International Conference on Dynamical Systems : Theory and Applications
2016-01-01
The book is a collection of contributions devoted to analytical, numerical and experimental techniques of dynamical systems, presented at the international conference "Dynamical Systems: Theory and Applications," held in Lódz, Poland on December 7-10, 2015. The studies give deep insight into new perspectives in analysis, simulation, and optimization of dynamical systems, emphasizing directions for future research. Broadly outlined topics covered include: bifurcation and chaos in dynamical systems, asymptotic methods in nonlinear dynamics, dynamics in life sciences and bioengineering, original numerical methods of vibration analysis, control in dynamical systems, stability of dynamical systems, vibrations of lumped and continuous sytems, non-smooth systems, engineering systems and differential equations, mathematical approaches to dynamical systems, and mechatronics.
International Conference on Dynamical Systems : Theory and Applications
2016-01-01
The book is the second volume of a collection of contributions devoted to analytical, numerical and experimental techniques of dynamical systems, presented at the international conference "Dynamical Systems: Theory and Applications," held in Lódz, Poland on December 7-10, 2015. The studies give deep insight into new perspectives in analysis, simulation, and optimization of dynamical systems, emphasizing directions for future research. Broadly outlined topics covered include: bifurcation and chaos in dynamical systems, asymptotic methods in nonlinear dynamics, dynamics in life sciences and bioengineering, original numerical methods of vibration analysis, control in dynamical systems, stability of dynamical systems, vibrations of lumped and continuous sytems, non-smooth systems, engineering systems and differential equations, mathematical approaches to dynamical systems, and mechatronics.
12th International Conference of Dynamical Systems-Theory and Applications
Applied Non-Linear Dynamical Systems
2014-01-01
The book is a collection of contributions devoted to analytical, numerical and experimental techniques of dynamical systems, presented at the International Conference on Dynamical Systems: Theory and Applications, held in Łódź, Poland on December 2-5, 2013. The studies give deep insight into both the theory and applications of non-linear dynamical systems, emphasizing directions for future research. Topics covered include: constrained motion of mechanical systems and tracking control; diversities in the inverse dynamics; singularly perturbed ODEs with periodic coefficients; asymptotic solutions to the problem of vortex structure around a cylinder; investigation of the regular and chaotic dynamics; rare phenomena and chaos in power converters; non-holonomic constraints in wheeled robots; exotic bifurcations in non-smooth systems; micro-chaos; energy exchange of coupled oscillators; HIV dynamics; homogenous transformations with applications to off-shore slender structures; novel approaches to a qualitative s...
SIAM conference on applications of dynamical systems
Energy Technology Data Exchange (ETDEWEB)
1992-01-01
A conference (Oct.15--19, 1992, Snowbird, Utah; sponsored by SIAM (Society for Industrial and Applied Mathematics) Activity Group on Dynamical Systems) was held that highlighted recent developments in applied dynamical systems. The main lectures and minisymposia covered theory about chaotic motion, applications in high energy physics and heart fibrillations, turbulent motion, Henon map and attractor, integrable problems in classical physics, pattern formation in chemical reactions, etc. The conference fostered an exchange between mathematicians working on theoretical issues of modern dynamical systems and applied scientists. This two-part document contains abstracts, conference program, and an author index.
Applications of Nonlinear Dynamics Model and Design of Complex Systems
In, Visarath; Palacios, Antonio
2009-01-01
This edited book is aimed at interdisciplinary, device-oriented, applications of nonlinear science theory and methods in complex systems. In particular, applications directed to nonlinear phenomena with space and time characteristics. Examples include: complex networks of magnetic sensor systems, coupled nano-mechanical oscillators, nano-detectors, microscale devices, stochastic resonance in multi-dimensional chaotic systems, biosensors, and stochastic signal quantization. "applications of nonlinear dynamics: model and design of complex systems" brings together the work of scientists and engineers that are applying ideas and methods from nonlinear dynamics to design and fabricate complex systems.
Complex systems and networks dynamics, controls and applications
Yu, Xinghuo; Chen, Guanrong; Yu, Wenwu
2016-01-01
This elementary book provides some state-of-the-art research results on broad disciplinary sciences on complex networks. It presents an in-depth study with detailed description of dynamics, controls and applications of complex networks. The contents of this book can be summarized as follows. First, the dynamics of complex networks, for example, the cluster dynamic analysis by using kernel spectral methods, community detection algorithms in bipartite networks, epidemiological modeling with demographics and epidemic spreading on multi-layer networks, are studied. Second, the controls of complex networks are investigated including topics like distributed finite-time cooperative control of multi-agent systems by applying homogenous-degree and Lyapunov methods, composite finite-time containment control for disturbed second-order multi-agent systems, fractional-order observer design of multi-agent systems, chaos control and anticontrol of complex systems via Parrondos game and many more. Third, the applications of ...
Dynamical systems with applications using MATLAB
Lynch, Stephen
2014-01-01
This textbook, now in its second edition, provides a broad introduction to both continuous and discrete dynamical systems, the theory of which is motivated by examples from a wide range of disciplines. It emphasizes applications and simulation utilizing MATLAB®, Simulink®, the Image Processing Toolbox™, and the Symbolic Math Toolbox™, including MuPAD. Features new to the second edition include, sections on series solutions of ordinary differential equations, perturbation methods, normal forms, Gröbner bases, and chaos synchronization; chapters on image processing and binary oscillator computing; hundreds of new illustrations, examples, and exercises with solutions; and over eighty up-to-date MATLAB® program files and Simulink model files available online. These files were voted MATLAB® Central Pick of the Week in July 2013. The hands-on approach of Dynamical Systems with Applications using MATLAB®, Second Edition, has minimal prerequisites, only requiring familiarity with ordinary differential equ...
Dynamical systems with applications using Maple
Lynch, Stephen
2001-01-01
"The text treats a remarkable spectrum of topics and has a little for everyone. It can serve as an introduction to many of the topics of dynamical systems, and will help even the most jaded reader, such as this reviewer, enjoy some of the interactive aspects of studying dynamics using Maple." —UK Nonlinear News (Review of First Edition) "The book will be useful for all kinds of dynamical systems courses…. [It] shows the power of using a computer algebra program to study dynamical systems, and, by giving so many worked examples, provides ample opportunity for experiments. … [It] is well written and a pleasure to read, which is helped by its attention to historical background." —Mathematical Reviews (Review of First Edition) Since the first edition of this book was published in 2001, Maple™ has evolved from Maple V into Maple 13. Accordingly, this new edition has been thoroughly updated and expanded to include more applications, examples, and exercises, all with solutions; two new chapters on neural n...
Quantum dynamics for classical systems with applications of the number operator
Bagarello, Fabio
2013-01-01
Mathematics is increasingly applied to classical problems in finance, biology, economics, and elsewhere. Quantum Dynamics for Classical Systems describes how quantum tools—the number operator in particular—can be used to create dynamical systems in which the variables are operator-valued functions and whose results explain the presented model. The book presents mathematical results and their applications to concrete systems and discusses the methods used, results obtained, and techniques developed for the proofs of the results. The central ideas of number operators are illuminated while avoiding excessive technicalities that are unnecessary for understanding and learning the various mathematical applications. The presented dynamical systems address a variety of contexts and offer clear analyses and explanations of concluded results. Additional features in Quantum Dynamics for Classical Systems include: Applications across diverse fields including stock markets and population migration as well as a uniqu...
Dynamical Systems Method and Applications Theoretical Developments and Numerical Examples
Ramm, Alexander G
2012-01-01
Demonstrates the application of DSM to solve a broad range of operator equations The dynamical systems method (DSM) is a powerful computational method for solving operator equations. With this book as their guide, readers will master the application of DSM to solve a variety of linear and nonlinear problems as well as ill-posed and well-posed problems. The authors offer a clear, step-by-step, systematic development of DSM that enables readers to grasp the method's underlying logic and its numerous applications. Dynamical Systems Method and Applications begins with a general introduction and
Applied dynamics with applications to multibody and mechatronic systems
Moon, Francis C
1998-01-01
Applied Dynamics provides a modern and thorough examination of dynamics with specific emphasis on physical examples and applications such as: robotic systems, magnetic bearings, aerospace dynamics, and microelectromagnetic machines. Also includes the development of the method of virtual velocities based on the principle of virtual power
Applications of system dynamics modelling to support health policy.
Atkinson, Jo-An M; Wells, Robert; Page, Andrew; Dominello, Amanda; Haines, Mary; Wilson, Andrew
2015-07-09
The value of systems science modelling methods in the health sector is increasingly being recognised. Of particular promise is the potential of these methods to improve operational aspects of healthcare capacity and delivery, analyse policy options for health system reform and guide investments to address complex public health problems. Because it lends itself to a participatory approach, system dynamics modelling has been a particularly appealing method that aims to align stakeholder understanding of the underlying causes of a problem and achieve consensus for action. The aim of this review is to determine the effectiveness of system dynamics modelling for health policy, and explore the range and nature of its application. A systematic search was conducted to identify articles published up to April 2015 from the PubMed, Web of Knowledge, Embase, ScienceDirect and Google Scholar databases. The grey literature was also searched. Papers eligible for inclusion were those that described applications of system dynamics modelling to support health policy at any level of government. Six papers were identified, comprising eight case studies of the application of system dynamics modelling to support health policy. No analytic studies were found that examined the effectiveness of this type of modelling. Only three examples engaged multidisciplinary stakeholders in collective model building. Stakeholder participation in model building reportedly facilitated development of a common 'mental map' of the health problem, resulting in consensus about optimal policy strategy and garnering support for collaborative action. The paucity of relevant papers indicates that, although the volume of descriptive literature advocating the value of system dynamics modelling is considerable, its practical application to inform health policy making is yet to be routinely applied and rigorously evaluated. Advances in software are allowing the participatory model building approach to be extended to
On the Theory of Nonlinear Dynamics and its Applications in Vehicle Systems Dynamics
DEFF Research Database (Denmark)
True, Hans
1999-01-01
We present a brief outline of nonlinear dynamics and its applications to vehicle systems dynamics problems. The concept of a phase space is introduced in order to illustrate the dynamics of nonlinear systems in a way that is easy to perceive. Various equilibrium states are defined...... of nonlinear dynamics in vehicle simulations is discussed, and it is argued that it is necessary to know the equilibrium states of the full nonlinear system before the simulation calculations are performed......., and the important case of multiple equilibrium states and their dependence on a parameter is discussed. It is argued that the analysis of nonlinear dynamic problems always should start with an analysis of the equilibrium states of the full nonlinear problem whereby great care must be taken in the choice...
Artificial intelligence and dynamic systems for geophysical applications
Gvishiani, Alexei
2002-01-01
The book presents new clustering schemes, dynamical systems and pattern recognition algorithms in geophysical, geodynamical and natural hazard applications. The original mathematical technique is based on both classical and fuzzy sets models. Geophysical and natural hazard applications are mostly original. However, the artificial intelligence technique described in the book can be applied far beyond the limits of Earth science applications. The book is intended for research scientists, tutors, graduate students, scientists in geophysics and engineers
Generalized reconfigurable memristive dynamical system (MDS) for neuromorphic applications.
Bavandpour, Mohammad; Soleimani, Hamid; Linares-Barranco, Bernabé; Abbott, Derek; Chua, Leon O
2015-01-01
This study firstly presents (i) a novel general cellular mapping scheme for two dimensional neuromorphic dynamical systems such as bio-inspired neuron models, and (ii) an efficient mixed analog-digital circuit, which can be conveniently implemented on a hybrid memristor-crossbar/CMOS platform, for hardware implementation of the scheme. This approach employs 4n memristors and no switch for implementing an n-cell system in comparison with 2n (2) memristors and 2n switches of a Cellular Memristive Dynamical System (CMDS). Moreover, this approach allows for dynamical variables with both analog and one-hot digital values opening a wide range of choices for interconnections and networking schemes. Dynamical response analyses show that this circuit exhibits various responses based on the underlying bifurcation scenarios which determine the main characteristics of the neuromorphic dynamical systems. Due to high programmability of the circuit, it can be applied to a variety of learning systems, real-time applications, and analytically indescribable dynamical systems. We simulate the FitzHugh-Nagumo (FHN), Adaptive Exponential (AdEx) integrate and fire, and Izhikevich neuron models on our platform, and investigate the dynamical behaviors of these circuits as case studies. Moreover, error analysis shows that our approach is suitably accurate. We also develop a simple hardware prototype for experimental demonstration of our approach.
Positive dynamical systems in discrete time theory, models, and applications
Krause, Ulrich
2015-01-01
This book provides a systematic, rigorous and self-contained treatment of positive dynamical systems. A dynamical system is positive when all relevant variables of a systemare nonnegative in a natural way. This is in biology, demography or economics, where the levels of populations or prices of goods are positive. The principle also finds application in electrical engineering, physics and computer sciences.
GDSCalc: A Web-Based Application for Evaluating Discrete Graph Dynamical Systems.
Elmeligy Abdelhamid, Sherif H; Kuhlman, Chris J; Marathe, Madhav V; Mortveit, Henning S; Ravi, S S
2015-01-01
Discrete dynamical systems are used to model various realistic systems in network science, from social unrest in human populations to regulation in biological networks. A common approach is to model the agents of a system as vertices of a graph, and the pairwise interactions between agents as edges. Agents are in one of a finite set of states at each discrete time step and are assigned functions that describe how their states change based on neighborhood relations. Full characterization of state transitions of one system can give insights into fundamental behaviors of other dynamical systems. In this paper, we describe a discrete graph dynamical systems (GDSs) application called GDSCalc for computing and characterizing system dynamics. It is an open access system that is used through a web interface. We provide an overview of GDS theory. This theory is the basis of the web application; i.e., an understanding of GDS provides an understanding of the software features, while abstracting away implementation details. We present a set of illustrative examples to demonstrate its use in education and research. Finally, we compare GDSCalc with other discrete dynamical system software tools. Our perspective is that no single software tool will perform all computations that may be required by all users; tools typically have particular features that are more suitable for some tasks. We situate GDSCalc within this space of software tools.
Energy flow theory of nonlinear dynamical systems with applications
Xing, Jing Tang
2015-01-01
This monograph develops a generalised energy flow theory to investigate non-linear dynamical systems governed by ordinary differential equations in phase space and often met in various science and engineering fields. Important nonlinear phenomena such as, stabilities, periodical orbits, bifurcations and chaos are tack-led and the corresponding energy flow behaviors are revealed using the proposed energy flow approach. As examples, the common interested nonlinear dynamical systems, such as, Duffing’s oscillator, Van der Pol’s equation, Lorenz attractor, Rössler one and SD oscillator, etc, are discussed. This monograph lights a new energy flow research direction for nonlinear dynamics. A generalised Matlab code with User Manuel is provided for readers to conduct the energy flow analysis of their nonlinear dynamical systems. Throughout the monograph the author continuously returns to some examples in each chapter to illustrate the applications of the discussed theory and approaches. The book can be used as ...
International Nuclear Information System (INIS)
Kim, Do Hun; Mun, Tae Hun; Kim, Dong Hwan
1999-02-01
This book introduces systems thinking and conceptual tool and modeling tool of dynamics system such as tragedy of single thinking, accessible way of system dynamics, feedback structure and causal loop diagram analysis, basic of system dynamics modeling, causal loop diagram and system dynamics modeling, information delay modeling, discovery and application for policy, modeling of crisis of agricultural and stock breeding products, dynamic model and lesson in ecosystem, development and decadence of cites and innovation of education forward system thinking.
Dynamics and Control of Non-Smooth Systems with Applications to Supercavitating Vehicles
2011-01-01
ABSTRACT Title of dissertation: Dynamics and Control of Non-Smooth Systems with Applications to Supercavitating Vehicles Vincent Nguyen, Doctor of...relates to the dynamics of non-smooth vehicle systems, and in particular, supercavitating vehicles. These high-speed under- water vehicles are...Applications to Supercavitating Vehicles 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK
An Open Framework for Dynamic Big-data-driven Application Systems (DBDDAS) Development
Douglas, Craig
2014-01-01
In this paper, we outline key features that dynamic data-driven application systems (DDDAS) have. A DDDAS is an application that has data assimilation that can change the models and/or scales of the computation and that the application controls the data collection based on the computational results. The term Big Data (BD) has come into being in recent years that is highly applicable to most DDDAS since most applications use networks of sensors that generate an overwhelming amount of data in the lifespan of the application runs. We describe what a dynamic big-data-driven application system (DBDDAS) toolkit must have in order to provide all of the essential building blocks that are necessary to easily create new DDDAS without re-inventing the building blocks.
An Open Framework for Dynamic Big-data-driven Application Systems (DBDDAS) Development
Douglas, Craig
2014-06-06
In this paper, we outline key features that dynamic data-driven application systems (DDDAS) have. A DDDAS is an application that has data assimilation that can change the models and/or scales of the computation and that the application controls the data collection based on the computational results. The term Big Data (BD) has come into being in recent years that is highly applicable to most DDDAS since most applications use networks of sensors that generate an overwhelming amount of data in the lifespan of the application runs. We describe what a dynamic big-data-driven application system (DBDDAS) toolkit must have in order to provide all of the essential building blocks that are necessary to easily create new DDDAS without re-inventing the building blocks.
An Integrated Platform for Dynamic Software Updating and its Application in Self-* systems
DEFF Research Database (Denmark)
Gregersen, Allan Raundahl; Jørgensen, Bo Nørregaard; Hadaytullah
2012-01-01
Practical dynamic updating of modern Java applications requires tool support to become an integral part of the software development and maintenance lifecycle. In this paper we present Javeleon, an easy-to-use tool for dynamic updates of Java applications. To support integration with specific...... frameworks, component systems and application servers, Javeleon currently provides tight integration with the NetBeans Platform, facilitating dynamic updating for applications built on top of the NetBeans Platform in an unconstrained manner. Javeleon supports state-preserving unanticipated runtime evolution...
Currie, Danielle J; Smith, Carl; Jagals, Paul
2018-03-27
Policy and decision-making processes are routinely challenged by the complex and dynamic nature of environmental health problems. System dynamics modelling has demonstrated considerable value across a number of different fields to help decision-makers understand and predict the dynamic behaviour of complex systems in support the development of effective policy actions. In this scoping review we investigate if, and in what contexts, system dynamics modelling is being used to inform policy or decision-making processes related to environmental health. Four electronic databases and the grey literature were systematically searched to identify studies that intersect the areas environmental health, system dynamics modelling, and decision-making. Studies identified in the initial screening were further screened for their contextual, methodological and application-related relevancy. Studies deemed 'relevant' or 'highly relevant' according to all three criteria were included in this review. Key themes related to the rationale, impact and limitation of using system dynamics in the context of environmental health decision-making and policy were analysed. We identified a limited number of relevant studies (n = 15), two-thirds of which were conducted between 2011 and 2016. The majority of applications occurred in non-health related sectors (n = 9) including transportation, public utilities, water, housing, food, agriculture, and urban and regional planning. Applications were primarily targeted at micro-level (local, community or grassroots) decision-making processes (n = 9), with macro-level (national or international) decision-making to a lesser degree. There was significant heterogeneity in the stated rationales for using system dynamics and the intended impact of the system dynamics model on decision-making processes. A series of user-related, technical and application-related limitations and challenges were identified. None of the reported limitations or challenges
SIAM conference on applications of dynamical systems. Abstracts and author index
Energy Technology Data Exchange (ETDEWEB)
1992-12-31
A conference (Oct.15--19, 1992, Snowbird, Utah; sponsored by SIAM (Society for Industrial and Applied Mathematics) Activity Group on Dynamical Systems) was held that highlighted recent developments in applied dynamical systems. The main lectures and minisymposia covered theory about chaotic motion, applications in high energy physics and heart fibrillations, turbulent motion, Henon map and attractor, integrable problems in classical physics, pattern formation in chemical reactions, etc. The conference fostered an exchange between mathematicians working on theoretical issues of modern dynamical systems and applied scientists. This two-part document contains abstracts, conference program, and an author index.
Dynamical systems with applications using Mathematica
Lynch, Stephen
2017-01-01
This textbook, now in its second edition, provides a broad introduction to the theory and practice of both continuous and discrete dynamical systems with the aid of the Mathematica software suite. Taking a hands-on approach, the reader is guided from basic concepts to modern research topics. Emphasized throughout are numerous applications to biology, chemical kinetics, economics, electronics, epidemiology, nonlinear optics, mechanics, population dynamics, and neural networks. The book begins with an efficient tutorial introduction to Mathematica, enabling new users to become familiar with the program, while providing a good reference source for experts. Working Mathematica notebooks will be available at: http://library.wolfram.com/infocenter/Books/9563/ The author has focused on breadth of coverage rather than fine detail, with theorems and proofs being kept to a minimum, though references are included for the inquisitive reader. The book is intended for senior undergraduate and graduate students as well as w...
