D. (Inst. de Physique Experimentale, EPFL, Lausanne (Switzerland))

    1993-05-01

    Calculations of the dynamical Debye-Scherrer electron diffraction pattern for ultrafine gold and silver particles have been performed using the multislice method. Two cluster sizes, 31 and 55 A in diameter (923 and 5083 atoms, respectively), of both f.c.c. and icosahedral structures were used, at incident voltages of 40 kV and 100 kV. (orig.)

  19. Error Propagation Dynamics of PIV-based Pressure Field Calculations: How well does the pressure Poisson solver perform inherently?

    Science.gov (United States)

    Pan, Zhao; Whitehead, Jared; Thomson, Scott; Truscott, Tadd

    2016-08-01

    Obtaining pressure field data from particle image velocimetry (PIV) is an attractive technique in fluid dynamics due to its noninvasive nature. The application of this technique generally involves integrating the pressure gradient or solving the pressure Poisson equation using a velocity field measured with PIV. However, very little research has been done to investigate the dynamics of error propagation from PIV-based velocity measurements to the pressure field calculation. Rather than measure the error through experiment, we investigate the dynamics of the error propagation by examining the Poisson equation directly. We analytically quantify the error bound in the pressure field, and are able to illustrate the mathematical roots of why and how the Poisson equation based pressure calculation propagates error from the PIV data. The results show that the error depends on the shape and type of boundary conditions, the dimensions of the flow domain, and the flow type.

  20. Error Propagation Dynamics of PIV-based Pressure Field Calculations: How well does the pressure Poisson solver perform inherently?

    CERN Document Server

    Pan, Zhao; Thomson, Scott; Truscott, Tadd

    2016-01-01

    Obtaining pressure field data from particle image velocimetry (PIV) is an attractive technique in fluid dynamics due to its noninvasive nature. The application of this technique generally involves integrating the pressure gradient or solving the pressure Poisson equation using a velocity field measured with PIV. However, very little research has been done to investigate the dynamics of error propagation from PIV-based velocity measurements to the pressure field calculation. Rather than measure the error through experiment, we investigate the dynamics of the error propagation by examining the Poisson equation directly. We analytically quantify the error bound in the pressure field, and are able to illustrate the mathematical roots of why and how the Poisson equation based pressure calculation propagates error from the PIV data. The results show that the error depends on the shape and type of boundary conditions, the dimensions of the flow domain, and the flow type.

  1. Dynamic motion analysis of dart throwers motion visualized through computerized tomography and calculation of the axis of rotation.

    Science.gov (United States)

    Edirisinghe, Y; Troupis, J M; Patel, M; Smith, J; Crossett, M

    2014-05-01

    We used a dynamic three-dimensional (3D) mapping method to model the wrist in dynamic unrestricted dart throwers motion in three men and four women. With the aid of precision landmark identification, a 3D coordinate system was applied to the distal radius and the movement of the carpus was described. Subsequently, with dynamic 3D reconstructions and freedom to position the camera viewpoint anywhere in space, we observed the motion pathways of all carpal bones in dart throwers motion and calculated its axis of rotation. This was calculated to lie in 27° of anteversion from the coronal plane and 44° of varus angulation relative to the transverse plane. This technique is a safe and a feasible carpal imaging method to gain key information for decision making in future hand surgical and rehabilitative practices.

  2. Error propagation dynamics of PIV-based pressure field calculations: How well does the pressure Poisson solver perform inherently?

    Science.gov (United States)

    Pan, Zhao; Whitehead, Jared; Thomson, Scott; Truscott, Tadd

    2016-08-01

    Obtaining pressure field data from particle image velocimetry (PIV) is an attractive technique in fluid dynamics due to its noninvasive nature. The application of this technique generally involves integrating the pressure gradient or solving the pressure Poisson equation using a velocity field measured with PIV. However, very little research has been done to investigate the dynamics of error propagation from PIV-based velocity measurements to the pressure field calculation. Rather than measure the error through experiment, we investigate the dynamics of the error propagation by examining the Poisson equation directly. We analytically quantify the error bound in the pressure field, and are able to illustrate the mathematical roots of why and how the Poisson equation based pressure calculation propagates error from the PIV data. The results show that the error depends on the shape and type of boundary conditions, the dimensions of the flow domain, and the flow type.

  3. Molecular recognition in a diverse set of protein-ligand interactions studied with molecular dynamics simulations and end-point free energy calculations.

    Science.gov (United States)

    Wang, Bo; Li, Liwei; Hurley, Thomas D; Meroueh, Samy O

    2013-10-28

    End-point free energy calculations using MM-GBSA and MM-PBSA provide a detailed understanding of molecular recognition in protein-ligand interactions. The binding free energy can be used to rank-order protein-ligand structures in virtual screening for compound or target identification. Here, we carry out free energy calculations for a diverse set of 11 proteins bound to 14 small molecules using extensive explicit-solvent MD simulations. The structure of these complexes was previously solved by crystallography and their binding studied with isothermal titration calorimetry (ITC) data enabling direct comparison to the MM-GBSA and MM-PBSA calculations. Four MM-GBSA and three MM-PBSA calculations reproduced the ITC free energy within 1 kcal·mol(-1) highlighting the challenges in reproducing the absolute free energy from end-point free energy calculations. MM-GBSA exhibited better rank-ordering with a Spearman ρ of 0.68 compared to 0.40 for MM-PBSA with dielectric constant (ε = 1). An increase in ε resulted in significantly better rank-ordering for MM-PBSA (ρ = 0.91 for ε = 10), but larger ε significantly reduced the contributions of electrostatics, suggesting that the improvement is due to the nonpolar and entropy components, rather than a better representation of the electrostatics. The SVRKB scoring function applied to MD snapshots resulted in excellent rank-ordering (ρ = 0.81). Calculations of the configurational entropy using normal-mode analysis led to free energies that correlated significantly better to the ITC free energy than the MD-based quasi-harmonic approach, but the computed entropies showed no correlation with the ITC entropy. When the adaptation energy is taken into consideration by running separate simulations for complex, apo, and ligand (MM-PBSAADAPT), there is less agreement with the ITC data for the individual free energies, but remarkably good rank-ordering is observed (ρ = 0.89). Interestingly, filtering MD snapshots by prescoring

  4. First principle calculation of structure and lattice dynamics of Lu2Si2O7

    Science.gov (United States)

    Nazipov, D. V.; Nikiforov, A. E.

    2016-12-01

    Ab initio calculations of crystal structure and Raman spectra has been performed for single crystal of lutetium pyrosilicate Lu2Si2O7. The types of fundamental vibrations, their frequencies and intensities in the Raman spectrum has been obtained for two polarizations. Calculations were made in the framework of density functional theory (DFT) with hybrid functionals. The isotopic substitution was calculated for all inequivalent ions in cell. The results in a good agreement with experimental data.

  5. First principle calculation of structure and lattice dynamics of Lu2Si2O7

    Directory of Open Access Journals (Sweden)

    Nazipov D.V.

    2017-01-01

    Full Text Available Ab initio calculations of crystal structure and Raman spectra has been performed for single crystal of lutetium pyrosilicate Lu2Si2O7. The types of fundamental vibrations, their frequencies and intensities in the Raman spectrum has been obtained for two polarizations. Calculations were made in the framework of density functional theory (DFT with hybrid functionals. The isotopic substitution was calculated for all inequivalent ions in cell. The results in a good agreement with experimental data.

  6. CHARMM-GUI Ligand Binder for absolute binding free energy calculations and its application.

    Science.gov (United States)

    Jo, Sunhwan; Jiang, Wei; Lee, Hui Sun; Roux, Benoît; Im, Wonpil

    2013-01-28

    Advanced free energy perturbation molecular dynamics (FEP/MD) simulation methods are available to accurately calculate absolute binding free energies of protein-ligand complexes. However, these methods rely on several sophisticated command scripts implementing various biasing energy restraints to enhance the convergence of the FEP/MD calculations, which must all be handled properly to yield correct results. Here, we present a user-friendly Web interface, CHARMM-GUI Ligand Binder ( http://www.charmm-gui.org/input/gbinding ), to provide standardized CHARMM input files for calculations of absolute binding free energies using the FEP/MD simulations. A number of features are implemented to conveniently set up the FEP/MD simulations in highly customizable manners, thereby permitting an accelerated throughput of this important class of computations while decreasing the possibility of human errors. The interface and a series of input files generated by the interface are tested with illustrative calculations of absolute binding free energies of three nonpolar aromatic ligands to the L99A mutant of T4 lysozyme and three FK506-related ligands to FKBP12. Statistical errors within individual calculations are found to be small (~1 kcal/mol), and the calculated binding free energies generally agree well with the experimental measurements and the previous computational studies (within ~2 kcal/mol). Therefore, CHARMM-GUI Ligand Binder provides a convenient and reliable way to set up the ligand binding free energy calculations and can be applicable to pharmaceutically important protein-ligand systems.

  7. Modern Dynamical Coupled-Channels Calculations for Extracting and Understanding the Nucleon Spectrum

    CERN Document Server

    Kamano, Hiroyuki

    2016-01-01

    We give an overview of recent progress in the spectroscopic study of nucleon resonances within the dynamical coupled-channels analysis of meson-production reactions. The important role of multichannel reaction dynamics in understanding various properties of nucleon resonances is emphasized.

  8. Calculating dose distributions and wedge factors for photon treatment fields with dynamic wedges based on a convolution/superposition method.

    Science.gov (United States)

    Liu, H H; McCullough, E C; Mackie, T R

    1998-01-01

    A convolution/superposition based method was developed to calculate dose distributions and wedge factors in photon treatment fields generated by dynamic wedges. This algorithm used a dual source photon beam model that accounted for both primary photons from the target and secondary photons scattered from the machine head. The segmented treatment tables (STT) were used to calculate realistic photon fluence distributions in the wedged fields. The inclusion of the extra-focal photons resulted in more accurate dose calculation in high dose gradient regions, particularly in the beam penumbra. The wedge factors calculated using the convolution method were also compared to the measured data and showed good agreement within 0.5%. The wedge factor varied significantly with the field width along the moving jaw direction, but not along the static jaw or the depth direction. This variation was found to be determined by the ending position of the moving jaw, or the STT of the dynamic wedge. In conclusion, the convolution method proposed in this work can be used to accurately compute dose for a dynamic or an intensity modulated treatment based on the fluence modulation in the treatment field.

  9. A Flexible-Segment-Model-Based Dynamics Calculation Method for Free Hanging Marine Risers in Re-Entry

    Institute of Scientific and Technical Information of China (English)

    XU Xue-song; WANG Sheng-wei

    2012-01-01

    In re-entry,the drilling riser hanging to the holding vessel takes on a free hanging state,waiting to be moved from the initial random position to the wellhead.For the re-entry,dynamics calculation is often done to predict the riser motion or evaluate the structural safety.A dynamics calculation method based on Flexible Segment Model (FSM) is proposed for free hanging marine risers.In FSM,a riser is discretized into a series of flexible segments.For each flexible segment,its deflection feature and external forces are analyzed independently.For the whole riser,the nonlinear governing equations are listed according to the moment equilibrium at nodes.For the solution of the nonlinear equations,a linearization iteration scheme is provided in the paper.Owing to its flexibility,each segment can match a long part of the riser body,which enables that good results can be obtained even with a small number of segments.Moreover,the linearization iteration scheme can avoid widely used Newton-Rapson iteration scheme in which the calculation stability is influenced by the initial points.The FSM-based dynamics calculation is timesaving and stable,so suitable for the shape prediction or real-time control of free hanging marine risers.

  10. Spectroscopic characterization of 1-[3-(1H-imidazol-1-yl)propyl]-3-phenylthiourea and assessment of reactive and optoelectronic properties employing DFT calculations and molecular dynamics simulations

    Science.gov (United States)

    War, Javeed Ahmad; Jalaja, K.; Mary, Y. Sheena; Panicker, C. Yohannan; Armaković, Stevan; Armaković, Sanja J.; Srivastava, Santosh Kumar; Van Alsenoy, C.

    2017-02-01

    IR and Raman spectra of 1-[3-(1H-imidazol-1-yl)propyl]-3-phenylthiourea (HIPPT) have been recorded in the solid phase and the vibrational wave numbers are calculated theoretically by B3LYP/6-31G(d,p) (6D, 7F) method. All the fundamental vibrational modes have been assigned using potential energy distribution values and the molecular structure was analyzed in terms of parameters like bond length, bond angles and dihedral angles. The ring breathing mode of the phenyl ring is observed at 1016 cm-1 in the IR spectrum, 1014 cm-1 in the Raman spectrum and at 1014 cm-1 theoretically. The values of polarizability and hyperpolarizabilities were calculated and nonlinear optical properties are discussed. The HOMO-LUMO plot reveals the charge transfer possibilities in the molecule. The NBO analysis was computed and possible transitions were correlated with the electronic transitions. In the title compound, the imidazole ring and CH2 groups are tilted from each other and the thiourea group is tilted from the phenyl ring. Using MEP plot the electrophilic and nucleophilic regions are identified. Local reactivity properties were investigated by analysis of ALIE surfaces and Fukui functions. Oxidation and degradation properties were initially assessed by calculation of bond dissociation energies of all single acyclic bonds. Determination of atoms with pronounced interactions with water molecules was performed by calculation of radial distribution functions after molecular dynamics simulations. Chargehopping rates were calculated within Marcus semi-empiric approach, employing both DFT calculations and MD simulations. The molecular docking computational predictions were complemented by the in vitro antibacterial activity evaluation.

  11. Obituary of Philip H. Cooper, MD.

    Science.gov (United States)

    Patterson, James W; Wick, Mark R; Mills, Stacey E

    2015-08-01

    Dermatopathology lost a giant in the field with the death of Philip H. Cooper, MD, on Friday, January 30, 2015. The following obituary represents a celebration of his life and his contributions to our field.

  12. Calculation of the Dynamic Characteristics of an Electric Arc Subjected to Forced Extinction

    Science.gov (United States)

    Nekrasov, S. A.

    2016-11-01

    Models and methods of calculating the currents in a free-burning arc and in an arc in an arc chute with magnetic blow and the voltages across them in the process of their extinction are considered. A comparison of calculation and experimental data has been performed.

  13. SU-E-T-465: Dose Calculation Method for Dynamic Tumor Tracking Using a Gimbal-Mounted Linac

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, S; Inoue, T; Kurokawa, C; Usui, K; Sasai, K [Juntendo University, Bunkyo, Tokyo, JP (Japan); Utsunomiya, S [Niigata University, Niigata, Nigata, JP (Japan); Ebe, K [Joetsu General Hospital, Joetsu, Niigata, JP (Japan)

    2014-06-01

    Purpose: Dynamic tumor tracking using the gimbal-mounted linac (Vero4DRT, Mitsubishi Heavy Industries, Ltd., Japan) has been available when respiratory motion is significant. The irradiation accuracy of the dynamic tumor tracking has been reported to be excellent. In addition to the irradiation accuracy, a fast and accurate dose calculation algorithm is needed to validate the dose distribution in the presence of respiratory motion because the multiple phases of it have to be considered. A modification of dose calculation algorithm is necessary for the gimbal-mounted linac due to the degrees of freedom of gimbal swing. The dose calculation algorithm for the gimbal motion was implemented using the linear transformation between coordinate systems. Methods: The linear transformation matrices between the coordinate systems with and without gimbal swings were constructed using the combination of translation and rotation matrices. The coordinate system where the radiation source is at the origin and the beam axis along the z axis was adopted. The transformation can be divided into the translation from the radiation source to the gimbal rotation center, the two rotations around the center relating to the gimbal swings, and the translation from the gimbal center to the radiation source. After operating the transformation matrix to the phantom or patient image, the dose calculation can be performed as the no gimbal swing. The algorithm was implemented in the treatment planning system, PlanUNC (University of North Carolina, NC). The convolution/superposition algorithm was used. The dose calculations with and without gimbal swings were performed for the 3 × 3 cm{sup 2} field with the grid size of 5 mm. Results: The calculation time was about 3 minutes per beam. No significant additional time due to the gimbal swing was observed. Conclusions: The dose calculation algorithm for the finite gimbal swing was implemented. The calculation time was moderate.

  14. Ab initio calculations of phonon dispersion and lattice dynamics in TlGaTe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Jafarova, Vusala; Orudzhev, Guseyn; Alekperov, Oktay; Mamedov, Nazim; Abdullayev, Nadir; Najafov, Arzu [Institute of Physics (Innovation Sector), 33 H. Javid ave, Baku 1143 (Azerbaijan); Paucar, Raul [Institute of Physics (Innovation Sector), 33 H. Javid ave, Baku 1143 (Azerbaijan); Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016 (Japan); Shim, YongGu [Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531 (Japan); Wakita, Kazuki [Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016 (Japan)

    2015-06-15

    This work reports the results of DFT-based calculations of phonon spectra of TlGaTe{sub 2}. The dispersion of phonon bands was calculated along the directions of Brillouin zone (BZ) that include symmetry points. The calculated phonon frequencies at the centre of BZ were compared with those obtained by Raman spectroscopy with the aid of a confocal laser microscopy system. A fairly good agreement between the calculated and experimental data was found. Complimentary, molar heat capacity at constant volume and Debye temperature were calculated in the range 5/500 K on the base of the obtained phonon density of states. The obtained temperature dependencies were compared with available experimental data.The results of comparison were satisfactory. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Verification of new model for calculation of critical strain for the initialization of dynamic recrystallization using laboratory rolling

    Directory of Open Access Journals (Sweden)

    R. Fabík

    2009-10-01

    Full Text Available This paper presents a new model for calculation of critical strain for initialization of dynamic recrystallization. The new model reflects the history of forming in the deformation zone during rolling. In this region of restricted deformation, the strain rate curve for the surface of the strip exhibits two peaks. These are the two reasons why the onset of dynamic recrystallization DRX near the surface of the rolled part occurs later than in theory during strip rolling. The present model had been used in a program for simulation of forming processes with the aid of FEM and a comparison between the physical experiment and a mathematical model had been drawn.

  16. Phase equilibrium calculations of ternary liquid mixtures with binary interaction parameters and molecular size parameters determined from molecular dynamics.

    Science.gov (United States)

    Oh, Suk Yung; Bae, Young Chan

    2010-07-15

    The method presented in this paper was developed to predict liquid-liquid equilibria in ternary liquid mixtures by using a combination of a thermodynamic model and molecular dynamics simulations. In general, common classical thermodynamic models have many parameters which are determined by fitting a model with experimental data. This proposed method, however, provides a simple procedure for calculating liquid-liquid equilibria utilizing binary interaction parameters and molecular size parameters determined from molecular dynamics simulations. This method was applied to mixtures containing water, hydrocarbons, alcohols, chlorides, ketones, acids, and other organic liquids over various temperature ranges. The predicted results agree well with the experimental data without the use of adjustable parameters.

  17. An open source MATLAB program for fast numerical Feynman integral calculations for open quantum system dynamics on GPUs

    CERN Document Server

    Dattani, Nikesh S

    2012-01-01

    This MATLAB program calculates the dynamics of the reduced density matrix of an open quantum system modeled by the Feynman-Vernon model. The user gives the program a vector describing the coordinate of an open quantum system, a hamiltonian matrix describing its energy, and a spectral distribution function and temperature describing the environment's influence on it, in addition to the open quantum system's intial density matrix and a grid of times. With this, the program returns the reduced density matrix of the open quantum system at all (or some) moments specified by that grid of times. This overall calculation can be divided into two stages: the setup of the Feynman integral, and the actual calculation of the Feynman integral for time-propagation of the density matrix. When this program calculates this propagation on a multi-core CPU, it is this propagation that is usually the rate limiting step of the calculation, but when it is calculated on a GPU, the propagation is calculated so quickly that the setup ...

  18. A dynamic model for performance calculations of grid-connected horizontal axis wind turbines. Pt. 1; Description of the model

    Energy Technology Data Exchange (ETDEWEB)

    Sheinman, Y.; Rosen, A. (Technion-Israel Inst. of Tech., Haifa (Israel). Faculty of Aerospace Engineering)

    1991-01-01

    A new model for performance calculations of grid-connected horizontal axis wind turbines is presented. This model takes into account the important dynamic characteristics of the various components comprising the turbine system, including rotor, gear-box, generator, shafts, couplings and brakes, and the grid. There is a special effort to obtain an appropriate balance between efficiency and accuracy. The model is modular and thus offers an easy implementation of new sub-models for new components, or changing of existing sub-models. The complete model of the wind turbine system is nonlinear and thus complicated. Linearization of this model leads to an eigenvalue problem that helps in understanding the dynamic characteristics of the turbine. A special reduction technique helps in reducing the size of the model and as a result increasing the model efficiency without practically decreasing its accuracy for performance calculations. (author).

  19. Ab initio calculation of the dynamical properties of PPP and PPV

    OpenAIRE

    2006-01-01

    In this work, we have calculated the vibrational modes and frequencies of the crystalline PPP (in both the Pbam and Pnnm symmetries) and PPV (in the P21/c symmetry). Our results are in good agreement with the available experimental data. Also, we have calculated the temperature dependence of their specific heats at constant volume, and of their vibrational entropies. Based on our results, at high temperatures, the PPP is more stable in the Pnnm structure than in the Pbam one.

  20. Collision-induced light scattering spectra of krypton layer confined between graphite slabs - MD simulation

    Science.gov (United States)

    Dawid, A.; Wojcieszyk, D.; Gburski, Z.

    2016-12-01

    We have used the molecular dynamics (MD) simulation method to obtain the collision-induced light scattering spectra of the thin krypton layer confined between two parallel graphite slabs. The simulations have been made under constant density, pressure and temperature condition. We have investigated four thin krypton layers of the thickness ranging from 13 to 24 Å. The 2-, 3- and 4-body correlation functions of collision-induced polarizability anisotropy were calculated. The spectra of colliding krypton atoms were simulated as cosine Fourier transform of the total polarizability anisotropy correlation function. The calculated correlation functions and their spectra show substantial dependence on the distance between graphite slabs. The collision-induced light scattering spectrum of krypton bulk sample was also simulated and compared with the krypton layer between graphite walls. The striking differences between these two systems are observed. We have further extended our analysis of krypton movement between graphite slabs by calculating the mean square displacement functions and diffusion coefficients. The decrease of the diffusion of krypton atoms with the increasing distance between graphite walls has been found. The structure of krypton layer has been also investigated by calculating the density profile and pressure tension across the rift. The distance between graphite slabs, for which the highest mobility of krypton's atoms occurred, has been found.

  1. Calculation of the lattice dynamics and Raman spectra of copper zinc tin chalcogenides and comparison to experiments

    Science.gov (United States)

    Khare, Ankur; Himmetoglu, Burak; Johnson, Melissa; Norris, David J.; Cococcioni, Matteo; Aydil, Eray S.

    2012-04-01

    The electronic structure, lattice dynamics, and Raman spectra of the kesterite, stannite, and pre-mixed Cu-Au (PMCA) structures of Cu2ZnSnS4 (CZTS) and Cu2ZnSnSe4 (CZTSe) were calculated using density functional theory (DFT). Differences in longitudinal and transverse optical (LO-TO) splitting in kesterite, stannite, and PMCA structures can be used to differentiate them. The Γ-point phonon frequencies, which give rise to Raman scattering, exhibit small but measurable shifts, for these three structures. Experimentally measured Raman scattering from CZTS and CZTSe thin films were examined in light of DFT calculations and deconvoluted to explain subtle shifts and asymmetric line shapes often observed in CZTS and CZTSe Raman spectra. Raman spectroscopy in conjunction with ab initio calculations can be used to differentiate between kesterite, stannite, and PMCA structures of CZTS and CZTSe.

  2. Calculation of transient dynamic stress intensity factors at bimaterial interface cracks using a SBFEMbased frequency-domain approach

    Institute of Scientific and Technical Information of China (English)

    Z.J.YANG; A.J.DEEKS

    2008-01-01

    A frequency-domain approach based on the semi-analytical scaled boundary finite element method (SBFEM) was developed to calculate dynamic stress intensity factors (DSIFs) at bimaterial interface cracks subjected to transient loading. Be-cause the stress solutions of the SBFEM in the frequency domain are analytical in the radial direction, and the complex stress singularity at the bimaterial interface crack tip is explicitly represented in the stress solutions, the mixed-mode DSIFs were calculated directly by definition. The complex frequency-response functions of DSIFs were then used by the fast Fourier transform (FFT) and the inverse FFT to calculate time histories of DSIFs. A benchmark example was modelled. Good re-sults were obtained by modelling the example with a small number of degrees of freedom due to the semi-analytical nature of the SBFEM.

  3. Semiempirical and ab initio calculations versus dynamic NMR on conformational analysis of cyclohexyl-N,N-dimethylcarbamate

    Directory of Open Access Journals (Sweden)

    Basso Ernani A.

    2001-01-01

    Full Text Available Axial-equatorial conformational proportions for cyclohexyl-N,N-dimethyl carbamate have been measured, for the first time, by the Eliel method, ¹H and 13C dynamic nuclear magnetic resonance (DNMR. The results were compared against those determined by theoretical calculations. By the Eliel method at least five experimentally independent measureables were used in CCl4, CDCl3 and CD3CN. The ¹H and 13C low temperature experiments were performed in CF2Br2/CD2Cl2 . Semiempirical methods MNDO, AM1 and PM3 and ab initio molecular orbital calculations at the HF/STO-3G and HF/6-31G(d,p levels have been performed on the axial and equatorial conformers populations. All applied methods correctly predict the equatorial conformer preference over the axial one. The resulting equatorial preferences determined by NMR data and theoretical calculations are in good agreement.

  4. Dynamical real-space renormalization group calculations with a highly connected clustering scheme on disordered networks.

    Science.gov (United States)

    Balcan, D; Erzan, A

    2005-02-01

    We have defined a type of clustering scheme preserving the connectivity of the nodes in a network, ignored by the conventional Migdal-Kadanoff bond moving process. In high dimensions, our clustering scheme performs better for correlation length and dynamical critical exponents than the conventional Migdal-Kadanoff bond moving scheme. In two and three dimensions we find the dynamical critical exponents for the kinetic Ising model to be z=2.13 and z=2.09 , respectively, at the pure Ising fixed point. These values are in very good agreement with recent Monte Carlo results. We investigate the phase diagram and the critical behavior of randomly bond diluted lattices in d=2 and 3 in the light of this transformation. We also provide exact correlation exponent and dynamical critical exponent values on hierarchical lattices with power-law and Poissonian degree distributions.

  5. Floating substructure flexibility of large-volume 10MW offshore wind turbine platforms in dynamic calculations

    DEFF Research Database (Denmark)

    Borg, Michael; Hansen, Anders Melchior; Bredmose, Henrik

    2016-01-01

    to the extent that it becomes relevant to include in addition to the standard rigid body substructure modes which are typically described through linear radiation-diffraction theory. This paper describes a method for the inclusion of substructural flexibility in aero-hydro-servo-elastic dynamic simulations......Designing floating substructures for the next generation of 10MW and larger wind turbines has introduced new challenges in capturing relevant physical effects in dynamic simulation tools. In achieving technically and economically optimal floating substructures, structural flexibility may increase...

  6. Self-consistent molecular dynamics calculation of diffusion in higher n-alkanes

    Science.gov (United States)

    Kondratyuk, Nikolay D.; Norman, Genri E.; Stegailov, Vladimir V.

    2016-11-01

    Diffusion is one of the key subjects of molecular modeling and simulation studies. However, there is an unresolved lack of consistency between Einstein-Smoluchowski (E-S) and Green-Kubo (G-K) methods for diffusion coefficient calculations in systems of complex molecules. In this paper, we analyze this problem for the case of liquid n-triacontane. The non-conventional long-time tails of the velocity autocorrelation function (VACF) are found for this system. Temperature dependence of the VACF tail decay exponent is defined. The proper inclusion of the long-time tail contributions to the diffusion coefficient calculation results in the consistency between G-K and E-S methods. Having considered the major factors influencing the precision of the diffusion rate calculations in comparison with experimental data (system size effects and force field parameters), we point to hydrogen nuclear quantum effects as, presumably, the last obstacle to fully consistent n-alkane description.

  7. Structure and lattice dynamics of rare-earth ferroborate crystals: Ab initio calculation

    Science.gov (United States)

    Chernyshev, V. A.; Nikiforov, A. E.; Petrov, V. P.; Serdtsev, A. V.; Kashchenko, M. A.; Klimin, S. A.

    2016-08-01

    The ab initio calculation of the crystal structure and the phonon spectrum of crystals RFe3(BO3)4 ( R = Pr, Nd, Sm) has been performed in the framework of the density functional theory. The ion coordinates in the unit cell, the lattice parameters, the frequencies and the types of fundamental vibrations, and also the intensities of lines in the Raman spectrum and infrared reflection spectra have been found. The elastic constants of the crystals have been calculated. For low-frequency A 2 mode in PrFe3(BO3)4, a "seed" vibration frequency that strongly interacts with the electronic excitation on a praseodymium ion was found. The calculation results satisfactory agree with the experimental data.

  8. Free-Energy Calculations. A Mathematical Perspective

    Science.gov (United States)

    Pohorille, Andrzej

    2015-01-01

    Ion channels are pore-forming assemblies of transmembrane proteins that mediate and regulate ion transport through cell walls. They are ubiquitous to all life forms. In humans and other higher organisms they play the central role in conducting nerve impulses. They are also essential to cardiac processes, muscle contraction and epithelial transport. Ion channels from lower organisms can act as toxins or antimicrobial agents, and in a number of cases are involved in infectious diseases. Because of their important and diverse biological functions they are frequent targets of drug action. Also, simple natural or synthetic channels find numerous applications in biotechnology. For these reasons, studies of ion channels are at the forefront of biophysics, structural biology and cellular biology. In the last decade, the increased availability of X-ray structures has greatly advanced our understanding of ion channels. However, their mechanism of action remains elusive. This is because, in order to assist controlled ion transport, ion channels are dynamic by nature, but X-ray crystallography captures the channel in a single, sometimes non-native state. To explain how ion channels work, X-ray structures have to be supplemented with dynamic information. In principle, molecular dynamics (MD) simulations can aid in providing this information, as this is precisely what MD has been designed to do. However, MD simulations suffer from their own problems, such as inability to access sufficiently long time scales or limited accuracy of force fields. To assess the reliability of MD simulations it is only natural to turn to the main function of channels - conducting ions - and compare calculated ionic conductance with electrophysiological data, mainly single channel recordings, obtained under similar conditions. If this comparison is satisfactory it would greatly increase our confidence that both the structures and our computational methodologies are sufficiently accurate. Channel

  9. Dynamical basis sets for algebraic variational calculations in quantum-mechanical scattering theory

    Science.gov (United States)

    Sun, Yan; Kouri, Donald J.; Truhlar, Donald G.; Schwenke, David W.

