WorldWideScience

Sample records for dynamics final performance

  1. 4D Dynamic Required Navigation Performance Final Report

    Science.gov (United States)

    Finkelsztein, Daniel M.; Sturdy, James L.; Alaverdi, Omeed; Hochwarth, Joachim K.

    2011-01-01

    New advanced four dimensional trajectory (4DT) procedures under consideration for the Next Generation Air Transportation System (NextGen) require an aircraft to precisely navigate relative to a moving reference such as another aircraft. Examples are Self-Separation for enroute operations and Interval Management for in-trail and merging operations. The current construct of Required Navigation Performance (RNP), defined for fixed-reference-frame navigation, is not sufficiently specified to be applicable to defining performance levels of such air-to-air procedures. An extension of RNP to air-to-air navigation would enable these advanced procedures to be implemented with a specified level of performance. The objective of this research effort was to propose new 4D Dynamic RNP constructs that account for the dynamic spatial and temporal nature of Interval Management and Self-Separation, develop mathematical models of the Dynamic RNP constructs, "Required Self-Separation Performance" and "Required Interval Management Performance," and to analyze the performance characteristics of these air-to-air procedures using the newly developed models. This final report summarizes the activities led by Raytheon, in collaboration with GE Aviation and SAIC, and presents the results from this research effort to expand the RNP concept to a dynamic 4D frame of reference.

  2. 10 CFR 603.890 - Final performance report.

    Science.gov (United States)

    2010-01-01

    ... to Other Administrative Matters Financial and Programmatic Reporting § 603.890 Final performance report. A TIA must require a final performance report that addresses all major accomplishments under the... 10 Energy 4 2010-01-01 2010-01-01 false Final performance report. 603.890 Section 603.890 Energy...

  3. Optimized controllers for enhancing dynamic performance of PV interface system

    Directory of Open Access Journals (Sweden)

    Mahmoud A. Attia

    2018-05-01

    Full Text Available The dynamic performance of PV interface system can be improved by optimizing the gains of the Proportional–Integral (PI controller. In this work, gravitational search algorithm and harmony search algorithm are utilized to optimal tuning of PI controller gains. Performance comparison between the PV system with optimized PI gains utilizing different techniques are carried out. Finally, the dynamic behavior of the system is studied under hypothetical sudden variations in irradiance. The examination of the proposed techniques for optimal tuning of PI gains is conducted using MATLAB/SIMULINK software package. The main contribution of this work is investigating the dynamic performance of PV interfacing system with application of gravitational search algorithm and harmony search algorithm for optimal PI parameters tuning. Keywords: Photovoltaic power systems, Gravitational search algorithm, Harmony search algorithm, Genetic algorithm, Artificial intelligence

  4. Photocathode Optimization for a Dynamic Transmission Electron Microscope: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, P; Flom, Z; Heinselman, K; Nguyen, T; Tung, S; Haskell, R; Reed, B W; LaGrange, T

    2011-08-04

    The Dynamic Transmission Electron Microscope (DTEM) team at Harvey Mudd College has been sponsored by LLNL to design and build a test setup for optimizing the performance of the DTEM's electron source. Unlike a traditional TEM, the DTEM achieves much faster exposure times by using photoemission from a photocathode to produce electrons for imaging. The DTEM team's work is motivated by the need to improve the coherence and current density of the electron cloud produced by the electron gun in order to increase the image resolution and contrast achievable by DTEM. The photoemission test setup is nearly complete and the team will soon complete baseline tests of electron gun performance. The photoemission laser and high voltage power supply have been repaired; the optics path for relaying the laser to the photocathode has been finalized, assembled, and aligned; the internal setup of the vacuum chamber has been finalized and mostly implemented; and system control, synchronization, and data acquisition has been implemented in LabVIEW. Immediate future work includes determining a consistent alignment procedure to place the laser waist on the photocathode, and taking baseline performance measurements of the tantalum photocathode. Future research will examine the performance of the electron gun as a function of the photoemission laser profile, the photocathode material, and the geometry and voltages of the accelerating and focusing components in the electron gun. This report presents the team's progress and outlines the work that remains.

  5. SLC Final Performance and Lessons

    International Nuclear Information System (INIS)

    Phinney, Nan

    2000-01-01

    The Stanford Linear Collider (SLC) was the first prototype of a new type of accelerator, the electron-positron linear collider. Many years of dedicated effort were required to understand the physics of this new technology and to develop the techniques for maximizing performance. Key issues were emittance dilution, stability, final beam optimization and background control. Precision, non-invasive diagnostics were required to measure and monitor the beams throughout the machine. Beam-based feedback systems were needed to stabilize energy, trajectory, intensity and the final beam size at the interaction point. variety of new tuning techniques were developed to correct for residual optical or alignment errors. The final focus system underwent a series of refinements in order to deliver sub-micron size beams. It also took many iterations to understand the sources of backgrounds and develop the methods to control them. The benefit from this accumulated experience was seen in the performance of the SLC during its final run in 1997-98. The luminosity increased by a factor of three to 3*10 30 and the 350,000 Z data sample delivered was nearly double that from all previous runs combined

  6. Dynamics of final sectoral energy demand and aggregate energy intensity

    International Nuclear Information System (INIS)

    Lescaroux, Francois

    2011-01-01

    This paper proposes a regional and sectoral model of global final energy demand. For the main end-use sectors of consumption (industrial, commercial and public services, residential and road transportation), per-capita demand is expressed as an S-shaped function of per-capita income. Other variables intervene as well, like energy prices, temperatures and technological trends. This model is applied on a panel of 101 countries and 3 aggregates (covering the whole world) and it explains fairly well past variations in sectoral, final consumption since the beginning of the 2000s. Further, the model is used to analyze the dynamics of final energy demand, by sector and in total. The main conclusion concerns the pattern of change for aggregate energy intensity. The simulations performed show that there is no a priori reason for it to exhibit a bell-shape, as reported in the literature. Depending on initial conditions, the weight of basic needs in total consumption and the availability of modern commercial energy resources, various forms might emerge. - Research Highlights: → The residential sector accounts for most of final energy consumption at low income levels. → Its share drops at the benefit of the industrial, services and road transportation sectors in turn. → Sectoral shares' pattern is affected by changes in geographic, sociologic and economic factors. → Final energy intensity may show various shapes and does not exhibit necessarily a bell-shape.

  7. Investigations on detonation shock dynamics and related topics. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, D.S. [Univ. of Illinois, Urbana, IL (United States). Dept. of Theoretical and Applied Mechanics

    1993-11-01

    This document is a final report that summarizes the research findings and research activities supported by the subcontract DOE-LANL-9-XG8-3931P-1 between the University of Illinois (D. S. Stewart Principal Investigator) and the University of California (Los Alamos National Laboratory, M-Division). The main focus of the work has been on investigations of Detonation Shock Dynamics. A second emphasis has been on modeling compaction of energetic materials and deflagration to detonation in those materials. The work has led to a number of extensions of the theory of Detonation Shock Dynamics (DSD) and its application as an engineering design method for high explosive systems. The work also enhanced the hydrocode capabilities of researchers in M-Division by modifications to CAVEAT, an existing Los Alamos hydrocode. Linear stability studies of detonation flows were carried out for the purpose of code verification. This work also broadened the existing theory for detonation. The work in this contract has led to the development of one-phase models for dynamic compaction of porous energetic materials and laid the groundwork for subsequent studies. Some work that modeled the discrete heterogeneous behavior of propellant beds was also performed. The contract supported the efforts of D. S. Stewart and a Postdoctoral student H. I. Lee at the University of Illinois.

  8. dynamic performance of research reactors

    International Nuclear Information System (INIS)

    Abo elnor, A.G.M.

    2007-01-01

    this work studies the dynamic performance of material testing reactor (MTR), where the dynamic performance of any reactor reflects its safety behavior and it should enhance its intrinsic characteristics s ystem corrects itself internally without introducing external corrective action . the present work analyzes and studies the dynamic performance of mtr through the transfer function. the servo system parameters can be changed to fit the system demand. the servo system is an excellent approximation to some of the practical servo system currently use in reactor control system, and a quadratic form of this sort should closely approximate the behavior of almost any type of physical equipment which might be chosen to drive a control rod. proposed changes in servo system parameters could enhance the dynamic performance of the system , but the suitable parameters can be evaluated by using the automatic reactor power control system model

  9. Analysis of Dynamic Performance of a Kalman Filter for Combining Multiple MEMS Gyroscopes

    Directory of Open Access Journals (Sweden)

    Liang Xue

    2014-11-01

    Full Text Available In this paper, the dynamic performance of a Kalman filter (KF was analyzed, which is used to combine multiple measurements of a gyroscopes array to reduce the noise and improve the accuracy of the individual sensors. A principle for accuracy improvement by the KF was briefly presented to obtain an optimal estimate of input rate signal. In particular, the influences of some crucial factors on the KF dynamic performance were analyzed by simulations such as the factors input signal frequency, signal sampling, and KF filtering rate. Finally, a system that was comprised of a six-gyroscope array was designed and implemented to test the dynamic performance. Experimental results indicated that the 1σ error for the combined rate signal was reduced to about 0.2°/s in the constant rate test, which was a reduction by a factor of more than eight compared to the single gyroscope. The 1σ error was also reduced from 1.6°/s to 0.48°/s in the swing test. It showed that the estimated angular rate signal could well reflect the dynamic characteristic of the input signal in dynamic conditions.

  10. Dynamic Capabilities and Performance

    DEFF Research Database (Denmark)

    Wilden, Ralf; Gudergan, Siegfried P.; Nielsen, Bo Bernhard

    2013-01-01

    are contingent on the competitive intensity faced by firms. Our findings demonstrate the performance effects of internal alignment between organizational structure and dynamic capabilities, as well as the external fit of dynamic capabilities with competitive intensity. We outline the advantages of PLS...

  11. Dynamism in Electronic Performance Support Systems.

    Science.gov (United States)

    Laffey, James

    1995-01-01

    Describes a model for dynamic electronic performance support systems based on NNAble, a system developed by the training group at Apple Computer. Principles for designing dynamic performance support are discussed, including a systems approach, performer-centered design, awareness of situated cognition, organizational memory, and technology use.…

  12. Computational Particle Dynamic Simulations on Multicore Processors (CPDMu) Final Report Phase I

    Energy Technology Data Exchange (ETDEWEB)

    Schmalz, Mark S

    2011-07-24

    Statement of Problem - Department of Energy has many legacy codes for simulation of computational particle dynamics and computational fluid dynamics applications that are designed to run on sequential processors and are not easily parallelized. Emerging high-performance computing architectures employ massively parallel multicore architectures (e.g., graphics processing units) to increase throughput. Parallelization of legacy simulation codes is a high priority, to achieve compatibility, efficiency, accuracy, and extensibility. General Statement of Solution - A legacy simulation application designed for implementation on mainly-sequential processors has been represented as a graph G. Mathematical transformations, applied to G, produce a graph representation {und G} for a high-performance architecture. Key computational and data movement kernels of the application were analyzed/optimized for parallel execution using the mapping G {yields} {und G}, which can be performed semi-automatically. This approach is widely applicable to many types of high-performance computing systems, such as graphics processing units or clusters comprised of nodes that contain one or more such units. Phase I Accomplishments - Phase I research decomposed/profiled computational particle dynamics simulation code for rocket fuel combustion into low and high computational cost regions (respectively, mainly sequential and mainly parallel kernels), with analysis of space and time complexity. Using the research team's expertise in algorithm-to-architecture mappings, the high-cost kernels were transformed, parallelized, and implemented on Nvidia Fermi GPUs. Measured speedups (GPU with respect to single-core CPU) were approximately 20-32X for realistic model parameters, without final optimization. Error analysis showed no loss of computational accuracy. Commercial Applications and Other Benefits - The proposed research will constitute a breakthrough in solution of problems related to efficient

  13. Final Report: Performance Engineering Research Institute

    Energy Technology Data Exchange (ETDEWEB)

    Mellor-Crummey, John [Rice Univ., Houston, TX (United States)

    2014-10-27

    This document is a final report about the work performed for cooperative agreement DE-FC02-06ER25764, the Rice University effort of Performance Engineering Research Institute (PERI). PERI was an Enabling Technologies Institute of the Scientific Discovery through Advanced Computing (SciDAC-2) program supported by the Department of Energy's Office of Science Advanced Scientific Computing Research (ASCR) program. The PERI effort at Rice University focused on (1) research and development of tools for measurement and analysis of application program performance, and (2) engagement with SciDAC-2 application teams.

  14. Final rubbery state characterization using a hollow cylinder dynamic shear sample on DMA7

    Directory of Open Access Journals (Sweden)

    Vilaiporn Luksameevanish

    2004-09-01

    Full Text Available Dynamic properties of raw natural rubber were examined using a hollow cylinder shaped samplesubjected to shear deformation on a laboratory Dynamic Mechanical Analyser. According to Cox-Merz’s study, dynamic complex viscosity obtained by this method showed a good agreement with shear flow viscosity measured by capillary rheometer. A master curve derived from the dynamic properties were then characterized. A crossing point of storage modulus (G’ and loss modulus (G’’ curves in the master curves was used to identify the final rubbery state, which indicated the transition of rubbery state and molten state. The position of this point depends on quantities and types of reinforcing or non-reinforcing fillers. The final rubbery state was shifted to higher frequency or lower temperature. It was found that the final rubbery state of CaCO3-filled rubber compounds was shifted to higher frequency or lower temperature by approximately 4 decades, while the translation of carbon black-filled rubber compounds was lower than unfilled rubber by about 1 decade. This phenomenon can be used to explain rubber elasticity, i.e. a decreasing of die swell of CaCO3 filled compounds at any high processing temperature. On the other hand, high magnitude of die swell for carbon black filled compound was still obtained.

  15. Dynamic Impact of Online Word-of-Mouth and Advertising on Supply Chain Performance.

    Science.gov (United States)

    Feng, Jian; Liu, Bin

    2018-01-04

    Cooperative (co-op) advertising investments benefit brand goodwill and further improve supply chain performance. Meanwhile, online word-of-mouth (OWOM) can also play an important role in supply chain performance. On the basis of co-op advertising, this paper considers a single supply chain structure led by a manufacturer and examines a fundamental issue concerning the impact of OWOM on supply chain performance. Firstly, by the method of differential game, this paper analyzes the dynamic impact of OWOM and advertising on supply chain performance (i.e., brand goodwill, sales, and profits) under three different supply chain decisions (i.e., only advertising, and manufacturers with and without sharing cost of OWOM with retailers). We compare and analyze the optimal strategies of advertising and OWOM under the above different supply chain decisions. Secondly, the system dynamics model is established to reflect the dynamic impact of OWOM and advertising on supply chain performance. Finally, three supply chain decisions under two scenarios, strong brand and weak brand, are analyzed through the system dynamics simulation. The results show that the input of OWOM can enhance brand goodwill and improve earnings. It further promotes the OWOM reputation and improves the supply chain performance if manufacturers share the cost of OWOM with retailers. Then, in order to eliminate the retailers from word-of-mouth fraud and establish a fair competition mechanism, the third parties (i.e., regulators or e-commerce platforms) should take appropriate punitive measures against retailers. Furthermore, the effect of OWOM on supply chain performance under a strong brand differed from those under a weak brand. Last but not least, if OWOM is improved, there would be more remarkable performance for the weak brand than that for the strong brand in the supply chain.

  16. Dynamic Impact of Online Word-of-Mouth and Advertising on Supply Chain Performance

    Science.gov (United States)

    Feng, Jian

    2018-01-01

    Cooperative (co-op) advertising investments benefit brand goodwill and further improve supply chain performance. Meanwhile, online word-of-mouth (OWOM) can also play an important role in supply chain performance. On the basis of co-op advertising, this paper considers a single supply chain structure led by a manufacturer and examines a fundamental issue concerning the impact of OWOM on supply chain performance. Firstly, by the method of differential game, this paper analyzes the dynamic impact of OWOM and advertising on supply chain performance (i.e., brand goodwill, sales, and profits) under three different supply chain decisions (i.e., only advertising, and manufacturers with and without sharing cost of OWOM with retailers). We compare and analyze the optimal strategies of advertising and OWOM under the above different supply chain decisions. Secondly, the system dynamics model is established to reflect the dynamic impact of OWOM and advertising on supply chain performance. Finally, three supply chain decisions under two scenarios, strong brand and weak brand, are analyzed through the system dynamics simulation. The results show that the input of OWOM can enhance brand goodwill and improve earnings. It further promotes the OWOM reputation and improves the supply chain performance if manufacturers share the cost of OWOM with retailers. Then, in order to eliminate the retailers from word-of-mouth fraud and establish a fair competition mechanism, the third parties (i.e., regulators or e-commerce platforms) should take appropriate punitive measures against retailers. Furthermore, the effect of OWOM on supply chain performance under a strong brand differed from those under a weak brand. Last but not least, if OWOM is improved, there would be more remarkable performance for the weak brand than that for the strong brand in the supply chain. PMID:29300361

  17. Performance of dynamic safety barriers-Structuring, modelling and visualization

    OpenAIRE

    Wikdahl, Olga

    2014-01-01

    The main objective of this master thesis is to discuss performance of dynamic safety barriers. A comprehensive literature review is performed in order to get understanding what dynamic safety barrier is. Three different concepts of dynamic safety barriers based on various meanings of dynamic were derived from the literature review: - dynamic safety barriers related to motion or physical force - dynamic safety barriers as updated barriers from dynamic risk analysis - dynamic safety ...

  18. Dynamic Web Pages: Performance Impact on Web Servers.

    Science.gov (United States)

    Kothari, Bhupesh; Claypool, Mark

    2001-01-01

    Discussion of Web servers and requests for dynamic pages focuses on experimentally measuring and analyzing the performance of the three dynamic Web page generation technologies: CGI, FastCGI, and Servlets. Develops a multivariate linear regression model and predicts Web server performance under some typical dynamic requests. (Author/LRW)

  19. Dynamic performance of maximum power point tracking circuits using sinusoidal extremum seeking control for photovoltaic generation

    Science.gov (United States)

    Leyva, R.; Artillan, P.; Cabal, C.; Estibals, B.; Alonso, C.

    2011-04-01

    The article studies the dynamic performance of a family of maximum power point tracking circuits used for photovoltaic generation. It revisits the sinusoidal extremum seeking control (ESC) technique which can be considered as a particular subgroup of the Perturb and Observe algorithms. The sinusoidal ESC technique consists of adding a small sinusoidal disturbance to the input and processing the perturbed output to drive the operating point at its maximum. The output processing involves a synchronous multiplication and a filtering stage. The filter instance determines the dynamic performance of the MPPT based on sinusoidal ESC principle. The approach uses the well-known root-locus method to give insight about damping degree and settlement time of maximum-seeking waveforms. This article shows the transient waveforms in three different filter instances to illustrate the approach. Finally, an experimental prototype corroborates the dynamic analysis.

  20. Final report for NIF chamber dynamics studies. Final report (May 1997), Subcontract No. B291847

    International Nuclear Information System (INIS)

    Peterson, P.F.; Jin, H.; Scott, J.M.

    1997-01-01

    The National Ignition Facility (NIF), a 1.8 MJ, 192 laser beam facility, will have anticipated fusion yields of up to 20 MJ from D-T pellets encased in a gold hohlraum target. The energy emitted from the target in the form of x rays, neutrons, target debris kinetic energy, and target shrapnel will be contained in a 5 m. radius spherical target chamber. Various diagnostics will be stationed around the target at varying distances from the target. During each shot, the target will emit x rays that will vaporize nearby target facing surfaces including those of the diagnostics, the target positioner, and other chamber structures. This ablated vapor will be transported throughout the chamber, and will eventually condense and deposit on surfaces in the chamber, including the final optics debris shields. The research at the University of California at Berkeley relates primarily to the NIF chamber dynamics. The key design issues are the ablation of the chamber structures, transport of the vapor through the chamber and the condensation or deposition processes of those vaporized materials. An understanding of these processes is essential in developing a concept for protecting the final optics debris shields from an excessive coating (> 10 Angstrom) of target debris and ablated material, thereby prolonging their lifetime between change- outs. At Berkeley, we have studied the physical issues of the ablation process and the effects of varying materials, the condensation process of the vaporized material, and design schemes that can lower the threat posed to the debris shields by these processes. In addition to the work described briefly above, we performed extensive analysis of the target-chamber thermal response to in- chamber CO 2 Cleaning and of work performed to model the behavior of silica vapor. The work completed this year has been published in several papers and a dissertation -6 This report provides a summary of the work completed this year, as well as copies of

  1. Dynamic performances analysis of a real vehicle driving

    Science.gov (United States)

    Abdullah, M. A.; Jamil, J. F.; Salim, M. A.

    2015-12-01

    Vehicle dynamic is the effects of movement of a vehicle generated from the acceleration, braking, ride and handling activities. The dynamic behaviours are determined by the forces from tire, gravity and aerodynamic which acting on the vehicle. This paper emphasizes the analysis of vehicle dynamic performance of a real vehicle. Real driving experiment on the vehicle is conducted to determine the effect of vehicle based on roll, pitch, and yaw, longitudinal, lateral and vertical acceleration. The experiment is done using the accelerometer to record the reading of the vehicle dynamic performance when the vehicle is driven on the road. The experiment starts with weighing a car model to get the center of gravity (COG) to place the accelerometer sensor for data acquisition (DAQ). The COG of the vehicle is determined by using the weight of the vehicle. A rural route is set to launch the experiment and the road conditions are determined for the test. The dynamic performance of the vehicle are depends on the road conditions and driving maneuver. The stability of a vehicle can be controlled by the dynamic performance analysis.

  2. Sleep and Final Exam Performance in Introductory Physics

    Science.gov (United States)

    Coletta, Vincent; Wikholm, Colin; Pascoe, Daniel

    2018-03-01

    Most physics instructors believe that adequate sleep is important in order for students to perform well on problem solving, and many instructors advise students to get plenty of sleep the night before an exam. After years of giving such advice to students at Loyola Marymount University (LMU), one of us decided to find out how many hours students actually do sleep the night before an exam, and how that would relate to their performance. The effect of inadequate sleep on exam performance was explored in a second-semester introductory physics course. At the end of the final exam, students reported the number of hours they slept the night before. Sleep deprivation corresponded to lower final exam scores. The main purpose of this study is to provide evidence that instructors can provide to their students to convince them that their time is better spent sleeping rather than studying all night before an exam.

  3. Causal Dynamic Relationships between Political–Economic Factors and Export Performance in the Renewable Energy Technologies Market

    Directory of Open Access Journals (Sweden)

    Bongsuk Sung

    2018-04-01

    Full Text Available This study explores how political–economic forces could affect export performance in the renewable energy technologies market. We conduct panel framework analyses to verify the characteristics of panel data for 19 countries before establishing the panel estimator meant to test the effects of political–economic forces on export specialization. We consider the results of the panel framework analyses and develop an empirical model to test casual dynamic relationships between political–economic forces and export performance. The results from the least squares dummy variable-corrected estimation indicate that the major factors promoting the export specialization of renewable energy technologies are, in order of decreasing importance, public pressure, market size, and government demand-pull policy. However, the traditional energy industry has no significant effect on export performance. Finally, this study finds that dynamic effects exist in all estimations.

  4. Design and Implementation of High-Performance GIS Dynamic Objects Rendering Engine

    Science.gov (United States)

    Zhong, Y.; Wang, S.; Li, R.; Yun, W.; Song, G.

    2017-12-01

    Spatio-temporal dynamic visualization is more vivid than static visualization. It important to use dynamic visualization techniques to reveal the variation process and trend vividly and comprehensively for the geographical phenomenon. To deal with challenges caused by dynamic visualization of both 2D and 3D spatial dynamic targets, especially for different spatial data types require high-performance GIS dynamic objects rendering engine. The main approach for improving the rendering engine with vast dynamic targets relies on key technologies of high-performance GIS, including memory computing, parallel computing, GPU computing and high-performance algorisms. In this study, high-performance GIS dynamic objects rendering engine is designed and implemented for solving the problem based on hybrid accelerative techniques. The high-performance GIS rendering engine contains GPU computing, OpenGL technology, and high-performance algorism with the advantage of 64-bit memory computing. It processes 2D, 3D dynamic target data efficiently and runs smoothly with vast dynamic target data. The prototype system of high-performance GIS dynamic objects rendering engine is developed based SuperMap GIS iObjects. The experiments are designed for large-scale spatial data visualization, the results showed that the high-performance GIS dynamic objects rendering engine have the advantage of high performance. Rendering two-dimensional and three-dimensional dynamic objects achieve 20 times faster on GPU than on CPU.

  5. Factors Influencing Student Nurses' Performance in the Final ...

    African Journals Online (AJOL)

    Factors Influencing Student Nurses' Performance in the Final Practical Examination ... Staff development courses can be held to coordinate the work of the school ... to authentic individual nursing care of patients so that they use the individual ...

  6. 76 FR 2336 - Dynamic Random Access Memory Semiconductors From the Republic of Korea: Final Results of...

    Science.gov (United States)

    2011-01-13

    ... Semiconductors From the Republic of Korea: Final Results of Countervailing Duty Administrative Review AGENCY... administrative review of the countervailing duty order on dynamic random access memory semiconductors from the... to a change in the net subsidy rate. The final net subsidy rate for Hynix Semiconductor, Inc. is...

  7. Organizing Performance Requirements For Dynamical Systems

    Science.gov (United States)

    Malchow, Harvey L.; Croopnick, Steven R.

    1990-01-01

    Paper describes methodology for establishing performance requirements for complicated dynamical systems. Uses top-down approach. In series of steps, makes connections between high-level mission requirements and lower-level functional performance requirements. Provides systematic delineation of elements accommodating design compromises.

  8. Dynamic Service Selection in Workflows Using Performance Data

    Directory of Open Access Journals (Sweden)

    David W. Walker

    2007-01-01

    Full Text Available An approach to dynamic workflow management and optimisation using near-realtime performance data is presented. Strategies are discussed for choosing an optimal service (based on user-specified criteria from several semantically equivalent Web services. Such an approach may involve finding "similar" services, by first pruning the set of discovered services based on service metadata, and subsequently selecting an optimal service based on performance data. The current implementation of the prototype workflow framework is described, and demonstrated with a simple workflow. Performance results are presented that show the performance benefits of dynamic service selection. A statistical analysis based on the first order statistic is used to investigate the likely improvement in service response time arising from dynamic service selection.

  9. Implementing Molecular Dynamics for Hybrid High Performance Computers - 1. Short Range Forces

    International Nuclear Information System (INIS)

    Brown, W. Michael; Wang, Peng; Plimpton, Steven J.; Tharrington, Arnold N.

    2011-01-01

    The use of accelerators such as general-purpose graphics processing units (GPGPUs) have become popular in scientific computing applications due to their low cost, impressive floating-point capabilities, high memory bandwidth, and low electrical power requirements. Hybrid high performance computers, machines with more than one type of floating-point processor, are now becoming more prevalent due to these advantages. In this work, we discuss several important issues in porting a large molecular dynamics code for use on parallel hybrid machines - (1) choosing a hybrid parallel decomposition that works on central processing units (CPUs) with distributed memory and accelerator cores with shared memory, (2) minimizing the amount of code that must be ported for efficient acceleration, (3) utilizing the available processing power from both many-core CPUs and accelerators, and (4) choosing a programming model for acceleration. We present our solution to each of these issues for short-range force calculation in the molecular dynamics package LAMMPS. We describe algorithms for efficient short range force calculation on hybrid high performance machines. We describe a new approach for dynamic load balancing of work between CPU and accelerator cores. We describe the Geryon library that allows a single code to compile with both CUDA and OpenCL for use on a variety of accelerators. Finally, we present results on a parallel test cluster containing 32 Fermi GPGPUs and 180 CPU cores.

  10. Model tests on dynamic performance of RC shear walls

    International Nuclear Information System (INIS)

    Nagashima, Toshio; Shibata, Akenori; Inoue, Norio; Muroi, Kazuo.

    1991-01-01

    For the inelastic dynamic response analysis of a reactor building subjected to earthquakes, it is essentially important to properly evaluate its restoring force characteristics under dynamic loading condition and its damping performance. Reinforced concrete shear walls are the main structural members of a reactor building, and dominate its seismic behavior. In order to obtain the basic information on the dynamic restoring force characteristics and damping performance of shear walls, the dynamic test using a large shaking table, static displacement control test and the pseudo-dynamic test on the models of a shear wall were conducted. In the dynamic test, four specimens were tested on a large shaking table. In the static test, four specimens were tested, and in the pseudo-dynamic test, three specimens were tested. These tests are outlined. The results of these tests were compared, placing emphasis on the restoring force characteristics and damping performance of the RC wall models. The strength was higher in the dynamic test models than in the static test models mainly due to the effect of loading rate. (K.I.)

  11. Mastoidectomy performance assessment of virtual simulation training using final-product analysis

    DEFF Research Database (Denmark)

    Andersen, Steven A W; Cayé-Thomasen, Per; Sørensen, Mads S

    2015-01-01

    a modified Welling scale. The simulator gathered basic metrics on time, steps, and volumes in relation to the on-screen tutorial and collisions with vital structures. RESULTS: Substantial inter-rater reliability (kappa = 0.77) for virtual simulation and moderate inter-rater reliability (kappa = 0.......59) for dissection final-product assessment was found. The simulation and dissection performance scores had significant correlation (P = .014). None of the basic simulator metrics correlated significantly with the final-product score except for number of steps completed in the simulator. CONCLUSIONS: A modified...... version of a validated final-product performance assessment tool can be used to assess mastoidectomy on virtual temporal bones. Performance assessment of virtual mastoidectomy could potentially save the use of cadaveric temporal bones for more advanced training when a basic level of competency...

  12. University of Maryland component of the Center for Multiscale Plasma Dynamics: Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Dorland, William [University of Maryland

    2014-11-18

    The Center for Multiscale Plasma Dynamics (CMPD) was a five-year Fusion Science Center. The University of Maryland (UMD) and UCLA were the host universities. This final technical report describes the physics results from the UMD CMPD.

  13. Dynamic Performance Tuning Supported by Program Specification

    Directory of Open Access Journals (Sweden)

    Eduardo César

    2002-01-01

    Full Text Available Performance analysis and tuning of parallel/distributed applications are very difficult tasks for non-expert programmers. It is necessary to provide tools that automatically carry out these tasks. These can be static tools that carry out the analysis on a post-mortem phase or can tune the application on the fly. Both kind of tools have their target applications. Static automatic analysis tools are suitable for stable application while dynamic tuning tools are more appropriate to applications with dynamic behaviour. In this paper, we describe KappaPi as an example of a static automatic performance analysis tool, and also a general environment based on parallel patterns for developing and dynamically tuning parallel/distributed applications.

  14. Optimization of Mechanical, Dynamical and Thermal Properties of a High Performance Tread Compound for Radial Tires

    Directory of Open Access Journals (Sweden)

    Mir Hamid Reza Ghoreishy

    2013-06-01

    Full Text Available A high performance passenger tire tread compound was optimized for its mechanical, dynamical and thermal properties. A reference compound was based on a blend of SBR and BR, sulfur and other ingredients without accelerator, carbon black and aromatic oil. The effects of CBS/TMTD and TBBS/TMTD as accelerator systems were studied with different quantities and the best accelerator system was chosen. Then, the blends of N330 and N550 carbon blacks were added in different quantities and the properties of these samples were studied to determine the best carbon black blend. Finally, the effect of different quantities of aromatic oil was investigated and the optimized quantity of aromatic oil and the final properties of tire tread compound were defined. The mechanical and dynamical tests were carried out on appropriate samples to determine tensile strength, elongation-at-break, fatigue-to-failure, abrasion resistance, hardness, resilience, dynamical-mechanical properties and temperature rise due to the heat build-up. The results showed that the compound containing 0.8 phr CBS, 0.7 phr TMTD, 40 phr N330,20 phr N550 and 15 phr aromatic oils demonstrated the best properties.

  15. Poor academic performance: A perspective of final year diagnostic radiography students

    International Nuclear Information System (INIS)

    Gqweta, Ntokozo

    2012-01-01

    Introduction: A study was conducted on final year diagnostic radiography students at a University of Technology in Durban. The aim of the study was to investigate the final year diagnostic radiography students' opinions and views on academic performance in order to inform teaching and learning methods. The objectives were: •To explore the students' opinions regarding poor performance. •To identify strategies to improve academic performance. Method: A qualitative, interpretive approach was used to explain and understand the students' lived experiences of their academic performances. A short open ended questionnaire was administered to a cohort of final diagnostic radiography students following feedback on a written assessment. Questionnaire responses were then manually captured and analyzed. Results: Five (5) themes were identified that could possibly be associated with poor academic performance. These themes were, poor preparation, lack of independent study, difficulty in understanding learning content and misinterpretation of assessment questions, inefficient studying techniques as well as perceived improvement strategies. Conclusion: Students identified their inadequate preparation and the lack of dedicated independent studying as the main reasons for poor performance. Students preferred to be taught in an assessment oriented manner. However their identified improvement strategies were aligned with the learner centred approach.

  16. Study on dynamic performance of SOFC

    Science.gov (United States)

    Zhan, Haiyang; Liang, Qianchao; Wen, Qiang; Zhu, Runkai

    2017-05-01

    In order to solve the problem of real-time matching of load and fuel cell power, it is urgent to study the dynamic response process of SOFC in the case of load mutation. The mathematical model of SOFC is constructed, and its performance is simulated. The model consider the influence factors such as polarization effect, ohmic loss. It also takes the diffusion effect, thermal effect, energy exchange, mass conservation, momentum conservation. One dimensional dynamic mathematical model of SOFC is constructed by using distributed lumped parameter method. The simulation results show that the I-V characteristic curves are in good agreement with the experimental data, and the accuracy of the model is verified. The voltage response curve, power response curve and the efficiency curve are obtained by this way. It lays a solid foundation for the research of dynamic performance and optimal control in power generation system of high power fuel cell stack.

  17. Analysis of the dynamics of movement of the landing vehicle with an inflatable braking device on the final trajectory under the influence of wind load

    Science.gov (United States)

    Koryanov, V.; Kazakovtsev, V.; Harri, A.-M.; Heilimo, J.; Haukka, H.; Aleksashkin, S.

    2015-10-01

    This research work is devoted to analysis of angular motion of the landing vehicle (LV) with an inflatable braking device (IBD), taking into account the influence of the wind load on the final stage of the movement. Using methods to perform a calculation of parameters of angular motion of the landing vehicle with an inflatable braking device based on the availability of small asymmetries, which are capable of complex dynamic phenomena, analyzes motion of the landing vehicle at the final stage of motion in the atmosphere.

  18. Dynamic Open Inquiry Performances of High-School Biology Students

    Science.gov (United States)

    Zion, Michal; Sadeh, Irit

    2010-01-01

    In examining open inquiry projects among high-school biology students, we found dynamic inquiry performances expressed in two criteria: "changes occurring during inquiry" and "procedural understanding". Characterizing performances in a dynamic open inquiry project can shed light on both the procedural and epistemological…

  19. On the dynamical fluctuations in the multiparticle final states of e+e- collisions

    International Nuclear Information System (INIS)

    Liu Fuming; Liu Feng; Liu Lianshou

    1999-01-01

    The scaling property of factorial moments in the multiparticle final-states of e + e - collisions is studied in both the laboratory and the thrust-axis coordinate systems by using the Jetset generator. It turns out that in both of the two cases, the 3-dimensional lnF 2 -lnM are approximately straight lines when the phase space are divided isotropically in different directions, showing that the dynamical fluctuations in the multiparticle final-state of e + e - collisions are approximately isotropic. In the lab system, the three γ parameters obtained by fitting F 2 -M of p x , p y , p z to Ochs formula respectively are approximately equal. In the thrust system, the three γ values obtained by fitting F 2 (y)-M, F 2 (p t )-M and F 2 (φ)-M are also close to each other provided the starting point in fitting F 2 (φ)-M is chosen appropriately. All of these provide further evidence for the above assertion. The results show that the essential feature, i.e. anisotropy of approximate) isotropy, of the dynamical fluctuations in soft and hard processes can be revealed by studying the scaling property of factorial moments in the collisions. Therefore, further investigation of the scaling properties of factorial moments in various kinds of collisions processes is significant for the understanding of the essential characteristics of collision dynamics

  20. Peak and ceiling effects in final-product analysis of mastoidectomy performance

    DEFF Research Database (Denmark)

    West, N; Konge, L; Cayé-Thomasen, P

    2015-01-01

    BACKGROUND: Virtual reality surgical simulation of mastoidectomy is a promising training tool for novices. Final-product analysis for assessing novice mastoidectomy performance could be limited by a peak or ceiling effect. These may be countered by simulator-integrated tutoring. METHODS: Twenty......-two participants completed a single session of self-directed practice of the mastoidectomy procedure in a virtual reality simulator. Participants were randomised for additional simulator-integrated tutoring. Performances were assessed at 10-minute intervals using final-product analysis. RESULTS: In all, 45.5 per...

  1. Parton dynamics in hadronic processes. Final report

    International Nuclear Information System (INIS)

    Sukhatme, U.P.

    1984-07-01

    We have elucidated several aspects of the dual parton fragmentation model for low transverse momentum multiparticle production in hadronic collisions previously developed by the author and collaborators at Orsay, France. In particular, we have verified that the dual parton model correctly reproduces recently obtained two particle inclusive distributions and particle ratios in the central region of pp and anti pp collisions. This work sheds light on the dynamics of partons in a hadronic collision since it strongly indicates that a valence quark from each initial hadron is held back with a small momentum fraction. Also, we have extended the dual parton approach to include diffraction dissocation and studied the consequences on inclusive pion production in pp interactions. We have investigated the virtues and limitations of logarithmic perturbation theory, which is often a much simpler alternative to standard Rayleigh-Schroedinger perturbation theory. Finally, we have developed and studied the shifted 1/N expansion for the enrgy eigenstates in non-relativistic quantum mechanics. Our results provide an accurate, rapidly convergent, powerful new way of handling any spherically symmetric potential. 18 references

  2. Short communication: final year students' deficits in physical examination skills performance in Germany.

    Science.gov (United States)

    Krautter, Markus; Diefenbacher, Katja; Koehl-Hackert, Nadja; Buss, Beate; Nagelmann, Lars; Herzog, Wolfgang; Jünger, Jana; Nikendei, Christoph

    2015-01-01

    The physical examination of patients is an important diagnostic competence, but little is known about the examination skills of final-year medical students. To investigate physical examination skills of final-year medical students. In a cross-sectional study, 40 final-year students were asked to perform a detailed physical examination on standardized patients. Their performances were video-recorded and rated by independent video assessors. Video ratings showed a mean success rate of 40.1 % (SD 8.2). As regards accompanying doctor-patient communication, final-year students achieved a mean of no more than 36.7 % (SD 8.9) in the appropriate use of the corresponding communication items. Our study revealed severe deficits among final-year medical students in performing a detailed physical examination on a standardized patient. Thus, physical examination skills training should aim to improve these deficits while also paying attention to communicative aspects. Copyright © 2015. Published by Elsevier GmbH.

  3. Dynamic Performance Characteristic Tests of Real Scale Lead Rubber Bearing for the Evaluation of Performance Criteria

    International Nuclear Information System (INIS)

    Kim, Min Kyu; Kim, Jung-Han; Choi, In-Kil

    2014-01-01

    Dynamic characteristic tests of full scale lead rubber bearing were performed for the evaluation of performance criteria of isolation system for nuclear power plants. For the dynamic test for a full scale rubber bearing, two 1500mm diameter lead rubber bearings were manufactured. The viewpoints of this dynamic test are determination of an ultimate shear strain level of lead rubber bearing, behavior of rubber bearing according to static and dynamic input motion, sinusoidal and random (earthquake) motion, and 1-dimentional and 2-dimensional input motion. In this study, seismic isolation device tests were performed for the evaluation of performance criteria of isolation system. Through this test, it can be recognized that in the case of considering a mechanical property test, dynamic and multi degree of loading conditions should be determined. But these differences should be examined how much affect to the global structural behavior

  4. Dynamic Performance of the ITER Reactive Power Compensation System

    International Nuclear Information System (INIS)

    Sheng Zhicai; Fu Peng; Xu Liuwei

    2011-01-01

    Dynamic performance of a reactive power compensation (RPC) system for the international thermonuclear experimental reactor (ITER) power supply is presented. Static var compensators (SVCs) are adopted to mitigate voltage fluctuation and reduce the reactive power down to a level acceptable for the French/European 400 kV grid. A voltage feedback and load power feedforward controller for SVC is proposed, with the feedforward loop intended to guarantee short response time and the feedback loop ensuring good dynamics and steady characteristics of SVC. A mean filter was chosen to measure the control signals to improve the dynamic response. The dynamic performance of the SVC is verified by simulations using PSCAD/EMTDC codes.

  5. Group performance and group learning at dynamic system control tasks

    International Nuclear Information System (INIS)

    Drewes, Sylvana

    2013-01-01

    Proper management of dynamic systems (e.g. cooling systems of nuclear power plants or production and warehousing) is important to ensure public safety and economic success. So far, research has provided broad evidence for systematic shortcomings in individuals' control performance of dynamic systems. This research aims to investigate whether groups manifest synergy (Larson, 2010) and outperform individuals and if so, what processes lead to these performance advantages. In three experiments - including simulations of a nuclear power plant and a business setting - I compare the control performance of three-person-groups to the average individual performance and to nominal groups (N = 105 groups per experiment). The nominal group condition captures the statistical advantage of aggregated group judgements not due to social interaction. First, results show a superior performance of groups compared to individuals. Second, a meta-analysis across all three experiments shows interaction-based process gains in dynamic control tasks: Interacting groups outperform the average individual performance as well as the nominal group performance. Third, group interaction leads to stable individual improvements of group members that exceed practice effects. In sum, these results provide the first unequivocal evidence for interaction-based performance gains of groups in dynamic control tasks and imply that employers should rely on groups to provide opportunities for individual learning and to foster dynamic system control at its best.

  6. Total System Performance Assessment Sensitivity Analyses for Final Nuclear Regulatory Commission Regulations

    International Nuclear Information System (INIS)

    Bechtel SAIC Company

    2001-01-01

    This Letter Report presents the results of supplemental evaluations and analyses designed to assess long-term performance of the potential repository at Yucca Mountain. The evaluations were developed in the context of the Nuclear Regulatory Commission (NRC) final public regulation, or rule, 10 CFR Part 63 (66 FR 55732 [DIRS 156671]), which was issued on November 2, 2001. This Letter Report addresses the issues identified in the Department of Energy (DOE) technical direction letter dated October 2, 2001 (Adams 2001 [DIRS 156708]). The main objective of this Letter Report is to evaluate performance of the potential Yucca Mountain repository using assumptions consistent with performance-assessment-related provisions of 10 CFR Part 63. The incorporation of the final Environmental Protection Agency (EPA) standard, 40 CFR Part 197 (66 FR 32074 [DIRS 155216]), and the analysis of the effect of the 40 CFR Part 197 EPA final rule on long-term repository performance are presented in the Total System Performance Assessment--Analyses for Disposal of Commercial and DOE Waste Inventories at Yucca Mountain--Input to Final Environmental Impact Statement and Site Suitability Evaluation (BSC 2001 [DIRS 156460]), referred to hereafter as the FEIS/SSE Letter Report. The Total System Performance Assessment (TSPA) analyses conducted and documented prior to promulgation of the NRC final rule 10 CFR Part 63 (66 FR 55732 [DIRS 156671]), were based on the NRC proposed rule (64 FR 8640 [DIRS 101680]). Slight differences exist between the NRC's proposed and final rules which were not within the scope of the FEIS/SSE Letter Report (BSC 2001 [DIRS 156460]), the Preliminary Site Suitability Evaluation (PSSE) (DOE 2001 [DIRS 155743]), and supporting documents for these reports. These differences include (1) the possible treatment of ''unlikely'' features, events and processes (FEPs) in evaluation of both the groundwater protection standard and the human-intrusion scenario of the individual

  7. Dynamic process model of a plutonium oxalate precipitator. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Miller, C.L.; Hammelman, J.E.; Borgonovi, G.M.

    1977-11-01

    In support of LLL material safeguards program, a dynamic process model was developed which simulates the performance of a plutonium (IV) oxalate precipitator. The plutonium oxalate precipitator is a component in the plutonium oxalate process for making plutonium oxide powder from plutonium nitrate. The model is based on state-of-the-art crystallization descriptive equations, the parameters of which are quantified through the use of batch experimental data. The dynamic model predicts performance very similar to general Hanford oxalate process experience. The utilization of such a process model in an actual plant operation could promote both process control and material safeguards control by serving as a baseline predictor which could give early warning of process upsets or material diversion. The model has been incorporated into a FORTRAN computer program and is also compatible with the DYNSYS 2 computer code which is being used at LLL for process modeling efforts.

  8. Dynamic process model of a plutonium oxalate precipitator. Final report

    International Nuclear Information System (INIS)

    Miller, C.L.; Hammelman, J.E.; Borgonovi, G.M.

    1977-11-01

    In support of LLL material safeguards program, a dynamic process model was developed which simulates the performance of a plutonium (IV) oxalate precipitator. The plutonium oxalate precipitator is a component in the plutonium oxalate process for making plutonium oxide powder from plutonium nitrate. The model is based on state-of-the-art crystallization descriptive equations, the parameters of which are quantified through the use of batch experimental data. The dynamic model predicts performance very similar to general Hanford oxalate process experience. The utilization of such a process model in an actual plant operation could promote both process control and material safeguards control by serving as a baseline predictor which could give early warning of process upsets or material diversion. The model has been incorporated into a FORTRAN computer program and is also compatible with the DYNSYS 2 computer code which is being used at LLL for process modeling efforts

  9. Operations-oriented performance measures for freeway management systems : final report.

    Science.gov (United States)

    2008-12-01

    This report describes the second and final year activities of the project titled Using Operations-Oriented Performance Measures to Support Freeway Management Systems. Work activities included developing a prototype system architecture for testi...

  10. A Multimedia Tutorial for Charged-Particle Beam Dynamics. Final report

    International Nuclear Information System (INIS)

    Silbar, Richard R.

    1999-01-01

    In September 1995 WhistleSoft, Inc., began developing a computer-based multimedia tutorial for charged-particle beam dynamics under Phase II of a Small Business Innovative Research grant from the U.S. Department of Energy. In Phase I of this project (see its Final Report) we had developed several prototype multimedia modules using an authoring system on NeXTStep computers. Such a platform was never our intended target, and when we began Phase II we decided to make the change immediately to develop our tutorial modules for the Windows and Macintosh microcomputer market. This Report details our progress and accomplishments. It also gives a flavor of the look and feel of the presently available and upcoming modules

  11. A Multimedia Tutorial for Charged-Particle Beam Dynamics. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Silbar, Richard R.

    1999-07-26

    In September 1995 WhistleSoft, Inc., began developing a computer-based multimedia tutorial for charged-particle beam dynamics under Phase II of a Small Business Innovative Research grant from the U.S. Department of Energy. In Phase I of this project (see its Final Report) we had developed several prototype multimedia modules using an authoring system on NeXTStep computers. Such a platform was never our intended target, and when we began Phase II we decided to make the change immediately to develop our tutorial modules for the Windows and Macintosh microcomputer market. This Report details our progress and accomplishments. It also gives a flavor of the look and feel of the presently available and upcoming modules.

  12. Use of isotope techniques in lake dynamics investigations. Proceedings of a final research co-ordination meeting

    International Nuclear Information System (INIS)

    2001-03-01

    The Co-ordinated Research Programme (CRP) on the Use of Isotope Techniques in Lake Dynamics Investigations was launched with the aim of assessing the potential of environmental isotope techniques in studying the dynamics of surface water bodies and related problems such as: dynamics of solutes; sediment focusing; establishment of water balance components; vulnerability to pollution. The CRP enabled a number of isotope and geochemical studies to be carried out on small and large water bodies, with the general aim of understanding of the dynamics of these systems under the growing anthropogenic influence. This publication is a compilation of the papers presented at the final Research Co-ordination Meeting (RCM) held in Rehovot, Israel, from 10 to 13 March 1997. Individual contributions have been indexed separately

  13. VI-G, Sec. 661, P.L. 91-230. Final Performance Report.

    Science.gov (United States)

    1976

    Presented is the final performance report of the CSDC model which is designed to provide services for learning disabled high school students. Sections cover the following program aspects: organizational structure, inservice sessions, identification of students, materials and equipment, evaluation of student performance, evaluation of the model,…

  14. Dynamic Boiler Performance

    DEFF Research Database (Denmark)

    Sørensen, Kim

    Traditionally, boilers have been designed mainly focussing on the static operation of the plant. The dynamic capability has been given lower priority and the analysis has typically been limited to assuring that the plant was not over-stressed due to large temperature gradients. New possibilities...... developed. Analyzing boilers for dynamic operation gives rise to a number of opposing aims: shrinking and swelling, steam quality, stress levels, control system/philosophy, pressurization etc. Common for these opposing aims is that an optimum can be found for selected operation conditions. The framework has...... for buying and selling energy has increased the focus on the dynamic operation capability, efciency, emissions etc. For optimizing the design of boilers for dynamic operation a quantication of the dynamic capability is needed. A framework for optimizing design of boilers for dynamic operation has been...

  15. Winners in the urban champions league – A performance assessment of Japanese cities by means of dynamic and super-efficient DEA

    Directory of Open Access Journals (Sweden)

    Soushi Suzuki

    2018-04-01

    Full Text Available This paper aims to provide an advanced dynamic efficiency assessment methodology for city performance strategies in Japan, based on an extended and super-efficient Data Envelopment Analysis (DEA. The use of this novel efficiency-improving approach originates from earlier research based on the so-called Distance Friction Minimisation (DFM method. In the present study we develop a new multi-period model from a blend of a Target-Oriented (TO DFM model including a dynamic approach. This new model is able to present a more realistic efficiency improvement projection comprising a dynamic system of target-settings to achieve a target improvement level so as to programme more realistic policy actions. The above-mentioned Dynamic TO-DFM model will be applied to and tested for a multi-dimensional efficiency assessment of several large Japanese cities. In this study, we consider due to comparative data limitations, two inputs (population and city budget and two outputs (GDP and tax revenues. Based on these items, this study assesses the relative economic performance of 16 Japanese big cities by means of the above described, extended super-efficient DEA model. Finally, we present an efficiency improvement programme based on the Dynamic TO-DFM model for enhancing the position of inefficient cites. Keywords: Data Envelopment Analysis (DEA, Distance Friction Minimization (DFM, super-efficiency, Target-oriented (TO model, Dynamic DEA model, performance assessment, Japanese cities

  16. A comparative study on dynamic mechanical performance of concrete and rock

    Directory of Open Access Journals (Sweden)

    Xia Zhengbing

    2015-10-01

    Full Text Available of underground cavities and field-leveling excavation. Dynamic mechanical performance of rocks has been gradually attached importance both in China and abroad. Concrete and rock are two kinds of the most frequently used engineering materials and also frequently used as experimental objects currently. To compare dynamic mechanical performance of these two materials, this study performed dynamic compression test with five different strain rates on concrete and rock using Split Hopkinson Pressure Bar (SHPB to obtain basic dynamic mechanical parameters of them and then summarized the relationship of dynamic compressive strength, peak strain and strain rate of two materials. Moreover, specific energy absorption is introduced to confirm dynamic damage mechanisms of concrete and rock materials. This work can not only help to improve working efficiency to the largest extent but also ensure the smooth development of engineering, providing rich theoretical guidance for development of related engineering in the future

  17. Drop-on-Demand Inkjet Printhead Performance Enhancement by Dynamic Lumped Element Modeling for Printable Electronics Fabrication

    Directory of Open Access Journals (Sweden)

    Maowei He

    2014-01-01

    Full Text Available The major challenge in printable electronics fabrication is the print resolution and accuracy. In this paper, the dynamic lumped element model (DLEM is proposed to directly simulate an inkjet-printed nanosilver droplet formation process and used for predictively controlling jetting characteristics. The static lumped element model (LEM previously developed by the authors is extended to dynamic model with time-varying equivalent circuits to characterize nonlinear behaviors of piezoelectric printhead. The model is then used to investigate how performance of the piezoelectric ceramic actuator influences jetting characteristics of nanosilver ink. Finally, the proposed DLEM is applied to predict the printing quality using nanosilver ink. Experimental results show that, compared to other analytic models, the proposed DLEM has a simpler structure with the sufficient simulation and prediction accuracy.

  18. Issues with performance measures for dynamic multi-objective optimisation

    CSIR Research Space (South Africa)

    Helbig, M

    2013-06-01

    Full Text Available Symposium on Computational Intelligence in Dynamic and Uncertain Environments (CIDUE), Mexico, 20-23 June 2013 Issues with Performance Measures for Dynamic Multi-objective Optimisation Mard´e Helbig CSIR: Meraka Institute Brummeria, South Africa...

  19. Dynamic capabilities, Marketing Capability and Organizational Performance

    Directory of Open Access Journals (Sweden)

    Adriana Roseli Wünsch Takahashi

    2017-01-01

    Full Text Available The goal of the study is to investigate the influence of dynamic capabilities on organizational performance and the role of marketing capabilities as a mediator in this relationship in the context of private HEIs in Brazil. As a research method we carried out a survey with 316 IES and data analysis was operationalized with the technique of structural equation modeling. The results indicate that the dynamic capabilities have influence on organizational performance only when mediated by marketing ability. The marketing capability has an important role in the survival, growth and renewal on educational services offerings for HEIs in private sector, and consequently in organizational performance. It is also demonstrated that mediated relationship is more intense for HEI with up to 3,000 students and other organizational profile variables such as amount of courses, the constitution, the type of institution and type of education do not significantly alter the results.

  20. Computational Fluid Dynamics and Building Energy Performance Simulation

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Tryggvason, Tryggvi

    An interconnection between a building energy performance simulation program and a Computational Fluid Dynamics program (CFD) for room air distribution will be introduced for improvement of the predictions of both the energy consumption and the indoor environment. The building energy performance...

  1. Dynamic Channel Slot Allocation Scheme and Performance Analysis of Cyclic Quorum Multichannel MAC Protocol

    Directory of Open Access Journals (Sweden)

    Xing Hu

    2017-01-01

    Full Text Available In high diversity node situation, multichannel MAC protocol can improve the frequency efficiency, owing to fewer collisions compared with single-channel MAC protocol. And the performance of cyclic quorum-based multichannel (CQM MAC protocol is outstanding. Based on cyclic quorum system and channel slot allocation, it can avoid the bottleneck that others suffered from and can be easily realized with only one transceiver. To obtain the accurate performance of CQM MAC protocol, a Markov chain model, which combines the channel-hopping strategy of CQM protocol and IEEE 802.11 distributed coordination function (DCF, is proposed. The results of numerical analysis show that the optimal performance of CQM protocol can be obtained in saturation bound situation. And then we obtain the saturation bound of CQM system by bird swarm algorithm. In addition, to improve the performance of CQM protocol in unsaturation situation, a dynamic channel slot allocation of CQM (DCQM protocol is proposed, based on wavelet neural network. Finally, the performance of CQM protocol and DCQM protocol is simulated by Qualnet platform. And the simulation results show that the analytic and simulation results match very well; the DCQM performs better in unsaturation situation.

  2. Optimal dynamic performance for high-precision actuators/stages

    International Nuclear Information System (INIS)

    Preissner, C.; Lee, S.-H.; Royston, T. J.; Shu, D.

    2002-01-01

    System dynamic performance of actuator/stage groups, such as those found in optical instrument positioning systems and other high-precision applications, is dependent upon both individual component behavior and the system configuration. Experimental modal analysis techniques were implemented to determine the six degree of freedom stiffnesses and damping for individual actuator components. These experimental data were then used in a multibody dynamic computer model to investigate the effect of stage group configuration. Running the computer model through the possible stage configurations and observing the predicted vibratory response determined the optimal stage group configuration. Configuration optimization can be performed for any group of stages, provided there is stiffness and damping data available for the constituent pieces

  3. French Modular Impoundment: Final Cost and Performance Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Drown, Peter [French Development Enterprises, LLC, North Billerica, MA (United States); French, Bill [French Development Enterprises, LLC, North Billerica, MA (United States)

    2017-05-17

    This report comprises the Final Cost and Performance Report for the Department of Energy Award # EE0007244, the French Modular Impoundment (aka the “French Dam”.) The French Dam is a system of applying precast modular construction to water control structures. The “French Dam” is a term used to cover the construction means/methods used to construct or rehabilitate dams, diversion structures, powerhouses, and other hydraulic structures which impound water and are covered under FDE’s existing IP (Patents # US8414223B2; US9103084B2.)

  4. Dynamics of process at the final stage of nuclear fission

    International Nuclear Information System (INIS)

    Koljari, I.G.; Mavlitov, N.D.

    2005-01-01

    Numerous experimental data show, that the final stage of nuclear fission near to a scission point plays an essential role at formation of characteristics of fission products. At the description of a final stage of fission there is a number of problems: Definition of the form of the nuclear near the scission point and definition forms of a fission fragments; The account of dynamic processes in compound nuclear directly before of fission. The condition of the quasistatic al adiabatic process - dS/dt=0 - is applied in a point of transition from the uniform compound nuclei to several forms for definition of generalized coordinates and speeds. Calculation of dependence of post neutrons from nuclear mass of fission fragments for reactions is α+ 83 Bi 209 → 85 At 213 (E lab = 45 MeV); α+ 92 U 242 → 94 Pu 242 (E lab = 45 MeV); 8 O 18 + 79 Au 197 → 97 Fr 215 (E lab = 159 MeV). System of equations, which describes behaviour of system in a point of nuclear fission-transition from the uniform form to system of a two (and, probably more) fission fragments is given. The system of the equations allows in a fission point to define the generalized coordinates, and the generalized speeds for each of the generalized coordinates of collective deformation variables

  5. Dynamic Performance of an HVDC Link

    Directory of Open Access Journals (Sweden)

    S. A. ZIDI

    2005-09-01

    Full Text Available This paper presents the results of a simulation study on a 12 pulse HVDC (High Voltage Direct Current using a system in Matlab/Simulink. The object of the study is to investigate the steady state and dynamic performance of the system. First we examine response of current regulator after change in current reference in order to see the behavior of the controllers in controlling the desired current. Next, we present the digital simulation of a test system and show the response to a DC fault in the line and the AC fault at inverter side. The results are evaluated to enhance the recovery of the system from the disturbances for a full range of typical disturbances. The presented approach benefits from Simulink’s advantages in modeling and simulating dynamical systems.

  6. LDRD final report : mesoscale modeling of dynamic loading of heterogeneous materials

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, Joshua [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dingreville, Remi Philippe Michel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Voth, Thomas Eugene [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Furnish, Michael David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-12-01

    Material response to dynamic loading is often dominated by microstructure (grain structure, porosity, inclusions, defects). An example critically important to Sandia's mission is dynamic strength of polycrystalline metals where heterogeneities lead to localization of deformation and loss of shear strength. Microstructural effects are of broad importance to the scientific community and several institutions within DoD and DOE; however, current models rely on inaccurate assumptions about mechanisms at the sub-continuum or mesoscale. Consequently, there is a critical need for accurate and robust methods for modeling heterogeneous material response at this lower length scale. This report summarizes work performed as part of an LDRD effort (FY11 to FY13; project number 151364) to meet these needs.

  7. FINAL IMPLEMENTATION AND PERFORMANCE OF THE LHC COLLIMATOR CONTROL SYSTEM

    CERN Document Server

    Redaelli, S; Masi, A; Losito, R

    2009-01-01

    The 2008 collimation system of the CERN Large Hadron Collider (LHC) included 80 movable collimators for a total of 316 degrees of freedom. Before beam operation, the final controls implementation was deployed and commissioned. The control system enabled remote control and appropriate diagnostics of the relevant parameters. The collimator motion is driven with time-functions, synchronized with other accelerator systems, which allows controlling the collimator jaw positions with a micrometer accuracy during all machine phases. The machine protection functionality of the system, which also relies on function-based tolerance windows, was also fully validated. The collimator control challenges are reviewed and the final system architecture is presented. The results of the remote system commissioning and the overall performance are discussed.

  8. Dynamic Performance Analysis for an Absorption Chiller under Different Working Conditions

    Directory of Open Access Journals (Sweden)

    Jian Wang

    2017-08-01

    Full Text Available Due to the merits of energy saving and environmental protection, the absorption chiller (AC has attracted a lot of attention, and previous studies only concentrated on the dynamic response of the AC under a single working condition. However, the working conditions are usually variable, and the dynamic performance under different working conditions is beneficial for the adjustment of AC and the control of the whole system, of which the stabilization can be affected by the AC transient process. Therefore, the steady and dynamic models of a single-effect H2O-LiBr absorption chiller are built up, the thermal inertia and fluid storage are also taken into consideration. And the dynamic performance analyses of the AC are completed under different external parameters. Furthermore, a whole system using AC in a process plant is analyzed. As a conclusion, the time required to reach a new steady-state (relaxation time increases when the step change of the generator inlet temperature becomes large, the cooling water inlet temperature rises, or the evaporator inlet temperature decreases. In addition, the control strategy considering the AC dynamic performance is favorable to the operation of the whole system.

  9. Effect of Repeated/Spaced Formative Assessments on Medical School Final Exam Performance

    Directory of Open Access Journals (Sweden)

    Edward K. Chang

    2017-06-01

    Discussion: Performance on weekly formative assessments was predictive of final exam scores. Struggling medical students will benefit from extra cumulative practice exams while students who are excelling do not need extra practice.

  10. Dynamic Reconfiguration in Real-Time Systems Energy, Performance, and Thermal Perspectives

    CERN Document Server

    Wang, Weixun; Ranka, Sanjay

    2013-01-01

    Given the widespread use of real-time multitasking systems, there are tremendous optimization opportunities if reconfigurable computing can be effectively incorporated while maintaining performance and other design constraints of typical applications. The focus of this book is to describe the dynamic reconfiguration techniques that can be safely used in real-time systems. This book provides comprehensive approaches by considering synergistic effects of computation, communication as well as storage together to significantly improve overall performance, power, energy and temperature.  Provides a comprehensive introduction to optimization and dynamic reconfiguration techniques in real-time embedded systems; Covers state-of-the-art techniques and ongoing research in reconfigurable architectures; Focuses on algorithms tuned for dynamic reconfiguration techniques in real-time systems;  Provides reference for anyone designing low-power systems, energy-/temperature-constrained devices, and power-performance efficie...

