Light hadrons from Nf=2+1+1 dynamical twisted mass fermions
Baron, R.; Blossier, B.; Boucaud, P.; Carbonell, J.; Deuzeman, A.; Drach, V.; Farchioni, F.; Gimenez, V.; Herdoiza, G.; Jansen, K.; Michael, C.; Montvay, I.; Pallante, E.; Pène, O.; Reker, S.; Urbach, C.; Wagner, M.; Wenger, U.; Collaboration, for the ETM
2011-01-01
We present results of lattice QCD simulations with mass-degenerate up and down and mass-split strange and charm (Nf=2+1+1) dynamical quarks using Wilson twisted mass fermions at maximal twist. The tuning of the strange and charm quark masses is performed at three values of the lattice spacing a~0.06
Light hadrons from N{sub f}=2+1+1 dynamical twisted mass fermions
Energy Technology Data Exchange (ETDEWEB)
Baron, R. [CEA, Centre de Saclay, Gif-sur-Yvette (France). IRFU/Service de Physique Nucleaire; Blossier, B.; Boucaud, P. [Paris 11 Univ., Orsay (FR). Lab. de Physique Theorique] (and others)
2011-01-15
We present results of lattice QCD simulations with mass-degenerate up and down and mass-split strange and charm (N{sub f}=2+1+1) dynamical quarks using Wilson twisted mass fermions at maximal twist. The tuning of the strange and charm quark masses is performed at three values of the lattice spacing a{approx}0.06 fm, a{approx}0.08 fm and a{approx}0.09 fm with lattice sizes ranging from L{approx}1.9 fm to L{approx}3.9 fm. We perform a preliminary study of SU(2) chiral perturbation theory by combining our lattice data from these three values of the lattice spacing. (orig.)
Dynamical twisted mass fermions with light quarks. Simulation and analysis details
Energy Technology Data Exchange (ETDEWEB)
Boucaud, P. [Paris-11 Univ., 91 - Orsay (France). Lab. de Physique Theorique; Dimopoulos, P. [Rome-2 Univ. (Italy). Dipt. di Fisica; Farchioni, F. [Muenster Univ. (DE). Inst. fuer Theoretische Physik] (and others)
2008-03-15
In a recent paper (2007) we presented precise lattice QCD results of our European Twisted Mass Collaboration (ETMC). They were obtained by employing two mass-degenerate flavours of twisted mass fermions at maximal twist. In the present paper we give details on our simulations and the computation of physical observables. In particular, we discuss the problem of tuning to maximal twist, the techniques we have used to compute correlators and error estimates. In addition, we provide more information on the algorithm used, the autocorrelation times and scale determination, the evaluation of disconnected contributions and the description of our data by means of chiral perturbation theory formulae. (orig.)
Dynamical twisted mass fermions with light quarks. Simulation and analysis details
International Nuclear Information System (INIS)
Boucaud, P.; Dimopoulos, P.; Farchioni, F.
2008-03-01
In a recent paper (2007) we presented precise lattice QCD results of our European Twisted Mass Collaboration (ETMC). They were obtained by employing two mass-degenerate flavours of twisted mass fermions at maximal twist. In the present paper we give details on our simulations and the computation of physical observables. In particular, we discuss the problem of tuning to maximal twist, the techniques we have used to compute correlators and error estimates. In addition, we provide more information on the algorithm used, the autocorrelation times and scale determination, the evaluation of disconnected contributions and the description of our data by means of chiral perturbation theory formulae. (orig.)
Dynamical twisted mass fermions and baryon spectroscopy
International Nuclear Information System (INIS)
Drach, V.
2010-06-01
The aim of this work is an ab initio computation of the baryon masses starting from quantum chromodynamics (QCD). This theory describes the interaction between quarks and gluons and has been established at high energy thanks to one of its fundamental properties: the asymptotic freedom. This property predicts that the running coupling constant tends to zero at high energy and thus that perturbative expansions in the coupling constant are justified in this regime. On the contrary the low energy dynamics can only be understood in terms of a non perturbative approach. To date, the only known method that allows the computation of observables in this regime together with a control of its systematic effects is called lattice QCD. It consists in formulating the theory on an Euclidean space-time and to evaluating numerically suitable functional integrals. First chapter is an introduction to the QCD in the continuum and on a discrete space time. The chapter 2 describes the formalism of maximally twisted fermions used in the European Twisted Mass (ETM) collaboration. The chapter 3 deals with the techniques needed to build hadronic correlator starting from gauge configuration. We then discuss how we determine hadron masses and their statistical errors. The numerical estimation of functional integral is explained in chapter 4. It is stressed that it requires sophisticated algorithm and massive parallel computing on Blue-Gene type architecture. Gauge configuration production is an important part of the work realized during my Ph.D. Chapter 5 is a critical review on chiral perturbation theory in the baryon sector. The two last chapter are devoted to the analysis in the light and strange baryon sector. Systematics and chiral extrapolation are extensively discussed. (author)
International Nuclear Information System (INIS)
Cichy, K.; Jansen, K.; Shindler, A.; Forschungszentrum Juelich; Forschungszentrum Juelich
2013-12-01
We apply the spectral projector method, recently introduced by Giusti and Luescher, to compute the chiral condensate using N f =2 and N f =2+1+1 dynamical flavors of maximally twisted mass fermions. We present our results for several quark masses at three different lattice spacings which allows us to perform the chiral and continuum extrapolations. In addition we report our analysis on the O(a) improvement of the chiral condensate for twisted mass fermions. We also study the effect of the dynamical strange and charm quarks by comparing our results for N f =2 and N f =2+1+1 dynamical flavors.
Simulating QCD at the physical point with Nf=2 Wilson twisted mass fermions at maximal twist
International Nuclear Information System (INIS)
Abdel-Rehim, A.; Alexandrou, C.; Cyprus Univ. Nicosia; Burger, F.
2015-12-01
We present simulations of QCD using N f =2 dynamical Wilson twisted mass lattice QCD with physical value of the pion mass and at one value of the lattice spacing. Such simulations at a∼0.09 fm became possible by adding the clover term to the action. While O(a) improvement is still guaranteed by Wilson twisted mass fermions at maximal twist, the introduction of the clover term reduces O(a 2 ) cutoff effects related to isospin symmetry breaking. We give results for a set of phenomenologically interesting observables like pseudo-scalar masses and decay constants, quark masses and the anomalous magnetic moments of leptons. We mostly find remarkably good agreement with phenomenology, even though we cannot take the continuum and thermodynamic limits.
Quark mass anomalous dimension from the twisted mass Dirac operator spectrum
Energy Technology Data Exchange (ETDEWEB)
Cichy, Krzysztof [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Poznan Univ. (Poland). Faculty of Physics
2013-12-15
We investigate whether it is possible to extract the quark mass anomalous dimension and its scale dependence from the spectrum of the twisted mass Dirac operator in Lattice QCD. The answer to this question appears to be positive, provided that one goes to large enough eigenvalues, sufficiently above the non-perturbative regime. The obtained results are compared to continuum perturbation theory. By analyzing possible sources of systematic effects, we find the domain of applicability of the approach, extending from an energy scale of around 1.5 to 4 GeV. The lower limit is dictated by physics (non-perturbative effects at low energies), while the upper bound is set by the ultraviolet cut-off of present-day lattice simulations. We use gauge field configuration ensembles generated by the European Twisted Mass Collaboration (ETMC) with 2 flavours of dynamical twisted mass quarks, at 4 lattice spacings in the range between around 0.04 and 0.08 fm.
Quark mass anomalous dimension from the twisted mass Dirac operator spectrum
International Nuclear Information System (INIS)
Cichy, Krzysztof; Poznan Univ.
2013-12-01
We investigate whether it is possible to extract the quark mass anomalous dimension and its scale dependence from the spectrum of the twisted mass Dirac operator in Lattice QCD. The answer to this question appears to be positive, provided that one goes to large enough eigenvalues, sufficiently above the non-perturbative regime. The obtained results are compared to continuum perturbation theory. By analyzing possible sources of systematic effects, we find the domain of applicability of the approach, extending from an energy scale of around 1.5 to 4 GeV. The lower limit is dictated by physics (non-perturbative effects at low energies), while the upper bound is set by the ultraviolet cut-off of present-day lattice simulations. We use gauge field configuration ensembles generated by the European Twisted Mass Collaboration (ETMC) with 2 flavours of dynamical twisted mass quarks, at 4 lattice spacings in the range between around 0.04 and 0.08 fm.
Renormalization constants for 2-twist operators in twisted mass QCD
International Nuclear Information System (INIS)
Alexandrou, C.; Constantinou, M.; Panagopoulos, H.; Stylianou, F.; Korzec, T.
2011-01-01
Perturbative and nonperturbative results on the renormalization constants of the fermion field and the twist-2 fermion bilinears are presented with emphasis on the nonperturbative evaluation of the one-derivative twist-2 vector and axial-vector operators. Nonperturbative results are obtained using the twisted mass Wilson fermion formulation employing two degenerate dynamical quarks and the tree-level Symanzik improved gluon action. The simulations have been performed for pion masses in the range of about 450-260 MeV and at three values of the lattice spacing a corresponding to β=3.9, 4.05, 4.20. Subtraction of O(a 2 ) terms is carried out by performing the perturbative evaluation of these operators at 1-loop and up to O(a 2 ). The renormalization conditions are defined in the RI ' -MOM scheme, for both perturbative and nonperturbative results. The renormalization factors, obtained for different values of the renormalization scale, are evolved perturbatively to a reference scale set by the inverse of the lattice spacing. In addition, they are translated to MS at 2 GeV using 3-loop perturbative results for the conversion factors.
Light baryon masses with dynamical twisted mass fermions
Energy Technology Data Exchange (ETDEWEB)
Alexandrou, C. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Baron, R. [CEA-Saclay, IRFU/Service de Physique Nucleaire, Gif-sur-Yvette (France); Blossier, B. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (DE). John von Neumann-Inst. fuer Computing NIC] (and others)
2008-03-15
We present results on the mass of the nucleon and the {delta} using two dynamical degenerate twisted mass quarks. The evaluation is performed at four quark masses corresponding to a pion mass in the range of about 300-600 MeV on lattices of 2.1-2.7 fm. We check for cut-off effects by evaluating these baryon masses on lattices of spatial size 2.1 fm at {beta}=3.9 and {beta}=4.05 and on a lattice of 2.4 fm at {beta}=3.8. The values we find are compatible within our statistical errors. Lattice results are extrapolated to the physical limit using continuum chiral perturbation theory. Performing a combined fit to our lattice data at {beta}=3.9 and {beta}=4.05 we find a nucleon mass of 964{+-}28(stat.){+-}8(syst.) MeV where we used the lattice spacings determined from the pion decay constant to convert to physical units. The systematic error due to the chiral extrapolation is estimated by comparing results obtained at O(p{sup 3}) and O(p{sup 4}) heavy baryon chiral perturbation theory. The nucleon mass at the physical point provides an independent determination of the lattice spacing. Using heavy baryon chiral perturbation theory at O(p{sup 3}) we find a{sub {beta}}{sub =3.9}=0.0890{+-}0.0039(stat.){+-}0.0014(syst.) fm, and a{sub {beta}}{sub =4.05}=0.0691{+-}0.0034(stat.){+-}0.0010(syst.) fm, in good agreement with the values determined from the pion decay constant. Using results from our two smaller lattices spacings at constant r0m we estimate the continuum limit and check consistency with results from the coarser lattice. Results at the continuum limit are chirally extrapolated to the physical point. Isospin violating lattice artifacts in the {delta}-system are found to be compatible with zero for the values of the lattice spacings used in this work. Performing a combined fit to our lattice data at {beta}=3.9 and {beta}=4.05 we find for the masses of the {delta}{sup ++,-} and {delta}{sup +,0} 1316{+-}60(stat.) MeV and 1330{+-}74(stat.) MeV respectively. We confirm
Light baryon masses with dynamical twisted mass fermions
International Nuclear Information System (INIS)
Alexandrou, C.; Blossier, B.
2008-03-01
We present results on the mass of the nucleon and the Δ using two dynamical degenerate twisted mass quarks. The evaluation is performed at four quark masses corresponding to a pion mass in the range of about 300-600 MeV on lattices of 2.1-2.7 fm. We check for cut-off effects by evaluating these baryon masses on lattices of spatial size 2.1 fm at β=3.9 and β=4.05 and on a lattice of 2.4 fm at β=3.8. The values we find are compatible within our statistical errors. Lattice results are extrapolated to the physical limit using continuum chiral perturbation theory. Performing a combined fit to our lattice data at β=3.9 and β=4.05 we find a nucleon mass of 964±28(stat.)±8(syst.) MeV where we used the lattice spacings determined from the pion decay constant to convert to physical units. The systematic error due to the chiral extrapolation is estimated by comparing results obtained at O(p 3 ) and O(p 4 ) heavy baryon chiral perturbation theory. The nucleon mass at the physical point provides an independent determination of the lattice spacing. Using heavy baryon chiral perturbation theory at O(p 3 ) we find a β=3.9 =0.0890±0.0039(stat.)±0.0014(syst.) fm, and a β=4.05 =0.0691±0.0034(stat.)±0.0010(syst.) fm, in good agreement with the values determined from the pion decay constant. Using results from our two smaller lattices spacings at constant r0m we estimate the continuum limit and check consistency with results from the coarser lattice. Results at the continuum limit are chirally extrapolated to the physical point. Isospin violating lattice artifacts in the Δ-system are found to be compatible with zero for the values of the lattice spacings used in this work. Performing a combined fit to our lattice data at β=3.9 and β=4.05 we find for the masses of the Δ ++,- and Δ +,0 1316±60(stat.) MeV and 1330±74(stat.) MeV respectively. We confirm that in the continuum limit they are also degenerate. (orig.)
Blossier, BenoÃ®t.; Brinet, Mariane; Guichon, Pierre; Morénas, Vincent; Pène, Olivier; Rodríguez-Quintero, Jose; Zafeiropoulos, Savvas
2015-06-01
We present a precise nonperturbative determination of the renormalization constants in the mass independent RI'-MOM scheme. The lattice implementation uses the Iwasaki gauge action and four degenerate dynamical twisted-mass fermions. The gauge configurations are provided by the ETM Collaboration. Renormalization constants for scalar, pseudoscalar, vector and axial operators, as well as the quark propagator renormalization, are computed at three different values of the lattice spacing, two volumes and several twisted-mass parameters. The method we developed allows for a precise cross-check of the running, thanks to the particular proper treatment of hypercubic artifacts. Results for the twist-2 operator O44 are also presented.
Light baryon masses with dynamical twisted mass fermions
International Nuclear Information System (INIS)
Alexandrou, C.; Korzec, T.; Koutsou, G.; Baron, R.; Guichon, P.; Blossier, B.; Herdoiza, G.; Jansen, K.; Brinet, M.; Carbonell, J.; Drach, V.; Dimopoulos, P.; Frezzotti, R.; Farchioni, F.; Liu, Z.; Pene, O.; Michael, C.; Shindler, A.; Urbach, C.; Wenger, U.
2008-01-01
We present results on the mass of the nucleon and the Δ using two dynamical degenerate twisted mass quarks and the tree-level Symanzik improved gauge action. The evaluation is performed at four quark masses corresponding to a pion mass in the range of about 300-600 MeV on lattices of 2.1-2.7 fm at three lattice spacings less than 0.1 fm. We check for cutoff effects by evaluating these baryon masses on lattices of spatial size 2.1 fm at β=3.9 and β=4.05 and on a lattice of 2.4 fm at β=3.8. The values we find are compatible within our statistical errors. Lattice results are extrapolated to the physical limit using continuum chiral perturbation theory. Performing a combined fit to our lattice data at β=3.9 and β=4.05 we find a nucleon mass of 963±12(stat)±8(syst) MeV where we used the lattice spacings determined from the pion decay constant to convert to physical units. The systematic error due to the chiral extrapolation is estimated by comparing results obtained at O(p 3 ) and O(p 4 ) heavy baryon chiral perturbation theory. The nucleon mass at the physical point provides an independent determination of the lattice spacing. Using heavy baryon chiral perturbation theory at O(p 3 ) we find a β=3.9 =0.0889±0.0012(stat)±0.0014(syst) fm, and a β=4.05 =0.0691±0.0010(stat)±0.0010(syst) fm, in good agreement with the values determined from the pion decay constant. Using results from our two smaller lattices spacings at constant r 0 m π we estimate the continuum limit and check consistency with results from the coarser lattice. Results at the continuum limit are chirally extrapolated to the physical point. Isospin violating lattice artifacts in the Δ-system are found to be compatible with zero for the values of the lattice spacings used in this work. Performing a combined fit to our lattice data at β=3.9 and β=4.05 we find for the masses of the Δ ++,- and Δ +,0 1315±24(stat) MeV and 1329±30(stat) MeV, respectively. We confirm that in the continuum limit
Energy Technology Data Exchange (ETDEWEB)
Cichy, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Poznan Univ. (Poland). Faculty of Physics; Garcia-Ramos, E. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany); Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Shindler, A. [Forschungszentrum Juelich (Germany). IAS; Forschungszentrum Juelich (Germany). IKP; Forschungszentrum Juelich (Germany). JCHP; Collaboration: European Twisted Mass Collaboration
2013-12-15
We apply the spectral projector method, recently introduced by Giusti and Luescher, to compute the chiral condensate using N{sub f}=2 and N{sub f}=2+1+1 dynamical flavors of maximally twisted mass fermions. We present our results for several quark masses at three different lattice spacings which allows us to perform the chiral and continuum extrapolations. In addition we report our analysis on the O(a) improvement of the chiral condensate for twisted mass fermions. We also study the effect of the dynamical strange and charm quarks by comparing our results for N{sub f}=2 and N{sub f}=2+1+1 dynamical flavors.
Scaling and χPT description of pions from Nf=2 twisted mass QCD
International Nuclear Information System (INIS)
Dimopoulos, Petros; Frezzotti, Roberto; Herdoiza, Gregorio; Jansen, Karl; Michael, Chris; Urbach, Carsten; Bonn Univ.
2009-12-01
We study light-quark observables by means of dynamical lattice QCD simulations using two flavours of twisted mass fermions at maximal twist. We employ chiral perturbation theory to describe our data for the pion mass and decay constant. In this way, we extract precise determinations for the low-energy constants of the effective theory as well as for the light-quark mass and the chiral condensate. (orig.)
First results of ETMC simulations with Nf=2+1+1 maximally twisted mass fermions
Baron, R.; Blossier, B.; Boucaud, P.; Deuzeman, A.; Drach, V.; Farchioni, F.; Gimenez, V.; Herdoiza, G.; Jansen, K.; Michael, C.; Montvay, I.; Palao, D.; Pallante, E.; Pène, O.; Reker, S.; Urbach, C.; Wagner, M.; Wenger, U.; Collaboration, for the ETM
2009-01-01
We present first results from runs performed with Nf=2+1+1 flavours of dynamical twisted mass fermions at maximal twist: a degenerate light doublet and a mass split heavy doublet. An overview of the input parameters and tuning status of our ensembles is given, together with a comparison with results
International Nuclear Information System (INIS)
Cichy, K.
2012-03-01
We study the 'spectral projector' method for the computation of the chiral condensate and the topological susceptibility, using N f =2+1+1 dynamical flavors of maximally twisted mass Wilson fermions. In particular, we perform a study of the quark mass dependence of the chiral condensate Σ and topological susceptibility χ top in the range 270 MeV π top in the quenched approximation where we match the lattice spacing to the N f =2+1+1 dynamical simulations. Using the Kaon, η and η' meson masses computed on the N f =2+1+1 ensembles, we then perform a preliminary test of the Witten-Veneziano relation.
Topological susceptibility from twisted mass fermions using spectral projectors
Energy Technology Data Exchange (ETDEWEB)
Cichy, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Poznan Univ. (Poland). Faculty of Physics; Garcia-Ramos, E. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany); Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Shindler, A. [Forschungszentrum Juelich (Germany). IAS; Forschungszentrum Juelich (Germany). IKP; Forschungszentrum Juelich (Germany). JCHP; Collaboration: European Twisted Mass Collaboration
2013-12-15
We discuss the computation of the topological susceptibility using the method of spectral projectors and dynamical twisted mass fermions. We present our analysis concerning the O(a)- improvement of the topological susceptibility and we show numerical results for N{sub f}=2 and N{sub f}=2+1+1 flavours, performing a study of the quark mass dependence in terms of leading order chiral perturbation theory.
Pseudoscalar decay constants from Nf=2+1+1 twisted mass lattice QCD
International Nuclear Information System (INIS)
Farchioni, Federico; Petschlies, Marcus; Urbach, Carsten
2010-12-01
We present first results for the pseudoscalar decay constants f K , f D and f D S from lattice QCD with N f = 2 + 1 + 1 flavours of dynamical quarks. The lattice simulations have been performed by the European Twisted Mass collaboration (ETMC) using maximally twisted mass quarks. For the pseudoscalar decay constants we follow a mixed action approach by using so called Osterwalder-Seiler fermions in the valence sector for strange and charm quarks. The data for two values of the lattice spacing and several values of the up/down quark mass is analysed using chiral perturbation theory. (orig.)
Chiral condensate from the twisted mass Dirac operator spectrum
International Nuclear Information System (INIS)
Cichy, Krzysztof; Jansen, Karl; Cyprus Univ., Nicosia
2013-03-01
We present the results of our computation of the chiral condensate with N f =2 and N f =2+1+1 flavours of maximally twisted mass fermions. The condensate is determined from the Dirac operator spectrum, applying the spectral projector method proposed by Giusti and Luescher. We use 3 lattice spacings and several quark masses at each lattice spacing to reliably perform the chiral and continuum extrapolations. We study the effect of the dynamical strange and charm quarks by comparing our results for N f =2 and N f =2+1+1 dynamical flavours.
Maximally twisted mass lattice QCD at the physical pion mass
International Nuclear Information System (INIS)
Kostrzewa, Bartosz
2016-01-01
introduced which may become very useful on very large lattices. The pion mass splitting is studied as a function of the Sheikholeslami-Wohlert coefficient in simulations with four flavours and it is found to be approximately halved twisted mass quarks without this term. However, a dependence on the precise value of the coefficient cannot be identified within the large uncertainties and within the range of values studied. To optimise the Hybrid Monte Carlo algorithm, mass preconditioning is explored empirically through simple fits to the magnitude of molecular dynamics forces generated by quark determinants and determinant ratios with a wide range of parameter values. Based on the functional form of these fits, mass preconditioning and integration schemes are proposed in which the relationships between all parameters are tuned simultaneously and which may allow more efficient simulations with predictable relative force magnitudes. As a complement to this work, a tentative study of the oscillation frequencies of these forces is performed with the finding that mass preconditioning seems to suppress large amplitude, high frequency oscillations in addition to reducing force magnitudes. Crucial optimisations of the simulation software for twisted mass quarks are introduced. A multithreading strategy based on OpenMP is devised and kernels which overlap communication and computation are developed and benchmarked on various architectures. Testing methodologies for the simulation code are presented and it is shown how they complement each other based on specific examples, providing a rather general set of integration tests.
Chiral condensate from the twisted mass Dirac operator spectrum
Energy Technology Data Exchange (ETDEWEB)
Cichy, Krzysztof [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Poznan Univ. (Poland). Faculty of Physics; Garcia-Ramos, Elena [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany); Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Collaboration: European Twisted Mass Collaboration
2013-03-15
We present the results of our computation of the chiral condensate with N{sub f}=2 and N{sub f}=2+1+1 flavours of maximally twisted mass fermions. The condensate is determined from the Dirac operator spectrum, applying the spectral projector method proposed by Giusti and Luescher. We use 3 lattice spacings and several quark masses at each lattice spacing to reliably perform the chiral and continuum extrapolations. We study the effect of the dynamical strange and charm quarks by comparing our results for N{sub f}=2 and N{sub f}=2+1+1 dynamical flavours.
Iterative methods for overlap and twisted mass fermions
International Nuclear Information System (INIS)
Chiarappa, T.; Jansen, K.; Shindler, A.; Wetzorke, I.; Scorzato, L.; Urbach, C.; Wenger, U.
2006-09-01
We present a comparison of a number of iterative solvers of linear systems of equations for obtaining the fermion propagator in lattice QCD. In particular, we consider chirally invariant overlap and chirally improved Wilson (maximally) twisted mass fermions. The comparison of both formulations of lattice QCD is performed at four fixed values of the pion mass between 230 MeV and 720 MeV. For overlap fermions we address adaptive precision and low mode preconditioning while for twisted mass fermions we discuss even/odd preconditioning. Taking the best available algorithms in each case we find that calculations with the overlap operator are by a factor of 30-120 more expensive than with the twisted mass operator. (orig.)
Iterative methods for overlap and twisted mass fermions
Energy Technology Data Exchange (ETDEWEB)
Chiarappa, T. [Univ. di Milano Bicocca (Italy); Jansen, K.; Shindler, A.; Wetzorke, I. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Nagai, K.I. [Wuppertal Univ. (Gesamthochschule) (Germany). Fachbereich Physik; Papinutto, M. [INFN Sezione di Roma Tre, Rome (Italy); Scorzato, L. [European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT), Villazzano (Italy); Urbach, C. [Liverpool Univ. (United Kingdom). Dept. of Mathematical Sciences; Wenger, U. [ETH Zuerich (Switzerland). Inst. fuer Theoretische Physik
2006-09-15
We present a comparison of a number of iterative solvers of linear systems of equations for obtaining the fermion propagator in lattice QCD. In particular, we consider chirally invariant overlap and chirally improved Wilson (maximally) twisted mass fermions. The comparison of both formulations of lattice QCD is performed at four fixed values of the pion mass between 230 MeV and 720 MeV. For overlap fermions we address adaptive precision and low mode preconditioning while for twisted mass fermions we discuss even/odd preconditioning. Taking the best available algorithms in each case we find that calculations with the overlap operator are by a factor of 30-120 more expensive than with the twisted mass operator. (orig.)
Properties of pseudoscalar flavour-singlet mesons from 2+1+1 twisted mass lattice QCD
International Nuclear Information System (INIS)
Cichy, Krzysztof; Poznan Univ.; Drach, Vincent; Garcia Ramos, Elena; Jansen, Karl; Michael, Chris; Ottnad, Konstantin; Urbach, Carsten; Zimmermann, Falk
2012-11-01
We study properties of pseudoscalar flavour-singlet mesons from Wilson twisted mass lattice QCD with N f =2+1+1 dynamical quark flavors. Results for masses are presented at three values of the lattice spacing and light quark masses corresponding to values of the pion mass from 230 MeV to 500 MeV. We briefly discuss scaling effects and the light and strange quark mass dependence of M η . In addition we present an exploratory study using Osterwalder-Seiler type strange and charm valence quarks. This approach avoids some of the complications of the twisted mass heavy doublet. We present first results for matching valence and unitary actions and a comparison of statistical uncertainties.
Properties of pseudoscalar flavour-singlet mesons from 2+1+1 twisted mass lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Cichy, Krzysztof [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Poznan Univ. (Poland). Faculty of Physics; Drach, Vincent; Garcia Ramos, Elena; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Michael, Chris [Liverpool Univ. (United Kingdom). Dept. of Mathematical Sciences; Ottnad, Konstantin; Urbach, Carsten; Zimmermann, Falk [Bonn Univ. (Germany). Inst. fuer Strahlen- und Kernphysik
2012-11-15
We study properties of pseudoscalar flavour-singlet mesons from Wilson twisted mass lattice QCD with N{sub f}=2+1+1 dynamical quark flavors. Results for masses are presented at three values of the lattice spacing and light quark masses corresponding to values of the pion mass from 230 MeV to 500 MeV. We briefly discuss scaling effects and the light and strange quark mass dependence of M{sub {eta}}. In addition we present an exploratory study using Osterwalder-Seiler type strange and charm valence quarks. This approach avoids some of the complications of the twisted mass heavy doublet. We present first results for matching valence and unitary actions and a comparison of statistical uncertainties.
Strange and charm baryon masses with two flavors of dynamical twisted mass fermions
Energy Technology Data Exchange (ETDEWEB)
Alexandrou, C. [Univ. of Cyprus, Nicosia (Cyprus). Dept. of Physics; Cyprus Institute, Nicosia (Cyprus). Computation-Based Science and Technology Research Center; Carbonell, J. [CEA-Saclay, Gif-sur-Yvette (France). IRFU/Service de Physique Nucleaire; Christaras, D.; Gravina, M. [Univ. of Cyprus, Nicosia (Cyprus). Dept. of Physics; Drach, V. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Papinutto, M. [UFJ/CNRS/IN2P3, Grenoble (France). Laboratoire de Physique Subatomique et Cosmologie; Universidad Autonoma de Madrid (Spain). Dept. de Fisica Teorica; Universidad Autonoma de Madrid UAM/CSIC (Spain). Inst. de Fisica Teorica
2012-10-15
The masses of the low-lying strange and charm baryons are evaluated using two degenerate flavors of twisted mass sea quarks for pion masses in the range of about 260 MeV to 450 MeV. The strange and charm valence quark masses are tuned to reproduce the mass of the kaon and D-meson at the physical point. The tree-level Symanzik improved gauge action is employed. We use three values of the lattice spacing, corresponding to {beta}=3.9, {beta}=4.05 and {beta}=4.2 with r{sub 0}/a=5.22(2), r{sub 0}/a=6.61(3) and r{sub 0}/a=8.31(5) respectively. We examine the dependence of the strange and charm baryons on the lattice spacing and strange and charm quark masses. The pion mass dependence is studied and physical results are obtained using heavy baryon chiral perturbation theory to extrapolate to the physical point.
Observations on discretization errors in twisted-mass lattice QCD
International Nuclear Information System (INIS)
Sharpe, Stephen R.
2005-01-01
I make a number of observations concerning discretization errors in twisted-mass lattice QCD that can be deduced by applying chiral perturbation theory including lattice artifacts. (1) The line along which the partially conserved axial current quark mass vanishes in the untwisted-mass-twisted-mass plane makes an angle to the twisted-mass axis which is a direct measure of O(a) terms in the chiral Lagrangian, and is found numerically to be large; (2) Numerical results for pionic quantities in the mass plane show the qualitative properties predicted by chiral perturbation theory, in particular, an asymmetry in slopes between positive and negative untwisted quark masses; (3) By extending the description of the 'Aoki regime' (where m q ∼a 2 Λ QCD 3 ) to next-to-leading order in chiral perturbation theory I show how the phase-transition lines and lines of maximal twist (using different definitions) extend into this region, and give predictions for the functional form of pionic quantities; (4) I argue that the recent claim that lattice artifacts at maximal twist have apparent infrared singularities in the chiral limit results from expanding about the incorrect vacuum state. Shifting to the correct vacuum (as can be done using chiral perturbation theory) the apparent singularities are summed into nonsingular, and furthermore predicted, forms. I further argue that there is no breakdown in the Symanzik expansion in powers of lattice spacing, and no barrier to simulating at maximal twist in the Aoki regime
Automatic O(a) improvement for twisted mass QCD in the presence of spontaneous symmetry breaking
International Nuclear Information System (INIS)
Aoki, Sinya; Baer, Oliver
2006-01-01
In this paper we present a proof for automatic O(a) improvement in twisted mass lattice QCD at maximal twist, which uses only the symmetries of the leading part in the Symanzik effective action. In the process of the proof we clarify that the twist angle is dynamically determined by vacuum expectation values in the Symanzik theory. For maximal twist according to this definition, we show that scaling violations of all quantities which have nonzero values in the continuum limit are even in a. In addition, using Wilson chiral perturbation theory, we investigate this definition for maximal twist and compare it to other definitions which were already employed in actual simulations
Static-light meson masses from twisted mass lattice QCD
International Nuclear Information System (INIS)
Jansen, Karl; Michael, Chris; Shindler, Andrea; Wagner, Marc
2008-08-01
We compute the static-light meson spectrum using two-flavor Wilson twisted mass lattice QCD. We have considered five different values for the light quark mass corresponding to 300 MeV PS S mesons. (orig.)
BK-parameter from Nf=2 twisted mass lattice QCD
International Nuclear Information System (INIS)
Constantinou, M.; Dimopoulos, P.; Frezzotti, R.; INFN, Rome
2011-01-01
We present an unquenched N f = 2 lattice computation of the B K parameter which controls K 0 - anti K 0 oscillations. A partially quenched setup is employed with two maximally twisted dynamical (sea) light Wilson quarks, and valence quarks of both the maximally twisted and the Osterwalder-Seiler variety. Suitable combinations of these two kinds of valence quarks lead to a lattice definition of the B K parameter which is both multiplicatively renormalizable and O(a) improved. Employing the non-perturbative RI-MOM scheme, in the continuum limit and at the physical value of the pion mass we get B RGI K =0.729±0.030, a number well in line with the existing quenched and unquenched determinations. (orig.)
Pseudoscalar decay constants from N{sub f}=2+1+1 twisted mass lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Farchioni, Federico [Muenster Univ. (Germany). Inst. fuer Theoretische Physik; Herdoiza, Gregorio; Jansen, Karl; Nube, Andreas [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Petschlies, Marcus [Humboldt-Univ., Berlin (Germany). Inst. fuer Physik; Urbach, Carsten [Bonn Univ. (Germany). Helmholtz-Inst. fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics
2010-12-15
We present first results for the pseudoscalar decay constants f{sub K}, f{sub D} and f{sub D{sub S}} from lattice QCD with N{sub f} = 2 + 1 + 1 flavours of dynamical quarks. The lattice simulations have been performed by the European Twisted Mass collaboration (ETMC) using maximally twisted mass quarks. For the pseudoscalar decay constants we follow a mixed action approach by using so called Osterwalder-Seiler fermions in the valence sector for strange and charm quarks. The data for two values of the lattice spacing and several values of the up/down quark mass is analysed using chiral perturbation theory. (orig.)
Low-lying baryon spectrum with two dynamical twisted mass fermions
Energy Technology Data Exchange (ETDEWEB)
Alexandrou, C. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Computation-based Science and Technology Research Center, Cyprus Institute, Nicosia (Cyprus); Baron, R.; Guichon, P. [CEA-Saclay, IRFU/Service de Physique Nucleaire, Gif-sur-Yvette (France); Carbonell, J.; Drach, V. [UJF/CNRS/IN2P3, Grenoble (France). Lab. de Physique Subatomique et Cosmologie; Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Korzec, T. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Pene, O. [Paris-11 Univ., 91 - Orsay (France). Lab. de Physique Theorique
2009-10-15
The masses of the low lying baryons are evaluated using two degenerate flavors of twisted mass sea quarks corresponding to pseudo scalar masses in the range of about 270 MeV to 500 MeV. The strange valence quark mass is tuned to reproduce the mass of the kaon in the physical limit. The tree-level Symanzik improved gauge action is employed. We use lattices of spatial size 2.1 fm and 2.7 fm at two values of the lattice spacing with r{sub 0}/a=5.22(2) and r{sub 0}/a=6.61(3). We check for both finite volume and cut-off effects on the baryon masses. We performed a detailed study of the chiral extrapolation of the octet and decuplet masses using SU(2) {chi}PT. The lattice spacings determined using the nucleon mass at the physical point are consistent with the values extracted using the pion decay constant. We examine the issue of isospin symmetry breaking for the octet and decuplet baryons and its dependence on the lattice spacing. We show that in the continuum limit isospin breaking is consistent with zero, as expected. The baryon masses that we find after taking the continuum limit and extrapolating to the physical limit are in good agreement with experiment. (orig.)
Remotely detected vehicle mass from engine torque-induced frame twisting
McKay, Troy R.; Salvaggio, Carl; Faulring, Jason W.; Sweeney, Glenn D.
2017-06-01
Determining the mass of a vehicle from ground-based passive sensor data is important for many traffic safety requirements. This work presents a method for calculating the mass of a vehicle using ground-based video and acoustic measurements. By assuming that no energy is lost in the conversion, the mass of a vehicle can be calculated from the rotational energy generated by the vehicle's engine and the linear acceleration of the vehicle over a period of time. The amount of rotational energy being output by the vehicle's engine can be calculated from its torque and angular velocity. This model relates remotely observed, engine torque-induced frame twist to engine torque output using the vehicle's suspension parameters and engine geometry. The angular velocity of the engine is extracted from the acoustic emission of the engine, and the linear acceleration of the vehicle is calculated by remotely observing the position of the vehicle over time. This method combines these three dynamic signals; engine induced-frame twist, engine angular velocity, and the vehicle's linear acceleration, and three vehicle specific scalar parameters, into an expression that describes the mass of the vehicle. This method was tested on a semitrailer truck, and the results demonstrate a correlation of 97.7% between calculated and true vehicle mass.
Twisted mass lattice QCD with non-degenerate quark masses
International Nuclear Information System (INIS)
Muenster, Gernot; Sudmann, Tobias
2006-01-01
Quantum Chromodynamics on a lattice with Wilson fermions and a chirally twisted mass term is considered in the framework of chiral perturbation theory. For two and three numbers of quark flavours, respectively, with non-degenerate quark masses the pseudoscalar meson masses and decay constants are calculated in next-to-leading order including lattice effects quadratic in the lattice spacing a
Overlap valence quarks on an twisted mass sea
Energy Technology Data Exchange (ETDEWEB)
Cichy, K. [Adam Mickiewicz Univ., Poznan (Poland). Faculty of Physics; Drach, V.; Garcia-Ramos, E.; Herdoiza, G.; Jansen, K. [DESY, Zeuthen (Germany). John von Neumann-Institut fuer Computing NIC
2010-12-15
We present the results of an investigation of a mixed action approach of overlap valence and maximally twisted mass sea quarks. Employing a particular matching condition on the pion mass, we analyze the continuum limit scaling of the pion decay constant and the role of chiral zero modes of the overlap operator in this process. We employ gauge field configurations generated by the European Twisted Mass Collaboration with linear lattice size L ranging from 1.3 to 1.9 fm. The continuum limit is taken at a fixed value of L=1.3 fm, employing three values of the lattice spacing and two values of the pion mass constructed from sea quarks only. (orig.)
Partially quenched study of strange baryon with Nf=2 twisted mass fermions
International Nuclear Information System (INIS)
Drach, Vincent; Brinet, Mariane; Carbonell, Jaume
2009-06-01
We present results on the mass of the baryon octet and decuplet using two flavors of light dynamical twisted mass fermions. The strange quark mass is fixed to its physical value from the kaon sector in a partially quenched set up. Calculations are performed for light quark masses corresponding to a pion mass in the range 270-500 MeV and lattice sizes of 2.1 fm and 2.7 fm. We check for cut-off effects and isospin breaking by evaluating the baryon masses at two different lattice spacings. We carry out a chiral extrapolation for the octet baryons and discuss results for the Ω. (orig.)
International Nuclear Information System (INIS)
Shindler, A.
2007-07-01
I review the theoretical foundations, properties as well as the simulation results obtained so far of a variant of the Wilson lattice QCD formulation: Wilson twisted mass lattice QCD. Emphasis is put on the discretization errors and on the effects of these discretization errors on the phase structure for Wilson-like fermions in the chiral limit. The possibility to use in lattice simulations different lattice actions for sea and valence quarks to ease the renormalization patterns of phenomenologically relevant local operators, is also discussed. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Shindler, A. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2007-07-15
I review the theoretical foundations, properties as well as the simulation results obtained so far of a variant of the Wilson lattice QCD formulation: Wilson twisted mass lattice QCD. Emphasis is put on the discretization errors and on the effects of these discretization errors on the phase structure for Wilson-like fermions in the chiral limit. The possibility to use in lattice simulations different lattice actions for sea and valence quarks to ease the renormalization patterns of phenomenologically relevant local operators, is also discussed. (orig.)
Sigma terms and strangeness content of the nucleon with Nf=2+1+1 twisted mass fermions
International Nuclear Information System (INIS)
Alexandrou, C.
2012-11-01
We investigate excited state contaminations in a direct computation of the nucleon σ-terms. This is an important source of systematic effects that needs to be controlled besides the light quark mass dependence and lattice artefacts. We use maximally twisted mass fermions with dynamical light (u,d), strange and charm degrees of freedom. Employing an efficient stochastic evaluation of the disconnected contribution available for twisted mass fermions, we show that the effect of excited states is large in particular for the strange σ-terms, where it can be as big as O(>or similar 40%). This leads to the unfortunate conclusion that even with a source-sink separation of ∝1.5 fm and a good statistical accuracy it is not clear, whether excited state effects are under control for this quantity.
Computing K and D meson masses with Nf=2+1+1 twisted mass lattice QCD
International Nuclear Information System (INIS)
Baron, Remi; Blossier, Benoit; Boucaud, Philippe
2010-05-01
We discuss the computation of the mass of the K and D mesons within the framework of N f =2+1+1 twisted mass lattice QCD from a technical point of view. These quantities are essential, already at the level of generating gauge configurations, being obvious candidates to tune the strange and charm quark masses to their physical values. In particular, we address the problems related to the twisted mass flavor and parity symmetry breaking, which arise when considering a non-degenerate (c,s) doublet. We propose and verify the consistency of three methods to extract the K and D meson masses in this framework. (orig.)
Baryon spectrum with Nƒ=2+1+1 twisted mass fermions
DEFF Research Database (Denmark)
Alexandrou, C.; Drach, V.; Jansen, K.
2014-01-01
The masses of the low-lying baryons are evaluated using a total of ten ensembles of dynamical twisted mass fermion gauge configurations. The simulations are performed using two degenerate flavors of light quarks, and a strange and a charm quark fixed to approximately their physical values....... The light sea quarks correspond to pseudo scalar masses in the range of about 210 to 430 MeV. We use the Iwasaki improved gluonic action at three values of the coupling constant corresponding to lattice spacing a = 0.094, 0.082 and 0.065 fm determined from the nucleon mass. We check for both finite volume...... and cutoff effects on the baryon masses. We examine the issue of isospin symmetry breaking for the octet and decuplet baryons and its dependence on the lattice spacing. We show that in the continuum limit isospin breaking is consistent with zero, as expected. We performed a chiral extrapolation of the forty...
Twisted mass, overlap and Creutz fermions. Cut-off effects at tree-level of perturbation theory
International Nuclear Information System (INIS)
Cichy, K.; Kujawa, A.; Jansen, K.; Shindler, A.
2008-02-01
We study cutoff effects at tree-level of perturbation theory for maximally twisted mass Wilson, overlap and the recently proposed Creutz fermions. We demonstrate that all three kind of lattice fermions exhibit the expected O(a 2 ) scaling behaviour in the lattice spacing. In addition, the sizes of these cutoff effects are comparable for the three kinds of lattice fermions considered here. Furthermore, we analyze situations when twisted mass fermions are not exactly at maximal twist and when overlap fermions are studied in comparison to twisted mass fermions when the quark masses are not matched. (orig.)
B{sub K}-parameter from N{sub f}=2 twisted mass lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Constantinou, M. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Dimopoulos, P. [Roma Univ. (Italy). Dipt. di Fisica; Frezzotti, R. [Roma ' ' Tor Vergata' ' Univ. (Italy). Dipt. di Fisica; INFN, Rome (IT). Dipt. di Fisica] (and others)
2011-01-07
We present an unquenched N{sub f} = 2 lattice computation of the B{sub K} parameter which controls K{sup 0}- anti K{sup 0} oscillations. A partially quenched setup is employed with two maximally twisted dynamical (sea) light Wilson quarks, and valence quarks of both the maximally twisted and the Osterwalder-Seiler variety. Suitable combinations of these two kinds of valence quarks lead to a lattice definition of the B{sub K} parameter which is both multiplicatively renormalizable and O(a) improved. Employing the non-perturbative RI-MOM scheme, in the continuum limit and at the physical value of the pion mass we get B{sup RGI}{sub K}=0.729{+-}0.030, a number well in line with the existing quenched and unquenched determinations. (orig.)
Sigma terms and strangeness content of the nucleon with N{sub f}=2+1+1 twisted mass fermions
Energy Technology Data Exchange (ETDEWEB)
Alexandrou, C. [The Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center (CaSToRC); Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Constantinou, M.; Hadjiyiannakou, K.; Strelchenko, A. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Dinter, S.; Drach, V.; Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Koustou, G.; Vaquero, A. [The Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center (CaSToRC)
2012-11-15
We investigate excited state contaminations in a direct computation of the nucleon {sigma}-terms. This is an important source of systematic effects that needs to be controlled besides the light quark mass dependence and lattice artefacts. We use maximally twisted mass fermions with dynamical light (u,d), strange and charm degrees of freedom. Employing an efficient stochastic evaluation of the disconnected contribution available for twisted mass fermions, we show that the effect of excited states is large in particular for the strange {sigma}-terms, where it can be as big as O(>or similar 40%). This leads to the unfortunate conclusion that even with a source-sink separation of {proportional_to}1.5 fm and a good statistical accuracy it is not clear, whether excited state effects are under control for this quantity.
Computing K and D meson masses with N{sub f}=2+1+1 twisted mass lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Baron, Remi [CEA, Centre de Saclay, 91 - Gif-sur-Yvette (France). IRFU/Service de Physique Nucleaire; Blossier, Benoit; Boucaud, Philippe [Paris XI Univ., 91 - Orsay (FR). Lab. de Physique Theorique] (and others)
2010-05-15
We discuss the computation of the mass of the K and D mesons within the framework of N{sub f}=2+1+1 twisted mass lattice QCD from a technical point of view. These quantities are essential, already at the level of generating gauge configurations, being obvious candidates to tune the strange and charm quark masses to their physical values. In particular, we address the problems related to the twisted mass flavor and parity symmetry breaking, which arise when considering a non-degenerate (c,s) doublet. We propose and verify the consistency of three methods to extract the K and D meson masses in this framework. (orig.)
The static-light meson spectrum from twisted mass lattice QCD
International Nuclear Information System (INIS)
Jansen, Karl; Michael, Chris; Shindler, Andrea; Wagner, Marc
2008-10-01
We compute the static-light meson spectrum with N f =2 flavours of sea quarks using Wilson twisted mass lattice QCD. We consider five different values for the light quark mass corresponding to 300 MeV PS s mesons. (orig.)
First results with two light flavours of quarks with maximally twisted mass
International Nuclear Information System (INIS)
Jansen, K.; Urbach, C.
2006-10-01
We report on first results of an ongoing effort to simulate lattice QCD with two degenerate flavours of quarks by means of the twisted mass formulation tuned to maximal twist. By utilising recent improvements of the HMC algorithm, pseudo-scalar masses well below 300 MeV are simulated on volumes L 3 .T with T=2L and L>2 fm and at values of the lattice spacing a f =2+1+1 flavours are discussed. (orig.)
Flavour symmetry restoration and kaon weak matrix elements in quenched twisted mass QCD
Dimopoulos, P; Palombi, Filippo; Peña, C; Sint, S; Vladikas, A
2007-01-01
We simulate two variants of quenched twisted mass QCD (tmQCD), with degenerate Wilson quarks of masses equal to or heavier than half the strange quark mass. We use Ward identities in order to measure the twist angles of the theory and thus check the quality of the tuning of mass parameters to a physics condition which stays constant as the lattice spacing is varied. Flavour symmetry breaking in tmQCD is studied in a framework of two fully twisted and two standard Wilson quark flavours, tuned to be degenerate in the continuum. Comparing pseudoscalar masses, obtained from connected quark diagrams made of tmQCD and/or standard Wilson quark propagators, we confirm that flavour symmetry breaking effects, which are at most 5%, decrease as we approach the continuum limit. We also compute the pseudoscalar decay constant in the continuum limit, with reduced systematics. As a consequence of improved tuning of the mass parameters at $\\beta = 6.1$, we reanalyse our previous $B_K$ results. Our main phenomenological findin...
New look at the dynamics of twisted accretion disks
International Nuclear Information System (INIS)
Hatchett, S.P.; Begelman, M.C.; Sarazin, C.L.
1981-01-01
We reexamine the dynamic response of a thin, accretion disk to twisting torques, guided by the earlier analyses by Bardeen and Petterson. We make several corrections to this earlier work, and present a new version of the twist equations consistent with their physical assumptions. By describing the distortion of the disk in terms Cartesian direction cosines rather than the Euler angles used by the earlier authors, we are able to transform the twist equations from a pair of coupled, nonlinear, partial differential equations to a single, linear, complex one. We write down formulae for the external twisting torques likley to be encountered in astrophysic, and we show that even with these driving torques our twist equation remains linear. We find exact, analytic solutions for steady state structure of a disk subject to Lense-Thirring torques by a nonaligned central Kerr black hole and also for the time-dependent problem of the structure of a slaved disk with its oscillating boundary conditions. Finally, we discuss the stability of disks against twisting modes and show that undriven disks and disks subject to time-independent driving torques are stable
Looking at the gluon moment of the nucleon with dynamical twisted mass fermions
International Nuclear Information System (INIS)
Alexandrou, Constantia; Cyprus Institute, Nicosia; Drach, Vincent; Wiese, Christian; Hadjiyiannakou, Kyriakos; Jansen, Karl; Deutsches Elektronen-Synchrotron; Kostrzewa, Bartosz
2013-11-01
To understand the structure of hadrons it is important to know the PDF of their constituents, the quarks and gluons. In our work we aim to compute the first moment of the gluon PDF left angle x right angle g for the nucleon. We follow two possible approaches in order to extract the gluon moment: the Feynman-Hellmann theorem and a direct method with smearing of the gluon operator. We present preliminary results computed on 24 3 x 48 lattices for the case where the Feynman-Hellman theorem is used and 32 3 x 64 lattices for the direct method, employing N f =2+1+1 maximally twisted mass fermions.
Giusti, D.; Lubicz, V.; Tarantino, C.; Martinelli, G.; Sanfilippo, F.; Simula, S.; Tantalo, N.; RM123 Collaboration
2017-06-01
We present a lattice computation of the isospin-breaking corrections to pseudoscalar meson masses using the gauge configurations produced by the European Twisted Mass Collaboration with Nf=2 +1 +1 dynamical quarks at three values of the lattice spacing (a ≃0.062 , 0.082, and 0.089 fm) with pion masses in the range Mπ≃210 - 450 MeV . The strange and charm quark masses are tuned at their physical values. We adopt the RM123 method based on the combined expansion of the path integral in powers of the d - and u -quark mass difference (m^d-m^u) and of the electromagnetic coupling αe m. Within the quenched QED approximation, which neglects the effects of the sea-quark charges, and after the extrapolations to the physical pion mass and to the continuum and infinite volume limits, we provide results for the pion, kaon, and (for the first time) charmed-meson mass splittings, for the prescription-dependent parameters ɛπ0, ɛγ(M S ¯ ,2 GeV ) , ɛK0(M S ¯ ,2 GeV ) , related to the violations of the Dashen's theorem, and for the light quark mass difference (m^ d-m^ u)(M S ¯ ,2 GeV ) .
Nucleon and delta masses in twisted mass chiral perturbation theory
International Nuclear Information System (INIS)
Walker-Loud, Andre; Wu, Jackson M.S.
2005-01-01
We calculate the masses of the nucleons and deltas in twisted mass heavy baryon chiral perturbation theory. We work to quadratic order in a power counting scheme in which we treat the lattice spacing, a, and the quark masses, m q , to be of the same order. We give expressions for the mass and the mass splitting of the nucleons and deltas both in and away from the isospin limit. We give an argument using the chiral Lagrangian treatment that, in the strong isospin limit, the nucleons remain degenerate and the delta multiplet breaks into two degenerate pairs to all orders in chiral perturbation theory. We show that the mass splitting between the degenerate pairs of the deltas first appears at quadratic order in the lattice spacing. We discuss the subtleties in the effective chiral theory that arise from the inclusion of isospin breaking
Progress in simulations with twisted mass fermions at the physical point
International Nuclear Information System (INIS)
Abdel-Rehim, A.
2014-11-01
In this contribution, results from N f =2 lattice QCD simulations at one lattice spacing using twisted mass fermions with a clover term at the physical pion mass are presented. The mass splitting between charged and neutral pions (including the disconnected contribution) is shown to be around 20(20) MeV. Further, a first measurement using the clover twisted mass action of the average momentum fraction of the pion is given. Finally, an analysis of pseudoscalar meson masses and decay constants is presented involving linear interpolations in strange and charm quark masses. Matching to meson mass ratios allows the calculation of quark mass ratios: μ s /μ l =27.63(13), μ c /μ l =339.6(2.2) and μ c /μ s =12.29(10). From this mass matching the quantities f K =153.9(7.5) MeV, f D =219(11) MeV, f D s =255(12) MeV and M D s =1894(93) MeV are determined without the application of finite volume or discretization artefact corrections and with errors dominated by a preliminary estimate of the lattice spacing.
A first look at maximally twisted mass lattice QCD calculations at the physical point
International Nuclear Information System (INIS)
Abdel-Rehim, A.
2013-11-01
In this contribution, a first look at simulations using maximally twisted mass Wilson fermions at the physical point is presented. A lattice action including clover and twisted mass terms is presented and the Monte Carlo histories of one run with two mass-degenerate flavours at a single lattice spacing are shown. Measurements from the light and heavy-light pseudoscalar sectors are compared to previous N f =2 results and their phenomenological values. Finally, the strategy for extending simulations to N f =2+1+1 is outlined.
A first look at maximally twisted mass lattice QCD calculations at the physical point
Energy Technology Data Exchange (ETDEWEB)
Abdel-Rehim, A. [The Cyprus Institute, Nicosia (Cyprus). CaSToRC; Boucaud, P. [Paris XI Univ., Orsay (France). Laboratoire de Physique Theorique; Carrasco, N. [Valencia-CSIC Univ. (Spain). Dept. de Fisica Teorica; IFIC, Valencia (Spain); and others
2013-11-15
In this contribution, a first look at simulations using maximally twisted mass Wilson fermions at the physical point is presented. A lattice action including clover and twisted mass terms is presented and the Monte Carlo histories of one run with two mass-degenerate flavours at a single lattice spacing are shown. Measurements from the light and heavy-light pseudoscalar sectors are compared to previous N{sub f}=2 results and their phenomenological values. Finally, the strategy for extending simulations to N{sub f}=2+1+1 is outlined.
Light meson physics from maximally twisted mass lattice QCD
International Nuclear Information System (INIS)
Baron, R.; Boucaud, P.
2009-12-01
We present a comprehensive investigation of light meson physics using maximally twisted mass fermions for N f =2 mass-degenerate quark flavours. By employing four values of the lattice spacing, spatial lattice extents ranging from 2.0 fm to 2.5 fm and pseudo scalar masses in the range 280 PS < or similar 650 MeV we control the major systematic effects of our calculation. This enables us to confront our data with chiral perturbation theory and extract low energy constants of the effective chiral Lagrangian and derived quantities, such as the light quark mass, with high precision. (orig.)
Flavor-singlet meson decay constants from Nf=2 +1 +1 twisted mass lattice QCD
Ottnad, Konstantin; Urbach, Carsten; ETM Collaboration
2018-03-01
We present an improved analysis of our lattice data for the η - η' system, including a correction of the relevant correlation functions for residual topological finite size effects and employing consistent chiral and continuum fits. From this analysis we update our physical results for the masses Mη=557 (11 )stat(03 )χ PT MeV and Mη'=911 (64 )stat(03 )χ PT MeV , as well as the mixing angle in the quark flavor basis ϕ =38.8 (2.2 )stat(2.4 )χPT ∘ in excellent agreement with other results from phenomenology. Similarly, we include an analysis for the decay constant parameters, leading to fl=125 (5 )stat(6 )χ PT MeV and fs=178 (4 )stat(1 )χ PT MeV . The second error reflects the uncertainty related to the chiral extrapolation. The data used for this study has been generated on gauge ensembles provided by the European Twisted Mass Collaboration with Nf=2 +1 +1 dynamical flavors of Wilson twisted mass fermions. These ensembles cover a range of pion masses from 220 MeV to 500 MeV and three values of the lattice spacing. Combining our data with a prediction from chiral perturbation theory, we give an estimate for the physical η , η'→γ γ decay widths and the singly-virtual η , η'→γ γ* transition form factors in the limit of large momentum transfer.
Nucleon scalar matrix elements with N{sub f}=2+1+1 twisted mass fermions
Energy Technology Data Exchange (ETDEWEB)
Dinter, Simon; Drach, Vincent; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2011-12-15
We investigate scalar matrix elements of the nucleon using N{sub f}=2+1+1 flavors of maximally twisted mass fermions at a fixed value of the lattice spacing of a{approx}0.078 fm. We compute disconnected contributions to the relevant three-point functions using an efficient noise reduction technique. Using these methods together with an only multiplicative renormalization applicable for twisted mass fermions, allows us to obtain accurate results in the light and strange sector. (orig.)
Light meson physics from maximally twisted mass lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Baron, R.; Boucaud, P. [Paris XI Univ., 91 - Orsay (France). Lab. de Physique Theorique; Dimopoulos, P. [Roma Tor Vergata Univ. (Italy). Dipt. di Fisica; INFN, Rome (IT)] (and others)
2009-12-15
We present a comprehensive investigation of light meson physics using maximally twisted mass fermions for N{sub f}=2 mass-degenerate quark flavours. By employing four values of the lattice spacing, spatial lattice extents ranging from 2.0 fm to 2.5 fm and pseudo scalar masses in the range 280
Nucleon form factors with NF=2 twisted mass fermions
International Nuclear Information System (INIS)
Alexandrou, C.; Korzec, T.; Brinet, M.; Carbonell, J.; Harraud, P.A.; Jansen, K.
2009-10-01
We present results on the electromagnetic and axial nucleon form factors using two degenerate flavors of twisted mass fermions on lattices of spatial size 2.1 fm and 2.7 fm and a lattice spacing of about 0.09 fm. We consider pion masses in the range of 260-470MeV.We chirally extrapolate results on the nucleon axial charge, the isovector Dirac and Pauli root mean squared radii and magnetic moment to the physical point and compare to experiment. (orig.)
Computing K and D meson masses with N-f=2+1+1 twisted mass lattice QCD
Baron, Remi; Boucaud, Philippe; Carbonell, Jaume; Drach, Vincent; Farchioni, Federico; Herdoiza, Gregorio; Jansen, Karl; Michael, Chris; Montvay, Istvan; Pallante, Elisabetta; Pene, Olivier; Reker, Siebren; Urbach, Carsten; Wagner, Marc; Wenger, Urs
We discuss the computation of the mass of the K and D mesons within the framework of N-f = 2 + 1 + 1 twisted mass lattice QCD from a technical point of view. These quantities are essential, already at the level of generating gauge configurations, being obvious candidates to tune the strange and
Analysis of Twisting of Cellulose Nanofibrils in Atomistic Molecular Dynamics Simulations
DEFF Research Database (Denmark)
Paavilainen, S.; Rog, T.; Vattulainen, I.
2011-01-01
We use atomistic molecular dynamics simulations to study the crystal structure of cellulose nanofibrils, whose sizes are comparable with the crystalline parts in commercial nanocellulose. The simulations show twisting, whose rate of relaxation is strongly temperature dependent. Meanwhile......, no significant bending or stretching of nanocellulose is discovered. Considerations of atomic-scale interaction patterns bring about that the twisting arises from hydrogen bonding within and between the chains in a fibril....
Up, down, strange and charm quark masses with Nf=2+1+1 twisted mass lattice QCD
Directory of Open Access Journals (Sweden)
N. Carrasco
2014-10-01
Full Text Available We present a lattice QCD calculation of the up, down, strange and charm quark masses performed using the gauge configurations produced by the European Twisted Mass Collaboration with Nf=2+1+1 dynamical quarks, which include in the sea, besides two light mass degenerate quarks, also the strange and charm quarks with masses close to their physical values. The simulations are based on a unitary setup for the two light quarks and on a mixed action approach for the strange and charm quarks. The analysis uses data at three values of the lattice spacing and pion masses in the range 210–450 MeV, allowing for accurate continuum limit and controlled chiral extrapolation. The quark mass renormalization is carried out non-perturbatively using the RI′-MOM method. The results for the quark masses converted to the MS¯ scheme are: mud(2 GeV=3.70(17 MeV, ms(2 GeV=99.6(4.3 MeV and mc(mc=1.348(46 GeV. We obtain also the quark mass ratios ms/mud=26.66(32 and mc/ms=11.62(16. By studying the mass splitting between the neutral and charged kaons and using available lattice results for the electromagnetic contributions, we evaluate mu/md=0.470(56, leading to mu=2.36(24 MeV and md=5.03(26 MeV.