    1990-01-01

    New basis sets are proposed for linear algebraic variational calculations of transition amplitudes in quantum-mechanical scattering problems. These basis sets are hybrids of those that yield the Kohn variational principle (KVP) and those that yield the generalized Newton variational principle (GNVP) when substituted in Schlessinger's stationary expression for the T operator. Trial calculations show that efficiencies almost as great as that of the GNVP and much greater than the KVP can be obtained, even for basis sets with the majority of the members independent of energy.

  10. A Simple Molecular Dynamics Lab to Calculate Viscosity as a Function of Temperature

    Science.gov (United States)

    Eckler, Logan H.; Nee, Matthew J.

    2016-01-01

    A simple molecular dynamics experiment is described to demonstrate transport properties for the undergraduate physical chemistry laboratory. The AMBER package is used to monitor self-diffusion in "n"-hexane. Scripts (available in the Supporting Information) make the process considerably easier for students, allowing them to focus on the…

  11. Dielectric Constant and Structure of Liquid 18-Crown-6 Calculated from Molecular Dynamics Simulations

    NARCIS (Netherlands)

    Leuwerink, F.T.H.; Briels, W.J.

    1997-01-01

    The results are presented for molecular dynamics simulations of liquid 18-crown-6 using different potential models. The results offer the possibility of investigating the influence of the flexibility of the dihedral angles and the effects of the united atom approach. The radial distribution function

  12. A Simple Molecular Dynamics Lab to Calculate Viscosity as a Function of Temperature

    Science.gov (United States)

    Eckler, Logan H.; Nee, Matthew J.

    2016-01-01

    A simple molecular dynamics experiment is described to demonstrate transport properties for the undergraduate physical chemistry laboratory. The AMBER package is used to monitor self-diffusion in "n"-hexane. Scripts (available in the Supporting Information) make the process considerably easier for students, allowing them to focus on the…

  13. Combined atomistic-continuum model for simulation of laser interaction with metals: application in the calculation of melting thresholds in Ni targets of varying thickness

    Science.gov (United States)

    Ivanov, D. S.; Zhigilei, L. V.

    The threshold laser fluence for the onset of surface melting is calculated for Ni films of different thicknesses and for a bulk Ni target using a combined atomistic-continuum computational model. The model combines the classical molecular dynamics (MD) method for simulation of non-equilibrium processes of lattice superheating and fast phase transformations with a continuum description of the laser excitation and subsequent relaxation of the conduction band electrons based on the two-temperature model (TTM). In the hybrid TTM-MD method, MD substitutes the TTM equation for the lattice temperature, and the diffusion equation for the electron temperature is solved simultaneously with MD integration of the equations of motion of atoms. The dependence of the threshold fluence on the film thickness predicted in TTM-MD simulations qualitatively agrees with TTM calculations, while the values of the thresholds for thick films and bulk targets are 10% higher in TTM-MD. The quantitative differences between the predictions of TTM and TTM-MD demonstrate that the kinetics of laser melting as well as the energy partitioning between the thermal energy of atomic vibrations and energy of the collective atomic motion driven by the relaxation of the laser-induced pressure should be taken into account in interpretation of experimental results on surface melting.

  14. A dynamic aerodynamic resistance approach to calculate high resolution sensible heat fluxes in urban areas

    Science.gov (United States)

    Crawford, Ben; Grimmond, Sue; Kent, Christoph; Gabey, Andrew; Ward, Helen; Sun, Ting; Morrison, William

    2017-04-01

    Remotely sensed data from satellites have potential to enable high-resolution, automated calculation of urban surface energy balance terms and inform decisions about urban adaptations to environmental change. However, aerodynamic resistance methods to estimate sensible heat flux (QH) in cities using satellite-derived observations of surface temperature are difficult in part due to spatial and temporal variability of the thermal aerodynamic resistance term (rah). In this work, we extend an empirical function to estimate rah using observational data from several cities with a broad range of surface vegetation land cover properties. We then use this function to calculate spatially and temporally variable rah in London based on high-resolution (100 m) land cover datasets and in situ meteorological observations. In order to calculate high-resolution QH based on satellite-observed land surface temperatures, we also develop and employ novel methods to i) apply source area-weighted averaging of surface and meteorological variables across the study spatial domain, ii) calculate spatially variable, high-resolution meteorological variables (wind speed, friction velocity, and Obukhov length), iii) incorporate spatially interpolated urban air temperatures from a distributed sensor network, and iv) apply a modified Monte Carlo approach to assess uncertainties with our results, methods, and input variables. Modeled QH using the aerodynamic resistance method is then compared to in situ observations in central London from a unique network of scintillometers and eddy-covariance measurements.

  15. Comparative MD analysis of the stability of transthyretin providing insight into the fibrillation mechanism

    DEFF Research Database (Denmark)

    Sørensen, Jesper; Hamelberg, Donald; Schiøtt, Birgit

    2007-01-01

    used all-atom MD simulation and free energy calculations to study the initial phase of this process. We have calculated the free energy changes of the initial tetramer dissociation under different conditions and in the presence of thyroxine. We show that tetramer formation is indeed only...

  16. MD5算法的分析和改进%Analysis and Improvement of .MD5 Algorithm

    Institute of Scientific and Technical Information of China (English)

    么丽颖

    2011-01-01

    首先研究了MD5算法,并总结了MD5算法的特点及性能,在研究MD5算法的基础之上,提出了MD5改进加密算法.最后,对MD5算法与MD5改进算法对应于相关数据、性能进行了比较.%At first , MD5 algorithm is researched, and the characteristic and capability of the MD5 are summaried in the paper. The improved MD5 algorithm is put forward based on the research of the MDS. At last, the contrast between MD5 algorithm and the improved MD5 algorithm in related datum and capability are put forward.

  17. New Message Differences for Collision Attacks on MD4 and MD5

    Science.gov (United States)

    Sasaki, Yu; Wang, Lei; Kunihiro, Noboru; Ohta, Kazuo

    In 2005, collision resistance of several hash functions was broken by Wang et al. The strategy of determining message differences is the most important part of collision attacks against hash functions. So far, many researchers have tried to analyze Wang et al.'s method and proposed improved collision attacks. Although several researches proposed improved attacks, all improved results so far were based on the same message differences proposed by Wang et al. In this paper, we propose new message differences for collision attacks on MD4 and MD5. Our message differences of MD4 can generate a collision with complexity of less than two MD4 computations, which is faster than the original Wang et al.'s attack, and moreover, than the all previous attacks. This is the first result that improves the complexity of collision attack by using different message differences from Wang et al.'s. Regarding MD5, so far, no other message difference from Wang et al.'s is known. Therefore, study for constructing method of other message differences on MD5 should be interesting. Our message differences of MD5 generates a collision with complexity of 242 MD5 computations, which is slower than the latest best attack. However, since our attack needs only 1 bit difference, it has some advantages in terms of message freedom of collision messages.

  18. Floating substructure flexibility of large-volume 10MW offshore wind turbine platforms in dynamic calculations

    Science.gov (United States)

    Borg, Michael; Melchior Hansen, Anders; Bredmose, Henrik

    2016-09-01

    Designing floating substructures for the next generation of 10MW and larger wind turbines has introduced new challenges in capturing relevant physical effects in dynamic simulation tools. In achieving technically and economically optimal floating substructures, structural flexibility may increase to the extent that it becomes relevant to include in addition to the standard rigid body substructure modes which are typically described through linear radiation-diffraction theory. This paper describes a method for the inclusion of substructural flexibility in aero-hydro-servo-elastic dynamic simulations for large-volume substructures, including wave-structure interactions, to form the basis of deriving sectional loads and stresses within the substructure. The method is applied to a case study to illustrate the implementation and relevance. It is found that the flexible mode is significantly excited in an extreme event, indicating an increase in predicted substructure internal loads.

  19. Effective field theory calculation of conservative binary dynamics at third post-Newtonian order

    CERN Document Server

    Foffa, S

    2011-01-01

    We reproduce the two-body gravitational conservative dynamics at third post-Newtonian order for spin-less sources by using the effective field theory methods for the gravitationally bound two-body system, proposed by Goldberger and Rothstein. This result has been obtained by automatizing the computation of Feynman amplitudes within a Mathematica algorithm, paving the way for higher-order computations not yet performed by traditional methods.

  20. Should Thermostatted Ring Polymer Molecular Dynamics be used to calculate reaction rates?

    CERN Document Server

    Hele, Timothy J H

    2015-01-01

    We apply Thermostatted Ring Polymer Molecular Dynamics (TRPMD), a recently-proposed approximate quantum dynamics method, to the computation of thermal reaction rates. Its short-time Transition-State Theory (TST) limit is identical to rigorous Quantum Transition-State Theory, and we find that its long-time limit is independent of the location of the dividing surface. TRPMD rate theory is then applied to one-dimensional model systems, the atom-diatom bimolecular reactions H+H$_2$, D+MuH and F+H$_2$, and the prototypical polyatomic reaction H+CH$_4$. Above the crossover temperature, the TRPMD rate is virtually invariant to the strength of the friction applied to the internal ring-polymer normal modes, and beneath the crossover temperature the TRPMD rate generally decreases with increasing friction, in agreement with the predictions of Kramers theory. We therefore find that TRPMD is less accurate than Ring Polymer Molecular Dynamics (RPMD) for symmetric reactions, and in certain asymmetric systems closer to the q...

  1. Should thermostatted ring polymer molecular dynamics be used to calculate thermal reaction rates?

    Energy Technology Data Exchange (ETDEWEB)

    Hele, Timothy J. H., E-mail: tjhh2@cam.ac.uk [Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (United Kingdom); Suleimanov, Yury V. [Computation-based Science and Technology Research Center, Cyprus Institute, 20 Kavafi St., Nicosia 2121 (Cyprus); Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139 (United States)

    2015-08-21

    We apply Thermostatted Ring Polymer Molecular Dynamics (TRPMD), a recently proposed approximate quantum dynamics method, to the computation of thermal reaction rates. Its short-time transition-state theory limit is identical to rigorous quantum transition-state theory, and we find that its long-time limit is independent of the location of the dividing surface. TRPMD rate theory is then applied to one-dimensional model systems, the atom-diatom bimolecular reactions H + H{sub 2}, D + MuH, and F + H{sub 2}, and the prototypical polyatomic reaction H + CH{sub 4}. Above the crossover temperature, the TRPMD rate is virtually invariant to the strength of the friction applied to the internal ring-polymer normal modes, and beneath the crossover temperature the TRPMD rate generally decreases with increasing friction, in agreement with the predictions of Kramers theory. We therefore find that TRPMD is approximately equal to, or less accurate than, ring polymer molecular dynamics for symmetric reactions, and for certain asymmetric systems and friction parameters closer to the quantum result, providing a basis for further assessment of the accuracy of this method.

  2. FeynDyn: A MATLAB program for fast numerical Feynman integral calculations for open quantum system dynamics on GPUs

    Science.gov (United States)

    Dattani, Nikesh S.

    2013-12-01

    This MATLAB program calculates the dynamics of the reduced density matrix of an open quantum system modeled either by the Feynman-Vernon model or the Caldeira-Leggett model. The user gives the program a Hamiltonian matrix that describes the open quantum system as if it were in isolation, a matrix of the same size that describes how that system couples to its environment, and a spectral distribution function and temperature describing the environment’s influence on it, in addition to the open quantum system’s initial density matrix and a grid of times. With this, the program returns the reduced density matrix of the open quantum system at all moments specified by that grid of times (or just the last moment specified by the grid of times if the user makes this choice). This overall calculation can be divided into two stages: the setup of the Feynman integral, and the actual calculation of the Feynman integral for time propagation of the density matrix. When this program calculates this propagation on a multi-core CPU, it is this propagation that is usually the rate-limiting step of the calculation, but when it is calculated on a GPU, the propagation is calculated so quickly that the setup of the Feynman integral can actually become the rate-limiting step. The overhead of transferring information from the CPU to the GPU and back seems to have a negligible effect on the overall runtime of the program. When the required information cannot fit on the GPU, the user can choose to run the entire program on a CPU. Catalogue identifier: AEPX_v1_0. Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEPX_v1_0.html. Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland. Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html. No. of lines in distributed program, including test data, etc.: 703. No. of bytes in distributed program, including test data, etc.: 11026. Distribution format: tar.gz. Programming

  3. Lattice dynamics of diamond-like crystals from a tight-binding calculation of valence bands

    Science.gov (United States)

    Roman, R.; Pascual, J.

    1988-11-01

    We report on the results of calculations of the TA(X) phonon energy in the series of C, Si, Ge, Sn homopolar crystals. The starting point is the tight-binding model for the electronic Hamiltonian where Es and Ep are taken to be the free atomic energies while the interatomic matrix elements are described by a universal d-2 Harrison's scaling law. The change of the total energy with the atomic distortion is given in terms of changes in the valence band energy and changes in the overlap energy. The numerical calculations for Si gives U1 = -21.77eV and U2 = 60.44eV, close to the values predicted by Harrison U1 = -17.76eV and U2 = 53.28eV. The calculations of the TA(X) phonon energy gives (in the case the interatomic distances are held constant): 26.09 THz (C), 6.46 THz (Si), 3.37THz (Ge) and 1.91 THz (Sn), in reasonably good agreement with the experimental results 24.1 THz (C), 4.49 THz (Si), 2.39 THz (Ge) and 1.26 THz (Sn).

  4. A stable algorithm for calculating phase equilibria with capillarity at specified moles, volume and temperature using a dynamic model

    KAUST Repository

    Kou, Jisheng

    2017-09-30

    Capillary pressure can significantly affect the phase properties and flow of liquid-gas fluids in porous media, and thus, the phase equilibrium calculation incorporating capillary pressure is crucial to simulate such problems accurately. Recently, the phase equilibrium calculation at specified moles, volume and temperature (NVT-flash) becomes an attractive issue. In this paper, capillarity is incorporated into the phase equilibrium calculation at specified moles, volume and temperature. A dynamical model for such problem is developed for the first time by using the laws of thermodynamics and Onsager\\'s reciprocal principle. This model consists of the evolutionary equations for moles and volume, and it can characterize the evolutionary process from a non-equilibrium state to an equilibrium state in the presence of capillarity effect at specified moles, volume and temperature. The phase equilibrium equations are naturally derived. To simulate the proposed dynamical model efficiently, we adopt the convex-concave splitting of the total Helmholtz energy, and propose a thermodynamically stable numerical algorithm, which is proved to preserve the second law of thermodynamics at the discrete level. Using the thermodynamical relations, we derive a phase stability condition with capillarity effect at specified moles, volume and temperature. Moreover, we propose a stable numerical algorithm for the phase stability testing, which can provide the feasible initial conditions. The performance of the proposed methods in predicting phase properties under capillarity effect is demonstrated on various cases of pure substance and mixture systems.

  5. Realistic interatomic potential for MD simulations

    CERN Document Server

    Eremeichenkova, Y V; Morozov, A F; Eremeichenkova, Yu.V.

    2002-01-01

    The coefficients of interatomic potential of simple form Exp-6 for neon are obtained. Repulsive part is calculated ab-initio in the Hartree-Fock approximation using the basis of atomic orbitals orthogonalized exactly on different lattice sites. Attractive part is determined empirically using single fitting parameter. The potential obtained describes well the equation of state and elastic moduli of neon crystal in wide range of interatomic distances and it is appropriate for molecular dynamic simulations of high temperature properties and phenomena in crystals and liquids.

  6. Estimation of Hydrogen-Exchange Protection Factors from MD Simulation Based on Amide Hydrogen Bonding Analysis

    Science.gov (United States)

    Park, In-Hee; Venable, John D.; Steckler, Caitlin; Cellitti, Susan E.; Lesley, Scott A.; Spraggon, Glen; Brock, Ansgar

    2015-01-01

    Hydrogen exchange (HX) studies have provided critical insight into our understanding of protein folding, structure and dynamics. More recently, Hydrogen Exchange Mass Spectrometry (HX-MS) has become a widely applicable tool for HX studies. The interpretation of the wealth of data generated by HX-MS experiments as well as other HX methods would greatly benefit from the availability of exchange predictions derived from structures or models for comparison with experiment. Most reported computational HX modeling studies have employed solvent-accessible-surface-area based metrics in attempts to interpret HX data on the basis of structures or models. In this study, a computational HX-MS prediction method based on classification of the amide hydrogen bonding modes mimicking the local unfolding model is demonstrated. Analysis of the NH bonding configurations from Molecular Dynamics (MD) simulation snapshots is used to determine partitioning over bonded and non-bonded NH states and is directly mapped into a protection factor (PF) using a logistics growth function. Predicted PFs are then used for calculating deuteration values of peptides and compared with experimental data. Hydrogen exchange MS data for Fatty acid synthase thioesterase (FAS-TE) collected for a range of pHs and temperatures was used for detailed evaluation of the approach. High correlation between prediction and experiment for observable fragment peptides is observed in the FAS-TE and additional benchmarking systems that included various apo/holo proteins for which literature data were available. In addition, it is shown that HX modeling can improve experimental resolution through decomposition of in-exchange curves into rate classes, which correlate with prediction from MD. Successful rate class decompositions provide further evidence that the presented approach captures the underlying physical processes correctly at the single residue level. This assessment is further strengthened in a comparison of

  7. Measuring and Calculative Complex for Registration of Quasi-Static and Dynamic Processes of Electromagnetic Irradiation

    Directory of Open Access Journals (Sweden)

    V. I. Ovchinnikov

    2007-01-01

    Full Text Available The paper is devoted to the development of measuring device to register dynamic processes of electromagnetic irradiation during the treatment of materials with energy of explosion. Standard units to register main parameters of the explosion do not allow predict and control results of the process. So, to overcome disadvantages of former control units a new one has been developed applying Hall’s sensors. The device developed allows effectively register of the inductive component of the electromagnetic irradiation in wide range of temperature for many shot-time processes.

  8. Dynamic NMR under nonstationary conditions: Theoretical model, numerical calculation, and potential of application.

    Science.gov (United States)

    Babailov, S P; Purtov, P A; Fomin, E S

    2016-08-01

    An expression has been derived for the time dependence of the NMR line shape for systems with multi-site chemical exchange in the absence of spin-spin coupling, in a zero saturation limit. The dynamics of variation of the NMR line shape with time is considered in detail for the case of two-site chemical exchange. Mathematical programs have been designed for numerical simulation of the NMR spectra of chemical exchange systems. The analytical expressions obtained are useful for NMR line shape simulations for systems with photoinduced chemical exchange.

  9. A dynamic model to calculate cadmium concentrations in bovine tissues from basic soil characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Waegeneers, Nadia, E-mail: nadia.waegeneers@var.fgov.be; Ruttens, Ann; De Temmerman, Ludwig

    2011-06-15

    A chain model was developed to calculate the flow of cadmium from soil, drinking water and feed towards bovine tissues. The data used for model development were tissue Cd concentrations of 57 bovines and Cd concentrations in soil, feed and drinking water, sampled at the farms were the bovines were reared. Validation of the model occurred with a second set of measured tissue Cd concentrations of 93 bovines of which age and farm location were known. The exposure part of the chain model consists of two parts: (1) a soil-plant transfer model, deriving cadmium concentrations in feed from basic soil characteristics (pH and organic matter content) and soil Cd concentrations, and (2) bovine intake calculations, based on typical feed and water consumption patterns for cattle and Cd concentrations in feed and drinking water. The output of the exposure model is an animal-specific average daily Cd intake, which is then taken forward to a kinetic uptake model in which time-dependent Cd concentrations in bovine tissues are calculated. The chain model was able to account for 65%, 42% and 32% of the variation in observed kidney, liver and meat Cd concentrations in the validation study. - Research highlights: {yields} Cadmium transfer from soil, drinking water and feed to bovine tissues was modeled. {yields} The model was based on 57 bovines and corresponding feed and soil Cd concentrations. {yields} The model was validated with an independent data set of 93 bovines. {yields} The model explained 65% of variation in kidney Cd in the validation study.

  10. Quantum dynamics calculation of reaction probability for H+Cl2→HCl+Cl

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    We present in this paper a time-dependent quantum wave packet calculation of the initial state selected reaction probability for H + Cl2 based on the GHNS potential energy surface with total angular momentum J = 0. The effects of the translational, vibrational and rotational excitation of Cl2 on the reaction probability have been investigated. In a broad region of the translational energy, the rotational excitation enhances the reaction probability while the vibrational excitation depresses the reaction probability. The theoretical results agree well with the fact that it is an early down-hill reaction.

  11. Quantum dynamics calculation of reaction probability for H+Cl2→HC1+Cl

    Institute of Scientific and Technical Information of China (English)

    王胜龙; 赵新生

    2001-01-01

    We present in this paper a time-dependent quantum wave packet calculation of the initial state selected reaction probability for H + CI2 based on the GHNS potential energy surface with total angular momentum J= 0. The effects of the translational, vibrational and rotational excitation of CI2 on the reaction probability have been investigated. In a broad region of the translational energy, the rotational excitation enhances the reaction probability while the vibrational excitation depresses the reaction probability. The theoretical results agree well with the fact that it is an early down-hill reaction.

  12. Net charge changes in the calculation of relative ligand-binding free energies via classical atomistic molecular dynamics simulation.

    Science.gov (United States)

    Reif, Maria M; Oostenbrink, Chris

    2014-01-30

    The calculation of binding free energies of charged species to a target molecule is a frequently encountered problem in molecular dynamics studies of (bio-)chemical thermodynamics. Many important endogenous receptor-binding molecules, enzyme substrates, or drug molecules have a nonzero net charge. Absolute binding free energies, as well as binding free energies relative to another molecule with a different net charge will be affected by artifacts due to the used effective electrostatic interaction function and associated parameters (e.g., size of the computational box). In the present study, charging contributions to binding free energies of small oligoatomic ions to a series of model host cavities functionalized with different chemical groups are calculated with classical atomistic molecular dynamics simulation. Electrostatic interactions are treated using a lattice-summation scheme or a cutoff-truncation scheme with Barker-Watts reaction-field correction, and the simulations are conducted in boxes of different edge lengths. It is illustrated that the charging free energies of the guest molecules in water and in the host strongly depend on the applied methodology and that neglect of correction terms for the artifacts introduced by the finite size of the simulated system and the use of an effective electrostatic interaction function considerably impairs the thermodynamic interpretation of guest-host interactions. Application of correction terms for the various artifacts yields consistent results for the charging contribution to binding free energies and is thus a prerequisite for the valid interpretation or prediction of experimental data via molecular dynamics simulation. Analysis and correction of electrostatic artifacts according to the scheme proposed in the present study should therefore be considered an integral part of careful free-energy calculation studies if changes in the net charge are involved.

  13. Born Oppenheimer Molecular Dynamics calculation of the νO-H IR spectra for acetic acid cyclic dimers

    Science.gov (United States)

    El Amine Benmalti, Mohamed; Krallafa, Abdelghani; Gaigeot, Marie-Pierre

    2015-01-01

    Both ab initio molecular dynamics simulations based on the Born-Oppenheimer approach calculations and a quantum theoretical model are used in order to study the IR spectrum of the acetic acid dimer in the gas phase. The theoretical model is taking into account the strong anharmonic coupling, Davydov coupling, multiple Fermi resonances between the first harmonics of some bending modes and the first excited state of the symmetric combination of the two vO-H modes and the quantum direct and indirect relaxation. The IR spectra obtained from DFT-based molecular dynamics is compared with our theoretical lineshape and with experiment. Note that in a previous work we have shown that our approach reproduces satisfactorily the main futures of the IR experimental lineshapes of the acetic acid dimer [Mohamed el Amine Benmalti, Paul Blaise, H. T. Flakus, Olivier Henri-Rousseau, Chem Phys, 320(2006) 267-274.].

  14. Multi-scale calculation of settling speed of coarse particles by accelerated Stokesian dynamics without adjustable parameter

    Institute of Scientific and Technical Information of China (English)

    Long Wang; Jiachun Li; Jifu Zhou

    2009-01-01

    The calculation of settling speed of coarse parti-cles is firstly addressed, with accelerated Stokesian dynamics without adjustable parameters, in which far field force act-ing on the particle instead of particle velocity is chosen as dependent variables to consider inter-particle hydrodynamic interactions. The sedimentation of a simple cubic array of spherical particles is simulated and compared to the results available to verify and validate the numerical code and computational scheme. The improved method keeps the same computational cost of the order O(Nlog N) as usual accelerated Stokesian dynamics does. Then, more realistic random suspension sedimentation is investigated with the help of Mont Carlo method. The computational results agree well with experimental fitting. Finally, the sedimentation of finer cohesive particle, which is often observed in estuary environment, is presented as a further application in coastal engineering.

  15. Photochromic Mechanism of a Bridged Diarylethene: Combined Electronic Structure Calculations and Nonadiabatic Dynamics Simulations.

    Science.gov (United States)

    Wang, Ya-Ting; Gao, Yuan-Jun; Wang, Qian; Cui, Ganglong

    2017-02-02

    Intramolecularly bridged diarylethenes exhibit improved photocyclization quantum yields because the anti-syn isomerization that originally suppresses photocyclization in classical diarylethenes is blocked. Experimentally, three possible channels have been proposed to interpret experimental observation, but many details of photochromic mechanism remain ambiguous. In this work we have employed a series of electronic structure methods (OM2/MRCI, DFT, TDDFT, RI-CC2, DFT/MRCI, and CASPT2) to comprehensively study excited state properties, photocyclization, and photoreversion dynamics of 1,2-dicyano[2,2]metacyclophan-1-ene. On the basis of optimized stationary points and minimum-energy conical intersections, we have refined experimentally proposed photochromic mechanism. Only an S1/S0 minimum-energy conical intersection is located; thus, we can exclude the third channel experimentally proposed. In addition, we find that both photocyclization and photoreversion processes use the same S1/S0 conical intersection to decay the S1 system to the S0 state, so we can unify the remaining two channels into one. These new insights are verified by our OM2/MRCI nonadiabatic dynamics simulations. The S1 excited-state lifetimes of photocyclization and photoreversion are estimated to be 349 and 453 fs, respectively, which are close to experimentally measured values: 240 ± 60 and 250 fs in acetonitrile solution. The present study not only interprets experimental observations and refines previously proposed mechanism but also provides new physical insights that are valuable for future experiments.

  16. A DYNAMIC APPROACH TO CALCULATE SHADOW PRICES OF WATER RESOURCES FOR NINE MAJOR RIVERS IN CHINA

    Institute of Scientific and Technical Information of China (English)

    Jing HE; Xikang CHEN; Yong SHI

    2006-01-01

    China is experiencing from serious water issues. There are many differences among the Nine Major Rivers basins of China in the construction of dikes, reservoirs, floodgates, flood discharge projects, flood diversion projects, water ecological construction, water conservancy management, etc.The shadow prices of water resources for Nine Major Rivers can provide suggestions to the Chinese government. This article develops a dynamic shadow prices approach based on a multiperiod input-output optimizing model. Unlike previous approaches, the new model is based on the dynamic computable general equilibrium (DCGE) model to solve the problem of marginal long-term prices of water resources.First, definitions and algorithms of DCGE are elaborated. Second, the results of shadow prices of water resources for Nine Major Rivers in 1949-2050 in China using the National Water Conservancy input-holding-output table for Nine Major Rivers in 1999 are listed. A conclusion of this article is that the shadow prices of water resources for Nine Major Rivers are largely based on the extent of scarcity.Selling prices of water resources should be revised via the usage of parameters representing shadow prices.

  17. Regulation of the Dynamic Live Load Factor for Calculation of Bridge Structures on High-Speed Railway Mainlines

    Science.gov (United States)

    Dyachenko, Leonid K.; Benin, Andrey V.

    2017-06-01

    When the high-speed railway traffic is being organized, it becomes necessary to elaborate bridge design standards for high-speed railways (HSR). Methodology of studying the issues of HSR bridge design is based on the comprehensive analysis of domestic research as well as international experience in design, construction and operation of high-speed railways. Serious requirements are imposed on the HSR artificial structures, which raise a number of scientific tasks associated mainly with the issues of the dynamic interaction of the rolling stock and the bridge elements. To ensure safety of traffic and reliability of bridges during the whole period of operation one needs to resolve the dynamic problems of various types of high-speed trains moving along the structures. The article analyses dependences of the magnitude of inertial response on the external stress parameters and proposes a simplified method of determination of the dynamic live load factor caused by the passage of high-speed trains. The usefulness of the given research arises from the reduction of complexity of the complicated dynamic calculations needed to describe a high-speed train travelling along the artificial structures.

  18. Calculations of hyperfine coupling constant of copper(II) in aqueous environment. Finite temperature molecular dynamics and relativistic effects.

    Science.gov (United States)

    Malček, Michal; Bučinský, Lukáš; Valko, Marián; Biskupič, Stanislav

    2015-09-01

    The presented paper is focused on the calculation of hyperfine coupling constants (HFCC) of Cu (2+) ion in water environment. To simulate the conditions of the electron paramagnetic resonance (EPR) experiment in aqueous phase, molecular dynamics using the density functional theory (DFT) was employed. In total three different functionals (BLYP, B3LYP, M06) were employed for studying their suitability in describing coordination of Cu (2+) by water molecules. The system of our interest was composed of one Cu (2+) cation surrounded by a selected number (between thirty and fifty) of water molecules. Besides the non-relativistic HFCCs (Fermi contact terms) of Cu (2+) also the four-component relativistic HFCC calculations are presented. The importance of the proper evaluation of HFCCs, the inclusion of spin-orbit term, for Cu (2+) containing systems (Neese, J. Chem. Phys. 118, 3939 2003; Almeida et al., Chem. Phys. 332, 176 2007) is confirmed at the relativistic four-component level of theory.