  11. Assessment of dynamic and long-term performance of an innovative multi-story timber building via structural monitoring and dynamic testing

    Science.gov (United States)

    Omenzetter, Piotr; Morris, Hugh; Worth, Margaret; Gaul, Andrew; Jager, Simon; Desgeorges, Yohann

    2012-04-01

    An innovative three-story timber building, using self-centering, post-tensioned timber shear walls as the main horizontal load resisting system and lightweight non-composite timber-concrete floors, has recently been completed in Nelson, New Zealand. It is expected to be the trailblazer for similar but taller structures to be more widely adopted. Performance based standards require an advanced understanding of building responses and in order to meet the need for in-situ performance data the building has been subjected to forced vibration testing and instrumented for continuous monitoring using a total of approximately 90 data channels to capture its dynamic and long-term responses. The first part of the paper presents a brief discussion of the existing research on the seismic performance of timber frame buildings and footfall induced floor vibrations. An outline of the building structural system, focusing on the novel design solutions, is then discussed. This is followed by the description of the monitoring system. The analysis of monitoring results starts with a discussion of the monitoring of long-term deformations. Next, the assessment of the floor vibration serviceability performance is outlined. Then, the forced vibration tests conducted on the whole building at different construction stages are reviewed. The system identification results from seismic shaking records are also discussed. Finally, updating of a finite element model of the building is conducted.

  12. Dynamic Intelligent Feedback Scheduling in Networked Control Systems

    Directory of Open Access Journals (Sweden)

    Hui-ying Chen

    2013-01-01

    Full Text Available For the networked control system with limited bandwidth and flexible workload, a dynamic intelligent feedback scheduling strategy is proposed. Firstly, a monitor is used to acquire the current available network bandwidth. Then, the new available bandwidth in the next interval is predicted by using LS_SVM approach. At the same time, the dynamic performance indices of all control loops are obtained with a two-dimensional fuzzy logic modulator. Finally, the predicted network bandwidth is dynamically allocated by the bandwidth manager and the priority allocator in terms of the loops' dynamic performance indices. Simulation results show that the sampling periods and priorities of control loops are adjusted timely according to the network workload condition and the dynamic performance of control loops, which make the system running in the optimal state all the time.

  13. Emotional intelligence and academic performance in first and final year medical students: a cross-sectional study.

    Science.gov (United States)

    Chew, Boon How; Zain, Azhar Md; Hassan, Faezah

    2013-03-27

    Research on emotional intelligence (EI) suggests that it is associated with more pro-social behavior, better academic performance and improved empathy towards patients. In medical education and clinical practice, EI has been related to higher academic achievement and improved doctor-patient relationships. This study examined the effect of EI on academic performance in first- and final-year medical students in Malaysia. This was a cross-sectional study using an objectively-scored measure of EI, the Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT). Academic performance of medical school students was measured using continuous assessment (CA) and final examination (FE) results. The first- and final-year students were invited to participate during their second semester. Students answered a paper-based demographic questionnaire and completed the online MSCEIT on their own. Relationships between the total MSCEIT score to academic performance were examined using multivariate analyses. A total of 163 (84 year one and 79 year five) medical students participated (response rate of 66.0%). The gender and ethnic distribution were representative of the student population. The total EI score was a predictor of good overall CA (OR 1.01), a negative predictor of poor result in overall CA (OR 0.97), a predictor of the good overall FE result (OR 1.07) and was significantly related to the final-year FE marks (adjusted R(2) = 0.43). Medical students who were more emotionally intelligent performed better in both the continuous assessments and the final professional examination. Therefore, it is possible that emotional skill development may enhance medical students' academic performance.

  14. Dynamic Performance of a Residential Air-to-Air Heat Pump.

    Science.gov (United States)

    Kelly, George E.; Bean, John

    This publication is a study of the dynamic performance of a 5-ton air-to-air heat pump in a residence in Washington, D.C. The effect of part-load operation on the heat pump's cooling and heating coefficients of performance was determined. Discrepancies between measured performance and manufacturer-supplied performance data were found when the unit…

  15. Study on dynamic team performance evaluation methodology based on team situation awareness model

    International Nuclear Information System (INIS)

    Kim, Suk Chul

    2005-02-01

    The purpose of this thesis is to provide a theoretical framework and its evaluation methodology of team dynamic task performance of operating team at nuclear power plant under the dynamic and tactical environment such as radiological accident. This thesis suggested a team dynamic task performance evaluation model so called team crystallization model stemmed from Endsely's situation awareness model being comprised of four elements: state, information, organization, and orientation and its quantification methods using system dynamics approach and a communication process model based on a receding horizon control approach. The team crystallization model is a holistic approach for evaluating the team dynamic task performance in conjunction with team situation awareness considering physical system dynamics and team behavioral dynamics for a tactical and dynamic task at nuclear power plant. This model provides a systematic measure to evaluate time-dependent team effectiveness or performance affected by multi-agents such as plant states, communication quality in terms of transferring situation-specific information and strategies for achieving the team task goal at given time, and organizational factors. To demonstrate the applicability of the proposed model and its quantification method, the case study was carried out using the data obtained from a full-scope power plant simulator for 1,000MWe pressurized water reactors with four on-the-job operating groups and one expert group who knows accident sequences. Simulated results team dynamic task performance with reference key plant parameters behavior and team-specific organizational center of gravity and cue-and-response matrix illustrated good symmetry with observed value. The team crystallization model will be useful and effective tool for evaluating team effectiveness in terms of recruiting new operating team for new plant as cost-benefit manner. Also, this model can be utilized as a systematic analysis tool for

  16. Study on dynamic team performance evaluation methodology based on team situation awareness model

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Suk Chul

    2005-02-15

    The purpose of this thesis is to provide a theoretical framework and its evaluation methodology of team dynamic task performance of operating team at nuclear power plant under the dynamic and tactical environment such as radiological accident. This thesis suggested a team dynamic task performance evaluation model so called team crystallization model stemmed from Endsely's situation awareness model being comprised of four elements: state, information, organization, and orientation and its quantification methods using system dynamics approach and a communication process model based on a receding horizon control approach. The team crystallization model is a holistic approach for evaluating the team dynamic task performance in conjunction with team situation awareness considering physical system dynamics and team behavioral dynamics for a tactical and dynamic task at nuclear power plant. This model provides a systematic measure to evaluate time-dependent team effectiveness or performance affected by multi-agents such as plant states, communication quality in terms of transferring situation-specific information and strategies for achieving the team task goal at given time, and organizational factors. To demonstrate the applicability of the proposed model and its quantification method, the case study was carried out using the data obtained from a full-scope power plant simulator for 1,000MWe pressurized water reactors with four on-the-job operating groups and one expert group who knows accident sequences. Simulated results team dynamic task performance with reference key plant parameters behavior and team-specific organizational center of gravity and cue-and-response matrix illustrated good symmetry with observed value. The team crystallization model will be useful and effective tool for evaluating team effectiveness in terms of recruiting new operating team for new plant as cost-benefit manner. Also, this model can be utilized as a systematic analysis tool for

  17. How milk-fed dairy calves perform in stable versus dynamic groups

    DEFF Research Database (Denmark)

    Pedersen, Rikke Engelbrecht; Sørensen, Jan Tind; Skjøth, F

    2009-01-01

    The objective of the present field trial was to compare calf performance among pre-weaned calves in two different group housing systems, stable groups ("all in-all out") and dynamic groups (continuous introduction). Performance data was collected from 484 calves randomly assigned to the two syste....../days). The prevalence of both diarrhoea and respiratory disease were more than twice as high among calves in dynamic groups compared to calves in stable groups....

  18. On the dynamical fluctuations in the multiparticle final states of $e^{+}e^{-}$ collisions

    CERN Document Server

    Liu, F; Liu, L

    1999-01-01

    The scaling property of factorial moments in the multiparticle final- states of e/sup +/e/sup -/ collisions is studied in both the laboratory and the thrust-axis coordinate systems by using the Jetset generator. It turns out that in both of the two cases, the 3- dimensional lnF/sub 2/~lnM are approximately straight lines when the phase space are divided isotropically in different directions, showing that the dynamical fluctuations in the multiparticle final- state of e/sup +/e/sup $/collisions are approximately isotropic. In the lab system, the three gamma parameters obtained by fitting F/sub 2/~M of p/sub x/, p/sub y/, p/sub z/ to Ochs formula respectively are approximately equal. In the thrust system, the three gamma values obtained by fitting F/sub 2/(y)~M, F/sub 2/(p/sub t/)~M and F/sub 2/( phi )~M are also close to each other provided the starting point in fitting F/sub 2/( phi )~M is chosen appropriately. All of these provide further evidence for the above assertion. Our results show that the essential ...

  19. Dynamic thread assignment in web server performance optimization

    NARCIS (Netherlands)

    van der Weij, W.; Bhulai, S.; van der Mei, R.D.

    2009-01-01

    Popular web sites are expected to handle huge number of requests concurrently within a reasonable time frame. The performance of these web sites is largely dependent on effective thread management of their web servers. Although the implementation of static and dynamic thread policies is common

  20. Improving lean team performance: leadership and workfloor dynamics

    NARCIS (Netherlands)

    van Dun, Desirée Hermina

    2015-01-01

    This Ph.D. thesis reports four different studies that were undertaken to identify and examine the content of human dynamics that may account for sustainable lean team performance, at multiple organizational levels: higher-level leaders (including top- and middle managers), team leaders, and team

  1. Influence of year-on-year performance on final degree classification in a chiropractic master's degree program.

    Science.gov (United States)

    Dewhurst, Philip; Rix, Jacqueline; Newell, David

    2016-03-01

    We explored if any predictors of success could be identified from end-of-year grades in a chiropractic master's program and whether these grades could predict final-year grade performance and year-on-year performance. End-of-year average grades and module grades for a single cohort of students covering all academic results for years 1-4 of the 2013 graduating class were used for this analysis. Analysis consisted of within-year correlations of module grades with end-of-year average grades, linear regression models for continuous data, and logistic regression models for predicting final degree classifications. In year 1, 140 students were enrolled; 85.7% of students completed the program 4 years later. End-of-year average grades for years 1-3 were correlated (Pearson r values ranging from .75 to .87), but the end-of-year grades for years 1-3 were poorly correlated with clinic internship performance. In linear regression, several modules were predictive of end-of-year average grades for each year. For year 1, logistic regression showed that the modules Physiology and Pharmacology and Investigative Imaging were predictive of year 1 performance (odds ratio [OR] = 1.15 and 0.9, respectively). In year 3, the modules Anatomy and Histopathology 3 and Problem Solving were predictors of the difference between a pass/merit or distinction final degree classification (OR = 1.06 and 1.12, respectively). Early academic performance is weakly correlated with final-year clinic internship performance. The modules of Anatomy and Histopathology year 3 and Problem Solving year 3 emerged more consistently than other modules as being associated with final-year classifications.

  2. The performance model of dynamic virtual organization (VO) formations within grid computing context

    International Nuclear Information System (INIS)

    Han Liangxiu

    2009-01-01

    Grid computing aims to enable 'resource sharing and coordinated problem solving in dynamic, multi-institutional virtual organizations (VOs)'. Within the grid computing context, successful dynamic VO formations mean a number of individuals and institutions associated with certain resources join together and form new VOs in order to effectively execute tasks within given time steps. To date, while the concept of VOs has been accepted, few research has been done on the impact of effective dynamic virtual organization formations. In this paper, we develop a performance model of dynamic VOs formation and analyze the effect of different complex organizational structures and their various statistic parameter properties on dynamic VO formations from three aspects: (1) the probability of a successful VO formation under different organizational structures and statistic parameters change, e.g. average degree; (2) the effect of task complexity on dynamic VO formations; (3) the impact of network scales on dynamic VO formations. The experimental results show that the proposed model can be used to understand the dynamic VO formation performance of the simulated organizations. The work provides a good path to understand how to effectively schedule and utilize resources based on the complex grid network and therefore improve the overall performance within grid environment.

  3. A review on sustainable construction management strategies for monitoring, diagnosing, and retrofitting the building’s dynamic energy performance: Focused on the operation and maintenance phase

    International Nuclear Information System (INIS)

    Hong, Taehoon; Koo, Choongwan; Kim, Jimin; Lee, Minhyun; Jeong, Kwangbok

    2015-01-01

    Highlights: • This study reviews the state-of-the-art in “energy” as well as “building”. • Building’s dynamic energy performance should be managed in the built environments. • This study summarizes recent progress in the building’s dynamic energy performance. • The major phases can be categorized into monitoring, diagnosing, and retrofitting. • This study proposes the specific future development directions and challenges by phase. - Abstract: According to a press release, the building sector accounts for about 40% of the global primary energy consumption. Energy savings can be achieved in the building sector by improving the building’s dynamic energy performance in terms of sustainable construction management in the urban-based built environments (referred to as an “Urban Organism”). This study implements the concept of “dynamic approach” to reflect the unexpected changes in the climate and energy environments as well as in the energy policies and technologies. Research in this area is very significant for the future of the building, energy, and environmental industries around the world. However, there is a lack of studies from the perspective of the dynamic approach and the system integration, and thus, this study is designed to fill the research gap. This study highlights the state-of-the-art in the major phases for a building’s dynamic energy performance (i.e., monitoring, diagnosing, and retrofitting phases), focusing on the operation and maintenance phase. This study covers a wide range of research works and provides various illustrative examples of the monitoring, diagnosing, and retrofitting of a building’s dynamic energy performance. Finally, this study proposes the specific future developments and challenges by phase and suggests the future direction of system integration for the development of a carbon-integrated management system as a large complex system. It is expected that researchers and practitioners can

  4. Final report for NIF chamber dynamics studies

    International Nuclear Information System (INIS)

    Burnham, A; Peterson, P F; Scott, J M

    1998-01-01

    The National Ignition Facility (NIF), a 1.8 MJ, 192 laser beam facility, will have anticipated fusion yields of up to 20 MJ from D-T pellets encased in a gold hohlraum target. The energy emitted from the target in the form of x rays, neutrons, target debris kinetic energy, and target shrapnel will be contained in a 5 m. radius spherical target chamber. various diagnostics will be stationed around the target at varying distances from the target. During each shot, the target will emit x rays that will vaporize nearby target facing surfaces including those of the diagnostics, the target positioner, and other chamber structures. This ablated vapor will be transported throughout the chamber, and will eventually condense and deposit on surfaces in the chamber, including the final optics debris shields. The research at the University of California at Berkeley relates primarily to the NIF chamber dynamics. The key design issues are the ablation of the chamber structures, transport of the vapor through the chamber and the condensation or deposition processes of those vaporized materials. An understanding of these processes is essential in developing a concept for protecting the fina optics debris shields from an excessive coating (> 10 A) of target debris and ablated material, thereby prolonging their lifetime between change-outs. At Berkeley, we have studied the physical issues of the ablation process and the effects of varying materials, the condensation process of the vaporized material, and design schemes that can lower the threat posed to the debris shields by these processes. The work or portions of the work completed this year have been published in several papers and a dissertation [l-5

  5. Clinical observed performance evaluation: a prospective study in final year students of surgery.

    LENUS (Irish Health Repository)

    Markey, G C

    2010-06-24

    We report a prospective study of clinical observed performance evaluation (COPE) for 197 medical students in the pre-qualification year of clinical education. Psychometric quality was the main endpoint. Students were assessed in groups of 5 in 40-min patient encounters, with each student the focus of evaluation for 8 min. Each student had a series of assessments in a 25-week teaching programme. Over time, several clinicians from a pool of 16 surgical consultants and registrars evaluated each student by direct observation. A structured rating form was used for assessment data. Variance component analysis (VCA), internal consistency and inter-rater agreement were used to estimate reliability. The predictive and convergent validity of COPE in relation to summative OSCE, long case, and overall final examination was estimated. Median number of COPE assessments per student was 7. Generalisability of a mean score over 7 COPE assessments was 0.66, equal to that of an 8 x 7.5 min station final OSCE. Internal consistency was 0.88-0.97 and inter-rater agreement 0.82. Significant correlations were observed with OSCE performance (R = 0.55 disattenuated) and long case (R = 0.47 disattenuated). Convergent validity was 0.81 by VCA. Overall final examination performance was linearly related to mean COPE score with standard error 3.7%. COPE permitted efficient serial assessment of a large cohort of final year students in a real world setting. Its psychometric quality compared well with conventional assessments and with other direct observation instruments as reported in the literature. Effect on learning, and translation to clinical care, are directions for future research.

  6. Maintenance performance improvement with System Dynamics : A Corrective Maintenance showcase

    NARCIS (Netherlands)

    Deenen, R.E.M.; Van Daalen, C.E.; Koene, E.G.C.

    2008-01-01

    This paper presents a case study of an analysis of a Corrective Maintenance process to realize performance improvement. The Corrective Maintenance process is supported by SAP, which has indicated the performance realisation problem. System Dynamics is used in a Group Model Building process to

  7. On the Dynamic Nature of Performance Management Regimes

    DEFF Research Database (Denmark)

    Kristiansen, Mads Bøge; Dahler-Larsen, Peter; Ghin, Eva Moll

    2018-01-01

    The ambition of this article is to gain a better understanding of the endogenous dynamics of performance management regimes. Based on a review of the literature, we develop a framework that enables us to grasp dimensions and mechanisms of escalation. Hereafter, we demonstrate the use of our frame...

  8. Development of High-Performance Cast Crankshafts. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Mark E [General Motors, Detroit, MI (United States)

    2017-03-31

    The objective of this project was to develop technologies that would enable the production of cast crankshafts that can replace high performance forged steel crankshafts. To achieve this, the Ultimate Tensile Strength (UTS) of the new material needs to be 850 MPa with a desired minimum Yield Strength (YS; 0.2% offset) of 615 MPa and at least 10% elongation. Perhaps more challenging, the cast material needs to be able to achieve sufficient local fatigue properties to satisfy the durability requirements in today’s high performance gasoline and diesel engine applications. The project team focused on the development of cast steel alloys for application in crankshafts to take advantage of the higher stiffness over other potential material choices. The material and process developed should be able to produce high-performance crankshafts at no more than 110% of the cost of current production cast units, perhaps the most difficult objective to achieve. To minimize costs, the primary alloy design strategy was to design compositions that can achieve the required properties with minimal alloying and post-casting heat treatments. An Integrated Computational Materials Engineering (ICME) based approach was utilized, rather than relying only on traditional trial-and-error methods, which has been proven to accelerate alloy development time. Prototype melt chemistries designed using ICME were cast as test specimens and characterized iteratively to develop an alloy design within a stage-gate process. Standard characterization and material testing was done to validate the alloy performance against design targets and provide feedback to material design and manufacturing process models. Finally, the project called for Caterpillar and General Motors (GM) to develop optimized crankshaft designs using the final material and manufacturing processing path developed. A multi-disciplinary effort was to integrate finite element analyses by engine designers and geometry-specific casting

  9. Dynamic performance of a suspended reinforced concrete footbridge under pedestrian movements

    Science.gov (United States)

    Drygala, I.; Dulinska, J.; Kondrat, K.

    2018-02-01

    In the paper the dynamic analysis of a suspended reinforced concrete footbridge over a national road located in South Poland was carried out. Firstly, modes and values of natural frequencies of vibration of the structure were calculated. The results of the numerical modal investigation shown that the natural frequencies of the structure coincided with the frequency of human beings during motion steps (walking fast or running). Hence, to consider the comfort standards, the dynamic response of the footbridge to a runner dynamic motion should be calculated. Secondly, the dynamic response of the footbridge was calculated taking into consideration two models of dynamic forces produced by a single running pedestrian: a ‘sine’ and ‘half-sine’ model. It occurred that the values of accelerations and displacements obtained for the ‘half-sine’ model of dynamic forces were greater than those obtained for the ‘sine’ model up 20%. The ‘sine’ model is appropriate only for walking users of the walkways, because the nature of their motion has continues characteristic. In the case of running users of walkways this theory is unfitting, since the forces produced by a running pedestrian has a discontinuous nature. In this scenario of calculations, a ‘half-sine’ model seemed to be more effective. Finally, the comfort conditions for the footbridge were evaluated. The analysis proved that the vertical comfort criteria were not exceeded for a single user of footbridge running or walking fast.

  10. Dynamics of safety performance and culture: a group model building approach.

    Science.gov (United States)

    Goh, Yang Miang; Love, Peter E D; Stagbouer, Greg; Annesley, Chris

    2012-09-01

    The management of occupational health and safety (OHS) including safety culture interventions is comprised of complex problems that are often hard to scope and define. Due to the dynamic nature and complexity of OHS management, the concept of system dynamics (SD) is used to analyze accident prevention. In this paper, a system dynamics group model building (GMB) approach is used to create a causal loop diagram of the underlying factors influencing the OHS performance of a major drilling and mining contractor in Australia. While the organization has invested considerable resources into OHS their disabling injury frequency rate (DIFR) has not been decreasing. With this in mind, rich individualistic knowledge about the dynamics influencing the DIFR was acquired from experienced employees with operations, health and safety and training background using a GMB workshop. Findings derived from the workshop were used to develop a series of causal loop diagrams that includes a wide range of dynamics that can assist in better understanding the causal influences OHS performance. The causal loop diagram provides a tool for organizations to hypothesize the dynamics influencing effectiveness of OHS management, particularly the impact on DIFR. In addition the paper demonstrates that the SD GMB approach has significant potential in understanding and improving OHS management. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Analysing the temporal dynamics of model performance for hydrological models

    NARCIS (Netherlands)

    Reusser, D.E.; Blume, T.; Schaefli, B.; Zehe, E.

    2009-01-01

    The temporal dynamics of hydrological model performance gives insights into errors that cannot be obtained from global performance measures assigning a single number to the fit of a simulated time series to an observed reference series. These errors can include errors in data, model parameters, or

  12. The experimental assessment of dynamic tire handling performance

    NARCIS (Netherlands)

    Pauwelussen, J.P.

    1999-01-01

    Testing of steady state tire handling performance is nowadays common practice with slip angle sweeps and breaking being simulated in the laboratory with drum or flat belt, or on the road with a test trailer. In recent years, more emphasis is put on dynamic tire models, motivated by ride comfort

  13. Distributed dynamic simulations of networked control and building performance applications.

    Science.gov (United States)

    Yahiaoui, Azzedine

    2018-02-01

    The use of computer-based automation and control systems for smart sustainable buildings, often so-called Automated Buildings (ABs), has become an effective way to automatically control, optimize, and supervise a wide range of building performance applications over a network while achieving the minimum energy consumption possible, and in doing so generally refers to Building Automation and Control Systems (BACS) architecture. Instead of costly and time-consuming experiments, this paper focuses on using distributed dynamic simulations to analyze the real-time performance of network-based building control systems in ABs and improve the functions of the BACS technology. The paper also presents the development and design of a distributed dynamic simulation environment with the capability of representing the BACS architecture in simulation by run-time coupling two or more different software tools over a network. The application and capability of this new dynamic simulation environment are demonstrated by an experimental design in this paper.

  14. Lifespan Differences in Nonlinear Dynamics during Rest and Auditory Oddball Performance

    Science.gov (United States)

    Muller, Viktor; Lindenberger, Ulman

    2012-01-01

    Electroencephalographic recordings (EEG) were used to assess age-associated differences in nonlinear brain dynamics during both rest and auditory oddball performance in children aged 9.0-12.8 years, younger adults, and older adults. We computed nonlinear coupling dynamics and dimensional complexity, and also determined spectral alpha power as an…

  15. IT-enabled dynamic capability on performance: An empirical study of BSC model

    Directory of Open Access Journals (Sweden)

    Adilson Carlos Yoshikuni

    2017-05-01

    Full Text Available ew studies have investigated the influence of “information capital,” through IT-enabled dynamic capability, on corporate performance, particularly in economic turbulence. Our study investigates the causal relationship between performance perspectives of the balanced scorecard using partial least squares path modeling. Using data on 845 Brazilian companies, we conduct a quantitative empirical study of firms during an economic crisis and observe the following interesting results. Operational and analytical IT-enabled dynamic capability had positive effects on business process improvement and corporate performance. Results pertaining to mediation (endogenous variables and moderation (control variables clarify IT’s role in and benefits for corporate performance.

  16. Dynamic performance of a C/C composite finger seal in a tilting mode

    Directory of Open Access Journals (Sweden)

    Hailin ZHAO

    2017-08-01

    Full Text Available The complex operating state of aeroengines has an impact on the performance of finger seals. However, little work has been focused on the issue and the dynamic performance of finger seals is also rarely studied. Therefore, a distributed mass equivalent model considering working conditions is proposed in this paper for solving the existing problems. The effects of the fiber bundle density and the preparation direction of the fiber bundle of a C/C composite on the dynamic performance of a finger seal are investigated in rotor tilt based on the proposed model. The difference between the C/C composite finger seal performances under the rotor precession and nutation tilt cases is also investigated. The results show that the fiber bundle density and the preparation direction of the fiber bundle have an influence on the dynamic performance of the finger seal as rotor tilt is considered, and the dynamic performance of the finger seal is different in the two kinds of tilting modes. In addition, a novel method for design of finger seals is presented based on the contact pressure between finger boots and the rotor. Finger seals with good leakage rates and low wear can be acquired in this method.

  17. Dynamic lighting system for the learning environment: performance of elementary students.

    Science.gov (United States)

    Choi, Kyungah; Suk, Hyeon-Jeong

    2016-05-16

    This study aims to investigate the effects of lighting color temperatures on elementary students' performance, and thereby propose a dynamic lighting system for a smart learning environment. Three empirical studies were conducted: First, physiological responses were measured as a potential mediator of performance. Second, cognitive and behavioral responses were observed during academic and recess activities. Lastly, the experiment was carried out in a real-life setting with prolonged exposure. With a comprehensive analysis of the three studies, three lighting presets-3500 K, 5000 K, and 6500 K-are suggested for easy, standard, and intensive activity, respectively. The study is expected to act as a good stepping stone for developing dynamic lighting systems to support students' performance in learning environments.

  18. NONLINEAR DYNAMICAL SYSTEMS - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Philip Holmes

    2005-12-31

    This document is the final report on the work completed on DE-FG02-95ER25238 since the start of the second renewal period: Jan 1, 2001. It supplements the annual reports submitted in 2001 and 2002. In the renewal proposal I envisaged work in three main areas: Analytical and topological tools for studying flows and maps Low dimensional models of fluid flow Models of animal locomotion and I describe the progess made on each project.

  19. Investigation on dynamic performance of concrete column crumb rubber steel and fiber concrete

    Science.gov (United States)

    Siti Nurul Nureda, M. Z.; Mariyana, A. K.; Khiyon, M. Iqbal; Rahman, M. S. Abdul; Nurizaty, Z.

    2017-11-01

    In general the Normal Concrete (NC) are by quasi-brittle failure, where, the nearly complete loss of loading capacity, once failure is initiated especially under dynamic loadings. The significance of this study is to improve the damping properties of concrete structure by utilization of the recycled materials from waste tires to be used in concrete as structural materials that improve seismic performance. In this study, the concrete containing 10% of fine crumb rubber and 1 % volume fraction of steel fiber from waste tires is use to investigate the dynamic performance (natural frequency and damping ratio).A small scale column were fabricated from Treated Crumb Rubber and Steel Fiber Concrete (TCRSFC) and NC were cast and cured for 28 days to investigate the dynamic performance. Based on analysis, dynamic modulus, damping ratio and natural frequency of TCRSFC has improved considerably by 5.18%, 109% and 10.94% when compared with NC. The TCRSFC producing concrete with the desired properties as well as to introduce the huge potential as dynamic resistance structure from severe damage especially prevention on catastrophic failure.

  20. Performance enhanced design of chaos controller for the mechanical centrifugal flywheel governor system via adaptive dynamic surface control

    Directory of Open Access Journals (Sweden)

    Shaohua Luo

    2016-09-01

    Full Text Available This paper addresses chaos suppression of the mechanical centrifugal flywheel governor system with output constraint and fully unknown parameters via adaptive dynamic surface control. To have a certain understanding of chaotic nature of the mechanical centrifugal flywheel governor system and subsequently design its controller, the useful tools like the phase diagrams and corresponding time histories are employed. By using tangent barrier Lyapunov function, a dynamic surface control scheme with neural network and tracking differentiator is developed to transform chaos oscillation into regular motion and the output constraint rule is not broken in whole process. Plugging second-order tracking differentiator into chaos controller tackles the “explosion of complexity” of backstepping and improves the accuracy in contrast with the first-order filter. Meanwhile, Chebyshev neural network with adaptive law whose input only depends on a subset of Chebyshev polynomials is derived to learn the behavior of unknown dynamics. The boundedness of all signals of the closed-loop system is verified in stability analysis. Finally, the results of numerical simulations illustrate effectiveness and exhibit the superior performance of the proposed scheme by comparing with the existing ADSC method.

  1. Static versus dynamic stretching: Chronic and acute effects on Agility performance in male athletes

    Directory of Open Access Journals (Sweden)

    Iman Taleb-Beydokhti

    2015-04-01

    Full Text Available The purpose of this study was to examine the acute and chronic effects of static & dynamic stretching protocols on agility performance in amateur handball players. Twelve male amateur handball players (age: 19.66 ± 4.02 years old, weight: 67.12 ± 8.73 kg, height: 178.29 ± 7.81 cm participated in this study. The athletes were randomly allocated into two groups: static stretching or dynamic stretching. All of them underwent an initial evaluation and were submitted to the first intervention. They were evaluated once again and at the end of 12 training sessions. The results analyzed using ANOVA showed that there was a significant decrease in agility time after dynamic stretching against no stretching in the acute phase; but, there were no significant differences between dynamic stretching and no stretching in the chronic phase. In addition, there was no a significant difference between no stretching and static stretching in the acute phase; while, There was a significant decrease in agility time after no stretching against static stretching in the chronic phase. It was concluded that acute dynamic stretching as part of a warm-up may decrease agility time performance, whereas static stretching seems to increase agility time performance. Consequently, the acute and chronic static stretching should not be performed prior to an explosive athletic performance. Keywords: Handball, Agility, Dynamic stretching, Static stretching

  2. Structural dynamics

    CERN Document Server

    Strømmen, Einar N

    2014-01-01

    This book introduces to the theory of structural dynamics, with focus on civil engineering structures that may be described by line-like beam or beam-column type of systems, or by a system of rectangular plates. Throughout this book the mathematical presentation contains a classical analytical description as well as a description in a discrete finite element format, covering the mathematical development from basic assumptions to the final equations ready for practical dynamic response predictions. Solutions are presented in time domain as well as in frequency domain. Structural Dynamics starts off at a basic level and step by step brings the reader up to a level where the necessary safety considerations to wind or horizontal ground motion induced dynamic design problems can be performed. The special theory of the tuned mass damper has been given a comprehensive treatment, as this is a theory not fully covered elsewhere. For the same reason a chapter on the problem of moving loads on beams has been included.

  3. Dynamic pressure as a measure of gas turbine engine (GTE) performance

    International Nuclear Information System (INIS)

    Rinaldi, G; Stiharu, I; Packirisamy, M; Nerguizian, V; Landry, R Jr; Raskin, J-P

    2010-01-01

    Utilizing in situ dynamic pressure measurement is a promising novel approach with applications for both control and condition monitoring of gas turbine-based propulsion systems. The dynamic pressure created by rotating components within the engine presents a unique opportunity for controlling the operation of the engine and for evaluating the condition of a specific component through interpretation of the dynamic pressure signal. Preliminary bench-top experiments are conducted with dc axial fans for measuring fan RPM, blade condition, surge and dynamic temperature variation. Also, a method, based on standing wave physics, is presented for measuring the dynamic temperature simultaneously with the dynamic pressure. These tests are implemented in order to demonstrate the versatility of dynamic pressure-based diagnostics for monitoring several different parameters, and two physical quantities, dynamic pressure and dynamic temperature, with a single sensor. In this work, the development of a dynamic pressure sensor based on micro-electro-mechanical system technology for in situ gas turbine engine condition monitoring is presented. The dynamic pressure sensor performance is evaluated on two different gas turbine engines, one having a fan and the other without

  4. Diminished Dynamic Physical Performance Is Associated With Orthostatic Hypotension in Geriatric Outpatients.

    Science.gov (United States)

    de Bruïne, Eline S; Reijnierse, Esmee M; Trappenburg, Marijke C; Pasma, Jantsje H; de Vries, Oscar J; Meskers, Carel G M; Maier, Andrea B

    2018-03-23

    Orthostatic hypotension (OH), a blood pressure drop after postural change, is a highly prevalent and disabling syndrome in older adults. Yet, the association between physical performance and OH is not clearly established. The aim of this study was to determine whether different types of physical performance are associated with OH in a clinically relevant population of geriatric outpatients. This cross-sectional study included 280 geriatric outpatients (mean age: 82.2 years, standard deviation: 7.1). Orthostatic hypotension was determined using intermittently measured blood pressure and continuously measured blood pressure in a random subgroup of 58 patients. Physical performance was classified into a dynamic type (4-m Walk Test, Chair Stand Test, and Timed Up and Go test) and a static type (standing balance tests, handgrip strength). Associations were analyzed using logistic regression models with adjustments for age, sex, weight, and height. Diminished physical performance on the Chair Stand Test was associated with OH measured intermittently. Diminished physical performance on all dynamic physical domains (4-m Walk Test, Chair Stand Test, and Timed Up and Go test) was associated with OH measured continuously. Static physical performance was not significantly associated with OH. Dynamic physical performance tests with a substantial postural change and center of mass displacement were significantly associated with OH. The influence of physical performance on OH in daily routine activities should be further explored to establish counteracting interventions.

  5. Incentives and Their Dynamics in Public Sector Performance Management Systems

    Science.gov (United States)

    Heinrich, Carolyn J.; Marschke, Gerald

    2010-01-01

    We use the principal-agent model as a focal theoretical frame for synthesizing what we know, both theoretically and empirically, about the design and dynamics of the implementation of performance management systems in the public sector. In this context, we review the growing body of evidence about how performance measurement and incentive systems…

  6. Beyond Identity: the Dynamic Self at the Intersection of Performance Philosophy and the Philosophy of Science

    Directory of Open Access Journals (Sweden)

    Sibila Petlevski

    2014-07-01

    Full Text Available In this article we advocate the methodological feedback loop in the study of the dynamical self at the crossroads of performance philosophy, (artistic performance, and the philosophy of science. We point to the importance of the dynamics of methodology transfer between arts and sciences and the “interactive continuum” proposed by Newman & Benz in 1998. In the first part of this paper we give a comparative review of the research context relevant for our field of study, and we explain our research hubs in approaching the concept of “performance”. We suggest the possibility to define our filed of research in three equally legitimate ways: as philosophy-of-performance, philosophy-as-performance and performance-as-philosophy. In our recent work we are primarily interested in artistic performances that incorporate elements of artistic practice in the methodology of research output (Frayling 1993, as well as in the potentials of performative aspects of scientific praxis and methodology. However, the conceptual background relevant for this paper is in the field of process philosophy and its relation to science (Birkhard’s “interactivist model” 2009; Campbell’s “process-based model for an interactive ontology” 2009. We attribute particular importance to the notion of “autopoietic feedback” (Maturana and Varela 1974; Luhmann 1990. The second part addresses the issue of transcending identity in the representations of the self and the other; the relationship between Theory-Theory (TT and Simulation Theory (ST, as well as some recent attempts at combining different theories of mind (e.g. Barlassina 2013. We also deal with the notion of “embodied praxis” (Gallagher and Meltzoff 1996; we mention some neuroscientific insights into the similar phenomena, and – commenting on the importance of the dialogue between neuroscientists and philosophers (Changeux and Ricour – we give an example of an enactive approach to understanding

  7. Self-management support by final year nursing students: A correlational study of performance and person-related associated factors.

    Science.gov (United States)

    Duprez, Veerle; Beeckman, Dimitri; Verhaeghe, Sofie; Van Hecke, Ann

    2017-09-01

    Chronic conditions put a heavy burden on healthcare in every country. Supporting persons with a chronic illness to take an active role in the management of their condition is a core component in the Chronic Care Model. It implies confidence and good skills from professionals. To date, there is no evidence on final year nursing students' performance in supporting patients' self-management, nor on factors associated with this performance. To explore self-reported performance of supporting patients' self-management by final year nursing students, and person-related factors associated with this performance. A correlational multi-centre study of final year nursing students (N=256) from eight nursing schools. Students were recruited from a convenience sample of eight nursing schools. All final year students were invited to participate. Data were collected between January 2015 and May 2016 using self-administered validated questionnaires. Theoretical behavioural frameworks were used to select hypothesized associated factors for self-management support: self-efficacy to perform self-management support and socio-structural factors (Social Cognitive Theory); needs for autonomy, competence and relatedness, and patient-invested contingent self-esteem (Self-Determination Theory); and attitudes towards supporting patients' self-management (Theory of Planned Behaviour). Final year nursing students (N=256) reported an overall low level of performance in delivering self-management support during internship. Students lacked mainly competencies in collaborative goal setting and shared decision making. Students reported a significant gap between their confidence and their actual performance in self-management support (pLearning opportunities can be introduced in classroom activities and on internship. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. An integrated methodology for the dynamic performance and reliability evaluation of fault-tolerant systems

    International Nuclear Information System (INIS)

    Dominguez-Garcia, Alejandro D.; Kassakian, John G.; Schindall, Joel E.; Zinchuk, Jeffrey J.

    2008-01-01

    We propose an integrated methodology for the reliability and dynamic performance analysis of fault-tolerant systems. This methodology uses a behavioral model of the system dynamics, similar to the ones used by control engineers to design the control system, but also incorporates artifacts to model the failure behavior of each component. These artifacts include component failure modes (and associated failure rates) and how those failure modes affect the dynamic behavior of the component. The methodology bases the system evaluation on the analysis of the dynamics of the different configurations the system can reach after component failures occur. For each of the possible system configurations, a performance evaluation of its dynamic behavior is carried out to check whether its properties, e.g., accuracy, overshoot, or settling time, which are called performance metrics, meet system requirements. Markov chains are used to model the stochastic process associated with the different configurations that a system can adopt when failures occur. This methodology not only enables an integrated framework for evaluating dynamic performance and reliability of fault-tolerant systems, but also enables a method for guiding the system design process, and further optimization. To illustrate the methodology, we present a case-study of a lateral-directional flight control system for a fighter aircraft

  9. Meson dynamics beyond the quark model: a study of final state interactions

    International Nuclear Information System (INIS)

    Au, K.L.; Pennington, M.R.; Morgan, D.

    1986-09-01

    A scalar glueball is predicted in the 1 GeV mass region. The present analysis is concerned with experimental evidence for such a state. Recent high statistics results on central dimeson production at the ISR enable the authors to perform an extensive new coupled channel analysis of I = O S-wave ππ and KK-bar final states. This unambiguously reveals three resonances in the 1 GeV region - S 1 (991), S 2 (988) and epsilon(900) - where the naive quark model expects just two. These new features are discussed including how they may be confirmed experimentally and their present interpretation. The S 1 (991) is a plausible candidate for the scalar glueball. Other production reactions are examined (heavy flavour decays and γγ reactions) which lead to the same final states. (author)

  10. Frequency of chest pain in primary care, diagnostic tests performed and final diagnoses.

    Science.gov (United States)

    Hoorweg, Beatrijs Bn; Willemsen, Robert Ta; Cleef, Lotte E; Boogaerts, Tom; Buntinx, Frank; Glatz, Jan Fc; Dinant, Geert Jan

    2017-11-01

    Observational study of patients with chest pain in primary care: determination of incidence, referral rate, diagnostic tests and (agreement between) working and final diagnoses. 118 general practitioners (GPs) in the Netherlands and Belgium recorded all patient contacts during  2weeks. Furthermore, patients presenting with chest pain were registered extensively. A follow-up form was filled in after 30 days. 22 294 patient contacts were registered. In 281 (1.26%), chest pain was a reason for consulting the GP (mean age for men 54.4/women 53 years). In this cohort of 281 patients, in 38.1% of patients, acute coronary syndrome (ACS) was suspected at least temporarily during consultation, 40.2% of patients were referred to secondary care and 512 diagnostic tests were performed by GPs and consulted specialists. Musculoskeletal pain was the most frequent working (26.1%) and final diagnoses (33.1%). Potentially life-threatening diseases as final diagnosis (such as myocardial infarction) accounted for 8.4% of all chest pain cases. In 23.1% of cases, a major difference between working and final diagnoses was found, in 0.7% a severe disease was initially missed by the GP. Chest pain was present in 281 patients (1.26% of all consultations). Final diagnoses were mostly non-life-threatening. Nevertheless, in 8.4% of patients with chest pain, life-threatening underlying causes were identified. This seems reflected in the magnitude and wide variety of diagnostic tests performed in these patients by GPs and specialists, in the (safe) overestimation of life-threatening diseases by GPs at initial assessment and in the high referral rate we found. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  11. Brayton isotope power system, phase I. Final report

    International Nuclear Information System (INIS)

    1978-01-01

    The Phase I program resulted in the development and ground demonstration of a dynamic power conversion system. The two key contractual objectives of 25% conversion efficiency and 1000 h of endurance testing were successfully met. As a result of the Phase I effort, the BIPS is a viable candidate for further development into a flight system capable of sustained operation in space. It represents the only known dynamic space power system to demonstrate the performance and endurance coupled with the simplicity necessary for reliable operation. This final report follows thirty-five monthly reports. For expediency, it makes liberal use of referenced documents which have been submitted to DOE during the course of the program

  12. X-ray Studies of Materials Dynamics at MHATT-CAT Sector 7 , Advanced Photon Source. Final report

    International Nuclear Information System (INIS)

    Roy Clarke

    2006-01-01

    This Final Report describes the scientific accomplishments that have been achieved with support from grant DE-FG02-03ER46023 during the period 12/01/02-11/30/05. The funding supported a vigorous scientific program allowing the PI to achieve leadership in a number of important areas. In particular, research carried out during this period has opened way to ultrafast dynamics studies of materials by combining the capabilities of synchrotron radiation with those of ultrafast lasers. This enables the initiation of laser-induced excitations and studies of their subsequent dynamics using laser-pump/x-ray probe techniques. Examples of such excitations include phonons, shock waves, excitons, spin-waves, and polaritons. The breadth of phenomena that can now be studied in the time-domain is very broad, revealing new phenomena and mechanisms that are critical to many applications of materials

  13. performance evaluation of evolutionary designed conventional AGC ...

    African Journals Online (AJOL)

    In this context, the tuning of a multi-area automatic generation control (AGC) system after deregulation and furthermore, the effect of reheat turbines dynamics in the power system performance, are not yet ... The performances of the tuned two–area AGC system are obtained using appropriate Matlab/Simulink models. Finally ...

  14. Final Project Report: Data Locality Enhancement of Dynamic Simulations for Exascale Computing

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Xipeng [North Carolina State Univ., Raleigh, NC (United States)

    2016-04-27

    The goal of this project is to develop a set of techniques and software tools to enhance the matching between memory accesses in dynamic simulations and the prominent features of modern and future manycore systems, alleviating the memory performance issues for exascale computing. In the first three years, the PI and his group have achieves some significant progress towards the goal, producing a set of novel techniques for improving the memory performance and data locality in manycore systems, yielding 18 conference and workshop papers and 4 journal papers and graduating 6 Ph.Ds. This report summarizes the research results of this project through that period.

  15. Using a Feedback Environment to Improve Creative Performance: A Dynamic Affect Perspective

    OpenAIRE

    Gong, Zhenxing; Zhang, Na

    2017-01-01

    Prior research on feedback and creative performance has neglected the dynamic nature of affect and has focused only on the influence of positive affect. We argue that creative performance is the result of a dynamic process in which a person experiences a phase of negative affect and subsequently enters a state of high positive affect that is influenced by the feedback environment. Hierarchical regression was used to analyze a sample of 264 employees from seven industry firms. The results indi...

  16. Comment Response on the Final Report: Peer Review of the Total System Performance Assessment-Viability Assessment (TSPA-VA)

    International Nuclear Information System (INIS)

    Pendleton, M. W.

    1999-01-01

    The Management and Operating Contractor established a Performance Assessment Peer Review Panel (hereinafter ''the Panel'') at the request of the U.S. Department of Energy Yucca Mountain Site Characterization Office. The objectives of the peer review were to provide: (1) A formal, independent evaluation and critique of Viability Assessment of a Repository at Yucca Mountain: Total System Performance Assessment, Volume 3 (DOE 1998a; hereinafter ''Total System Performance Assessment-Viability Assessment'') that was conducted in support of the Viability Assessment of a Repository at Yucca Mountain (DOE 1998b). (2) Suggestions for improvements as the U.S. Department of Energy prepares to develop the documentation for a Total System Performance Assessment to support a potential License Application. The Panel conducted a phased review over a two-year period to observe the development and, ultimately, to review the Total System Performance Assessment-Viability Assessment (DOE 1998a). During the development of the Total System Performance Assessment-Viability Assessment (DOE 1998a), the Panel submitted three Interim Reports (Whipple et al., 1997a, 1997b, and 1998) to the Management and Operating Contractor with recommendations and comments on the process models, model abstractions, and draft documentation for the Total System Performance Assessment-Viability Assessment (DOE 1998a). The Panel's Final Report Total System Performance Assessment Peer Review Panel (Whipple et al. 1999; hereinafter ''Final Report'') on the Total System Performance Assessment-Viability Assessment (DOE 1998a) is based primarily on the completed Total System Performance Assessment-Viability Assessment (DOE 1998a), the Total System Performance Assessment-Viability Assessment (TSPA-VA) Analyses Technical Basis Document (CRWMS M and O 1998), and the cited references. The Final Report (Whipple et al. 1999) includes the major points from the three Interim Reports (Whipple et al. 1997a, 1997b, and 1998

  17. Nonlinear dynamics experiment in the Tevatron

    International Nuclear Information System (INIS)

    Merminga, N.; Edwards, D.; Finley, D.

    1989-01-01

    Results of the continuing analysis of the nonlinear dynamics experiment E778 are presented. Sixteen special sextupoles introduced nonlinearities in the Tevatron. 'Smear,' which is one of the parameters used to quantify the degree of nonlinearity, was extracted from the data and compared with calculation. Injection efficiency in the presence of nonlinearities was studied. Measurements of the dynamic aperture were performed. The final results in one degree of freedom of the smear, the injection efficiency and the dynamic aperture are presented. Particles captured on nonlinear resonance islands were directly observed and measurements were performed. The capture efficiency was extracted from the data and compared with prediction. The influence of tune modulation on the stability of these islands was investigated. Plans for future measurements are discussed. 4 refs., 6 figs

  18. Pseudorotational dynamics of small molecular species

    International Nuclear Information System (INIS)

    Hagelberg, F.

    2002-01-01

    The electron nuclear dynamics (END) theory was designed to provide a full description of the dynamic development of the electronic system. It is independent of any potential energy surface constructions. The dynamic behavior of molecules close to the threshold of dissociation was the objective of this study. Thus, simulations based on END theory were performed with the aim to extend the current understanding of the dynamic features of pseudorotational into a non-adiabatic regime. Electron dynamics of triatomic species (H 3 + and Li 3 + ) in terms of electronic angular momentum expectation values were characterized. Finally, it is shown that the expansion coefficients which carry the information about the excitation content of the electronic system at any stage of the motional process can be calculated. (nevyjel)

  19. Relationship between push phase and final race time in skeleton performance.

    Science.gov (United States)

    Zanoletti, Costanza; La Torre, Antonio; Merati, Giampiero; Rampinini, Ermanno; Impellizzeri, Franco M

    2006-08-01

    The aim of this study was to examine the relationship between push-time and final race time in skeleton participants during a series of major international competitions to determine the importance of the push phase in skeleton performance. Correlations were computed from the first and second heat split data measured during 24 men and 24 women skeleton competitions. Body mass, height, age, and years of experience of the first 30 men and women athletes of the skeleton, bobsleigh and luge 2003-2004 World Cup ranking were used for the comparison between sliding sports. Moderate but significant correlations (p push-time and final race time in men (r(mean) = 0.48) and women (r(mean) = 0.63). No correlations were found between changes in the individual push-time between the first and second heat with the corresponding changes in final race time. The bobsleigh sliders are heavier than the athletes of the other sliding disciplines. Luge athletes have more experience and are younger than bobsleigh and skeleton sliders. The results of this study suggest that a fast push phase is a prerequisite to success in competition and confirms that the selection of skeleton athletes based on the ability to accelerate to a maximum speed quickly could be valid. However, a good or improved push-time does not ensure a placement in the top finishing positions. On the basis of these results, we suggest that strength and power training is necessary to maintain a short push-time but additional physical training aimed to enhance the push phase might not reflect performance improvements. The recruitment of younger athletes and an increase of youthful competitive activity may be another effective way to reach international competitive results.

  20. Static, dynamic balance and functional performance in subjects with and without plantar fasciitis

    Directory of Open Access Journals (Sweden)

    Geiseane Aguiar Gonçalves

    Full Text Available Abstract Introduction: Plantar fasciitis (PF is characterized by non-inflammatory degeneration and pain under the heel, and is one of the most common foot complaints. The compensations and adjustments made to decrease the discomfort caused by the disease are clinical findings and can be a factor that contributes to impaired balance and decreased functional performance. Objective: To compare functional performance as well as static and dynamic balance among subjects with and without PF. Methods: The sample consisted of 124 subjects of both sexes aged 20-60 years. Participants were divided into two groups: a bilateral PF group (PFG; n = 62 and a control group (CG, n = 62. The following outcomes were analyzed: static and dynamic balance (using functional tests and functional performance (using a questionnaire. We used Student’s t test for independent samples to compare variables between the groups. The alpha error was set at 0.05. Results: Subjects with PF showed greater impairment in their overall dynamic balance performance (p < 0.001 than the control group, except for left posteromedial movement (p = 0.19. The CG showed showed better functional performance (p < 0.001 than the PF group. There was no difference between groups for the variable static balance on stable (p = 0.160 and unstable surfaces (p = 0.085. Conclusion: Subjects with PF displayed smaller reach distances in the overall Star Excursion Balance Test (SEBT, demonstrating a deficit in dynamic balance and functional performance when compared with healthy subjects.

  1. Research on dynamic performance design of mobile phone application based on context awareness

    Science.gov (United States)

    Bo, Zhang

    2018-05-01

    It aims to explore the dynamic performance of different mobile phone applications and the user's cognitive differences, reduce the cognitive burden, and enhance the sense of experience. By analyzing the dynamic design performance in four different interactive contexts, and constructing the framework of information service process in the interactive context perception and the two perception principles of the cognitive consensus between designer and user, and the two kinds of knowledge in accordance with the perception principles. The analysis of the context will help users sense the dynamic performance more intuitively, so that the details of interaction will be performed more vividly and smoothly, thus enhance user's experience in the interactive process. The common perception experience enables designers and users to produce emotional resonance in different interactive contexts, and help them achieve rapid understanding of interactive content and perceive the logic and hierarchy of the content and the structure, therefore the effectiveness of mobile applications will be improved.

  2. Physics and dynamics coupling across scales in the next generation CESM: Meeting the challenge of high resolution. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Larson, Vincent E.

    2015-02-21

    This is a final report for a SciDAC grant supported by BER. The project implemented a novel technique for coupling small-scale dynamics and microphysics into a community climate model. The technique uses subcolumns that are sampled in Monte Carlo fashion from a distribution of subgrid variability. The resulting global simulations show several improvements over the status quo.

  3. Analysing the performance of dynamic multi-objective optimisation algorithms

    CSIR Research Space (South Africa)

    Helbig, M

    2013-06-01

    Full Text Available and the goal of the algorithm is to track a set of tradeoff solutions over time. Analysing the performance of a dynamic multi-objective optimisation algorithm (DMOA) is not a trivial task. For each environment (before a change occurs) the DMOA has to find a set...

  4. Research on Dynamic Models and Performances of Shield Tunnel Boring Machine Cutterhead Driving System

    Directory of Open Access Journals (Sweden)

    Xianhong Li

    2013-01-01

    Full Text Available A general nonlinear time-varying (NLTV dynamic model and linear time-varying (LTV dynamic model are presented for shield tunnel boring machine (TBM cutterhead driving system, respectively. Different gear backlashes and mesh damped and transmission errors are considered in the NLTV dynamic model. The corresponding multiple-input and multiple-output (MIMO state space models are also presented. Through analyzing the linear dynamic model, the optimal reducer ratio (ORR and optimal transmission ratio (OTR are obtained for the shield TBM cutterhead driving system, respectively. The NLTV and LTV dynamic models are numerically simulated, and the effects of physical parameters under various conditions of NLTV dynamic model are analyzed. Physical parameters such as the load torque, gear backlash and transmission error, gear mesh stiffness and damped, pinions inertia and damped, large gear inertia and damped, and motor rotor inertia and damped are investigated in detail to analyze their effects on dynamic response and performances of the shield TBM cutterhead driving system. Some preliminary approaches are proposed to improve dynamic performances of the cutterhead driving system, and dynamic models will provide a foundation for shield TBM cutterhead driving system's cutterhead fault diagnosis, motion control, and torque synchronous control.

  5. The Dynamics of the Impact of Past Performance on Mutual Fund Flows

    NARCIS (Netherlands)

    Goriaev, A.P.; Nijman, T.E.; Werker, B.J.M.

    2002-01-01

    This study reconsiders the determinants of flows into US growth funds, focusing in particular on the dynamics of the impact of past performance on flows.We model the flow-performance relationship at the monthly frequency, allowing for dependence of the sensitivity of flows to past performance on

  6. Prototype development and demonstration for integrated dynamic transit operations.

    Science.gov (United States)

    2016-01-01

    This document serves as the Final Report specific to the Integrated Dynamic Transit Operations (IDTO) Prototype Development and Deployment Project, hereafter referred to as IDTO Prototype Deployment or IDTO PD project. This project was performed unde...

  7. Relations between Air-Fuel Ratio and Dynamic Performance of Small Race Cars

    OpenAIRE

    位田, 晴良; Ida, Haruyoshi; 漁, 佑一郎; Sunadori, Yuichiro; 牧田, 俊太郎; Makita, Syuntaro; 宮﨑, 真央; Miyazaki, Manaka; 磯松, 弥司; Isomatsu, Yatsuka

    2017-01-01

    'It goes without saying that engine output power characteristics greatly affect the dynamic performance of the race car. One of the methods of changing the output power of the engine is to adjust the set amount of fuel supply. This method changes the air-fuel ratio of the air fuel mixture supplied to the engine. In this study, a slalom test run of a small race car was used to examine dynamic performance with attention to the air-fuel ratio changed by adjusting the set amount of fuel supply. T...

  8. Understanding and Modeling Teams As Dynamical Systems

    Science.gov (United States)

    Gorman, Jamie C.; Dunbar, Terri A.; Grimm, David; Gipson, Christina L.

    2017-01-01

    By its very nature, much of teamwork is distributed across, and not stored within, interdependent people working toward a common goal. In this light, we advocate a systems perspective on teamwork that is based on general coordination principles that are not limited to cognitive, motor, and physiological levels of explanation within the individual. In this article, we present a framework for understanding and modeling teams as dynamical systems and review our empirical findings on teams as dynamical systems. We proceed by (a) considering the question of why study teams as dynamical systems, (b) considering the meaning of dynamical systems concepts (attractors; perturbation; synchronization; fractals) in the context of teams, (c) describe empirical studies of team coordination dynamics at the perceptual-motor, cognitive-behavioral, and cognitive-neurophysiological levels of analysis, and (d) consider the theoretical and practical implications of this approach, including new kinds of explanations of human performance and real-time analysis and performance modeling. Throughout our discussion of the topics we consider how to describe teamwork using equations and/or modeling techniques that describe the dynamics. Finally, we consider what dynamical equations and models do and do not tell us about human performance in teams and suggest future research directions in this area. PMID:28744231

  9. Dynamic tracking performance of indoor global positioning system: An experimental and theoretical study

    Directory of Open Access Journals (Sweden)

    Gang Zhao

    2015-10-01

    Full Text Available The automation level has been improved rapidly with the introduction of large-scale measurement technologies, such as indoor global positioning system, into the production process among the fields of car, ship, and aerospace due to their excellent measurement characteristics. In fact, the objects are usually in motion during the real measurement process; however, the dynamic measurement characteristics of indoor global positioning system are much limited and still in exploration. In this research, we focused on the dynamic tracking performance of indoor global positioning system and then successfully built a mathematical model based on its measurement principles. We first built single and double station system models with the consideration of measurement objects’ movement. Using MATLAB simulation, we realized the dynamic measurement characteristics of indoor global positioning system. In the real measurement process, the experimental results also support the mathematical model that we built, which proves a great success in dynamic measurement characteristics. We envision that this dynamic tracking performance of indoor global positioning system would shed light on the dynamic measurement of a motion object and therefore make contribution to the automation production.

  10. High performance computations using dynamical nucleation theory

    International Nuclear Information System (INIS)

    Windus, T L; Crosby, L D; Kathmann, S M

    2008-01-01

    Chemists continue to explore the use of very large computations to perform simulations that describe the molecular level physics of critical challenges in science. In this paper, we describe the Dynamical Nucleation Theory Monte Carlo (DNTMC) model - a model for determining molecular scale nucleation rate constants - and its parallel capabilities. The potential for bottlenecks and the challenges to running on future petascale or larger resources are delineated. A 'master-slave' solution is proposed to scale to the petascale and will be developed in the NWChem software. In addition, mathematical and data analysis challenges are described

  11. Microchannel electron multiplier: improvement in gain performances and detection dynamics

    International Nuclear Information System (INIS)

    Audier, M.; Delmotte, J.C.; Boutot, J.P.

    1978-01-01

    The performances of an MCP are a function of its geometrical characteristics (diameter d and ratio 1/d of a channel, useful area) and of the applied voltage. Gain and mean output current are limited by saturation phenomena. By using a particular cascaded MCP's configuration, it is possible to simultaneously improve the gain, its associated fluctuations and the detection dynamics (detected level, counting rate). For gains 10 6 7 , the fluctuations, can be kept as low as 20% and an improvement by a factor > 10 can be obtained on the detection dynamics [fr

  12. Relationships between Isometric Force-Time Characteristics and Dynamic Performance

    Directory of Open Access Journals (Sweden)

    Thomas Dos’Santos

    2017-09-01

    Full Text Available The purpose of this study was to explore the relationships between isometric mid-thigh pull (IMTP force-time characteristics (peak force and time-specific force vales (100–250 ms and dynamic performance and compare dynamic performance between stronger and weaker athletes. Forty-three athletes from different sports (rowing, soccer, bicycle motocross, and hockey performed three trials of the squat jump (SJ, countermovement jump (CMJ, and IMTP, and performed a one repetition maximum power clean (PC. Reactive strength index modified (RSImod was also calculated from the CMJ. Statistically significant large correlations between IMTP force-time characteristics and PC (ρ = 0.569–0.674, p < 0.001, and moderate correlations between IMTP force-time characteristics (excluding force at 100 ms and RSImod (ρ = 0.389–0.449, p = 0.013–0.050 were observed. Only force at 250 ms demonstrated a statistically significant moderate correlation with CMJ height (ρ = 0.346, p = 0.016 and no statistically significant associations were observed between IMTP force-time characteristics and SJ height. Stronger athletes (top 10 demonstrated statistically significantly greater CMJ heights, RSImods, and PCs (p ≤ 0.004, g = 1.32–1.89 compared to weaker (bottom 10 athletes, but no differences in SJ height were observed (p = 0.871, g = 0.06. These findings highlight that the ability to apply rapidly high levels of force in short time intervals is integral for PC, CMJ height, and reactive strength.

  13. High-Performance Java Codes for Computational Fluid Dynamics

    Science.gov (United States)

    Riley, Christopher; Chatterjee, Siddhartha; Biswas, Rupak; Biegel, Bryan (Technical Monitor)

    2001-01-01

    The computational science community is reluctant to write large-scale computationally -intensive applications in Java due to concerns over Java's poor performance, despite the claimed software engineering advantages of its object-oriented features. Naive Java implementations of numerical algorithms can perform poorly compared to corresponding Fortran or C implementations. To achieve high performance, Java applications must be designed with good performance as a primary goal. This paper presents the object-oriented design and implementation of two real-world applications from the field of Computational Fluid Dynamics (CFD): a finite-volume fluid flow solver (LAURA, from NASA Langley Research Center), and an unstructured mesh adaptation algorithm (2D_TAG, from NASA Ames Research Center). This work builds on our previous experience with the design of high-performance numerical libraries in Java. We examine the performance of the applications using the currently available Java infrastructure and show that the Java version of the flow solver LAURA performs almost within a factor of 2 of the original procedural version. Our Java version of the mesh adaptation algorithm 2D_TAG performs within a factor of 1.5 of its original procedural version on certain platforms. Our results demonstrate that object-oriented software design principles are not necessarily inimical to high performance.

  14. 7X performance results - final report : ASCI Red vs Red Storm.

    Energy Technology Data Exchange (ETDEWEB)

    Dinge, Dennis C. (Cray Inc., Albuquerque, NM); Davis, Michael E. (Cray Inc., Albuquerque, NM); Haskell, Karen H.; Ballance, Robert A.; Gardiner, Thomas Anthony; Stevenson, Joel O.; Noe, John P.

    2011-04-01

    The goal of the 7X performance testing was to assure Sandia National Laboratories, Cray Inc., and the Department of Energy that Red Storm would achieve its performance requirements which were defined as a comparison between ASCI Red and Red Storm. Our approach was to identify one or more problems for each application in the 7X suite, run those problems at multiple processor sizes in the capability computing range, and compare the results between ASCI Red and Red Storm. The first part of this report describes the two computer systems, the applications in the 7X suite, the test problems, and the results of the performance tests on ASCI Red and Red Storm. During the course of the testing on Red Storm, we had the opportunity to run the test problems in both single-core mode and dual-core mode and the second part of this report describes those results. Finally, we reflect on lessons learned in undertaking a major head-to-head benchmark comparison.

  15. The impact of interface bonding efficiency on high-burnup spent nuclear fuel dynamic performance

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Hao, E-mail: jiangh@ornl.gov; Wang, Jy-An John; Wang, Hong

    2016-12-01

    Highlights: • To investigate the impact of interfacial bonding efficiency at pellet-pellet and pellet-clad interfaces of high-burnup (HBU) spent nuclear fuel (SNF) on its dynamic performance. • Flexural rigidity, EI = M/κ, estimated from FEA results were benchmarked with SNF dynamic experimental results, and used to evaluate interface bonding efficiency. • Interface bonding efficiency can significantly dictate the SNF system rigidity and the associated dynamic performance. • With consideration of interface bonding efficiency and fuel cracking, HBU SNF fuel property was estimated with SNF static and dynamic experimental data. - Abstract: Finite element analysis (FEA) was used to investigate the impact of interfacial bonding efficiency at pellet-pellet and pellet-clad interfaces of high-burnup (HBU) spent nuclear fuel (SNF) on system dynamic performance. Bending moments M were applied to FEA model to evaluate the system responses. From bending curvature, κ, flexural rigidity EI can be estimated as EI = M/κ. The FEA simulation results were benchmarked with experimental results from cyclic integrated reversal bending fatigue test (CIRFT) of HBR fuel rods. The consequence of interface debonding between fuel pellets and cladding is a redistribution of the loads carried by the fuel pellets to the clad, which results in a reduction in composite rod system flexural rigidity. Therefore, the interface bonding efficiency at the pellet-pellet and pellet-clad interfaces can significantly dictate the SNF system dynamic performance. With the consideration of interface bonding efficiency, the HBU SNF fuel property was estimated with CIRFT test data.