NATO Advanced Study Institute on Hamiltonian Dynamical Systems and Applications
2008-01-01
Physical laws are for the most part expressed in terms of differential equations, and natural classes of these are in the form of conservation laws or of problems of the calculus of variations for an action functional. These problems can generally be posed as Hamiltonian systems, whether dynamical systems on finite dimensional phase space as in classical mechanics, or partial differential equations (PDE) which are naturally of infinitely many degrees of freedom. This volume is the collected and extended notes from the lectures on Hamiltonian dynamical systems and their applications that were given at the NATO Advanced Study Institute in Montreal in 2007. Many aspects of the modern theory of the subject were covered at this event, including low dimensional problems as well as the theory of Hamiltonian systems in infinite dimensional phase space; these are described in depth in this volume. Applications are also presented to several important areas of research, including problems in classical mechanics, continu...
Application of System Dynamics Methodology in Population Analysis
Directory of Open Access Journals (Sweden)
August Turina
2009-09-01
Full Text Available The goal of this work is to present the application of system dynamics and system thinking, as well as the advantages and possible defects of this analytic approach, in order to improve the analysis of complex systems such as population and, thereby, to monitor more effectively the underlying causes of migrations. This methodology has long been present in interdisciplinary scientific circles, but its scientific contribution has not been sufficiently applied in analysis practice in Croatia. Namely, the major part of system analysis is focused on detailed complexity rather than on dynamic complexity. Generally, the science of complexity deals with emergence, innovation, learning and adaptation. Complexity is viewed according to the number of system components, or through a number of combinations that must be continually analyzed in order to understand and consequently provide adequate decisions. Simulations containing thousands of variables and complex arrays of details distract overall attention from the basic cause patterns and key inter-relations emerging and prevailing within an analyzed population. Systems thinking offers a holistic and integral perspective for observation of the world.
Control and dynamic systems v.42 advances in theory and applications
Leonides, CT
1991-01-01
Control and Dynamic Systems: Advances in Theory and Applications, Volume 42: Analysis and Control System Techniques for Electric Power Systems, Part 2 of 4 covers the research studies on the significant advances in areas including economic operation of power systems and voltage and power control techniques.This book is composed of eight chapters and begins with a survey of the application of parallel processing to power system analysis as motivated by the requirement for faster computation. The next chapters deal with the issues of power system protection from a system point of view, t
Dynamics of System of Systems and Applications to Net Zero Energy Facilities
2017-10-05
collections and applied it in a variety of ways to energy - related problems. 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY...UU UU 05-10-2017 1-Oct-2011 30-Sep-2016 Dynamics of System of Systems and Applications to Net Zero Energy Facilities The views, opinions and/or...Research Triangle Park, NC 27709-2211 Koopman operator analysis, Energy systems REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10
Applications of Dynamic Systems Theory to Cognition and Development: New Frontiers.
Perone, S; Simmering, V R
2017-01-01
A central goal in developmental science is to explain the emergence of new behavioral forms. Researchers consider potential sources of behavioral change depending partly on their theoretical perspective. This chapter reviews one perspective, dynamic systems theory, which emphasizes the interactions among multiple components to drive behavior and developmental change. To illustrate the central concepts of dynamic systems theory, we describe empirical and computational studies from a range of domains, including motor development, the Piagetian A-not-B task, infant visual recognition, visual working memory capacity, and language learning. We conclude by advocating for a broader application of dynamic systems approaches to understanding cognitive and behavioral development, laying out the remaining barriers we see and suggested ways to overcome them. © 2017 Elsevier Inc. All rights reserved.
An application of the ESD framework to the probabilistic risk assessment of dynamic systems
International Nuclear Information System (INIS)
Swaminathan, S.; Smidts, Carol
2000-01-01
Dynamic reliability is the probabilistic study of man-machine-software systems affected by an underlying physical process. The theory of probabilistic dynamics established that dynamic reliability methodologies are essentially semi-Markovian frameworks and can be expressed by an extension of the Chapman-Kolmogorov equation. The mathematical complexity associated with the assessment of dynamic systems' behaviour can be rather overwhelming for real life size systems. This is due to the fact that dynamic methodologies emphasize a component based representation rather than the sequence based representation used in the traditional Event Tree/Fault Tree framework or in the original Event Sequence Diagram (ESD) Framework. An extension of the ESD framework was proposed that facilitates capture of dynamic situations. The modeling framework is composed of events, gates, conditions, competitions and constraints which express many of the dynamic situations encountered in the evolution of accidents. The following paper illustrates an application of this extended ESD framework on a complex dynamic application. The problem at hand is an extension of a problem extensively studied in the validation of dynamic reliability algorithms, a simplified model of the fast reactor Europa. A discussion on how ESDs can help in guiding dynamic reliability simulations as well as aggregating and binning the numerous scenarios generated by dynamic reliability algorithms is provided.(author)
Applicability of transfer tensor method for open quantum system dynamics.
Gelzinis, Andrius; Rybakovas, Edvardas; Valkunas, Leonas
2017-12-21
Accurate simulations of open quantum system dynamics is a long standing issue in the field of chemical physics. Exact methods exist, but are costly, while perturbative methods are limited in their applicability. Recently a new black-box type method, called transfer tensor method (TTM), was proposed [J. Cerrillo and J. Cao, Phys. Rev. Lett. 112, 110401 (2014)]. It allows one to accurately simulate long time dynamics with a numerical cost of solving a time-convolution master equation, provided many initial system evolution trajectories are obtained from some exact method beforehand. The possible time-savings thus strongly depend on the ratio of total versus initial evolution lengths. In this work, we investigate the parameter regimes where an application of TTM would be most beneficial in terms of computational time. We identify several promising parameter regimes. Although some of them correspond to cases when perturbative theories could be expected to perform well, we find that the accuracy of such approaches depends on system parameters in a more complex way than it is commonly thought. We propose that the TTM should be applied whenever system evolution is expected to be long and accuracy of perturbative methods cannot be ensured or in cases when the system under consideration does not correspond to any single perturbative regime.
Nonlinear dynamics new directions models and applications
Ugalde, Edgardo
2015-01-01
This book, along with its companion volume, Nonlinear Dynamics New Directions: Theoretical Aspects, covers topics ranging from fractal analysis to very specific applications of the theory of dynamical systems to biology. This second volume contains mostly new applications of the theory of dynamical systems to both engineering and biology. The first volume is devoted to fundamental aspects and includes a number of important new contributions as well as some review articles that emphasize new development prospects. The topics addressed in the two volumes include a rigorous treatment of fluctuations in dynamical systems, topics in fractal analysis, studies of the transient dynamics in biological networks, synchronization in lasers, and control of chaotic systems, among others. This book also: · Develops applications of nonlinear dynamics on a diversity of topics such as patterns of synchrony in neuronal networks, laser synchronization, control of chaotic systems, and the study of transient dynam...
Nonbijective canonical transformations and applications to some dynamical systems
International Nuclear Information System (INIS)
Negadi, T.
1988-01-01
A first part is devoted to a presentation of a simplified formalism concerning non-bijective canonical transformations and to an interpretation of some of them in the framework on the theory of Lie algebras. In particular, the well-known Levi-Civita and Kustaanheimo-Stiefel transformations are generalized to the non-compact case and to the dimensions 2, 4 and 8. The differential and geometrical properties of the so-called Hurwitz transformations as well as their interpretation in terms of Lie algebras under constraints are given. A second part is concerned with the application of certain non-bijective canonical transformations (and in particular the Kustaanheimo-Stiefel transformation) to some dynamical systems of interest in theoretical and in chemical physics. The applications concern especially hydrogenoid systems, free or embedded in static and uniform electromagnetic fields, and systems presenting a line of singularity (as the Hartmann system, the Aharonov-Bohm system, and the dyonium system). The Kustaanheimo-Stiefel transformation allows to convert the Schroedinger equations for the later systems into Schroedinger equations for oscillators (harmonic, anharmonic, non-harmonic) in 2 or 4 dimensions [fr
Applications of dynamical systems in biology and medicine
Radunskaya, Ami
2015-01-01
This volume highlights problems from a range of biological and medical applications that can be interpreted as questions about system behavior or control. Topics include drug resistance in cancer and malaria, biological fluid dynamics, auto-regulation in the kidney, anti-coagulation therapy, evolutionary diversification and photo-transduction. Mathematical techniques used to describe and investigate these biological and medical problems include ordinary, partial and stochastic differentiation equations, hybrid discrete-continuous approaches, as well as 2 and 3D numerical simulation. .
International Nuclear Information System (INIS)
García-Salcedo, Ricardo; Sanchez-Guzmán, Daniel; Gonzalez, Tame; Horta-Rangel, Francisco A; Quiros, Israel
2015-01-01
The theory of dynamical systems is a very complex subject that has produced several surprises in the recent past in connection with the theory of chaos and fractals. The application of the tools of dynamical systems in cosmological settings is less known, in spite of the number of published scientific papers on this subject. In this paper, a mostly pedagogical introduction to the cosmological application of the basic tools of dynamical systems theory is presented. It is shown that, in spite of their amazing simplicity, these tools allow us to extract essential information on the asymptotic dynamics of a wide variety of cosmological models. The power of these tools is illustrated within the context of the so-called Λ-cold dark matter (ΛCDM) and scalar field models of dark energy. This paper is suitable for teachers, undergraduate students, and postgraduate students in the disciplines of physics and mathematics. (paper)
Partial dynamical systems, fell bundles and applications
Exel, Ruy
2017-01-01
Partial dynamical systems, originally developed as a tool to study algebras of operators in Hilbert spaces, has recently become an important branch of algebra. Its most powerful results allow for understanding structural properties of algebras, both in the purely algebraic and in the C*-contexts, in terms of the dynamical properties of certain systems which are often hiding behind algebraic structures. The first indication that the study of an algebra using partial dynamical systems may be helpful is the presence of a grading. While the usual theory of graded algebras often requires gradings to be saturated, the theory of partial dynamical systems is especially well suited to treat nonsaturated graded algebras which are in fact the source of the notion of "partiality". One of the main results of the book states that every graded algebra satisfying suitable conditions may be reconstructed from a partial dynamical system via a process called the partial crossed product. Running in parallel with partial dynamica...
Device Applications of Nonlinear Dynamics
Baglio, Salvatore
2006-01-01
This edited book is devoted specifically to the applications of complex nonlinear dynamic phenomena to real systems and device applications. While in the past decades there has been significant progress in the theory of nonlinear phenomena under an assortment of system boundary conditions and preparations, there exist comparatively few devices that actually take this rich behavior into account. "Device Applications of Nonlinear Dynamics" applies and exploits this knowledge to make devices which operate more efficiently and cheaply, while affording the promise of much better performance. Given the current explosion of ideas in areas as diverse as molecular motors, nonlinear filtering theory, noise-enhanced propagation, stochastic resonance and networked systems, the time is right to integrate the progress of complex systems research into real devices.
Dynamic Modeling and Simulation on a Hybrid Power System for Electric Vehicle Applications
Directory of Open Access Journals (Sweden)
Hong-Wen He
2010-11-01
Full Text Available Hybrid power systems, formed by combining high-energy-density batteries and high-power-density ultracapacitors in appropriate ways, provide high-performance and high-efficiency power systems for electric vehicle applications. This paper first establishes dynamic models for the ultracapacitor, the battery and a passive hybrid power system, and then based on the dynamic models a comparative simulation between a battery only power system and the proposed hybrid power system was done under the UDDS (Urban Dynamometer Driving Schedule. The simulation results showed that the hybrid power system could greatly optimize and improve the efficiency of the batteries and their dynamic current was also decreased due to the participation of the ultracapacitors, which would have a good influence on batteries’ cycle life. Finally, the parameter matching for the passive hybrid power system was studied by simulation and comparisons.
Energy Technology Data Exchange (ETDEWEB)
Gentile, Ann C.; Brandt, James M.; Tucker, Thomas (Open Grid Computing, Inc., Austin, TX); Thompson, David
2011-09-01
This report provides documentation for the completion of the Sandia Level II milestone 'Develop feedback system for intelligent dynamic resource allocation to improve application performance'. This milestone demonstrates the use of a scalable data collection analysis and feedback system that enables insight into how an application is utilizing the hardware resources of a high performance computing (HPC) platform in a lightweight fashion. Further we demonstrate utilizing the same mechanisms used for transporting data for remote analysis and visualization to provide low latency run-time feedback to applications. The ultimate goal of this body of work is performance optimization in the face of the ever increasing size and complexity of HPC systems.
Truly random dynamics generated by autonomous dynamical systems
González, J. A.; Reyes, L. I.
2001-09-01
We investigate explicit functions that can produce truly random numbers. We use the analytical properties of the explicit functions to show that a certain class of autonomous dynamical systems can generate random dynamics. This dynamics presents fundamental differences with the known chaotic systems. We present real physical systems that can produce this kind of random time-series. Some applications are discussed.
Gils, S; Hoveijn, I; Takens, F; Nonlinear Dynamical Systems and Chaos
1996-01-01
Symmetries in dynamical systems, "KAM theory and other perturbation theories", "Infinite dimensional systems", "Time series analysis" and "Numerical continuation and bifurcation analysis" were the main topics of the December 1995 Dynamical Systems Conference held in Groningen in honour of Johann Bernoulli. They now form the core of this work which seeks to present the state of the art in various branches of the theory of dynamical systems. A number of articles have a survey character whereas others deal with recent results in current research. It contains interesting material for all members of the dynamical systems community, ranging from geometric and analytic aspects from a mathematical point of view to applications in various sciences.
Integrating open-source software applications to build molecular dynamics systems.
Allen, Bruce M; Predecki, Paul K; Kumosa, Maciej
2014-04-05
Three open-source applications, NanoEngineer-1, packmol, and mis2lmp are integrated using an open-source file format to quickly create molecular dynamics (MD) cells for simulation. The three software applications collectively make up the open-source software (OSS) suite known as MD Studio (MDS). The software is validated through software engineering practices and is verified through simulation of the diglycidyl ether of bisphenol-a and isophorone diamine (DGEBA/IPD) system. Multiple simulations are run using the MDS software to create MD cells, and the data generated are used to calculate density, bulk modulus, and glass transition temperature of the DGEBA/IPD system. Simulation results compare well with published experimental and numerical results. The MDS software prototype confirms that OSS applications can be analyzed against real-world research requirements and integrated to create a new capability. Copyright © 2014 Wiley Periodicals, Inc.
International Conference on Applications in Nonlinear Dynamics
Longhini, Patrick; Palacios, Antonio
2017-01-01
This book presents collaborative research works carried out by experimentalists and theorists around the world in the field of nonlinear dynamical systems. It provides a forum for applications of nonlinear systems while solving practical problems in science and engineering. Topics include: Applied Nonlinear Optics, Sensor, Radar & Communication Signal Processing, Nano Devices, Nonlinear Biomedical Applications, Circuits & Systems, Coupled Nonlinear Oscillator, Precision Timing Devices, Networks, and other contemporary topics in the general field of Nonlinear Science. This book provides a comprehensive report of the various research projects presented at the International Conference on Applications in Nonlinear Dynamics (ICAND 2016) held in Denver, Colorado, 2016. It can be a valuable tool for scientists and engineering interested in connecting ideas and methods in nonlinear dynamics with actual design, fabrication and implementation of engineering applications or devices.
On the dynamics of chain systems. [applications in manipulator and human body models
Huston, R. L.; Passerello, C. E.
1974-01-01
A computer-oriented method for obtaining dynamical equations of motion for chain systems is presented. A chain system is defined as an arbitrarily assembled set of rigid bodies such that adjoining bodies have at least one common point and such that closed loops are not formed. The equations of motion are developed through the use of Lagrange's form of d'Alembert's principle. The method and procedure is illustrated with an elementary study of a tripod space manipulator. The method is designed for application with systems such as human body models, chains and cables, and dynamic finite-segment models.
Nonautonomous dynamical systems
Kloeden, Peter E
2011-01-01
The theory of nonautonomous dynamical systems in both of its formulations as processes and skew product flows is developed systematically in this book. The focus is on dissipative systems and nonautonomous attractors, in particular the recently introduced concept of pullback attractors. Linearization theory, invariant manifolds, Lyapunov functions, Morse decompositions and bifurcations for nonautonomous systems and set-valued generalizations are also considered as well as applications to numerical approximations, switching systems and synchronization. Parallels with corresponding theories of control and random dynamical systems are briefly sketched. With its clear and systematic exposition, many examples and exercises, as well as its interesting applications, this book can serve as a text at the beginning graduate level. It is also useful for those who wish to begin their own independent research in this rapidly developing area.
Dynamical systems in population biology
Zhao, Xiao-Qiang
2017-01-01
This research monograph provides an introduction to the theory of nonautonomous semiflows with applications to population dynamics. It develops dynamical system approaches to various evolutionary equations such as difference, ordinary, functional, and partial differential equations, and pays more attention to periodic and almost periodic phenomena. The presentation includes persistence theory, monotone dynamics, periodic and almost periodic semiflows, basic reproduction ratios, traveling waves, and global analysis of prototypical population models in ecology and epidemiology. Research mathematicians working with nonlinear dynamics, particularly those interested in applications to biology, will find this book useful. It may also be used as a textbook or as supplementary reading for a graduate special topics course on the theory and applications of dynamical systems. Dr. Xiao-Qiang Zhao is a University Research Professor at Memorial University of Newfoundland, Canada. His main research interests involve applied...
Dynamical systems an introduction with applications in economics and biology
Tu, Pierre N V
1994-01-01
The favourable reception of the first edition and the encouragement received from many readers have prompted the author to bring out this new edition. This provides the opportunity for correcting a number of errors, typographical and others, contained in the first edition and making further improvements. This second edition has a new chapter on simplifying Dynamical Systems covering Poincare map, Floquet theory, Centre Manifold Theorems, normal forms of dynamical systems, elimination of passive coordinates and Liapunov-Schmidt reduction theory. It would provide a gradual transition to the study of Bifurcation, Chaos and Catastrophe in Chapter 10. Apart from this, most others - in fact all except the first three and last chapters - have been revised and enlarged to bring in some new materials, elaborate some others, especially those sections which many readers felt were rather too concise in the first edition, by providing more explana tion, examples and applications. Chapter 11 provides some good examples o...
International Nuclear Information System (INIS)
Prykarpatsky, A.K.; Bogoliubov, N.N. Jr.; Golenia, J.; Taneri, U.
2007-09-01
Introductive backgrounds of a new mathematical physics discipline - Quantum Mathematics - are discussed and analyzed both from historical and analytical points of view. The magic properties of the second quantization method, invented by V. Fock in 1934, are demonstrated, and an impressive application to the nonlinear dynamical systems theory is considered. (author)
Morecroft, John
System dynamics is an approach for thinking about and simulating situations and organisations of all kinds and sizes by visualising how the elements fit together, interact and change over time. This chapter, written by John Morecroft, describes modern system dynamics which retains the fundamentals developed in the 1950s by Jay W. Forrester of the MIT Sloan School of Management. It looks at feedback loops and time delays that affect system behaviour in a non-linear way, and illustrates how dynamic behaviour depends upon feedback loop structures. It also recognises improvements as part of the ongoing process of managing a situation in order to achieve goals. Significantly it recognises the importance of context, and practitioner skills. Feedback systems thinking views problems and solutions as being intertwined. The main concepts and tools: feedback structure and behaviour, causal loop diagrams, dynamics, are practically illustrated in a wide variety of contexts from a hot water shower through to a symphony orchestra and the practical application of the approach is described through several real examples of its use for strategic planning and evaluation.
Fractional Dynamics Applications of Fractional Calculus to Dynamics of Particles, Fields and Media
Tarasov, Vasily E
2010-01-01
"Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media" presents applications of fractional calculus, integral and differential equations of non-integer orders in describing systems with long-time memory, non-local spatial and fractal properties. Mathematical models of fractal media and distributions, generalized dynamical systems and discrete maps, non-local statistical mechanics and kinetics, dynamics of open quantum systems, the hydrodynamics and electrodynamics of complex media with non-local properties and memory are considered. This book is intended to meet the needs of scientists and graduate students in physics, mechanics and applied mathematics who are interested in electrodynamics, statistical and condensed matter physics, quantum dynamics, complex media theories and kinetics, discrete maps and lattice models, and nonlinear dynamics and chaos. Dr. Vasily E. Tarasov is a Senior Research Associate at Nuclear Physics Institute of Moscow State University and...
Dynamical Systems Theory: Application to Pedagogy
Abraham, Jane L.
Theories of learning affect how cognition is viewed, and this subsequently leads to the style of pedagogical practice that is used in education. Traditionally, educators have relied on a variety of theories on which to base pedagogy. Behavioral learning theories influenced the teaching/learning process for over 50 years. In the 1960s, the information processing approach brought the mind back into the learning process. The current emphasis on constructivism integrates the views of Piaget, Vygotsky, and cognitive psychology. Additionally, recent scientific advances have allowed researchers to shift attention to biological processes in cognition. The problem is that these theories do not provide an integrated approach to understanding principles responsible for differences among students in cognitive development and learning ability. Dynamical systems theory offers a unifying theoretical framework to explain the wider context in which learning takes place and the processes involved in individual learning. This paper describes how principles of Dynamic Systems Theory can be applied to cognitive processes of students, the classroom community, motivation to learn, and the teaching/learning dynamic giving educational psychologists a framework for research and pedagogy.
Dynamical entropy for infinite quantum systems
International Nuclear Information System (INIS)
Hudetz, T.