  19. Lattice dynamics and electron-phonon coupling calculations using nondiagonal supercells

    Science.gov (United States)

    Lloyd-Williams, Jonathan; Monserrat, Bartomeu

    Quantities derived from electron-phonon coupling matrix elements require a fine sampling of the vibrational Brillouin zone. Converged results are typically not obtainable using the direct method, in which a perturbation is frozen into the system and the total energy derivatives are calculated using a finite difference approach, because the size of simulation cell needed is prohibitively large. We show that it is possible to determine the response of a periodic system to a perturbation characterized by a wave vector with reduced fractional coordinates (m1 /n1 ,m2 /n2 ,m3 /n3) using a supercell containing a number of primitive cells equal to the least common multiple of n1, n2, and n3. This is accomplished by utilizing supercell matrices containing nonzero off-diagonal elements. We present the results of electron-phonon coupling calculations using the direct method to sample the vibrational Brillouin zone with grids of unprecedented size for a range of systems, including the canonical example of diamond. We also demonstrate that the use of nondiagonal supercells reduces by over an order of magnitude the computational cost of obtaining converged vibrational densities of states and phonon dispersion curves. J.L.-W. is supported by the Engineering and Physical Sciences Research Council (EPSRC). B.M. is supported by Robinson College, Cambridge, and the Cambridge Philosophical Society. This work was supported by EPSRC Grants EP/J017639/1 and EP/K013564/1.

  20. Path integral molecular dynamics calculations of the H6+ and D6+ clusters on an ab initio potential energy surface

    Science.gov (United States)

    Kakizaki, Akira; Takayanagi, Toshiyuki; Shiga, Motoyuki

    2007-11-01

    Path integral molecular dynamics simulations for the H6+ and D6+ cluster cations have been carried out in order to understand the floppy nature of their molecular structure due to quantum-mechanical fluctuation. A full-dimensional analytical potential energy surface for the ground electronic state of H6+ has been developed on the basis of accurate ab initio electronic structure calculations at the CCSD(T)/cc-pVTZ level. It is found that the outer H 2(D 2) nuclei rotate almost freely and that the probability density distributions of the central H 2(D 2) nuclei show strong spatial delocalization.

  1. Calculation of Elastic Constants of Ag/Pd Superlattice Thin Films by Molecular Dynamics with Many-Body Potentials

    Institute of Scientific and Technical Information of China (English)

    GAO Ning; LAI Wen-Sheng

    2006-01-01

    @@ The calculation of elastic constants of Ag/Pd superlattice thin films by molecular dynamics simulations with many-body potentials is presented. It reveals that the elastic constants C11 and C55 increase with decreasing modulation wavelength A of the films, which is consistent with experiments. However, the change of C11 and C55 with A is found to be around the values determined by a rule of mixture using bulk elastic constants of metals.No supermodulus effect is observed and it is due to cancellation between enhanced and reduced contributions to elastic constants from Ag and Pd layers subjected to compressive and tensile strains, respectively.

  2. POLYANA-A tool for the calculation of molecular radial distribution functions based on Molecular Dynamics trajectories

    Science.gov (United States)

    Dimitroulis, Christos; Raptis, Theophanes; Raptis, Vasilios

    2015-12-01

    We present an application for the calculation of radial distribution functions for molecular centres of mass, based on trajectories generated by molecular simulation methods (Molecular Dynamics, Monte Carlo). When designing this application, the emphasis was placed on ease of use as well as ease of further development. In its current version, the program can read trajectories generated by the well-known DL_POLY package, but it can be easily extended to handle other formats. It is also very easy to 'hack' the program so it can compute intermolecular radial distribution functions for groups of interaction sites rather than whole molecules.

  3. Computation of shear viscosity of colloidal suspensions by SRD-MD

    Energy Technology Data Exchange (ETDEWEB)

    Laganapan, A. M. K.; Videcoq, A., E-mail: arnaud.videcoq@unilim.fr; Bienia, M. [SPCTS, UMR 7315, ENSCI, CNRS, Centre Européen de la Céramique, 12 rue Atlantis, 87068 Limoges Cedex (France); Ala-Nissila, T. [COMP CoE at the Department of Applied Physics, Aalto University School of Science, P.O. Box 11000, FIN-00076 Aalto, Espoo (Finland); Department of Physics, Brown University, Providence, Rhode Island 02912-1843 (United States); Bochicchio, D.; Ferrando, R. [Dipartimento di Fisica and CNR-IMEM, via Dodecaneso 33, Genova I-16146 (Italy)

    2015-04-14

    The behaviour of sheared colloidal suspensions with full hydrodynamic interactions (HIs) is numerically studied. To this end, we use the hybrid stochastic rotation dynamics-molecular dynamics (SRD-MD) method. The shear viscosity of colloidal suspensions is computed for different volume fractions, both for dilute and concentrated cases. We verify that HIs help in the collisions and the streaming of colloidal particles, thereby increasing the overall shear viscosity of the suspension. Our results show a good agreement with known experimental, theoretical, and numerical studies. This work demonstrates the ability of SRD-MD to successfully simulate transport coefficients that require correct modelling of HIs.

  4. 76 FR 77579 - Maryland Disaster #MD-00017

    Science.gov (United States)

    2011-12-13

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Maryland Disaster MD-00017 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY... INFORMATION CONTACT: A. Escobar, Office of Disaster Assistance, U.S. Small Business Administration, 409...

  5. 78 FR 2707 - Maryland Disaster # MD-00026

    Science.gov (United States)

    2013-01-14

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Maryland Disaster MD-00026 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY... INFORMATION CONTACT: A. Escobar, Office of Disaster Assistance, U.S. Small Business Administration, 409...

  6. Calculating the dynamics of High Explosive Violent Response (HEVR) after ignition

    Energy Technology Data Exchange (ETDEWEB)

    Reaugh, J E

    2008-10-15

    . Such measures include damage to the confinement, the velocity and fragment size distributions from what was the confinement, and air blast. In the first phase (advisory) model described in [1], the surface to volume ratio and the ignition parameter are calibrated by comparison with experiments using the UK explosive. In order to achieve the second phase (interactive) model, and so calculate the pressure developed and the velocity imparted to the confinement, we need to calculate the spread of the ignition front, the subsequent burn behavior behind that front, and the response of unburned and partially burned explosive to pressurization. A preliminary model to do such calculations is described here.

  7. Calculation of Cauchy stress tensor in molecular dynamics system with a generalized Irving-Kirkwood formulism

    CERN Document Server

    Yang, Jerry Zhijian

    2014-01-01

    Irving and Kirkwood formulism (IK formulism) provides a way to compute continuum mechanics quantities at certain location in terms of molecular variables. To make the approach more practical in computer simulation, Hardy proposed to use a spacial kernel function that couples continuum quantities with atomistic information. To reduce irrational fluctuations, Murdoch proposed to use a temporal kernel function to smooth the physical quantities obtained in Hardy's approach. In this paper, we generalize the original IK formulism to systematically incorporate both spacial and temporal average. The Cauchy stress tensor is derived in this generalized IK formulism (g-IK formulism). Analysis is given to illuminate the connection and difference between g-IK formulism and traditional temporal post-process approach. The relationship between Cauchy stress and first Piola-Kirchhoff stress is restudied in the framework of g-IK formulism. Numerical experiments using molecular dynamics are conducted to examine the analysis res...

  8. A dynamic method for charging-up calculations: the case of GEM

    CERN Document Server

    Correia, P M M; Azevedo, C D R; Silva, A L M; Veenhof, R; Nemallapudi, Mythra Varun; Veloso, J F C A

    2014-01-01

    The simulation of Micro Pattern Gaseous Detectors (MPGDs) signal response is an important and powerful tool for the design and optimization of such detectors. However, several attempts to simulate exactly the effective charge gain have not been completely successful. Namely, the gain stability over time has not been fully understood. Charging-up of the insulator surfaces have been pointed as one of the responsible for the difference between experimental and Monte Carlo results. This work describes two iterative methods to simulate the charging-up in one MPGD device, the Gas Electron Multiplier (GEM). The first method uses a constant step for avalanches time evolution, very detailed, but slower to compute. The second method uses a dynamic step that improves the computing time. Good agreement between both methods was reached. Despite of comparison with experimental results shows that charging-up plays an important role in detectors operation, should not be the only responsible for the difference between simulat...

  9. Dense fluid self-diffusion coefficient calculations using perturbation theory and molecular dynamics

    Directory of Open Access Journals (Sweden)

    COELHO L. A. F.

    1999-01-01

    Full Text Available A procedure to correlate self-diffusion coefficients in dense fluids by using the perturbation theory (WCA coupled with the smooth-hard-sphere theory is presented and tested against molecular simulations and experimental data. This simple algebraic expression correlates well the self-diffusion coefficients of carbon dioxide, ethane, propane, ethylene, and sulfur hexafluoride. We have also performed canonical ensemble molecular dynamics simulations by using the Hoover-Nosé thermostat and the mean-square displacement formula to compute self-diffusion coefficients for the reference WCA intermolecular potential. The good agreement obtained from both methods, when compared with experimental data, suggests that the smooth-effective-sphere theory is a useful procedure to correlate diffusivity of pure substances.

  10. Massively parallel computational fluid dynamics calculations for aerodynamics and aerothermodynamics applications

    Energy Technology Data Exchange (ETDEWEB)

    Payne, J.L.; Hassan, B.

    1998-09-01

    Massively parallel computers have enabled the analyst to solve complicated flow fields (turbulent, chemically reacting) that were previously intractable. Calculations are presented using a massively parallel CFD code called SACCARA (Sandia Advanced Code for Compressible Aerothermodynamics Research and Analysis) currently under development at Sandia National Laboratories as part of the Department of Energy (DOE) Accelerated Strategic Computing Initiative (ASCI). Computations were made on a generic reentry vehicle in a hypersonic flowfield utilizing three different distributed parallel computers to assess the parallel efficiency of the code with increasing numbers of processors. The parallel efficiencies for the SACCARA code will be presented for cases using 1, 150, 100 and 500 processors. Computations were also made on a subsonic/transonic vehicle using both 236 and 521 processors on a grid containing approximately 14.7 million grid points. Ongoing and future plans to implement a parallel overset grid capability and couple SACCARA with other mechanics codes in a massively parallel environment are discussed.

  11. Phase Angle Calculation Dynamics of Type 4 Wind Turbines in RMS Simulations during Severe Voltage Dips

    DEFF Research Database (Denmark)

    Altin, Müfit; Göksu, Ömer; Sørensen, Poul Ejnar;

    2016-01-01

    the simulation convergence without adding complexity to the generic models, a first order filtering approach is proposed as a phase angle calculation algorithm in the grid synchronization of the rms type 4 wind turbine models. The proposed approach provides robustness for the simulation of large scale power......In order to conduct power system simulations with high shares of wind energy, standard wind turbine models, which are aimed to be generic rms models for a wide range of wind turbine types, have been developed. As a common practice of rms simulations, the power electronic interface of wind turbines...... is assumed to be ideally synchronized, i.e. grid synchronization (e.g. PLL) is not included in simplified wind turbine models. As will be shown in this paper, this practice causes simulation convergence problems during severe voltage dips and when the loss of synchronism occurs. In order to provide...

  12. Milestone report on MD potential development for uranium silicide

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jianguo [Idaho National Lab. (INL), Idaho Falls, ID (United States). Fuel Modeling and Simulation Dept.; Zhang, Yongfeng [Idaho National Lab. (INL), Idaho Falls, ID (United States). Fuel Modeling and Simulation Dept.; Hales, Jason Dean [Idaho National Lab. (INL), Idaho Falls, ID (United States). Fuel Modeling and Simulation Dept.

    2016-03-01

    This report summarizes the progress on the interatomic potential development of triuranium-disilicide (U3Si2) for molecular dynamics (MD) simulations. The development is based on the Tersoff type potentials for single element U and Si. The Si potential is taken from the literature and a Tersoff type U potential is developed in this project. With the primary focus on the U3Si2 phase, some other U-Si systems such as U3Si are also included as a test of the transferability of the potentials for binary U-Si phases. Based on the potentials for unary U and Si, two sets of parameters for the binary U-Si system are developed using the Tersoff mixing rules and the cross-term fitting, respectively. The cross-term potential is found to give better results on the enthalpy of formation, lattice constants and elastic constants than those produced by the Tersoff mixing potential, with the reference data taken from either experiments or density functional theory (DFT) calculations. In particular, the results on the formation enthalpy and lattice constants for the U3Si2 phase and lattice constants for the high temperature U3Si (h-U3Si) phase generated by the cross-term potential agree well with experimental data. Reasonable agreements are also reached on the elastic constants of U3Si2, on the formation enthalpy for the low temperature U3Si (m-U3Si) and h-U3Si phases, and on the lattice constants of m-U3Si phase. All these phases are predicted to be mechanically stable. The unary U potential is tested for three metallic U phases (α, β, γ). The potential is found capable to predict the cohesive energies well against experimental data for all three phases. It matches reasonably with previous experiments on the lattice constants and elastic constants of αU.

  13. Polymer segregation under confinement: Free energy calculations and segregation dynamics simulations

    Science.gov (United States)

    Polson, James M.; Montgomery, Logan G.

    2014-10-01

    Monte Carlo simulations are used to study the behavior of two polymers under confinement in a cylindrical tube. Each polymer is modeled as a chain of hard spheres. We measure the free energy of the system, F, as a function of the distance between the centers of mass of the polymers, λ, and examine the effects on the free energy functions of varying the channel diameter D and length L, as well as the polymer length N and bending rigidity κ. For infinitely long cylinders, F is a maximum at λ = 0, and decreases with λ until the polymers are no longer in contact. For flexible chains (κ = 0), the polymers overlap along the cylinder for low λ, while above some critical value of λ they are longitudinally compressed and non-overlapping while still in contact. We find that the free energy barrier height, ΔF ≡ F(0) - F(∞), scales as ΔF/kBT ˜ ND-1.93 ± 0.01, for N ⩽ 200 and D ⩽ 9σ, where σ is the monomer diameter. In addition, the overlap free energy appears to scale as F/kBT = Nf(λ/N; D) for sufficiently large N, where f is a function parameterized by the cylinder diameter D. For channels of finite length, the free energy barrier height increases with increasing confinement aspect ratio L/D at fixed volume fraction ϕ, and it decreases with increasing ϕ at fixed L/D. Increasing the polymer bending rigidity κ monotonically reduces the overlap free energy. For strongly confined systems, where the chain persistence length P satisfies D ≪ P, F varies linearly with λ with a slope that scales as F'(λ) ˜ -kBTD-βP-α, where β ≈ 2 and α ≈ 0.37 for N = 200 chains. These exponent values deviate slightly from those predicted using a simple model, possibly due to insufficiently satisfying the conditions defining the Odijk regime. Finally, we use Monte Carlo dynamics simulations to examine polymer segregation dynamics for fully flexible chains and observe segregation rates that decrease with decreasing entropic force magnitude, f ≡ |dF/dλ|. For both

  14. Polymer segregation under confinement: free energy calculations and segregation dynamics simulations.

    Science.gov (United States)

    Polson, James M; Montgomery, Logan G

    2014-10-28

    Monte Carlo simulations are used to study the behavior of two polymers under confinement in a cylindrical tube. Each polymer is modeled as a chain of hard spheres. We measure the free energy of the system, F, as a function of the distance between the centers of mass of the polymers, λ, and examine the effects on the free energy functions of varying the channel diameter D and length L, as well as the polymer length N and bending rigidity κ. For infinitely long cylinders, F is a maximum at λ = 0, and decreases with λ until the polymers are no longer in contact. For flexible chains (κ = 0), the polymers overlap along the cylinder for low λ, while above some critical value of λ they are longitudinally compressed and non-overlapping while still in contact. We find that the free energy barrier height, ΔF ≡ F(0) - F(∞), scales as ΔF/k(B)T ∼ ND(-1.93 ± 0.01), for N ⩽ 200 and D ⩽ 9σ, where σ is the monomer diameter. In addition, the overlap free energy appears to scale as F/k(B)T = Nf(λ/N; D) for sufficiently large N, where f is a function parameterized by the cylinder diameter D. For channels of finite length, the free energy barrier height increases with increasing confinement aspect ratio L/D at fixed volume fraction ϕ, and it decreases with increasing ϕ at fixed L/D. Increasing the polymer bending rigidity κ monotonically reduces the overlap free energy. For strongly confined systems, where the chain persistence length P satisfies D ≪ P, F varies linearly with λ with a slope that scales as F'(λ) ∼ -k(B)TD(-β)P(-α), where β ≈ 2 and α ≈ 0.37 for N = 200 chains. These exponent values deviate slightly from those predicted using a simple model, possibly due to insufficiently satisfying the conditions defining the Odijk regime. Finally, we use Monte Carlo dynamics simulations to examine polymer segregation dynamics for fully flexible chains and observe segregation rates that decrease with decreasing entropic force magnitude, f ≡ |d

  15. STRUCTURAL PHASE TRANSITION OF ALIPHATIC NYLONS VIEWED FROM THE WAXD/SAXS AND VIBRATIONAL SPECTRAL MEASUREMENTS AND MOLECULAR DYNAMICS CALCULATION

    Institute of Scientific and Technical Information of China (English)

    Kohji Tashiro

    2007-01-01

    The crystalline phase transition of aliphatic nylon 10/10 has been investigated on the basis of the simultaneous measurement of wide-angle and small-angle X-ray scatterings, the infrared spectral measurement and the molecular dynamics calculation. An interpretation of infrared spectra taken for a series of nylon samples and the corresponding model compounds was successfully made, allowing us to assign the infrared bands of the planar-zigzag methylene segments reasonably. As a result the methylene segmental parts of molecular chains were found to experience an order-to-disorder transition in the Brill transition region, where the intermolecular hydrogen bonds are kept alive although the bond strength becomes weaker at higher temperature. The small-angle X-ray scattering data revealed a slight change in lamellar stacking mode in the transition region. The crystal structure has been found to change more remarkably in the temperature region immediately below the melting point, where the conformationally disordered chains experienced drastic rotational and translational motions without any constraints by hydrogen bonds, and the lamellar thickness increased largely along the chain axis. These experimental results were reasonably reproduced by the molecular dynamics calculation performed at the various temperatures.

  16. Excited state structures and decay dynamics of 1,3-dimethyluracils in solutions: resonance Raman and quantum mechanical calculation study.

    Science.gov (United States)

    Li, Ming-Juan; Liu, Ming-Xia; Zhao, Yan-Ying; Pei, Ke-Mei; Wang, Hui-Gang; Zheng, Xuming; Fang, Wei Hai

    2013-10-03

    The resonance Raman spectroscopic study of the excited state structural dynamics of 1,3-dimethyluracil (DMU), 5-bromo-1,3-dimethyluracil (5BrDMU), uracil, and thymine in water and acetonitrile were reported. Density functional theory calculations were carried out to help elucidate the ultraviolet electronic transitions associated with the A-, and B-band absorptions and the vibrational assignments of the resonance Raman spectra. The effect of the methylation at N1, N3 and C5 sites of pyrimidine ring on the structural dynamics of uracils in different solvents were explored on the basis of the resonance Raman intensity patterns. The relative resonance Raman intensities of DMU and 5BrDMU are computed at the B3LYP-TD level. Huge discrepancies between the experimental resonance Raman intensities and the B3LYP-TD predicted ones were observed. The underlying mechanism was briefly discussed. The decay channel through the S1((1)nπ*)/S2((1)ππ*) conical intersection and the S1((1)nπ*)/T1((3)ππ*) intersystem crossing were revealed by using the CASSCF(8,7)/6-31G(d) level of theory calculations.

  17. Dynamic characteristic of amitriptyline in water by ultrasonic relaxation method and molecular orbital calculation.

    Science.gov (United States)

    Nishikawa, Sadakatsu; Kamimura, Eri

    2011-02-03

    Ultrasonic absorption coefficients in the frequency range of 0.8-220 MHz have been measured in aqueous solution of amitriptyline (3-(10,11-dihydro-5H-dibenzo[a,d]cycloheptene-5-ylidene)-N,N-dimethyl-1-propanamine) in the concentration range from 0.20 to 0.60 mol dm(-3) at 25 °C. A single relaxational phenomenon has been observed, and the relaxation frequency is independent of the concentration. It has been also observed that the amplitude of the relaxational absorption increases linearly with the analytical concentration. From these ultrasonic relaxation data, it has been concluded that the relaxation is associated with a unimolecular reaction due to a conformational change of the solute molecule, such as a structural change due to a rotational motion of a group in the solute molecule. Molecular orbital semiempirical methods using AM1 (Austin model 1) and PM3 (modified neglect of diatomic overlap parametric method 3) have been applied to obtain the standard enthalpy of formation for amitriptyline molecule at various dihedral angles around one of the bonds in alkylamine side chain. The results have shown the two clear minimum standard enthalpies of formation for amitriptyline. From the difference of the two values, the standard enthalpy change between the two stable conformers has been calculated be 2.9 kJ mol(-1). On a rough assumption that the standard enthalpy change reflects the standard free energy change, the equilibrium constant for the rotational isomers has been estimated to be 0.31. Combining this value with the experimental ultrasonic relaxation frequency, the backward and forward rate constants have been evaluated. The standard enthalpy change of the reaction has been also estimated from the concentration dependence of the maximum absorption per wavelength, and it has been close to that calculated by the semiempirical methods. The ultrasonic absorption measurements have been also carried out in amitriptyline solution in the presence of

  18. Vibrational spectrum at a water surface: a hybrid quantum mechanics/molecular mechanics molecular dynamics approach.

    Science.gov (United States)

    Ishiyama, Tatsuya; Takahashi, Hideaki; Morita, Akihiro

    2012-03-28

    A hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulation is applied to the calculation of surface orientational structure and vibrational spectrum (second-order nonlinear susceptibility) at the vapor/water interface for the first time. The surface orientational structure of the QM water molecules is consistent with the previous MD studies, and the calculated susceptibility reproduces the experimentally reported one, supporting the previous results using the classical force field MD simulation. The present QM/MM MD simulation also demonstrates that the positive sign of the imaginary part of the second-order nonlinear susceptibility at the lower hydrogen bonding OH frequency region originates not from individual molecular orientational structure, but from cooperative electronic structure through the hydrogen bonding network.

  19. Comparison of mode-coupling theory with molecular dynamics simulations from a unified point of view.

    Science.gov (United States)

    Narumi, Takayuki; Tokuyama, Michio

    2011-08-01

    We study the tagged-particle dynamics by solving equations of the mode-coupling theory (MCT). The numerical solutions are compared with results obtained by the molecular dynamics (MD) simulations from a unified point of view proposed by Tokuyama [Phys. Rev. E 80, 031503 (2009)]. We propose a way of comparison in which the reduced long-time self-diffusion coefficient is used to characterize states of the system. The comparison reveals that the tagged-particle dynamics calculated from MCT qualitatively deviates from that obtained by MD. Our results suggest that the deviation originates from the starting equation of MCT.

  20. Finite-size scaling study of dynamic critical phenomena in a vapor-liquid transition

    Science.gov (United States)

    Midya, Jiarul; Das, Subir K.

    2017-01-01

    Via a combination of molecular dynamics (MD) simulations and finite-size scaling (FSS) analysis, we study dynamic critical phenomena for the vapor-liquid transition in a three dimensional Lennard-Jones system. The phase behavior of the model has been obtained via the Monte Carlo simulations. The transport properties, viz., the bulk viscosity and the thermal conductivity, are calculated via the Green-Kubo relations, by taking inputs from the MD simulations in the microcanonical ensemble. The critical singularities of these quantities are estimated via the FSS method. The results thus obtained are in nice agreement with the predictions of the dynamic renormalization group and mode-coupling theories.

  1. Calculations of critical micelle concentration by dissipative particle dynamics simulations: the role of chain rigidity.

    Science.gov (United States)

    Lee, Ming-Tsung; Vishnyakov, Aleksey; Neimark, Alexander V

    2013-09-05

    Micelle formation in surfactant solutions is a self-assembly process governed by complex interplay of solvent-mediated interactions between hydrophilic and hydrophobic groups, which are commonly called heads and tails. However, the head-tail repulsion is not the only factor affecting the micelle formation. For the first time, we present a systematic study of the effect of chain rigidity on critical micelle concentration and micelle size, which is performed with the dissipative particle dynamics simulation method. Rigidity of the coarse-grained surfactant molecule was controlled by the harmonic bonds set between the second-neighbor beads. Compared to flexible molecules with the nearest-neighbor bonds being the only type of bonded interactions, rigid molecules exhibited a lower critical micelle concentration and formed larger and better-defined micelles. By varying the strength of head-tail repulsion and the chain rigidity, we constructed two-dimensional diagrams presenting how the critical micelle concentration and aggregation number depend on these parameters. We found that the solutions of flexible and rigid molecules that exhibited approximately the same critical micelle concentration could differ substantially in the micelle size and shape depending on the chain rigidity. With the increase of surfactant concentration, primary micelles of more rigid molecules were found less keen to agglomeration and formation of nonspherical aggregates characteristic of flexible molecules.

  2. Calculation and Experiment for Dynamic Response of Bridge in Deep Water Under Seismic Excitation

    Institute of Scientific and Technical Information of China (English)

    柳春光; 孙国帅

    2014-01-01

    The-fluid-structure-interaction-under-seismic-excitation-is-very-complicated,-and-thus-the-damage-identification-of-the-bridge-in-deep-water-is-the-key-technique-to-ensure-the-safe-service.-Based-on-nonlinear-Morison-equation-considering-the-added-mass-effect-and-the-fluid-structure-interaction-effect,-the-effect-of-hydrodynamic-pressure-on-the-structure-is-analyzed.-A-series-of-underwater-shaking-table-tests-are-conducted-in-the-air-and-in-water.-The-dynamic-characteristics-affected-by-hydrodynamic-pressure-are-discussed-and-the-distribution-of-hydrodynamic-pressure-is-also-analyzed.-In-addition,-the-damage-of-structure-is-distinguished-through-the-natural-frequency-and-the-difference-of-modal-curvature,-and-is-then-compared-with-the-test-results.-The-numerical-simulation-and-test-of-this-study-indicate-that-the-effect-of-hydrodynamic-pressure-on-the-structure-should-not-be-neglected.-It-is-also-found-that-the-presence-of-the-damage,-the-location-of-the-damage-and-the-degree-of-the-severity-can-be-judged-through-the-variation-of-structure-frequency-and-the-difference-of-modal-curvature.

  3. Free energy calculation of mechanically unstable but dynamically stabilized bcc titanium

    Science.gov (United States)

    Kadkhodaei, Sara; Hong, Qi-Jun; van de Walle, Axel

    2017-02-01

    The phase diagram of numerous materials of technological importance features high-symmetry high-temperature phases that exhibit phonon instabilities. Leading examples include shape-memory alloys, as well as ferroelectric, refractory, and structural materials. The thermodynamics of these phases have proven challenging to handle by atomistic computational thermodynamic techniques due to the occurrence of constant anharmonicity-driven hopping between local low-symmetry distortions, while maintaining a high-symmetry time-averaged structure. To compute the free energy in such phases, we propose to explore the system's potential-energy surface by discrete sampling of local minima by means of a lattice gas Monte Carlo approach and by continuous sampling by means of a lattice dynamics approach in the vicinity of each local minimum. Given the proximity of the local minima, it is necessary to carefully partition phase space by using a Voronoi tessellation to constrain the domain of integration of the partition function in order to avoid double counting artifacts and enable an accurate harmonic treatment near each local minima. We consider the bcc phase of titanium as a prototypical example to illustrate our approach.

  4. Time-dependent configuration-interaction calculations of laser-driven dynamics in presence of dissipation.

    Science.gov (United States)

    Tremblay, Jean Christophe; Klamroth, Tillmann; Saalfrank, Peter

    2008-08-28

    Correlated, multielectron dynamics of "open" electronic systems within the fixed-nuclei approximation are treated here within explicitly time-dependent configuration-interaction schemes. Specifically, we present simulations of laser-pulse driven excitations of selected electronic states of LiCN in the presence of energy and phase relaxation. The evolution of the system is studied using open-system density matrix theory, which embeds naturally in the time-dependent configuration-interaction singles (doubles) formalism. Different models for dissipation based on the Lindblad semigroup formalism are presented. These models give rise to lifetimes for energy relaxation ranging from a few hundreds of femtoseconds to several nanoseconds. Pure dephasing is treated using a Kossakowski-like Gaussian model, proceeding on similar time scales. The pulse lengths employed range from very short (tens of femtoseconds) to very long (several nanoseconds). To make long-time propagations tractable, the quasiresonant approximation is used. The results show that despite the loss of efficiency, selective dipole switching can still be achieved in the presence of dissipation when using appropriately designed laser pulses.

  5. A comparison of methods for melting point calculation using molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y; Maginn, EJ

    2012-04-14

    Accurate and efficient prediction of melting points for complex molecules is still a challenging task for molecular simulation, although many methods have been developed. Four melting point computational methods, including one free energy-based method (the pseudo-supercritical path (PSCP) method) and three direct methods (two interface-based methods and the voids method) were applied to argon and a widely studied ionic liquid 1-n-butyl-3-methylimidazolium chloride ([BMIM][Cl]). The performance of each method was compared systematically. All the methods under study reproduce the argon experimental melting point with reasonable accuracy. For [BMIM][Cl], the melting point was computed to be 320 K using a revised PSCP procedure, which agrees with the experimental value 337-339 K very well. However, large errors were observed in the computed results using the direct methods, suggesting that these methods are inappropriate for large molecules with sluggish dynamics. The strengths and weaknesses of each method are discussed. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3702587

  6. Aircraft dynamic derivatives calculation using CFD techniques%利用CFD技术计算飞行器动导数

    Institute of Scientific and Technical Information of China (English)

    叶川; 马东立

    2013-01-01

    Only the sum of aircraft pitching moment angle of attack ( AOA ) rate derivative and pitch rate derivative could be obtained by simulating the forced pitch oscillation using the unsteady flow numerical calculation method. But the dynamic stability analysis needs separate dynamic derivatives. To solve this problem, the sliding mesh was applied to simulate the forced pitch oscillation, and the sum of pitching moment AOA rate derivative and pitch rate derivative was obtained. Then the rotating reference frame was used to gain the pitching moment pitch rate derivative by simulating the steady climb movement. The rotating reference frame was also employed to acquire the rolling moment roll rate derivative by simulating the steady roll movement. The dynamic derivatives of a missile with cruciform tails and a seaplane were calculated. The results were consistent with experimental data, reference data and results acquired using other methods, indicating that this method could be used to calculate the dynamic derivatives of aircrafts with complicated configurations.%利用非定常流场数值计算方法模拟飞行器强迫俯仰振荡仅能得到俯仰力矩系数对迎角变化率和俯仰角速度的动导数之和,而动稳定性分析需要单独的动导数数值.为解决这个问题,利用滑移网格模拟强迫振荡运动,得到俯仰力矩系数对迎角变化率和俯仰角速度的动导数之和.利用旋转参考坐标系模拟定常拉升,得到俯仰力矩系数对俯仰角速度的动导数.利用旋转参考坐标系模拟匀速滚转,得到滚转力矩系数对滚转角速度的动导数.对有翼导弹和水上飞机进行了纵向和横向动导数的计算.计算结果与试验数据、文献数据以及其他方法得到的结果具有较好的一致性,表明提出的方法可用于复杂外形飞行器动导数计算.