  16. Assessing the performance of dynamical trajectory estimates

    Science.gov (United States)

    Bröcker, Jochen

    2014-06-01

    Estimating trajectories and parameters of dynamical systems from observations is a problem frequently encountered in various branches of science; geophysicists for example refer to this problem as data assimilation. Unlike as in estimation problems with exchangeable observations, in data assimilation the observations cannot easily be divided into separate sets for estimation and validation; this creates serious problems, since simply using the same observations for estimation and validation might result in overly optimistic performance assessments. To circumvent this problem, a result is presented which allows us to estimate this optimism, thus allowing for a more realistic performance assessment in data assimilation. The presented approach becomes particularly simple for data assimilation methods employing a linear error feedback (such as synchronization schemes, nudging, incremental 3DVAR and 4DVar, and various Kalman filter approaches). Numerical examples considering a high gain observer confirm the theory.

  17. System structure and cognitive ability as predictors of performance in dynamic system control tasks

    Directory of Open Access Journals (Sweden)

    Jan Hundertmark

    2015-12-01

    Full Text Available In dynamic system control, cognitive mechanisms and abilities underlying performance may vary depending on the nature of the task. We therefore investigated the effects of system structure and its interaction with cognitive abilities on system control performance. A sample of 127 university students completed a series of different system control tasks that were manipulated in terms of system size and recurrent feedback, either with or without a cognitive load manipulation. Cognitive abilities assessed included reasoning ability, working memory capacity, and cognitive reflection. System size and recurrent feedback affected overall performance as expected. Overall, the results support that cognitive ability is a good predictor of performance in dynamic system control tasks but predictiveness is reduced when the system structure contains recurrent feedback. We discuss this finding from a cognitive processing perspective as well as its implications for individual differences research in dynamic systems.

  18. Experimental Testing and Computational Fluid Dynamics Simulation of Maple Seeds and Performance Analysis as a Wind Turbine

    Science.gov (United States)

    Holden, Jacob R.

    Descending maple seeds generate lift to slow their fall and remain aloft in a blowing wind; have the wings of these seeds evolved to descend as slowly as possible? A unique energy balance equation, experimental data, and computational fluid dynamics simulations have all been developed to explore this question from a turbomachinery perspective. The computational fluid dynamics in this work is the first to be performed in the relative reference frame. Maple seed performance has been analyzed for the first time based on principles of wind turbine analysis. Application of the Betz Limit and one-dimensional momentum theory allowed for empirical and computational power and thrust coefficients to be computed for maple seeds. It has been determined that the investigated species of maple seeds perform near the Betz limit for power conversion and thrust coefficient. The power coefficient for a maple seed is found to be in the range of 48-54% and the thrust coefficient in the range of 66-84%. From Betz theory, the stream tube area expansion of the maple seed is necessary for power extraction. Further investigation of computational solutions and mechanical analysis find three key reasons for high maple seed performance. First, the area expansion is driven by maple seed lift generation changing the fluid momentum and requiring area to increase. Second, radial flow along the seed surface is promoted by a sustained leading edge vortex that centrifuges low momentum fluid outward. Finally, the area expansion is also driven by the spanwise area variation of the maple seed imparting a radial force on the flow. These mechanisms result in a highly effective device for the purpose of seed dispersal. However, the maple seed also provides insight into fundamental questions about how turbines can most effectively change the momentum of moving fluids in order to extract useful power or dissipate kinetic energy.

  19. A Computational Procedure for Assessing the Dynamic Performance of Diffusion-Controlled Transdermal Delivery Devices

    Directory of Open Access Journals (Sweden)

    Laurent Simon

    2011-08-01

    Full Text Available Abstract: The dynamic performances of two different controlled-release systems were analyzed. In a reservoir-type drug-delivery patch, the transdermal flux is influenced by the properties of the membrane. A constant thermodynamic drug activity is preserved in the donor compartment. Monolithic matrices are among the most inexpensive systems used to direct drug delivery. In these structures, the active pharmaceutical ingredients are encapsulated within a polymeric material. Despite the popularity of these two devices, to tailor the properties of the polymer and additives to specific transient behaviors can be challenging and time-consuming. The heuristic approaches often considered to select the vehicle formulation provide limited insight into key permeation mechanisms making it difficult to predict the device performance. In this contribution, a method to calculate the flux response time in a system consisting of a reservoir and a polymeric membrane was proposed and confirmed. Nearly 8.60 h passed before the metoprolol delivery rate reached ninety-eight percent of its final value. An expression was derived for the time it took to transport the active pharmaceutical ingredient out of the polymer. Ninety-eight percent of alpha-tocopherol acetate was released in 461.4 h following application to the skin. The effective time constant can be computed to help develop optimum design strategies.

  20. Framing of task performance strategies: effects on performance in a multiattribute dynamic decision making environment.

    Science.gov (United States)

    Nygren, T E

    1997-09-01

    It is well documented that the way a static choice task is "framed" can dramatically alter choice behavior, often leading to observable preference reversals. This framing effect appears to result from perceived changes in the nature or location of a person's initial reference point, but it is not clear how framing effects might generalize to performance on dynamic decision making tasks that are characterized by high workload, time constraints, risk, or stress. A study was conducted to examine the hypothesis that framing can introduce affective components to the decision making process and can influence, either favorably (positive frame) or adversely (negative frame), the implementation and use of decision making strategies in dynamic high-workload environments. Results indicated that negative frame participants were significantly impaired in developing and employing a simple optimal decision strategy relative to a positive frame group. Discussion focuses on implications of these results for models of dynamic decision making.

  1. Using a Feedback Environment to Improve Creative Performance: A Dynamic Affect Perspective.

    Science.gov (United States)

    Gong, Zhenxing; Zhang, Na

    2017-01-01

    Prior research on feedback and creative performance has neglected the dynamic nature of affect and has focused only on the influence of positive affect. We argue that creative performance is the result of a dynamic process in which a person experiences a phase of negative affect and subsequently enters a state of high positive affect that is influenced by the feedback environment. Hierarchical regression was used to analyze a sample of 264 employees from seven industry firms. The results indicate that employees' perceptions of a supportive supervisor feedback environment indirectly influence their level of creative performance through positive affect (t2); the negative affect (t1) moderates the relationship between positive affect (t2) and creative performance (t2), rendering the relationship more positive if negative affect (t1) is high. The change in positive affect mediates the relationship between the supervisor feedback environment and creative performance; a decrease in negative affect moderates the relationship between increased positive affect and creative performance, rendering the relationship more positive if the decrease in negative affect is large. The implications for improving the creative performances of employees are further discussed.

  2. Using a Feedback Environment to Improve Creative Performance: A Dynamic Affect Perspective

    Directory of Open Access Journals (Sweden)

    Zhenxing Gong

    2017-08-01

    Full Text Available Prior research on feedback and creative performance has neglected the dynamic nature of affect and has focused only on the influence of positive affect. We argue that creative performance is the result of a dynamic process in which a person experiences a phase of negative affect and subsequently enters a state of high positive affect that is influenced by the feedback environment. Hierarchical regression was used to analyze a sample of 264 employees from seven industry firms. The results indicate that employees’ perceptions of a supportive supervisor feedback environment indirectly influence their level of creative performance through positive affect (t2; the negative affect (t1 moderates the relationship between positive affect (t2 and creative performance (t2, rendering the relationship more positive if negative affect (t1 is high. The change in positive affect mediates the relationship between the supervisor feedback environment and creative performance; a decrease in negative affect moderates the relationship between increased positive affect and creative performance, rendering the relationship more positive if the decrease in negative affect is large. The implications for improving the creative performances of employees are further discussed.

  3. A predictive model of nuclear power plant crew decision-making and performance in a dynamic simulation environment

    Science.gov (United States)

    Coyne, Kevin Anthony

    branching events and provide a better representation of the IDAC cognitive model. An operator decision-making engine capable of responding to dynamic changes in situational context was implemented. The IDAC human performance model was fully integrated with a detailed nuclear plant model in order to realistically simulate plant accident scenarios. Finally, the improved ADS-IDAC model was calibrated, validated, and updated using actual nuclear plant crew performance data. This research led to the following general conclusions: (1) A relatively small number of branching rules are capable of efficiently capturing a wide spectrum of crew-to-crew variabilities. (2) Compared to traditional static risk assessment methods, ADS-IDAC can provide a more realistic and integrated assessment of human error events by directly determining the effect of operator behaviors on plant thermal hydraulic parameters. (3) The ADS-IDAC approach provides an efficient framework for capturing actual operator performance data such as timing of operator actions, mental models, and decision-making activities.

  4. Gain-loss frequency and final outcome in the Soochow Gambling Task: A Reassessment

    Directory of Open Access Journals (Sweden)

    Lin Ching-Hung

    2009-11-01

    Full Text Available Abstract Background Behavioral decision making literature suggests that decision makers are guided less by final outcome than by immediate gain-loss. However, studies of the Iowa Gambling Task (IGT under dynamic and uncertain conditions reveal very different conclusions about the role of final outcome. Another research group designed a similar yet simpler game, the Soochow Gambling Task (SGT, which demonstrated that, in dynamic decision making, the effect of gain-loss frequency is more powerful than that of final outcome. Further study is needed to determine the precise effect of final outcome on decision makers. This experiment developed two modified SGTs to explore the effect of final outcome under the same gain-loss frequency context. Methods Each version of the SGT was performed by twenty-four undergraduate Soochow University students. A large-value (± $200, ± $550 and ± $1050 and a small-value (± $100, ± $150 and ± $650 contrast of SGT were conducted to investigate the final outcome effect. The computerized SGT was launched to record and analyze the choices of the participants. Results The results of both SGT versions consistently showed that the preferred decks A and B to decks C and D. Analysis of learning curves also indicated that, throughout the game, final outcome had a minimal effect on the choices of decision makers. Conclusion Experimental results indicated that, in both the frequent-gain context and the frequent-loss context, final outcome has little effect on decision makers. Most decision makers are guided by gain-loss frequency but not by final outcome.

  5. Behind the Final Grade in Hybrid v. Traditional Courses: Comparing Student Performance by Assessment Type, Core Competency, and Course Objective

    Science.gov (United States)

    Bain, Lisa Z.

    2012-01-01

    There are many different delivery methods used by institutions of higher education. These include traditional, hybrid, and online course offerings. The comparisons of these typically use final grade as the measure of student performance. This research study looks behind the final grade and compares student performance by assessment type, core…

  6. Effect of progressive resistance exercise with neuromuscular joint facilitation on the dynamic balance performance of junior soccer players.

    Science.gov (United States)

    Wang, Hongzhao; Huo, Ming; Guan, Peipei; Onoda, Ko; Chen, Di; Huang, Qiuchen; Maruyama, Hitoshi

    2015-11-01

    [Purpose] The aim of this study was to investigate the change in dynamic balance performance of junior soccer players after progressive resistance treatment with neuromuscular joint facilitation (NJF). [Subjects] The subjects were 14 healthy males who were divided into two groups, namely the NJF and control groups. The NJF group consisted of 8 subjects, and the control group consisted of 6 subjects. [Methods] The participants in the NJF group received NJF progressive resistance treatment. Dynamic balance performance was measured before and after 3 weeks of exercise. [Results] Significant improvement in dynamic balance performance was observed both in the NJF and control groups. In the NJF group, dynamic balance performance was significantly increased compared with that in the control group. [Conclusion] The NJF intervention shortened movement time, which implies that NJF is effective for dynamic balance performance.

  7. Dynamic Incentive Effects of Relative Performance Pay: A Field Experiment

    NARCIS (Netherlands)

    J. Delfgaauw (Josse); A.J. Dur (Robert); J.A. Non (Arjan); W.J.M.I. Verbeke (Willem)

    2010-01-01

    textabstractWe conduct a field experiment among 189 stores of a retail chain to study dynamic incentive effects of relative performance pay. Employees in the randomly selected treatment stores could win a bonus by outperforming three comparable stores from the control group over the course of four

  8. Performance-Driven Robust Identification and Control of Uncertain Dynamical Systems

    Energy Technology Data Exchange (ETDEWEB)

    Basar, Tamer

    2001-10-29

    The grant DEFG02-97ER13939 from the Department of Energy has supported our research program on robust identification and control of uncertain dynamical systems, initially for the three-year period June 15, 1997-June 14, 2000, which was then extended on a no-cost basis for another year until June 14, 2001. This final report provides an overview of our research conducted during this period, along with a complete list of publications supported by the Grant. Within the scope of this project, we have studied fundamental issues that arise in modeling, identification, filtering, control, stabilization, control-based model reduction, decomposition and aggregation, and optimization of uncertain systems. The mathematical framework we have worked in has allowed the system dynamics to be only partially known (with the uncertainties being of both parametric or structural nature), and further the dynamics to be perturbed by unknown dynamic disturbances. Our research over these four years has generated a substantial body of new knowledge, and has led to new major developments in theory, applications, and computational algorithms. These have all been documented in various journal articles and book chapters, and have been presented at leading conferences, as to be described. A brief description of the results we have obtained within the scope of this project can be found in Section 3. To set the stage for the material of that section, we first provide in the next section (Section 2) a brief description of the issues that arise in the control of uncertain systems, and introduce several criteria under which optimality will lead to robustness and stability. Section 4 contains a list of references cited in these two sections. A list of our publications supported by the DOE Grant (covering the period June 15, 1997-June 14, 2001) comprises Section 5 of the report.

  9. A Performance Prediction Method for Pumps as Turbines (PAT Using a Computational Fluid Dynamics (CFD Modeling Approach

    Directory of Open Access Journals (Sweden)

    Emma Frosina

    2017-01-01

    Full Text Available Small and micro hydropower systems represent an attractive solution for generating electricity at low cost and with low environmental impact. The pump-as-turbine (PAT approach has promise in this application due to its low purchase and maintenance costs. In this paper, a new method to predict the inverse characteristic of industrial centrifugal pumps is presented. This method is based on results of simulations performed with commercial three-dimensional Computational Fluid Dynamics (CFD software. Model results have been first validated in pumping mode using data supplied by pump manufacturers. Then, the results have been compared to experimental data for a pump running in reverse. Experimentation has been performed on a dedicated test bench installed in the Department of Civil Construction and Environmental Engineering of the University of Naples Federico II. Three different pumps, with different specific speeds, have been analyzed. Using the model results, the inverse characteristic and the best efficiency point have been evaluated. Finally, results have been compared to prediction methods available in the literature.

  10. What Does Eye-Blink Rate Variability Dynamics Tell Us About Cognitive Performance?

    Directory of Open Access Journals (Sweden)

    Rafal Paprocki

    2017-12-01

    Full Text Available Cognitive performance is defined as the ability to utilize knowledge, attention, memory, and working memory. In this study, we briefly discuss various markers that have been proposed to predict cognitive performance. Next, we develop a novel approach to characterize cognitive performance by analyzing eye-blink rate variability dynamics. Our findings are based on a sample of 24 subjects. The subjects were given a 5-min resting period prior to a 10-min IQ test. During both stages, eye blinks were recorded from Fp1 and Fp2 electrodes. We found that scale exponents estimated for blink rate variability during rest were correlated with subjects' performance on the subsequent IQ test. This surprising phenomenon could be explained by the person to person variation in concentrations of dopamine in PFC and accumulation of GABA in the visual cortex, as both neurotransmitters play a key role in cognitive processes and affect blinking. This study demonstrates the possibility that blink rate variability dynamics at rest carry information about cognitive performance and can be employed in the assessment of cognitive abilities without taking a test.

  11. Prediction of Cognitive Performance and Subjective Sleepiness Using a Model of Arousal Dynamics.

    Science.gov (United States)

    Postnova, Svetlana; Lockley, Steven W; Robinson, Peter A

    2018-04-01

    A model of arousal dynamics is applied to predict objective performance and subjective sleepiness measures, including lapses and reaction time on a visual Performance Vigilance Test (vPVT), performance on a mathematical addition task (ADD), and the Karolinska Sleepiness Scale (KSS). The arousal dynamics model is comprised of a physiologically based flip-flop switch between the wake- and sleep-active neuronal populations and a dynamic circadian oscillator, thus allowing prediction of sleep propensity. Published group-level experimental constant routine (CR) and forced desynchrony (FD) data are used to calibrate the model to predict performance and sleepiness. Only the studies using dim light (performance measures during CR and FD protocols, with sleep-wake cycles ranging from 20 to 42.85 h and a 2:1 wake-to-sleep ratio. New metrics relating model outputs to performance and sleepiness data are developed and tested against group average outcomes from 7 (vPVT lapses), 5 (ADD), and 8 (KSS) experimental protocols, showing good quantitative and qualitative agreement with the data (root mean squared error of 0.38, 0.19, and 0.35, respectively). The weights of the homeostatic and circadian effects are found to be different between the measures, with KSS having stronger homeostatic influence compared with the objective measures of performance. Using FD data in addition to CR data allows us to challenge the model in conditions of both acute sleep deprivation and structured circadian misalignment, ensuring that the role of the circadian and homeostatic drives in performance is properly captured.

  12. Performance analysis and dynamic modeling of a single-spool turbojet engine

    Science.gov (United States)

    Andrei, Irina-Carmen; Toader, Adrian; Stroe, Gabriela; Frunzulica, Florin

    2017-01-01

    The purposes of modeling and simulation of a turbojet engine are the steady state analysis and transient analysis. From the steady state analysis, which consists in the investigation of the operating, equilibrium regimes and it is based on appropriate modeling describing the operation of a turbojet engine at design and off-design regimes, results the performance analysis, concluded by the engine's operational maps (i.e. the altitude map, velocity map and speed map) and the engine's universal map. The mathematical model that allows the calculation of the design and off-design performances, in case of a single spool turbojet is detailed. An in house code was developed, its calibration was done for the J85 turbojet engine as the test case. The dynamic modeling of the turbojet engine is obtained from the energy balance equations for compressor, combustor and turbine, as the engine's main parts. The transient analysis, which is based on appropriate modeling of engine and its main parts, expresses the dynamic behavior of the turbojet engine, and further, provides details regarding the engine's control. The aim of the dynamic analysis is to determine a control program for the turbojet, based on the results provided by performance analysis. In case of the single-spool turbojet engine, with fixed nozzle geometry, the thrust is controlled by one parameter, which is the fuel flow rate. The design and management of the aircraft engine controls are based on the results of the transient analysis. The construction of the design model is complex, since it is based on both steady-state and transient analysis, further allowing the flight path cycle analysis and optimizations. This paper presents numerical simulations for a single-spool turbojet engine (J85 as test case), with appropriate modeling for steady-state and dynamic analysis.

  13. Final technical report for DE-SC00012633 AToM (Advanced Tokamak Modeling)

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Christopher [Univ. of California, San Diego, CA (United States); Orlov, Dmitri [Univ. of California, San Diego, CA (United States); Izzo, Valerie [Univ. of California, San Diego, CA (United States)

    2018-02-05

    This final report for the AToM project documents contributions from University of California, San Diego researchers over the period of 9/1/2014 – 8/31/2017. The primary focus of these efforts was on performing validation studies of core tokamak transport models using the OMFIT framework, including development of OMFIT workflow scripts. Additional work was performed to develop tools for use of the nonlinear magnetohydrodynamics code NIMROD in OMFIT, and its use in the study of runaway electron dynamics in tokamak disruptions.

  14. Dynamic facial expression recognition based on geometric and texture features

    Science.gov (United States)

    Li, Ming; Wang, Zengfu

    2018-04-01

    Recently, dynamic facial expression recognition in videos has attracted growing attention. In this paper, we propose a novel dynamic facial expression recognition method by using geometric and texture features. In our system, the facial landmark movements and texture variations upon pairwise images are used to perform the dynamic facial expression recognition tasks. For one facial expression sequence, pairwise images are created between the first frame and each of its subsequent frames. Integration of both geometric and texture features further enhances the representation of the facial expressions. Finally, Support Vector Machine is used for facial expression recognition. Experiments conducted on the extended Cohn-Kanade database show that our proposed method can achieve a competitive performance with other methods.

  15. Complex dynamics in the distribution of players’ scoring performance in Rugby Union world cups

    Science.gov (United States)

    Seuront, Laurent

    2013-09-01

    The evolution of the scoring performance of Rugby Union players is investigated over the seven rugby world cups (RWC) that took place from 1987 to 2011, and a specific attention is given to how they may have been impacted by the switch from amateurism to professionalism that occurred in 1995. The distribution of the points scored by individual players, Ps, ranked in order of performance were well described by the simplified canonical law Ps∝(, where r is the rank, and ϕ and α are the parameters of the distribution. The parameter α did not significantly change from 1987 to 2007 (α=0.92±0.03), indicating a negligible effect of professionalism on players’ scoring performance. In contrast, the parameter ϕ significantly increased from ϕ=1.32 for 1987 RWC, ϕ=2.30 for 1999 to 2003 RWC and ϕ=5.60 for 2007 RWC, suggesting a progressive decrease in the relative performance of the best players. Finally, the sharp decreases observed in both α(α=0.38) and ϕ(ϕ=0.70) in the 2011 RWC indicate a more even distribution of the performance of individuals among scorers, compared to the more heterogeneous distributions observed from 1987 to 2007, and suggest a sharp increase in the level of competition leading to an increase in the average quality of players and a decrease in the relative skills of the top players. Note that neither α nor ϕ significantly correlate with traditional performance indicators such as the number of points scored by the best players, the number of games played by the best players, the number of points scored by the team of the best players or the total number of points scored over each RWC. This indicates that the dynamics of the scoring performance of Rugby Union players is influenced by hidden processes hitherto inaccessible through standard performance metrics; this suggests that players’ scoring performance is connected to ubiquitous phenomena such as anomalous diffusion.

  16. The Dynamic Performance of Flexural Ultrasonic Transducers

    Directory of Open Access Journals (Sweden)

    Andrew Feeney

    2018-01-01

    Full Text Available Flexural ultrasonic transducers are principally used as proximity sensors and for industrial metrology. Their operation relies on a piezoelectric ceramic to generate a flexing of a metallic membrane, which delivers the ultrasound signal. The performance of flexural ultrasonic transducers has been largely limited to excitation through a short voltage burst signal at a designated mechanical resonance frequency. However, a steady-state amplitude response is not generated instantaneously in a flexural ultrasonic transducer from a drive excitation signal, and differences in the drive characteristics between transmitting and receiving transducers can affect the measured response. This research investigates the dynamic performance of flexural ultrasonic transducers using acoustic microphone measurements and laser Doppler vibrometry, supported by a detailed mechanical analog model, in a process which has not before been applied to the flexural ultrasonic transducer. These techniques are employed to gain insights into the physics of their vibration behaviour, vital for the optimisation of industrial ultrasound systems.

  17. Hospitality Industry Technology Training (HITT). Final Performance Report, April 1, 1989-December 31, 1990.

    Science.gov (United States)

    Mount Hood Community Coll., Gresham, OR.

    This final performance report includes a third-party evaluation and a replication guide. The first section describes a project to develop and implement an articulated curriculum for grades 8-14 to prepare young people for entry into hospitality/tourism-related occupations. It discusses the refinement of existing models, pilot test, curriculum…

  18. More than just the mean: moving to a dynamic view of performance-based compensation.

    Science.gov (United States)

    Barnes, Christopher M; Reb, Jochen; Ang, Dionysius

    2012-05-01

    Compensation decisions have important consequences for employees and organizations and affect factors such as retention, motivation, and recruitment. Past research has primarily focused on mean performance as a predictor of compensation, promoting the implicit assumption that alternative aspects of dynamic performance are not relevant. To address this gap in the literature, we examined the influence of dynamic performance characteristics on compensation decisions in the National Basketball Association (NBA). We predicted that, in addition to performance mean, performance trend and variability would also affect compensation decisions. Results revealed that performance mean and trend, but not variability, were significantly and positively related to changes in compensation levels of NBA players. Moreover, trend (but not mean or variability) predicted compensation when controlling for future performance, suggesting that organizations overweighted trend in their compensation decisions. Theoretical and practical implications are discussed. (PsycINFO Database Record (c) 2012 APA, all rights reserved).

  19. Achievable ADC Performance by Postcorrection Utilizing Dynamic Modeling of the Integral Nonlinearity

    Directory of Open Access Journals (Sweden)

    Peter Händel

    2008-03-01

    Full Text Available There is a need for a universal dynamic model of analog-to-digital converters (ADC’s aimed for postcorrection. However, it is complicated to fully describe the properties of an ADC by a single model. An alternative is to split up the ADC model in different components, where each component has unique properties. In this paper, a model based on three components is used, and a performance analysis for each component is presented. Each component can be postcorrected individually and by the method that best suits the application. The purpose of postcorrection of an ADC is to improve the performance. Hence, for each component, expressions for the potential improvement have been developed. The measures of performance are total harmonic distortion (THD and signal to noise and distortion (SINAD, and to some extent spurious-free dynamic range (SFDR.

  20. Swimming performance changes during the final 3 weeks of training leading to the Sydney 2000 Olympic Games.

    Science.gov (United States)

    Mujika, I; Padilla, S; Pyne, D

    2002-11-01

    The purpose of this study was to determine the magnitude of the swimming performance change during the final 3 weeks of training (F3T) leading to the Sydney 2000 Olympic Games. Olympic swimmers who took part in the same event or events at the Telstra 2000 Grand Prix Series in Melbourne, Australia, (26 - 27 August 2000), and 21 - 28 d later at the Sydney 2000 Olympic Games (16 - 23 September 2000) were included in this analysis. A total of 99 performances (50 male, 49 female) were analysed. The overall performance improvement between pre- and post-F3T conditions for all swimmers was 2.18 +/- 1.50 % (p pre-Olympic F3T elicited a significant performance improvement of 2.57 % for male and 1.78 % for female swimmers at the Sydney 2000 Olympic Games. The magnitude was similar for all competition events, and was achieved by swimmers from different countries and performance levels. These data provide a quantitative framework for coaches and swimmers to set realistic performance goals based on individual performance levels before the final training phase leading to important competitions.

  1. Design methodology for flexible energy conversion systems accounting for dynamic performance

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Casati, Emiliano; Casella, Francesco

    2014-01-01

    This article presents a methodology to help in the definition of the optimal design of power generation systems. The innovative element is the integration of requirements on dynamic performance into the system design procedure. Operational flexibility is an increasingly important specification...

  2. Combined effect of upstream surge chamber and sloping ceiling tailrace tunnel on dynamic performance of turbine regulating system of hydroelectric power plant

    International Nuclear Information System (INIS)

    Guo, Wencheng; Yang, Jiandong

    2017-01-01

    Highlights: • Nonlinear mathematical model and Hopf bifurcation analysis of turbine regulating system are presented. • Dynamic performance of turbine regulating system under 0.5 times Thoma sectional area is analyzed and a novel dynamic performance is revealed. • Relationship between two bifurcation lines and wave superposition is studied. • Combined effect mechanisms of upstream surge chamber and sloping ceiling tailrace tunnel on stability are revealed and optimization methods are proposed. - Abstract: Based on the nonlinear mathematical model of the turbine regulating system of hydroelectric power plant with upstream surge chamber and sloping ceiling tailrace tunnel and the Hopf bifurcation theory, this paper firstly studies the dynamic performance of the turbine regulating system under 0.5 times Thoma sectional area of surge chamber, and reveals a novel dynamic performance. Then, the relationship between the two bifurcation lines and the wave superposition of upstream surge chamber and sloping ceiling tailrace tunnel is analyzed. Finally, the effect mechanisms of the wave superposition on the system stability are investigated, and the methods to improve the system stability are proposed. The results indicate that: Under the combined effect of upstream surge chamber and sloping ceiling tailrace tunnel, the dynamic performance of the turbine regulating system of hydroelectric power plant shows an obvious difference on the two sides of the critical sectional area of surge chamber. There are two bifurcation lines for the condition of 0.5 times Thoma sectional area, i.e. Bifurcation line 1 and Bifurcation line 2, which represent the stability characteristics of the flow oscillation of “penstock-sloping ceiling tailrace tunnel” and the water-level fluctuation in upstream surge chamber, respectively. The stable domain of the system is determined by Bifurcation line 2. The effect of upstream surge chamber mainly depends on its sectional area, while the

  3. Enhanced Microgrid Dynamic Performance Using a Modulated Power Filter Based on Enhanced Bacterial Foraging Optimization

    Directory of Open Access Journals (Sweden)

    Ahmed M. Othman

    2017-06-01

    Full Text Available This paper presents a design of microgrid (MG with enhanced dynamic performance. Distributed energy resources (DER are widely used in MGs to match the various load types and profiles. DERs include solar PV cells, wind energy sources, fuel cells, batteries, micro gas-engines and storage elements. MG will include AC/DC circuits, developed power electronics devices, inverters and power electronic controllers. A novel modulated power filters (MPF device will be applied in MG design. Enhanced bacterial foraging optimization (EBFO will be proposed to optimize and set the MPF parameters to enhance and tune the MG dynamic response. Recent dynamic control is applied to minimize the harmonic reference content. EBFO will adapt the gains of MPF dynamic control. The present research achieves an enhancement of MG dynamic performance, in addition to ensuring improvements in the power factor, bus voltage profile and power quality. MG operation will be evaluated by the dynamic response to be fine-tuned by MPF based on EBFO. Digital simulations have validated the results to show the effectiveness and efficient improvement by the proposed strategy.

  4. Dynamic reliability of digital-based transmitters

    Energy Technology Data Exchange (ETDEWEB)

    Brissaud, Florent, E-mail: florent.brissaud.2007@utt.f [Institut National de l' Environnement Industriel et des Risques (INERIS), Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte (France) and Universite de Technologie de Troyes - UTT, Institut Charles Delaunay - ICD and UMR CNRS 6279 STMR, 12 rue Marie Curie, BP 2060, 10010 Troyes Cedex (France); Smidts, Carol [Ohio State University (OSU), Nuclear Engineering Program, Department of Mechanical Engineering, Scott Laboratory, 201 W 19th Ave, Columbus OH 43210 (United States); Barros, Anne; Berenguer, Christophe [Universite de Technologie de Troyes (UTT), Institut Charles Delaunay (ICD) and UMR CNRS 6279 STMR, 12 rue Marie Curie, BP 2060, 10010 Troyes Cedex (France)

    2011-07-15

    Dynamic reliability explicitly handles the interactions between the stochastic behaviour of system components and the deterministic behaviour of process variables. While dynamic reliability provides a more efficient and realistic way to perform probabilistic risk assessment than 'static' approaches, its industrial level applications are still limited. Factors contributing to this situation are the inherent complexity of the theory and the lack of a generic platform. More recently the increased use of digital-based systems has also introduced additional modelling challenges related to specific interactions between system components. Typical examples are the 'intelligent transmitters' which are able to exchange information, and to perform internal data processing and advanced functionalities. To make a contribution to solving these challenges, the mathematical framework of dynamic reliability is extended to handle the data and information which are processed and exchanged between systems components. Stochastic deviations that may affect system properties are also introduced to enhance the modelling of failures. A formalized Petri net approach is then presented to perform the corresponding reliability analyses using numerical methods. Following this formalism, a versatile model for the dynamic reliability modelling of digital-based transmitters is proposed. Finally the framework's flexibility and effectiveness is demonstrated on a substantial case study involving a simplified model of a nuclear fast reactor.

  5. Labour Market Performance Differentials and Dynamics in EU-15 Countries and Regions

    Directory of Open Access Journals (Sweden)

    Cristiano Perugini

    2007-09-01

    Full Text Available The aim of this paper is to contribute to empirical analysis of the differentials, dynamics and determinants of labour market performance in EU-15. One innovation of the paper reflects our decision not to use a single indicator of labour market performance, but to adopt three variables: employment rate, unemployment rate, and long-term unemployment rate. In addition to national data (1997-2006, the use of data at regional NUTS-2 level (1999-2005 is a key characteristic of this study. Empirical analyses are carried out by means of various comparative statistics and econometric approaches. In the latter, a large set of explicative variables is applied to examine the potential determinants of regional (unemployment levels and dynamics.

  6. Foam Rolling for Delayed-Onset Muscle Soreness and Recovery of Dynamic Performance Measures

    Science.gov (United States)

    Pearcey, Gregory E. P.; Bradbury-Squires, David J.; Kawamoto, Jon-Erik; Drinkwater, Eric J.; Behm, David G.; Button, Duane C.

    2015-01-01

    Context: After an intense bout of exercise, foam rolling is thought to alleviate muscle fatigue and soreness (ie, delayed-onset muscle soreness [DOMS]) and improve muscular performance. Potentially, foam rolling may be an effective therapeutic modality to reduce DOMS while enhancing the recovery of muscular performance. Objective: To examine the effects of foam rolling as a recovery tool after an intense exercise protocol through assessment of pressure-pain threshold, sprint time, change-of-direction speed, power, and dynamic strength-endurance. Design: Controlled laboratory study. Setting: University laboratory. Patients or Other Participants: A total of 8 healthy, physically active males (age = 22.1 ± 2.5 years, height = 177.0 ± 7.5 cm, mass = 88.4 ± 11.4 kg) participated. Intervention(s): Participants performed 2 conditions, separated by 4 weeks, involving 10 sets of 10 repetitions of back squats at 60% of their 1-repetition maximum, followed by either no foam rolling or 20 minutes of foam rolling immediately, 24, and 48 hours postexercise. Main Outcome Measure(s): Pressure-pain threshold, sprint speed (30-m sprint time), power (broad-jump distance), change-of-direction speed (T-test), and dynamic strength-endurance. Results: Foam rolling substantially improved quadriceps muscle tenderness by a moderate to large amount in the days after fatigue (Cohen d range, 0.59 to 0.84). Substantial effects ranged from small to large in sprint time (Cohen d range, 0.68 to 0.77), power (Cohen d range, 0.48 to 0.87), and dynamic strength-endurance (Cohen d = 0.54). Conclusions: Foam rolling effectively reduced DOMS and associated decrements in most dynamic performance measures. PMID:25415413

  7. Final waste forms project: Performance criteria for phase I treatability studies

    International Nuclear Information System (INIS)

    Gilliam, T.M.; Hutchins, D.A.; Chodak, P. III

    1994-06-01

    This document defines the product performance criteria to be used in Phase I of the Final Waste Forms Project. In Phase I, treatability studies will be performed to provide open-quotes proof-of-principleclose quotes data to establish the viability of stabilization/solidification (S/S) technologies. This information is required by March 1995. In Phase II, further treatability studies, some at the pilot scale, will be performed to provide sufficient data to allow treatment alternatives identified in Phase I to be more fully developed and evaluated, as well as to reduce performance uncertainties for those methods chosen to treat a specific waste. Three main factors influence the development and selection of an optimum waste form formulation and hence affect selection of performance criteria. These factors are regulatory, process-specific, and site-specific waste form standards or requirements. Clearly, the optimum waste form formulation will require consideration of performance criteria constraints from each of the three categories. Phase I will focus only on the regulatory criteria. These criteria may be considered the minimum criteria for an acceptable waste form. In other words, a S/S technology is considered viable only if it meet applicable regulatory criteria. The criteria to be utilized in the Phase I treatability studies were primarily taken from Environmental Protection Agency regulations addressed in 40 CFR 260 through 265 and 268; and Nuclear Regulatory Commission regulations addressed in 10 CFR 61. Thus the majority of the identified criteria are independent of waste form matrix composition (i.e., applicable to cement, glass, organic binders etc.)

  8. Final waste forms project: Performance criteria for phase I treatability studies

    Energy Technology Data Exchange (ETDEWEB)

    Gilliam, T.M. [Oak Ridge National Lab., TN (United States); Hutchins, D.A. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States); Chodak, P. III [Massachusetts Institute of Technology (United States)

    1994-06-01

    This document defines the product performance criteria to be used in Phase I of the Final Waste Forms Project. In Phase I, treatability studies will be performed to provide {open_quotes}proof-of-principle{close_quotes} data to establish the viability of stabilization/solidification (S/S) technologies. This information is required by March 1995. In Phase II, further treatability studies, some at the pilot scale, will be performed to provide sufficient data to allow treatment alternatives identified in Phase I to be more fully developed and evaluated, as well as to reduce performance uncertainties for those methods chosen to treat a specific waste. Three main factors influence the development and selection of an optimum waste form formulation and hence affect selection of performance criteria. These factors are regulatory, process-specific, and site-specific waste form standards or requirements. Clearly, the optimum waste form formulation will require consideration of performance criteria constraints from each of the three categories. Phase I will focus only on the regulatory criteria. These criteria may be considered the minimum criteria for an acceptable waste form. In other words, a S/S technology is considered viable only if it meet applicable regulatory criteria. The criteria to be utilized in the Phase I treatability studies were primarily taken from Environmental Protection Agency regulations addressed in 40 CFR 260 through 265 and 268; and Nuclear Regulatory Commission regulations addressed in 10 CFR 61. Thus the majority of the identified criteria are independent of waste form matrix composition (i.e., applicable to cement, glass, organic binders etc.).

  9. Annual Report 2000. Chemical Structure and Dynamics; FINAL

    International Nuclear Information System (INIS)

    Colson, Steve D; McDowell, Rod S

    2001-01-01

    This annual report describes the research and accomplishments of the Chemical Structure and Dynamics Program in the year 2000, one of six research programs at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) - a multidisciplinary, national scientific user facility and research organization. The Chemical Structure and Dynamics (CS and D) program is meeting the need for a fundamental, molecular-level understanding by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes relevant to environmental chemistry; and (3) developing state-of-the-art research and analytical methods for characterizing complex materials of the types found in natural and contaminated systems

  10. Power performance assessment. Final report

    International Nuclear Information System (INIS)

    Frandsen, S.

    1998-12-01

    In the increasingly commercialised wind power marketplace, the lack of precise assessment methods for the output of an investment is becoming a barrier for wider penetration of wind power. Thus, addressing this problem, the overall objectives of the project are to reduce the financial risk in investment in wind power projects by significantly improving the power performance assessment methods. Ultimately, if this objective is successfully met, the project may also result in improved tuning of the individual wind turbines and in optimisation methods for wind farm operation. The immediate, measurable objectives of the project are: To prepare a review of existing contractual aspects of power performance verification procedures of wind farms; to provide information on production sensitivity to specific terrain characteristics and wind turbine parameters by analyses of a larger number of wind farm power performance data available to the proposers; to improve the understanding of the physical parameters connected to power performance in complex environment by comparing real-life wind farm power performance data with 3D computational flow models and 3D-turbulence wind turbine models; to develop the statistical framework including uncertainty analysis for power performance assessment in complex environments; and to propose one or more procedures for power performance evaluation of wind power plants in complex environments to be applied in contractual agreements between purchasers and manufacturers on production warranties. Although the focus in this project is on power performance assessment the possible results will also be of benefit to energy yield forecasting, since the two tasks are strongly related. (au) JOULE III. 66 refs.; In Co-operation Renewable Energy System Ltd. (GB); Centre for Renewable Energy (GR); Aeronautic Research Centre (SE); National Engineering Lab. (GB); Public Power Cooperation (GR)

  11. Dynamic multiple thresholding breast boundary detection algorithm for mammograms

    International Nuclear Information System (INIS)

    Wu, Yi-Ta; Zhou Chuan; Chan, Heang-Ping; Paramagul, Chintana; Hadjiiski, Lubomir M.; Daly, Caroline Plowden; Douglas, Julie A.; Zhang Yiheng; Sahiner, Berkman; Shi Jiazheng; Wei Jun

    2010-01-01

    Purpose: Automated detection of breast boundary is one of the fundamental steps for computer-aided analysis of mammograms. In this study, the authors developed a new dynamic multiple thresholding based breast boundary (MTBB) detection method for digitized mammograms. Methods: A large data set of 716 screen-film mammograms (442 CC view and 274 MLO view) obtained from consecutive cases of an Institutional Review Board approved project were used. An experienced breast radiologist manually traced the breast boundary on each digitized image using a graphical interface to provide a reference standard. The initial breast boundary (MTBB-Initial) was obtained by dynamically adapting the threshold to the gray level range in local regions of the breast periphery. The initial breast boundary was then refined by using gradient information from horizontal and vertical Sobel filtering to obtain the final breast boundary (MTBB-Final). The accuracy of the breast boundary detection algorithm was evaluated by comparison with the reference standard using three performance metrics: The Hausdorff distance (HDist), the average minimum Euclidean distance (AMinDist), and the area overlap measure (AOM). Results: In comparison with the authors' previously developed gradient-based breast boundary (GBB) algorithm, it was found that 68%, 85%, and 94% of images had HDist errors less than 6 pixels (4.8 mm) for GBB, MTBB-Initial, and MTBB-Final, respectively. 89%, 90%, and 96% of images had AMinDist errors less than 1.5 pixels (1.2 mm) for GBB, MTBB-Initial, and MTBB-Final, respectively. 96%, 98%, and 99% of images had AOM values larger than 0.9 for GBB, MTBB-Initial, and MTBB-Final, respectively. The improvement by the MTBB-Final method was statistically significant for all the evaluation measures by the Wilcoxon signed rank test (p<0.0001). Conclusions: The MTBB approach that combined dynamic multiple thresholding and gradient information provided better performance than the breast boundary

  12. Computational Fluid Dynamics and Building Energy Performance Simulation

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm; Tryggvason, T.

    1998-01-01

    An interconnection between a building energy performance simulation program and a Computational Fluid Dynamics program (CFD) for room air distribution will be introduced for improvement of the predictions of both the energy consumption and the indoor environment. The building energy performance...... simulation program requires a detailed description of the energy flow in the air movement which can be obtained by a CFD program. The paper describes an energy consumption calculation in a large building, where the building energy simulation program is modified by CFD predictions of the flow between three...... zones connected by open areas with pressure and buoyancy driven air flow. The two programs are interconnected in an iterative procedure. The paper shows also an evaluation of the air quality in the main area of the buildings based on CFD predictions. It is shown that an interconnection between a CFD...

  13. A dynamic approach to real-time performance measurement in design projects

    DEFF Research Database (Denmark)

    Skec, Stanko; Cash, Philip; Storga, Mario

    2017-01-01

    Recent developments in engineering design management point to the need for more dynamic, fine-grain measurement approaches able to deal with multi-dimensional, cross-level process performance in product design. Thus, this paper proposes a new approach to the measurement and management of individu...

  14. RF dynamic and noise performance of Metallic Source/Drain SOI n-MOSFETs

    Science.gov (United States)

    Martin, Maria J.; Pascual, Elena; Rengel, Raúl

    2012-07-01

    This paper presents a detailed study of the RF and noise performance of n-type Schottky barrier (SB) MOSFETs with a particular focus on the influence of the Schottky barrier height (SBH) on the main dynamic and noise figures of merit. With this aim, a 2D Monte Carlo simulator including tunnelling transport across Schottky interfaces has been developed, with special care to consider quantum transmission coefficients and the influence of image charge effects at the Schottky junctions. Particular attention is paid to the microscopic transport features, including carrier mean free paths or number of scattering events along the channel for investigating the optimization of the device topology and the strategic concepts related to the noise performance of this new architecture. A more effective control of the gate electrode over drain current for low SBH (discussed in terms of internal physical quantities) is translated into an enhanced transconductance gm, cut-off frequency fT, and non-quasistatic dynamic parameters. The drain and gate intrinsic noise sources show a noteworthy degradation with the SBH reduction due to the increased current, influence of hot carriers and reduced number of phonon scatterings. However, the results evidence that this effect is counterbalanced by the extremely improved dynamic performance in terms of gm and fT. Therefore, the deterioration of the intrinsic noise performance of the SB-MOSFET has no significant impact on high-frequency noise FoMs as NFmin, Rn and Gass for low SBH and large gate overdrive conditions. The role of the SBH on Γopt, optimum noise reactance and susceptance has been also analyzed.

  15. The role of model dynamics in ensemble Kalman filter performance for chaotic systems

    Science.gov (United States)

    Ng, G.-H.C.; McLaughlin, D.; Entekhabi, D.; Ahanin, A.

    2011-01-01

    The ensemble Kalman filter (EnKF) is susceptible to losing track of observations, or 'diverging', when applied to large chaotic systems such as atmospheric and ocean models. Past studies have demonstrated the adverse impact of sampling error during the filter's update step. We examine how system dynamics affect EnKF performance, and whether the absence of certain dynamic features in the ensemble may lead to divergence. The EnKF is applied to a simple chaotic model, and ensembles are checked against singular vectors of the tangent linear model, corresponding to short-term growth and Lyapunov vectors, corresponding to long-term growth. Results show that the ensemble strongly aligns itself with the subspace spanned by unstable Lyapunov vectors. Furthermore, the filter avoids divergence only if the full linearized long-term unstable subspace is spanned. However, short-term dynamics also become important as non-linearity in the system increases. Non-linear movement prevents errors in the long-term stable subspace from decaying indefinitely. If these errors then undergo linear intermittent growth, a small ensemble may fail to properly represent all important modes, causing filter divergence. A combination of long and short-term growth dynamics are thus critical to EnKF performance. These findings can help in developing practical robust filters based on model dynamics. ?? 2011 The Authors Tellus A ?? 2011 John Wiley & Sons A/S.

  16. Analysis and Optimization of Dynamic Measurement Precision of Fiber Optic Gyroscope

    Directory of Open Access Journals (Sweden)

    Hui Li

    2013-01-01

    Full Text Available In order to improve the dynamic performance of high precision interferometer fiber optic gyroscope (IFOG, the influencing factors of the fast response characteristics are analyzed based on a proposed assistant design setup, and a high dynamic detection method is proposed to suppress the adverse effects of the key influencing factors. The assistant design platform is built by using the virtual instrument technology for IFOG, which can monitor the closed-loop state variables in real time for analyzing the influence of both the optical components and detection circuit on the dynamic performance of IFOG. The analysis results indicate that nonlinearity of optical Sagnac effect, optical parameter uncertainty, dynamic characteristics of internal modules and time delay of signal detection circuit are the major causes of dynamic performance deterioration, which can induce potential system instability in practical control systems. By taking all these factors into consideration, we design a robust control algorithm to realize the high dynamic closed-loop detection of IFOG. Finally, experiments show that the improved 0.01 deg/h high precision IFOG with the proposed control algorithm can achieve fast tracking and good dynamic measurement precision.

  17. Measurement-based performance profiles and dynamics of UDT over dedicated connections

    Energy Technology Data Exchange (ETDEWEB)

    Foster, Ian [University of Chicago; Kettimuthu, R. [Argonne National Laboratory (ANL); Wu, Qishi [University of Memphis; Yun, Daqing [Harrisburg University; Rao, Nageswara S. [ORNL; Liu, Qiang [ORNL

    2016-11-01

    Wide-area data transfers in high-performance computing and big data scenarios are increasingly being carried over dedicated network connections that provide high capacities at low loss rates. UDP-based transport protocols are expected to be particularly well-suited for such transfers but their performance is relatively unexplored over a wide range of connection lengths, compared to TCP over shared connections. We present extensive throughput measurements of UDP-based Data Transfer (UDT) over a suite of physical and emulated 10 Gbps connections. In sharp contrast to current UDT analytical models, these measurements indicate much more complex throughput dynamics that are sensitive to the connection modality, protocol parameters, and round-trip times. Lyapunov exponents estimated from the Poincare maps of UDT traces clearly indicate regions of instability and complex dynamics. We propose a simple model based on the ramp-up and sustainment regimes of a generic transport protocol, which qualitatively illustrates the dominant monotonicity and concavity properties of throughput profiles and relates them to Lyapunov exponents. These measurements and analytical results together enable us to comprehensively evaluate UDT performance and select parameters to achieve high throughput, and they also provide guidelines for designing effective transport protocols for dedicated connections.

  18. Features static-and-dynamic performance in athletes of winter sports

    Directory of Open Access Journals (Sweden)

    Kotenko K.V.

    2014-12-01

    Full Text Available Objective: analysis of static-dynamic performance of the musculoskeletal system of athletes of winter sports. Materials and Methods. The evaluation of static-dynamic characteristics of the musculoskeletal system. Results. The highest percentage of load-balancing the body while maintaining a static position was observed in the group of athletes of speed and power of the sport and made up, the lowest — in athletes clearing difficult sport. Significant shift in the distribution of body load were detected in athletes clearing difficult sport in the speed and power sport, none of the athletes of the deviations were found. Conclusion. The survey revealed the features of the coordination ability and load balancing body in athletes of different sports: cycling, hard-house and speed-power.

  19. Stability of cracked pipe under seismic/dynamic displacement-controlled stresses. Subtask 1.2 final report

    International Nuclear Information System (INIS)

    Kramer, G.; Veith, P.; Marschall, C.

    1997-06-01

    Results of displacement-controlled pipe fracture experiments, analyses, and material characterization efforts performed within the International Piping Integrity Research Group, IPIRG, Program Subtask 1.2 are discussed. Effects of dynamic versus quasi-static and monotonic versus cyclic loading were evaluated for ductile tearing of two materials, A106 Grade B ferritic steel and TP304 austenitic steel. Twelve through-wall-cracked pipe experiments were conducted on 6-inch diameter Schedule 120 pipe at 288 C (550 F). The results indicated dynamic loading at seismic strain rates marginally increased the load-carrying capacity of austenitic steel. The ferritic steel tested was sensitive to dynamic strain-aging, and consequently, its load-carrying capacity decreased at dynamic strain rates. Two parameters were found to affect the apparent ductile crack growth resistance during cyclic loading, load ratio (R) and incremental plastic displacement that occurs in a cycle. Cyclic (R = 0) loading had minimal effect on ductile tearing for both materials. However, fully reversed loading decreased the load-carrying capacity and toughness for both materials. The incremental plastic displacement can be as important as the load ratio; however, it is harder to quantify from design stress reports. Large plastic displacements will minimize the effect of negative load ratios

  20. Dynamic performance of concrete undercut anchors for Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Mahrenholtz, Christoph, E-mail: christoph@mahrenholtz.net; Eligehausen, Rolf

    2013-12-15

    Graphical abstract: - Highlights: • Behavior of undercut anchors under dynamic actions simulating earthquakes. • First high frequency load and crack cycling tests on installed concrete anchors ever. • Comprehensive review of anchor qualification for Nuclear Power Plants. - Abstract: Post-installed anchors are widely used for structural and nonstructural connections to concrete. In many countries, concrete anchors used for Nuclear Power Plants have to be qualified to ensure reliable behavior even under extreme conditions. The tests required for qualification of concrete anchors are carried out at quasi-static loading rates well below the rates to be expected for dynamic actions deriving from earthquakes, airplane impacts or explosions. To investigate potentially beneficial effects of high loading rates and cycling frequencies, performance tests on installed undercut anchors were conducted. After introductory notes on anchor technology and a comprehensive literature review, this paper discusses the qualification of anchors for Nuclear Power Plants and the testing carried out to quantify experimentally the effects of dynamic actions on the load–displacement behavior of undercut anchors.

  1. The Dynamics of the Economic-Financial Performance of the Corporate System of National Economy

    Directory of Open Access Journals (Sweden)

    Riabokin Taras V.

    2017-02-01

    Full Text Available The article is aimed at analyzing the dynamics of the economic-financial performance of the national corporate system, identifying trends in its development. An allocation of the corporate system as a structured object and its research will contribute to understanding of the dynamic properties of the corporate system itself, its actors, and the economy as a whole. An analysis of the dynamics of the economic-financial performance of the corporate system of national economy has been carried out. The national accounts of Ukraine for 2008-2015, in particular, in the sectors of both non-financial and financial corporations as the major subsystems of the corporate system, have been analyzed. Trends as to releasing goods and services, intermediate consumption, gross value added, and net value added, incomes, savings, net lending (+, and net borrowing (-, have been highlighted. Future researches should address a deeper analysis of the performance indicators of individual corporations, the corporate structures, constituting a part of the core corporate system, including the financial core, as well as efficiency of the State administration of national economy

  2. Dynamic balance performance and noncontact lower extremity injury in college football players: an initial study.

    Science.gov (United States)

    Butler, Robert J; Lehr, Michael E; Fink, Michael L; Kiesel, Kyle B; Plisky, Phillip J

    2013-09-01

    Field expedient screening tools that can identify individuals at an elevated risk for injury are needed to minimize time loss in American football players. Previous research has suggested that poor dynamic balance may be associated with an elevated risk for injury in athletes; however, this has yet to be examined in college football players. To determine if dynamic balance deficits are associated with an elevated risk of injury in collegiate football players. It was hypothesized that football players with lower performance and increased asymmetry in dynamic balance would be at an elevated risk for sustaining a noncontact lower extremity injury. Prospective cohort study. Fifty-nine collegiate American football players volunteered for this study. Demographic information, injury history, and dynamic balance testing performance were collected, and noncontact lower extremity injuries were recorded over the course of the season. Receiver operator characteristic curves were calculated based on performance on the Star Excursion Balance Test (SEBT), including composite score and asymmetry, to determine the population-specific risk cut-off point. Relative risk was then calculated based on these variables, as well as previous injury. A cut-off point of 89.6% composite score on the SEBT optimized the sensitivity (100%) and specificity (71.7%). A college football player who scored below 89.6% was 3.5 times more likely to get injured. Poor performance on the SEBT may be related to an increased risk for sustaining a noncontact lower extremity injury over the course of a competitive American football season. College football players should be screened preseason using the SEBT to identify those at an elevated risk for injury based upon dynamic balance performance to implement injury mitigation strategies to this specific subgroup of athletes.

  3. The effect of dynamic workstations on the performance of various computer and office-based tasks

    NARCIS (Netherlands)

    Burford, E.M.; Botter, J.; Commissaris, D.; Könemann, R.; Hiemstra-Van Mastrigt, S.; Ellegast, R.P.

    2013-01-01

    The effect of different workstations, conventional and dynamic, on different types of performance measures for several different office and computer based task was investigated in this research paper. The two dynamic workstations assessed were the Lifespan Treadmill Desk and the RightAngle

  4. Dynamics and Morphology of Saturn’s North Polar Region During Cassini’s Final Year

    Science.gov (United States)

    Blalock, John J.; Sayanagi, Kunio M.; Ingersoll, Andrew P.; Dyudina, Ulyana A.; Ewald, Shawn; McCabe, Ryan M.; Gunnarson, Jacob; Garland, Justin; Gallego, Angelina

    2017-10-01

    We present an analysis of Saturn’s north polar region utilizing Cassini ISS images captured in visible and near-infrared wavelengths during late 2016 and 2017, including images captured during Cassini’s Grand Finale orbits. To measure the wind field in the region, we utilize the two-dimensional correlation imaging velocimetry (CIV) technique. We also calculate the relative vorticity and divergence from the wind field. To detect changes in the dynamics, we compare measurements of the wind, relative vorticity, and divergence in 2012 and 2013 with those from 2016/2017. We also compare cloud reflectivity between 2012/2013 and 2016/2017 in images that show the north pole under similar illumination conditions. To detect changes in cloud reflectivity, we utilize a Minnaert correction to calculate the zonal mean reflectivity as a function of latitude. Furthermore, we compare the winds and cloud reflectivity at several wavelengths in order to look for changes occurring at different altitudes. Our results indicate that while the dynamics of the north polar region have remained relatively stable, there have been significant morphology changes that have resulted in dramatic color changes. We hypothesize that these changes are a result of the seasonal cycle and linked to the increased production of photochemical hazes in the atmosphere. Our work has been supported by NASA PATM NNX14AK07G, NSF AAG 1212216, and NASA NESSF NNX15AQ70H.

  5. Static and Dynamic Performance Simulation of Direct-Acting Force Motor Valve

    Science.gov (United States)

    Ye, Xinghai; Ding, Jianjun; Zheng, Gang; Jiang, Kunpeng; Chen, Dongdong

    2017-07-01

    This work focuses on static and dynamic characteristics of direct-acting force motor valve. First, we analyzed the structure features and operating principle of the Mitsubishi-Hitachi force motor valve (FMV) and the operating principle of its internal permanent-magnet moving-coil force motor magnetic circuit, determined the transfer function of the FMV force motor system, and established a mathematical model for the system. Secondly, we established a static performance analysis model using the AMESIM software and utilized the model in combination with experimental results to analyze the effects of electro-hydraulic servo valve structural parameters on static characteristics. Lastly, we deduced the trajectory equation of the system, established the relationship between dynamic characteristic indexes and structural parameters, and analyzed the effects of different parameter values on the dynamic characteristics of the system. This research can provide a theoretical guidance for designing and manufacturing the FMV body.

  6. Real-Time Projection-Based Augmented Reality System for Dynamic Objects in the Performing Arts

    Directory of Open Access Journals (Sweden)

    Jaewoon Lee

    2015-02-01

    Full Text Available This paper describes the case study of applying projection-based augmented reality, especially for dynamic objects in live performing shows, such as plays, dancing, or musicals. Our study aims to project imagery correctly inside the silhouettes of flexible objects, in other words, live actors or the surface of actor’s costumes; the silhouette transforms its own shape frequently. To realize this work, we implemented a special projection system based on the real-time masking technique, that is to say real-time projection-based augmented reality system for dynamic objects in performing arts. We installed the sets on a stage for live performance, and rehearsed particular scenes of a musical. In live performance, using projection-based augmented reality technology enhances technical and theatrical aspects which were not possible with existing video projection techniques. The projected images on the surfaces of actor’s costume could not only express the particular scene of a performance more effectively, but also lead the audience to an extraordinary visual experience.

  7. Sewage Treatment Plants: Standards of Performance for New Stationary Sources 1977 Final Rule (42 FR 58520)

    Science.gov (United States)

    This document includes a copy of the Federal Register publication of the November 10, 1977 Final Rule for the Standards of Performance of New Stationary Sources for 40 CFR 60 Subparts O. This document is provided curtesy of HeinOnline.

  8. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Performance Verification Report: Final Comprehensive Performance Test Report, P/N 1331720-2TST, S/N 105/A1

    Science.gov (United States)

    Platt, R.

    1999-01-01

    This is the Performance Verification Report, Final Comprehensive Performance Test (CPT) Report, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A). This specification establishes the requirements for the CPT and Limited Performance Test (LPT) of the AMSU-1A, referred to here in as the unit. The sequence in which the several phases of this test procedure shall take place is shown.

  9. High performance MEAs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-15

    The aim of the present project is through modeling, material and process development to obtain significantly better MEA performance and to attain the technology necessary to fabricate stable catalyst materials thereby providing a viable alternative to current industry standard. This project primarily focused on the development and characterization of novel catalyst materials for the use in high temperature (HT) and low temperature (LT) proton-exchange membrane fuel cells (PEMFC). New catalysts are needed in order to improve fuel cell performance and reduce the cost of fuel cell systems. Additional tasks were the development of new, durable sealing materials to be used in PEMFC as well as the computational modeling of heat and mass transfer processes, predominantly in LT PEMFC, in order to improve fundamental understanding of the multi-phase flow issues and liquid water management in fuel cells. An improved fundamental understanding of these processes will lead to improved fuel cell performance and hence will also result in a reduced catalyst loading to achieve the same performance. The consortium have obtained significant research results and progress for new catalyst materials and substrates with promising enhanced performance and fabrication of the materials using novel methods. However, the new materials and synthesis methods explored are still in the early research and development phase. The project has contributed to improved MEA performance using less precious metal and has been demonstrated for both LT-PEM, DMFC and HT-PEM applications. New novel approach and progress of the modelling activities has been extremely satisfactory with numerous conference and journal publications along with two potential inventions concerning the catalyst layer. (LN)

  10. Gravity-gradient dynamics experiments performed in orbit utilizing the Radio Astronomy Explorer (RAE-1) spacecraft

    Science.gov (United States)

    Walden, H.

    1973-01-01

    Six dynamic experiments were performed in earth orbit utilizing the RAE spacecraft in order to test the accuracy of the mathematical model of RAE dynamics. The spacecraft consisted of four flexible antenna booms, mounted on a rigid cylindrical spacecraft hub at center, for measuring radio emissions from extraterrestrial sources. Attitude control of the gravity stabilized spacecraft was tested by using damper clamping, single lower leading boom operations, and double lower boom operations. Results and conclusions of the in-orbit dynamic experiments proved the accuracy of the analytic techniques used to model RAE dynamical behavior.

  11. The acute effect of static and dynamic stretching during warm-ups on anaerobic performance in trained women

    Directory of Open Access Journals (Sweden)

    rouhollah haghshenas

    2014-09-01

    Full Text Available The purpose of this study was to investigate effects of static stretching, dynamic stretching and no stretching methods on power and speed in volleyball players. Therefore, Twenty-four volleyball players (height: 173.29 ± 7.81 m; mass: 62.12 ± 8.73 kg; age: 22.66 ± 4.02 years; experience: 3.27 ± 6.37 were tested for speed performance using the 20 meter sprint test and also for power using vertical jump test after static stretching, dynamic stretching and no stretching. The results analyzed using ANOVA showed that There was a significant increase in height jump after dynamic stretching against static stretching. But, there were no significant differences between no stretching and static stretching groups. In addition, there was a significant decrease in time 20 meter sprint after dynamic stretching against static stretching and no stretching groups. The results of this study suggest that it may be desirable for volleyball players to perform dynamic exercises before the performance of activities that require a high power output.

  12. Quantitative adaptation analytics for assessing dynamic systems of systems: LDRD Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Gauthier, John H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). System Readiness & Sustainment Technologies (6133, M/S 1188); Miner, Nadine E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Military & Energy Systems Analysis (6114, M/S 1188); Wilson, Michael L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Resilience and Regulatory Effects (6921, M/S 1138); Le, Hai D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). System Readiness & Sustainment Technologies (6133, M/S 1188); Kao, Gio K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Networked System Survivability & Assurance (5629, M/S 0671); Melander, Darryl J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Software Systems R& D (9525, M/S 1188); Longsine, Dennis Earl [Sandia National Laboratories, Unknown, Unknown; Vander Meer, Jr., Robert C. [SAIC, Inc., Albuquerque, NM (United States)

    2015-01-01

    Our society is increasingly reliant on systems and interoperating collections of systems, known as systems of systems (SoS). These SoS are often subject to changing missions (e.g., nation- building, arms-control treaties), threats (e.g., asymmetric warfare, terrorism), natural environments (e.g., climate, weather, natural disasters) and budgets. How well can SoS adapt to these types of dynamic conditions? This report details the results of a three year Laboratory Directed Research and Development (LDRD) project aimed at developing metrics and methodologies for quantifying the adaptability of systems and SoS. Work products include: derivation of a set of adaptability metrics, a method for combining the metrics into a system of systems adaptability index (SoSAI) used to compare adaptability of SoS designs, development of a prototype dynamic SoS (proto-dSoS) simulation environment which provides the ability to investigate the validity of the adaptability metric set, and two test cases that evaluate the usefulness of a subset of the adaptability metrics and SoSAI for distinguishing good from poor adaptability in a SoS. Intellectual property results include three patents pending: A Method For Quantifying Relative System Adaptability, Method for Evaluating System Performance, and A Method for Determining Systems Re-Tasking.