1990-01-01
We review the recent physical application of the so-called Connes-Narnhofer-Thirring entropy, which is the successful quantum mechanical generalization of the classical Kolmogorov-Sinai entropy and, by its very conception, is a dynamical entropy for infinite quantum systems. We thus comparingly review also the physical applications of the classical dynamical entropy for infinite classical systems. 41 refs. (Author)
Darema, F.
2016-12-01
InfoSymbiotics/DDDAS embodies the power of Dynamic Data Driven Applications Systems (DDDAS), a concept whereby an executing application model is dynamically integrated, in a feed-back loop, with the real-time data-acquisition and control components, as well as other data sources of the application system. Advanced capabilities can be created through such new computational approaches in modeling and simulations, and in instrumentation methods, and include: enhancing the accuracy of the application model; speeding-up the computation to allow faster and more comprehensive models of a system, and create decision support systems with the accuracy of full-scale simulations; in addition, the notion of controlling instrumentation processes by the executing application results in more efficient management of application-data and addresses challenges of how to architect and dynamically manage large sets of heterogeneous sensors and controllers, an advance over the static and ad-hoc ways of today - with DDDAS these sets of resources can be managed adaptively and in optimized ways. Large-Scale-Dynamic-Data encompasses the next wave of Big Data, and namely dynamic data arising from ubiquitous sensing and control in engineered, natural, and societal systems, through multitudes of heterogeneous sensors and controllers instrumenting these systems, and where opportunities and challenges at these "large-scales" relate not only to data size but the heterogeneity in data, data collection modalities, fidelities, and timescales, ranging from real-time data to archival data. In tandem with this important dimension of dynamic data, there is an extended view of Big Computing, which includes the collective computing by networked assemblies of multitudes of sensors and controllers, this range from the high-end to the real-time seamlessly integrated and unified, and comprising the Large-Scale-Big-Computing. InfoSymbiotics/DDDAS engenders transformative impact in many application domains
Lyapunov analysis: from dynamical systems theory to applications
Cencini, Massimo; Ginelli, Francesco
2013-06-01
generalizations of the Lyapunov exponents. Moreover, further attention has also been paid to the so-called Lyapunov vectors, which provide information on geometrical properties of the tangent space characterizing stable and unstable directions [23]. This approach could prove extremely useful in systems with many degrees of freedom such as the models used, for instance, in atmospheric physics, where different forms of Lyapunov vectors (both infinitesimal and of finite size) have been proposed to generate suitable perturbations to be used for optimizing ensemble forecasting methods [32]. While some of these tools are routinely used in standard applications, a comprehensive understanding of Lyapunov vectors and their relation to different properties of spatiotemporal chaos is still lacking. From this brief and largely incomplete historical tour it should be clear that Lyapunov analysis has had and still has a great impact on both fundamental and applied approaches to deterministic dynamical systems. Furthermore, some recent results have generated renewed attention on certain aspects of Lyapunov analysis and related applications in a number of different research communities. For instance, different types of Lyapunov vectors are regularly employed in the most diverse applications from applied mathematics and physics to atmospheric sciences. Depending on the context, researchers use covariant Lyapunov vectors (CLVs), singular Lyapunov vectors, bred vectors, finite-time Lyapunov vectors, etc. Similarly, for the Lyapunov exponents several generalizations are possible to account for, e.g., the multifractal nature of the invariant measure, the local fluctuations of stretching rates (finite-time Lyapunov exponents), to characterize the nonlinear regime of perturbation evolution (finite-size Lyapunov exponents) or their spatiotemporal dynamics (co-moving Lyapunov exponents). All these quantities often have different physical interpretations, are characterized by different levels of
Delay dynamical systems and applications to nonlinear machine-tool chatter
International Nuclear Information System (INIS)
Fofana, M.S.
2003-01-01
The stability behaviour of machine chatter that exhibits Hopf and degenerate bifurcations has been examined without the assumption of small delays between successive cuts. Delay dynamical system theory leading to the reduction of the infinite-dimensional character of the governing delay differential equations (DDEs) to a finite-dimensional set of ordinary differential equations have been employed. The essential mathematical arguments for these systems in the context of retarded DDEs are summarized. Then the application of these arguments in the stability study of machine-tool chatter with multiple time delays is presented. Explicit analytical expressions ensuring stable and unstable machining when perturbations are periodic, stochastic and nonlinear have been derived using the integral averaging method and Lyapunov exponents
Directory of Open Access Journals (Sweden)
Mehdi Zomorodian
Full Text Available Conflicts over water resources can be highly dynamic and complex due to the various factors which can affect such systems, including economic, engineering, social, hydrologic, environmental and even political, as well as the inherent uncertainty involved in many of these factors. Furthermore, the conflicting behavior, preferences and goals of stakeholders can often make such conflicts even more challenging. While many game models, both cooperative and non-cooperative, have been suggested to deal with problems over utilizing and sharing water resources, most of these are based on a static viewpoint of demand points during optimization procedures. Moreover, such models are usually developed for a single reservoir system, and so are not really suitable for application to an integrated decision support system involving more than one reservoir. This paper outlines a coupled simulation-optimization modeling method based on a combination of system dynamics (SD and game theory (GT. The method harnesses SD to capture the dynamic behavior of the water system, utilizing feedback loops between the system components in the course of the simulation. In addition, it uses GT concepts, including pure-strategy and mixed-strategy games as well as the Nash Bargaining Solution (NBS method, to find the optimum allocation decisions over available water in the system. To test the capability of the proposed method to resolve multi-reservoir and multi-objective conflicts, two different deterministic simulation-optimization models with increasing levels of complexity were developed for the Langat River basin in Malaysia. The later is a strategic water catchment that has a range of different stakeholders and managerial bodies, which are however willing to cooperate in order to avoid unmet demand. In our first model, all water users play a dynamic pure-strategy game. The second model then adds in dynamic behaviors to reservoirs to factor in inflow uncertainty and adjust the
Zomorodian, Mehdi; Lai, Sai Hin; Homayounfar, Mehran; Ibrahim, Shaliza; Pender, Gareth
2017-01-01
Conflicts over water resources can be highly dynamic and complex due to the various factors which can affect such systems, including economic, engineering, social, hydrologic, environmental and even political, as well as the inherent uncertainty involved in many of these factors. Furthermore, the conflicting behavior, preferences and goals of stakeholders can often make such conflicts even more challenging. While many game models, both cooperative and non-cooperative, have been suggested to deal with problems over utilizing and sharing water resources, most of these are based on a static viewpoint of demand points during optimization procedures. Moreover, such models are usually developed for a single reservoir system, and so are not really suitable for application to an integrated decision support system involving more than one reservoir. This paper outlines a coupled simulation-optimization modeling method based on a combination of system dynamics (SD) and game theory (GT). The method harnesses SD to capture the dynamic behavior of the water system, utilizing feedback loops between the system components in the course of the simulation. In addition, it uses GT concepts, including pure-strategy and mixed-strategy games as well as the Nash Bargaining Solution (NBS) method, to find the optimum allocation decisions over available water in the system. To test the capability of the proposed method to resolve multi-reservoir and multi-objective conflicts, two different deterministic simulation-optimization models with increasing levels of complexity were developed for the Langat River basin in Malaysia. The later is a strategic water catchment that has a range of different stakeholders and managerial bodies, which are however willing to cooperate in order to avoid unmet demand. In our first model, all water users play a dynamic pure-strategy game. The second model then adds in dynamic behaviors to reservoirs to factor in inflow uncertainty and adjust the strategies for
Systems-Dynamic Analysis for Neighborhood Study
Systems-dynamic analysis (or system dynamics (SD)) helps planners identify interrelated impacts of transportation and land-use policies on neighborhood-scale economic outcomes for households and businesses, among other applications. This form of analysis can show benefits and tr...
Du, Likai; Lan, Zhenggang
2015-04-14
Nonadiabatic dynamics simulations have rapidly become an indispensable tool for understanding ultrafast photochemical processes in complex systems. Here, we present our recently developed on-the-fly nonadiabatic dynamics package, JADE, which allows researchers to perform nonadiabatic excited-state dynamics simulations of polyatomic systems at an all-atomic level. The nonadiabatic dynamics is based on Tully's surface-hopping approach. Currently, several electronic structure methods (CIS, TDHF, TDDFT(RPA/TDA), and ADC(2)) are supported, especially TDDFT, aiming at performing nonadiabatic dynamics on medium- to large-sized molecules. The JADE package has been interfaced with several quantum chemistry codes, including Turbomole, Gaussian, and Gamess (US). To consider environmental effects, the Langevin dynamics was introduced as an easy-to-use scheme into the standard surface-hopping dynamics. The JADE package is mainly written in Fortran for greater numerical performance and Python for flexible interface construction, with the intent of providing open-source, easy-to-use, well-modularized, and intuitive software in the field of simulations of photochemical and photophysical processes. To illustrate the possible applications of the JADE package, we present a few applications of excited-state dynamics for various polyatomic systems, such as the methaniminium cation, fullerene (C20), p-dimethylaminobenzonitrile (DMABN) and its primary amino derivative aminobenzonitrile (ABN), and 10-hydroxybenzo[h]quinoline (10-HBQ).
Nonlinear transport of dynamic system phase space
International Nuclear Information System (INIS)
Xie Xi; Xia Jiawen
1993-01-01
The inverse transform of any order solution of the differential equation of general nonlinear dynamic systems is derived, realizing theoretically the nonlinear transport for the phase space of nonlinear dynamic systems. The result is applicable to general nonlinear dynamic systems, with the transport of accelerator beam phase space as a typical example
Wang, Yi-Fang; Khan, Michael; van den Berg, Hugo A
2012-01-01
Endocrine dynamics spans a wide range of time scales, from rapid responses to physiological challenges to with slow responses that adapt the system to the demands placed on it. We outline a non-linear averaging procedure to extract the slower dynamics in a way that accounts properly for the non-linear dynamics of the faster time scale and is applicable to a hierarchy of more than two time scales, although we restrict our discussion to two scales for the sake of clarity. The procedure is exact if the slow time scale is infinitely slow (the dimensionless ε-quantity is the period of the fast time scale fluctuation times an upper bound to the slow time scale rate of change). However, even for an imperfect separation of time scales we find that this construction provides an excellent approximation for the slow-time dynamics at considerably reduced computational cost. Besides the computation advantage, the averaged equation provided a qualitative insight into the interaction of the time scales. We demonstrate the procedure and its advantages by applying the theory to the model described by Tolić et al. [I.M. Tolić, E. Mosekilde, J. Sturis, Modeling the insulin-glucose feedback system: the significance of pulsatile insulin secretion, J. Theor. Biol. 207 (2000) 361-375.] for ultradian dynamics of the glucose-insulin homeostasis feedback system, extended to include β-cell dynamics. We find that the dynamics of the β-cell mass are dependent not only on the glycemic load (amount of glucose administered to the system), but also on the way this load is applied (i.e. three meals daily versus constant infusion), effects that are lost in the inappropriate methods used by the earlier authors. Furthermore, we find that the loss of the protection against apoptosis conferred by insulin that occurs at elevated levels of insulin has a functional role in keeping the β-cell mass in check without compromising regulatory function. We also find that replenishment of β-cells from a
Dynamic memory management for embedded systems
Atienza Alonso, David; Poucet, Christophe; Peón-Quirós, Miguel; Bartzas, Alexandros; Catthoor, Francky; Soudris, Dimitrios
2015-01-01
This book provides a systematic and unified methodology, including basic principles and reusable processes, for dynamic memory management (DMM) in embedded systems. The authors describe in detail how to design and optimize the use of dynamic memory in modern, multimedia and network applications, targeting the latest generation of portable embedded systems, such as smartphones. Coverage includes a variety of design and optimization topics in electronic design automation of DMM, from high-level software optimization to microarchitecture-level hardware support. The authors describe the design of multi-layer dynamic data structures for the final memory hierarchy layers of the target portable embedded systems and how to create a low-fragmentation, cost-efficient, dynamic memory management subsystem out of configurable components for the particular memory allocation and de-allocation patterns for each type of application. The design methodology described in this book is based on propagating constraints among de...
q-entropy for symbolic dynamical systems
International Nuclear Information System (INIS)
Zhao, Yun; Pesin, Yakov
2015-01-01
For symbolic dynamical systems we use the Carathéodory construction as described in (Pesin 1997 Dimension Theory in Dynamical Systems, ConTemporary Views and Applications (Chicago: University of Chicago Press)) to introduce the notions of q-topological and q-metric entropies. We describe some basic properties of these entropies and in particular, discuss relations between q-metric entropy and local metric entropy. Both q-topological and q-metric entropies are new invariants respectively under homeomorphisms and metric isomorphisms of dynamical systems. (paper)
Colloquium: Non-Markovian dynamics in open quantum systems
Breuer, Heinz-Peter; Laine, Elsi-Mari; Piilo, Jyrki; Vacchini, Bassano
2016-04-01
The dynamical behavior of open quantum systems plays a key role in many applications of quantum mechanics, examples ranging from fundamental problems, such as the environment-induced decay of quantum coherence and relaxation in many-body systems, to applications in condensed matter theory, quantum transport, quantum chemistry, and quantum information. In close analogy to a classical Markovian stochastic process, the interaction of an open quantum system with a noisy environment is often modeled phenomenologically by means of a dynamical semigroup with a corresponding time-independent generator in Lindblad form, which describes a memoryless dynamics of the open system typically leading to an irreversible loss of characteristic quantum features. However, in many applications open systems exhibit pronounced memory effects and a revival of genuine quantum properties such as quantum coherence, correlations, and entanglement. Here recent theoretical results on the rich non-Markovian quantum dynamics of open systems are discussed, paying particular attention to the rigorous mathematical definition, to the physical interpretation and classification, as well as to the quantification of quantum memory effects. The general theory is illustrated by a series of physical examples. The analysis reveals that memory effects of the open system dynamics reflect characteristic features of the environment which opens a new perspective for applications, namely, to exploit a small open system as a quantum probe signifying nontrivial features of the environment it is interacting with. This Colloquium further explores the various physical sources of non-Markovian quantum dynamics, such as structured environmental spectral densities, nonlocal correlations between environmental degrees of freedom, and correlations in the initial system-environment state, in addition to developing schemes for their local detection. Recent experiments addressing the detection, quantification, and control of
Multibody system dynamics, robotics and control
Gerstmayr, Johannes
2013-01-01
The volume contains 19 contributions by international experts in the field of multibody system dynamics, robotics and control. The book aims to bridge the gap between the modeling of mechanical systems by means of multibody dynamics formulations and robotics. In the classical approach, a multibody dynamics model contains a very high level of detail, however, the application of such models to robotics or control is usually limited. The papers aim to connect the different scientific communities in multibody dynamics, robotics and control. Main topics are flexible multibody systems, humanoid robots, elastic robots, nonlinear control, optimal path planning, and identification.
Planar multibody dynamics formulation, programming and applications
Nikravesh, Parviz E
2007-01-01
Introduction Multibody Mechanical Systems Types of Analyses Methods of Formulation Computer Programming Application Examples Unit System Remarks Preliminaries Reference Axes Scalars and Vectors Matrices Vector, Array, and Matrix Differentiation Equations and Expressions Remarks Problems Fundamentals of Kinematics A Particle Kinematics of a Rigid Body Definitions Remarks Problems Fundamentals of Dynamics Newton's Laws of Motion Dynamics of a Body Force Elements Applied Forces Reaction Force Remarks Problems Point-Coordinates: Kinematics Multipoint
Nonlinear dynamical systems for theory and research in ergonomics.
Guastello, Stephen J
2017-02-01
Nonlinear dynamical systems (NDS) theory offers new constructs, methods and explanations for phenomena that have in turn produced new paradigms of thinking within several disciplines of the behavioural sciences. This article explores the recent developments of NDS as a paradigm in ergonomics. The exposition includes its basic axioms, the primary constructs from elementary dynamics and so-called complexity theory, an overview of its methods, and growing areas of application within ergonomics. The applications considered here include: psychophysics, iconic displays, control theory, cognitive workload and fatigue, occupational accidents, resilience of systems, team coordination and synchronisation in systems. Although these applications make use of different subsets of NDS constructs, several of them share the general principles of the complex adaptive system. Practitioner Summary: Nonlinear dynamical systems theory reframes problems in ergonomics that involve complex systems as they change over time. The leading applications to date include psychophysics, control theory, cognitive workload and fatigue, biomechanics, occupational accidents, resilience of systems, team coordination and synchronisation of system components.
Dynamics of Variable Mass Systems
Eke, Fidelis O.
1998-01-01
This report presents the results of an investigation of the effects of mass loss on the attitude behavior of spinning bodies in flight. The principal goal is to determine whether there are circumstances under which the motion of variable mass systems can become unstable in the sense that their transverse angular velocities become unbounded. Obviously, results from a study of this kind would find immediate application in the aerospace field. The first part of this study features a complete and mathematically rigorous derivation of a set of equations that govern both the translational and rotational motions of general variable mass systems. The remainder of the study is then devoted to the application of the equations obtained to a systematic investigation of the effect of various mass loss scenarios on the dynamics of increasingly complex models of variable mass systems. It is found that mass loss can have a major impact on the dynamics of mechanical systems, including a possible change in the systems stability picture. Factors such as nozzle geometry, combustion chamber geometry, propellant's initial shape, size and relative mass, and propellant location can all have important influences on the system's dynamic behavior. The relative importance of these parameters on-system motion are quantified in a way that is useful for design purposes.
Planar dynamical systems selected classical problems
Liu, Yirong; Huang, Wentao
2014-01-01
This book presents in an elementary way the recent significant developments in the qualitative theory of planar dynamical systems. The subjects are covered as follows: the studies of center and isochronous center problems, multiple Hopf bifurcations and local and global bifurcations of the equivariant planar vector fields which concern with Hilbert's 16th problem. This book is intended for graduate students, post-doctors and researchers in the area of theories and applications of dynamical systems. For all engineers who are interested the theory of dynamical systems, it is also a reasona
Self-supervised dynamical systems
International Nuclear Information System (INIS)
Zak, Michail
2004-01-01
A new type of dynamical systems which capture the interactions via information flows typical for active multi-agent systems is introduced. The mathematical formalism is based upon coupling the classical dynamical system (with random components caused by uncertainties in initial conditions as well as by Langevin forces) with the corresponding Liouville or the Fokker-Planck equations describing evolution of these uncertainties in terms of probability density. The coupling is implemented by information-based supervising forces which fundamentally change the patterns of probability evolution. It is demonstrated that the probability density can approach prescribed attractors while exhibiting such patterns as shock waves, solitons and chaos in probability space. Applications of these phenomena to information-based neural nets, expectation-based cooperation, self-programmed systems, control chaos using terminal attractors as well as to games with incomplete information, are addressed. A formal similarity between the mathematical structure of the introduced dynamical systems and quantum mechanics is discussed
Synchronization dynamics of two different dynamical systems
International Nuclear Information System (INIS)
Luo, Albert C.J.; Min Fuhong
2011-01-01
Highlights: → Synchronization dynamics of two distinct dynamical systems. → Synchronization, de-synchronization and instantaneous synchronization. → A controlled pendulum synchronizing with the Duffing oscillator. → Synchronization invariant set. → Synchronization parameter map. - Abstract: In this paper, synchronization dynamics of two different dynamical systems is investigated through the theory of discontinuous dynamical systems. The necessary and sufficient conditions for the synchronization, de-synchronization and instantaneous synchronization (penetration or grazing) are presented. Using such a synchronization theory, the synchronization of a controlled pendulum with the Duffing oscillator is systematically discussed as a sampled problem, and the corresponding analytical conditions for the synchronization are presented. The synchronization parameter study is carried out for a better understanding of synchronization characteristics of the controlled pendulum and the Duffing oscillator. Finally, the partial and full synchronizations of the controlled pendulum with periodic and chaotic motions are presented to illustrate the analytical conditions. The synchronization of the Duffing oscillator and pendulum are investigated in order to show the usefulness and efficiency of the methodology in this paper. The synchronization invariant domain is obtained. The technique presented in this paper should have a wide spectrum of applications in engineering. For example, this technique can be applied to the maneuvering target tracking, and the others.
Energy Technology Data Exchange (ETDEWEB)
Dall' Anese, Emiliano; Dhople, Sairaj V.; Giannakis, Georgios B.
2015-07-01
This paper considers a collection of networked nonlinear dynamical systems, and addresses the synthesis of feedback controllers that seek optimal operating points corresponding to the solution of pertinent network-wide optimization problems. Particular emphasis is placed on the solution of semidefinite programs (SDPs). The design of the feedback controller is grounded on a dual e-subgradient approach, with the dual iterates utilized to dynamically update the dynamical-system reference signals. Global convergence is guaranteed for diminishing stepsize rules, even when the reference inputs are updated at a faster rate than the dynamical-system settling time. The application of the proposed framework to the control of power-electronic inverters in AC distribution systems is discussed. The objective is to bridge the time-scale separation between real-time inverter control and network-wide optimization. Optimization objectives assume the form of SDP relaxations of prototypical AC optimal power flow problems.
A Low-Cost Data Acquisition System for Automobile Dynamics Applications.