Nucleon electromagnetic form factors in twisted mass lattice QCD
International Nuclear Information System (INIS)
Alexandrou, C.; Brinet, M.; Carbonell, J.; Harraud, P. A.; Papinutto, M.; Guichon, P.; Jansen, K.; Korzec, T.; Constantinou, M.
2011-01-01
We present results on the nucleon electromagnetic form factors within lattice QCD using two flavors of degenerate twisted mass fermions. Volume effects are examined using simulations at two volumes of spatial length L=2.1 fm and L=2.8 fm. Cutoff effects are investigated using three different values of the lattice spacings, namely a=0.089 fm, a=0.070 fm and a=0.056 fm. The nucleon magnetic moment, Dirac and Pauli radii are obtained in the continuum limit and chirally extrapolated to the physical pion mass allowing for a comparison with experiment.
Sigma terms and strangeness content of the nucleon with N{sub f}=2+1+1 twisted mass fermions
Energy Technology Data Exchange (ETDEWEB)
Dinter, Simon; Drach, Vincent [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Frezzotti, Roberto; Rossi, Giancarlo [Roma Tor Vergata Univ. (Italy). Dipt. di Fisica; INFN Sezione di Roma Tor Vergata, Roma (Italy); Herdoiza, Gregorio [Univ. Autonoma de Madrid (Spain). Dept. de Fisica Teorica y Inst. de Fisica Teorica UAM/CSIC; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Roma Tor Vergata Univ. (Italy). Dipt. di Fisica; INFN Sezione di Roma Tor Vergata, Roma (Italy)
2012-02-15
We study the nucleon matrix elements of the quark scalar-density operator using maximally twisted mass fermions with dynamical light (u,d), strange and charm degrees of freedom. We demonstrate that in this setup the nucleon matrix elements of the light and strange quark densities can be obtained with good statistical accuracy, while for the charm quark counterpart only a bound can be provided. The present calculation which is performed at only one value of the lattice spacing and pion mass serves as a benchmark for a future more systematic computation of the scalar quark content of the nucleon. (orig.)
Nucleon electromagnetic form factors in twisted mass lattice QCD
International Nuclear Information System (INIS)
Alexandrou, C.; Jansen, K.; Korzec, T.; Humboldt Univ. Berlin
2011-02-01
We present results on the nucleon electromagnetic form factors within lattice QCD using two flavors of degenerate twisted mass fermions. Volume effects are examined using simulations at two volumes of spatial length L=2.1 fm and L=2.8 fm. Cut-off effects are investigated using three different values of the lattice spacings, namely a=0.089 fm, a=0.070 fm and a=0.056 fm. The nucleon magnetic moment, Dirac and Pauli radii are obtained in the continuum limit and chirally extrapolated to the physical pion mass allowing for a comparison with experiment. (orig.)
HVP contributions to the muon (g-2) including QED corrections with twisted-mass fermions
Giusti, Davide; Lubicz, Vittorio; Martinelli, Guido; Sanfilippo, Francesco; Simula, Silvano
2018-03-01
We present a lattice calculation of the Hadronic Vacuum Polarization (HVP) contribution of the strange and charm quarks to the anomalous magnetic moment of the muon including leading-order electromagnetic (e.m.) corrections. We employ the gauge configurations generated by the European Twisted Mass Collaboration (ETMC) with Nf = 2+1 + 1 dynamical quarks at three values of the lattice spacing (a ≃ 0.062,0.082,0.089 fm) with pion masses in the range Mπ ≃ 210 - 450 MeV. The strange and charm quark masses are tuned at their physical values. Neglecting discon-nected diagrams and after the extrapolations to the physical pion mass and to the continuum limit we obtain: aμs(αem2) = (53.1 ± 2.5 )×10-10, aμs(αem2) = (-0.018 ± 0.011)×10-10 and aμs(αem2) = (14.75±0.56)×10-10,aμs(αem2) = (-0.030±0.013)×10-10 for the strange and charm contributions, respectively.!
Alexandrou, Constantia; Athenodorou, Andreas; Cichy, Krzysztof; Constantinou, Martha; Horkel, Derek P.; Jansen, Karl; Koutsou, Giannis; Larkin, Conor
2018-04-01
We compare lattice QCD determinations of topological susceptibility using a gluonic definition from the gradient flow and a fermionic definition from the spectral-projector method. We use ensembles with dynamical light, strange and charm flavors of maximally twisted mass fermions. For both definitions of the susceptibility we employ ensembles at three values of the lattice spacing and several quark masses at each spacing. The data are fitted to chiral perturbation theory predictions with a discretization term to determine the continuum chiral condensate in the massless limit and estimate the overall discretization errors. We find that both approaches lead to compatible results in the continuum limit, but the gluonic ones are much more affected by cutoff effects. This finally yields a much smaller total error in the spectral-projector results. We show that there exists, in principle, a value of the spectral cutoff which would completely eliminate discretization effects in the topological susceptibility.
Topological susceptibility from the twisted mass Dirac operator spectrum
Energy Technology Data Exchange (ETDEWEB)
Cichy, Krzysztof [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Poznan Univ. (Poland). Faculty of Physics; Garcia-Ramos, Elena [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany); Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Collaboration: European Twisted Mass Collaboration
2013-12-15
We present results of our computation of the topological susceptibility with N{sub f}=2 and N{sub f}= +1+1 flavours of maximally twisted mass fermions, using the method of spectral projectors. We perform a detailed study of the quark mass dependence and discretization effects. We make an attempt to confront our data with chiral perturbation theory and extract the chiral condensate from the quark mass dependence of the topological susceptibility. We compare the value with the results of our direct computation from the slope of the mode number. We emphasize the role of autocorrelations and the necessity of long Monte Carlo runs to obtain results with good precision. We also show our results for the spectral projector computation of the ratio of renormalization constants Z{sub P}/Z{sub S}.
Topological susceptibility from the twisted mass Dirac operator spectrum
International Nuclear Information System (INIS)
Cichy, Krzysztof; Jansen, Karl; Cyprus Univ., Nicosia
2013-12-01
We present results of our computation of the topological susceptibility with N f =2 and N f = +1+1 flavours of maximally twisted mass fermions, using the method of spectral projectors. We perform a detailed study of the quark mass dependence and discretization effects. We make an attempt to confront our data with chiral perturbation theory and extract the chiral condensate from the quark mass dependence of the topological susceptibility. We compare the value with the results of our direct computation from the slope of the mode number. We emphasize the role of autocorrelations and the necessity of long Monte Carlo runs to obtain results with good precision. We also show our results for the spectral projector computation of the ratio of renormalization constants Z P /Z S .
Accelerating Twisted Mass LQCD with QPhiX
Energy Technology Data Exchange (ETDEWEB)
Schröck, Mario [INFN, Rome3; Simula, Silvano [INFN, Rome3; Strelchenko, Alexei [Fermilab
2016-07-08
We present the implementation of twisted mass fermion operators for the QPhiX library. We analyze the performance on the Intel Xeon Phi (Knights Corner) coprocessor as well as on Intel Xeon Haswell CPUs. In particular, we demonstrate that on the Xeon Phi 7120P the Dslash kernel is able to reach 80\\% of the theoretical peak bandwidth, while on a Xeon Haswell E5-2630 CPU our generated code for the Dslash operator with AVX2 instructions outperforms the corresponding implementation in the tmLQCD library by a factor of $\\sim 5\\times$ in single precision. We strong scale the code up to 6.8 (14.1) Tflops in single (half) precision on 64 Xeon Haswell CPUs.
HVP contributions to the muon (g−2 including QED corrections with twisted-mass fermions
Directory of Open Access Journals (Sweden)
Giusti Davide
2018-01-01
Full Text Available We present a lattice calculation of the Hadronic Vacuum Polarization (HVP contribution of the strange and charm quarks to the anomalous magnetic moment of the muon including leading-order electromagnetic (e.m. corrections. We employ the gauge configurations generated by the European Twisted Mass Collaboration (ETMC with Nf = 2+1 + 1 dynamical quarks at three values of the lattice spacing (a ≃ 0.062,0.082,0.089 fm with pion masses in the range Mπ ≃ 210 - 450 MeV. The strange and charm quark masses are tuned at their physical values. Neglecting discon-nected diagrams and after the extrapolations to the physical pion mass and to the continuum limit we obtain: aμsαem2=53.1±2.5⋅10−10,aμsαem3=−0.018±0.011⋅10−10 and aμcαem2=14.75±0.56⋅10−10,aμcαem3=−0.030±0.013⋅10−10 for the strange and charm contributions, respectively.!
Wilkie, W. Keats; Belvin, W. Keith; Park, K. C.
1996-01-01
A simple aeroelastic analysis of a helicopter rotor blade incorporating embedded piezoelectric fiber composite, interdigitated electrode blade twist actuators is described. The analysis consists of a linear torsion and flapwise bending model coupled with a nonlinear ONERA based unsteady aerodynamics model. A modified Galerkin procedure is performed upon the rotor blade partial differential equations of motion to develop a system of ordinary differential equations suitable for dynamics simulation using numerical integration. The twist actuation responses for three conceptual fullscale blade designs with realistic constraints on blade mass are numerically evaluated using the analysis. Numerical results indicate that useful amplitudes of nonresonant elastic twist, on the order of one to two degrees, are achievable under one-g hovering flight conditions for interdigitated electrode poling configurations. Twist actuation for the interdigitated electrode blades is also compared with the twist actuation of a conventionally poled piezoelectric fiber composite blade. Elastic twist produced using the interdigitated electrode actuators was found to be four to five times larger than that obtained with the conventionally poled actuators.
Giusti, D.; Lubicz, V.; Martinelli, G.; Sanfilippo, F.; Simula, S.
2017-10-01
We present a lattice calculation of the Hadronic Vacuum Polarization (HVP) contribution of the strange and charm quarks to the anomalous magnetic moment of the muon including leading-order electromagnetic corrections. We employ the gauge configurations generated by the European Twisted Mass Collaboration (ETMC) with N f = 2 + 1 + 1 dynamical quarks at three values of the lattice spacing ( a ≃ 0 .062 , 0 .082 , 0 .089 fm) with pion masses in the range M π ≃ 210-450 MeV. The strange and charm quark masses are tuned at their physical values. Neglecting disconnected diagrams and after the extrapolations to the physical pion mass and to the continuum limit we obtain: a μ s ( α em 2 ) = (53.1 ± 2.5) · 10- 10, a μ s ( α em 3 ) = (-0.018 ± 0.011) · 10- 10 and a μ c ( α em 2 ) = (14.75 ± 0.56) · 10- 10, a μ c ( α em 3 ) = (-0.030 ± 0.013) · 10- 10 for the strange and charm contributions, respectively.
Masses and decay constants of D(s) * and B(s) * mesons with Nf=2 +1 +1 twisted mass fermions
Lubicz, V.; Melis, A.; Simula, S.; ETM Collaboration
2017-08-01
We present a lattice calculation of the masses and decay constants of D(s) * and B(s) * mesons using the gauge configurations produced by the European Twisted Mass Collaboration (ETMC) with Nf=2 +1 +1 dynamical quarks at three values of the lattice spacing a ˜(0.06 -0.09 ) fm . Pion masses are simulated in the range Mπ≃(210 - 450 ) MeV , while the strange and charm sea-quark masses are close to their physical values. We compute the ratios of vector to pseudoscalar masses and decay constants for various values of the heavy-quark mass mh in the range 0.7 mcphys≲mh≲3 mcphys . In order to reach the physical b -quark mass, we exploit the heavy quark effective theory prediction that, in the static limit of infinite heavy-quark mass, the considered ratios are equal to one. At the physical point our results are MD*/MD=1.0769 (79 ) , MDs*/MDs=1.0751(56 ), fD*/fD=1.078 (36 ), fDs*/fD s=1.087 (20 ), MB*/MB=1.0078 (15 ), MBs*/MBs=1.0083(10 ), fB*/fB=0.958 (22 ) and fBs*/fB s=0.974 (10 ). Combining them with the experimental values of the pseudoscalar meson masses (used as input to fix the quark masses) and the values of the pseudoscalar decay constants calculated by ETMC, we get MD*=2013 (14 ), MDs*=2116 (11 ), fD*=223.5 (8.4 ), fDs*=268.8 (6.6 ), MB*=5320.5 (7.6 ), MBs*=5411.36 (5.3 ), fB*=185.9 (7.2 ) and fBs*=223.1 (5.4 ) MeV .
Nucleon axial form factors using Nf=2 twisted mass fermions with a physical value of the pion mass
Alexandrou, C.; Constantinou, M.; Hadjiyiannakou, K.; Jansen, K.; Kallidonis, C.; Koutsou, G.; Vaquero Aviles-Casco, A.
2017-09-01
We present results on the nucleon axial and induced pseudoscalar form factors using an ensemble of two degenerate twisted mass clover-improved fermions with mass yielding a pion mass of mπ=130 MeV . We evaluate the isovector and the isoscalar, as well as the strange and the charm axial form factors. The disconnected contributions are evaluated using recently developed methods that include deflation of the lower eigenstates, allowing us to extract the isoscalar, strange, and charm axial form factors. We find that the disconnected quark loop contributions are nonzero and particularly large for the induced pseudoscalar form factor.
Dynamics and control of twisting bi-stable structures
Arrieta, Andres F.; van Gemmeren, Valentin; Anderson, Aaron J.; Weaver, Paul M.
2018-02-01
Compliance-based morphing structures have the potential to offer large shape adaptation, high stiffness and low weight, while reducing complexity, friction, and scalability problems of mechanism based systems. A promising class of structure that enables these characteristics are multi-stable structures given their ability to exhibit large deflections and rotations without the expensive need for continuous actuation, with the latter only required intermittently. Furthermore, multi-stable structures exhibit inherently fast response due to the snap-through instability governing changes between stable states, enabling rapid configuration switching between the discrete number of programmed shapes of the structure. In this paper, the design and utilisation of the inherent nonlinear dynamics of bi-stable twisting I-beam structures for actuation with low strain piezoelectric materials is presented. The I-beam structure consists of three compliant components assembled into a monolithic single element, free of moving parts, and showing large deflections between two stable states. Finite element analysis is utilised to uncover the distribution of strain across the width of the flange, guiding the choice of positioning for piezoelectric actuators. In addition, the actuation authority is maximised by calculating the generalised coupling coefficient for different positions of the piezoelectric actuators. The results obtained are employed to tailor and test I-beam designs exhibiting desired large deflection between stable states, while still enabling the activation of snap-through with the low strain piezoelectric actuators. To this end, the dynamic response of the I-beams to piezoelectric excitation is investigated, revealing that resonant excitations are insufficient to dynamically trigger snap-through. A novel bang-bang control strategy, which exploits the nonlinear dynamics of the structure successfully triggers both single and constant snap-through between the stable states
Control of Spin Wave Dynamics in Spatially Twisted Magnetic Structures
2017-06-27
control the spin wave dynamics of magnetic structures twisted spatially, we prepared the exchange-coupled films with the hard magnetic L10-FePt and...information writing of magnetic storage and spintronic applications. Introduction and Objective: Recent rapid progress in the research field of nano...scaled bilayer elements is also an important aim of this project. Approach/Method: The exchange-coupled films with the hard magnetic L10-FePt and
The hadronic vacuum polarization and automatic O(a) improvement for twisted mass fermions
International Nuclear Information System (INIS)
Burger, Florian; Hotzel, Grit
2014-12-01
The vacuum polarization tensor and the corresponding vacuum polarization function are the basis for calculations of numerous observables in lattice QCD. Examples are the hadronic contributions to lepton anomalous magnetic moments, the running of the electroweak and strong couplings and quark masses. Quantities which are derived from the vacuum polarization tensor often involve a summation of current correlators over all distances in position space leading thus to the appearance of short-distance terms. The mechanism of O(a) improvement in the presence of such short-distance terms is not directly covered by the usual arguments of on-shell improvement of the action and the operators for a given quantity. If such short-distance contributions appear, the property of O(a) improvement needs to be reconsidered. We discuss the effects of these short-distance terms on the vacuum polarization function for twisted mass lattice QCD and find that even in the presence of such terms automatic O(a) improvement is retained if the theory is tuned to maximal twist.
An Approach for State Observation in Dynamical Systems Based on the Twisting Algorithm
DEFF Research Database (Denmark)
Schmidt, Lasse; Andersen, Torben Ole; Pedersen, Henrik C.
2013-01-01
This paper discusses a novel approach for state estimation in dynamical systems, with the special focus on hydraulic valve-cylinder drives. The proposed observer structure is based on the framework of the so-called twisting algorithm. This algorithm utilizes the sign of the state being the target...
Larocque, Hugo; Kaminer, Ido; Grillo, Vincenzo; Leuchs, Gerd; Padgett, Miles J.; Boyd, Robert W.; Segev, Mordechai; Karimi, Ebrahim
2018-04-01
Electrons have played a significant role in the development of many fields of physics during the last century. The interest surrounding them mostly involved their wave-like features prescribed by the quantum theory. In particular, these features correctly predict the behaviour of electrons in various physical systems including atoms, molecules, solid-state materials, and even in free space. Ten years ago, new breakthroughs were made, arising from the new ability to bestow orbital angular momentum (OAM) to the wave function of electrons. This quantity, in conjunction with the electron's charge, results in an additional magnetic property. Owing to these features, OAM-carrying, or twisted, electrons can effectively interact with magnetic fields in unprecedented ways and have motivated materials scientists to find new methods for generating twisted electrons and measuring their OAM content. Here, we provide an overview of such techniques along with an introduction to the exciting dynamics of twisted electrons.
Phase structure of thermal lattice QCD with N{sub f} = 2 twisted mass Wilson fermions
Energy Technology Data Exchange (ETDEWEB)
Ilgenfritz, E.M. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Lombardo, M. P. [INFN, Laboratori Nazionali di Frascati (Italy); Mueller-Preussker, M.; Petschlies, M. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Philipsen, O.; Zeidlewicz, L. [Inst. fuer Theoretische Physik, Wilhelms-Univ. Muenster (Germany)
2009-09-15
We present numerical results for the phase diagram of lattice QCD at finite temperature in the formulation with twisted mass Wilson fermions and a tree-level Symanzik-improved gauge action. Our simulations are performed on lattices with temporal extent N{sub {tau}}=8, and lattice coupling {beta} ranging from strong coupling to the scaling domain. Covering a wide range in the space spanned by the lattice coupling {beta} and the hopping and twisted mass parameters {kappa} and {mu}, respectively, we obtain a comprehensive picture of the rich phase structure of the lattice theory. In particular, we verify the existence of an Aoki phase in the strong coupling region and the realisation of the Sharpe-Singleton scenario at intermediate couplings. In the weak coupling region we identify the phase boundary for the physical finite temperature phase transition/crossover. Its shape in the three-dimensional parameter space is consistent with Creutz's conjecture of a cone-shaped thermal transition surface. (orig.)
The {pi}{sup +}{pi}{sup +} scattering length from maximally twisted mass lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Feng, Xu [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Muenster Univ. (Germany). Inst. fuer Theoretische Physik 1; Jansen, Karl; Renner, Dru [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2009-12-15
We calculate the s-wave pion-pion scattering length in the isospin I=2 channel in lattice QCD for pion masses ranging from 270 Mev to 485 Mev using two flavors of maximally twisted mass fermions at a lattice spacing of 0.086 fm. Additionally, we check for lattice artifacts with one calculation at a finer lattice spacing of 0.067 fm. We use chiral perturbation theory at next-to-leading order to extrapolate our results. At the physical pion mass, we find m{sub {pi}}a{sup I=2}{sub {pi}}{sub {pi}}=-0.04385(28)(38) for the scattering length, where the first error is statistical and the second is our estimate of several systematic effects. (orig.)
Modeling and control of active twist aircraft
Cramer, Nicholas Bryan
The Wright Brothers marked the beginning of powered flight in 1903 using an active twist mechanism as their means of controlling roll. As time passed due to advances in other technologies that transformed aviation the active twist mechanism was no longer used. With the recent advances in material science and manufacturability, the possibility of the practical use of active twist technologies has emerged. In this dissertation, the advantages and disadvantages of active twist techniques are investigated through the development of an aeroelastic modeling method intended for informing the designs of such technologies and wind tunnel testing to confirm the capabilities of the active twist technologies and validate the model. Control principles for the enabling structural technologies are also proposed while the potential gains of dynamic, active twist are analyzed.
Higher-Twist Dynamics in Large Transverse Momentum Hadron Production
International Nuclear Information System (INIS)
Francois, Alero
2009-01-01
A scaling law analysis of the world data on inclusive large-p # perpendicular# hadron production in hadronic collisions is carried out. A significant deviation from leading-twist perturbative QCD predictions at next-to-leading order is reported. The observed discrepancy is largest at high values of x # perpendicular# = 2p # perpendicular#/√s. In contrast, the production of prompt photons and jets exhibits the scaling behavior which is close to the conformal limit, in agreement with the leading-twist expectation. These results bring evidence for a non-negligible contribution of higher-twist processes in large-p # perpendicular# hadron production in hadronic collisions, where the hadron is produced directly in the hard subprocess rather than by gluon or quark jet fragmentation. Predictions for scaling exponents at RHIC and LHC are given, and it is suggested to trigger the isolated large-p # perpendicular# hadron production to enhance higher-twist processes.
Tensor form factor for the D → π(K) transitions with Twisted Mass fermions.
Lubicz, Vittorio; Riggio, Lorenzo; Salerno, Giorgio; Simula, Silvano; Tarantino, Cecilia
2018-03-01
We present a preliminary lattice calculation of the D → π and D → K tensor form factors fT (q2) as a function of the squared 4-momentum transfer q2. ETMC recently computed the vector and scalar form factors f+(q2) and f0(q2) describing D → π(K)lv semileptonic decays analyzing the vector current and the scalar density. The study of the weak tensor current, which is directly related to the tensor form factor, completes the set of hadronic matrix element regulating the transition between these two pseudoscalar mesons within and beyond the Standard Model where a non-zero tensor coupling is possible. Our analysis is based on the gauge configurations produced by the European Twisted Mass Collaboration with Nf = 2 + 1 + 1 flavors of dynamical quarks. We simulated at three different values of the lattice spacing and with pion masses as small as 210 MeV and with the valence heavy quark in the mass range from ≃ 0.7 mc to ≃ 1.2mc. The matrix element of the tensor current are determined for a plethora of kinematical conditions in which parent and child mesons are either moving or at rest. As for the vector and scalar form factors, Lorentz symmetry breaking due to hypercubic effects is clearly observed in the data. We will present preliminary results on the removal of such hypercubic lattice effects.
Orbital and spin dynamics of intraband electrons in quantum rings driven by twisted light.
Quinteiro, G F; Tamborenea, P I; Berakdar, J
2011-12-19
We theoretically investigate the effect that twisted light has on the orbital and spin dynamics of electrons in quantum rings possessing sizable Rashba spin-orbit interaction. The system Hamiltonian for such a strongly inhomogeneous light field exhibits terms which induce both spin-conserving and spin-flip processes. We analyze the dynamics in terms of the perturbation introduced by a weak light field on the Rasha electronic states, and describe the effects that the orbital angular momentum as well as the inhomogeneous character of the beam have on the orbital and the spin dynamics.
Wilkie, William Keats
1997-12-01
An aeroelastic model suitable for control law and preliminary structural design of composite helicopter rotor blades incorporating embedded anisotropic piezoelectric actuator laminae is developed. The aeroelasticity model consists of a linear, nonuniform beam representation of the blade structure, including linear piezoelectric actuation terms, coupled with a nonlinear, finite-state unsteady aerodynamics model. A Galerkin procedure and numerical integration in the time domain are used to obtain a soluti An aeroelastic model suitable for control law and preliminary structural design of composite helicopter rotor blades incorporating embedded anisotropic piezoelectric actuator laminae is developed. The aeroelasticity model consists of a linear, nonuniform beam representation of the blade structure, including linear piezoelectric actuation terms, coupled with a nonlinear, finite-state unsteady aerodynamics model. A Galerkin procedure and numerical integration in the time domain are used to obtain amited additional piezoelectric material mass, it is shown that blade twist actuation approaches which exploit in-plane piezoelectric free-stain anisotropies are capable of producing amplitudes of oscillatory blade twisting sufficient for rotor vibration reduction applications. The second study examines the effectiveness of using embedded piezoelectric actuator laminae to alleviate vibratory loads due to retreating blade stall. A 10 to 15 percent improvement in dynamic stall limited forward flight speed, and a 5 percent improvement in stall limited rotor thrust were numerically demonstrated for the active twist rotor blade relative to a conventional blade design. The active twist blades are also demonstrated to be more susceptible than the conventional blades to dynamic stall induced vibratory loads when not operating with twist actuation. This is the result of designing the active twist blades with low torsional stiffness in order to maximize piezoelectric twist authority
Pseudoscalar decay constants of kaon and D-mesons from N{sub f} = 2 twisted mass lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Blossier, B. [DESY, Zeuthen (Germany); Paris Univ., Orsay (France). Lab. de Physique Theorique; Dimopoulos, P.; Frezzotti, R. [Univ. di Roma Tor Vergata (Italy). Dipt. di Fisica; INFN, Sez. di Roma Tor Vergata, Roma (IT)] (and others)
2009-04-15
We present the results of a lattice QCD calculation of the pseudoscalar meson decay constants f{sub {pi}}, f{sub K}, f{sub D} and f{sub D{sub s}}, performed with N{sub f}=2 dynamical fermions. The simulation is carried out with the tree-level improved Symanzik gauge action and with the twisted mass fermionic action at maximal twist. We have considered for the final analysis three values of the lattice spacing, a {approx_equal}0.10 fm, 0.09 fm and 0.07 fm, with pion masses down to m{sub {pi}} {approx_equal}270 MeV. Our results for the light meson decay constants are f{sub K}=158.1(2.4) MeV and f{sub K}/f{sub {pi}}=1.210(18). From the latter ratio, by using the experimental determination of {gamma}(K {yields} {mu} anti {nu}{sub {mu}}({gamma}))/{gamma}({pi} {yields} {mu} anti {nu}{sub {mu}}({gamma})) and the average value of vertical stroke V{sub ud} vertical stroke from nuclear beta decays, we obtain vertical stroke V{sub us} vertical stroke =0.2222(34), in good agreement with the determination from semileptonic K{sub l3} decays and the unitarity constraint. For the D and D{sub s} meson decay constants we obtain f{sub D}=197(9) MeV, f{sub D{sub s}}=244(8) MeV and f{sub D{sub s}}/f{sub D}=1.24(3). Our result for f{sub D} is in good agreement with the CLEO experimental measurement. For f{sub D{sub s}} our determination is smaller than the PDG 2008 experimental average but in agreement with a recent improved measurement by CLEO at the 1.4 {sigma} level. (orig.)
Non-perturbative investigation of current correlators in twisted mass lattice QCD
International Nuclear Information System (INIS)
Petschlies, Marcus
2013-01-01
We present an investigation of hadronic current-current correlators based on the first principles of Quantum Chromodynamics. Specifically we apply the non-perturbative methods of twisted mass lattice QCD with dynamical up and down quark taking advantage of its automatic O(a) improvement. As a special application we discuss the calculation of the hadronic leading order contribution to the muon anomalous magnetic moment. The latter is regarded as a promising quantity for the search for physics beyond the standard model. The origin of the strong interest in the muon anomaly lies in the persistent discrepancy between the standard model estimate and its experimental measurement. In the theoretical determination the hadronic leading order part is currently afflicted with the largest uncertainty and a dedicated lattice investigation of the former can be of strong impact on future estimates. We discuss our study of all systematic uncertainties in the lattice calculation, including three lattice volumes, two lattice spacings, pion masses from 650 MeV to 290 MeV and the quark-disconnected contribution. We present a new method for the extrapolation to the physical point that softens the pion mass dependence of a μ hlo and allows for a linear extrapolation with small statistical uncertainty at the physical point. We determine the contribution of up and down quark as a μ hlo (N f =2)=5.69(15)10 -8 . The methods used for the muon are extended to the electron and tau lepton and we find a e hlo (N f =2)=1.512(43)10 -12 and a τ hlo (N f =2)=2.635(54)10 -6 . We estimate the charm contribution to a μ hlo in partially quenched tmLQCD with the result a μ hlo (charm)=1.447(24)(30)10 -9 in very good agreement with a dispersion-relation based result using experimental data for the hadronic R-ratio.
Twisted electron-acoustic waves in plasmas
International Nuclear Information System (INIS)
Aman-ur-Rehman; Ali, S.; Khan, S. A.; Shahzad, K.
2016-01-01
In the paraxial limit, a twisted electron-acoustic (EA) wave is studied in a collisionless unmagnetized plasma, whose constituents are the dynamical cold electrons and Boltzmannian hot electrons in the background of static positive ions. The analytical and numerical solutions of the plasma kinetic equation suggest that EA waves with finite amount of orbital angular momentum exhibit a twist in its behavior. The twisted wave particle resonance is also taken into consideration that has been appeared through the effective wave number q_e_f_f accounting for Laguerre-Gaussian mode profiles attributed to helical phase structures. Consequently, the dispersion relation and the damping rate of the EA waves are significantly modified with the twisted parameter η, and for η → ∞, the results coincide with the straight propagating plane EA waves. Numerically, new features of twisted EA waves are identified by considering various regimes of wavelength and the results might be useful for transport and trapping of plasma particles in a two-electron component plasma.
Gerbes over posets and twisted C*-dynamical systems
Vasselli, Ezio
2017-01-01
A base $\\Delta$ generating the topology of a space $M$ becomes a partially ordered set (poset), when ordered under inclusion of open subsets. Given a precosheaf over $\\Delta$ of fixed-point spaces (typically C*-algebras) under the action of a group $G$, in general one cannot find a precosheaf of $G$-spaces having it as fixed-point precosheaf. Rather one gets a gerbe over $\\Delta$, that is, a "twisted precosheaf" whose twisting is encoded by a cocycle with coefficients in a suitable 2-group. W...
Continuum limit of overlap valence quarks on a twisted mass sea
International Nuclear Information System (INIS)
Cichy, Krzysztof; Herdoiza, Gregorio; Univ. Autonoma de Madrid; Jansen, Karl
2010-12-01
We study a lattice QCD mixed action with overlap valence quarks on two flavours of Wilson maximally twisted mass sea quarks. Employing three different matching conditions to relate both actions to each other, we investigate the continuum limit by using three values of the lattice spacing ranging from a∼0.05 fm to 0.08 fm. A particular emphasis is put on the effect on physical observables of the topological zero modes appearing in the valence overlap operator. We estimate the region of parameter space where the contribution from these zero modes is sufficiently small such that their effects can be safely controlled and a restoration of unitarity of the mixed action in the continuum limit is reached. (orig.)
Neutron electric dipole moment using N{sub f}=2+1+1 twisted mass fermions
Energy Technology Data Exchange (ETDEWEB)
Alexandrou, C.; Athenodorou, A.; Constantinou, M.; Hadjiyiannakou, K. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; The Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Koutsou, G. [The Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Ottnad, K. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Bonn Univ. (Germany). Helmholtz-Institut fuer Strahlen- und Kernphysik; Bonn Univ. (Germany). Bethe Center for Theoretical Physics; Petschlies, M. [The Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Bonn Univ. (Germany). Helmholtz-Institut fuer Strahlen- und Kernphysik; Bonn Univ. (Germany). Bethe Center for Theoretical Physics
2016-03-15
We evaluate the neutron electric dipole moment vertical stroke vector d{sub N} vertical stroke using lattice QCD techniques. The gauge configurations analyzed are produced by the European Twisted Mass Collaboration using N{sub f}=2+1+1 twisted mass fermions at one value of the lattice spacing of a ≅0.082 fm and a light quark mass corresponding to m{sub π}≅373 MeV. Our approach to extract the neutron electric dipole moment is based on the calculation of the CP-odd electromagnetic form factor F{sub 3}(Q{sup 2}) for small values of the vacuum angle θ in the limit of zero Euclidean momentum transfer Q{sup 2}. The limit Q{sup 2}→0 is realized either by adopting a parameterization of the momentum dependence of F{sub 3}(Q{sup 2}) and performing a fit, or by employing new position space methods, which involve the elimination of the kinematical momentum factor in front of F{sub 3}(Q{sup 2}). The computation in the presence of a CP-violating term requires the evaluation of the topological charge Q. This is computed by applying the cooling technique and the gradient flow with three different actions, namely the Wilson, the Symanzik tree-level improved and the Iwasaki action. We demonstrate that cooling and gradient flow give equivalent results for the neutron electric dipole moment. Our analysis yields a value of vertical stroke vector d{sub N} vertical stroke =0.045(6)(1) anti θ e.fm for the ensemble with m{sub π}=373 MeV considered.
Mass anomalous dimension of Adjoint QCD at large N from twisted volume reduction
Pérez, Margarita García; Keegan, Liam; Okawa, Masanori
2015-01-01
In this work we consider the $SU(N)$ gauge theory with two Dirac fermions in the adjoint representation, in the limit of large $N$. In this limit the infinite-volume physics of this model can be studied by means of the corresponding twisted reduced model defined on a single site lattice. Making use of this strategy we study the reduced model for various values of $N$ up to 289. By analyzing the eigenvalue distribution of the adjoint Dirac operator we test the conformality of the theory and extract the corresponding mass anomalous dimension.
Mass anomalous dimension of adjoint QCD at large N from twisted volume reduction
Energy Technology Data Exchange (ETDEWEB)
Pérez, Margarita García [Instituto de Física Teórica UAM-CSIC, Nicolás Cabrera 13-15, Universidad Autónoma de Madrid,E-28049-Madrid (Spain); González-Arroyo, Antonio [Instituto de Física Teórica UAM-CSIC, Nicolás Cabrera 13-15, Universidad Autónoma de Madrid,E-28049-Madrid (Spain); Departamento de Física Teórica, C-XI, Universidad Autónoma de Madrid,E-28049-Madrid (Spain); Keegan, Liam [PH-TH, CERN,CH-1211 Geneva 23 (Switzerland); Okawa, Masanori [Graduate School of Science, Hiroshima University,Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Core of Research for the Energetic Universe, Hiroshima University,Higashi-Hiroshima, Hiroshima 739-8526 (Japan)
2015-08-07
In this work we consider the SU(N) gauge theory with two Dirac fermions in the adjoint representation, in the limit of large N. In this limit the infinite-volume physics of this model can be studied by means of the corresponding twisted reduced model defined on a single site lattice. Making use of this strategy we study the reduced model for various values of N up to 289. By analyzing the eigenvalue distribution of the adjoint Dirac operator we test the conformality of the theory and extract the corresponding mass anomalous dimension.
Dynamic testing and analysis of extension-twist-coupled composite tubular spars
Lake, Renee C.; Izapanah, Amir P.; Baucon, Robert M.
The results from a study aimed at improving the dynamic and aerodynamic characteristics of composite rotor blades through the use of extension-twist elastic coupling are presented. A set of extension-twist-coupled composite tubular spars, representative of the primary load carrying structure within a helicopter rotor blade, was manufactured using four plies of woven graphite/epoxy cloth 'prepreg.' These spars were non-circular in cross section design and were therefore subject to warping deformations. Three cross-sectional geometries were developed: square, D-shape, and flattened ellipse. Results from free-free vibration tests of the spars were compared with results from normal modes and frequency analyses of companion shell-finite-element models developed in MSC/NASTRAN. Five global or 'non-shell' modes were identified within the 0-2000 Hz range for each spar. The frequencies and associated mode shapes for the D-shape spar were correlated with analytical results, showing agreement within 13.8 percent. Frequencies corresponding to the five global mode shapes for the square spar agreed within 9.5 percent of the analytical results. Five global modes were similarly identified for the elliptical spar and agreed within 4.9 percent of the respective analytical results.
Dynamic testing and analysis of extension-twist-coupled composite tubular spars
Lake, Renee C.; Izapanah, Amir P.; Baucon, Robert M.
1992-01-01
The results from a study aimed at improving the dynamic and aerodynamic characteristics of composite rotor blades through the use of extension-twist elastic coupling are presented. A set of extension-twist-coupled composite tubular spars, representative of the primary load carrying structure within a helicopter rotor blade, was manufactured using four plies of woven graphite/epoxy cloth 'prepreg.' These spars were non-circular in cross section design and were therefore subject to warping deformations. Three cross-sectional geometries were developed: square, D-shape, and flattened ellipse. Results from free-free vibration tests of the spars were compared with results from normal modes and frequency analyses of companion shell-finite-element models developed in MSC/NASTRAN. Five global or 'non-shell' modes were identified within the 0-2000 Hz range for each spar. The frequencies and associated mode shapes for the D-shape spar were correlated with analytical results, showing agreement within 13.8 percent. Frequencies corresponding to the five global mode shapes for the square spar agreed within 9.5 percent of the analytical results. Five global modes were similarly identified for the elliptical spar and agreed within 4.9 percent of the respective analytical results.
D → π and D → K semileptonic form factors with Nf = 2 + 1 + 1 twisted mass fermions
Lubicz, Vittorio; Riggio, Lorenzo; Salerno, Giorgio; Simula, Silvano; Tarantino, Cecilia
2018-03-01
We present a lattice determination of the vector and scalar form factors of the D → π(K)lv semileptonic decays, which are relevant for the extraction of the CKM matrix elements |Vcd| and |Vcs| from experimental data. Our analysis is based on the gauge configurations produced by the European Twisted Mass Collaboration with Nf = 2 + 1 +1 flavors of dynamical quarks. We simulated at three different values of the lattice spacing and with pion masses as small as 210 MeV. The matrix elements of both vector and scalar currents are determined for a plenty of kinematical conditions in which parent and child mesons are either moving or at rest. Lorentz symmetry breaking due to hypercubic effects is clearly observed in the data and included in the decomposition of the current matrix elements in terms of additional form factors. After the extrapolations to the physical pion mass and to the continuum limit the vector and scalar form factors are determined in the whole kinematical region from q2 = 0 up to qmax2 = (MD - Mπ(K))2 accessible in the experiments, obtaining a good overall agreement with experiments, except in the region at high values of q2 where some deviations are visible.
Continuum limit of overlap valence quarks on a twisted mass sea
Energy Technology Data Exchange (ETDEWEB)
Cichy, Krzysztof [Adam Mickiewicz Univ., Poznan (Poland). Faculty of Physics; Herdoiza, Gregorio [DESY, Zeuthen (Germany). John von Neumann-Institut fuer Computing NIC; Univ. Autonoma de Madrid (Spain). Dept. de Fisica Teorica; Jansen, Karl [DESY, Zeuthen (Germany). John von Neumann-Institut fuer Computing NIC
2010-12-15
We study a lattice QCD mixed action with overlap valence quarks on two flavours of Wilson maximally twisted mass sea quarks. Employing three different matching conditions to relate both actions to each other, we investigate the continuum limit by using three values of the lattice spacing ranging from a{approx}0.05 fm to 0.08 fm. A particular emphasis is put on the effect on physical observables of the topological zero modes appearing in the valence overlap operator. We estimate the region of parameter space where the contribution from these zero modes is sufficiently small such that their effects can be safely controlled and a restoration of unitarity of the mixed action in the continuum limit is reached. (orig.)
Twisted supersymmetry: Twisted symmetry versus renormalizability
International Nuclear Information System (INIS)
Dimitrijevic, Marija; Nikolic, Biljana; Radovanovic, Voja
2011-01-01
We discuss a deformation of superspace based on a Hermitian twist. The twist implies a *-product that is noncommutative, Hermitian and finite when expanded in a power series of the deformation parameter. The Leibniz rule for the twisted supersymmetry transformations is deformed. A minimal deformation of the Wess-Zumino action is proposed and its renormalizability properties are discussed. There is no tadpole contribution, but the two-point function diverges. We speculate that the deformed Leibniz rule, or more generally the twisted symmetry, interferes with renormalizability properties of the model. We discuss different possibilities to render a renormalizable model.
Overlap valence quarks on a twisted mass sea. A case study for mixed action lattice QCD
International Nuclear Information System (INIS)
Cichy, Krzysztof; Herdoiza, Gregorio; UAM/CSIC Univ. Autonoma de Madrid
2012-11-01
We discuss a Lattice QCD mixed action investigation employing Wilson maximally twisted mass sea and overlap valence fermions. Using four values of the lattice spacing, we demonstrate that the overlap Dirac operator assumes a point-like locality in the continuum limit. We also show that by adopting suitable matching conditions for the sea and valence theories a consistent continuum limit for the pion decay constant and light baryon masses can be obtained. Finally, we confront results for sea-valence mixed meson masses and the valence scalar correlator with corresponding expressions of chiral perturbation theory. This allows us to extract low energy constants of mixed action chiral perturbation which characterize the strength of unitarity violations in our mixed action setup.
Overlap valence quarks on a twisted mass sea. A case study for mixed action lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Cichy, Krzysztof [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Poznan Univ. (Poland). Faculty of Physics; Drach, Vincent; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Garcia-Ramos, Elena [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany); Herdoiza, Gregorio [UAM/CSIC Univ. Autonoma de Madrid (Spain). Dept. de Fisica Teorica; UAM/CSIC Univ. Autonoma de Madrid (Spain). Inst. de Fisica Teorica; Collaboration: European Twisted Mass Collaboration
2012-11-15
We discuss a Lattice QCD mixed action investigation employing Wilson maximally twisted mass sea and overlap valence fermions. Using four values of the lattice spacing, we demonstrate that the overlap Dirac operator assumes a point-like locality in the continuum limit. We also show that by adopting suitable matching conditions for the sea and valence theories a consistent continuum limit for the pion decay constant and light baryon masses can be obtained. Finally, we confront results for sea-valence mixed meson masses and the valence scalar correlator with corresponding expressions of chiral perturbation theory. This allows us to extract low energy constants of mixed action chiral perturbation which characterize the strength of unitarity violations in our mixed action setup.
Alexandrou, Constantia; Constantinou, Martha; Hadjiyiannakou, Kyriakos; Jansen, Karl; Kallidonis, Christos; Koutsou, Giannis; Vaquero Avilés-Casco, Alejandro
2018-03-01
We present results on the isovector and isoscalar nucleon axial form factors including disconnected contributions, using an ensemble of Nf = 2 twisted mass cloverimproved Wilson fermions simulated with approximately the physical value of the pion mass. The light disconnected quark loops are computed using exact deflation, while the strange and the charm quark loops are evaluated using the truncated solver method. Techniques such as the summation and the two-state fits have been employed to access ground-state dominance.
Hadronic corrections to electroweak observables from twisted mass lattice QCD
International Nuclear Information System (INIS)
Pientka, Grit
2015-01-01
For several benchmark quantities investigated to detect signs for new physics beyond the standard model of elementary particle physics, lattice QCD currently constitutes the only ab initio approach available at small momentum transfers for the computation of non-perturbative hadronic contributions. Among those observables are the lepton anomalous magnetic moments and the running of the electroweak coupling constants. We compute the leading QCD contribution to the muon anomalous magnetic moment by performing lattice QCD calculations on ensembles incorporating N f =2+1+1 dynamical twisted mass fermions. Considering active up, down, strange, and charm quarks, admits for the first time a direct comparison of the lattice data for the muon anomaly with phenomenological results because both the latter as well as the experimentally obtained values are sensitive to the complete first two generations of quarks at the current level of precision. Recently, it has been noted that improved measurements of the electron and tau anomalous magnetic moments might also provide ways of detecting new physics contributions. Therefore, we also compute their leading QCD contributions, which simultaneously serve as cross-checks of the value obtained for the muon. Additionally, we utilise the obtained data to compute the leading hadronic contribution to the running of the fine structure constant, which enters all perturbative QED calculations. Furthermore, we show that even for the weak mixing angle the leading QCD contribution can be computed from this data. In this way, we identify a new prime observable in the search for new physics whose hadronic contributions can be obtained from lattice QCD. With the results obtained in this thesis, we are able to exclude unsuitable phenomenologically necessary flavour separations and thus directly assist the presently more precise phenomenological determinations of this eminent quantity.
International Nuclear Information System (INIS)
Abdel-Rehim, Abdou; Kallidonis, Christos; Koutsou, Giannis
2015-11-01
We compute the disconnected quark loops contributions entering the determination of nucleon observables, by using a N f =2 ensemble of twisted mass fermions with a clover term at a pion mass m π =133 MeV. We employ exact deflation and implement all calculations in GPUs, enabling us to achieve large statistics and a good signal.
CSIR Research Space (South Africa)
Forbes, A
2010-12-01
Full Text Available Research at the Mathematical Optics Group uses "twisted" light to study new quatum-based information security systems. In order to understand the structure of "twisted" light, it is useful to start with an ordinary light beam with zero twist, namely...
Nucleon structure by Lattice QCD computations with twisted mass fermions
International Nuclear Information System (INIS)
Harraud, P.A.
2010-11-01
Understanding the structure of the nucleon from quantum chromodynamics (QCD) is one of the greatest challenges of hadronic physics. Only lattice QCD allows to determine numerically the values of the observables from ab-initio principles. This thesis aims to study the nucleon form factors and the first moments of partons distribution functions by using a discretized action with twisted mass fermions. As main advantage, the discretization effects are suppressed at first order in the lattice spacing. In addition, the set of simulations allows a good control of the systematical errors. After reviewing the computation techniques, the results obtained for a wide range of parameters are presented, with lattice spacings varying from 0.0056 fm to 0.089 fm, spatial volumes from 2.1 up to 2.7 fm and several pion masses in the range of 260-470 MeV. The vector renormalization constant was determined in the nucleon sector with improved precision. Concerning the electric charge radius, we found a finite volume effect that provides a key towards an explanation of the chiral dependence of the physical point. The results for the magnetic moment, the axial charge, the magnetic and axial charge radii, the momentum and spin fractions carried by the quarks show no dependence on the lattice spacing nor volume. In our range of pion masses, their values show a deviation from the experimental values. Their chiral behaviour do not exhibit the curvature predicted by the chiral perturbation theory which could explain the apparent discrepancy. (author)
Twisted Spectral Triple for the Standard Model and Spontaneous Breaking of the Grand Symmetry
Energy Technology Data Exchange (ETDEWEB)
Devastato, Agostino, E-mail: agostino.devastato@na.infn.it; Martinetti, Pierre, E-mail: martinetti@dima.unige.it [Università di Napoli Federico II, Dipartimento di Fisica (Italy)
2017-03-15
Grand symmetry models in noncommutative geometry, characterized by a non-trivial action of functions on spinors, have been introduced to generate minimally (i.e. without adding new fermions) and in agreement with the first order condition an extra scalar field beyond the standard model, which both stabilizes the electroweak vacuum and makes the computation of the mass of the Higgs compatible with its experimental value. In this paper, we use a twist in the sense of Connes-Moscovici to cure a technical problem due to the non-trivial action on spinors, that is the appearance together with the extra scalar field of unbounded vectorial terms. The twist makes these terms bounded and - thanks to a twisted version of the first-order condition that we introduce here - also permits to understand the breaking to the standard model as a dynamical process induced by the spectral action, as conjectured in [24]. This is a spontaneous breaking from a pre-geometric Pati-Salam model to the almost-commutativegeometryofthestandardmodel,withtwoHiggs-likefields: scalar and vector.
Twist limits for late twisting double somersaults on trampoline.
Yeadon, M R; Hiley, M J
2017-06-14
An angle-driven computer simulation model of aerial movement was used to determine the maximum amount of twist that could be produced in the second somersault of a double somersault on trampoline using asymmetrical movements of the arms and hips. Lower bounds were placed on the durations of arm and hip angle changes based on performances of a world trampoline champion whose inertia parameters were used in the simulations. The limiting movements were identified as the largest possible odd number of half twists for forward somersaulting takeoffs and even number of half twists for backward takeoffs. Simulations of these two limiting movements were found using simulated annealing optimisation to produce the required amounts of somersault, tilt and twist at landing after a flight time of 2.0s. Additional optimisations were then run to seek solutions with the arms less adducted during the twisting phase. It was found that 3½ twists could be produced in the second somersault of a forward piked double somersault with arms abducted 8° from full adduction during the twisting phase and that three twists could be produced in the second somersault of a backward straight double somersault with arms fully adducted to the body. These two movements are at the limits of performance for elite trampolinists. Copyright © 2017 Elsevier Ltd. All rights reserved.
Twisting Anderson pseudospins with light: Quench dynamics in THz-pumped BCS superconductors
Chou, Yang-Zhi; Liao, Yunxiang; Foster, Matthew
We study the preparation and the detection of coherent far-from-equilibrium BCS superconductor dynamics in THz pump-probe experiments. In a recent experiment, an intense monocycle THz pulse with center frequency ω = Δ was injected into a superconductor with BCS gap Δ the post-pump evolution was detected via the optical conductivity. It was argued that nonlinear coupling of the pump to the Anderson pseudospins of the superconductor induces coherent dynamics of the Higgs mode Δ (t) . We validate this picture in a 2D BCS model with a combination of exact numerics and the Lax reduction, and we compute the dynamical phase diagram. The main effect of the pump is to scramble the orientations of Anderson pseudospins along the Fermi surface by twisting them in the xy-plane. We show that more intense pulses can induce a far-from-equilibrium gapless phase (phase I), originally predicted in the context of interaction quenches. We show that the THz pump can reach phase I at much lower energy densities than an interaction quench, and we demonstrate that Lax reduction provides a quantitative tool for computing coherent BCS dynamics. We also compute the optical conductivity for the states discussed here.
Twisting perturbed parafermions
Directory of Open Access Journals (Sweden)
A.V. Belitsky
2017-07-01
Full Text Available The near-collinear expansion of scattering amplitudes in maximally supersymmetric Yang–Mills theory at strong coupling is governed by the dynamics of stings propagating on the five sphere. The pentagon transitions in the operator product expansion which systematize the series get reformulated in terms of matrix elements of branch-point twist operators in the two-dimensional O(6 nonlinear sigma model. The facts that the latter is an asymptotically free field theory and that there exists no local realization of twist fields prevents one from explicit calculation of their scaling dimensions and operator product expansion coefficients. This complication is bypassed making use of the equivalence of the sigma model to the infinite-level limit of WZNW models perturbed by current–current interactions, such that one can use conformal symmetry and conformal perturbation theory for systematic calculations. Presently, to set up the formalism, we consider the O(3 sigma model which is reformulated as perturbed parafermions.
Periodic solutions of asymptotically linear Hamiltonian systems without twist conditions
Energy Technology Data Exchange (ETDEWEB)
Cheng Rong [Coll. of Mathematics and Physics, Nanjing Univ. of Information Science and Tech., Nanjing (China); Dept. of Mathematics, Southeast Univ., Nanjing (China); Zhang Dongfeng [Dept. of Mathematics, Southeast Univ., Nanjing (China)
2010-05-15
In dynamical system theory, especially in many fields of applications from mechanics, Hamiltonian systems play an important role, since many related equations in mechanics can be written in an Hamiltonian form. In this paper, we study the existence of periodic solutions for a class of Hamiltonian systems. By applying the Galerkin approximation method together with a result of critical point theory, we establish the existence of periodic solutions of asymptotically linear Hamiltonian systems without twist conditions. Twist conditions play crucial roles in the study of periodic solutions for asymptotically linear Hamiltonian systems. The lack of twist conditions brings some difficulty to the study. To the authors' knowledge, very little is known about the case, where twist conditions do not hold. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Abdel-Rehim, Abdou; Kallidonis, Christos; Koutsou, Giannis [Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Alexandrou, Constantia; Constantinou, Martha; Hadjiyiannakou, Kyriakos [Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Cyprus Univ. (Cyprus). Dept. of Physics; Jansen, Karl [DESY Zeuthen (Germany). NIC; Aviles-Casco, Alejandro Vaquero [INFN Sezione di Milano-Bicocca, Milano (Italy)
2015-11-15
We compute the disconnected quark loops contributions entering the determination of nucleon observables, by using a N{sub f}=2 ensemble of twisted mass fermions with a clover term at a pion mass m{sub π}=133 MeV. We employ exact deflation and implement all calculations in GPUs, enabling us to achieve large statistics and a good signal.
International Nuclear Information System (INIS)
Cichy, Krzysztof; Kujawa, Agnieszka
2008-11-01
In this paper we investigate the cutoff effects at tree-level of perturbation theory for three different lattice regularizations of fermions - maximally twisted mass Wilson, overlap and Creutz fermions. We show that all three kinds of fermions exhibit the expected O(a 2 ) scaling behaviour in the lattice spacing. Moreover, the size of these cutoff effects for the considered quantities i.e. the pseudoscalar correlation function C PS , the mass m PS and the decay constant f PS is comparable for all of them. (orig.)
International Nuclear Information System (INIS)
Zhou, Jinyuan; Xie, Erqing; Sun, Gengzhi; Zhan, Zhaoyao; Zheng, Lianxi
2014-01-01
The dependences of twisting parameters on the electric and mechanical properties of twisted CNT fibers were systematically studied. Results from electric and mechanical measurements showed that twisting intensity is very effective to improve the electric and mechanical properties of CNT fibers. Further calculations combined with Raman results indicate that the twisting treatments, to a certain extent, can greatly enhance the strain transfer factors of the samples, which dominates the mechanical properties of CNT fibers. In addition, studies on the effect of twisting speeds suggested that lower twisting speed can lead to higher uniformity but lower performances in the electric and mechanical properties, higher twisting speed to higher Young’s modulus and higher conductance but lower uniformities. Ultra-strong uniform CNT fibers need to be prepared with a suitable twisting speed. (paper)
Design and analysis of variable-twist tiltrotor blades using shape memory alloy hybrid composites
International Nuclear Information System (INIS)
Park, Jae-Sang; Kim, Seong-Hwan; Jung, Sung Nam; Lee, Myeong-Kyu
2011-01-01
The tiltrotor blade, or proprotor, acts as a rotor in the helicopter mode and as a propeller in the airplane mode. For a better performance, the proprotor should have different built-in twist distributions along the blade span, suitable for each operational mode. This paper proposes a new variable-twist proprotor concept that can adjust the built-in twist distribution for given flight modes. For a variable-twist control, the present proprotor adopts shape memory alloy hybrid composites (SMAHC) containing shape memory alloy (SMA) wires embedded in the composite matrix. The proprotor of the Korea Aerospace Research Institute (KARI) Smart Unmanned Aerial Vehicle (SUAV), which is based on the tiltrotor concept, is used as a baseline proprotor model. The cross-sectional properties of the variable-twist proprotor are designed to maintain the cross-sectional properties of the original proprotor as closely as possible. However, the torsion stiffness is significantly reduced to accommodate the variable-twist control. A nonlinear flexible multibody dynamic analysis is employed to investigate the dynamic characteristics of the proprotor such as natural frequency and damping in the whirl flutter mode, the blade structural loads in a transition flight and the rotor performance in hover. The numerical results show that the present proprotor is designed to have a strong similarity to the baseline proprotor in dynamic and load characteristics. It is demonstrated that the present proprotor concept could be used to improve the hover performance adaptively when the variable-twist control using the SMAHC is applied appropriately
Design and analysis of variable-twist tiltrotor blades using shape memory alloy hybrid composites
Park, Jae-Sang; Kim, Seong-Hwan; Jung, Sung Nam; Lee, Myeong-Kyu
2011-01-01
The tiltrotor blade, or proprotor, acts as a rotor in the helicopter mode and as a propeller in the airplane mode. For a better performance, the proprotor should have different built-in twist distributions along the blade span, suitable for each operational mode. This paper proposes a new variable-twist proprotor concept that can adjust the built-in twist distribution for given flight modes. For a variable-twist control, the present proprotor adopts shape memory alloy hybrid composites (SMAHC) containing shape memory alloy (SMA) wires embedded in the composite matrix. The proprotor of the Korea Aerospace Research Institute (KARI) Smart Unmanned Aerial Vehicle (SUAV), which is based on the tiltrotor concept, is used as a baseline proprotor model. The cross-sectional properties of the variable-twist proprotor are designed to maintain the cross-sectional properties of the original proprotor as closely as possible. However, the torsion stiffness is significantly reduced to accommodate the variable-twist control. A nonlinear flexible multibody dynamic analysis is employed to investigate the dynamic characteristics of the proprotor such as natural frequency and damping in the whirl flutter mode, the blade structural loads in a transition flight and the rotor performance in hover. The numerical results show that the present proprotor is designed to have a strong similarity to the baseline proprotor in dynamic and load characteristics. It is demonstrated that the present proprotor concept could be used to improve the hover performance adaptively when the variable-twist control using the SMAHC is applied appropriately.
Twisting and Writhing with George Ellery Hale
Canfield, Richard C.
2013-06-01
Early in his productive career in astronomy, George Ellery Hale developed innovative solar instrumentation that allowed him to make narrow-band images. Among the solar phenomena he discovered were sunspot vortices, which he attributed to storms akin to cyclones in our own atmosphere. Using the concept of magnetic helicity, physicists and mathematicians describe the topology of magnetic fields, including twisting and writhing. Our contemporary understanding of Hale's vortices as a consequence of large-scale twist in sunspot magnetic fields hinges on a key property of helicity: conservation. I will describe the critical role that this property plays, when applied to twist and writhe, in a fundamental aspect of global solar magnetism: the hemispheric and solar cycle dependences of active region electric currents with respect to magnetic fields. With the advent of unbroken sequences of high-resolution magnetic images, such as those presently available from the Helioseismic and Magnetic Imager on Solar Dynamics Observatory, the flux of magnetic helicity through the photosphere can be observed quantitatively. As magnetic flux tubes buoy up through the convection zone, buffeted and shredded by turbulence, they break up into fragments by repeated random bifurcation. We track these rising flux fragments in the photosphere, and calculate the flux of energy and magnetic helicity there. Using a quantitative model of coronal currents, we also track connections between these fragments to calculate the energy and magnetic helicity stored at topological interfaces that are in some ways analogous to the storage of stress at faults in the Earth's crust. Comparison of these values to solar flares and interplanetary coronal mass ejections implies that this is the primary storage mechanism for energy and magnetic helicity released in those phenomena, and suggests a useful tool for quantitative prediction of geomagnetic storms.
Energy Technology Data Exchange (ETDEWEB)
Cichy, Krzysztof; Kujawa, Agnieszka [Adam Mickiewicz Univ., Poznan (Poland). Faculty of Physics; Gonzalez Lopez, Jenifer [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik]|[Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)
2008-11-15
In this paper we investigate the cutoff effects at tree-level of perturbation theory for three different lattice regularizations of fermions - maximally twisted mass Wilson, overlap and Creutz fermions. We show that all three kinds of fermions exhibit the expected O(a{sup 2}) scaling behaviour in the lattice spacing. Moreover, the size of these cutoff effects for the considered quantities i.e. the pseudoscalar correlation function C{sub PS}, the mass m{sub PS} and the decay constant f{sub PS} is comparable for all of them. (orig.)
Effect of Lowering Twist Levels on Quality Parameters of Rotor Spun Cotton Yarn
Directory of Open Access Journals (Sweden)
FAROOQ AHMED
2016-07-01
Full Text Available Investigations were made to explore the influence of lowering twist level on quality characteristics of rotor spun yarn. Three levels of yarn linear density (i.e. 40, 35 and 30 tex and five levels of twist (i.e. 700, 600, 550, 500, and 450 were employed during yarn spinning trials. Each twist multiple was investigated at all linear densities for tensile strength, elongation, total CVm (Coefficient of Mass Variation imperfection index and hairiness. 100% cotton yarn samples were prepared on Reiter R-40 at rotor speed of 90,000 rpm. Determination of elongation, yarn strength, hairiness, mass variation, and total imperfections index was carried out on Uster Tensorapid-4 and Uster Tester-4 as per set standards of ISO standard test methods. Based on investigations it is established that yarn strength and elongation declined minutely (Insignificant with lowering twist levels but still can be confidently used for knitting yarns. However, significant improvement in total imperfection index and marginal enhancement in CVm were experienced.