  7. Dynamic calcium requirements for activation of rabbit papillary muscle calculated from tension-independent heat.

    Science.gov (United States)

    Blanchard, E M; Mulieri, L A; Alpert, N R

    1990-04-03

    The heat generated by right ventricular papillary muscles of rabbits was measured after adenosine triphosphate (ATP) splitting by the contractile proteins was chemically inhibited. This tension-independent heat (TIH) (1 mJ/g wet weight) was used to calculate the total calcium (Ca) cycled in a muscle twitch by assuming that 87% of TIH was due to Ca2+ transport by the sarcoplasmic reticulum with a coupling ratio of 2 Ca2+/ATP split; the enthalpy of creatine phosphate hydrolysis buffering ATP was taken as -34 KJ/mol. The estimated Ca turnover per muscle twitch at 21 degrees C, 0.2 Hz pacing rate, and 2.5 mM Ca in the Krebs solution was approximately equal to 50 nmol/g wet weight. There was a tight positive correlation between TIH and mechanical activation during steady-state measurements but no correlation during the sharp increase in mechanical activation (treppe) when stimulation was resumed after a rest period. It is suggested that while total Ca cycling remains unchanged during the initial period of tension treppe, the free Ca2+ transient and mechanical activation increase sharply due to resaturation of high affinity Ca2+ buffers, other than troponin C, depleted of Ca2+ during the rest period.

  8. Exploring intentions of physician-scientist trainees: factors influencing MD and MD/PhD interest in research careers.

    Science.gov (United States)

    Kwan, Jennifer M; Daye, Dania; Schmidt, Mary Lou; Conlon, Claudia Morrissey; Kim, Hajwa; Gaonkar, Bilwaj; Payne, Aimee S; Riddle, Megan; Madera, Sharline; Adami, Alexander J; Winter, Kate Quinn

    2017-07-11

    Prior studies have described the career paths of physician-scientist candidates after graduation, but the factors that influence career choices at the candidate stage remain unclear. Additionally, previous work has focused on MD/PhDs, despite many physician-scientists being MDs. This study sought to identify career sector intentions, important factors in career selection, and experienced and predicted obstacles to career success that influence the career choices of MD candidates, MD candidates with research-intense career intentions (MD-RI), and MD/PhD candidates. A 70-question survey was administered to students at 5 academic medical centers with Medical Scientist Training Programs (MSTPs) and Clinical and Translational Science Awards (CTSA) from the NIH. Data were analyzed using bivariate or multivariate analyses. More MD/PhD and MD-RI candidates anticipated or had experienced obstacles related to balancing academic and family responsibilities and to balancing clinical, research, and education responsibilities, whereas more MD candidates indicated experienced and predicted obstacles related to loan repayment. MD/PhD candidates expressed higher interest in basic and translational research compared to MD-RI candidates, who indicated more interest in clinical research. Overall, MD-RI candidates displayed a profile distinct from both MD/PhD and MD candidates. MD/PhD and MD-RI candidates experience obstacles that influence their intentions to pursue academic medical careers from the earliest training stage, obstacles which differ from those of their MD peers. The differences between the aspirations of and challenges facing MD, MD-RI and MD/PhD candidates present opportunities for training programs to target curricula and support services to ensure the career development of successful physician-scientists.

  9. Ab initio calculation of thermodynamic potentials and entropies for superionic water

    Science.gov (United States)

    French, Martin; Desjarlais, Michael P.; Redmer, Ronald

    2016-02-01

    We construct thermodynamic potentials for two superionic phases of water [with body-centered cubic (bcc) and face-centered cubic (fcc) oxygen lattice] using a combination of density functional theory (DFT) and molecular dynamics simulations (MD). For this purpose, a generic expression for the free energy of warm dense matter is developed and parametrized with equation of state data from the DFT-MD simulations. A second central aspect is the accurate determination of the entropy, which is done using an approximate two-phase method based on the frequency spectra of the nuclear motion. The boundary between the bcc superionic phase and the ices VII and X calculated with thermodynamic potentials from DFT-MD is consistent with that directly derived from the simulations. Differences in the physical properties of the bcc and fcc superionic phases and their impact on interior modeling of water-rich giant planets are discussed.

  10. Continuum electrostatic calculations of the pKa of ionizable residues in an ion channel: dynamic vs. static input structure.

    Science.gov (United States)

    Aguilella-Arzo, M; Aguilella, V M

    2010-04-01

    We have computed the pK(a)'s of the ionizable residues of a protein ion channel, the Staphylococcus aureus toxin alpha-hemolysin, by using two types of input structures, namely the crystal structure of the heptameric alpha-hemolysin and a set of over four hundred snapshots from a 4.38 ns Molecular Dynamics simulation of the protein inserted in a phospholipid planar bilayer. The comparison of the dynamic picture provided by the Molecular Simulation with the static one based on the X-ray crystal structure of the protein embedded in a lipid membrane allows analyzing the influence of the fluctuations in the protein structure on its ionization properties. We find that the use of the dynamic structure provides interesting information about the sensitivity of the computed pK(a) of a given residue to small changes in the local structure. The calculated pK(a) are consistent with previous indirect estimations obtained from single-channel conductance and selectivity measurements.

  11. The research of the maximum wind speed in Tomsk and calculations of dynamic load on antenna systems

    Science.gov (United States)

    Belan, B.; Belan, S.; Romanovskiy, O.; Girshtein, A.; Yanovich, A.; Baidali, S.; Terehov, S.

    2017-01-01

    The work is concerned with calculations and analysis of the maximum wind speed in Tomsk city. The data for analysis were taken from the TOR-station located in the north-eastern part of the city. The TOR-station sensors to measure a speed and a direction of wind are installed on the 10-meter meteorological mast. Wind is measured by M-63, which uses the standard approach and the program with one-minute averaging for wind gusts recording as well. According to the measured results in the research performed, the estimation of the dynamic and wind load on different types of antenna systems was performed. The work shows the calculations of wind load on ten types of antenna systems, distinguished by their different constructions and antenna areas. For implementation of calculations, we used methods developed in the Central Research and Development Institute of Building Constructions named after V.A. Kucherenko. The research results could be used for design engineering of the static antenna systems and mobile tracking systems for the distant objects.

  12. Motion Tree Delineates Hierarchical Structure of Protein Dynamics Observed in Molecular Dynamics Simulation.

    Directory of Open Access Journals (Sweden)

    Kei Moritsugu

    Full Text Available Molecular dynamics (MD simulations of proteins provide important information to understand their functional mechanisms, which are, however, likely to be hidden behind their complicated motions with a wide range of spatial and temporal scales. A straightforward and intuitive analysis of protein dynamics observed in MD simulation trajectories is therefore of growing significance with the large increase in both the simulation time and system size. In this study, we propose a novel description of protein motions based on the hierarchical clustering of fluctuations in the inter-atomic distances calculated from an MD trajectory, which constructs a single tree diagram, named a "Motion Tree", to determine a set of rigid-domain pairs hierarchically along with associated inter-domain fluctuations. The method was first applied to the MD trajectory of substrate-free adenylate kinase to clarify the usefulness of the Motion Tree, which illustrated a clear-cut dynamics picture of the inter-domain motions involving the ATP/AMP lid and the core domain together with the associated amplitudes and correlations. The comparison of two Motion Trees calculated from MD simulations of ligand-free and -bound glutamine binding proteins clarified changes in inherent dynamics upon ligand binding appeared in both large domains and a small loop that stabilized ligand molecule. Another application to a huge protein, a multidrug ATP binding cassette (ABC transporter, captured significant increases of fluctuations upon binding a drug molecule observed in both large scale inter-subunit motions and a motion localized at a transmembrane helix, which may be a trigger to the subsequent structural change from inward-open to outward-open states to transport the drug molecule. These applications demonstrated the capabilities of Motion Trees to provide an at-a-glance view of various sizes of functional motions inherent in the complicated MD trajectory.

  13. Batch By Batch Longitudinal Emittance Blowup MD

    CERN Document Server

    Mastoridis, T; Butterworth, A; Jaussi, M; Molendijk, J

    2012-01-01

    The transverse bunch emittance increases significantly at 450 GeV from the time of injection till the ramp due to IBS. By selectively blowing up the longitudinal emittance of the incoming batch at each injection, it should be possible to reduce the transverse emittance growth rates due to IBS. An MD was conducted on April 22nd 2012 to test the feasibility and performance of the batch-by-batch longitudinal emittance blowup. There were three main goals during the MD. First, to test the developed hardware, firmware, and software for the batch-by-batch blowup. Then, to measure the transverse emittance growth rates of blown-up and "witness" batches to quantify any improvement, and finally to test the ALLInjectSequencer class, which deals with the complicated gymnastics of introducing or masking the new batch to various RF loops.

  14. MD5的Keygenme分析

    Institute of Scientific and Technical Information of China (English)

    Firebig

    2006-01-01

    闲来无事,抓出个不知何时下的Keygenme练练手,分析后可知.这个Keygenme有2张数据表,由注册名经MD5运算后进行查表,得出2个DWORD数据.然后再由注册码经过一个可逆循环得出2个DWORD数据.最后对比是否正确。(MD5的具体介绍黑防6期有说明)

  15. Analysis of DNA methylation and virus induced DNA methylation change in MD-resistant and –susceptible chickens

    Directory of Open Access Journals (Sweden)

    Juan eLuo

    2012-02-01

    Full Text Available Marek’s disease (MD is a lymphoproliferative disease induced by Marek’s disease virus (MDV infection. With the less efficacy of vaccine in MD prevention, genetically selected MD-resistant chicken becomes more and more important in MD control. To elucidate the mechanism of MD-resistance, lots of researches were focused on the different genetic differences between the resistant and susceptible chickens. However, less is known about the epigenetic features. By using pyrosequencing, the promoter methylations of 18 candidate genes in MD-resistant (L63 and –susceptible (L72 chicken were examined, we found that most of the genes have higher methylation level in L72. MDV infection changed the expressions of all three methyltransferases (DNMT1, DNMT3a and DNMT3b, while the up-regulation of DNMT1 was only shown in L72 and down-regulation of DNMT3b only in L63 at 21dpi. Interestingly, a dynamic change of promoter methylation was observed in most of the genes in both lines during MDV life cycle. Seven genes, including HDAC9, GH, STAT1, CIITA, FABP3, LATS2 and H2Ac, showed different methylation behavior between L63 and L72. In summary, the findings from this study suggested that DNA methylation heterogeneity exists in MD-resistance and –susceptibility chicken, and MDV infection also induces differential methylation alterations, both indicating epigenetic factor may involve in MD.

  16. Conformational dynamics of a crystalline protein from microsecond-scale molecular dynamics simulations and diffuse X-ray scattering.

    Science.gov (United States)

    Wall, Michael E; Van Benschoten, Andrew H; Sauter, Nicholas K; Adams, Paul D; Fraser, James S; Terwilliger, Thomas C

    2014-12-16

    X-ray diffraction from protein crystals includes both sharply peaked Bragg reflections and diffuse intensity between the peaks. The information in Bragg scattering is limited to what is available in the mean electron density. The diffuse scattering arises from correlations in the electron density variations and therefore contains information about collective motions in proteins. Previous studies using molecular-dynamics (MD) simulations to model diffuse scattering have been hindered by insufficient sampling of the conformational ensemble. To overcome this issue, we have performed a 1.1-μs MD simulation of crystalline staphylococcal nuclease, providing 100-fold more sampling than previous studies. This simulation enables reproducible calculations of the diffuse intensity and predicts functionally important motions, including transitions among at least eight metastable states with different active-site geometries. The total diffuse intensity calculated using the MD model is highly correlated with the experimental data. In particular, there is excellent agreement for the isotropic component of the diffuse intensity, and substantial but weaker agreement for the anisotropic component. Decomposition of the MD model into protein and solvent components indicates that protein-solvent interactions contribute substantially to the overall diffuse intensity. We conclude that diffuse scattering can be used to validate predictions from MD simulations and can provide information to improve MD models of protein motions.

  17. Equation of state calculations for two-dimensional dust coulomb crystal at near zero temperature by molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Djouder, M., E-mail: djouder-madjid@ummto.dz; Kermoun, F.; Mitiche, M. D.; Lamrous, O. [Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri Tizi-Ouzou, BP 17 RP, 15000 Tizi-Ouzou (Algeria)

    2016-01-15

    Dust particles observed in universe as well as in laboratory and technological plasma devices are still under investigation. At low temperature, these particles are strongly negatively charged and are able to form a 2D or 3D coulomb crystal. In this work, our aim was to check the ideal gas law validity for a 2D single-layer dust crystal recently reported in the literature. For this purpose, we have simulated, using the molecular dynamics method, its thermodynamic properties for different values of dust particles number and confinement parameters. The obtained results have allowed us to invalidate the ideal gas behaviour and to propose an effective equation of state which assumes a near zero dust temperature. Furthermore, the value of the calculated sound velocity was found to be in a good agreement with experimental data published elsewhere.

  18. A combination of docking, QM/MM methods, and MD simulation for binding affinity estimation of metalloprotein ligands.

    Science.gov (United States)

    Khandelwal, Akash; Lukacova, Viera; Comez, Dogan; Kroll, Daniel M; Raha, Soumyendu; Balaz, Stefan

    2005-08-25

    To alleviate the problems in the receptor-based design of metalloprotein ligands due to inadequacies in the force-field description of coordination bonds, a four-tier approach was devised. Representative ligand-metalloprotein interaction energies are obtained by subsequent application of (1) docking with metal-binding-guided selection of modes, (2) optimization of the ligand-metalloprotein complex geometry by combined quantum mechanics and molecular mechanics (QM/MM) methods, (3) conformational sampling of the complex with constrained metal bonds by force-field-based molecular dynamics (MD), and (4) a single point QM/MM energy calculation for the time-averaged structures. The QM/MM interaction energies are, in a linear combination with the desolvation-characterizing changes in the solvent-accessible surface areas, correlated with experimental data. The approach was applied to structural correlation of published binding free energies of a diverse set of 28 hydroxamate inhibitors to zinc-dependent matrix metalloproteinase 9 (MMP-9). Inclusion of steps 3 and 4 significantly improved both correlation and prediction. The two descriptors explained 90% of variance in inhibition constants of all 28 inhibitors, ranging from 0.08 to 349 nM, with the average unassigned error of 0.318 log units. The structural and energetic information obtained from the time-averaged MD simulation results helped understand the differences in binding modes of related compounds.

  19. A grid-doubling finite-element technique for calculating dynamic three-dimensional spontaneous rupture on an earthquake fault

    Science.gov (United States)

    Barall, M.

    2009-01-01

    We present a new finite-element technique for calculating dynamic 3-D spontaneous rupture on an earthquake fault, which can reduce the required computational resources by a factor of six or more, without loss of accuracy. The grid-doubling technique employs small cells in a thin layer surrounding the fault. The remainder of the modelling volume is filled with larger cells, typically two or four times as large as the small cells. In the resulting non-conforming mesh, an interpolation method is used to join the thin layer of smaller cells to the volume of larger cells. Grid-doubling is effective because spontaneous rupture calculations typically require higher spatial resolution on and near the fault than elsewhere in the model volume. The technique can be applied to non-planar faults by morphing, or smoothly distorting, the entire mesh to produce the desired 3-D fault geometry. Using our FaultMod finite-element software, we have tested grid-doubling with both slip-weakening and rate-and-state friction laws, by running the SCEC/ USGS 3-D dynamic rupture benchmark problems. We have also applied it to a model of the Hayward fault, Northern California, which uses realistic fault geometry and rock properties. FaultMod implements fault slip using common nodes, which represent motion common to both sides of the fault, and differential nodes, which represent motion of one side of the fault relative to the other side. We describe how to modify the traction-at-split-nodes method to work with common and differential nodes, using an implicit time stepping algorithm. ?? Journal compilation ?? 2009 RAS.

  20. Reactivity of aldehydes at the air-water interface. Insights from molecular dynamics simulations and ab initio calculations.

    Science.gov (United States)

    Martins-Costa, Marilia T C; García-Prieto, Francisco F; Ruiz-López, Manuel F

    2015-02-14

    Understanding the influence of solute-solvent interactions on chemical reactivity has been a subject of intense research in the last few decades. Theoretical studies have focused on bulk solvation phenomena and a variety of models and methods have been developed that are now widely used by both theoreticians and experimentalists. Much less attention has been paid, however, to processes that occur at liquid interfaces despite the important role such interfaces play in chemistry and biology. In this study, we have carried out sequential molecular dynamics simulations and quantum mechanical calculations to analyse the influence of the air-water interface on the reactivity of formaldehyde, acetaldehyde and benzaldehyde, three simple aldehydes of atmospheric interest. The calculated free-energy profiles exhibit a minimum at the interface, where the average reactivity indices may display large solvation effects. The study emphasizes the role of solvation dynamics, which are responsible for large fluctuations of some molecular properties. We also show that the photolysis rate constant of benzaldehyde in the range 290-308 nm increases by one order of magnitude at the surface of a water droplet, from 2.7 × 10(-5) s(-1) in the gas phase to 2.8 × 10(-4) s(-1) at the air-water interface, and we discuss the potential impact of this result on the chemistry of the troposphere. Experimental data in this domain are still scarce and computer simulations like those presented in this work may provide some insights that can be useful to design new experiments.

  1. Electronic structure, lattice dynamics and thermoelectric properties of silicon nanosphere-nanoribbon layered structure from first-principles calculation

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Peng-Xian, E-mail: pengxian_lu@haut.edu.cn; Xia, Yi

    2017-05-01

    How to further optimize the thermoelectric figure of merit of silicon (Si) nanostructure? Constructing the layered structure composed of two different Si nano morphologies should be viewed an effective approach. The figure of merit of the layered structure could be further optimized by tuning the different contribution from the composed nano morphologies on the electron and phonon transport. In order to reveal the thermoelectric transport mechanism, the electronic structure, the lattice dynamics and the thermoelectric properties of Si nanosphere, Si nanoribbon and the layered structure composed of the two nano morphologies were investigated through first-principles calculation, lattice dynamics simulation and Boltzmann transport theory. The results suggest that the figure of merit of the layered structure is improved significantly in whole although its specific thermoelectric parameters are unsatisfactory as compared to the single nano morphologies. Therefore we provide a complete understanding on the thermoelectric transport of the layered structure and an effective route to further optimize the figure of merit of Si nanostructure.

  2. Acceleration of Relativistic Electron Dynamics by Means of X2C Transformation: Application to the Calculation of Nonlinear Optical Properties.

    Science.gov (United States)

    Konecny, Lukas; Kadek, Marius; Komorovsky, Stanislav; Malkina, Olga L; Ruud, Kenneth; Repisky, Michal

    2016-12-13

    The Liouville-von Neumann equation based on the four-component matrix Dirac-Kohn-Sham Hamiltonian is transformed to a quasirelativistic exact two-component (X2C) form and then used to solve the time evolution of the electronic states only. By this means, a significant acceleration by a factor of 7 or more has been achieved. The transformation of the original four-component equation of motion is formulated entirely in matrix algebra, following closely the X2C decoupling procedure of Ilias and Saue [ J. Chem. Phys. 2007 , 126 , 064102 ] proposed earlier for a static (time-independent) case. In a dynamic (time-dependent) regime, however, an adiabatic approximation must in addition be introduced in order to preserve the block-diagonal form of the time-dependent Dirac-Fock operator during the time evolution. The resulting X2C Liouville-von Neumann electron dynamics (X2C-LvNED) is easy to implement as it does not require an explicit form of the picture-change transformed operators responsible for the (higher-order) relativistic corrections and/or interactions with external fields. To illustrate the accuracy and performance of the method, numerical results and computational timings for nonlinear optical properties are presented. All of the time domain X2C-LvNED results show excellent agreement with the reference four-component calculations as well as with the results obtained from frequency domain response theory.

  3. Monte Carlo approach to calculate ionization dynamics of hot solid-density plasmas within particle-in-cell simulations

    Science.gov (United States)

    Wu, D.; He, X. T.; Yu, W.; Fritzsche, S.

    2017-02-01

    A physical model based on a Monte Carlo approach is proposed to calculate the ionization dynamics of hot-solid-density plasmas within particle-in-cell (PIC) simulations, and where the impact (collision) ionization (CI), electron-ion recombination (RE), and ionization potential depression (IPD) by surrounding plasmas are taken into consideration self-consistently. When compared with other models, which are applied in the literature for plasmas near thermal equilibrium, the temporal relaxation of ionization dynamics can also be simulated by the proposed model. Besides, this model is general and can be applied for both single elements and alloys with quite different compositions. The proposed model is implemented into a PIC code, with (final) ionization equilibriums sustained by competitions between CI and its inverse process (i.e., RE). Comparisons between the full model and model without IPD or RE are performed. Our results indicate that for bulk aluminium at temperature of 1 to 1000 eV, (i) the averaged ionization degree increases by including IPD; while (ii) the averaged ionization degree is significantly over estimated when the RE is neglected. A direct comparison from the PIC code is made with the existing models for the dependence of averaged ionization degree on thermal equilibrium temperatures and shows good agreements with that generated from Saha-Boltzmann model and/or FLYCHK code.

  4. Effect of temperature on compact layer of Pt electrode in PEMFCs by first-principles molecular dynamics calculations

    Science.gov (United States)

    He, Yang; Chen, Changfeng; Yu, Haobo; Lu, Guiwu

    2017-01-01

    Formation of the double-layer electric field and capacitance of the water-metal interface is of significant interest in physicochemical processes. In this study, we perform first- principles molecular dynamics simulations on the water/Pt(111) interface to investigate the temperature dependence of the compact layer electric field and capacitance based on the calculated charge densities. On the Pt (111) surface, water molecules form ice-like structures that exhibit more disorder along the height direction with increasing temperature. The Osbnd H bonds of more water molecules point toward the Pt surface to form Ptsbnd H covalent bonds with increasing temperature, which weaken the corresponding Osbnd H bonds. In addition, our calculated capacitance at 300 K is 15.2 mF/cm2, which is in good agreement with the experimental results. As the temperature increases from 10 to 450 K, the field strength and capacitance of the compact layer on Pt (111) first increase and then decrease slightly, which is significant for understanding the water/Pt interface from atomic level.

  5. Dynamic perfusion CT: Optimizing the temporal resolution for the calculation of perfusion CT parameters in stroke patients

    Energy Technology Data Exchange (ETDEWEB)

    Kaemena, Andreas [Department of Radiology, Charite-Medical University Berlin, Augustenburger Platz 1, D-13353 Berlin (Germany)], E-mail: andreas.kaemena@charite.de; Streitparth, Florian; Grieser, Christian; Lehmkuhl, Lukas [Department of Radiology, Charite-Medical University Berlin, Augustenburger Platz 1, D-13353 Berlin (Germany); Jamil, Basil [Department of Radiotherapy, Charite-Medical University Berlin, Schumannstr. 20/21, D-10117 Berlin (Germany); Wojtal, Katarzyna; Ricke, Jens; Pech, Maciej [Department of Radiology, Charite-Medical University Berlin, Augustenburger Platz 1, D-13353 Berlin (Germany)

    2007-10-15

    Purpose: To assess the influence of different temporal sampling rates on the accuracy of the results from cerebral perfusion CTs in patients with an acute ischemic stroke. Material and methods: Thirty consecutive patients with acute stroke symptoms received a dynamic perfusion CT (LightSpeed 16, GE). Forty millilitres of iomeprol (Imeron 400) were administered at an injection rate of 4 ml/s. After a scan delay of 7 s, two adjacent 10 mm slices at 80 kV and 190 mA were acquired in a cine mode technique with a cine duration of 49 s. Parametric maps for the blood flow (BF), blood volume (BV) and mean transit time (MTT) were calculated for temporal sampling intervals of 0.5, 1, 2, 3 and 4 s using GE's Perfusion 3 software package. In addition to the quantitative ROI data analysis, a visual perfusion map analysis was performed. Results: The perfusion analysis proved to be technically feasible with all patients. The calculated perfusion values revealed significant differences with regard to the BF, BV and MTT, depending on the employed temporal resolution. The perfusion contrast between ischemic lesions and healthy brain tissue decreased continuously at the lower temporal resolutions. The visual analysis revealed that ischemic lesions were best depicted with sampling intervals of 0.5 and 1 s. Conclusion: We recommend a temporal scan resolution of two images per second for the best detection and depiction of ischemic areas.

  6. Vibrational dynamics of the bifluoride ion. III. F-F (ν1) eigenstates and vibrational intensity calculations

    Science.gov (United States)

    Epa, V. C.; Thorson, W. R.

    1990-09-01

    This paper concludes a theoretical study of vibrational dynamics in the bifluoride ion FHF-, which exhibits strongly anharmonic and coupled motions. Two previous papers have described an extended model potential surface for the system, developed a scheme for analysis based on a zero-order adiabatic separation of the proton bending and stretching motions (ν2,ν3) from the slower F-F symmetric-stretch motion (ν1), and presented results of accurate calculations of the adiabatic protonic eigenstates. Here the ν1 motion has been treated, in adiabatic approximation and also including nonadiabatic couplings in close-coupled calculations with up to three protonic states (channels). States of the system involving more than one quantum of protonic excitation (e.g., 2ν2, 2ν3 σg states; 3ν2, ν2+2ν3 πu states; ν3+2ν2, 3ν3 σu states) exhibit strong mixing at avoided crossings of protonic levels, and these effects are discussed in detail. Dipole matrix elements and relative intensities for vibrational transitions have been computed with an electronic dipole moment function based on ab initio calculations for an extended range of geometries. Frequencies, relative IR intensities and other properties of interest are compared with high resolution spectroscopic data for the gas-phase free ion and with the IR absorption spectra of KHF2(s) and NaHF2(s). Errors in the ab initio potential surface yield fundamental frequencies ν2 and ν3 100-250 cm-1 higher than those observed in either the free ion or the crystalline solids, but these differences are consistent and an unambiguous assignment of essentially all transitions in the IR spectrum of KHF2 is made. Calculated relative intensities for stretching mode (ν3, σu symmetry) transitions agree well with those observed in both KHF2 [e.g., bands (ν3+nν1), (ν3+2ν2), (3ν3), etc.] and the free ion (ν3,ν3+ν1). Calculated intensities for bending mode (ν2, πu symmetry) transitions agree well with experiment for the ν2

  7. Review of the fundamental theories behind small angle X-ray scattering, molecular dynamics simulations, and relevant integrated application

    Directory of Open Access Journals (Sweden)

    Lauren Boldon

    2015-02-01

    Full Text Available In this paper, the fundamental concepts and equations necessary for performing small angle X-ray scattering (SAXS experiments, molecular dynamics (MD simulations, and MD-SAXS analyses were reviewed. Furthermore, several key biological and non-biological applications for SAXS, MD, and MD-SAXS are presented in this review; however, this article does not cover all possible applications. SAXS is an experimental technique used for the analysis of a wide variety of biological and non-biological structures. SAXS utilizes spherical averaging to produce one- or two-dimensional intensity profiles, from which structural data may be extracted. MD simulation is a computer simulation technique that is used to model complex biological and non-biological systems at the atomic level. MD simulations apply classical Newtonian mechanics’ equations of motion to perform force calculations and to predict the theoretical physical properties of the system. This review presents several applications that highlight the ability of both SAXS and MD to study protein folding and function in addition to non-biological applications, such as the study of mechanical, electrical, and structural properties of non-biological nanoparticles. Lastly, the potential benefits of combining SAXS and MD simulations for the study of both biological and non-biological systems are demonstrated through the presentation of several examples that combine the two techniques.

  8. Integrative Medicine Program- MD Anderson Cancer Center

    Directory of Open Access Journals (Sweden)

    Richard T Lee

    2012-06-01

    Full Text Available The Integrative Medicine Program at MD Anderson Cancer Center was first established in 1998.  Our mission is to empower patients with cancer and their families to become active partners in their own physical, psycho-spiritual, and social health through personalized education and evidenced-based clinical care to optimize health, quality of life, and clinical outcomes across the cancer continuum.  The program consists of three main components: clinical care, research, and education.  The Integrative Medicine Center provides clinical services to patients through individual and group programs.  The clinical philosophy of the center is to work collaboratively with the oncology teams to build comprehensive and integrative care plans that are personalized, evidence-based, and safe with the goal of improving clinical outcomes.  The individual services comprise of integrative oncology consultation, acupuncture, meditation, music therapy, nutrition, and oncology massage.  The center also provides a variety of group programs including meditation, yoga, tai chi, cooking classes and others.  Over the past 13 years, over 70,000 patients and families have participated in services and programs offered by the center.  The research portfolio focuses on three main areas: mind-body interventions, acupuncture, and meditation.  This lecture will focus on providing an overview of the Integrative Medicine Program at MD Anderson with a focus on the clinical services provided.  Participants will learn about the integrative clinical model and how this is applied to the care of cancer patients at MD Anderson Cancer Center.  Current and future research topics will be discussed as well as patient cases.

  9. Report from LHC MD 1399: Effect of linear coupling on nonlinear observables in the LHC.

    CERN Document Server

    Maclean, Ewen Hamish; Giovannozzi, Massimo; Persson, Tobias Hakan Bjorn; Tomas Garcia, Rogelio; CERN. Geneva. ATS Department

    2017-01-01

    Simulation work during Run 1 established that linear coupling had a large impact on nonlinear observables such as detuning with amplitude and dynamic aperture. Linear coupling is generally taken to be the largest single source of uncertainty in the modelling of the LHC’s nonlinear single particle dynamics. ThisMD sought to verify that such behaviour, to this point only observed in simulation, translated into the real machine.