González, Alejandro; Olazagoitia, José Luis; Vinolas, Jordi
2018-01-27
This project addresses the need for the implementation of low-cost acquisition technology in the field of vehicle engineering: the design, development, manufacture, and verification of a low-cost Arduino-based data acquisition platform to be used in <80 Hz data acquisition in vehicle dynamics, using low-cost accelerometers. In addition to this, a comparative study is carried out of professional vibration acquisition technologies and low-cost systems, obtaining optimum results for low- and medium-frequency operations with an error of 2.19% on road tests. It is therefore concluded that these technologies are applicable to the automobile industry, thereby allowing the project costs to be reduced and thus facilitating access to this kind of research that requires limited resources.
Reaction dynamics in polyatomic molecular systems
Energy Technology Data Exchange (ETDEWEB)
Miller, W.H. [Lawrence Berkeley Laboratory, CA (United States)
1993-12-01
The goal of this program is the development of theoretical methods and models for describing the dynamics of chemical reactions, with specific interest for application to polyatomic molecular systems of special interest and relevance. There is interest in developing the most rigorous possible theoretical approaches and also in more approximate treatments that are more readily applicable to complex systems.
2016-06-01
Filter Algorithms for Stationary, Low-Dynamics, and High-Dynamics Applications Executive Summary The Global Positioning system ( GPS ) is the primary...software that may need to be developed for performance prediction of current or future systems that incorporate GPS . The ultimate aim is to help inform...Defence Science and Technology Organisation in 1986. His major areas of work were adaptive tracking , sig- nal processing, and radar systems engineering
Systems of quasilinear equations and their applications to gas dynamics
Roždestvenskiĭ, B L; Schulenberger, J R
1983-01-01
This book is essentially a new edition, revised and augmented by results of the last decade, of the work of the same title published in 1968 by "Nauka." It is devoted to mathematical questions of gas dynamics. Topics covered include Foundations of the Theory of Systems of Quasilinear Equations of Hyperbolic Type in Two Independent Variables; Classical and Generalized Solutions of One-Dimensional Gas Dynamics; Difference Methods for Solving the Equations of Gas Dynamics; and Generalized Solutions of Systems of Quasilinear Equations of Hyperbolic Type.
Dynamics and control of technical systems
Balthazar, José M; Kaczmarczyk, Stefan
2014-01-01
The main topics of this Special Issue are linear and, mainly, nonlinear dynamics, chaos and control of systems and structures and their applications in different field of science and engineering. According to the goal of the Special Issue, the selected contributions are divided into three major parts: ""Vibration Problems in Vertical Transportation Systems"", ""Nonlinear Dynamics, Chaos and Control of Elastic Structures"" and ""New Strategies and Challenges for Aerospace and Ocean Structures Dynamics and Control"". The discussion of real problems in aerospace and how these problems can be unde
Developments of multibody system dynamics: computer simulations and experiments
International Nuclear Information System (INIS)
Yoo, Wan-Suk; Kim, Kee-Nam; Kim, Hyun-Woo; Sohn, Jeong-Hyun
2007-01-01
It is an exceptional success when multibody dynamics researchers Multibody System Dynamics journal one of the most highly ranked journals in the last 10 years. In the inaugural issue, Professor Schiehlen wrote an interesting article explaining the roots and perspectives of multibody system dynamics. Professor Shabana also wrote an interesting article to review developments in flexible multibody dynamics. The application possibilities of multibody system dynamics have grown wider and deeper, with many application examples being introduced with multibody techniques in the past 10 years. In this paper, the development of multibody dynamics is briefly reviewed and several applications of multibody dynamics are described according to the author's research results. Simulation examples are compared to physical experiments, which show reasonableness and accuracy of the multibody formulation applied to real problems. Computer simulations using the absolute nodal coordinate formulation (ANCF) were also compared to physical experiments; therefore, the validity of ANCF for large-displacement and large-deformation problems was shown. Physical experiments for large deformation problems include beam, plate, chain, and strip. Other research topics currently being carried out in the author's laboratory are also briefly explained
Dynamical systems and linear algebra
Colonius, Fritz (Prof.)
2007-01-01
Dynamical systems and linear algebra / F. Colonius, W. Kliemann. - In: Handbook of linear algebra / ed. by Leslie Hogben. - Boca Raton : Chapman & Hall/CRC, 2007. - S. 56,1-56,22. - (Discrete mathematics and its applications)
Dynamically-Loaded Hardware Libraries (HLL) Technology for Audio Applications
DEFF Research Database (Denmark)
Esposito, A.; Lomuscio, A.; Nunzio, L. Di
2016-01-01
In this work, we apply hardware acceleration to embedded systems running audio applications. We present a new framework, Dynamically-Loaded Hardware Libraries or HLL, to dynamically load hardware libraries on reconfigurable platforms (FPGAs). Provided a library of application-specific processors......, we load on-the-fly the specific processor in the FPGA, and we transfer the execution from the CPU to the FPGA-based accelerator. The proposed architecture provides excellent flexibility with respect to the different audio applications implemented, high quality audio, and an energy efficient solution....
Theory and application of quantum molecular dynamics
Zeng Hui Zhang, John
1999-01-01
This book provides a detailed presentation of modern quantum theories for treating the reaction dynamics of small molecular systems. Its main focus is on the recent development of successful quantum dynamics theories and computational methods for studying the molecular reactive scattering process, with specific applications given in detail for a number of benchmark chemical reaction systems in the gas phase and the gas surface. In contrast to traditional books on collision in physics focusing on abstract theory for nonreactive scattering, this book deals with both the development and the appli
Fuchs, Armin
2013-01-01
With many areas of science reaching across their boundaries and becoming more and more interdisciplinary, students and researchers in these fields are confronted with techniques and tools not covered by their particular education. Especially in the life- and neurosciences quantitative models based on nonlinear dynamics and complex systems are becoming as frequently implemented as traditional statistical analysis. Unfamiliarity with the terminology and rigorous mathematics may discourage many scientists to adopt these methods for their own work, even though such reluctance in most cases is not justified.This book bridges this gap by introducing the procedures and methods used for analyzing nonlinear dynamical systems. In Part I, the concepts of fixed points, phase space, stability and transitions, among others, are discussed in great detail and implemented on the basis of example elementary systems. Part II is devoted to specific, non-trivial applications: coordination of human limb movement (Haken-Kelso-Bunz ...
Information Decomposition in Bivariate Systems: Theory and Application to Cardiorespiratory Dynamics
Directory of Open Access Journals (Sweden)
Luca Faes
2015-01-01
Full Text Available In the framework of information dynamics, the temporal evolution of coupled systems can be studied by decomposing the predictive information about an assigned target system into amounts quantifying the information stored inside the system and the information transferred to it. While information storage and transfer are computed through the known self-entropy (SE and transfer entropy (TE, an alternative decomposition evidences the so-called cross entropy (CE and conditional SE (cSE, quantifying the cross information and internal information of the target system, respectively. This study presents a thorough evaluation of SE, TE, CE and cSE as quantities related to the causal statistical structure of coupled dynamic processes. First, we investigate the theoretical properties of these measures, providing the conditions for their existence and assessing the meaning of the information theoretic quantity that each of them reflects. Then, we present an approach for the exact computation of information dynamics based on the linear Gaussian approximation, and exploit this approach to characterize the behavior of SE, TE, CE and cSE in benchmark systems with known dynamics. Finally, we exploit these measures to study cardiorespiratory dynamics measured from healthy subjects during head-up tilt and paced breathing protocols. Our main result is that the combined evaluation of the measures of information dynamics allows to infer the causal effects associated with the observed dynamics and to interpret the alteration of these effects with changing experimental conditions.
Introduction to turbulent dynamical systems in complex systems
Majda, Andrew J
2016-01-01
This volume is a research expository article on the applied mathematics of turbulent dynamical systems through the paradigm of modern applied mathematics. It involves the blending of rigorous mathematical theory, qualitative and quantitative modeling, and novel numerical procedures driven by the goal of understanding physical phenomena which are of central importance to the field. The contents cover general framework, concrete examples, and instructive qualitative models. Accessible open problems are mentioned throughout. Topics covered include: · Geophysical flows with rotation, topography, deterministic and random forcing · New statistical energy principles for general turbulent dynamical systems, with applications · Linear statistical response theory combined with information theory to cope with model errors · Reduced low order models · Recent mathematical strategies for online data assimilation of turbulent dynamical systems as well as rigorous results for finite ensemble Kalman filters The volume wi...
Constraint elimination in dynamical systems
Singh, R. P.; Likins, P. W.
1989-01-01
Large space structures (LSSs) and other dynamical systems of current interest are often extremely complex assemblies of rigid and flexible bodies subjected to kinematical constraints. A formulation is presented for the governing equations of constrained multibody systems via the application of singular value decomposition (SVD). The resulting equations of motion are shown to be of minimum dimension.
Yokohama, Noriya; Tsuchimoto, Tadashi; Oishi, Masamichi; Itou, Katsuya
2007-01-20
It has been noted that the downtime of medical informatics systems is often long. Many systems encounter downtimes of hours or even days, which can have a critical effect on daily operations. Such systems remain especially weak in the areas of database and medical imaging data. The scheme design shows the three-layer architecture of the system: application, database, and storage layers. The application layer uses the DICOM protocol (Digital Imaging and Communication in Medicine) and HTTP (Hyper Text Transport Protocol) with AJAX (Asynchronous JavaScript+XML). The database is designed to decentralize in parallel using cluster technology. Consequently, restoration of the database can be done not only with ease but also with improved retrieval speed. In the storage layer, a network RAID (Redundant Array of Independent Disks) system, it is possible to construct exabyte-scale parallel file systems that exploit storage spread. Development and evaluation of the test-bed has been successful in medical information data backup and recovery in a network environment. This paper presents a schematic design of the new medical informatics system that can be accommodated from a recovery and the dynamic Web application for medical imaging distribution using AJAX.
Keystroke Dynamics-Based Credential Hardening Systems
Bartlow, Nick; Cukic, Bojan
abstract Keystroke dynamics are becoming a well-known method for strengthening username- and password-based credential sets. The familiarity and ease of use of these traditional authentication schemes combined with the increased trustworthiness associated with biometrics makes them prime candidates for application in many web-based scenarios. Our keystroke dynamics system uses Breiman’s random forests algorithm to classify keystroke input sequences as genuine or imposter. The system is capable of operating at various points on a traditional ROC curve depending on application-specific security needs. As a username/password authentication scheme, our approach decreases the system penetration rate associated with compromised passwords up to 99.15%. Beyond presenting results demonstrating the credential hardening effect of our scheme, we look into the notion that a user’s familiarity to components of a credential set can non-trivially impact error rates.
Application of Hybrid Dynamical Theory to the Cardiovascular System
Laleg-Kirati, Taous-Meriem
2014-10-14
In hybrid dynamical systems, the state evolves in continuous time as well as in discrete modes activated by internal conditions or by external events. In the recent years, hybrid systems modeling has been used to represent the dynamics of biological systems. In such systems, discrete behaviors might originate from unexpected changes in normal performance, e.g., a transition from a healthy to an abnormal condition. Simplifications, model assumptions, and/or modeled (and ignored) nonlinearities can be represented by sudden changes in the state. Modeling cardiovascular system (CVS), one of the most fascinating but most complex human physiological systems, with a hybrid approach, is the focus of this chapter. The hybrid property appears naturally in the CVS thanks to the presence of valves which, depending on their state (closed or open), divide the cardiac cycle into four phases. This chapter shows how hybrid models can be used for modeling the CVS. In addition, it describes a preliminary study on the detection of some cardiac anomalies based on the hybrid model and using the standard observer-based approach.
Dynamics robustness of cascading systems.
Directory of Open Access Journals (Sweden)
Jonathan T Young
2017-03-01
Full Text Available A most important property of biochemical systems is robustness. Static robustness, e.g., homeostasis, is the insensitivity of a state against perturbations, whereas dynamics robustness, e.g., homeorhesis, is the insensitivity of a dynamic process. In contrast to the extensively studied static robustness, dynamics robustness, i.e., how a system creates an invariant temporal profile against perturbations, is little explored despite transient dynamics being crucial for cellular fates and are reported to be robust experimentally. For example, the duration of a stimulus elicits different phenotypic responses, and signaling networks process and encode temporal information. Hence, robustness in time courses will be necessary for functional biochemical networks. Based on dynamical systems theory, we uncovered a general mechanism to achieve dynamics robustness. Using a three-stage linear signaling cascade as an example, we found that the temporal profiles and response duration post-stimulus is robust to perturbations against certain parameters. Then analyzing the linearized model, we elucidated the criteria of when signaling cascades will display dynamics robustness. We found that changes in the upstream modules are masked in the cascade, and that the response duration is mainly controlled by the rate-limiting module and organization of the cascade's kinetics. Specifically, we found two necessary conditions for dynamics robustness in signaling cascades: 1 Constraint on the rate-limiting process: The phosphatase activity in the perturbed module is not the slowest. 2 Constraints on the initial conditions: The kinase activity needs to be fast enough such that each module is saturated even with fast phosphatase activity and upstream changes are attenuated. We discussed the relevance of such robustness to several biological examples and the validity of the above conditions therein. Given the applicability of dynamics robustness to a variety of systems, it
Controlling chaos in dynamical systems described by maps
International Nuclear Information System (INIS)
Crispin, Y.; Marduel, C.
1994-01-01
The problem of suppressing chaotic behavior in dynamical systems is treated using a feedback control method with limited control effort. The proposed method is validated on archetypal systems described by maps, i.e. discrete-time difference equations. The method is also applicable to dynamical systems described by flows, i.e. by systems of ordinary differential equations. Results are presented for the one-dimensional logistic map and for a two-dimensional Lotka-Volterra map describing predator-prey population dynamics. It is shown that chaos can be suppressed and the system stabilized about a period-1 fixed point of the maps
Parametric Resonance in Dynamical Systems
Nijmeijer, Henk
2012-01-01
Parametric Resonance in Dynamical Systems discusses the phenomenon of parametric resonance and its occurrence in mechanical systems,vehicles, motorcycles, aircraft and marine craft, and micro-electro-mechanical systems. The contributors provide an introduction to the root causes of this phenomenon and its mathematical equivalent, the Mathieu-Hill equation. Also included is a discussion of how parametric resonance occurs on ships and offshore systems and its frequency in mechanical and electrical systems. This book also: Presents the theory and principles behind parametric resonance Provides a unique collection of the different fields where parametric resonance appears including ships and offshore structures, automotive vehicles and mechanical systems Discusses ways to combat, cope with and prevent parametric resonance including passive design measures and active control methods Parametric Resonance in Dynamical Systems is ideal for researchers and mechanical engineers working in application fields such as MEM...
A generalized Halanay inequality on impulsive delayed dynamical systems and its applications
International Nuclear Information System (INIS)
Wu Quanjun; Zhang Hua; Xiang Lan; Zhou Jin
2012-01-01
Highlights: ► A generalized Halanay differential inequality is derived. ► By using the inequality, we can stabilize an unstable dynamical system via impulses. ► The results are applied to chaos-based secure communication systems. ► The results may develop an effective impulsive control strategy. - Abstract: The main objective of this paper is to extend previous results on Halanay inequality for impulsive delayed dynamical systems. Based on the Razumikhin technique, a generalized Halanay differential inequality on impulsive delayed dynamical systems is analytically established. Compared with some existing works, the distinctive feature of this work is that it can be used to stabilize an unstable delayed dynamical system via impulses. The generalized Halanay inequality may be applied to secure communication systems, and a numerical example is given for illustrating and interpreting the theoretical results.
System Theory Aspects of Multi-Body Dynamics.
1978-08-18
systems are described from a system theory point of view. Various system theory concepts and research topics which have applicability to this class of...systems are identified and briefly described. The subject of multi-body dynamics is presented in a vector space setting and is related to system theory concepts. (Author)
Applications of Dynamic Deployment of Services in Industrial Automation
Candido, Gonçalo; Barata, José; Jammes, François; Colombo, Armando W.
Service-oriented Architecture (SOA) is becoming a de facto paradigm for business and enterprise integration. SOA is expanding into several domains of application envisioning a unified solution suitable across all different layers of an enterprise infrastructure. The application of SOA based on open web standards can significantly enhance the interoperability and openness of those devices. By embedding a dynamical deployment service even into small field de- vices, it would be either possible to allow machine builders to place built- in services and still allow the integrator to deploy on-the-run the services that best fit his current application. This approach allows the developer to keep his own preferred development language, but still deliver a SOA- compliant application. A dynamic deployment service is envisaged as a fundamental framework to support more complex applications, reducing deployment delays, while increasing overall system agility. As use-case scenario, a dynamic deployment service was implemented over DPWS and WS-Management specifications allowing designing and programming an automation application using IEC61131 languages, and deploying these components as web services into devices.
Collective Dynamics of Nonlinear and Disordered Systems
Radons, G; Just, W
2005-01-01
Phase transitions in disordered systems and related dynamical phenomena are a topic of intrinsically high interest in theoretical and experimental physics. This book presents a unified view, adopting concepts from each of the disjoint fields of disordered systems and nonlinear dynamics. Special attention is paid to the glass transition, from both experimental and theoretical viewpoints, to modern concepts of pattern formation, and to the application of the concepts of dynamical systems for understanding equilibrium and nonequilibrium properties of fluids and solids. The content is accessible to graduate students, but will also be of benefit to specialists, since the presentation extends as far as the topics of ongoing research work.
Integrability of dynamical systems algebra and analysis
Zhang, Xiang
2017-01-01
This is the first book to systematically state the fundamental theory of integrability and its development of ordinary differential equations with emphasis on the Darboux theory of integrability and local integrability together with their applications. It summarizes the classical results of Darboux integrability and its modern development together with their related Darboux polynomials and their applications in the reduction of Liouville and elementary integrabilty and in the center—focus problem, the weakened Hilbert 16th problem on algebraic limit cycles and the global dynamical analysis of some realistic models in fields such as physics, mechanics and biology. Although it can be used as a textbook for graduate students in dynamical systems, it is intended as supplementary reading for graduate students from mathematics, physics, mechanics and engineering in courses related to the qualitative theory, bifurcation theory and the theory of integrability of dynamical systems.
Quantum Dynamics in Biological Systems
Shim, Sangwoo
In the first part of this dissertation, recent efforts to understand quantum mechanical effects in biological systems are discussed. Especially, long-lived quantum coherences observed during the electronic energy transfer process in the Fenna-Matthews-Olson complex at physiological condition are studied extensively using theories of open quantum systems. In addition to the usual master equation based approaches, the effect of the protein structure is investigated in atomistic detail through the combined application of quantum chemistry and molecular dynamics simulations. To evaluate the thermalized reduced density matrix, a path-integral Monte Carlo method with a novel importance sampling approach is developed for excitons coupled to an arbitrary phonon bath at a finite temperature. In the second part of the thesis, simulations of molecular systems and applications to vibrational spectra are discussed. First, the quantum dynamics of a molecule is simulated by combining semiclassical initial value representation and density funcitonal theory with analytic derivatives. A computationally-tractable approximation to the sum-of-states formalism of Raman spectra is subsequently discussed.
Directory of Open Access Journals (Sweden)
CHEN Nengcheng
2017-10-01
Full Text Available The geo-spatial information service has failed to reflect the live status of spot and meet the needs of integrated monitoring and real-time information for a long time. To tackle the problems in observation sharing and integrated management of space-borne, air-borne, and ground-based platforms and efficient service of spatio-temporal information, an observation sharing model was proposed. The key technologies in real-time dynamic geographical information system (GIS including maximum spatio-temporal coverage-based optimal layout of earth-observation sensor Web, task-driven and feedback-based control, real-time access of streaming observations, dynamic simulation, warning and decision support were detailed. An real-time dynamic Web geographical information system (WebGIS named GeoSensor and its applications in sensing and management of spatio-temporal information of Yangtze River basin including navigation, flood prevention, and power generation were also introduced.
Dynamic Analysis of Mobile Device Applications
Energy Technology Data Exchange (ETDEWEB)
Corey Thuen
2013-01-01
The On-Device Dynamic Analysis of Mobile Applications (ODAMA) project was started in an effort to protect mobile devices used in Industrial Control Systems (ICS) from cyber attack. Because mobile devices hide as much of the “computer” as possible, the user’s ability to assess the software running on their system is limited. The research team chose Google’s Android platform for this initial research because it is open source and it would give us freedom in our approach, including the ability to modify the mobile device’s operating system itself. The research team concluded that a Privileged Application was the right approach, and the result was ODAMA. This project is an important piece of the work to secure the expanding use of mobile devices with our nation’s critical infrastructure.
Self-Supervised Dynamical Systems
Zak, Michail
2003-01-01
metal aspects of a monad is implemented by feedback from mental to motor dynamics, as represented by the aforementioned fictitious forces. This feedback is what makes the evolution of probability densities nonlinear. The deviation from linear evolution can be characterized, in a sense, as an expression of free will. It has been demonstrated that probability densities can approach prescribed attractors while exhibiting such patterns as shock waves, solitons, and chaos in probability space. The concept of self-supervised dynamical systems has been considered for application to diverse phenomena, including information-based neural networks, cooperation, competition, deception, games, and control of chaos. In addition, a formal similarity between the mathematical structures of self-supervised dynamical systems and of quantum-mechanical systems has been investigated.