Directory of Open Access Journals (Sweden)
Kumar Akarsh
2018-01-01
Full Text Available In the present study numerical analysis of enhancement in heat transfer characteristics in a double pipe heat exchanger is studied using a holed twisted tape.The twisted tape with a constant twist ratio is inserted in a double pipe heat exchanger. Holes of diameter 1mm, 3 mm and 5 mm were drilled at regular pitch throughout the length of the tape. Numerical modeling of a double pipe heat exchanger with the holed twisted tape was constructed considering hot fluid flowing in the inner pipe and cold fluid through the annulus.Simulation was done for varied mass flow rates of hot fluid in the turbulent condition keeping the mass flow rate of cold fluid being constant. Thermal properties like Outlet temperatures, Nusselt number, overall heat transfer coefficient, heat transfer rate and pressure drop were determined for all the cases. Results indicated that normaltwisted tape without holes performed better than the bare tube. In the tested range of mass flow rates the average Nusselt number and heat transfer rate were increased by 85% and 34% respectively. Performance of Twisted tape with holes was slightly reduced than the normal twisted tape and it deteriorated further for higher values hole diameter. Pressure drop was found to be higher for the holed twisted tape than the normal tape.
The electric dipole moment of the neutron from Nf=2+1+1 twisted mass fermions
International Nuclear Information System (INIS)
Alexandrou, C.; Athenodorou, A.; Constantinou, M.; Cyprus Institute, Nicosia; Hadjiyiannakou, K.; Cyprus Institute, Nicosia; George Washington Univ., Washington, DC; Jansen, K.; Koutsou, G.; Ottnad, K.; Bonn Univ.; Petschlies, M.; Bonn Univ.
2015-11-01
We extract the neutron electric dipole moment (nEDM) vertical stroke vector d n vertical stroke on configurations produced with N f =2+1+1 twisted mass fermions with lattice spacing of a ≅0.082 fm and a light quark mass that corresponds to M π ≅ 373 MeV. We do so by evaluating the CP-odd form factor F 3 for small values of the CP-violation parameter θ in the limit of zero momentum transfer. This limit is extracted using the usual parametrization but in addition position space methods. The topological charge is computed via cooling and gradient flow using the Wilson, Symanzik tree-level improved and Iwasaki actions for smoothing. We obtain consistent results for all choices of smoothing procedures and methods to extract F 3 at zero momentum transfer. For the ensemble analyzed we find a value of nEDM of vertical stroke vector d n vertical stroke /θ=0.045(6)(1) e.fm.
κ-Minkowski spacetime as the result of Jordanian twist deformation
International Nuclear Information System (INIS)
Borowiec, A.; Pachol, A.
2009-01-01
Two one-parameter families of twists providing κ-Minkowski * product deformed spacetime are considered: Abelian and Jordanian. We compare the derivation of quantum Minkowski space from two perspectives. The first one is the Hopf module algebra point of view, which is strictly related with Drinfeld's twisting tensor technique. The other one relies on an appropriate extension of ''deformed realizations'' of nondeformed Lorentz algebra by the quantum Minkowski algebra. This extension turns out to be de Sitter Lie algebra. We show the way both approaches are related. The second path allows us to calculate deformed dispersion relations for toy models ensuing from different twist parameters. In the Abelian case, one recovers κ-Poincare dispersion relations having numerous applications in doubly special relativity. Jordanian twists provide a new type of dispersion relations which in the minimal case (related to Weyl-Poincare algebra) takes an energy-dependent linear mass deformation form.
Effective potentials for twisted fields
International Nuclear Information System (INIS)
Banach, R.
1981-01-01
Minus the density of the effective action, evaluated at the lowest eigenfunction of the (space-time) derivative part of the second (functional) derivative of the classical action, is proposed as a generalised definition of the effective potential, applicable to twisted as well as untwisted sectors of a field theory. The proposal is corroborated by several specific calculations in the twisted sector, namely phi 4 theory (real and complex) and wrong-sign-Gordon theory, in an Einstein cylinder, where the exact integrability of the static solutions confirms the effective potential predictions. Both models exhibit a phase transition, which the effective potential locates, and the one-loop quantum shift in the critical radius is computed for the real phi 4 model, being a universal result. Topological mass generation at the classical level is pointed out, and the exactness of the classical effective potential approximation for complex phi 4 is discussed. (author)
Do hummingbirds use a different mechanism than insects to flip and twist their wings?
Song, Jialei; Luo, Haoxiang; Hedrick, Tyson
2014-11-01
Hovering hummingbirds flap their wings in an almost horizontal stroke plane and flip the wings to invert the angle of attack after stroke reversal, a strategy also utilized by many hovering insects such as fruit flies. However, unlike insects whose wing actuation mechanism is only located at the base, hummingbirds have a vertebrate musculoskeletal system and their wings contain bones and muscles and thus, they may be capable of both actively flipping and twisting their wings. To investigate this issue, we constructed a hummingbird wing model and study its pitching dynamics. The wing kinematics are reconstructed from high-speed imaging data, and the inertial torques are calculated in a rotating frame of reference using mass distribution data measured from dissections of hummingbird wings. Pressure data from a previous CFD study of the same wing kinematics are used to calculate the aerodynamic torque. The results show that like insect wings, the hummingbird wing pitching is driven by its own inertia during reversal, and the aerodynamic torque is responsible for wing twist during mid-stroke. In conclusion, our study suggests that their wing dynamics are very similar even though their actuation systems are entirely different. This research was supported by the NSF.
Wilkie, W. Keats; Park, K. C.
1996-01-01
A simple aeroelastic analysis of a helicopter rotor blade incorporating embedded piezoelectric fiber composite, interdigitated electrode blade twist actuators is described. The analysis consist of a linear torsion and flapwise bending model coupled with a nonlinear ONERA based unsteady aerodynamics model. A modified Galerkin procedure is performed upon the rotor blade partial differential equations of motion to develop a system of ordinary differential equations suitable for numerical integration. The twist actuation responses for three conceptual full-scale blade designs with realistic constraints on blade mass are numerically evaluated using the analysis. Numerical results indicate that useful amplitudes of nonresonant elastic twist, on the order of one to two degrees, are achievable under one-g hovering flight conditions for interdigitated electrode poling configurations. Twist actuation for the interdigitated electrode blades is also compared with the twist actuation of a conventionally poled piezoelectric fiber composite blade. Elastic twist produced using the interdigitated electrode actuators was found to be four to five times larger than that obtained with the conventionally poled actuators.
Multiperipheral ring dynamics and a definition of the complete twisted Reggeon loop
International Nuclear Information System (INIS)
Lucht, P.H.
1977-11-01
The t less than 0 multiperipheral formalism of Ciafaloni, DeTar, Misheloff, Mueller, Muzinich and Yesian is reviewed, extended, and applied to the ordered S-matrix whose ring amplitudes comprise the zeroth level of the topological expansion. Toller M-function notation is used throughout. The bootstrap and cylinder problems are formulated in terms of a well defined helicity pole propagator; a definition of the complete twisted Reggeon loop, which appears in the one-twist term of the cylinder, is given as a helicity pole expansion. Some consideration is given to the following subjects: diagonalization, naturality, threshold behavior, Regge cuts, and complex helicity
Twisted network programming essentials
Fettig, Abe
2005-01-01
Twisted Network Programming Essentials from O'Reilly is a task-oriented look at this new open source, Python-based technology. The book begins with recommendations for various plug-ins and add-ons to enhance the basic package as installed. It then details Twisted's collection simple network protocols, and helper utilities. The book also includes projects that let you try out the Twisted framework for yourself. For example, you'll find examples of using Twisted to build web services applications using the REST architecture, using XML-RPC, and using SOAP. Written for developers who want to s
Varvell, K.; Cooper-Sarkar, A. M.; Parker, M. A.; Sansum, R. A.; Aderholz, M.; Armenise, N.; Baton, J. P.; Bullock, F. W.; Berggren, M.; Bertrand, D.; Brisson, V.; Burkot, W.; Calcchio, M.; Claytoh, E. F.; Coghen, T.; Erriquez, O.; Fitch, P. J.; Gerbier, G.; Guy, J.; Hulth, P. O.; Iaselli, G.; Jones, G. T.; Kasper, P.; Klein, H.; Kochowski, C.; Marage, P.; Mermikides, M.; Middleton, R. P.; Morrison, D. R. O.; Mobayyen, M. M.; Natali, S.; Neveu, M.; Nuzzo, S.; O'Neale, S. W.; Petiau, P.; Petrides, A.; Ruggieri, F.; Sacton, J.; Simopoulou, E.; Vallee, C.; Vayaki, A.; Venus, W. A.; Wachsmuth, H.; Wells, J.; Wittek, W.
1987-03-01
The isoscalar nucleon structure functions F 2( x, Q 2) and xF 3( x, Q 2) are measured in the range 0< Q 2<64 GeV2, 1.7< W 2<250 GeV2, x<0.7 using ν andbar v interactions on neon in BEBC. The data are used to evaluate possible higher twist contributions and to determine their impact on the evaluation of the QCD parameter Λ. In contrast to previous analyses reaching to such low W 2 values, it is found that a lowΛ _{overline {MS} } value in the neighbourhood of 100 MeV describes the data adequately and that the contribution of dynamical higher twist effects is small and negative.
Hover Testing of the NASA/Army/MIT Active Twist Rotor Prototype Blade
Wilbur, Matthew L.; Yeager, William T., Jr.; Wilkie, W. Keats; Cesnik, Carlos E. S.; Shin, Sangloon
2000-01-01
Helicopter rotor individual blade control promises to provide a mechanism for increased rotor performance and reduced rotorcraft vibrations and noise. Active material methods, such as piezoelectrically actuated trailing-edge flaps and strain-induced rotor blade twisting, provide a means of accomplishing individual blade control without the need for hydraulic power in the rotating system. Recent studies have indicated that controlled strain induced blade twisting can be attained using piezoelectric active fiber composite technology. In order to validate these findings experimentally, a cooperative effort between NASA Langley Research Center, the Army Research Laboratory, and the MIT Active Materials and Structures Laboratory has been developed. As a result of this collaboration an aeroelastically-scaled active-twist model rotor blade has been designed and fabricated for testing in the heavy gas environment of the Langley Transonic Dynamics Tunnel (TDT). The results of hover tests of the active-twist prototype blade are presented in this paper. Comparisons with applicable analytical predictions of active-twist frequency response in hovering flight are also presented.
PARTIAL ERUPTION OF A FILAMENT WITH TWISTING NON-UNIFORM FIELDS
International Nuclear Information System (INIS)
Bi, Yi; Jiang, Yunchun; Yang, Jiayan; Xiang, Yongyuan; Cai, Yunfang; Liu, Weiwei
2015-01-01
The eruption of a filament in a kinklike fashion is often regarded as a signature of kink instability. However, the kink instability threshold for the filament’s magnetic structure is not widely understood. Using Hα observations from the New Vacuum Solar Telescope, we present a partial eruptive filament. During the eruption, the filament thread appeared to split from its middle and to break out in a kinklike fashion. In this period, the remaining filament material stayed below and erupted without the kinking motion later on. The coronal magnetic field lines associated with the filament are obtained from nonlinear force-free field extrapolations using the twelve-minute-cadence vector magnetograms of the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamic Observatory. We studied the extrapolated field lines passing through the magnetic dips which are in good agreement with the observed filament. The field lines are non-uniformly twisted and appear to be composed of two twisted flux ropes winding around each other. One of them has a higher twist than the other, and the flux rope with the higher twist has its dips aligned with the kinking eruptive thread at the beginning of its eruption. Before the eruption, moreover, the flux rope with the higher twist was found to expand with an approximately constant field twist. In addition, the helicity flux maps deduced from the HMI magnetograms show that some helicity is injected into the overlying magnetic arcade, but no significant helicity is injected into the flux ropes. Accordingly, we suggest that the highly twisted flux rope became kink unstable when the instability threshold declined with the expansion of the flux rope
Controlling coupled bending-twisting vibrations of anisotropic composite wing
Ryabov, Victor; Yartsev, Boris
2018-05-01
The paper discusses the possibility to control coupled bending-twisting vibrations of anisotropic composite wing by means of the monoclinic structures in the reinforcement of the plating. Decomposing the potential straining energy and kinetic energy of natural vibration modes into interacting and non-interacting parts, it became possible to introduce the two coefficients that integrally consider the effect of geometry and reinforcement structure upon the dynamic response parameters of the wing. The first of these coefficients describes the elastic coupling of the natural vibration modes, the second coefficient describes the inertial one. The paper describes the numerical studies showing how the orientation of considerably anisotropic CRP layers in the plating affects natural frequencies, loss factors, coefficients of elastic and inertial coupling for several lower tones of natural bending-twisting vibrations of the wing. Besides, for each vibration mode, partial values of the above mentioned dynamic response parameters were determined by means of the relationships for orthotropic structures where instead of "free" shearing modulus in the reinforcement plant, "pure" shearing modulus is used. Joint analysis of the obtained results has shown that each pair of bending-twisting vibration modes has its orientation angle ranges of the reinforcing layers where the inertial coupling caused by asymmetry of the cross-section profile with respect to the main axes of inertia decreases, down to the complete extinction, due to the generation of the elastic coupling in the plating material. These ranges are characterized by the two main features: 1) the difference in the natural frequencies of the investigated pair of bending-twisting vibration modes is the minimum and 2) natural frequencies of bending-twisting vibrations belong to a stretch restricted by corresponding partial natural frequencies of the investigated pair of vibration modes. This result is of practical importance
The electric dipole moment of the neutron from N{sub f}=2+1+1 twisted mass fermions
Energy Technology Data Exchange (ETDEWEB)
Alexandrou, C.; Athenodorou, A.; Constantinou, M. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Hadjiyiannakou, K. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; George Washington Univ., Washington, DC (United States). Dept. of Physics; Jansen, K. [DESY Zeuthen (Germany). NIC; Koutsou, G. [Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Ottnad, K. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Bonn Univ. (Germany). Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics; Petschlies, M. [Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Bonn Univ. (Germany). Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics
2015-11-15
We extract the neutron electric dipole moment (nEDM) vertical stroke vector d{sub n} vertical stroke on configurations produced with N{sub f}=2+1+1 twisted mass fermions with lattice spacing of a ≅0.082 fm and a light quark mass that corresponds to M{sub π} ≅ 373 MeV. We do so by evaluating the CP-odd form factor F{sub 3} for small values of the CP-violation parameter θ in the limit of zero momentum transfer. This limit is extracted using the usual parametrization but in addition position space methods. The topological charge is computed via cooling and gradient flow using the Wilson, Symanzik tree-level improved and Iwasaki actions for smoothing. We obtain consistent results for all choices of smoothing procedures and methods to extract F{sub 3} at zero momentum transfer. For the ensemble analyzed we find a value of nEDM of vertical stroke vector d{sub n} vertical stroke /θ=0.045(6)(1) e.fm.
DNA looping by FokI: the impact of twisting and bending rigidity on protein-induced looping dynamics
Laurens, Niels; Rusling, David A.; Pernstich, Christian; Brouwer, Ineke; Halford, Stephen E.; Wuite, Gijs J. L.
2012-01-01
Protein-induced DNA looping is crucial for many genetic processes such as transcription, gene regulation and DNA replication. Here, we use tethered-particle motion to examine the impact of DNA bending and twisting rigidity on loop capture and release, using the restriction endonuclease FokI as a test system. To cleave DNA efficiently, FokI bridges two copies of an asymmetric sequence, invariably aligning the sites in parallel. On account of the fixed alignment, the topology of the DNA loop is set by the orientation of the sites along the DNA. We show that both the separation of the FokI sites and their orientation, altering, respectively, the twisting and the bending of the DNA needed to juxtapose the sites, have profound effects on the dynamics of the looping interaction. Surprisingly, the presence of a nick within the loop does not affect the observed rigidity of the DNA. In contrast, the introduction of a 4-nt gap fully relaxes all of the torque present in the system but does not necessarily enhance loop stability. FokI therefore employs torque to stabilise its DNA-looping interaction by acting as a ‘torsional’ catch bond. PMID:22373924
Twisted classical Poincare algebras
International Nuclear Information System (INIS)
Lukierski, J.; Ruegg, H.; Tolstoy, V.N.; Nowicki, A.
1993-11-01
We consider the twisting of Hopf structure for classical enveloping algebra U(g), where g is the inhomogeneous rotations algebra, with explicite formulae given for D=4 Poincare algebra (g=P 4 ). The comultiplications of twisted U F (P 4 ) are obtained by conjugating primitive classical coproducts by F element of U(c)xU(c), where c denotes any Abelian subalgebra of P 4 , and the universal R-matrices for U F (P 4 ) are triangular. As an example we show that the quantum deformation of Poincare algebra recently proposed by Chaichian and Demiczev is a twisted classical Poincare algebra. The interpretation of twisted Poincare algebra as describing relativistic symmetries with clustered 2-particle states is proposed. (orig.)
An empirically-based model for the lift coefficients of twisted airfoils with leading-edge tubercles
Ni, Zao; Su, Tsung-chow; Dhanak, Manhar
2018-04-01
Experimental data for untwisted airfoils are utilized to propose a model for predicting the lift coefficients of twisted airfoils with leading-edge tubercles. The effectiveness of the empirical model is verified through comparison with results of a corresponding computational fluid-dynamic (CFD) study. The CFD study is carried out for both twisted and untwisted airfoils with tubercles, the latter shown to compare well with available experimental data. Lift coefficients of twisted airfoils predicted from the proposed empirically-based model match well with the corresponding coefficients determined using the verified CFD study. Flow details obtained from the latter provide better insight into the underlying mechanism and behavior at stall of twisted airfoils with leading edge tubercles.
Energy Technology Data Exchange (ETDEWEB)
Alexandrou, C. [Univ. of Cyprus, Nicosia (Cyprus). Dept. of Physics; Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Constantinou, M.; Kallidonis, C. [Univ. of Cyprus, Nicosia (Cyprus). Dept. of Physics; Dinter, S.; Drach, V. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Jansen, K. [Univ. of Cyprus, Nicosia (Cyprus). Dept. of Physics; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Koutsou, G. [Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Collaboration: European Twisted Mass Collaboration
2013-04-15
We present results on the axial and the electromagnetic form factors of the nucleon, as well as, on the first moments of the nucleon generalized parton distributions using maximally twisted mass fermions. We analyze two N{sub f}=2+1+1 ensembles having pion masses of 210 MeV and 354 MeV at two values of the lattice spacing. The lattice scale is determined using the nucleon mass computed on a total of 18 N{sub f}=2+1+1 ensembles generated at three values of the lattice spacing, a. The renormalization constants are evaluated non-perturbatively with a perturbative subtraction of O(a''2)-terms. The moments of the generalized parton distributions are given in the MS scheme at a scale of {mu}=2 GeV. We compare with recent results obtained using different discretization schemes. The implications on the spin content of the nucleon are also discussed.
Generalised twisted partition functions
Petkova, V B
2001-01-01
We consider the set of partition functions that result from the insertion of twist operators compatible with conformal invariance in a given 2D Conformal Field Theory (CFT). A consistency equation, which gives a classification of twists, is written and solved in particular cases. This generalises old results on twisted torus boundary conditions, gives a physical interpretation of Ocneanu's algebraic construction, and might offer a new route to the study of properties of CFT.
Modeling and development of a twisting wing using inductively heated shape memory alloy actuators
Saunders, Robert N.; Hartl, Darren J.; Boyd, James G.; Lagoudas, Dimitris C.
2015-04-01
Wing twisting has been shown to improve aircraft flight performance. The potential benefits of a twisting wing are often outweighed by the mass of the system required to twist the wing. Shape memory alloy (SMA) actuators repeatedly demonstrate abilities and properties that are ideal for aerospace actuation systems. Recent advances have shown an SMA torsional actuator that can be manufactured and trained with the ability to generate large twisting deformations under substantial loading. The primary disadvantage of implementing large SMA actuators has been their slow actuation time compared to conventional actuators. However, inductive heating of an SMA actuator allows it to generate a full actuation cycle in just seconds rather than minutes while still . The aim of this work is to demonstrate an experimental wing being twisted to approximately 10 degrees by using an inductively heated SMA torsional actuator. This study also considers a 3-D electromagnetic thermo-mechanical model of the SMA-wing system and compare these results to experiments to demonstrate modeling capabilities.
Geometrically exact nonlinear analysis of pre-twisted composite rotor blades
Directory of Open Access Journals (Sweden)
Li'na SHANG
2018-02-01
Full Text Available Modeling of pre-twisted composite rotor blades is very complicated not only because of the geometric non-linearity, but also because of the cross-sectional warping and the transverse shear deformation caused by the anisotropic material properties. In this paper, the geometrically exact nonlinear modeling of a generalized Timoshenko beam with arbitrary cross-sectional shape, generally anisotropic material behavior and large deflections has been presented based on Hodges’ method. The concept of decomposition of rotation tensor was used to express the strain in the beam. The variational asymptotic method was used to determine the arbitrary warping of the beam cross section. The generalized Timoshenko strain energy was derived from the equilibrium equations and the second-order asymptotically correct strain energy. The geometrically exact nonlinear equations of motion were established by Hamilton’s principle. The established modeling was used for the static and dynamic analysis of pre-twisted composite rotor blades, and the analytical results were validated based on experimental data. The influences of the transverse shear deformation on the pre-twisted composite rotor blade were investigated. The results indicate that the influences of the transverse shear deformation on the static deformation and the natural frequencies of the pre-twisted composite rotor blade are related to the length to chord ratio of the blade. Keywords: Geometrically exact, Nonlinear, Pre-twisted composite blade, Transverse shear deformation, Variational asymptotic, Warping
Parametric study on kink instabilities of twisted magnetic flux ropes in the solar atmosphere
Mei, Z. X.; Keppens, R.; Roussev, I. I.; Lin, J.
2018-01-01
Aims: Twisted magnetic flux ropes (MFRs) in the solar atmosphere have been researched extensively because of their close connection to many solar eruptive phenomena, such as flares, filaments, and coronal mass ejections (CMEs). In this work, we performed a set of 3D isothermal magnetohydrodynamic (MHD) numerical simulations, which use analytical twisted MFR models and study dynamical processes parametrically inside and around current-carrying twisted loops. We aim to generalize earlier findings by applying finite plasma β conditions. Methods: Inside the MFR, approximate internal equilibrium is obtained by pressure from gas and toroidal magnetic fields to maintain balance with the poloidal magnetic field. We selected parameter values to isolate best either internal or external kink instability before studying complex evolutions with mixed characteristics. We studied kink instabilities and magnetic reconnection in MFRs with low and high twists. Results: The curvature of MFRs is responsible for a tire tube force due to its internal plasma pressure, which tends to expand the MFR. The curvature effect of toroidal field inside the MFR leads to a downward movement toward the photosphere. We obtain an approximate internal equilibrium using the opposing characteristics of these two forces. A typical external kink instability totally dominates the evolution of MFR with infinite twist turns. Because of line-tied conditions and the curvature, the central MFR region loses its external equilibrium and erupts outward. We emphasize the possible role of two different kink instabilities during the MFR evolution: internal and external kink. The external kink is due to the violation of the Kruskal-Shafranov condition, while the internal kink requires a safety factor q = 1 surface inside the MFR. We show that in mixed scenarios, where both instabilities compete, complex evolutions occur owing to reconnections around and within the MFR. The S-shaped structures in current distributions
International Nuclear Information System (INIS)
Etingof, P.; Massachusetts Inst. of Tech., Cambridge, MA; Schiffmann, O.
2001-01-01
We consider weighted traces of products of intertwining operators for quantum groups U q (g), suitably twisted by a ''generalized Belavin-Drinfeld triple''. We derive two commuting sets of difference equations - the (twisted) Macdonald-Ruijsenaars system and the (twisted) quantum Knizhnik-Zamolodchikov-Bernard (qKZB) system. These systems involve the nonstandard quantum R-matrices defined in a previous joint work with T. Schedler (2000). When the generalized Belavin-Drinfeld triple comes from an automorphism of the Lie algebra g, we also derive two additional sets of difference equations, the dual Macdonald-Ruijsenaars system and the dual qKZB equations. (orig.)
Twisting Anderson pseudospins with light: Quench dynamics in terahertz-pumped BCS superconductors
Chou, Yang-Zhi; Liao, Yunxiang; Foster, Matthew S.
2017-03-01
We study the preparation (pump) and the detection (probe) of far-from-equilibrium BCS superconductor dynamics in THz pump-probe experiments. In a recent experiment [R. Matsunaga, Y. I. Hamada, K. Makise, Y. Uzawa, H. Terai, Z. Wang, and R. Shimano, Phys. Rev. Lett. 111, 057002 (2013), 10.1103/PhysRevLett.111.057002], an intense monocycle THz pulse with center frequency ω ≃Δ was injected into a superconductor with BCS gap Δ ; the subsequent postpump evolution was detected via the optical conductivity. It was argued that nonlinear coupling of the pump to the Anderson pseudospins of the superconductor induces coherent dynamics of the Higgs (amplitude) mode Δ (t ) . We validate this picture in a two-dimensional BCS model with a combination of exact numerics and the Lax reduction method, and we compute the nonequilibrium phase diagram as a function of the pump intensity. The main effect of the pump is to scramble the orientations of Anderson pseudospins along the Fermi surface by twisting them in the x y plane. We show that more intense pump pulses can induce a far-from-equilibrium phase of gapless superconductivity ("phase I"), originally predicted in the context of interaction quenches in ultracold atoms. We show that the THz pump method can reach phase I at much lower energy densities than an interaction quench, and we demonstrate that Lax reduction (tied to the integrability of the BCS Hamiltonian) provides a general quantitative tool for computing coherent BCS dynamics. We also calculate the Mattis-Bardeen optical conductivity for the nonequilibrium states discussed here.
Wilbur, Matthew L.; Yeager, William T., Jr.; Sekula, Martin K.
2002-01-01
The vibration reduction capabilities of a model rotor system utilizing controlled, strain-induced blade twisting are examined. The model rotor blades, which utilize piezoelectric active fiber composite actuators, were tested in the NASA Langley Transonic Dynamics Tunnel using open-loop control to determine the effect of active-twist on rotor vibratory loads. The results of this testing have been encouraging, and have demonstrated that active-twist rotor designs offer the potential for significant load reductions in future helicopter rotor systems. Active twist control was found to use less than 1% of the power necessary to operate the rotor system and had a pronounced effect on both rotating- and fixed-system loads, offering reductions in individual harmonic loads of up to 100%. A review of the vibration reduction results obtained is presented, which includes a limited set of comparisons with results generated using the second-generation version of the Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics (CAMRAD II) rotorcraft comprehensive analysis.
International Nuclear Information System (INIS)
Chatterjee, Piyali; Fan, Yuhong
2013-01-01
We report the first results of a magnetohydrodynamic simulation of the development of a homologous sequence of three coronal mass ejections (CMEs) and demonstrate their so-called cannibalistic behavior. These CMEs originate from the repeated formations and partial eruptions of kink unstable flux ropes as a result of continued emergence of a twisted flux rope across the lower boundary into a pre-existing coronal potential arcade field. The simulation shows that a CME erupting into the open magnetic field created by a preceding CME has a higher speed. The second of the three successive CMEs is cannibalistic, catching up and merging with the first into a single fast CME before exiting the domain. All the CMEs including the leading merged CME, attained speeds of about 1000 km s –1 as they exit the domain. The reformation of a twisted flux rope after each CME eruption during the sustained flux emergence can naturally explain the X-ray observations of repeated reformations of sigmoids and ''sigmoid-under-cusp'' configurations at a low-coronal source of homologous CMEs
Kumar, Birendra; Nayak, Rajen Kumar; Singh, S. N.
2018-05-01
A twisted tape inserted in an absorber tube may be an excellent option to enhance the performance of a cylindrical parabolic concentrating solar collector (CPC). The present work is an experimental study of the flow and heat transfer with and without twisted tape inserts in the absorber tube of a CPC. Results are presented for mass flow rates of water, ṁ=0.0198-0.0525 kg/s, twist ratio, y=5-10 and Reynolds number, Re=2577.46-6785.55. In the present study, we found that the outlet water temperature, collector efficiency and Nusselt number (Nu) are higher in the twisted tapes as compared to those without the twisted tape inserts in the absorber tube of the CPC. For fixed mass flow rate of water ṁ, the To and η increased with the decrease in twist ratio, y, and is higher in lower twist ratio, y=5, of the twisted tapes. The whole experiment was performed at the Indian Institute of Technology (ISM) in Dhanbad, India during the months of March-April 2017. Based on the experimental data, the correlations for the Nu and friction factor were also developed.
Twist-stretch profiles of DNA chains
Zoli, Marco
2017-06-01
Helical molecules change their twist number under the effect of a mechanical load. We study the twist-stretch relation for a set of short DNA molecules modeled by a mesoscopic Hamiltonian. Finite temperature path integral techniques are applied to generate a large ensemble of possible configurations for the base pairs of the sequence. The model also accounts for the bending and twisting fluctuations between adjacent base pairs along the molecules stack. Simulating a broad range of twisting conformation, we compute the helix structural parameters by averaging over the ensemble of base pairs configurations. The method selects, for any applied force, the average twist angle which minimizes the molecule’s free energy. It is found that the chains generally over-twist under an applied stretching and the over-twisting is physically associated to the contraction of the average helix diameter, i.e. to the damping of the base pair fluctuations. Instead, assuming that the maximum amplitude of the bending fluctuations may decrease against the external load, the DNA molecule first over-twists for weak applied forces and then untwists above a characteristic force value. Our results are discussed in relation to available experimental information albeit for kilo-base long molecules.
Noncommutative geometry and twisted conformal symmetry
International Nuclear Information System (INIS)
Matlock, Peter
2005-01-01
The twist-deformed conformal algebra is constructed as a Hopf algebra with twisted coproduct. This allows for the definition of conformal symmetry in a noncommutative background geometry. The twisted coproduct is reviewed for the Poincare algebra and the construction is then extended to the full conformal algebra. The case of Moyal-type noncommutativity of the coordinates is considered. It is demonstrated that conformal invariance need not be viewed as incompatible with noncommutative geometry; the noncommutativity of the coordinates appears as a consequence of the twisting, as has been shown in the literature in the case of the twisted Poincare algebra
γγ → M{sup +}M{sup -}(M = π, K) processes with twist-3 corrections in QCD
Energy Technology Data Exchange (ETDEWEB)
Wang, Cong [Southwest University, School of Physical Science and Technology, Chongqing (China); Chinese Academy of Sciences, State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Beijing (China); Zhou, Ming-Zhen; Chen, Hong [Southwest University, School of Physical Science and Technology, Chongqing (China)
2017-04-15
We study the γγ → M{sup +}M{sup -}(M = π, K) processes with the contributions from the two-particle twist-2 and twist-3 distribution amplitudes of pion and kaon mesons on BHL prescription in the standard hard-scattering approach. The results show that the contributions from twist-3 parts are actually not power suppressed compared with the leading-twist contributions in the low energy region. The cross sections with twist-3 corrections agree well with the experimental data in the two-photon center-of-mass energy W > 2.8 GeV and we also predict the cross section ratio σ{sub 0}(K{sup +}K{sup -})/σ{sub 0}(π{sup +}π{sup -}), which is compatible with the experimental data from TPC and Belle. (orig.)
TEK twisted gradient flow running coupling
Pérez, Margarita García; Keegan, Liam; Okawa, Masanori
2014-01-01
We measure the running of the twisted gradient flow coupling in the Twisted Eguchi-Kawai (TEK) model, the SU(N) gauge theory on a single site lattice with twisted boundary conditions in the large N limit.
Synthesis and structural determination of twisted MoS2 nanotubes
International Nuclear Information System (INIS)
Santiago, P.; Schabes-Retchkiman, P.; Ascencio, J.A.; Mendoza, D.; Perez-Alvarez, M.; Espinosa, A.; Reza-SanGerman, C.; Camacho-Bragado, G.A.; Jose-Yacaman, M.
2004-01-01
In the present work we report the synthesis of MoS 2 nanotubes with diameters greater than 10 nm using a template method. The length and properties of these nanotubes are a direct result of the preparation method. High-resolution transmission electron microscopy is used to study the structure of these highly curved entities. Molecular dynamics simulations of MoS 2 nanotubes reveal that one of the stable forms of the nanotubes is a twisted one. The twisting of the nanotubes produces a characteristic contrast in the images, which is also studied using simulation methods. The analysis of the local contrast close to the perpendicular orientation shows geometrical arrays of dots in domain-like structures, which are demonstrated to be a product of the atomic overlapping of irregular curvatures in the nanotubes. The configuration of some of the experimentally obtained nanotubes is demonstrated to be twisted with a behavior suggesting partial plasticity. (orig.)
On the twist-2 and twist-3 contributions to the spin-dependent electroweak structure functions
International Nuclear Information System (INIS)
Bluemlein, J.; Kochelev, N.
1997-01-01
The twist-2 and twist-3 contributions of the polarized deep-inelastic structure functions are calculated both for neutral and charged current interactions using the operator product expansion in lowest order in QCD. The relations between the different structure functions are determined. New integral relations are derived between the twist-2 contributions of the structure functions g 3 (x,Q 2 ) and g 5 (x,Q 2 ) and between combinations of the twist-3 contributions to the structure functions g 2 (x,Q 2 ) and g 3 (x,Q 2 ). The sum rules for polarized deep-inelastic scattering are discussed in detail. (orig.)
Integral Twist Actuation of Helicopter Rotor Blades for Vibration Reduction
Shin, SangJoon; Cesnik, Carlos E. S.
2001-01-01
Active integral twist control for vibration reduction of helicopter rotors during forward flight is investigated. The twist deformation is obtained using embedded anisotropic piezocomposite actuators. An analytical framework is developed to examine integrally-twisted blades and their aeroelastic response during different flight conditions: frequency domain analysis for hover, and time domain analysis for forward flight. Both stem from the same three-dimensional electroelastic beam formulation with geometrical-exactness, and axe coupled with a finite-state dynamic inflow aerodynamics model. A prototype Active Twist Rotor blade was designed with this framework using Active Fiber Composites as the actuator. The ATR prototype blade was successfully tested under non-rotating conditions. Hover testing was conducted to evaluate structural integrity and dynamic response. In both conditions, a very good correlation was obtained against the analysis. Finally, a four-bladed ATR system is built and tested to demonstrate its concept in forward flight. This experiment was conducted at NASA Langley Tansonic Dynamics Tunnel and represents the first-of-a-kind Mach-scaled fully-active-twist rotor system to undergo forward flight test. In parallel, the impact upon the fixed- and rotating-system loads is estimated by the analysis. While discrepancies are found in the amplitude of the loads under actuation, the predicted trend of load variation with respect to its control phase correlates well. It was also shown, both experimentally and numerically, that the ATR blade design has the potential for hub vibratory load reduction of up to 90% using individual blade control actuation. Using the numerical framework, system identification is performed to estimate the harmonic transfer functions. The linear time-periodic system can be represented by a linear time-invariant system under the three modes of blade actuation: collective, longitudinal cyclic, and lateral cyclic. A vibration
Design optimization for active twist rotor blades
Mok, Ji Won
This dissertation introduces the process of optimizing active twist rotor blades in the presence of embedded anisotropic piezo-composite actuators. Optimum design of active twist blades is a complex task, since it involves a rich design space with tightly coupled design variables. The study presents the development of an optimization framework for active helicopter rotor blade cross-sectional design. This optimization framework allows for exploring a rich and highly nonlinear design space in order to optimize the active twist rotor blades. Different analytical components are combined in the framework: cross-sectional analysis (UM/VABS), an automated mesh generator, a beam solver (DYMORE), a three-dimensional local strain recovery module, and a gradient based optimizer within MATLAB. Through the mathematical optimization problem, the static twist actuation performance of a blade is maximized while satisfying a series of blade constraints. These constraints are associated with locations of the center of gravity and elastic axis, blade mass per unit span, fundamental rotating blade frequencies, and the blade strength based on local three-dimensional strain fields under worst loading conditions. Through pre-processing, limitations of the proposed process have been studied. When limitations were detected, resolution strategies were proposed. These include mesh overlapping, element distortion, trailing edge tab modeling, electrode modeling and foam implementation of the mesh generator, and the initial point sensibility of the current optimization scheme. Examples demonstrate the effectiveness of this process. Optimization studies were performed on the NASA/Army/MIT ATR blade case. Even though that design was built and shown significant impact in vibration reduction, the proposed optimization process showed that the design could be improved significantly. The second example, based on a model scale of the AH-64D Apache blade, emphasized the capability of this framework to
Twisted rudder for reducing fuel-oil consumption
Directory of Open Access Journals (Sweden)
Jung-Hun Kim
2014-09-01
Full Text Available Three twisted rudders fit for large container ships have been developed; 1 the Z-twisted rudder that is an asymmetry type taking into consideration incoming flow angles of the propeller slipstream, 2 the ZB-twisted rudder with a rudder bulb added onto the Z-twisted rudder, and 3 the ZB-F twisted rudder with a rudder fin attached to the ZB-twisted rudder. The twisted rudders have been designed computationally with the hydrodynamic characteristics in a self-propulsion condition in mind. The governing equation is the Navier-Stokes equations in an unsteady turbulent flow. The turbulence model applied is the Reynolds stress. The calculation was carried out in towing and self-propulsion conditions. The sliding mesh technique was employed to simulate the flow around the propeller. The speed performances of the ship with the twisted rudders were verified through model tests in a towing tank. The twisted versions showed greater performance driven by increased hull efficiency from less thrust deduction fraction and more effective wake fraction and decreased propeller rotating speed.
Partial twisting for scalar mesons
International Nuclear Information System (INIS)
Agadjanov, Dimitri; Meißner, Ulf-G.; Rusetsky, Akaki
2014-01-01
The possibility of imposing partially twisted boundary conditions is investigated for the scalar sector of lattice QCD. According to the commonly shared belief, the presence of quark-antiquark annihilation diagrams in the intermediate state generally hinders the use of the partial twisting. Using effective field theory techniques in a finite volume, and studying the scalar sector of QCD with total isospin I=1, we however demonstrate that partial twisting can still be performed, despite the fact that annihilation diagrams are present. The reason for this are delicate cancellations, which emerge due to the graded symmetry in partially quenched QCD with valence, sea and ghost quarks. The modified Lüscher equation in case of partial twisting is given
Hata, K.; Fukuda, K.; Masuzaki, S.
2018-04-01
Twisted-tape-induced swirl-flow heat transfer due to exponentially increasing heat inputs with various exponential periods ( Q = Q 0 exp(t/τ), τ = 6.04 to 23.07 s) and twisted-tape-induced pressure drop was systematically measured for various mass velocities ( G = 4115 to 13,656 kg/m2 s), inlet liquid temperatures ( T in = 285.88 to 299.09 K), and inlet pressures ( P in = 847.45 to 943.29 kPa) using an experimental water loop flow. Measurements were made over a 59.2-mm effective length and three sections (upper, middle, and lower positions), within which four potential taps were spot-welded onto the outer surface of a 6-mm-inner-diameter, 69.6-mm-heated length, 0.4-mm-thickness platinum circular test tube. Type SUS304 twisted tapes with a width w = 5.6 mm, a thickness δ T = 0.6 mm, a total length l = 372 mm, and twist ratios y = 2.39 and 4.45 were employed in this study. The RANS equations (Reynolds Averaged Navier-Stokes Simulation) with a k-ɛ turbulence model for a circular tube 6 mm in diameter and 636 mm in length were numerically solved for heating of water with a heated section 6 mm in diameter and 70 mm in length using the CFD code, under the same conditions as the experimental ones and considering the temperature dependence of the thermo-physical properties concerned. The theoretical values of surface heat flux q on the circular tubes with twisted tapes with twist ratios y of 2.39 and 4.45 were found to be almost in agreement with the corresponding experimental values of heat flux q, with deviations of less than 30% for the range of temperature difference between the average heater inner surface temperature and the liquid bulk mean temperature ΔT L [ = T s,av - T L , T L = ( T in + T out )/2] considered in this study. The theoretical values of the local surface temperature T s , local average liquid temperature T f,av , and local liquid pressure drop ΔP x were found to be within almost 15% of the corresponding experimental ones. The thickness of the
Gil, Michał; Douhal, Abderrazzak
2008-06-01
In this contribution, we report on fast and ultrafast dynamics of a non-steroidal anti-inflammatory drug, piroxicam (PX), in methyl acetate (MAC) and triacetin (TAC), two solvents of different viscosities. The enol form of PX undergoes a femtosecond (shorter than 100 fs) electronically excited state intramolecular proton-transfer reaction to produce keto tautomers. These structures exhibit an internal twisting motion to generate keto rotamers in ˜2-5 ps, a time being longer in TAC. The transient absorption/emission spectrum is very broad indicating that the potential-energy surface at the electronically excited state is very flat, and reflecting the involvement of several coordinates along which the wavepacket of the fs-produced structures evolve.
Effect of Twisted-Tape Turbulators and Nanofluid on Heat Transfer in a Double Pipe Heat Exchanger
Directory of Open Access Journals (Sweden)
Heydar Maddah
2014-01-01
Full Text Available Heat transfer and overall heat transfer in a double pipe heat exchanger fitted with twisted-tape elements and titanium dioxide nanofluid were studied experimentally. The inner and outer diameters of the inner tube were 8 and 16 mm, respectively, and cold and hot water were used as working fluids in shell side and tube side. The twisted tapes were made from aluminum sheet with tape thickness (d of 1 mm, width (W of 5 mm, and length of 120 cm. Titanium dioxide nanoparticles with a diameter of 30 nm and a volume concentration of 0.01% (v/v were prepared. The effects of temperature, mass flow rate, and concentration of nanoparticles on the overall heat transfer coefficient, heat transfer changes in the turbulent flow regime Re≥2300, and counter current flow were investigated. When using twisted tape and nanofluid, heat transfer coefficient was about 10 to 25 percent higher than when they were not used. It was also observed that the heat transfer coefficient increases with operating temperature and mass flow rate. The experimental results also showed that 0.01% TiO2/water nanofluid with twisted tape has slightly higher friction factor and pressure drop when compared to 0.01% TiO2/water nanofluid without twisted tape. The empirical correlations proposed for friction factor are in good agreement with the experimental data.
Analysis list: Twist1 [Chip-atlas[Archive
Lifescience Database Archive (English)
Full Text Available Twist1 Embryo,Neural + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Tw...ist1.1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Twist1.5.tsv http://dbarchive.biosciencedbc....jp/kyushu-u/mm9/target/Twist1.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Twist1.Embryo.tsv,http://dbarchive.bioscien...cedbc.jp/kyushu-u/mm9/colo/Twist1.Neural.tsv http://dbarchive.bioscience...dbc.jp/kyushu-u/mm9/colo/Embryo.gml,http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Neural.gml ...
Computational Investigation of Swirling Supersonic Jets Generated Through a Nozzle-Twisted Lance
Li, Mingming; Li, Qiang; Zou, Zongshu; An, Xizhong
2017-02-01
The dynamic characteristics of supersonic swirling jets generated through a nozzle-twisted lance are numerically studied. The essential features of the swirling jets are identified by defining a deviation angle. The effects of nozzle twist angle (NTA) on swirling flow intensity, coalescence characteristics, and dynamic parameter distributions of the jets are discussed. The rotational flow characteristics are revealed. The results show that the jets from the nozzle-twisted lance are imparted to a circumferential rotating movement around the lance axis, and such swirling flow is enhanced by increasing NTA. The enhanced swirling flow causes weaker coalescence of the jets, faster attenuations of the axial velocity, and higher heat transfer rate between the jets and surroundings. The supersonic core length, however, is found to be less sensitive to the swirling flow intensity. The radial spreading of the jets, changing non-monotonically with NTA, arrives at its maximum at 5 deg of NTA. Furthermore, the swirling flow induces a considerable tangential velocity component, and as a result, a holistic and effective horizontal swirling flow field develops. The y-vorticity distribution range and the corresponding magnitude turn larger with increasing NTA, which promote the vortex motion of the local fluid element and thus intensify the local mixing.
Dynamics of Variable Mass Systems
Eke, Fidelis O.
1998-01-01
This report presents the results of an investigation of the effects of mass loss on the attitude behavior of spinning bodies in flight. The principal goal is to determine whether there are circumstances under which the motion of variable mass systems can become unstable in the sense that their transverse angular velocities become unbounded. Obviously, results from a study of this kind would find immediate application in the aerospace field. The first part of this study features a complete and mathematically rigorous derivation of a set of equations that govern both the translational and rotational motions of general variable mass systems. The remainder of the study is then devoted to the application of the equations obtained to a systematic investigation of the effect of various mass loss scenarios on the dynamics of increasingly complex models of variable mass systems. It is found that mass loss can have a major impact on the dynamics of mechanical systems, including a possible change in the systems stability picture. Factors such as nozzle geometry, combustion chamber geometry, propellant's initial shape, size and relative mass, and propellant location can all have important influences on the system's dynamic behavior. The relative importance of these parameters on-system motion are quantified in a way that is useful for design purposes.
International Nuclear Information System (INIS)
Varvell, K.; Wells, J.; Sansum, R.A.; Bullock, F.W.; Fitch, P.J.; Armenise, N.; Calicchio, M.; Erriquez, O.; Natali, S.; Nuzzo, S.; Ruggieri, F.; Baton, J.P.; Gerbier, G.; Kasper, P.; Kochowski, C.; Neveu, M.; Brisson, V.; Petiau, P.; Vallee, C.; Clayton, E.F.; Iaselli, G.; Mobayyen, M.M.; Petrides, A.; Jones, G.T.; Middleton, R.P.; O'Neale, S.W.; Mermikides, M.; Simopoulou, E.; Vayaki, A.
1987-01-01
The isoscalar nucleon structure functions F 2 (x,Q 2 ) and xF 3 (x,Q 2 ) are measured in the range 0 2 2 , 1.7 2 2 , x 2 values, it is found that a low Λsub(anti Manti S) value in the neighbourhood of 100 MeV describes the data adequately and that the contribution of dynamical higher twist effects is small and negative. (orig.)
Teaching Spatial Awareness for Better Twisting Somersaults.
Hennessy, Jeff T.
1985-01-01
The barani (front somersault with one-half twist) and the back somersault with one twist are basic foundation skills necessary for more advanced twisting maneuvers. Descriptions of these movements on a trampoline surface are offered. (DF)
Twist deformations of the supersymmetric quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Castro, P.G.; Chakraborty, B.; Toppan, F., E-mail: pgcastro@cbpf.b, E-mail: biswajit@bose.res.i, E-mail: toppan@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Kuznetsova, Z., E-mail: zhanna.kuznetsova@ufabc.edu.b [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil)
2009-07-01
The N-extended supersymmetric quantum mechanics is deformed via an abelian twist which preserves the super-Hopf algebra structure of its universal enveloping superalgebra. Two constructions are possible. For even N one can identify the 1D N-extended superalgebra with the fermionic Heisenberg algebra. Alternatively, supersymmetry generators can be realized as operators belonging to the Universal Enveloping Superalgebra of one bosonic and several fermionic oscillators. The deformed system is described in terms of twisted operators satisfying twist deformed (anti)commutators. The main differences between an abelian twist defined in terms of fermionic operators and an abelian twist defined in terms of bosonic operators are discussed. (author)
Light hadrons from lattice QCD with light (u,d), strange and charm dynamical quarks
International Nuclear Information System (INIS)
Baron, R.
2010-04-01
We present results of lattice QCD simulations with mass-degenerate up and down and mass-split strange and charm (N f =2+1+1) dynamical quarks using Wilson twisted mass fermions at maximal twist. The tuning of the strange and charm quark masses is performed at two values of the lattice spacing a ∼ 0:078 fm and a ∼0.086 fm with lattice sizes ranging from L∼1.9 fm to L∼2.8 fm. We measure with high statistical precision the light pseudoscalar mass m PS and decay constant f PS in a range 270 PS 0 and anti l 3,4 of SU(2) chiral perturbation theory. We use the two values of the lattice spacing, several lattice sizes as well as different values of the light, strange and charm quark masses to explore the systematic effects. A first study of discretisation effects in light-quark observables and a comparison to N f =2 results are performed. (orig.)
Ten helical twist angles of B-DNA
Energy Technology Data Exchange (ETDEWEB)
Kabsch, W; Sander, C; Trifonov, E N
1982-01-01
On the assumption that the twist angles between adjacent base-pairs in the DNA molecule are additive a linear system of 40 equations was derived from experimental measurements of the total twist angles for different pieces of DNA of known sequences. This system of equations is found to be statistically consistent providing a solution for all ten possible twist angles of B-DNA by a least squares fitting procedure. Four of the calculated twist angles were not known before. The other six twist angles calculated are very close to the experimentally measured ones. The data used were obtained by the electrophoretic band-shift method, crystallography and nuclease digestion of DNA adsorbed to mica or Ca-phosphate surface. The validity of the principle of additivity of the twist angles implies that the angle between any particular two base-pairs is a function of only these base-pairs, independent of nearest neighbors.
Electronic and Optical Properties of Twisted Bilayer Graphene
Huang, Shengqiang
The ability to isolate single atomic layers of van der Waals materials has led to renewed interest in the electronic and optical properties of these materials as they can be fundamentally different at the monolayer limit. Moreover, these 2D crystals can be assembled together layer by layer, with controllable sequence and orientation, to form artificial materials that exhibit new features that are not found in monolayers nor bulk. Twisted bilayer graphene is one such prototype system formed by two monolayer graphene layers placed on top of each other with a twist angle between their lattices, whose electronic band structure depends on the twist angle. This thesis presents the efforts to explore the electronic and optical properties of twisted bilayer graphene by Raman spectroscopy and scanning tunneling microscopy measurements. We first synthesize twisted bilayer graphene with various twist angles via chemical vapor deposition. Using a combination of scanning tunneling microscopy and Raman spectroscopy, the twist angles are determined. The strength of the Raman G peak is sensitive to the electronic band structure of twisted bilayer graphene and therefore we use this peak to monitor changes upon doping. Our results demonstrate the ability to modify the electronic and optical properties of twisted bilayer graphene with doping. We also fabricate twisted bilayer graphene by controllable stacking of two graphene monolayers with a dry transfer technique. For twist angles smaller than one degree, many body interactions play an important role. It requires eight electrons per moire unit cell to fill up each band instead of four electrons in the case of a larger twist angle. For twist angles smaller than 0.4 degree, a network of domain walls separating AB and BA stacking regions forms, which are predicted to host topologically protected helical states. Using scanning tunneling microscopy and spectroscopy, these states are confirmed to appear on the domain walls when inversion
Duality in twisted N=4 supersymmetric gauge theories in four dimensions
Labastida, J.M.F.; Lozano, Carlos
1999-01-01
We consider a twisted version of the four-dimensional N=4 supersymmetric Yang-Mills theory with gauge groups SU(2) and SO(3), and bare masses for two of its chiral multiplets, thereby breaking N=4 down to N=2. Using the wall-crossing technique introduced by Moore and Witten within the u-plane approach to twisted topological field theories, we compute the partition function and all the topological correlation functions for the case of simply-connected spin four-manifolds of simple type. By including 't Hooft fluxes, we analyse the properties of the resulting formulae under duality transformations. The partition function transforms in the same way as the one first presented by Vafa and Witten for another twist of the N=4 supersymmetric theory in their strong coupling test of S-duality. Both partition functions coincide on K3. The topological correlation functions turn out to transform covariantly under duality, following a simple pattern which seems to be inherent in a general type of topological quantum field ...
Remarks on twisted noncommutative quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Zahn, J. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik
2006-04-15
We review recent results on twisted noncommutative quantum field theory by embedding it into a general framework for the quantization of systems with a twisted symmetry. We discuss commutation relations in this setting and show that the twisted structure is so rigid that it is hard to derive any predictions, unless one gives up general principles of quantum theory. It is also shown that the twisted structure is not responsible for the presence or absence of UV/IR-mixing, as claimed in the literature. (Orig.)
Witten index for noncompact dynamics
Energy Technology Data Exchange (ETDEWEB)
Lee, Seung-Joo [Department of Physics, Robeson Hall, Virginia Tech,Robeson Hall, 0435, 850 West Campus Drive, Blacksburg, VA 24061 (United States); Yi, Piljin [School of Physics and Quantum Universe Center, Korea Institute for Advanced Study,85 Hoegi-ro, Dongdaemun-gu, Seoul 02455 (Korea, Republic of)
2016-06-16
Among gauged dynamics motivated by string theory, we find many with gapless asymptotic directions. Although the natural boundary condition for ground states is L{sup 2}, one often turns on chemical potentials or supersymmetric mass terms to regulate the infrared issues, instead, and computes the twisted partition function. We point out how this procedure generically fails to capture physical L{sup 2} Witten index with often misleading results. We also explore how, nevertheless, the Witten index is sometimes intricately embedded in such twisted partition functions. For d=1 theories with gapless continuum sector from gauge multiplets, such as non-primitive quivers and pure Yang-Mills, a further subtlety exists, leading to fractional expressions. Quite unexpectedly, however, the integral L{sup 2} Witten index can be extracted directly and easily from the twisted partition function of such theories. This phenomenon is tied to the notion of the rational invariant that appears naturally in the wall-crossing formulae, and offers a general mechanism of reading off Witten index directly from the twisted partition function. Along the way, we correct early numerical results for some of N=4,8,16 pure Yang-Mills quantum mechanics, and count threshold bound states for general gauge groups beyond SU(N).
Witten index for noncompact dynamics
Lee, Seung-Joo; Yi, Piljin
2016-06-01
Among gauged dynamics motivated by string theory, we find many with gapless asymptotic directions. Although the natural boundary condition for ground states is L 2, one often turns on chemical potentials or supersymmetric mass terms to regulate the infrared issues, instead, and computes the twisted partition function. We point out how this procedure generically fails to capture physical L 2 Witten index with often misleading results. We also explore how, nevertheless, the Witten index is sometimes intricately embedded in such twisted partition functions. For d = 1 theories with gapless continuum sector from gauge multiplets, such as non-primitive quivers and pure Yang-Mills, a further subtlety exists, leading to fractional expressions. Quite unexpectedly, however, the integral L 2 Witten index can be extracted directly and easily from the twisted partition function of such theories. This phenomenon is tied to the notion of the rational invariant that appears naturally in the wall-crossing formulae, and offers a general mechanism of reading off Witten index directly from the twisted partition function. Along the way, we correct early numerical results for some of mathcal{N} = 4 , 8 , 16 pure Yang-Mills quantum mechanics, and count threshold bound states for general gauge groups beyond SU( N ).
Witten index for noncompact dynamics
International Nuclear Information System (INIS)
Lee, Seung-Joo; Yi, Piljin
2016-01-01
Among gauged dynamics motivated by string theory, we find many with gapless asymptotic directions. Although the natural boundary condition for ground states is L"2, one often turns on chemical potentials or supersymmetric mass terms to regulate the infrared issues, instead, and computes the twisted partition function. We point out how this procedure generically fails to capture physical L"2 Witten index with often misleading results. We also explore how, nevertheless, the Witten index is sometimes intricately embedded in such twisted partition functions. For d=1 theories with gapless continuum sector from gauge multiplets, such as non-primitive quivers and pure Yang-Mills, a further subtlety exists, leading to fractional expressions. Quite unexpectedly, however, the integral L"2 Witten index can be extracted directly and easily from the twisted partition function of such theories. This phenomenon is tied to the notion of the rational invariant that appears naturally in the wall-crossing formulae, and offers a general mechanism of reading off Witten index directly from the twisted partition function. Along the way, we correct early numerical results for some of N=4,8,16 pure Yang-Mills quantum mechanics, and count threshold bound states for general gauge groups beyond SU(N).
Twist-writhe partitioning in a coarse-grained DNA minicircle model
Sayar, Mehmet; Avşaroǧlu, Barış; Kabakçıoǧlu, Alkan
2010-04-01
Here we present a systematic study of supercoil formation in DNA minicircles under varying linking number by using molecular-dynamics simulations of a two-bead coarse-grained model. Our model is designed with the purpose of simulating long chains without sacrificing the characteristic structural properties of the DNA molecule, such as its helicity, backbone directionality, and the presence of major and minor grooves. The model parameters are extracted directly from full-atomistic simulations of DNA oligomers via Boltzmann inversion; therefore, our results can be interpreted as an extrapolation of those simulations to presently inaccessible chain lengths and simulation times. Using this model, we measure the twist/writhe partitioning in DNA minicircles, in particular its dependence on the chain length and excess linking number. We observe an asymmetric supercoiling transition consistent with experiments. Our results suggest that the fraction of the linking number absorbed as twist and writhe is nontrivially dependent on chain length and excess linking number. Beyond the supercoiling transition, chains of the order of one persistence length carry equal amounts of twist and writhe. For longer chains, an increasing fraction of the linking number is absorbed by the writhe.
Morphing wing structure with controllable twist based on adaptive bending-twist coupling
Raither, Wolfram; Heymanns, Matthias; Bergamini, Andrea; Ermanni, Paolo
2013-06-01
A novel semi-passive morphing airfoil concept based on variable bending-twist coupling induced by adaptive shear center location and torsional stiffness is presented. Numerical parametric studies and upscaling show that the concept relying on smart materials permits effective twist control while offering the potential of being lightweight and energy efficient. By means of an experimental characterization of an adaptive beam and a scaled adaptive wing structure, effectiveness and producibility of the structural concept are demonstrated.
Morphing wing structure with controllable twist based on adaptive bending–twist coupling
International Nuclear Information System (INIS)
Raither, Wolfram; Heymanns, Matthias; Ermanni, Paolo; Bergamini, Andrea
2013-01-01
A novel semi-passive morphing airfoil concept based on variable bending–twist coupling induced by adaptive shear center location and torsional stiffness is presented. Numerical parametric studies and upscaling show that the concept relying on smart materials permits effective twist control while offering the potential of being lightweight and energy efficient. By means of an experimental characterization of an adaptive beam and a scaled adaptive wing structure, effectiveness and producibility of the structural concept are demonstrated. (paper)
Lattice study of D and D{sub s} meson form factors with twisted boundary conditions
Energy Technology Data Exchange (ETDEWEB)
Li, Ning; Wu, Ya-Jie [Xi' an Technological University, School of Science, Xi' an (China)
2017-03-15
We present results on the D and D{sub s} meson electromagnetic form factors using N{sub f} = 2 twisted mass Lattice Quantum Chromodynamics (LQCD) gauge configurations. In this simulation, to access spatial components of momenta that are different from the integer multiples of 2π/L, we apply twisted boundary conditions to compute corresponding correlation functions. Electromagnetic form factors with more small four-momentum transfer are determined, and further we fit the electromagnetic charge radius for D and D{sub s} mesons, respectively. (orig.)
Conical twist fields and null polygonal Wilson loops
Castro-Alvaredo, Olalla A.; Doyon, Benjamin; Fioravanti, Davide
2018-06-01
Using an extension of the concept of twist field in QFT to space-time (external) symmetries, we study conical twist fields in two-dimensional integrable QFT. These create conical singularities of arbitrary excess angle. We show that, upon appropriate identification between the excess angle and the number of sheets, they have the same conformal dimension as branch-point twist fields commonly used to represent partition functions on Riemann surfaces, and that both fields have closely related form factors. However, we show that conical twist fields are truly different from branch-point twist fields. They generate different operator product expansions (short distance expansions) and form factor expansions (large distance expansions). In fact, we verify in free field theories, by re-summing form factors, that the conical twist fields operator product expansions are correctly reproduced. We propose that conical twist fields are the correct fields in order to understand null polygonal Wilson loops/gluon scattering amplitudes of planar maximally supersymmetric Yang-Mills theory.