  10. Molecular dynamics simulations through GPU video games technologies

    Science.gov (United States)

    Loukatou, Styliani; Papageorgiou, Louis; Fakourelis, Paraskevas; Filntisi, Arianna; Polychronidou, Eleftheria; Bassis, Ioannis; Megalooikonomou, Vasileios; Makałowski, Wojciech; Vlachakis, Dimitrios; Kossida, Sophia

    2016-01-01

    Bioinformatics is the scientific field that focuses on the application of computer technology to the management of biological information. Over the years, bioinformatics applications have been used to store, process and integrate biological and genetic information, using a wide range of methodologies. One of the most de novo techniques used to understand the physical movements of atoms and molecules is molecular dynamics (MD). MD is an in silico method to simulate the physical motions of atoms and molecules under certain conditions. This has become a state strategic technique and now plays a key role in many areas of exact sciences, such as chemistry, biology, physics and medicine. Due to their complexity, MD calculations could require enormous amounts of computer memory and time and therefore their execution has been a big problem. Despite the huge computational cost, molecular dynamics have been implemented using traditional computers with a central memory unit (CPU). A graphics processing unit (GPU) computing technology was first designed with the goal to improve video games, by rapidly creating and displaying images in a frame buffer such as screens. The hybrid GPU-CPU implementation, combined with parallel computing is a novel technology to perform a wide range of calculations. GPUs have been proposed and used to accelerate many scientific computations including MD simulations. Herein, we describe the new methodologies developed initially as video games and how they are now applied in MD simulations. PMID:27525251

  11. Dawbeney Turbervile, MD (1612-1696).

    Science.gov (United States)

    Simunovic, Matthew P

    2012-03-01

    The year 2012 marks the quatercentenary of the birth of Dawbeney Turbervile,MD(1612-1696), one-time Royalist soldier and later ophthalmologist to England’s Princess Anne, the diarist Samuel Pepys, the natural philosopher Robert Boyle, and the astronomer Walter Pope. Turbervile is remarkable for many reasons: He specialized at a time when generalization was prized; though he was a qualified physician, he also practiced the trade of surgery. Furthermore, he provided in his communications with the Royal Society early descriptions of achromatopsia, ocular foreign body removal with a magnet, and tic doloreaux. He is a forebear worth remembering

  12. MD Test of a Ballistic Optics

    CERN Document Server

    Garcia-Tabares Valdivieso, Ana; Salvachua Ferrando, Belen Maria; Skowronski, Piotr Krzysztof; Solfaroli Camillocci, Matteo; Tomas Garcia, Rogelio; Wenninger, Jorg; Coello De Portugal - Martinez Vazquez, Jaime Maria; CERN. Geneva. ATS Department

    2016-01-01

    The ballistic optics is designed to improve the understanding of optical errors and BPM systematic effects in the critical triplet region. The particularity of that optics is that the triplet is switched off, effectively transforming the triplets on both sides of IR1 and IR5 into drift spaces. Advantage can be taken from that fact to localize better errors in the Q4-Q5-triplet region. During this MD this new optics was tested for the first time at injection with beam 2.

  13. Orlando C. Kirton, MD, FACS, FCCM, FCCP.

    Science.gov (United States)

    Pyrtek, Ludwig J

    2007-12-01

    The chair is named for Ludwig J. Pyrtek, MD, an esteemed surgeon at Hartford Hospital, who was devoted to the care of his patients and was an outstanding educator within his chosen field. A unique aspect of the chair is that its income is not used to support the salary of the director but is used to enhance the education activities of the department, such as the purchasing of state-of-the-art teaching devices, support of surgical resident research activities, educational travel for residents and honoraria for nationally/internationally known clinicians/scientists to speak at grand rounds.

  14. Molecular dynamics simulations of peptides on calcite surface

    OpenAIRE

    Yang, Mingjun; Rodger, Mark; Harding, John; Stipp, Susan S.L.

    2009-01-01

    Abstract A series of Molecular Dynamics (MD) simulations has been carried out to investigate the interaction between peptides and a calcite (1 0 -1 4) surface in water. A 16-amino acid and a 17-amino acid peptide have been built and three different configurations for each peptide are used as starting configurations. The dynamic behaviour of these peptides has been investigated by calculating their radii of gyration and distribution of dihedral angles. For comparison, the simulatio...

  15. Ab initio molecular dynamics calculations on scattering of hyperthermal H atoms from Cu(111) and Au(111).

    Science.gov (United States)

    Kroes, Geert-Jan; Pavanello, Michele; Blanco-Rey, María; Alducin, Maite; Auerbach, Daniel J

    2014-08-07

    Energy loss from the translational motion of an atom or molecule impinging on a metal surface to the surface may determine whether the incident particle can trap on the surface, and whether it has enough energy left to react with another molecule present at the surface. Although this is relevant to heterogeneous catalysis, the relative extent to which energy loss of hot atoms takes place to phonons or electron-hole pair (ehp) excitation, and its dependence on the system's parameters, remain largely unknown. We address these questions for two systems that present an extreme case of the mass ratio of the incident atom to the surface atom, i.e., H + Cu(111) and H + Au(111), by presenting adiabatic ab initio molecular dynamics (AIMD) predictions of the energy loss and angular distributions for an incidence energy of 5 eV. The results are compared to the results of AIMDEFp calculations modeling energy loss to ehp excitation using an electronic friction ("EF") model applied to the AIMD trajectories, so that the energy loss to the electrons is calculated "post" ("p") the computation of the AIMD trajectory. The AIMD calculations predict average energy losses of 0.38 eV for Cu(111) and 0.13-0.14 eV for Au(111) for H-atoms that scatter from these surfaces without penetrating the surface. These energies closely correspond with energy losses predicted with Baule models, which is suggestive of structure scattering. The predicted adiabatic integral energy loss spectra (integrated over all final scattering angles) all display a lowest energy peak at an energy corresponding to approximately 80% of the average adiabatic energy loss for non-penetrative scattering. In the adiabatic limit, this suggests a way of determining the approximate average energy loss of non-penetratively scattered H-atoms from the integral energy loss spectrum of all scattered H-atoms. The AIMDEFp calculations predict that in each case the lowest energy loss peak should show additional energy loss in the

  16. Molecular Dynamics Simulation of Shear Moduli for Coulomb Crystals

    CERN Document Server

    Horowitz, C J

    2008-01-01

    Torsional (shear) oscillations of neutron stars may have been observed in quasiperiodic oscillations of Magnetar Giant Flares. The frequencies of these modes depend on the shear modulus of neutron star crust. We calculate the shear modulus of Coulomb crystals from molecular dynamics simulations. We find that electron screening reduces the shear modulus by about 10% compared to previous Ogata et al. results. Our MD simulations can be extended to calculate the effects of impurities and or polycrystalline structures on the shear modulus.

  17. About new dynamical interpretations of entropic model of correspondence matrix calculation and Nash-Wardrop's equilibrium in Beckmann's traffic flow distribution model

    CERN Document Server

    Nagapetyan, Tigran

    2011-01-01

    In this work we widespread statistical physics (chemical kinetic stochastic) approach to the investigation of macrosystems, arise in economic, sociology and traffic flow theory. The main line is a definition of equilibrium of macrosystem as most probable macrostate of invariant measure of Markov dynamic (corresponds to the macrosystem). We demonstrate new dynamical interpretations for the well known static model of correspondence matrix calculation. Based on this model we propose a best response dynamics for the Beckmann's traffic flow distribution model. We prove that this "natural" dynamic under quite general conditions converges to the Nash-Wardrop's equilibrium. After that we consider two interesting demonstration examples.

  18. Predicting solute partitioning in lipid bilayers: Free energies and partition coefficients from molecular dynamics simulations and COSMOmic

    Energy Technology Data Exchange (ETDEWEB)

    Jakobtorweihen, S., E-mail: jakobtorweihen@tuhh.de; Ingram, T.; Gerlach, T.; Smirnova, I. [Institute of Thermal Separation Processes, Hamburg University of Technology, Eissendorfer Str. 38, 21073 Hamburg (Germany); Zuniga, A. Chaides; Keil, F. J. [Institute of Chemical Reaction Engineering, Hamburg University of Technology, Eissendorfer Str. 38, 21073 Hamburg (Germany)

    2014-07-28

    Quantitative predictions of biomembrane/water partition coefficients are important, as they are a key property in pharmaceutical applications and toxicological studies. Molecular dynamics (MD) simulations are used to calculate free energy profiles for different solutes in lipid bilayers. How to calculate partition coefficients from these profiles is discussed in detail and different definitions of partition coefficients are compared. Importantly, it is shown that the calculated coefficients are in quantitative agreement with experimental results. Furthermore, we compare free energy profiles from MD simulations to profiles obtained by the recent method COSMOmic, which is an extension of the conductor-like screening model for realistic solvation to micelles and biomembranes. The free energy profiles from these molecular methods are in good agreement. Additionally, solute orientations calculated with MD and COSMOmic are compared and again a good agreement is found. Four different solutes are investigated in detail: 4-ethylphenol, propanol, 5-phenylvaleric acid, and dibenz[a,h]anthracene, whereby the latter belongs to the class of polycyclic aromatic hydrocarbons. The convergence of the free energy profiles from biased MD simulations is discussed and the results are shown to be comparable to equilibrium MD simulations. For 5-phenylvaleric acid the influence of the carboxyl group dihedral angle on free energy profiles is analyzed with MD simulations.

  19. Molecular Dynamics Simulation of Thermal Conductivity in Si-Ge Nanocomposites

    Institute of Scientific and Technical Information of China (English)

    HUANG Xiao-Peng; HUAI Xiu-Lan

    2008-01-01

    @@ Thermal conductivity of nanocomposites is calculated by molecular dynamics (MD) simulation. The effect of size on thermal conductivity of nanowire composites and the temperature profiles are studied. The results indicate that the thermal conductivity of nanowire composites could be much lower than alloy value; the thermal conductivity is slightly dependent on temperature except at very low temperature.

  20. QCT and QM calculations of the Cl(2P) + NH3 reaction: influence of the reactant well on the dynamics.

    Science.gov (United States)

    Monge-Palacios, M; Yang, M; Espinosa-García, J

    2012-04-14

    A detailed dynamics study, using both quasi-classical trajectory (QCT) and reduced-dimensional quantum mechanical (QM) calculations, was carried out to understand the reactivity and mechanism of the Cl((2)P) + NH(3)→ HCl + NH(2) gas-phase reaction, which evolves through deep wells in the entry and exit channels. The calculations were performed on an analytical potential energy surface recently developed by our group, PES-2010 [M. Monge-Palacios, C. Rangel, J. C. Corchado and J. Espinosa-Garcia, Int. J. Quantum. Chem., 2011], together with a simplified model surface, mod-PES, in which the reactant well is removed to analyze its influence. The main finding was that the QCT and QM methods show a change of the reaction probability with collision energy, suggesting a change of the atomic-level mechanism of reaction with energy. This change disappeared when the mod-PES was used, showing that the behaviour at low energies is a direct consequence of the existence of the reactant well. Analysis of the trajectories showed that different mechanisms operate depending on the collision energy. Thus, while at high energies (E(coll) > 5 kcal mol(-1)) practically all trajectories are direct, at low energies (E(coll) cross section results reinforce this change of mechanism, showing also the influence of the reactant well on this reaction. Thus, the PES-2010 surface yields a forward-backward symmetry in the scattering, while when the reactant well is removed with the mod-PES the shape is more isotropic.

  1. MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories.

    Science.gov (United States)

    McGibbon, Robert T; Beauchamp, Kyle A; Harrigan, Matthew P; Klein, Christoph; Swails, Jason M; Hernández, Carlos X; Schwantes, Christian R; Wang, Lee-Ping; Lane, Thomas J; Pande, Vijay S

    2015-10-20

    As molecular dynamics (MD) simulations continue to evolve into powerful computational tools for studying complex biomolecular systems, the necessity of flexible and easy-to-use software tools for the analysis of these simulations is growing. We have developed MDTraj, a modern, lightweight, and fast software package for analyzing MD simulations. MDTraj reads and writes trajectory data in a wide variety of commonly used formats. It provides a large number of trajectory analysis capabilities including minimal root-mean-square-deviation calculations, secondary structure assignment, and the extraction of common order parameters. The package has a strong focus on interoperability with the wider scientific Python ecosystem, bridging the gap between MD data and the rapidly growing collection of industry-standard statistical analysis and visualization tools in Python. MDTraj is a powerful and user-friendly software package that simplifies the analysis of MD data and connects these datasets with the modern interactive data science software ecosystem in Python.

  2. On the comparisons between dissipative particle dynamics simulations and self-consistent field calculations of diblock copolymer microphase separation

    Science.gov (United States)

    Sandhu, Paramvir; Zong, Jing; Yang, Delian; Wang, Qiang

    2013-05-01

    To highlight the importance of quantitative and parameter-fitting-free comparisons among different models/methods, we revisited the comparisons made by Groot and Madden [J. Chem. Phys. 108, 8713 (1998), 10.1063/1.476300] and Chen et al. [J. Chem. Phys. 122, 104907 (2005), 10.1063/1.1860351] between their dissipative particle dynamics (DPD) simulations of the DPD model and the self-consistent field (SCF) calculations of the "standard" model done by Matsen and Bates [Macromolecules 29, 1091 (1996), 10.1021/ma951138i] for diblock copolymer (DBC) A-B melts. The small values of the invariant degree of polymerization used in the DPD simulations do not justify the use of the fluctuation theory of Fredrickson and Helfand [J. Chem. Phys. 87, 697 (1987), 10.1063/1.453566] by Groot and Madden, and their fitting between the DPD interaction parameters and the Flory-Huggins χ parameter in the "standard" model also has no rigorous basis. Even with their use of the fluctuation theory and the parameter-fitting, we do not find the "quantitative match" for the order-disorder transition of symmetric DBC claimed by Groot and Madden. For lamellar and cylindrical structures, we find that the system fluctuations/correlations decrease the bulk period and greatly suppress the large depletion of the total segmental density at the A-B interfaces as well as its oscillations in A- and B-domains predicted by our SCF calculations of the DPD model. At all values of the A-block volume fractions in the copolymer f (which are integer multiples of 0.1), our SCF calculations give the same sequence of phase transitions with varying χN as the "standard" model, where N denotes the number of segments on each DBC chain. All phase boundaries, however, are shifted to higher χN due to the finite interaction range in the DPD model, except at f = 0.1 (and 0.9), where χN at the transition between the disordered phase and the spheres arranged on a body-centered cubic lattice is lower due to N = 10 in the DPD

  3. Development of calculation and analysis methods for the dynamic first hyperpolarizability based on the ab initio molecular orbital-quantum master equation method.

    Science.gov (United States)

    Kishi, Ryohei; Fujii, Hiroaki; Kishimoto, Shingo; Murata, Yusuke; Ito, Soichi; Okuno, Katsuki; Shigeta, Yasuteru; Nakano, Masayoshi

    2012-05-03

    We develop novel calculation and analysis methods for the dynamic first hyperpolarizabilities β [the second-order nonlinear optical (NLO) properties at the molecular level] in the second-harmonic generation based on the quantum master equation method combined with the ab initio molecular orbital (MO) configuration interaction method. As examples, we have evaluated off-resonant dynamic β values of donor (NH(2))- and/or acceptor (NO(2))-substituted benzenes using these methods, which are shown to reproduce those by the conventional summation-over-states method well. The spatial contributions of electrons to the dynamic β of these systems are also analyzed using the dynamic β density and its partition into the MO contributions. The present results demonstrate the advantage of these methods in unraveling the mechanism of dynamic NLO properties and in building the structure-dynamic NLO property relationships of real molecules.

  4. Carbon Nanotubes in Water: MD Simulations of Internal and External Flow, Self Organization

    Science.gov (United States)

    Jaffe, Richard L.; Halicioglu, Timur; Werder, Thomas; Walther, Jens; Koumoutsakos, Petros; Arnold, James (Technical Monitor)

    2001-01-01

    We have developed computational tools, based on particle codes, for molecular dynamics (MD) simulation of carbon nanotubes (CNT) in aqueous environments. The interaction of CNTs with water is envisioned as a prototype for the design of engineering nano-devices, such as artificial sterocillia and molecular biosensors. Large scale simulations involving thousands of water molecules are possible due to our efficient parallel MD code that takes long range electrostatic interactions into account. Since CNTs can be considered as rolled up sheets of graphite, we expect the CNT-water interaction to be similar to the interaction of graphite with water. However, there are fundamental differences between considering graphite and CNTs, since the curvature of CNTs affects their chemical activity and also since capillary effects play an important role for both dynamic and static behaviour of materials inside CNTs. In recent studies Gordillo and Marti described the hydrogen bond structure as well as time dependent properties of water confined in CNTs. We are presenting results from the development of force fields describing the interaction of CNTs and water based on ab-initio quantum mechanical calculations. Furthermore, our results include both water flows external to CNTs and the behaviour of water nanodroplets inside heated CNTs. In the first case (external flows) the hydrophobic behaviour of CNTs is quantified and we analyze structural properties of water in the vicinity of CNTs with diagnostics such as hydrogen bond distribution, water dipole orientation and radial distribution functions. The presence of water leads to attractive forces between CNTs as a result of their hydrophobicity. Through extensive simulations we quantify these attractive forces in terms of the number and separation of the CNT. Results of our simulations involving arrays of CNTs indicate that these exhibit a hydrophobic behaviour that leads to self-organising structures capable of trapping water clusters

  5. A Direct Two-Dimensional Pressure Formulation in Molecular Dynamics

    CERN Document Server

    YD, Sumith

    2016-01-01

    Two-dimensional (2D) pressure field estimation in molecular dynamics (MD) simulations has been done using three-dimensional (3D) pressure field calculations followed by averaging, which is computationally expensive due to 3D convolutions. In this work, we develop a direct 2D pressure field estimation method which is much faster than 3D methods without losing accuracy. The method is validated with MD simulations on two systems: a liquid film and a cylindrical drop of argon suspended in surrounding vapor.

  6. Virtual synthesis of crystals using ab initio MD: Case study on LiFePO4

    Science.gov (United States)

    Mishra, S. B.; Nanda, B. R. K.

    2017-05-01

    Molecular dynamics simulation technique is fairly successful in studying the structural aspects and dynamics of fluids. Here we study the ability of ab initio molecular dynamics (ab initio MD) to carry out virtual experiments to synthesize new crystalline materials and to predict their structures. For this purpose the olivine phosphate LiFePO4 (LFPO) is used as an example. As transition metal oxides in general are stabilized with layered geometry, we carried out ab initio MD simulations over a hypothetical layered configuration consisting of alternate LiPO2 and FeO2 layers. With intermittent steps of electron minimization, the resulted equilibrium lattice consist of PO4 tetrahedra and distorted Fe-O complexes similar to the one observed in the experimental lattice.

  7. On calculation of the electrostatic potential of a phosphatidylinositol phosphate-containing phosphatidylcholine lipid membrane accounting for membrane dynamics.

    Directory of Open Access Journals (Sweden)

    Jonathan C Fuller

    Full Text Available Many signaling events require the binding of cytoplasmic proteins to cell membranes by recognition of specific charged lipids, such as phosphoinositol-phosphates. As a model for a protein-membrane binding site, we consider one charged phosphoinositol phosphate (PtdIns(3P embedded in a phosphatidylcholine bilayer. As the protein-membrane binding is driven by electrostatic interactions, continuum solvent models require an accurate representation of the electrostatic potential of the phosphoinositol phosphate-containing membrane. We computed and analyzed the electrostatic potentials of snapshots taken at regular intervals from molecular dynamics simulations of the bilayer. We observe considerable variation in the electrostatic potential of the bilayer both along a single simulation and between simulations performed with the GAFF or CHARMM c36 force fields. However, we find that the choice of GAFF or CHARMM c36 parameters has little effect on the electrostatic potential of a given configuration of the bilayer with a PtdIns(3P embedded in it. From our results, we propose a remedian averaging method for calculating the electrostatic potential of a membrane system that is suitable for simulations of protein-membrane binding with a continuum solvent model.

  8. On calculation of the electrostatic potential of a phosphatidylinositol phosphate-containing phosphatidylcholine lipid membrane accounting for membrane dynamics.

    Science.gov (United States)

    Fuller, Jonathan C; Martinez, Michael; Wade, Rebecca C

    2014-01-01

    Many signaling events require the binding of cytoplasmic proteins to cell membranes by recognition of specific charged lipids, such as phosphoinositol-phosphates. As a model for a protein-membrane binding site, we consider one charged phosphoinositol phosphate (PtdIns(3)P) embedded in a phosphatidylcholine bilayer. As the protein-membrane binding is driven by electrostatic interactions, continuum solvent models require an accurate representation of the electrostatic potential of the phosphoinositol phosphate-containing membrane. We computed and analyzed the electrostatic potentials of snapshots taken at regular intervals from molecular dynamics simulations of the bilayer. We observe considerable variation in the electrostatic potential of the bilayer both along a single simulation and between simulations performed with the GAFF or CHARMM c36 force fields. However, we find that the choice of GAFF or CHARMM c36 parameters has little effect on the electrostatic potential of a given configuration of the bilayer with a PtdIns(3)P embedded in it. From our results, we propose a remedian averaging method for calculating the electrostatic potential of a membrane system that is suitable for simulations of protein-membrane binding with a continuum solvent model.

  9. Analytical Calculation of Mutual Information between Weakly Coupled Poisson-Spiking Neurons in Models of Dynamically Gated Communication.

    Science.gov (United States)

    Cannon, Jonathan

    2017-01-01

    Mutual information is a commonly used measure of communication between neurons, but little theory exists describing the relationship between mutual information and the parameters of the underlying neuronal interaction. Such a theory could help us understand how specific physiological changes affect the capacity of neurons to synaptically communicate, and, in particular, they could help us characterize the mechanisms by which neuronal dynamics gate the flow of information in the brain. Here we study a pair of linear-nonlinear-Poisson neurons coupled by a weak synapse. We derive an analytical expression describing the mutual information between their spike trains in terms of synapse strength, neuronal activation function, the time course of postsynaptic currents, and the time course of the background input received by the two neurons. This expression allows mutual information calculations that would otherwise be computationally intractable. We use this expression to analytically explore the interaction of excitation, information transmission, and the convexity of the activation function. Then, using this expression to quantify mutual information in simulations, we illustrate the information-gating effects of neural oscillations and oscillatory coherence, which may either increase or decrease the mutual information across the synapse depending on parameters. Finally, we show analytically that our results can quantitatively describe the selection of one information pathway over another when multiple sending neurons project weakly to a single receiving neuron.

  10. 3-D parallel program for numerical calculation of gas dynamics problems with heat conductivity on distributed memory computational systems (CS)

    Energy Technology Data Exchange (ETDEWEB)

    Sofronov, I.D.; Voronin, B.L.; Butnev, O.I. [VNIIEF (Russian Federation)] [and others

    1997-12-31

    The aim of the work performed is to develop a 3D parallel program for numerical calculation of gas dynamics problem with heat conductivity on distributed memory computational systems (CS), satisfying the condition of numerical result independence from the number of processors involved. Two basically different approaches to the structure of massive parallel computations have been developed. The first approach uses the 3D data matrix decomposition reconstructed at temporal cycle and is a development of parallelization algorithms for multiprocessor CS with shareable memory. The second approach is based on using a 3D data matrix decomposition not reconstructed during a temporal cycle. The program was developed on 8-processor CS MP-3 made in VNIIEF and was adapted to a massive parallel CS Meiko-2 in LLNL by joint efforts of VNIIEF and LLNL staffs. A large number of numerical experiments has been carried out with different number of processors up to 256 and the efficiency of parallelization has been evaluated in dependence on processor number and their parameters.

  11. Near-Quantitative Agreement of Model-Free DFT-MD Predictions with XAFS Observations of the Hydration Structure of Highly Charged Transition-Metal Ions.

    Science.gov (United States)

    Fulton, John L; Bylaska, Eric J; Bogatko, Stuart; Balasubramanian, Mahalingam; Cauët, Emilie; Schenter, Gregory K; Weare, John H

    2012-09-20

    First-principles dynamics simulations (DFT, PBE96, and PBE0) and electron scattering calculations (FEFF9) provide near-quantitative agreement with new and existing XAFS measurements for a series of transition-metal ions interacting with their hydration shells via complex mechanisms (high spin, covalency, charge transfer, etc.). This analysis does not require either the development of empirical interparticle interaction potentials or structural models of hydration. However, it provides consistent parameter-free analysis and improved agreement with the higher-R scattering region (first- and second-shell structure, symmetry, dynamic disorder, and multiple scattering) for this comprehensive series of ions. DFT+GGA MD methods provide a high level of agreement. However, improvements are observed when exact exchange is included. Higher accuracy in the pseudopotential description of the atomic potential, including core polarization and reducing core radii, was necessary for very detailed agreement. The first-principles nature of this approach supports its application to more complex systems.

  12. Ion-orbital coupling in Car-Parrinello calculations of hydrogen-bond vibrational dynamics: case study with the NH3-HCl dimer.

    Science.gov (United States)

    Ong, S W; Lee, B X B; Kang, H C

    2011-09-14

    We have performed Car-Parrinello molecular dynamics (CPMD) calculations of the hydrogen-bonded NH(3)-HCl dimer. Our main aim is to establish how ionic-orbital coupling in CPMD affects the vibrational dynamics in hydrogen-bonded systems by characterizing the dependence of the calculated vibrational frequencies upon the orbital mass in the adiabatic limit of Car-Parrinello calculations. We use the example of the NH(3)-HCl dimer because of interest in its vibrational spectrum, in particular the magnitude of the frequency shift of the H-Cl stretch due to the anharmonic interactions when the hydrogen bond is formed. We find that an orbital mass of about 100 a.u. or smaller is required in order for the ion-orbital coupling to be linear in orbital mass, and the results for which can be accurately extrapolated to the adiabatic limit of zero orbital mass. We argue that this is general for hydrogen-bonded systems, suggesting that typical orbital mass values used in CPMD are too high to accurately describe vibrational dynamics in hydrogen-bonded systems. Our results also show that the usual application of a scaling factor to the CPMD frequencies to correct for the effects of orbital mass is not valid. For the dynamics of the dimer, we find that the H-Cl stretch and the N-H-Cl bend are significantly coupled, suggesting that it is important to include the latter degree of freedom in quantum dynamical calculations. Results from our calculations with deuterium-substitution show that both these degrees of freedom have significant anharmonic interactions. Our calculated frequency for the H-Cl stretch using the Becke-exchange Lee-Yang-Parr correlation functional compares reasonably well with a previous second-order Møller-Plesset calculation with anharmonic corrections, although it is low compared to the experimental value for the dimer trapped in a neon-matrix. © 2011 American Institute of Physics

  13. Multiscale molecular dynamics using the matched interface and boundary method

    Science.gov (United States)

    Geng, Weihua; Wei, G.W.

    2010-01-01

    The Poisson-Boltzmann (PB) equation is an established multiscale model for electrostatic analysis of biomolecules and other dielectric systems. PB based molecular dynamics (MD) approach has a potential to tackle large biological systems. Obstacles that hinder the current development of PB based MD methods are concerns in accuracy, stability, efficiency and reliability. The presence of complex solvent-solute interface, geometric singularities and charge singularities leads to challenges in the numerical solution of the PB equation and electrostatic force evaluation in PB based MD methods. Recently, the matched interface and boundary (MIB) method has been utilized to develop the first second order accurate PB solver that is numerically stable in dealing with discontinuous dielectric coefficients, complex geometric singularities and singular source charges. The present work develops the PB based MD approach using the MIB method. New formulation of electrostatic forces is derived to allow the use of sharp molecular surfaces. Accurate reaction field forces are obtained by directly differentiating the electrostatic potential. Dielectric boundary forces are evaluated at the solvent-solute interface using an accurate Cartesian-grid surface integration method. The electrostatic forces located at reentrant surfaces are appropriately assigned to related atoms. Extensive numerical tests are carried out to validate the accuracy and stability of the present electrostatic force calculation. The new PB based MD method is implemented in conjunction with the AMBER package. MIB based MD simulations of biomolecules are demonstrated via a few example systems. PMID:21088761

  14. 129Xe NMR chemical shift in Xe@C60 calculated at experimental conditions: essential role of the relativity, dynamics, and explicit solvent.

    Science.gov (United States)

    Standara, Stanislav; Kulhánek, Petr; Marek, Radek; Straka, Michal

    2013-08-15

    The isotropic (129)Xe nuclear magnetic resonance (NMR) chemical shift (CS) in Xe@C60 dissolved in liquid benzene was calculated by piecewise approximation to faithfully simulate the experimental conditions and to evaluate the role of different physical factors influencing the (129)Xe NMR CS. The (129)Xe shielding constant was obtained by averaging the (129)Xe nuclear magnetic shieldings calculated for snapshots obtained from the molecular dynamics trajectory of the Xe@C60 system embedded in a periodic box of benzene molecules. Relativistic corrections were added at the Breit-Pauli perturbation theory (BPPT) level, included the solvent, and were dynamically averaged. It is demonstrated that the contribution of internal dynamics of the Xe@C60 system represents about 8% of the total nonrelativistic NMR CS, whereas the effects of dynamical solvent add another 8%. The dynamically averaged relativistic effects contribute by 9% to the total calculated (129)Xe NMR CS. The final theoretical value of 172.7 ppm corresponds well to the experimental (129)Xe CS of 179.2 ppm and lies within the estimated errors of the model. The presented computational protocol serves as a prototype for calculations of (129)Xe NMR parameters in different Xe atom guest-host systems. Copyright © 2013 Wiley Periodicals, Inc.

  15. Molecular Dynamics Simulations of Shocks Including Electronic Heat Conduction and Electron-Phonon Coupling

    Science.gov (United States)

    Ivanov, Dmitriy S.; Zhigilei, Leonid V.; Bringa, Eduardo M.; De Koning, Maurice; Remington, Bruce A.; Caturla, Maria Jose; Pollaine, Stephen M.

    2004-07-01

    Shocks are often simulated using the classical molecular dynamics (MD) method in which the electrons are not included explicitly and the interatomic interaction is described by an effective potential. As a result, the fast electronic heat conduction in metals and the coupling between the lattice vibrations and the electronic degrees of freedom can not be represented. Under conditions of steep temperature gradients that can form near the shock front, however, the electronic heat conduction can play an important part in redistribution of the thermal energy in the shocked target. We present the first atomistic simulation of a shock propagation including the electronic heat conduction and electron-phonon coupling. The computational model is based on the two-temperature model (TTM) that describes the time evolution of the lattice and electron temperatures by two coupled non-linear differential equations. In the combined TTM-MD method, MD substitutes the TTM equation for the lattice temperature. Simulations are performed with both MD and TTM-MD models for an EAM Al target shocked at 300 kbar. The target includes a tilt grain boundary, which provides a region where shock heating is more pronounced and, therefore, the effect of the electronic heat conduction is expected to be more important. We find that the differences between the predictions of the MD and TTM-MD simulations are significantly smaller as compared to the hydrodynamics calculations performed at similar conditions with and without electronic heat conduction.