Jetha, Arif; Pransky, Glenn; Hettinger, Lawrence J
2016-01-01
Work disability (WD) is characterized by variable and occasionally undesirable outcomes. The underlying determinants of WD outcomes include patterns of dynamic relationships among health, personal, organizational and regulatory factors that have been challenging to characterize, and inadequately represented by contemporary WD models. System dynamics modeling (SDM) methodology applies a sociotechnical systems thinking lens to view WD systems as comprising a range of influential factors linked by feedback relationships. SDM can potentially overcome limitations in contemporary WD models by uncovering causal feedback relationships, and conceptualizing dynamic system behaviors. It employs a collaborative and stakeholder-based model building methodology to create a visual depiction of the system as a whole. SDM can also enable researchers to run dynamic simulations to provide evidence of anticipated or unanticipated outcomes that could result from policy and programmatic intervention. SDM may advance rehabilitation research by providing greater insights into the structure and dynamics of WD systems while helping to understand inherent complexity. Challenges related to data availability, determining validity, and the extensive time and technical skill requirements for model building may limit SDM's use in the field and should be considered. Contemporary work disability (WD) models provide limited insight into complexity associated with WD processes. System dynamics modeling (SDM) has the potential to capture complexity through a stakeholder-based approach that generates a simulation model consisting of multiple feedback loops. SDM may enable WD researchers and practitioners to understand the structure and behavior of the WD system as a whole, and inform development of improved strategies to manage straightforward and complex WD cases.
Advances in analysis and control of timedelayed dynamical systems
Sun, Jianqiao
2013-01-01
Analysis and control of timedelayed systems have been applied in a wide range of applications, ranging from mechanical, control, economic, to biological systems. Over the years, there has been a steady stream of interest in timedelayed dynamic systems, this book takes a snap shot of recent research from the world leading experts in analysis and control of dynamic systems with time delay to provide a bird's eye view of its development. The topics covered in this book include solution methods, stability analysis and control of periodic dynamic systems with time delay, bifurcations, stochastic dy
On non-stationarity of dynamic systems
DEFF Research Database (Denmark)
Høskuldsson, Agnar
2004-01-01
. Covariance structure of dynamic systems tends to vary over time. Here some procedures to find stable solutions to linear dynamic systems with low rank are presented. Subsets of variables and samples to be included in a model are considered. The procedures are based on the H-principle of mathematical...... that are based on exact solutions. With in few seconds the algorithms can provide with solutions of models having hundreds or thousands of variables. The procedure is described mathematically and demonstrated for a dynamic industrial case. It is shown how the algorithms can provide solutions involving NIR data...... for process control. The method is simple to apply and the motivation of the procedure is obvious for industrial applications. It can be used, e.g., when modelling on-line systems....
Emulation tool of dynamic systems via internet
Directory of Open Access Journals (Sweden)
Daniel Ruiz Olaya
2015-11-01
Full Text Available The experimentation laboratories for the studies of control system courses can become expensive, either in its acquisition, operation or maintenance. An alternative resource have been the remote laboratories. However, not always is possible to get complex systems. A solution to this matter are the remote emulation laboratories. In this paper describes the development of a Web application for the emulation of dynamic systems using a free-distribution software tool of rapid control prototyping based on Linux/RTAI. This application is focused especially for the experimentation with dynamic systems that are not available easily in a laboratory where the model have been configured by the user. The design of the front-end and the back-end are presented. The latency times of the real-time operating system and the ability of the system to reproduce similar signals to a real system from an emulated model were verified. An example, to test the functionality of the application the model of an evaporator was used. One of the advantages of the application is the work methodology which is based on the development of blocks in Scicos. This allows the user to reuse those parameters and the code that was implemented to build a block on the Scicos toolbox with the Linux/RTAI/ScicosLab environment. Moreover, only a web-browser and the Java Virtual Machine are required.
Dynamic Complexity Study of Nuclear Reactor and Process Heat Application Integration
International Nuclear Information System (INIS)
Taylor, J'Tia Patrice; Shropshire, David E.
2009-01-01
This paper describes the key obstacles and challenges facing the integration of nuclear reactors with process heat applications as they relate to dynamic issues. The paper also presents capabilities of current modeling and analysis tools available to investigate these issues. A pragmatic approach to an analysis is developed with the ultimate objective of improving the viability of nuclear energy as a heat source for process industries. The extension of nuclear energy to process heat industries would improve energy security and aid in reduction of carbon emissions by reducing demands for foreign derived fossil fuels. The paper begins with an overview of nuclear reactors and process application for potential use in an integrated system. Reactors are evaluated against specific characteristics that determine their compatibility with process applications such as heat outlet temperature. The reactor system categories include light water, heavy water, small to medium, near term high-temperature, and far term high temperature reactors. Low temperature process systems include desalination, district heating, and tar sands and shale oil recovery. High temperature processes that support hydrogen production include steam reforming, steam cracking, hydrogen production by electrolysis, and far-term applications such as the sulfur iodine chemical process and high-temperature electrolysis. A simple static matching between complementary systems is performed; however, to gain a true appreciation for system integration complexity, time dependent dynamic analysis is required. The paper identifies critical issues arising from dynamic complexity associated with integration of systems. Operational issues include scheduling conflicts and resource allocation for heat and electricity. Additionally, economic and safety considerations that could impact the successful integration of these systems are considered. Economic issues include the cost differential arising due to an integrated system
Use of Dynamic Technologies for Web-enabled Database Management Systems
Bogdanova, Galina; Todorov, Todor; Blagoev, Dimitar; Todorova, Mirena
2007-01-01
In this paper we consider two computer systems and the dynamic Web technologies they are using. Different contemporary dynamic web technologies are described in details and their advantages and disadvantages have been shown. Specific applications are developed, clinic and studying systems, and their programming models are described. Finally we implement these two applications in the students education process: Online studying has been tested in the Technical University – Va...
Predicting dynamic behavior via anticipating synchronization in coupled pendulum-like systems
International Nuclear Information System (INIS)
Xu Shiyun; Yang Ying
2009-01-01
In this paper, the regime of anticipating synchronization (sometimes called predicted synchronization) in a class of nonlinear dynamical systems is investigated by testing the global asymptotical stability of time-delayed error dynamics. Sufficient conditions in terms of linear matrix inequalities are established for anticipating synchronization between such systems with and without state time delay. These results allow one to predict the dynamic behavior of the systems by using a copy of the same system that performs as a slave. Moreover, the cascaded anticipating synchronization is concerned such that several slave systems could anticipate the same master system with different delays. Concrete applications to phase-locked loops demonstrate the applicability and validity of the proposed results.
Directory of Open Access Journals (Sweden)
Tiep Nguyen
2017-03-01
Full Text Available Cost-Benefit Analysis (CBA is often employed to inform decision makers about the desirability of transport infrastructure investment options. One of the main limitations of traditional CBA approaches is that they do not provide a dynamic view that explicitly illustrates the cost and benefit relationships between component entities over time. This paper addresses this issue by describing a System Dynamics (SD approach that can perform transport infrastructure CBA through the application of systems thinking to develop a causal-loop model that can subsequently be operationalised into an executable stock-and-flow model. Execution of this model readily enables sensitivity analysis of infrastructure investment options and visualisation of the cost-benefit behaviour of each variant over time. The utility of the approach is illustrated through a case study, the Co Chien Bridge project in Vietnam, using a model that incorporates conventional economic metrics and factors that measure indirect project benefits, such as impact on gross domestic product, unemployment rate, and total taxes gained from affected economic sectors.
Min, Lequan; Chen, Guanrong
This paper establishes some generalized synchronization (GS) theorems for a coupled discrete array of difference systems (CDADS) and a coupled continuous array of differential systems (CCADS). These constructive theorems provide general representations of GS in CDADS and CCADS. Based on these theorems, one can design GS-driven CDADS and CCADS via appropriate (invertible) transformations. As applications, the results are applied to autonomous and nonautonomous coupled Chen cellular neural network (CNN) CDADS and CCADS, discrete bidirectional Lorenz CNN CDADS, nonautonomous bidirectional Chua CNN CCADS, and nonautonomously bidirectional Chen CNN CDADS and CCADS, respectively. Extensive numerical simulations show their complex dynamic behaviors. These theorems provide new means for understanding the GS phenomena of complex discrete and continuously differentiable networks.
Distributed dynamic simulations of networked control and building performance applications.
Yahiaoui, Azzedine
2018-02-01
The use of computer-based automation and control systems for smart sustainable buildings, often so-called Automated Buildings (ABs), has become an effective way to automatically control, optimize, and supervise a wide range of building performance applications over a network while achieving the minimum energy consumption possible, and in doing so generally refers to Building Automation and Control Systems (BACS) architecture. Instead of costly and time-consuming experiments, this paper focuses on using distributed dynamic simulations to analyze the real-time performance of network-based building control systems in ABs and improve the functions of the BACS technology. The paper also presents the development and design of a distributed dynamic simulation environment with the capability of representing the BACS architecture in simulation by run-time coupling two or more different software tools over a network. The application and capability of this new dynamic simulation environment are demonstrated by an experimental design in this paper.
Parameter and Structure Inference for Nonlinear Dynamical Systems
Morris, Robin D.; Smelyanskiy, Vadim N.; Millonas, Mark
2006-01-01
A great many systems can be modeled in the non-linear dynamical systems framework, as x = f(x) + xi(t), where f() is the potential function for the system, and xi is the excitation noise. Modeling the potential using a set of basis functions, we derive the posterior for the basis coefficients. A more challenging problem is to determine the set of basis functions that are required to model a particular system. We show that using the Bayesian Information Criteria (BIC) to rank models, and the beam search technique, that we can accurately determine the structure of simple non-linear dynamical system models, and the structure of the coupling between non-linear dynamical systems where the individual systems are known. This last case has important ecological applications.
Dynamic analysis of PEMFC-based CHP systems for domestic application
International Nuclear Information System (INIS)
Barelli, L.; Bidini, G.; Gallorini, F.; Ottaviano, A.
2012-01-01
Highlights: ► Dynamic model of a CHP energy system based on a PEM fuel cell was developed. ► The CHP system behavior at variable electrical and thermal load was investigated. ► The optimal RH value was assessed maximizing PEMFC performance through simulations. ► The system best operating conditions are characterized by a RH value equal to 50%. -- Abstract: Fuel cell-based CHP systems for distributed residential power generation represent an interesting alternative to traditional thermoelectric plants. This is mainly due to the high efficiency obtainable in the production of electricity and heat in a decentralised, quiet and environmental friendly way. The current paper focuses on the development, in Matlab®Simulink environment, of a complete dynamic model of a residential cogenerative (CHP) energy system consisting of the Proton Exchange Membrane fuel cell (PEMFC), fuel processor, heat exchangers, humidifier and auxiliary hot water boiler. The target of the study is the investigation through such a model of the behavior of CHP systems based on fuel cell (FC) at variable electrical and thermal load, in reference to typical load curves of residential users. With the aim to evaluate the system performance (efficiency, fuel consumption, hot water production, response time) and then to characterize its better operating conditions with particular attention to air relative humidity, suitable simulations were carried out. They are characterized by the following of a typical electrical load trend and in relation to two different thermal load profiles. The dynamic model presented in this paper has allowed to observe the fully functioning of the FC based system under variable loads and it has permitted to design appropriate control logics for this system.
Application of ESPI techniques for the study of dynamic vibrations
Krupka, Rene
2004-06-01
Full field optical measurement techniques have already entered into various fields of industrial applications covering static as well as dynamic phenomena. The electronic speckle pattern interferometry (ESPI) allows the non contact, sensitive and three dimensional measurement of displacements in the sub micron range of objects with dimensions from mm2 to m2. For dynamic and transient phenomena, the use of pulsed laser have already been reported for various applications and successfully proven for the determination of the structural response of different components. In this paper we would like to present recent developments in the field of pulsed ESPI applications where emphasis is put onto the full field measurement result. The use of a completely computer controlled system allows easy access to mode shape characterization, deformation measurements and the characterization of transient events like shock wave propagation. Recent developments of the 3D-PulseESPI technique led to a very compact and complete system with improved characteristics regarding robustness and operation. The integrated design of the illumination laser and sensors for image acquisition allows easy aiming and adjustments with respect to the object of inspection. The laser is completely computer controlled which is advantageously used in a completely automatic brake squeal inspection system, which captures the squealing signal, automatically fires the laser and provides the complete deformation map of the component under test. Examples of recent applications in the field of dynamic structure response, with an emphasis in the field of automotive applications are given.
Symmetric linear systems - An application of algebraic systems theory
Hazewinkel, M.; Martin, C.
1983-01-01
Dynamical systems which contain several identical subsystems occur in a variety of applications ranging from command and control systems and discretization of partial differential equations, to the stability augmentation of pairs of helicopters lifting a large mass. Linear models for such systems display certain obvious symmetries. In this paper, we discuss how these symmetries can be incorporated into a mathematical model that utilizes the modern theory of algebraic systems. Such systems are inherently related to the representation theory of algebras over fields. We will show that any control scheme which respects the dynamical structure either implicitly or explicitly uses the underlying algebra.
System dynamics an introduction for mechanical engineers
Seeler, Karl A
2014-01-01
This essential textbook takes the student from the initial steps in modeling a dynamic system through development of the mathematical models needed for feedback control. The generously-illustrated, student-friendly text focuses on fundamental theoretical development rather than the application of commercial software. Practical details of machine design are included to motivate the non-mathematically inclined student. This book also: Emphasizes the linear graph method for modeling dynamic systems Offers a systematic approach for creating an engineering model, extracting information, and formulating mathematical analyses Adopts a unifying theme of power flow as the dynamic agent that eases analysis of hybrid systems, such as machinery Presents differential equations as dynamic operators and stresses input/output relationships Introduces Mathcad and programming in MATLAB Allows for use of Open Source Computational Software (R or C) Features over 1000 illustrations
Dynamic graph system for a semantic database
Mizell, David
2015-01-27
A method and system in a computer system for dynamically providing a graphical representation of a data store of entries via a matrix interface is disclosed. A dynamic graph system provides a matrix interface that exposes to an application program a graphical representation of data stored in a data store such as a semantic database storing triples. To the application program, the matrix interface represents the graph as a sparse adjacency matrix that is stored in compressed form. Each entry of the data store is considered to represent a link between nodes of the graph. Each entry has a first field and a second field identifying the nodes connected by the link and a third field with a value for the link that connects the identified nodes. The first, second, and third fields represent the rows, column, and elements of the adjacency matrix.
ŽAMPA’S SYSTEMS THEORY: A COMPREHENSIVE THEORY OF MEASUREMENT IN DYNAMIC SYSTEMS
Directory of Open Access Journals (Sweden)
Renata Rychtáriková
2018-04-01
Full Text Available The article outlines in memoriam Prof. Pavel Žampa’s concepts of system theory which enable us to devise a measurement in dynamic systems independently of the particular system behaviour. From the point of view of Žampa’s theory, terms like system time, system attributes, system link, system element, input, output, sub-systems, and state variables are defined. In Conclusions, Žampa’s theory is discussed together with another mathematical approaches of qualitative dynamics known since the 19th century. In Appendices, we present applications of Žampa’s technical approach to measurement of complex dynamical (chemical and biological systems at the Institute of Complex Systems, University of South Bohemia in České Budějovice.
Papastavridis, John G
1999-01-01
Tensor Calculus and Analytical Dynamics provides a concise, comprehensive, and readable introduction to classical tensor calculus - in both holonomic and nonholonomic coordinates - as well as to its principal applications to the Lagrangean dynamics of discrete systems under positional or velocity constraints. The thrust of the book focuses on formal structure and basic geometrical/physical ideas underlying most general equations of motion of mechanical systems under linear velocity constraints.
Sternberg, Shlomo
2010-01-01
Celebrated mathematician Shlomo Sternberg, a pioneer in the field of dynamical systems, created this modern one-semester introduction to the subject for his classes at Harvard University. Its wide-ranging treatment covers one-dimensional dynamics, differential equations, random walks, iterated function systems, symbolic dynamics, and Markov chains. Supplementary materials offer a variety of online components, including PowerPoint lecture slides for professors and MATLAB exercises.""Even though there are many dynamical systems books on the market, this book is bound to become a classic. The the
Brayton dynamic isotope power systems update
International Nuclear Information System (INIS)
Davis, K.A.; Pietsch, A.; Casagrande, R.D.
1986-01-01
Brayton dynamic power systems are uniquely suited for space applications. They are compact and highly efficient, offer inherent reliability due to only one moving part, and utilize a single phase and inert working fluid. Additional features include gas bearings, constant speed, and operation at essentially constant temperature. The design, utilizing an inert gas working fluid and gas bearing, is unaffected by zero gravity and can be easily started and restarted in space at low temperatures. This paper describes the salient features of the BIPS as a Dynamic Isotope Power System (DIPS), summarizes the development work to date, establishes the maturity of the design, provides an update on materials technology, and reviews systems integration considerations
Hidden attractors in dynamical systems
Dudkowski, Dawid; Jafari, Sajad; Kapitaniak, Tomasz; Kuznetsov, Nikolay V.; Leonov, Gennady A.; Prasad, Awadhesh
2016-06-01
Complex dynamical systems, ranging from the climate, ecosystems to financial markets and engineering applications typically have many coexisting attractors. This property of the system is called multistability. The final state, i.e., the attractor on which the multistable system evolves strongly depends on the initial conditions. Additionally, such systems are very sensitive towards noise and system parameters so a sudden shift to a contrasting regime may occur. To understand the dynamics of these systems one has to identify all possible attractors and their basins of attraction. Recently, it has been shown that multistability is connected with the occurrence of unpredictable attractors which have been called hidden attractors. The basins of attraction of the hidden attractors do not touch unstable fixed points (if exists) and are located far away from such points. Numerical localization of the hidden attractors is not straightforward since there are no transient processes leading to them from the neighborhoods of unstable fixed points and one has to use the special analytical-numerical procedures. From the viewpoint of applications, the identification of hidden attractors is the major issue. The knowledge about the emergence and properties of hidden attractors can increase the likelihood that the system will remain on the most desirable attractor and reduce the risk of the sudden jump to undesired behavior. We review the most representative examples of hidden attractors, discuss their theoretical properties and experimental observations. We also describe numerical methods which allow identification of the hidden attractors.
Terzic, Jenny; Nagarajah, Romesh; Alamgir, Muhammad
2013-01-01
Accurate fluid level measurement in dynamic environments can be assessed using a Support Vector Machine (SVM) approach. SVM is a supervised learning model that analyzes and recognizes patterns. It is a signal classification technique which has far greater accuracy than conventional signal averaging methods. Ultrasonic Fluid Quantity Measurement in Dynamic Vehicular Applications: A Support Vector Machine Approach describes the research and development of a fluid level measurement system for dynamic environments. The measurement system is based on a single ultrasonic sensor. A Support Vector Machines (SVM) based signal characterization and processing system has been developed to compensate for the effects of slosh and temperature variation in fluid level measurement systems used in dynamic environments including automotive applications. It has been demonstrated that a simple ν-SVM model with Radial Basis Function (RBF) Kernel with the inclusion of a Moving Median filter could be used to achieve the high levels...
Introduction to State Estimation of High-Rate System Dynamics.
Hong, Jonathan; Laflamme, Simon; Dodson, Jacob; Joyce, Bryan
2018-01-13
Engineering systems experiencing high-rate dynamic events, including airbags, debris detection, and active blast protection systems, could benefit from real-time observability for enhanced performance. However, the task of high-rate state estimation is challenging, in particular for real-time applications where the rate of the observer's convergence needs to be in the microsecond range. This paper identifies the challenges of state estimation of high-rate systems and discusses the fundamental characteristics of high-rate systems. A survey of applications and methods for estimators that have the potential to produce accurate estimations for a complex system experiencing highly dynamic events is presented. It is argued that adaptive observers are important to this research. In particular, adaptive data-driven observers are advantageous due to their adaptability and lack of dependence on the system model.
Nonlinear dynamics in biological systems
Carballido-Landeira, Jorge
2016-01-01
This book presents recent research results relating to applications of nonlinear dynamics, focusing specifically on four topics of wide interest: heart dynamics, DNA/RNA, cell mobility, and proteins. The book derives from the First BCAM Workshop on Nonlinear Dynamics in Biological Systems, held in June 2014 at the Basque Center of Applied Mathematics (BCAM). At this international meeting, researchers from different but complementary backgrounds, including molecular dynamics, physical chemistry, bio-informatics and biophysics, presented their most recent results and discussed the future direction of their studies using theoretical, mathematical modeling and experimental approaches. Such was the level of interest stimulated that the decision was taken to produce this publication, with the organizers of the event acting as editors. All of the contributing authors are researchers working on diverse biological problems that can be approached using nonlinear dynamics. The book will appeal especially to applied math...