DEFF Research Database (Denmark)
Randrup, Thomas; Røgen, Peter
1997-01-01
is an invariant of ambient isotopy measuring the topological twist of the closed strip. We classify closed strips in euclidean 3-space by their knots and their twisting number. We prove that this classification exactly divides closed strips into isotopy classes. Using this classification we point out how some...
Transverse kink oscillations in the presence of twist
Terradas, J.; Goossens, M.
2012-12-01
Context. Magnetic twist is thought to play an important role in coronal loops. The effects of magnetic twist on stable magnetohydrodynamic (MHD) waves is poorly understood because they are seldom studied for relevant cases. Aims: The goal of this work is to study the fingerprints of magnetic twist on stable transverse kink oscillations. Methods: We numerically calculated the eigenmodes of propagating and standing MHD waves for a model of a loop with magnetic twist. The azimuthal component of the magnetic field was assumed to be small in comparison to the longitudinal component. We did not consider resonantly damped modes or kink instabilities in our analysis. Results: For a nonconstant twist the frequencies of the MHD wave modes are split, which has important consequences for standing waves. This is different from the degenerated situation for equilibrium models with constant twist, which are characterised by an azimuthal component of the magnetic field that linearly increases with the radial coordinate. Conclusions: In the presence of twist standing kink solutions are characterised by a change in polarisation of the transverse displacement along the tube. For weak twist, and in the thin tube approximation, the frequency of standing modes is unaltered and the tube oscillates at the kink speed of the corresponding straight tube. The change in polarisation is linearly proportional to the degree of twist. This has implications with regard to observations of kink modes, since the detection of this variation in polarisation can be used as an indirect method to estimate the twist in oscillating loops.
TWISTED DWARF1 Mediates the Action of Auxin Transport Inhibitors on Actin Cytoskeleton Dynamics
Bailly, Aurelien; Zwiewka, Marta; Sovero, Valpuri; Ge, Pei; Aryal, Bibek; Hao, Pengchao; Linnert, Miriam; Burgardt, Noelia Inés; Lücke, Christian; Weiwad, Matthias; Michel, Max; Weiergräber, Oliver H.; Pollmann, Stephan; Azzarello, Elisa; Fukao, Yoichiro; Hoffmann, Céline; Wedlich-Söldner, Roland
2016-01-01
Plant growth and architecture is regulated by the polar distribution of the hormone auxin. Polarity and flexibility of this process is provided by constant cycling of auxin transporter vesicles along actin filaments, coordinated by a positive auxin-actin feedback loop. Both polar auxin transport and vesicle cycling are inhibited by synthetic auxin transport inhibitors, such as 1-N-naphthylphthalamic acid (NPA), counteracting the effect of auxin; however, underlying targets and mechanisms are unclear. Using NMR, we map the NPA binding surface on the Arabidopsis thaliana ABCB chaperone TWISTED DWARF1 (TWD1). We identify ACTIN7 as a relevant, although likely indirect, TWD1 interactor, and show TWD1-dependent regulation of actin filament organization and dynamics and that TWD1 is required for NPA-mediated actin cytoskeleton remodeling. The TWD1-ACTIN7 axis controls plasma membrane presence of efflux transporters, and as a consequence act7 and twd1 share developmental and physiological phenotypes indicative of defects in auxin transport. These can be phenocopied by NPA treatment or by chemical actin (de)stabilization. We provide evidence that TWD1 determines downstream locations of auxin efflux transporters by adjusting actin filament debundling and dynamizing processes and mediating NPA action on the latter. This function appears to be evolutionary conserved since TWD1 expression in budding yeast alters actin polarization and cell polarity and provides NPA sensitivity. PMID:27053424
Energy Technology Data Exchange (ETDEWEB)
Villalobos Baillie, Orlando
1988-12-15
In the quantum chromodynamics (QCD) candidate theory of interquark forces, calculations involve summing the effects from many different possible quark/gluon interactions. In addition to the 'leading term' frequently used as the basis for QCD calculations, additional contributions — so-called 'higher twists' — are modulated by powers of kinematical factors. An illuminating international workshop to discuss higher twist QCD was held at the College de France, Paris, from 21-23 September.
DVCS amplitude with kinematical twist-3 terms
International Nuclear Information System (INIS)
Radyushkin, A.V.; Weiss, C.
2000-01-01
The authors compute the amplitude of deeply virtual Compton scattering (DVCS) using the calculus of QCD string operators in coordinate representation. To restore the electromagnetic gauge invariance (transversality) of the twist-2 amplitude they include the operators of twist-3 which appear as total derivatives of twist-2 operators. The results are equivalent to a Wandzura-Wilczek approximation for twist-3 skewed parton distributions. They find that this approximation gives a finite result for the amplitude of a longitudinally polarized virtual photon, while the amplitude for transverse polarization is divergent, i.e., factorization breaks down in this term
Guo, Zongyi; Chang, Jing; Guo, Jianguo; Zhou, Jun
2018-06-01
This paper focuses on the adaptive twisting sliding mode control for the Hypersonic Reentry Vehicles (HRVs) attitude tracking issue. The HRV attitude tracking model is transformed into the error dynamics in matched structure, whereas an unmeasurable state is redefined by lumping the existing unmatched disturbance with the angular rate. Hence, an adaptive finite-time observer is used to estimate the unknown state. Then, an adaptive twisting algorithm is proposed for systems subject to disturbances with unknown bounds. The stability of the proposed observer-based adaptive twisting approach is guaranteed, and the case of noisy measurement is analyzed. Also, the developed control law avoids the aggressive chattering phenomenon of the existing adaptive twisting approaches because the adaptive gains decrease close to the disturbance once the trajectories reach the sliding surface. Finally, numerical simulations on the attitude control of the HRV are conducted to verify the effectiveness and benefit of the proposed approach. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Processing mechanics of alternate twist ply (ATP) yarn technology
Elkhamy, Donia Said
Ply yarns are important in many textile manufacturing processes and various applications. The primary process used for producing ply yarns is cabling. The speed of cabling is limited to about 35m/min. With the world's increasing demands of ply yarn supply, cabling is incompatible with today's demand activated manufacturing strategies. The Alternate Twist Ply (ATP) yarn technology is a relatively new process for producing ply yarns with improved productivity and flexibility. This technology involves self plying of twisted singles yarn to produce ply yarn. The ATP process can run more than ten times faster than cabling. To implement the ATP process to produce ply yarns there are major quality issues; uniform Twist Profile and yarn Twist Efficiency. The goal of this thesis is to improve these issues through process modeling based on understanding the physics and processing mechanics of the ATP yarn system. In our study we determine the main parameters that control the yarn twist profile. Process modeling of the yarn twist across different process zones was done. A computational model was designed to predict the process parameters required to achieve a square wave twist profile. Twist efficiency, a measure of yarn torsional stability and bulk, is determined by the ratio of ply yarn twist to singles yarn twist. Response Surface Methodology was used to develop the processing window that can reproduce ATP yarns with high twist efficiency. Equilibrium conditions of tensions and torques acting on the yarns at the self ply point were analyzed and determined the pathway for achieving higher twist efficiency. Mechanistic modeling relating equilibrium conditions to the twist efficiency was developed. A static tester was designed to zoom into the self ply zone of the ATP yarn. A computer controlled, prototypic ATP machine was constructed and confirmed the mechanistic model results. Optimum parameters achieving maximum twist efficiency were determined in this study. The
International Nuclear Information System (INIS)
Munro, Troy R.; Koeln, Justin P.; Fassmann, Andrew W.; Barnett, Robert J.; Ban, Heng
2014-01-01
Highlights: • Subcooled water boiled in microgravity on twists of thin wires. • Wire twisting creates heat transfer enhancements because of high local temperatures. • A preliminary version of a new bubble dynamics method is discussed. • A critical distance that fluid must be superheated for boiling onset is presented. - Abstract: Phase change is an effective method of transferring heat, yet its application in microgravity thermal management systems requires greater understanding of bubble behavior. To further this knowledge base, a microgravity boiling experiment was performed (floating) onboard an aircraft flying in a parabolic trajectory to study the effect of surface geometry and heat flux on phase change heat transfer in a pool of subcooled water. A special emphasis was the investigation of heat transfer enhancement caused by modifying the surface geometry through the use of a twist of three wires and a twist of four wires. A new method for bubble behavior analysis was developed to quantify bubble growth characteristics, which allows a quantitative comparison of bubble dynamics between different data sets. It was found that the surface geometry of the three-wire twist enhanced heat transfer by reducing the heat flux needed for bubble incipience and the average wire temperature in microgravity. Simulation results indicated that increased local superheating in wire crevices may be responsible for the change of bubble behavior seen as the wire geometry configuration was varied. The convective heat transfer rate, in comparison to ground experiments, was lower for microgravity at low heating rates, and higher at high heating rates. This study provides insights into the role of surface geometry on superheating behavior and presents an initial version of a new bubble behavior analysis method. Further research on these topics could lead to new designs of heater surface geometries using phase change heat transfer in microgravity applications
International Nuclear Information System (INIS)
Cichy, Krzysztof; Adam Mickiewicz Univ., Poznan; Jansen, Karl; Korcyl, Piotr; Jagiellonian Univ., Krakow
2012-07-01
We present results of a lattice QCD application of a coordinate space renormalization scheme for the extraction of renormalization constants for flavour non-singlet bilinear quark operators. The method consists in the analysis of the small-distance behaviour of correlation functions in Euclidean space and has several theoretical and practical advantages, in particular: it is gauge invariant, easy to implement and has relatively low computational cost. The values of renormalization constants in the X-space scheme can be converted to the MS scheme via 4-loop continuum perturbative formulae. Our results for N f =2 maximally twisted mass fermions with tree-level Symanzik improved gauge action are compared to the ones from the RI-MOM scheme and show full agreement with this method. (orig.)
Mass-shell properties of the dynamical quark mass
International Nuclear Information System (INIS)
Reinders, L.J.; Stam, K.
1986-07-01
We discuss the running dynamical quark mass in the framework of the operator product expansion. It is shown that for vertical strokep 2 vertical stroke>m 2 the quark-condensate part of the quark self energy has no contributions of order m 2 or higher, and is frozen to its mass-shell value for smaller vertical strokep 2 vertical stroke. (orig.)
Kim, Myounghwan
2016-11-01
Primary leiomyoma of the ovary is a rare benign ovarian tumor that only seldom causes acute abdomen. A 35-year-old gravida 1, para 0 woman presented with a history of acute lower abdominal pain, and 10 weeks of amenorrhea. The patient's physical examination revealed abdominal tenderness, defense, and rebound. On ultrasonographic examination, a solid mass measuring 9.3 × 7.8 cm was detected adjacent to the uterine fundus. The mass was preoperatively diagnosed as a twisted pedunculated subserosal uterine myoma. Upon entering the pelvic cavity, the mass in the right adnexa appeared twisted clockwise. Therefore, a laparoscopic salpingo-oophorectomy was performed. The tumor was pathologically diagnosed as ovarian leiomyoma. The patient delivered a healthy girl at 40 1/7 weeks of pregnancy. Despite its low incidence, torsion of ovarian leiomyoma should be considered in the differential diagnosis of acute abdomen. Furthermore, laparoscopic exploration should be the preferred way of removing twisted ovarian leiomyoma, even during pregnancy. It seems that primary ovarian leiomyomata have a tendency to grow rapidly during early pregnancy. However, because of the low incidence of ovarian leiomyoma, the effects of estrogen and pregnancy on this condition remain unclear.
Twist operators in N=4 beta-deformed theory
de Leeuw, M.; Łukowski, T.
2010-01-01
In this paper we derive both the leading order finite size corrections for twist-2 and twist-3 operators and the next-to-leading order finite-size correction for twist-2 operators in beta-deformed SYM theory. The obtained results respect the principle of maximum transcendentality as well as
Higher twist contributions to deep-inelastic structure functions
International Nuclear Information System (INIS)
Bluemlein, J.; Boettcher, H.
2008-07-01
We report on a recent extraction of the higher twist contributions to the deep inelastic structure functions F ep,ed 2 (x,Q 2 ) in the large x region. It is shown that the size of the extracted higher twist contributions is strongly correlated with the higher order corrections applied to the leading twist part. A gradual lowering of the higher twist contributions going from NLO to N 4 LO is observed, where in the latter case only the leading large x terms were considered. (orig.)
A novel role for Twist-1 in pulp homeostasis.
Galler, K M; Yasue, A; Cavender, A C; Bialek, P; Karsenty, G; D'Souza, R N
2007-10-01
The molecular mechanisms that maintain the equilibrium of odontoblast progenitor cells in dental pulp are unknown. Here we tested whether homeostasis in dental pulp is modulated by Twist-1, a nuclear protein that partners with Runx2 during osteoblast differentiation. Our analysis of Twist-1(+/-) mice revealed phenotypic changes that involved an earlier onset of dentin matrix formation, increased alkaline phosphatase activity, and pulp stones within the pulp. RT-PCR analyses revealed Twist-1 expression in several adult organs, including pulp. Decreased levels of Twist-1 led to higher levels of type I collagen and Dspp gene expression in perivascular cells associated with the pulp stones. In mice heterozygous for both Twist-1 and Runx2 inactivation, the phenotype of pulp stones appeared completely rescued. These findings suggest that Twist-1 plays a key role in restraining odontoblast differentiation, thus maintaining homeostasis in dental pulp. Furthermore, Twist-1 functions in dental pulp are dependent on its interaction with Runx2.
International Nuclear Information System (INIS)
Gözcü, M O; Kayran, A
2014-01-01
Bending-twisting coupling in the composite blades is exploited for load alleviation in the whole turbine system. For the purpose of the study, inverse design of a reference blade is performed such that sectional beam properties of the 3D blade design approximately match the sectional beam properties of NREL's 5MW turbine blade. In order to appropriately account for the bending-twisting coupling effect, dynamic superelement of the blade is created and introduced into the multi-body dynamic model of the wind turbine system. Initially, a comparative study is conducted on the performance of wind turbines which have blades defined as superelements and geometrically nonlinear beams, and conclusions are inferred with regard to the appropriateness of the use of superelement blade definition in the transient analysis of the 5MW wind turbine system that is set up in the present study. Multi-body dynamic simulations of the wind turbine system are performed for the power production load case with the constant wind and the normal turbulence model as external wind loadings. For the internal loads, fatigue damage equivalent load is used as the metric to assess the effect of bending-twisting coupling on the load alleviation in the whole wind turbine system. Results show that in the overall, through the bending-twisting coupling induced with the use of off-axis plies in the main spar caps of the blade, damage equivalent loads associated with the critical load components can be reduced in the wind turbine system
Mass of the b quark and B -meson decay constants from Nf=2+1+1 twisted-mass lattice QCD
DEFF Research Database (Denmark)
Bussone, A.; Carrasco, N.; Dimopoulos, P
2016-01-01
We present precise lattice computations for the b-quark mass, the quark mass ratios mb/mc and mb/ms as well as the leptonic B-decay constants. We employ gauge configurations with four dynamical quark flavors, up-down, strange and charm, at three values of the lattice spacing (a∼0.06-0.09 fm......) and for pion masses as low as 210 MeV. Interpolation in the heavy quark mass to the bottom quark point is performed using ratios of physical quantities computed at nearby quark masses exploiting the fact that these ratios are exactly known in the static quark mass limit. Our results are also extrapolated...... to the physical pion mass and to the continuum limit and read mb(MS,mb)=4.26(10) GeV, mb/mc=4.42(8), mb/ms=51.4(1.4), fBs=229(5) MeV, fB=193(6) MeV, fBs/fB=1.184(25) and (fBs/fB)/(fK/fπ)=0.997(17)....
DEFF Research Database (Denmark)
Yiu, Man Lung; Jensen, Christian Søndergaard; Xuegang, Huang
2008-01-01
-based matching generally fall short in offering practical query accuracy guarantees. Our proposed framework, called SpaceTwist, rectifies these shortcomings for k nearest neighbor (kNN) queries. Starting with a location different from the user's actual location, nearest neighbors are retrieved incrementally...
Dynamics of mechanical systems with variable mass
Belyaev, Alexander
2014-01-01
The book presents up-to-date and unifying formulations for treating dynamics of different types of mechanical systems with variable mass. The starting point is overview of the continuum mechanics relations of balance and jump for open systems from which extended Lagrange and Hamiltonian formulations are derived. Corresponding approaches are stated at the level of analytical mechanics with emphasis on systems with a position-dependent mass and at the level of structural mechanics. Special emphasis is laid upon axially moving structures like belts and chains, and on pipes with an axial flow of fluid. Constitutive relations in the dynamics of systems with variable mass are studied with particular reference to modeling of multi-component mixtures. The dynamics of machines with a variable mass are treated in detail and conservation laws and the stability of motion will be analyzed. Novel finite element formulations for open systems in coupled fluid and structural dynamics are presented.
Magnetization Modeling of Twisted Superconducting Filaments
Satiramatekul, T; Devred, Arnaud; Leroy, Daniel
2007-01-01
This paper presents a new Finite Element numerical method to analyze the coupling between twisted filaments in a superconducting multifilament composite wire. To avoid the large number of elements required by a 3D code, the proposed method makes use of the energy balance principle in a 2D code. The relationship between superconductor critical current density and local magnetic flux density is implemented in the program for the Bean and modified Kim models. The modeled wire is made up of six filaments twisted together and embedded in a lowresistivity matrix. Computations of magnetization cycle and of the electric field pattern have been performed for various twist pitch values in the case of a pure copper matrix. The results confirm that the maximum magnetization depends on the matrix conductivity, the superconductor critical current density, the applied field frequency, and the filament twist pitch. The simulations also lead to a practical criterion for wire design that can be used to assess whether or not th...
Effect of Turbulence on Power for Bend-Twist Coupled Blades
DEFF Research Database (Denmark)
Stäblein, Alexander; Hansen, Morten Hartvig
2016-01-01
that it might be related to the dynamic response of bend-twist coupled blades in turbulent flow. This paper contains estimations of the power curve from nonlinear time simulations, a linear frequency domain based method and a normal distribution weighted average method. It is shown that the frequency domain...... that changes in power due to turbulence are similar for coupled and uncoupled blades. Power gains at low wind speeds are related to the curvature of the steady state power curve. Losses around rated wind speed are caused by the effects of controller switching between partial and full power operation.......Bend-twist coupling of wind turbine blades reduces the structural loads of the turbine but it also results in a decrease of the annual energy production. The main part of the power loss can be mitigated by pretwisting the blade, but some power loss remains and previous studies indicate...
Dynamic wavefront sensing and correction with low-cost twisted nematic spatial light modulators
International Nuclear Information System (INIS)
Duran, Vicente; Climent, Vicent; Lancis, Jesus; Tajahuerce, Enrique; Bara, Salvador; Arines, Justo; Ares, Jorge; Andres, Pedro; Jaroszewicz, Zbigniew
2010-01-01
Off-the-shelf twisted nematic liquid crystal displays (TNLCDs) show some interesting features such as high spatial resolution, easy handling, wide availability, and low cost. We describe a compact adaptive optical system using just one TNLCD to measure and compensate optical aberrations. The current system operates at a frame rate of the order of 10 Hz with a four level codification scheme. Wavefront estimation is performed through conventional Hartmann-Shack sensing architecture. The system has proved to work properly with a maximum rms aberration of 0.76 microns and wavefront gradient of 50 rad/mm at a wavelength of 514 nm. These values correspond to typical aberrations found in human eyes. The key of our approach is careful characterization and optimization of the TNLCD for phase-only modulation. For this purpose, we exploit the so-called retarder-rotator approach for twisted nematic liquid crystal cells. The optimization process has been successfully applied to SLMs working either in transmissive or in reflective mode, even when light depolarization effects are observed.
Twisting short dsDNA with applied tension
Zoli, Marco
2018-02-01
The twisting deformation of mechanically stretched DNA molecules is studied by a coarse grained Hamiltonian model incorporating the fundamental interactions that stabilize the double helix and accounting for the radial and angular base pair fluctuations. The latter are all the more important at short length scales in which DNA fragments maintain an intrinsic flexibility. The presented computational method simulates a broad ensemble of possible molecule conformations characterized by a specific average twist and determines the energetically most convenient helical twist by free energy minimization. As this is done for any external load, the method yields the characteristic twist-stretch profile of the molecule and also computes the changes in the macroscopic helix parameters i.e. average diameter and rise distance. It is predicted that short molecules under stretching should first over-twist and then untwist by increasing the external load. Moreover, applying a constant load and simulating a torsional strain which over-twists the helix, it is found that the average helix diameter shrinks while the molecule elongates, in agreement with the experimental trend observed in kilo-base long sequences. The quantitative relation between percent relative elongation and superhelical density at fixed load is derived. The proposed theoretical model and computational method offer a general approach to characterize specific DNA fragments and predict their macroscopic elastic response as a function of the effective potential parameters of the mesoscopic Hamiltonian.
Four-point functions with a twist
Energy Technology Data Exchange (ETDEWEB)
Bargheer, Till [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group
2017-01-15
We study the OPE of correlation functions of local operators in planar N=4 super Yang-Mills theory. The considered operators have an explicit spacetime dependence that is defined by twisting the translation generators with certain R-symmetry generators. We restrict to operators that carry a small number of excitations above the twisted BMN vacuum. The OPE limit of the four-point correlator is dominated by internal states with few magnons on top of the vacuum. The twisting directly couples all spacetime dependence of the correlator to these magnons. We analyze the OPE in detail, and single out the extremal states that have to cancel all double-trace contributions.
International Nuclear Information System (INIS)
Kingler, J.
1990-01-01
A Lund type Monte Carlo program (LUCIFER) is used to describe in perturbative QCD the pointlike component of the photon interacting on a hydrogen target. Kinematical and topological variables are developed to enhance higher twist events on the lowest order minimum twist background. The emphasis is laid on π ± , K ± higher twist mesons. (orig.)
Roles of dynamical symmetry breaking in driving oblate-prolate transitions of atomic clusters
International Nuclear Information System (INIS)
Oka, Yurie; Yanao, Tomohiro; Koon, Wang Sang
2015-01-01
This paper explores the driving mechanisms for structural transitions of atomic clusters between oblate and prolate isomers. We employ the hyperspherical coordinates to investigate structural dynamics of a seven-atom cluster at a coarse-grained level in terms of the dynamics of three gyration radii and three principal axes, which characterize overall mass distributions of the cluster. Dynamics of gyration radii is governed by two kinds of forces. One is the potential force originating from the interactions between atoms. The other is the dynamical forces called the internal centrifugal forces, which originate from twisting and shearing motions of the system. The internal centrifugal force arising from twisting motions has an effect of breaking the symmetry between two gyration radii. As a result, in an oblate isomer, activation of the internal centrifugal force that has the effect of breaking the symmetry between the two largest gyration radii is crucial in triggering structural transitions into prolate isomers. In a prolate isomer, on the other hand, activation of the internal centrifugal force that has the effect of breaking the symmetry between the two smallest gyration radii is crucial in triggering structural transitions into oblate isomers. Activation of a twisting motion that switches the movement patterns of three principal axes is also important for the onset of structural transitions between oblate and prolate isomers. Based on these trigger mechanisms, we finally show that selective activations of specific gyration radii and twisting motions, depending on the isomer of the cluster, can effectively induce structural transitions of the cluster. The results presented here could provide further insights into the control of molecular reactions
Directory of Open Access Journals (Sweden)
Young H. YOU
2017-08-01
Full Text Available The best active twist schedules exploiting various waveform types are sought taking advantage of the global search algorithm for the reduction of hub vibration and/or power required of a rotor in high-speed conditions. The active twist schedules include two non-harmonic inputs formed based on segmented step functions as well as the simple harmonic waveform input. An advanced Particle Swarm assisted Genetic Algorithm (PSGA is employed for the optimizer. A rotorcraft Computational Structural Dynamics (CSD code CAMRAD II is used to perform the rotor aeromechanics analysis. A Computation Fluid Dynamics (CFD code is coupled with CSD for verification and some physical insights. The PSGA optimization results are verified against the parameter sweep study performed using the harmonic actuation. The optimum twist schedules according to the performance and/or vibration reduction strategy are obtained and their optimization gains are compared between the actuation cases. A two-phase non-harmonic actuation schedule demonstrates the best outcome in decreasing the power required while a four-phase non-harmonic schedule results in the best vibration reduction as well as the simultaneous reductions in the power required and vibration. The mechanism of reduction to the performance gains is identified illustrating the section airloads, angle-of-attack distribution, and elastic twist deformation predicted by the present approaches.
Twist-1 Up-Regulation in Carcinoma Correlates to Poor Survival
Directory of Open Access Journals (Sweden)
Alimujiang Wushou
2014-11-01
Full Text Available Epithelial-to-mesenchymal transition (EMT facilitates tumor metastasis. Twist is a basic helix-loop-helix protein that modulates many target genes through E-box-responsive elements. There are two twist-like proteins, Twist-1 and Twist-2, sharing high structural homology in mammals. Twist-1 was found to be a key factor in the promotion of metastasis of cancer cells, and is known to induce EMT. Twist-1 participation in carcinoma progression and metastasis has been reported in a variety of tumors. However, controversy exists concerning the correlation between Twist-1 and prognostic value with respect to carcinoma. A systematic review and meta-analysis were performed to determine whether the expression of Twist-1 was associated with the prognosis of carcinoma patients. This analysis included 17 studies: four studies evaluated lung cancer, three evaluated head and neck cancer, two evaluated breast cancer, two evaluated esophageal cancer, two evaluated liver cancer and one each evaluated osteosarcoma, bladder, cervical and ovarian cancer. A total of 2006 patients were enrolled in these studies, and the median trial sample size was 118 patients. Twist-1 expression was associated with worse overall survival (OS at both 3 years (hazard ratio “HR” for death = 2.13, 95% CI = 1.86 to 2.45, p < 0.001 and 5 years (HR for death = 2.01, 95% CI = 1.76 to 2.29, p < 0.001. Expression of Twist-1 is associated with worse survival in carcinoma.
Euclidean supersymmetry, twisting and topological sigma models
International Nuclear Information System (INIS)
Hull, C.M.; Lindstroem, U.; Santos, L. Melo dos; Zabzine, M.; Unge, R. von
2008-01-01
We discuss two dimensional N-extended supersymmetry in Euclidean signature and its R-symmetry. For N = 2, the R-symmetry is SO(2) x SO(1, 1), so that only an A-twist is possible. To formulate a B-twist, or to construct Euclidean N = 2 models with H-flux so that the target geometry is generalised Kahler, it is necessary to work with a complexification of the sigma models. These issues are related to the obstructions to the existence of non-trivial twisted chiral superfields in Euclidean superspace.
Dickens, Charles
2005-01-01
Oliver Twist is one of Dickens's most popular novels, with many famous film, television and musical adaptations. It is a classic story of good against evil, packed with humour and pathos, drama and suspense, in which the orphaned Oliver is brought up in a harsh workhouse, and then taken in and
Duality and braiding in twisted quantum field theory
International Nuclear Information System (INIS)
Riccardi, Mauro; Szabo, Richard J.
2008-01-01
We re-examine various issues surrounding the definition of twisted quantum field theories on flat noncommutative spaces. We propose an interpretation based on nonlocal commutative field redefinitions which clarifies previously observed properties such as the formal equivalence of Green's functions in the noncommutative and commutative theories, causality, and the absence of UV/IR mixing. We use these fields to define the functional integral formulation of twisted quantum field theory. We exploit techniques from braided tensor algebra to argue that the twisted Fock space states of these free fields obey conventional statistics. We support our claims with a detailed analysis of the modifications induced in the presence of background magnetic fields, which induces additional twists by magnetic translation operators and alters the effective noncommutative geometry seen by the twisted quantum fields. When two such field theories are dual to one another, we demonstrate that only our braided physical states are covariant under the duality
Role of centre vortices in dynamical mass generation
International Nuclear Information System (INIS)
Leinweber, Derek B.; Bowman, Patrick O.; Heller, Urs M.; Kusterer, Daniel-Jens; Langfeld, Kurt; Williams, Anthony G.
2006-01-01
The mass and renormalization functions of the nonperturbative quark propagator are studied in SU(3) gauge field theory with a Symanzik-improved gluon action and the AsqTad fermion action. Centre vortices in the gauge field are identified by fixing to maximal centre gauge. The role of centre vortices in dynamical mass generation is explored by removing centre vortices from the gauge fields and studying the associated changes in the quark propagator. We find that dynamical mass generation survives in the vortex-removed SU(3) gauge field theory despite the vanishing of the string tension and suppression of the gluon propagator in the infrared suggesting the possibility of decoupling dynamical mass generation from confinement
Light hadrons from lattice QCD with light (u,d), strange and charm dynamical quarks
Energy Technology Data Exchange (ETDEWEB)
Baron, R. [CEA, Centre de Saclay, 91 - Gif-sur-Yvette (France). IRFU/Service de Physique Nucleaire; Boucaud, P. [CNRS et Paris-Sud 11 Univ., 91 - Orsay (France). Lab. de Physique Theorique; Carbonell, J. [Lab. de Physique Subatomique et Cosmologie, 38 - Grenoble (FR)] (and others)
2010-04-15
We present results of lattice QCD simulations with mass-degenerate up and down and mass-split strange and charm (N{sub f}=2+1+1) dynamical quarks using Wilson twisted mass fermions at maximal twist. The tuning of the strange and charm quark masses is performed at two values of the lattice spacing a {approx} 0:078 fm and a {approx}0.086 fm with lattice sizes ranging from L{approx}1.9 fm to L{approx}2.8 fm. We measure with high statistical precision the light pseudoscalar mass m{sub PS} and decay constant f{sub PS} in a range 270
Energy Technology Data Exchange (ETDEWEB)
Song, Min Seop; Park, So Hyun; Kim, Eung Soo [Seoul National Univ., Seoul (Korea, Republic of)
2014-10-15
Many researchers conducted experiments and numerical simulations to measure or predict a Nusselt number or a friction factor in a pipe with a twisted tape while some other studies focused on the heat transfer performance enhancement using various twisted tape configurations. However, since the optical access to the inner space of a pipe with a twisted tape was limited, the detailed flow field data were not obtainable so far. Thus, researchers mainly relied on the numerical simulations to obtain the data of the flow field. In this study, a 3D printing technique was used to manufacture a transparent test section for optical access. And also, a noble refractive index matching technique was used to eliminate optical distortion. This two combined techniques enabled to measure the velocity profile with Particle Image Velocimetry (PIV). The measured velocity field data can be used either to understand the fundamental flow characteristics around a twisted tape or to validate turbulence models in Computational Fluid Dynamics (CFD). In this study, the flow field in the test-section was measured for various flow conditions and it was finally compared with numerically calculated data. Velocity fields in a pipe with a classic twisted tape was measured using a particle image velocimetry (PIV) system. To obtain undistorted particle images, a noble optical technique, refractive index matching, was used and it was proved that high-quality image can be obtained from this experimental equipment. The velocity data from the PIV was compared with the CFD simulations.
International Nuclear Information System (INIS)
Song, Min Seop; Park, So Hyun; Kim, Eung Soo
2014-01-01
Many researchers conducted experiments and numerical simulations to measure or predict a Nusselt number or a friction factor in a pipe with a twisted tape while some other studies focused on the heat transfer performance enhancement using various twisted tape configurations. However, since the optical access to the inner space of a pipe with a twisted tape was limited, the detailed flow field data were not obtainable so far. Thus, researchers mainly relied on the numerical simulations to obtain the data of the flow field. In this study, a 3D printing technique was used to manufacture a transparent test section for optical access. And also, a noble refractive index matching technique was used to eliminate optical distortion. This two combined techniques enabled to measure the velocity profile with Particle Image Velocimetry (PIV). The measured velocity field data can be used either to understand the fundamental flow characteristics around a twisted tape or to validate turbulence models in Computational Fluid Dynamics (CFD). In this study, the flow field in the test-section was measured for various flow conditions and it was finally compared with numerically calculated data. Velocity fields in a pipe with a classic twisted tape was measured using a particle image velocimetry (PIV) system. To obtain undistorted particle images, a noble optical technique, refractive index matching, was used and it was proved that high-quality image can be obtained from this experimental equipment. The velocity data from the PIV was compared with the CFD simulations
Renormalisation constants of quark bilinears in lattice QCD with four dynamical Wilson quarks
Energy Technology Data Exchange (ETDEWEB)
Blossier, Benoit [CNRS et Paris-Sud 11 Univ., Orsay (France). Lab. de Physique Theorique; Brinet, Mariane [CNRS/IN2P3/UJF, Grenoble (France). Lab. de Physique Subatomique et de Cosmologie; Carrasco, Nuria [Valencia Univ., Burjassot (ES). Dept. de Fisica Teorica and IFC] (and others)
2011-12-15
We present preliminary results of the non-perturbative computation of the RI-MOM renormalization constants in a mass-independent scheme for the action with Iwasaki glue and four dynamical Wilson quarks employed by ETMC. Our project requires dedicated gauge ensembles with four degenerate sea quark flavours at three lattice spacings and at several values of the standard and twisted quark mass parameters. The RI-MOM renormalization constants are obtained from appropriate O(a) improved estimators extrapolated to the chiral limit. (orig.)
Renormalisation constants of quark bilinears in lattice QCD with four dynamical Wilson quarks
International Nuclear Information System (INIS)
Blossier, Benoit; Brinet, Mariane; Carrasco, Nuria
2011-12-01
We present preliminary results of the non-perturbative computation of the RI-MOM renormalization constants in a mass-independent scheme for the action with Iwasaki glue and four dynamical Wilson quarks employed by ETMC. Our project requires dedicated gauge ensembles with four degenerate sea quark flavours at three lattice spacings and at several values of the standard and twisted quark mass parameters. The RI-MOM renormalization constants are obtained from appropriate O(a) improved estimators extrapolated to the chiral limit. (orig.)
Twisted Acceleration-Enlarged Newton-Hooke Hopf Algebras
International Nuclear Information System (INIS)
Daszkiewicz, M.
2010-01-01
Ten Abelian twist deformations of acceleration-enlarged Newton-Hooke Hopf algebra are considered. The corresponding quantum space-times are derived as well. It is demonstrated that their contraction limit τ → ∞ leads to the new twisted acceleration-enlarged Galilei spaces. (author)
TWIST1 promotes invasion through mesenchymal change in human glioblastoma
Directory of Open Access Journals (Sweden)
Wakimoto Hiroaki
2010-07-01
Full Text Available Abstract Background Tumor cell invasion into adjacent normal brain is a mesenchymal feature of GBM and a major factor contributing to their dismal outcomes. Therefore, better understandings of mechanisms that promote mesenchymal change in GBM are of great clinical importance to address invasion. We previously showed that the bHLH transcription factor TWIST1 which orchestrates carcinoma metastasis through an epithelial mesenchymal transition (EMT is upregulated in GBM and promotes invasion of the SF767 GBM cell line in vitro. Results To further define TWIST1 functions in GBM we tested the impact of TWIST1 over-expression on invasion in vivo and its impact on gene expression. We found that TWIST1 significantly increased SNB19 and T98G cell line invasion in orthotopic xenotransplants and increased expression of genes in functional categories associated with adhesion, extracellular matrix proteins, cell motility and locomotion, cell migration and actin cytoskeleton organization. Consistent with this TWIST1 reduced cell aggregation, promoted actin cytoskeletal re-organization and enhanced migration and adhesion to fibronectin substrates. Individual genes upregulated by TWIST1 known to promote EMT and/or GBM invasion included SNAI2, MMP2, HGF, FAP and FN1. Distinct from carcinoma EMT, TWIST1 did not generate an E- to N-cadherin "switch" in GBM cell lines. The clinical relevance of putative TWIST target genes SNAI2 and fibroblast activation protein alpha (FAP identified in vitro was confirmed by their highly correlated expression with TWIST1 in 39 human tumors. The potential therapeutic importance of inhibiting TWIST1 was also shown through a decrease in cell invasion in vitro and growth of GBM stem cells. Conclusions Together these studies demonstrated that TWIST1 enhances GBM invasion in concert with mesenchymal change not involving the canonical cadherin switch of carcinoma EMT. Given the recent recognition that mesenchymal change in GBMs is
Mendel Horwitz, Roberto Ruben
1982-03-01
In the framework of the Glashow-Weinberg-Salem model without elementary scalar particles, we show that masses for fermions and intermediate vector bosons can be generated dynamically. The mechanism is the formation of fermion-antifermion pseudoscalar bound states of zero total four momentum, which form a condensate in the physical vacuum. The force responsible for the binding is the short distance part of the net Coulomb force due to photon and Z exchange. Fermions and bosons acquire masses through their interaction with this condensate. The neutrinos remain massless because their righthanded components have no interactions. Also the charge -1/3 quarks remain massless because the repulsive force from the Z exchange dominates over the Coulomb force. To correct this, we propose two possible modifications to the theory. One is to cut off the Z exchange at very small distances, so that all fermions except the neutrinos acquire masses, which are then, purely electromagnetic in origin. The other is to introduce an additional gauge boson that couples to all quarks with a pure vector coupling. To make this vector boson unobservable at usual energies, at least two new fermions must couple to it. The vector boson squared masses receive additive contributions from all the fermion squared masses. The photon remains massless and the masses of the Z and W('(+OR -)) bosons are shown to be related through the Weinberg angle in the conventional way. Assuming only three families of fermions, we obtain estimates for the top quark mass.
Energy Technology Data Exchange (ETDEWEB)
Cichy, Krzysztof [DESY, Zeuthen (Germany). NIC; Adam Mickiewicz Univ., Poznan (Poland). Faculty of Physics; Jansen, Karl [DESY, Zeuthen (Germany). NIC; Korcyl, Piotr [DESY, Zeuthen (Germany). NIC; Jagiellonian Univ., Krakow (Poland). M. Smoluchowski Inst. of Physics
2012-07-15
We present results of a lattice QCD application of a coordinate space renormalization scheme for the extraction of renormalization constants for flavour non-singlet bilinear quark operators. The method consists in the analysis of the small-distance behaviour of correlation functions in Euclidean space and has several theoretical and practical advantages, in particular: it is gauge invariant, easy to implement and has relatively low computational cost. The values of renormalization constants in the X-space scheme can be converted to the MS scheme via 4-loop continuum perturbative formulae. Our results for N{sub f}=2 maximally twisted mass fermions with tree-level Symanzik improved gauge action are compared to the ones from the RI-MOM scheme and show full agreement with this method. (orig.)
International Nuclear Information System (INIS)
Ketov, S.V.; Lechtenfeld, O.; Parkes, A.J.
1993-12-01
The most general homogeneous monodromy conditions in N= 2 string theory are classified in terms of the conjugacy classes of the global symmetry group U(1, 1) x Z 2 . For classes which generate a discrete subgroup Γ, the corresponding target space backgrounds C 1,1 /Γ include half spaces, complex orbifolds and tori. We propose a generalization of the intercept formula to matrix-valued twists, and find massless physical states in a number of twisted cases. In particular, the sixteen Z 2 -twisted sectors of the N = 2 string are investigated, and the corresponding ground states are identified via bosonization and BRST cohomology. We find enough room for an extended multiplet of 'spacetime' supersymmetry, with the number of supersymmetries being dependent on global 'spacetime' topology. Unfortunately, world-sheet locality for the chiral vertex operators does not permit interactions for the massless 'spacetime' fermions; however possibly, an asymmetric GSO projection could evade this problem. (orig.)
Dynamic legged locomotion in robots and animals
Raibert, Marc; Playter, Robert; Ringrose, Robert; Bailey, Dave; Leeser, Karl
1995-01-01
This report documents our study of active legged systems that balance actively and move dynamically. The purpose of this research is to build a foundation of knowledge that can lead both to the construction of useful legged vehicles and to a better understanding of how animal locomotion works. In this report we provide an update on progress during the past year. Here are the topics covered in this report: (1) Is cockroach locomotion dynamic? To address this question we created three models of cockroaches, each abstracted at a different level. We provided each model with a control system and computer simulation. One set of results suggests that 'Groucho Running,' a type of dynamic walking, seems feasible at cockroach scale. (2) How do bipeds shift weight between the legs? We built a simple planar biped robot specifically to explore this question. It shifts its weight from one curved foot to the other, using a toe-off and toe-on strategy, in conjunction with dynamic tipping. (3) 3D biped gymnastics: The 3D biped robot has done front somersaults in the laboratory. The robot changes its leg length in flight to control rotation rate. This in turn provides a mechanism for controlling the landing attitude of the robot once airborne. (4) Passively stabilized layout somersault: We have found that the passive structure of a gymnast, the configuration of masses and compliances, can stabilize inherently unstable maneuvers. This means that body biomechanics could play a larger role in controlling behavior than is generally thought. We used a physical 'doll' model and computer simulation to illustrate the point. (5) Twisting: Some gymnastic maneuvers require twisting. We are studying how to couple the biomechanics of the system to its control to produce efficient, stable twisting maneuvers.
Scanning tunneling microscopy and spectroscopy of twisted trilayer graphene
Zuo, Wei-Jie; Qiao, Jia-Bin; Ma, Dong-Lin; Yin, Long-Jing; Sun, Gan; Zhang, Jun-Yang; Guan, Li-Yang; He, Lin
2018-01-01
Twist, as a simple and unique degree of freedom, could lead to enormous novel quantum phenomena in bilayer graphene. A small rotation angle introduces low-energy van Hove singularities (VHSs) approaching the Fermi level, which result in unusual correlated states in the bilayer graphene. It is reasonable to expect that the twist could also affect the electronic properties of few-layer graphene dramatically. However, such an issue has remained experimentally elusive. Here, by using scanning tunneling microscopy/spectroscopy (STM/STS), we systematically studied a twisted trilayer graphene (TTG) with two different small twist angles between adjacent layers. Two sets of VHSs, originating from the two twist angles, were observed in the TTG, indicating that the TTG could be simply regarded as a combination of two different twisted bilayers of graphene. By using high-resolution STS, we observed a split of the VHSs and directly imaged the spatial symmetry breaking of electronic states around the VHSs. These results suggest that electron-electron interactions play an important role in affecting the electronic properties of graphene systems with low-energy VHSs.
Twisted boundary states in c=1 coset conformal field theories
International Nuclear Information System (INIS)
Ishikawa, Hiroshi; Yamaguchi, Atsushi
2003-01-01
We study the mutual consistency of twisted boundary conditions in the coset conformal field theory G/H. We calculate the overlap of the twisted boundary states of G/H with the untwisted ones, and show that the twisted boundary states are consistently defined in the charge-conjugation modular invariant. The overlap of the twisted boundary states is expressed by the branching functions of a twisted affine Lie algebra. As a check of our argument, we study the diagonal coset theory so(2n) 1 +so(2n) 1 /so(2n) 2 , which is equivalent to the orbifold S 1 /Z 2 at a particular radius. We construct the boundary states twisted by the automorphisms of the unextended Dynkin diagram of so(2n), and show their mutual consistency by identifying their counterpart in the orbifold. For the triality of so(8), the twisted states of the coset theory correspond to neither the Neumann nor the Dirichlet boundary states of the orbifold and yield conformal boundary states that preserve only the Virasoro algebra. (author)
Photophysics of internal twisting
International Nuclear Information System (INIS)
Heisel, F.; Miehe, J.A.; Lippert, E.; Rettig, W.; Bonacic-Koutecky, V.
1987-01-01
The formation and characteristics of the ''twisted intermolecular charge transfer'' is studied. Basic concepts on dual fluorescence, steady-state fluorescence, kinetic investigations and cage effects are discussed. The theoretical treatment on the electronic structure of the bonded π - donor - π acceptor pairs is outlined. The two-electron, two-orbital model, the ab initio CI models of simple double, charged and dative π - bonds as well as complex dative π - bonds and the origin of the dual fluorescence of 9.9'-Bianthryl are shown. Concerning the stochastic description of chemical reactions, Master equation, Markov, Birth-Death and Diffusion processes, Kramers-Moyal expansion, Langevin equation, Kramers' approach to steady-state rates of reaction and its extension to non-Markovian processes, and also unimolecular reactions in the absence of potential barrier are considered. Experimental results and interpretation on dynamics of DMABN in the excited state, kinetics of other dialkylanilines, extended donor-acceptor systems with anomalous fluorescence and donor-acceptor systems without anomalous fluorescence are given
Twisted covariant noncommutative self-dual gravity
International Nuclear Information System (INIS)
Estrada-Jimenez, S.; Garcia-Compean, H.; Obregon, O.; Ramirez, C.
2008-01-01
A twisted covariant formulation of noncommutative self-dual gravity is presented. The formulation for constructing twisted noncommutative Yang-Mills theories is used. It is shown that the noncommutative torsion is solved at any order of the θ expansion in terms of the tetrad and some extra fields of the theory. In the process the first order expansion in θ for the Plebanski action is explicitly obtained.
Soft tissue twisting injuries of the knee
International Nuclear Information System (INIS)
Magee, T.; Shapiro, M.
2001-01-01
Twisting injuries occur as a result of differential motion of different tissue types in injuries with some rotational force. These injuries are well described in brain injuries but, to our knowledge, have not been described in the musculoskeletal literature. We correlated the clinical examination and MR findings of 20 patients with twisting injuries of the soft tissues around the knee. Design and patients: We prospectively followed the clinical courses of 20 patients with knee injuries who had clinical histories and MR findings to suggest twisting injuries of the subcutaneous tissues. Patients with associated internal derangement of the knee (i.e., meniscal tears, ligamentous or bone injuries) were excluded from this study. MR findings to suggest twisting injuries included linear areas of abnormal dark signal on T1-weighted sequences and abnormal bright signal on T2-weighted or short tau inversion recovery (STIR) sequences and/or signal to suggest hemorrhage within the subcutaneous tissues. These MR criteria were adapted from those established for indirect musculotendinous junction injuries. Results: All 20 patients presented with considerable pain that suggested internal derangement on physical examination by the referring orthopedic surgeons. All presented with injuries associated with rotational force. The patients were placed on a course of protected weight-bearing of the affected extremity for 4 weeks. All patients had pain relief by clinical examination after this period of protected weight-bearing. Twisting injuries of the soft tissues can result in considerable pain that can be confused with internal derangement of the knee on physical examination. Soft tissue twisting injuries need to be recognized on MR examinations as they may be the cause of the patient's pain despite no MR evidence of internal derangement of the knee. The demonstration of soft tissue twisting injuries in a patient with severe knee pain but no documented internal derangement on MR
Mujika, Jon I; Formoso, Elena; Mercero, Jose M; Lopez, Xabier
2006-08-03
We present an ab initio study of the acid hydrolysis of a highly twisted amide and a planar amide analogue. The aim of these studies is to investigate the effect that the twist of the amide bond has on the reaction barriers and mechanism of acid hydrolysis. Concerted and stepwise mechanisms were investigated using density functional theory and polarizable continuum model calculations. Remarkable differences were observed between the mechanism of twisted and planar amide, due mainly to the preference for N-protonation of the former and O-protonation of the latter. In addition, we were also able to determine that the hydrolytic mechanism of the twisted amide will be pH dependent. Thus, there is a preference for a stepwise mechanism with formation of an intermediate in the acid hydrolysis, whereas the neutral hydrolysis undergoes a concerted-type mechanism. There is a nice agreement between the characterized intermediate and available X-ray data and a good agreement with the kinetically estimated rate acceleration of hydrolysis with respect to analogous undistorted amide compounds. This work, along with previous ab initio calculations, describes a complex and rich chemistry for the hydrolysis of highly twisted amides as a function of pH. The theoretical data provided will allow for a better understanding of the available kinetic data of the rate acceleration of amides upon twisting and the relation of the observed rate acceleration with intrinsic differential reactivity upon loss of amide bond resonance.
A twisted generalization of Novikov-Poisson algebras
Yau, Donald
2010-01-01
Hom-Novikov-Poisson algebras, which are twisted generalizations of Novikov-Poisson algebras, are studied. Hom-Novikov-Poisson algebras are shown to be closed under tensor products and several kinds of twistings. Necessary and sufficient conditions are given under which Hom-Novikov-Poisson algebras give rise to Hom-Poisson algebras.
Introduction to twisted conformal fields
International Nuclear Information System (INIS)
Kazama, Y.
1988-01-01
A pedagogical account is given of the recent developments in the theory of twisted conformal fields. Among other things, the main part of the lecture concerns the construction of the twist-emission vertex operator, which is a generalization of the fermion emission vertex in the superstring theory. Several different forms of the vertex are derived and their mutural relationships are clarified. In this paper, the authors include a brief survey of the history of the fermion emission vertex, as it offers a good perspective in which to appreciate the logical development
International Nuclear Information System (INIS)
Lee, Chiyoung; Kwack, Youngkyun; Park, Juyong; Shin, Changhwan; In, Wangkee
2013-01-01
Our research group has investigated the effect of P/D difference on the behavior of turbulent rod bundle flow without the mixing vane spacer grid, using PIV (Particle Image Velocimetry) and MIR (Matching Index of Refraction) techniques for tight lattice fuel rod bundle application. In this work, using the tight-lattice rod bundle with a twist-mixing vane spacer grid, the turbulent rod bundle flow is preliminarily examined to validate the PIV measurement and CFD (Computational Fluid Dynamics) simulation. The turbulent flow in the tight-lattice rod bundle with a twist-mixing vane spacer grid was preliminarily examined to validate the PIV measurement and CFD simulation. Both were in agreement with each other within a reasonable degree of accuracy. Using PIV measurement and CFD simulation tested in this work, the detailed investigations on the behavior of turbulent rod bundle flow with the twist-mixing vane spacer grid will be performed at various conditions, and reported in the near future
On the performance analysis of Savonius rotor with twisted blades
Energy Technology Data Exchange (ETDEWEB)
Saha, U.K.; Rajkumar, M. Jaya [Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati-781 039 (India)
2006-09-15
The present investigation is aimed at exploring the feasibility of twisted bladed Savonius rotor for power generation. The twisted blade in a three-bladed rotor system has been tested in a low speed wind tunnel, and its performance has been compared with conventional semicircular blades (with twist angle of 0{sup o}). Performance analysis has been made on the basis of starting characteristics, static torque and rotational speed. Experimental evidence shows the potential of the twisted bladed rotor in terms of smooth running, higher efficiency and self-starting capability as compared to that of the conventional bladed rotor. Further experiments have been conducted in the same setup to optimize the twist angle. (author)
Infrared divergences, mass shell singularities and gauge dependence of the dynamical fermion mass
International Nuclear Information System (INIS)
Das, Ashok K.; Frenkel, J.; Schubert, C.
2013-01-01
We study the behavior of the dynamical fermion mass when infrared divergences and mass shell singularities are present in a gauge theory. In particular, in the massive Schwinger model in covariant gauges we find that the pole of the fermion propagator is divergent and gauge dependent at one loop, but the leading singularities cancel in the quenched rainbow approximation. On the other hand, in physical gauges, we find that the dynamical fermion mass is finite and gauge independent at least up to one loop
Meng, Guangrong; Shi, Shicheng; Lalancette, Roger; Szostak, Roman; Szostak, Michal
2018-01-17
Since the seminal studies by Pauling in 1930s, planarity has become the defining characteristic of the amide bond. Planarity of amides has central implications for the reactivity and chemical properties of amides of relevance to a range of chemical disciplines. While the vast majority of amides are planar, nonplanarity has a profound effect on the properties of the amide bond, with the most common method to restrict the amide bond relying on the incorporation of the amide function into a rigid cyclic ring system. In a major departure from this concept, here, we report the first class of acyclic twisted amides that can be prepared, reversibly, from common primary amides in a single, operationally trivial step. Di-tert-butoxycarbonylation of the amide nitrogen atom yields twisted amides in which the amide bond exhibits nearly perpendicular twist. Full structural characterization of a range of electronically diverse compounds from this new class of twisted amides is reported. Through reactivity studies we demonstrate unusual properties of the amide bond, wherein selective cleavage of the amide bond can be achieved by a judicious choice of the reaction conditions. Through computational studies we evaluate structural and energetic details pertaining to the amide bond deformation. The ability to selectively twist common primary amides, in a reversible manner, has important implications for the design and application of the amide bond nonplanarity in structural chemistry, biochemistry and organic synthesis.
Modal properties and stability of bend–twist coupled wind turbine blades
Directory of Open Access Journals (Sweden)
A. R. Stäblein
2017-06-01
Full Text Available Coupling between bending and twist has a significant influence on the aeroelastic response of wind turbine blades. The coupling can arise from the blade geometry (e.g. sweep, prebending, or deflection under load or from the anisotropic properties of the blade material. Bend–twist coupling can be utilized to reduce the fatigue loads of wind turbine blades. In this study the effects of material-based coupling on the aeroelastic modal properties and stability limits of the DTU 10 MW Reference Wind Turbine are investigated. The modal properties are determined by means of eigenvalue analysis around a steady-state equilibrium using the aero-servo-elastic tool HAWCStab2 which has been extended by a beam element that allows for fully coupled cross-sectional properties. Bend–twist coupling is introduced in the cross-sectional stiffness matrix by means of coupling coefficients that introduce twist for flapwise (flap–twist coupling or edgewise (edge–twist coupling bending. Edge–twist coupling can increase or decrease the damping of the edgewise mode relative to the reference blade, depending on the operational condition of the turbine. Edge–twist to feather coupling for edgewise deflection towards the leading edge reduces the inflow speed at which the blade becomes unstable. Flap–twist to feather coupling for flapwise deflections towards the suction side increase the frequency and reduce damping of the flapwise mode. Flap–twist to stall reduces frequency and increases damping. The reduction of blade root flapwise and tower bottom fore–aft moments due to variations in mean wind speed of a flap–twist to feather blade are confirmed by frequency response functions.
Twisted sigma-model solitons on the quantum projective line
Landi, Giovanni
2018-04-01
On the configuration space of projections in a noncommutative algebra, and for an automorphism of the algebra, we use a twisted Hochschild cocycle for an action functional and a twisted cyclic cocycle for a topological term. The latter is Hochschild-cohomologous to the former and positivity in twisted Hochschild cohomology results into a lower bound for the action functional. While the equations for the critical points are rather involved, the use of the positivity and the bound by the topological term lead to self-duality equations (thus yielding twisted noncommutative sigma-model solitons, or instantons). We present explicit nontrivial solutions on the quantum projective line.
Large mass hierarchies from strongly-coupled dynamics
Energy Technology Data Exchange (ETDEWEB)
Athenodorou, Andreas [Department of Physics, University of Cyprus,B.O. Box 20537, 1678 Nicosia (Cyprus); Bennett, Ed [Department of Physics, College of Science, Swansea University,Singleton Park, Swansea SA2 8PP (United Kingdom); Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI),Nagoya University,Furo, Chikusa, Nagoya 464-8602 (Japan); Bergner, Georg [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics,University of Bern,Sidlerstrasse 5, CH-3012 Bern (Switzerland); Elander, Daniel [National Institute for Theoretical Physics, School of Physics andMandelstam Institute for Theoretical Physics, University of the Witwatersrand,1 Jan Smuts Avenue, Johannesburg, Wits 2050 (South Africa); Lin, C.-J. David [Institute of Physics, National Chiao-Tung University,1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan (China); CNRS, Aix Marseille Université, Université de Toulon, Centre de Physique Théorique,UMR 7332, F-13288 Marseille (France); Lucini, Biagio; Piai, Maurizio [Department of Physics, College of Science, Swansea University,Singleton Park, Swansea SA2 8PP (United Kingdom)
2016-06-20
Besides the Higgs particle discovered in 2012, with mass 125 GeV, recent LHC data show tentative signals for new resonances in diboson as well as diphoton searches at high center-of-mass energies (2 TeV and 750 GeV, respectively). If these signals are confirmed (or other new resonances are discovered at the TeV scale), the large hierarchies between masses of new bosons require a dynamical explanation. Motivated by these tentative signals of new physics, we investigate the theoretical possibility that large hierarchies in the masses of glueballs could arise dynamically in new strongly-coupled gauge theories extending the standard model of particle physics. We study lattice data on non-Abelian gauge theories in the (near-)conformal regime as well as a simple toy model in the context of gauge/gravity dualities. We focus our attention on the ratio R between the mass of the lightest spin-2 and spin-0 resonances, that for technical reasons is a particularly convenient and clean observable to study. For models in which (non-perturbative) large anomalous dimensions arise dynamically, we show indications that this mass ratio can be large, with R>5. Moreover, our results suggest that R might be related to universal properties of the IR fixed point. Our findings provide an interesting step towards understanding large mass ratios in the non-perturbative regime of quantum field theories with (near) IR conformal behaviour.
A higher twist correction to heavy quark production
International Nuclear Information System (INIS)
Brodsky, S.J.; Gunion, J.F.; Soper, D.E.
1987-06-01
The leading twist prediction for heavy quark production and a model for a higher twist correction that may be important for charm production was discussed. The correction arises from the interaction of the charm quark with spectator quarks
The Twist Tensor Nuclear Norm for Video Completion.
Hu, Wenrui; Tao, Dacheng; Zhang, Wensheng; Xie, Yuan; Yang, Yehui
2017-12-01
In this paper, we propose a new low-rank tensor model based on the circulant algebra, namely, twist tensor nuclear norm (t-TNN). The twist tensor denotes a three-way tensor representation to laterally store 2-D data slices in order. On one hand, t-TNN convexly relaxes the tensor multirank of the twist tensor in the Fourier domain, which allows an efficient computation using fast Fourier transform. On the other, t-TNN is equal to the nuclear norm of block circulant matricization of the twist tensor in the original domain, which extends the traditional matrix nuclear norm in a block circulant way. We test the t-TNN model on a video completion application that aims to fill missing values and the experiment results validate its effectiveness, especially when dealing with video recorded by a nonstationary panning camera. The block circulant matricization of the twist tensor can be transformed into a circulant block representation with nuclear norm invariance. This representation, after transformation, exploits the horizontal translation relationship between the frames in a video, and endows the t-TNN model with a more powerful ability to reconstruct panning videos than the existing state-of-the-art low-rank models.
Optical yarn assessment system for twist measurement in rotor-spun yarn
International Nuclear Information System (INIS)
Jhatial, R.A.
2015-01-01
This paper presents the development of an optical yarn assessment system for evaluation of twist and structure of twisted yarn. The system comprises a yarn carriage unit, a video microscope and a personal computer. This system was used in conjunction with the well-known tracer fibre technique. This system enables digital images to be grabbed and continuous movies of the yarn to be recorded in order to facilitate the measurement of twist and the analysis of yarn structure. Yarn samples from polyester, viscose and cotton with 35 tex and 485 turns/meter were spun from the roving with 2.3% of black fibres on the SKF laboratory ring frame. In order to measure the twist in the rotor yarns with the optical yarn assessment system, a set of yarn samples from same fibres were spun on RU 14 rotor machine with 35 tex and 475 turns/meter. The twist was measured with the optical yarn assessment system and sixty tests of each sample were carried out on the Zweigle D301. It is clear from the results that there is consistency in the twist of ring-spun yarn measured by the optical yarn assessment system. However, the measured twist with the Zwiegle D301 is inconsistent in the different yarns. The difference in the mean twist measured with the optical twist measuring system and the double untwist-twist method was not significant at a 5% probability level when data was analyzed with t test by using SPSS (Statistical Package for Social Sciences). (author)
Compactifications of 5d SCFTs with a twist
Energy Technology Data Exchange (ETDEWEB)
Zafrir, Gabi [Department of Physics, Technion - Israel Institute of Technology,32000, Haifa (Israel)
2017-01-23
We study the compactification of 5d SCFTs to 4d on a circle with a twist in a discrete global symmetry element of these SCFTs. We present evidence that this leads to various 4dN=2 isolated SCFTs. These include many known theories as well as seemingly new ones. The known theories include the recently discovered rank 1SU(4) SCFT and its mass deformations. One application of the new SCFTs is in the dual descriptions of the 4d gauge theory SU(N)+1S+(N−2)F. Also interesting is the appearance of a theory with rank 1 and F{sub 4} global symmetry.