  13. Quantized Passive Dynamic Output Feedback Control with Actuator Failure

    Directory of Open Access Journals (Sweden)

    Zu-Xin Li

    2016-01-01

    Full Text Available This paper investigates the problem of passive dynamic output feedback control for fuzzy discrete nonlinear systems with quantization and actuator failures, where the measurement output of the system is quantized by a logarithmic quantizer before being transferred to the fuzzy controller. By employing the fuzzy-basis-dependent Lyapunov function, sufficient condition is established to guarantee the closed-loop system to be mean-square stable and the prescribed passive performance. Based on the sufficient condition, the fuzzy dynamic output feedback controller is proposed for maintaining acceptable performance levels in the case of actuator failures and quantization effects. Finally, a numerical example is given to show the usefulness of the proposed method.

  14. Expert performance in sport and the dynamics of talent development.

    Science.gov (United States)

    Phillips, Elissa; Davids, Keith; Renshaw, Ian; Portus, Marc

    2010-04-01

    Research on expertise, talent identification and development has tended to be mono-disciplinary, typically adopting genocentric or environmentalist positions, with an overriding focus on operational issues. In this paper, the validity of dualist positions on sport expertise is evaluated. It is argued that, to advance understanding of expertise and talent development, a shift towards a multidisciplinary and integrative science focus is necessary, along with the development of a comprehensive multidisciplinary theoretical rationale. Here we elucidate dynamical systems theory as a multidisciplinary theoretical rationale for capturing how multiple interacting constraints can shape the development of expert performers. This approach suggests that talent development programmes should eschew the notion of common optimal performance models, emphasize the individual nature of pathways to expertise, and identify the range of interacting constraints that impinge on performance potential of individual athletes, rather than evaluating current performance on physical tests referenced to group norms.

  15. Research into the Effect of Supercapacitor Terminal Voltage on Regenerative Suspension Energy-Regeneration and Dynamic Performance

    Directory of Open Access Journals (Sweden)

    Ruochen Wang

    2017-01-01

    Full Text Available To study the effect of supercapacitor initial terminal voltage on the regenerative and semiactive suspension energy-regeneration and dynamic performance, firstly, the relationship between supercapacitor terminal voltage and linear motor electromagnetic damping force and that between supercapacitor terminal voltage and recycled energy by the supercapacitor in one single switching period were both analyzed. The result shows that the linear motor electromagnetic damping force is irrelevant to the supercapacitor terminal voltage, and the recycled energy by the supercapacitor reaches the maximum when initial terminal voltage of the supercapacitor equals output terminal voltage of the linear motor. Then, performances of system dynamics and energy-regeneration were studied as the supercapacitor initial terminal voltage varied in situations of B level and C level road. The result showed that recycled energy by the supercapacitor increased at first and then decreased while the dynamic performance had no obvious change. On the basis of previous study, a mode-switching control strategy of supercapacitor for the regenerative and semiactive suspension system was proposed, and the mode-switching rule was built. According to simulation and experiment results, the system energy-regeneration efficiency can be increased by utilizing the control strategy without influencing suspension dynamic performance, which is highly valuable to practical engineering.

  16. Dynamic neural networks based on-line identification and control of high performance motor drives

    Science.gov (United States)

    Rubaai, Ahmed; Kotaru, Raj

    1995-01-01

    In the automated and high-tech industries of the future, there wil be a need for high performance motor drives both in the low-power range and in the high-power range. To meet very straight demands of tracking and regulation in the two quadrants of operation, advanced control technologies are of a considerable interest and need to be developed. In response a dynamics learning control architecture is developed with simultaneous on-line identification and control. the feature of the proposed approach, to efficiently combine the dual task of system identification (learning) and adaptive control of nonlinear motor drives into a single operation is presented. This approach, therefore, not only adapts to uncertainties of the dynamic parameters of the motor drives but also learns about their inherent nonlinearities. In fact, most of the neural networks based adaptive control approaches in use have an identification phase entirely separate from the control phase. Because these approaches separate the identification and control modes, it is not possible to cope with dynamic changes in a controlled process. Extensive simulation studies have been conducted and good performance was observed. The robustness characteristics of neuro-controllers to perform efficiently in a noisy environment is also demonstrated. With this initial success, the principal investigator believes that the proposed approach with the suggested neural structure can be used successfully for the control of high performance motor drives. Two identification and control topologies based on the model reference adaptive control technique are used in this present analysis. No prior knowledge of load dynamics is assumed in either topology while the second topology also assumes no knowledge of the motor parameters.

  17. Dynamic aperture and performance of the SSC low energy booster lattice

    International Nuclear Information System (INIS)

    Pilat, F.; Bourianoff, G.; Cole, B.; Talman, R.; York, R.

    1991-05-01

    A systematic study of lattice designs proposed for the SSC Low Energy Booster has been performed, where the dynamic behavior of high transition gamma lattices is compared with that of a simpler FODO- like machine. After optimization of the transverse tunes, the dynamic aperture is determined by tracking the chromaticity corrected, ''ideal'' lattices, where the only sources on nonlinearity are the chromaticity sextupoles. The robustness of the lattices against misalignment, systematic and random errors is then evaluated and error compensation schemes worked out. The computational speed of the TEAPOT code has been greatly enhanced by porting and running its tracking core on the Intel iPSC/860 parallel computer. 7 refs., 5 figs., 3 tabs

  18. A dynamic network model to explain the development of excellent human performance

    Directory of Open Access Journals (Sweden)

    Ruud J.R. Den Hartigh

    2016-04-01

    Full Text Available Across different domains, from sports to science, some individuals accomplish excellent levels of performance. For over 150 years, researchers have debated the roles of specific nature and nurture components to develop excellence. In this article, we argue that the key to excellence does not reside in specific underlying components, but rather in the ongoing interactions among the components. We propose that excellence emerges out of dynamic networks consisting of idiosyncratic mixtures of interacting components such as genetic endowment, motivation, practice, and coaching. Using computer simulations we demonstrate that the dynamic network model accurately predicts typical properties of excellence reported in the literature, such as the idiosyncratic developmental trajectories leading to excellence and the highly skewed distributions of productivity present in virtually any achievement domain. Based on this novel theoretical perspective on excellent human performance, this article concludes by suggesting policy implications and directions for future research.

  19. Benchmarking novel approaches for modelling species range dynamics.

    Science.gov (United States)

    Zurell, Damaris; Thuiller, Wilfried; Pagel, Jörn; Cabral, Juliano S; Münkemüller, Tamara; Gravel, Dominique; Dullinger, Stefan; Normand, Signe; Schiffers, Katja H; Moore, Kara A; Zimmermann, Niklaus E

    2016-08-01

    Increasing biodiversity loss due to climate change is one of the most vital challenges of the 21st century. To anticipate and mitigate biodiversity loss, models are needed that reliably project species' range dynamics and extinction risks. Recently, several new approaches to model range dynamics have been developed to supplement correlative species distribution models (SDMs), but applications clearly lag behind model development. Indeed, no comparative analysis has been performed to evaluate their performance. Here, we build on process-based, simulated data for benchmarking five range (dynamic) models of varying complexity including classical SDMs, SDMs coupled with simple dispersal or more complex population dynamic models (SDM hybrids), and a hierarchical Bayesian process-based dynamic range model (DRM). We specifically test the effects of demographic and community processes on model predictive performance. Under current climate, DRMs performed best, although only marginally. Under climate change, predictive performance varied considerably, with no clear winners. Yet, all range dynamic models improved predictions under climate change substantially compared to purely correlative SDMs, and the population dynamic models also predicted reasonable extinction risks for most scenarios. When benchmarking data were simulated with more complex demographic and community processes, simple SDM hybrids including only dispersal often proved most reliable. Finally, we found that structural decisions during model building can have great impact on model accuracy, but prior system knowledge on important processes can reduce these uncertainties considerably. Our results reassure the clear merit in using dynamic approaches for modelling species' response to climate change but also emphasize several needs for further model and data improvement. We propose and discuss perspectives for improving range projections through combination of multiple models and for making these approaches

  20. Two-Scale Modelling of Effects of Microstructure and Thermomechanical Properties on Dynamic Performance of an Aluminium Alloy

    Science.gov (United States)

    2010-09-01

    Influences of microstructure and properties of an aluminium alloy on resistance to dynamic perforation are predicted using a decoupled multiscale ... simulated performance. Library parameters typical for aluminium alloys (Kohn, 1969) are used for the macroscopic equation of state of Al 2139, details of...Two-Scale Modelling of Effects of Microstructure and Thermomechanical Properties on Dynamic Performance of an Aluminium Alloy by J. D

  1. A forecasting performance comparison of dynamic factor models based on static and dynamic methods

    Directory of Open Access Journals (Sweden)

    Marra Fabio Della

    2017-03-01

    Full Text Available We present a comparison of the forecasting performances of three Dynamic Factor Models on a large monthly data panel of macroeconomic and financial time series for the UE economy. The first model relies on static principal-component and was introduced by Stock and Watson (2002a, b. The second is based on generalized principal components and it was introduced by Forni, Hallin, Lippi and Reichlin (2000, 2005. The last model has been recently proposed by Forni, Hallin, Lippi and Zaffaroni (2015, 2016. The data panel is split into two parts: the calibration sample, from February 1986 to December 2000, is used to select the most performing specification for each class of models in a in- sample environment, and the proper sample, from January 2001 to November 2015, is used to compare the performances of the selected models in an out-of-sample environment. The metholodogical approach is analogous to Forni, Giovannelli, Lippi and Soccorsi (2016, but also the size of the rolling window is empirically estimated in the calibration process to achieve more robustness. We find that, on the proper sample, the last model is the most performing for the Inflation. However, mixed evidencies appear over the proper sample for the Industrial Production.

  2. Performance Evaluation of Advanced Retrofit Roof Technologies Using Field-Test Data Phase Three Final Report, Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Kaushik [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Childs, Phillip W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Atchley, Jerald Allen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    This article presents some miscellaneous data from two low-slope and two steep-slope experimental roofs. The low-slope roofs were designed to compare the performance of various roof coatings exposed to natural weatherization. The steep-slope roofs contained different combinations of phase change material, rigid insulation, low emittance surface and above-sheathing ventilation, with standing-seam metal panels on top. The steep-slope roofs were constructed on a series of adjacent attics separated at the gables using thick foam insulation. This article describes phase three (3) of a study that began in 2009 to evaluate the energy benefits of a sustainable re-roofing technology utilizing standing-seam metal roofing panels combined with energy efficient features like above-sheathing-ventilation (ASV), phase change material (PCM) and rigid insulation board. The data from phases 1 and 2 have been previously published and reported [Kosny et al., 2011; Biswas et al., 2011; Biswas and Childs, 2012; Kosny et al., 2012]. Based on previous data analyses and discussions within the research group, additional test roofs were installed in May 2012, to test new configurations and further investigate different components of the dynamic insulation systems. Some experimental data from phase 3 testing from May 2012 to December 2013 and some EnergyPlus modeling results have been reported in volumes 1 and 3, respectively, of the final report [Biswas et al., 2014; Biswas and Bhandari, 2014].

  3. Comparative analyses on dynamic performances of photovoltaic–thermal solar collectors integrated with phase change materials

    International Nuclear Information System (INIS)

    Su, Di; Jia, Yuting; Alva, Guruprasad; Liu, Lingkun; Fang, Guiyin

    2017-01-01

    Highlights: • The dynamic model of photovoltaic–thermal collector with phase change material was developed. • The performances of photovoltaic–thermal collector are performed comparative analyses. • The performances of photovoltaic–thermal collector with phase change material were evaluated. • Upper phase change material mode can improve performances of photovoltaic–thermal collector. - Abstract: The operating conditions (especially temperature) of photovoltaic–thermal solar collectors have significant influence on dynamic performance of the hybrid photovoltaic–thermal solar collectors. Only a small percentage of incoming solar radiation can be converted into electricity, and the rest is converted into heat. This heat leads to a decrease in efficiency of the photovoltaic module. In order to improve the performance of the hybrid photovoltaic–thermal solar collector, we performed comparative analyses on a hybrid photovoltaic–thermal solar collector integrated with phase change material. Electrical and thermal parameters like solar cell temperature, outlet temperature of air, electrical power, thermal power, electrical efficiency, thermal efficiency and overall efficiency are simulated and analyzed to evaluate the dynamic performance of the hybrid photovoltaic–thermal collector. It is found that the position of phase change material layer in the photovoltaic–thermal collector has a significant effect on the performance of the photovoltaic–thermal collector. The results indicate that upper phase change material mode in the photovoltaic–thermal collector can significantly improve the thermal and electrical performance of photovoltaic–thermal collector. It is found that overall efficiency of photovoltaic–thermal collector in ‘upper phase change material’ mode is 10.7% higher than that in ‘no phase change material’ mode. Further, for a photovoltaic–thermal collector with upper phase change material, it is verified that 3 cm

  4. Scientific Final Report: COLLABORATIVE RESEARCH: CONTINUOUS DYNAMIC GRID ADAPTATION IN A GLOBAL ATMOSPHERIC MODEL: APPLICATION AND REFINEMENT

    Energy Technology Data Exchange (ETDEWEB)

    William J. Gutowski; Joseph M. Prusa, Piotr K. Smolarkiewicz

    2012-04-09

    This project had goals of advancing the performance capabilities of the numerical general circulation model EULAG and using it to produce a fully operational atmospheric global climate model (AGCM) that can employ either static or dynamic grid stretching for targeted phenomena. The resulting AGCM combined EULAG's advanced dynamics core with the 'physics' of the NCAR Community Atmospheric Model (CAM). Effort discussed below shows how we improved model performance and tested both EULAG and the coupled CAM-EULAG in several ways to demonstrate the grid stretching and ability to simulate very well a wide range of scales, that is, multi-scale capability. We leveraged our effort through interaction with an international EULAG community that has collectively developed new features and applications of EULAG, which we exploited for our own work summarized here. Overall, the work contributed to over 40 peer-reviewed publications and over 70 conference/workshop/seminar presentations, many of them invited.

  5. Human factors affecting the performance of inspection personnel in nuclear power plants: Final report

    International Nuclear Information System (INIS)

    Karimi, S.S.

    1988-12-01

    This study investigates the problem of poor performance among nuclear power plant inspection personnel both in training and in the field. First, a systems perspective is employed to explore the psychological processes and relevant human factors that may be associated with workers' inadequate performance. Second, two separate yet related approaches are used to clarify the definition of competence: (1) a theory-based (or ''top-down'') approach, in which effective performance is construed as a product of a skillful, motivated person interacting with a responsive environment; and (2) an empirical (or ''bottom-up'') approach, in which key persons and context characteristics are generated based on the opinions of experts in the industry. Using a series of semi-structured interviews, two empirical studies were conducted in the latter approach. Overall, the results of both studies converged with the theoretical analysis emphasizing (1) the reciprocal and dynamic interplay of contextual and motivational factors influencing performance, and (2) the salient role of supervisory practices in terms of support, cooperation, and efficiency in contributing to the outcome of performance. 53 refs., 14 figs., 7 tabs

  6. Design and evaluation of dynamic replication strategies for a high-performance data grid

    International Nuclear Information System (INIS)

    Ranganathan, K.; Foster, I.

    2001-01-01

    Physics experiments that generate large amounts of data need to be able to share it with researchers around the world. High performance grids facilitate the distribution of such data to geographically remote places. Dynamic replication can be used as a technique to reduce bandwidth consumption and access latency in accessing these huge amounts of data. The authors describe a simulation framework that we have developed to model a grid scenario, which enables comparative studies of alternative dynamic replication strategies. The authors present preliminary results obtained with this simulator, in which we evaluate the performance of six different replication strategies for three different kinds of access patterns. The simulation results show that the best strategy has significant savings in latency and bandwidth consumption if the access patterns contain a moderate amount of geographical locality

  7. Evaporation dynamics of a sessile droplet on glass surfaces with fluoropolymer coatings: focusing on the final stage of thin droplet evaporation.

    Science.gov (United States)

    Gatapova, Elizaveta Ya; Shonina, Anna M; Safonov, Alexey I; Sulyaeva, Veronica S; Kabov, Oleg A

    2018-03-07

    The evaporation dynamics of a water droplet with an initial volume of 2 μl from glass surfaces with fluoropolymer coatings are investigated using the shadow technique and an optical microscope. The droplet profile for a contact angle of less than 5° is constructed using an image-analyzing interference technique, and evaporation dynamics are investigated at the final stage. We coated the glass slides with a thin film of a fluoropolymer by the hot-wire chemical vapor deposition method at different deposition modes depending on the deposition pressure and the temperature of the activating wire. The resulting surfaces have different structures affecting the wetting properties. Droplet evaporation from a constant contact radius mode in the early stage of evaporation was found followed by the mode where both contact angle and contact radius simultaneously vary in time (final stage) regardless of wettability of the coated surfaces. We found that depinning occurs at small contact angles of 2.2-4.7° for all samples, which are smaller than the measured receding contact angles. This is explained by imbibition of the liquid into the developed surface of the "soft" coating that leads to formation of thin droplets completely wetting the surface. The final stage, which is little discussed in the literature, is also recorded. We have singled out a substage where the contact line velocity is abruptly increasing for all coated and uncoated surfaces. The critical droplet height corresponding to the transition to this substage is about 2 μm with R/h = 107. The duration of this substage is the same for all coated and uncoated surfaces. Droplets observed at this substage for all the tested surfaces are axisymmetric. The specific evaporation rate clearly demonstrates an abrupt increase at the final substage of the droplet evaporation. The classical R 2 law is justified for the complete wetting situation where the droplet is disappearing in an axisymmetric manner.

  8. What goes up must . . . Keep going up? Cultural differences in cognitive styles influence evaluations of dynamic performance.

    Science.gov (United States)

    Ferris, D Lance; Reb, Jochen; Lian, Huiwen; Sim, Samantha; Ang, Dionysius

    2018-03-01

    Past research on dynamic workplace performance evaluation has taken as axiomatic that temporal performance trends produce naïve extrapolation effects on performance ratings. That is, we naïvely assume that an individual whose performance has trended upward over time will continue to improve, and rate that individual more positively than an individual whose performance has trended downward over time-even if, on average, the 2 individuals have performed at an equivalent level. However, we argue that such naïve extrapolation effects are more pronounced in Western countries than Eastern countries, owing to Eastern countries having a more holistic cognitive style. To test our hypotheses, we examined the effect of performance trend on expectations of future performance and ratings of past performance across 2 studies: Study 1 compares the magnitude of naïve extrapolation effects among Singaporeans primed with either a more or less holistic cognitive style, and Study 2 examines holistic cognitive style as a mediating mechanism accounting for differences in the magnitude of naïve extrapolation effects between American and Chinese raters. Across both studies, we found support for our predictions that dynamic performance trends have less impact on the ratings of more holistic thinkers. Implications for the dynamic performance and naïve extrapolation literatures are discussed. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  9. PRIMA-X Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Daniel [German Research School for Simulation Sciences GmbH, Aachen (Germany); Wolf, Felix [German Research School for Simulation Sciences GmbH, Aachen (Germany)

    2016-02-17

    The PRIMA-X (Performance Retargeting of Instrumentation, Measurement, and Analysis Technologies for Exascale Computing) project is the successor of the DOE PRIMA (Performance Refactoring of Instrumentation, Measurement, and Analysis Technologies for Petascale Computing) project, which addressed the challenge of creating a core measurement infrastructure that would serve as a common platform for both integrating leading parallel performance systems (notably TAU and Scalasca) and developing next-generation scalable performance tools. The PRIMA-X project shifts the focus away from refactorization of robust performance tools towards a re-targeting of the parallel performance measurement and analysis architecture for extreme scales. The massive concurrency, asynchronous execution dynamics, hardware heterogeneity, and multi-objective prerequisites (performance, power, resilience) that identify exascale systems introduce fundamental constraints on the ability to carry forward existing performance methodologies. In particular, there must be a deemphasis of per-thread observation techniques to significantly reduce the otherwise unsustainable flood of redundant performance data. Instead, it will be necessary to assimilate multi-level resource observations into macroscopic performance views, from which resilient performance metrics can be attributed to the computational features of the application. This requires a scalable framework for node-level and system-wide monitoring and runtime analyses of dynamic performance information. Also, the interest in optimizing parallelism parameters with respect to performance and energy drives the integration of tool capabilities in the exascale environment further. Initially, PRIMA-X was a collaborative project between the University of Oregon (lead institution) and the German Research School for Simulation Sciences (GRS). Because Prof. Wolf, the PI at GRS, accepted a position as full professor at Technische Universität Darmstadt (TU

  10. Towards the final MRPC design. Performance test with heavy ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Deppner, Ingo; Herrmann, Norbert [Physikalisches Institut Uni. Heidelberg, Heidelberg (Germany)

    2015-07-01

    The Compressed Baryonic Matter spectrometer (CBM) is a future heavy ion experiment located at the Facility for Anti-proton and Ion Research (FAIR) in Darmstadt, Germany. The key element in CBM providing hadron identification at incident energies between 2 and 35 AGeV will be a 120 m{sup 2} large Time-of-Flight (ToF) wall composed of Multi-gap Resistive Plate Chambers (MRPC) with a system time resolution better than 80 ps. Aiming for an interaction rate of 10 MHz for Au+Au collisions the MRPCs have to cope with an incident particle flux between 0.1 kHz/cm{sup 2} and 25 kHz/cm{sup 2} depending on their location. Characterized by granularity and rate capability the actual conceptual design of the ToF-wall foresees 4 different counter types called MRPC1 - MRPC4. In order to elaborate the final MRPC design of these counters a heavy ion test beam time was performed at GSI. In this contribution we present performance test results of 2 different MRPC3 full size prototypes developed at Heidelberg University and Tsinghua University, Beijing.

  11. Performance evaluation of the zero-multipole summation method in modern molecular dynamics software.

    Science.gov (United States)

    Sakuraba, Shun; Fukuda, Ikuo

    2018-05-04

    The zero-multiple summation method (ZMM) is a cutoff-based method for calculating electrostatic interactions in molecular dynamics simulations, utilizing an electrostatic neutralization principle as a physical basis. Since the accuracies of the ZMM have been revealed to be sufficient in previous studies, it is highly desirable to clarify its practical performance. In this paper, the performance of the ZMM is compared with that of the smooth particle mesh Ewald method (SPME), where the both methods are implemented in molecular dynamics software package GROMACS. Extensive performance comparisons against a highly optimized, parameter-tuned SPME implementation are performed for various-sized water systems and two protein-water systems. We analyze in detail the dependence of the performance on the potential parameters and the number of CPU cores. Even though the ZMM uses a larger cutoff distance than the SPME does, the performance of the ZMM is comparable to or better than that of the SPME. This is because the ZMM does not require a time-consuming electrostatic convolution and because the ZMM gains short neighbor-list distances due to the smooth damping feature of the pairwise potential function near the cutoff length. We found, in particular, that the ZMM with quadrupole or octupole cancellation and no damping factor is an excellent candidate for the fast calculation of electrostatic interactions. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  12. Content Dynamics Over the Network Cloud

    Science.gov (United States)

    2015-11-04

    AFRL-AFOSR-CL-TR-2015-0003 Content dynamics over the network cloud Fernando Paganini UNIVERSIDAD ORT URUGUAY CUAREIM 1451 MONTEVIDEO, 11100 UY 11/04...approved for public release. FINAL PERFORMANCE REPORT: 7-15-2012 to 7-14-2015 AFOSR GRANT NUMBER: FA9550-12-1-0398 PI: Fernando Paganini Universidad ORT...349-362, Apr 2014. 7. M. Zubeldía, “From resource allocation to neighbor selection in peer-to-peer networks”, MS Thesis, Universidad ORT Uruguay

  13. Final-state interactions and relativistic effects in the quasielastic (e,e') reaction

    International Nuclear Information System (INIS)

    Chinn, C.R.; Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545); Picklesimer, A.; Van Orden, J.W.

    1989-01-01

    The longitudinal and transverse response functions for the inclusive quasielastic (e,e') reaction are analyzed in detail. A microscopic theoretical framework for the many-body reaction provides a clear conceptual (nonrelativistic) basis for treating final-state interactions and goes far beyond simple plane-wave or Hermitean potential models. The many-body physics of inelastic final-state channels as described by optical and multiple scattering theories is properly included by incorporating a full complex optical potential. Explicit nonrelativistic and relativistic momentum-space calculations quantitatively demonstrate the importance of such a treatment of final-state interactions for both the transverse and longitudinal response. Nonrelativistic calculations are performed using final-state interactions based on phenomenology, local density models, and microscopic multiple scattering theory. Relativistic calculations span a similar range of models and employ Dirac bound-state wave functions. The theoretical extension to relativistic dynamics is of course not clear, but is done in obvious parallel to elastic proton scattering. Extensive calculations are performed for 40 Ca at momentum transfers of 410, 550, and 700 MeV/c. A number of interesting physical effects are observed, including significant relativistic suppressions (especially for R L ), large off-shell and virtual pair effects, enhancement of the tails of the response by the final-state interactions, and large qualitative and even shape distinctions between the predictions of the various models of the final-state interactions. None of the models is found to be able to simultaneously predict the data for both response functions. This strongly suggests that additional physical mechanisms are of qualitative importance in inclusive quasielastic electron scattering

  14. Adaptation and learning: characteristic time scales of performance dynamics.

    Science.gov (United States)

    Newell, Karl M; Mayer-Kress, Gottfried; Hong, S Lee; Liu, Yeou-Teh

    2009-12-01

    A multiple time scales landscape model is presented that reveals structures of performance dynamics that were not resolved in the traditional power law analysis of motor learning. It shows the co-existence of separate processes during and between practice sessions that evolve in two independent dimensions characterized by time scales that differ by about an order of magnitude. Performance along the slow persistent dimension of learning improves often as much and sometimes more during rest (memory consolidation and/or insight generation processes) than during a practice session itself. In contrast, the process characterized by the fast, transient dimension of adaptation reverses direction between practice sessions, thereby significantly degrading performance at the beginning of the next practice session (warm-up decrement). The theoretical model fits qualitatively and quantitatively the data from Snoddy's [Snoddy, G. S. (1926). Learning and stability. Journal of Applied Psychology, 10, 1-36] classic learning study of mirror tracing and other averaged and individual data sets, and provides a new account of the processes of change in adaptation and learning. 2009 Elsevier B.V. All rights reserved.

  15. Software life cycle dynamic simulation model: The organizational performance submodel

    Science.gov (United States)

    Tausworthe, Robert C.

    1985-01-01

    The submodel structure of a software life cycle dynamic simulation model is described. The software process is divided into seven phases, each with product, staff, and funding flows. The model is subdivided into an organizational response submodel, a management submodel, a management influence interface, and a model analyst interface. The concentration here is on the organizational response model, which simulates the performance characteristics of a software development subject to external and internal influences. These influences emanate from two sources: the model analyst interface, which configures the model to simulate the response of an implementing organization subject to its own internal influences, and the management submodel that exerts external dynamic control over the production process. A complete characterization is given of the organizational response submodel in the form of parameterized differential equations governing product, staffing, and funding levels. The parameter values and functions are allocated to the two interfaces.

  16. Dynamic Model of Centrifugal Compressor for Prediction of Surge Evolution and Performance Variations

    International Nuclear Information System (INIS)

    Jung, Mooncheong; Han, Jaeyoung; Yu, Sangseok

    2016-01-01

    When a control algorithm is developed to protect automotive compressor surges, the simulation model typically selects an empirically determined look-up table. However, it is difficult for a control oriented empirical model to show surge characteristics of the super charger. In this study, a dynamic supercharger model is developed to predict the performance of a centrifugal compressor under dynamic load follow-up. The model is developed using Simulink® environment, and is composed of a compressor, throttle body, valves, and chamber. Greitzer’s compressor model is used, and the geometric parameters are achieved by the actual supercharger. The simulation model is validated with experimental data. It is shown that compressor surge is effectively predicted by this dynamic compressor model under various operating conditions.

  17. Dynamic Model of Centrifugal Compressor for Prediction of Surge Evolution and Performance Variations

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Mooncheong; Han, Jaeyoung; Yu, Sangseok [Chungnam National Univ., Daejeon (Korea, Republic of)

    2016-05-15

    When a control algorithm is developed to protect automotive compressor surges, the simulation model typically selects an empirically determined look-up table. However, it is difficult for a control oriented empirical model to show surge characteristics of the super charger. In this study, a dynamic supercharger model is developed to predict the performance of a centrifugal compressor under dynamic load follow-up. The model is developed using Simulink® environment, and is composed of a compressor, throttle body, valves, and chamber. Greitzer’s compressor model is used, and the geometric parameters are achieved by the actual supercharger. The simulation model is validated with experimental data. It is shown that compressor surge is effectively predicted by this dynamic compressor model under various operating conditions.

  18. Motor intensive anti-gravity training improves performance in dynamic balance related tasks in persons with Parkinson's disease

    DEFF Research Database (Denmark)

    Malling, Anne Sofie Bøgh; Jensen, Bente Rona

    2016-01-01

    , the aim was to study the effect of motor intensive training performed in a safe anti-gravity environment using lower-body positive pressure (LBPP) technology on performance during dynamic balance related tasks. Thirteen male PDP went through an 8-week control period followed by 8 weeks of motor intensive...... antigravity training. Seventeen healthy males constituted a control group (CON). Performance during a five repetition sit-to-stand test (STS; sagittal plane) and a dynamic postural balance test (DPB; transversal plane) was evaluated. Effect measures were completion time, functional rates of force development...

  19. Human Performance-Aware Scheduling and Routing of a Multi-Skilled Workforce

    Directory of Open Access Journals (Sweden)

    Maikel L. van Eck

    2017-10-01

    Full Text Available Planning human activities within business processes often happens based on the same methods and algorithms as are used in the area of manufacturing systems. However, human behaviour is quite different from machine behaviour. Their performance depends on a number of factors, including workload, stress, personal preferences, etc. In this article we describe an approach for scheduling activities of people that takes into account business rules and dynamic human performance in order to optimise the schedule. We formally describe the scheduling problem we address and discuss how it can be constructed from inputs in the form of business process models and performance measurements. Finally, we discuss and evaluate an implementation for our planning approach to show the impact of considering dynamic human performance in scheduling.

  20. Dynamic assessment of bridge deck performance considering realistic bridge-traffic interaction : research brief

    Science.gov (United States)

    2017-09-01

    This study is to develop simulation methodology to conduct the dynamic assessment of bridge deck performance subjected to traffic. Concrete bridge decks are exposed to daily traffic loads and may experience some surface cracking caused by excessive s...

  1. Some effects of sleep deprivation on tracking performance in static and dynamic environments.

    Science.gov (United States)

    1976-01-01

    The influence of approximately 34 and 55 h of sleep deprivation on performance scores derived from manually tracking the localizer needle on an aircraft instrument was assessed under both static (no motion) and dynamic (whole-body angular acceleratio...

  2. Performance metric optimization advocates CPFR in supply chains: A system dynamics model based study

    OpenAIRE

    Balaji Janamanchi; James R. Burns

    2016-01-01

    Background: Supply Chain partners often find themselves in rather helpless positions, unable to improve their firm’s performance and profitability because their partners although willing to share production information do not fully collaborate in tackling customer order variations as they don’t seem to appreciate the benefits of such collaboration. Methods: We use a two-player (supplier-manufacturer) System Dynamics model to study the dynamics to assess the impact and usefulness of supply cha...

  3. The Institute for Sustained Performance, Energy, and Resilience, University of North Carolina, Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, Robert [Univ. of North Carolina, Chapel Hill, NC (United States)

    2018-01-20

    This is the final report for the UNC component of the SciDAD Institute for Sustained Performance, Energy, and Resilience. In this report, we describe activities on the SUPER project at RENCI at the University of North Carolina at Chapel Hill. While we focus particularly on UNC, we touch on project-wide activities as well as, on interactions with, and impacts on, other projects.

  4. Analysis of Dynamic Stiffness of Bridge Cap-Pile System

    Directory of Open Access Journals (Sweden)

    Jinhui Chu

    2018-01-01

    Full Text Available In order to investigate the applicability of dynamic stiffness for bridge cap-pile system, a laboratory test was performed. A numerical model was also built for this type of system. The impact load was applied on the cap top and the dynamic stiffness was analysed. Then, the effect of the effective friction area between pile and soil was also considered. Finally, the dynamic stiffness relationship between the single pile and the cap-pile system was also compared. The results show that the dynamic stiffness is a sensitive index and can well reflect the static characteristics of the pile at the elastic stage. There is a significant positive correlation between the vertical dynamic stiffness index and bearing capacity of the cap-pile system in the similar formation environment. For the cap-pile system with four piles, the dynamic stiffness is about four times as large as the single pile between 10 and 20 Hz.

  5. Comparative Study of the Tuning Performances of the Nominal and Long L* CLIC Final Focus System at √s = 380 GeV

    CERN Document Server

    Plassard, F; Marin, E; Tomás, R

    2017-01-01

    Mitigation of static imperfections for emittance preservation is one of the most important and challenging tasks faced by the Compact Linear Collider (CLIC) beam delivery system. A simulation campaign has been performed to recover the nominal luminosity by means of different alignment procedures. The state of the art of the tuning studies is drawn up. Comparative studies of the tuning performances and a tuning-based final focus system design optimization for two L options are presented. The effectiveness of the tuning techniques applied to these different lattices will be decisive for the final layout of the CLIC final focus system at √s = 380 GeV.

  6. Dynamic performance of self-operated three-way valve used in a hybrid air conditioner

    International Nuclear Information System (INIS)

    Zhang, Penglei; Zhou, Dehai; Shi, Wenxing; Li, Xianting; Wang, Baolong

    2014-01-01

    A hybrid air conditioner combining a thermosyphon cycle with a vapor compression refrigeration cycle has a large energy saving potential compared with a common air conditioner for spaces requiring year-round cooling. The performance of the switch between the vapor compression mode and the thermosyphon mode largely impacts the safety and reliability of hybrid air conditioners. Therefore, a self-operated three-way valve is proposed. A thermodynamic model and a kinetic model are developed in this paper to evaluate the dynamic performance of the switch valve. The effects of the spring force constant, compressor discharging volume, fit clearance and piston length on the dynamic performance of the switch valve are analyzed. In conclusion, the proposed self-operated three-way valve can realize the switch operation accurately. - Highlights: •A self-operated three-way valve is proposed for hybrid air conditioners. •The thermodynamic model and kinetic model of the self-operated three-way valve are developed. •The validity of models is verified by experiments. •Effects of four main design parameters on the operating performance of the valve are researched

  7. Final Phase Flight Performance and Touchdown Time Assessment of TDV in RLV-TD HEX-01 Mission

    Science.gov (United States)

    Yadav, Sandeep; Jayakumar, M.; Nizin, Aziya; Kesavabrahmaji, K.; Shyam Mohan, N.

    2017-12-01

    RLV-TD HEX-01 mission was configured as a precursor flight to actual two stages to orbit vehicle. In this mission RLV-TD was designed as a two stage vehicle for demonstrating the hypersonic flight of a winged body vehicle at Mach No. 5. One of the main objectives of this mission was to generate data for better understanding of new technologies required to design the future vehicle. In this mission, the RLV-TD vehicle was heavily instrumented to get data related to performance of different subsystems. As per the mission design, RLV-TD will land in sea after flight duration of 700 s and travelling a distance of nearly 500 km in Bay of Bengal from the launch site for a nominal trajectory. The visibility studies for telemetry data of vehicle for the nominal and off nominal trajectories were carried out. Based on that, three ground stations were proposed for the telemetry data reception (including one in sea). Even with this scheme it was seen that during the final phase of the flight there will not be any ground station visible to the flight due to low elevation. To have the mission critical data during final phase of the flight, telemetry through INSAT scheme was introduced. During the end of the mission RLV-TD will be landing in the sea on a hypothetical runway. To know the exact time of touchdown for the flight in sea, there was no direct measurement available. Simultaneously there were all chances of losing ground station visibility just before touchdown, making it difficult to assess flight performance during that phase. In this work, telemetry and instrumentation scheme of RLV-TD HEX-01 mission is discussed with an objective to determine the flight performance during the final phase. Further, using various flight sensor data the touchdown time of TDV is assessed for this mission.

  8. Physiological performance of plaice Pleuronectes platessa (L.): from Static to Dynamic Energy Budgets.

    NARCIS (Netherlands)

    v.d. Veer, H.; Cardoso, J.F.M.F.; Peck, M.A.; Kooijman, S.A.L.M.

    2009-01-01

    In the present study, various body size scaling relationships describing the physiological performance of plaice Pleuronectes platessa (L.) were derived using a dynamic energy budget (DEB) model and compared with allometric relationships derived from a static energy budget (SEB) model. Results

  9. Dynamic Performance of the Standalone Wind Power Driven Heat Pump

    OpenAIRE

    H. Li; P.E. Campana; S. Berretta; Y. Tan; J. Yan

    2016-01-01

    Reducing energy consumption and increasing use of renewable energyin the building sector arecrucial to the mitigation of climate change. Wind power driven heat pumps have been considered as a sustainable measure to supply heat for detached houses, especially those that even don’t have access to the grid. This work is to investigate the dynamic performance of a heat pump system directly driven by a wind turbine. The heat demand of a detached single family house was simulated in details. Accord...

  10. Dynamic modelling of a 3-CPU parallel robot via screw theory

    Directory of Open Access Journals (Sweden)

    L. Carbonari

    2013-04-01

    Full Text Available The article describes the dynamic modelling of I.Ca.Ro., a novel Cartesian parallel robot recently designed and prototyped by the robotics research group of the Polytechnic University of Marche. By means of screw theory and virtual work principle, a computationally efficient model has been built, with the final aim of realising advanced model based controllers. Then a dynamic analysis has been performed in order to point out possible model simplifications that could lead to a more efficient run time implementation.

  11. DYNAMICS OF POLYMERS AT INTERFACES; FINAL

    International Nuclear Information System (INIS)

    SMITH, G.S.; MAJEWSKI, J.

    1999-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project addresses fundamental questions concerning the behavior of polymers at interfaces: (1) What processes control the formation of an adsorbed layer on a clean surface? (2) What processes control the displacement of preadsorbed polymers? (3) Can one accurately predict the structure of polymer layers? To answer these questions, using neutron reflectivity, we have studied adsorbed layers of the polymer poly(methyl methacrylate) (PMMA) onto a quartz substrate. The polymer density profiles were derived from the neutron reflectivity data. We have shown that dry films exhibit behavior predicted by mean-field theory in that the equilibrated layer thickness scales with the molecular weight of the polymer. Also, we find that the profiles of the polymers in solution qualitatively agree with those predicted by reflected random walk (RRW) theories, yet the profiles are not in quantitative agreement

  12. High-Performance Modeling of Carbon Dioxide Sequestration by Coupling Reservoir Simulation and Molecular Dynamics

    KAUST Repository

    Bao, Kai; Yan, Mi; Allen, Rebecca; Salama, Amgad; Lu, Ligang; Jordan, Kirk E.; Sun, Shuyu; Keyes, David E.

    2015-01-01

    The present work describes a parallel computational framework for carbon dioxide (CO2) sequestration simulation by coupling reservoir simulation and molecular dynamics (MD) on massively parallel high-performance-computing (HPC) systems

  13. Dynamic protein assembly by programmable DNA strand displacement

    Science.gov (United States)

    Chen, Rebecca P.; Blackstock, Daniel; Sun, Qing; Chen, Wilfred

    2018-03-01

    Inspired by the remarkable ability of natural protein switches to sense and respond to a wide range of environmental queues, here we report a strategy to engineer synthetic protein switches by using DNA strand displacement to dynamically organize proteins with highly diverse and complex logic gate architectures. We show that DNA strand displacement can be used to dynamically control the spatial proximity and the corresponding fluorescence resonance energy transfer between two fluorescent proteins. Performing Boolean logic operations enabled the explicit control of protein proximity using multi-input, reversible and amplification architectures. We further demonstrate the power of this technology beyond sensing by achieving dynamic control of an enzyme cascade. Finally, we establish the utility of the approach as a synthetic computing platform that drives the dynamic reconstitution of a split enzyme for targeted prodrug activation based on the sensing of cancer-specific miRNAs.

  14. Dynamic Performance of High Bypass Ratio Turbine Engines With Water Ingestion

    Science.gov (United States)

    Murthy, S. N. B.

    1996-01-01

    The research on dynamic performance of high bypass turbofan engines includes studies on inlets, turbomachinery and the total engine system operating with air-water mixture; the water may be in vapor, droplet, or film form, and their combinations. Prediction codes (WISGS, WINCOF, WINCOF-1, WINCLR, and Transient Engine Performance Code) for performance changes, as well as changes in blade-casing clearance, have been established and demonstrated in application to actual, generic engines. In view of the continuous changes in water distribution in turbomachinery, the performance of both components and the total engine system must be determined in a time-dependent mode; hence, the determination of clearance changes also requires a time-dependent approach. In general, the performance and clearances changes cannot be scaled either with respect to operating or ingestion conditions. Removal of water prior to phase change is the most effective means of avoiding ingestion effects. Sufficient background has been established to perform definitive, full scale tests on a set of components and a complete engine to establish engine control and operability with various air-water vapor-water mixtures.

  15. Real-time high dynamic range laser scanning microscopy

    Science.gov (United States)

    Vinegoni, C.; Leon Swisher, C.; Fumene Feruglio, P.; Giedt, R. J.; Rousso, D. L.; Stapleton, S.; Weissleder, R.

    2016-04-01

    In conventional confocal/multiphoton fluorescence microscopy, images are typically acquired under ideal settings and after extensive optimization of parameters for a given structure or feature, often resulting in information loss from other image attributes. To overcome the problem of selective data display, we developed a new method that extends the imaging dynamic range in optical microscopy and improves the signal-to-noise ratio. Here we demonstrate how real-time and sequential high dynamic range microscopy facilitates automated three-dimensional neural segmentation. We address reconstruction and segmentation performance on samples with different size, anatomy and complexity. Finally, in vivo real-time high dynamic range imaging is also demonstrated, making the technique particularly relevant for longitudinal imaging in the presence of physiological motion and/or for quantification of in vivo fast tracer kinetics during functional imaging.

  16. A Dynamic Simulation Model of Organizational Culture and Business Strategy Effects on Performance

    Science.gov (United States)

    Trivellas, Panagiotis; Reklitis, Panagiotis; Konstantopoulos, Nikolaos

    2007-12-01

    In the past two decades, organizational culture literature has gained tremendous interest for both academic and practitioners. This is based not only on the suggestion that culture is related to performance, but also on the view that it is subject of direct managerial control and manipulation to the desired direction. In the present paper, we adopt Competing Values Framework (CVF) to operationalise organizational culture and Porter's typology to conceptualize business strategy (cost leadership, innovative and marketing differentiation, and focus). Although simulation of social events is a quite difficult task, since there are so many considerations (not all well understood) involved, in the present study we developed a dynamic model to simulate the organizational culture and strategy effects on financial performance. Data obtained from a six-year survey in the banking sector of a European developing economy was used for the proposed dynamic model development.

  17. Advanced Dynamic Anthropomorphic Manikin (ADAM) Final Design Report

    Science.gov (United States)

    1990-03-01

    an ejection sequence, the human body is subjected to numerous dynamic loadings from the catapult and sustaining rocket, as well as from wind blast. In...ML12S33 CMF’I.B #1.33, (A6) Selection = 3? BNC.S MU2S34 No - check for 4 LEA.L F’ARMSG,A2 Else display Parity prompt MOVC..W PARCT,D2 BSFR DI.; PMSG CLR.W

  18. Chunking Dynamics: Heteroclinics in Mind

    Directory of Open Access Journals (Sweden)

    Mikhail I Rabinovich

    2014-03-01

    Full Text Available Recent results of imaging technologies and nonlinear dynamics make possible to relate the structure and dynamics of functional brain networks to different mental tasks and to build theoretical models for the description and prediction of cognitive activity. Such models are nonlinear dynamical descriptions of the interaction of the core components –brain modes– participating in a specific mental function. The dynamical images of different mental processes depend on their temporal features. The dynamics of many cognitive functions are transient. They are often observed as a chain of sequentially changing metastable states. A stable heteroclinic channel consisting of chain of saddles -metastable states- connected by unstable separatrices is a mathematical image for robust transients. In this paper we focus on hierarchical chunking dynamics that can represent several forms of transient cognitive activity. Chunking is a dynamical phenomenon that nature uses to perform information processing of long sequences by dividing them in shorter information items. Chunking, for example, makes more efficient the use of short-term memory by breaking up long strings of information (like in language where one can see the separation of a novel on chapters, paragraphs, sentences and finally words. Chunking is important in many processes of perception, learning and cognition in humans and animals. Based on anatomical information about the hierarchical organization of functional brain networks, we proposed here a cognitive network architecture that hierarchically chunks and super-chunks switching sequences of metastable states produced by winnerless competitive heteroclinic dynamics.

  19. Nature versus nurture: Predictability in low-temperature Ising dynamics

    Science.gov (United States)

    Ye, J.; Machta, J.; Newman, C. M.; Stein, D. L.

    2013-10-01

    Consider a dynamical many-body system with a random initial state subsequently evolving through stochastic dynamics. What is the relative importance of the initial state (“nature”) versus the realization of the stochastic dynamics (“nurture”) in predicting the final state? We examined this question for the two-dimensional Ising ferromagnet following an initial deep quench from T=∞ to T=0. We performed Monte Carlo studies on the overlap between “identical twins” raised in independent dynamical environments, up to size L=500. Our results suggest an overlap decaying with time as t-θh with θh=0.22±0.02; the same exponent holds for a quench to low but nonzero temperature. This “heritability exponent” may equal the persistence exponent for the two-dimensional Ising ferromagnet, but the two differ more generally.

  20. GNSS Signal Tracking Performance Improvement for Highly Dynamic Receivers by Gyroscopic Mounting Crystal Oscillator.

    Science.gov (United States)

    Abedi, Maryam; Jin, Tian; Sun, Kewen

    2015-08-31

    In this paper, the efficiency of the gyroscopic mounting method is studied for a highly dynamic GNSS receiver's reference oscillator for reducing signal loss. Analyses are performed separately in two phases, atmospheric and upper atmospheric flights. Results show that the proposed mounting reduces signal loss, especially in parts of the trajectory where its probability is the highest. This reduction effect appears especially for crystal oscillators with a low elevation angle g-sensitivity vector. The gyroscopic mounting influences frequency deviation or jitter caused by dynamic loads on replica carrier and affects the frequency locked loop (FLL) as the dominant tracking loop in highly dynamic GNSS receivers. In terms of steady-state load, the proposed mounting mostly reduces the frequency deviation below the one-sigma threshold of FLL (1σ(FLL)). The mounting method can also reduce the frequency jitter caused by sinusoidal vibrations and reduces the probability of signal loss in parts of the trajectory where the other error sources accompany this vibration load. In the case of random vibration, which is the main disturbance source of FLL, gyroscopic mounting is even able to suppress the disturbances greater than the three-sigma threshold of FLL (3σ(FLL)). In this way, signal tracking performance can be improved by the gyroscopic mounting method for highly dynamic GNSS receivers.

  1. Dynamic revetments for coastal erosion in Oregon : final report.

    Science.gov (United States)

    2005-08-01

    Gravel beaches have long been recognized as one of the most efficient forms of "natural" coastal protection, and have been suggested as a form of shore protection. "Cobble berms," "dynamic revetments" or "rubble beaches" involve the construction of a...

  2. Individual Differences in Cognitive and Noncognitive Abilities and Team Performance in Dynamic Task Environments

    National Research Council Canada - National Science Library

    Doane, Stephanie

    2004-01-01

    The specific goal of this research was to examine the role of individual differences in cognitive and non-cognitive abilities on individual and team performance in a real-time dynamic team-task environment...

  3. The internal processes and behavioral dynamics of hospital boards: an exploration of differences between high- and low-performing hospitals.

    Science.gov (United States)

    Kane, Nancy M; Clark, Jonathan R; Rivenson, Howard L

    2009-01-01

    Nonprofit hospital boards are under increasing pressure to improve financial, clinical, and charitable and community benefit performance. Most research on board effectiveness focuses on variables measuring board structure and attributes associated with competing ideal models of board roles. However, the results do not provide clear evidence that one role is superior to another and suggest that in practice boards pursue hybrid roles. Board dynamics and processes have received less attention from researchers, but emerging theoretical frameworks highlight them as key to effective corporate governance. We explored differences in board processes and behavioral dynamics between financially high- and low-performing hospitals, with the goal of developing a better understanding of the best board practices in nonprofit hospitals. A comparative case study approach allowed for in-depth, qualitative assessments of how the internal workings of boards differ between low- and high-performing facilities. Boards of hospitals with strong financial performance exhibited behavioral dynamics and internal processes that differed in important ways from those of hospitals with poor financial performance. Boards need to actively attend to key processes and foster positive group dynamics in decision making to be more effective in governing hospitals.

  4. Comparison of two methods to determine fan performance curves using computational fluid dynamics

    Science.gov (United States)

    Onma, Patinya; Chantrasmi, Tonkid

    2018-01-01

    This work investigates a systematic numerical approach that employs Computational Fluid Dynamics (CFD) to obtain performance curves of a backward-curved centrifugal fan. Generating the performance curves requires a number of three-dimensional simulations with varying system loads at a fixed rotational speed. Two methods were used and their results compared to experimental data. The first method incrementally changes the mass flow late through the inlet boundary condition while the second method utilizes a series of meshes representing the physical damper blade at various angles. The generated performance curves from both methods are compared with an experiment setup in accordance with the AMCA fan performance testing standard.

  5. Initial Results from an Energy-Aware Airborne Dynamic, Data-Driven Application System Performing Sampling in Coherent Boundary-Layer Structures

    Science.gov (United States)

    Frew, E.; Argrow, B. M.; Houston, A. L.; Weiss, C.

    2014-12-01

    The energy-aware airborne dynamic, data-driven application system (EA-DDDAS) performs persistent sampling in complex atmospheric conditions by exploiting wind energy using the dynamic data-driven application system paradigm. The main challenge for future airborne sampling missions is operation with tight integration of physical and computational resources over wireless communication networks, in complex atmospheric conditions. The physical resources considered here include sensor platforms, particularly mobile Doppler radar and unmanned aircraft, the complex conditions in which they operate, and the region of interest. Autonomous operation requires distributed computational effort connected by layered wireless communication. Onboard decision-making and coordination algorithms can be enhanced by atmospheric models that assimilate input from physics-based models and wind fields derived from multiple sources. These models are generally too complex to be run onboard the aircraft, so they need to be executed in ground vehicles in the field, and connected over broadband or other wireless links back to the field. Finally, the wind field environment drives strong interaction between the computational and physical systems, both as a challenge to autonomous path planning algorithms and as a novel energy source that can be exploited to improve system range and endurance. Implementation details of a complete EA-DDDAS will be provided, along with preliminary flight test results targeting coherent boundary-layer structures.

  6. Non-local means denoising of dynamic PET images.

    Directory of Open Access Journals (Sweden)

    Joyita Dutta

    Full Text Available Dynamic positron emission tomography (PET, which reveals information about both the spatial distribution and temporal kinetics of a radiotracer, enables quantitative interpretation of PET data. Model-based interpretation of dynamic PET images by means of parametric fitting, however, is often a challenging task due to high levels of noise, thus necessitating a denoising step. The objective of this paper is to develop and characterize a denoising framework for dynamic PET based on non-local means (NLM.NLM denoising computes weighted averages of voxel intensities assigning larger weights to voxels that are similar to a given voxel in terms of their local neighborhoods or patches. We introduce three key modifications to tailor the original NLM framework to dynamic PET. Firstly, we derive similarities from less noisy later time points in a typical PET acquisition to denoise the entire time series. Secondly, we use spatiotemporal patches for robust similarity computation. Finally, we use a spatially varying smoothing parameter based on a local variance approximation over each spatiotemporal patch.To assess the performance of our denoising technique, we performed a realistic simulation on a dynamic digital phantom based on the Digimouse atlas. For experimental validation, we denoised [Formula: see text] PET images from a mouse study and a hepatocellular carcinoma patient study. We compared the performance of NLM denoising with four other denoising approaches - Gaussian filtering, PCA, HYPR, and conventional NLM based on spatial patches.The simulation study revealed significant improvement in bias-variance performance achieved using our NLM technique relative to all the other methods. The experimental data analysis revealed that our technique leads to clear improvement in contrast-to-noise ratio in Patlak parametric images generated from denoised preclinical and clinical dynamic images, indicating its ability to preserve image contrast and high

  7. Non-local means denoising of dynamic PET images.

    Science.gov (United States)

    Dutta, Joyita; Leahy, Richard M; Li, Quanzheng

    2013-01-01

    Dynamic positron emission tomography (PET), which reveals information about both the spatial distribution and temporal kinetics of a radiotracer, enables quantitative interpretation of PET data. Model-based interpretation of dynamic PET images by means of parametric fitting, however, is often a challenging task due to high levels of noise, thus necessitating a denoising step. The objective of this paper is to develop and characterize a denoising framework for dynamic PET based on non-local means (NLM). NLM denoising computes weighted averages of voxel intensities assigning larger weights to voxels that are similar to a given voxel in terms of their local neighborhoods or patches. We introduce three key modifications to tailor the original NLM framework to dynamic PET. Firstly, we derive similarities from less noisy later time points in a typical PET acquisition to denoise the entire time series. Secondly, we use spatiotemporal patches for robust similarity computation. Finally, we use a spatially varying smoothing parameter based on a local variance approximation over each spatiotemporal patch. To assess the performance of our denoising technique, we performed a realistic simulation on a dynamic digital phantom based on the Digimouse atlas. For experimental validation, we denoised [Formula: see text] PET images from a mouse study and a hepatocellular carcinoma patient study. We compared the performance of NLM denoising with four other denoising approaches - Gaussian filtering, PCA, HYPR, and conventional NLM based on spatial patches. The simulation study revealed significant improvement in bias-variance performance achieved using our NLM technique relative to all the other methods. The experimental data analysis revealed that our technique leads to clear improvement in contrast-to-noise ratio in Patlak parametric images generated from denoised preclinical and clinical dynamic images, indicating its ability to preserve image contrast and high intensity details while

  8. Develop feedback system for intelligent dynamic resource allocation to improve application performance.

    Energy Technology Data Exchange (ETDEWEB)

    Gentile, Ann C.; Brandt, James M.; Tucker, Thomas (Open Grid Computing, Inc., Austin, TX); Thompson, David

    2011-09-01

    This report provides documentation for the completion of the Sandia Level II milestone 'Develop feedback system for intelligent dynamic resource allocation to improve application performance'. This milestone demonstrates the use of a scalable data collection analysis and feedback system that enables insight into how an application is utilizing the hardware resources of a high performance computing (HPC) platform in a lightweight fashion. Further we demonstrate utilizing the same mechanisms used for transporting data for remote analysis and visualization to provide low latency run-time feedback to applications. The ultimate goal of this body of work is performance optimization in the face of the ever increasing size and complexity of HPC systems.

  9. Target acquisition performance : Effects of target aspect angle, dynamic imaging and signal processing

    NARCIS (Netherlands)

    Beintema, J.A.; Bijl, P.; Hogervorst, M.A.; Dijk, J.

    2008-01-01

    In an extensive Target Acquisition (TA) performance study, we recorded static and dynamic imagery of a set of military and civilian two-handheld objects at a range of distances and aspect angles with an under-sampled uncooled thermal imager. Next, we applied signal processing techniques including

  10. Dynamic performance of a novel solar photovoltaic/loop-heat-pipe heat pump system

    International Nuclear Information System (INIS)

    Zhang, Xingxing; Zhao, Xudong; Shen, Jingchun; Xu, Jihuan; Yu, Xiaotong

    2014-01-01

    Highlights: • A transient model was developed to predict dynamic performance of new PV/LHP system. • The model accuracy was validated by experiment giving less than 9% in error. • The new system had basic and advanced performance coefficients of 5.51 and 8.71. • The new system had a COP 1.5–4 times that for conventional heat pump systems. • The new system had higher exergetic efficiency than PV and solar collector systems. - Abstract: Objective of the paper is to present an investigation into the dynamic performance of a novel solar photovoltaic/loop-heat-pipe (PV/LHP) heat pump system for potential use in space heating or hot water generation. The methods used include theoretical computer simulation, experimental verification, analysis and comparison. The fundamental equations governing the transient processes of solar transmission, heat transfer, fluid flow and photovoltaic (PV) power generation were appropriately integrated to address the energy balances occurring in different parts of the system, e.g., glazing cover, PV cells, fin sheet, loop heat pipe, heat pump cycle and water tank. A dedicated computer model was developed to resolve the above grouping equations and consequently predict the system’s dynamic performance. An experimental rig was constructed and operated under the real weather conditions for over one week in Shanghai to evaluate the system living performance, which was undertaken by measurement of various operational parameters, e.g., solar radiation, photovoltaic power generation, temperatures and heat pump compressor consumption. On the basis of the first- (energetic) and second- (exergetic) thermodynamic laws, an overall evaluation approach was proposed and applied to conduct both quantitative and qualitative analysis of the PV/LHP module’s efficiency, which involved use of the basic thermal performance coefficient (COP th ) and the advanced performance coefficient (COP PV/T ) of such a system. Moreover, a simple comparison

  11. Doublet vs. FODO structure: beam dynamics and layout

    CERN Document Server

    Eshraqi, M; CERN. Geneva. BE Department

    2010-01-01

    A FoDo (singlet) structure is designed for the CERN Superconducting Proton LINAC. This architecture is compared to the baseline (doublet) architecture of SPL on the basis of its beam dynamics performance and the required investment. The sensitivity of both layouts to quadrupole gradient errors and misalignment is checked and a correction scheme for beam steering is proposed. Finally a single quad beam dilution scheme is studied and designed for the pilot beam dump.

  12. Dynamic Modeling and Real-Time Monitoring of Froth Flotation

    Directory of Open Access Journals (Sweden)

    Khushaal Popli

    2015-08-01

    Full Text Available A dynamic fundamental model was developed linking processes from the microscopic scale to the equipment scale for batch froth flotation. State estimation, fault detection, and disturbance identification were implemented using the extended Kalman filter (EKF, which reconciles real-time measurements with dynamic models. The online measurements for the EKF were obtained through image analysis of froth images that were captured and analyzed using the commercial package VisioFroth (Metsor Minerals. The extracted image features were then correlated to recovery using principal component analysis and partial least squares regression. The performance of real-time state estimation and fault detection was validated using batch flotation of pure galena at various operating conditions. The image features that were strongly representative of recovery were identified, and calibration and validation were performed against off-line measurements of recovery. The EKF successfully captured the dynamics of the process by updating the model states and parameters using the online measurements. Finally, disturbances in the air flow rate and impeller speed were introduced into the system, and the dynamic behavior of the flotation process was successfully tracked and the disturbances were identified using state estimation.

  13. Improving the road network performance with dynamic route guidance by considering the indifference band of road users

    NARCIS (Netherlands)

    Vreeswijk, J.D.; Landman, R.L.; Van Berkum, E.C.; Hegyi, A.; Hoogendoorn, S.P.; Van Arem, B.

    2012-01-01

    When applying dynamic route guidance to improve the network performance, it is important to balance the interests of the road authorities and the road users. In this paper we will illustrate how bounded rationality and indifference bands can be taken into account in dynamic route guidance to improve

  14. Robot Comedy Lab: Experimenting with the Social Dynamics of Live Performance

    Directory of Open Access Journals (Sweden)

    Kleomenis eKatevas

    2015-08-01

    Full Text Available The success of live comedy depends on a performer's ability to 'work' an audience. Ethnographic studies suggest that this involves the co-ordinated use of subtle social signals such as body orientation, gesture, gaze by both performers and audience members. Robots provide a unique opportunity to test the effects of these signals experimentally. Using a life-size humanoid robot, programmed to perform a stand-up comedy routine, we manipulated the robot's patterns of gesture and gaze and examined their effects on the real-time responses of a live audience. The strength and type of responses were captured using SHOREtm computer vision analytics. The results highlight the complex, reciprocal social dynamics of performer and audience behavior. People respond more positively when the robot looks at them, negatively when it looks away and that different performative gestures elicit systematically different patterns of audience response. This demonstrates that the responses of individual audience members depend on the specific interaction they're having with the performer. This work provides insights into how to design more effective, more socially engaging, forms of robot interaction that can be used in a variety of service contexts.

  15. The Configuration Of Supply Chain Agritourism To Improve The Performance With Dynamic Programming

    Directory of Open Access Journals (Sweden)

    Sahnaz Ubud

    2015-09-01

    Full Text Available The purposes of this research is to implementation about  the configuration of Supply Chain Agritourism in Mekarsari Tours Garden and result a decision making  which must be done by top level management about their supply chain configuration. Because now Mekarsari, the biggest fruit garden in the world, have a lot of type of fruit which must be supply for the customer depend on the season with on time. So Mekarsari must know about their configuration from supplier to customer to improve their performance. The Respondents  for this research is selected based on the results of supply chain maping from the worker in the garden, the top level management until the end customer. Supply chian network is formed consisting of farm workers to the end customers, especially those located in the tourist are of green land zone.  The type of data is displayed in a supply chain modeling approach is to use the dynamic system. It’s consists of numeric data, the written data and mental models.  That data is collected and processed into a design model. The design model is using system dynamics methodology. In compiling the system dynamics model has been used software Vensim Professional Academic Ventana 5.7. The result of this research is a configuration of Supply Chain Agritourism which is developed from the supplier until the end customer in Mekarsari tours Garden. From the Dynamic Programming, the result is a decision making which must be done by the top level management to improve the supply chain performance, especially in the green land zone.