Dynamics and Thermodynamics of Many Particle Cold Atom Systems
2016-05-05
simulate their dynamics far from equilibrium . It is likely that these ideas will find many applications in many areas of physics, quantum chemistry and...focus of this proposal was theoretical research on various non- equilibrium phenomena in isolated quantum systems and applications to experimental setups...theoretical research on various non- equilibrium phenomena in isolated quantum systems and applications to experimental setups largely to cold atoms
Dynamic Complexity Study of Nuclear Reactor and Process Heat Application Integration
Energy Technology Data Exchange (ETDEWEB)
J' Tia Patrice Taylor; David E. Shropshire
2009-09-01
Abstract This paper describes the key obstacles and challenges facing the integration of nuclear reactors with process heat applications as they relate to dynamic issues. The paper also presents capabilities of current modeling and analysis tools available to investigate these issues. A pragmatic approach to an analysis is developed with the ultimate objective of improving the viability of nuclear energy as a heat source for process industries. The extension of nuclear energy to process heat industries would improve energy security and aid in reduction of carbon emissions by reducing demands for foreign derived fossil fuels. The paper begins with an overview of nuclear reactors and process application for potential use in an integrated system. Reactors are evaluated against specific characteristics that determine their compatibility with process applications such as heat outlet temperature. The reactor system categories include light water, heavy water, small to medium, near term high-temperature, and far term high temperature reactors. Low temperature process systems include desalination, district heating, and tar sands and shale oil recovery. High temperature processes that support hydrogen production include steam reforming, steam cracking, hydrogen production by electrolysis, and far-term applications such as the sulfur iodine chemical process and high-temperature electrolysis. A simple static matching between complementary systems is performed; however, to gain a true appreciation for system integration complexity, time dependent dynamic analysis is required. The paper identifies critical issues arising from dynamic complexity associated with integration of systems. Operational issues include scheduling conflicts and resource allocation for heat and electricity. Additionally, economic and safety considerations that could impact the successful integration of these systems are considered. Economic issues include the cost differential arising due to an integrated
Griffin, Brian Joseph; Burken, John J.; Xargay, Enric
2010-01-01
This paper presents an L(sub 1) adaptive control augmentation system design for multi-input multi-output nonlinear systems in the presence of unmatched uncertainties which may exhibit significant cross-coupling effects. A piecewise continuous adaptive law is adopted and extended for applicability to multi-input multi-output systems that explicitly compensates for dynamic cross-coupling. In addition, explicit use of high-fidelity actuator models are added to the L1 architecture to reduce uncertainties in the system. The L(sub 1) multi-input multi-output adaptive control architecture is applied to the X-29 lateral/directional dynamics and results are evaluated against a similar single-input single-output design approach.
Dynamically Authorized Role-Based Access Control for Grid Applications
Institute of Scientific and Technical Information of China (English)
YAO Hanbing; HU Heping; LU Zhengding; LI Ruixuan
2006-01-01
Grid computing is concerned with the sharing and coordinated use of diverse resources in distributed "virtual organizations". The heterogeneous, dynamic and multi-domain nature of these environments makes challenging security issues that demand new technical approaches. Despite the recent advances in access control approaches applicable to Grid computing, there remain issues that impede the development of effective access control models for Grid applications. Among them there are the lack of context-based models for access control, and reliance on identity or capability-based access control schemes. An access control scheme that resolve these issues is presented, and a dynamically authorized role-based access control (D-RBAC) model extending the RBAC with context constraints is proposed. The D-RABC mechanisms dynamically grant permissions to users based on a set of contextual information collected from the system and user's environments, while retaining the advantages of RBAC model. The implementation architecture of D-RBAC for the Grid application is also described.
Hybrid dynamical systems observation and control
Defoort, Michael
2015-01-01
This book is a collection of contributions defining the state of current knowledge and new trends in hybrid systems – systems involving both continuous dynamics and discrete events – as described by the work of several well-known groups of researchers. Hybrid Dynamical Systems presents theoretical advances in such areas as diagnosability, observability and stabilization for various classes of system. Continuous and discrete state estimation and self-triggering control of nonlinear systems are advanced. The text employs various methods, among them, high-order sliding modes, Takagi–Sugeno representation and sampled-data switching to achieve its ends. The many applications of hybrid systems from power converters to computer science are not forgotten; studies of flexible-joint robotic arms and – as representative biological systems – the behaviour of the human heart and vasculature, demonstrate the wide-ranging practical significance of control in hybrid systems. The cross-disciplinary origins of study ...
Dynamic Binary Modification Tools, Techniques and Applications
Hazelwood, Kim
2011-01-01
Dynamic binary modification tools form a software layer between a running application and the underlying operating system, providing the powerful opportunity to inspect and potentially modify every user-level guest application instruction that executes. Toolkits built upon this technology have enabled computer architects to build powerful simulators and emulators for design-space exploration, compiler writers to analyze and debug the code generated by their compilers, software developers to fully explore the features, bottlenecks, and performance of their software, and even end-users to extend
A Generalized Dynamic Model of Geared System: Establishment and Application
Directory of Open Access Journals (Sweden)
Hui Liu
2011-12-01
Full Text Available In order to make the dynamic characteristic simulation of the ordinary and planetary gears drive more accurate and more efficient , a generalized dynamic model of geared system is established including internal and external mesh gears in this paper. It is used to build a mathematical model, which achieves the auto judgment of the gear mesh state. We do not need to concern about active or passive gears any more, and the complicated power flow analysis can be avoided. With the numerical integration computation, the axis orbits diagram and dynamic gear mesh force characteristic are acquired and the results show that the dynamic response of translational displacement is greater when contacting line direction change is considered, and with the quickly change of direction of contacting line, the amplitude of mesh force would be increased, which easily causes the damage to the gear tooth. Moreover, compared with ordinary gear, dynamic responses of planetary gear would be affected greater by the gear backlash. Simulation results show the effectiveness of the generalized dynamic model and the mathematical model.
Energy Technology Data Exchange (ETDEWEB)
Do, Giang [Sol Bridge International School of Business, Daejeon (Korea, Republic of); Kim, Sakil; Lee, Yong Hee; Lee, Yong Hee [KAERI, Daejeon (Korea, Republic of)
2012-10-15
Besides technical design, organizational and human factor are of increasing interest in literature on nuclear safety. Among the methodologies employed to study these factors, System Dynamics (SD) is considered to be suitable for addressing the complexity and dynamicity of the organizational system in nuclear power plants (NPPs). In the following sections, the method will be described and its several prior applications to studying organizational safety will be introduced. An SD model with emphasis on the role of organizational learning in organizational safety will be presented.
Analysis of Dynamic Stiffness of Bridge Cap-Pile System
Directory of Open Access Journals (Sweden)
Jinhui Chu
2018-01-01
Full Text Available In order to investigate the applicability of dynamic stiffness for bridge cap-pile system, a laboratory test was performed. A numerical model was also built for this type of system. The impact load was applied on the cap top and the dynamic stiffness was analysed. Then, the effect of the effective friction area between pile and soil was also considered. Finally, the dynamic stiffness relationship between the single pile and the cap-pile system was also compared. The results show that the dynamic stiffness is a sensitive index and can well reflect the static characteristics of the pile at the elastic stage. There is a significant positive correlation between the vertical dynamic stiffness index and bearing capacity of the cap-pile system in the similar formation environment. For the cap-pile system with four piles, the dynamic stiffness is about four times as large as the single pile between 10 and 20 Hz.
Frank, T D
2015-04-01
Previous research has demonstrated that perceiving, thinking, and acting are human activities that correspond to self-organized patterns. The emergence of such patterns can be completely described in terms of the dynamics of the pattern amplitudes, which are referred to as order parameters. The patterns emerge at bifurcations points when certain system parameters internal and external to a human agent exceed critical values. At issue is how one might study the order parameter dynamics for sequences of consecutive, emergent perceptual, cognitive, or behavioral activities. In particular, these activities may in turn impact the system parameters that have led to the emergence of the activities in the first place. This interplay between order parameter dynamics and system parameter dynamics is discussed in general and formulated in mathematical terms. Previous work that has made use of this two-tiered framework of order parameter and system parameter dynamics are briefly addressed. As an application, a model for perception under functional fixedness is presented. Finally, it is argued that the phenomena that emerge in this framework and can be observed when human agents perceive, think, and act are just as likely to occur in pattern formation systems of the inanimate world. Consequently, these phenomena do not necessarily have a neurophysiological basis but should instead be understood from the perspective of the theory of self-organization.
Solar dynamic power system definition study
Wallin, Wayne E.; Friefeld, Jerry M.
1988-01-01
The solar dynamic power system design and analysis study compared Brayton, alkali-metal Rankine, and free-piston Stirling cycles with silicon planar and GaAs concentrator photovoltaic power systems for application to missions beyond the Phase 2 Space Station level of technology for all power systems. Conceptual designs for Brayton and Stirling power systems were developed for 35 kWe and 7 kWe power levels. All power systems were designed for 7-year end-of-life conditions in low Earth orbit. LiF was selected for thermal energy storage for the solar dynamic systems. Results indicate that the Stirling cycle systems have the highest performance (lowest weight and area) followed by the Brayton cycle, with photovoltaic systems considerably lower in performance. For example, based on the performance assumptions used, the planar silicon power system weight was 55 to 75 percent higher than for the Stirling system. A technology program was developed to address areas wherein significant performance improvements could be realized relative to the current state-of-the-art as represented by Space Station. In addition, a preliminary evaluation of hardenability potential found that solar dynamic systems can be hardened beyond the hardness inherent in the conceptual designs of this study.
Ancrage dynamique: principales applications Dynamic Positioning: Main Applications
Directory of Open Access Journals (Sweden)
Fay H.
2006-11-01
Full Text Available L'ancrage dynamique est la technique qui a permis à la recherche pétrolière d'étendre ses possibilités bien au-delà des plateaux continentaux, sans limitation de profondeur, pour des opérations difficiles, ou encore dans un environnement océanométéorologique sévère, comme celui de la mer du Nord et des mers froides avec la présence d'icebergs. Cet article correspond à des extraits de l'ouvrage Ancrage dynamique. Technique et applications , à paraître aux Editions Technip. Après un bref rappel historique et un exposé succinct des caractéristiques des systèmes d'ancrage dynamique, les principales réalisations de navires et de plates-formes semi-submersibles équipées d'un ancrage dynamique sont présentées. La précision du maintien en position, ainsi que les limites opérationnelles des supports considérés sont de même exposées. Enfin la conclusion retrace les avantages de ce procédé, dont l'exceptionnel développement s'applique aussi aux domaines scientifiques et militaires, ainsi qu'à d'autres secteurs industriels que celui des hydrocarbures. Dynamic positioning is the technique that has enabled oil exploration to extend its possibilities far beyond continental shelves, without any limitation of water depth, for difficult operations or else in harsh environments such as for the North Sea and arctic zones with the presence of icebergs. This paper consists of extracts from the book Dynamic Positioning. Technique and Applications , to be published by Editions Technip. After a brief historical review and a succinct survey of the characteristics of dynamic positioning systems, the principal realizations of ships and semi-submersible platforms equipped with a dynamic positioning system are described. The accuracy of position holding capability as well as the operational limits of the supports considered are also described. The conclusion reviews the advantages of this technique, whose exceptional development also
Molecular quantum dynamics. From theory to applications
International Nuclear Information System (INIS)
Gatti, Fabien
2014-01-01
An educational and accessible introduction to the field of molecular quantum dynamics. Illustrates the importance of the topic for broad areas of science: from astrophysics and the physics of the atmosphere, over elementary processes in chemistry, to biological processes. Presents chosen examples of striking applications, highlighting success stories, summarized by the internationally renowned experts. Including a foreword by Lorenz Cederbaum (University Heidelberg, Germany). This book focuses on current applications of molecular quantum dynamics. Examples from all main subjects in the field, presented by the internationally renowned experts, illustrate the importance of the domain. Recent success in helping to understand experimental observations in fields like heterogeneous catalysis, photochemistry, reactive scattering, optical spectroscopy, or femto- and attosecond chemistry and spectroscopy underline that nuclear quantum mechanical effects affect many areas of chemical and physical research. In contrast to standard quantum chemistry calculations, where the nuclei are treated classically, molecular quantum dynamics can cover quantum mechanical effects in their motion. Many examples, ranging from fundamental to applied problems, are known today that are impacted by nuclear quantum mechanical effects, including phenomena like tunneling, zero point energy effects, or non-adiabatic transitions. Being important to correctly understand many observations in chemical, organic and biological systems, or for the understanding of molecular spectroscopy, the range of applications covered in this book comprises broad areas of science: from astrophysics and the physics and chemistry of the atmosphere, over elementary processes in chemistry, to biological processes (such as the first steps of photosynthesis or vision). Nevertheless, many researchers refrain from entering this domain. The book ''Molecular Quantum Dynamics'' offers them an accessible introduction. Although the
Molecular quantum dynamics. From theory to applications
Energy Technology Data Exchange (ETDEWEB)
Gatti, Fabien (ed.) [Montpellier 2 Univ. (France). Inst. Charles Gerhardt - CNRS 5253
2014-09-01
An educational and accessible introduction to the field of molecular quantum dynamics. Illustrates the importance of the topic for broad areas of science: from astrophysics and the physics of the atmosphere, over elementary processes in chemistry, to biological processes. Presents chosen examples of striking applications, highlighting success stories, summarized by the internationally renowned experts. Including a foreword by Lorenz Cederbaum (University Heidelberg, Germany). This book focuses on current applications of molecular quantum dynamics. Examples from all main subjects in the field, presented by the internationally renowned experts, illustrate the importance of the domain. Recent success in helping to understand experimental observations in fields like heterogeneous catalysis, photochemistry, reactive scattering, optical spectroscopy, or femto- and attosecond chemistry and spectroscopy underline that nuclear quantum mechanical effects affect many areas of chemical and physical research. In contrast to standard quantum chemistry calculations, where the nuclei are treated classically, molecular quantum dynamics can cover quantum mechanical effects in their motion. Many examples, ranging from fundamental to applied problems, are known today that are impacted by nuclear quantum mechanical effects, including phenomena like tunneling, zero point energy effects, or non-adiabatic transitions. Being important to correctly understand many observations in chemical, organic and biological systems, or for the understanding of molecular spectroscopy, the range of applications covered in this book comprises broad areas of science: from astrophysics and the physics and chemistry of the atmosphere, over elementary processes in chemistry, to biological processes (such as the first steps of photosynthesis or vision). Nevertheless, many researchers refrain from entering this domain. The book ''Molecular Quantum Dynamics'' offers them an accessible
Estimation of system parameters in discrete dynamical systems from time series
International Nuclear Information System (INIS)
Palaniyandi, P.; Lakshmanan, M.
2005-01-01
We propose a simple method to estimate the parameters involved in discrete dynamical systems from time series. The method is based on the concept of controlling chaos by constant feedback. The major advantages of the method are that it needs a minimal number of time series data (either vector or scalar) and is applicable to dynamical systems of any dimension. The method also works extremely well even in the presence of noise in the time series. The method is specifically illustrated by means of logistic and Henon maps
A first course in fuzzy logic, fuzzy dynamical systems, and biomathematics theory and applications
de Barros, Laécio Carvalho; Lodwick, Weldon Alexander
2017-01-01
This book provides an essential introduction to the field of dynamical models. Starting from classical theories such as set theory and probability, it allows readers to draw near to the fuzzy case. On one hand, the book equips readers with a fundamental understanding of the theoretical underpinnings of fuzzy sets and fuzzy dynamical systems. On the other, it demonstrates how these theories are used to solve modeling problems in biomathematics, and presents existing derivatives and integrals applied to the context of fuzzy functions. Each of the major topics is accompanied by examples, worked-out exercises, and exercises to be completed. Moreover, many applications to real problems are presented. The book has been developed on the basis of the authors’ lectures to university students and is accordingly primarily intended as a textbook for both upper-level undergraduates and graduates in applied mathematics, statistics, and engineering. It also offers a valuable resource for practitioners such as mathematical...
System crash as dynamics of complex networks.
Yu, Yi; Xiao, Gaoxi; Zhou, Jie; Wang, Yubo; Wang, Zhen; Kurths, Jürgen; Schellnhuber, Hans Joachim
2016-10-18
Complex systems, from animal herds to human nations, sometimes crash drastically. Although the growth and evolution of systems have been extensively studied, our understanding of how systems crash is still limited. It remains rather puzzling why some systems, appearing to be doomed to fail, manage to survive for a long time whereas some other systems, which seem to be too big or too strong to fail, crash rapidly. In this contribution, we propose a network-based system dynamics model, where individual actions based on the local information accessible in their respective system structures may lead to the "peculiar" dynamics of system crash mentioned above. Extensive simulations are carried out on synthetic and real-life networks, which further reveal the interesting system evolution leading to the final crash. Applications and possible extensions of the proposed model are discussed.
Uncertain dynamical systems: A differential game approach
Gutman, S.
1976-01-01
A class of dynamical systems in a conflict situation is formulated and discussed, and the formulation is applied to the study of an important class of systems in the presence of uncertainty. The uncertainty is deterministic and the only assumption is that its value belongs to a known compact set. Asymptotic stability is fully discussed with application to variable structure and model reference control systems.
Parameterizing Coefficients of a POD-Based Dynamical System
Kalb, Virginia L.
2010-01-01
A method of parameterizing the coefficients of a dynamical system based of a proper orthogonal decomposition (POD) representing the flow dynamics of a viscous fluid has been introduced. (A brief description of POD is presented in the immediately preceding article.) The present parameterization method is intended to enable construction of the dynamical system to accurately represent the temporal evolution of the flow dynamics over a range of Reynolds numbers. The need for this or a similar method arises as follows: A procedure that includes direct numerical simulation followed by POD, followed by Galerkin projection to a dynamical system has been proven to enable representation of flow dynamics by a low-dimensional model at the Reynolds number of the simulation. However, a more difficult task is to obtain models that are valid over a range of Reynolds numbers. Extrapolation of low-dimensional models by use of straightforward Reynolds-number-based parameter continuation has proven to be inadequate for successful prediction of flows. A key part of the problem of constructing a dynamical system to accurately represent the temporal evolution of the flow dynamics over a range of Reynolds numbers is the problem of understanding and providing for the variation of the coefficients of the dynamical system with the Reynolds number. Prior methods do not enable capture of temporal dynamics over ranges of Reynolds numbers in low-dimensional models, and are not even satisfactory when large numbers of modes are used. The basic idea of the present method is to solve the problem through a suitable parameterization of the coefficients of the dynamical system. The parameterization computations involve utilization of the transfer of kinetic energy between modes as a function of Reynolds number. The thus-parameterized dynamical system accurately predicts the flow dynamics and is applicable to a range of flow problems in the dynamical regime around the Hopf bifurcation. Parameter
Structure Learning in Stochastic Non-linear Dynamical Systems
Morris, R. D.; Smelyanskiy, V. N.; Luchinsky, D. G.
2005-12-01
A great many systems can be modeled in the non-linear dynamical systems framework, as x˙ = f(x) + ξ(t), where f(x) is the potential function for the system, and ξ(t) is the driving noise. Modeling the potential using a set of basis functions, we derive the posterior for the basis coefficients. A more challenging problem is to determine the set of basis functions that are required to model a particular system. We show that using the Bayesian Information Criteria (BIC) to rank models, and the beam search technique, that we can accurately determine the structure of simple non-linear dynamical system models, and the structure of the coupling between non-linear dynamical systems where the individual systems are known. This last case has important ecological applications, for example in predator-prey systems, where the very structure of the coupling between predator-prey pairs can have great ecological significance.
Cognitive Models for Learning to Control Dynamic Systems
National Research Council Canada - National Science Library
Eberhart, Russ; Hu, Xiaohui; Chen, Yaobin
2008-01-01
Report developed under STTR contract for topic "Cognitive models for learning to control dynamic systems" demonstrated a swarm intelligence learning algorithm and its application in unmanned aerial vehicle (UAV) mission planning...
Dynamic defense and network randomization for computer systems
Chavez, Adrian R.; Stout, William M. S.; Hamlet, Jason R.; Lee, Erik James; Martin, Mitchell Tyler
2018-05-29
The various technologies presented herein relate to determining a network attack is taking place, and further to adjust one or more network parameters such that the network becomes dynamically configured. A plurality of machine learning algorithms are configured to recognize an active attack pattern. Notification of the attack can be generated, and knowledge gained from the detected attack pattern can be utilized to improve the knowledge of the algorithms to detect a subsequent attack vector(s). Further, network settings and application communications can be dynamically randomized, wherein artificial diversity converts control systems into moving targets that help mitigate the early reconnaissance stages of an attack. An attack(s) based upon a known static address(es) of a critical infrastructure network device(s) can be mitigated by the dynamic randomization. Network parameters that can be randomized include IP addresses, application port numbers, paths data packets navigate through the network, application randomization, etc.