Level-rank duality of untwisted and twisted D-branes
International Nuclear Information System (INIS)
Naculich, Stephen G.; Schnitzer, Howard J.
2006-01-01
Level-rank duality of untwisted and twisted D-branes of WZW models is explored. We derive the relation between D0-brane charges of level-rank dual untwisted D-branes of su-bar (N) K and sp-bar (n) k , and of level-rank dual twisted D-branes of su-bar (2n+1) 2k+1 . The analysis of level-rank duality of twisted D-branes of su-bar (2n+1) 2k+1 is facilitated by their close relation to untwisted D-branes of sp-bar (n) k . We also demonstrate level-rank duality of the spectrum of an open string stretched between untwisted or twisted D-branes in each of these cases
Dynamical mass generation in QED with weak magnetic fields
International Nuclear Information System (INIS)
Ayala, A.; Rojas, E.; Bashir, A.; Raya, A.
2006-01-01
We study the dynamical generation of masses for fundamental fermions in quenched quantum electrodynamics in the presence of magnetic fields using Schwinger-Dyson equations. We show that, contrary to the case where the magnetic field is strong, in the weak field limit eB << m(0)2, where m(0) is the value of the dynamically generated mass in the absence of the magnetic field, masses are generated above a critical value of the coupling and that this value is the same as in the case with no magnetic field. We carry out a numerical analysis to study the magnetic field dependence of the mass function above critical coupling and show that in this regime the dynamically generated mass and the chiral condensate for the lowest Landau level increase proportionally to (eB)2
Bound states on the lattice with partially twisted boundary conditions
International Nuclear Information System (INIS)
Agadjanov, D.; Guo, F.-K.; Ríos, G.; Rusetsky, A.
2015-01-01
We propose a method to study the nature of exotic hadrons by determining the wave function renormalization constant Z from lattice simulations. It is shown that, instead of studying the volume-dependence of the spectrum, one may investigate the dependence of the spectrum on the twisting angle, imposing twisted boundary conditions on the fermion fields on the lattice. In certain cases, e.g., the case of the DK bound state which is addressed in detail, it is demonstrated that the partial twisting is equivalent to the full twisting up to exponentially small corrections.
Information feedback and mass media effects in cultural dynamics
Gonzalez-Avella, J. C.; Cosenza, M. G.; Klemm, K.; Eguiluz, V. M.; Miguel, M. San
2007-01-01
We study the effects of different forms of information feedback associated with mass media on an agent-agent based model of the dynamics of cultural dissemination. In addition to some processes previously considered, we also examine a model of local mass media influence in cultural dynamics. Two mechanisms of information feedback are investigated: (i) direct mass media influence, where local or global mass media act as an additional element in the network of interactions of each agent, and (i...
OAM mode converter in twisted fibers
DEFF Research Database (Denmark)
Usuga Castaneda, Mario A.; Beltran-Mejia, Felipe; Cordeiro, Cristiano
2014-01-01
We analyze the case of an OAM mode converter based on a twisted fiber, through finite element simulations where we exploit an equivalence between geometric and material transformations. The obtained converter has potential applications in MDM. © 2014 OSA.......We analyze the case of an OAM mode converter based on a twisted fiber, through finite element simulations where we exploit an equivalence between geometric and material transformations. The obtained converter has potential applications in MDM. © 2014 OSA....
Anisotropic dynamic mass density for fluidsolid composites
Wu, Ying; Mei, Jun; Sheng, Ping
2012-01-01
By taking the low frequency limit of multiple-scattering theory, we obtain the dynamic effective mass density of fluidsolid composites with a two-dimensional rectangular lattice structure. The anisotropic mass density can be described by an angle
Twisted Vanes Would Enhance Fuel/Air Mixing In Turbines
Nguyen, H. Lee; Micklow, Gerald J.; Dogra, Anju S.
1994-01-01
Computations of flow show performance of high-shear airblast fuel injector in gas-turbine engine enhanced by use of appropriately proportioned twisted (instead of flat) dome swirl vanes. Resultant more nearly uniform fuel/air mixture burns more efficiently, emitting smaller amounts of nitrogen oxides. Twisted-vane high-shear airblast injectors also incorporated into paint sprayers, providing advantages of low pressure drop characteristic of airblast injectors in general and finer atomization of advanced twisted-blade design.
Comparison of split double and triple twists in pair figure skating.
King, Deborah L; Smith, Sarah L; Brown, Michele R; McCrory, Jean L; Munkasy, Barry A; Scheirman, Gary I
2008-05-01
In this study, we compared the kinematic variables of the split triple twist with those of the split double twist to help coaches and scientists understand these landmark pair skating skills. High-speed video was taken during the pair short and free programmes at the 2002 Salt Lake City Winter Olympics and the 2003 International Skating Union Grand Prix Finals. Three-dimensional analyses of 14 split double twists and 15 split triple twists from eleven pairs were completed. In spite of considerable variability in the performance variables among the pairs, the main difference between the split double twists and split triple twists was an increase in rotational rate. While eight of the eleven pairs relied primarily on an increased rotational rate to complete the split triple twist, three pairs employed a combined strategy of increased rotational rate and increased flight time due predominantly to delayed or lower catches. These results were similar to observations of jumps in singles skating for which the extra rotation is typically due to an increase in rotational velocity; increases in flight time come primarily from delayed landings as opposed to additional height during flight. Combining an increase in flight time and rotational rate may be a good strategy for completing the split triple twist in pair skating.
Phosphorylation of basic helix-loop-helix transcription factor Twist in development and disease.
Xue, Gongda; Hemmings, Brian A
2012-02-01
The transcription factor Twist plays vital roles during embryonic development through regulating/controlling cell migration. However, postnatally, in normal physiological settings, Twist is either not expressed or inactivated. Increasing evidence shows a strong correlation between Twist reactivation and both cancer progression and malignancy, where the transcriptional activities of Twist support cancer cells to disseminate from primary tumours and subsequently establish a secondary tumour growth in distant organs. However, it is largely unclear how this signalling programme is reactivated or what signalling pathways regulate its activity. The present review discusses recent advances in Twist regulation and activity, with a focus on phosphorylation-dependent Twist activity, potential upstream kinases and the contribution of these factors in transducing biological signals from upstream signalling complexes. The recent advances in these areas have shed new light on how phosphorylation-dependent regulation of the Twist proteins promotes or suppresses Twist activity, leading to differential regulation of Twist transcriptional targets and thereby influencing cell fate.
Further Generalisations of Twisted Gabidulin Codes
DEFF Research Database (Denmark)
Puchinger, Sven; Rosenkilde, Johan Sebastian Heesemann; Sheekey, John
2017-01-01
We present a new family of maximum rank distance (MRD) codes. The new class contains codes that are neither equivalent to a generalised Gabidulin nor to a twisted Gabidulin code, the only two known general constructions of linear MRD codes.......We present a new family of maximum rank distance (MRD) codes. The new class contains codes that are neither equivalent to a generalised Gabidulin nor to a twisted Gabidulin code, the only two known general constructions of linear MRD codes....
Quenched BK-parameter from Osterwalder-Seiler tmQCD quarks and mass-splitting discretization effects
International Nuclear Information System (INIS)
Dimopoulos, P.; Simma, H.; Vladikas, A.
2009-01-01
We apply an Osterwalder-Seiler version of twisted mass QCD to a study of the B K parameter, in which three of the four quark fields making up the relevant ΔS = 2 operator are maximally twisted with the same twist angle, while the fourth one has a twist angle of opposite sign. It is known that this setup ensures automatic improvement of the bare K 0 -K-bar 0 operator matrix element and multiplicative renormalization of the ΔS = 2 operator, at the price of breaking the K 0 -K-bar 0 mass degeneracy by discretization effects. As a result, two dominant systematic errors of the B K determination with Wilson fermions are kept under control. With the Clover term included in the fermion action, we perform a feasibility study and find, in the quenched approximation, a significant improvement of the scaling behaviour of B K , compared to earlier standard tmQCD determinations. Moreover, we study in detail the K 0 -K-bar 0 mass splitting that characterizes this approach and confirm that, in the presence of the Clover term, it is greatly reduced in a maximally twisted theory.
Geometry of the toroidal N-helix: optimal-packing and zero-twist
DEFF Research Database (Denmark)
Olsen, Kasper; Bohr, Jakob
2012-01-01
Two important geometrical properties of N-helix structures are influenced by bending. One is maximizing the volume fraction, which is called optimal-packing, and the other is having a vanishing strain-twist coupling, which is called zero-twist. Zero-twist helices rotate neither in one nor...... helix. General N-helices are discussed, as well as zero-twist helices for N > 1. The derived geometrical restrictions are gradually modified by changing the aspect ratio of the torus....
A method to estimate the necessary twist pitch in multi-filamentary superconductors
International Nuclear Information System (INIS)
Lindau, S; Magnusson, N; Taxt, H
2014-01-01
Twisting of multi-filamentary superconductors is an important step in the development of wires with AC losses at an acceptable level for AC applications. The necessary twist pitch depends on wire architecture, critical current density, matrix material, and external factors such as temperature, frequency and applied magnetic field. The development of an AC optimized MgB 2 superconductor would be facilitated by a fast method to set the requirements for the twist pitch. A problem often encountered when comparing wires with different twist pitches is the degradation in critical current occurring at small twist pitches due to mechanical deformation. In this work we propose to use a non-twisted conductor to estimate the influence of twisting on the AC losses. A long superconductor is cut into smaller lengths, each simulating one third of the twist pitch, and the AC losses due to applied magnetic fields are compared between samples of different lengths. With this method, the effect of reducing the size of the loop of the coupling currents is studied without changing the superconducting parameters. AC loss measurement results are presented for a round titanium matrix MgB 2 wire with simulated twist pitches between 9 mm and 87 mm.
New twist on artificial muscles.
Haines, Carter S; Li, Na; Spinks, Geoffrey M; Aliev, Ali E; Di, Jiangtao; Baughman, Ray H
2016-10-18
Lightweight artificial muscle fibers that can match the large tensile stroke of natural muscles have been elusive. In particular, low stroke, limited cycle life, and inefficient energy conversion have combined with high cost and hysteretic performance to restrict practical use. In recent years, a new class of artificial muscles, based on highly twisted fibers, has emerged that can deliver more than 2,000 J/kg of specific work during muscle contraction, compared with just 40 J/kg for natural muscle. Thermally actuated muscles made from ordinary polymer fibers can deliver long-life, hysteresis-free tensile strokes of more than 30% and torsional actuation capable of spinning a paddle at speeds of more than 100,000 rpm. In this perspective, we explore the mechanisms and potential applications of present twisted fiber muscles and the future opportunities and challenges for developing twisted muscles having improved cycle rates, efficiencies, and functionality. We also demonstrate artificial muscle sewing threads and textiles and coiled structures that exhibit nearly unlimited actuation strokes. In addition to robotics and prosthetics, future applications include smart textiles that change breathability in response to temperature and moisture and window shutters that automatically open and close to conserve energy.
On the twist-2 contributions to polarized structure functions and new sum rules
International Nuclear Information System (INIS)
Bluemlein, J.; Kochelev, N.
1996-03-01
The twist-2 contributions to the polarized structure functions in deep inelastic lepton-hadron scattering are calculated including the exchange of weak bosons and using both the operator product expansion and the covariant parton model. A new relation between two structure functions leading to a sequence of new sum rules is found. The light quark mass corrections to the structure functions are derived in lowest order QCD. (orig.)
Salivary gland masses. Dynamic MR imaging and pathologic correlation
International Nuclear Information System (INIS)
Park, Jinho; Inoue, Shingo; Ishizuka, Yasuhito; Shindo, Hiroaki; Kawanishi, Masayuki; Kakizaki, Dai; Abe, Kimihiko; Ebihara, Yoshiro
1997-01-01
To evaluate the efficiency of dynamic contrast-enhanced magnetic resonance imaging (MRI) for the diagnosis of salivary gland masses. We retrospectively examined 19 salivary gland masses that were pathologically diagnosed by surgical operation or biopsy. We obtained T1- and T2-weighted images on MRI, performed dynamic studies on each mass and examined the correlation between enhancement patterns and pathological findings. Four enhancement patterns were recognized on contrast-enhanced MRI: type 1 showed marked, homogeneous enhancement; type 2 slights, homogeneous enhancement; type 3 marginal enhancement; and type 4 poor enhancement of the mass. Most pleomorphic adenomas had a type 1 enhancement pattern, but two had a type 2 pattern. Pathologically, each mass enhancement pattern had different tumor cell and matrix components. Warthin's tumor generally showed the type 4 pattern. Primary malignant tumors of the salivary gland all showed the type 3 pattern, and pathological specimens showed many tumor cells along the marginal portion of the tumor. One inflammatory cyst and one Warthin's tumor also showed the type 3 pattern. Except for metastatic renal cell carcinoma, the enhancement patterns of late phase images and dynamic study images were the same. Dynamic MRI added little diagnostic information about salivary gland masses, but the contrast-enhanced MR features correlated well with the pathological findings. (author)
Electrically Controllable Magnetism in Twisted Bilayer Graphene.
Gonzalez-Arraga, Luis A; Lado, J L; Guinea, Francisco; San-Jose, Pablo
2017-09-08
Twisted graphene bilayers develop highly localized states around AA-stacked regions for small twist angles. We show that interaction effects may induce either an antiferromagnetic or a ferromagnetic (FM) polarization of said regions, depending on the electrical bias between layers. Remarkably, FM-polarized AA regions under bias develop spiral magnetic ordering, with a relative 120° misalignment between neighboring regions due to a frustrated antiferromagnetic exchange. This remarkable spiral magnetism emerges naturally without the need of spin-orbit coupling, and competes with the more conventional lattice-antiferromagnetic instability, which interestingly develops at smaller bias under weaker interactions than in monolayer graphene, due to Fermi velocity suppression. This rich and electrically controllable magnetism could turn twisted bilayer graphene into an ideal system to study frustrated magnetism in two dimensions.
Bend-twist coupling potential of wind turbine blades
DEFF Research Database (Denmark)
Fedorov, Vladimir; Berggreen, Christian
2014-01-01
-twist coupling magnitude of up to 0.2 is feasible to achieve in the baseline blade structure made of glass-fiber reinforced plastics. Further, by substituting the glass-fibers with carbon-fibers the coupling effect can be increased to 0.4. Additionally, the effect of introduction of bend-twist coupling...
Supersymmetric gauged double field theory: systematic derivation by virtue of twist
International Nuclear Information System (INIS)
Cho, Wonyoung; Fernández-Melgarejo, J.J.; Jeon, Imtak; Park, Jeong-Hyuck
2015-01-01
In a completely systematic and geometric way, we derive maximal and half-maximal supersymmetric gauged double field theories in lower than ten dimensions. To this end, we apply a simple twisting ansatz to the D=10 ungauged maximal and half-maximal supersymmetric double field theories constructed previously within the so-called semi-covariant formalism. The twisting ansatz may not satisfy the section condition. Nonetheless, all the features of the semi-covariant formalism, including its complete covariantizability, are still valid after the twist under alternative consistency conditions. The twist allows gaugings as supersymmetry preserving deformations of the D=10 untwisted theories after Scherk-Schwarz-type dimensional reductions. The maximal supersymmetric twist requires an extra condition to ensure both the Ramond-Ramond gauge symmetry and the 32 supersymmetries unbroken.
Nonlinear physics of twisted magnetic field lines
International Nuclear Information System (INIS)
Yoshida, Zensho
1998-01-01
Twisted magnetic field lines appear commonly in many different plasma systems, such as magnetic ropes created through interactions between the magnetosphere and the solar wind, magnetic clouds in the solar wind, solar corona, galactic jets, accretion discs, as well as fusion plasma devices. In this paper, we study the topological characterization of twisted magnetic fields, nonlinear effect induced by the Lorentz back reaction, length-scale bounds, and statistical distributions. (author)
Higher-twist correlations in polarized hadrons
International Nuclear Information System (INIS)
Tangerman, R.D.
1996-01-01
In this thesis we studied the response of polarized hadrons to several high-energy probes, working in the framework of the field theoretic model. Emphasis is laid upon higher-twist effects such as quark transverse momentum. The inclusive DIS process is very well suited to study QCD. From general principles we were able to derive four positivity constraints on the structure functions without invoking the helicity formalism. The on-shell quark model is used to illustrate these constraints. Subseqeuently, we concentrated on the higher-twist structure function g 2 (x,Q 2 ). (orig./HSI)
International Nuclear Information System (INIS)
Bluemlein, J.; Boettcher, H.
2008-02-01
The higher twist contributions to the deeply inelastic structure functions F p 2 (x,Q 2 ) and F d 2 (x,Q 2 ) for larger values of the Bjorken variable x are extracted extrapolating the twist-2 contributions measured in the large W 2 region to the region 4 GeV 2 ≤W 2 ≤12.5 GeV 2 applying target mass corrections. We compare the results for the NLO, NNLO and N 3 LO analyzes and include also the large x at N 4 LO to the Wilson coefficients. A gradual lowering of the higher twist contributions going from NLO to N 4 LO is observed, which stresses the importance of higher order corrections. (orig.)
Transcription factors zeb1, twist and snai1 in breast carcinoma
International Nuclear Information System (INIS)
Soini, Ylermi; Tuhkanen, Hanna; Sironen, Reijo; Virtanen, Ismo; Kataja, Vesa; Auvinen, Päivi; Mannermaa, Arto; Kosma, Veli-Matti
2011-01-01
Epitheliomesenchymal transition (EMT) is the process where cancer cells attain fibroblastic features and are thus able to invade neighboring tissues. Transcriptional factors zeb1, snai1 and twist regulate EMT. We used immunohistochemistry to investigate the expression of zeb1, twist and snai1 in tumor and stromal compartments by in a large set of breast carcinomas. The results were compared with estrogen and progesterone receptor status, HER2 amplification, grade, histology, TNM status and survival of the patients. Nuclear expression for twist was seen in the epithelial tumor cell compartment in 3.6% and for snai1 in 3.1% of the cases while zeb1 was not detected at all in these areas. In contrast, the tumor stromal compartment showed nuclear zeb1 and twist expression in 75% and 52.4% of the cases, respectively. Although rare, nuclear expression of twist in the epithelial tumor cell compartment was associated with a poor outcome of the patients (p = 0.054 log rank, p = 0.013, Breslow, p = 0.025 Tarone-Ware). Expression of snai1, or expression of zeb1 or twist in the stromal compartment did not have any prognostic significance. Furthermore, none of these factors associated with the size of the tumors, nor with the presence of axillary or distant metastases. Expression of zeb1 and twist in the stromal compartment was positively associated with a positive estrogen or progesterone receptor status of the tumors. Stromal zeb1 expression was significantly lower in ductal in situ carcinomas than in invasive carcinomas (p = 0.020). Medullary carcinomas (p = 0.017) and mucinous carcinomas (p = 0.009) had a lower stromal expression of zeb1 than ductal carcinomas. Stromal twist expression was also lower in mucinous (p = 0.017) than in ductal carcinomas. Expression of transcriptional factors zeb1 and twist mainly occur in the stromal compartment of breast carcinomas, possibly representing two populations of cells; EMT transformed neoplastic cells and stromal fibroblastic cells
International Nuclear Information System (INIS)
Burger, Florian
2012-01-01
In this thesis we report about an investigation of the finite temperature crossover/phase transition of quantum chromodynamics and the evaluation of the thermodynamic equation of state. To this end the lattice method and the Wilson twisted mass discretisation of the quark action are used. This formulation is known to have an automatic improvement of lattice artifacts and thus an improved continuum limit behaviour. This work presents first robust results using this action for the non-vanishing temperature case. We investigate the chiral limit of the two flavour phase transition with several small values of the pion mass in order to address the open question of the order of the transition in the limit of vanishing quark mass. For the currently simulated pion masses in the range of 300 to 700 MeV we present evidence that the finite temperature transition is a crossover transition rather than a genuine phase transition. The chiral limit is investigated by comparing the scaling of the observed crossover temperature with the mass including several possible scenarios. Complementary to this approach the chiral condensate as the order parameter for the spontaneous breaking of chiral symmetry is analysed in comparison with the O(4) universal scaling function which characterises a second order transition. With respect to thermodynamics the equation of state is obtained from the trace anomaly employing the temperature integral method which provides the pressure and energy density in the crossover region. The continuum limit of the trace anomaly is studied by considering several values of N τ and the tree-level correction technique.
Conformal invariance and pion wave functions of nonleading twist
International Nuclear Information System (INIS)
Braun, V.M.; Filyanov, I.E.
1989-01-01
The restrictions are studied for the general structure of pion wave functions of twist 3 and twist 4 imposed by the conformal symmetry and the equations of motion. A systematic expansion of wave functions in the conformal spin is built and the first order corrections to asymptotic formulae are calculated by the QCD sum rule method. In particular, we have found a multiplicatively renormalizable contribution into the two-particle wave function of twist 4 which cannot be expanded in a finite set of Gegenbauer polynomials. 19 refs.; 5 figs
Enhancement of turbulent flow heat transfer in a tube with modified twisted tapes
Energy Technology Data Exchange (ETDEWEB)
Lei, Y.G.; Zhao, C.H.; Song, C.F. [College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan (China)
2012-12-15
Numerical simulations were performed to study the fluid flow and heat transfer in a tube with staggered twisted tapes with central holes. In the range of Reynolds numbers between 6000 and 28 000, the modified twisted tapes increased the Nusselt number by 76.2 {proportional_to} 149.7 % and the friction factor by 380.2 {proportional_to} 443.8 % compared to the smooth tube. Compared to the typical twisted tapes, the modified twisted tapes produced an acceleration flow through the triangle regions leading to the enhancement of heat transfer, and the holes in the modified tapes reduced the severe pressure loss. It was found that the modified twisted tapes decreased the friction factor by 8.0 {proportional_to} 16.1 % and enhanced the heat transfer by 34.1 {proportional_to} 46.8 % in comparison with the typical tapes. These results indicated that the performance ratio values of the tube with modified twisted tapes were higher than 1.0 in the range of Reynolds numbers studied. The computed performance ratios of the tube with modified twisted tapes were much higher than those of the tube with typical twisted tapes. This means that the integrated performance of the tube with staggered twisted tapes with central holes is superior to that of the tube with typical twisted tapes. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Gauging the twisted Poincare symmetry as a noncommutative theory of gravitation
International Nuclear Information System (INIS)
Chaichian, M.; Tureanu, A.; Oksanen, M.; Zet, G.
2009-01-01
Einstein's theory of general relativity was formulated as a gauge theory of Lorentz symmetry by Utiyama in 1956, while the Einstein-Cartan gravitational theory was formulated by Kibble in 1961 as the gauge theory of Poincare transformations. In this framework, we propose a formulation of the gravitational theory on canonical noncommutative space-time by covariantly gauging the twisted Poincare symmetry, in order to fulfil the requirement of covariance under the general coordinate transformations, an essential ingredient of the theory of general relativity. It appears that the twisted Poincare symmetry cannot be gauged by generalizing the Abelian twist to a covariant non-Abelian twist, nor by introducing a more general covariant twist element. The advantages of such a formulation as well as the related problems are discussed and possible ways out are outlined.
Template preparation of twisted nanoparticles of mesoporous silica
Institute of Scientific and Technical Information of China (English)
Kui Niu; Zhongbin Ni; Chengwu Fu; Tatsuo Kaneko; Mingqing Chen
2011-01-01
Optical isomers of N-lauroyl-L-(or-D-) alanine sodium salt {C12-L-(or-D-)AlaS} surfactants were used for the preparation of mesoporous silica nanoparticles with a twisted hexagonal rod-like morphology. Thermogravimetric analysis (TGA) was used to determine the temperature for template removal. Circular dichroism (CD) spectra of the surfactant solution with various compositions illustrated the formation and supramolecular assembly of protein-like molecular architecture leading to formation of twisted nanoparticles. Scanning electron microscopy (SEM),high-resolution transmission electron microscopy (HRTEM)and X-ray powder diffraction (XRD) patterns of these as-synthesized mesoporous silica confirmed that the twisted morphology of these nanoparticles was closely related to the supramolecular-assembled complex of amino acid surfactants.
Correlation Between Expression of Twist and Podoplanin in Ductal Breast Carcinoma.
Grzegrzolka, Jedrzej; Wojtyra, Patrycja; Biala, Martyna; Piotrowska, Aleksandra; Gomulkiewicz, Agnieszka; Rys, Janusz; Podhorska-Okolow, Marzenna; Dziegiel, Piotr
2017-10-01
As a result of activation of transcription factors engaged in epithelial-mesenchymal transition (EMT), such as Twist, inhibition of epithelial markers and an increased expression of mesenchymal markers are observed. One of the specific markers of cancer-associated fibroblasts is podoplanin (PDPN) - a mucin-type membrane glycoprotein. The aim of this work was to study the localisation and intensity of expression of Twist and PDPN on the mRNA and protein level in cases of invasive ductal breast carcinoma (IDC), and its association with patients' clinico-pathological data. The study included archival material in a form of 80 paraffin IDC blocks and 11 IDC fragments frozen in liquid nitrogen. Immunohistochemical expression of Twist and PDPN was evaluated using light microscope and semiquantitative scale for evaluation of nuclear expression or immunoreactive scale (IRS) for evaluation of cytoplasmic expression. Material was isolated from frozen IDC fragments using laser micro-dissection (from cancer and stromal cells, separately) and was used to perform real-time PCR. Twist expression was higher in stromal cells in comparison to cancer cells. Analysis of patients' survival rate showed, that higher expression of Twist in cancer cells was associated with shorter overall survival time and shorter event-free survival time. The expression of PDPN was also higher in stromal cells in comparison with cancer cells. In addition, positive correlation was observed between expression of Twist and PDPN in stromal cells of IDC (r=0.267; p<0.05). The relationship between the higher expression of Twist in both cancer and stromal cells and shorter patients' survival indicates Twist as a potential useful prognostic marker in IDC. Positive correlation of Twist and PDPN expression may indicate the role of PDPN in EMT in IDC. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Twisted entire cyclic cohomology, J-L-O cocycles and equivariant spectral triples
International Nuclear Information System (INIS)
Goswami, D.
2002-07-01
We study the 'quantized calculus' corresponding to the algebraic ideas related to 'twisted cyclic cohomology'. With very similar definitions and techniques, we define and study 'twisted entire cyclic cohomology' and the 'twisted Chern character' associated with an appropriate operator theoretic data called 'twisted spectral data', which consists of a spectral triple in the conventional sense of noncommutative geometry and an additional positive operator having some specified properties. Furthermore, it is shown that given a spectral triple (in the conventional sense) which is equivariant under the action of a compact matrix pseudogroup, it is possible to obtain a canonical twisted spectral data and hence the corresponding (twisted) Chern character, which will be invariant under the action of the pseudogroup, in contrast to the fact that the Chern character coming from the conventional noncommutative geometry need not be invariant under the above action. (author)
On the space of connections having non-trivial twisted harmonic spinors
International Nuclear Information System (INIS)
Bei, Francesco; Waterstraat, Nils
2015-01-01
We consider Dirac operators on odd-dimensional compact spin manifolds which are twisted by a product bundle. We show that the space of connections on the twisting bundle which yields an invertible operator has infinitely many connected components if the untwisted Dirac operator is invertible and the dimension of the twisting bundle is sufficiently large
On the space of connections having non-trivial twisted harmonic spinors
Energy Technology Data Exchange (ETDEWEB)
Bei, Francesco, E-mail: bei@math.hu-berlin.de [Institut für Mathematik, Humboldt Universität zu Berlin, Unter den Linden 6, 10099 Berlin (Germany); Waterstraat, Nils, E-mail: n.waterstraat@kent.ac.uk [School of Mathematics, Statistics & Actuarial Science, University of Kent, Canterbury, Kent CT2 7NF (United Kingdom)
2015-09-15
We consider Dirac operators on odd-dimensional compact spin manifolds which are twisted by a product bundle. We show that the space of connections on the twisting bundle which yields an invertible operator has infinitely many connected components if the untwisted Dirac operator is invertible and the dimension of the twisting bundle is sufficiently large.
Quadratic Twists of Rigid Calabi–Yau Threefolds Over
DEFF Research Database (Denmark)
Gouvêa, Fernando Q.; Kiming, Ian; Yui, Noriko
2013-01-01
of weight 4 on some Γ 0(N). We show that quadratic twisting of a threefold corresponds to twisting the attached newform by quadratic characters and illustrate with a number of obvious and not so obvious examples. The question is motivated by the deeper question of which newforms of weight 4 on some Γ 0(N...
Mass transfer dynamics in double degenerate binary systems
International Nuclear Information System (INIS)
Dan, M; Rosswog, S; Brueggen, M
2009-01-01
We present a numerical study of the mass transfer dynamics prior to the gravitational wave-driven merger of a double white dwarf system. Recently, there has been some discussion about the dynamics of these last stages, different methods seemed to provide qualitatively different results. While earlier SPH simulations indicated a very quick disruption of the binary on roughly the orbital time scale, more recent grid-based calculations find long-lived mass transfer for many orbital periods. Here we demonstrate how sensitive the dynamics of this last stage is to the exact initial conditions. We show that, after a careful preparation of the initial conditions, the reportedly short-lived systems undergo mass transfer for many dozens of orbits. The reported numbers of orbits are resolution-biased and therefore represent only lower limits to what is realized in nature. Nevertheless, the study shows convincingly the convergence of different methods to very similar results.
The geometric Langlands twist in five and six dimensions
International Nuclear Information System (INIS)
Bak, Dongsu; Gustavsson, Andreas
2015-01-01
Abelian 6d (2,0) theory has SO(5) R symmetry. We twist this theory by identifying the R symmetry group with the SO(5) subgroup of the SO(1,5) Lorentz group. This twisted theory can be put on any five-manifold M, times R, while preserving one scalar supercharge. We subsequently assume the existence of one unit normalized Killing vector field on M, and we find a corresponding SO(4) twist that preserves two supercharges and is a generalization of the geometric Langlands twist of 4d SYM. We generalize the story to non-Abelian gauge group for the corresponding 5d SYM theories on M. We derive a vanishing theorem for BPS contact instantons by identifying the 6d potential energy and its BPS bound, in the 5d theory. To this end we need to perform a Wick rotation that complexifies the gauge field.
Snyder noncommutativity and pseudo-Hermitian Hamiltonians from a Jordanian twist
International Nuclear Information System (INIS)
Castro, P.G.; Kullock, R.; Toppan, F.
2011-01-01
Nonrelativistic quantum mechanics and conformal quantum mechanics are de- formed through a Jordanian twist. The deformed space coordinates satisfy the Snyder noncommutativity. The resulting deformed Hamiltonians are pseudo-Hermitian Hamiltonians of the type discussed by Mostafazadeh. The quantization scheme makes use of the so-called 'unfolded formalism' discussed in previous works. A Hopf algebra structure, compatible with the physical interpretation of the coproduct, is introduced for the Universal Enveloping Algebra of a suitably chosen dynamical Lie algebra (the Hamiltonian is contained among its generators). The multi-particle sector, uniquely determined by the deformed 2-particle Hamiltonian, is composed of bosonic particles. (author)
Higher-Twist Distribution Amplitudes of the K Meson in QCD
Ball, P; Lenz, A; Ball, Patricia
2006-01-01
We present a systematic study of twist-3 and twist-4 light-cone distribution amplitudes of the K meson in QCD. The structure of SU(3)-breaking corrections is studied in detail. Non-perturbative input parameters are estimated from QCD sum rules and renormalons. As a by-product, we give a complete reanalysis of the twist-3 and -4 parameters of the pi-meson distribution amplitudes; some of the results differ from those usually quoted in the literature.
Continuous Static Gait with Twisting Trunk of a Metamorphic Quadruped Robot
Directory of Open Access Journals (Sweden)
C. Zhang
2018-01-01
Full Text Available The natural quadrupeds, such as geckos and lizards, often twist their trunks when moving. Conventional quadruped robots cannot perform the same motion due to equipping with a trunk which is a rigid body or at most consists of two blocks connected by passive joints. This paper proposes a metamorphic quadruped robot with a reconfigurable trunk which can implement active trunk motions, called MetaRobot I. The robot can imitate the natural quadrupeds to execute motion of trunk twisting. Benefiting from the twisting trunk, the stride length of this quadruped is increased comparing to that of conventional quadruped robots.In this paper a continuous static gait benefited from the twisting trunk performing the increased stride length is introduced. After that, the increased stride length relative to the trunk twisting will be analysed mathematically. Other points impacting the implementation of the increased stride length in the gait are investigated such as the upper limit of the stride length and the kinematic margin. The increased stride length in the gait will lead the increase of locomotion speed comparing with conventional quadruped robots, giving the extent that natural quadrupeds twisting their trunks when moving. The simulation and an experiment on the prototype are then carried out to illustrate the benefits on the stride length and locomotion speed brought by the twisting trunk to the quadruped robot.
Cerclage handling for improved fracture treatment. A biomechanical study on the twisting procedure.
Wähnert, D; Lenz, M; Schlegel, U; Perren, S; Windolf, M
2011-01-01
Twisting is clinically the most frequently applied method for tightening and maintaining cerclage fixation. The twisting procedure is controversially discussed. Several factors during twisting affect the mechanical behaviour of the cerclage. This in vitro study investigated the influence of different parameters of the twisting procedure on the fixation strength of the cerclage in an experimental setup with centripetal force application. Cortical half shells of the femoral shaft were mounted on a testing fixture. 1.0 mm, 1.25 mm and 1.5 mm stainless ste- el wire cerclages as well as a 1.0mm cable cerclage were applied to the bone. Pretension of the cerclage during the installation was measured during the locking procedure. Subsequently, cyclic testing was performed up to failure. Higher pretension could be achieved with increasing wire diameter. However, with larger wire diameter the drop of pre- tension due to the bending and cutting the twist also increased. The cable cerclage showed the highest pretension after locking. Cerclages twisted under traction revealed significantly higher initial cerclage tension. Plastically deformed twists offered higher cerclage pretension compared to twists which were deformed in the elastic region of the material. Cutting the wire within the twist caused the highest loss of cerclage tension (44% initial tension) whereas only 11 % was lost when cutting the wire ends separately. The bending direction of the twist significantly influenced the cerclage pretension. 45% pretension was lost in forward bending of the twist, 53% in perpendicular bending and 90% in backward bending. Several parameters affect the quality of a cerclage fixation. Adequate installation of cerclage wires could markedly improve the clinical outcome of cerclage.
AKT-ions with a TWIST between EMT and MET.
Tang, Huifang; Massi, Daniela; Hemmings, Brian A; Mandalà, Mario; Hu, Zhengqiang; Wicki, Andreas; Xue, Gongda
2016-09-20
The transcription factor Twist is an important regulator of cranial suture during embryogenesis. Closure of the neural tube is achieved via Twist-triggered cellular transition from an epithelial to mesenchymal phenotype, a process known as epithelial-mesenchymal transition (EMT), characterized by a remarkable increase in cell motility. In the absence of Twist activity, EMT and associated phenotypic changes in cell morphology and motility can also be induced, albeit moderately, by other transcription factor families, including Snail and Zeb. Aberrant EMT triggered by Twist in human mammary tumour cells was first reported to drive metastasis to the lung in a metastatic breast cancer model. Subsequent analysis of many types of carcinoma demonstrated overexpression of these unique EMT transcription factors, which statistically correlated with worse outcome, indicating their potential as biomarkers in the clinic. However, the mechanisms underlying their activation remain unclear. Interestingly, increasing evidence indicates they are selectively activated by distinct intracellular kinases, thereby acting as downstream effectors facilitating transduction of cytoplasmic signals into nucleus and reprogramming EMT and mesenchymal-epithelial transition (MET) transcription to control cell plasticity. Understanding these relationships and emerging data indicating differential phosphorylation of Twist leads to complex and even paradoxical functionalities, will be vital to unlocking their potential in clinical settings.
'Twisted' strings and higher level Kac-Moody representations
International Nuclear Information System (INIS)
Horvath, Z.; Palla, L.
1989-01-01
Using an orbifold-like construction the twisted sector of a closed string moving on GxG (with G simply laced) is determined. A level-two G current operating there is constructed explicitly. The decomposition of the twisted sector into products between appropriate conformal and level-two G representations is given if 2 rank G-2 dim G/(2+g)<1. (orig.)
Sox5 induces epithelial to mesenchymal transition by transactivation of Twist1
International Nuclear Information System (INIS)
Pei, Xin-Hong; Lv, Xin-Quan; Li, Hui-Xiang
2014-01-01
Highlights: • Depletion of Sox5 inhibits breast cancer proliferation, migration, and invasion. • Sox5 transactivates Twist1 expression. • Sox5 induces epithelial to mesenchymal transition through transactivation of Twist1 expression. - Abstract: The epithelial to mesenchymal transition (EMT), a highly conserved cellular program, plays an important role in normal embryogenesis and cancer metastasis. Twist1, a master regulator of embryonic morphogenesis, is overexpressed in breast cancer and contributes to metastasis by promoting EMT. In exploring the mechanism underlying the increased Twist1 in breast cancer cells, we found that the transcription factor SRY (sex-determining region Y)-box 5(Sox5) is up-regulation in breast cancer cells and depletion of Sox5 inhibits breast cancer cell proliferation, migration, and invasion. Furthermore, depletion of Sox5 in breast cancer cells caused a dramatic decrease in Twist1 and chromosome immunoprecipitation assay showed that Sox5 can bind directly to the Twist1 promoter, suggesting that Sox5 transactivates Twist1 expression. We further demonstrated that knockdown of Sox5 up-regulated epithelial phenotype cell biomarker (E-cadherin) and down-regulated mesenchymal phenotype cell biomarkers (N-cadherin, Vimentin, and Fibronectin 1), resulting in suppression of EMT. Our study suggests that Sox5 transactivates Twist1 expression and plays an important role in the regulation of breast cancer progression
Twisted spin Sutherland models from quantum Hamiltonian reduction
International Nuclear Information System (INIS)
Feher, L; Pusztai, B G
2008-01-01
Recent general results on Hamiltonian reductions under polar group actions are applied to study some reductions of the free particle governed by the Laplace-Beltrami operator of a compact, connected, simple Lie group. The reduced systems associated with arbitrary finite-dimensional irreducible representations of the group by using the symmetry induced by twisted conjugations are described in detail. These systems generically yield integrable Sutherland-type many-body models with spin, which are called twisted spin Sutherland models if the underlying twisted conjugations are built on non-trivial Dynkin diagram automorphisms. The spectra of these models can be calculated, in principle, by solving certain Clebsch-Gordan problems, and the result is presented for the models associated with the symmetric tensorial powers of the defining representation of SU(N)
Extension-twist coupling of composite circular tubes with application to tilt rotor blade design
Nixon, Mark W.
1987-01-01
This investigation was conducted to determine if twist deformation required for the design of full-scale extension-twist-coupled tilt-rotor blades can be achieved within material design limit loads, and to demonstrate the accuracy of a coupled-beam analysis in predicting twist deformations. Two extension-twist-coupled tilt-rotor blade designs were developed based on theoretically optimum aerodynamic twist distributions. The designs indicated a twist rate requirement of between .216 and .333 deg/in. Agreement between axial tests and analytical predictions was within 10 percent at design limit loads. Agreement between the torsion tests and predictions was within 11 percent.
FAN-SPINE TOPOLOGY FORMATION THROUGH TWO-STEP RECONNECTION DRIVEN BY TWISTED FLUX EMERGENCE
International Nuclear Information System (INIS)
Toeroek, T.; Aulanier, G.; Schmieder, B.; Reeves, K. K.; Golub, L.
2009-01-01
We address the formation of three-dimensional nullpoint topologies in the solar corona by combining Hinode/X-ray Telescope (XRT) observations of a small dynamic limb event, which occurred beside a non-erupting prominence cavity, with a three-dimensional (3D) zero-β magnetohydrodynamics (MHD) simulation. To this end, we model the boundary-driven 'kinematic' emergence of a compact, intense, and uniformly twisted flux tube into a potential field arcade that overlies a weakly twisted coronal flux rope. The expansion of the emerging flux in the corona gives rise to the formation of a nullpoint at the interface of the emerging and the pre-existing fields. We unveil a two-step reconnection process at the nullpoint that eventually yields the formation of a broad 3D fan-spine configuration above the emerging bipole. The first reconnection involves emerging fields and a set of large-scale arcade field lines. It results in the launch of a torsional MHD wave that propagates along the arcades, and in the formation of a sheared loop system on one side of the emerging flux. The second reconnection occurs between these newly formed loops and remote arcade fields, and yields the formation of a second loop system on the opposite side of the emerging flux. The two loop systems collectively display an anenome pattern that is located below the fan surface. The flux that surrounds the inner spine field line of the nullpoint retains a fraction of the emerged twist, while the remaining twist is evacuated along the reconnected arcades. The nature and timing of the features which occur in the simulation do qualititatively reproduce those observed by XRT in the particular event studied in this paper. Moreover, the two-step reconnection process suggests a new consistent and generic model for the formation of anemone regions in the solar corona.
The geometrical origin of the strain-twist coupling in double helices
Directory of Open Access Journals (Sweden)
Kasper Olsen
2011-03-01
Full Text Available A simple geometrical explanation for the counterintuitive phenomenon when twist leads to extension in double helices is presented. The coupling between strain and twist is investigated using a tubular description. It is shown that the relation between strain and rotation is universal and depends only on the pitch angle. For pitch angles below 39.4° strain leads to further winding, while for larger pitch angles strain leads to unwinding. The zero-twist structure, with a pitch angle of 39.4°, is at the unique point between winding and unwinding and independent of the mechanical properties of the double helix. The existence of zero-twist structures, i.e. structures that display neither winding, nor unwinding under strain is discussed. Close-packed double helices are shown to extend rather than shorten when twisted. Numerical estimates of this elongation upon winding are given for DNA, chromatin, and RNA.
Composite material bend-twist coupling for wind turbine blade applications
Walsh, Justin M.
Current efforts in wind turbine blade design seek to employ bend-twist coupling of composite materials for passive power control by twisting blades to feather. Past efforts in this area of study have proved to be problematic, especially in formulation of the bend-twist coupling coefficient alpha. Kevlar/epoxy, carbon/epoxy and glass/epoxy specimens were manufactured to study bend-twist coupling, from which numerical and analytical models could be verified. Finite element analysis was implemented to evaluate fiber orientation and material property effects on coupling magnitude. An analytical/empirical model was then derived to describe numerical results and serve as a replacement for the commonly used coupling coefficient alpha. Through the results from numerical and analytical models, a foundation for aeroelastic design of wind turbines blades utilizing biased composite materials is provided.
Flux Density through Guides with Microstructured Twisted Clad DB Medium
Directory of Open Access Journals (Sweden)
M. A. Baqir
2014-01-01
Full Text Available The paper deals with the study of flux density through a newly proposed twisted clad guide containing DB medium. The inner core and the outer clad sections are usual dielectrics, and the introduced twisted windings at the core-clad interface are treated under DB boundary conditions. The pitch angle of twist is supposed to greatly contribute towards the control over the dispersion characteristics of the guide. The eigenvalue equation for the guiding structure is deduced, and the analytical investigations are made to explore the propagation patterns of flux densities corresponding to the sustained low-order hybrid modes under the situation of varying pitch angles. The emphasis has been put on the effects due to the DB twisted pitch on the propagation of energy flux density through the guide.
Effect of Twisting and Stretching on Magneto Resistance and Spin Filtration in CNTs
Directory of Open Access Journals (Sweden)
Anil Kumar Singh
2017-08-01
Full Text Available Spin-dependent quantum transport properties in twisted carbon nanotube and stretched carbon nanotube are calculated using density functional theory (DFT and non-equilibrium green’s function (NEGF formulation. Twisting and stretching have no effect on spin transport in CNTs at low bias voltages. However, at high bias voltages the effects are significant. Stretching restricts any spin-up current in antiparallel configuration (APC, which results in higher magneto resistance (MR. Twisting allows spin-up current almost equivalent to the pristine CNT case, resulting in lower MR. High spin filtration is observed in PC and APC for pristine, stretched and twisted structures at all applied voltages. In APC, at low voltages spin filtration in stretched CNT is higher than in pristine and twisted ones, with pristine giving a higher spin filtration than twisted CNT.
Chirality-controlled spontaneous twisting of crystals due to thermal topochemical reaction.
Rai, Rishika; Krishnan, Baiju P; Sureshan, Kana M
2018-03-20
Crystals that show mechanical response against various stimuli are of great interest. These stimuli induce polymorphic transitions, isomerizations, or chemical reactions in the crystal and the strain generated between the daughter and parent domains is transcribed into mechanical response. We observed that the crystals of modified dipeptide LL (N 3 -l-Ala-l-Val-NHCH 2 C≡CH) undergo spontaneous twisting to form right-handed twisted crystals not only at room temperature but also at 0 °C over time. Using various spectroscopic techniques, we have established that the twisting is due to the spontaneous topochemical azide-alkyne cycloaddition (TAAC) reaction at room temperature or lower temperatures. The rate of twisting can be increased by heating, exploiting the faster kinetics of the TAAC reaction at higher temperatures. To address the role of molecular chirality in the direction of twisting the enantiomer of dipeptide LL, N 3 -d-Ala-d-Val-NHCH 2 C≡CH (DD), was synthesized and topochemical reactivity and mechanoresponse of its crystals were studied. We have found that dipeptide DD not only underwent TAAC reaction, giving 1,4-triazole-linked pseudopolypeptides of d-amino acids, but also underwent twisting with opposite handedness (left-handed twisting), establishing the role of molecular chirality in controlling the direction of mechanoresponse. This paper reports ( i ) a mechanical response due to a thermal reaction and ( ii ) a spontaneous mechanical response in crystals and ( iii ) explains the role of molecular chirality in the handedness of the macroscopic mechanical response.
On the twists of interplanetary magnetic flux ropes observed at 1 AU
Wang, Yuming; Zhuang, Bin; Hu, Qiang; Liu, Rui; Shen, Chenglong; Chi, Yutian
2016-10-01
Magnetic flux ropes (MFRs) are one kind of fundamental structures in the solar/space physics and involved in various eruption phenomena. Twist, characterizing how the magnetic field lines wind around a main axis, is an intrinsic property of MFRs, closely related to the magnetic free energy and stableness. Although the effect of the twist on the behavior of MFRs had been widely studied in observations, theory, modeling, and numerical simulations, it is still unclear how much amount of twist is carried by MFRs in the solar atmosphere and in heliosphere and what role the twist played in the eruptions of MFRs. Contrasting to the solar MFRs, there are lots of in situ measurements of magnetic clouds (MCs), the large-scale MFRs in interplanetary space, providing some important information of the twist of MFRs. Thus, starting from MCs, we investigate the twist of interplanetary MFRs with the aid of a velocity-modified uniform-twist force-free flux rope model. It is found that most of MCs can be roughly fitted by the model and nearly half of them can be fitted fairly well though the derived twist is probably overestimated by a factor of 2.5. By applying the model to 115 MCs observed at 1 AU, we find that (1) the twist angles of interplanetary MFRs generally follow a trend of about 0.6l/R radians, where l/R is the aspect ratio of a MFR, with a cutoff at about 12π radians AU-1, (2) most of them are significantly larger than 2.5π radians but well bounded by 2l/R radians, (3) strongly twisted magnetic field lines probably limit the expansion and size of MFRs, and (4) the magnetic field lines in the legs wind more tightly than those in the leading part of MFRs. These results not only advance our understanding of the properties and behavior of interplanetary MFRs but also shed light on the formation and eruption of MFRs in the solar atmosphere. A discussion about the twist and stableness of solar MFRs are therefore given.
Arutyunov, G.E.; de Leeuw, M.; van Tongeren, S.J.
2010-01-01
We study finite-size corrections to the magnon dispersion relation in three models which differ from string theory on AdS5 x S5 in their boundary conditions. Asymptotically, this is accomplished by twisting the transfer matrix in a way which manifestly preserves integrability. In model I all
On the gauge (in)dependence of the dynamical quark mass
International Nuclear Information System (INIS)
Reinders, L.J.; Stam, K.
1987-04-01
We compute the contribution of the mixed quark-gluon condensate to the quark self-energy to all orders in the dynamical quark mass. We investigate the consistency of different expansion schemes. It is found that nonabelian interactions form an obstruction to defining a true dynamical gauge independent mass shell. (orig.)
Finite element and analytical models for twisted and coiled actuator
Tang, Xintian; Liu, Yingxiang; Li, Kai; Chen, Weishan; Zhao, Jianguo
2018-01-01
Twisted and coiled actuator (TCA) is a class of recently discovered artificial muscle, which is usually made by twisting and coiling polymer fibers into spring-like structures. It has been widely studied since discovery due to its impressive output characteristics and bright prospects. However, its mathematical models describing the actuation in response to the temperature are still not fully developed. It is known that the large tensile stroke is resulted from the untwisting of the twisted fiber when heated. Thus, the recovered torque during untwisting is a key parameter in the mathematical model. This paper presents a simplified model for the recovered torque of TCA. Finite element method is used for evaluating the thermal stress of the twisted fiber. Based on the results of the finite element analyses, the constitutive equations of twisted fibers are simplified to develop an analytic model of the recovered torque. Finally, the model of the recovered torque is used to predict the deformation of TCA under varying temperatures and validated against experimental results. This work will enhance our understanding of the deformation mechanism of TCAs, which will pave the way for the closed-loop position control.
New dualities and misleading anomaly matchings from outer-automorphism twists
Energy Technology Data Exchange (ETDEWEB)
Pal, Sridip; Song, Jaewon [Department of Physics, University of California, San Diego,La Jolla, CA 92093 (United States)
2017-03-29
We study four-dimensional N=1,2 superconformal theories in class S obtained by compactifying the 6d N=(2,0) theory on a Riemann surface C with outer-automorphism twist lines. From the pair-of-pants decompositions of C, we find various dual descriptions for the same theory having distinct gauge groups. We show that the various configurations of the twist line give rise to dual descriptions for the identical theory. We compute the ’t Hooft anomaly coefficients and the superconformal indices to test dualities. Surprisingly, we find that the class S theories with twist lines wrapping 1-cycles of C have the identical ’t Hooft anomalies as the ones without the twist line, whereas the superconformal indices differ. This provides a large set of examples where the anomaly matching is insufficient to test dualities.
Leading twist moments of the neutron structure function F_2n
Energy Technology Data Exchange (ETDEWEB)
M. Osipenko; W. Melnitchouk; S. Simula; S. Kulagin; G. Ricco
2005-10-20
We perform a global analysis of neutron $F_2^n$ structure function data, obtained by combining proton and deuteron measurements over a large range of kinematics. From these data the lowest moments ($n \\leq 10$) of the leading twist neutron $F_2^n$ structure function are extracted. Particular attention is paid to nuclear effects in the deuteron, which become increasingly important for the higher moments. Our results for the nonsinglet, isovector $p - n$ combination of the leading twist moments are compared with those of available lattice simulations. We also determine the lowest few moments of the higher twist contributions, obtained by subtracting the leading twist from the total structure function, and analyze their isospin dependence.
Intermittent energy bursts and recurrent topological change of a twisting magnetic flux tube
International Nuclear Information System (INIS)
Amo, Hiroyoshi; Sato, Tetsuya; Kageyama, Akira.
1994-09-01
When continuously twisted, a magnetic flux tube suffers a large kink distortion in the middle part of the tube, like a knot-of-tension instability of a bundle of twisted rubber strings, and reconnection is triggered starting with the twisted field lines and quickly proceeding to the untwisted field lines at the twist-untwist boundary, whereby a giant burst-like energy release takes place. Subsequently, bursts occur intermittently and reconnection advances deeper into the untwisted region. Then, a companion pair of the linked twist-untwist flux tubes reconnect with each other to return to the original axisymmetric tube. The process is thus repeatable. (author)
Dynamical limits on dark mass in the outer solar system
International Nuclear Information System (INIS)
Hogg, D.W.; Quinlan, G.D.; Tremaine, S.
1991-01-01
Simplified model solar systems with known observational errors are considered in conducting a dynamical search for dark mass and its minimum detectable amount, and in determining the significance of observed anomalies. The numerical analysis of the dynamical influence of dark mass on the orbits of outer planets and comets is presented in detail. Most conclusions presented are based on observations of the four giant planets where the observational errors in latitude and longitude are independent Gaussian variables with a standard deviation. Neptune's long orbital period cannot be predicted by modern ephemerides, and no evidence of dark mass is found in considering this planet. Studying the improvement in fit when observations are fitted to models that consider dark mass is found to be an efficient way to detect dark mass. Planet X must have a mass of more than about 10 times the minimum detectable mass to locate the hypothetical planet. It is suggested that the IRAS survey would have already located the Planet X if it is so massive and close that it dynamically influences the outer planets. Orbital residuals from comets are found to be more effective than those from planets in detecting the Kuiper belt. 35 refs
A Transformation Called "Twist"
Hwang, Daniel
2010-01-01
The transformations found in secondary mathematics curriculum are typically limited to stretches and translations (e.g., ACARA, 2010). Advanced students may find the transformation, twist, to be of further interest. As most available resources are written for professional-level readers, this article is intended to be an introduction accessible to…
Stability of coupled tearing and twisting modes in tokamaks
International Nuclear Information System (INIS)
Fitzpatrick, R.
1994-03-01
A dispersion relation is derived for resistive modes of arbitrary parity in a tokamak plasma. At low mode amplitude, tearing and twisting modes which have nonideal MHD behavior at only one rational surface at a time in the plasma are decoupled via sheared rotation and diamagnetic flows. At higher amplitude, more unstable open-quote compound close-quote modes develop which have nonideal behavior simultaneously at many surfaces. Such modes possess tearing parity layers at some of the nonideal surfaces, and twisting parity layers at others, but mixed parity layers are generally disallowed. At low mode number, open-quote compound close-quote modes are likely to have tearing parity layers at all of the nonideal surfaces in a very low-β plasma, but twisting parity layers become more probable as the plasma β is increased. At high mode number, unstable twisting modes which exceed a critical amplitude drive conventional magnetic island chains on alternate rational surfaces, to form an interlocking structure in which the O-points and X-points of neighboring chains line up
Snyder noncommutativity and pseudo-Hermitian Hamiltonians from a Jordanian twist
Energy Technology Data Exchange (ETDEWEB)
Castro, P.G., E-mail: pgcastro@cbpf.b [Universidade Federal de Juiz de Fora (DM/ICE/UFJF), Juiz de Fora, MG (Brazil). Inst. de Ciencias Exatas. Dept. de Matematica; Kullock, R.; Toppan, F., E-mail: ricardokl@cbpf.b, E-mail: toppan@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (TEO/CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Fisica Teorica
2011-07-01
Nonrelativistic quantum mechanics and conformal quantum mechanics are de- formed through a Jordanian twist. The deformed space coordinates satisfy the Snyder noncommutativity. The resulting deformed Hamiltonians are pseudo-Hermitian Hamiltonians of the type discussed by Mostafazadeh. The quantization scheme makes use of the so-called 'unfolded formalism' discussed in previous works. A Hopf algebra structure, compatible with the physical interpretation of the coproduct, is introduced for the Universal Enveloping Algebra of a suitably chosen dynamical Lie algebra (the Hamiltonian is contained among its generators). The multi-particle sector, uniquely determined by the deformed 2-particle Hamiltonian, is composed of bosonic particles. (author)
Dirac Mass Dynamics in Multidimensional Nonlocal Parabolic Equations
Lorz, Alexander
2011-01-17
Nonlocal Lotka-Volterra models have the property that solutions concentrate as Dirac masses in the limit of small diffusion. Is it possible to describe the dynamics of the limiting concentration points and of the weights of the Dirac masses? What is the long time asymptotics of these Dirac masses? Can several Dirac masses coexist? We will explain how these questions relate to the so-called "constrained Hamilton-Jacobi equation" and how a form of canonical equation can be established. This equation has been established assuming smoothness. Here we build a framework where smooth solutions exist and thus the full theory can be developed rigorously. We also show that our form of canonical equation comes with a kind of Lyapunov functional. Numerical simulations show that the trajectories can exhibit unexpected dynamics well explained by this equation. Our motivation comes from population adaptive evolution a branch of mathematical ecology which models Darwinian evolution. © Taylor & Francis Group, LLC.
Performance improvement of small-scale rotors by passive blade twist control
Lv, Peng; Prothin, Sebastien; Mohd Zawawi, Fazila; Bénard, Emmanuel; Morlier, Joseph; Moschetta, Jean-Marc
2015-01-01
A passive twist control is proposed as an adaptive way to maximize the overall efficiency of the small-scale rotor blade for multifunctional aircrafts. Incorporated into a database of airfoil characteristics, Blade Element Momentum Theory is implemented to obtain the blade optimum twist rates for hover and forward flight. In order to realize the required torsion of blade between hover and forward flight, glass/epoxy laminate blade is proposed based on Centrifugal Force Induced Twist concept. ...
Unique CCT repeats mediate transcription of the TWIST1 gene in mesenchymal cell lines
International Nuclear Information System (INIS)
Ohkuma, Mizue; Funato, Noriko; Higashihori, Norihisa; Murakami, Masanori; Ohyama, Kimie; Nakamura, Masataka
2007-01-01
TWIST1, a basic helix-loop-helix transcription factor, plays critical roles in embryo development, cancer metastasis and mesenchymal progenitor differentiation. Little is known about transcriptional regulation of TWIST1 expression. Here we identified DNA sequences responsible for TWIST1 expression in mesenchymal lineage cell lines. Reporter assays with TWIST1 promoter mutants defined the -102 to -74 sequences that are essential for TWIST1 expression in human and mouse mesenchymal cell lines. Tandem repeats of CCT, but not putative CREB and NF-κB sites in the sequences substantially supported activity of the TWIST1 promoter. Electrophoretic mobility shift assay demonstrated that the DNA sequences with the CCT repeats formed complexes with nuclear factors, containing, at least, Sp1 and Sp3. These results suggest critical implication of the CCT repeats in association with Sp1 and Sp3 factors in sustaining expression of the TWIST1 gene in mesenchymal cells
Valve-aided twisted Savonius rotor
Energy Technology Data Exchange (ETDEWEB)
Jaya Rajkumar, M.; Saha, U.K.
2006-05-15
Accessories, such as end plates, deflecting plates, shielding and guide vanes, may increase the power of a Savonius rotor, but make the system structurally complex. In such cases, the rotor can develop a relatively large torque at small rotational speeds and is cheap to build, however it harnesses only a small fraction of the incident wind energy. Another proposition for increasing specific output is to place non-return valves inside the concave side of the blades. Such methods have been studied experimentally with a twisted-blade Thus improving a Savonius rotor's energy capture. This new concept has been named as the 'Valve-Aided Twisted Savonius'rotor. Tests were conducted in a low-speed wind tunnel to evaluate performance. This mechanism is found to be independent of flow direction, and shows potential for large machines. [Author].
Twisting failure of centrally loaded open-section columns in the elastic range
Kappus, Robert
1938-01-01
In the following report a complete theory of twisting failure by the energy method is developed, based on substantially the same assumptions as those employed by Wagner and Bleich. Problems treated in detail are: the stress and strain condition under St. Venant twist and in twist with axial constraint; the concept of shear center and the energy method for problems of elastic stability.
Exploring exotic states with twisted boundary conditions
International Nuclear Information System (INIS)
Agadjanov, Dimitri
2017-01-01
he goal of this thesis is to develop methods to study the nature and properties of exotic hadrons from lattice simulations. The main focus lies in the application of twisted boundary conditions. The thesis consists of a general introduction and the collection of three papers, represented respectively in three chapters. The introduction of the thesis reviews the theoretical background, which is further used in the rest of the thesis. Further implementing partially twisted boundary conditions in the scalar sector of lattice QCD is studied. Then we develop a method to study the content of the exotic hadrons by determining the wave function renormalization constant from lattice simulations, exploiting the dependence of the spectrum on the twisted boundary conditions. The final chapter deals with a novel method to study the multi-channel scattering problem in a finite volume, which is relevant for exotic states. Its key idea is to extract the complex hadron-hadron optical potential, avoiding the difficulties, associated with the solution of the multi-channel Luescher equation.