  16. The developmental dynamics of task-avoidant behavior and math performance in kindergarten and elementary school

    OpenAIRE

    Hirvonen, Riikka; Tolvanen, Asko; Aunola, Kaisa; Nurmi, Jari-Erik

    2012-01-01

    Besides cognitive factors, children's learning at school may be influenced by more dynamic phenomena, such as motivation and achievement-related task-avoidant behavior. The present study examined the developmental dynamics of task-avoidant behavior and math performance from kindergarten to Grade 4. A total of 225 children were tested for their arithmetic skills in kindergarten and in Grades 1, 2, and 4 of elementary school. Children's task-avoidant behavior in learning situations was rated by...

  17. Phase transitions, nonequilibrium dynamics, and critical behavior of strongly interacting systems

    International Nuclear Information System (INIS)

    Mottola, E.; Bhattacharya, T.; Cooper, F.

    1998-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development project at Los Alamos National Laboratory. In this effort, large-scale simulations of strongly interacting systems were performed and a variety of approaches to the nonequilibrium dynamics of phase transitions and critical behavior were investigated. Focus areas included (1) the finite-temperature quantum chromodynamics phase transition and nonequilibrium dynamics of a new phase of matter (the quark-gluon plasma) above the critical temperature, (2) nonequilibrium dynamics of a quantum fields using mean field theory, and (3) stochastic classical field theoretic models with applications to spinodal decomposition and structural phase transitions in a variety of systems, such as spin chains and shape memory alloys

  18. Phase transitions, nonequilibrium dynamics, and critical behavior of strongly interacting systems

    Energy Technology Data Exchange (ETDEWEB)

    Mottola, E.; Bhattacharya, T.; Cooper, F. [and others

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development project at Los Alamos National Laboratory. In this effort, large-scale simulations of strongly interacting systems were performed and a variety of approaches to the nonequilibrium dynamics of phase transitions and critical behavior were investigated. Focus areas included (1) the finite-temperature quantum chromodynamics phase transition and nonequilibrium dynamics of a new phase of matter (the quark-gluon plasma) above the critical temperature, (2) nonequilibrium dynamics of a quantum fields using mean field theory, and (3) stochastic classical field theoretic models with applications to spinodal decomposition and structural phase transitions in a variety of systems, such as spin chains and shape memory alloys.

  19. Beam dynamics in the SLC final focus system

    International Nuclear Information System (INIS)

    Bambade, P.S.

    1987-06-01

    The SLC luminosity is reached by colliding beams focused to about 2 μm transverse sizes. The Final Focus System (FFS) must enable, beyond its basic optical design, the detection and correction of errors accumulated in the system. In this paper, after summarizing the design, we review the sensitivity to such errors and the ability to correct them. The overall tuning strategy involves three phases: single beam spot minimization, steering the beams in collision and luminosity optimization with beam-beam effects

  20. Dynamic Model and Analysis of Asymmetric Telescopic Wing for Morphing Aircraft

    Directory of Open Access Journals (Sweden)

    Chen Lili

    2016-01-01

    Full Text Available Morphing aircraft has been the research hot topics of new concept aircrafts in aerospace engineering. Telescopic wing is an important morphing technology for morphing aircraft. This paper describes the dynamic equations and kinematic equations based on theorem of momentum and theorem of moment of momentum, which are available for all morphing aircrafts. Meanwhile,as simplified , dynamic equations for rectangular telescopic wing are presented. In order to avoid the complexity using aileron to generate rolling moment , an new idea that asymmetry of wings can generate roll moment is introduced. Finally, roll performance comparison of asymmetric wing and aileron deflection shows that asymmetric telescopic wing can provide the required roll control moment as aileron, and in some cases, telescopic wing has the superior roll performance.

  1. Final Performance Report

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, S. T. [Tulane Univ., New Orleans, LA (United States)

    2013-08-31

    U.S./China Energy and Environmental Technology Center (EETC), Payson Center for International Development, Law School of Tulane University was officially established in 1997 with initial funds from private sector, US Environmental Protection Agency and the US Department of Energy (DOE.) Lately, DOE has provided EETC funds for operations with cost share from the Ministry of Science and Technology, China. EETC was created to facilitate the development of friendly, broad-based U.S./China relations. Tulane University signed the Memorandum of Understanding (MOU) with the Chinese People’s Institute of Foreign Affairs (1995) to promote the formation of Chinese partners for EETC. EETC’s original goal is to enhance the competitiveness of US clean fossil energy technology in China so that, as her economy expands, local and global environment are well protected. Specifically, through the demonstration and broadly deployment of US developed clean coal technology for power generation, transmission, and emission reductions in China. EETC is also focused on US industry partnerships for local economic development. One of the main the objectives of the EETC is to promote the efficient, responsible production and utilization of energy with a focus on clean fossil energy, promote US clean energy and environmental technologies, and encourage environmental performance while improving the quality of life in China. Another objective is to assist China with environmental and energy policy development and provide supports for China’s development with expertise (best practices) from US industry.

  2. Optimized maritime emergency resource allocation under dynamic demand.

    Directory of Open Access Journals (Sweden)

    Wenfen Zhang

    Full Text Available Emergency resource is important for people evacuation and property rescue when accident occurs. The relief efforts could be promoted by a reasonable emergency resource allocation schedule in advance. As the marine environment is complicated and changeful, the place, type, severity of maritime accident is uncertain and stochastic, bringing about dynamic demand of emergency resource. Considering dynamic demand, how to make a reasonable emergency resource allocation schedule is challenging. The key problem is to determine the optimal stock of emergency resource for supplier centers to improve relief efforts. This paper studies the dynamic demand, and which is defined as a set. Then a maritime emergency resource allocation model with uncertain data is presented. Afterwards, a robust approach is developed and used to make sure that the resource allocation schedule performs well with dynamic demand. Finally, a case study shows that the proposed methodology is feasible in maritime emergency resource allocation. The findings could help emergency manager to schedule the emergency resource allocation more flexibly in terms of dynamic demand.

  3. Oregon State University Softball: Dynamic Visual Acuity Training for Improving Performance

    OpenAIRE

    Madsen, Bruce; Blair, Kyle

    2017-01-01

    Sports vision training involves eye focusing and movement workouts that center on the visual tracking of objects. The purpose of sports vision training is to improve performance in various sports by improving visual responses and processing, such as by lowering reaction times. In 2015, the Athletic Eye Institute started a sports vision-training program study with the Oregon State University Softball Team in the hopes of increasing the dynamic visual skills of their players. There were two aim...

  4. Planning for risk-informed/performance-based fire protection at nuclear power plants. Final report

    International Nuclear Information System (INIS)

    Najafi, B.; Parkinson, W.J.; Lee, J.A.

    1997-12-01

    This document presents a framework for discussing issues and building consensus towards use of fire modeling and risk technology in nuclear power plant fire protection program implementation. The plan describes a three-phase approach: development of core technologies, implementation of methods, and finally, case studies and pilot applications to verify viability of such methods. The core technologies are defined as fire modeling, fire and system tests, use of operational data, and system and risk techniques. The implementation phase addresses the programmatic issues involved in implementing a risk-informed/performance-based approach in an integrated approach with risk/performance measures. The programmatic elements include: (1) a relationship with fire codes and standards development as defined by the ongoing effort of NFPA for development of performance-based standards; (2) the ability for NRC to undertake inspection and enforcement; and (3) the benefit to utilities in terms of cost versus safety. The case studies are intended to demonstrate applicability of single issue resolution while pilot applications are intended to check the applicability of the integrated program as a whole

  5. High-performance computational fluid dynamics: a custom-code approach

    International Nuclear Information System (INIS)

    Fannon, James; Náraigh, Lennon Ó; Loiseau, Jean-Christophe; Valluri, Prashant; Bethune, Iain

    2016-01-01

    We introduce a modified and simplified version of the pre-existing fully parallelized three-dimensional Navier–Stokes flow solver known as TPLS. We demonstrate how the simplified version can be used as a pedagogical tool for the study of computational fluid dynamics (CFDs) and parallel computing. TPLS is at its heart a two-phase flow solver, and uses calls to a range of external libraries to accelerate its performance. However, in the present context we narrow the focus of the study to basic hydrodynamics and parallel computing techniques, and the code is therefore simplified and modified to simulate pressure-driven single-phase flow in a channel, using only relatively simple Fortran 90 code with MPI parallelization, but no calls to any other external libraries. The modified code is analysed in order to both validate its accuracy and investigate its scalability up to 1000 CPU cores. Simulations are performed for several benchmark cases in pressure-driven channel flow, including a turbulent simulation, wherein the turbulence is incorporated via the large-eddy simulation technique. The work may be of use to advanced undergraduate and graduate students as an introductory study in CFDs, while also providing insight for those interested in more general aspects of high-performance computing. (paper)

  6. High-performance computational fluid dynamics: a custom-code approach

    Science.gov (United States)

    Fannon, James; Loiseau, Jean-Christophe; Valluri, Prashant; Bethune, Iain; Náraigh, Lennon Ó.

    2016-07-01

    We introduce a modified and simplified version of the pre-existing fully parallelized three-dimensional Navier-Stokes flow solver known as TPLS. We demonstrate how the simplified version can be used as a pedagogical tool for the study of computational fluid dynamics (CFDs) and parallel computing. TPLS is at its heart a two-phase flow solver, and uses calls to a range of external libraries to accelerate its performance. However, in the present context we narrow the focus of the study to basic hydrodynamics and parallel computing techniques, and the code is therefore simplified and modified to simulate pressure-driven single-phase flow in a channel, using only relatively simple Fortran 90 code with MPI parallelization, but no calls to any other external libraries. The modified code is analysed in order to both validate its accuracy and investigate its scalability up to 1000 CPU cores. Simulations are performed for several benchmark cases in pressure-driven channel flow, including a turbulent simulation, wherein the turbulence is incorporated via the large-eddy simulation technique. The work may be of use to advanced undergraduate and graduate students as an introductory study in CFDs, while also providing insight for those interested in more general aspects of high-performance computing.

  7. Kinematics and dynamics analysis of a novel serial-parallel dynamic simulator

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Bo; Zhang, Lian Dong; Yu, Jingjing [Parallel Robot and Mechatronic System Laboratory of Hebei Province, Yanshan University, Qinhuangdao, Hebei (China)

    2016-11-15

    A serial-parallel dynamics simulator based on serial-parallel manipulator is proposed. According to the dynamics simulator motion requirement, the proposed serial-parallel dynamics simulator formed by 3-RRS (active revolute joint-revolute joint-spherical joint) and 3-SPR (Spherical joint-active prismatic joint-revolute joint) PMs adopts the outer and inner layout. By integrating the kinematics, constraint and coupling information of the 3-RRS and 3-SPR PMs into the serial-parallel manipulator, the inverse Jacobian matrix, velocity, and acceleration of the serial-parallel dynamics simulator are studied. Based on the principle of virtual work and the kinematics model, the inverse dynamic model is established. Finally, the workspace of the (3-RRS)+(3-SPR) dynamics simulator is constructed.

  8. Kinematics and dynamics analysis of a novel serial-parallel dynamic simulator

    International Nuclear Information System (INIS)

    Hu, Bo; Zhang, Lian Dong; Yu, Jingjing

    2016-01-01

    A serial-parallel dynamics simulator based on serial-parallel manipulator is proposed. According to the dynamics simulator motion requirement, the proposed serial-parallel dynamics simulator formed by 3-RRS (active revolute joint-revolute joint-spherical joint) and 3-SPR (Spherical joint-active prismatic joint-revolute joint) PMs adopts the outer and inner layout. By integrating the kinematics, constraint and coupling information of the 3-RRS and 3-SPR PMs into the serial-parallel manipulator, the inverse Jacobian matrix, velocity, and acceleration of the serial-parallel dynamics simulator are studied. Based on the principle of virtual work and the kinematics model, the inverse dynamic model is established. Finally, the workspace of the (3-RRS)+(3-SPR) dynamics simulator is constructed

  9. Dynamic Loads and Wake Prediction for Large Wind Turbines Based on Free Wake Method

    Institute of Scientific and Technical Information of China (English)

    Cao Jiufa; Wang Tongguang; Long Hui; Ke Shitang; Xu Bofeng

    2015-01-01

    With large scale wind turbines ,the issue of aerodynamic elastic response is even more significant on dy-namic behaviour of the system .Unsteady free vortex wake method is proposed to calculate the shape of wake and aerodynamic load .Considering the effect of aerodynamic load ,inertial load and gravity load ,the decoupling dy-namic equations are established by using finite element method in conjunction of the modal method and equations are solved numerically by Newmark approach .Finally ,the numerical simulation of a large scale wind turbine is performed through coupling the free vortex wake modelling with structural modelling .The results show that this coupling model can predict the flexible wind turbine dynamic characteristics effectively and efficiently .Under the influence of the gravitational force ,the dynamic response of flapwise direction contributes to the dynamic behavior of edgewise direction under the operational condition of steady wind speed .The difference in dynamic response be-tween the flexible and rigid wind turbines manifests when the aerodynamics/structure coupling effect is of signifi-cance in both wind turbine design and performance calculation .

  10. Development of a system dynamics model based on Six Sigma methodology

    Directory of Open Access Journals (Sweden)

    José Jovani Cardiel Ortega

    2017-01-01

    Full Text Available A dynamic model to analyze the complexity associated with the manufacturing systems and to improve the performance of the process through the Six Sigma philosophy is proposed. The research focuses on the implementation of the system dynamics tool to comply with each of the phases of the DMAIC methodology. In the first phase, define, the problem is articulated, collecting data, selecting the variables, and representing them in a mental map that helps build the dynamic hypothesis. In the second phase, measure, model is formulated, equations are developed, and Forrester diagram is developed to carry out the simulation. In the third phase, analyze, the simulation results are studied. For the fourth phase, improving, the model is validated through a sensitivity analysis. Finally, in control phase, operation policies are proposed. This paper presents the development of a dynamic model of the system of knitted textile production knitted developed; the implementation was done in a textile company in southern Guanajuato. The results show an improvement in the process performance by increasing the level of sigma allowing the validation of the proposed approach.

  11. Efficient dynamic optimization of logic programs

    Science.gov (United States)

    Laird, Phil

    1992-01-01

    A summary is given of the dynamic optimization approach to speed up learning for logic programs. The problem is to restructure a recursive program into an equivalent program whose expected performance is optimal for an unknown but fixed population of problem instances. We define the term 'optimal' relative to the source of input instances and sketch an algorithm that can come within a logarithmic factor of optimal with high probability. Finally, we show that finding high-utility unfolding operations (such as EBG) can be reduced to clause reordering.

  12. Molecular dynamics simulations of the adsorption of DNA segments onto graphene oxide

    International Nuclear Information System (INIS)

    Chen, Junlang; Chen, Shude; Chen, Liang; Wang, Yu

    2014-01-01

    Molecular dynamics simulations were performed to investigate the dynamic process of DNA segments’ adsorption on graphene oxide (GO) in aqueous solution. We find that DNA segments finally ‘stand on’ GO’s surface. Due to energy penalty and electrostatic repulsion, DNA segments cannot lie on the surface of GO with their helical axes parallel to GO’s surface. Both π–π stacking and electrostatic interactions contribute to their binding affinity between the contacting basepair and GO. The results are of great importance to understand the interactions between DNA segments and GO. (paper)

  13. Experimental study on the dynamic performance of a novel system combining natural ventilation with diffuse ceiling inlet and TABS

    DEFF Research Database (Denmark)

    Yu, Tao; Heiselberg, Per Kvols; Lei, Bo

    2016-01-01

    Highlights • Dynamic experiments are performed to study energy performance of a new HVAC system. • Designed control strategies show good utilization of natural ventilation cooling. • TABS work well with the diffuse ceiling in the dynamic measurements. • No local thermal comfort problem is found...... even in the extreme winter case. • Designed control strategies can be used in the future application of this system....

  14. Do Work Placements Improve Final Year Academic Performance or Do High-Calibre Students Choose to Do Work Placements?

    Science.gov (United States)

    Jones, C. M.; Green, J. P.; Higson, H. E.

    2017-01-01

    This study investigates whether the completion of an optional sandwich work placement enhances student performance in final year examinations. Using Propensity Score Matching, our analysis departs from the literature by controlling for self-selection. Previous studies may have overestimated the impact of sandwich work placements on performance…

  15. Performance of HEPA filters under hot dynamic conditions

    International Nuclear Information System (INIS)

    Frankum, D.P.; Costigan, G.

    1995-01-01

    Accidents in nuclear facilities involving fires may have implications upon the ventilation systems where high efficiency particulate air (HEPA) filters are used to minimise the airborne release of radioactive or toxic particles. The Filter Development Section at Harwell Laboratory has been investigating the effect of temperature on the performance of HEPA filters under hot dynamic conditions[ 1 ] for a number of years. The test rig is capable of delivering air flows of 10001/s (at ambient conditions) at temperatures up to 500 degrees C, where measurements of the penetration and pressure drop across the filter are obtained. This paper reports the experiments on different constructions of HEPA filters; rectangular and circular. The filters were tested at an air temperature of 200 degrees C for up to 48 hours at the rated airflow to assess their performance. The penetration measurements for rectangular filters were observed to be below 0.021% after prolonged operation. In a number of cases, holes appeared along the pleat creases of circular filters although the penetration remained below 1%. The sealing gasket for these filters was noted to deform with temperature, permitting a leakage path. A prototype high strength circular filter was evaluated at temperatures of up to 400 degrees C with a penetration less than 0.65%

  16. Performance of HEPA filters under hot dynamic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Frankum, D.P.; Costigan, G. [AEA Technology, Oxfordshire (United Kingdom)

    1995-02-01

    Accidents in nuclear facilities involving fires may have implications upon the ventilation systems where high efficiency particulate air (HEPA) filters are used to minimise the airborne release of radioactive or toxic particles. The Filter Development Section at Harwell Laboratory has been investigating the effect of temperature on the performance of HEPA filters under hot dynamic conditions[{sub 1}] for a number of years. The test rig is capable of delivering air flows of 10001/s (at ambient conditions) at temperatures up to 500{degrees}C, where measurements of the penetration and pressure drop across the filter are obtained. This paper reports the experiments on different constructions of HEPA filters; rectangular and circular. The filters were tested at an air temperature of 200{degrees}C for up to 48 hours at the rated airflow to assess their performance. The penetration measurements for rectangular filters were observed to be below 0.021% after prolonged operation. In a number of cases, holes appeared along the pleat creases of circular filters although the penetration remained below 1%. The sealing gasket for these filters was noted to deform with temperature, permitting a leakage path. A prototype high strength circular filter was evaluated at temperatures of up to 400{degrees}C with a penetration less than 0.65%.

  17. A novel adaptive control scheme for dynamic performance improvement of DFIG-Based wind turbines

    International Nuclear Information System (INIS)

    Song, Zhanfeng; Shi, Tingna; Xia, Changliang; Chen, Wei

    2012-01-01

    A novel adaptive current controller for DFIG-based wind turbines is introduced in this paper. The attractiveness of the proposed strategy results from its ability to actively estimate and actively compensate for the plant dynamics and external disturbances in real time. Thus, the control strategy can successfully drive the rotor current to track the reference value, ensuring that the performance degradation caused by grid disturbances, cross-coupling terms and parameter uncertainties can be successfully suppressed. Besides, the two-parameter tuning feature makes the control strategy practical and easy to implement in commercial wind turbines. To quantify the controller performances, the transfer function description of the controller is derived. General disturbance rejection, robustness against parameter uncertainties, bandwidth and stability are also addressed. Simulation results, together with the time-domain responses, proved the stability and the strong robustness of the control system against parameter uncertainties and grid disturbances. Significant tracking and disturbance rejection performances are achieved. -- Highlights: ► The controller can compensate for plant dynamics and external disturbances. ► Performance degradation caused by disturbance can be successfully suppressed. ► General disturbance rejection of the proposed strategy is addressed. ► The stability and the strong robustness of the control system are proved.

  18. Multicharged Ion-induced simple molecule fragmentation dynamics

    International Nuclear Information System (INIS)

    Tarisien, M.

    2003-10-01

    The aim of this work is to study the dynamics of swift multicharged ion-induced fragmentation of diatomic (CO) and triatomic (CO 2 ) molecules. Performed at the GANIL facility, this study used the Recoil Ion Momentum Spectroscopy technique (RIMS), which consists of a time-of-flight mass spectrometer, coupled with a multi-hit capability position sensitive detector (delay line anode). The high-resolution measurement of the kinetic energy distribution released (KER) during the CO fragmentation points out the limitation of the Coulomb Explosion Model, revealing, for example, the di-cation CO 2 + electronic state contribution in the case of C + /O + fragmentation pathway. Furthermore, the multi-ionization cross section dependence with the orientation of the internuclear axis of CO is compared with a geometrical model calculation. Finally, different behaviours are observed for the dissociation dynamics of a triatomic molecule (CO 2 ). While triple ionization leads mainly to a synchronous concerted fragmentation dynamics, a weak fraction of dissociating molecule follows a sequential dynamics involving CO 2 + metastable states. In the case of double ionization, (CO 2 ) 2+ di-cation dissociation dynamics is asynchronously concerted and has been interpreted using a simple model involving an asymmetrical vibration of the molecule. (author)

  19. Identification of dynamic basins in boiling fluxes

    International Nuclear Information System (INIS)

    Juanico, L.E.

    1997-01-01

    A theoretical and experimental study of the dynamic behavior of a boiling channel is presented. In particular, the existence of different basins of attraction during instabilities was established. A fully analytical treatment of boiling channel dynamics were performed using a algebraic delay model. Subcritical and supercritical Hopf bifurcations could be identified and analyzed using perturbation methods. The derivation of a fully analytical criterion for Hopf bifurcation transcription was applied to determine the amplitude of the limit cycles and the maximum allowed perturbations necessary to break the system stability. A lumped parameters model which allows the representation of flow reversal is presented. The dynamic of very large amplitude oscillations, out of the Hopf bifurcation domain, was studied. The analysis revealed the existence of new dynamical basins of attraction, where the system may evolve to and return from with hysteresis. Finally, an experimental study was conducted, in a water loop at atmospheric pressure, designed to reproduce the operating conditions analyzed in the theory. Different dynamic phase previously predicted in the theory were found and their nonlinear characteristics were studied. In particular, subcritical and supercritical Hopf bifurcations and very large amplitude oscillations with flow reversal were identified. (author). 53 refs., figs

  20. Technologies and tools for high-performance distributed computing. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Karonis, Nicholas T.

    2000-05-01

    In this project we studied the practical use of the MPI message-passing interface in advanced distributed computing environments. We built on the existing software infrastructure provided by the Globus Toolkit{trademark}, the MPICH portable implementation of MPI, and the MPICH-G integration of MPICH with Globus. As a result of this project we have replaced MPICH-G with its successor MPICH-G2, which is also an integration of MPICH with Globus. MPICH-G2 delivers significant improvements in message passing performance when compared to its predecessor MPICH-G and was based on superior software design principles resulting in a software base that was much easier to make the functional extensions and improvements we did. Using Globus services we replaced the default implementation of MPI's collective operations in MPICH-G2 with more efficient multilevel topology-aware collective operations which, in turn, led to the development of a new timing methodology for broadcasts [8]. MPICH-G2 was extended to include client/server functionality from the MPI-2 standard [23] to facilitate remote visualization applications and, through the use of MPI idioms, MPICH-G2 provided application-level control of quality-of-service parameters as well as application-level discovery of underlying Grid-topology information. Finally, MPICH-G2 was successfully used in a number of applications including an award-winning record-setting computation in numerical relativity. In the sections that follow we describe in detail the accomplishments of this project, we present experimental results quantifying the performance improvements, and conclude with a discussion of our applications experiences. This project resulted in a significant increase in the utility of MPICH-G2.

  1. Effects of dynamic workstation Oxidesk on acceptance, physical activity, mental fitness and work performance.

    Science.gov (United States)

    Groenesteijn, L; Commissaris, D A C M; Van den Berg-Zwetsloot, M; Hiemstra-Van Mastrigt, S

    2016-07-19

    Working in an office environment is characterised by physical inactivity and sedentary behaviour. This behaviour contributes to several health risks in the long run. Dynamic workstations which allow people to combine desk activities with physical activity, may contribute to prevention of these health risks. A dynamic workstation, called Oxidesk, was evaluated to determine the possible contribution to healthy behaviour and the impact on perceived work performance. A field test was conducted with 22 office workers, employed at a health insurance company in the Netherlands. The Oxidesk was well accepted, positively perceived for fitness and the participants maintained their work performance. Physical activity was lower than the activity level required in the Dutch guidelines for sufficient physical activity. Although there was a slight increase in physical activity, the Oxidesk may be helpful in the reducing health risks involved and seems applicable for introduction to office environments.

  2. Simulation training improves team dynamics and performance in a low-resource cardiac intensive care unit

    Directory of Open Access Journals (Sweden)

    Sivaram Subaya Emani

    2018-01-01

    Conclusions: This study demonstrates the feasibility and effectiveness of simulationbased training in improving team dynamics and performance in lowresource pediatric CICU environments, indicating its potential role in eliminating communication barriers in these settings.

  3. Insights into structural and dynamical features of water at halloysite interfaces probed by DFT and classical molecular dynamics simulations.

    Science.gov (United States)

    Presti, Davide; Pedone, Alfonso; Mancini, Giordano; Duce, Celia; Tiné, Maria Rosaria; Barone, Vincenzo

    2016-01-21

    Density functional theory calculations and classical molecular dynamics simulations have been used to investigate the structure and dynamics of water molecules on kaolinite surfaces and confined in the interlayer of a halloysite model of nanometric dimension. The first technique allowed us to accurately describe the structure of the tetrahedral-octahedral slab of kaolinite in vacuum and in interaction with water molecules and to assess the performance of two widely employed empirical force fields to model water/clay interfaces. Classical molecular dynamics simulations were used to study the hydrogen bond network structure and dynamics of water adsorbed on kaolinite surfaces and confined in the halloysite interlayer. The results are in nice agreement with the few experimental data available in the literature, showing a pronounced ordering and reduced mobility of water molecules at the hydrophilic octahedral surfaces of kaolinite and confined in the halloysite interlayer, with respect to water interacting with the hydrophobic tetrahedral surfaces and in the bulk. Finally, this investigation provides new atomistic insights into the structural and dynamical properties of water-clay interfaces, which are of fundamental importance for both natural processes and industrial applications.

  4. Dynamic modeling and performance evaluation of axial flux PMSG based wind turbine system with MPPT control

    Directory of Open Access Journals (Sweden)

    Vahid Behjat

    2014-12-01

    Full Text Available This research work develops dynamic model of a gearless small scale wind power generation system based on a direct driven single sided outer rotor AFPMSG with coreless armature winding. Dynamic modeling of the AFPMSG based wind turbine requires machine parameters. To this end, a 3D FEM model of the generator is developed and from magnetostatic and transient analysis of the FEM model, machine parameters are calculated and utilized in dynamic modeling of the system. A maximum power point tracking (MPPT-based FOC control approach is used to obtain maximum power from the variable wind speed. The simulation results show the proper performance of the developed dynamic model of the AFPMSG, control approach and power generation system.

  5. Schedulability Analysis for Java Finalizers

    DEFF Research Database (Denmark)

    Bøgholm, Thomas; Hansen, Rene Rydhof; Søndergaard, Hans

    2010-01-01

    Java finalizers perform clean-up and finalisation of objects at garbage collection time. In real-time Java profiles the use of finalizers is either discouraged (RTSJ, Ravenscar Java) or even disallowed (JSR-302), mainly because of the unpredictability of finalizers and in particular their impact...... on the schedulability analysis. In this paper we show that a controlled scoped memory model results in a structured and predictable execution of finalizers, more reminiscent of C++ destructors than Java finalizers. Furthermore, we incorporate finalizers into a (conservative) schedulability analysis for Predictable Java...... programs. Finally, we extend the SARTS tool for automated schedulability analysis of Java bytecode programs to handle finalizers in a fully automated way....

  6. Different performances in static and dynamic imagery and real locomotion. An exploratory trial.

    Directory of Open Access Journals (Sweden)

    Augusto eFusco

    2014-10-01

    Full Text Available Motor imagery is a mental representation of an action without its physical execution. Recently, the simultaneous movement of the body has been added to the mental simulation. This refers to dynamic motor imagery (dMI. This study was aimed at analyzing the temporal features for static and dMI in different locomotor conditions (natural walking, NW, light running, LR, lateral walking, LW, backward walking, BW, and whether these performances were more related to all the given conditions or present only in walking. We have been also evaluated the steps performed in the dMI in comparison with the ones performed by real locomotion. Twenty healthy participants (29.3 ± 5.1 y. old were asked to move towards a visualized target located at 10mt. In dMI, no significant temporal differences respect the actual locomotion were found for all the given tasks (NW: p=0.058, LR: p=0.636, BW: p=0.096; LW: p=0,487. Significant temporal differences between static imagery and actual movements were found for LR (p<0.001 and LW (p<0.001, due to an underestimation of time needed to achieve the target in imagined locomotion. Significant differences in terms of number of steps among tasks were found for LW (p<0.001 and BW (p=0.036, whereas neither in NW (p=0.124 nor LR (p=0.391 between dMI and real locomotion.Our results confirmed that motor imagery is a task-dependent process, with walking being temporally closer than other locomotor conditions. Moreover, the time records of dynamic motor imagery are nearer to the ones of actual locomotion respect than the ones of static motor imagery. Keywords: Walking, dynamic motor imagery, human locomotion, chronometry.

  7. Conceptual Design Optimization of an Augmented Stability Aircraft Incorporating Dynamic Response Performance Constraints

    Science.gov (United States)

    Welstead, Jason

    2014-01-01

    This research focused on incorporating stability and control into a multidisciplinary de- sign optimization on a Boeing 737-class advanced concept called the D8.2b. A new method of evaluating the aircraft handling performance using quantitative evaluation of the sys- tem to disturbances, including perturbations, continuous turbulence, and discrete gusts, is presented. A multidisciplinary design optimization was performed using the D8.2b transport air- craft concept. The con guration was optimized for minimum fuel burn using a design range of 3,000 nautical miles. Optimization cases were run using xed tail volume coecients, static trim constraints, and static trim and dynamic response constraints. A Cessna 182T model was used to test the various dynamic analysis components, ensuring the analysis was behaving as expected. Results of the optimizations show that including stability and con- trol in the design process drastically alters the optimal design, indicating that stability and control should be included in conceptual design to avoid system level penalties later in the design process.

  8. Network Signaling Channel for Improving ZigBee Performance in Dynamic Cluster-Tree Networks

    Directory of Open Access Journals (Sweden)

    D. Hämäläinen

    2008-03-01

    Full Text Available ZigBee is one of the most potential standardized technologies for wireless sensor networks (WSNs. Yet, sufficient energy-efficiency for the lowest power WSNs is achieved only in rather static networks. This severely limits the applicability of ZigBee in outdoor and mobile applications, where operation environment is harsh and link failures are common. This paper proposes a network channel beaconing (NCB algorithm for improving ZigBee performance in dynamic cluster-tree networks. NCB reduces the energy consumption of passive scans by dedicating one frequency channel for network beacon transmissions and by energy optimizing their transmission rate. According to an energy analysis, the power consumption of network maintenance operations reduces by 70%–76% in dynamic networks. In static networks, energy overhead is negligible. Moreover, the service time for data routing increases up to 37%. The performance of NCB is validated by ns-2 simulations. NCB can be implemented as an extension on MAC and NWK layers and it is fully compatible with ZigBee.

  9. Studies of dynamic contact of ceramics and alloys for advanced heat engines. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gaydos, P.A.; Dufrane, K.F. [Battelle, Columbus, OH (United States)

    1993-06-01

    Advanced materials and coatings for low heat rejection engines have been investigated for almost a decade. Much of the work has concentrated on the critical wear interface between the piston ring and cylinder liner. Simplified bench tests have identified families of coatings with high temperature wear performance that could meet or exceed that of conventional engine materials at today`s operating temperatures. More recently, engine manufacturers have begun to optimize material combinations and manufacturing processes so that the materials not only have promising friction and wear performance but are practical replacements for current materials from a materials and manufacturing cost standpoint. In this study, the advanced materials supplied by major diesel engine manufacturers were evaluated in an experimental apparatus that simulates many of the in-cylinder conditions of a low heat rejection diesel engine. Results include ring wear factors and average dynamic friction coefficients measured at intervals during the test. These results are compared with other advanced materials tested in the past as well as the baseline wear of current engines. Both fabricated specimens and sections of actual ring and cylinder liners were used in the testing. Observations and relative friction and wear performance of the individual materials are provided.

  10. Instability predictions for circumferentially cracked Type-304 stainless-steel pipes under dynamic loading. Final report

    International Nuclear Information System (INIS)

    Zahoor, A.; Wilkowski, G.; Abou-Sayed, I.; Marschall, C.; Broek, D.; Sampath, S.; Rhee, H.; Ahmad, J.

    1982-04-01

    This report provides methods to predict margins of safety for circumferentially cracked Type 304 stainless steel pipes subjected to applied bending loads. An integrated combination of experimentation and analysis research was pursued. Two types of experiments were performed: (1) laboratory-scale tests on center-cracked panels and bend specimens to establish the basic mechanical and fracture properties of Type 304 stainless steel, and (2) full-scale pipe fracture tests under quasi-static and dynamic loadings to assess the analysis procedures. Analyses were based upon the simple plastic collapse criterion, a J-estimation procedure, and elastic-plastic large-deformation finite element models

  11. [Research progress on mechanical performance evaluation of artificial intervertebral disc].

    Science.gov (United States)

    Li, Rui; Wang, Song; Liao, Zhenhua; Liu, Weiqiang

    2018-03-01

    The mechanical properties of artificial intervertebral disc (AID) are related to long-term reliability of prosthesis. There are three testing methods involved in the mechanical performance evaluation of AID based on different tools: the testing method using mechanical simulator, in vitro specimen testing method and finite element analysis method. In this study, the testing standard, testing equipment and materials of AID were firstly introduced. Then, the present status of AID static mechanical properties test (static axial compression, static axial compression-shear), dynamic mechanical properties test (dynamic axial compression, dynamic axial compression-shear), creep and stress relaxation test, device pushout test, core pushout test, subsidence test, etc. were focused on. The experimental techniques using in vitro specimen testing method and testing results of available artificial discs were summarized. The experimental methods and research status of finite element analysis were also summarized. Finally, the research trends of AID mechanical performance evaluation were forecasted. The simulator, load, dynamic cycle, motion mode, specimen and test standard would be important research fields in the future.

  12. Self-perceived versus objectively measured competence in performing clinical practical procedures by final year medical students

    OpenAIRE

    Katowa-Mukwato, Patricia; Banda, Sekelani

    2016-01-01

    Objectives To determine and compare the self-perceived and objectively measured competence in performing 14 core-clinical practical procedures by Final Year Medical Students of the University of Zambia. Methods The study included 56 out of 60 graduating University of Zambia Medical Students of the 2012/2013 academic year. Self-perceived competence: students rated their competence on 14 core- clinical practical procedures using a self-administered questionnaire on a 5-point Likert scale. Objec...

  13. A Stewart isolator with high-static-low-dynamic stiffness struts based on negative stiffness magnetic springs

    Science.gov (United States)

    Zheng, Yisheng; Li, Qingpin; Yan, Bo; Luo, Yajun; Zhang, Xinong

    2018-05-01

    In order to improve the isolation performance of passive Stewart platforms, the negative stiffness magnetic spring (NSMS) is employed to construct high static low dynamic stiffness (HSLDS) struts. With the NSMS, the resonance frequencies of the platform can be reduced effectively without deteriorating its load bearing capacity. The model of the Stewart isolation platform with HSLDS struts is presented and the stiffness characteristic of its struts is studied firstly. Then the nonlinear dynamic model of the platform including both geometry nonlinearity and stiffness nonlinearity is established; and its simplified dynamic model is derived under the condition of small vibration. The effect of nonlinearity on the isolation performance is also evaluated. Finally, a prototype is built and the isolation performance is tested. Both simulated and experimental results demonstrate that, by using the NSMS, the resonance frequencies of the Stewart isolator are reduced and the isolation performance in all six directions is improved: the isolation frequency band is increased and extended to a lower-frequency level.

  14. A semi-active suspension control algorithm for vehicle comprehensive vertical dynamics performance

    Science.gov (United States)

    Nie, Shida; Zhuang, Ye; Liu, Weiping; Chen, Fan

    2017-08-01

    Comprehensive performance of the vehicle, including ride qualities and road-holding, is essentially of great value in practice. Many up-to-date semi-active control algorithms improve vehicle dynamics performance effectively. However, it is hard to improve comprehensive performance for the conflict between ride qualities and road-holding around the second-order resonance. Hence, a new control algorithm is proposed to achieve a good trade-off between ride qualities and road-holding. In this paper, the properties of the invariant points are analysed, which gives an insight into the performance conflicting around the second-order resonance. Based on it, a new control algorithm is proposed. The algorithm employs a novel frequency selector to balance suspension ride and handling performance by adopting a medium damping around the second-order resonance. The results of this study show that the proposed control algorithm could improve the performance of ride qualities and suspension working space up to 18.3% and 8.2%, respectively, with little loss of road-holding compared to the passive suspension. Consequently, the comprehensive performance can be improved by 6.6%. Hence, the proposed algorithm is of great potential to be implemented in practice.

  15. Dynamic energy performance analysis: Case study for energy efficiency retrofits of hospital buildings

    International Nuclear Information System (INIS)

    Buonomano, Annamaria; Calise, Francesco; Ferruzzi, Gabriele; Palombo, Adolfo

    2014-01-01

    This paper investigates several actions for the energy refurbishment of some buildings of the University Hospital Federico II of Naples. The analysis focuses on a specific lot of 4 buildings, representative of the whole district hospital. For those structures, sustainable energy savings actions are investigated. They regard the installation of: i) roofs thermal insulation; ii) a substation climatic 3-way valve; iii) radiators thermostatic valves; iv) AHU (air handling unit) time-programmable regulation. This paper aims at presenting an investigation methodology, useful for designers and other stakeholders involved in hospital energy refurbishments, based on an integrated approach which combines dynamic energy performance simulations and experimental campaigns. In order to measure all the simulations' missing input parameters, a suitable experimental analysis, including measurements of temperature, humidity, flow rate and density of construction materials, is performed. A thermographic investigation is also performed for investigating the building envelope performance. This analysis showed that significant savings can be achieved especially by adopting radiators thermostatic valves and AHU regulations. Coherently, the installation of a 3-way valve in the substation does not determine significant additional savings when radiators thermostatic valves are already installed. For high-rise buildings, roofs insulation returns only marginal reductions of space heating and cooling demands. - Highlights: • Energy saving measures applied to the largest hospital of South Italy are analyzed. • A new approach combining dynamic simulations and measurements is implemented. • Thermography, temperature and flow measurements are performed. • High savings are achieved by adopting thermostatic valves and AHU control systems. • The simplest energy saving actions resulted to be the most profitable ones

  16. Experience with dynamic material control subsystems

    International Nuclear Information System (INIS)

    Severe, W.R.; Hagen, J.; Siebelist, R.; Wagner, R.P.; Olson, W.M.

    1977-01-01

    Operation of a Dynamic Material Control (DYMAC) prototype system has yielded some useful information for installing the final system. We discovered a bias between two methods for measuring filtrates. Evaluation of a unit process dynamic balance brought to light an operating procedure that weakens the accountability goals of the DYMAC system. We were able to correct both situations for the final system and learned that we must regularly monitor the system once it is operational for similar discrepancies

  17. Influence of operating conditions upon the dynamic steady-state performance of a switched reluctance motor

    International Nuclear Information System (INIS)

    Faiz, J.; Shafagh, E.

    1999-01-01

    In order to obtain more accurate predicted dynamic steady-state performance with shorter computation time, an available mathematical model is modified and presented. Using this modified model, performance of a typical switched reluctance motor under a wide range of variations of operating conditions is obtained and discussed. These include variations of speed, voltage, load and switching angle. The static test characteristics of the motor are carefully measured and measured flux-linkage data are then used to predict the steady-state performance

  18. Theoretical Concepts in Molecular Photodissociation Dynamics

    DEFF Research Database (Denmark)

    Henriksen, Niels Engholm

    1995-01-01

    This chapter contains sections titled: Introduction Quantum Dynamics of Molecular Photofragmentation The Total Reaction Probability Final Product Distributions Time-Independent Approach, Stationary Scattering States Gaussian Wave Packet Dynamics Wigner Phase Space Representation The Diatomic...

  19. Quantum and wave dynamical chaos in superconducting microwave billiards.

    Science.gov (United States)

    Dietz, B; Richter, A

    2015-09-01

    Experiments with superconducting microwave cavities have been performed in our laboratory for more than two decades. The purpose of the present article is to recapitulate some of the highlights achieved. We briefly review (i) results obtained with flat, cylindrical microwave resonators, so-called microwave billiards, concerning the universal fluctuation properties of the eigenvalues of classically chaotic systems with no, a threefold and a broken symmetry; (ii) summarize our findings concerning the wave-dynamical chaos in three-dimensional microwave cavities; (iii) present a new approach for the understanding of the phenomenon of dynamical tunneling which was developed on the basis of experiments that were performed recently with unprecedented precision, and finally, (iv) give an insight into an ongoing project, where we investigate universal properties of (artificial) graphene with superconducting microwave photonic crystals that are enclosed in a microwave resonator, i.e., so-called Dirac billiards.

  20. Canonical and symplectic analysis for three dimensional gravity without dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Escalante, Alberto, E-mail: aescalan@ifuap.buap.mx [Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48 72570, Puebla, Pue. (Mexico); Osmart Ochoa-Gutiérrez, H. [Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apartado postal 1152, 72001 Puebla, Pue. (Mexico)

    2017-03-15

    In this paper a detailed Hamiltonian analysis of three-dimensional gravity without dynamics proposed by V. Hussain is performed. We report the complete structure of the constraints and the Dirac brackets are explicitly computed. In addition, the Faddeev–Jackiw symplectic approach is developed; we report the complete set of Faddeev–Jackiw constraints and the generalized brackets, then we show that the Dirac and the generalized Faddeev–Jackiw brackets coincide to each other. Finally, the similarities and advantages between Faddeev–Jackiw and Dirac’s formalism are briefly discussed. - Highlights: • We report the symplectic analysis for three dimensional gravity without dynamics. • We report the Faddeev–Jackiw constraints. • A pure Dirac’s analysis is performed. • The complete structure of Dirac’s constraints is reported. • We show that symplectic and Dirac’s brackets coincide to each other.

  1. High Fidelity, “Faster than Real-Time” Simulator for Predicting Power System Dynamic Behavior - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Flueck, Alex [Illinois Inst. of Technology, Chicago, IL (United States)

    2017-07-14

    The “High Fidelity, Faster than Real­Time Simulator for Predicting Power System Dynamic Behavior” was designed and developed by Illinois Institute of Technology with critical contributions from Electrocon International, Argonne National Laboratory, Alstom Grid and McCoy Energy. Also essential to the project were our two utility partners: Commonwealth Edison and AltaLink. The project was a success due to several major breakthroughs in the area of large­scale power system dynamics simulation, including (1) a validated faster than real­ time simulation of both stable and unstable transient dynamics in a large­scale positive sequence transmission grid model, (2) a three­phase unbalanced simulation platform for modeling new grid devices, such as independently controlled single­phase static var compensators (SVCs), (3) the world’s first high fidelity three­phase unbalanced dynamics and protection simulator based on Electrocon’s CAPE program, and (4) a first­of­its­ kind implementation of a single­phase induction motor model with stall capability. The simulator results will aid power grid operators in their true time of need, when there is a significant risk of cascading outages. The simulator will accelerate performance and enhance accuracy of dynamics simulations, enabling operators to maintain reliability and steer clear of blackouts. In the long­term, the simulator will form the backbone of the newly conceived hybrid real­time protection and control architecture that will coordinate local controls, wide­area measurements, wide­area controls and advanced real­time prediction capabilities. The nation’s citizens will benefit in several ways, including (1) less down time from power outages due to the faster­than­real­time simulator’s predictive capability, (2) higher levels of reliability due to the detailed dynamics plus protection simulation capability, and (3) more resiliency due to the three­ phase unbalanced simulator’s ability to

  2. Heuristic Scheduling Algorithm Oriented Dynamic Tasks for Imaging Satellites

    Directory of Open Access Journals (Sweden)

    Maocai Wang

    2014-01-01

    Full Text Available Imaging satellite scheduling is an NP-hard problem with many complex constraints. This paper researches the scheduling problem for dynamic tasks oriented to some emergency cases. After the dynamic properties of satellite scheduling were analyzed, the optimization model is proposed in this paper. Based on the model, two heuristic algorithms are proposed to solve the problem. The first heuristic algorithm arranges new tasks by inserting or deleting them, then inserting them repeatedly according to the priority from low to high, which is named IDI algorithm. The second one called ISDR adopts four steps: insert directly, insert by shifting, insert by deleting, and reinsert the tasks deleted. Moreover, two heuristic factors, congestion degree of a time window and the overlapping degree of a task, are employed to improve the algorithm’s performance. Finally, a case is given to test the algorithms. The results show that the IDI algorithm is better than ISDR from the running time point of view while ISDR algorithm with heuristic factors is more effective with regard to algorithm performance. Moreover, the results also show that our method has good performance for the larger size of the dynamic tasks in comparison with the other two methods.

  3. Addition of Passive Dynamics to a Flapping Airfoil to Improve Performance

    Science.gov (United States)

    Asselin, Daniel; Young, Jay; Williamson, C. H. K.

    2017-11-01

    Animals which fly or swim typically employ flapping motions of their wings and fins in order to produce thrust and to maneuver. Small, unmanned vehicles might also exploit such motions and are of considerable interest for the purposes of surveillance, environmental monitoring, and search and rescue. Flapping refers to a combination of pitch and heave and has been shown to provide good thrust and efficiency (Read, et al. 2003) when both axes are independently controlled (an Active-Active system). In this study, we examine the performance of an airfoil actuated only in the heave direction but allowed to pitch passively under the control of a torsion spring (an Active-Passive system). The presence of the spring is simulated in software using a force-feedback control system called Cyber-Physical Fluid Dynamics, or CPFD (Mackowski & Williamson 2011, 2015, 2016). Adding passive pitch to active heave provides significantly improved thrust and efficiency compared with heaving alone, especially when the torsion spring stiffness is selected so that the system operates near resonance (in an Active-Passive system). In many cases, values of thrust and efficiency are comparable to or better than those obtained with two actively controlled degrees of freedom. By using carefully-designed passive dynamics in the pitch direction, we can eliminate one of the two actuators, saving cost, complexity, and weight, while maintaining performance. This work was supported by the Air Force Office of Scientific Research Grant No. FA9550-15-1-0243, monitored by Dr. Douglas Smith.

  4. Performance of a Sequential and Parallel Computational Fluid Dynamic (CFD) Solver on a Missile Body Configuration

    National Research Council Canada - National Science Library

    Hisley, Dixie

    1999-01-01

    .... The goals of this report are: (1) to investigate the performance of message passing and loop level parallelization techniques, as they were implemented in the computational fluid dynamics (CFD...

  5. Market-Based Adult Lifelong Learning Performance Measures for Public Libraries Serving Lower Income and Majority-Minority Markets. Final Performance Report. September 1, 1996-August 31, 1999.

    Science.gov (United States)

    Koontz, Christine; Jue, Dean K.; Lance, Keith Curry

    This document is the final performance report for a Field Initiated Studies (FIS) project that addressed the need for a better assessment of public library services for adult lifelong learning in majority-minority and lower income library market areas. After stating the major educational problem addressed by the FIS project, the report lists the…

  6. Experiential knowledge of expert coaches can help identify informational constraints on performance of dynamic interceptive actions.

    Science.gov (United States)

    Greenwood, Daniel; Davids, Keith; Renshaw, Ian

    2014-01-01

    Coordination of dynamic interceptive movements is predicated on cyclical relations between an individual's actions and information sources from the performance environment. To identify dynamic informational constraints, which are interwoven with individual and task constraints, coaches' experiential knowledge provides a complementary source to support empirical understanding of performance in sport. In this study, 15 expert coaches from 3 sports (track and field, gymnastics and cricket) participated in a semi-structured interview process to identify potential informational constraints which they perceived to regulate action during run-up performance. Expert coaches' experiential knowledge revealed multiple information sources which may constrain performance adaptations in such locomotor pointing tasks. In addition to the locomotor pointing target, coaches' knowledge highlighted two other key informational constraints: vertical reference points located near the locomotor pointing target and a check mark located prior to the locomotor pointing target. This study highlights opportunities for broadening the understanding of perception and action coupling processes, and the identified information sources warrant further empirical investigation as potential constraints on athletic performance. Integration of experiential knowledge of expert coaches with theoretically driven empirical knowledge represents a promising avenue to drive future applied science research and pedagogical practice.

  7. An Evaluation of Molecular Dynamics Performance on the Hybrid Cray XK6 Supercomputer

    International Nuclear Information System (INIS)

    Brown, W. Michael; Nguyen, Trung D.; Fuentes-Cabrera, Miguel A.; Fowlkes, Jason Davidson; Rack, Philip D.; Berger, Mark

    2012-01-01

    For many years, the drive towards computational physics studies that match the size and time-scales of experiment has been fueled by increases in processor and interconnect performance that could be exploited with relatively little modification to existing codes. Engineering and electrical power constraints have disrupted this trend, requiring more drastic changes to both hardware and software solutions. Here, we present details of the Cray XK6 architecture that achieves increased performance with the use of GPU accelerators. We review software development efforts in the LAMMPS molecular dynamics package that have been implemented in order to utilize hybrid high performance computers. We present benchmark results for solid-state, biological, and mesoscopic systems and discuss some challenges for utilizing hybrid systems. We present some early work in improving application performance on the XK6 and performance results for the simulation of liquid copper nanostructures with the embedded atom method.

  8. Final Report

    DEFF Research Database (Denmark)

    Heiselberg, Per; Brohus, Henrik; Nielsen, Peter V.

    This final report for the Hybrid Ventilation Centre at Aalborg University describes the activities and research achievement in the project period from August 2001 to August 2006. The report summarises the work performed and the results achieved with reference to articles and reports published...

  9. Team performance modeling for HRA in dynamic situations

    International Nuclear Information System (INIS)

    Shu Yufei; Furuta, Kazuo; Kondo, Shunsuke

    2002-01-01

    This paper proposes a team behavior network model that can simulate and analyze response of an operator team to an incident in a dynamic and context-sensitive situation. The model is composed of four sub-models, which describe the context of team performance. They are task model, event model, team model and human-machine interface model. Each operator demonstrates aspects of his/her specific cognitive behavior and interacts with other operators and the environment in order to deal with an incident. Individual human factors, which determine the basis of communication and interaction between individuals, and cognitive process of an operator, such as information acquisition, state-recognition, decision-making and action execution during development of an event scenario are modeled. A case of feed and bleed operation in pressurized water reactor under an emergency situation was studied and the result was compared with an experiment to check the validity of the proposed model

  10. Dynamic impact of the structure of the supply chain of perishable foods on logistics performance and food security

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Javier Arturo Orjuela; Jaimes, Wilson Adarme

    2017-07-01

    Understanding how the structure affects logistical performance and food security is critical in the supply chains of perishable foods (PFSC). This research proposes a system dynamics model to analyze the effects of structures: lean, agile, flexible, responsive and resilient, in the overall performance and of each agent of the PFSC. Design/methodology/approach: Using a system dynamics model and design of experiments it is studied how the different structures and their combination, affect the behavior of inventory, transportation, responsiveness, efficiency, availability and quality-safety of the fresh fruits supply chain and each echelon. Findings: The studies of supply chains have been done for each structure in an independent way; investigations are scarce in supply chains of perishable foods. The structures modeled in this research do not show the better performance in all the metrics of the chain, neither in all agents for each structure. The above implies the presence of trade-offs. Research limitations/implications: The results show the need to investigate mixed structures with the FPSC´s own characteristics; the model can be applied in other supply chains of perishable foods. Practical implications: Management by combining structures in the FFSC, improves logistics performance and contributes to food security. Social implications: The agents of the FFSC can apply the structures found in this study, to improve their logistics performance and the food security. Originality/value: The dynamics of individual and combined structures were identified, which constitutes a contribution to the discussion in the literature of such problems for FFSC. The model includes six echelons: farmers, wholesalers, agro-industry, third-party logistics operators and retailers. The dynamic contemplates deterioration rate to model perishability and others losses.

  11. Dynamic impact of the structure of the supply chain of perishable foods on logistics performance and food security

    Directory of Open Access Journals (Sweden)

    Javier Arturo Orjuela Castro

    2017-10-01

    Full Text Available Purpose: Understanding how the structure affects logistical performance and food security is critical in the supply chains of perishable foods (PFSC. This research proposes a system dynamics model to analyze the effects of structures: lean, agile, flexible, responsive and resilient, in the overall performance and of each agent of the PFSC. Design/methodology/approach: Using a system dynamics model and design of experiments it is studied how the different structures and their combination, affect the behavior of inventory, transportation, responsiveness, efficiency, availability and quality-safety of the fresh fruits supply chain and each echelon. Findings: The studies of supply chains have been done for each structure in an independent way; investigations are scarce in supply chains of perishable foods. The structures modeled in this research do not show the better performance in all the metrics of the chain, neither in all agents for each structure. The above implies the presence of trade-offs. Research limitations/implications: The results show the need to investigate mixed structures with the FPSC´s own characteristics; the model can be applied in other supply chains of perishable foods. Practical implications: Management by combining structures in the FFSC, improves logistics performance and contributes to food security. Social implications: The agents of the FFSC can apply the structures found in this study, to improve their logistics performance and the food security. Originality/value: The dynamics of individual and combined structures were identified, which constitutes a contribution to the discussion in the literature of such problems for FFSC. The model includes six echelons: farmers, wholesalers, agro-industry, third-party logistics operators and retailers. The dynamic contemplates deterioration rate to model perishability and others losses.

  12. Dynamic impact of the structure of the supply chain of perishable foods on logistics performance and food security

    International Nuclear Information System (INIS)

    Castro, Javier Arturo Orjuela; Jaimes, Wilson Adarme

    2017-01-01

    Understanding how the structure affects logistical performance and food security is critical in the supply chains of perishable foods (PFSC). This research proposes a system dynamics model to analyze the effects of structures: lean, agile, flexible, responsive and resilient, in the overall performance and of each agent of the PFSC. Design/methodology/approach: Using a system dynamics model and design of experiments it is studied how the different structures and their combination, affect the behavior of inventory, transportation, responsiveness, efficiency, availability and quality-safety of the fresh fruits supply chain and each echelon. Findings: The studies of supply chains have been done for each structure in an independent way; investigations are scarce in supply chains of perishable foods. The structures modeled in this research do not show the better performance in all the metrics of the chain, neither in all agents for each structure. The above implies the presence of trade-offs. Research limitations/implications: The results show the need to investigate mixed structures with the FPSC´s own characteristics; the model can be applied in other supply chains of perishable foods. Practical implications: Management by combining structures in the FFSC, improves logistics performance and contributes to food security. Social implications: The agents of the FFSC can apply the structures found in this study, to improve their logistics performance and the food security. Originality/value: The dynamics of individual and combined structures were identified, which constitutes a contribution to the discussion in the literature of such problems for FFSC. The model includes six echelons: farmers, wholesalers, agro-industry, third-party logistics operators and retailers. The dynamic contemplates deterioration rate to model perishability and others losses.

  13. Libraries of Middlesex, Final Performance Report for Library Services and Construction Act (LSCA) Title VI, Library Literacy Program.

    Science.gov (United States)

    Director, Elissa

    This final performance report for the Libraries of Middlesex literacy project begins with a section that compares actual accomplishments to the following objectives for 1992-93: (1) recruit and enroll at least 150 new volunteers in Basic Reading of English as a Second Language (ESL) tutor training; (2) have at least 125 volunteers successfully…

  14. Integrating dynamic fuzzy C-means, data envelopment analysis and artificial neural network to online prediction performance of companies in stock exchange

    Science.gov (United States)

    Jahangoshai Rezaee, Mustafa; Jozmaleki, Mehrdad; Valipour, Mahsa

    2018-01-01

    One of the main features to invest in stock exchange companies is their financial performance. On the other hand, conventional evaluation methods such as data envelopment analysis are not only a retrospective process, but are also a process, which are incomplete and ineffective approaches to evaluate the companies in the future. To remove this problem, it is required to plan an expert system for evaluating organizations when the online data are received from stock exchange market. This paper deals with an approach for predicting the online financial performance of companies when data are received in different time's intervals. The proposed approach is based on integrating fuzzy C-means (FCM), data envelopment analysis (DEA) and artificial neural network (ANN). The classical FCM method is unable to update the number of clusters and their members when the data are changed or the new data are received. Hence, this method is developed in order to make dynamic features for the number of clusters and clusters members in classical FCM. Then, DEA is used to evaluate DMUs by using financial ratios to provide targets in neural network. Finally, the designed network is trained and prepared for predicting companies' future performance. The data on Tehran Stock Market companies for six consecutive years (2007-2012) are used to show the abilities of the proposed approach.

  15. Relativistic analysis of four-body final states

    International Nuclear Information System (INIS)

    Adhikari, S.K.

    1977-01-01

    The constraints of unitarity and analyticity on four-body final states are studied. It is shown that unitarity alone forces the amplitudes to be coherent and have singular behaviour. The implementation of unitarity with total energy analyticity yields a set of relativistic linear integral equations for the four-body amplitude. This is the minimal set consistent with quantum mechanics and also is the full dynamical set of equations with two-body separable interactions. These equations will provide important ingredients for the phenomenological analysis of four-body final states using the isobar model. (Auth.)

  16. Performance evaluation of a mouse-sized camera for dynamic studies in small animals

    International Nuclear Information System (INIS)

    Loudos, George; Majewski, Stan; Wojcik, Randy; Weisenberger, Andrew; Sakellios, Nicolas; Nikita, Konstantina; Uzunoglu, Nikolaos; Bouziotis, Penelope; Varvarigou, Alexandra

    2007-01-01

    A mouse sized camera has been built in terms of collaboration between the presenting institutions. The system is used for the performance of dynamic studies in small animals, in order to evaluate novel radiopharmaceuticals. The active area of the detector is approximately 48x96 mm allowing depiction of the entire mouse in a single view. The system is based on two flat-panel Hamamatsu H8500 position sensitive photomultiplier tubes (PSPMT), a pixellated NaI(Tl) scintillator and a copper-beryllium (CuBe) parallel-hole collimator. In this work, the evaluation results of the system are presented, using phantoms and small animals injected with conventional radiophrmaceuticals. Average resolution was ∼1.6 mm on the collimator surface and increased to ∼4.1 mm in 12 cm distance from the detector. The average energy resolution was measured and found to be ∼15.6% for Tc 99m . Results from imaging thin capillaries demonstrated system's high resolution and sensitivity in activity variations was shown. Initial dynamic studies have been carried out in small animals injected with Tc 99m -DTPA and Tc 99m -MDP. The results show system's ability to perform kinetic imaging in small animals

  17. Optimal power and performance trade-offs for dynamic voltage scaling in power management based wireless sensor node

    Directory of Open Access Journals (Sweden)

    Anuradha Pughat

    2016-09-01

    Full Text Available Dynamic voltage scaling contributes to a significant amount of power saving, especially in the energy constrained wireless sensor networks (WSNs. Existing dynamic voltage scaling techniques make the system slower and ignore the event miss rate. This results in degradation of the system performance when there is non-stationary workload at input. The overhead due to transition between voltage level and discrete voltage levels are also the limitations of available dynamic voltage scaling (DVS techniques at sensor node (SN. This paper proposes a workload dependent DVS based MSP430 controller model used for SN. An online gradient estimation technique has been used to optimize power and performance trade-offs. The analytical results are validated with the simulation results obtained using simulation tool “SimEvents” and compared with the available AT9OS8535 controller. Based on the stochastic workload, the controller's input voltage, operational frequency, utilization, and average wait time of events are obtained.

  18. The Influence of Business Environmental Dynamism, Complexity and Munificence on Performance of Small and Medium Enterprises in Kenya

    Directory of Open Access Journals (Sweden)

    Washington Oduor Okeyo

    2014-08-01

    Full Text Available The main purpose of this article is to examine how business environment affects small and medium enterprises. The paper is motivated by the important contributions small and medium enterprises have in many countries, especially Kenya towards job creation, poverty reduction and economic development. Literature however argues that effectiveness of the contributions is conditioned by the state of business environmental factors such as politics, economy, socio-culture, technology, ecology and laws/regulations. Dynamism, complexity and munificence of these factors are therefore vital to achievement of organizational objectives and overall performance. Even so, a review of literature reveals contradictory views regarding the effect of these factors on performance of organizations. Furthermore, studies focusing on these factors in the Kenyan context, particularly with regard to their effect on performance of small and medium firms, are scarce. This article bridges this gap based on a study focusing on 800 manufacturing organizations in Nairobi – Kenya. A sample of 150 enterprises was selected through stratification by business sector followed by simple random sampling. The research design was cross sectional survey where data was collected using a structured questionnaire over a period of one month at the end of which 95 organizations responded giving a response rate of 64%. Reliability and validity of the instrument were determined through Cronbach’s alpha tests and expert reviews. Statistical Package for Social Sciences was used to determine normality through descriptive statistics and study hypotheses tested using inferential statistics. The study established that business environment had an overall impact on organizational performance. Specifically, dynamism, complexity and munificence each had a direct influence on the enterprises in the study. Furthermore the combined effect on performance was found to be greater than that of dynamism and

  19. An Efficient Dynamic Trust Evaluation Model for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Zhengwang Ye

    2017-01-01

    Full Text Available Trust evaluation is an effective method to detect malicious nodes and ensure security in wireless sensor networks (WSNs. In this paper, an efficient dynamic trust evaluation model (DTEM for WSNs is proposed, which implements accurate, efficient, and dynamic trust evaluation by dynamically adjusting the weights of direct trust and indirect trust and the parameters of the update mechanism. To achieve accurate trust evaluation, the direct trust is calculated considering multitrust including communication trust, data trust, and energy trust with the punishment factor and regulating function. The indirect trust is evaluated conditionally by the trusted recommendations from a third party. Moreover, the integrated trust is measured by assigning dynamic weights for direct trust and indirect trust and combining them. Finally, we propose an update mechanism by a sliding window based on induced ordered weighted averaging operator to enhance flexibility. We can dynamically adapt the parameters and the interactive history windows number according to the actual needs of the network to realize dynamic update of direct trust value. Simulation results indicate that the proposed dynamic trust model is an efficient dynamic and attack-resistant trust evaluation model. Compared with existing approaches, the proposed dynamic trust model performs better in defending multiple malicious attacks.