Marcus, Kelvin
2014-06-01
The U.S Army Research Laboratory (ARL) has built a "Network Science Research Lab" to support research that aims to improve their ability to analyze, predict, design, and govern complex systems that interweave the social/cognitive, information, and communication network genres. Researchers at ARL and the Network Science Collaborative Technology Alliance (NS-CTA), a collaborative research alliance funded by ARL, conducted experimentation to determine if automated network monitoring tools and task-aware agents deployed within an emulated tactical wireless network could potentially increase the retrieval of relevant data from heterogeneous distributed information nodes. ARL and NS-CTA required the capability to perform this experimentation over clusters of heterogeneous nodes with emulated wireless tactical networks where each node could contain different operating systems, application sets, and physical hardware attributes. Researchers utilized the Dynamically Allocated Virtual Clustering Management System (DAVC) to address each of the infrastructure support requirements necessary in conducting their experimentation. The DAVC is an experimentation infrastructure that provides the means to dynamically create, deploy, and manage virtual clusters of heterogeneous nodes within a cloud computing environment based upon resource utilization such as CPU load, available RAM and hard disk space. The DAVC uses 802.1Q Virtual LANs (VLANs) to prevent experimentation crosstalk and to allow for complex private networks. Clusters created by the DAVC system can be utilized for software development, experimentation, and integration with existing hardware and software. The goal of this paper is to explore how ARL and the NS-CTA leveraged the DAVC to create, deploy and manage multiple experimentation clusters to support their experimentation goals.
Application of dynamical system methods to galactic dynamics : from warps to double bars
Sánchez Martín, Patricia
2015-01-01
Most galaxies have a warped shape when they are seen from an edge-on point of view. In this work we apply dynamical system methods to find an explanation of this phenomenon that agrees with its abundance among galaxies, its persistence in time and the angular size of observed warps. Starting from a simple, but realistic, 3D galaxy model formed by a bar and a flat disc, we study the effect produced by a small misalignment between the angular momentum of the system and its angular velocity. ...
Shape Distributions of Nonlinear Dynamical Systems for Video-Based Inference.
Venkataraman, Vinay; Turaga, Pavan
2016-12-01
This paper presents a shape-theoretic framework for dynamical analysis of nonlinear dynamical systems which appear frequently in several video-based inference tasks. Traditional approaches to dynamical modeling have included linear and nonlinear methods with their respective drawbacks. A novel approach we propose is the use of descriptors of the shape of the dynamical attractor as a feature representation of nature of dynamics. The proposed framework has two main advantages over traditional approaches: a) representation of the dynamical system is derived directly from the observational data, without any inherent assumptions, and b) the proposed features show stability under different time-series lengths where traditional dynamical invariants fail. We illustrate our idea using nonlinear dynamical models such as Lorenz and Rossler systems, where our feature representations (shape distribution) support our hypothesis that the local shape of the reconstructed phase space can be used as a discriminative feature. Our experimental analyses on these models also indicate that the proposed framework show stability for different time-series lengths, which is useful when the available number of samples are small/variable. The specific applications of interest in this paper are: 1) activity recognition using motion capture and RGBD sensors, 2) activity quality assessment for applications in stroke rehabilitation, and 3) dynamical scene classification. We provide experimental validation through action and gesture recognition experiments on motion capture and Kinect datasets. In all these scenarios, we show experimental evidence of the favorable properties of the proposed representation.
Pharmaceutical applications of dynamic mechanical thermal analysis.
Jones, David S; Tian, Yiwei; Abu-Diak, Osama; Andrews, Gavin P
2012-04-01
The successful development of polymeric drug delivery and biomedical devices requires a comprehensive understanding of the viscoleastic properties of polymers as these have been shown to directly affect clinical efficacy. Dynamic mechanical thermal analysis (DMTA) is an accessible and versatile analytical technique in which an oscillating stress or strain is applied to a sample as a function of oscillatory frequency and temperature. Through cyclic application of a non-destructive stress or strain, a comprehensive understanding of the viscoelastic properties of polymers may be obtained. In this review, we provide a concise overview of the theory of DMTA and the basic instrumental/operating principles. Moreover, the application of DMTA for the characterization of solid pharmaceutical and biomedical systems has been discussed in detail. In particular we have described the potential of DMTA to measure and understand relaxation transitions and miscibility in binary and higher-order systems and describe the more recent applications of the technique for this purpose. © 2011 Elsevier B.V. All rights reserved.
Brand Equity Evolution: a System Dynamics Model
Directory of Open Access Journals (Sweden)
Edson Crescitelli
2009-04-01
Full Text Available One of the greatest challenges in brand management lies in monitoring brand equity over time. This paper aimsto present a simulation model able to represent this evolution. The model was drawn on brand equity concepts developed by Aaker and Joachimsthaler (2000, using the system dynamics methodology. The use ofcomputational dynamic models aims to create new sources of information able to sensitize academics and managers alike to the dynamic implications of their brand management. As a result, an easily implementable model was generated, capable of executing continuous scenario simulations by surveying casual relations among the variables that explain brand equity. Moreover, the existence of a number of system modeling tools will allow extensive application of the concepts used in this study in practical situations, both in professional and educational settings
Dynamic modeling of hybrid renewable energy systems for off-grid applications
Hasemeyer, Mark David
The volatile prices of fossil fuels and their contribution to global warming have caused many people to turn to renewable energy systems. Many developing communities are forced to use these systems as they are too far from electrical distribution. As a result, numerous software models have been developed to simulate hybrid renewable energy systems. However almost, if not all, implementations are static in design. A static design limits the ability of the model to account for changes over time. Dynamic modeling can be used to fill the gaps where other modeling techniques fall short. This modeling practice allows the user to account for the effects of technological and economic factors over time. These factors can include changes in energy demand, energy production, and income level. Dynamic modeling can be particularly useful for developing communities who are off-grid and developing at rapid rates. In this study, a dynamic model was used to evaluate a real world system. A non-governmental organization interested in improving their current infrastructure was selected. Five different scenarios were analyzed and compared in order to discover which factors the model is most sensitive to. In four of the scenarios, a new energy system was purchased in order to account for the opening of a restaurant that would be used as a source of local income generation. These scenarios were then compared to a base case in which a new system was not purchased, and the restaurant was not opened. Finally, the results were used to determine which variables had the greatest impact on the various outputs of the simulation.
On a p-adic Cubic Generalized Logistic Dynamical System
International Nuclear Information System (INIS)
Mukhamedov, Farrukh; Rozali, Wan Nur Fairuz Alwani Wan
2013-01-01
Applications of p-adic numbers mathematical physics, quantum mechanics stimulated increasing interest in the study of p-adic dynamical system. One of the interesting investigations is p-adic logistics map. In this paper, we consider a new generalization, namely we study a dynamical system of the form f a (x) = ax(1−x 2 ). The paper is devoted to the investigation of a trajectory of the given system. We investigate the generalized logistic dynamical system with respect to parameter a and we restrict ourselves for the investigation of the case |a| p < 1. We study the existence of the fixed points and their behavior. Moreover, we describe their size of attractors and Siegel discs since the structure of the orbits of the system is related to the geometry of the p-adic Siegel discs.
Dynamic vibrations in wind energy systems: Application to vertical axis wind turbine
Mabrouk, Imen Bel; El Hami, Abdelkhalak; Walha, Lassâad; Zghal, Bacem; Haddar, Mohamed
2017-02-01
Dynamic analysis of Darrieus turbine bevel spur gear subjected to transient aerodynamic loads is carried out in the present study. The aerodynamic torque is obtained by solving the two dimensional unsteady incompressible Navies Stocks equation with the k-ω shear stress transport turbulence model. The results are presented for several values of tip speed ratio. The two-dimensional Computational Fluid Dynamics model is validated with experimental results. The optimum tip speed ratio is achieved, giving the best overall performance. In this study, we developed a lamped mass dynamic model with 14 degrees of freedom. This model is excited by external and internal issues sources. The main factors of these excitations are the periodic fluctuations of the gear meshes' stiffness and the unsteady aerodynamic torque oscillations. The vibration responses are obtained in time and frequency domains. The originality of our work is the correlation between the complexity of the aerodynamic phenomenon and the non-stationary dynamics vibration of the mechanical gearing system. The effect of the rotational speed on the dynamic behavior of the Darrieus turbine is also discussed. The present study shows that the variation of rotor rotational speed directly affects the torque production. However, there is a small change in the dynamic vibration of the studied gearing system.
Coordinated scheduling for dynamic real-time systems
Natarajan, Swaminathan; Zhao, Wei
1994-01-01
In this project, we addressed issues in coordinated scheduling for dynamic real-time systems. In particular, we concentrated on design and implementation of a new distributed real-time system called R-Shell. The design objective of R-Shell is to provide computing support for space programs that have large, complex, fault-tolerant distributed real-time applications. In R-shell, the approach is based on the concept of scheduling agents, which reside in the application run-time environment, and are customized to provide just those resource management functions which are needed by the specific application. With this approach, we avoid the need for a sophisticated OS which provides a variety of generalized functionality, while still not burdening application programmers with heavy responsibility for resource management. In this report, we discuss the R-Shell approach, summarize the achievement of the project, and describe a preliminary prototype of R-Shell system.
Dynamic characteristics of an automotive fuel cell system for transitory load changes
DEFF Research Database (Denmark)
Rabbani, Raja Abid; Rokni, Masoud
2013-01-01
A dynamic model of Polymer Electrolyte Membrane Fuel Cell (PEMFC) system is developed to investigate the behavior and transient response of a fuel cell system for automotive applications. Fuel cell dynamics are subjected to reactant flows, heat management and water transportation inside the fuel...
Application of nonlinear systems in nanomechanics and nanofluids analytical methods and applications
Ganji, Davood Domairry
2015-01-01
With Application of Nonlinear Systems in Nanomechanics and Nanofluids the reader gains a deep and practice-oriented understanding of nonlinear systems within areas of nanotechnology application as well as the necessary knowledge enabling the handling of such systems. The book helps readers understand relevant methods and techniques for solving nonlinear problems, and is an invaluable reference for researchers, professionals and PhD students interested in research areas and industries where nanofluidics and dynamic nano-mechanical systems are studied or applied. The book is useful in areas suc
Frew, E.; Argrow, B. M.; Houston, A. L.; Weiss, C.
2014-12-01
The energy-aware airborne dynamic, data-driven application system (EA-DDDAS) performs persistent sampling in complex atmospheric conditions by exploiting wind energy using the dynamic data-driven application system paradigm. The main challenge for future airborne sampling missions is operation with tight integration of physical and computational resources over wireless communication networks, in complex atmospheric conditions. The physical resources considered here include sensor platforms, particularly mobile Doppler radar and unmanned aircraft, the complex conditions in which they operate, and the region of interest. Autonomous operation requires distributed computational effort connected by layered wireless communication. Onboard decision-making and coordination algorithms can be enhanced by atmospheric models that assimilate input from physics-based models and wind fields derived from multiple sources. These models are generally too complex to be run onboard the aircraft, so they need to be executed in ground vehicles in the field, and connected over broadband or other wireless links back to the field. Finally, the wind field environment drives strong interaction between the computational and physical systems, both as a challenge to autonomous path planning algorithms and as a novel energy source that can be exploited to improve system range and endurance. Implementation details of a complete EA-DDDAS will be provided, along with preliminary flight test results targeting coherent boundary-layer structures.
Dynamics of High-Speed Precision Geared Rotor Systems
Directory of Open Access Journals (Sweden)
Lim Teik C.
2014-07-01
Full Text Available Gears are one of the most widely applied precision machine elements in power transmission systems employed in automotive, aerospace, marine, rail and industrial applications because of their reliability, precision, efficiency and versatility. Fundamentally, gears provide a very practical mechanism to transmit motion and mechanical power between two rotating shafts. However, their performance and accuracy are often hampered by tooth failure, vibrations and whine noise. This is most acute in high-speed, high power density geared rotor systems, which is the primary scope of this paper. The present study focuses on the development of a gear pair mathematical model for use to analyze the dynamics of power transmission systems. The theory includes the gear mesh representation derived from results of the quasi-static tooth contact analysis. This proposed gear mesh theory comprising of transmission error, mesh point, mesh stiffness and line-of-action nonlinear, time-varying parameters can be easily incorporated into a variety of transmission system models ranging from the lumped parameter type to detailed finite element representation. The gear dynamic analysis performed led to the discovery of the out-of-phase gear pair torsion modes that are responsible for much of the mechanical problems seen in gearing applications. The paper concludes with a discussion on effectual design approaches to minimize the influence of gear dynamics and to mitigate gear failure in practical power transmission systems.
BENCHMARKING AND CONFIGURATION OF OPENSOURCE MANUFACTURING EXECUTION SYSTEM (MES APPLICATION
Directory of Open Access Journals (Sweden)
Ganesha Nur Laksmana
2013-05-01
Full Text Available Information now is an important element to every growing industry in the world. Inorder to keep up with other competitors, endless improvements in optimizing overall efficiency areneeded. There still exist barriers that separate departments in PT. XYZ and cause limitation to theinformation sharing in the system. Open-Source Manufacturing Execution System (MES presentsas an IT-based application that offers wide variety of customization to eliminate stovepipes bysharing information between departments. Benchmarking is used to choose the best Open-SourceMES Application; and Dynamic System Development Method (DSDM is adopted as this workguideline. As a result, recommendations of the chosen Open-Source MES Application arerepresented.Keywords: Manufacturing Execution System (MES; Open Source; Dynamic SystemDevelopment Method (DSDM; Benchmarking; Configuration
Dynamic Systems and Control Engineering
International Nuclear Information System (INIS)
Kim, Jong Seok
1994-02-01
This book deals with introduction of dynamic system and control engineering, frequency domain modeling of dynamic system, temporal modeling of dynamic system, typical dynamic system and automatic control device, performance and stability of control system, root locus analysis, analysis of frequency domain dynamic system, design of frequency domain dynamic system, design and analysis of space, space of control system and digital control system such as control system design of direct digital and digitalization of consecutive control system.
Dynamic Systems and Control Engineering
Energy Technology Data Exchange (ETDEWEB)
Kim, Jong Seok
1994-02-15
This book deals with introduction of dynamic system and control engineering, frequency domain modeling of dynamic system, temporal modeling of dynamic system, typical dynamic system and automatic control device, performance and stability of control system, root locus analysis, analysis of frequency domain dynamic system, design of frequency domain dynamic system, design and analysis of space, space of control system and digital control system such as control system design of direct digital and digitalization of consecutive control system.
Application of dynamical systems theory to the high angle of attack dynamics of the F-14
Jahnke, Craig C.; Culick, Fred E. C.
1990-01-01
Dynamical systems theory has been used to study the nonlinear dynamics of the F-14. An eight degree of freedom model that does not include the control system present in operational F-14s has been analyzed. The aerodynamic model, supplied by NASA, includes nonlinearities as functions of the angles of attack and sideslip, the rotation rate, and the elevator deflection. A continuation method has been used to calculate the steady states of the F-14 as continuous functions of the control surface deflections. Bifurcations of these steady states have been used to predict the onset of wing rock, spiral divergence, and jump phenomena which cause the aircraft to enter a spin. A simple feedback control system was designed to eliminate the wing rock and spiral divergence instabilities. The predictions were verified with numerical simulations.
Abstraction of Dynamical Systems by Timed Automata
DEFF Research Database (Denmark)
Wisniewski, Rafael; Sloth, Christoffer
2011-01-01
To enable formal verification of a dynamical system, given by a set of differential equations, it is abstracted by a finite state model. This allows for application of methods for model checking. Consequently, it opens the possibility of carrying out the verification of reachability and timing re...
Automated design of complex dynamic systems.
Directory of Open Access Journals (Sweden)
Michiel Hermans
Full Text Available Several fields of study are concerned with uniting the concept of computation with that of the design of physical systems. For example, a recent trend in robotics is to design robots in such a way that they require a minimal control effort. Another example is found in the domain of photonics, where recent efforts try to benefit directly from the complex nonlinear dynamics to achieve more efficient signal processing. The underlying goal of these and similar research efforts is to internalize a large part of the necessary computations within the physical system itself by exploiting its inherent non-linear dynamics. This, however, often requires the optimization of large numbers of system parameters, related to both the system's structure as well as its material properties. In addition, many of these parameters are subject to fabrication variability or to variations through time. In this paper we apply a machine learning algorithm to optimize physical dynamic systems. We show that such algorithms, which are normally applied on abstract computational entities, can be extended to the field of differential equations and used to optimize an associated set of parameters which determine their behavior. We show that machine learning training methodologies are highly useful in designing robust systems, and we provide a set of both simple and complex examples using models of physical dynamical systems. Interestingly, the derived optimization method is intimately related to direct collocation a method known in the field of optimal control. Our work suggests that the application domains of both machine learning and optimal control have a largely unexplored overlapping area which envelopes a novel design methodology of smart and highly complex physical systems.
Parallel processing for fluid dynamics applications
International Nuclear Information System (INIS)
Johnson, G.M.
1989-01-01
The impact of parallel processing on computational science and, in particular, on computational fluid dynamics is growing rapidly. In this paper, particular emphasis is given to developments which have occurred within the past two years. Parallel processing is defined and the reasons for its importance in high-performance computing are reviewed. Parallel computer architectures are classified according to the number and power of their processing units, their memory, and the nature of their connection scheme. Architectures which show promise for fluid dynamics applications are emphasized. Fluid dynamics problems are examined for parallelism inherent at the physical level. CFD algorithms and their mappings onto parallel architectures are discussed. Several example are presented to document the performance of fluid dynamics applications on present-generation parallel processing devices
Model order reduction of large-scale dynamical systems with Jacobi-Davidson style eigensolvers
Benner, P.; Hochstenbach, M.E.; Kürschner, P.
2011-01-01
Many applications concerning physical and technical processes employ dynamical systems for simulation purposes. The increasing demand for a more accurate and detailed description of realistic phenomena leads to high dimensional dynamical systems and hence, simulation often yields an increased
Vehicle dynamics theory and application
Jazar, Reza N
2017-01-01
This intermediate textbook is appropriate for students in vehicle dynamics courses, in their last year of undergraduate study or their first year of graduate study. It is also appropriate for mechanical engineers, automotive engineers, and researchers in the area of vehicle dynamics for continuing education or as a reference. It addresses fundamental and advanced topics, and a basic knowledge of kinematics and dynamics, as well as numerical methods, is expected. The contents are kept at a theoretical-practical level, with a strong emphasis on application. This third edition has been reduced by 25%, to allow for coverage over one semester, as opposed to the previous edition that needed two semesters for coverage. The textbook is composed of four parts: Vehicle Motion: covers tire dynamics, forward vehicle dynamics, and driveline dynamics Vehicle Kinematics: covers applied kinematics, applied mechanisms, steering dynamics, and suspension mechanisms Vehicle Dynamics: covers applied dynamics, vehicle planar dynam...
Parareal in Time for Dynamic Simulations of Power Systems
Energy Technology Data Exchange (ETDEWEB)
Gurrala, Gurunath [ORNL; Dimitrovski, Aleksandar D [ORNL; Pannala, Sreekanth [ORNL; Simunovic, Srdjan [ORNL; Starke, Michael R [ORNL
2015-01-01
In recent years, there have been significant developments in parallel algorithms and high performance parallel computing platforms. Parareal in time algorithm has become popular for long transient simulations (e.g., molecular dynamics, fusion, reacting flows). Parareal is a parallel algorithm which divides the time interval into sub-intervals and solves them concurrently. This paper investigates the applicability of the parareal algorithm to power system dynamic simulations. Preliminary results on the application of parareal for multi-machine power systems are reported in this paper. Two widely used test systems, WECC 3-generator 9-bus system, New England 10-generator 39- bus system, is used to explore the effectiveness of the parareal. Severe 3 phase bus faults are simulated using both the classical and detailed models of multi-machine power systems. Actual Speedup of 5-7 times is observed assuming ideal parallelization. It has been observed that the speedup factors of the order of 20 can be achieved by using fast coarse approximations of power system models. Dependency of parareal convergence on fault duration and location has been observed.
Interactive Dynamic-System Simulation
Korn, Granino A
2010-01-01
Showing you how to use personal computers for modeling and simulation, Interactive Dynamic-System Simulation, Second Edition provides a practical tutorial on interactive dynamic-system modeling and simulation. It discusses how to effectively simulate dynamical systems, such as aerospace vehicles, power plants, chemical processes, control systems, and physiological systems. Written by a pioneer in simulation, the book introduces dynamic-system models and explains how software for solving differential equations works. After demonstrating real simulation programs with simple examples, the author
Study of spatially extended dynamical systems using probabilistic cellular automata
International Nuclear Information System (INIS)
Vanag, Vladimir K
1999-01-01
Spatially extended dynamical systems are ubiquitous and include such things as insect and animal populations; complex chemical, technological, and geochemical processes; humanity itself, and much more. It is clearly desirable to have a certain universal tool with which the highly complex behaviour of nonlinear dynamical systems can be analyzed and modelled. For this purpose, cellular automata seem to be good candidates. In the present review, emphasis is placed on the possibilities that various types of probabilistic cellular automata (PCA), such as DSMC (direct simulation Monte Carlo) and LGCA (lattice-gas cellular automata), offer. The methods are primarily designed for modelling spatially extended dynamical systems with inner fluctuations accounted for. For the Willamowskii-Roessler and Oregonator models, PCA applications to the following problems are illustrated: the effect of fluctuations on the dynamics of nonlinear systems; Turing structure formation; the effect of hydrodynamic modes on the behaviour of nonlinear chemical systems (stirring effects); bifurcation changes in the dynamical regimes of complex systems with restricted geometry or low spatial dimension; and the description of chemical systems in microemulsions. (reviews of topical problems)
Development of Patient Status-Based Dynamic Access System for Medical Information Systems
Directory of Open Access Journals (Sweden)
Chang Won Jeong
2015-06-01
Full Text Available Recently, the hospital information system environment using IT communication technology and utilization of medical information has been increasing. In the medical field, the medical information system only supports the transfer of patient information to medical staff through an electronic health record, without information about patient status. Hence, it needs a method of real-time monitoring for the patient. Also, in this environment, a secure method in approaching healthcare through various smart devices is required. Therefore, in this paper, in order to classify the status of the patients, we propose a dynamic approach of the medical information system in a hospital information environment using the dynamic access control method. Also, we applied the symmetric method of AES (Advanced Encryption Standard. This was the best encryption algorithm for sending and receiving biological information. We can define usefulness as the dynamic access application service based on the final result of the proposed system. The proposed system is expected to provide a new solution for a convenient medical information system.