  16. Vienna-PTM web server: a toolkit for MD simulations of protein post-translational modifications.

    Science.gov (United States)

    Margreitter, Christian; Petrov, Drazen; Zagrovic, Bojan

    2013-07-01

    Post-translational modifications (PTMs) play a key role in numerous cellular processes by directly affecting structure, dynamics and interaction networks of target proteins. Despite their importance, our understanding of protein PTMs at the atomistic level is still largely incomplete. Molecular dynamics (MD) simulations, which provide high-resolution insight into biomolecular function and underlying mechanisms, are in principle ideally suited to tackle this problem. However, because of the challenges associated with the development of novel MD parameters and a general lack of suitable computational tools for incorporating PTMs in target protein structures, MD simulations of post-translationally modified proteins have historically lagged significantly behind the studies of unmodified proteins. Here, we present Vienna-PTM web server (http://vienna-ptm.univie.ac.at), a platform for automated introduction of PTMs of choice to protein 3D structures (PDB files) in a user-friendly visual environment. With 256 different enzymatic and non-enzymatic PTMs available, the server performs geometrically realistic introduction of modifications at sites of interests, as well as subsequent energy minimization. Finally, the server makes available force field parameters and input files needed to run MD simulations of modified proteins within the framework of the widely used GROMOS 54A7 and 45A3 force fields and GROMACS simulation package.

  17. Vienna-PTM web server: a toolkit for MD simulations of protein post-translational modifications

    Science.gov (United States)

    Margreitter, Christian; Petrov, Drazen; Zagrovic, Bojan

    2013-01-01

    Post-translational modifications (PTMs) play a key role in numerous cellular processes by directly affecting structure, dynamics and interaction networks of target proteins. Despite their importance, our understanding of protein PTMs at the atomistic level is still largely incomplete. Molecular dynamics (MD) simulations, which provide high-resolution insight into biomolecular function and underlying mechanisms, are in principle ideally suited to tackle this problem. However, because of the challenges associated with the development of novel MD parameters and a general lack of suitable computational tools for incorporating PTMs in target protein structures, MD simulations of post-translationally modified proteins have historically lagged significantly behind the studies of unmodified proteins. Here, we present Vienna-PTM web server (http://vienna-ptm.univie.ac.at), a platform for automated introduction of PTMs of choice to protein 3D structures (PDB files) in a user-friendly visual environment. With 256 different enzymatic and non-enzymatic PTMs available, the server performs geometrically realistic introduction of modifications at sites of interests, as well as subsequent energy minimization. Finally, the server makes available force field parameters and input files needed to run MD simulations of modified proteins within the framework of the widely used GROMOS 54A7 and 45A3 force fields and GROMACS simulation package. PMID:23703210

  18. Efficient "on-the-fly" calculation of Raman spectra from \\textit{ab-initio} molecular dynamics: Application to hydrophobic/hydrophilic solutes in bulk water

    CERN Document Server

    Partovi-Azar, Pouya

    2015-01-01

    We present a computational method to accurately calculate Raman spectra from first principles with an at least one order of magnitude higher efficiency. This scheme thus allows to routinely calculate finite-temperature Raman spectra "on-the-fly" by means of \\textit{ab-initio} molecular dynamics simulations. To demonstrate the predictive power of this approach we investigate the effect of hydrophobic and hydrophilic solutes in water solution on the infrared and Raman spectra.

  19. Halo Scraping, Diffusion and Repopulation MD

    CERN Document Server

    Valentino, G; Bruce, R; Burkart, F; Redaelli, F; Salvachua, B; Previtali, V; Stancari, G; Valishev, A

    2012-01-01

    Beam halo measurements in the LHC were conducted through collimator scrapings in an MD carried out on the 22nd June 2012 for the first time at 4 TeV. The time evolution of losses during a collimator scan provides information on halo diffusion and population. Four scans were performed with two collimators in the vertical and horizontal plane in B1 and B2 respectively, before and after bringing the beams into collisions. During an inward step, the beam losses measured at the BLMs for the first 3 seconds are believed to be dominated by multi-turn halo removal by the collimator jaw. However, a good comparison was found between fits of the diffusion model and the subsequent loss decay. In addition, the fitted diffusion coefficients compare well to the coefficients estimated from the core emittance growth rates as a function of action.

  20. Structural insights into human microsomal epoxide hydrolase by combined homology modeling, molecular dynamics simulations, and molecular docking calculations.

    Science.gov (United States)

    Saenz-Méndez, Patricia; Katz, Aline; Pérez-Kempner, María Lucía; Ventura, Oscar N; Vázquez, Marta

    2017-04-01

    A new homology model of human microsomal epoxide hydrolase was derived based on multiple templates. The model obtained was fully evaluated, including MD simulations and ensemble-based docking, showing that the quality of the structure is better than that of only previously known model. Particularly, a catalytic triad was clearly identified, in agreement with the experimental information available. Analysis of intermediates in the enzymatic mechanism led to the identification of key residues for substrate binding, stereoselectivity, and intermediate stabilization during the reaction. In particular, we have confirmed the role of the oxyanion hole and the conserved motif (HGXP) in epoxide hydrolases, in excellent agreement with known experimental and computational data on similar systems. The model obtained is the first one that fully agrees with all the experimental observations on the system. Proteins 2017; 85:720-730. © 2016 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Functional asymmetry in the lysyl-tRNA synthetase explored by molecular dynamics, free energy calculations and experiment

    Directory of Open Access Journals (Sweden)

    Miller Andrew D

    2003-06-01

    Full Text Available Abstract Background Charging of transfer-RNA with cognate amino acid is accomplished by the aminoacyl-tRNA synthetases, and proceeds through an aminoacyl adenylate intermediate. The lysyl-tRNA synthetase has evolved an active site that specifically binds lysine and ATP. Previous molecular dynamics simulations of the heat-inducible Escherichia coli lysyl-tRNA synthetase, LysU, have revealed differences in the binding of ATP and aspects of asymmetry between the nominally equivalent active sites of this dimeric enzyme. The possibility that this asymmetry results in different binding affinities for the ligands is addressed here by a parallel computational and biochemical study. Results Biochemical experiments employing isothermal calorimetry, steady-state fluorescence and circular dichroism are used to determine the order and stoichiometries of the lysine and nucleotide binding events, and the associated thermodynamic parameters. An ordered mechanism of substrate addition is found, with lysine having to bind prior to the nucleotide in a magnesium dependent process. Two lysines are found to bind per dimer, and trigger a large conformational change. Subsequent nucleotide binding causes little structural rearrangement and crucially only occurs at a single catalytic site, in accord with the simulations. Molecular dynamics based free energy calculations of the ATP binding process are used to determine the binding affinities of each site. Significant differences in ATP binding affinities are observed, with only one active site capable of realizing the experimental binding free energy. Half-of-the-sites models in which the nucleotide is only present at one active site achieve their full binding potential irrespective of the subunit choice. This strongly suggests the involvement of an anti-cooperative mechanism. Pathways for relaying information between the two active sites are proposed. Conclusions The asymmetry uncovered here appears to be a common

  2. Lattice dynamics and anharmonicity of CaZrF{sub 6} from Raman spectroscopy and ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Sanson, Andrea, E-mail: andrea.sanson@unipd.it [Department of Physics and Astronomy, University of Padova, Padova (Italy); Giarola, Marco; Mariotto, Gino [Department of Computer Science, University of Verona, Verona (Italy); Hu, Lei; Chen, Jun; Xing, Xianran [Department of Physical Chemistry, University of Science and Technology Beijing, Beijing (China)

    2016-09-01

    Very recently it has been found that CaZrF{sub 6} exhibits a very large and isotropic negative thermal expansion (NTE), even greater than the current most popular NTE materials. In this work, the vibrational dynamics of CaZrF{sub 6} has been investigated by temperature-dependent Raman spectroscopy combined with ab initio calculations. As expected on the basis of the group theory for CaZrF{sub 6}, three Raman-active modes were identified: the F{sub 2g} mode peaked at about 236 cm{sup −1}, the E{sub g} mode at around 550–555 cm{sup −1}, and the A{sub g} mode peaked at about 637 cm{sup −1}. The temperature dependence of their frequencies follows an unusual trend: the F{sub 2g} mode, due to bending vibrations of fluorine atoms in the linear Ca-F-Zr chain, is hardened with increasing temperature, while the A{sub g} mode, corresponding to Ca-F-Zr bond stretching vibrations, is softened. We explain this anomalous behavior by separating implicit and explicit anharmonicity for both F{sub 2g} and A{sub g} modes. In fact, cubic anharmonicity (three-phonon processes) is observed to dominate the higher-frequency A{sub g} phonon-mode, quartic anharmonicity (four-phonon processes) is found to dominate the lower-frequency F{sub 2g} phonon-mode. As a result, the large NTE of CaZrF{sub 6} cannot be accurately predicted through the quasi-harmonic approximation. - Highlights: • A Raman and ab initio study of the lattice dynamics of CaZrF{sub 6} was performed. • All the Raman-active modes expected on the basis of the group theory were identified. • The temperature-dependence of the CaZrF{sub 6} Raman frequencies follows an unusual trend. • Explicit anharmonicity dominates for both F{sub 2g} and A{sub g} Raman modes. • The NTE of CaZrF{sub 6} cannot be accurately predicted by the quasi-harmonic approximation.

  3. Development of Xe and Kr empirical potentials for CeO2, ThO2, UO2 and PuO2, combining DFT with high temperature MD

    Science.gov (United States)

    Cooper, M. W. D.; Kuganathan, N.; Burr, P. A.; Rushton, M. J. D.; Grimes, R. W.; Stanek, C. R.; Andersson, D. A.

    2016-10-01

    The development of embedded atom method (EAM) many-body potentials for actinide oxides and associated mixed oxide (MOX) systems has motivated the development of a complementary parameter set for gas-actinide and gas-oxygen interactions. A comprehensive set of density functional theory (DFT) calculations were used to study Xe and Kr incorporation at a number of sites in CeO2, ThO2, UO2 and PuO2. These structures were used to fit a potential, which was used to generate molecular dynamics (MD) configurations incorporating Xe and Kr at 300 K, 1500 K, 3000 K and 5000 K. Subsequent matching to the forces predicted by DFT for these MD configurations was used to refine the potential set. This fitting approach ensured weighted fitting to configurations that are thermodynamically significant over a broad temperature range, while avoiding computationally expensive DFT-MD calculations. The resultant gas potentials were validated against DFT trapping energies and are suitable for simulating combinations of Xe and Kr in solid solutions of CeO2, ThO2, UO2 and PuO2, providing a powerful tool for the atomistic simulation of conventional nuclear reactor fuel UO2 as well as advanced MOX fuels.

  4. Development of Xe and Kr empirical potentials for CeO2, ThO2, UO2 and PuO2, combining DFT with high temperature MD.

    Science.gov (United States)

    Cooper, M W D; Kuganathan, N; Burr, P A; Rushton, M J D; Grimes, R W; Stanek, C R; Andersson, D A

    2016-10-12

    The development of embedded atom method (EAM) many-body potentials for actinide oxides and associated mixed oxide (MOX) systems has motivated the development of a complementary parameter set for gas-actinide and gas-oxygen interactions. A comprehensive set of density functional theory (DFT) calculations were used to study Xe and Kr incorporation at a number of sites in CeO2, ThO2, UO2 and PuO2. These structures were used to fit a potential, which was used to generate molecular dynamics (MD) configurations incorporating Xe and Kr at 300 K, 1500 K, 3000 K and 5000 K. Subsequent matching to the forces predicted by DFT for these MD configurations was used to refine the potential set. This fitting approach ensured weighted fitting to configurations that are thermodynamically significant over a broad temperature range, while avoiding computationally expensive DFT-MD calculations. The resultant gas potentials were validated against DFT trapping energies and are suitable for simulating combinations of Xe and Kr in solid solutions of CeO2, ThO2, UO2 and PuO2, providing a powerful tool for the atomistic simulation of conventional nuclear reactor fuel UO2 as well as advanced MOX fuels.

  5. A negative cooperativity mechanism of human CYP2E1 inferred from molecular dynamics simulations and free energy calculations.

    Science.gov (United States)

    Li, Jue; Wei, Dong-Qing; Wang, Jing-Fang; Li, Yi-Xue

    2011-12-27

    Human cytochrome P450 2E1 (CYP2E1) participates in the metabolism of over 2% of all the oral drugs. A hallmark peculiar feature of this enzyme is that it exhibits a pronounced negative cooperativity in substrate binding. However the mechanism by which the negative cooperativity occurs is unclear. Here, we performed molecular dynamics simulations and free energy calculations on human CYP2E1 to examine the structural differences between the substrate-free and the enzymes with one and two aniline molecules bound. Our results indicate that although the effector substrate does not bind in the active site cavity, it still can directly interact with the active site residues of human CYP2E1. The interaction of the effector substrate with the active site leads to a reorientation of active site residues, which thereby weakens the interactions of the active substrate with this site. We also identify a conserved residue T303 that plays a crucial role in the negative cooperative binding on the short-range effects. This residue is a key factor in the positioning of substrates and in proton delivery to the active site. Additionally, a long-range effect of the effector substrate is identified in which F478 is proposed to play a key role. As located in the interface between the active and effector sites, this residue structurally links the active and effector sites and is found to play a significant role in affecting substrate access and ligand positioning within the active site. In the negative cooperative binding, this residue can decrease the interactions of the active substrate with the active site by π-π stacking which then lowers the hydroxylation activity for the active substrate. These findings are in agreement with previous experimental observations and thus provide detailed atomistic insight into the poorly understood mechanism of the negative cooperativity in human CYP2E1.

  6. Combined local-density and dynamical mean field theory calculations for the compressed lanthanides Ce, Pr, and Nd

    Energy Technology Data Exchange (ETDEWEB)

    McMahan, A K

    2005-03-30

    This paper reports calculations for compressed Ce (4f{sup 1}), Pr (4f{sup 2}), and Nd (4f{sup 3}) using a combination of the local-density approximation (LDA) and dynamical mean field theory (DMFT), or LDA+DMFT. The 4f moment, spectra, and the total energy among other properties are examined as functions of volume and atomic number for an assumed face-centered cubic (fcc) structure. These materials are seen to be strongly localized at ambient pressure and for compressions up through the experimentally observed fcc phases ({gamma} phase for Ce), in the sense of having fully formed Hund's rules moments and little 4f spectral weight at the Fermi level. Subsequent compression for all three lanthanides brings about significant deviation of the moments from their Hund's rules values, a growing Kondo resonance at the fermi level, an associated softening in the total energy, and quenching of the spin orbit since the Kondo resonance is of mixed spin-orbit character while the lower Hubbard band is predominantly j = 5/2. while the most dramatic changes for Ce occur within the two-phase region of the {gamma}-{alpha} volume collapse transition, as found in earlier work, those for Pr and Nd occur within the volume range of the experimentally observed distorted fcc (dfcc) phase, which is therefore seen here as transitional and not part of the localized trivalent lanthanide sequence. The experimentally observed collapse to the {alpha}-U structure in Pr occurs only on further compression, and no such collapse is found in Nd. These lanthanides start closer to the localized limit for increasing atomic number, and so the theoretical signatures noted above are also offset to smaller volume as well, which is possibly related to the measured systematics of the size of the volume collapse being 15%, 9%, and none for Ce, Pr, and Nd, respectively.

  7. Lattice dynamics, thermodynamics and elastic properties of C22-Zr6FeSn2 from first-principles calculations

    Science.gov (United States)

    Feng, Xuan-Kai; Shi, Siqi; Shen, Jian-Yun; Shang, Shun-Li; Yao, Mei-Yi; Liu, Zi-Kui

    2016-10-01

    Since Zr-Fe-Sn is one of the key ternary systems for cladding and structural materials in nuclear industry, it is of significant importance to understand physicochemical properties related to Zr-Fe-Sn system. In order to design the new Zr alloys with advanced performance by CALPHAD method, the thermodynamic model for the lower order systems is required. In the present work, first-principles calculations are employed to obtain phonon, thermodynamic and elastic properties of Zr6FeSn2 with C22 structure and the end-members (C22-Zr6FeFe2, C22-Zr6SnSn2 and C22-Zr6SnFe2) in the model of (Zr)6(Fe, Sn)2(Fe, Sn)1. It is found that the imaginary phonon modes are absent for C22-Zr6FeSn2 and C22-Zr6SnSn2, indicating they are dynamically stable, while the other two end-members are unstable. Gibbs energies of C22-Zr6FeSn2 and C22-Zr6SnSn2 are obtained from the quasiharmonic phonon approach and can be added in the thermodynamic database: Nuclearbase. The C22-Zr6FeSn2's single-crystal elasticity tensor components along with polycrystalline bulk, shear and Young's moduli are computed with a least-squares approach based upon the stress tensor computed from first-principles method. The results indicate that distortion is more difficult in the directions normal the c-axis than along to it.

  8. Insights into the complex formed by matrix metalloproteinase-2 and alloxan inhibitors: molecular dynamics simulations and free energy calculations.

    Directory of Open Access Journals (Sweden)

    Ilenia Giangreco

    Full Text Available Matrix metalloproteinases (MMP are well-known biological targets implicated in tumour progression, homeostatic regulation, innate immunity, impaired delivery of pro-apoptotic ligands, and the release and cleavage of cell-surface receptors. Hence, the development of potent and selective inhibitors targeting these enzymes continues to be eagerly sought. In this paper, a number of alloxan-based compounds, initially conceived to bias other therapeutically relevant enzymes, were rationally modified and successfully repurposed to inhibit MMP-2 (also named gelatinase A in the nanomolar range. Importantly, the alloxan core makes its debut as zinc binding group since it ensures a stable tetrahedral coordination of the catalytic zinc ion in concert with the three histidines of the HExxHxxGxxH metzincin signature motif, further stabilized by a hydrogen bond with the glutamate residue belonging to the same motif. The molecular decoration of the alloxan core with a biphenyl privileged structure allowed to sample the deep S(1' specificity pocket of MMP-2 and to relate the high affinity towards this enzyme with the chance of forming a hydrogen bond network with the backbone of Leu116 and Asn147 and the side chains of Tyr144, Thr145 and Arg149 at the bottom of the pocket. The effect of even slight structural changes in determining the interaction at the S(1' subsite of MMP-2 as well as the nature and strength of the binding is elucidated via molecular dynamics simulations and free energy calculations. Among the herein presented compounds, the highest affinity (pIC(50 = 7.06 is found for BAM, a compound exhibiting also selectivity (>20 towards MMP-2, as compared to MMP-9, the other member of the gelatinases.

  9. Ab initio MD simulations of Mg2SiO4 liquid at high pressures and temperatures relevant to the Earth's mantle

    Science.gov (United States)

    Martin, G. B.; Kirtman, B.; Spera, F. J.

    2010-12-01

    Computational studies implementing Density Functional Theory (DFT) methods have become very popular in the Materials Sciences in recent years. DFT codes are now used routinely to simulate properties of geomaterials—mainly silicates and geochemically important metals such as Fe. These materials are ubiquitous in the Earth’s mantle and core and in terrestrial exoplanets. Because of computational limitations, most First Principles Molecular Dynamics (FPMD) calculations are done on systems of only 100 atoms for a few picoseconds. While this approach can be useful for calculating physical quantities related to crystal structure, vibrational frequency, and other lattice-scale properties (especially in crystals), it would be useful to be able to compute larger systems especially for extracting transport properties and coordination statistics. Previous studies have used codes such as VASP where CPU time increases as N2, making calculations on systems of more than 100 atoms computationally very taxing. SIESTA (Soler, et al. 2002) is a an order-N (linear-scaling) DFT code that enables electronic structure and MD computations on larger systems (N 1000) by making approximations such as localized numerical orbitals. Here we test the applicability of SIESTA to simulate geosilicates in the liquid and glass state. We have used SIESTA for MD simulations of liquid Mg2SiO4 at various state points pertinent to the Earth’s mantle and congruous with those calculated in a previous DFT study using the VASP code (DeKoker, et al. 2008). The core electronic wave functions of Mg, Si, and O were approximated using pseudopotentials with a core cutoff radius of 1.38, 1.0, and 0.61 Angstroms respectively. The Ceperly-Alder parameterization of the Local Density Approximation (LDA) was used as the exchange-correlation functional. Known systematic overbinding of LDA was corrected with the addition of a pressure term, P 1.6 GPa, which is the pressure calculated by SIESTA at the experimental

  10. MD1228: Validation of Single Bunch Stability Threshold & MD1751: Instability Studies with a Single Beam

    CERN Document Server

    Carver, Lee Robert; Biancacci, Nicolo; Buffat, Xavier; Iadarola, Giovanni; Lasocha, Kacper; Li, Kevin Shing Bruce; Levens, Tom; Metral, Elias; Salvant, Benoit; Tambasco, Claudia; CERN. Geneva. ATS Department

    2017-01-01

    Instabilities were being routinely observed in B1V during ADJUST. The timing of the instabilities has been localised to shortly after the TOTEM bump has been implemented. The result is emittance blowup which can negatively effect the luminosity output of the fill. This MD aimed to rule out possible sources of the instability (i.e. beam-beam effects or electron cloud) by only taking one single beam to 6.5TeV and going through the full machine cycle. After the implementation of the TOTEM bump, a reduction of the octupole current was performed in order to determine if there was a discrepancy in the threshold between simulations and measurement. As a precursor, the results of the End of Fill MD: Validation of Single Bunch Stability Threshold will also be described.

  11. Adaptive local basis set for Kohn-Sham density functional theory in a discontinuous Galerkin framework II: Force, vibration, and molecular dynamics calculations

    CERN Document Server

    Zhang, Gaigong; Hu, Wei; Yang, Chao; Pask, John E

    2015-01-01

    Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn-Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann-Feynman forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracy required in practice. Since the adaptive local basis set has implicit dependence on a...

  12. Extracting Conformational Ensembles of Small Molecules from Molecular Dynamics Simulations: Ampicillin as a Test Case

    Directory of Open Access Journals (Sweden)

    Giuliano Malloci

    2016-01-01

    Full Text Available The accurate and exhaustive description of the conformational ensemble sampled by small molecules in solution, possibly at different physiological conditions, is of primary interest in many fields of medicinal chemistry and computational biology. Recently, we have built an on-line database of compounds with antimicrobial properties, where we provide all-atom force-field parameters and a set of molecular properties, including representative structures extracted from cluster analysis over μs-long molecular dynamics (MD trajectories. In the present work, we used a medium-sized antibiotic from our sample, namely ampicillin, to assess the quality of the conformational ensemble. To this aim, we compared the conformational landscape extracted from previous unbiased MD simulations to those obtained by means of Replica Exchange MD (REMD and those originating from three freely-available conformer generation tools widely adopted in computer-aided drug-design. In addition, for different charge/protonation states of ampicillin, we made available force-field parameters and static/dynamic properties derived from both Density Functional Theory and MD calculations. For the specific system investigated here, we found that: (i the conformational statistics extracted from plain MD simulations is consistent with that obtained from REMD simulations; (ii overall, our MD-based approach performs slightly better than any of the conformer generator tools if one takes into account both the diversity of the generated conformational set and the ability to reproduce experimentally-determined structures.

  13. General order parameter based correlation analysis of protein backbone motions between experimental NMR relaxation measurements and molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qing; Shi, Chaowei [Hefei National Laboratory for Physical Sciences at The Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026 (China); Yu, Lu [Hefei National Laboratory for Physical Sciences at The Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026 (China); High Magnetic Field Laboratory, Chinese Academy of Science, Hefei, Anhui, 230031 (China); Zhang, Longhua [Hefei National Laboratory for Physical Sciences at The Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026 (China); Xiong, Ying, E-mail: yxiong73@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at The Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026 (China); Tian, Changlin, E-mail: cltian@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at The Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026 (China); High Magnetic Field Laboratory, Chinese Academy of Science, Hefei, Anhui, 230031 (China)

    2015-02-13

    Internal backbone dynamic motions are essential for different protein functions and occur on a wide range of time scales, from femtoseconds to seconds. Molecular dynamic (MD) simulations and nuclear magnetic resonance (NMR) spin relaxation measurements are valuable tools to gain access to fast (nanosecond) internal motions. However, there exist few reports on correlation analysis between MD and NMR relaxation data. Here, backbone relaxation measurements of {sup 15}N-labeled SH3 (Src homology 3) domain proteins in aqueous buffer were used to generate general order parameters (S{sup 2}) using a model-free approach. Simultaneously, 80 ns MD simulations of SH3 domain proteins in a defined hydrated box at neutral pH were conducted and the general order parameters (S{sup 2}) were derived from the MD trajectory. Correlation analysis using the Gromos force field indicated that S{sup 2} values from NMR relaxation measurements and MD simulations were significantly different. MD simulations were performed on models with different charge states for three histidine residues, and with different water models, which were SPC (simple point charge) water model and SPC/E (extended simple point charge) water model. S{sup 2} parameters from MD simulations with charges for all three histidines and with the SPC/E water model correlated well with S{sup 2} calculated from the experimental NMR relaxation measurements, in a site-specific manner. - Highlights: • Correlation analysis between NMR relaxation measurements and MD simulations. • General order parameter (S{sup 2}) as common reference between the two methods. • Different protein dynamics with different Histidine charge states in neutral pH. • Different protein dynamics with different water models.

  14. BI MD studies on April 22nd 2012 (LHC MD-1)

    CERN Document Server

    Baer, T; Boccardi, A; Burger, S; Calvo, E; Dehning, B; Emery, J; Gasior, M; Guerrero, A; Jones, R; Lefevre, T; Gras, JJ; Rabiller, A; Roncarolo, F; Sapinski, M; Steinhagen, R; Trad, G

    2012-01-01

    During the LHC MD block 1 in 2012, eight hours were dedicated to beam instrumentation studies. Such a period was spent mainly for estimating the betatron functions at the location of the transverse profile monitors in IR4 via the K-Modulation method and for characterizing the BSRT extraction mirror heating with high intensity beams. This note discusses the measurements summary, including some final and some preliminary results.

  15. Wall shear stress calculations based on 3D cine phase contrast MRI and computational fluid dynamics: A comparison study in healthy carotid arteries

    NARCIS (Netherlands)

    M. Cibiş (Merih); W.V. Potters (Wouter); F.J.H. Gijsen (Frank); H. Marquering (Henk); E. VanBavel (Ed); A.F.W. van der Steen (Ton); A.J. Nederveen (Aart); J.J. Wentzel (Jolanda)

    2014-01-01

    textabstractWall shear stress (WSS) is involved in many pathophysiological processes related to cardiovascular diseases, and knowledge of WSS may provide vital information on disease progression. WSS is generally quantified with computational fluid dynamics (CFD), but can also be calculated using

  16. MD5算法在Web开发中的应用%Application of MD5 in Web Exploitation

    Institute of Scientific and Technical Information of China (English)

    刘啸

    2014-01-01

    介绍了MD5加密技术在Web上的一些应用,给出了MD5加密实现密码在internet上安全传输的完整解决办法,给出了客户端(JavaScript)和服务器端(JavaBeans) MD5算法的实现.

  17. Hydration Gibbs free energies of open and closed shell trivalent lanthanide and actinide cations from polarizable molecular dynamics.

    Science.gov (United States)

    Marjolin, Aude; Gourlaouen, Christophe; Clavaguéra, Carine; Ren, Pengyu Y; Piquemal, Jean-Philip; Dognon, Jean-Pierre

    2014-10-01

    The hydration free energies, structures, and dynamics of open- and closed-shell trivalent lanthanide and actinide metal cations are studied using molecular dynamics simulations (MD) based on a polarizable force field. Parameters for the metal cations are derived from an ab initio bottom-up strategy. MD simulations of six cations solvated in bulk water are subsequently performed with the AMOEBA polarizable force field. The calculated first-and second shell hydration numbers, water residence times, and free energies of hydration are consistent with experimental/theoretical values leading to a predictive modeling of f-elements compounds.

  18. Pressure dependence of elastic and dynamical properties of zinc-blende ZnS and ZnSe from first principle calculation

    Directory of Open Access Journals (Sweden)

    H.Y. Wang

    2012-03-01

    Full Text Available The density-functional theory (DFT and density-functional perturbation theory (DFPT are employed to study the pressure dependence of elastic and dynamical properties of zinc-blende ZnS and ZnSe. The calculated elastic constants and phonon spectra from 0 GPa to 15 GPa are compared with the available experimental data. Generally, our calculated values are overestimated with experimental data, but agree well with recent other theoretical values. The discrepancies with experimental data are due to the use of local density approximation (LDA and effect of temperature. In this work, in order to compare with experimental data, we calculated and discussed the pressure derivatives of elastic constants, the pressure dependence of dynamical effect charge, and mode Grüneisen parameter at Γ.

  19. Calculation of x-ray scattering patterns from nanocrystals at high x-ray intensity

    OpenAIRE

    Malik Muhammad Abdullah; Zoltan Jurek; Sang-Kil Son; Robin Santra

    2016-01-01

    We present a generalized method to describe the x-ray scattering intensity of the Bragg spots in a diffraction pattern from nanocrystals exposed to intense x-ray pulses. Our method involves the subdivision of a crystal into smaller units. In order to calculate the dynamics within every unit we employ a Monte-Carlo (MC)-molecular dynamics (MD)-ab-initio hybrid framework using real space periodic boundary conditions. By combining all the units we simulate the diffraction pattern of a crystal la...

  20. Atomic level insights into realistic molecular models of dendrimer-drug complexes through MD simulations

    Science.gov (United States)

    Jain, Vaibhav; Maiti, Prabal K.; Bharatam, Prasad V.