Exploring exotic states with twisted boundary conditions
Energy Technology Data Exchange (ETDEWEB)
Agadjanov, Dimitri
2017-09-11
he goal of this thesis is to develop methods to study the nature and properties of exotic hadrons from lattice simulations. The main focus lies in the application of twisted boundary conditions. The thesis consists of a general introduction and the collection of three papers, represented respectively in three chapters. The introduction of the thesis reviews the theoretical background, which is further used in the rest of the thesis. Further implementing partially twisted boundary conditions in the scalar sector of lattice QCD is studied. Then we develop a method to study the content of the exotic hadrons by determining the wave function renormalization constant from lattice simulations, exploiting the dependence of the spectrum on the twisted boundary conditions. The final chapter deals with a novel method to study the multi-channel scattering problem in a finite volume, which is relevant for exotic states. Its key idea is to extract the complex hadron-hadron optical potential, avoiding the difficulties, associated with the solution of the multi-channel Luescher equation.
Measurement of curvature and twist of a deformed object using digital holography
International Nuclear Information System (INIS)
Chen Wen; Quan Chenggen; Cho Jui Tay
2008-01-01
Measurement of curvature and twist is an important aspect in the study of object deformation. In recent years, several methods have been proposed to determine curvature and twist of a deformed object using digital shearography. Here we propose a novel method to determine the curvature and twist of a deformed object using digital holography and a complex phasor. A sine/cosine transformation method and two-dimensional short time Fourier transform are proposed subsequently to process the wrapped phase maps. It is shown that high-quality phase maps corresponding to curvature and twist can be obtained. An experiment is conducted to demonstrate the validity of the proposed method
Directory of Open Access Journals (Sweden)
Daijiro Fukuda
2004-01-01
Full Text Available Using diagrammatic pictures of tensor contractions, we consider a Hopf algebra (Aop⊗ℛλA** twisted by an element ℛλ∈A*⊗Aop corresponding to a Hopf algebra morphism λ:A→A. We show that this Hopf algebra is quasitriangular with the universal R-matrix coming from ℛλ when λ2=idA, generalizing the quantum double construction which corresponds to the case λ=idA.
Structural and electronic transformation in low-angle twisted bilayer graphene
Gargiulo, Fernando; Yazyev, Oleg V.
2018-01-01
Experiments on bilayer graphene unveiled a fascinating realization of stacking disorder where triangular domains with well-defined Bernal stacking are delimited by a hexagonal network of strain solitons. Here we show by means of numerical simulations that this is a consequence of a structural transformation of the moiré pattern inherent to twisted bilayer graphene taking place at twist angles θ below a crossover angle θ\\star=1.2\\circ . The transformation is governed by the interplay between the interlayer van der Waals interaction and the in-plane strain field, and is revealed by a change in the functional form of the twist energy density. This transformation unveils an electronic regime characteristic of vanishing twist angles in which the charge density converges, though not uniformly, to that of ideal bilayer graphene with Bernal stacking. On the other hand, the stacking domain boundaries form a distinct charge density pattern that provides the STM signature of the hexagonal solitonic network.
Comparative analysis for low-mass and low-inertia dynamic balancing of mechanisms
van der Wijk, V.; Demeulenaere, B.; Gosselin, C.M.; Herder, Justus Laurens
2012-01-01
Dynamic balance is an important feature of high speed mechanisms and robotics that need to minimize vibrations of the base. The main disadvantage of dynamic balancing, however, is that it is accompanied with a considerable increase in mass and inertia. Aiming at low-mass and low-inertia dynamic
Innovation of Methods for Measurement and Modelling of Twisted Pair Parameters
Directory of Open Access Journals (Sweden)
Lukas Cepa
2011-01-01
Full Text Available The goal of this paper is to optimize a measurement methodology for the most accurate broadband modelling of characteristic impedance and other parameters for twisted pairs. Measured values and theirs comparison is presented in this article. Automated measurement facility was implemented at the Department of telecommunication of Faculty of electrical engineering of Czech technical university in Prague. Measurement facility contains RF switches allowing measurements up to 300 MHz or 1GHz. Measured twisted pair’s parameters can be obtained by measurement but for purposes of fundamental characteristics modelling is useful to define functions that model the properties of the twisted pair. Its primary and secondary parameters depend mostly on the frequency. For twisted pair deployment, we are interested in a frequency band range from 1 MHz to 100 MHz.
Unconfined twist : a simple method to prepare ultrafine grained metallic materials.
Energy Technology Data Exchange (ETDEWEB)
Zhao, Y. (Yonghao); Liao, Xiaozhou; Zhu, Y. T. (Yuntian Theodore)
2004-01-01
A new simple method - unconfined twist was employed to prepare ultrafine grained (UFG) Fe,wire. A coarse grained (CG) Fe wire with a diameter of 0.85 mm was fixed at one end, and twisted at the other end. After maximum twist before fracture, in the cross-sectional plane, concentrically deformed layers with a width of several micrometers formed surrounding the center axis of the wire. The near-surface deformed layers consist of lamella grains with a width in submicrometer range. In the longitudinal plane, deformed bands (with a width of several micrometers) formed uniformly, which were composed of lamella crystallites (with a width in submicrometer range). The tensile yield strength and ultimate strength of the twisted Fe wire are increased by about 150% and 100% compared with the values of its CG counterpart.
Directory of Open Access Journals (Sweden)
Maia Amanda M
2012-07-01
Full Text Available Abstract Background Human TWIST1 is a highly conserved member of the regulatory basic helix-loop-helix (bHLH transcription factors. TWIST1 forms homo- or heterodimers with E-box proteins, such as E2A (isoforms E12 and E47, MYOD and HAND2. Haploinsufficiency germ-line mutations of the twist1 gene in humans are the main cause of Saethre-Chotzen syndrome (SCS, which is characterized by limb abnormalities and premature fusion of cranial sutures. Because of the importance of TWIST1 in the regulation of embryonic development and its relationship with SCS, along with the lack of an experimentally solved 3D structure, we performed comparative modeling for the TWIST1 bHLH region arranged into wild-type homodimers and heterodimers with E47. In addition, three mutations that promote DNA binding failure (R118C, S144R and K145E were studied on the TWIST1 monomer. We also explored the behavior of the mutant forms in aqueous solution using molecular dynamics (MD simulations, focusing on the structural changes of the wild-type versus mutant dimers. Results The solvent-accessible surface area of the homodimers was smaller on wild-type dimers, which indicates that the cleft between the monomers remained more open on the mutant homodimers. RMSD and RMSF analyses indicated that mutated dimers presented values that were higher than those for the wild-type dimers. For a more careful investigation, the monomer was subdivided into four regions: basic, helix I, loop and helix II. The basic domain presented a higher flexibility in all of the parameters that were analyzed, and the mutant dimer basic domains presented values that were higher than the wild-type dimers. The essential dynamic analysis also indicated a higher collective motion for the basic domain. Conclusions Our results suggest the mutations studied turned the dimers into more unstable structures with a wider cleft, which may be a reason for the loss of DNA binding capacity observed for in vitro
Torsional Dynamics of Steerable Needles: Modeling and Fluoroscopic Guidance
Swensen, John P.; Lin, MingDe; Okamura, Allison M.; Cowan, Noah J.
2017-01-01
Needle insertions underlie a diversity of medical interventions. Steerable needles provide a means by which to enhance existing needle-based interventions and facilitate new ones. Tip-steerable needles follow a curved path and can be steered by twisting the needle base during insertion, but this twisting excites torsional dynamics that introduce a discrepancy between the base and tip twist angles. Here, we model the torsional dynamics of a flexible rod—such as a tip-steerable needle—during subsurface insertion and develop a new controller based on the model. The torsional model incorporates time-varying mode shapes to capture the changing boundary conditions inherent during insertion. Numerical simulations and physical experiments using two distinct setups—stereo camera feedback in semi-transparent artificial tissue and feedback control with real-time X-ray imaging in optically opaque artificial tissue— demonstrate the need to account for torsional dynamics in control of the needle tip. PMID:24860026
Quantum communication through a spin ring with twisted boundary conditions
International Nuclear Information System (INIS)
Bose, S.; Jin, B.-Q.; Korepin, V.E.
2005-01-01
We investigate quantum communication between the sites of a spin ring with twisted boundary conditions. Such boundary conditions can be achieved by a magnetic flux through the ring. We find that a nonzero twist can improve communication through finite odd-numbered rings and enable high-fidelity multiparty quantum communication through spin rings (working near perfectly for rings of five and seven spins). We show that in certain cases, the twist results in the complete blockage of quantum-information flow to a certain site of the ring. This effect can be exploited to interface and entangle a flux qubit and a spin qubit without embedding the latter in a magnetic field
Directory of Open Access Journals (Sweden)
Phuoc T Tran
Full Text Available KRAS mutant lung cancers are generally refractory to chemotherapy as well targeted agents. To date, the identification of drugs to therapeutically inhibit K-RAS have been unsuccessful, suggesting that other approaches are required. We demonstrate in both a novel transgenic mutant Kras lung cancer mouse model and in human lung tumors that the inhibition of Twist1 restores a senescence program inducing the loss of a neoplastic phenotype. The Twist1 gene encodes for a transcription factor that is essential during embryogenesis. Twist1 has been suggested to play an important role during tumor progression. However, there is no in vivo evidence that Twist1 plays a role in autochthonous tumorigenesis. Through two novel transgenic mouse models, we show that Twist1 cooperates with Kras(G12D to markedly accelerate lung tumorigenesis by abrogating cellular senescence programs and promoting the progression from benign adenomas to adenocarcinomas. Moreover, the suppression of Twist1 to physiological levels is sufficient to cause Kras mutant lung tumors to undergo senescence and lose their neoplastic features. Finally, we analyzed more than 500 human tumors to demonstrate that TWIST1 is frequently overexpressed in primary human lung tumors. The suppression of TWIST1 in human lung cancer cells also induced cellular senescence. Hence, TWIST1 is a critical regulator of cellular senescence programs, and the suppression of TWIST1 in human tumors may be an effective example of pro-senescence therapy.
A twisted flux-tube model for solar prominences. I. General properties
International Nuclear Information System (INIS)
Priest, E.R.; Hood, A.W.; Anzer, U.
1989-01-01
It is proposed that a solar prominence consists of cool plasma supported in a large-scale curved and twisted magnetic flux tube. As long as the flux tube is untwisted, its curvature is concave toward the solar surface, and so it cannot support dense plasma against gravity. However, when it is twisted sufficiently, individual field lines may acquire a convex curvature near their summits and so provide support. Cool plasma then naturally tends to accumulate in such field line dips either by injection from below or by thermal condensation. As the tube is twisted up further or reconnection takes place below the prominence, one finds a transition from normal to inverse polarity. When the flux tube becomes too long or is twisted too much, it loses stability and its true magnetic geometry as an erupting prominence is revealed more clearly. 56 refs
Enhancement of heat transfer using varying width twisted tape inserts
African Journals Online (AJOL)
user
enhancement of heat transfer with twisted tape inserts as compared to plain ... studies for heat transfer and pressure drop of laminar flow in horizontal tubes ... flow in rectangular and square plain ducts and ducts with twisted-tape inserts .... presence of the insert in the pipe causes resistance to flow and increases turbulence.
Factorising the 3D topologically twisted index
Cabo-Bizet, Alejandro
2017-04-01
We explore the path integration — upon the contour of hermitian (non-auxliary) field configurations — of topologically twisted N=2 Chern-Simons-matter theory (TTCSM) on {S}_2 times a segment. In this way, we obtain the formula for the 3D topologically twisted index, first as a convolution of TTCSM on {S}_2 times halves of {S}_1 , second as TTCSM on {S}_2 times {S}_1 — with a puncture, — and third as TTCSM on {S}_2× {S}_1 . In contradistinction to the first two cases, in the third case, the vector multiplet auxiliary field D is constrained to be anti-hermitian.
Obstructions for twist star products
Bieliavsky, Pierre; Esposito, Chiara; Waldmann, Stefan; Weber, Thomas
2018-05-01
In this short note, we point out that not every star product is induced by a Drinfel'd twist by showing that not every Poisson structure is induced by a classical r-matrix. Examples include the higher genus symplectic Pretzel surfaces and the symplectic sphere S^2.
Optics of twisted nematic and supertwisted nematic liquid-crystal displays
Leenhouts, F.; Schadt, M.
1986-11-01
For the first time calculations of the off-state transmission of twisted nematic liquid-crystal displays (LCD's) are presented which exhibit twist angles greater than the conventional 90 °. The transmission has been calculated using a treatment introduced by Priestley. In addition, the CIE (Commission Internationale d'Eclairage) color coordinates were evaluated which, together with the brightness, determine the optical appearance of an LCD. The finite efficiency of the polarizers was taken into account. The results are compared with those obtained for conventional 90 ° twisted nematic LCD's. From the calculations follow the conditions required to obtain optimal contrast and steep electro-optical characteristics in 180 ° supertwisted LCD's designed for high information content applications.
miR-151-3p Targets TWIST1 to Repress Migration of Human Breast Cancer Cells.
Directory of Open Access Journals (Sweden)
Ting-Chih Yeh
Full Text Available TWIST1 is a highly conserved basic helix-loop-helix transcription factor that contributes to cancer metastasis by promoting an epithelial-mesenchymal transition and repressing E-cadherin gene expression in breast cancer. In this study, we explored the potential role of miR-151 in TWIST1 expression and cancer properties in human breast cancer cells. We found that the human TWIST1 3'UTR contains a potential binging site for miR-151-3p at the putative target sequence 5'-CAGUCUAG-3'. Using a TWIST1-3'UTR luciferase reporter assay, we demonstrated that the target sequence within the TWIST1 3'UTR is required for miR-151-3p regulation of TWIST1 expression. Moreover, we found that ectopic expression of miR-151-3p by infection with adenoviruses expressing miR-151 significantly decreased TWIST1 expression, migration and invasion, but did not affect cell growth and tumorsphere formation of human breast cancer cells. In addition, overexpression of the protein coding region without the 3'UTR of TWIST1 reversed the repression of cell migration by miR-151-3p. Furthermore, knockdown of miR-151-3p increased TWIST1 expression, reduced E-cadherin expression, and enhanced cell migration. In conclusion, these results suggest that miR-151-3p directly regulates TWIST1 expression by targeting the TWIST1 3'UTR and thus repressing the migration and invasion of human breast cancer cells by enhancing E-cadherin expression. Our findings add to accumulating evidence that microRNAs are involved in breast cancer progression by modulating TWIST1 expression.
Constraining dynamical neutrino mass generation with cosmological data
Energy Technology Data Exchange (ETDEWEB)
Koksbang, S.M.; Hannestad, S., E-mail: koksbang@phys.au.dk, E-mail: sth@phys.au.dk [Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C (Denmark)
2017-09-01
We study models in which neutrino masses are generated dynamically at cosmologically late times. Our study is purely phenomenological and parameterized in terms of three effective parameters characterizing the redshift of mass generation, the width of the transition region, and the present day neutrino mass. We also study the possibility that neutrinos become strongly self-interacting at the time where the mass is generated. We find that in a number of cases, models with large present day neutrino masses are allowed by current CMB, BAO and supernova data. The increase in the allowed mass range makes it possible that a non-zero neutrino mass could be measured in direct detection experiments such as KATRIN. Intriguingly we also find that there are allowed models in which neutrinos become strongly self-interacting around the epoch of recombination.
Complex Toda theories and twisted reality conditions
International Nuclear Information System (INIS)
Evans, J.M.
1993-01-01
The Toda equations (based on a finite-dimensional or affine Lie algebra of superalgebra) are discussed as integrable non-linear differential equations for a set of complex scalar fields. We show that such complex Toda fields can either be restricted to take real values in the standard way or else they can be subjected to a 'twisted' reality condition associated to any Z 2 symmetry of the Cartan matrix or Dynkin diagram of the underlying algebra. Different reality conditions give rise to different lagrangian field theories. In the conformal case, however, these theories have the same central charge, while in the affine case they have the same mass spectrum. The construction of N=2 superconformal theories based on the superalgebras A(n, n-1) is clarified, and a new class of conformal field theories with positive kinetic energy based on the superalgebras C(n) is presented. The ideas developed are also relevant to understanding solition solutions in affine Toda theories with imaginary coupling constant. (orig.)
The effect of dynamical quark mass on the calculation of a strange quark star's structure
Institute of Scientific and Technical Information of China (English)
Gholam Hossein Bordbar; Babak Ziaei
2012-01-01
We discuss the dynamical behavior of strange quark matter components,in particular the effects of density dependent quark mass on the equation of state of strange quark matter.The dynamical masses of quarks are computed within the Nambu-Jona-Lasinio model,then we perform strange quark matter calculations employing the MIT bag model with these dynamical masses.For the sake of comparing dynamical mass interaction with QCD quark-quark interaction,we consider the one-gluon-exchange term as the effective interaction between quarks for the MIT bag model.Our dynamical approach illustrates an improvement in the obtained equation of state values.We also investigate the structure of the strange quark star using TolmanOppenheimer-Volkoff equations for all applied models.Our results show that dynamical mass interaction leads to lower values for gravitational mass.
Directory of Open Access Journals (Sweden)
K. SYED JAFAR
2017-03-01
Full Text Available In this paper, the experimental heat transfer, friction loss and thermal performance data for water flowing through the absorber tube fitted with two different twisted tape configurations in parabolic trough collector (PTC are presented. In the present work, a relative experimental study is carried out to investigate the performance of a PTC influenced by heat transfer through fluidabsorber wall mixing mechanism. The major findings of this experiment show that heat transport enhancement in the nail twisted tape collector perform significantly better than plain twisted tapes and also show that the smallest twisted tape ratio enhances the system performance remarkably maximizing the collector efficiency. The results suggest that the twisted tape and nail twisted tape would be a better option for high thermal energy collection in laminar region of the PTC system.
Spinning geometry = Twisted geometry
International Nuclear Information System (INIS)
Freidel, Laurent; Ziprick, Jonathan
2014-01-01
It is well known that the SU(2)-gauge invariant phase space of loop gravity can be represented in terms of twisted geometries. These are piecewise-linear-flat geometries obtained by gluing together polyhedra, but the resulting geometries are not continuous across the faces. Here we show that this phase space can also be represented by continuous, piecewise-flat three-geometries called spinning geometries. These are composed of metric-flat three-cells glued together consistently. The geometry of each cell and the manner in which they are glued is compatible with the choice of fluxes and holonomies. We first remark that the fluxes provide each edge with an angular momentum. By studying the piecewise-flat geometries which minimize edge lengths, we show that these angular momenta can be literally interpreted as the spin of the edges: the geometries of all edges are necessarily helices. We also show that the compatibility of the gluing maps with the holonomy data results in the same conclusion. This shows that a spinning geometry represents a way to glue together the three-cells of a twisted geometry to form a continuous geometry which represents a point in the loop gravity phase space. (paper)
A New Twisting Somersault: 513XD
Tong, William; Dullin, Holger R.
2017-12-01
We present the mathematical framework of an athlete modelled as a system of coupled rigid bodies to simulate platform and springboard diving. Euler's equations of motion are generalised to non-rigid bodies and are then used to innovate a new dive sequence that in principle can be performed by real-world athletes. We begin by assuming that shape changes are instantaneous so that the equations of motion simplify enough to be solved analytically, and then use this insight to present a new dive (513XD) consisting of 1.5 somersaults and five twists using realistic shape changes. Finally, we demonstrate the phenomenon of converting pure somersaulting motion into pure twisting motion by using a sequence of impulsive shape changes, which may have applications in other fields such as space aeronautics.
Target mass effects in polarized deep-inelastic scattering
International Nuclear Information System (INIS)
Piccione, A.
1998-01-01
We present a computation of nucleon mass corrections to nucleon structure functions for polarized deep-inelastic scattering. We perform a fit to existing data including mass corrections at first order in m 2 /Q 2 and we study the effect of these corrections on physically interesting quantities. We conclude that mass corrections are generally small, and compatible with current estimates of higher twist uncertainties, when available. (orig.)
From starproducts to Drinfeld-twists. Present and future applications
International Nuclear Information System (INIS)
Koch, Florian
2008-01-01
Physics comes up with models that invoke noncommutative structures in configuration space. Such structures are dual to the deformed coalgebra sector of a represented symmetry algebra. In the mean time such deformations are performed in terms of the symmetry algebra itself via twists or quasitriangular structures. One might thus find oneself in the bad situation that the symmetry algebra is not large enough to provide the required twist that dually matches the noncommutative structure found. It thus has to remain in the unpleasant state of being without any notion of symmetry. We show how starproducts can be pushed to twists by introducing a larger algebra that accommodates any finite dimensional representation of a Lie-algebra. This new algebra is similar to a Heisenberg-algebra but in contrast to the latter can be enhanced to a Hopf-algebra. Some Examples are given. (author)
Anomalous phase shift in a twisted quantum loop
International Nuclear Information System (INIS)
Taira, Hisao; Shima, Hiroyuki
2010-01-01
The coherent motion of electrons in a twisted quantum ring is considered to explore the effect of torsion inherent to the ring. Internal torsion of the ring composed of helical atomic configuration yields a non-trivial quantum phase shift in the electrons' eigenstates. This torsion-induced phase shift causes novel kinds of persistent current flow and an Aharonov-Bohm-like conductance oscillation. The two phenomena can occur even when no magnetic flux penetrates inside the twisted ring, thus being in complete contrast with the counterparts observed in untwisted rings.
Chiral twist drives raft formation and organization in membranes composed of rod-like particles
Lubensky, Tom C.
2017-01-01
Lipid rafts are hypothesized to facilitate protein interaction, tension regulation, and trafficking in biological membranes, but the mechanisms responsible for their formation and maintenance are not clear. Insights into many other condensed matter phenomena have come from colloidal systems, whose micron-scale particles mimic basic properties of atoms and molecules but permit dynamic visualization with single-particle resolution. Recently, experiments showed that bidisperse mixtures of filamentous viruses can self-assemble into colloidal monolayers with thermodynamically stable rafts exhibiting chiral structure and repulsive interactions. We quantitatively explain these observations by modeling the membrane particles as chiral liquid crystals. Chiral twist promotes the formation of finite-sized rafts and mediates a repulsion that distributes them evenly throughout the membrane. Although this system is composed of filamentous viruses whose aggregation is entropically driven by dextran depletants instead of phospholipids and cholesterol with prominent electrostatic interactions, colloidal and biological membranes share many of the same physical symmetries. Chiral twist can contribute to the behavior of both systems and may account for certain stereospecific effects observed in molecular membranes. PMID:27999184
The geometrical origin of the strain-twist coupling in double helices
DEFF Research Database (Denmark)
Olsen, Kasper; Bohr, Jakob
2011-01-01
A simple geometrical explanation for the counterintuitive phenomenon when twist leads to extension in double helices is presented. The coupling between strain and twist is investigated using a tubular description. It is shown that the relation between strain and rotation is universal and depends...
Waveguides with asymptotically diverging twisting
Czech Academy of Sciences Publication Activity Database
Krejčiřík, David
2015-01-01
Roč. 46, AUG (2015), s. 7-10 ISSN 0893-9659 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : quantum waveguide * exploding twisting * Quasi-bounded * Quasi-cylindrical * discrete spectrum Subject RIV: BE - Theoretical Physics Impact factor: 1.659, year: 2015
Demonstration of an elastically coupled twist control concept for tilt rotor blade application
Lake, R. C.; Nixon, M. W.; Wilbur, M. L.; Singleton, J. D.; Mirick, P. H.
1994-01-01
The purpose of this Note is to present results from an analytic/experimental study that investigated the potential for passively changing blade twist through the use of extension-twist coupling. A set of composite model rotor blades was manufactured from existing blade molds for a low-twist metal helicopter rotor blade, with a view toward establishing a preliminary proof concept for extension-twist-coupled rotor blades. Data were obtained in hover for both a ballasted and unballasted blade configuration in sea-level atmospheric conditions. Test data were compared with results obtained from a geometrically nonlinear analysis of a detailed finite element model of the rotor blade developed in MSC/NASTRAN.
Particle image velocimetry measurements of 2-dimensional velocity field around twisted tape
Energy Technology Data Exchange (ETDEWEB)
Song, Min Seop; Park, So Hyun; Kim, Eung Soo, E-mail: kes7741@snu.ac.kr
2016-11-01
Highlights: • Measurements of the flow field in a pipe with twisted tape were conducted by particle image velocimetry (PIV). • A novel matching index of refraction technique utilizing 3D printing and oil mixture was adopted to make the test section transparent. • Undistorted particle images were clearly captured in the presence of twisted tape. • 2D flow field in the pipe with twisted tape revealed the characteristic two-peak velocity profile. - Abstract: Twisted tape is a passive component used to enhance heat exchange in various devices. It induces swirl flow that increases the mixing of fluid. Thus, ITER selected the twisted tape as one of the candidates for turbulence promoting in the divertor cooling. Previous study was mainly focused on the thermohydraulic performance of the twisted tape. As detailed data on the velocity field around the twisted tape was insufficient, flow visualization study was performed to provide fundamental data on velocity field. To visualize the flow in a complex structure, novel matching index of refraction technique was used with 3-D printing and mixture of anise and mineral oil. This technique enables the camera to capture undistorted particle image for velocity field measurement. Velocity fields at Reynolds number 1370–9591 for 3 different measurement plane were obtained through particle image velocimetry. The 2-dimensional averaged velocity field data were obtained from 177 pair of instantaneous velocity fields. It reveals the characteristic two-peak flow motion in axial direction. In addition, the normalized velocity profiles were converged with increase of Reynolds numbers. Finally, the uncertainty of the result data was analyzed.
Thathia, Shabnam H.; Ferguson, Stuart; Gautrey, Hannah E.; van Otterdijk, Sanne D.; Hili, Michela; Rand, Vikki; Moorman, Anthony V.; Meyer, Stefan; Brown, Robert; Strathdee, Gordon
2012-01-01
Background Altered regulation of many transcription factors has been shown to be important in the development of leukemia. TWIST2 modulates the activity of a number of important transcription factors and is known to be a regulator of hematopoietic differentiation. Here, we investigated the significance of epigenetic regulation of TWIST2 in the control of cell growth and survival and in response to cytotoxic agents in acute lymphoblastic leukemia. Design and Methods TWIST2 promoter methylation status was assessed quantitatively, by combined bisulfite and restriction analysis (COBRA) and pyrosequencing assays, in multiple types of leukemia and TWIST2 expression was determined by quantitative reverse transcriptase polymerase chain reaction analysis. The functional role of TWIST2 in cell proliferation, survival and response to chemotherapy was assessed in transient and stable expression systems. Results We found that TWIST2 was inactivated in more than 50% of cases of childhood and adult acute lymphoblastic leukemia through promoter hypermethylation and that this epigenetic regulation was especially prevalent in RUNX1-ETV6-driven cases. Re-expression of TWIST2 in cell lines resulted in a dramatic reduction in cell growth and induction of apoptosis in the Reh cell line. Furthermore, re-expression of TWIST2 resulted in increased sensitivity to the chemotherapeutic agents etoposide, daunorubicin and dexamethasone and TWIST2 hypermethylation was almost invariably found in relapsed adult acute lymphoblastic leukemia (91% of samples hypermethylated). Conclusions This study suggests a dual role for epigenetic inactivation of TWIST2 in acute lymphoblastic leukemia, initially through altering cell growth and survival properties and subsequently by increasing resistance to chemotherapy. PMID:22058208
Modal Properties and Stability of Bend-Twist Coupled Wind Turbine Blades
DEFF Research Database (Denmark)
Stäblein, Alexander R.; Hansen, Morten Hartvig; Verelst, David Robert
2017-01-01
a steady-state equilibrium using the aero-servo-elastic tool HAWCStab2 which has been extended by a beam element that allows for fully coupled cross-sectional properties. Bend-twist coupling is introduced in the cross-sectional stiffness matrix by means of coupling coefficients that introduce twist...
Study of mass consciousnessand its dynamics in sociologic research
Directory of Open Access Journals (Sweden)
S. V. Khobta
2017-01-01
Full Text Available The article is dedicated to analysis of the approaches used to study mass consciousness and the methods of their dynamics research. The two following approaches are reviewed: aggregative and group. The author shows that the study of the dynamics of mass consciousness in the modern day science is performed via computer modeling applying agent-oriented models and mass surveys of public opinion. Special attention is given to the concept of mass consciousness according to B. Grushin, where the mass consciousness is analyzed as a complex phenomenon according to its structure and the formation process. It is further analyzed what this particular concept is able to provide for the mass consciousness studies in the times of crises, similar to the situation of the military conflict at the East. It is then proven that the dialectic approach should be used as the basis for the mass consciousness studies adjusted for the interaction dynamics between the individual and collective, spontaneous and the institutionalized inside the collective consciousness. The mass consciousness is a complex structural formation, both heterogeneous and syncretical. Inside this structure one must distinguish between the layers that differ in depth and mobility and pay attention to its various conditions. The layers represent different worldviews, where, depending on the situation, scientific, religious or mystical images of the world can be actualized along with their ideological, moral and aesthetic precepts. These can cross, merge or coexist without contradicting each other and get actualized to a different extent. Besides the aforementioned the mass consciousness serves as a carrier of different kinds of deep, hard to change formations, such as «historical/collective memory», memlexes as well as superficial, most actualized forms, such as mems. It has «public/formal», socially accepted, and «private/real» levels that manifest themselves, in particular, in the forms of
Study of Implosion of Twisted Nested Arrays at the Angara-5-1 Facility
Mitrofanov, K. N.; Zukakishvili, G. G.; Aleksandrov, V. V.; Grabovski, E. V.; Frolov, I. N.; Gribov, A. N.
2018-01-01
Results are presented from experimental studies of the implosion of twisted nested arrays in which the wires of the outer and inner arrays are twisted about the array axis in opposite directions (clockwise and counterclockwise). Experiments with twisted arrays were carried out at the Angara-5-1 facility at currents of up to 4 MA. The currents through the arrays were switched either simultaneously or the current pulse through the outer array was delayed by 10-15 ns with the help of an anode spark gap. It is shown that, in such arrays, the currents flow along the inclined wires and, accordingly, there are both the azimuthal and axial components of the discharge current. The process of plasma implosion in twisted arrays depends substantially on the value of the axial (longitudinal) magnetic field generated inside the array by the azimuthal currents. Two-dimensional simulations of the magnetic field in twisted nested arrays were performed in the ( r, z) geometry with allowance for the skin effect in the discharge electrodes. It is shown that, depending on the geometry of the discharge electrodes, different configurations of the magnetic field can be implemented inside twisted nested arrays. The calculated magnetic configurations are compared with the results of measurements of the magnetic field inside such arrays. It is shown that the configuration of the axial magnetic field inside a twisted nested array depends substantially on the distribution of the azimuthal currents between the inner and outer arrays.
Dynamic Tunneling Junctions at the Atomic Intersection of Two Twisted Graphene Edges.
Bellunato, Amedeo; Vrbica, Sasha D; Sabater, Carlos; de Vos, Erik W; Fermin, Remko; Kanneworff, Kirsten N; Galli, Federica; van Ruitenbeek, Jan M; Schneider, Grégory F
2018-04-11
The investigation of the transport properties of single molecules by flowing tunneling currents across extremely narrow gaps is relevant for challenges as diverse as the development of molecular electronics and sequencing of DNA. The achievement of well-defined electrode architectures remains a technical challenge, especially due to the necessity of high precision fabrication processes and the chemical instability of most bulk metals. Here, we illustrate a continuously adjustable tunneling junction between the edges of two twisted graphene sheets. The unique property of the graphene electrodes is that the sheets are rigidly supported all the way to the atomic edge. By analyzing the tunneling current characteristics, we also demonstrate that the spacing across the gap junction can be controllably adjusted. Finally, we demonstrate the transition from the tunneling regime to contact and the formation of an atomic-sized junction between the two edges of graphene.
Realizations of κ-Minkowski space, Drinfeld twists, and related symmetry algebras
Energy Technology Data Exchange (ETDEWEB)
Juric, Tajron; Meljanac, Stjepan; Pikutic, Danijel [Ruder Boskovic Institute, Theoretical Physics Division, Zagreb (Croatia)
2015-11-15
Realizations of κ-Minkowski space linear in momenta are studied for time-, space- and light-like deformations. We construct and classify all such linear realizations and express them in terms of the gl(n) generators. There are three one-parameter families of linear realizations for timelike and space-like deformations, while for light-like deformations, there are only four linear realizations. The relation between a deformed Heisenberg algebra, the star product, the coproduct of momenta, and the twist operator is presented. It is proved that for each linear realization there exists a Drinfeld twist satisfying normalization and cocycle conditions. κ-Deformed igl(n)-Hopf algebras are presented for all cases. The κ-Poincare-Weyl and κ-Poincare-Hopf algebras are discussed. The left-right dual κ-Minkowski algebra is constructed from the transposed twists. The corresponding realizations are nonlinear. All Drinfeld twists related to κ-Minkowski space are obtained from our construction. Finally, some physical applications are discussed. (orig.)
Realizations of κ-Minkowski space, Drinfeld twists, and related symmetry algebras
International Nuclear Information System (INIS)
Juric, Tajron; Meljanac, Stjepan; Pikutic, Danijel
2015-01-01
Realizations of κ-Minkowski space linear in momenta are studied for time-, space- and light-like deformations. We construct and classify all such linear realizations and express them in terms of the gl(n) generators. There are three one-parameter families of linear realizations for timelike and space-like deformations, while for light-like deformations, there are only four linear realizations. The relation between a deformed Heisenberg algebra, the star product, the coproduct of momenta, and the twist operator is presented. It is proved that for each linear realization there exists a Drinfeld twist satisfying normalization and cocycle conditions. κ-Deformed igl(n)-Hopf algebras are presented for all cases. The κ-Poincare-Weyl and κ-Poincare-Hopf algebras are discussed. The left-right dual κ-Minkowski algebra is constructed from the transposed twists. The corresponding realizations are nonlinear. All Drinfeld twists related to κ-Minkowski space are obtained from our construction. Finally, some physical applications are discussed. (orig.)
Internal Mass Motion for Spacecraft Dynamics and Control
National Research Council Canada - National Science Library
Hall, Christopher D
2008-01-01
We present a detailed description of the application of a noncanonical Hamiltonian formulation to the modeling, analysis, and simulation of the dynamics of gyrostat spacecraft with internal mass motion...
The $SU(\\infty)$ twisted gradient flow running coupling
Pérez, Margarita García; Keegan, Liam; Okawa, Masanori
2015-01-01
We measure the running of the $SU(\\infty)$ 't Hooft coupling by performing a step scaling analysis of the Twisted Eguchi-Kawai (TEK) model, the SU($N$) gauge theory on a single site lattice with twisted boundary conditions. The computation relies on the conjecture that finite volume effects for SU(N) gauge theories defined on a 4-dimensional twisted torus are controlled by an effective size parameter $\\tilde l = l \\sqrt{N}$, with $l$ the torus period. We set the scale for the running coupling in terms of $\\tilde l$ and use the gradient flow to define a renormalized 't Hooft coupling $\\lambda(\\tilde l)$. In the TEK model, this idea allows the determination of the running of the coupling through a step scaling procedure that uses the rank of the group as a size parameter. The continuum renormalized coupling constant is extracted in the zero lattice spacing limit, which in the TEK model corresponds to the large $N$ limit taken at fixed value of $\\lambda(\\tilde l)$. The coupling constant is thus expected to coinc...
Twist effects in quantum vortices and phase defects
Zuccher, Simone; Ricca, Renzo L.
2018-02-01
In this paper we show that twist, defined in terms of rotation of the phase associated with quantum vortices and other physical defects effectively deprived of internal structure, is a property that has observable effects in terms of induced axial flow. For this we consider quantum vortices governed by the Gross-Pitaevskii equation (GPE) and perform a number of test cases to investigate and compare the effects of twist in two different contexts: (i) when this is artificially superimposed on an initially untwisted vortex ring; (ii) when it is naturally produced on the ring by the simultaneous presence of a central straight vortex. In the first case large amplitude perturbations quickly develop, generated by the unnatural setting of the initial condition that is not an analytical solution of the GPE. In the second case much milder perturbations emerge, signature of a genuine physical process. This scenario is confirmed by other test cases performed at higher twist values. Since the second setting corresponds to essential linking, these results provide new evidence of the influence of topology on physics.
Factorising the 3D topologically twisted index
Energy Technology Data Exchange (ETDEWEB)
Cabo-Bizet, Alejandro [Instituto de Astronomía y Física del Espacio (CONICET-UBA),Ciudad Universitaria, C.P. 1428, Buenos Aires (Argentina)
2017-04-20
We explore the path integration — upon the contour of hermitian (non-auxliary) field configurations — of topologically twisted N=2 Chern-Simons-matter theory (TTCSM) on S{sub 2} times a segment. In this way, we obtain the formula for the 3D topologically twisted index, first as a convolution of TTCSM on S{sub 2} times halves of S{sub 1}, second as TTCSM on S{sub 2} times S{sub 1} — with a puncture, — and third as TTCSM on S{sub 2}×S{sub 1}. In contradistinction to the first two cases, in the third case, the vector multiplet auxiliary field D is constrained to be anti-hermitian.
Leibniz algebroids, twistings and exceptional generalized geometry
Baraglia, D.
2012-05-01
We investigate a class of Leibniz algebroids which are invariant under diffeomorphisms and symmetries involving collections of closed forms. Under appropriate assumptions we arrive at a classification which in particular gives a construction starting from graded Lie algebras. In this case the Leibniz bracket is a derived bracket and there are higher derived brackets resulting in an L∞-structure. The algebroids can be twisted by a non-abelian cohomology class and we prove that the twisting class is described by a Maurer-Cartan equation. For compact manifolds we construct a Kuranishi moduli space of this equation which is shown to be affine algebraic. We explain how these results are related to exceptional generalized geometry.
Reducing cutoff effects in maximally twisted lattice QCD close to the chiral limit
International Nuclear Information System (INIS)
Frezzotti, R.; Papinutto, M.; Rossi, G.C.; Istituto Nazionale di Fisica Nucleare, Rome; Deutsches Elektronen-Synchrotron
2005-03-01
When analyzed in terms of the Symanzik expansion, the expectation values of multi-local (gauge-invariant) operators with non-trivial continuum limit exhibit in maximally twisted lattice QCD ''infrared divergent'' cutoff effects of the type a 2k /(m π 2 ) h , 2k ≥ h ≥ 1, which become numerically dangerous when the pion mass gets small. We prove that, if the critical mass counter-term is chosen in some ''optimal'' way or, alternatively, the action is O(a) improved a la Symanzik, the leading cutoff effects of this kind (i.e. those with h = 2k) can all be eliminated. Once this is done, the remaining next-to-leading ''infrared divergent'' effects are only of the kind a 2 (a 2 /m π 2 ) k , k ≥ 1. This implies that the continuum extrapolation of lattice results is smooth at least down to values of the quark mass, m q , satisfying the order of magnitude inequality m q > a 2 Λ QCD 3 . (orig.)
On the twists of interplanetary magnetic flux ropes observed at 1 AU
Wang, Yuming; Zhuang, Bin; Hu, Qiang; Liu, Rui; Shen, Chenglong; Chi, Yutian
2016-01-01
Magnetic flux ropes (MFRs) are one kind of fundamental structures in the solar physics, and involved in various eruption phenomena. Twist, characterizing how the magnetic field lines wind around a main axis, is an intrinsic property of MFRs, closely related to the magnetic free energy and stableness. So far it is unclear how much amount of twist is carried by MFRs in the solar atmosphere and in heliosphere and what role the twist played in the eruptions of MFRs. Contrasting to the solar MFRs,...
Energy Technology Data Exchange (ETDEWEB)
Szymanowski, Lech [Soltan Institute for Nuclear Studies, Hoza 69, 00691, Warsaw (Poland); Anikin, Igor V. [Joint Institute for Nuclear Research - JINR, Joliot-Curie st., 6, Moskovskaya obl., 141980, Dubna (Russian Federation); Ivanov, Dmitry Yu [Sobolev Institute of Mathematics, Acad. Koptyug pr., 4, 630090 Novosibirsk (Russian Federation); Pire, Bernard [Centre de Physique Theorique - CPHT, UMR 7644, Ecole Polytechnique, Bat. 6, RDC, F91128 Palaiseau Cedex (France); Wallon, Samuel [Laboratoire de Physique Theorique d' Orsay - LPT, Bat. 210, Univ. Paris-Sud 11, 91405 Orsay Cedex (France)
2010-07-01
We describe a consistent approach to factorization of scattering amplitudes for exclusive processes beyond the leading twist approximation. The method is based on the Taylor expansion of the scattering amplitude in the momentum space around the dominant light-cone direction and thus naturally introduces an appropriate set of non-perturbative correlators which encode effects not only of the lowest but also of the higher Fock states of the produced particle. The reduction of original set of correlators to a set of independent ones is achieved with the help of equations of motion and invariance of the scattering amplitude under rotation on the light-cone. As a concrete application, we compute the expressions of the impact factor for the transition of virtual photon to transversally polarised {rho}-meson up to the twist 3 accuracy. (Phys.Lett.B682:413-418,2010 and Nucl.Phys.B828:1-68,2010.). (authors)
Inner Surface Chirality of Single-Handed Twisted Carbonaceous Tubular Nanoribbons.
Liu, Dan; Li, Baozong; Guo, Yongmin; Li, Yi; Yang, Yonggang
2015-11-01
Single-handed twisted 4,4'-biphenylene-bridged polybissilsesquioxane tubular nanoribbons and single-layered nanoribbons were prepared by tuning the water/ethanol volume ratio in the reaction mixture at pH = 11.6 through a supramolecular templating approach. The single-layered nanoribbons were formed by shrinking tubular nanoribbons after the removal of the templates. In addition, solvent-induced handedness inversion was achieved. The handedness of the polybissilsesquioxanes could be controlled by changing the ethanol/water volume ratio in the reaction mixture. After carbonization at 900 °C for 4.0 h and removal of silica, single-handed twisted carbonaceous tubular nanoribbons and single-layered nanoribbons with micropores in the walls were obtained. X-ray diffraction and Raman spectroscopy analyses indicated that the carbon is predominantly amorphous. The circular dichroism spectra show that the twisted tubular nanoribbons exhibit optical activity, while the twisted single-layered nanoribbons do not. The results shown here indicate that chirality is transferred from the organic self-assemblies to the inner surfaces of the 4,4'-biphenylene-bridged polybissilsesquioxane tubular nanoribbons and subsequently to those of the carbonaceous tubular nanoribbons. © 2015 Wiley Periodicals, Inc.
Energy Technology Data Exchange (ETDEWEB)
Burger, Florian [Humboldt U. Berlin; Feng, Xu [KEK; Hotzel, Grit [Humboldt U. Berlin; Jansen, Karl [DESY; Petschlies, Marcus [The Cyprus Institute; Renner, Dru B. [JLAB
2013-11-01
We present results for the leading order QCD correction to the anomalous magnetic moment of the muon including the first two generations of quarks as dynamical degrees of freedom. Several light quark masses are examined in order to yield a controlled extrapolation to the physical pion mass. We analyse ensembles for three different lattice spacings and several volumes in order to investigate lattice artefacts and finite-size effects, respectively. We also provide preliminary results for this quantity for two flavours of mass-degenerate quarks at the physical value of the pion mass.
Technicolor and the asymptotic behavior of dynamically generated masses
International Nuclear Information System (INIS)
Natale, A.A.
1984-01-01
Arguments are given in favor of a hard asymptotic behavior of dynamically generated masses, its consequences for technicolor models are analyzed and a model is proposed, where effects of flavor changing neutral currents are highly supressed and pseudo Goldstone bosons get masses of O(30-90) GeV. (Author) [pt
Osserman and conformally Osserman manifolds with warped and twisted product structure
Brozos-Vazquez, M.; Garcia-Rio, E.; Vazquez-Lorenzo, R.
2008-01-01
We characterize Osserman and conformally Osserman Riemannian manifolds with the local structure of a warped product. By means of this approach we analyze the twisted product structure and obtain, as a consequence, that the only Osserman manifolds which can be written as a twisted product are those of constant curvature.
An improved hazard rate twisting approach for the statistic of the sum of subexponential variates
Rached, Nadhir B.; Kammoun, Abla; Alouini, Mohamed-Slim; Tempone, Raul
2015-01-01
In this letter, we present an improved hazard rate twisting technique for the estimation of the probability that a sum of independent but not necessarily identically distributed subexponential Random Variables (RVs) exceeds a given threshold. Instead of twisting all the components in the summation, we propose to twist only the RVs which have the biggest impact on the right-tail of the sum distribution and keep the other RVs unchanged. A minmax approach is performed to determine the optimal twisting parameter which leads to an asymptotic optimality criterion. Moreover, we show through some selected simulation results that our proposed approach results in a variance reduction compared to the technique where all the components are twisted.
Arshad, Kashif; Poedts, Stefaan; Lazar, Marian
2017-04-01
Nowadays electromagnetic (EM) fields have various applications in fundamental research, communication, and home appliances. Even though, there are still some subtle features of electromagnetic field known to us a century ago, yet to be utilized. It is because of the technical complexities to sense three dimensional electromagnetic field. An important characteristic of electromagnetic field is its orbital angular momentum (OAM). The angular momentum consists of two distinct parts; intrinsic part associated with the wave polarization or spin, and the extrinsic part associated with the orbital angular momentum (OAM). The orbital angular momentum (OAM) is inherited by helically phased light or helical (twisted) electric field. The investigations of Allen on lasers carrying orbital angular momentum (OAM), has initiated a new scientific and technological advancement in various growing fields, such as microscopy and imaging, atomic and nano-particle manipulation, ultra-fast optical communications, quantum computing, ionospheric radar facility to observe 3D plasma dynamics in ionosphere, photonic crystal fibre, OAM entanglement of two photons, twisted gravitational waves, ultra-intense twisted laser pulses and astrophysics. Recently, the plasma modes are also investigated with orbital angular momentum. The production of electron vortex beams and its applications are indicated by Verbeeck et al. The magnetic tornadoes (rotating magnetic field structures) exhibit three types of morphology i.e., spiral, ring and split. Leyser pumped helical radio beam carrying OAM into the Ionospheric plasma under High Frequency Active Auroral Research Program (HAARP) and characteristic ring shaped morphology is obtained by the optical emission spectrum of pumped plasma turbulence. The scattering phenomenon like (stimulated Raman and Brillouin backscattering) is observed to be responsible for the interaction between electrostatic and electromagnetic waves through orbital angular momentum. The
Effect of Magnetic Twist on Nonlinear Transverse Kink Oscillations of Line-tied Magnetic Flux Tubes
Terradas, J.; Magyar, N.; Van Doorsselaere, T.
2018-01-01
Magnetic twist is thought to play an important role in many structures of the solar atmosphere. One of the effects of twist is to modify the properties of the eigenmodes of magnetic tubes. In the linear regime standing kink solutions are characterized by a change in polarization of the transverse displacement along the twisted tube. In the nonlinear regime, magnetic twist affects the development of shear instabilities that appear at the tube boundary when it is oscillating laterally. These Kelvin–Helmholtz instabilities (KHI) are produced either by the jump in the azimuthal component of the velocity at the edge of the sharp boundary between the internal and external part of the tube or by the continuous small length scales produced by phase mixing when there is a smooth inhomogeneous layer. In this work the effect of twist is consistently investigated by solving the time-dependent problem including the process of energy transfer to the inhomogeneous layer. It is found that twist always delays the appearance of the shear instability, but for tubes with thin inhomogeneous layers the effect is relatively small for moderate values of twist. On the contrary, for tubes with thick layers, the effect of twist is much stronger. This can have some important implications regarding observations of transverse kink modes and the KHI itself.
Dynamic analysis of CO₂ labeling and cell respiration using membrane-inlet mass spectrometry.
Yang, Tae Hoon
2014-01-01
Here, we introduce a mass spectrometry-based analytical method and relevant technical details for dynamic cell respiration and CO2 labeling analysis. Such measurements can be utilized as additional information and constraints for model-based (13)C metabolic flux analysis. Dissolved dynamics of oxygen consumption and CO2 mass isotopomer evolution from (13)C-labeled tracer substrates through different cellular processes can be precisely measured on-line using a miniaturized reactor system equipped with a membrane-inlet mass spectrometer. The corresponding specific rates of physiologically relevant gases and CO2 mass isotopomers can be quantified within a short-term range based on the liquid-phase dynamics of dissolved fermentation gases.
Stability of twisted rods, helices and buckling solutions in three dimensions
Majumdar, Apala; Raisch, Alexander
2014-01-01
© 2014 IOP Publishing Ltd & London Mathematical Society. We study stability problems for equilibria of a naturally straight, inextensible, unshearable Kirchhoff rod allowed to deform in three dimensions (3D), subject to terminal loads. We investigate the stability of the twisted, straight state in 3D for three different boundary-value problems, cast in terms of Dirichlet and Neumann boundary conditions for the Euler angles, with and without isoperimetric constraints. In all cases, we obtain explicit stability estimates in terms of the twist, external load and elastic constants and in the Dirichlet case, we compute bifurcation diagrams for the Euler angles as a function of the external load. In the same vein, we obtain explicit stability estimates for a family of prototypical helical equilibria in 3D and demonstrate that they are stable for a range of tensile and compressive forces. We propose a numerical L2-gradient flow model to study the stability and dynamical evolution (in viscous model situations) of Kirchhoff rod equilibria. In Nizette and Goriely 1999 J. Math. Phys. 40 2830-66, the authors construct a family of localized buckling solutions. We apply our L2-gradient flow model to these localized buckling solutions, demonstrate that they are unstable, study their evolution and the simulations demonstrate rich spatio oral patterns that strongly depend on the boundary conditions and imposed isoperimetric constraints.
Stability of twisted rods, helices and buckling solutions in three dimensions
Majumdar, Apala
2014-11-03
© 2014 IOP Publishing Ltd & London Mathematical Society. We study stability problems for equilibria of a naturally straight, inextensible, unshearable Kirchhoff rod allowed to deform in three dimensions (3D), subject to terminal loads. We investigate the stability of the twisted, straight state in 3D for three different boundary-value problems, cast in terms of Dirichlet and Neumann boundary conditions for the Euler angles, with and without isoperimetric constraints. In all cases, we obtain explicit stability estimates in terms of the twist, external load and elastic constants and in the Dirichlet case, we compute bifurcation diagrams for the Euler angles as a function of the external load. In the same vein, we obtain explicit stability estimates for a family of prototypical helical equilibria in 3D and demonstrate that they are stable for a range of tensile and compressive forces. We propose a numerical L2-gradient flow model to study the stability and dynamical evolution (in viscous model situations) of Kirchhoff rod equilibria. In Nizette and Goriely 1999 J. Math. Phys. 40 2830-66, the authors construct a family of localized buckling solutions. We apply our L2-gradient flow model to these localized buckling solutions, demonstrate that they are unstable, study their evolution and the simulations demonstrate rich spatio oral patterns that strongly depend on the boundary conditions and imposed isoperimetric constraints.
Fast Torsional Artificial Muscles from NiTi Twisted Yarns.
Mirvakili, Seyed M; Hunter, Ian W
2017-05-17
Torsional artificial muscles made of multiwalled carbon nanotube/niobium nanowire yarns have shown remarkable torsional speed and gravimetric torque. The muscle structure consists of a twisted yarn with half of its length infiltrated with a stimuli-responsive guest material such as paraffin wax. The volumetric expansion of the guest material creates the torsional actuation in the yarn. In the present work, we show that this type of actuation is not unique to wax-infiltrated carbon multiwalled nanotube (MWCNT) or niobium nanowire yarns and that twisted yarn of NiTi alloy fibers also produces fast torsional actuation. By gold-plating half the length of a NiTi twisted yarn and Joule heating it, we achieved a fully reversible torsional actuation of up to 16°/mm with peak torsional speed of 10 500 rpm and gravimetric torque of 8 N·m/kg. These results favorably compare to those of MWCNTs and niobium nanowire yarns.
Twisted vertex algebras, bicharacter construction and boson-fermion correspondences
International Nuclear Information System (INIS)
Anguelova, Iana I.
2013-01-01
The boson-fermion correspondences are an important phenomena on the intersection of several areas in mathematical physics: representation theory, vertex algebras and conformal field theory, integrable systems, number theory, cohomology. Two such correspondences are well known: the types A and B (and their super extensions). As a main result of this paper we present a new boson-fermion correspondence of type D-A. Further, we define a new concept of twisted vertex algebra of order N, which generalizes super vertex algebra. We develop the bicharacter construction which we use for constructing classes of examples of twisted vertex algebras, as well as for deriving formulas for the operator product expansions, analytic continuations, and normal ordered products. By using the underlying Hopf algebra structure we prove general bicharacter formulas for the vacuum expectation values for two important groups of examples. We show that the correspondences of types B, C, and D-A are isomorphisms of twisted vertex algebras
Probing the interlayer coupling of twisted bilayer MoS2 using photoluminescence spectroscopy.
Huang, Shengxi; Ling, Xi; Liang, Liangbo; Kong, Jing; Terrones, Humberto; Meunier, Vincent; Dresselhaus, Mildred S
2014-10-08
Two-dimensional molybdenum disulfide (MoS2) is a promising material for optoelectronic devices due to its strong photoluminescence emission. In this work, the photoluminescence of twisted bilayer MoS2 is investigated, revealing a tunability of the interlayer coupling of bilayer MoS2. It is found that the photoluminescence intensity ratio of the trion and exciton reaches its maximum value for the twisted angle 0° or 60°, while for the twisted angle 30° or 90° the situation is the opposite. This is mainly attributed to the change of the trion binding energy. The first-principles density functional theory analysis further confirms the change of the interlayer coupling with the twisted angle, which interprets our experimental results.
Dynamical gluon mass in the instanton vacuum model
Musakhanov, M.; Egamberdiev, O.
2018-04-01
We consider the modifications of gluon properties in the instanton liquid model (ILM) for the QCD vacuum. Rescattering of gluons on instantons generates the dynamical momentum-dependent gluon mass Mg (q). First, we consider the case of a scalar gluon, no zero-mode problem occurs and its dynamical mass Ms (q) can be found. Using the typical phenomenological values of the average instanton size ρ = 1 / 3 fm and average inter-instanton distance R = 1 fm we get Ms (0) = 256 MeV. We then extend this approach to the real vector gluon with zero-modes carefully considered. We obtain the following expression Mg2 (q) = 2 Ms2 (q). This modification of the gluon in the instanton media will shed light on nonperturbative aspect on heavy quarkonium physics.
On the Compton Twist-3 Asymmetries
International Nuclear Information System (INIS)
Korotkiyan, V.M.; Teryaev, O.V.
1994-01-01
The 'fermionic poles' contribution to the twist-3 single asymmetry in the gluon Compton process is calculated. The 'gluonic poles' existence seems to contradict the density matrix positivity. Qualitative predictions for the direct photon and jets asymmetries are presented. 13 refs., 2 figs
Directory of Open Access Journals (Sweden)
Karine Pallier
Full Text Available Metastasis is a multistep process and the main cause of mortality in lung cancer patients. We previously showed that EGFR mutations were associated with a copy number gain at a locus encompassing the TWIST1 gene on chromosome 7. TWIST1 is a highly conserved developmental gene involved in embryogenesis that may be reactivated in cancers promoting both malignant conversion and cancer progression through an epithelial to mesenchymal transition (EMT. The aim of this study was to investigate the possible implication of TWIST1 reactivation on the acquisition of a mesenchymal phenotype in EGFR mutated lung cancer. We studied a series of consecutive lung adenocarcinoma from Caucasian non-smokers for which surgical frozen samples were available (n = 33 and showed that TWIST1 expression was linked to EGFR mutations (P<0.001, to low CDH1 expression (P<0.05 and low disease free survival (P = 0.044. To validate that TWIST1 is a driver of EMT in EGFR mutated lung cancer, we used five human lung cancer cell lines and demonstrated that EMT and the associated cell mobility were dependent upon TWIST1 expression in cells with EGFR mutation. Moreover a decrease of EGFR pathway stimulation through EGF retrieval or an inhibition of TWIST1 expression by small RNA technology reversed the phenomenon. Collectively, our in vivo and in vitro findings support that TWIST1 collaborates with the EGF pathway in promoting EMT in EGFR mutated lung adenocarcinoma and that large series of EGFR mutated lung cancer patients are needed to further define the prognostic role of TWIST1 reactivation in this subgroup.
Study of twist boundaries in aluminium. Structure and intergranular diffusion
International Nuclear Information System (INIS)
Lemuet, Daniel
1981-01-01
This research thesis addresses the study of grain boundaries in oriented crystals, and more particularly the systematic calculation of intergranular structures and energies of twist boundaries of <001> axis in aluminium, the determination of intergranular diffusion coefficients of zinc in a set of twist bi-crystals of same axis encompassing a whole range of disorientations, and the search for a correlation between these experimental results and calculated structures
High performance twisted and coiled soft actuator with spandex fiber for artificial muscles
Yang, Sang Yul; Cho, Kyeong Ho; Kim, Youngeun; Song, Min-Geun; Jung, Ho Sang; Yoo, Ji Wang; Moon, Hyungpil; Koo, Ja Choon; Nam, Jae-do; Ryeol Choi, Hyouk
2017-10-01
This paper reports the twisted and coiled soft actuator (abbreviated with STCA) with spandex fiber. The STCA exhibits higher actuation strain at lower temperature than the previous nylon twisted and coiled soft actuators (abbreviated with NTCAs). While NTCAs are fabricated using a twist-insertion process until coils are formed, a new method is developed to fabricate the STCA using the ultra-stretch of spandex, whereby the STCA is twisted again after the coil has been formed. A 6-gear-twist-insertion device that increases the stability and the fabrication speed is developed to fabricate the STCA. The superior performance exhibited by the STCA is due to the 14% contraction strain of the bare spandex (bare nylon: 4%) and the low spring constant of 0.0115 N mm-1. The maximum tensile actuation strain of STCA was 45% at 130 °C, and the maximum specific work was 1.523 kJ kg-1 at 130 °C. STCA could repeatedly actuate 100 times with a strain change of less than 0.4%.
IRONY IN CHARLES DICKEN'S OLIVER TWIST
Directory of Open Access Journals (Sweden)
Ika Kana Trisnawati
2016-05-01
Full Text Available This paper describes the types of irony used by Charles Dickens in his notable early work, Oliver Twist, as well as the reasons the irony was chosen. As a figurative language, irony is utilized to express one’s complex feelings without truly saying them. In Oliver Twist, Dickens brought the readers some real social issues wrapped in dark, deep written expressions of irony uttered by the characters of his novel. Undoubtedly, the novel had left an impact to the British society at the time. The irony Dickens displayed here includes verbal, situational, and dramatic irony. His choice of irony made sense as he intended to criticize the English Poor Laws and to touch the public sentiment. He wanted to let the readers go beyond what was literally written and once they discovered what the truth was, they would eventually understand Dickens’ purposes.
Vincentz, Joshua W.; Firulli, Beth A.; Lin, Andrea; Spicer, Douglas B.; Howard, Marthe J.; Firulli, Anthony B.