  20. Public Auditing and Data Dynamics in Cloud with Performance Assessment on Third Party Auditor

    DEFF Research Database (Denmark)

    P. Sawant, Snehal; Deshmukh, Aaradhana A.; Mihovska, Albena Dimitrova

    2016-01-01

    presented in this paper uses the concept of an external Third Party Auditor (TPA). TPA is an external party who is going to perform integrity verification of the user’s data on behalf of the user. The proposed scheme assures integrity verification with a dynamic data support, to ensure that changes made...

  1. Fatigue performance improvement in AISI 4140 steel by dynamic strain aging and dynamic precipitation during warm laser shock peening

    Energy Technology Data Exchange (ETDEWEB)

    Ye Chang [School of Industrial Engineering, Purdue University, West Lafayette, IN 47906 (United States); Suslov, Sergey; Kim, Bong Joong; Stach, Eric A. [School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN (United States); Cheng, Gary J., E-mail: gjcheng@purdue.edu [School of Industrial Engineering, Purdue University, West Lafayette, IN 47906 (United States)

    2011-02-15

    Warm laser shock peening (WLSP) is a thermomechanical treatment technique combining the advantages of laser shock peening and dynamic strain aging (DSA). Through DSA, WLSP of steel increases the dislocation density and stabilizes the dislocation structure by pinning of mobile dislocations by carbon atoms. In addition, WLSP generates nanoscale carbide precipitates through strain-induced precipitation. The carbide precipitates stabilize the microstructure by dislocation pinning. This results in higher stability of the dislocation structure and thus improves the stability of the compressive residual stress. In this study the mechanism of fatigue performance improvement in AISI 4140 steel by WLSP is investigated. It is found that microstructures formed after WLSP lead to a higher stability of dislocation structures and residual stress, which are beneficial for fatigue performance.

  2. Fatigue performance improvement in AISI 4140 steel by dynamic strain aging and dynamic precipitation during warm laser shock peening

    International Nuclear Information System (INIS)

    Ye Chang; Suslov, Sergey; Kim, Bong Joong; Stach, Eric A.; Cheng, Gary J.

    2011-01-01

    Warm laser shock peening (WLSP) is a thermomechanical treatment technique combining the advantages of laser shock peening and dynamic strain aging (DSA). Through DSA, WLSP of steel increases the dislocation density and stabilizes the dislocation structure by pinning of mobile dislocations by carbon atoms. In addition, WLSP generates nanoscale carbide precipitates through strain-induced precipitation. The carbide precipitates stabilize the microstructure by dislocation pinning. This results in higher stability of the dislocation structure and thus improves the stability of the compressive residual stress. In this study the mechanism of fatigue performance improvement in AISI 4140 steel by WLSP is investigated. It is found that microstructures formed after WLSP lead to a higher stability of dislocation structures and residual stress, which are beneficial for fatigue performance.

  3. Implementation and performance of parallelized elegant

    International Nuclear Information System (INIS)

    Wang, Y.; Borland, M.

    2008-01-01

    The program elegant is widely used for design and modeling of linacs for free-electron lasers and energy recovery linacs, as well as storage rings and other applications. As part of a multi-year effort, we have parallelized many aspects of the code, including single-particle dynamics, wakefields, and coherent synchrotron radiation. We report on the approach used for gradual parallelization, which proved very beneficial in getting parallel features into the hands of users quickly. We also report details of parallelization of collective effects. Finally, we discuss performance of the parallelized code in various applications.

  4. Dynamic response of high speed centrifuge for reprocessing plant

    International Nuclear Information System (INIS)

    Rajput, Gaurav; Satish Kumar, V.; Selvaraj, T.; Ananda Rao, S.M.; Ravisankar, A.

    2012-01-01

    The standard for balancing the rotating bowl describes only the details about the selection of balance quality grade and the permissible residual unbalance for different operating speeds. This paper presents the effects of unbalance on the rotating bowl of high speed centrifuge used in reprocessing of spent nuclear fuel. In this study, the residual unbalance is evaluated for different recommended balancing grades in accordance with the ISO 1940. This unbalance mass generates dynamic force which acts on the rotor. The dynamic response of the rotor like displacements and stresses under this dynamic force are studied by numerical simulation. Finally, the effect of residual unbalance on the rotating bowl performance for different balancing grades is discussed. The experimental measurements are also carried out for the case of G 1.0 grade balanced rotating bowl to validate the resonance frequency as well as vibration amplitudes. (author)

  5. Sequence Algebra, Sequence Decision Diagrams and Dynamic Fault Trees

    International Nuclear Information System (INIS)

    Rauzy, Antoine B.

    2011-01-01

    A large attention has been focused on the Dynamic Fault Trees in the past few years. By adding new gates to static (regular) Fault Trees, Dynamic Fault Trees aim to take into account dependencies among events. Merle et al. proposed recently an algebraic framework to give a formal interpretation to these gates. In this article, we extend Merle et al.'s work by adopting a slightly different perspective. We introduce Sequence Algebras that can be seen as Algebras of Basic Events, representing failures of non-repairable components. We show how to interpret Dynamic Fault Trees within this framework. Finally, we propose a new data structure to encode sets of sequences of Basic Events: Sequence Decision Diagrams. Sequence Decision Diagrams are very much inspired from Minato's Zero-Suppressed Binary Decision Diagrams. We show that all operations of Sequence Algebras can be performed on this data structure.

  6. Final report of the project performance assessment and economic evaluation of nuclear waste management

    International Nuclear Information System (INIS)

    Rasilainen, K.; Anttila, M.; Hautojaervi, A.

    1993-05-01

    The publication is the final report of project Performance Assessment and Economic Evaluation of Nuclear Waste Management (TOKA) at the Nuclear Engineering Laboratory of VTT (Technical Research Centre of Finland), forming part of the Publicly Financed Nuclear Waste Management Research Programme (JYT). The project covers safety and cost aspects of all phases of nuclear waste management. The main emphasis has been on developing an integrated system of models for performance assessment of nuclear waste repositories. During the four years the project has so far been in progress, the total amount of work has been around 14 person-years. Computer codes are the main tools in the project, they are either developed by the project team or acquired from abroad. In-house model development has been especially active in groundwater flow, near-field and migration modelling. The quantitative interpretation of Finnish tracer experiments in the laboratory and natural analogue studies at Palmottu support performance assessments via increased confidence in the migration concepts used. The performance assessment philosophy adopted by the team consists of deterministic modelling and pragmatic scenario analysis. This is supported by the long-term experience in practical performance assessment of the team, and in theoretical probabilistic modelling exercises. The radiological risks of spent fuel transportation from the Loviisa nuclear power plant to Russia have been analysed using a probabilistic computer code and Finnish traffic accident statistics. The project assists the authorities in the annual assessment of utility estimates of funding needs for future nuclear waste management operations. The models and methods used within the project are tested in international verification/validation projects

  7. Final Report from The University of Texas at Austin for DEGAS: Dynamic Global Address Space programming environments

    Energy Technology Data Exchange (ETDEWEB)

    Erez, Mattan

    2018-02-21

    The Dynamic, Exascale Global Address Space programming environment (DEGAS) project will develop the next generation of programming models and runtime systems to meet the challenges of Exascale computing. Our approach is to provide an efficient and scalable programming model that can be adapted to application needs through the use of dynamic runtime features and domain-specific languages for computational kernels. We address the following technical challenges: Programmability: Rich set of programming constructs based on a Hierarchical Partitioned Global Address Space (HPGAS) model, demonstrated in UPC++. Scalability: Hierarchical locality control, lightweight communication (extended GASNet), and ef- ficient synchronization mechanisms (Phasers). Performance Portability: Just-in-time specialization (SEJITS) for generating hardware-specific code and scheduling libraries for domain-specific adaptive runtimes (Habanero). Energy Efficiency: Communication-optimal code generation to optimize energy efficiency by re- ducing data movement. Resilience: Containment Domains for flexible, domain-specific resilience, using state capture mechanisms and lightweight, asynchronous recovery mechanisms. Interoperability: Runtime and language interoperability with MPI and OpenMP to encourage broad adoption.

  8. Applying dynamic data collection to improve dry electrode system performance for a P300-based brain-computer interface

    Science.gov (United States)

    Clements, J. M.; Sellers, E. W.; Ryan, D. B.; Caves, K.; Collins, L. M.; Throckmorton, C. S.

    2016-12-01

    Objective. Dry electrodes have an advantage over gel-based ‘wet’ electrodes by providing quicker set-up time for electroencephalography recording; however, the potentially poorer contact can result in noisier recordings. We examine the impact that this may have on brain-computer interface communication and potential approaches for mitigation. Approach. We present a performance comparison of wet and dry electrodes for use with the P300 speller system in both healthy participants and participants with communication disabilities (ALS and PLS), and investigate the potential for a data-driven dynamic data collection algorithm to compensate for the lower signal-to-noise ratio (SNR) in dry systems. Main results. Performance results from sixteen healthy participants obtained in the standard static data collection environment demonstrate a substantial loss in accuracy with the dry system. Using a dynamic stopping algorithm, performance may have been improved by collecting more data in the dry system for ten healthy participants and eight participants with communication disabilities; however, the algorithm did not fully compensate for the lower SNR of the dry system. An analysis of the wet and dry system recordings revealed that delta and theta frequency band power (0.1-4 Hz and 4-8 Hz, respectively) are consistently higher in dry system recordings across participants, indicating that transient and drift artifacts may be an issue for dry systems. Significance. Using dry electrodes is desirable for reduced set-up time; however, this study demonstrates that online performance is significantly poorer than for wet electrodes for users with and without disabilities. We test a new application of dynamic stopping algorithms to compensate for poorer SNR. Dynamic stopping improved dry system performance; however, further signal processing efforts are likely necessary for full mitigation.

  9. Causality analysis in business performance measurement system using system dynamics methodology

    Science.gov (United States)

    Yusof, Zainuridah; Yusoff, Wan Fadzilah Wan; Maarof, Faridah

    2014-07-01

    One of the main components of the Balanced Scorecard (BSC) that differentiates it from any other performance measurement system (PMS) is the Strategy Map with its unidirectional causality feature. Despite its apparent popularity, criticisms on the causality have been rigorously discussed by earlier researchers. In seeking empirical evidence of causality, propositions based on the service profit chain theory were developed and tested using the econometrics analysis, Granger causality test on the 45 data points. However, the insufficiency of well-established causality models was found as only 40% of the causal linkages were supported by the data. Expert knowledge was suggested to be used in the situations of insufficiency of historical data. The Delphi method was selected and conducted in obtaining the consensus of the causality existence among the 15 selected expert persons by utilizing 3 rounds of questionnaires. Study revealed that only 20% of the propositions were not supported. The existences of bidirectional causality which demonstrate significant dynamic environmental complexity through interaction among measures were obtained from both methods. With that, a computer modeling and simulation using System Dynamics (SD) methodology was develop as an experimental platform to identify how policies impacting the business performance in such environments. The reproduction, sensitivity and extreme condition tests were conducted onto developed SD model to ensure their capability in mimic the reality, robustness and validity for causality analysis platform. This study applied a theoretical service management model within the BSC domain to a practical situation using SD methodology where very limited work has been done.

  10. Investigating pianists' individuality in the performance of five timbral nuances through patterns of articulation, touch, dynamics and pedalling

    Directory of Open Access Journals (Sweden)

    Michel eBernays

    2014-03-01

    Full Text Available Timbre is an essential expressive feature in piano performance. Concert pianists use a vast palette of timbral nuances to colour their performances at the microstructural level. Although timbre is generally envisioned in the pianistic community as an abstract concept carried through an imaged vocabulary, performers may share some common strategies of timbral expression in piano performance. Yet there may remain further leeway for idiosyncratic processes in the production of piano timbre nuances. In this study, we examined the patterns of timbral expression in performances by four expert pianists. Each pianist performed four short pieces, each with five different timbral intentions (bright, dark, dry, round, and velvety. The performances were recorded with the high-accuracy Bösendorfer CEUS system. Fine-grained performance features of dynamics, touch, articulation and pedalling were extracted. Reduced PCA performance spaces and descriptive performance portraits confirmed that pianists exhibited unique, specific profiles for different timbral intentions, derived from underlying traits of general individuality, while sharing some broad commonalities of dynamics and articulation for each timbral intention. These results confirm that pianists’ abstract notions of timbre correspond to reliable patterns of performance technique. Furthermore, these effects suggest that pianists can express individual styles while complying with specific timbral intentions.

  11. Traffic Management Systems Performance Measurement: Final Report

    OpenAIRE

    Banks, James H.; Kelly, Gregory

    1997-01-01

    This report documents a study of performance measurement for Transportation Management Centers (TMCs). Performance measurement requirements were analyzed, data collection and management techniques were investigated, and case study traffic data system improvement plans were prepared for two Caltrans districts.

  12. Final-state effects on superfluid 4He in the deep inelastic regime

    International Nuclear Information System (INIS)

    Mazzanti, F.; Boronat, J.; Polls, A.

    1996-01-01

    A study of final-state effects (FSE) on the dynamic structure function of superfluid 4 He in the Gersch-Rodriguez formalism is presented. The main ingredients needed in the calculation are the momentum distribution and the semidiagonal two-body density matrix. The influence of these ground-state quantities on the FSE is analyzed. A variational form of ρ 2 is used, even though simpler forms turn out to give accurate results if properly chosen. Comparison to the experimental response at high momentum transfer is performed. The predicted response is quite sensitive to slight variations on the value of the condensate fraction, the best agreement with experiment being obtained with n 0 =0.082. Sum rules of the FSE broadening function are also derived and commented. Finally, it is shown that Gersch-Rodriguez theory produces results as accurate as those coming from other more recent FSE theories. copyright 1996 The American Physical Society

  13. Dynamic Gaming Platform (DGP)

    Science.gov (United States)

    2009-04-01

    GAMING PLATFORM (DGP) Lockheed Martin Corporation...YYYY) APR 09 2. REPORT TYPE Final 3. DATES COVERED (From - To) Jul 07 – Mar 09 4. TITLE AND SUBTITLE DYNAMIC GAMING PLATFORM (DGP) 5a...CMU Carnegie Mellon University DGP Dynamic Gaming Platform GA Genetic Algorithm IARPA Intelligence Advanced Research Projects Activity LM ATL Lockheed Martin Advanced Technology Laboratories PAINT ProActive INTelligence

  14. Assessment of the Performance of Three Dynamical Climate Downscaling Methods Using Different Land Surface Information over China

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2018-03-01

    Full Text Available This study aims to assess the performance of different dynamical downscaling methods using updated land surface information. Particular attention is given to obtaining high-resolution climate information over China by the combination of an appropriate dynamical downscaling method and updated land surface information. Two group experiments using two land surface datasets are performed, including default Weather Research and Forecasting (WRF land surface data (OLD and accurate dynamically accordant MODIS data (NEW. Each group consists of three types of experiments for the summer of 2014, including traditional continuous integration (CT, spectral nudging (SN, and re-initialization (Re experiments. The Weather Research and Forecasting (WRF model is used to dynamically downscale ERA-Interim (reanalysis of the European Centre for Medium-Range Weather Forecast, ECMWF data with a grid spacing of 30 km over China. The simulations are evaluated via comparison with observed conventional meteorological variables, showing that the CT method, which notably overestimates 2 m temperature and underestimates 2 m relative humidity across China, performs the worst; the SN and Re runs outperform the CT method, and the Re shows the smallest RMSE (root means square error. A comparison of observed and simulated precipitation shows that the SN simulation is closest to the observed data, while the CT and Re simulations overestimate precipitation south of the Yangtze River. Compared with the OLD group, the RMSE values of temperature and relative humidity are significantly improved in CT and SN, and there is smaller improved in Re. However, obvious improvements in precipitation are not evident.

  15. Evaluation of static and dynamic balance in elderly women performing aquatic exercise and gymnastics

    Directory of Open Access Journals (Sweden)

    Ana Paula Almeida

    2010-01-01

    Full Text Available This study evaluated static and dynamic balance and related motor valences in elderly women who had been undergone gymnastics or aquatic exercise training for at least 6 months, three times a week. Thirty-one women performed water gymnastics (mean age: 69.32 ± 6.57 years and 28 gymnastics (65.57 ± 7.67 years. Height (cm, weight (kg and waist, hip and abdominal circumference (cm were measured and the body mass index (BMI and waist-hip ratio (WHR were calculated. Physical fitness was measured using the “sit and get up in 30 seconds” test (leg endurance and “8-foot up-and-go” test (dynamic balance, both proposed by Rikli and Jones (1999, and the “sit and reach” (flexibility and static balance tests described by Caromano (1998. Statistical analysis was performed using the Student t-test and Pearson’s correlation, with a level of significance of 0.05. No significant difference in the anthropometric measures (BMI and WHR was observed between groups. In the physical fitness tests, significant differences were only found in the “8-foot up-and-go” and “sit and get up” tests, with the gymnastics group presenting better results. No correlations within or between groups were observed regarding static and dynamic balance or motor valences. In conclusion, neither type of exercise was superior but the gymnastics group tended to show better results in terms of parameters such as agility, balance and flexibility.

  16. Instability predictions for circumferentially cracked Type-304 stainless-steel pipes under dynamic loading. Final report. [BWR

    Energy Technology Data Exchange (ETDEWEB)

    Zahoor, A.; Wilkowski, G.; Abou-Sayed, I.; Marschall, C.; Broek, D.; Sampath, S.; Rhee, H.; Ahmad, J.

    1982-04-01

    This report provides methods to predict margins of safety for circumferentially cracked Type 304 stainless steel pipes subjected to applied bending loads. An integrated combination of experimentation and analysis research was pursued. Two types of experiments were performed: (1) laboratory-scale tests on center-cracked panels and bend specimens to establish the basic mechanical and fracture properties of Type 304 stainless steel, and (2) full-scale pipe fracture tests under quasi-static and dynamic loadings to assess the analysis procedures. Analyses were based upon the simple plastic collapse criterion, a J-estimation procedure, and elastic-plastic large-deformation finite element models.

  17. Tunable and reconfigurable multi-tap microwave photonic filter based on dynamic Brillouin gratings in fibers.

    Science.gov (United States)

    Sancho, J; Primerov, N; Chin, S; Antman, Y; Zadok, A; Sales, S; Thévenaz, L

    2012-03-12

    We propose and experimentally demonstrate new architectures to realize multi-tap microwave photonic filters, based on the generation of a single or multiple dynamic Brillouin gratings in polarization maintaining fibers. The spectral range and selectivity of the proposed periodic filters is extensively tunable, simply by reconfiguring the positions and the number of dynamic gratings along the fiber respectively. In this paper, we present a complete analysis of three different configurations comprising a microwave photonic filter implementation: a simple notch-type Mach-Zehnder approach with a single movable dynamic grating, a multi-tap performance based on multiple dynamic gratings and finally a stationary grating configuration based on the phase modulation of two counter-propagating optical waves by a common pseudo-random bit sequence (PRBS).

  18. Modeling Dynamic Systems with Efficient Ensembles of Process-Based Models.

    Directory of Open Access Journals (Sweden)

    Nikola Simidjievski

    Full Text Available Ensembles are a well established machine learning paradigm, leading to accurate and robust models, predominantly applied to predictive modeling tasks. Ensemble models comprise a finite set of diverse predictive models whose combined output is expected to yield an improved predictive performance as compared to an individual model. In this paper, we propose a new method for learning ensembles of process-based models of dynamic systems. The process-based modeling paradigm employs domain-specific knowledge to automatically learn models of dynamic systems from time-series observational data. Previous work has shown that ensembles based on sampling observational data (i.e., bagging and boosting, significantly improve predictive performance of process-based models. However, this improvement comes at the cost of a substantial increase of the computational time needed for learning. To address this problem, the paper proposes a method that aims at efficiently learning ensembles of process-based models, while maintaining their accurate long-term predictive performance. This is achieved by constructing ensembles with sampling domain-specific knowledge instead of sampling data. We apply the proposed method to and evaluate its performance on a set of problems of automated predictive modeling in three lake ecosystems using a library of process-based knowledge for modeling population dynamics. The experimental results identify the optimal design decisions regarding the learning algorithm. The results also show that the proposed ensembles yield significantly more accurate predictions of population dynamics as compared to individual process-based models. Finally, while their predictive performance is comparable to the one of ensembles obtained with the state-of-the-art methods of bagging and boosting, they are substantially more efficient.

  19. The effects of individual differences, prior experience and cognitive load on the transfer of dynamic decision-making performance.

    Science.gov (United States)

    Nicholson, Brad; O'Hare, David

    2014-01-01

    Situational awareness is recognised as an important factor in the performance of individuals and teams in dynamic decision-making (DDM) environments (Salmon et al. 2014 ). The present study was designed to investigate whether the scores on the WOMBAT™ Situational Awareness and Stress Tolerance Test (Roscoe and North 1980 ) would predict the transfer of DDM performance from training under different levels of cognitive load to a novel situation. Participants practised a simulated firefighting task under either low or high conditions of cognitive load and then performed a (transfer) test in an alternative firefighting environment under an intermediate level of cognitive load. WOMBAT™ test scores were a better predictor of DDM performance than scores on the Raven Matrices. Participants with high WOMBAT™ scores performed better regardless of their training condition. Participants with recent gaming experience who practised under low cognitive load showed better practice phase performance but worse transfer performance than those who practised under high cognitive load. The relationship between task experience, situational awareness ability, cognitive load and the transfer of dynamic decision-making (DDM) performance was investigated. Results showed that the WOMBAT™ test predicted transfer of DDM performance regardless of task cognitive load. The effects of cognitive load on performance varied according to previous task-relevant experience.

  20. Feed-pump hydraulic performance and design improvement, Phase I: research program design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brown, W.H.; Gopalakrishnan, S.; Fehlau, R.; Thompson, W.E.; Wilson, D.G.

    1982-03-01

    As a result of prior EPRI-sponsored studies, it was concluded that a research program should be designed and implemented to provide an improved basis for the design, procurement, testing, and operation of large feed pumps with increased reliability and stability over the full range of operating conditions. This two-volume report contains a research plan which is based on a review of the present state of the art and which defines the necessary R and D program and estimates the benefits and costs of the program. The recommended research program consists of 30 interrelated tasks. It is designed to perform the needed research; to verify the results; to develop improved components; and to publish computer-aided design methods, pump specification guidelines, and a troubleshooting manual. Most of the technology proposed in the research plan is applicable to nuclear power plants as well as to fossil-fired plants. This volume discusses the design, performance and failures of feed pumps, and recommendations for research on pump dynamics, design, and specifications.

  1. Low-level waste disposal site performance assessment with the RQ/PQ methodology. Final report

    International Nuclear Information System (INIS)

    Rogers, V.C.; Grant, M.W.; Sutherland, A.A.

    1982-12-01

    A methodology called RQ/PQ (retention quotient/performance quotient) has been developed for relating the potential hazard of radioactive waste to the natural and man-made barriers provided by a disposal facility. The methodology utilizes a systems approach to quantify the safety of low-level waste disposed in a near-surface facility. The main advantages of the RQ/PQ methodology are its simplicity of analysis and clarity of presentation while still allowing a comprehensive set of nuclides and pathways to be treated. Site performance and facility designs for low-level waste disposal can be easily investigated with relatively few parameters needed to define the problem. Application of the methodology has revealed that the key factor affecting the safety of low-level waste disposal in near surface facilities is the potential for intrusion events. Food, inhalation and well water pathways dominate in the analysis of such events. While the food and inhalation pathways are not strongly site-dependent, the well water pathway is. Finally, burial at depths of 5 m or more was shown to reduce the impacts from intrusion events

  2. The Dynamic Response of an Euler-Bernoulli Beam on an Elastic Foundation by Finite Element Analysis using the Exact Stiffness Matrix

    International Nuclear Information System (INIS)

    Kim, Jeong Soo; Kim, Moon Kyum

    2012-01-01

    In this study, finite element analysis of beam on elastic foundation, which received great attention of researchers due to its wide applications in engineering, is performed for estimating dynamic responses of shallow foundation using exact stiffness matrix. First, element stiffness matrix based on the closed solution of beam on elastic foundation is derived. Then, we performed static finite element analysis included exact stiffness matrix numerically, comparing results from the analysis with some exact analysis solutions well known for verification. Finally, dynamic finite element analysis is performed for a shallow foundation structure under rectangular pulse loading using trapezoidal method. The dynamic analysis results exist in the reasonable range comparing solution of single degree of freedom problem under a similar condition. The results show that finite element analysis using exact stiffness matrix is evaluated as a good tool of estimating the dynamic response of structures on elastic foundation.

  3. Final Performance Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Houldin, Joseph [Delaware Valley Industrial Resource Center, Philadelphia, PA (United States); Saboor, Veronica [Delaware Valley Industrial Resource Center, Philadelphia, PA (United States)

    2016-03-30

    about assessing a company’s technical assets, broadening our view of the business to go beyond what they make or what NAICS code they have…to better understand their capacity, capability, and expertise, and to learn more about THEIR customers. Knowing more about the markets they serve can often provide insight into their level of technical knowledge and sophistication. Finally, in the spirit of realizing the intent of the Accelerator we strove to align and integrate the work and activities supported by the five funding agencies to leverage each effort. To that end, we include in the Integrated Work Plan a graphic that illustrates that integration. What follows is our summary report of the project, aggregated from prior reports.

  4. Optimization of the dynamic and thermal performance of a resonant micro heat engine

    International Nuclear Information System (INIS)

    Bardaweel, H K; Richards, R F; Richards, C D; Anderson, M J

    2008-01-01

    The dynamic behavior of a flexing membrane micro heat engine is presented. The micro heat engine consists of a cavity filled with a saturated, two-phase working fluid bounded on the top by a flexible expander membrane and on the bottom by a stiff evaporator membrane. A lumped parameter model is developed to simulate the dynamic behavior of the micro heat engine. First, the model is validated against experimental data. Then, the model is used to investigate the effect of the duration of the heat addition process, the mass of the expander membrane and the thermal storage or thermal inertia associated with the engine cavity on the dynamic behavior of the micro engine. The results show the optimal duration for the heat addition process to be less than 10% of the engine cycle period. Increasing the mass of the flexible expander membrane is shown to reduce the resonant frequency of the engine to 130 Hz. Operating the engine at resonance leads to increased power output. The thermal storage or thermal inertia associated with the engine cavity is shown to have a strong effect on engine performance

  5. Mainstream upflow nitritation-anammox system with hybrid anaerobic pretreatment: Long-term performance and microbial community dynamics.

    Science.gov (United States)

    Li, Xiaojin; Sun, Shan; Yuan, Heyang; Badgley, Brian D; He, Zhen

    2017-11-15

    Mainstream nitritation-anammox is of strong interest to energy- and resource-efficient domestic wastewater treatment. However, there lack in-depth studies of pretreatment, tests of actual wastewater, and examination of long-term performance. Herein, an upflow nitritation-anammox granular reactor has been investigated to treat primary effluent with a hybrid anaerobic reactor (HAR) as pretreatment for more than 300 days. This system achieved 92% of COD removal, 75% of which was accomplished by the HAR, and had an average final effluent COD concentration of 22 mg L -1 . More than 90% of ammonium was removed in the nitritation-anammox reactor, achieving a nitrogen removal rate of 81.0 g N m -3  d -1 in the last stage. The accumulation of sulfate-reducing bacteria in the HAR evidenced the effect of sulfate on COD removal and subsequent nitrogen removal. Anammox bacteria (predominantly Ca. Jettenia asiatica) accounted for up to 40.2% of total granular communities, but their abundance decreased over time in the suspended communities. The dynamics of major metabolisms and functional genes involved in nitrogen conversion were predicted by PICRUSt based on the taxonomic data, providing more insights into the functions of the microbial communities. These results have demonstrated the effectiveness and importance of anaerobic pretreatment to successful mainstream nitritation-anammox. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Effects of Structural Transparency in System Dynamics Simulators on Performance and Understanding

    Directory of Open Access Journals (Sweden)

    Birgit Kopainsky

    2015-10-01

    Full Text Available Prior exploration is an instructional strategy that has improved performance and understanding in system-dynamics-based simulators, but only to a limited degree. This study investigates whether model transparency, that is, showing users the internal structure of models, can extend the prior exploration strategy and improve learning even more. In an experimental study, participants in a web-based simulation learned about and managed a small developing nation. All participants were provided the prior exploration strategy but only half received prior exploration embedded in a structure-behavior diagram intended to make the underlying model’s structure more transparent. Participants provided with the more transparent strategy demonstrated better understanding of the underlying model. Their performance, however, was the equivalent to those in the less transparent condition. Combined with previous studies, our results suggest that while prior exploration is a beneficial strategy for both performance and understanding, making the model structure transparent with structure-behavior diagrams is more limited in its effect.

  7. Externally induced frontoparietal synchronization modulates network dynamics and enhances working memory performance.

    Science.gov (United States)

    Violante, Ines R; Li, Lucia M; Carmichael, David W; Lorenz, Romy; Leech, Robert; Hampshire, Adam; Rothwell, John C; Sharp, David J

    2017-03-14

    Cognitive functions such as working memory (WM) are emergent properties of large-scale network interactions. Synchronisation of oscillatory activity might contribute to WM by enabling the coordination of long-range processes. However, causal evidence for the way oscillatory activity shapes network dynamics and behavior in humans is limited. Here we applied transcranial alternating current stimulation (tACS) to exogenously modulate oscillatory activity in a right frontoparietal network that supports WM. Externally induced synchronization improved performance when cognitive demands were high. Simultaneously collected fMRI data reveals tACS effects dependent on the relative phase of the stimulation and the internal cognitive processing state. Specifically, synchronous tACS during the verbal WM task increased parietal activity, which correlated with behavioral performance. Furthermore, functional connectivity results indicate that the relative phase of frontoparietal stimulation influences information flow within the WM network. Overall, our findings demonstrate a link between behavioral performance in a demanding WM task and large-scale brain synchronization.

  8. Dynamic characteristics analysis of deployable space structures considering joint clearance

    Science.gov (United States)

    Li, Tuanjie; Guo, Jian; Cao, Yuyan

    2011-04-01

    The clearance in joints influences the dynamic stability and the performance of deployable space structures (DSS). A virtual experimental modal analysis (VEMA) method is proposed to deal with the effects of joint clearance and link flexibility on the dynamic characteristics of the DSS in this paper. The focus is on the finite element modeling of the clearance joint, VEMA and the modal parameters identification of the DSS. The finite element models (FEM) of the clearance joint and the deployable structure are established in ANSYS. The transient dynamic analysis is conducted to provide the time history data of excitation and response for the VEMA. The fast Fourier transform (FFT) technique is used to transform the data from time domain to frequency domain. The frequency response function is calculated to identify the modal parameters of the deployable structure. Experimental verification is provided to indicate the VEMA method is both a cost and time efficient approach to obtain the dynamic characteristics of the DSS. Finally, we analyze the effects of clearance size and gravity on the dynamic characteristics of the DSS. The analysis results indicate that the joint clearance and gravity strongly influence the dynamic characteristics of the DSS.

  9. Rumination and Performance in Dynamic, Team Sport

    Directory of Open Access Journals (Sweden)

    Michael eRoy

    2016-01-01

    Full Text Available People high in rumination are good at tasks that require persistence whereas people low in rumination are good at tasks that require flexibility. Here we examine real world implications of these differences in dynamic, team sport. In two studies, we found that professional male football (soccer players from Germany and female field hockey players on the US national team were lower in rumination than were non-athletes. Further, low levels of rumination were associated with a longer career at a higher level in football players. Results indicate that athletes in dynamic, team sport might benefit from the flexibility associated with being low in rumination.

  10. Intelligent Facades for High Performance Green Buildings. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Dyson, Anna [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2017-03-01

    Intelligent Facades for High Performance Green Buildings: Previous research and development of intelligent facades systems has been limited in their contribution towards national goals for achieving on-site net zero buildings, because this R&D has failed to couple the many qualitative requirements of building envelopes such as the provision of daylighting, access to exterior views, satisfying aesthetic and cultural characteristics, with the quantitative metrics of energy harvesting, storage and redistribution. To achieve energy self-sufficiency from on-site solar resources, building envelopes can and must address this gamut of concerns simultaneously. With this project, we have undertaken a high-performance building- integrated combined-heat and power concentrating photovoltaic system with high temperature thermal capture, storage and transport towards multiple applications (BICPV/T). The critical contribution we are offering with the Integrated Concentrating Solar Façade (ICSF) is conceived to improve daylighting quality for improved health of occupants and mitigate solar heat gain while maximally capturing and transferring on- site solar energy. The ICSF accomplishes this multi-functionality by intercepting only the direct-normal component of solar energy (which is responsible for elevated cooling loads) thereby transforming a previously problematic source of energy into a high- quality resource that can be applied to building demands such as heating, cooling, dehumidification, domestic hot water, and possible further augmentation of electrical generation through organic Rankine cycles. With the ICSF technology, our team is addressing the global challenge in transitioning commercial and residential building stock towards on-site clean energy self-sufficiency, by fully integrating innovative environmental control systems strategies within an intelligent and responsively dynamic building envelope. The advantage of being able to use the entire solar spectrum for

  11. Hydraulically driven control rod concept for integral reactors: fluid dynamic simulation and preliminary test

    International Nuclear Information System (INIS)

    Ricotti, M.E.; Cammi, A.; Lombardi, C.; Passoni, M.; Rizzo, C.; Carelli, M.; Colombo, E.

    2003-01-01

    The paper deals with the preliminary study of the Hydraulically Driven Control Rod concept, tailored for PWR control rods (spider type) with hydraulic drive mechanism completely immersed in the primary water. A specific solution suitable for advanced versions of the IRIS integral reactor is under investigation. The configuration of the Hydraulic Control Rod device, made up by an external movable piston and an internal fixed cylinder, is described. After a brief description of the whole control system, particular attention is devoted to the Control Rod characterization via Computational Fluid Dynamics (CFD) analysis. The investigation of the system behavior, including dynamic equilibrium and stability properties, has been carried out. Finally, preliminary tests were performed in a low pressure, low temperature, reduced length experimental facility. The results are compared with the dynamic control model and CFD simulation model, showing good agreement between simulations and experimental data. During these preliminary tests, the control system performs correctly, allowing stable dynamic equilibrium positions for the Control Rod and stable behavior during withdrawal and insertion steps. (author)

  12. Credit Rating via Dynamic Slack-Based Measure And It´s Optimal Investment Strategy

    Directory of Open Access Journals (Sweden)

    A. Delavarkhalafi

    2015-01-01

    Full Text Available In this paper we check the credit rating of firms applied for a loan. In this regard we introduce a model, named Dynamic Slack-Based Measure (DSBM for measuring credit rating of applicant companies. Selection of financial ratios that represent the financial state of a company -in the best possible way- is one of the most challenging parts of any credit rating analysis. At first, ranking needs to identify the appropriate variables. Therefore we introduce five financial variables to provide a ranking. As noted above, we assess the performance of these firms. Then we introduce the dynamic model of SBM and theorems, also we discuss the overall structure of DSBM. Then we will present the implementation and the simulation model. After that, we propose a stochastic controlled dynamic system model to express the optimal strategy. Banks expect companies selected with DSBM model, act in accordance with this strategy. This stochastic dynamic system is originated from the balance sheets of firms applying for a loan. Finally we evaluate the performance of the system and strategy problem.

  13. High Efficiency Thermionics (HET-IV) and Converter Advancement (CAP) programs. Final reports

    Energy Technology Data Exchange (ETDEWEB)

    Geller, C.B.; Murray, C.S.; Riley, D.R. [Bettis Atomic Power Lab., West Mifflin, PA (United States); Desplat, J.L.; Hansen, L.K.; Hatch, G.L.; McVey, J.B.; Rasor, N.S. [Rasor Associates, Inc., Sunnyvale, CA (United States)

    1996-04-01

    This report contains the final report of the High Efficiency Thermionics (HET-IV) Program, Attachment A, performed at Rasor Associates, Inc. (RAI); and the final report of the Converter Advancement Program (CAP), performed at the Bettis Atomic Power Laboratory, Attachment B. The phenomenology of cesium-oxygen thermionic converters was elucidated in these programs, and the factors that had prevented the achievement of stable, enhanced cesium-oxygen converter performance for the previous thirty years were identified. Based on these discoveries, cesium-oxygen vapor sources were developed that achieved stable performance with factor-of-two improvements in power density and thermal efficiency, relative to conventional, cesium-only ignited mode thermionic converters. Key achievements of the HET-IV/CAP programs are as follows: a new technique for measuring minute traces of oxygen in cesium atmospheres; the determination of the proper range of oxygen partial pressures for optimum converter performance--10{sup {minus}7} to 10{sup {minus}9} torr; the discovery, and analysis of the cesium-oxygen liquid migration and compositional segregation phenomena; the successful use of capillary forces to contain the migration phenomenon; the use of differential heating to control compositional segregation, and induce vapor circulation; the development of mechanically and chemically stable, porous reservoir structures; the development of precise, in situ oxygen charging methods; stable improvements in emitter performance, up to effective emitter bare work functions of 5.4 eV; stable improvements in barrier index, to value below 1.8 Volts; the development of detailed microscopic models for cesium-oxygen reservoir dynamics and collector work function behavior; and the discovery of new relationships between electrode geometry and Schock Instability.

  14. Modelling and simulation of the dynamic performance of a natural-gas turbine flowmeter

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Gonzalez, L.M. [Escuela Tecnica Superior de Ingenieria Industrial, Universidad de La Rioja, C/Luis de Ulloa, 20, E-26004 Logrono (La Rioja) (Spain); Sala, J.M.; Gonzalez-Bustamante, J.A. [Escuela Superior de Ingenieros Industriales de Bilbao, Universidad del Pais Vasco, Alameda de Urquijo, s/n 48013 Bilbao (Bizkaia) (Spain); Miguez, J.L. [Universidad de Vigo, Escuela Tecnica Superior de Ingenieros Industriales, C/Lagoas-Marcosende, s/n 36200 Vigo (Pontevedra) (Spain)

    2006-11-15

    Installations involving fluids often present problems in terms of the dynamic performances of their different parts. These problems can be analysed and dealt with at the design stage. This means that both the technologists who design the thermohydraulic process and those who carry out the regulation and control must be involved in the process from the early stages of the design. In this study, a dynamic model of the behaviour of a gas flowmeter has been developed, based on the laws of conservation of mass, linear momentum, energy and angular momentum. The model has been computerised via a software module. As there is no information available with which to compare the model's behaviour, a continuous rating validation has been carried out, using a comparison with the actual calibration curve of the flowmeter. The results obtained are satisfactory. (author)

  15. On the dynamical vs. thermodynamical performance of a β-type Stirling engine

    Science.gov (United States)

    Reséndiz-Antonio, Margarita; Santillán, Moisés

    2014-09-01

    In this work we present a simple mathematical model for a β-type Stirling engine. Despite its simplicity, the model considers all the engine’s relevant thermodynamic and mechanical aspects. The dynamic behavior of the model equation of motion is analyzed in order to obtain the sufficient conditions for engine cycling and to study the stability of the stationary regime. The performance of the engine’s thermodynamic part is also investigated. As a matter of fact, we found that it corresponds to a Carnot engine.

  16. The influence of climatic and physiological performance on population dynamics of Mytilus edulis in West Greenland

    DEFF Research Database (Denmark)

    Thyrring, Jakob; Blicher, Martin; Sejr, Mikael Kristian

    2014-01-01

    data on current distribution and physiological performance of blue mussels in the Arctic is lacking, and knowledge of how “climate” in a broad sense specifically influence population dynamics of this species is unknown. Here, we present data on abundance, age and mortality of blue mussels in West...... Greenland. We supplement our data with physiological measurements on freezing tolerance and aerobic metabolic performance of intertidal specimens. We hereby attempt to identify links between temperature and physiology and how this might translate into population dynamics in this region of the Arctic....... Results show an overall decline in blue mussel abundance along the coast from south to north Greenland. Physiological adaptation and plasticity of blue mussels was found across latitudes spanning from the temperate to the High Arctic region. Combined our results indicate that low ocean temperature per se...

  17. Performative family: homosexuality, marriage and intergenerational dynamics in China.

    Science.gov (United States)

    Choi, Susanne Yp; Luo, Ming

    2016-06-01

    Using in-depth interview data on nominal marriages - legal marriages between a gay man and a lesbian to give the appearance of heterosexuality - this paper develops the concept of performative family to explain the processes through which parents and their adult children negotiate and resolve disagreements in relation to marriage decisions in post-socialist China. We identify three mechanisms - network pressure, a revised discourse of filial piety and resource leverage - through which parents influence their gay offspring's decision to turn to nominal marriage. We also delineate six strategies, namely minimizing network participation, changing expectations, making partial concessions, drawing the line, delaying decisions and ending the marriage, by which gay people in nominal marriages attempt to meet parental expectations while simultaneously retaining a degree of autonomy. Through these interactions, we argue that Chinese parents and their gay adult children implicitly and explicitly collaborate to perform family, emphasizing the importance of formally meeting society's expectations about marriage rather than substantively yielding to its demands. We also argue that the performative family is a pragmatic response to the tension between the persistent centrality of family and marriage and the rising tide of individualism in post-socialist China. We believe that our findings highlight the specific predicament of homosexual people. They also shed light on the more general dynamics of intergenerational negotiation because there is evidence that the mechanisms used by parents to exert influence may well be similar between gay and non-gay people. © London School of Economics and Political Science 2016.

  18. Aging analysis of high performance FinFET flip-flop under Dynamic NBTI simulation configuration

    Science.gov (United States)

    Zainudin, M. F.; Hussin, H.; Halim, A. K.; Karim, J.

    2018-03-01

    A mechanism known as Negative-bias Temperature Instability (NBTI) degrades a main electrical parameters of a circuit especially in terms of performance. So far, the circuit design available at present are only focussed on high performance circuit without considering the circuit reliability and robustness. In this paper, the main circuit performances of high performance FinFET flip-flop such as delay time, and power were studied with the presence of the NBTI degradation. The aging analysis was verified using a 16nm High Performance Predictive Technology Model (PTM) based on different commands available at Synopsys HSPICE. The results shown that the circuit under the longer dynamic NBTI simulation produces the highest impact in the increasing of gate delay and decrease in the average power reduction from a fresh simulation until the aged stress time under a nominal condition. In addition, the circuit performance under a varied stress condition such as temperature and negative stress gate bias were also studied.

  19. Final disposal room structural response calculations

    International Nuclear Information System (INIS)

    Stone, C.M.

    1997-08-01

    Finite element calculations have been performed to determine the structural response of waste-filled disposal rooms at the WIPP for a period of 10,000 years after emplacement of the waste. The calculations were performed to generate the porosity surface data for the final set of compliance calculations. The most recent reference data for the stratigraphy, waste characterization, gas generation potential, and nonlinear material response have been brought together for this final set of calculations

  20. Dynamic Capabilities

    DEFF Research Database (Denmark)

    Grünbaum, Niels Nolsøe; Stenger, Marianne

    2013-01-01

    The findings reveal a positive relationship between dynamic capabilities and innovation performance in the case enterprises, as we would expect. It was, however, not possible to establish a positive relationship between innovation performance and profitability. Nor was there any positive...... relationship between dynamic capabilities and profitability....

  1. PSI-Center Final Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Jarboe, Thomas R. [Univ. of Washington, Seattle, WA (United States); Shumlak, Uri [Univ. of Washington, Seattle, WA (United States); Sovinec, Carl [Univ. of Washington, Seattle, WA (United States); Hansen, Chris [Univ. of Washington, Seattle, WA (United States); Ji, Jeong-Young [Utah State Univ., Logan, UT (United States); Nelson, Brian [Univ. of Wisconsin, Madison, WI (United States)

    2017-04-20

    This is the Final Progress Report of the Plasma Science and Innovation Center (PSI-Center) covering March 2014 through February 2017. The Center has accomplished a great deal during this period. The PSI-Center is organized into four groups: Edge and Dynamic Neutrals; Transport and Kinetic Effects; Equilibrium, Stability, and Kinetic Effects in 3D Topologies; and Interface for Validation. Each group has made good progress and the results from each group are given in detail.

  2. Regarding the rejection performance of a polymeric reverse osmosis membrane for the final purification of two-phase olive mill effluents previously treated by an advanced oxidation process

    International Nuclear Information System (INIS)

    Ochando-Pulido, J.M.; Martínez-Férez, A.

    2017-01-01

    In previous works on olive mill wastewater (OMW), secondary advanced oxidation treatment solved the problem related to the presence of phenolic compounds and considerable chemical oxygen demand. However, the effluent presented a significant salinity after this treatment. In this work, an adequate operation of a reverse osmosis (RO) membrane is addressed to ensure constant performance over a long period of time. In this paper, the effect of the operating parameters on the dynamic membrane rejection performance towards the target species was examined and discussed. Rejection efficiencies of all species were observed to follow a similar pattern, which consisted of slight initial improvement that further decreased over time. Rejection of both divalent ions remained constant at over 99% regardless of the operating conditions. Rejections were noticed to follow the order SO42−> Cl−> NO3− and Ca2+> Mg2+> K+> Na+, as a rule. Divalent species were moderately more highly rejected than monovalent ones, in accordance with their higher charge and molecular size, and sulfate anions were consistently rejected by over 99%. Finally, the RO membrane exiting treated effluent was depleted of the high electro conductivity initially present (above 97% rejection), permitting its re-use as good quality irrigation water (below 1 mS/cm). [es

  3. Performance and impact of dynamic data placement in ATLAS

    CERN Document Server

    Maier, Thomas; The ATLAS collaboration

    2018-01-01

    For high-throughput computing the efficient use of distributed computing resources relies on an evenly distributed workload, which in turn requires wide availability of input data that is used in physics analysis. In ATLAS, the dynamic data placement agent C3PO was implemented in the ATLAS distributed data management system Rucio which identifies popular data and creates additional, transient replicas to make data more widely and more reliably available. This contribution presents studies on the performance of C3PO and the impact it has on throughput rates of distributed computing in ATLAS. This includes analysis of the placement algorithm selection behaviour regarding the data considered for replication and destination storage elements, usage after the placement decision of the chosen datasets in general and the newly created copies in particular, and the impact on metrics like job waiting times, task completion times and failure rates of tasks.

  4. Recursive formulae and performance comparisons for first mode dynamics of periodic structures

    Science.gov (United States)

    Hobeck, Jared D.; Inman, Daniel J.

    2017-05-01

    Periodic structures are growing in popularity especially in the energy harvesting and metastructures communities. Common types of these unique structures are referred to in the literature as zigzag, orthogonal spiral, fan-folded, and longitudinal zigzag structures. Many of these studies on periodic structures have two competing goals in common: (a) minimizing natural frequency, and (b) minimizing mass or volume. These goals suggest that no single design is best for all applications; therefore, there is a need for design optimization and comparison tools which first require efficient easy-to-implement models. All available structural dynamics models for these types of structures do provide exact analytical solutions; however, they are complex requiring tedious implementation and providing more information than necessary for practical applications making them computationally inefficient. This paper presents experimentally validated recursive models that are able to very accurately and efficiently predict the dynamics of the four most common types of periodic structures. The proposed modeling technique employs a combination of static deflection formulae and Rayleigh’s Quotient to estimate the first mode shape and natural frequency of periodic structures having any number of beams. Also included in this paper are the results of an extensive experimental validation study which show excellent agreement between model prediction and measurement. Lastly, the proposed models are used to evaluate the performance of each type of structure. Results of this performance evaluation reveal key advantages and disadvantages associated with each type of structure.

  5. A dynamic integrated fault diagnosis method for power transformers.

    Science.gov (United States)

    Gao, Wensheng; Bai, Cuifen; Liu, Tong

    2015-01-01

    In order to diagnose transformer fault efficiently and accurately, a dynamic integrated fault diagnosis method based on Bayesian network is proposed in this paper. First, an integrated fault diagnosis model is established based on the causal relationship among abnormal working conditions, failure modes, and failure symptoms of transformers, aimed at obtaining the most possible failure mode. And then considering the evidence input into the diagnosis model is gradually acquired and the fault diagnosis process in reality is multistep, a dynamic fault diagnosis mechanism is proposed based on the integrated fault diagnosis model. Different from the existing one-step diagnosis mechanism, it includes a multistep evidence-selection process, which gives the most effective diagnostic test to be performed in next step. Therefore, it can reduce unnecessary diagnostic tests and improve the accuracy and efficiency of diagnosis. Finally, the dynamic integrated fault diagnosis method is applied to actual cases, and the validity of this method is verified.

  6. A Dynamic Integrated Fault Diagnosis Method for Power Transformers

    Science.gov (United States)

    Gao, Wensheng; Liu, Tong

    2015-01-01

    In order to diagnose transformer fault efficiently and accurately, a dynamic integrated fault diagnosis method based on Bayesian network is proposed in this paper. First, an integrated fault diagnosis model is established based on the causal relationship among abnormal working conditions, failure modes, and failure symptoms of transformers, aimed at obtaining the most possible failure mode. And then considering the evidence input into the diagnosis model is gradually acquired and the fault diagnosis process in reality is multistep, a dynamic fault diagnosis mechanism is proposed based on the integrated fault diagnosis model. Different from the existing one-step diagnosis mechanism, it includes a multistep evidence-selection process, which gives the most effective diagnostic test to be performed in next step. Therefore, it can reduce unnecessary diagnostic tests and improve the accuracy and efficiency of diagnosis. Finally, the dynamic integrated fault diagnosis method is applied to actual cases, and the validity of this method is verified. PMID:25685841

  7. A modeling of dynamic storage assignment for order picking in beverage warehousing with Drive-in Rack system

    Science.gov (United States)

    Hadi, M. Z.; Djatna, T.; Sugiarto

    2018-04-01

    This paper develops a dynamic storage assignment model to solve storage assignment problem (SAP) for beverages order picking in a drive-in rack warehousing system to determine the appropriate storage location and space for each beverage products dynamically so that the performance of the system can be improved. This study constructs a graph model to represent drive-in rack storage position then combine association rules mining, class-based storage policies and an arrangement rule algorithm to determine an appropriate storage location and arrangement of the product according to dynamic orders from customers. The performance of the proposed model is measured as rule adjacency accuracy, travel distance (for picking process) and probability a product become expiry using Last Come First Serve (LCFS) queue approach. Finally, the proposed model is implemented through computer simulation and compare the performance for different storage assignment methods as well. The result indicates that the proposed model outperforms other storage assignment methods.

  8. Optimization of rotor blades for combined structural, dynamic, and aerodynamic properties

    Science.gov (United States)

    He, Cheng-Jian; Peters, David A.

    1990-01-01

    Optimal helicopter blade design with computer-based mathematical programming has received more and more attention in recent years. Most of the research has focused on optimum dynamic characteristics of rotor blades to reduce vehicle vibration. There is also work on optimization of aerodynamic performance and on composite structural design. This research has greatly increased our understanding of helicopter optimum design in each of these aspects. Helicopter design is an inherently multidisciplinary process involving strong interactions among various disciplines which can appropriately include aerodynamics; dynamics, both flight dynamics and structural dynamics; aeroelasticity: vibrations and stability; and even acoustics. Therefore, the helicopter design process must satisfy manifold requirements related to the aforementioned diverse disciplines. In our present work, we attempt to combine several of these important effects in a unified manner. First, we design a blade with optimum aerodynamic performance by proper layout of blade planform and spanwise twist. Second, the blade is designed to have natural frequencies that are placed away from integer multiples of the rotor speed for a good dynamic characteristics. Third, the structure is made as light as possible with sufficient rotational inertia to allow for autorotational landing, with safe stress margins and flight fatigue life at each cross-section, and with aeroelastical stability and low vibrations. Finally, a unified optimization refines the solution.

  9. Testing of components on the shaking table facilities of AEP and contribution to full scale dynamic testing of Kozloduy NPP. Final report

    International Nuclear Information System (INIS)

    Ambriashvili, Y.

    1996-01-01

    This final report summarizes the results of components testing on the shaking table facilities of 'Atomenergoproject' which are considered as a contribution to the full scale dynamic testing of the Kozloduy nuclear power plant Units 5 and 6. It was designed on 1.0 g according to the calculations that were based on accelerograms which included artificial and already known recordings of real earthquakes. Maximum acceleration of the designed spectrum and new spectrum which are recommended are now within the range of frequencies 2.5-20 Hz. Active reactor and the primary loop are seismic stable as well as the tested equipment tested by 'Atomenergoproject'

  10. Fuzzy Control of Cold Storage Refrigeration System with Dynamic Coupling Compensation

    Directory of Open Access Journals (Sweden)

    Xiliang Ma

    2018-01-01

    Full Text Available Cold storage refrigeration systems possess the characteristics of multiple input and output and strong coupling, which brings challenges to the optimize control. To reduce the adverse effects of the coupling and improve the overall control performance of cold storage refrigeration systems, a control strategy with dynamic coupling compensation was studied. First, dynamic model of a cold storage refrigeration system was established based on the requirements of the control system. At the same time, the coupling between the components was studied. Second, to reduce the adverse effects of the coupling, a fuzzy controller with dynamic coupling compensation was designed. As for the fuzzy controller, a self-tuning fuzzy controller was served as the primary controller, and an adaptive neural network was adopted to compensate the dynamic coupling. Finally, the proposed control strategy was employed to the cold storage refrigeration system, and simulations were carried out in the condition of start-up, variable load, and variable degree of superheat, respectively. The simulation results verify the effectiveness of the fuzzy control method with dynamic coupling compensation.

  11. A Performance Comparison Between Extended Kalman Filter and Unscented Kalman Filter in Power System Dynamic State Estimation

    DEFF Research Database (Denmark)

    Khazraj, Hesam; Silva, Filipe Miguel Faria da; Bak, Claus Leth

    2016-01-01

    Dynamic State Estimation (DSE) is a critical tool for analysis, monitoring and planning of a power system. The concept of DSE involves designing state estimation with Extended Kalman Filter (EKF) or Unscented Kalman Filter (UKF) methods, which can be used by wide area monitoring to improve......-linear state estimator is developed in MatLab to solve states by applying the unscented Kalman filter (UKF) and Extended Kalman Filter (EKF) algorithm. Finally, a DSE model is built for a 14 bus power system network to evaluate the proposed algorithm for the networks.This article will focus on comparing...

  12. Assessment of the effect of rainfall dynamics on the storm overflow performance

    Directory of Open Access Journals (Sweden)

    Szeląg Bartosz

    2016-06-01

    Full Text Available Assessment of the effect of rainfall dynamics on the storm overfl ow performance. This research study analyzes the effect of the rainfall characteristics (total and maximum 10-, 15- and 30-minute rainfall depth, its duration, the dry weather period on the performance of the emergency overflow weir located at the inflow to an existing treatment plant. The analyses used the numerical calculation results of the inflow hydrographs performed in the SWMM (Storm Water Management Model program on the basis of six-year-long rainfall measurement sequence. The obtained simulation results for the analysed catchment allowed for the performance of statistical analyses, which demonstrated that the volume of stormwater discharge, the maximum instantaneous flow and the share of stormwater volume discharged through the emergency overflow weir in relation to the total volume of the inflow hydrograph from the catchment are affected by the maximum 30-minute rainfall depth, whereas the discharge duration is affected by the depth of the catchment rainfall layer. Taking into account the results of statistical and hydraulic calculations it can be concluded that in the case of the analysed catchment the performance of the emergency overflow weir is affected to the greatest extent by the rainfall intensity distribution.

  13. Numerical simulation of unsteady free surface flow and dynamic performance for a Pelton turbine

    International Nuclear Information System (INIS)

    Xiao, Y X; Wang, Z W; Yan, Z G; Cui, T

    2012-01-01

    Different from the reaction turbines, the hydraulic performance of the Pelton turbine is dynamic due to the unsteady free surface flow in the rotating buckets in time and space. This paper aims to present the results of investigations conducted on the free surface flow in a Pelton turbine rotating buckets. The unsteady numerical simulations were performed with the CFX code by using the Realizable k-ε turbulence model coupling the two-phase flow volume of fluid method. The unsteady free surface flow patterns and torque varying with the bucket rotating were analysed. The predicted relative performance at five operating conditions was compared with the field test results. The study was also conducted the interactions between the bucket rear and the water jet.

  14. Numerical simulation of unsteady free surface flow and dynamic performance for a Pelton turbine

    Science.gov (United States)

    Xiao, Y. X.; Cui, T.; Wang, Z. W.; Yan, Z. G.

    2012-11-01

    Different from the reaction turbines, the hydraulic performance of the Pelton turbine is dynamic due to the unsteady free surface flow in the rotating buckets in time and space. This paper aims to present the results of investigations conducted on the free surface flow in a Pelton turbine rotating buckets. The unsteady numerical simulations were performed with the CFX code by using the Realizable k-ε turbulence model coupling the two-phase flow volume of fluid method. The unsteady free surface flow patterns and torque varying with the bucket rotating were analysed. The predicted relative performance at five operating conditions was compared with the field test results. The study was also conducted the interactions between the bucket rear and the water jet.

  15. Ultrafast molecular dynamics illuminated with synchrotron radiation

    International Nuclear Information System (INIS)

    Bozek, John D.; Miron, Catalin

    2015-01-01

    Highlights: • Ultrafast molecular dynamics probed with synchrotron radiation. • Core-excitation as probe of ultrafast dynamics through core-hole lifetime. • Review of experimental and theoretical methods in ultrafast dynamics using core-level excitation. - Abstract: Synchrotron radiation is a powerful tool for studying molecular dynamics in small molecules in spite of the absence of natural matching between the X-ray pulse duration and the time scale of nuclear motion. Promoting core level electrons to unoccupied molecular orbitals simultaneously initiates two ultrafast processes, nuclear dynamics on the potential energy surfaces of the highly excited neutral intermediate state of the molecule on the one hand and an ultrafast electronic decay of the intermediate excited state to a cationic final state, characterized by a core hole lifetime. The similar time scales of these processes enable core excited pump-probe-type experiments to be performed with long duration X-ray pulses from a synchrotron source. Recent results obtained at the PLIEADES beamline concerning ultrafast dissociation of core excited states and molecular potential energy curve mapping facilitated by changes in the geometry of the short-lived intermediate core excited state are reviewed. High brightness X-ray beams combined with state-of-the art electron and ion-electron coincidence spectrometers and highly sophisticated theoretical methods are required to conduct these experiments and to achieve a full understanding of the experimental results.

  16. Final Report 02-ERD-033: Rapid Resolidification of Metals using Dynamic Compression

    International Nuclear Information System (INIS)

    Streitz, F H; Nguyen, J H; Orlikowski, D; Minich, R; Moriarty, J A; Holmes, N C

    2005-01-01

    The purpose of this project is to develop a greater understanding of the kinetics involved during a liquid-solid phase transition occurring at high pressure and temperature. Kinetic limitations are known to play a large role in the dynamics of solidification at low temperatures, determining, e.g., whether a material crystallizes upon freezing or becomes an amorphous solid. The role of kinetics is not at all understood in transitions at high temperature when extreme pressures are involved. In order to investigate time scales during a dynamic compression experiment we needed to create an ability to alter the length of time spent by the sample in the transition region. Traditionally, the extreme high-pressure phase diagram is studied through a few static and dynamic techniques: static compression involving diamond anvil cells (DAC) [1], shock compression [2, 3], and quasi-isentropic compression [4, 5, 6, 7, 8, 9, 10]. Static DAC experiments explore equilibrium material properties along an isotherm or an isobar [1]. Dynamic material properties can be explored with shock compression [2, 3], probing single states on the Hugoniot, or with quasi-isentropic compression [4, 5, 6, 7, 8, 9, 10]. In the case of shocks, pressures variation typically occurs on a sub-nanosecond time scale or faster [11]. Previous quasi-isentropic techniques have yielded pressure ramps on the 10-100 nanosecond time-scale for samples that are several hundred microns thick [4, 5, 6, 7]. In order to understand kinetic effects at high temperatures and high pressures, we need to span a large dynamic range (strain rates, relaxation times, etc.) as well as control the thermodynamic path that the material experiences. Compression rates, for instance, need to bridge those of static experiments (seconds to hours) and those of the Z-accelerator (10 6 s -1 ) [4] or even laser ablation techniques (10 6 s -1 to 10 8 s -1 ) [7]. Here, we present a new technique that both extends the compression time to several

  17. Is performance in pre-clinical assessment a good predictor of the final Doctor of Medicine grade?

    Science.gov (United States)

    Al-Wardy, Nadia M; Rizvi, Syed G; Bayoumi, Riad A

    2009-12-01

    To investigate if any correlation exists between students' grades on their final doctor of Medicine (MD) assessment and their overall preclinical grade point average (GPA) and its component parts. Student data available from the Deanship of Admissions and Registration were analyzed. Pearson correlation coefficient was obtained to assess the degree of linear relationship between performance in the preclinical and the MD assessment of 529 students who graduated from the College of Medicine and Health Sciences, Sultan Qaboos University, Al-Khoud, Oman from June 1998 to June 2005. Simple and multiple regression analyses were performed to evaluate individual and combined impact of the preclinical courses' grades on MD grades. Preclinical GPA correlated highly with MD GPA (r=0.641). The science component taught early in the preclinical phase correlated more strongly (r=0.457) than student electives (r=0.246). This correlation was better in the good English group. Students' performance, however, was best in electives, but worst in English. Most students who had low MD GPA (2.5, and limiting the credit hour requirement of electives by the College seems to be justified.

  18. Dynamic performance of power generation systems for off-shore oil and gas platforms

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Breuhaus, Peter; Haglind, Fredrik

    2014-01-01

    %) arises on the prediction of the rotational speed of the high pressure shaft, while the largest deviation (average relative error ~20%) occurs in the evaluation of the pressure at the outlet of the low pressure turbine. As waste heat recovery units (e.g. organic Rankine cycles) are likely...... to be implemented in future off-shore platforms, the proposed model may serve in the design phase for a preliminary assessment of the dynamic response of the power generation system and to evaluate if requirements such as minimum and maximum frequency during transient operation and the recovery time are satisfied......On off-shore oil and gas platforms two or more gas turbines typically support the electrical demand on site by operating as a stand-alone (island) power system. As reliability and availability are major concerns during operation, the dynamic performance of the power generation system becomes...