    2016-09-01

    Computational studies performed on dendrimer-drug complexes usually consider 1:1 stoichiometry, which is far from reality, since in experiments more number of drug molecules get encapsulated inside a dendrimer. In the present study, molecular dynamic (MD) simulations were implemented to characterize the more realistic molecular models of dendrimer-drug complexes (1:n stoichiometry) in order to understand the effect of high drug loading on the structural properties and also to unveil the atomistic level details. For this purpose, possible inclusion complexes of model drug Nateglinide (Ntg) (antidiabetic, belongs to Biopharmaceutics Classification System class II) with amine- and acetyl-terminated G4 poly(amidoamine) (G4 PAMAM(NH2) and G4 PAMAM(Ac)) dendrimers at neutral and low pH conditions are explored in this work. MD simulation analysis on dendrimer-drug complexes revealed that the drug encapsulation efficiency of G4 PAMAM(NH2) and G4 PAMAM(Ac) dendrimers at neutral pH was 6 and 5, respectively, while at low pH it was 12 and 13, respectively. Center-of-mass distance analysis showed that most of the drug molecules are located in the interior hydrophobic pockets of G4 PAMAM(NH2) at both the pH; while in the case of G4 PAMAM(Ac), most of them are distributed near to the surface at neutral pH and in the interior hydrophobic pockets at low pH. Structural properties such as radius of gyration, shape, radial density distribution, and solvent accessible surface area of dendrimer-drug complexes were also assessed and compared with that of the drug unloaded dendrimers. Further, binding energy calculations using molecular mechanics Poisson-Boltzmann surface area approach revealed that the location of drug molecules in the dendrimer is not the decisive factor for the higher and lower binding affinity of the complex, but the charged state of dendrimer and drug, intermolecular interactions, pH-induced conformational changes, and surface groups of dendrimer do play an

  1. Overcoming potential energy distortions in constrained internal coordinate molecular dynamics simulations.

    Science.gov (United States)

    Kandel, Saugat; Salomon-Ferrer, Romelia; Larsen, Adrien B; Jain, Abhinandan; Vaidehi, Nagarajan

    2016-01-28

    The Internal Coordinate Molecular Dynamics (ICMD) method is an attractive molecular dynamics (MD) method for studying the dynamics of bonded systems such as proteins and polymers. It offers a simple venue for coarsening the dynamics model of a system at multiple hierarchical levels. For example, large scale protein dynamics can be studied using torsional dynamics, where large domains or helical structures can be treated as rigid bodies and the loops connecting them as flexible torsions. ICMD with such a dynamic model of the protein, combined with enhanced conformational sampling method such as temperature replica exchange, allows the sampling of large scale domain motion involving high energy barrier transitions. Once these large scale conformational transitions are sampled, all-torsion, or even all-atom, MD simulations can be carried out for the low energy conformations sampled via coarse grained ICMD to calculate the energetics of distinct conformations. Such hierarchical MD simulations can be carried out with standard all-atom forcefields without the need for compromising on the accuracy of the forces. Using constraints to treat bond lengths and bond angles as rigid can, however, distort the potential energy landscape of the system and reduce the number of dihedral transitions as well as conformational sampling. We present here a two-part solution to overcome such distortions of the potential energy landscape with ICMD models. To alleviate the intrinsic distortion that stems from the reduced phase space in torsional MD, we use the Fixman compensating potential. To additionally alleviate the extrinsic distortion that arises from the coupling between the dihedral angles and bond angles within a force field, we propose a hybrid ICMD method that allows the selective relaxing of bond angles. This hybrid ICMD method bridges the gap between all-atom MD and torsional MD. We demonstrate with examples that these methods together offer a solution to eliminate the potential

  2. Overcoming potential energy distortions in constrained internal coordinate molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kandel, Saugat; Salomon-Ferrer, Romelia; Larsen, Adrien B.; Vaidehi, Nagarajan, E-mail: nvaidehi@coh.org [Division of Immunology, Beckman Research Institute of the City of Hope, Duarte, California 91010 (United States); Jain, Abhinandan, E-mail: Abhi.Jain@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109 (United States)

    2016-01-28

    The Internal Coordinate Molecular Dynamics (ICMD) method is an attractive molecular dynamics (MD) method for studying the dynamics of bonded systems such as proteins and polymers. It offers a simple venue for coarsening the dynamics model of a system at multiple hierarchical levels. For example, large scale protein dynamics can be studied using torsional dynamics, where large domains or helical structures can be treated as rigid bodies and the loops connecting them as flexible torsions. ICMD with such a dynamic model of the protein, combined with enhanced conformational sampling method such as temperature replica exchange, allows the sampling of large scale domain motion involving high energy barrier transitions. Once these large scale conformational transitions are sampled, all-torsion, or even all-atom, MD simulations can be carried out for the low energy conformations sampled via coarse grained ICMD to calculate the energetics of distinct conformations. Such hierarchical MD simulations can be carried out with standard all-atom forcefields without the need for compromising on the accuracy of the forces. Using constraints to treat bond lengths and bond angles as rigid can, however, distort the potential energy landscape of the system and reduce the number of dihedral transitions as well as conformational sampling. We present here a two-part solution to overcome such distortions of the potential energy landscape with ICMD models. To alleviate the intrinsic distortion that stems from the reduced phase space in torsional MD, we use the Fixman compensating potential. To additionally alleviate the extrinsic distortion that arises from the coupling between the dihedral angles and bond angles within a force field, we propose a hybrid ICMD method that allows the selective relaxing of bond angles. This hybrid ICMD method bridges the gap between all-atom MD and torsional MD. We demonstrate with examples that these methods together offer a solution to eliminate the potential

  3. LHC MD 1279: Bunch Flattening in Physics

    CERN Document Server

    AUTHOR|(CDS)2073675; Baudrenghien, Philippe; Esteban Muller, Juan; Shaposhnikova, Elena; CERN. Geneva. ATS Department

    2017-01-01

    Vertex reconstruction is not accurate enough for LHCb when the bunch length in physics shrinks below about 0.9 ns. The end-of-fill MD studies presented here proved that bunch flattening using sinusoidal RF modulation is a loss-free method to increase the r.m.s. bunch length and flatten the bunch profile. Furthermore, the optimum modulation parameters to be used in physics have been identified. Subsequently, bunch flattening in physics was used operationally with a modulation frequency of 98.75 % of the central synchrotron frequency and 0.6 modulation amplitude, resulting in a 150-200 ps increase in the BQM-measured bunch length. A ‘mid-of-fill’ test at arrival to flat top revealed that also the bunch distribution created by the controlled emittance blow-up during the ramp is affected when bunch flattening is applied. The measurements took place on 17th June and the 4th, 7th and 22nd July 2016. Operational cases are shown as well.

  4. Leroy D Vandam, MD: an anesthesia journey.

    Science.gov (United States)

    Ortega, Rafael A

    2005-08-01

    Leroy D Vandam, MD was a remarkable man--an intricate amalgamation of an artist, scientist, and physician. He was a bastion of medical historical knowledge. Dr Vandam became a most influential anesthesiologist, some say, a giant. He was an example of someone who, with resolve, overcame adversity. His artwork is displayed in countless places, and several of his paintings form part of the Wood Library Museum Heritage Series. Dr Vandam was first a surgeon, but he abandoned surgery and pursued a career in anesthesiology under the leadership of Robert Dripps. He completed his residency training at the University of Pennsylvania and joined its staff in 1949. When he arrived at Brigham and Women's Hospital in the 1950s as director of anesthesia, he embarked on one of the most illustrious careers in American anesthesiology. Dr Vandam published more than 250 original articles, chapters, abstracts, and other reports on a wide variety of subjects including history, art, and pharmacology. His classic article on the complications of neuroaxial blocks is a seminal work in anesthesiology. This article describes how an anesthesiologist who shared an interest with Dr Vandam in the history of anesthesiology came to produce a movie based on his career, the evolution of anesthesia equipment, and the transformation of our specialty.

  5. Orbit Feedback Operation with RCBX (MD 1209)

    CERN Document Server

    Wenninger, Jorg; Nisbet, David; Ponce, Laurette; Louro Alves, Diogo Miguel; CERN. Geneva. ATS Department

    2017-01-01

    The LHC Orbit Feedback (OFB) is able to drive any orbit corrector circuit (COD) to steer the LHC orbit. But during the first feedback tests in 2010, all attempts to use the common triplet orbit correctors (MCBX) failed because the QPS system installed to protect those magnets triggered power aborts as soon as the OFB steered the beam with those CODs. The reason was most likely the violation of the RCBX circuit acceleration limits. For this reason the MCBX orbit correctors were never driven by the OFB in regular operation. Although the performance of the OFB is generally excellent, the quality of the beam steering around IRs could be improved if the OFB could correct the orbit with the MCBX to counteract locally triplet quadrupole movements. The aim of this MD was to make a new attempt to use the MCBX in the OFB. The test was successful at injection (no circuit trip) and failed during the ramp (QPS power abort). The PC voltages and QPS Ures signals revealed the presence of voltage spikes with a period of 10~s...

  6. Cerebral blood volume calculated by dynamic susceptibility contrast-enhanced perfusion MR imaging: preliminary correlation study with glioblastoma genetic profiles.

    Directory of Open Access Journals (Sweden)

    Inseon Ryoo

    Full Text Available PURPOSE: To evaluate the usefulness of dynamic susceptibility contrast (DSC enhanced perfusion MR imaging in predicting major genetic alterations in glioblastomas. MATERIALS AND METHODS: Twenty-five patients (M:F = 13∶12, mean age: 52.1±15.2 years with pathologically proven glioblastoma who underwent DSC MR imaging before surgery were included. On DSC MR imaging, the normalized relative tumor blood volume (nTBV of the enhancing solid portion of each tumor was calculated by using dedicated software (Nordic TumorEX, NordicNeuroLab, Bergen, Norway that enabled semi-automatic segmentation for each tumor. Five major glioblastoma genetic alterations (epidermal growth factor receptor (EGFR, phosphatase and tensin homologue (PTEN, Ki-67, O6-methylguanine-DNA methyltransferase (MGMT and p53 were confirmed by immunohistochemistry and analyzed for correlation with the nTBV of each tumor. Statistical analysis was performed using the unpaired Student t test, ROC (receiver operating characteristic curve analysis and Pearson correlation analysis. RESULTS: The nTBVs of the MGMT methylation-negative group (mean 9.5±7.5 were significantly higher than those of the MGMT methylation-positive group (mean 5.4±1.8 (p = .046. In the analysis of EGFR expression-positive group, the nTBVs of the subgroup with loss of PTEN gene expression (mean: 10.3±8.1 were also significantly higher than those of the subgroup without loss of PTEN gene expression (mean: 5.6±2.3 (p = .046. Ki-67 labeling index indicated significant positive correlation with the nTBV of the tumor (p = .01. CONCLUSION: We found that glioblastomas with aggressive genetic alterations tended to have a high nTBV in the present study. Thus, we believe that DSC-enhanced perfusion MR imaging could be helpful in predicting genetic alterations that are crucial in predicting the prognosis of and selecting tailored treatment for glioblastoma patients.

  7. DYNAMIC ANALYSIS FOR THE DISCRETE PARTICLE MODEL BY DISTINCT ELEMENT METHOD : APPLICATION TO CALCULATION OF COEFFICIENT OF EARTH PRESSURE

    OpenAIRE

    大西, 泰史

    2017-01-01

    The purpose of this study is to perform to earth pressure coefficient calculation simulation using the Distinct Element Method (DEM). Earth pressure theory has been established since long ago and is still in use. Therefore, simulation based on Coulomb and Rankine's theory of earth pressure is carried out to confirm usability of DEM. As a result of the static earth pressure coefficient calculation simulation, good results were obtained. However, in the passive earth pressure coefficient calcul...

  8. Waiting time distribution in M/D/1 queueing systems

    DEFF Research Database (Denmark)

    Iversen, Villy Bæk; Staalhagen, Lars

    1999-01-01

    The well-known formula for the waiting time distribution of M/D/1 queueing systems is numerically unsuitable when the load is close to 1.0 and/or the results for a large waiting time are required. An algorithm for any load and waiting time is presented, based on the state probabilities of M/D/1...

  9. BI MD studies on August 25th 2011

    CERN Document Server

    Belohrad, D; Boccardi, A; Calvo, E; Dehning, B; Favier, M; Emery, J; Guerrero, A; Lefevre, T; Gras, JJ; Jeff, A; Soby, L; Rabiller, A; Roncarolo, F; Sapinski, M; Steinhagen, R; Mateo, CM

    2011-01-01

    This note contains the preliminary results of the LHC MD that took place on 25-Aug-2011 (from 5 a.m. to 1 p.m.), dedicated to study Beam Loss Monitors (BLM), Wire Scanners (WS), Synchrotron Radiation (BSRT), Beam Position Monitors (BPM), and Beam Gas Ionization (BGI) monitors. The MD aimed at performing different studies on the individual monitors.

  10. MD290: Q4 IP6 Quench Level

    CERN Document Server

    Bednarek, Mateusz Jakub; Lechner, Anton; CERN. Geneva. ATS Department

    2016-01-01

    The detailed program proposed for the LHC Machine Development concerning a quench induced by fast losses on the MQY.4L6 quadrupole is presented. The merit of the MD, the necessary modifications of the machine protection systems are presented together with a preliminary analysis of the MD results.

  11. MD5密码极速爆破

    Institute of Scientific and Technical Information of China (English)

    飘零雪

    2009-01-01

    MD5加密技术对我们来说并不陌生,通过MD5值可以校验下载软件的安全性,而且在很多系统中,用户的密码是以MD5值的方式保存的,用户登录时系统是把用户输入的密码计算成MD5值,然后再去和系统中保存的MD5值进行比较,以验证该用户的合法性。MD5值虽看似很安全,但也并非无懈可击,使用“超速md5破解工具”即可简单快捷地尝试解密MD5。

  12. Single-block collision attack on MD5

    NARCIS (Netherlands)

    Stevens, M.M.J.

    2012-01-01

    In 2010, Tao Xie and Dengguo Feng \\cite{cryptoeprint:2010:643} constructed the first single-block collision for MD5 consisting of two 64-byte messages that have the same MD5 hash. Details of their attack, developed using what they call an evolutionary approach, has not been disclosed ``for security

  13. Chosen-Prefix Collisions for MD5 and Applications

    NARCIS (Netherlands)

    Stevens, M.M.J.; Lenstra, A.K.; Weger, B. de

    2012-01-01

    We present a novel, automated way to find differential paths for MD5. Its main application is in the construction of \\emph{chosen-prefix collisions}. We have shown how, at an approximate expected cost of $2^{39}$ calls to the MD5 compression function, for any two chosen message prefixes $P$ and $P'$

  14. 33 CFR 110.72 - Blackhole Creek, Md.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Blackhole Creek, Md. 110.72... ANCHORAGE REGULATIONS Special Anchorage Areas § 110.72 Blackhole Creek, Md. The waters on the west side of Blackhole Creek, a tributary of Magothy River, southwest of a line bearing 310°30′ from the most...

  15. Molecular dynamics study of a polymeric reverse osmosis membrane.

    Energy Technology Data Exchange (ETDEWEB)

    Harder, E.; Walters, D. E.; Bodnar, Y. D.; Faibish, R. S.; Roux, B. (Nuclear Engineering Division); (Univ. of Chicago); (Rosalind Franklin Univ. of Medicine and Science)

    2009-07-30

    Molecular dynamics (MD) simulations are used to investigate the properties of an atomic model of an aromatic polyamide reverse osmosis membrane. The monomers forming the polymeric membrane are cross-linked progressively on the basis of a heuristic distance criterion during MD simulations until the system interconnectivity reaches completion. Equilibrium MD simulations of the hydrated membrane are then used to determine the density and diffusivity of water within the membrane. Given a 3 MPa pressure differential and a 0.125 {micro}m width membrane, the simulated water flux is calculated to be 1.4 x 10{sup -6} m/s, which is in fair agreement with an experimental flux measurement of 7.7 x 10{sup -6} m/s.

  16. A Python tool to set up relative free energy calculations in GROMACS.

    Science.gov (United States)

    Klimovich, Pavel V; Mobley, David L

    2015-11-01

    Free energy calculations based on molecular dynamics (MD) simulations have seen a tremendous growth in the last decade. However, it is still difficult and tedious to set them up in an automated manner, as the majority of the present-day MD simulation packages lack that functionality. Relative free energy calculations are a particular challenge for several reasons, including the problem of finding a common substructure and mapping the transformation to be applied. Here we present a tool, alchemical-setup.py, that automatically generates all the input files needed to perform relative solvation and binding free energy calculations with the MD package GROMACS. When combined with Lead Optimization Mapper (LOMAP; Liu et al. in J Comput Aided Mol Des 27(9):755-770, 2013), recently developed in our group, alchemical-setup.py allows fully automated setup of relative free energy calculations in GROMACS. Taking a graph of the planned calculations and a mapping, both computed by LOMAP, our tool generates the topology and coordinate files needed to perform relative free energy calculations for a given set of molecules, and provides a set of simulation input parameters. The tool was validated by performing relative hydration free energy calculations for a handful of molecules from the SAMPL4 challenge (Mobley et al. in J Comput Aided Mol Des 28(4):135-150, 2014). Good agreement with previously published results and the straightforward way in which free energy calculations can be conducted make alchemical-setup.py a promising tool for automated setup of relative solvation and binding free energy calculations.

  17. Molecular Dynamics Study of Water Molecules in Interlayer of 14 ^|^Aring; Tobermorite

    KAUST Repository

    Yoon, Seyoon

    2013-01-01

    The molecular structure and dynamics of interlayer water of 14 Å tobermorite are investigated based on molecular dynamics (MD) simulations. Calculated structural parameters of the interlayer water configuration are in good agreement with current knowledge of the refined structure. The MD simulations provide detailed information on the position and mobility of the hydrogen and oxygen of interlayer water, as well as its self-diffusion coefficient, through the interlayer of 14 Å tobermorite. Comparison of the MD simulation results at 100 and 300 K demonstrates that water molecules in the interlayer maintain their structure but change their mobility. The dominant configuration and self-diffusion coefficient of interlayer water are obtained in this study. Copyright © 2013 Japan Concrete Institute.

  18. Ab initio calculations on the structural, mechanical, electronic, dynamic, and optical properties of semiconductor half-Heusler compound ZrPdSn

    Energy Technology Data Exchange (ETDEWEB)

    Ciftci, Yasemin Oe. [Gazi Univ., Ankara (Turkey). Dept. of Physics; Coban, Cansu [Balikesir Univ. (Turkey). Dept. of Physics

    2016-05-01

    The structural, mechanical, electronic, dynamic, and optical properties of the ZrPdSn compound crystallising into the MgAgAs structure are investigated by the ab initio calculations based on the density functional theory. The lattice constant, bulk modulus, and first derivative of bulk modulus were obtained by fitting the calculated total energy-atomic volume results to the Murnaghan equation of state. These results were compared to the previous data. The band structure and corresponding density of states (DOS) were also calculated and discussed. The elastic properties were calculated by using the stress-strain method, which shows that the MgAgAs phase of this compound is mechanically stable. The presented phonon dispersion curves and one-phonon DOS confirms that this compound is dynamically stable. In addition, the heat capacity, entropy, and free energy of ZrPdSn were calculated by using the phonon frequencies. Finally, the optical properties, such as dielectric function, reflectivity function, extinction coefficient, refractive index, and energy loss spectrum, were obtained under different pressures.

  19. Field calculations, single-particle tracking, and beam dynamics with space charge in the electron lens for the Fermilab Integrable Optics Test Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Noll, Daniel [Goethe Univ., Frankfurt (Germany); Stancari, Giulio [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-11-17

    An electron lens is planned for the Fermilab Integrable Optics Test Accelerator as a nonlinear element for integrable dynamics, as an electron cooler, and as an electron trap to study space-charge compensation in rings. We present the main design principles and constraints for nonlinear integrable optics. A magnetic configuration of the solenoids and of the toroidal section is laid out. Singleparticle tracking is used to optimize the electron path. Electron beam dynamics at high intensity is calculated with a particle-in-cell code to estimate current limits, profile distortions, and the effects on the circulating beam. In the conclusions, we summarize the main findings and list directions for further work.

  20. Pressure dependence of harmonic and an harmonic lattice dynamics in MgO: A first-principles calculation and implications for lattice thermal conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xiaoli [Physics Department, Auburn University, Auburn, Alabama (United States); Dong, Jianjun [Physics Department, Auburn University, Auburn, Alabama (United States)

    2009-06-01

    We report a recent first-principles calculation of harmonic and anharmonic lattice dynamics of MgO. The 2nd order harmonic and 3rd order anharmonic interatomic interaction terms are computed explicitly, and their pressure dependences are discussed. The phonon mode Grueneisen parameters derived based on our calculated 3rd order lattice anharmonicity are in good agreement with those estimated using the finite difference method. The implications for lattice thermal conductivity at high pressure are discussed based on a simple kinetic transport theory.

  1. LDRD Final Report (08-ERD-037): Important Modes to Drive Protein MD Simulations to the Next Conformational Level

    Energy Technology Data Exchange (ETDEWEB)

    Sadigh, B

    2011-04-07

    Every action in biology is performed by dynamic proteins that convert between multiple states in order to engage their functions. Often binding to various ligands is essential for the rates of desired transitions to be enhanced. The goal of computational biology is to study these transitions and discover the different states to fully understand the protein's normal and diseased function, design drugs to target/bias specific states, and understand all of the interactions in between. We have developed a new methodology that is capable of calculating the absolute free energy of proteins while taking into account all the interactions with the solvent molecules. The efficiency of the new scheme is an order of magnitude greater than any existing technique. This method is now implemented in the massively parallel popular MD program package NAMD. This now makes it possible to calculate the relative stability of different conformational states of biological macromolecules as well as their binding free energies to various ligands.

  2. MD#1182: Calibration of diamond particle detectors in IP6

    CERN Document Server

    Valette, Matthieu; Lindstrom, Bjorn Hans Filip; Wiesner, Christoph

    2017-01-01

    In case of an asynchronous beam dump with a fully filled LHC machine it is expected that all standard ionisation chamber Beam Loss Monitors (IC BLM) around the LHC dumping region in IP6 will be saturated. Diamond Beam Loss Monitors (dBLM) were therefore installed next to the movable dump protection absorber (TCDQ) downstream of the extraction kickers. These detectors allow resolving losses at a nanosecond timescale and with an dynamic range of several orders of magnitude; thus, allowing to know the number of nominal bunches impacting the TCDQ. After a first series of calibrations using asynchronous beam dump tests, an experiment was conducted during MD#1182 to demonstrate the possibility of resolving a nominal bunch hitting the TCDQ. The impact parameter of the bunches on the TCDQ was first scanned using probe bunches with lower intensity then tests were done with nominal bunches (1.1e11 p/bunch) at injection energy. High energy calibration of the losses was also attempted unsuccessfully. Due to different beh...

  3. Molecular dynamics simulation of impact test

    Energy Technology Data Exchange (ETDEWEB)

    Akahoshi, Y. [Kyushu Inst. of Tech., Kitakyushu, Fukuoka (Japan); Schmauder, S.; Ludwig, M. [Stuttgart Univ. (Germany). Staatliche Materialpruefungsanstalt

    1998-11-01

    This paper describes an impact test by molecular dynamics (MD) simulation to evaluate embrittlement of bcc Fe at different temperatures. A new impact test model is developed for MD simulation. The typical fracture behaviors show transition from brittle to ductile fracture, and a history of the impact loads also demonstrates its transition. We conclude that the impact test by MD could be feasible. (orig.)

  4. From Molecular Dynamics to Brownian Dynamics

    CERN Document Server

    Erban, Radek

    2014-01-01

    Three coarse-grained molecular dynamics (MD) models are investigated with the aim of developing and analyzing multiscale methods which use MD simulations in parts of the computational domain and (less detailed) Brownian dynamics (BD) simulations in the remainder of the domain. The first MD model is formulated in one spatial dimension. It is based on elastic collisions of heavy molecules (e.g. proteins) with light point particles (e.g. water molecules). Two three-dimensional MD models are then investigated. The obtained results are applied to a simplified model of protein binding to receptors on the cellular membrane. It is shown that modern BD simulators of intracellular processes can be used in the bulk and accurately coupled with a (more detailed) MD model of protein binding which is used close to the membrane.

  5. Molecular dynamics and reverse Monte Carlo modeling of scheelite-type AWO4 (A = Ca, Sr, Ba) W L 3-edge EXAFS spectra

    Science.gov (United States)

    Kalinko, Aleksandr; Bauer, Matthias; Timoshenko, Janis; Kuzmin, Alexei

    2016-11-01

    Classical molecular dynamics (MD) and reverse Monte Carlo methods coupled with ab initio multiple-scattering extended x-ray absorption fine structure (EXAFS) calculations were used for modeling of scheelite-type AWO4 (A = Ca, Sr, Ba) W L 3-edge EXAFS spectra. The two theoretical approaches are complementary and allowed us to perform analysis of full EXAFS spectra. Both methods reproduce well the structure and dynamics of tungstates in the outer coordination shells, however the classical MD simulations underestimate the W-O bond MSRD due to a neglect of quantum zero-point-motion. The thermal vibration amplitudes, correlation effects and anisotropy of the tungstate structure were also estimated.

  6. Dataset showing the impact of the protonation states on molecular dynamics of HIV protease

    Directory of Open Access Journals (Sweden)

    Rosemberg O. Soares

    2016-09-01

    Full Text Available The data described here supports the research article “Unraveling HIV Protease Flaps Dynamics by Constant pH Molecular Dynamics Simulations” (Soares et al., 2016 [1]. The data involves both standard Molecular Dynamics (MD and Constant pH Molecular Dynamics (CpHMD to elucidate the effect of protonation states of catalytic dyad on the HIV-PR conformation. The data obtained from MD simulation demonstrate that the protonation state of the two aspartic acids (Asp25/Asp25′ has a strong influence on the dynamics of the HIV-PR. Regarding the CpHMD simulation, we performed pka calculations for HIV-PR and the data indicate that only one catalytic aspartate should be protonated.

  7. Dynamic fe Model of Sitting Man Adjustable to Body Height, Body Mass and Posture Used for Calculating Internal Forces in the Lumbar Vertebral Disks

    Science.gov (United States)

    Pankoke, S.; Buck, B.; Woelfel, H. P.

    1998-08-01

    Long-term whole-body vibrations can cause degeneration of the lumbar spine. Therefore existing degeneration has to be assessed as well as industrial working places to prevent further damage. Hence, the mechanical stress in the lumbar spine—especially in the three lower vertebrae—has to be known. This stress can be expressed as internal forces. These internal forces cannot be evaluated experimentally, because force transducers cannot be implementated in the force lines because of ethical reasons. Thus it is necessary to calculate the internal forces with a dynamic mathematical model of sitting man.A two dimensional dynamic Finite Element model of sitting man is presented which allows calculation of these unknown internal forces. The model is based on an anatomic representation of the lower lumbar spine (L3-L5). This lumber spine model is incorporated into a dynamic model of the upper torso with neck, head and arms as well as a model of the body caudal to the lumbar spine with pelvis and legs. Additionally a simple dynamic representation of the viscera is used. All these parts are modelled as rigid bodies connected by linear stiffnesses. Energy dissipation is modelled by assigning modal damping ratio to the calculated undamped eigenvalues. Geometry and inertial properties of the model are determined according to human anatomy. Stiffnesses of the spine model are derived from static in-vitro experiments in references [1] and [2]. Remaining stiffness parameters and parameters for energy dissipation are determined by using parameter identification to fit measurements in reference [3]. The model, which is available in 3 different postures, allows one to adjust its parameters for body height and body mass to the values of the person for which internal forces have to be calculated.

  8. MD-PhD training: looking back and looking forward.

    Science.gov (United States)

    Bonham, Ann C

    2014-01-01

    MD-PhD programs provide rigorous, integrated training for physician-scientists, enabling them to frame scientific questions in unique ways and to apply clinical insight to fundamental science. Few would question the influential contributions of MD-PhD physician-scientists in advancing medical science. In this issue of Academic Medicine, Jeffe et al affirm high levels of excellence in educational outcomes from MD-PhD training programs at U.S. MD-granting medical schools, especially programs that receive funding from the NIH Medical Scientist Training Program (MSTP). The author of this commentary observes that, in the face of current economic pressures, comprehensive, longitudinal national outcomes data from MSTP- and non-MSTP-funded MD-PhD programs will help verify the value provided by MD-PhD physician-scientists. She proposes that MD-PhD programs should better prepare the next generation of physician-scientists for future research environments, which will provide new technologies, venues, and modalities. These research environments will be more closely integrated within health care delivery systems, extend into diverse communities and regions, and employ complex technologies. MD-PhD physician-scientists also will train and gain expertise in broadening areas of research, such as health policy, health economics, clinical epidemiology, and medical informatics. Program leaders are ideally situated to foster innovative learning environments and methodologies. By sharing their innovations, they can help ensure production of a diverse MD-PhD physician-scientist workforce, prepared to engage in myriad research opportunities to meet patient and population needs in a new environment.

  9. Synergistic Applications of MD and NMR for the Study of Biological Systems

    Directory of Open Access Journals (Sweden)

    Olivier Fisette

    2012-01-01

    same time, theoretical and computational approaches gain in reliability and their field of application widens. In this short paper, we discuss recent advances in the areas of solution nuclear magnetic resonance (NMR spectroscopy and molecular dynamics (MD simulations that were made possible by the combination of both methods, that is, through their synergistic use. We present the main NMR observables and parameters that can be computed from simulations, and how they are used in a variety of complementary applications, including dynamics studies, model-free analysis, force field validation, and structural studies.

  10. The dielectric and dynamical properties of zinc-blende BN,AlN and GaN from first-principle calculation

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The ab initio calculations of the electronic structural,dielectric and lattice-dy namical properties of zinc-blende BN,AlN and GaN were presented. The ground-state properties,i.e.,the lattice constant,the bulk modulus and band gap,were calculated using a plane-wave-pseudopotential method within the density-function theory. A linear-response approach to the density-function perturb theory was used to derive the Born effective charge,the high-frequency dielectric constants and interatomic force constants for these materials. The interatomic force contants(IFCs) are useful for interpolating the dynamical matrices through the whole Brillouin zone. Phonon frequencies along high-symmetry lines were also obtained by interpolating the dynamical matrices using the interatomic force constants. In this paper,we discussed the difference of dielectric and dynamical properties among zinc-blende BN,AlN and GaN,and meanwhile,also compared these properties with other experimental data available and theoretical values. Generally,the calculations were in good agreement with the other existing experimental data and theoretical values.

  11. MD5加密算法的研究

    Institute of Scientific and Technical Information of China (English)

    许琪

    2014-01-01

    MD5加密算法做为散列函数的一个重要算法,在文件校验、数字签名等诸多领域有着广泛的应用.虽然MD5加密算法是单向算法,但其仍无法抵御差分攻击和查字典攻击.文章在分析了差分攻击原理的基础上,阐述了MD5加密算法采用差分攻击产生碰撞的方法.