2013-01-01
Neural crest cells are multipotent progenitor cells that can generate both ectodermal cell types, such as neurons, and mesodermal cell types, such as smooth muscle. The mechanisms controlling this cell fate choice are not known. The basic Helix-loop-Helix (bHLH) transcription factor Twist1 is expressed throughout the migratory and post-migratory cardiac neural crest. Twist1 ablation or mutation of the Twist-box causes differentiation of ectopic neuronal cells, which molecularly resemble sympathetic ganglia, in the cardiac outflow tract. Twist1 interacts with the pro-neural factor Sox10 via its Twist-box domain and binds to the Phox2b promoter to repress transcriptional activity. Mesodermal cardiac neural crest trans-differentiation into ectodermal sympathetic ganglia-like neurons is dependent upon Phox2b function. Ectopic Twist1 expression in neural crest precursors disrupts sympathetic neurogenesis. These data demonstrate that Twist1 functions in post-migratory neural crest cells to repress pro-neural factors and thereby regulate cell fate determination between ectodermal and mesodermal lineages. PMID:23555309
Higher twist effects in QCD description of light meson exclusive formfactors
International Nuclear Information System (INIS)
Gorskij, A.S.
1987-01-01
The general approach to a quantitative description of higher twist effects in hard exclusive processes in QCD is proposed. The consistent calculations in coordinate space and the choice of special gauges for quantum and classical gluon fields are essential ingradients of this method. The self consistent system of twist three wave functions for π-meson has been built
Wrinkles, loops, and topological defects in twisted ribbons
Chopin, Julien
Nature abounds with elastic ribbon like shapes including double-stranded semiflexible polymers, graphene and metal oxide nanoribbons which are examples of elongated elastic structures with a strongly anisotropic cross-section. Due to this specific geometry, it is far from trivial to anticipate if a ribbon should be considered as a flat flexible filament or a narrow thin plate. We thus perform an experiment in which a thin elastic ribbon is loaded using a twisting and traction device coupled with a micro X-ray computed tomography machine allowing a full 3D shape reconstruction. A wealth of morphological behaviors can be observed including wrinkled helicoids, curled and looped configurations, and faceted ribbons. In this talk, I will show that most morphologies can be understood using a far-from-threshold approach and simple scaling arguments. Further, we find that the various shapes can be organized in a phase diagram using the twist, the tension, and the geometry of the ribbon as control parameters. Finally, I will discuss the spontaneous formation of topological defects with negatively-signed Gaussian charge at large twist and small but finite stretch.
Fiber-Optic Sensors for Measurements of Torsion, Twist and Rotation: A Review.
Budinski, Vedran; Donlagic, Denis
2017-02-23
Optical measurement of mechanical parameters is gaining significant commercial interest in different industry sectors. Torsion, twist and rotation are among the very frequently measured mechanical parameters. Recently, twist/torsion/rotation sensors have become a topic of intense fiber-optic sensor research. Various sensing concepts have been reported. Many of those have different properties and performances, and many of them still need to be proven in out-of-the laboratory use. This paper provides an overview of basic approaches and a review of current state-of-the-art in fiber optic sensors for measurements of torsion, twist and/or rotation.Invited Paper.
The use of twisted tapes for the enhancement of heat transfer outside tube bundles
International Nuclear Information System (INIS)
Mansur, Sergio-Said
1993-01-01
A numerical and experimental investigation of the thermohydraulics of tubular heat exchangers equipped with twisted tapes outside the tubes was carried out. Experimental data for the pressure drop and flow velocity as well as flow visualization data were obtained using a simulated exchanger made of plexiglas. A porous medium type of model allowed for the numerical evaluation of the heat transfer and pressure drop in this unique geometry exchanger. The model was used on the TRIO computer code, developed by the Commissariat a l'Energie Atomique, CEA - France. The experimental data allowed for the evaluation of the flow distribution throughout the exchanger and for the determination of parameters entering the numerical model. The appropriateness of the latter for the macroscopic description of the flow was confirmed by extensive comparison with the experimental data. A comparative analysis of different types of configurations of this exchanger revealed satisfactory performance levels for the exchanger presently investigated. Finally, the flow visualization data were used to qualitatively infer the main aspects of the turbulent diffusion along the tube bundle. The twisted tapes were observed to enhance the fluid mixing process, thus providing for a more effective diffusion of momentum, mass and energy. (author) [fr
Stability of short wavelength tearing and twisting modes
International Nuclear Information System (INIS)
Waelbroeck, F.L.
1998-01-01
The stability and mutual interaction of tearing and twisting modes in a torus is governed by matrices that generalize the well-known Δ' stability index. The diagonal elements of these matrices determine the intrinsic stability of modes that reconnect the magnetic field at a single resonant surface. The off-diagonal elements indicate the strength of the coupling between the different modes. The author shows how the elements of these matrices can be evaluated, in the limit of short wavelength, from the free energy driving radially extended ballooning modes. The author applies the results by calculating the tearing and twisting Δ' for a model high-beta equilibrium with circular flux surfaces
Emergent Newtonian dynamics and the geometric origin of mass
International Nuclear Information System (INIS)
D’Alessio, Luca; Polkovnikov, Anatoli
2014-01-01
We consider a set of macroscopic (classical) degrees of freedom coupled to an arbitrary many-particle Hamiltonian system, quantum or classical. These degrees of freedom can represent positions of objects in space, their angles, shape distortions, magnetization, currents and so on. Expanding their dynamics near the adiabatic limit we find the emergent Newton’s second law (force is equal to the mass times acceleration) with an extra dissipative term. In systems with broken time reversal symmetry there is an additional Coriolis type force proportional to the Berry curvature. We give the microscopic definition of the mass tensor. The mass tensor is related to the non-equal time correlation functions in equilibrium and describes the dressing of the slow degree of freedom by virtual excitations in the system. In the classical (high-temperature) limit the mass tensor is given by the product of the inverse temperature and the Fubini–Study metric tensor determining the natural distance between the eigenstates of the Hamiltonian. For free particles this result reduces to the conventional definition of mass. This finding shows that any mass, at least in the classical limit, emerges from the distortions of the Hilbert space highlighting deep connections between any motion (not necessarily in space) and geometry. We illustrate our findings with four simple examples. -- Highlights: •Derive the macroscopic Newton’s equation from the microscopic many-particle Schrödinger’s equation. •Deep connection between geometry and dynamics. •Geometrical interpretation of the mass of macroscopic object as deformation of Hilbert space. •Microscopic expression for mass and friction tensors
Fang, Angbo
2008-12-08
Parallel to the highly successful Ericksen-Leslie hydrodynamic theory for the bulk behavior of nematic liquid crystals (NLCs), we derive a set of coupled hydrodynamic boundary conditions to describe the NLC dynamics near NLC-solid interfaces. In our boundary conditions, translational flux (flow slippage) and rotational flux (surface director relaxation) are coupled according to the Onsager variational principle of least energy dissipation. The application of our boundary conditions to the truly bistable π -twist NLC cell reveals a complete picture of the dynamic switching processes. It is found that the thus far overlooked translation-rotation dissipative coupling at solid surfaces can accelerate surface director relaxation and enhance the flow rate. This can be utilized to improve the performance of electro-optical nematic devices by lowering the required switching voltages and reducing the switching times. © 2008 The American Physical Society.
Twist deformations leading to κ-Poincaré Hopf algebra and their application to physics
International Nuclear Information System (INIS)
Jurić, Tajron; Meljanac, Stjepan; Samsarov, Andjelo
2016-01-01
We consider two twist operators that lead to kappa-Poincaré Hopf algebra, the first being an Abelian one and the second corresponding to a light-like kappa-deformation of Poincaré algebra. The adventage of the second one is that it is expressed solely in terms of Poincaré generators. In contrast to this, the Abelian twist goes out of the boundaries of Poincaré algebra and runs into envelope of the general linear algebra. Some of the physical applications of these two different twist operators are considered. In particular, we use the Abelian twist to construct the statistics flip operator compatible with the action of deformed symmetry group. Furthermore, we use the light-like twist operator to define a star product and subsequently to formulate a free scalar field theory compatible with kappa-Poincaré Hopf algebra and appropriate for considering the interacting ϕ 4 scalar field model on kappa-deformed space. (paper)
Borel resummation of soft gluon radiation and higher twists
International Nuclear Information System (INIS)
Forte, Stefano; Ridolfi, Giovanni; Rojo, Joan; Ubiali, Maria
2006-01-01
We show that the well-known divergence of the perturbative expansion of resummed results for processes such as deep-inelastic scattering and Drell-Yan in the soft limit can be treated by Borel resummation. The divergence in the Borel inversion can be removed by the inclusion of suitable higher twist terms. This provides us with an alternative to the standard 'minimal prescription' for the asymptotic summation of the perturbative expansion, and it gives us some handle on the role of higher twist corrections in the soft resummation region
Note on twisted elliptic genus of K3 surface
International Nuclear Information System (INIS)
Eguchi, Tohru; Hikami, Kazuhiro
2011-01-01
We discuss the possibility of Mathieu group M 24 acting as symmetry group on the K3 elliptic genus as proposed recently by Ooguri, Tachikawa and one of the present authors. One way of testing this proposal is to derive the twisted elliptic genera for all conjugacy classes of M 24 so that we can determine the unique decomposition of expansion coefficients of K3 elliptic genus into irreducible representations of M 24 . In this Letter we obtain all the hitherto unknown twisted elliptic genera and find a strong evidence of Mathieu moonshine.
Polarization-dependent diffraction in all-dielectric, twisted-band structures
Energy Technology Data Exchange (ETDEWEB)
Kardaś, Tomasz M.; Jagodnicka, Anna; Wasylczyk, Piotr, E-mail: pwasylcz@fuw.edu.pl [Photonic Nanostructure Facility, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warszawa (Poland)
2015-11-23
We propose a concept for light polarization management: polarization-dependent diffraction in all-dielectric microstructures. Numerical simulations of light propagation show that with an appropriately configured array of twisted bands, such structures may exhibit zero birefringence and at the same time diffract two circular polarizations with different efficiencies. Non-birefringent structures as thin as 3 μm have a significant difference in diffraction efficiency for left- and right-hand circular polarizations. We identify the structural parameters of such twisted-band matrices for optimum performance as circular polarizers.
Directory of Open Access Journals (Sweden)
Yongqin Yu
2014-12-01
Full Text Available A novel and simple sensor based on fiber-optic modal interferometer fabricated by a segment of low elliptical hollow-core photonic bandgap fiber for simultaneous temperature and twist measurements is demonstrated. Meanwhile the sensor can also measure the twist angle and determine the twist direction simultaneously. The mode distribution of EHC-PBGF is demonstrated both in theory and experiments. There is an obvious difference of two transmission dips on the temperature and twist. The twist sensitivities of Dip 1 and Dip 2 are obtained to be −31.95 and −585.8 pm/(rad/m, respectively. The temperature sensitivities are 12.99 pm/°C for Dip 1 and 5.09 pm/°C for Dip 2, respectively. Two parameters of twist and temperature can be distinguished and measured simultaneously by using a sensing matrix. Meanwhile the structure is found to be weakly sensitive to the axial strain. It has the advantage of avoiding the crosstalk of strain in the applications.
Twisted Vector Bundles on Pointed Nodal Curves
Indian Academy of Sciences (India)
Abstract. Motivated by the quest for a good compactification of the moduli space of -bundles on a nodal curve we establish a striking relationship between Abramovich's and Vistoli's twisted bundles and Gieseker vector bundles.
Topological twist in four dimensions, R-duality and hyperinstantons
International Nuclear Information System (INIS)
Anselmi, D.; Fre, P.
1993-01-01
In this paper we continue the programme of topologically twisting N=2 theories in D=4, focusing on the coupling of vector multiplets to N=2 supergravity. We show that in the minimal case, namely when the special gometry prepotential F(X) is a quadratic polynomial, the theory has a so far unknown on-shell U(1) symmetry, that we name R-duality. R-duality is a generalization of the chiral-dual on-shell symmetry of N=2 pure supergravity and of the R-symmetry of N=2 super Yang-Mills theory. Thanks to this, the theory can be topologically twisted and topologically shifted, precisely as pure N=2 supergravity, to yield a natural coupling of topological gravity to topological Yang-Mills theory. The gauge-fixing condition that emerges from the twisting is the self-duality condition on the gauge field strength and on the spin connection. Hence our theory reduces to intersection theory in the moduli-space of gauge instantons living in gravitational instanton backgrounds. We remark that, for deep properties of the parent N=2 theory, the topological Yang-Mills theory we obtain by taking the flat space limit of our gravity-coupled lagrangian is different from the Donaldson theory constructed by Witten. Whether this difference is substantial and what its geometrical implications may be is yet to be seen. We also discuss the topological twist of the hypermultiplets leading to topological quaternionic sigma-models. The instantons of these models, named by us hyperinstantons, correspond to a notion of triholomorphic mappings discussed in the paper. In all cases the new ghost number is the sum of the old ghost number plus the R-duality charge. The observables described by the theory are briefly discussed. In conclusion, the topological twist of the complete N=2 theory defines intersection theory in the moduli-space of gauge instantons plus gravitational instantons plus hyperinstantons. This is possibly a new subject for further mathematical investigation. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Nube, Andreas [DESY Zeuthen, Platanenallee 6, 15738 Zeuthen (Germany)
2013-07-01
The aim of this project is to calculate a theoretical estimate of the D{sub s}-meson decay constant f{sub D{sub s}} in the framework of lattice-QCD with a chirally rotated mass term and four dynamic quark flavours (up, down, strange and charm). A comprehensive set of gauge configurations has been produced with high input on super-computers across Europe. Data from three different lattice spacings is available with four to eight different light quark masses each. HMXPT is used to extrapolate the estimates of f{sub D{sub s}} to the physical point. First determinations indicate a good agreement with both, former lattice determinations and experimental measurements.
Hardy Inequalities in Globally Twisted Waveguides
Czech Academy of Sciences Publication Activity Database
Briet, Ph.; Hammedi, H.; Krejčiřík, David
2015-01-01
Roč. 105, č. 7 (2015), s. 939-958 ISSN 0377-9017 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : quantum waveguides * twisted tubes * Dirichlet Laplacian * Hardy inequality Subject RIV: BE - Theoretical Physics Impact factor: 1.517, year: 2015
One-dimensional structures behind twisted and untwisted superYang-Mills theory
Baulieu, Laurent
2011-01-01
We give a one-dimensional interpretation of the four-dimensional twisted N=1 superYang-Mills theory on a Kaehler manifold by performing an appropriate dimensional reduction. We prove the existence of a 6-generator superalgebra, which does not possess any invariant Lagrangian but contains two different subalgebras that determine the twisted and untwisted formulations of the N=1 superYang-Mills theory.
Energy Technology Data Exchange (ETDEWEB)
Lim, Eun-Kyung; Yurchyshyn, Vasyl; Kim, Sujin; Cho, Kyung-Suk; Kumar, Pankaj; Kim, Yeon-Han [Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon 305-348 (Korea, Republic of); Park, Sung-Hong [Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing (IAASARS), National Observatory of Athens, Penteli 15236 (Greece); Chae, Jongchul; Yang, Heesu; Cho, Kyuhyoun; Song, Donguk, E-mail: eklim@kasi.re.kr [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of)
2016-01-20
We studied temporal changes of morphological and magnetic properties of a succession of four confined flares followed by an eruptive flare using the high-resolution New Solar Telescope (NST) operating at the Big Bear Solar Observatory (BBSO) and Helioseismic and Magnetic Imager (HMI) magnetograms and Atmospheric Image Assembly (AIA) EUV images provided by the Solar Dynamics Observatory (SDO). From the NST/Hα and the SDO/AIA 304 Å observations we found that each flare developed a jet structure that evolved in a manner similar to evolution of the blowout jet: (1) an inverted-Y-shaped jet appeared and drifted away from its initial position; (2) jets formed a curtain-like structure that consisted of many fine threads accompanied by subsequent brightenings near the footpoints of the fine threads; and finally, (3) the jet showed a twisted structure visible near the flare maximum. Analysis of the HMI data showed that both the negative magnetic flux and the magnetic helicity have been gradually increasing in the positive-polarity region, indicating the continuous injection of magnetic twist before and during the series of flares. Based on these results, we suggest that the continuous emergence of twisted magnetic flux played an important role in producing successive flares and developing a series of blowout jets.
Directory of Open Access Journals (Sweden)
NianSong Zhang
2015-01-01
Full Text Available A study on the dynamic response of a projectile penetrating concrete is conducted. The evolutional process of projectile mass loss and the effect of mass loss on penetration resistance are investigated using theoretical methods. A projectile penetration model considering projectile mass loss is established in three stages, namely, cratering phase, mass loss penetration phase, and remainder rigid projectile penetration phase.
Energy Technology Data Exchange (ETDEWEB)
Burger, Florian; Hotzel, Grit [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Feng, Xu [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Petschlies, Marcus [The Cyprus Institute, Nicosia (Cyprus); Renner, Dru B. [Jefferson Lab, Newport News, VA (United States)
2013-12-15
We present results for the leading order QCD correction to the anomalous magnetic moment of the muon including the first two generations of quarks as dynamical degrees of freedom. Several light quark masses are examined in order to yield a controlled extrapolation to the physical pion mass. We analyse ensembles for three different lattice spacings and several volumes in order to investigate lattice artefacts and finite-size effects, respectively. We also provide preliminary results for this quantity for two flavours of mass-degenerate quarks at the physical value of the pion mass.
International Nuclear Information System (INIS)
Jouppila-Mättö, Anna; Närkiö-Mäkelä, Mervi; Soini, Ylermi; Pukkila, Matti; Sironen, Reijo; Tuhkanen, Hanna; Mannermaa, Arto; Kosma, Veli-Matti
2011-01-01
Epithelial-mesenchymal transition (EMT) is a crucial process in tumorigenesis since tumor cells attain fibroblast-like features enabling them to invade to surrounding tissue. Two transcription factors, TWIST and SNAI1, are fundamental in regulating EMT. Immunohistochemistry was used to study the expression of TWIST and SNAI1 in 109 pharyngeal squamous cell carcinomas. Tumors with intense stromal staining of TWIST relapsed more frequently (p = 0.04). Tumors with both positive TWIST and SNAI1 immunoreactivity in the stroma were at least Stage II (p = 0.05) and located more often in hypopharynx (p = 0.035). Tumors with negative immunostaining of TWIST and SNAI1 in the stromal compartment were smaller (T1-2) (p = 0.008), less advanced (SI-II) (p = 0.031) and located more often in the oropharynx (p = 0.007). Patients with negative SNAI1 and TWIST immunostaining in tumor stroma had a better 5-year disease-specific and overall survival (p = 0.037 and p = 0.014 respectively). TWIST and SNAI1 expression in stromal cells is associated with clinical and histopathological characteristics that indicate progressive disease. Negative expression of these EMT-promoting transcription factors predicts a better outcome
International Nuclear Information System (INIS)
Li, Peng; Jin, Feng; Cao, Xiao-Shan
2013-01-01
The effect of functional graded piezoelectric materials on the propagation of thickness-twist waves is investigated through equations of the linear theory of piezoelectricity. The elastic and piezoelectric coefficients, dielectric permittivity, and mass density are assumed to change in a linear form but with different graded parameters along the wave propagation direction. We employ the power-series technique to solve the governing differential equations with variable coefficients attributed to the different graded parameters and prove the correction and convergence of this method. As a special case, the functional graded middle layer resulting from piezoelectric damage and material bonding is investigated. Piezoelectric damaged material can facilitate energy trapping, which is impossible in perfect materials. The increase in the damaged length and the reduction in the piezoelectric coefficient decrease the resonance frequency but increase the number of modes. Higher modes of thickness-twist waves appear periodically along the damaged length. Moreover, the displacement of the center of the damaged portion is neither symmetric nor anti-symmetric, unlike the non-graded plate. The conclusions are theoretically and practically significant for wave devices. (paper)
Fiber-Optic Sensors for Measurements of Torsion, Twist and Rotation: A Review
Directory of Open Access Journals (Sweden)
Vedran Budinski
2017-02-01
Full Text Available Optical measurement of mechanical parameters is gaining significant commercial interest in different industry sectors. Torsion, twist and rotation are among the very frequently measured mechanical parameters. Recently, twist/torsion/rotation sensors have become a topic of intense fiber-optic sensor research. Various sensing concepts have been reported. Many of those have different properties and performances, and many of them still need to be proven in out-of-the laboratory use. This paper provides an overview of basic approaches and a review of current state-of-the-art in fiber optic sensors for measurements of torsion, twist and/or rotation.Invited Paper
'Twisted tape sign': Its significance in recurrent sigmoid volvulus
International Nuclear Information System (INIS)
Gopal, K.; Lim, Y.; Banerjee, B.
2005-01-01
Aim: Sigmoid volvulus is a common cause of intestinal obstruction in the elderly. Mild attacks of sigmoid volvulus may be more difficult to diagnose due to the lack of severity of symptoms which may resolve spontaneously only to recur after an interval. This study was a review of patients to assess the incidence of the 'twisted tape sign' and to evaluate the significance of its presence in cases of recurrent sigmoid volvulus. Methods and materials: A retrospective study over eight years revealed six cases of surgically confirmed recurrent sigmoid volvulus. Case records and barium enemas of all patients were reviewed. Results: Six patients were identified, including four men and two women, with a median age of 56 years. Diagnostic difficulties were encountered in four (67%) patients with a delay ranging between 10 and 37 months with a mean 17.3 months. Twisted tape sign was confirmed on all barium examinations retrospectively. Conclusion: Recognition of twisted tape sign on barium enema examination along with an appropriate clinical history would suggest a diagnosis of recurrent sigmoid volvulus
Effect of mass variation on dynamics of tethered system in orbital maneuvering
Sun, Liang; Zhao, Guowei; Huang, Hai
2018-05-01
In orbital maneuvering, the mass variation due to fuel consumption has an obvious impact on the dynamics of tethered system, which cannot be neglected. The contributions of the work are mainly shown in two aspects: 1) the improvement of the model; 2) the analysis of dynamics characteristics. As the mass is variable, and the derivative of the mass is directly considered in the traditional Lagrange equation, the expression of generalized force is complicated. To solve this problem, the coagulated derivative is adopted in the paper; besides, the attitude dynamics equations derived in this paper take into account the effect of mass variation and the drift of orbital trajectory at the same time. The bifurcation phenomenon, the pendular motion angular frequency, and amplitudes of tether vibration revealed in this paper can provide a reference for the parameters and controller design in practical engineering. In the article, a dumbbell model is adopted to analyze the dynamics of tethered system, in which the mass variation of base satellite is fully considered. Considering the practical application, the case of orbital transfer under a transversal thrust is mainly studied. Besides, compared with the analytical solutions of librational angles, the effects of mass variation on stability and librational characteristic are studied. Finally, in order to make an analysis of the effect on vibrational characteristic, a lumped model is introduced, which reveals a strong coupling of librational and vibrational characteristics.
Directory of Open Access Journals (Sweden)
Yuji Koike
2016-08-01
Full Text Available We compute the contribution from the longitudinally polarized proton to the twist-3 double-spin asymmetry ALT in inclusive (light hadron production from proton–proton collisions, i.e., p↑p→→hX. We show that using the relevant QCD equation-of-motion relation and Lorentz invariance relation allows one to eliminate the twist-3 quark-gluon correlator (associated with the longitudinally polarized proton in favor of one-variable twist-3 quark distributions and the (twist-2 transversity parton density. Including this result with the twist-3 pieces associated with the transversely polarized proton and unpolarized final-state hadron (which have already been calculated in the literature, we now have the complete leading-order cross section for this process.
Calculations of higher twist distribution functions in the MIT bag model
International Nuclear Information System (INIS)
Signal, A.I.
1997-01-01
We calculate all twist-2, -3 and -4 parton distribution functions involving two quark correlations using the wave function of the MIT bag model. The distributions are evolved up to experimental scales and combined to give the various nucleon structure functions. Comparisons with recent experimental data on higher twist structure functions at moderate values of Q 2 give good agreement with the calculated structure functions. (orig.)
One-dimensional structures behind twisted and untwisted super Yang-Mills theory
Energy Technology Data Exchange (ETDEWEB)
Baulieu, Laurent [CERN, Geneve (Switzerland). Theoretical Div.; Toppan, Francesco, E-mail: baulieu@lpthe.jussieu.f, E-mail: toppan@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)
2010-07-01
We give a one-dimensional interpretation of the four-dimensional twisted N = 1 super Yang-Mills theory on a Kaehler manifold by performing an appropriate dimensional reduction. We prove the existence of a 6-generator superalgebra, which does not possess any invariant Lagrangian but contains two different subalgebras that determine the twisted and untwisted formulations of the N = 1 super Yang-Mills theory. (author)
One-dimensional structures behind twisted and untwisted super Yang-Mills theory
International Nuclear Information System (INIS)
Baulieu, Laurent
2010-01-01
We give a one-dimensional interpretation of the four-dimensional twisted N = 1 super Yang-Mills theory on a Kaehler manifold by performing an appropriate dimensional reduction. We prove the existence of a 6-generator superalgebra, which does not possess any invariant Lagrangian but contains two different subalgebras that determine the twisted and untwisted formulations of the N = 1 super Yang-Mills theory. (author)
Twisted tachyon condensation in closed string field theory
International Nuclear Information System (INIS)
Okawa, Yuji; Zwiebach, Barton
2004-01-01
We consider twisted tachyons on C/Z N orbifolds of bosonic closed string theory. It has been conjectured that these tachyonic instabilities correspond to decays of the orbifolds into flat space or into orbifolds with smaller deficit angles. We examine this conjecture using closed string field theory, with the string field truncated to low-level tachyons. We compute the tachyon potentials for C/Z 2 and C/Z 3 orbifolds and find critical points at depths that generate about 70% of the expected change in the deficit angle. We find that both twisted fields and untwisted modes localized near the apex of the cone acquire vacuum expectation values and contribute to the potential. (author)
Galaxy dynamics and the mass density of the universe.
Rubin, V C
1993-06-01
Dynamical evidence accumulated over the past 20 years has convinced astronomers that luminous matter in a spiral galaxy constitutes no more than 10% of the mass of a galaxy. An additional 90% is inferred by its gravitational effect on luminous material. Here I review recent observations concerning the distribution of luminous and nonluminous matter in the Milky Way, in galaxies, and in galaxy clusters. Observations of neutral hydrogen disks, some extending in radius several times the optical disk, confirm that a massive dark halo is a major component of virtually every spiral. A recent surprise has been the discovery that stellar and gas motions in ellipticals are enormously complex. To date, only for a few spheroidal galaxies do the velocities extend far enough to probe the outer mass distribution. But the diverse kinematics of inner cores, peripheral to deducing the overall mass distribution, offer additional evidence that ellipticals have acquired gas-rich systems after initial formation. Dynamical results are consistent with a low-density universe, in which the required dark matter could be baryonic. On smallest scales of galaxies [10 kiloparsec (kpc); Ho = 50 km.sec-1.megaparsec-1] the luminous matter constitutes only 1% of the closure density. On scales greater than binary galaxies (i.e., >/=100 kpc) all systems indicate a density approximately 10% of the closure density, a density consistent with the low baryon density in the universe. If large-scale motions in the universe require a higher mass density, these motions would constitute the first dynamical evidence for nonbaryonic matter in a universe of higher density.
Energy Technology Data Exchange (ETDEWEB)
Gupta, Rajat; Roy, Sukanta; Biswas, Agnimitra [Department of Mechanical Engineering, National Institute of Technology, Silchar, Assam, 788010 (India)
2010-07-01
H-Darrieus rotor is a lift type device having two to three blades designed as airfoils. The blades are attached vertically to the central shaft through support arms. The support to vertical axis helps the rotor maintain its shape. In this paper, Computational Fluid Dynamics (CFD) analysis of an airfoil shaped two-bladed H-Darrieus rotor using Fluent 6.2 software was performed. Based on the CFD results, a comparative study between experimental and computational works was carried out. The H-Darrieus rotor was 20cm in height, 5cm in chord and twisted with an angle of 30{sup o} at the trailing end. The blade material of rotor was Fiberglass Reinforced Plastic (FRP). The experiments were earlier conducted in a subsonic wind tunnel for various height-to-diameter (H/D) ratios. A two dimensional computational modeling was done with the help of Gambit tool using unstructured grid. Realistic boundary conditions were provided for the model to have synchronization with the experimental conditions. Two dimensional steady-state segregated solver with absolute velocity formulation and cell based grid was considered, and a standard k-epsilon viscous model with standard wall functions was chosen. A first order upwind discretization scheme was adopted for pressure velocity coupling of the flow. The inlet velocities and rotor rotational speeds were taken from the experimental results. From the computational analysis, power coefficient (Cp) and torque coefficient (Ct) values at ten different H/D ratios namely 0.85, 1.0, 1.10, 1.33, 1.54, 1.72, 1.80, 1.92, 2.10 and 2.20 were calculated in order to predict the performances of the twisted H-rotor. The variations of Cp and Ct with tip speed ratios were analyzed and compared with the experimental results. The standard deviations of computational Cp and Ct from experimental Cp and Ct were obtained. From the computational analysis, the highest values of Cp and Ct were obtained at H/D ratios of 1.0 and 1.54 respectively. The deviation of
Twisted Bilayer Graphene. Interlayer configuration and magnetotransport signatures
Energy Technology Data Exchange (ETDEWEB)
Rode, Johannes C.; Smirnov, Dmitri; Belke, Christopher; Schmidt, Hennrik; Haug, Rolf J. [Institut fuer Festkoerperphysik, Hannover (Germany)
2017-11-15
Twisted Bilayer Graphene may be viewed as very first representative of the now booming class of artificially layered 2D materials. Consisting of two sheets from the same structure and atomic composition, its decisive degree of freedom lies in the rotation between crystallographic axes in the individual graphene monolayers. Geometrical consideration finds angle-dependent Moire patterns as well as commensurate superlattices of opposite sublattice exchange symmetry. Beyond the approach of rigidly interposed lattices, this review takes focus on the evolving topic of lattice corrugation and distortion in response to spatially varying lattice registry. The experimental approach to twisted bilayers requires a basic control over preparation techniques; important methods are summarized and extended on in the case of bilayers folded from monolayer graphene via AFM nanomachining. Central morphological parameters to the twisted bilayer, rotational mismatch and interlayer separation are studied in a broader base of samples. Finally, experimental evidence for a number of theoretically predicted, controversial electronic scenarios are reviewed; magnetotransport signatures are discussed in terms of Fermi velocity, van Hove singularities and Berry phase and assessed with respect to the underlying experimental conditions, thereby referring back to the initially considered variations in relaxed lattice structure. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Higher-twist effects in the B → π transition form factor from QCD light-cone sum rules
Energy Technology Data Exchange (ETDEWEB)
Khodjamirian, Alexander; Rusov, Aleksey [Universitaet Siegen (Germany). Fakultaet IV, Department Physik, Theoretische Physik 1 Walter-Flex-Strasse 3 57068 Siegen
2016-07-01
I report on the progress in calculating new higher-twist corrections to the QCD light-cone sum rule for the B → π transition form factor. First, the expansion of the massive heavy-quark propagator in the external gluonic field near the light-cone was extended to include new terms containing the gluon-field strength derivatives. The resulting analytical expressions for the twist-5 and twist-6 contributions to the correlation function were obtained in a factorized approximation, expressed via the product of the quark-condensate density and the lower-twist pion distribution amplitudes. The numerical analysis of new higher-twist effects is in progress.
Andelković, M.; Covaci, L.; Peeters, F. M.
2018-03-01
The in-plane dc conductivity of twisted bilayer graphene is calculated using an expansion of the real-space Kubo-Bastin conductivity in terms of Chebyshev polynomials. We investigate within a tight-binding approach the transport properties as a function of rotation angle, applied perpendicular electric field, and vacancy disorder. We find that for high-angle twists, the two layers are effectively decoupled, and the minimum conductivity at the Dirac point corresponds to double the value observed in monolayer graphene. This remains valid even in the presence of vacancies, hinting that chiral symmetry is still preserved. On the contrary, for low twist angles, the conductivity at the Dirac point depends on the twist angle and is not protected in the presence of disorder. Furthermore, for low angles and in the presence of an applied electric field, we find that the chiral boundary states emerging between AB and BA regions contribute to the dc conductivity, despite the appearance of localized states in the AA regions. The results agree qualitatively with recent transport experiments in low-angle twisted bilayer graphene.
Note on twisted elliptic genus of K3 surface
Energy Technology Data Exchange (ETDEWEB)
Eguchi, Tohru, E-mail: eguchi@yukawa.kyoto-u.ac.j [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Hikami, Kazuhiro, E-mail: KHikami@gmail.co [Department of Mathematics, Naruto University of Education, Tokushima 772-8502 (Japan)
2011-01-03
We discuss the possibility of Mathieu group M{sub 24} acting as symmetry group on the K3 elliptic genus as proposed recently by Ooguri, Tachikawa and one of the present authors. One way of testing this proposal is to derive the twisted elliptic genera for all conjugacy classes of M{sub 24} so that we can determine the unique decomposition of expansion coefficients of K3 elliptic genus into irreducible representations of M{sub 24}. In this Letter we obtain all the hitherto unknown twisted elliptic genera and find a strong evidence of Mathieu moonshine.
Families of vector-like deformations of relativistic quantum phase spaces, twists and symmetries
Energy Technology Data Exchange (ETDEWEB)
Meljanac, Daniel [Ruder Boskovic Institute, Division of Materials Physics, Zagreb (Croatia); Meljanac, Stjepan; Pikutic, Danijel [Ruder Boskovic Institute, Division of Theoretical Physics, Zagreb (Croatia)
2017-12-15
Families of vector-like deformed relativistic quantum phase spaces and corresponding realizations are analyzed. A method for a general construction of the star product is presented. The corresponding twist, expressed in terms of phase space coordinates, in the Hopf algebroid sense is presented. General linear realizations are considered and corresponding twists, in terms of momenta and Poincare-Weyl generators or gl(n) generators are constructed and R-matrix is discussed. A classification of linear realizations leading to vector-like deformed phase spaces is given. There are three types of spaces: (i) commutative spaces, (ii) κ-Minkowski spaces and (iii) κ-Snyder spaces. The corresponding star products are (i) associative and commutative (but non-local), (ii) associative and non-commutative and (iii) non-associative and non-commutative, respectively. Twisted symmetry algebras are considered. Transposed twists and left-right dual algebras are presented. Finally, some physical applications are discussed. (orig.)
Families of vector-like deformations of relativistic quantum phase spaces, twists and symmetries
International Nuclear Information System (INIS)
Meljanac, Daniel; Meljanac, Stjepan; Pikutic, Danijel
2017-01-01
Families of vector-like deformed relativistic quantum phase spaces and corresponding realizations are analyzed. A method for a general construction of the star product is presented. The corresponding twist, expressed in terms of phase space coordinates, in the Hopf algebroid sense is presented. General linear realizations are considered and corresponding twists, in terms of momenta and Poincare-Weyl generators or gl(n) generators are constructed and R-matrix is discussed. A classification of linear realizations leading to vector-like deformed phase spaces is given. There are three types of spaces: (i) commutative spaces, (ii) κ-Minkowski spaces and (iii) κ-Snyder spaces. The corresponding star products are (i) associative and commutative (but non-local), (ii) associative and non-commutative and (iii) non-associative and non-commutative, respectively. Twisted symmetry algebras are considered. Transposed twists and left-right dual algebras are presented. Finally, some physical applications are discussed. (orig.)
Families of vector-like deformations of relativistic quantum phase spaces, twists and symmetries
Meljanac, Daniel; Meljanac, Stjepan; Pikutić, Danijel
2017-12-01
Families of vector-like deformed relativistic quantum phase spaces and corresponding realizations are analyzed. A method for a general construction of the star product is presented. The corresponding twist, expressed in terms of phase space coordinates, in the Hopf algebroid sense is presented. General linear realizations are considered and corresponding twists, in terms of momenta and Poincaré-Weyl generators or gl(n) generators are constructed and R-matrix is discussed. A classification of linear realizations leading to vector-like deformed phase spaces is given. There are three types of spaces: (i) commutative spaces, (ii) κ -Minkowski spaces and (iii) κ -Snyder spaces. The corresponding star products are (i) associative and commutative (but non-local), (ii) associative and non-commutative and (iii) non-associative and non-commutative, respectively. Twisted symmetry algebras are considered. Transposed twists and left-right dual algebras are presented. Finally, some physical applications are discussed.
Fatigue Behaviors of Materials Processed by Planar Twist Extrusion
Ebrahimi, Mahmoud
2017-12-01
Since the last decade, the fabrication of ultrafine grain and nanostructure metals and alloys has attracted much attention in the field of materials engineering. The present study aimed at experimentally investigating the fatigue properties that are of great importance in dynamic structures before and after the planar twist extrusion process for both commercially pure copper and 6061 aluminum alloy. The results indicated that the yield strength, tensile strength, hardness, and fatigue endurance of copper increased by about 398, 122, 198, and 183 pct, respectively, while they improved by about 429, 212, 227, and 148 pct, respectively, in aluminum alloy as compared to the initial conditions. The stress-strain curves displayed sizable reduction of strain hardening. Furthermore, grain-size correction factors based on the empirical results were introduced to include the effect of the grain-size effect on both low and high-cycle fatigue strengths of the material.
Chiral tunneling in a twisted graphene bilayer.
He, Wen-Yu; Chu, Zhao-Dong; He, Lin
2013-08-09
The perfect transmission in a graphene monolayer and the perfect reflection in a Bernal graphene bilayer for electrons incident in the normal direction of a potential barrier are viewed as two incarnations of the Klein paradox. Here we show a new and unique incarnation of the Klein paradox. Owing to the different chiralities of the quasiparticles involved, the chiral fermions in a twisted graphene bilayer show an adjustable probability of chiral tunneling for normal incidence: they can be changed from perfect tunneling to partial or perfect reflection, or vice versa, by controlling either the height of the barrier or the incident energy. As well as addressing basic physics about how the chiral fermions with different chiralities tunnel through a barrier, our results provide a facile route to tune the electronic properties of the twisted graphene bilayer.
Vacuum fluctuations of twisted fields in the space time of cosmic strings
International Nuclear Information System (INIS)
Matsas, G.E.A.
1990-01-01
A twisted scalar field conformally coupled to gravitation is used to calculate the vacuum stress-energy tensor in the background spacetime generated by an infinite straight gauge cosmic string. The result has an absolute numerical value close to the one obtained with a non-twisted conformal scalar field but their signals are opposite. (author) [pt
TiO2/water Nanofluid Heat Transfer in Heat Exchanger Equipped with Double Twisted-Tape Inserts
Eiamsa-ard, S.; Ketrain, R.; Chuwattanakul, V.
2018-05-01
Nowadays, heat transfer enhancement plays an important role in improving efficiency of heat transfer and thermal systems for numerous areas such as heat recovery processes, chemical reactors, air-conditioning/refrigeration system, food engineering, solar air/water heater, cooling of high power electronics etc. The present work presents the experimental results of the heat transfer enhancement of TiO2/water nanofluid in a heat exchanger tube fitted with double twisted tapes. The study covered twist ratios of twisted tapes (y/w) of 1.5, 2.0, and 2.5) while the concentration of the nanofluid was kept constant at 0.05% by volume. Observations show that heat transfer, friction loss and thermal performance increase as twist ratio (y/w) decreases. The use of the nanofluid in the tube equipped with the double twisted-tapes with the smallest twist ratio (y/w = 1.5) results in the increases of heat transfer rates and friction factor up to 224.8% and 8.98 times, respectively as compared to those of water. In addition, the experimental results performed that double twisted tapes induced dual swirling-flows which played an important role in improving fluid mixing and heat transfer enhancement. It is also observed that the TiO2/water nanofluid was responsible for low pressure loss behaviors.
The final measurements of the muon decay parameters from the TWIST experiment
International Nuclear Information System (INIS)
Bayes, R
2013-01-01
The TWIST (TRIUMF Weak Interaction Symmetry Test) experiment probes the Lorentz structure of the weak interaction using muon decay. This structure has a very well defined form under the Standard Model (SM) which makes precise predictions for the shape of the decay positron spectrum with respect to momentum and angle. The shape of the spectrum may be described under some rather general assumptions using a set of decay parameters whose values according to the SM are ρ = δ = 3/4, η = 0, and ξ = 1. TWIST uses a large sample of muon decays in a large acceptance spectrometer to measure the decay parameters to an order of magnitude greater precision than previous measurements. This experiment saw its last year of data collection in 2007. As TWIST is a systematics dominated experiment, much effort has been spent on refinements of the estimates of the systematic uncertainties over previous TWIST results. These proceedings will discuss the measures taken to achieve the precision goal of parts in 10 4 , and the physics implications of the experiment.
Dynamical interplay between pairing and quadrupole correlations in odd-mass nuclei
International Nuclear Information System (INIS)
Kaneko, Kazunari; Takada, Kenjiro; Sakata, Fumihiko; Tazaki, Shigeru.
1982-01-01
Study of the dynamical interplay between pairing and quadrupole correlations in odd-mass nuclei has been developed. One of the purposes of this paper is to predict that the new collective excited states may exist system-atically in odd-mass nuclei. Other purpose is to discuss a new collective band structure on the top of a unique-parity one-quasiparticle state. Through the numerical calculations, it has been clarified that the dynamical mutual interplay between the pairing and the quadrupole degrees of freedom played an important role in the odd-mass transitional nuclei to bring about the new type of collective states. The results of calculation were compared with the experimental data. (Kato, T.)
Output Feedback Control of Electro-Hydraulic Cylinder Drives using the Twisting Algorithm
DEFF Research Database (Denmark)
Schmidt, Lasse; Andersen, Torben Ole; Pedersen, Henrik C.
2014-01-01
contributions in literature. This paper considers the twisting algorithm when applied directly for output feedback control, and with the design based on a reduced order model representation of an arbitrary valve driven hydraulic cylinder drive. The consequence of implementing such a controller with the well......This paper discusses the utilization of the so-called twisting algorithm when applied in output feedback position control schemes for electro-hydraulic cylinder drives. The twisting controller was the first second order sliding controller ever introduced, and can structure-wise be considered...... feedback controller may be successfully applied to hydraulic valve driven cylinder drives, with performance being on the level with a conventional surface based first order sliding mode controller....
Meson masses and decay constants from unquenched lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); McNeile, C. [Glasgow Univ. (United Kingdom). Dept. of Physics and Astronomy; Michael, C. [Liverpool Univ. (United Kingdom). Theoretical Physics Div., Dept. of Mathematical Sciences; Urbach, C. [Humboldt Univ. Berlin (Germany). Inst. fuer Physik
2009-06-15
We report results for the masses of the flavour non-singlet light 0{sup ++}, 1{sup --}, and 1{sup +-} mesons from unquenched lattice QCD at two lattice spacings. The twisted mass formalism was used with two flavours of sea quarks. For the 0{sup ++} and 1{sup +-} mesons we look for the effect of decays on the mass dependence. For the light vector mesons we study the chiral extrapolations of the mass. We report results for the leptonic and transverse decay constants of the meson. We test the mass dependence of the KRSF relations. (orig.)
Meson masses and decay constants from unquenched lattice QCD
International Nuclear Information System (INIS)
Jansen, K.; McNeile, C.; Michael, C.; Urbach, C.
2009-06-01
We report results for the masses of the flavour non-singlet light 0 ++ , 1 -- , and 1 +- mesons from unquenched lattice QCD at two lattice spacings. The twisted mass formalism was used with two flavours of sea quarks. For the 0 ++ and 1 +- mesons we look for the effect of decays on the mass dependence. For the light vector mesons we study the chiral extrapolations of the mass. We report results for the leptonic and transverse decay constants of the meson. We test the mass dependence of the KRSF relations. (orig.)
Tilting-Twisting-Rolling: a pen-based technique for compass geometric construction
Institute of Scientific and Technical Information of China (English)
Fei LYU; Feng TIAN; Guozhong DAI; Hongan WANG
2017-01-01
This paper presents a new pen-based technique,Tilting-Twisting-Rolling,to support compass geometric construction.By leveraging the 3D orientation information and 3D rotation information of a pen,this technique allows smooth pen action to complete multi-step geometric construction without switching task states.Results from a user study show this Tilting-Twisting-Rolling technique can improve user performance and user experience in compass geometric construction.
Impact of higher twist terms on the analysis of scaling violation
International Nuclear Information System (INIS)
Barnett, R.M.
1979-09-01
A critical discussion is given of analyses of scaling violation in deep-inelastic scattering in the context of QCD. Several possible approaches are examined. Higher twist contributions are defined, and it is shown that they can have a crucial impact on tests of QCD. Higher twist terms can dramatically affect R = sigma/sub L//sigma/sub T/. QCD may be harder to test than previously realized. 17 references
Fiber-Optic Sensors for Measurements of Torsion, Twist and Rotation: A Review †
Budinski, Vedran; Donlagic, Denis
2017-01-01
Optical measurement of mechanical parameters is gaining significant commercial interest in different industry sectors. Torsion, twist and rotation are among the very frequently measured mechanical parameters. Recently, twist/torsion/rotation sensors have become a topic of intense fiber-optic sensor research. Various sensing concepts have been reported. Many of those have different properties and performances, and many of them still need to be proven in out-of-the laboratory use. This paper provides an overview of basic approaches and a review of current state-of-the-art in fiber optic sensors for measurements of torsion, twist and/or rotation. PMID:28241510
Bogoliubov coefficients for the twist operator in the D1D5 CFT
Directory of Open Access Journals (Sweden)
Zaq Carson
2014-12-01
Full Text Available The D1D5 CFT is a holographic dual of a near-extremal black hole in string theory. The interaction in this theory involves a twist operator which joins together different copies of a free CFT. Given a large number of D1 and D5 branes, the effective length of the circle on which the CFT lives is very large. We develop a technique to study the effect of the twist operator in the limit where the wavelengths of excitations are short compared to this effective length, which we call the ‘continuum limit’. The method uses Bogoliubov coefficients to compute the effect of the twist operator in this limit. For bosonic fields, we use the method to reproduce recent results describing the effect of the twist operator when it links together CFT copies with windings M and N, producing a copy of winding M+N. We also comment on possible generalizations of our results. The methods developed here may help in understanding the twist interaction at higher orders. This in turn should provide insight into the thermalization process in the D1D5 CFT, which gives a holographic description of black hole formation.
A Dynamical Origin of the Mass Hierarchy among Neutrinos, Charged Leptons, and Quarks
Akama, Keiichi; Katsuura, Kazuo
1998-01-01
We propose a dynamical mass-generation scenario which naturally realizes the mass hierarchy among the neutrinos, charged leptons and quarks, where the mass is dominated by the self-mass induced through the anomalous (i.e. non-minimal) gauge interactions.
Modeling higher twist contributions to deep inelastic scattering with diquarks
International Nuclear Information System (INIS)
Anselmino, M.
1994-01-01
The most recent detailed data on the unpolarized nucleon structure functions allow a precise determination of higher twist contributions. Quark-quark correlations induced by color forces are expected to be a natural explanation for such effects; indeed, a quark-diquark picture of the nucleon, previously introduced in the description of several exclusive processes at intermediate Q 2 values, is found to model the proton higher twist data with great accuracy. The resulting parameters are consistent with the diquark properties suggested by other experimental and theoretical analyses. (author)
Sea quark contribution to the dynamical mass and light quark content of a nucleon
International Nuclear Information System (INIS)
Singh, J.P.
1995-01-01
We calculate the flavor mixing in the wave function of a light valence quark. For this, we use the idea of dynamical symmetry breaking. A sea quark of a different flavor may appear through the vacuum polarization of a gluon propagator which appears in the gap equation for the dynamical mass. We have also used the fact that any one of these quark lines may undergo condensation. The dependence of the dynamical mass, generated in this way, on the sea quark mass up to quadratic terms has been retained. The momentum dependence is like 1/p 4 , in contrast with the 1/p 2 kind of dependence which occurs for the leading term of the dynamical mass in the subasymptotic region. The extension of the result to the ''mass shell'' yields σ πN =53--54 MeV for the pion-nucleon σ term and m s left-angle p|bar ss|p right-angle=122--264 meV for the strange quark contribution to the proton mass, for different values of parameters. These are in reasonable agreement with current phenomenological estimates of these quantities
A torsional artificial muscle from twisted nitinol microwire
Mirvakili, Seyed M.; Hunter, Ian W.
2017-04-01
Nitinol microwires of 25 μm in diameter can have tensile actuation of up to 4.5% in less than 100 ms. A work density of up to 480 MPa can be achieved from these microwires. In the present work, we are showing that by twisting the microwires in form of closed-loop two-ply yarn we can create a torsional actuator. We achieved a revisable torsional stroke of 46°/mm with peak rotational speed of up to 10,000 rpm. We measured a gravimetric torque of up to 28.5 N•m/kg which is higher than the 3 - 6 N•m/kg for direct-drive commercial electric motors. These remarkable performance results are comparable to those of guest-infiltrated carbon nanotube twisted yarns.
Directory of Open Access Journals (Sweden)
Fang Fang
2018-05-01
Full Text Available In geometrically frustrated clusters of polyhedra, gaps between faces can be closed without distorting the polyhedra by the long established method of discrete curvature, which consists of curving the space into a fourth dimension, resulting in a dihedral angle at the joint between polyhedra in 4D. An alternative method—the twist method—has been recently suggested for a particular case, whereby the gaps are closed by twisting the cluster in 3D, resulting in an angular offset of the faces at the joint between adjacent polyhedral. In this paper, we show the general applicability of the twist method, for local clusters, and present the surprising result that both the required angle of the twist transformation and the consequent angle at the joint are the same, respectively, as the angle of bending to 4D in the discrete curvature and its resulting dihedral angle. The twist is therefore not only isomorphic, but isogonic (in terms of the rotation angles to discrete curvature. Our results apply to local clusters, but in the discussion we offer some justification for the conjecture that the isomorphism between twist and discrete curvature can be extended globally. Furthermore, we present examples for tetrahedral clusters with three-, four-, and fivefold symmetry.
How the embryonic brain tube twists
Chen, Zi; Guo, Qiaohang; Forsch, Nickolas; Taber, Larry
2014-03-01
During early development, the tubular brain of the chick embryo undergoes a combination of progressive ventral bending and rightward torsion. This deformation is one of the major organ-level symmetry-breaking events in development. Available evidence suggests that bending is caused by differential growth, but the mechanism for torsion remains poorly understood. Since the heart almost always loops in the same direction that the brain twists, researchers have speculated that heart looping affects the direction of brain torsion. However, direct evidence is virtually nonexistent, nor is the mechanical origin of such torsion understood. In our study, experimental perturbations show that the bending and torsional deformations in the brain are coupled and that the vitelline membrane applies an external load necessary for torsion to occur. In addition, the asymmetry of the looping heart gives rise to the chirality of the twisted brain. A computational model is used to interpret these findings. Our work clarifies the mechanical origins of brain torsion and the associated left-right asymmetry, reminiscent of D'Arcy Thompson's view of biological form as ``diagram of forces''.
Twisted boundary states and representation of generalized fusion algebra
International Nuclear Information System (INIS)
Ishikawa, Hiroshi; Tani, Taro
2006-01-01
The mutual consistency of boundary conditions twisted by an automorphism group G of the chiral algebra is studied for general modular invariants of rational conformal field theories. We show that a consistent set of twisted boundary states associated with any modular invariant realizes a non-negative integer matrix representation (NIM-rep) of the generalized fusion algebra, an extension of the fusion algebra by representations of the twisted chiral algebra associated with the automorphism group G. We check this result for several concrete cases. In particular, we find that two NIM-reps of the fusion algebra for su(3) k (k=3,5) are organized into a NIM-rep of the generalized fusion algebra for the charge-conjugation automorphism of su(3) k . We point out that the generalized fusion algebra is non-commutative if G is non-Abelian and provide some examples for G-bar S 3 . Finally, we give an argument that the graph fusion algebra associated with simple current extensions coincides with the generalized fusion algebra for the extended chiral algebra, and thereby explain that the graph fusion algebra contains the fusion algebra of the extended theory as a subalgebra
Twisted Frobenius Identities from Vertex Operator Superalgebras
Directory of Open Access Journals (Sweden)
Alexander Zuevsky
2017-01-01
Full Text Available In consideration of the continuous orbifold partition function and a generating function for all n-point correlation functions for the rank two free fermion vertex operator superalgebra on the self-sewing torus, we introduce the twisted version of Frobenius identity.
Evidence for dynamic SU(5) symmetry breaking in meson mass multiplets
International Nuclear Information System (INIS)
Frikkee, E.
1994-07-01
It is shown that the mass differences and multiplet pattern for pseudoscalar and vector mesons correspond to a chain of dynamic symmetry reductions SU(n) contains SU(n-1)xU(1). In this symmetry-reduction model, the differences between the masses of the quark flavours are the result of intra-hadronic interactions. Quark confinement is explained as a consequence of the fact that this symmetry breaking chain only occurs in hadrons. The results of a quantitative analysis of mass splittings in meson multiplets indicate that SU(5) is probably the highest symmetry for hadron states. In the proposed dynamic symmetry breaking scheme with five quark flavours there is no one-to-one correspondence between lepton and quark generations. (orig.)
Harfe, Brian D.; Gomes, Ana Vaz; Kenyon, Cynthia; Liu, Jun; Krause, Michael; Fire, Andrew
1998-01-01
Mesodermal development is a multistep process in which cells become increasingly specialized to form specific tissue types. In Drosophila and mammals, proper segregation and patterning of the mesoderm involves the bHLH factor Twist. We investigated the activity of a Twist-related factor, CeTwist, during Caenorhabditis elegans mesoderm development. Embryonic mesoderm in C. elegans derives from a number of distinct founder cells that are specified during the early lineages; in contrast, a singl...
Anisotropic dynamic mass density for fluidsolid composites
Wu, Ying
2012-10-01
By taking the low frequency limit of multiple-scattering theory, we obtain the dynamic effective mass density of fluidsolid composites with a two-dimensional rectangular lattice structure. The anisotropic mass density can be described by an angle-dependent dipole solution, to the leading-order of solid concentration. The angular dependence vanishes for the square lattice, but at high solid concentrations there is a structure-dependent factor that contributes to the leading-order solution. In all cases, Woods formula is found to be accurately valid for the effective bulk modulus, independent of the structures. Numerical evaluations from the solutions are shown to be in excellent agreement with finite-element simulations. © 2012 Elsevier B.V.
Modelling higher twist contributions to deep inelastic scattering with diquarks
International Nuclear Information System (INIS)
Anselmino, M.; Caruso, F.; Penna Firme, A.; Soares, J.; Mello Neto, J.R.T. de
1994-08-01
The most recent detailed data on the unpolarized nucleon structure functions allow a precise determination of higher twist contributions. Quark-quark correlations induced by colour forces are expected to be a natural explanation for such effects: indeed, a quark-diquark picture of the nucleon, previously introduced in the description of several exclusive processes at intermediate Q 2 values, is found to model the proton higher twist data with great accuracy. The resulting parameters are consistent with the diquark properties suggested by other experimental and theoretical analyses. (author). 15 refs, 5 figs
Testing substellar models with dynamical mass measurements
Directory of Open Access Journals (Sweden)
Liu M.C.
2011-07-01
Full Text Available We have been using Keck laser guide star adaptive optics to monitor the orbits of ultracool binaries, providing dynamical masses at lower luminosities and temperatures than previously available and enabling strong tests of theoretical models. We have identified three specific problems with theory: (1 We find that model color–magnitude diagrams cannot be reliably used to infer masses as they do not accurately reproduce the colors of ultracool dwarfs of known mass. (2 Effective temperatures inferred from evolutionary model radii are typically inconsistent with temperatures derived from fitting atmospheric models to observed spectra by 100–300 K. (3 For the only known pair of field brown dwarfs with a precise mass (3% and age determination (≈25%, the measured luminosities are ~2–3× higher than predicted by model cooling rates (i.e., masses inferred from Lbol and age are 20–30% larger than measured. To make progress in understanding the observed discrepancies, more mass measurements spanning a wide range of luminosity, temperature, and age are needed, along with more accurate age determinations (e.g., via asteroseismology for primary stars with brown dwarf binary companions. Also, resolved optical and infrared spectroscopy are needed to measure lithium depletion and to characterize the atmospheres of binary components in order to better assess model deficiencies.
The SU(∞) twisted gradient flow running coupling
Energy Technology Data Exchange (ETDEWEB)
Pérez, Margarita García [Instituto de Física Teórica UAM-CSIC,Nicolás Cabrera 13-15, E-28049-Madrid (Spain); González-Arroyo, Antonio [Instituto de Física Teórica UAM-CSIC,Nicolás Cabrera 13-15, E-28049-Madrid (Spain); Departamento de Física Teórica, C-15, Universidad Autónoma de Madrid,E-28049-Madrid (Spain); Keegan, Liam [PH-TH, CERN,CH-1211 Geneva 23 (Switzerland); Okawa, Masanori [Graduate School of Science, Hiroshima University,Higashi-Hiroshima, Hiroshima 739-8526 (Japan)
2015-01-09
We measure the running of the SU(∞) ’t Hooft coupling by performing a step scaling analysis of the Twisted Eguchi-Kawai (TEK) model, the SU(N) gauge theory on a single site lattice with twisted boundary conditions. The computation relies on the conjecture that finite volume effects for SU(N) gauge theories defined on a 4-dimensional twisted torus are controlled by an effective size parameter l-tilde=l√N, with l the torus period. We set the scale for the running coupling in terms of l-tilde and use the gradient flow to define a renormalized ’t Hooft coupling λ(l-tilde). In the TEK model, this idea allows the determination of the running of the coupling through a step scaling procedure that uses the rank of the group as a size parameter. The continuum renormalized coupling constant is extracted in the zero lattice spacing limit, which in the TEK model corresponds to the large N limit taken at fixed value of λ(l-tilde). The coupling constant is thus expected to coincide with that of the ordinary pure gauge theory at N=∞. The idea is shown to work and permits us to follow the evolution of the coupling over a wide range of scales. At weak coupling we find a remarkable agreement with the perturbative two-loop formula for the running coupling.
Radiative capture of cold neutrons by protons and deuteron photodisintegration with twisted beams
Afanasev, Andrei; Serbo, Valeriy G.; Solyanik, Maria
2018-05-01
We consider two basic nuclear reactions: capture of neutrons by protons, n + p → γ + d, and its time-reversed counterpart, photodisintegration of the deuteron, γ + d → n + p. In both of these cases we assume that the incoming beam of neutrons or photons is ‘twisted’ by having an azimuthal phase dependence, i.e., it carries an additional angular momentum along its direction of propagation. Taking a low-energy limit of these reactions, we derive relations between corresponding transition amplitudes and cross sections with plane-wave beams and twisted beams. Implications for experiments with twisted cold neutrons and twisted photon beams are discussed.
Directory of Open Access Journals (Sweden)
Anca Dana Dobrian
2012-08-01
Full Text Available The Twist proteins (Twist-1 and -2 are highly conserved developmental proteins with key roles for the transcriptional regulation in mesenchymal cell lineages. They belong to the super-family of bHLH proteins and exhibit bi-functional roles as both activators and repressors of gene transcription. The Twist proteins are expressed at low levels in adult tissues but may become abundantly re-expressed in cells undergoing malignant transformation. This observation prompted extensive research on the roles of Twist proteins in cancer progression and metastasis. Very recent studies indicate a novel role for Twist-1 as a potential regulator of adipose tissue remodeling and inflammation. Several studies suggested that developmental genes are important determinants of obesity, fat distribution and remodeling capacity of different adipose depots. Twist-1 is abundantly and selectively expressed in the adult adipose tissue and its constitutive expression is significantly higher in subcutaneous vs. visceral fat in both mice and humans. Moreover, Twist1 expression is strongly correlated with BMI and insulin resistance in humans. However, the functional roles and transcriptional downstream targets of Twist1 in adipose tissue are largely unexplored. The purpose of this review is to highlight the major findings related to Twist1 expression in different fat depots and cellular components of adipose tissue and to discuss the potential mechanisms suggesting a role for Twist1 in adipose tissue metabolism, inflammation and remodeling.