  19. ACUTE EFFECTS OF A RESISTED DYNAMIC WARM-UP PROTOCOL ON JUMPING PERFORMANCE

    Science.gov (United States)

    Cilli, M; Yildiz, S; Saglam, T; Camur, MH

    2014-01-01

    This study aimed to investigate the kinematic and kinetic changes when resistance is applied in horizontal and vertical directions, produced by using different percentages of body weight, caused by jumping movements during a dynamic warm-up. The group of subjects consisted of 35 voluntary male athletes (19 basketball and 16 volleyball players; age: 23.4 ± 1.4 years, training experience: 9.6 ± 2.7 years; height: 177.2 ± 5.7 cm, body weight: 69.9 ± 6.9 kg) studying Physical Education, who had a jump training background and who were training for 2 hours, on 4 days in a week. A dynamic warm-up protocol containing seven specific resistance movements with specific resistance corresponding to different percentages of body weight (2%, 4%, 6%, 8%, 10%) was applied randomly on non consecutive days. Effects of different warm-up protocols were assessed by pre-/post- exercise changes in jump height in the countermovement jump (CMJ) and the squat jump (SJ) measured using a force platform and changes in hip and knee joint angles at the end of the eccentric phase measured using a video camera. A significant increase in jump height was observed in the dynamic resistance warm-up conducted with different percentages of body weight (p 0.05). In jump movements before and after the warm-up, while no significant difference between the vertical ground reaction forces applied by athletes was observed (p > 0.05), in some cases of resistance, a significant reduction was observed in hip and knee joint angles (p jumping movements, as well as an increase in jump height values. As a result, dynamic warm-up exercises could be applicable in cases of resistance corresponding to 6-10% of body weight applied in horizontal and vertical directions in order to increase the jump performance acutely. PMID:25435670

  20. Physics and Dynamics Coupling Across Scales in the Next Generation CESM. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Bacmeister, Julio T. [University Corporation for Atmospheric Research (UCAR), Boulder, CO (United States)

    2015-06-12

    This project examines physics/dynamics coupling, that is, exchange of meteorological profiles and tendencies between an atmospheric model’s dynamical core and its various physics parameterizations. Most model physics parameterizations seek to represent processes that occur on scales smaller than the smallest scale resolved by the dynamical core. As a consequence a key conceptual aspect of parameterizations is an assumption about the subgrid variability of quantities such as temperature, humidity or vertical wind. Most existing parameterizations of processes such as turbulence, convection, cloud, and gravity wave drag make relatively ad hoc assumptions about this variability and are forced to introduce empirical parameters, i.e., “tuning knobs” to obtain realistic simulations. These knobs make systematic dependences on model grid size difficult to quantify.

  1. Final Report. The 2015 Conference on the Dynamics of Molecular Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Suits, Arthur G. [Wayne State Univ., Detroit, MI (United States)

    2015-08-31

    The 25th The Conference on the Dynamics of Molecular Collisions (DMC) was held from July 12-17, 2015. The Conference provides a unique platform and focal point for the gathering of experimentalists and theoreticians in the field of chemical dynamics. Since its inauguration in 1965, it has played an irreplaceable role in the development of this field and of many distinguished careers. This 25th meeting was highly successful. We held ten oral sessions and four poster sessions. Nobel Laureate Yuan T. Lee presented the keynote lecture. At this meeting, celebrating 50 years of chemical reaction dynamics, one hundred thirty-seven attendees participated, forty-two talks were presented as well as fifty-nine posters.Many attendees remarked that it was the “best meeting of the year.” Results from the meeting and other contributions were collected in a special issue of the Journal of Physical Chemistry A, published December 17, 2015. With this proposal we sought support for students, post-doctoral researchers and junior scientists who needed financial support. The Department of Energy has a large program in gas phase chemistry and many of the speakers and session chairs at the meeting are presently supported by DOE, including Professor Millard Alexander and Carl Lineberger, the recipents of the 2015 Herschbach Prizes that were awarded at the meeting. Funds were used to supplement registration fees for students and post-docs and to cover registration fees for the six selected “hot topic” presentations.

  2. Diagnostic value of dynamic perfusion MR imaging in benign and malignant musculoskeletal lesions

    International Nuclear Information System (INIS)

    Choi, Byeong Kyoo; Lee, Sang Hoon; Cha, Ji Hyeon; Kim, Sung Moon; Shin, Myung Jin; Han, Heon; Kim, Sam Soo; Lee, Ji Yeon; Jeon, Yong Hwan

    2008-01-01

    To assess the diagnostic value of dynamic perfusion MR imaging for differentiation between benign and malignant musculoskeletal lesions. Dynamic perfusion MR imaging was performed using a 3.0 T system in 32 female and 30 male patients (aged 10-90 years, mean age, 43 years). Following the assessment of the precontrast imaging, a dynamic study was performed. This dynamic technique allowed for 638 images to be obtained at 11 levels throughout the lesion. Twenty-eight lesions originated within bone (8 benign, 20 malignant), whereas 34 lesions were of soft tissue origin (22 benign, 12 malignant). The final diagnosis was histopathologically confirmed in all patients. To differentiate between benign and malignant lesions, we analyzed the four parameters: (maximal relative enhancement (MRE), time to peak (TTP), wash in rate (WI), steepest slope (SS) and the distribution of time intensity curve (TIC) patterns. The TTP, WI, and SS values of malignant lesions were statistically significant from those of benign lesions(ρ < 0.05). However, the difference for the MRE values was not statistically significant. The distribution of TIC patterns was a helpful indicator of benign or malignant state, however the difference between the two states was not significant. Dynamic perfusion MR imaging is a helpful tool in differentiating benign and malignant musculoskeletal lesions

  3. High-Performance First-Principles Molecular Dynamics for Predictive Theory and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Gygi, Francois [Univ. of California, Davis, CA (United States). Dept. of Computer Science; Galli, Giulia [Univ. of Chicago, IL (United States); Schwegler, Eric [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-12-03

    This project focused on developing high-performance software tools for First-Principles Molecular Dynamics (FPMD) simulations, and applying them in investigations of materials relevant to energy conversion processes. FPMD is an atomistic simulation method that combines a quantum-mechanical description of electronic structure with the statistical description provided by molecular dynamics (MD) simulations. This reliance on fundamental principles allows FPMD simulations to provide a consistent description of structural, dynamical and electronic properties of a material. This is particularly useful in systems for which reliable empirical models are lacking. FPMD simulations are increasingly used as a predictive tool for applications such as batteries, solar energy conversion, light-emitting devices, electro-chemical energy conversion devices and other materials. During the course of the project, several new features were developed and added to the open-source Qbox FPMD code. The code was further optimized for scalable operation of large-scale, Leadership-Class DOE computers. When combined with Many-Body Perturbation Theory (MBPT) calculations, this infrastructure was used to investigate structural and electronic properties of liquid water, ice, aqueous solutions, nanoparticles and solid-liquid interfaces. Computing both ionic trajectories and electronic structure in a consistent manner enabled the simulation of several spectroscopic properties, such as Raman spectra, infrared spectra, and sum-frequency generation spectra. The accuracy of the approximations used allowed for direct comparisons of results with experimental data such as optical spectra, X-ray and neutron diffraction spectra. The software infrastructure developed in this project, as applied to various investigations of solids, liquids and interfaces, demonstrates that FPMD simulations can provide a detailed, atomic-scale picture of structural, vibrational and electronic properties of complex systems

  4. ASSESSMENT OF DYNAMIC PRA TECHNIQUES WITH INDUSTRY AVERAGE COMPONENT PERFORMANCE DATA

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Vaibhav; Agarwal, Vivek; Gribok, Andrei V.; Smith, Curtis L.

    2017-06-01

    In the nuclear industry, risk monitors are intended to provide a point-in-time estimate of the system risk given the current plant configuration. Current risk monitors are limited in that they do not properly take into account the deteriorating states of plant equipment, which are unit-specific. Current approaches to computing risk monitors use probabilistic risk assessment (PRA) techniques, but the assessment is typically a snapshot in time. Living PRA models attempt to address limitations of traditional PRA models in a limited sense by including temporary changes in plant and system configurations. However, information on plant component health are not considered. This often leaves risk monitors using living PRA models incapable of conducting evaluations with dynamic degradation scenarios evolving over time. There is a need to develop enabling approaches to solidify risk monitors to provide time and condition-dependent risk by integrating traditional PRA models with condition monitoring and prognostic techniques. This paper presents estimation of system risk evolution over time by integrating plant risk monitoring data with dynamic PRA methods incorporating aging and degradation. Several online, non-destructive approaches have been developed for diagnosing plant component conditions in nuclear industry, i.e., condition indication index, using vibration analysis, current signatures, and operational history [1]. In this work the component performance measures at U.S. commercial nuclear power plants (NPP) [2] are incorporated within the various dynamic PRA methodologies [3] to provide better estimates of probability of failures. Aging and degradation is modeled within the Level-1 PRA framework and is applied to several failure modes of pumps and can be extended to a range of components, viz. valves, generators, batteries, and pipes.

  5. Test methods for the dynamic mechanical properties of polymeric materials. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Baker, G.K.

    1980-06-01

    Various test geometries and procedures for the dynamic mechanical analysis of polymers employing a mechanical spectrometer have been evaluated. The methods and materials included in this work are forced torsional pendulum testing of Kevlar/epoxy laminates and rigid urethane foams, oscillatory parallel plate testing to determine the kinetics of the cure of VCE with Hylene MP, oscillatory compressive testing of B-3223 cellular silicone, and oscillatory tensile testing of Silastic E and single Kevlar filaments. Fundamental dynamic mechanical properties, including the storage and loss moduli and loss tangent of the materials tested, were determined as a function of temperature and sometimes of frequency.

  6. Structural Dynamic Response Compressing Technique in Bridges using a Cochlea-inspired Artificial Filter Bank (CAFB)

    International Nuclear Information System (INIS)

    Heo, G; Jeon, J; Son, B; Kim, C; Jeon, S; Lee, C

    2016-01-01

    In this study, a cochlea-inspired artificial filter bank (CAFB) was developed to efficiently obtain dynamic response of a structure, and a dynamic response measurement of a cable-stayed bridge model was also carried out to evaluate the performance of the developed CAFB. The developed CAFB used a band-pass filter optimizing algorithm (BOA) and peakpicking algorithm (PPA) to select and compress dynamic response signal containing the modal information which was significant enough. The CAFB was then optimized about the El-Centro earthquake wave which was often used in the construction research, and the software implementation of CAFB was finally embedded in the unified structural management system (USMS). For the evaluation of the developed CAFB, a real time dynamic response experiment was performed on a cable-stayed bridge model, and the response of the cable-stayed bridge model was measured using both the traditional wired system and the developed CAFB-based USMS. The experiment results showed that the compressed dynamic response acquired by the CAFB-based USMS matched significantly with that of the traditional wired system while still carrying sufficient modal information of the cable-stayed bridge. (paper)

  7. Building energy performance analysis by an in-house developed dynamic simulation code: An investigation for different case studies

    International Nuclear Information System (INIS)

    Buonomano, Annamaria; Palombo, Adolfo

    2014-01-01

    Highlights: • A new dynamic simulation code for building energy performance analysis is presented. • The thermal behavior of each building element is modeled by a thermal RC network. • The physical models implemented in the code are illustrated. • The code was validated by the BESTEST standard procedure. • We investigate residential buildings, offices and stores in different climates. - Abstract: A novel dynamic simulation model for the building envelope energy performance analysis is presented in this paper. This tool helps the investigation of many new building technologies to increase the system energy efficiency and it can be carried out for scientific research purposes. In addition to the yearly heating and cooling load and energy demand, the obtained output is the dynamic temperature profile of indoor air and surfaces and the dynamic profile of the thermal fluxes through the building elements. The presented simulation model is also validated through the BESTEST standard procedure. Several new case studies are developed for assessing, through the presented code, the energy performance of three different building envelopes with several different weather conditions. In particular, dwelling and commercial buildings are analysed. Light and heavyweight envelopes as well as different glazed surfaces areas have been used for every case study. With the achieved results interesting design and operating guidelines can be obtained. Such data have been also compared vs. those calculated by TRNSYS and EnergyPlus. The detected deviation of the obtained results vs. those of such standard tools are almost always lower than 10%

  8. Correlation of microstructure with dynamic deformation behavior and penetration performance of tungsten heavy alloys fabricated by mechanical alloying

    Science.gov (United States)

    Kim, Dong-Kuk; Lee, Sunghak; Ryu, Ho Jin; Hyunghong, Soon; Noh, Joon-Woong

    2000-10-01

    In this study, tungsten heavy alloy specimens were fabricated by mechanical alloying (MA), and their dynamic torsional properties and penetration performance were investigated. Dynamic torsional tests were conducted on the specimens fabricated with different sintering temperatures after MA, and then the test data were compared with those of a conventionally processed specimen. Refinement of tungsten particles was obtained after MA, but contiguity was seriously increased, thereby leading to low ductility and impact energy. Specimens in which both particle size and contiguity were simultaneously reduced by MA and two-step sintering and those having higher matrix fraction by partial MA were successfully fabricated. The dynamic test results indicated that the formation of adiabatic shear bands was expected because of the plastic localization at the central area of the gage section. Upon highspeed impact testing of these specimens, self-sharpening was promoted by the adiabatic shear band formation, but their penetration performance did not improve since much of kinetic energy of the penetrators was consumed for the microcrack formation due to interfacial debonding and cleavage fracture of tungsten particles. In order to improve penetration performance as well as to achieve selfsharpening by applying MA, conditions of MA and sintering process should be established so that alloy densification, particle refinement, and contiguity reduction can be simultaneously achieved.

  9. High Performance Interactive System Dynamics Visualization

    Energy Technology Data Exchange (ETDEWEB)

    Bush, Brian W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Brunhart-Lupo, Nicholas J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gruchalla, Kenny M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Duckworth, Jonathan C [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-14

    This brochure describes a system dynamics simulation (SD) framework that supports an end-to-end analysis workflow that is optimized for deployment on ESIF facilities(Peregrine and the Insight Center). It includes (I) parallel and distributed simulation of SD models, (ii) real-time 3D visualization of running simulations, and (iii) comprehensive database-oriented persistence of simulation metadata, inputs, and outputs.

  10. High Performance Interactive System Dynamics Visualization

    Energy Technology Data Exchange (ETDEWEB)

    Bush, Brian W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Brunhart-Lupo, Nicholas J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gruchalla, Kenny M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Duckworth, Jonathan C [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-14

    This presentation describes a system dynamics simulation (SD) framework that supports an end-to-end analysis workflow that is optimized for deployment on ESIF facilities(Peregrine and the Insight Center). It includes (I) parallel and distributed simulation of SD models, (ii) real-time 3D visualization of running simulations, and (iii) comprehensive database-oriented persistence of simulation metadata, inputs, and outputs.

  11. Photocatalytic oxidation dynamics of acetone on TiO2: tight-binding quantum chemical molecular dynamics study

    International Nuclear Information System (INIS)

    Lv Chen; Wang Xiaojing; Agalya, Govindasamy; Koyama, Michihisa; Kubo, Momoji; Miyamoto, Akira

    2005-01-01

    The clarification of the excited states dynamics on TiO 2 surface is important subject for the design of the highly active photocatalysts. In the present study, we applied our novel tight-binding quantum chemical molecular dynamics method to the investigation on the photocatalytic oxidation dynamics of acetone by photogenerated OH radicals on the hydrated anatase TiO 2 surface. The elucidated photocatalytic reaction mechanism strongly supports the previous experimental proposal and finally the effectiveness of our new approach for the clarification of the photocatalytic reaction dynamics employing the large simulation model was confirmed

  12. Orbital free molecular dynamics; Approche sans orbitale des plasmas denses

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, F

    2007-08-15

    The microscopic properties of hot and dense plasmas stay a field essentially studied thanks to classical theories like the One Component Plasma, models which rely on free parameters, particularly ionization. In order to investigate these systems, we have used, in this PhD work, a semi-classical model, without free parameters, that is based on coupling consistently classical molecular dynamics for the nuclei and orbital free density functional theory for the electrons. The electronic fluid is represented by a free energy entirely determined by the local density. This approximation was validated by a comparison with an ab initio technique, quantum molecular dynamics. This one is identical to the previous except for the description of the free energy that depends on a quantum-independent-particle model. Orbital free molecular dynamics was then used to compute equation of state of boron and iron plasmas in the hot and dense regime. Furthermore, comparisons with classical theories were performed on structural and dynamical properties. Finally, equation of state and transport coefficients mixing laws were studied by direct simulation of a plasma composed of deuterium and copper. (author)

  13. Dynamic and Structural Performances of a New Sailcraft Concept for Interplanetary Missions

    Directory of Open Access Journals (Sweden)

    Alessandro Peloni

    2015-01-01

    Full Text Available Typical square solar-sail design is characterised by a central hub with four-quadrant sails, conferring to the spacecraft the classical X-configuration. One of the critical aspects related to this architecture is due to the large deformations of both membrane and booms, which leads to a reduction of the performance of the sailcraft in terms of thrust efficiency. As a consequence, stiffer sail architecture would be desirable, taking into account that the rigidity of the system strongly affects the orbital dynamics. In this paper, we propose a new solar-sail architecture, which is more rigid than the classical X-configuration. Among the main pros and cons that the proposed configuration presents, this paper aims to show the general concept, investigating the performances from the perspectives of both structural response and attitude control. Membrane deformations, structural offset, and sail vibration frequencies are determined through finite element method, adopting a variable pretensioning scheme. In order to evaluate the manoeuvring performances of this new solar-sail concept, a 35-degree manoeuvre is studied using a feedforward and feedback controller.

  14. An evaluation of the performance of two binaural beamformers in complex and dynamic multitalker environments.

    Science.gov (United States)

    Best, Virginia; Mejia, Jorge; Freeston, Katrina; van Hoesel, Richard J; Dillon, Harvey

    2015-01-01

    Binaural beamformers are super-directional hearing aids created by combining microphone outputs from each side of the head. While they offer substantial improvements in SNR over conventional directional hearing aids, the benefits (and possible limitations) of these devices in realistic, complex listening situations have not yet been fully explored. In this study we evaluated the performance of two experimental binaural beamformers. Testing was carried out using a horizontal loudspeaker array. Background noise was created using recorded conversations. Performance measures included speech intelligibility, localization in noise, acceptable noise level, subjective ratings, and a novel dynamic speech intelligibility measure. Participants were 27 listeners with bilateral hearing loss, fitted with BTE prototypes that could be switched between conventional directional or binaural beamformer microphone modes. Relative to the conventional directional microphones, both binaural beamformer modes were generally superior for tasks involving fixed frontal targets, but not always for situations involving dynamic target locations. Binaural beamformers show promise for enhancing listening in complex situations when the location of the source of interest is predictable.

  15. A Comparison of Closed-Loop Performance of Multirotor Configurations Using Non-Linear Dynamic Inversion Control

    Directory of Open Access Journals (Sweden)

    Murray L. Ireland

    2015-06-01

    Full Text Available Multirotor is the umbrella term for the family of unmanned aircraft, which include the quadrotor, hexarotor and other vertical take-off and landing (VTOL aircraft that employ multiple main rotors for lift and control. Development and testing of novel multirotor designs has been aided by the proliferation of 3D printing and inexpensive flight controllers and components. Different multirotor configurations exhibit specific strengths, while presenting unique challenges with regards to design and control. This article highlights the primary differences between three multirotor platforms: a quadrotor; a fully-actuated hexarotor; and an octorotor. Each platform is modelled and then controlled using non-linear dynamic inversion. The differences in dynamics, control and performance are then discussed.

  16. Chaotic dynamics and chaos control in nonlinear laser systems

    International Nuclear Information System (INIS)

    Fang Jinqing; Yao Weiguang

    2001-01-01

    Chaotic dynamics and chaos control have become a great challenge in nonlinear laser systems and its advances are reviewed mainly based on the ring cavity laser systems. The principle and stability conditions for time-delay feedback control are analyzed and applied to chaos control in the laser systems. Other advanced methods of chaos control, such as weak spatial perturbation and occasional proportional feedback technique, are discussed. Prospects of chaos control for application (such as improvement of laser power and performance, synchronized chaos secure communication and information processing) are pointed out finally

  17. The rheology of shear thickening fluid (STF) and the dynamic performance of an STF-filled damper

    International Nuclear Information System (INIS)

    Zhang, X Z; Li, W H; Gong, X L

    2008-01-01

    This paper presents a study of the rheological properties of shear thickening fluid (STF) and its application as a damper. The STF samples, with different weight fractions, were prepared by dispersing nanosized silica particles in a solvent. By using a parallel-plate rheometer, both steady-state and dynamic experiments were carried out to investigate the rheological properties of STFs. Experimental results indicated that these suspensions show an abrupt increase in complex viscosity beyond a critical dynamic shear rate, as well as this increase being reversible. Working with the fabricated STF materials, a prototype damper was fabricated and its dynamic performances were experimentally evaluated. An equivalent linear model through effective elastic stiffness and viscous damping was developed to address both the damping and the stiffness capabilities of the damper. Also, a mathematical model was developed to investigate working mechanisms of STF-based devices

  18. Relating Standardized Visual Perception Measures to Simulator Visual System Performance

    Science.gov (United States)

    Kaiser, Mary K.; Sweet, Barbara T.

    2013-01-01

    Human vision is quantified through the use of standardized clinical vision measurements. These measurements typically include visual acuity (near and far), contrast sensitivity, color vision, stereopsis (a.k.a. stereo acuity), and visual field periphery. Simulator visual system performance is specified in terms such as brightness, contrast, color depth, color gamut, gamma, resolution, and field-of-view. How do these simulator performance characteristics relate to the perceptual experience of the pilot in the simulator? In this paper, visual acuity and contrast sensitivity will be related to simulator visual system resolution, contrast, and dynamic range; similarly, color vision will be related to color depth/color gamut. Finally, we will consider how some characteristics of human vision not typically included in current clinical assessments could be used to better inform simulator requirements (e.g., relating dynamic characteristics of human vision to update rate and other temporal display characteristics).

  19. Chemical and mechanical performance properties for various final waste forms -- PSPI scoping study

    International Nuclear Information System (INIS)

    Farnsworth, R.K.; Larsen, E.D.; Sears, J.W.; Eddy, T.L.; Anderson, G.L.

    1996-09-01

    The US DOE is obtaining data on the performance properties of the various final waste forms that may be chosen as primary treatment products for the alpha-contaminated low-level and transuranic waste at the INEL's Transuranic Storage Area. This report collects and compares selected properties that are key indicators of mechanical and chemical durability for Portland cement concrete, concrete formed under elevated temperature and pressure, sulfur polymer cement, borosilicate glass, and various forms of alumino-silicate glass, including in situ vitrification glass and various compositions of iron-enriched basalt (IEB) and iron-enriched basalt IV (IEB4). Compressive strength and impact resistance properties were used as performance indicators in comparative evaluation of the mechanical durability of each waste form, while various leachability data were used in comparative evaluation of each waste form's chemical durability. The vitrified waste forms were generally more durable than the non-vitrified waste forms, with the iron-enriched alumino-silicate glasses and glass/ceramics exhibiting the most favorable chemical and mechanical durabilities. It appears that the addition of zirconia and titania to IEB (forming IEB4) increases the leach resistance of the lanthanides. The large compositional ranges for IEB and IEB4 more easily accommodate the compositions of the waste stored at the INEL than does the composition of borosilicate glass. It appears, however, that the large potential variation in IEB and IEB4 compositions resulting from differing waste feed compositions can impact waste form durability. Further work is needed to determine the range of waste stream feed compositions and rates of waste form cooling that will result in acceptable and optimized IEB or IEB4 waste form performance. 43 refs

  20. Course Syllabi and Their Effects on Students' Final Grade Performance.

    Science.gov (United States)

    Serafin, Ana Gil

    This study examined the relationship between the changes introduced in a course syllabus for a course titled "Instructional Strategies" and the final grades obtained by freshman and sophomore students in three successive academic periods. A sample of 150 subjects was randomly selected from students enrolled in the course at the…

  1. Static and dynamic properties of smoothed dissipative particle dynamics

    Science.gov (United States)

    Alizadehrad, Davod; Fedosov, Dmitry A.

    2018-03-01

    In this paper, static and dynamic properties of the smoothed dissipative particle dynamics (SDPD) method are investigated. We study the effect of method parameters on SDPD fluid properties, such as structure, speed of sound, and transport coefficients, and show that a proper choice of parameters leads to a well-behaved and accurate fluid model. In particular, the speed of sound, the radial distribution function (RDF), shear-thinning of viscosity, the mean-squared displacement (〈R2 〉 ∝ t), and the Schmidt number (Sc ∼ O (103) - O (104)) can be controlled, such that the model exhibits a fluid-like behavior for a wide range of temperatures in simulations. Furthermore, in addition to the consideration of fluid density variations for fluid compressibility, a more challenging test of incompressibility is performed by considering the Poisson ratio and divergence of velocity field in an elongational flow. Finally, as an example of complex-fluid flow, we present the applicability and validity of the SDPD method with an appropriate choice of parameters for the simulation of cellular blood flow in irregular geometries. In conclusion, the results demonstrate that the SDPD method is able to approximate well a nearly incompressible fluid behavior, which includes hydrodynamic interactions and consistent thermal fluctuations, thereby providing, a powerful approach for simulations of complex mesoscopic systems.

  2. [Prevalence of aphysiologic performance on dynamic posturography in work-related patients].

    Science.gov (United States)

    Larrosa, Francisco; Durà, María J; Cordón, Astrid; Hernández, Anabella; García-Ibáñez, Luis

    2012-01-01

    Medical-legal implications of dizziness and imbalance in work-related patients are important. In these cases, computerized dynamic posturography (CDP) adds information to standard vestibular tests and aphysiologic patterns have been described. The objective is to assess the prevalence of aphysiologic performance on CDP in work-related patients complaining of dizziness/imbalance. Retrospective review of patients referred by the workers' compensation board for assessment of dizziness, imbalance or both. Standard vestibular assessment including CDP was carried out in all patients. The sensory organization test (SOT) summaries were scored as normal, aphysiologic or vestibular using the scoring method published by Cevette et al. in 1995. Aphysiologic performance in SOT, evaluated with the Cevette formula, was found in 31 out of 100 cases. Low composite score results and aphysiologic SOT results had a statistically-significant association (P=.01). Videonystagmography (VNG) was altered in 14 out of 31 cases with aphysiologic SOT. The 31% prevalence of aphysiologic results on CDP among work-related patients complaining of dizziness/imbalance is relatively high in comparison with the 25% published by Longridge and Mallinson in 2005. However, aphysiologic performance should not necessarily be related to malingering or exaggeration and altered vestibular tests are found in some of these cases. Copyright © 2011 Elsevier España, S.L. All rights reserved.

  3. Particle and Blood Cell Dynamics in Oscillatory Flows Final Report

    International Nuclear Information System (INIS)

    Restrepo, Juan M.

    2008-01-01

    Our aim has been to uncover fundamental aspects of the suspension and dislodgement of particles in wall-bounded oscillatory flows, in flows characterized by Reynolds numbers encompassing the situation found in rivers and near shores (and perhaps in some industrial processes). Our research tools are computational and our coverage of parameter space fairly broad. Computational means circumvent many complications that make the measurement of the dynamics of particles in a laboratory setting an impractical task, especially on the broad range of parameter space we plan to report upon. The impact of this work on the geophysical problem of sedimentation is boosted considerably by the fact that the proposed calculations can be considered ab-initio, in the sense that little to no modeling is done in generating dynamics of the particles and of the moving fluid: we use a three-dimensional Navier Stokes solver along with straightforward boundary conditions. Hence, to the extent that Navier Stokes is a model for an ideal incompressible isotropic Newtonian fluid, the calculations yield benchmark values for such things as the drag, buoyancy, and lift of particles, in a highly controlled environment. Our approach will be to make measurements of the lift, drag, and buoyancy of particles, by considering progressively more complex physical configurations and physics.

  4. Modelling quality dynamics on business value and firm performance in big data analytics environment

    OpenAIRE

    Ji-fan Ren, S; Fosso Wamba, S; Akter, S; Dubey, R; Childe, SJ

    2017-01-01

    Big data analytics have become an increasingly important component for firms across advanced economies. This paper examines the quality dynamics in big data environment that are linked with enhancing business value and firm performance. The study identifies that system quality (i.e., system reliability, accessibility, adaptability, integration, response time and privacy) and information quality (i.e., completeness, accuracy, format and currency) are key to enhance business value and firm perf...

  5. Dynamic performance enhancement of microgrids by advanced sliding mode controller

    Energy Technology Data Exchange (ETDEWEB)

    Sofla, Mohammadhassan Abdollahi [Electrical Engineering and Computer Science Dept., University of Toledo, Ohio (United States); Gharehpetian, Gevorg B. [Electrical Engineering Dept., Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2011-01-15

    Dynamics are the most important problems in the microgrid operation. In the islanded microgrid, the mismatch of parallel operations of inverters during dynamics can result in the instability. This paper considers severe dynamics which can occur in the microgrid. Microgrid can have different configurations with different load and generation dynamics which are facing voltage disturbances. As a result, microgrid has many uncertainties and is placed in the distribution network where is full of voltage disturbances. Moreover, characteristics of the distribution network and distributed energy resources in the islanded mode make microgrid vulnerable and easily lead to instability. The main aim of this paper is to discuss the suitable mathematical modeling based on microgrid characteristics and to design properly inner controllers to enhance the dynamics of microgrid with uncertain and changing parameters. This paper provides a method for inner controllers of inverter-based distributed energy resources to have a suitable response for different dynamics. Parallel inverters in distribution networks were considered to be controlled by nonlinear robust voltage and current controllers. Theoretical prove beyond simulation results, reveal evidently the effectiveness of the proposed controller. (author)

  6. A Reconfigurable Logic Cell Based on a Simple Dynamical System

    Directory of Open Access Journals (Sweden)

    Lixiang Li

    2013-01-01

    Full Text Available This paper introduces a new scheme to achieve a dynamic logic gate which can be adjusted flexibly to obtain different logic functions by adjusting specific parameters of a dynamical system. Based on graphical tools and the threshold mechanism, the distribution of different logic gates is studied, and a transformation method between different logics is given. Analyzing the performance of the dynamical system in the presence of noise, we discover that it is resistant to system noise. Moreover, we find some part of the system can be considered as a leaky integrator which has been already widely applied in engineering. Finally, we provide a proof-of-principle hardware implementation of the proposed scheme to illustrate its effectiveness. With the proposed scheme in hand, it is convenient to build the flexible, robust, and general purpose computing devices such as various network coding routers, communication encoders or decoders, and reconfigurable computer chips.

  7. Synchronization dynamics of two different dynamical systems

    International Nuclear Information System (INIS)

    Luo, Albert C.J.; Min Fuhong

    2011-01-01

    Highlights: → Synchronization dynamics of two distinct dynamical systems. → Synchronization, de-synchronization and instantaneous synchronization. → A controlled pendulum synchronizing with the Duffing oscillator. → Synchronization invariant set. → Synchronization parameter map. - Abstract: In this paper, synchronization dynamics of two different dynamical systems is investigated through the theory of discontinuous dynamical systems. The necessary and sufficient conditions for the synchronization, de-synchronization and instantaneous synchronization (penetration or grazing) are presented. Using such a synchronization theory, the synchronization of a controlled pendulum with the Duffing oscillator is systematically discussed as a sampled problem, and the corresponding analytical conditions for the synchronization are presented. The synchronization parameter study is carried out for a better understanding of synchronization characteristics of the controlled pendulum and the Duffing oscillator. Finally, the partial and full synchronizations of the controlled pendulum with periodic and chaotic motions are presented to illustrate the analytical conditions. The synchronization of the Duffing oscillator and pendulum are investigated in order to show the usefulness and efficiency of the methodology in this paper. The synchronization invariant domain is obtained. The technique presented in this paper should have a wide spectrum of applications in engineering. For example, this technique can be applied to the maneuvering target tracking, and the others.

  8. Characterization and Performance Testing of Natural Gas Compressors for Residential and Commercial Applications

    Science.gov (United States)

    Zhang, Xinye; Groll, Eckhard A.; Bethel, Dylan

    2017-08-01

    Relatively little information is available in the literature with respect to the performance of compressors used during the dynamic charging process of a tank. Therefore, work presented in this paper shows the measurement results of performance testing of a natural gas compressor and analyses the compressor characterization based on the experimental data. Initial tests were conducted using air and carbon dioxide given the thermodynamic similarities between these fluids and natural gas. Finally, a new test stand was specifically designed and built for compressor dynamic testing using pipeline natural gas (NG) and the compressor reliability has been evaluated inside an explosion-proof engine test cell. Reliability tests at standard operating conditions monitored the performance consistency of the compressors over the testing period and the testing consisted of a series of tank charges aimed at evaluating the maximum operating temperature as well as the mass flow rate in the system.

  9. Multi-Point Combustion System: Final Report

    Science.gov (United States)

    Goeke, Jerry; Pack, Spencer; Zink, Gregory; Ryon, Jason

    2014-01-01

    A low-NOx emission combustor concept has been developed for NASA's Environmentally Responsible Aircraft (ERA) program to meet N+2 emissions goals for a 70,000 lb thrust engine application. These goals include 75 percent reduction of LTO NOx from CAEP6 standards without increasing CO, UHC, or smoke from that of current state of the art. An additional key factor in this work is to improve lean combustion stability over that of previous work performed on similar technology in the early 2000s. The purpose of this paper is to present the final report for the NASA contract. This work included the design, analysis, and test of a multi-point combustion system. All design work was based on the results of Computational Fluid Dynamics modeling with the end results tested on a medium pressure combustion rig at the UC and a medium pressure combustion rig at GRC. The theories behind the designs, results of analysis, and experimental test data will be discussed in this report. The combustion system consists of five radially staged rows of injectors, where ten small scale injectors are used in place of a single traditional nozzle. Major accomplishments of the current work include the design of a Multipoint Lean Direct Injection (MLDI) array and associated air blast and pilot fuel injectors, which is expected to meet or exceed the goal of a 75 percent reduction in LTO NOx from CAEP6 standards. This design incorporates a reduced number of injectors over previous multipoint designs, simplified and lightweight components, and a very compact combustor section. Additional outcomes of the program are validation that the design of these combustion systems can be aided by the use of Computational Fluid Dynamics to predict and reduce emissions. Furthermore, the staging of fuel through the individually controlled radially staged injector rows successfully demonstrated improved low power operability as well as improvements in emissions over previous multipoint designs. Additional comparison

  10. Computational Fluid Dynamics (CFD) Computations With Zonal Navier-Stokes Flow Solver (ZNSFLOW) Common High Performance Computing Scalable Software Initiative (CHSSI) Software

    National Research Council Canada - National Science Library

    Edge, Harris

    1999-01-01

    ...), computational fluid dynamics (CFD) 6 project. Under the project, a proven zonal Navier-Stokes solver was rewritten for scalable parallel performance on both shared memory and distributed memory high performance computers...

  11. Validation of enhanced and dynamic computed tomography for cerebral ischemia

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Kenichiro; Arimoto, Hirohiko; Wada, Kojiro; Takahara, Takashi; Shirotani, Toshiki; Shimizu, Akira [Japan Self-Defense Forces Central Hospital, Tokyo (Japan); Hatanaka, Kosuke [Japan Self-Defense Forces Medical School, Tokyo (Japan)

    2003-03-01

    This paper shows the usefulness of enhanced and dynamic CT for ischemic stroke patients. Sixteen patients with disturbance of consciousness or neurological sign who did not have low-density area on plain CT were selected for this study. We performed enhanced CT sequentially. Enhanced CT image, time-density curve and functional image were compared with final infarcted area and occlusion level of cerebral artery. Three patients whose enhanced CT images showed obvious laterality had occlusion of internal carotid (IC) or horizontal portion of middle cerebral artery (M1). Four of five patients whose functional image and time density curve revealed abnormal region had ischemia because of more peripheral vessel occlusion or IC stenosis. Others with no abnormality on all images had lacunar infarction or did not have infarction finally. Occlusion of cerebral artery proximal portion could be diagnosed only with enhanced CT images. If selected slice was fit to the lesion, more distant level of ischemic area could be determined 100% by time-density curve and functional image. This examination takes only about ten minutes without transferring the patient. Enhanced CT and dynamic scan is useful tool to determine the diagnosis and management for ischemic stroke patients. (author)

  12. Validation of enhanced and dynamic computed tomography for cerebral ischemia

    International Nuclear Information System (INIS)

    Ono, Kenichiro; Arimoto, Hirohiko; Wada, Kojiro; Takahara, Takashi; Shirotani, Toshiki; Shimizu, Akira; Hatanaka, Kosuke

    2003-01-01

    This paper shows the usefulness of enhanced and dynamic CT for ischemic stroke patients. Sixteen patients with disturbance of consciousness or neurological sign who did not have low-density area on plain CT were selected for this study. We performed enhanced CT sequentially. Enhanced CT image, time-density curve and functional image were compared with final infarcted area and occlusion level of cerebral artery. Three patients whose enhanced CT images showed obvious laterality had occlusion of internal carotid (IC) or horizontal portion of middle cerebral artery (M1). Four of five patients whose functional image and time density curve revealed abnormal region had ischemia because of more peripheral vessel occlusion or IC stenosis. Others with no abnormality on all images had lacunar infarction or did not have infarction finally. Occlusion of cerebral artery proximal portion could be diagnosed only with enhanced CT images. If selected slice was fit to the lesion, more distant level of ischemic area could be determined 100% by time-density curve and functional image. This examination takes only about ten minutes without transferring the patient. Enhanced CT and dynamic scan is useful tool to determine the diagnosis and management for ischemic stroke patients. (author)

  13. Robust approximation-free prescribed performance control for nonlinear systems and its application

    Science.gov (United States)

    Sun, Ruisheng; Na, Jing; Zhu, Bin

    2018-02-01

    This paper presents a robust prescribed performance control approach and its application to nonlinear tail-controlled missile systems with unknown dynamics and uncertainties. The idea of prescribed performance function (PPF) is incorporated into the control design, such that both the steady-state and transient control performance can be strictly guaranteed. Unlike conventional PPF-based control methods, we further tailor a recently proposed systematic control design procedure (i.e. approximation-free control) using the transformed tracking error dynamics, which provides a proportional-like control action. Hence, the function approximators (e.g. neural networks, fuzzy systems) that are widely used to address the unknown nonlinearities in the nonlinear control designs are not needed. The proposed control design leads to a robust yet simplified function approximation-free control for nonlinear systems. The closed-loop system stability and the control error convergence are all rigorously proved. Finally, comparative simulations are conducted based on nonlinear missile systems to validate the improved response and the robustness of the proposed control method.

  14. Modelling and simulation of dynamic recrystallization (DRX) in OFHC copper at very high strain rates

    Science.gov (United States)

    Testa, G.; Bonora, N.; Ruggiero, A.; Iannitti, G.; Persechino, I.; Hörnqvist, M.; Mortazavi, N.

    2017-01-01

    At high strain rates, deformation processes are essentially adiabatic and if the plastic work is large enough dynamic recrystallization can occur. In this work, an examination on microstructure evolution of OFHC copper in Dynamic Tensile Extrusion (DTE) test, performed at 400 m/s, was carried out. EBSD investigations, along the center line of the fragment remaining in the extrusion die, showed a progressive elongation of the grains, and an accompanying development of a strong + dual fiber texture. Discontinuous dynamic recrystallization (DRX) occurred at larger strains, and it was showed that nucleation occurred during straining. A criterion for DRX to occur, based on the evolution of Zener-Hollomon parameter during the dynamic deformation process, is proposed. Finally, DTE test was simulated using the modified Rusinek-Klepaczko constitutive model incorporating a model for the prediction of DRX initiation.

  15. Acute effects of static and dynamic stretching on jump performance after 15 min of reconditioning shooting phase in basketball players.

    Science.gov (United States)

    Annino, Giuseppe; Ruscello, Bruno; Lebone, Pietro; Palazzo, Francesco; Lombardo, Mauro; Padua, Elvira; Verdecchia, Luca; Tancredi, Virginia; Iellamo, Ferdinando

    2017-04-01

    The aim of this study was to assess the effects of static (SS) and dynamic stretching (DS) on vertical jump performance executed before, immediately after and at the end of the shooting phase (i.e., 15 min later), as to simulate the actual conditions preceding a match, in professional basketball players. Ten elite basketball players (age: 29±6.73 years, height: 194.67±7.75 cm, weight: 91±8.17 kg and BMI 23.8±7.91 kg.m-2) participated to the study. SS and DS protocols were administered during the first training session of the week, 48 hours after the championship match. Stretching protocols consisted in ~7 minutes of general warm-up phase followed by ~8 minutes of SS and DS, performed with a cross-over design., and ~15 minutes of a specific warm-up shooting phase (SP). Vertical jump tests consisted in counter movement jump (CMJ) and CMJ with arm swings (CMJas) and were performed immediately after the end of each stretching phase (preS, postS, postSP). A significant decrease (P=0.05; η2partial=0.29) in jumping tests height occurred in CMJas, when performed after the SS (i.e., PostS). However, no significant differences in jumping performances, occurred after the general warm phase and the specific warm-up shooting phase, between the two stretching protocols. These results would indicate that, overall, stretching routines either dynamic or static, performed before a basketball match are transient and affect only marginally leg muscles performance. Stretching routines, particularly the dynamic ones, may be useful to maintain muscle performance before a competition, provided that this latter begins shortly after.

  16. Digital Communication Devices Based on Nonlinear Dynamics and Chaos

    National Research Council Canada - National Science Library

    Larson, Lawrence

    2003-01-01

    The final report of the ARO MURI "Digital Communications Based on Chaos and Nonlinear Dynamics" contains research results in the areas of chaos and nonlinear dynamics applied to wireless and optical communications...

  17. Dynamics of Shape Memory Alloy Systems, Phase 2

    Science.gov (United States)

    2015-12-22

    Nonlinear Dynamics and Chaos in Systems with Discontinuous Support Using a Switch Model”, DINAME 2005 - XI International Conference on Dynamic Problems in...AFRL-AFOSR-CL-TR-2016-0003 Dynamics of Shape Memory Alloy Systems , Phase 2 Marcelo Savi FUNDACAO COORDENACAO DE PROJETOS PESQUISAS E EEUDOS TECNOL...release. 2 AFOSR FINAL REPORT Grant Title: Nonlinear Dynamics of Shape Memory Alloy Systems , Phase 2 Grant #: FA9550-11-1-0284 Reporting Period

  18. Isometric and dynamic strength and neuromuscular attributes as predictors of vertical jump performance in 11- to 13-year-old male athletes.

    Science.gov (United States)

    McKinlay, Brandon John; Wallace, Phillip J; Dotan, Raffy; Long, Devon; Tokuno, Craig; Gabriel, David A; Falk, Bareket

    2017-09-01

    In explosive contractions, neural activation is a major factor in determining the rate of torque development, while the latter is an important determinant of jump performance. However, the contribution of neuromuscular activation and rate of torque development to jump performance in children and youth is unclear. The purpose of this study was to examine the relationships between the rate of neuromuscular activation, peak torque, rate of torque development, and jump performance in young male athletes. Forty-one 12.5 ± 0.5-year-old male soccer players completed explosive, unilateral isometric and dynamic (240°/s) knee extensions (Biodex System III), as well as countermovement-, squat-, and drop-jumps. Peak torque (pT), peak rate of torque development (pRTD), and rate of vastus lateralis activation (Q 30 ) during the isometric and dynamic contractions were examined in relation to attained jump heights. Isometric pT and pRTD were strongly correlated (r = 0.71) but not related to jump performance. Dynamic pT and pRTD, normalized to body mass, were significantly related to jump height in all 3 jumps (r = 0.38-0.66, p jump performance, while isometric contractions are not. These findings have implications in the choice of training and assessment methods for young athletes.

  19. Exterior insulating shutter final prototype design. Final report, Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Dike, G.A.; Kinney, L.F.

    1982-12-01

    The final prototype shutter described uses sliding panels composed of inch-thick thermax sandwiched between 60 mil thick ultraviolet-resistant plastic on the outside, and 20 mil stryrene on the inside. The shuter system was shown to have an effective R-value of 6 using ASHRAE procedures to convert from still air conditions to 15 mph wind conditions in a simulated cold environment. Tests were performed for cyclical operation, vulnerability to ice and wind, thermal performance, and air infiltration. Marketing efforts are described. Cost effectiveness is determined via present value analysis. (LEW)

  20. Experimentally simulating the dynamics of quantum light and matter at ultrastrong coupling using circuit QED (2) - light dynamics and light-matter entanglement -

    Science.gov (United States)

    Sagastizabal, R.; Langford, N. K.; Kounalakis, M.; Dickel, C.; Bruno, A.; Luthi, F.; Thoen, D. J.; Endo, A.; Dicarlo, L.

    Light-matter interaction can lead to large photon build-up and hybrid atom-photon entanglement in the ultrastrong coupling (USC) regime, where the coupling strength becomes comparable to the eigenenergies of the system. Accessing the cavity degree of freedom, however, is an outstanding challenge in natural USC systems. In this talk, we directly probe light field dynamics in the USC regime using a digital simulation of the quantum Rabi model in a planar circuit QED chip with a transmon moderately coupled to a resonator. We produce high-accuracy USC light-matter dynamics, using second-order Trotterisation and up to 90 Trotter steps. We probe the average photon number, photon parity and perform Wigner tomography of the simulated field. Finally, we combine tomography of the resonator with qubit measurements to evidence the Schrödinger-cat-like atom-photon entanglement which is a key signature of light-matter dynamics in the USC regime. Funding from the EU FP7 Project ScaleQIT, the ERC Synergy Grant QC-lab, the Netherlands Organization of Scientic Research (NWO), and Microsoft Research.

  1. Dynamic range in BOLD modulation: lifespan aging trajectories and association with performance.

    Science.gov (United States)

    Kennedy, Kristen M; Boylan, Maria A; Rieck, Jenny R; Foster, Chris M; Rodrigue, Karen M

    2017-12-01

    Alteration of dynamic range of modulation to cognitive difficulty has been proposed as a salient predictor of cognitive aging. Here, we examine in 171 adults (aged 20-94 years) the effects of age on dynamic modulation of blood oxygenation-level dependent activation to difficulty in parametrically increasing working memory (WM) load (0-, 2-, 3-, and 4-back conditions). First, we examined parametric increases and decreases in activation to increasing WM load (positive modulation effect and negative modulation effect). Second, we examined the effect of age on modulation to difficulty (WM load) to identify regions that differed with age as difficulty increased (age-related positive and negative modulation effects). Weakened modulation to difficulty with age was found in both the positive modulation (middle frontal, superior/inferior parietal) and negative modulation effect (deactivated) regions (insula, cingulate, medial superior frontal, fusiform, and parahippocampal gyri, hippocampus, and lateral occipital cortex). Age-related alterations to positive modulation emerged later in the lifespan than negative modulation. Furthermore, these effects were significantly coupled in that greater upmodulation was associated with lesser downmodulation. Importantly, greater fronto-parietal upmodulation to difficulty and greater downmodulation of deactivated regions were associated with better task accuracy and upmodulation with better WM span measured outside the scanner. These findings suggest that greater dynamic range of modulation of activation to cognitive challenge is in service of current task performance, as well as generalizing to cognitive ability beyond the scanner task, lending support to its utility as a marker of successful cognitive aging. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Antinucleon-nucleon annihilation dynamics

    International Nuclear Information System (INIS)

    Myhrer, F.; Massachusetts Inst. of Tech., Cambridge

    1989-01-01

    The antinucleon-nucleon annihilation is predominantly described by a hot-fireball process where the many final quantum numbers are distributed in a statistical fashion. It is argued that caution must be used in employing the long-range meson-exchange forces to describe the protonium atomic states. The simplest processes of two final mesons do show puzzling behavior which might be a reflection of quark dynamics, but no guiding principles for these quark calculations have been established yet. (orig.)

  3. Dynamic Error Analysis Method for Vibration Shape Reconstruction of Smart FBG Plate Structure

    Directory of Open Access Journals (Sweden)

    Hesheng Zhang

    2016-01-01

    Full Text Available Shape reconstruction of aerospace plate structure is an important issue for safe operation of aerospace vehicles. One way to achieve such reconstruction is by constructing smart fiber Bragg grating (FBG plate structure with discrete distributed FBG sensor arrays using reconstruction algorithms in which error analysis of reconstruction algorithm is a key link. Considering that traditional error analysis methods can only deal with static data, a new dynamic data error analysis method are proposed based on LMS algorithm for shape reconstruction of smart FBG plate structure. Firstly, smart FBG structure and orthogonal curved network based reconstruction method is introduced. Then, a dynamic error analysis model is proposed for dynamic reconstruction error analysis. Thirdly, the parameter identification is done for the proposed dynamic error analysis model based on least mean square (LMS algorithm. Finally, an experimental verification platform is constructed and experimental dynamic reconstruction analysis is done. Experimental results show that the dynamic characteristics of the reconstruction performance for plate structure can be obtained accurately based on the proposed dynamic error analysis method. The proposed method can also be used for other data acquisition systems and data processing systems as a general error analysis method.

  4. Musical structure analysis using similarity matrix and dynamic programming

    Science.gov (United States)

    Shiu, Yu; Jeong, Hong; Kuo, C.-C. Jay

    2005-10-01

    Automatic music segmentation and structure analysis from audio waveforms based on a three-level hierarchy is examined in this research, where the three-level hierarchy includes notes, measures and parts. The pitch class profile (PCP) feature is first extracted at the note level. Then, a similarity matrix is constructed at the measure level, where a dynamic time warping (DTW) technique is used to enhance the similarity computation by taking the temporal distortion of similar audio segments into account. By processing the similarity matrix, we can obtain a coarse-grain music segmentation result. Finally, dynamic programming is applied to the coarse-grain segments so that a song can be decomposed into several major parts such as intro, verse, chorus, bridge and outro. The performance of the proposed music structure analysis system is demonstrated for pop and rock music.

  5. Dynamic Increase Factors for High Performance Concrete in Compression using Split Hopkinson Pressure Bar

    DEFF Research Database (Denmark)

    Riisgaard, Benjamin; Ngo, Tuan; Mendis, Priyan

    2007-01-01

    This paper provides dynamic increase factors (DIF) in compression for two different High Performance Concretes (HPC), 100 MPa and 160 MPa, respectively. In the experimental investigation 2 different Split Hopkinson Pressure Bars are used in order to test over a wide range of strain rates, 100 sec1...... to 700 sec-1. The results are compared with the CEB Model Code and the Spilt Hopkinson Pressure Bar technique is briefly de-scribed....

  6. Catalytic performances of chemically immobilized urease under static and dynamic conditions: A comparative study

    OpenAIRE

    Yürekli, Yılmaz; Alsoy Altınkaya, Sacide

    2011-01-01

    Immobilized urease has been used for direct removal of urea from aqueous solution and as biological sensing material in the preparation of urea biosensors. The former application is carried out under dynamic condition using ultrafiltration membrane either in tubular form or in flat sheet, while the latter is used in static condition. In this study, the performance of chemically immobilized urease on poly(acrylonitrile-co-sodium methallyl sulfonate) ultrafiltration membrane was determined unde...

  7. Satellite Dynamic Damping via Active Force Control Augmentation

    Science.gov (United States)

    Varatharajoo, Renuganth

    2012-07-01

    An approach that incorporates the Active Force Control (AFC) technique into a conventional Proportional-Derivative (PD) controller is proposed for a satellite active dynamic damping towards a full attitude control. The AFC method has been established to facilitate a robust motion control of dynamical systems in the presence of disturbances, parametric uncertainties and changes that are commonly prevalent in the real-world environment. The usefulness of the method can be extended by introducing intelligent mechanisms to approximate the mass or inertia matrix of the dynamic system to trigger the compensation effect of the controller. AFC is a technique that relies on the appropriate estimation of the inertial or mass parameters of the dynamic system and the measurements of the acceleration and force signals induced by the system if practical implementation is ever considered. In AFC, it is shown that the system subjected to a number of disturbances remains stable and robust via the compensating action of the control strategy. We demonstrate that it is possible to design a spacecraft attitude feedback controller that will ensure the system dynamics set point remains unchanged even in the presence of the disturbances provided that the actual disturbances can be modeled effectively. In order to further facilitate this analysis, a combined energy and attitude control system (CEACS) is proposed as a model satellite attitude control actuator. All the governing equations are established and the proposed satellite attitude control architecture is made amenable to numerical treatments. The results show that the PD-AFC attitude damping performances are superiorly better than that of the solely PD type. It is also shown that the tunings of the AFC system gains are crucial to ensure a better attitude damping performance and this process is mandatory for AFC systems. Finally, the results demonstrate an important satellite dynamic damping enhancement capability using the AFC

  8. Static and dynamic balance performance in patients with osteoporotic vertebral compression fracture.

    Science.gov (United States)

    Wang, Ling-Yi; Liaw, Mei-Yun; Huang, Yu-Chi; Lau, Yiu-Chung; Leong, Chau-Peng; Pong, Ya-Ping; Chen, Chia-Lin

    2013-01-01

    Patients with osteoporotic vertebral compression fracture (OVCF) have postural changes and increased risk of falling. The aim of this study is to compare balance characteristics between patients with OVCF and healthy control subjects. Patients with severe OVCF and control subjects underwent computerised dynamic posturography (CDP) in this case-control study. Forty-seven OVCF patients and 45 controls were recruited. Compared with the control group, the OVCF group had significantly decreased average stability; maximal stability under the `eye open with swayed support surface' (CDP subtest 4) and 'eye closed with swayed support surface' conditions (subtest 5); and decreased ankle strategy during subtests 4 and 5 and under the `swayed vision with swayed support surface' condition (subtest 6). The OVCF group fell more frequently during subtests 5 and 6 and had longer overall reaction time and longer reaction time when moving backward during the directional control test. OVCF patients had poorer static and dynamic balance performance compared with normal control. They had decreased postural stability and ankle strategy with increased fall frequency on a swayed surface; they also had longer reaction times overall and in the backward direction. Therefore, we suggest balance rehabilitation for patients with OVCF to prevent fall.

  9. Computational fluid dynamics (CFD) assisted performance evaluation of the Twincer (TM) disposable high-dose dry powder inhaler

    NARCIS (Netherlands)

    de Boer, Anne H.; Hagedoorn, Paul; Woolhouse, Robert; Wynn, Ed

    Objectives To use computational fluid dynamics (CFD) for evaluating and understanding the performance of the high-dose disposable Twincer (TM) dry powder inhaler, as well as to learn the effect of design modifications on dose entrainment, powder dispersion and retention behaviour. Methods Comparison

  10. Adjustable ETHD lubrication applied to the improvement of dynamic performance of flexible rotors supported by active TPJB

    DEFF Research Database (Denmark)

    Salazar, Jorge Andrés González; Cerda Varela, Alejandro Javier; Santos, Ilmar

    2013-01-01

    This paper reports the dynamic study of a flexible rotor-bearing test rig which resembles a large overhung centrifugal compressor. The rotor is supported by an active tilting pad journal bearing (TPJB) able to perform the adjustable lubrication regime. Such a regime is obtained by injecting...... pressurized oil directly into the bearing clearance through a nozzle placed in a radial bore at the middle of the pad and connected to a high pressure supply unit by servovalves. The theoretical model is based on a finite element model, where the active TPJB with adjustable lubrication is included using...... and the experimental results are obtained. The improvements are obtained when the system response amplitudes in a bounded speed range is reduced by applying the adjustable lubrication. Results are in agreement with the established fact that a significant improvement of the rotor-bearing system dynamic performance can...

  11. A model for evaluating the social performance of construction waste management.

    Science.gov (United States)

    Yuan, Hongping

    2012-06-01

    It has been determined by existing literature that a lot of research efforts have been made to the economic performance of construction waste management (CWM), but less attention is paid to investigation of the social performance of CWM. This study therefore attempts to develop a model for quantitatively evaluating the social performance of CWM by using a system dynamics (SD) approach. Firstly, major variables affecting the social performance of CWM are identified and a holistic system for assessing the social performance of CWM is formulated in line with feedback relationships underlying these variables. The developed system is then converted into a SD model through the software iThink. An empirical case study is finally conducted to demonstrate application of the model. Results of model validation indicate that the model is robust and reasonable to reflect the situation of the real system under study. Findings of the case study offer helpful insights into effectively promoting the social performance of CWM of the project investigated. Furthermore, the model exhibits great potential to function as an experimental platform for dynamically evaluating effects of management measures on improving the social performance of CWM of construction projects. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. A domain specific language for performance portable molecular dynamics algorithms

    Science.gov (United States)

    Saunders, William Robert; Grant, James; Müller, Eike Hermann

    2018-03-01

    Developers of Molecular Dynamics (MD) codes face significant challenges when adapting existing simulation packages to new hardware. In a continuously diversifying hardware landscape it becomes increasingly difficult for scientists to be experts both in their own domain (physics/chemistry/biology) and specialists in the low level parallelisation and optimisation of their codes. To address this challenge, we describe a "Separation of Concerns" approach for the development of parallel and optimised MD codes: the science specialist writes code at a high abstraction level in a domain specific language (DSL), which is then translated into efficient computer code by a scientific programmer. In a related context, an abstraction for the solution of partial differential equations with grid based methods has recently been implemented in the (Py)OP2 library. Inspired by this approach, we develop a Python code generation system for molecular dynamics simulations on different parallel architectures, including massively parallel distributed memory systems and GPUs. We demonstrate the efficiency of the auto-generated code by studying its performance and scalability on different hardware and compare it to other state-of-the-art simulation packages. With growing data volumes the extraction of physically meaningful information from the simulation becomes increasingly challenging and requires equally efficient implementations. A particular advantage of our approach is the easy expression of such analysis algorithms. We consider two popular methods for deducing the crystalline structure of a material from the local environment of each atom, show how they can be expressed in our abstraction and implement them in the code generation framework.

  13. High performance computer code for molecular dynamics simulations

    International Nuclear Information System (INIS)

    Levay, I.; Toekesi, K.

    2007-01-01

    Complete text of publication follows. Molecular Dynamics (MD) simulation is a widely used technique for modeling complicated physical phenomena. Since 2005 we are developing a MD simulations code for PC computers. The computer code is written in C++ object oriented programming language. The aim of our work is twofold: a) to develop a fast computer code for the study of random walk of guest atoms in Be crystal, b) 3 dimensional (3D) visualization of the particles motion. In this case we mimic the motion of the guest atoms in the crystal (diffusion-type motion), and the motion of atoms in the crystallattice (crystal deformation). Nowadays, it is common to use Graphics Devices in intensive computational problems. There are several ways to use this extreme processing performance, but never before was so easy to programming these devices as now. The CUDA (Compute Unified Device) Architecture introduced by nVidia Corporation in 2007 is a very useful for every processor hungry application. A Unified-architecture GPU include 96-128, or more stream processors, so the raw calculation performance is 576(!) GFLOPS. It is ten times faster, than the fastest dual Core CPU [Fig.1]. Our improved MD simulation software uses this new technology, which speed up our software and the code run 10 times faster in the critical calculation code segment. Although the GPU is a very powerful tool, it has a strongly paralleled structure. It means, that we have to create an algorithm, which works on several processors without deadlock. Our code currently uses 256 threads, shared and constant on-chip memory, instead of global memory, which is 100 times slower than others. It is possible to implement the total algorithm on GPU, therefore we do not need to download and upload the data in every iteration. On behalf of maximal throughput, every thread run with the same instructions

  14. Cardioplegia heat exchanger design modelling using computational fluid dynamics.

    Science.gov (United States)

    van Driel, M R

    2000-11-01

    A new cardioplegia heat exchanger has been developed by Sorin Biomedica. A three-dimensional computer-aided design (CAD) model was optimized using computational fluid dynamics (CFD) modelling. CFD optimization techniques have commonly been applied to velocity flow field analysis, but CFD analysis was also used in this study to predict the heat exchange performance of the design before prototype fabrication. The iterative results of the optimization and the actual heat exchange performance of the final configuration are presented in this paper. Based on the behaviour of this model, both the water and blood fluid flow paths of the heat exchanger were optimized. The simulation predicted superior heat exchange performance using an optimal amount of energy exchange surface area, reducing the total contact surface area, the device priming volume and the material costs. Experimental results confirm the empirical results predicted by the CFD analysis.

  15. Experimental investigation on the dynamic performance of a hybrid PEM fuel cell/battery system for lightweight electric vehicle application

    International Nuclear Information System (INIS)

    Tang, Yong; Yuan, Wei; Pan, Minqiang; Wan, Zhenping

    2011-01-01

    A hybrid system combining a 2 kW air-blowing proton exchange membrane fuel cell (PEMFC) stack and a lead-acid battery pack is developed for a lightweight cruising vehicle. The dynamic performances of this PEMFC system with and without the assistance of the batteries are systematically investigated in a series of laboratory and road tests. The stack current and voltage have timely dynamic responses to the load variations. Particularly, the current overshoot and voltage undershoot both happen during the step-up load tests. These phenomena are closely related to the charge double-layer effect and the mass transfer mechanisms such as the water and gas transport and distribution in the fuel cell. When the external load is beyond the range of the fuel cell system, the battery immediately participates in power output with a higher transient discharging current especially in the accelerating and climbing processes. The DC-DC converter exhibits a satisfying performance in adaptive modulation. It helps rectify the voltage output in a rigid manner and prevent the fuel cell system from being overloaded. The dynamic responses of other operating parameters such as the anodic operating pressure and the inlet and outlet temperatures are also investigated. The results show that such a hybrid system is able to dynamically satisfy the vehicular power demand.

  16. Dynamic Modeling and Simulation on a Hybrid Power System for Electric Vehicle Applications

    Directory of Open Access Journals (Sweden)

    Hong-Wen He

    2010-11-01

    Full Text Available Hybrid power systems, formed by combining high-energy-density batteries and high-power-density ultracapacitors in appropriate ways, provide high-performance and high-efficiency power systems for electric vehicle applications. This paper first establishes dynamic models for the ultracapacitor, the battery and a passive hybrid power system, and then based on the dynamic models a comparative simulation between a battery only power system and the proposed hybrid power system was done under the UDDS (Urban Dynamometer Driving Schedule. The simulation results showed that the hybrid power system could greatly optimize and improve the efficiency of the batteries and their dynamic current was also decreased due to the participation of the ultracapacitors, which would have a good influence on batteries’ cycle life. Finally, the parameter matching for the passive hybrid power system was studied by simulation and comparisons.

  17. Dynamic Performance Comparison for MPPT-PV Systems using Hybrid Pspice/Matlab Simulation

    Science.gov (United States)

    Aouchiche, N.; Becherif, M.; HadjArab, A.; Aitcheikh, M. S.; Ramadan, H. S.; Cheknane, A.

    2016-10-01

    The power generated by solar photovoltaic (PV) module depends on the surrounding irradiance and temperature. This paper presents a hybrid Matlab™/Pspice™ simulation model of PV system, combined with Cadence software SLPS. The hybridization is performed in order to gain the advantages of both simulation tools such as accuracy and efficiency in both Pspice electronic circuit and Matlab™ mathematical modelling respectively. For this purpose, the PV panel and the boost converter are developed using Pspice™ and hybridized with the mathematical Matlab™ model of maximum power point method controller (MPPT) through SLPS. The main objective is verify the significance of using the proposed hybrid simulation techniques in comparing the different MPPT algorithms such as the perturbation and observation (P&O), incremental of conductance (Inc-Cond) and counter reaction voltage using pilot cell (Pilot-Cell). Various simulations are performed under different atmospheric conditions in order to evaluate the dynamic behaviour for the system under study in terms of stability, efficiency and rapidity.