  12. The Achromatic Telescopic Squeezing (ATS) MD part III

    CERN Document Server

    Fartoukh, S; Goddard, B; Hofle, W; Jacquet, D; Kruk, G; Lamont, M; de Maria, R; Miyamoto, R; Mueller, G; Pojer, M; Ponce, L; Redaelli, S; Ryckx, N; Steinhagen, R; Strzelczyk, M; Vanbavinckhove, G; Wenninger, J

    2011-01-01

    This note highlights the results obtained during the third so-called ATS MD which took place in 2011. The goal of this MD was extremely challenging, targeting a pre-squeezed beta* of 40 cm in ATLAS and CMS, followed by a telescopic squeeze of these two insertions to finally reach a beta* of 10 cm both at IP1 and IP5. Due to the rather poor machine availability during the MD period, the time initially allocated to the ATS studies was hardly cut by a factor of 2, and "only" the achromatic pre-squeeze down to beta*=40 cm was demonstrated with beam.

  13. Molecular Dynamics study of Pb overlayer on Cu(100)

    Science.gov (United States)

    Karimi, M.; Tibbits, P.; Ila, D.; Dalins, I.; Vidali, G.

    1991-01-01

    Isothermal-isobaric Molecular Dynamics (MD) simulation of a submonolayer Pb film in c(2x2) ordered structure adsorbed on a Cu(100) substrate showed retention of order to high T. The Embedded Atom Method (EAM) calculated the energy of atoms of overlayer and substrate. The time-averaged squared modulus of the two dimensional structure factor for the Pb overlayer measured the order of the overlayer. The results are for increasing T only, and require verification by simulated cooling.

  14. Molecular Dynamics study of Pb overlayer on Cu(100)

    Science.gov (United States)

    Karimi, M.; Tibbits, P.; Ila, D.; Dalins, I.; Vidali, G.

    1991-01-01

    Isothermal-isobaric Molecular Dynamics (MD) simulation of a submonolayer Pb film in c(2x2) ordered structure adsorbed on a Cu(100) substrate showed retention of order to high T. The Embedded Atom Method (EAM) calculated the energy of atoms of overlayer and substrate. The time-averaged squared modulus of the two dimensional structure factor for the Pb overlayer measured the order of the overlayer. The results are for increasing T only, and require verification by simulated cooling.

  15. Analytical model and MD simulation of nonlinear Richtmyer-Meshkov instability

    Science.gov (United States)

    Nishihara, Katsunobu; Abe, Motomi; Fukuda, Yuko; Zhakhovskii, Vasilii; Matsuoka, Chihiro

    2001-10-01

    We present two topics, an analytical model and moelrcular dynamic (MD) simulations of the Richtmyer-Meshokov instability (RMI). We have developled a selfconsistent analytical model that describes a nonlinear evolution of a vortex sheet in the two-dimensional RMI. The model consists of two kinematic boundary conditions, a modified Birkhoff-Rott equation and an equation for time evolution of circulation at the interface with a finite Atwood number. It is shown that the created vortcity on the interface has strong inhomogeneity, that causes locally streching and compression of the sheet. We discuss the dependence of the Atwood number on the nonlinear dynamics of the sheet. MD approache has been applied for converging shocks and RMI in a dense Lennard-Jones fluid in cylindrical geometry. MD method has fundamental advantages over hydrodymanic simulations such as no limitation of resolution in turbulent state. The appearance of Mach stems in the rippled shocks and turbulent mixing in RMI have been observed when the reflected shock passes through the unstable surface again. We discuss the mode number and Mach number dependence on the mixing.

  16. Rotational viscosity of a liquid crystal mixture:a fully atomistic molecular dynamics study

    Institute of Scientific and Technical Information of China (English)

    Zhang Ran; Peng Zeng-Hui; Liu Yong-Gang; Zheng Zhi-Gang; Xuan Li

    2009-01-01

    Fully atomistic molecular dynamics(MD)simulations at 293, 303 and 313 K have been performed for the four. component liquid crystal mixture, E7, using the software package Material Studio. Order parameters and orientational time correlation functions(TCFs)were calculated from MD trajectories. The rotational viscosity coefficients(RVCs)of the mixture were ca]culated using the Nemtsov-Zakharov and Fialkowski methods based on statistical-mechanical approaches. Temperature dependences of RVC and density were discussed in detall. Reasonable agreement between the simulated and experimental values was found.

  17. The Silicon / Silicon Nitride Interface and Fracture in Si: Molecular Dynamics Simulations

    Science.gov (United States)

    Bachlechner, Martina E.; Kalia, Rajiv K.; Vashishta, Priya; Ebbsjö, Ingvar

    1997-03-01

    The interface structure of a Si_3N_4(0001) film on a Si(111) substrate is studied using the molecular dynamics (MD) method. Bulk Si is described by the Stillinger-Weber potential and Si_3N4 by a combination of two-body and three-body contributions. At the interface, the charge transfer from silicon to nitrogen is taken from LCAO electronic structure calculations. Using these Si, Si_3N4 and interface interactions in MD simulations, we determine structural correlations in the interfacial regions. Results for crack propagation in silicon will also be presented.

  18. The structural, elastic, electronic and dynamical properties of chalcopyrite semiconductor BeGeAs{sub 2} from first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Ciftci, Yasemin Oe. [Gazi University Teknikokullar, Department of Physics, Faculty of Sciences, Ankara (Turkey); Evecen, Meryem; Aldirmaz, Emine [Amasya University, Department of Physics, Faculty of Arts and Sciences, Amasya (Turkey)

    2017-01-15

    First-principles calculations for the structural, elastic, electronic and vibrational properties of BeGeAs{sub 2} with chalcopyrite structure have been reported in the frame work of the density functional theory. The calculated ground state properties are in good agreement with the available data. By considering the electronic band structure and electronic density of states calculation, it is found that this compound is a semiconductor which confirmed the previous work. Single-crystal elastic constants and related properties such as Young's modulus, Poisson ratio, shear modulus and bulk modulus have been predicted using the stress-finite strain technique. It can be seen from the calculated elastic constants that this compound is mechanically stable in the chalcopyrite structure. Pressure dependences of elastic constants and band gap are also reported. Finally, the phonon dispersion curves and total and partial density of states were calculated and discussed. The calculated phonon frequencies BeGeAs{sub 2} are positive, indicating the dynamical stability of the studied compound. (orig.)

  19. Influence of mold and substrate material combinations on nanoimprint lithography process: MD simulation approach

    Science.gov (United States)

    Yang, Seunghwa; Yu, Suyoung; Cho, Maenghyo

    2014-05-01

    A molecular dynamics (MD) study was performed to examine the effect of mold-substrate material composition on the pattern transferring and defects of the resist polymer in a thermal Nano Imprint Lithography (NIL) process. As candidate materials, single crystalline nickel (Ni), silicon (Si) and silica (SiO2, α-quartz) for the rigid mold substrate, and amorphous poly-(methylmethacrylate) (PMMA) thin film for the resist were considered for common applications in NIL processes. Three different material compositions of Si mold-Ni substrate, Ni mold-Si substrate, and quartz mold-Ni substrate were considered. In accordance with a real NIL process, a sequence of indentation-relaxation-release processes was quasi-statically simulated using isothermal ensemble simulation on tri-layer molecular structures consisting of a mold, resist, and substrate. To correlate the deformed shape and delamination of PMMA resist from the substrate in indentation and release processes, non-bond interaction energy between a rigid mold and resist was calculated for each combination of mold and substrate materials. The Si mold-Ni substrate combination shows successful pattern transfer to the resist polymer even without an anti-sticking layer as a result of the desirable balance of surface free energy for mold and substrate materials. However, Ni mold-Si substrate combination shows a critical delamination of the resist in the release process due to strong van der Waals adhesion between the resist and Ni mold. Similarly, the quartz mold-Ni substrate combination shows the same delamination in pattern transfer, but the adhesion of the resist to the quartz mold is attributed to electrostatic interaction. In order to provide guidelines for material selection in imprint-like processes where surface adsorption and wetting characteristics are critical design parameters, a simple PMMA-rigid plate model is proposed, with which consistent surface interaction characteristics in the full model NIL process

  20. Calculation of broadband time histories of ground motion, Part II: Kinematic and dynamic modeling using theoretical Green's functions and comparison with the 1994 northridge earthquake

    Science.gov (United States)

    Hartzell, S.; Guatteri, Mariagiovanna; Mai, P.M.; Liu, P.-C.; Fisk, M. R.

    2005-01-01

    In the evolution of methods for calculating synthetic time histories of ground motion for postulated earthquakes, kinematic source models have dominated to date because of their ease of application. Dynamic models, however, which incorporate a physical relationship between important faulting parameters of stress drop, slip, rupture velocity, and rise time, are becoming more accessible. This article compares a class of kinematic models based on the summation of a fractal distribution of subevent sizes with a dynamic model based on the slip-weakening friction law. Kinematic modeling is done for the frequency band 0.2 to 10.0. Hz, dynamic models are calculated from 0.2 to 2.0. Hz. The strong motion data set for the 1994 Northridge earthquake is used to evaluate and compare the synthetic time histories. Source models are propagated to the far field by convolution with 1D and 3D theoretical Green’s functions. In addition, the kinematic model is used to evaluate the importance of propagation path effects: velocity structure, scattering, and nonlinearity. At present, the kinematic model gives a better broadband fit to the Northridge ground motion than the simple slip-weakening dynamic model. In general, the dynamic model overpredicts rise times and produces insufficient shorter-period energy. Within the context of the slip-weakening model, the Northridge ground motion requires a short slip-weakening distance, on the order of 0.15 m or less. A more complex dynamic model including rate weakening or one that allows shorter rise times near the hypocenter may fit the data better.

  1. MD5Hash加密算法在SQL Server2005中的应用%Application of MD5 Hash Encryption Algorithm in SQL Server 2005

    Institute of Scientific and Technical Information of China (English)

    李红日

    2011-01-01

    在对MD5算法进行简要描述的同时,对MD5算法的原理作深入分析.介绍在C创建MD5 Hash算法的函数,在SQL Server中应用MD5哈希算法,并且经过测试可以准确实现MD5 Hash加密算法.

  2. Find an Orthopaedic Foot and Ankle MD/DO

    Science.gov (United States)

    ... Content AOFAS / FootCareMD / Find a Surgeon Find an Orthopaedic Foot & Ankle Surgeon Page Content The Orthopaedic Distinction Who are Orthopaedic Foot & Ankle Surgeons? Orthopaedic foot and ankle surgeons ...

  3. Comparison of Classical and Modern Uncertainty Qualification Methods for the Calculation of Critical Speeds in Railway Vehicle Dynamics

    DEFF Research Database (Denmark)

    Bigoni, Daniele; Engsig-Karup, Allan Peter; True, Hans

    2012-01-01

    . In this paper the methods are applied to a lowdimensional vehicle dynamical model composed by a two-axle bogie, which is connected to a car body by a lateral linear spring, a lateral damper and a torsional spring. Their characteristics are not deterministically defined, but they are defined by probability...

  4. Self-Consistent Determination of Atomic Charges of Ionic Liquid through a Combination of Molecular Dynamics Simulation and Density Functional Theory.

    Science.gov (United States)

    Ishizuka, Ryosuke; Matubayasi, Nobuyuki

    2016-02-09

    A self-consistent scheme is developed to determine the atomic partial charges of ionic liquid. Molecular dynamics (MD) simulation was conducted to sample a set of ion configurations, and these configurations were subject to density functional theory (DFT) calculations to determine the partial charges. The charges were then averaged and used as inputs for the subsequent MD simulation, and MD and DFT calculations were repeated until the MD results are not altered any more. We applied this scheme to 1,3-dimethylimidazolium bis(trifluoromethylsulfonyl) imide ([C1mim][NTf2]) and investigated its structure and dynamics as a function of temperature. At convergence, the average ionic charges were ±0.84 e at 350 K due to charge transfer among ions, where e is the elementary charge, while the reduced ionic charges do not affect strongly the density of [C1mim][NTf2] and radial distribution function. Instead, major effects are found on the energetics and dynamics, with improvements of the overestimated heat of vaporization and the too slow motions of ions observed in MD simulations using commonly used force fields.

  5. Modeling ramp compression experiments using large-scale molecular dynamics simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Mattsson, Thomas Kjell Rene; Desjarlais, Michael Paul; Grest, Gary Stephen; Templeton, Jeremy Alan; Thompson, Aidan Patrick; Jones, Reese E.; Zimmerman, Jonathan A.; Baskes, Michael I. (University of California, San Diego); Winey, J. Michael (Washington State University); Gupta, Yogendra Mohan (Washington State University); Lane, J. Matthew D.; Ditmire, Todd (University of Texas at Austin); Quevedo, Hernan J. (University of Texas at Austin)

    2011-10-01

    Molecular dynamics simulation (MD) is an invaluable tool for studying problems sensitive to atomscale physics such as structural transitions, discontinuous interfaces, non-equilibrium dynamics, and elastic-plastic deformation. In order to apply this method to modeling of ramp-compression experiments, several challenges must be overcome: accuracy of interatomic potentials, length- and time-scales, and extraction of continuum quantities. We have completed a 3 year LDRD project with the goal of developing molecular dynamics simulation capabilities for modeling the response of materials to ramp compression. The techniques we have developed fall in to three categories (i) molecular dynamics methods (ii) interatomic potentials (iii) calculation of continuum variables. Highlights include the development of an accurate interatomic potential describing shock-melting of Beryllium, a scaling technique for modeling slow ramp compression experiments using fast ramp MD simulations, and a technique for extracting plastic strain from MD simulations. All of these methods have been implemented in Sandia's LAMMPS MD code, ensuring their widespread availability to dynamic materials research at Sandia and elsewhere.

  6. Quantum dynamical calculations in clusters of spin 1/2 particles : Resonant coherent quantum tunneling on the magnetization reversal

    NARCIS (Netherlands)

    García-Pablos, D.; García, N.; Serena, P.A.; Raedt, H. De

    1996-01-01

    We investigate the reversal of magnetization and the coherence of tunneling when an external magnetic field is rotated instantaneously in systems of a few (N) spin 1/2 particles described by an anisotropic Heisenberg Hamiltonian at T=0. The temporal evolution is calculated by a numerically exact sol

  7. Quantum dynamical calculations in clusters of spin-1/2 particles: resonant coherent quantum tunneling on the magnetization reversal

    NARCIS (Netherlands)

    García-Pablos, D.; García, N.; Serena, P.A.; Raedt, H. De

    1996-01-01

    We investigate the reversal of magnetization and the coherence of tunneling when an external magnetic field is rotated instantaneously in systems of a few (N) spin 1/2 particles described by an anisotropic Heisenberg Hamiltonian at T=0. The temporal evolution is calculated by a numerically exact sol

  8. Influence of geometric and hydro-dynamic parameters of injector on calculation of spray characteristics of diesel engines

    Directory of Open Access Journals (Sweden)

    Filipović Ivan

    2011-01-01

    Full Text Available The main role in air/fuel mixture formation at the IC diesel engines has the energy introduced by fuel into the IC engine that is the characteristics of spraying fuel into the combustion chamber. The characteristic can be defined by the spray length, the spray cone angle, the physical and the chemical structure of fuel spray by different sections. Having in mind very complex experimental setups for researching in this field, the mentioned characteristics are mostly analyzed by calculations. There are two methods in the literature, the first based on use of the semi-empirical expressions (correlations and the second, the calculations of spray characteristics by use of very complex mathematical methods. The second method is dominant in the modern literature. The main disadvantage of the calculation methods is a correct definition of real state at the end of the nozzle orifice (real boundary conditions. The majority of the researchers in this field use most frequently the coefficient of total losses inside the injector. This coefficient depends on injector design, as well as depends on the level of fuel energy and fuel energy transformation along the injector. Having in mind the importance of the real boundary conditions, the complex methods for calculation of the fuel spray characteristics should have the calculation of fuel flows inside the injector and the calculation of spray characteristics together. This approach is a very complex numerical problem and there are no existing computer programs with satisfactory calculation results. Analysis of spray characteristics by use of the semi-empirical expressions (correlations is presented in this paper. The special attention is dedicated to the analysis of the constant in the semi-empirical expressions and influence parameters on this constant. Also, the method for definition of realistic boundary condition at the end of the nozzle orifice is presented in the paper. By use of this method completely

  9. beta* leveling with telescopic ATS squeeze (MD 2410)

    CERN Document Server

    Wenninger, Jorg; Hostettler, Michi; Pojer, Mirko; Ponce, Laurette; Tydecks, Tobias; CERN. Geneva. ATS Department

    2017-01-01

    Luminosity leveling by beta* is the baseline operational scenario of HL-LHC, and this leveling technique may be used in 2018 or during run~3 depending on the beam parameters and beta* range. During this MD beta*leveling was commissioned successfully for the first time with the telescopic squeeze over the beta* range of 40 cm to 30 cm. A novel beta* leveling controls technique based on a modification of the LSA trim was also tested during the MD.

  10. Perturbation theory calculations of model pair potential systems

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Jianwu [Iowa State Univ., Ames, IA (United States)

    2016-01-01

    Helmholtz free energy is one of the most important thermodynamic properties for condensed matter systems. It is closely related to other thermodynamic properties such as chemical potential and compressibility. It is also the starting point for studies of interfacial properties and phase coexistence if free energies of different phases can be obtained. In this thesis, we will use an approach based on the Weeks-Chandler-Anderson (WCA) perturbation theory to calculate the free energy of both solid and liquid phases of Lennard-Jones pair potential systems and the free energy of liquid states of Yukawa pair potentials. Our results indicate that the perturbation theory provides an accurate approach to the free energy calculations of liquid and solid phases based upon comparisons with results from molecular dynamics (MD) and Monte Carlo (MC) simulations.

  11. Quasielastic neutron scattering and molecular dynamics simulation studies of the melting transition in butane and hexane monolayers adsorbed on graphite

    DEFF Research Database (Denmark)

    Hervig, K.W.; Wu, Z.; Dai, P.

    1997-01-01

    Quasielastic neutron scattering experiments and molecular dynamics (MD) simulations have been used to investigate molecular diffusive motion near the melting transition of monolayers of flexible rod-shaped molecules. The experiments were conducted on butane and hexane monolayers adsorbed on an ex......Quasielastic neutron scattering experiments and molecular dynamics (MD) simulations have been used to investigate molecular diffusive motion near the melting transition of monolayers of flexible rod-shaped molecules. The experiments were conducted on butane and hexane monolayers adsorbed...... comparison with experiment, quasielastic spectra calculated from the MD simulations were analyzed using the same models and fitting algorithms as for the neutron spectra. This combination of techniques gives a microscopic picture of the melting process in these two monolayers which is consistent with earlier...

  12. Validation of computational fluid dynamics calculation using Rossendorf coolant mixing model flow measurements in primary loop of coolant in a pressurized water reactor model

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, Istvan; Hutli, Ezddin; Faekas, Tatiana; Takacs, Antal; Guba, Attila; Toth, Ivan [Dept. of Thermohydraulics, Centre for Energy Research, Hungarian Academy of Sciences, Budapest (Hungary)

    2016-08-15

    The aim of this work is to simulate the thermohydraulic consequences of a main steam line break and to compare the obtained results with Rossendorf Coolant Mixing Model (ROCOM) 1.1 experimental results. The objective is to utilize data from steady-state mixing experiments and computational fluid dynamics (CFD) calculations to determine the flow distribution and the effect of thermal mixing phenomena in the primary loops for the improvement of normal operation conditions and structural integrity assessment of pressurized water reactors. The numerical model of ROCOM was developed using the FLUENT code. The positions of the inlet and outlet boundary conditions and the distribution of detailed velocity/turbulence parameters were determined by preliminary calculations. The temperature fields of transient calculation were averaged in time and compared with time-averaged experimental data. The perforated barrel under the core inlet homogenizes the flow, and therefore, a uniform temperature distribution is formed in the pressure vessel bottom. The calculated and measured values of lowest temperature were equal. The inlet temperature is an essential parameter for safety assessment. The calculation predicts precisely the experimental results at the core inlet central region. CFD results showed a good agreement (both qualitatively and quantitatively) with experimental results.

  13. Partially implicit finite difference scheme for calculating dynamic pressure in a terrain-following coordinate non-hydrostatic ocean model

    Science.gov (United States)

    Liu, Zhe; Lin, Lei; Xie, Lian; Gao, Huiwang

    2016-10-01

    To improve the efficiency of the terrain-following σ-coordinate non-hydrostatic ocean model, a partially implicit finite difference (PIFD) scheme is proposed. By using explicit terms instead of implicit terms to discretize the parts of the vertical dynamic pressure gradient derived from the σ-coordinate transformation, the coefficient matrix of the discrete Poisson equation that the dynamic pressure satisfies can be simplified from 15 diagonals to 7 diagonals. The PIFD scheme is shown to run stably when it is applied to simulate five benchmark cases, namely, a standing wave in a basin, a surface solitary wave, a lock-exchange problem, a periodic wave over a bar and a tidally induced internal wave. Compared with the conventional fully implicit finite difference (FIFD) scheme, the PIFD scheme produces simulation results of equivalent accuracy at only 40-60% of the computational cost. The PIFD scheme demonstrates strong applicability and can be easily implemented in σ-coordinate ocean models.

  14. Measurement of Specimen Thickness by Using Electron Holography and Electron Dynamic Calculation with a Transmission Electron Microscope

    Institute of Scientific and Technical Information of China (English)

    王岩国; 刘红荣; 杨奇斌; 张泽

    2003-01-01

    A method of transmission-electron microscopy for accurate measurement of specimen thickness has been proposed based on off-axis electron holography along with the dynamic electron diffraction simulation. The phase shift of the exit object wave with respect to the reference wave in vacuum, resulting from the scattering within the specimen, has been simulated versus the specimen thickness by the dynamic electron diffraction formula. Offaxis electron holography in a field emission gun transmission-electron microscope has been used to determine the phase shift of the exit wave. The specimen thickness can be obtained by match of the experimental and simulated phase shift. Based on the measured phase shift of the [110] oriented copper foil, the thickness can be determined at a good level of accuracy with an error less than ~10%.

  15. Steric effects on intramolecular reactivity in cyclic dipeptides: Conformational analysis validated by a combined MD/DFT approach

    Science.gov (United States)

    Lewandowska, A.; Carmichael, I.; Hörner, G.; Hug, G. L.; Marciniak, B.

    2011-08-01

    The present Molecular Dynamics (MD) simulation study addresses the geometric requirements of close-contact formation in short peptides. This process, that is probed herein by intramolecular H-atom transfer, initiated by triplet-excited ketones, demands close contact between the H-donating and H-accepting moieties. Thus, any deduction about the compound's reactivity based just on MD simulations, requires independent verification of the computed conformational preferences. In this study, a procedure was developed using diketopiperazine-linked benzophenone/tyrosine dyads. Specifically, it involves a comparison of the dyads' experimental 3J(H α-H β(a/b)) spin-spin coupling constants with the theoretical values obtained by weighting DFT-computed spin-spin coupling constants with the MD-computed probability distributions for the dyads' configurations.

  16. Identifying the Interaction of Vancomycin With Novel pH-Responsive Lipids as Antibacterial Biomaterials Via Accelerated Molecular Dynamics and Binding Free Energy Calculations.

    Science.gov (United States)

    Ahmed, Shaimaa; Vepuri, Suresh B; Jadhav, Mahantesh; Kalhapure, Rahul S; Govender, Thirumala

    2017-03-09

    Nano-drug delivery systems have proven to be an efficient formulation tool to overcome the challenges with current antibiotics therapy and resistance. A series of pH-responsive lipid molecules were designed and synthesized for future liposomal formulation as a nano-drug delivery system for vancomycin at the infection site. The structures of these lipids differ from each other in respect of hydrocarbon tails: Lipid1, 2, 3 and 4 have stearic, oleic, linoleic, and linolenic acid hydrocarbon chains, respectively. The impact of variation in the hydrocarbon chain in the lipid structure on drug encapsulation and release profile, as well as mode of drug interaction, was investigated using molecular modeling analyses. A wide range of computational tools, including accelerated molecular dynamics, normal molecular dynamics, binding free energy calculations and principle component analysis, were applied to provide comprehensive insight into the interaction landscape between vancomycin and the designed lipid molecules. Interestingly, both MM-GBSA and MM-PBSA binding affinity calculations using normal molecular dynamics and accelerated molecular dynamics trajectories showed a very consistent trend, where the order of binding affinity towards vancomycin was lipid4 > lipid1 > lipid2 > lipid3. From both normal molecular dynamics and accelerated molecular dynamics, the interaction of lipid3 with vancomycin is demonstrated to be the weakest (∆Gbinding = -2.17 and -11.57, for normal molecular dynamics and accelerated molecular dynamics, respectively) when compared to other complexes. We believe that the degree of unsaturation of the hydrocarbon chain in the lipid molecules may impact on the overall conformational behavior, interaction mode and encapsulation (wrapping) of the lipid molecules around the vancomycin molecule. This thorough computational analysis prior to the experimental investigation is a valuable approach to guide for predicting the encapsulation

  17. Research of the Hash Algorithm Based on MD5%MD5散列算法的研究

    Institute of Scientific and Technical Information of China (English)

    姜学军; 曹烨

    2014-01-01

    借鉴了M.M.J.Stevens的碰撞思路,重新编写了MD5碰撞算法中的核心循环,主要提供一对MD5碰撞产生的过程以及碰撞的完成.通过实验统计分析,利用改进的MD5碰撞算法找到一对碰撞信息所用平均时间不多于60s,且该算法较之传统的MD5碰撞算法具有更好的可读性和可移植性.

  18. Ab initio molecular dynamics with noisy forces: Validating the quantum Monte Carlo approach with benchmark calculations of molecular vibrational properties

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Ye, E-mail: xw111luoye@gmail.com; Sorella, Sandro, E-mail: sorella@sissa.it [International School for Advanced Studies (SISSA), and CRS Democritos, CNR-INFM, Via Bonomea 265, I-34136 Trieste (Italy); Zen, Andrea, E-mail: zen.andrea.x@gmail.com [Dipartimento di Fisica, Università di Roma “La Sapienza,” Piazzale Aldo Moro 2, I-00185 Rome (Italy)

    2014-11-21

    We present a systematic study of a recently developed ab initio simulation scheme based on molecular dynamics and quantum Monte Carlo. In this approach, a damped Langevin molecular dynamics is employed by using a statistical evaluation of the forces acting on each atom by means of quantum Monte Carlo. This allows the use of an highly correlated wave function parametrized by several variational parameters and describing quite accurately the Born-Oppenheimer energy surface, as long as these parameters are determined at the minimum energy condition. However, in a statistical method both the minimization method and the evaluation of the atomic forces are affected by the statistical noise. In this work, we study systematically the accuracy and reliability of this scheme by targeting the vibrational frequencies of simple molecules such as the water monomer, hydrogen sulfide, sulfur dioxide, ammonia, and phosphine. We show that all sources of systematic errors can be controlled and reliable frequencies can be obtained with a reasonable computational effort. This work provides convincing evidence that this molecular dynamics scheme can be safely applied also to realistic systems containing several atoms.

  19. Measurement and calculation of dynamic coefficients in hydrodynamic bearings of gas films; Medicion y calculo de coeficientes dinamicos en cojinetes hidrodinamicos de peliculas de gas

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, Rafael O.; Di Liscia, Marcelo H.; Diaz, Sergio E. [Universidad Simon Bolivar, Sartendejas, Baruta (Venezuela)

    2007-11-15

    The identification of the dynamic coefficients in air bearings is fundamental for a suitable roto-dynamic analysis. The present paper shows the development of an algorithm that allows the direct obtaining of the dynamic coefficients in hydrodynamic air bearings as much of numerical form as experimental. The testing bench used consists of two magnetic bearings, which support the rotor in their ends and work as well as actuators allowing inducing controlled orbits in the rotor. The test bearing is located between the magnetic bearings. The dynamic forces generated in the air bearing are registered from three load cells. The algorithm was developed in a commercial code of graphical programming, through which the signals can be collected, controlled and processed. The nonlinear behavior of this type of bearings makes difficult the calculation of the dynamic coefficients, therefore the processing of the signals in frequencial space facilitates, in a certain way, its handling. On the other hand, the numerical model was compared with the experimental results obtaining acceptable approaches in magnitude as well as in behavior. The numerical dynamic coefficients calculation was realized solving the Reynolds differential equation for a compressible fluid in the thickness of the gas film, taking into consideration the fluid mass flow that is introduced, as well as the pressure loss suffered by the same in passing through the feeding orifices. The numerical methods utilized include the solution of the differential equation of Reynolds for finite differences, the calculation of the profile realizing successive iterations and the calculation of the hydrodynamics forces through the Simpson numerical integration. The numerical dynamic coefficients were found applying a minimum squared technique to the hydrodynamic stresses generated in simulating an orbit of the rotor at a determined frequency and velocity, allowing in this way the calculation of the synchronous and asynchronous

  20. Measurement and calculation of dynamic coefficients in hydrodynamic bearings of gas films; Medicion y calculo de coeficientes dinamicos en cojinetes hidrodinamicos de peliculas de gas

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, Rafael O.; Di Liscia, Marcelo H.; Diaz, Sergio E. [Universidad Simon Bolivar, Sartendejas, Baruta (Venezuela)

    2007-11-15

    The identification of the dynamic coefficients in air bearings is fundamental for a suitable roto-dynamic analysis. The present paper shows the development of an algorithm that allows the direct obtaining of the dynamic coefficients in hydrodynamic air bearings as much of numerical form as experimental. The testing bench used consists of two magnetic bearings, which support the rotor in their ends and work as well as actuators allowing inducing controlled orbits in the rotor. The test bearing is located between the magnetic bearings. The dynamic forces generated in the air bearing are registered from three load cells. The algorithm was developed in a commercial code of graphical programming, through which the signals can be collected, controlled and processed. The nonlinear behavior of this type of bearings makes difficult the calculation of the dynamic coefficients, therefore the processing of the signals in frequencial space facilitates, in a certain way, its handling. On the other hand, the numerical model was compared with the experimental results obtaining acceptable approaches in magnitude as well as in behavior. The numerical dynamic coefficients calculation was realized solving the Reynolds differential equation for a compressible fluid in the thickness of the gas film, taking into consideration the fluid mass flow that is introduced, as well as the pressure loss suffered by the same in passing through the feeding orifices. The numerical methods utilized include the solution of the differential equation of Reynolds for finite differences, the calculation of the profile realizing successive iterations and the calculation of the hydrodynamics forces through the Simpson numerical integration. The numerical dynamic coefficients were found applying a minimum squared technique to the hydrodynamic stresses generated in simulating an orbit of the rotor at a determined frequency and velocity, allowing in this way the calculation of the synchronous and asynchronous