Kaltashov, Igor A; Desiderio, Dominic M; Nibbering, Nico M
2012-01-01
The definitive guide to mass spectrometry techniques in biology and biophysics The use of mass spectrometry (MS) to study the architecture and dynamics of proteins is increasingly common within the biophysical community, and Mass Spectrometry in Structural Biology and Biophysics: Architecture, Dynamics, and Interaction of Biomolecules, Second Edition provides readers with detailed, systematic coverage of the current state of the art. Offering an unrivalled overview of modern MS-based armamentarium that can be used to solve the most challenging problems in biophysics, structural biol
Generalized Weyl modules for twisted current algebras
Makedonskyi, I. A.; Feigin, E. B.
2017-08-01
We introduce the notion of generalized Weyl modules for twisted current algebras. We study their representation-theoretic and combinatorial properties and also their connection with nonsymmetric Macdonald polynomials. As an application, we compute the dimension of the classical Weyl modules in the remaining unknown case.
Fondell, Thomas F.; Flint, Paul L.; Schmutz, Joel A.; Schamber, Jason L.; Nicolai, Christopher A.
2013-01-01
Birds employ varying strategies to accommodate the energetic demands of moult, one important example being changes in body mass. To understand better their physiological and ecological significance, we tested three hypotheses concerning body mass dynamics during moult. We studied Black Brant in 2006 and 2007 moulting at three sites in Alaska which varied in food availability, breeding status and whether geese undertook a moult migration. First we predicted that if mass loss during moult were simply the result of inadequate food resources then mass loss would be highest where food was least available. Secondly, we predicted that if mass loss during moult were adaptive, allowing birds to reduce activity during moult, then birds would gain mass prior to moult where feeding conditions allowed and mass loss would be positively related to mass at moult initiation. Thirdly, we predicted that if mass loss during moult were adaptive, allowing birds to regain flight sooner, then across sites and groups, mass at the end of the flightless period would converge on a theoretical optimum, i.e. the mass that permits the earliest possible return to flight. Mass loss was greatest where food was most available and thus our results did not support the prediction that mass loss resulted from inadequate food availability. Mass at moult initiation was positively related to both food availability and mass loss. In addition, among sites and years, variation in mass was high at moult initiation but greatly reduced at the end of the flightless period, appearing to converge. Thus, our results supported multiple predictions that mass loss during moult was adaptive and that the optimal moulting strategy was to gain mass prior to the flightless period, then through behavioural modifications use these body reserves to reduce activity and in so doing also reduce wing loading. Geese that undertook a moult migration initiated moult at the highest mass, indicating that they were more than able to
On the description of exclusive processes beyond the leading twist approximation
International Nuclear Information System (INIS)
Anikin, I.V.; Ivanov, D.Yu.; Pire, B.; Szymanowski, L.; Wallon, S.
2010-01-01
We describe hard exclusive processes beyond the leading twist approximation in a framework based on the Taylor expansion of the amplitude around the dominant light-cone directions. This naturally introduces an appropriate set of non-perturbative correlators whose number is minimalized after taking into account QCD equations of motion and the invariance under rotation on the light-cone. We exemplify this method at the twist 3 level and show that the coordinate and momentum space descriptions are fully equivalent.
On the description of exclusive processes beyond the leading twist approximation
Energy Technology Data Exchange (ETDEWEB)
Anikin, I.V. [Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna (Russian Federation); Ivanov, D.Yu. [Institute of Mathematics, 630090 Novosibirsk (Russian Federation); Pire, B., E-mail: pire@cpht.polytechnique.f [CPhT, Ecole Polytechnique, CNRS, F-91128 Palaiseau (France); Szymanowski, L. [Soltan Institute for Nuclear Studies, Hoza 69, 00-681 Warsaw (Poland); Wallon, S. [LPT, Universite d' Orsay, CNRS, 91404 Orsay (France); UPMC Univ. Paris 6, Faculte de Physique, 4 place Jussieu, 75252 Paris Cedex 05 (France)
2010-01-04
We describe hard exclusive processes beyond the leading twist approximation in a framework based on the Taylor expansion of the amplitude around the dominant light-cone directions. This naturally introduces an appropriate set of non-perturbative correlators whose number is minimalized after taking into account QCD equations of motion and the invariance under rotation on the light-cone. We exemplify this method at the twist 3 level and show that the coordinate and momentum space descriptions are fully equivalent.
Molecular theory of mass transfer kinetics and dynamics at gas-water interface
International Nuclear Information System (INIS)
Morita, Akihiro; Garrett, Bruce C
2008-01-01
The mass transfer mechanism across gas-water interface is studied with molecular dynamics (MD) simulation. The MD results provide a robust and qualitatively consistent picture to previous studies about microscopic aspects of mass transfer, including interface structure, free energy profiles for the uptake, scattering dynamics and energy relaxation of impinging molecules. These MD results are quantitatively compared with experimental uptake measurements, and we find that the apparent inconsistency between MD and experiment could be partly resolved by precise decomposition of the observed kinetics into elemental steps. Remaining issues and future perspectives toward constructing a comprehensive multi-scale description of interfacial mass transfer are summarized.
Artificial blood-flow controlling effects of inhomogeneity of twisted magnetic fields
International Nuclear Information System (INIS)
Nakagawa, Hidenori; Ohuchi, Mikio
2017-01-01
We developed a blood-flow controlling system using magnetic therapy for some types of nervous diseases. In our research, we utilized overlapped extremely low frequency (ELF) fields for the most effective blood-flow for the system. Results showed the possibility that the inhomogeneous region obtained by overlapping the fields at 50 Hz, namely, a desirably twisted field revealed a significant difference in induced electromotive forces at the insertion points of electrodes. In addition, ELF exposures with a high inhomogeneity of the twisted field at 50 Hz out of phase were more effective in generating an induced electromotive difference by approximately 31%, as contrasted with the difference generated by the exposure in phase. We expect that the increase of the inhomogeneity of the twisted field around a blood vessel can produce the most effective electromotive difference in the blood, and also moderately affect the excitable cells relating to the autonomic nervous system for an outstanding blood-flow control in vivo. - Highlights: • The principal aim of this research is to contribute to the utilization of the twisted fields for the most effective blood-flow in vivo. • Two newly designed coil systems were used for producing a desirably twisted magnetic field under the measuring domain in the flow channel. • Further, we investigated the magnetohydrodynamic efficiencies of a prototype of a magnetic device, which was converted from use as a commercial alternating magnetic therapy apparatus. • The system was well-constructed with a successful application of a plural exposure coil; therefore, we were able to detect a maximum of induced electromotive force in a fluid of an artificial solution as a substitute for blood. • This new finding demonstrates that the process of blood massotherapy by magnetic stimuli is a therapy for many diseases.
Artificial blood-flow controlling effects of inhomogeneity of twisted magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Nakagawa, Hidenori, E-mail: hnakagawa-tdt@umin.ac.jp; Ohuchi, Mikio
2017-06-01
We developed a blood-flow controlling system using magnetic therapy for some types of nervous diseases. In our research, we utilized overlapped extremely low frequency (ELF) fields for the most effective blood-flow for the system. Results showed the possibility that the inhomogeneous region obtained by overlapping the fields at 50 Hz, namely, a desirably twisted field revealed a significant difference in induced electromotive forces at the insertion points of electrodes. In addition, ELF exposures with a high inhomogeneity of the twisted field at 50 Hz out of phase were more effective in generating an induced electromotive difference by approximately 31%, as contrasted with the difference generated by the exposure in phase. We expect that the increase of the inhomogeneity of the twisted field around a blood vessel can produce the most effective electromotive difference in the blood, and also moderately affect the excitable cells relating to the autonomic nervous system for an outstanding blood-flow control in vivo. - Highlights: • The principal aim of this research is to contribute to the utilization of the twisted fields for the most effective blood-flow in vivo. • Two newly designed coil systems were used for producing a desirably twisted magnetic field under the measuring domain in the flow channel. • Further, we investigated the magnetohydrodynamic efficiencies of a prototype of a magnetic device, which was converted from use as a commercial alternating magnetic therapy apparatus. • The system was well-constructed with a successful application of a plural exposure coil; therefore, we were able to detect a maximum of induced electromotive force in a fluid of an artificial solution as a substitute for blood. • This new finding demonstrates that the process of blood massotherapy by magnetic stimuli is a therapy for many diseases.
Influence of pitch, twist, and taper on a blade`s performance loss due to roughness
Energy Technology Data Exchange (ETDEWEB)
Tangler, J.L. [National Renewable Energy Lab., Golden, CO (United States)
1996-12-31
The purpose of this study was to determine the influence of blade geometric parameters such as pitch, twist, and taper on a blade`s sensitivity to leading edge roughness. The approach began with an evaluation of available test data of performance degradation due to roughness effects for several rotors. In addition to airfoil geometry, this evaluation suggested that a rotor`s sensitivity to roughness was also influenced by the blade geometric parameters. Parametric studies were conducted using the PROP computer code with wind-tunnel airfoil characteristics for smooth and rough surface conditions to quantify the performance loss due to roughness for tapered and twisted blades relative to a constant-chord, non-twisted blade at several blade pitch angles. The results indicate that a constant-chord, non-twisted blade pitched toward stall will have the greatest losses due to roughness. The use of twist, taper, and positive blade pitch angles all help reduce the angle-of-attack distribution along the blade for a given wind speed and the associated performance degradation due to roughness. 8 refs., 6 figs.
Influence of pitch, twist, and taper on a blade`s performance loss due to roughness
Energy Technology Data Exchange (ETDEWEB)
Tangler, J.L. [National Renewable Energy Laboratory, Golden, Colorado (United States)
1997-08-01
The purpose of this study was to determine the influence of blade geometric parameters such as pitch, twist, and taper on a blade`s sensitivity to leading edge roughness. The approach began with an evaluation of available test data of performance degradation due to roughness effects for several rotors. In addition to airfoil geometry, this evaluation suggested that a rotor`s sensitivity to roughness was also influenced by the blade geometric parameters. Parametric studies were conducted using the PROP computer code with wind-tunnel airfoil characteristics for smooth and rough surface conditions to quantify the performance loss due to roughness for tapered and twisted blades relative to a constant-chord, non-twisted blade at several blade pitch angles. The results indicate that a constant-chord, non-twisted blade pitched toward stall will have the greatest losses due to roughness. The use of twist, taper, and positive blade pitch angles all help reduce the angle-of-attack distribution along the blade for a given wind speed and the associated performance degradation due to roughness. (au)
Sliding Mode Control for Mass Moment Aerospace Vehicles Using Dynamic Inversion Approach
Directory of Open Access Journals (Sweden)
Xiao-Yu Zhang
2013-01-01
Full Text Available The moving mass actuation technique offers significant advantages over conventional aerodynamic control surfaces and reaction control systems, because the actuators are contained entirely within the airframe geometrical envelope. Modeling, control, and simulation of Mass Moment Aerospace Vehicles (MMAV utilizing moving mass actuators are discussed. Dynamics of the MMAV are separated into two parts on the basis of the two time-scale separation theory: the dynamics of fast state and the dynamics of slow state. And then, in order to restrain the system chattering and keep the track performance of the system by considering aerodynamic parameter perturbation, the flight control system is designed for the two subsystems, respectively, utilizing fuzzy sliding mode control approach. The simulation results describe the effectiveness of the proposed autopilot design approach. Meanwhile, the chattering phenomenon that frequently appears in the conventional variable structure systems is also eliminated without deteriorating the system robustness.
Effect of robust torus on the dynamical transport
International Nuclear Information System (INIS)
Martins, C G L; Carvalho, R Egydio de; Caldas, I L; Roberto, M
2010-01-01
In the present work, we quantify the fraction of trajectories that reach a specific region of the phase space when we vary a control parameter using two symplectic maps: one non-twist and another one twist. The two maps were studied with and without a robust torus. We compare the obtained patterns and we identify the effect of the robust torus on the dynamical transport. We show that the effect of meandering-like barriers loses importance in blocking the radial transport when the robust torus is present.
An estimate of higher twist at small xB and low Q2 based upon a saturation model
International Nuclear Information System (INIS)
Bartels, J.; Peters, K.
2000-03-01
We investigate the influence of higher twist corrections to deep inelastic structure functions in the low-Q 2 and small-x HERA region. We review the general features of the lowest-order QCD diagrams which contribute to twist-4 at small-x, in particular the sign structure of longitudinal and transverse structure functions which offers the possibility of strong cancellations in F 2 . For a numerical analysis we perform a twist analysis of the saturation model which has been very successful both in describing the structure function and the DIS diffractive cross section at HERA. As the main conclusion, twist 4 corrections are not small in F L or F T but in F 2 = F L + F T they almost cancel. We point out that F L analysis needs a large twist-4 correction. We also indicate the region of validity of the twist expansion. (orig.)
Dynamic Stability of Pipe Conveying Fluid with Crack and Attached Masses
International Nuclear Information System (INIS)
Ahn, Tae Soo; Yoon, Han Ik; Son, In Soo; Ahn, Sung Jin
2007-01-01
In this paper, the dynamic stability of a cracked simply supported pipe conveying fluid with an attached mass is investigated. Also, the effect of attached masses on the dynamic stability of a simply supported pipe conveying fluid is presented for the different positions and depth of the crack. Based on the Euler-Bernoulli beam theory, the equation of motion can be constructed by the energy expressions using extended Hamilton's principle. The crack section is represented by a local flexibility matrix connecting two undamaged pipe segments. The crack is assumed to be in the first mode of a fracture and to be always opened during the vibrations. Finally, the critical flow velocities and stability maps of the pipe conveying fluid are obtained by changing the attached masses and crack severity
Salman, Sami D; Kadhum, Abdul Amir H; Takriff, Mohd S; Mohamad, Abu Bakar
2013-01-01
Numerical investigation of the heat transfer and friction factor characteristics of a circular fitted with V-cut twisted tape (VCT) insert with twist ratio (y = 2.93) and different cut depths (w = 0.5, 1, and 1.5 cm) were studied for laminar flow using CFD package (FLUENT-6.3.26). The data obtained from plain tube were verified with the literature correlation to ensure the validation of simulation results. Classical twisted tape (CTT) with different twist ratios (y = 2.93, 3.91, 4.89) were also studied for comparison. The results show that the enhancement of heat transfer rate induced by the classical and V-cut twisted tape inserts increases with the Reynolds number and decreases with twist ratio. The results also revealed that the V-cut twisted tape with twist ratio y = 2.93 and cut depth w = 0.5 cm offered higher heat transfer rate with significant increases in friction factor than other tapes. In addition the results of V-cut twist tape compared with experimental and simulated data of right-left helical tape inserts (RLT), it is found that the V-cut twist tape offered better thermal contact between the surface and the fluid which ultimately leads to a high heat transfer coefficient. Consequently, 107% of maximum heat transfer was obtained by using this configuration.
RESONANT ABSORPTION OF AXISYMMETRIC MODES IN TWISTED MAGNETIC FLUX TUBES
Energy Technology Data Exchange (ETDEWEB)
Giagkiozis, I.; Verth, G. [Solar Plasma Physics Research Centre, School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Hicks Building, Sheffield, S3 7RH (United Kingdom); Goossens, M.; Doorsselaere, T. Van [Centre for mathematical Plasma Astrophysics, Mathematics Department, KU Leuven, Celestijnenlaan 200B bus 2400, B-3001 Leuven (Belgium); Fedun, V. [Department of Automatic Control and Systems Engineering, University of Sheffield, Mappin Street, Amy Johnson Building, Sheffield, S1 3JD (United Kingdom)
2016-06-01
It has been shown recently that magnetic twist and axisymmetric MHD modes are ubiquitous in the solar atmosphere, and therefore the study of resonant absorption for these modes has become a pressing issue because it can have important consequences for heating magnetic flux tubes in the solar atmosphere and the observed damping. In this investigation, for the first time, we calculate the damping rate for axisymmetric MHD waves in weakly twisted magnetic flux tubes. Our aim is to investigate the impact of resonant damping of these modes for solar atmospheric conditions. This analytical study is based on an idealized configuration of a straight magnetic flux tube with a weak magnetic twist inside as well as outside the tube. By implementing the conservation laws derived by Sakurai et al. and the analytic solutions for weakly twisted flux tubes obtained recently by Giagkiozis et al. we derive a dispersion relation for resonantly damped axisymmetric modes in the spectrum of the Alfvén continuum. We also obtain an insightful analytical expression for the damping rate in the long wavelength limit. Furthermore, it is shown that both the longitudinal magnetic field and the density, which are allowed to vary continuously in the inhomogeneous layer, have a significant impact on the damping time. Given the conditions in the solar atmosphere, resonantly damped axisymmetric modes are highly likely to be ubiquitous and play an important role in energy dissipation. We also suggest that, given the character of these waves, it is likely that they have already been observed in the guise of Alfvén waves.
Directory of Open Access Journals (Sweden)
Qin Tian
2017-04-01
Full Text Available Objective: To study the correlation of Twist and YB-1 gene expression in cervical cancer and precancerous tissue with cell invasion. Methods: Cervical cancer tissue, precancerous tissue and normal cervical tissue surgically removed in our hospital between May 2013 and April 2015 were collected; immunohistochemical staining kits were used to detect the positive protein expression rate of Twist and YB-1 gene; fluorescence quantitative PCR kits were used to detect Twist, YB-1 and invasion gene mRNA expression. Results: Twist and YB-1 mRNA expression and positive protein expression rate as well as USP22, Rab11, Rac1 and ANXA5 mRNA expression in cervical cancer tissue and precancerous tissue were significantly higher than those in normal cervical tissue, Twist and YB-1 mRNA expression and positive protein expression rate as well as USP22, Rab11, Rac1 and ANXA5 mRNA expression in cervical cancer tissue were significantly higher than those in precancerous tissue; USP22, Rab11, Rac1 and ANXA5 mRNA expression in cervical cancer tissue and precancerous tissue with positive Twist and YB-1 expression were significantly higher than those in cervical cancer tissue and precancerous tissue with negative Twist and YB-1 expression. Conclusion: Highly expressed Twist and YB-1 in cervical cancer and precancerous tissue can promote cell invasion.
Electric currents induced by twisted light in Quantum Rings.
Quinteiro, G F; Berakdar, J
2009-10-26
We theoretically investigate the generation of electric currents in quantum rings resulting from the optical excitation with twisted light. Our model describes the kinetics of electrons in a two-band model of a semiconductor-based mesoscopic quantum ring coupled to light having orbital angular momentum (twisted light). We find the analytical solution, which exhibits a "circular" photon-drag effect and an induced magnetization, suggesting that this system is the circular analog of that of a bulk semiconductor excited by plane waves. For realistic values of the electric field and material parameters, the computed electric current can be as large as microA; from an applied perspective, this opens new possibilities to the optical control of the magnetization in semiconductors.
MAML1 and TWIST1 co-overexpression promote invasion of head and neck squamous cell carcinoma.
Ardalan Khales, Sima; Ebrahimi, Ehsan; Jahanzad, Eisa; Ardalan Khales, Sahar; Forghanifard, Mohammad Mahdi
2018-01-15
Head and neck squamous cell carcinoma (HNSCC) is the seventh most common cancer worldwide with considerable morbidity and mortality. Invasion and metastasis of HNSCC is a complex process involving multiple molecules and signaling pathways. Twist Family BHLH Transcription Factor 1 (TWIST1) and Mastermind-like 1 (MAML1) are essential in induction of epithelial-mesenchymal transition through direct regulation of implicated molecules in cellular adhesion, migration and invasion. Our aim in this study was to assess the clinical significance of MAML1 and TWIST1 expression in HNSCC, and elucidate the probable correlation between these genes to exhibit their possible associations with progression and metastasis of the disease. The gene expression profile of MAML1 and TWIST1 was assessed in fresh tumoral compared to distant tumor-free tissues of 55 HNSCC patients using quantitative real-time Polymerase chain reaction (PCR). Significant overexpression of MAML1 and TWIST1 mRNA was observed in 49.1% and 38.2% (P ˂ 0.05) of tumor specimens, respectively. Overexpression of MAML1 was associated with vascular invasion (P = 0.048). Concomitant overexpression of MAML1 and TWIST1 was significantly correlated to each other (P = 0.004). Co-overexpression of the genes was significantly correlated to the various clinicopathological indices of poor prognosis including depth of tumor invasion (P < 0.01), lymphatic invasion and grade of tumor cell differentiation (P < 0.05). Significant correlation between MAML1 and TWIST1 in HNSCC was revealed. This study was the first report elucidating MAML1 clinical relevance in HNSCC. These new findings suggest an oncogenic role for concomitant expression of MAML1 and TWIST1 genes in HNSCC invasion and metastasis. © 2018 John Wiley & Sons Australia, Ltd.
International Nuclear Information System (INIS)
Mantry, Sonny; Ramsey-Musolf, Michael J.; Sacco, Gian Franco
2010-01-01
We show that parity-violating deep-inelastic scattering (PVDIS) of longitudinally polarized electrons from deuterium can in principle be a relatively clean probe of higher twist quark-quark correlations beyond the parton model. As first observed by Bjorken and Wolfenstein, the dominant contribution to the electron polarization asymmetry, proportional to the axial vector electron coupling, receives corrections at twist four from the matrix element of a single four-quark operator. We reformulate the Bjorken-Wolfenstein argument in a matter suitable for the interpretation of experiments planned at the Thomas Jefferson National Accelerator Facility (JLab). In particular, we observe that because the contribution of the relevant twist-four operator satisfies the Callan-Gross relation, the ratio of parity-violating longitudinal and transverse cross sections, R γZ , is identical to that for purely electromagnetic scattering, R γ , up to perturbative and power-suppressed contributions. This result simplifies the interpretation of the asymmetry in terms of other possible novel hadronic and electroweak contributions. We use the results of MIT Bag Model calculations to estimate contributions of the relevant twist-four operator to the leading term in the asymmetry as a function of Bjorken x and Q 2 . We compare these estimates with possible leading twist corrections from violation of charge symmetry in the parton distribution functions.
Twisting formula of epsilon factors
Indian Academy of Sciences (India)
Sazzad Ali Biswas
2017-08-07
Aug 7, 2017 ... In this article, we give a generalized twisting formula for ϵ(χ1χ2,ψ), when both χ1 and χ2 are ramified via the following local Jacobi sums. Let UF be the group of units in OF (ring of integers of F). For characters χ1, χ2 of F. × and a positive integer n, we define the local Jacobi sum. Jt(χ1,χ2, n) = ∑ x∈UF. Un.
Diversity of off-shell twisted (4,4) multiplets in SU(2)xSU(2) harmonic superspace
International Nuclear Information System (INIS)
Ivanov, E.A.; Sutulin, A.O.
2004-01-01
We elaborate on four different types of twisted N=(4,4) supermultiplets in the SU(2)xSU(2), 2D harmonic superspace. In the conventional N=(4,4), 2D superspace they are described by the superfields q ia , q Ia , q IA , subjected to proper differential constraints, (i, I, a, A) being the doublet indices of four groups SU(2) which form the full R-symmetry group SO(4) L xSO(4) R of N=(4,4) supersymmetry. We construct the torsionful off-shell sigma-model actions for each type of these multiplets, as well as the corresponding invariant mass terms, in an analytic subspace of the SU(2)xSU(2) harmonic superspace. As an instructive example, N=(4,4) superconformal extension of the SU(2)xU(1) WZNW sigma-model action and its massive deformation are presented for the multiplet q iA . We prove that N=(4,4) supersymmetry requires the general sigma-model action of pair of different multiplets to split into a sum of sigma-model actions of each multiplet. This phenomenon also persists if a larger number of non-equivalent multiplets are simultaneously included. We show that different multiplets may interact with each other only through mixed mass terms which can be set up for multiplets belonging to 'self-dual' pairs (q ia , q IA ) and (q Ia , q iA ). The multiplets from different pairs cannot interact at all. For a 'self-dual' pair of the twisted multiplets we give the most general form of the on-shell scalar potential
Twist operator correlation functions in O(n) loop models
International Nuclear Information System (INIS)
Simmons, Jacob J H; Cardy, John
2009-01-01
Using conformal field theoretic methods we calculate correlation functions of geometric observables in the loop representation of the O(n) model at the critical point. We focus on correlation functions containing twist operators, combining these with anchored loops, boundaries with SLE processes and with double SLE processes. We focus further upon n = 0, representing self-avoiding loops, which corresponds to a logarithmic conformal field theory (LCFT) with c = 0. In this limit the twist operator plays the role of a 0-weight indicator operator, which we verify by comparison with known examples. Using the additional conditions imposed by the twist operator null states, we derive a new explicit result for the probabilities that an SLE 8/3 winds in various ways about two points in the upper half-plane, e.g. that the SLE passes to the left of both points. The collection of c = 0 logarithmic CFT operators that we use deriving the winding probabilities is novel, highlighting a potential incompatibility caused by the presence of two distinct logarithmic partners to the stress tensor within the theory. We argue that both partners do appear in the theory, one in the bulk and one on the boundary and that the incompatibility is resolved by restrictive bulk-boundary fusion rules
Artificial blood-flow controlling effects of inhomogeneity of twisted magnetic fields
Nakagawa, Hidenori; Ohuchi, Mikio
2017-06-01
We developed a blood-flow controlling system using magnetic therapy for some types of nervous diseases. In our research, we utilized overlapped extremely low frequency (ELF) fields for the most effective blood-flow for the system. Results showed the possibility that the inhomogeneous region obtained by overlapping the fields at 50 Hz, namely, a desirably twisted field revealed a significant difference in induced electromotive forces at the insertion points of electrodes. In addition, ELF exposures with a high inhomogeneity of the twisted field at 50 Hz out of phase were more effective in generating an induced electromotive difference by approximately 31%, as contrasted with the difference generated by the exposure in phase. We expect that the increase of the inhomogeneity of the twisted field around a blood vessel can produce the most effective electromotive difference in the blood, and also moderately affect the excitable cells relating to the autonomic nervous system for an outstanding blood-flow control in vivo.
International Nuclear Information System (INIS)
Yoon, Han Ik; Son, In Soo
2005-01-01
In this paper, we studied about the effect of the open crack and a tip mass on the dynamic behavior of a cantilever pipe conveying fluid with a moving mass. The equation of motion is derived by using Lagrange's equation and analyzed by numerical method. The cantilever pipe is modelled by the Euler-Bernoulli beam theory. The crack section is represented by a local flexibility matrix connecting two undamaged pipe segments. The influences of the crack, the moving mass, the tip mass and its moment of inertia, the velocity of fluid, and the coupling of these factors on the vibration mode, the frequency, and the tip-displacement of the cantilever pipe are analytically clarified
Dynamical Formation of Low-mass Merging Black Hole Binaries like GW151226
Energy Technology Data Exchange (ETDEWEB)
Chatterjee, Sourav; Rodriguez, Carl L.; Kalogera, Vicky; Rasio, Frederic A., E-mail: sourav.chatterjee@northwestern.edu [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) Physics and Astronomy, Northwestern University, Evanston, IL 60202 (United States)
2017-02-20
Using numerical models for star clusters spanning a wide range in ages and metallicities (Z) we study the masses of binary black holes (BBHs) produced dynamically and merging in the local universe ( z ≲ 0.2). After taking into account cosmological constraints on star formation rate and metallicity evolution, which realistically relate merger delay times obtained from models with merger redshifts, we show here for the first time that while old, metal-poor globular clusters can naturally produce merging BBHs with heavier components, as observed in GW150914, lower-mass BBHs like GW151226 are easily formed dynamically in younger, higher-metallicity clusters. More specifically, we show that the mass of GW151226 is well within 1 σ of the mass distribution obtained from our models for clusters with Z/Z{sub ⊙} ≳ 0.5. Indeed, dynamical formation of a system like GW151226 likely requires a cluster that is younger and has a higher metallicity than typical Galactic globular clusters. The LVT151012 system, if real, could have been created in any cluster with Z/Z{sub ⊙} ≲ 0.25. On the other hand, GW150914 is more massive (beyond 1 σ ) than typical BBHs from even the lowest-metallicity (Z/Z{sub ⊙} = 0.005) clusters we consider, but is within 2 σ of the intrinsic mass distribution from our cluster models with Z/Z{sub ⊙} ≲ 0.05; of course, detection biases also push the observed distributions toward higher masses.
Directory of Open Access Journals (Sweden)
Sami D. Salman
2015-01-01
Full Text Available This paper presents a comparison study on thermal performance conic cut twist tape inserts in laminar flow of nanofluids through a constant heat fluxed tube. Three tape configurations, namely, quadrant cut twisted tape (QCT, parabolic half cut twisted tape (PCT, and triangular cut twisted (VCT of twist ratio y = 2.93 and cut depth de = 0.5 cm were used with 1% and 2% volume concentration of SiO2/water and TiO2/water nanofluids. Typical twist tape with twist ratio of y = 2.93 was used for comparison. The results show that the heat transfer was enhanced by increasing of Reynolds number and nanoparticles concentration of nanofluid. The results have also revealed that the use of twist tape enhanced the heat transfer coefficient significantly and maximum heat transfer enhancement was achieved by the presence of triangular cut twist tape insert with 2% volume concentration of SiO2 nanofluid. Over the range investigated, the maximum thermal performance factor of 5.13 is found with the simultaneous use of the SiO2 nanofluid at 2% volume concentration VCT at Reynolds number of 220. Furthermore, new empirical correlations for Nusselt number, friction factor, and thermal performance factor are developed and reported.
A zero torsional stiffness twist morphing blade as a wind turbine load alleviation device
Lachenal, X.; Daynes, S.; Weaver, P. M.
2013-06-01
This paper presents the design, analysis and realization of a zero stiffness twist morphing wind turbine blade. The morphing blade is designed to actively twist as a means of alleviating the gust loads which reduce the fatigue life of wind turbine blades. The morphing structure exploits an elastic strain energy balance within the blade to enable large twisting deformations with modest actuation requirements. While twist is introduced using the warping of the blade skin, internal pre-stressed members ensure that a constant strain energy balance is achieved throughout the deformation, resulting in a zero torsional stiffness structure. The torsional stability of the morphing blade is characterized by analysing the elastic strain energy in the device. Analytical models of the skin, the pre-stressed components and the complete blade are compared to their respective finite element models as well as experimental results. The load alleviation potential of the adaptive structure is quantified using a two-dimensional steady flow aerodynamic model which is experimentally validated with wind tunnel measurements.
Unwinding motion of a twisted active region filament
Energy Technology Data Exchange (ETDEWEB)
Yan, X. L.; Xue, Z. K.; Kong, D. F. [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Liu, J. H. [Department of Physics, Shijiazhuang University, Shijiazhuang 050035 (China); Xu, C. L. [Yunnan Normal University, Kunming 650092 (China)
2014-12-10
To better understand the structures of active region filaments and the eruption process, we study an active region filament eruption in active region NOAA 11082 in detail on 2010 June 22. Before the filament eruption, the opposite unidirectional material flows appeared in succession along the spine of the filament. The rising of the filament triggered two B-class flares at the upper part of the filament. As the bright material was injected into the filament from the sites of the flares, the filament exhibited a rapid uplift accompanying the counterclockwise rotation of the filament body. From the expansion of the filament, we can see that the filament consisted of twisted magnetic field lines. The total twist of the filament is at least 5π obtained by using a time slice method. According to the morphology change during the filament eruption, it is found that the active region filament was a twisted flux rope and its unwinding motion was like a solar tornado. We also find that there was a continuous magnetic helicity injection before and during the filament eruption. It is confirmed that magnetic helicity can be transferred from the photosphere to the filament. Using the extrapolated potential fields, the average decay index of the background magnetic fields over the filament is 0.91. Consequently, these findings imply that the mechanism of solar filament eruption could be due to the kink instability and magnetic helicity accumulation.
The most general cosmological dynamics for ELKO matter fields
International Nuclear Information System (INIS)
Fabbri, Luca
2011-01-01
Not long ago, the definition of eigenspinors of charge-conjugation belonging to a special Wigner class has lead to the unexpected theoretical discovery of a form of matter with spin 1/2 and mass dimension 1, called ELKO matter field; ELKO matter fields defined in flat spacetimes have been later extended to curved and twisted spacetimes, in order to include in their dynamics the coupling to gravitational fields possessing both metric and torsional degrees of freedom: the inclusion of non-commuting spinorial covariant derivatives allows for the introduction of more general dynamical terms influencing the behaviour of ELKO matter fields. In this Letter, we shall solve the theoretical problem of finding the most general dynamics for ELKO matter, and we will face the phenomenological issue concerning how the new dynamical terms may affect the behavior of ELKO matter; we will see that new effects will arise for which the very existence of ELKO matter will be endangered, due to the fact that ELKOs will turn incompatible with the cosmological principle. Thus we have that anisotropic universes must be taken into account if ELKOs are to be considered in their most general form.
Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies.
Zheng, Lingxiao; Hedrick, Tyson L; Mittal, Rajat
2013-01-01
Insect wings can undergo significant chordwise (camber) as well as spanwise (twist) deformation during flapping flight but the effect of these deformations is not well understood. The shape and size of butterfly wings leads to particularly large wing deformations, making them an ideal test case for investigation of these effects. Here we use computational models derived from experiments on free-flying butterflies to understand the effect of time-varying twist and camber on the aerodynamic performance of these insects. High-speed videogrammetry is used to capture the wing kinematics, including deformation, of a Painted Lady butterfly (Vanessa cardui) in untethered, forward flight. These experimental results are then analyzed computationally using a high-fidelity, three-dimensional, unsteady Navier-Stokes flow solver. For comparison to this case, a set of non-deforming, flat-plate wing (FPW) models of wing motion are synthesized and subjected to the same analysis along with a wing model that matches the time-varying wing-twist observed for the butterfly, but has no deformation in camber. The simulations show that the observed butterfly wing (OBW) outperforms all the flat-plate wings in terms of usable force production as well as the ratio of lift to power by at least 29% and 46%, respectively. This increase in efficiency of lift production is at least three-fold greater than reported for other insects. Interestingly, we also find that the twist-only-wing (TOW) model recovers much of the performance of the OBW, demonstrating that wing-twist, and not camber is key to forward flight in these insects. The implications of this on the design of flapping wing micro-aerial vehicles are discussed.
Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies.
Directory of Open Access Journals (Sweden)
Lingxiao Zheng
Full Text Available Insect wings can undergo significant chordwise (camber as well as spanwise (twist deformation during flapping flight but the effect of these deformations is not well understood. The shape and size of butterfly wings leads to particularly large wing deformations, making them an ideal test case for investigation of these effects. Here we use computational models derived from experiments on free-flying butterflies to understand the effect of time-varying twist and camber on the aerodynamic performance of these insects. High-speed videogrammetry is used to capture the wing kinematics, including deformation, of a Painted Lady butterfly (Vanessa cardui in untethered, forward flight. These experimental results are then analyzed computationally using a high-fidelity, three-dimensional, unsteady Navier-Stokes flow solver. For comparison to this case, a set of non-deforming, flat-plate wing (FPW models of wing motion are synthesized and subjected to the same analysis along with a wing model that matches the time-varying wing-twist observed for the butterfly, but has no deformation in camber. The simulations show that the observed butterfly wing (OBW outperforms all the flat-plate wings in terms of usable force production as well as the ratio of lift to power by at least 29% and 46%, respectively. This increase in efficiency of lift production is at least three-fold greater than reported for other insects. Interestingly, we also find that the twist-only-wing (TOW model recovers much of the performance of the OBW, demonstrating that wing-twist, and not camber is key to forward flight in these insects. The implications of this on the design of flapping wing micro-aerial vehicles are discussed.
Energy Technology Data Exchange (ETDEWEB)
Ebrahimi, Zanyar; Karami, Kayoomars [Department of Physics, University of Kurdistan, Pasdaran Street, P.O. Box 66177-15175, Sanandaj (Iran, Islamic Republic of); Soler, Roberto, E-mail: z.ebrahimi@uok.ac.ir [Departament de Física, Universitat de les Illes Balears, E-07122, Palma de Mallorca (Spain)
2017-08-10
There is observational evidence for the existence of a twisted magnetic field in the solar corona. This inspires us to investigate the effect of a twisted magnetic field on the evolution of magnetohydrodynamic (MHD) kink waves in coronal loops. With this aim, we solve the incompressible linearized MHD equations in a magnetically twisted nonuniform coronal flux tube in the limit of long wavelengths. Our results show that a twisted magnetic field can enhance or diminish the rate of phase mixing of the Alfvén continuum modes and the decay rate of the global kink oscillation depending on the twist model and the sign of the longitudinal ( k{sub z} ) and azimuthal ( m ) wavenumbers. Also, our results confirm that in the presence of a twisted magnetic field, when the sign of one of the two wavenumbers m and k {sub z} is changed, the symmetry with respect to the propagation direction is broken. Even a small amount of twist can have an important impact on the process of energy cascading to small scales.
Effects of Head Size on the Performance of Twist-Off Bolts
Schnupp, Keith Otto
2003-01-01
This study examines a specific application of button-head type twist-off bolts. Currently, the Research Council on Structural Connections Specification (2000) removes the requirement for ASTM F436 washers (ASTM 2000a) under the bolt head of twist-off bolts where the head diameter equals or exceeds that of an ASTM F436 washer when oversized and slotted holes are used. The need for washers is also removed for A490 strength bolts used on steels with specified yield strengths less than 40 ksi p...
Sweep-twist adaptive rotor blade : final project report.
Energy Technology Data Exchange (ETDEWEB)
Ashwill, Thomas D.
2010-02-01
Knight & Carver was contracted by Sandia National Laboratories to develop a Sweep Twist Adaptive Rotor (STAR) blade that reduced operating loads, thereby allowing a larger, more productive rotor. The blade design used outer blade sweep to create twist coupling without angled fiber. Knight & Carver successfully designed, fabricated, tested and evaluated STAR prototype blades. Through laboratory and field tests, Knight & Carver showed the STAR blade met the engineering design criteria and economic goals for the program. A STAR prototype was successfully tested in Tehachapi during 2008 and a large data set was collected to support engineering and commercial development of the technology. This report documents the methodology used to develop the STAR blade design and reviews the approach used for laboratory and field testing. The effort demonstrated that STAR technology can provide significantly greater energy capture without higher operating loads on the turbine.
Directory of Open Access Journals (Sweden)
Ying-Wen Su
Full Text Available BACKGROUND: Squamous cell carcinoma of the head and neck (SCCHN is the seventh most common cancer worldwide. Unfortunately, the survival of patients with SCCHN has not improved in the last 40 years, and thus new targets for therapy are needed. Recently, elevations in serum level of interleukin 6 (IL-6 and expression of Twist in tumor samples were found to be associated with poor clinical outcomes in multiple types of cancer, including SCCHN. Although Twist has been proposed as a master regulator of epithelial-mesenchymal transition and metastasis in cancers, the mechanisms by which Twist levels are regulated post-translationally are not completely understood. Tumor progression is characterized by the involvement of cytokines and growth factors and Twist induction has been connected with a number of these signaling pathways including IL-6. Since many of the effects of IL-6 are mediated through activation of protein phosphorylation cascades, this implies that Twist expression must be under a tight control at the post-translational level in order to respond in a timely manner to external stimuli. METHODOLOGY/PRINCIPAL FINDINGS: Our data show that IL-6 increases Twist expression via a transcription-independent mechanism in many SCCHN cell lines. Further investigation revealed that IL-6 stabilizes Twist in SCCHN cell lines through casein kinase 2 (CK2 phosphorylation of Twist residues S18 and S20, and that this phosphorylation inhibits degradation of Twist. Twist phosphorylation not only increases its stability but also enhances cell motility. Thus, post-translational modulation of Twist contributes to its tumor-promoting properties. CONCLUSIONS/SIGNIFICANCE: Our study shows Twist expression can be regulated at the post-translational level through phosphorylation by CK2, which increases Twist stability in response to IL-6 stimulation. Our findings not only provide novel mechanistic insights into post-translational regulation of Twist but also suggest
Ellipticity and twisting of the isophotes of some bright galaxies in Virgo
International Nuclear Information System (INIS)
Barbon, R.; Benacchio, L.; Capaccioli, M.
1980-01-01
Ellipticity and twisting of the isophotes of four lenticular and seven elliptical galaxies in the Virgo cluster are presented as a sample of a more complete photometric investigation. This work has been motivated by the increasing importance of this kind of information for the understanding of the spatial structure of E galaxies. The calibrated plate material from the Loiano 1.52 meter and Tautenburg Schmidt telescopes has been digitized with a PDS microdensitometer and analysed by means of the Interactive Numerical Mapping Package (INMP). Ellipticity and orientation profiles are presented in a graphical form together with a preliminary discussion. A correlation has been found between ellipticity and twisting in barred lenticulars which might help in the understanding of some E galaxies such as NGC 4406 and NGC 4374. Twisting has been detected in all of the seven ellipticals of the sample
Candy twists as an alternative to the glucola beverage in gestational diabetes mellitus screening.
Racusin, Diana A; Antony, Kathleen; Showalter, Lori; Sharma, Susan; Haymond, Morey; Aagaard, Kjersti M
2015-04-01
Screening for gestational diabetes mellitus commonly uses an oral glucose challenge test with a 50-g glucola beverage and subsequent venous puncture. However, up to 30% of pregnant women report significant side-effects, and the beverage is costly. We hypothesized that equivalent glucose loads could be achieved from a popular candy twist (Twizzlers; The Hershey Company, Hershey, PA) and tested it as cost-effective, tolerable alternative with a test of equivalency. The glucose equivalent of the 50-g glucola was calculated as 10 candy twists. We initially used a triple crossover design in nonpregnant patients whereby each subject served as her own control; this ensured the safety and equivalency of this load before using it among pregnant subjects. We then recruited pregnant women with an abnormal screening at 1 hour (glucose challenge test) in a double crossover design study. Subjects consumed 10 candy twists with a 1-hour venous blood glucose assessment. All subjects subsequently completed the confirmatory 3-hour glucose tolerance test. Sensitivity, specificity, positive predictive values, negative predictive values, false-referral rates, and detection rates were calculated. At ≥130 mg/dL, the sensitivity (100%) was the same for candy twists and glucola. However, the false-referral rate (82% vs 90%), positive predictive value (18% vs 10%), and detection rate (18% vs 10%) were improved for candy twists when compared with the 50-g glucola beverage. Our results indicate that strawberry-flavored candy twists are potentially an equally effective screening test, compared with the gold standard glucola beverage but lead to fewer false-positive screens and therefore could be a cost-effective alternative. Copyright © 2015 Elsevier Inc. All rights reserved.
Sifon, Cristobal; Battaglia, Nick; Hasselfield, Matthew; Menanteau, Felipe; Barrientos, L. Felipe; Bond, J. Richard; Crichton, Devin; Devlin, Mark J.; Dunner, Rolando; Hilton, Matt;
2016-01-01
We present galaxy velocity dispersions and dynamical mass estimates for 44 galaxy clusters selected via the Sunyaev-Zeldovich (SZ) effect by the Atacama Cosmology Telescope. Dynamical masses for 18 clusters are reported here for the first time. Using N-body simulations, we model the different observing strategies used to measure the velocity dispersions and account for systematic effects resulting from these strategies. We find that the galaxy velocity distributions may be treated as isotropic, and that an aperture correction of up to 7 per cent in the velocity dispersion is required if the spectroscopic galaxy sample is sufficiently concentrated towards the cluster centre. Accounting for the radial profile of the velocity dispersion in simulations enables consistent dynamical mass estimates regardless of the observing strategy. Cluster masses M200 are in the range (1 - 15) times 10 (sup 14) Solar Masses. Comparing with masses estimated from the SZ distortion assuming a gas pressure profile derived from X-ray observations gives a mean SZ-to-dynamical mass ratio of 1:10 plus or minus 0:13, but there is an additional 0.14 systematic uncertainty due to the unknown velocity bias; the statistical uncertainty is dominated by the scatter in the mass-velocity dispersion scaling relation. This ratio is consistent with previous determinations at these mass scales.
High Efficiency Large-Angle Pancharatnam Phase Deflector Based on Dual Twist Design
2016-12-16
construction and characterization of a ±40° beam steering device with 90% diffraction efficiency based on our dual-twist design at 633nm wavelength...N. & Escuti, M. J. Achromatic Wollaston prism beam splitter using polarization gratings. Opt. Lett. 41, 4461–4463 (2016). 13. Slussarenko, S., et...High-efficiency large-angle Pancharatnam phase deflector based on dual-twist design Kun Gao1, Colin McGinty1, Harold Payson2, Shaun Berry2, Joseph
Twist map, the extended Frenkel-Kontorova model and the devil's staircase
International Nuclear Information System (INIS)
Aubry, S.
1982-01-01
Exact results obtained on the discrete Frenkel Kontorova (FK) model and its extensions during the past few years are reviewed. These models are associated with area preserving twist maps of the cylinder (or a part of it) onto itself. The theorems obtained for the FK model thus yields new theorems for the twist maps. The exact structure of the ground-states which are either commensurate or incommensurate and assert the existence of elementary discommensurations under certain necessary and sufficient conditions is described. Necessary conditions for the trajectories to represent metastable configurations, which can be chaotic, are given. The existence of a finite Peierl Nabarro barrier for elementary discommensurations is connected with a property of non-integrability of the twist map. The existence of KAM tori corresponds to undefectible incommensurate ground-states and a theorem is given which asserts that when the phenon spectrum of an incommensurate ground-state exhibits a finite gap, then the corresponding trajectory is dense on a Cantor set with zero measure length. These theorems, when applied to the initial FK model, allows one to prove the existence of the transition by breaking of analyticity for the incommensurate structures when the parameter which describes the discrepancy of the model to the integrable limit varies. Finally, we describe a theorem proving the existence of a devil's staircase for the variation curve of the atomic mean distance versus a chemical potential, for certain properties of the twist map which are generally satisfied
International Nuclear Information System (INIS)
Chen, C-C; You, J-Y; Gau, J-P; Huang, C-E; Chen, Y-Y; Tsai, Y-H; Chou, H-J; Lung, J; Yang, M-H
2015-01-01
Epithelial–mesenchymal transition (EMT) is a critical process for inducing stem-like properties of epithelial cancer cells. However, the role of EMT inducers in hematological malignancies is unknown. Twist1, an EMT inducer necessary for cell migration, has recently been found to have transcriptionally regulatory activity on the expression of Bmi1, and these two are capable of promoting tumorigenesis in a synergized manner. Knowing that Bmi1 expression is essential for maintenance of leukemic stem cells, we speculate that Twist1 might govern the pathogenesis of acute myeloid leukemia (AML) development as well. We found that upregulated Twist1 increased Bmi1 expression in AML and endued leukemic cells a higher proliferative potential and increased resistance to apoptosis. In primary AML samples, there was strong positive correlation between the expression levels of Twist1 and Bmi1. AML patients whose leukemic blasts harbored overexpressed Twist1 had a more aggressive clinical phenotype, but they were more likely to have a better clinical outcome after standard therapy. In vitro studies confirmed that Twist1-overexpressing leukemic cells were more susceptible to cytarabine, but not daunorubicin, cytotoxicity. Our findings suggest that, in a subset of AML patients, Twist1 has a prominent role in the pathogenesis of the disease that leads to unique clinical phenotypes
Energy Technology Data Exchange (ETDEWEB)
Seo, Sung-Keum; Kim, Jae-Hee; Choi, Ha-Na [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of); Choe, Tae-Boo [Department of Microbiological Engineering, Kon-Kuk University, Gwangjin-gu, Seoul (Korea, Republic of); Hong, Seok-Il [Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of); Yi, Jae-Youn [Laboratory of Modulation of Radiobiological Responses, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of); Hwang, Sang-Gu [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of); Lee, Hyun-Gyu [Department of Microbiology and Immunology, College of Medicine, Yonsei University, 250 Seongsan-no, Seodaemun-gu, Seoul (Korea, Republic of); Lee, Yun-Han, E-mail: yhlee87@yuhs.ac [Department of Radiation Oncology, College of Medicine, Yonsei University, 250 Seongsan-no, Seodaemun-gu, Seoul (Korea, Republic of); Park, In-Chul, E-mail: parkic@kcch.re.kr [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of)
2014-07-11
Highlights: • Knockdown of TWIST1 enhanced ATO- and IR-induced cell death in NSCLCs. • Intracellular ROS levels were increased in cells treated with TWIST1 siRNA. • TWIST1 siRNA induced MMP loss and mitochondrial fragmentation. • TWIST1 siRNA upregulated the fission-related proteins FIS1 and DRP1. - Abstract: TWIST1 is implicated in the process of epithelial mesenchymal transition, metastasis, stemness, and drug resistance in cancer cells, and therefore is a potential target for cancer therapy. In the present study, we found that knockdown of TWIST1 by small interfering RNA (siRNA) enhanced arsenic trioxide (ATO)- and ionizing radiation (IR)-induced cell death in non-small-cell lung cancer cells. Interestingly, intracellular reactive oxygen species levels were increased in cells treated with TWIST1 siRNA and further increased by co-treatment with ATO or IR. Pretreatment of lung cancer cells with the antioxidant N-acetyl-cysteine markedly suppressed the cell death induced by combined treatment with TWIST1 siRNA and ATO or IR. Moreover, treatment of cells with TWIST1 siRNA induced mitochondrial membrane depolarization and significantly increased mitochondrial fragmentation (fission) and upregulated the fission-related proteins FIS1 and DRP1. Collectively, our results demonstrate that siRNA-mediated TWIST1 knockdown induces mitochondrial dysfunction and enhances IR- and ATO-induced cell death in lung cancer cells.
Microwave modulation characteristics of twisted liquid crystals with chiral dopant
Directory of Open Access Journals (Sweden)
Rui Yuan
2017-01-01
Full Text Available Adding a chiral dopant in twisted nematic (TN liquid crystal cell can stabilize the orientation of liquid crystal molecules, particularly in high TN (HTN or super TN (STN liquid crystal cells. The difference in pitches in liquid crystal is induced by the chiral dopant, and these different pitches affect the orientation of liquid crystal director under an external applied voltage and influence the characteristics of microwave modulation. To illustrate this point, the microwave phase shift per unit length (MPSL versus voltage is calculated on the basis of the elastic theory of liquid crystal and the finite-difference iterative method. Enhancing the pitch induced by the chiral dopant in liquid crystal increases the MPSLs, but the stability of the twisted structures is decreased. Thus, appropriate pitches of 100d, 4d, and 2d can be applied in TN, HTN, and STN cells with cell gap d to enhance the characteristics of microwave modulation and stabilize the structures in twisted cell. This method can improve the characteristics of liquid crystal microwave modulators such that the operating voltage and the size of such phase shifters can be decreased.
Twist-2 Light-Cone Pion Wave Function
Belyaev, V. M.; Johnson, Mikkel B.
1997-01-01
We present an analysis of the existing constraints for the twist-2 light-cone pion wave function. We find that existing information on the pion wave function does not exclude the possibility that the pion wave function attains its asymptotic form. New bounds on the parameters of the pion wave function are presented.
International Nuclear Information System (INIS)
Rolando, G; Nijhuis, A; Devred, A
2014-01-01
The numerical code JackPot-ACDC (van Lanen et al 2010 Cryogenics 50 139–48, van Lanen et al 2011 IEEE Trans. Appl. Supercond. 21 1926–9, van Lanen et al 2012 Supercond. Sci. Technol. 25 025012) allows fast parametric studies of the electro-magnetic performance of cable-in-conduit conductors (CICCs). In this paper the code is applied to the analysis of the relation between twist pitch length sequence and coupling loss in multi-stage ITER-type CICCs. The code shows that in the analysed conductors the coupling loss is at its minimum when the twist pitches of the successive cabling stages have a length ratio close to one. It is also predicted that by careful selection of the stage-to-stage twist pitch ratio, CICCs cabled according to long twist schemes in the initial stages can achieve lower coupling loss than conductors with shorter pitches. The result is validated by AC loss measurements performed on prototype conductors for the ITER Central Solenoid featuring different twist pitch sequences. (paper)
Maekawa, Yasuko; Shiozaki, Akira; Majima, Yukie
2009-01-01
This study measured the twist angle of the lumbar region and the surface electromyogram (EMG) and examined their mutual relation to elucidate the degree and influence of factors of "twist" in nursing techniques as a cause of lower back pain. Using a goniometer (two-way angle and twist sensors) and an EMG(SX230; DKH Co., Ltd.), we conducted measurements by affixing the goniometer on the lumbar vertebral column and EMG sensor at four points of right and left sides of L2 and L4 (of the erector muscle of the spine). The measured nursing techniques were three common methods of "transferring a patient from bed to wheelchair," which is said to impart a heavy load on the lumbar region. Results show that the correlation value between the twist angle rate and mean energy is likely to be greater, suggesting that the magnitude of the load on the lumbar region should be related to the twist speed rather than to the twist angle of the movement itself.
Extraction of left ventricular myocardial mass from dynamic 11C-acetate PET
DEFF Research Database (Denmark)
Harms, Hans; Tolbod, Lars Poulsen; Hansson, Nils Henrik
Background: Dynamic 11C-acetate PET is used to quantify oxygen metabolism, which is used to calculate left ventricular (LV) myocardial efficiency, an early marker of heart failure. This requires estimation of LV myocardial mass and is typically derived from a separate cardiovascular magnetic...... resonance (CMR) scan. The aim of this study was to explore the feasibility of estimating myocardial mass directly from a dynamic 11C-acetate PET scan. Methods: 21 subjects underwent a 27-min 11C-acetate PET scan on a Siemens Biograph TruePoint 64 PET/CT scanner. In addition, 10 subjects underwent a dynamic...... 11C-acetate 27-min PET scan on a GE Discovery ST PET/CT scanner. Parametric images of uptake rate K1 and both arterial (VA) and venous (VV) spillover fractions were generated using a basis function implementation of the standard single tissue compartment model using non-gated dynamic data. The LV...
Dynamic mass generation and renormalizations in quantum field theories
International Nuclear Information System (INIS)
Miransky, V.A.
1979-01-01
It is shown that the dynamic mass generation can destroy the multiplicative renormalization relations and lead to new type divergences in the massive phase. To remove these divergences the values of the bare coupling constants must be fixed. The phase diagrams of gauge theories are discussed
On the propagation and the twist of Gaussian light in first-order optical systems
Bastiaans, M.J.; Nijhawan, O.P.; Gupta, A.K.; Musla, A.K.; Singh, Kehar
1998-01-01
A measure for the twist of Gaussian light is expressed in terms of the second-order moments of the Wigner distribution function. The propagation law for these moments through first-order optical systems is used to express the twist in the output plane in terms of moments in the input plane, and vice
Adaptive super twisting vibration control of a flexible spacecraft with state rate estimation
Malekzadeh, Maryam; Karimpour, Hossein
2018-05-01
The robust attitude and vibration control of a flexible spacecraft trying to perform accurate maneuvers in spite of various sources of uncertainty is addressed here. Difficulties for achieving precise and stable pointing arise from noisy onboard sensors, parameters indeterminacy, outer disturbances as well as un-modeled or hidden dynamics interactions. Based on high-order sliding-mode methods, the non-minimum phase nature of the problem is dealt with through output redefinition. An adaptive super-twisting algorithm (ASTA) is incorporated with its observer counterpart on the system under consideration to get reliable attitude and vibration control in the presence of sensor noise and momentum coupling. The closed-loop efficiency is verified through simulations under various indeterminate situations and got compared to other methods.
Lepton anomalous magnetic moments from twisted mass fermions
International Nuclear Information System (INIS)
Burger, Florian; Hotzel, Grit
2014-11-01
We present our results for the leading-order hadronic quark-connected contributions to the electron, the muon, and the tau anomalous magnetic moments obtained with four dynamical quarks. Performing the continuum limit and an analysis of systematic effects, full agreement with phenomenological results is found. To estimate the impact of omitting the quark-disconnected contributions to the hadronic vacuum polarisation we investigate them on one of the four-flavour ensembles. Additionally, the light quark contributions on the four-flavour sea are compared to the values obtained for N f =2 physically light quarks. In the latter case different methods to fit the hadronic vacuum polarisation function are tested.
Napiorkowski, Maciej; Urbanczyk, Waclaw
2018-04-30
We show that in twisted microstructured optical fibers (MOFs) the coupling between the core and cladding modes can be obtained for helix pitch much greater than previously considered. We provide an analytical model describing scaling properties of the twisted MOFs, which relates coupling conditions to dimensionless ratios between the wavelength, the lattice pitch and the helix pitch of the twisted fiber. Furthermore, we verify our model using a rigorous numerical method based on the transformation optics formalism and study its limitations. The obtained results show that for appropriately designed twisted MOFs, distinct, high loss resonance peaks can be obtained in a broad wavelength range already for the fiber with 9 mm helix pitch, thus allowing for fabrication of coupling based devices using a less demanding method involving preform spinning.
Strong CP, flavor, and twisted split fermions
International Nuclear Information System (INIS)
Harnik, Roni; Perez, Gilad; Schwartz, Matthew D.; Shirman, Yuri
2005-01-01
We present a natural solution to the strong CP problem in the context of split fermions. By assuming CP is spontaneously broken in the bulk, a weak CKM phase is created in the standard model due to a twisting in flavor space of the bulk fermion wavefunctions. But the strong CP phase remains zero, being essentially protected by parity in the bulk and CP on the branes. As always in models of spontaneous CP breaking, radiative corrections to theta bar from the standard model are tiny, but even higher dimension operators are not that dangerous. The twisting phenomenon was recently shown to be generic, and not to interfere with the way that split fermions naturally weaves small numbers into the standard model. It follows that out approach to strong CP is compatible with flavor, and we sketch a comprehensive model. We also look at deconstructed version of this setup which provides a viable 4D model of spontaneous CP breaking which is not in the Nelson-Barr class. (author)
Õnnetu saatusega Oliver Twist Polanski meelevallas / Andres Laasik
Laasik, Andres, 1960-2016
2005-01-01
Mängufilm Charles Dickensi romaani järgi "Oliver Twist" : stsenarist Ronald Harwood : režissöör Roman Polanski : nimiosas Barney Clark, Fagin - Ben Kingsley : Suurbritannia - Tšehhi - Prantsusmaa - Itaalia 2005
A zero torsional stiffness twist morphing blade as a wind turbine load alleviation device
International Nuclear Information System (INIS)
Lachenal, X; Daynes, S; Weaver, P M
2013-01-01
This paper presents the design, analysis and realization of a zero stiffness twist morphing wind turbine blade. The morphing blade is designed to actively twist as a means of alleviating the gust loads which reduce the fatigue life of wind turbine blades. The morphing structure exploits an elastic strain energy balance within the blade to enable large twisting deformations with modest actuation requirements. While twist is introduced using the warping of the blade skin, internal pre-stressed members ensure that a constant strain energy balance is achieved throughout the deformation, resulting in a zero torsional stiffness structure. The torsional stability of the morphing blade is characterized by analysing the elastic strain energy in the device. Analytical models of the skin, the pre-stressed components and the complete blade are compared to their respective finite element models as well as experimental results. The load alleviation potential of the adaptive structure is quantified using a two-dimensional steady flow aerodynamic model which is experimentally validated with wind tunnel measurements. (paper)
On the exchange of orbital angular momentum between twisted photons and atomic electrons
International Nuclear Information System (INIS)
Davis, Basil S; Kaplan, L; McGuire, J H
2013-01-01
We obtain an expression for the matrix element for scattering of a twisted (Laguerre–Gaussian profile) photon from a hydrogen atom. We consider photons incoming with an orbital angular momentum (OAM) of ℓħ, carried by a factor of e iℓϕ not present in a plane-wave or pure Gaussian profile beam. The nature of the transfer of +2ℓ units of OAM from the photon to the azimuthal atomic quantum number of the atom is investigated. We obtain simple formulas for these OAM flip transitions for elastic forward scattering of twisted photons when the photon wavelength λ is large compared with the atomic target size a, and small compared with the Rayleigh range z R , which characterizes the collimation length of the twisted photon beam. (paper)