  18. Modelling of PEM Fuel Cell Performance: Steady-State and Dynamic Experimental Validation

    Directory of Open Access Journals (Sweden)

    Idoia San Martín

    2014-02-01

    Full Text Available This paper reports on the modelling of a commercial 1.2 kW proton exchange membrane fuel cell (PEMFC, based on interrelated electrical and thermal models. The electrical model proposed is based on the integration of the thermodynamic and electrochemical phenomena taking place in the FC whilst the thermal model is established from the FC thermal energy balance. The combination of both models makes it possible to predict the FC voltage, based on the current demanded and the ambient temperature. Furthermore, an experimental characterization is conducted and the parameters for the models associated with the FC electrical and thermal performance are obtained. The models are implemented in Matlab Simulink and validated in a number of operating environments, for steady-state and dynamic modes alike. In turn, the FC models are validated in an actual microgrid operating environment, through the series connection of 4 PEMFC. The simulations of the models precisely and accurately reproduce the FC electrical and thermal performance.

  19. Dynamic performance of the beam position monitor support at the SSRF.

    Science.gov (United States)

    Wang, Xiao; Cao, Yun; Du, Hanwen; Yin, Lixin

    2009-01-01

    Electron beam stability is very important for third-generation light sources, especially for the Shanghai Synchrotron Radiation Facility whose ground vibrations are much larger than those for other light sources. Beam position monitors (BPMs), used to monitor the position of the electron beam, require a greater stability than other mechanical structures. This paper concentrates on an investigation of the dynamic performance of the BPM support prototype. Modal and response analyses have been carried out by finite-element (FE) calculations and vibration measurements. Inconsistent results between calculation and measurement have motivated a change in the soft connections between the support and the ground from a ground bolt in the initial design to full grout. As a result the mechanical stability of the BPM support is greatly improved, showing an increase in the first eigenfrequency from 20.2 Hz to 50.2 Hz and a decrease in the ratio of the root-mean-square displacement (4-50 Hz) between the ground and the top of the support from 4.36 to 1.23 in the lateral direction. An example is given to show how FE analysis can guide the mechanical design and dynamic measurements (i.e. it is not just used as a verification method). Similar ideas can be applied to improve the stability of other mechanical structures.

  20. Membrane dynamics

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    Current topics include membrane-protein interactions with regard to membrane deformation or curvature sensing by BAR domains. Also, we study the dynamics of membrane tubes of both cells and simple model membrane tubes. Finally, we study membrane phase behavior which has important implications...... for the lateral organization of membranes as wells as for physical properties like bending, permeability and elasticity...

  1. Superconducting quadrupoles for the SLC final focus

    International Nuclear Information System (INIS)

    Erickson, R.; Fieguth, T.; Murray, J.J.

    1987-01-01

    The final focus system of the SLC will be upgraded by replacing the final quadrupoles with higher gradient superconducting magnets positioned closer to the interaction point. The parameters of the new system have been chosen to be compatible with the experimental detectors with a minimum of changes to other final focus components. These parameter choices are discussed along with the expected improvement in SLC performance

  2. Superconducting quadrupoles for the SLC final focus

    International Nuclear Information System (INIS)

    Erickson, R.; Fieguth, T.; Murray, J.J.

    1987-01-01

    The final focus system of the SLC will be upgraded by replacing the final quadrupoles with higher gradient supperconducting magnets positioned closer to the interaction point. The parameters of the new system have been chosen to be compatible with the experimental detectors with a minimum of changes to other final focus components. These parameter choices are discussed along with the expected improvement in SLC performance

  3. Performance Improvement of Inertial Navigation System by Using Magnetometer with Vehicle Dynamic Constraints

    Directory of Open Access Journals (Sweden)

    Daehee Won

    2015-01-01

    Full Text Available A navigation algorithm is proposed to increase the inertial navigation performance of a ground vehicle using magnetic measurements and dynamic constraints. The navigation solutions are estimated based on inertial measurements such as acceleration and angular velocity measurements. To improve the inertial navigation performance, a three-axis magnetometer is used to provide the heading angle, and nonholonomic constraints (NHCs are introduced to increase the correlation between the velocity and the attitude equation. The NHCs provide a velocity feedback to the attitude, which makes the navigation solution more robust. Additionally, an acceleration-based roll and pitch estimation is applied to decrease the drift when the acceleration is within certain boundaries. The magnetometer and NHCs are combined with an extended Kalman filter. An experimental test was conducted to verify the proposed method, and a comprehensive analysis of the performance in terms of the position, velocity, and attitude showed that the navigation performance could be improved by using the magnetometer and NHCs. Moreover, the proposed method could improve the estimation performance for the position, velocity, and attitude without any additional hardware except an inertial sensor and magnetometer. Therefore, this method would be effective for ground vehicles, indoor navigation, mobile robots, vehicle navigation in urban canyons, or navigation in any global navigation satellite system-denied environment.

  4. High-performance modeling of CO2 sequestration by coupling reservoir simulation and molecular dynamics

    KAUST Repository

    Bao, Kai

    2013-01-01

    The present work describes a parallel computational framework for CO2 sequestration simulation by coupling reservoir simulation and molecular dynamics (MD) on massively parallel HPC systems. In this framework, a parallel reservoir simulator, Reservoir Simulation Toolbox (RST), solves the flow and transport equations that describe the subsurface flow behavior, while the molecular dynamics simulations are performed to provide the required physical parameters. Numerous technologies from different fields are employed to make this novel coupled system work efficiently. One of the major applications of the framework is the modeling of large scale CO2 sequestration for long-term storage in the subsurface geological formations, such as depleted reservoirs and deep saline aquifers, which has been proposed as one of the most attractive and practical solutions to reduce the CO2 emission problem to address the global-warming threat. To effectively solve such problems, fine grids and accurate prediction of the properties of fluid mixtures are essential for accuracy. In this work, the CO2 sequestration is presented as our first example to couple the reservoir simulation and molecular dynamics, while the framework can be extended naturally to the full multiphase multicomponent compositional flow simulation to handle more complicated physical process in the future. Accuracy and scalability analysis are performed on an IBM BlueGene/P and on an IBM BlueGene/Q, the latest IBM supercomputer. Results show good accuracy of our MD simulations compared with published data, and good scalability are observed with the massively parallel HPC systems. The performance and capacity of the proposed framework are well demonstrated with several experiments with hundreds of millions to a billion cells. To our best knowledge, the work represents the first attempt to couple the reservoir simulation and molecular simulation for large scale modeling. Due to the complexity of the subsurface systems

  5. ORGANISATIONAL CAPABILITIES, COMPETITIVE ADVANTAGE AND PERFORMANCE IN SUPPORTING INDUSTRIES IN VIETNAM

    Directory of Open Access Journals (Sweden)

    Nham Phong Tuan

    2010-01-01

    Full Text Available This paper focuses on applying the resource-based view (RBV of firms to explain performance in supporting industries in Vietnam. Specifically, we based our research on the comprehensive framework of RBV and reviewed previous empirical researches before deciding on adopting a dynamic capabilities approach to test relationships among organisational capabilities, competitive advantage and performance. A multivariate analysis of survey responses of 102 firms belonging to supporting industries in Vietnam indicates that the organisational capabilities are related to the competitive advantage, that the competitive advantage is related to performance, and that the competitive advantage mediates the relationship between organizational capabilities and performance. These findings have considerable implications for academics as well as practitioners. Finally, this study also provides directions for future research.

  6. Cardiac fluid dynamics meets deformation imaging.

    Science.gov (United States)

    Dal Ferro, Matteo; Stolfo, Davide; De Paris, Valerio; Lesizza, Pierluigi; Korcova, Renata; Collia, Dario; Tonti, Giovanni; Sinagra, Gianfranco; Pedrizzetti, Gianni

    2018-02-20

    Cardiac function is about creating and sustaining blood in motion. This is achieved through a proper sequence of myocardial deformation whose final goal is that of creating flow. Deformation imaging provided valuable contributions to understanding cardiac mechanics; more recently, several studies evidenced the existence of an intimate relationship between cardiac function and intra-ventricular fluid dynamics. This paper summarizes the recent advances in cardiac flow evaluations, highlighting its relationship with heart wall mechanics assessed through the newest techniques of deformation imaging and finally providing an opinion of the most promising clinical perspectives of this emerging field. It will be shown how fluid dynamics can integrate volumetric and deformation assessments to provide a further level of knowledge of cardiac mechanics.

  7. Comparison of Controller and Flight Deck Algorithm Performance During Interval Management with Dynamic Arrival Trees (STARS)

    Science.gov (United States)

    Battiste, Vernol; Lawton, George; Lachter, Joel; Brandt, Summer; Koteskey, Robert; Dao, Arik-Quang; Kraut, Josh; Ligda, Sarah; Johnson, Walter W.

    2012-01-01

    Managing the interval between arrival aircraft is a major part of the en route and TRACON controller s job. In an effort to reduce controller workload and low altitude vectoring, algorithms have been developed to allow pilots to take responsibility for, achieve and maintain proper spacing. Additionally, algorithms have been developed to create dynamic weather-free arrival routes in the presence of convective weather. In a recent study we examined an algorithm to handle dynamic re-routing in the presence of convective weather and two distinct spacing algorithms. The spacing algorithms originated from different core algorithms; both were enhanced with trajectory intent data for the study. These two algorithms were used simultaneously in a human-in-the-loop (HITL) simulation where pilots performed weather-impacted arrival operations into Louisville International Airport while also performing interval management (IM) on some trials. The controllers retained responsibility for separation and for managing the en route airspace and some trials managing IM. The goal was a stress test of dynamic arrival algorithms with ground and airborne spacing concepts. The flight deck spacing algorithms or controller managed spacing not only had to be robust to the dynamic nature of aircraft re-routing around weather but also had to be compatible with two alternative algorithms for achieving the spacing goal. Flight deck interval management spacing in this simulation provided a clear reduction in controller workload relative to when controllers were responsible for spacing the aircraft. At the same time, spacing was much less variable with the flight deck automated spacing. Even though the approaches taken by the two spacing algorithms to achieve the interval management goals were slightly different they seem to be simpatico in achieving the interval management goal of 130 sec by the TRACON boundary.

  8. Evaluation of cyclone geometry and its influence on performance parameters by computational fluid dynamics (CFD

    Directory of Open Access Journals (Sweden)

    W. P. Martignoni

    2007-03-01

    Full Text Available Cyclone models have been used without relevant modifications for more than a century. Most of the attention has been focused on finding new methods to improve performance parameters. Recently, some studies were conducted to improve equipment performance by evaluating geometric effects on projects. In this work, the effect of cyclone geometry was studied through the creation of a symmetrical inlet and a volute scroll outlet section in an experimental cyclone and comparison to an ordinary single tangential inlet. The study was performed for gas-solid flow, based on an experimental study available in the literature, where a conventional cyclone model was used. Numerical experiments were performed by using CFX 5.7.1. The axial and tangential velocity components were evaluated using RSM and LES turbulence models. Results showed that these new designs can improve the cyclone performance parameters significantly and very interesting details were found on cyclone fluid dynamics properties using RSM and LES.

  9. Interactive affective sharing versus non-interactive affective sharing in work groups : Comparative effects of group affect on work group performance and dynamics

    NARCIS (Netherlands)

    Klep, Annefloor; Wisse, Barbara; Van Der Flier, Henk

    This study explores whether the dynamic path to group affect, which is characterized by interactive affective sharing processes, yields different effects on task performance and group dynamics than the static path to group affect, which arises from non-interactive affective sharing. The results of

  10. Interactive affective sharing versus non-interactive affective sharing in work groups: Comparative effects of group affect on work group performance and dynamics

    NARCIS (Netherlands)

    Klep, A.H.M.; Wisse, B.M.; van der Flier, H.

    2011-01-01

    This study explores whether the dynamic path to group affect, which is characterized by interactive affective sharing processes, yields different effects on task performance and group dynamics than the static path to group affect, which arises from non-interactive affective sharing. The results of

  11. A Dynamic Alignment System for the Final Focus Test Beam

    International Nuclear Information System (INIS)

    Ruland, R.E.; Bressler, V.E.; Fischer, G.; Plouffe, D.; SLAC

    2005-01-01

    The Final Focus Test Beam (FFTB) was conceived as a technological stepping stone on the way to the next linear collider. Nowhere is this more evident than with the alignment subsystems. Alignment tolerances for components prior to beam turn are almost an order of magnitude smaller than for previous projects at SLAC. Position monitoring systems which operate independent of the beam are employed to monitor motions of the components locally and globally with unprecedented precision. An overview of the FFTB alignment system is presented herein

  12. Asphalt mix characterization using dynamic modulus and APA testing.

    Science.gov (United States)

    2005-11-01

    final report summarizes two research efforts related to asphalt mix characterization: dynamic modulus and Asphalt Pavement Analyzer testing. One phase of the research consisted of a laboratory-based evaluation of dynamic modulus of Oregon dense-grade...

  13. The organizational dynamics enabling patient portal impacts upon organizational performance and patient health: a qualitative study of Kaiser Permanente.

    Science.gov (United States)

    Otte-Trojel, Terese; Rundall, Thomas G; de Bont, Antoinette; van de Klundert, Joris; Reed, Mary E

    2015-12-16

    Patient portals may lead to enhanced disease management, health plan retention, changes in channel utilization, and lower environmental waste. However, despite growing research on patient portals and their effects, our understanding of the organizational dynamics that explain how effects come about is limited. This paper uses qualitative methods to advance our understanding of the organizational dynamics that influence the impact of a patient portal on organizational performance and patient health. The study setting is Kaiser Permanente, the world's largest not-for-profit integrated delivery system, which has been using a portal for over ten years. We interviewed eighteen physician leaders and executives particularly knowledgeable about the portal to learn about how they believe the patient portal works and what organizational factors affect its workings. Our analytical framework centered on two research questions. (1) How does the patient portal impact care delivery to produce the documented effects?; and (2) What are the important organizational factors that influence the patient portal's development? We identify five ways in which the patient portal may impact care delivery to produce reported effects. First, the portal's ability to ease access to services improves some patients' satisfaction as well as changes the way patients seek care. Second, the transparency and activation of information enable some patients to better manage their care. Third, care management may also be improved through augmented patient-physician interaction. This augmented interaction may also increase the 'stickiness' of some patients to their providers. Forth, a similar effect may be triggered by a closer connection between Kaiser Permanente and patients, which may reduce the likelihood that patients will switch health plans. Finally, the portal may induce efficiencies in physician workflow and administrative tasks, stimulating certain operational savings and deeper involvement of

  14. School Expenditure and School Performance: Evidence from New South Wales Schools Using a Dynamic Panel Analysis

    Science.gov (United States)

    Pugh, G.; Mangan, J.; Blackburn, V.; Radicic, D.

    2015-01-01

    This article estimates the effects of school expenditure on school performance in government secondary schools in New South Wales, Australia over the period 2006-2010. It uses dynamic panel analysis to exploit time series data on individual schools that only recently has become available. We find a significant but small effect of expenditure on…

  15. Effects of Geometry Design Parameters on the Static Strength and Dynamics for Spiral Bevel Gear

    Directory of Open Access Journals (Sweden)

    Zhiheng Feng

    2017-01-01

    Full Text Available Considering the geometry design parameters, a quasi-static mesh model of spiral bevel gears was established and the mesh characteristics were computed. Considering the time-varying effects of mesh points, mesh force, line-of-action vector, mesh stiffness, transmission error, friction force direction, and friction coefficient, a nonlinear lumped parameter dynamic model was developed for the spiral bevel gear pair. Based on the mesh model and the nonlinear dynamic model, the effects of main geometry parameters on the contact and bending strength were analyzed. Also, the effects on the dynamic mesh force and dynamic transmission error were investigated. Results show that higher value for the pressure angle, root fillet radius, and the ratio of tooth thickness tend to improve the contact and bending strength and to reduce the risk of tooth fracture. Improved gears have a better vibration performance in the targeted frequency range. Finally, bench tests for both types of spiral bevel gears were performed. Results show that the main failure mode is the tooth fracture and the life was increased a lot for the spiral bevel gears with improved geometry parameters compared to the original design.

  16. Rising with De Colores: Tapping into the Resources of la Comunidad to Assist Under-Performing Chicano-Latino Students

    Science.gov (United States)

    Ordonez-Jasis, Rosario; Jasis, Pablo

    2004-01-01

    This article explores the dynamics and educational potential of De Colores Community Learning Center, an after-school program serving low-performing Chicano-Latino children. The article discusses the foundational characteristics of De Colores and its quest to become a model of empowerment, instead of a more traditional model of service. Finally,…

  17. Synchronisation effects on the behavioural performance and information dynamics of a simulated minimally cognitive robotic agent.

    Science.gov (United States)

    Moioli, Renan C; Vargas, Patricia A; Husbands, Phil

    2012-09-01

    Oscillatory activity is ubiquitous in nervous systems, with solid evidence that synchronisation mechanisms underpin cognitive processes. Nevertheless, its informational content and relationship with behaviour are still to be fully understood. In addition, cognitive systems cannot be properly appreciated without taking into account brain-body- environment interactions. In this paper, we developed a model based on the Kuramoto Model of coupled phase oscillators to explore the role of neural synchronisation in the performance of a simulated robotic agent in two different minimally cognitive tasks. We show that there is a statistically significant difference in performance and evolvability depending on the synchronisation regime of the network. In both tasks, a combination of information flow and dynamical analyses show that networks with a definite, but not too strong, propensity for synchronisation are more able to reconfigure, to organise themselves functionally and to adapt to different behavioural conditions. The results highlight the asymmetry of information flow and its behavioural correspondence. Importantly, it also shows that neural synchronisation dynamics, when suitably flexible and reconfigurable, can generate minimally cognitive embodied behaviour.

  18. Investigations of the dynamics and growth of insulator films by high resolution helium atom scattering. Final report, May 1, 1985--April 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Safron, S.A.; Skofronick, J.G.

    1997-07-01

    Over the twelve years of this grant from the U.S. Department of Energy, DE-FG05-85ER45208, the over-reaching aims of this work have been to explore and to attempt to understand the fundamental physics and chemistry of surfaces and interfaces. The instrument we have employed m in this work is high-resolution helium atom scattering (HAS) which we have become even more convinced is an exceptionally powerful and useful tool for surface science. One can follow the evolution of the development and progress of the experiments that we have carried out by the evolution of the proposal titles for each of the four three-year periods. At first, m in 1985-1988, the main objective of this grant was to construct the HAS instrument so that we could begin work on the surface vibrational dynamics of crystalline materials; the title was {open_quotes}Helium Atom-Surface Scattering Apparatus for Studies of Crystalline Surface Dynamics{close_quotes}. Then, as we became more interested m in the growth of films and interfaces the title m in 1988-1991 became {open_quotes}Helium Atom Surface Spectroscopy: Surface Lattice Dynamics of Insulators, Metal and Metal Overlayers{close_quotes}. In 1991-1994, we headed even more m in this direction, and also recognized that we should focus more on insulator materials as very few techniques other than helium atom scattering could be applied to insulators without causing surface damage. Thus, the proposal title became {open_quotes}Helium Atom-Surface Scattering: Surface Dynamics of Insulators, Overlayers and Crystal Growth{close_quotes}. M in the final period of this grant the title ended up {open_quotes}Investigations of the Dynamics and Growth of Insulator Films by High Resolution Helium Atom Scattering{close_quotes} m in 1994-1997. The list of accomplishments briefly discussed in this report are: tests of the shell model; multiphoton scattering; physisorbed monolayer films; other surface phase transitions; and surface magnetic effects.

  19. Logical entropy of quantum dynamical systems

    Directory of Open Access Journals (Sweden)

    Ebrahimzadeh Abolfazl

    2016-01-01

    Full Text Available This paper introduces the concepts of logical entropy and conditional logical entropy of hnite partitions on a quantum logic. Some of their ergodic properties are presented. Also logical entropy of a quantum dynamical system is dehned and ergodic properties of dynamical systems on a quantum logic are investigated. Finally, the version of Kolmogorov-Sinai theorem is proved.

  20. Final Exam Weighting as Part of Course Design

    Science.gov (United States)

    Franke, Matthew

    2018-01-01

    The weighting of a final exam or a final assignment is an essential part of course design that is rarely discussed in pedagogical literature. Depending on the weighting, a final exam or assignment may provide unequal benefits to students depending on their prior performance in the class. Consequently, uncritical grade weighting can discount…

  1. Structure and Topology Dynamics of Hyper-Frequency Networks during Rest and Auditory Oddball Performance.

    Science.gov (United States)

    Müller, Viktor; Perdikis, Dionysios; von Oertzen, Timo; Sleimen-Malkoun, Rita; Jirsa, Viktor; Lindenberger, Ulman

    2016-01-01

    Resting-state and task-related recordings are characterized by oscillatory brain activity and widely distributed networks of synchronized oscillatory circuits. Electroencephalographic recordings (EEG) were used to assess network structure and network dynamics during resting state with eyes open and closed, and auditory oddball performance through phase synchronization between EEG channels. For this assessment, we constructed a hyper-frequency network (HFN) based on within- and cross-frequency coupling (WFC and CFC, respectively) at 10 oscillation frequencies ranging between 2 and 20 Hz. We found that CFC generally differentiates between task conditions better than WFC. CFC was the highest during resting state with eyes open. Using a graph-theoretical approach (GTA), we found that HFNs possess small-world network (SWN) topology with a slight tendency to random network characteristics. Moreover, analysis of the temporal fluctuations of HFNs revealed specific network topology dynamics (NTD), i.e., temporal changes of different graph-theoretical measures such as strength, clustering coefficient, characteristic path length (CPL), local, and global efficiency determined for HFNs at different time windows. The different topology metrics showed significant differences between conditions in the mean and standard deviation of these metrics both across time and nodes. In addition, using an artificial neural network approach, we found stimulus-related dynamics that varied across the different network topology metrics. We conclude that functional connectivity dynamics (FCD), or NTD, which was found using the HFN approach during rest and stimulus processing, reflects temporal and topological changes in the functional organization and reorganization of neuronal cell assemblies.

  2. Thermodynamic performance analysis of ramjet engine at wide working conditions

    Science.gov (United States)

    Ou, Min; Yan, Li; Tang, Jing-feng; Huang, Wei; Chen, Xiao-qian

    2017-03-01

    Although ramjet has the advantages of high-speed flying and higher specific impulse, the performance parameters will decline seriously with the increase of flight Mach number and flight height. Therefore, the investigation on the thermodynamic performance of ramjet is very crucial for broadening the working range. In the current study, a typical ramjet model has been employed to investigate the performance characteristics at wide working conditions. First of all, the compression characteristic analysis is carried out based on the Brayton cycle. The obtained results show that the specific cross-section area (A2 and A5) and the air-fuel ratio (f) have a great influence on the ramjet performance indexes. Secondly, the thermodynamic calculation process of ramjet is given from the view of the pneumatic thermal analysis. Then, the variable trends of the ramjet performance indexes with the flow conditions, the air-fuel ratio (f), the specific cross-sectional area (A2 and A5) under the fixed operating condition, equipotential dynamic pressure condition and variable dynamic pressure condition have been discussed. Finally, the optimum value of the specific cross-sectional area (A5) and the air-fuel ratio (f) of the ramjet model at a fixed work condition (Ma=3.5, H=12 km) are obtained.

  3. The role of social capital on trust development and dynamics: Implications for cooperation, monitoring and team performance

    NARCIS (Netherlands)

    Costa, A.C.; Bijlsma-Frankema, K.M.; de Jong, B.A.

    2009-01-01

    This study examined the development and dynamics of trust in project teams and explored the relation with cooperation, monitoring and team performance. Two types of teams were distinguished at the start of the projects: low prior social-capital teams (teams composed of members that have no previous

  4. Effect of Soil-Structure Interaction on Seismic Performance of Long-Span Bridge Tested by Dynamic Substructuring Method

    Directory of Open Access Journals (Sweden)

    Zhenyun Tang

    2017-01-01

    Full Text Available Because of the limitations of testing facilities and techniques, the seismic performance of soil-structure interaction (SSI system can only be tested in a quite small scale model in laboratory. Especially for long-span bridge, a smaller tested model is required when SSI phenomenon is considered in the physical test. The scale effect resulting from the small scale model is always coupled with the dynamic performance, so that the seismic performance of bridge considering SSI effect cannot be uncovered accurately by the traditional testing method. This paper presented the implementation of real-time dynamic substructuring (RTDS, involving the combined use of shake table array and computational engines for the seismic simulation of SSI. In RTDS system, the bridge with soil-foundation system is divided into physical and numerical substructures, in which the bridge is seen as physical substructures and the remaining part is seen as numerical substructures. The interface response between the physical and numerical substructures is imposed by shake table and resulting reaction force is fed back to the computational engine. The unique aspect of the method is to simulate the SSI systems subjected to multisupport excitation in terms of a larger physical model. The substructuring strategy and the control performance associated with the real-time substructuring testing for SSI were performed. And the influence of SSI on a long-span bridge was tested by this novel testing method.

  5. Investigating the performances of a 1 MV high pulsed power linear transformer driver: from beam dynamics to x radiation

    Science.gov (United States)

    Maisonny, R.; Ribière, M.; Toury, M.; Plewa, J. M.; Caron, M.; Auriel, G.; d'Almeida, T.

    2016-12-01

    The performance of a 1 MV pulsed high-power linear transformer driver accelerator were extensively investigated based on a numerical approach which utilizes both electromagnetic and Monte Carlo simulations. Particle-in-cell calculations were employed to examine the beam dynamics throughout the magnetically insulated transmission line which governs the coupling between the generator and the electron diode. Based on the information provided by the study of the beam dynamics, and using Monte Carlo methods, the main properties of the resulting x radiation were predicted. Good agreement was found between these simulations and experimental results. This work provides a detailed understanding of mechanisms affecting the performances of this type of high current, high-voltage pulsed accelerator, which are very promising for a growing number of applications.

  6. Numerical Simulation of the Dynamic Performance of the Ceramic Material Affected by Different Strain Rate and Porosity

    International Nuclear Information System (INIS)

    Wang Zhen; Mei, H; Lai, X; Liu, L S; Zhai, P C; Cao, D F

    2013-01-01

    Ceramic materials are frequently used in protective armor applications for its low-density, high elastic modulus and high strength. It may be subject to different ballistic impacts in many situations, thus many studies have been carried out to explore the approach to improve the mechanical properties of the ceramic material. However, the materials manufactured in real world are full of defects, which would involve in variable fractures or damage. Therefore, the defects should be taken into account while the simulations are performed. In this paper, the dynamic properties of ceramic materials (Al 2 O 3 ) affected by different strain rate (500–5000) and porosity (below 5%) are investigated. Foremost, the effect of strain rate was studied by using different load velocities. Then, compression simulations are performed by setting different porosities and random distribution of pores size and location in ceramic materials. Crack extensions and failure modes are observed to describe the dynamic mechanical behavior.

  7. Quantumness-generating capability of quantum dynamics

    Science.gov (United States)

    Li, Nan; Luo, Shunlong; Mao, Yuanyuan

    2018-04-01

    We study quantumness-generating capability of quantum dynamics, where quantumness refers to the noncommutativity between the initial state and the evolving state. In terms of the commutator of the square roots of the initial state and the evolving state, we define a measure to quantify the quantumness-generating capability of quantum dynamics with respect to initial states. Quantumness-generating capability is absent in classical dynamics and hence is a fundamental characteristic of quantum dynamics. For qubit systems, we present an analytical form for this measure, by virtue of which we analyze several prototypical dynamics such as unitary dynamics, phase damping dynamics, amplitude damping dynamics, and random unitary dynamics (Pauli channels). Necessary and sufficient conditions for the monotonicity of quantumness-generating capability are also identified. Finally, we compare these conditions for the monotonicity of quantumness-generating capability with those for various Markovianities and illustrate that quantumness-generating capability and quantum Markovianity are closely related, although they capture different aspects of quantum dynamics.

  8. Instability predictions for circumferentially cracked Type-304 stainless steel pipes under dynamic loading. Volume 2. Appendixes. Final report

    International Nuclear Information System (INIS)

    Zahoor, A.; Wilkowski, G.; Abou-Sayed, I.; Marschall, C.; Broek, D.; Sampath, S.; Rhee, H.; Ahmad, J.

    1982-04-01

    This report provides methods to predict margins of safety for circumferentially cracked Type 304 stainless steel pipes subjected to applied bending loads. An integrated combination of experimentation and analysis research was pursued. Two types of experiments were performed: (1) laboratory-scale tests on center-cracked panels and bend specimens to establish the basic mechanical and fracture properties of Type 304 stainless steel, and (2) full-scale pipe fracture tests under quasi-static and dynamic loadings to assess the analysis procedures. Analyses were based upon the simple plastic collapse criterion, a J-estimation procedure, and elastic-plastic large-deformation finite element models

  9. The Effects of Short-Term Ski Trainings on Dynamic Balance Performance and Vertical Jump in Adolescents

    Science.gov (United States)

    Camliguney, Asiye Filiz

    2013-01-01

    Skiing is a sport where balance and strength are critical and which can be practiced actively especially from early years to old age. The purpose of this study is to examine the effect of a 5-day training of skiing skills on dynamic balance performance and development of vertical jump strength in adolescents. Sixteen adolescent volunteers who do…

  10. A comparison of the Nordtest and Japanese test methods for the moisture buffering performance of building materials

    DEFF Research Database (Denmark)

    Roels, Staf; Janssen, Hans

    2006-01-01

    Two test methods, one worked out in a Nordtest project and the other available as a Japanese Industrial Standard, both developed to characterize building materials with respect to moisture buffering performance, are analyzed in detail by a numerical study on four different materials. Both test...... by confronting the values obtained for the four materials with the dynamic response of a small room with each of the materials used in turns as finishing material. Finally, the results determined according to the dynamic test protocol are compared with values calculated from steady-state material data....

  11. Dislocation Dynamics During Plastic Deformation

    CERN Document Server

    Messerschmidt, Ulrich

    2010-01-01

    The book gives an overview of the dynamic behavior of dislocations and its relation to plastic deformation. It introduces the general properties of dislocations and treats the dislocation dynamics in some detail. Finally, examples are described of the processes in different classes of materials, i.e. semiconductors, ceramics, metals, intermetallic materials, and quasicrystals. The processes are illustrated by many electron micrographs of dislocations under stress and by video clips taken during in situ straining experiments in a high-voltage electron microscope showing moving dislocations. Thus, the users of the book also obtain an immediate impression and understanding of dislocation dynamics.

  12. New segmentation-based tone mapping algorithm for high dynamic range image

    Science.gov (United States)

    Duan, Weiwei; Guo, Huinan; Zhou, Zuofeng; Huang, Huimin; Cao, Jianzhong

    2017-07-01

    The traditional tone mapping algorithm for the display of high dynamic range (HDR) image has the drawback of losing the impression of brightness, contrast and color information. To overcome this phenomenon, we propose a new tone mapping algorithm based on dividing the image into different exposure regions in this paper. Firstly, the over-exposure region is determined using the Local Binary Pattern information of HDR image. Then, based on the peak and average gray of the histogram, the under-exposure and normal-exposure region of HDR image are selected separately. Finally, the different exposure regions are mapped by differentiated tone mapping methods to get the final result. The experiment results show that the proposed algorithm achieve the better performance both in visual quality and objective contrast criterion than other algorithms.

  13. Chemistry in CESM-SE: Evaluation, Performance and Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Lamarque, Jean-Francois [National Center for Atmospheric Research, Boulder, CO (United States); Conley, Andrew [National Center for Atmospheric Research, Boulder, CO (United States); Vitt, Francis [National Center for Atmospheric Research, Boulder, CO (United States); Drake, John [Univ. of Tennessee, Knoxville, TN (United States); Sun, Jian [Univ. of Tennessee, Knoxville, TN (United States)

    2016-01-06

    The purpose of the proposed work focused on development of chemistry representation within the Spectral Element (SE) dynamical core as implemented in the Community Earth System Model (CESM). More specifically, a main focus was on the ability of SE to accurately represent tracer transport. The proposed approach was to incrementally increase the complexity of the problem, starting from specified two-dimensional flow and tracers to simulations using specified dynamics and full chemistry. As demonstrated below, we have successfully studied all aspects of the proposed work, although only part of the work has been published in the refereed literature so far. Furthermore, because the SE dynamical core has been found to have several deficiencies that are still being investigated for solution, not all proposed tasks were finalized. In addition to the tests for SE performance, in an effort to decrease the computational burden of interactive chemistry, especially in the case of a large number of chemical species and chemical reactions, development on a faster chemical solver and implementation on GPUs has been implemented in CESM under the leadership of John Drake (U. Tennessee).

  14. How do task characteristics affect learning and performance? The roles of variably mapped and dynamic tasks.

    Science.gov (United States)

    Macnamara, Brooke N; Frank, David J

    2018-05-01

    For well over a century, scientists have investigated individual differences in performance. The majority of studies have focused on either differences in practice, or differences in cognitive resources. However, the predictive ability of either practice or cognitive resources varies considerably across tasks. We are the first to examine task characteristics' impact on learning and performance in a complex task while controlling for other task characteristics. In 2 experiments we test key theoretical task characteristic thought to moderate the relationship between practice, cognitive resources, and performance. We devised a task where each of several key task characteristics can be manipulated independently. Participants played 5 rounds of a game similar to the popular tower defense videogame Plants vs. Zombies where both cognitive load and game characteristics were manipulated. In Experiment 1, participants either played a consistently mapped version-the stimuli and the associated meaning of their properties were constant across the 5 rounds-or played a variably mapped version-the stimuli and the associated meaning of their properties changed every few minutes. In Experiment 2, participants either played a static version-that is, turn taking with no time pressure-or played a dynamic version-that is, the stimuli moved regardless of participants' response rates. In Experiment 1, participants' accuracy and efficiency were substantially hindered in the variably mapped conditions. In Experiment 2, learning and performance accuracy were hindered in the dynamic conditions, especially when under cognitive load. Our results suggest that task characteristics impact the relative importance of cognitive resources and practice on predicting learning and performance. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  15. Evaluating the Performance of a Visually Guided Hearing Aid Using a Dynamic Auditory-Visual Word Congruence Task.

    Science.gov (United States)

    Roverud, Elin; Best, Virginia; Mason, Christine R; Streeter, Timothy; Kidd, Gerald

    2017-12-15

    The "visually guided hearing aid" (VGHA), consisting of a beamforming microphone array steered by eye gaze, is an experimental device being tested for effectiveness in laboratory settings. Previous studies have found that beamforming without visual steering can provide significant benefits (relative to natural binaural listening) for speech identification in spatialized speech or noise maskers when sound sources are fixed in location. The aim of the present study was to evaluate the performance of the VGHA in listening conditions in which target speech could switch locations unpredictably, requiring visual steering of the beamforming. To address this aim, the present study tested an experimental simulation of the VGHA in a newly designed dynamic auditory-visual word congruence task. Ten young normal-hearing (NH) and 11 young hearing-impaired (HI) adults participated. On each trial, three simultaneous spoken words were presented from three source positions (-30, 0, and 30 azimuth). An auditory-visual word congruence task was used in which participants indicated whether there was a match between the word printed on a screen at a location corresponding to the target source and the spoken target word presented acoustically from that location. Performance was compared for a natural binaural condition (stimuli presented using impulse responses measured on KEMAR), a simulated VGHA condition (BEAM), and a hybrid condition that combined lowpass-filtered KEMAR and highpass-filtered BEAM information (BEAMAR). In some blocks, the target remained fixed at one location across trials, and in other blocks, the target could transition in location between one trial and the next with a fixed but low probability. Large individual variability in performance was observed. There were significant benefits for the hybrid BEAMAR condition relative to the KEMAR condition on average for both NH and HI groups when the targets were fixed. Although not apparent in the averaged data, some

  16. Modeling capillary bridge dynamics and crack healing between surfaces of nanoscale roughness

    Science.gov (United States)

    Soylemez, Emrecan; de Boer, Maarten P.

    2017-12-01

    Capillary bridge formation between adjacent surfaces in humid environments is a ubiquitous phenomenon. It strongly influences tribological performance with respect to adhesion, friction and wear. Only a few studies, however, assess effects due to capillary dynamics. Here we focus on how capillary bridge evolution influences crack healing rates. Experimental results indicated a logarithmic decrease in average crack healing velocity as the energy release rate increases. Our objective is to model that trend. We assume that capillary dynamics involve two mechanisms: capillary bridge growth and subsequently nucleation followed by growth. We show that by incorporating interface roughness details and the presence of an adsorbed water layer, the behavior of capillary force dynamics can be understood quantitatively. We identify three important regimes that control the healing process, namely bridge growth, combined bridge growth and nucleation, and finally bridge nucleation. To fully capture the results, however, the theoretical model for nucleation time required an empirical modification. Our model enables significant insight into capillary bridge dynamics, with a goal of attaining a predictive capability for this important microelectromechanical systems (MEMS) reliability failure mechanism.

  17. Dynamic Effects of Performance-Avoidance Goal Orientation on Student Achievement in Language and Mathematics.

    Science.gov (United States)

    Stamovlasis, Dimitrios; Gonida, Sofia-Eleftheria N

    2018-07-01

    The present study used achievement goal theory (AGT) as a theoretical framework and examined the role of mastery and performance goals, both performance-approach and performance-avoidance, on school achieve-ment within the nonlinear dynamical systems (NDS) perspective. A series of cusp catastrophe models were applied on students' achievement in a number of school subjects, such as mathematics and language for elementary school and algebra, geometry, ancient and modern Greek language for high school, using achievement goal orientations as control variables. The participants (N=224) were students attending fifth and eighth grade (aged 11 and 14, respectively) in public schools located in northern Greece. Cusp analysis based on the probability density function was carried out by two procedures, the maximum likelihood and the least squares. The results showed that performance-approach goals had no linear effect on achievement, while the cusp models implementing mastery goals as the asymmetry factor and performance-avoidance as the bifurcation, proved superior to their linear alternatives. The results of the study based on NDS support the multiple goal perspective within AGT. Theoretical issues, educational implications and future directions are discussed.

  18. Relationship Between Final Performance and Block Times with the Traditional and the New Starting Platforms with A Back Plate in International Swimming Championship 50-M and 100-M Freestyle Events

    Directory of Open Access Journals (Sweden)

    Antonio Garcia-Hermoso

    2013-12-01

    Full Text Available The purpose of this study was to investigate the association between block time and final performance for each sex in 50-m and 100-m individual freestyle, distinguishing between classification (1st to 3rd, 4th to 8th, 9th to 16th and type of starting platform (old and new in international competitions. Twenty-six international competitions covering a 13-year period (2000-2012 were analysed retrospectively. The data corresponded to a total of 1657 swimmers’ competition histories. A two-way ANOVA (sex x classification was performed for each event and starting platform with the Bonferroni post-hoc test, and another two-way ANOVA for sex and starting platform (sex x starting platform. Pearson’s simple correlation coefficient was used to determine correlations between the block time and the final performance. Finally, a simple linear regression analysis was done between the final time and the block time for each sex and platform. The men had shorter starting block times than the women in both events and from both platforms. For 50-m event, medalists had shorter block times than semi- finalists with the old starting platforms. Block times were directly related to performance with the old starting platforms. With the new starting platforms, however, the relationship was inverse, notably in the women’s 50-m event. The block time was related for final performance in the men’s 50- m event with the old starting platform, but with the new platform it was critical only for the women’s 50-m event.

  19. Solitary pulmonary nodules: Comparison of dynamic first-pass contrast-enhanced perfusion area-detector CT, dynamic first-pass contrast-enhanced MR imaging, and FDG PET/CT.

    Science.gov (United States)

    Ohno, Yoshiharu; Nishio, Mizuho; Koyama, Hisanobu; Seki, Shinichiro; Tsubakimoto, Maho; Fujisawa, Yasuko; Yoshikawa, Takeshi; Matsumoto, Sumiaki; Sugimura, Kazuro

    2015-02-01

    To prospectively compare the capabilities of dynamic perfusion area-detector computed tomography (CT), dynamic magnetic resonance (MR) imaging, and positron emission tomography (PET) combined with CT (PET/CT) with use of fluorine 18 fluorodeoxyglucose (FDG) for the diagnosis of solitary pulmonary nodules. The institutional review board approved this study, and written informed consent was obtained from each subject. A total of 198 consecutive patients with 218 nodules prospectively underwent dynamic perfusion area-detector CT, dynamic MR imaging, FDG PET/CT, and microbacterial and/or pathologic examinations. Nodules were classified into three groups: malignant nodules (n = 133) and benign nodules with low (n = 53) or high (n = 32) biologic activity. Total perfusion was determined with dual-input maximum slope models at area-detector CT, maximum and slope of enhancement ratio at MR imaging, and maximum standardized uptake value (SUVmax) at PET/CT. Next, all indexes for malignant and benign nodules were compared with the Tukey honest significant difference test. Then, receiver operating characteristic analysis was performed for each index. Finally, sensitivity, specificity, and accuracy were compared with the McNemar test. All indexes showed significant differences between malignant nodules and benign nodules with low biologic activity (P Dynamic perfusion area-detector CT is more specific and accurate than dynamic MR imaging and FDG PET/CT in the diagnosis of solitary pulmonary nodules in routine clinical practice. © RSNA, 2014.

  20. Dynamical symmetries for fermions

    International Nuclear Information System (INIS)

    Guidry, M.

    1989-01-01

    An introduction is given to the Fermion Dynamical Symmetry Model (FDSM). The analytical symmetry limits of the model are then applied to the calculation of physical quantities such as ground-state masses and B(E 2 ) values in heavy nuclei. These comparisons with data provide strong support for a new principle of collective motion, the Dynamical Pauli Effect, and suggest that dynamical symmetries which properly account for the pauli principle are much more persistent in nuclear structure than the corresponding boson symmetries. Finally, we present an assessment of criticisms which have been voiced concerning the FDSM, and a discussion of new phenomena and ''exotic spectroscopy'' which may be suggested by the model. 14 refs., 8 figs., 4 tabs

  1. Energy Consumption and Indoor Environment Predicted by a Combination of Computational Fluid Dynamics and Building Energy Performance Simulation

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    2003-01-01

    An interconnection between a building energy performance simulation program and a Computational Fluid Dynamics program (CFD) for room air distribution is introduced for improvement of the predictions of both the energy consumption and the indoor environment.The article describes a calculation...

  2. Dynamic performance analysis of two regional Nuclear Hybrid Energy Systems

    International Nuclear Information System (INIS)

    Garcia, Humberto E.; Chen, Jun; Kim, Jong S.; Vilim, Richard B.; Binder, William R.; Bragg Sitton, Shannon M.; Boardman, Richard D.; McKellar, Michael G.; Paredis, Christiaan J.J.

    2016-01-01

    In support of more efficient utilization of clean energy generation sources, including renewable and nuclear options, HES (hybrid energy systems) can be designed and operated as FER (flexible energy resources) to meet both electrical and thermal energy needs in the electric grid and industrial sectors. These conceptual systems could effectively and economically be utilized, for example, to manage the increasing levels of dynamic variability and uncertainty introduced by VER (variable energy resources) such as renewable sources (e.g., wind, solar), distributed energy resources, demand response schemes, and modern energy demands (e.g., electric vehicles) with their ever changing usage patterns. HES typically integrate multiple energy inputs (e.g., nuclear and renewable generation) and multiple energy outputs (e.g., electricity, gasoline, fresh water) using complementary energy conversion processes. This paper reports a dynamic analysis of two realistic HES including a nuclear reactor as the main baseload heat generator and to assess the local (e.g., HES owners) and system (e.g., the electric grid) benefits attainable by their application in scenarios with multiple commodity production and high renewable penetration. It is performed for regional cases – not generic examples – based on available resources, existing infrastructure, and markets within the selected regions. This study also briefly addresses the computational capabilities developed to conduct such analyses. - Highlights: • Hybrids including renewables can operate as dispatchable flexible energy resources. • Nuclear energy can address high variability and uncertainty in energy systems. • Nuclear hybrids can reliably provide grid services over various time horizons. • Nuclear energy can provide operating reserves and grid inertia under high renewables. • Nuclear hybrids can greatly reduce GHG emissions and support grid and industry needs.

  3. Psychological biases affecting human cognitive performance in dynamic operational environments

    International Nuclear Information System (INIS)

    Takano, Kenichi; Reason, J.

    1999-01-01

    In order to identify cognitive error mechanisms observed in the dynamic operational environment, the following materials were analyzed giving special attention to psychological biases, together with possible cognitive tasks and these location, and internal and external performance shaping factors: (a) 13 human factors analyses of US nuclear power plant accidents, (b) 14 cases of Japanese nuclear power plant incidents, and (c) 23 cases collected in simulator experiments. In the resulting analysis, the most frequently identified cognitive process associated with error productions was situation assessment, and following varieties were KB processes and response planning, all of that were the higher cognitive activities. Over 70% of human error cases, psychological bias was affecting to cognitive errors, especially those to higher cognitive activities. In addition, several error occurrence patterns, including relations between cognitive process, biases, and PSFs were identified by the multivariate analysis. According to the identified error patterns, functions that an operator support system have to equip were discussed and specified for design base considerations. (author)

  4. Performance life of HMA mixes : final report.

    Science.gov (United States)

    2016-01-01

    A number of hot mix asphalt (HMA) types, such as permeable friction course (PFC), stone mastic asphalts : (SMA), performance design mixes and conventional dense graded mixes are currently used to construct or overlay : roads. One of the important inp...

  5. Tunnel Boring Machine Performance Study. Final Report

    Science.gov (United States)

    1984-06-01

    Full face tunnel boring machine "TBM" performance during the excavation of 6 tunnels in sedimentary rock is considered in terms of utilization, penetration rates and cutter wear. The construction records are analyzed and the results are used to inves...

  6. Numerical simulations of slagging dynamics using a meshmeshless strategy

    Energy Technology Data Exchange (ETDEWEB)

    Losurdo, M.; Spliethoff, H. [Technische Universitaet Muenchen (Germany). Lehrstuhl fuer Energiesysteme

    2009-07-01

    In pulverized co-firing and gasification facilities such as coal and biomass power plants, ash deposition, fouling and slagging, may significantly affect heat exchange and gasification per-formance Deposit growth dramatically increases production loss and may lead to the shut-down of the facility. Computational Fluid Dynamics (CFD) calculations can be used as a valid 'non-intrusive' investigation tool in an efficient problem solving strategy. At TU Munich, an ongoing project aims to develop a dedicated numerical tool to monitor and predict deposition, deposit growth and slagging dynamics in pulverized solid fuel furnaces and gasifiers. A novel in-house code was developed to track solid particles and predict deposit growth and slag dynamics. The adopted numerical strategy uses a Mesh-Meshless approach combined with a Lagrangian particle tracking. Ash particles are tracked in a Lagrangian frame post-processing CFD gas phase results (RANS or LES). Growth and thermo-mechanical proper-ties of the deposit are simultaneously evaluated. Slag dynamics is computed by using a meshless approach: deposit mesh nodes are considered point-mass particles interacting only with mesh connected node-particle neighbours. Forces are modelled applying a visco-elastic model and calculated by means of a Galerking weight (kernel) function. The final goal is to mathematically describe both particle adhesion and slag dynamics applying visco-elastic models using a mesh-meshless approach aiming to investigate slag/slurry dynamics. Pre-liminary numerical results on one layer encourage further development on this subject. (orig.)

  7. Dynamic training algorithm for dynamic neural networks

    International Nuclear Information System (INIS)

    Tan, Y.; Van Cauwenberghe, A.; Liu, Z.

    1996-01-01

    The widely used backpropagation algorithm for training neural networks based on the gradient descent has a significant drawback of slow convergence. A Gauss-Newton method based recursive least squares (RLS) type algorithm with dynamic error backpropagation is presented to speed-up the learning procedure of neural networks with local recurrent terms. Finally, simulation examples concerning the applications of the RLS type algorithm to identification of nonlinear processes using a local recurrent neural network are also included in this paper

  8. Gradual plasticity alters population dynamics in variable environments: thermal acclimation in the green alga Chlamydomonas reinhartdii.

    Science.gov (United States)

    Kremer, Colin T; Fey, Samuel B; Arellano, Aldo A; Vasseur, David A

    2018-01-10

    Environmental variability is ubiquitous, but its effects on populations are not fully understood or predictable. Recent attention has focused on how rapid evolution can impact ecological dynamics via adaptive trait change. However, the impact of trait change arising from plastic responses has received less attention, and is often assumed to optimize performance and unfold on a separate, faster timescale than ecological dynamics. Challenging these assumptions, we propose that gradual plasticity is important for ecological dynamics, and present a study of the plastic responses of the freshwater green algae Chlamydomonas reinhardtii as it acclimates to temperature changes. First, we show that C. reinhardtii 's gradual acclimation responses can both enhance and suppress its performance after a perturbation, depending on its prior thermal history. Second, we demonstrate that where conventional approaches fail to predict the population dynamics of C. reinhardtii exposed to temperature fluctuations, a new model of gradual acclimation succeeds. Finally, using high-resolution data, we show that phytoplankton in lake ecosystems can experience thermal variation sufficient to make acclimation relevant. These results challenge prevailing assumptions about plasticity's interactions with ecological dynamics. Amidst the current emphasis on rapid evolution, it is critical that we also develop predictive methods accounting for plasticity. © 2018 The Author(s).

  9. OpenMM 7: Rapid development of high performance algorithms for molecular dynamics.

    Directory of Open Access Journals (Sweden)

    Peter Eastman

    2017-07-01

    Full Text Available OpenMM is a molecular dynamics simulation toolkit with a unique focus on extensibility. It allows users to easily add new features, including forces with novel functional forms, new integration algorithms, and new simulation protocols. Those features automatically work on all supported hardware types (including both CPUs and GPUs and perform well on all of them. In many cases they require minimal coding, just a mathematical description of the desired function. They also require no modification to OpenMM itself and can be distributed independently of OpenMM. This makes it an ideal tool for researchers developing new simulation methods, and also allows those new methods to be immediately available to the larger community.

  10. Solvation of ions in the gas-phase: a molecular dynamics simulation

    Science.gov (United States)

    Cabarcos, Orlando M.; Lisy, James M.

    1996-07-01

    Molecular dynamics simulations have been performed on the collision between a cesium ion and a cluster of twenty methanol molecules. This process, generating a solvated ion, was studied over a range (1 to 25 eV) of eight collision energies. Preliminary analysis of this gas phase solvation has included the distribution of final ion cluster sizes, fragmentation patterns, solvation timescales and energetics. Two distinct patterns have emerged: a ballistic penetration of the neutral cluster at the higher collision energies and an evaporative evolution of the cluster ion at lower collision energies.

  11. Grid fault and design-basis for wind turbines - Final report

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Cutululis, Nicolaos Antonio; Markou, Helen

    , have been performed and compared for two cases, i.e. one when the turbine is immediately disconnected from the grid when a grid fault occurs and one when the turbine is equipped with a fault ride-through controller and therefore it is able to remain connected to the grid during the grid fault......This is the final report of a Danish research project “Grid fault and design-basis for wind turbines”. The objective of this project has been to assess and analyze the consequences of the new grid connection requirements for the fatigue and ultimate structural loads of wind turbines....... The fulfillment of the grid connection requirements poses challenges for the design of both the electrical system and the mechanical structure of wind turbines. The development of wind turbine models and novel control strategies to fulfill the TSO’s requirements are of vital importance in this design. Dynamic...

  12. Test planning and performance

    International Nuclear Information System (INIS)

    Zola, Maurizio

    2001-01-01

    Testing plan should include Safety guide Q4 - Inspection and testing - A testing plan should be prepared including following information: General information (facility name, item or system reference, procurement document reference, document reference number and status, associated procedures and drawings); A sequential listing of all testing activities; Procedure, work instruction, specification or standard to be followed in respect of each operation and test; Acceptance criteria; Identification of who is performing tests; Identification of hold points; Type of records to be prepared for each test; Persons and organizations having authority for final acceptance. Proposed activities sequence is: visual, electrical and mechanical checks; environmental tests (thermal aging, vibrations aging, radioactive aging); performance evaluation in extreme conditions; dynamic tests with functional checks; final electrical and mechanical checks The planning of the tests should always be performed taking into account an interpretative model: a very tight cooperation is advisable between experimental people and numerical people dealing with the analysis of more or less complex models for the seismic assessment of structures and components. Preparatory phase should include the choice of the following items should be agreed upon with the final user of the tests: Excitation points, Excitation types, Excitation amplitude with respect to frequency, Measuring points. Data acquisition, recording and storage, should take into account the characteristics of the successive data processing: to much data can be cumbersome to be processed, but to few data can make unusable the experimental results. The parameters for time history acquisition should be chosen taking into account data processing: for Shock Response Spectrum calculation some special requirements should be met: frequency bounded signal, high frequency sampling, shock noise. For stationary random-like excitation, the sample length

  13. Soil moisture dynamics and their effect on bioretention performance in Northeast Ohio

    Science.gov (United States)

    Bush, S. A.; Jefferson, A.; Jarden, K.; Kinsman-Costello, L. E.; Grieser, J.

    2014-12-01

    Urban impervious surfaces lead to increases in stormwater runoff. Green infrastructure, like bioretention cells, is being used to mitigate negative impacts of runoff by disconnecting impervious surfaces from storm water systems and redirecting flow to decentralized treatment areas. While bioretention soil characteristics are carefully designed, little research is available on soil moisture dynamics within the cells and how these might relate to inter-storm variability in performance. Bioretentions have been installed along a residential street in Parma, Ohio to determine the impact of green infrastructure on the West Creek watershed, a 36 km2 subwatershed of the Cuyahoga River. Bioretentions were installed in two phases (Phase I in 2013 and Phase II in 2014); design and vegetation density vary slightly between the two phases. Our research focuses on characterizing soil moisture dynamics of multiple bioretentions and assessing their impact on stormwater runoff at the street scale. Soil moisture measurements were collected in transects for eight bioretentions over the course of one summer. Vegetation indices of canopy height, percent vegetative cover, species richness and NDVI were also measured. A flow meter in the storm drain at the end of the street measured storm sewer discharge. Precipitation was recorded from a meteorological station 2 km from the research site. Soil moisture increased in response to precipitation and decreased to relatively stable conditions within 3 days following a rain event. Phase II bioretentions exhibited greater soil moisture and less vegetation than Phase I bioretentions, though the relationship between soil moisture and vegetative cover is inconclusive for bioretentions constructed in the same phase. Data from five storms suggest that pre-event soil moisture does not control the runoff-to-rainfall ratio, which we use as a measure of bioretention performance. However, discharge data indicate that hydrograph characteristics, such as lag

  14. Studies in Chemical Dynamics

    International Nuclear Information System (INIS)

    Rabitz, Herschel; Ho, Tak-San

    2003-01-01

    This final report draws together the research carried from February, 1986 through January, 2003 concerning a series of topics in chemical dynamics. The specific areas of study include molecular collisions, chemical kinetics, data inversion to extract potential energy surfaces, and model reduction of complex kinetic systems

  15. Capabilities, innovation, and overall performance in Brazilian export firms.

    Directory of Open Access Journals (Sweden)

    José Ednilson de Oliveira Cabral

    2015-06-01

    Full Text Available This article extends the current research on innovation by investigating the relationship between innovative capabilities and export firms’ overall performance. From the perspectives of the resource-based view (RBV and dynamic capability, we examine the differential and interactive effects of exploration and exploitation capabilities in product innovation for external markets and overall performance (direct and mediated by a new product. In addition, we test the moderating effect of market dynamism and the controlling effect of firm size on these relationships. Hence, the main contribution of this article is developing and empirically testing an original model, by combining these constructs that address new relationships, in an emerging country. This model was tested with data from 498 Brazilian export firms, distributed throughout all Brazilian manufacturing sectors, by firm size, and in states. The analysis was made with application of the structural equation modeling (SEM. As a result, we found support for the assumptions that exploitation capabilities influence product innovation and overall performance, whereas exploration capabilities and their interaction to exploitation capabilities influence overall performance, but not product innovation. Additionally, the relationship between exploitation capabilities and overall performance is mediated by product innovation. Unlike hypothesized, market dynamism does not moderate the relationship between product innovation and overall performance. Furthermore, firm size works as a controlling variable in the relationships analyzed. Regarding the implications for theory, this study contributes to grasp that exploitation capabilities influences a firm’s overall performance, both directly and indirectly (via product innovation, and highlights the various direct and mediatory effects of innovation on overall performance. These insights show the importance of considering the role of mediating and

  16. Quantification of Dynamic Model Validation Metrics Using Uncertainty Propagation from Requirements

    Science.gov (United States)

    Brown, Andrew M.; Peck, Jeffrey A.; Stewart, Eric C.

    2018-01-01

    The Space Launch System, NASA's new large launch vehicle for long range space exploration, is presently in the final design and construction phases, with the first launch scheduled for 2019. A dynamic model of the system has been created and is critical for calculation of interface loads and natural frequencies and mode shapes for guidance, navigation, and control (GNC). Because of the program and schedule constraints, a single modal test of the SLS will be performed while bolted down to the Mobile Launch Pad just before the first launch. A Monte Carlo and optimization scheme will be performed to create thousands of possible models based on given dispersions in model properties and to determine which model best fits the natural frequencies and mode shapes from modal test. However, the question still remains as to whether this model is acceptable for the loads and GNC requirements. An uncertainty propagation and quantification (UP and UQ) technique to develop a quantitative set of validation metrics that is based on the flight requirements has therefore been developed and is discussed in this paper. There has been considerable research on UQ and UP and validation in the literature, but very little on propagating the uncertainties from requirements, so most validation metrics are "rules-of-thumb;" this research seeks to come up with more reason-based metrics. One of the main assumptions used to achieve this task is that the uncertainty in the modeling of the fixed boundary condition is accurate, so therefore that same uncertainty can be used in propagating the fixed-test configuration to the free-free actual configuration. The second main technique applied here is the usage of the limit-state formulation to quantify the final probabilistic parameters and to compare them with the requirements. These techniques are explored with a simple lumped spring-mass system and a simplified SLS model. When completed, it is anticipated that this requirements-based validation

  17. Models for Dynamic Applications

    DEFF Research Database (Denmark)

    Sales-Cruz, Mauricio; Morales Rodriguez, Ricardo; Heitzig, Martina

    2011-01-01

    This chapter covers aspects of the dynamic modelling and simulation of several complex operations that include a controlled blending tank, a direct methanol fuel cell that incorporates a multiscale model, a fluidised bed reactor, a standard chemical reactor and finally a polymerisation reactor...... be applied to formulate, analyse and solve these dynamic problems and how in the case of the fuel cell problem the model consists of coupledmeso and micro scale models. It is shown how data flows are handled between the models and how the solution is obtained within the modelling environment....

  18. Substructured multibody molecular dynamics.

    Energy Technology Data Exchange (ETDEWEB)

    Grest, Gary Stephen; Stevens, Mark Jackson; Plimpton, Steven James; Woolf, Thomas B. (Johns Hopkins University, Baltimore, MD); Lehoucq, Richard B.; Crozier, Paul Stewart; Ismail, Ahmed E.; Mukherjee, Rudranarayan M. (Rensselaer Polytechnic Institute, Troy, NY); Draganescu, Andrei I.

    2006-11-01

    We have enhanced our parallel molecular dynamics (MD) simulation software LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator, lammps.sandia.gov) to include many new features for accelerated simulation including articulated rigid body dynamics via coupling to the Rensselaer Polytechnic Institute code POEMS (Parallelizable Open-source Efficient Multibody Software). We use new features of the LAMMPS software package to investigate rhodopsin photoisomerization, and water model surface tension and capillary waves at the vapor-liquid interface. Finally, we motivate the recipes of MD for practitioners and researchers in numerical analysis and computational mechanics.

  19. ACUTE EFFECTS OF STATIC STRETCHING, DYNAMIC EXERCISES, AND HIGH VOLUME UPPER EXTREMITY PLYOMETRIC ACTIVITY ON TENNIS SERVE PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Ertugrul Gelen

    2012-12-01

    Full Text Available The purpose of this study was to compare the acute effects of static stretching; dynamic exercises and high volume upper extremity plyometric activity on tennis serve performance. Twenty-six elite young tennis players (15.1 ± 4.2 years, 167.9 ± 5.8 cm and 61.6 ± 8.1 kg performed 4 different warm-up (WU routines in a random order on non-consecutive days. The WU methods consisted of traditional WU (jogging, rally and serve practice (TRAD; traditional WU and static stretching (TRSS; traditional WU and dynamic exercise (TRDE; and traditional WU and high volume upper extremity plyometric activity (TRPLYP. Following each WU session, subjects were tested on a tennis serve ball speed test. TRAD, TRSS, TRDE and TRPLYO were compared by repeated measurement analyses of variance and post-hoc comparisons. In this study a 1 to 3 percent increase in tennis serve ball speed was recorded in TRDE and TRPLYO when compared to TRAD (p 0.05. ICCs for ball speed showed strong reliability (0.82 to 0.93 for the ball speed measurements.The results of this study indicate that dynamic and high volume upper extremity plyometric WU activities are likely beneficial to serve speed of elite junior tennis players.

  20. Water Dynamics in Protein Hydration Shells: The Molecular Origins of the Dynamical Perturbation

    Science.gov (United States)

    2014-01-01

    Protein hydration shell dynamics play an important role in biochemical processes including protein folding, enzyme function, and molecular recognition. We present here a comparison of the reorientation dynamics of individual water molecules within the hydration shell of a series of globular proteins: acetylcholinesterase, subtilisin Carlsberg, lysozyme, and ubiquitin. Molecular dynamics simulations and analytical models are used to access site-resolved information on hydration shell dynamics and to elucidate the molecular origins of the dynamical perturbation of hydration shell water relative to bulk water. We show that all four proteins have very similar hydration shell dynamics, despite their wide range of sizes and functions, and differing secondary structures. We demonstrate that this arises from the similar local surface topology and surface chemical composition of the four proteins, and that such local factors alone are sufficient to rationalize the hydration shell dynamics. We propose that these conclusions can be generalized to a wide range of globular proteins. We also show that protein conformational fluctuations induce a dynamical heterogeneity within the hydration layer. We finally address the effect of confinement on hydration shell dynamics via a site-resolved analysis and connect our results to experiments via the calculation of two-dimensional infrared spectra. PMID:24479585