Emergence in Dynamical Systems
Directory of Open Access Journals (Sweden)
John Collier
2013-12-01
Full Text Available Emergence is a term used in many contexts in current science; it has become fashionable. It has a traditional usage in philosophy that started in 1875 and was expanded by J. S. Mill (earlier, under a different term and C. D. Broad. It is this form of emergence that I am concerned with here. I distinguish it from uses like ‘computational emergence,’ which can be reduced to combinations of program steps, or its application to merely surprising new features that appear in complex combinations of parts. I will be concerned specifically with ontological emergence that has the logical properties required by Mill and Broad (though there might be some quibbling about the details of their views. I restrict myself to dynamical systems that are embodied in processes. Everything that we can interact with through sensation or action is either dynamical or can be understood in dynamical terms, so this covers all comprehensible forms of emergence in the strong (nonreducible sense I use. I will give general dynamical conditions that underlie the logical conditions traditionally assigned to emergence in nature.The advantage of this is that, though we cannot test logical conditions directly, we can test dynamical conditions. This gives us an empirical and realistic form of emergence, contrary those who say it is a matter of perspective.
Thin film coatings for space electrical power system applications
Gulino, Daniel A.
1988-01-01
This paper examines some of the ways in which thin film coatings can play a role in aerospace applications. Space systems discussed include photovoltaic and solar dynamic electric power generation systems, including applications in environmental protection, thermal energy storage, and radiator emittance enhancement. Potential applications of diamondlike films to both atmospheric and space based systems are examined. Also, potential uses of thin films of the recently discovered high-temperature superconductive materials are discussed.
Taylor, Lawrence W., Jr.; Rajiyah, H.
1991-01-01
Partial differential equations for modeling the structural dynamics and control systems of flexible spacecraft are applied here in order to facilitate systems analysis and optimization of these spacecraft. Example applications are given, including the structural dynamics of SCOLE, the Solar Array Flight Experiment, the Mini-MAST truss, and the LACE satellite. The development of related software is briefly addressed.
System Dynamic Analysis of a Wind Tunnel Model with Applications to Improve Aerodynamic Data Quality
Buehrle, Ralph David
1997-01-01
The research investigates the effect of wind tunnel model system dynamics on measured aerodynamic data. During wind tunnel tests designed to obtain lift and drag data, the required aerodynamic measurements are the steady-state balance forces and moments, pressures, and model attitude. However, the wind tunnel model system can be subjected to unsteady aerodynamic and inertial loads which result in oscillatory translations and angular rotations. The steady-state force balance and inertial model attitude measurements are obtained by filtering and averaging data taken during conditions of high model vibrations. The main goals of this research are to characterize the effects of model system dynamics on the measured steady-state aerodynamic data and develop a correction technique to compensate for dynamically induced errors. Equations of motion are formulated for the dynamic response of the model system subjected to arbitrary aerodynamic and inertial inputs. The resulting modal model is examined to study the effects of the model system dynamic response on the aerodynamic data. In particular, the equations of motion are used to describe the effect of dynamics on the inertial model attitude, or angle of attack, measurement system that is used routinely at the NASA Langley Research Center and other wind tunnel facilities throughout the world. This activity was prompted by the inertial model attitude sensor response observed during high levels of model vibration while testing in the National Transonic Facility at the NASA Langley Research Center. The inertial attitude sensor cannot distinguish between the gravitational acceleration and centrifugal accelerations associated with wind tunnel model system vibration, which results in a model attitude measurement bias error. Bias errors over an order of magnitude greater than the required device accuracy were found in the inertial model attitude measurements during dynamic testing of two model systems. Based on a theoretical modal
System dynamics with interaction discontinuity
Luo, Albert C J
2015-01-01
This book describes system dynamics with discontinuity caused by system interactions and presents the theory of flow singularity and switchability at the boundary in discontinuous dynamical systems. Based on such a theory, the authors address dynamics and motion mechanism of engineering discontinuous systems due to interaction. Stability and bifurcations of fixed points in nonlinear discrete dynamical systems are presented, and mapping dynamics are developed for analytical predictions of periodic motions in engineering discontinuous dynamical systems. Ultimately, the book provides an alternative way to discuss the periodic and chaotic behaviors in discontinuous dynamical systems.
International Nuclear Information System (INIS)
Koyanagi, Ryoichi
1984-01-01
Many piping systems are supported by flexible structures or attached to thin shell walls so it is very important to consider the dynamic coupling effects between these systems in dynamic analysis. This paper presents a practical method of dynamic analysis of an individual system considering the dynamic coupling effects of coupled equipment-piping systems. In this method, dynamic responses are calculated by using the modal information which is obtained from the other analysis for associative structure. Analytical results for the complete model and of this method for an individual system are presented in the piping-supporting structure system and a piping-shell system. From the comparison of these results, it shows that this method is accurate, useful and economically applicable to the dynamic analysis of large model. (author)
REMOTE SYNTHESIS AND CONTROL INFORMATION TECHNOLOGY OF SYSTEM-DYNAMIC MODELS
Directory of Open Access Journals (Sweden)
A. V. Masloboev
2015-07-01
Full Text Available The general line of research is concerned with development of information technologies and computer simulation tools for management information and analytical support of complex semistructured systems. Regional socio-economic systems are consideredas a representative of this system type. Investigation is carried out within the bounds of development strategy implementation of the Arctic zone of the Russian Federation and national safety until 2020 in the Murmansk region, specifically under engineering of high end information infrastructure for innovation and security control problem-solving of regional development. Research methodology consists of system dynamics modeling method, distributed information system engineering technologies, pattern-based modeling and design techniques. The work deals with development of toolkit for decision-making information support problem-solving in the field of innovation security management of regional economics. For that purpose a system-dynamic models suite of innovation process standard components and information technology for remote formation and control of innovation business simulation models under research have been developed. Designed toolkit provides innovation security index dynamics forecasting and innovation business effectiveness of regional economics. Information technology is implemented within the bounds of thin client architecture and is intended for simulation models design process automation of complex systems. Technology implementation software tools provide pattern-based system-dynamic models distributed formation and simulation control of innovation processes. The technology provides availability and reusability index enhancement of information support facilities in application to innovation process simulation at the expense of distributed access to innovation business simulation modeling tools and model synthesis by the reusable components, simulating standard elements of innovation
Using directed information for influence discovery in interconnected dynamical systems
Rao, Arvind; Hero, Alfred O.; States, David J.; Engel, James Douglas
2008-08-01
Structure discovery in non-linear dynamical systems is an important and challenging problem that arises in various applications such as computational neuroscience, econometrics, and biological network discovery. Each of these systems have multiple interacting variables and the key problem is the inference of the underlying structure of the systems (which variables are connected to which others) based on the output observations (such as multiple time trajectories of the variables). Since such applications demand the inference of directed relationships among variables in these non-linear systems, current methods that have a linear assumption on structure or yield undirected variable dependencies are insufficient. Hence, in this work, we present a methodology for structure discovery using an information-theoretic metric called directed time information (DTI). Using both synthetic dynamical systems as well as true biological datasets (kidney development and T-cell data), we demonstrate the utility of DTI in such problems.
Modeling structural change in spatial system dynamics: A Daisyworld example.
Neuwirth, C; Peck, A; Simonović, S P
2015-03-01
System dynamics (SD) is an effective approach for helping reveal the temporal behavior of complex systems. Although there have been recent developments in expanding SD to include systems' spatial dependencies, most applications have been restricted to the simulation of diffusion processes; this is especially true for models on structural change (e.g. LULC modeling). To address this shortcoming, a Python program is proposed to tightly couple SD software to a Geographic Information System (GIS). The approach provides the required capacities for handling bidirectional and synchronized interactions of operations between SD and GIS. In order to illustrate the concept and the techniques proposed for simulating structural changes, a fictitious environment called Daisyworld has been recreated in a spatial system dynamics (SSD) environment. The comparison of spatial and non-spatial simulations emphasizes the importance of considering spatio-temporal feedbacks. Finally, practical applications of structural change models in agriculture and disaster management are proposed.
Fitkov-Norris, Elena; Yeghiazarian, Ara
2016-11-01
The analytical tools available to social scientists have traditionally been adapted from tools originally designed for analysis of natural science phenomena. This article discusses the applicability of systems dynamics - a qualitative based modelling approach, as a possible analysis and simulation tool that bridges the gap between social and natural sciences. After a brief overview of the systems dynamics modelling methodology, the advantages as well as limiting factors of systems dynamics to the potential applications in the field of social sciences and human interactions are discussed. The issues arise with regards to operationalization and quantification of latent constructs at the simulation building stage of the systems dynamics methodology and measurement theory is proposed as a ready and waiting solution to the problem of dynamic model calibration, with a view of improving simulation model reliability and validity and encouraging the development of standardised, modular system dynamics models that can be used in social science research.
Constraint Embedding Technique for Multibody System Dynamics
Woo, Simon S.; Cheng, Michael K.
2011-01-01
Multibody dynamics play a critical role in simulation testbeds for space missions. There has been a considerable interest in the development of efficient computational algorithms for solving the dynamics of multibody systems. Mass matrix factorization and inversion techniques and the O(N) class of forward dynamics algorithms developed using a spatial operator algebra stand out as important breakthrough on this front. Techniques such as these provide the efficient algorithms and methods for the application and implementation of such multibody dynamics models. However, these methods are limited only to tree-topology multibody systems. Closed-chain topology systems require different techniques that are not as efficient or as broad as those for tree-topology systems. The closed-chain forward dynamics approach consists of treating the closed-chain topology as a tree-topology system subject to additional closure constraints. The resulting forward dynamics solution consists of: (a) ignoring the closure constraints and using the O(N) algorithm to solve for the free unconstrained accelerations for the system; (b) using the tree-topology solution to compute a correction force to enforce the closure constraints; and (c) correcting the unconstrained accelerations with correction accelerations resulting from the correction forces. This constraint-embedding technique shows how to use direct embedding to eliminate local closure-loops in the system and effectively convert the system back to a tree-topology system. At this point, standard tree-topology techniques can be brought to bear on the problem. The approach uses a spatial operator algebra approach to formulating the equations of motion. The operators are block-partitioned around the local body subgroups to convert them into aggregate bodies. Mass matrix operator factorization and inversion techniques are applied to the reformulated tree-topology system. Thus in essence, the new technique allows conversion of a system with
Differential equations, dynamical systems, and an introduction to chaos
Smale, Stephen; Devaney, Robert L
2003-01-01
Thirty years in the making, this revised text by three of the world''s leading mathematicians covers the dynamical aspects of ordinary differential equations. it explores the relations between dynamical systems and certain fields outside pure mathematics, and has become the standard textbook for graduate courses in this area. The Second Edition now brings students to the brink of contemporary research, starting from a background that includes only calculus and elementary linear algebra.The authors are tops in the field of advanced mathematics, including Steve Smale who is a recipient of the Field''s Medal for his work in dynamical systems.* Developed by award-winning researchers and authors* Provides a rigorous yet accessible introduction to differential equations and dynamical systems* Includes bifurcation theory throughout* Contains numerous explorations for students to embark uponNEW IN THIS EDITION* New contemporary material and updated applications* Revisions throughout the text, including simplification...
Complex Time-Delay Systems Theory and Applications
Atay, Fatihcan M
2010-01-01
Time delays in dynamical systems arise as an inevitable consequence of finite speeds of information transmission. Realistic models increasingly demand the inclusion of delays in order to properly understand, analyze, design, and control real-life systems. The goal of this book is to present the state-of-the-art in research on time-delay dynamics in the framework of complex systems and networks. While the mathematical theory of delay equations is quite mature, its application to the particular problems of complex systems and complexity is a newly emerging field, and the present volume aims to play a pioneering role in this perspective. The chapters in this volume are authored by renowned experts and cover both theory and applications in a wide range of fields, with examples extending from neuroscience and biology to laser physics and vehicle traffic. Furthermore, all chapters include sufficient introductory material and extensive bibliographies, making the book a self-contained reference for both students and ...
International Nuclear Information System (INIS)
Hoerhammer, C.
2007-01-01
In this thesis, non-Markovian dynamics, decoherence and entanglement in dissipative quantum systems are studied. In particular, applications to quantum information theory of continuous variable systems are considered. The non-Markovian dynamics are described by the Hu-Paz-Zhang master equation of quantum Brownian motion. In this context the focus is on non-Markovian effects on decoherence and separability time scales of various single- mode and two-mode continuous variable states. It is verified that moderate non-Markovian influences slow down the decay of interference fringes and quantum correlations, while strong non-Markovian effects resulting from an out-of-resonance bath can even accelerate the loss of coherence, compared to predictions of Markovian approximations. Qualitatively different scenarios including exponential, Gaussian or algebraic decay of the decoherence function are analyzed. It is shown that partial recurrence of coherence can occur in case of non-Lindblad-type dynamics. The time evolution of quantum correlations of entangled two-mode continuous variable states is examined in single-reservoir and two-reservoir models, representing noisy correlated or uncorrelated non-Markovian quantum channels. For this purpose the model of quantum Brownian motion is extended. Various separability criteria for Gaussian and non-Gaussian continuous variable systems are applied. In both types of reservoir models moderate non-Markovian effects prolong the separability time scales. However, in these models the properties of the stationary state may differ. In the two-reservoir model the initial entanglement is completely lost and both modes are finally uncorrelated. In a common reservoir both modes interact indirectly via the coupling to the same bath variables. Therefore, new quantum correlations may emerge between the two modes. Below a critical bath temperature entanglement is preserved even in the steady state. A separability criterion is derived, which depends
A Symbolic and Graphical Computer Representation of Dynamical Systems
Gould, Laurence I.
2005-04-01
AUTONO is a Macsyma/Maxima program, designed at the University of Hartford, for solving autonomous systems of differential equations as well as for relating Lagrangians and Hamiltonians to their associated dynamical equations. AUTONO can be used in a number of fields to decipher a variety of complex dynamical systems with ease, producing their Lagrangian and Hamiltonian equations in seconds. These equations can then be incorporated into VisSim, a modeling and simulation program, which yields graphical representations of motion in a given system through easily chosen input parameters. The program, along with the VisSim differential-equations graphical package, allows for resolution and easy understanding of complex problems in a relatively short time; thus enabling quicker and more advanced computing of dynamical systems on any number of platforms---from a network of sensors on a space probe, to the behavior of neural networks, to the effects of an electromagnetic field on components in a dynamical system. A flowchart of AUTONO, along with some simple applications and VisSim output, will be shown.
Renormalization group method in the theory of dynamical systems
International Nuclear Information System (INIS)
Sinai, Y.G.; Khanin, K.M.
1988-01-01
One of the most important events in the theory of dynamical systems for the last decade has become a wide penetration of ideas and renormalization group methods (RG) into this traditional field of mathematical physics. RG-method has been one of the main tools in statistical physics and it has proved to be rather effective while solving problems of the theory of dynamical systems referring to new types of bifurcations (see further). As in statistical mechanics the application of the RG-method is of great interest in the neighborhood of the critical point concerning the order-chaos transition. First the RG-method was applied in the pioneering papers dedicated to the appearance of a stochastical regime as a result of infinite sequences of period doubling bifurcations. At present this stochasticity mechanism is the most studied one and many papers deal with it. The study of the so-called intermittency phenomenon was the next example of application of the RG-method, i.e. the study of such a situation where the domains of the stochastical and regular behavior do alternate along a trajectory of the dynamical system
Sequences by Metastable Attractors: Interweaving Dynamical Systems and Experimental Data
Directory of Open Access Journals (Sweden)
Axel Hutt
2017-05-01
Full Text Available Metastable attractors and heteroclinic orbits are present in the dynamics of various complex systems. Although their occurrence is well-known, their identification and modeling is a challenging task. The present work reviews briefly the literature and proposes a novel combination of their identification in experimental data and their modeling by dynamical systems. This combination applies recurrence structure analysis permitting the derivation of an optimal symbolic representation of metastable states and their dynamical transitions. To derive heteroclinic sequences of metastable attractors in various experimental conditions, the work introduces a Hausdorff clustering algorithm for symbolic dynamics. The application to brain signals (event-related potentials utilizing neural field models illustrates the methodology.
Dynamic Surface Control and Its Application to Lateral Vehicle Control
Directory of Open Access Journals (Sweden)
Bongsob Song
2014-01-01
Full Text Available This paper extends the design and analysis methodology of dynamic surface control (DSC in Song and Hedrick, 2011, for a more general class of nonlinear systems. When rotational mechanical systems such as lateral vehicle control and robot control are considered for applications, sinusoidal functions are easily included in the equation of motions. If such a sinusoidal function is used as a forcing term for DSC, the stability analysis faces the difficulty due to highly nonlinear functions resulting from the low-pass filter dynamics. With modification of input variables to the filter dynamics, the burden of mathematical analysis can be reduced and stability conditions in linear matrix inequality form to guarantee the quadratic stability via DSC are derived for the given class of nonlinear systems. Finally, the proposed design and analysis approach are applied to lateral vehicle control for forward automated driving and backward parallel parking at a low speed as well as an illustrative example.
Energy Technology Data Exchange (ETDEWEB)
Pecas Lopes, J.A. [Universidade do Porto, Porto (Portugal). Faculdade de Engenharia] Hatziargyriou, Nikos D. [National Technical University of Athens, Athens (Greece)
1994-12-31
This paper provides an overview of the application of `learning from examples` techniques like pattern recognition, artificial neural networks and decision trees, when used for fast dynamic security assessment. Problems concerning the system security evaluation relatively to transient stability and voltage stability are addressed with more details and references to research works in this field are briefly described. (author) 44 refs., 3 tabs.
The DYLAM approach for the dynamic reliability analysis of systems
International Nuclear Information System (INIS)
Cojazzi, Giacomo
1996-01-01
In many real systems, failures occurring to the components, control failures and human interventions often interact with the physical system evolution in such a way that a simple reliability analysis, de-coupled from process dynamics, is very difficult or even impossible. In the last ten years many dynamic reliability approaches have been proposed to properly assess the reliability of these systems characterized by dynamic interactions. The DYLAM methodology, now implemented in its latest version, DYLAM-3, offers a powerful tool for integrating deterministic and failure events. This paper describes the main features of the DYLAM-3 code with reference to the classic fault-tree and event-tree techniques. Some aspects connected to the practical problems underlying dynamic event-trees are also discussed. A simple system, already analyzed with other dynamic methods is used as a reference for the numerical applications. The same system is also studied with a time-dependent fault-tree approach in order to show some features of dynamic methods vs classical techniques. Examples including stochastic failures, without and with repair, failures on demand and time dependent failure rates give an extensive overview of DYLAM-3 capabilities
Statistical properties of chaotic dynamical systems which exhibit strange attractors
International Nuclear Information System (INIS)
Jensen, R.V.; Oberman, C.R.
1981-07-01
A path integral method is developed for the calculation of the statistical properties of turbulent dynamical systems. The method is applicable to conservative systems which exhibit a transition to stochasticity as well as dissipative systems which exhibit strange attractors. A specific dissipative mapping is considered in detail which models the dynamics of a Brownian particle in a wave field with a broad frequency spectrum. Results are presented for the low order statistical moments for three turbulent regimes which exhibit strange attractors corresponding to strong, intermediate, and weak collisional damping
Evolution of perturbed dynamical systems: analytical computation with time independent accuracy
Energy Technology Data Exchange (ETDEWEB)
Gurzadyan, A.V. [Russian-Armenian (Slavonic) University, Department of Mathematics and Mathematical Modelling, Yerevan (Armenia); Kocharyan, A.A. [Monash University, School of Physics and Astronomy, Clayton (Australia)
2016-12-15
An analytical method for investigation of the evolution of dynamical systems with independent on time accuracy is developed for perturbed Hamiltonian systems. The error-free estimation using of computer algebra enables the application of the method to complex multi-dimensional Hamiltonian and dissipative systems. It also opens principal opportunities for the qualitative study of chaotic trajectories. The performance of the method is demonstrated on perturbed two-oscillator systems. It can be applied to various non-linear physical and astrophysical systems, e.g. to long-term planetary dynamics. (orig.)
Drótos, Gábor; Bódai, Tamás; Tél, Tamás
2016-08-01
In nonautonomous dynamical systems, like in climate dynamics, an ensemble of trajectories initiated in the remote past defines a unique probability distribution, the natural measure of a snapshot attractor, for any instant of time, but this distribution typically changes in time. In cases with an aperiodic driving, temporal averages taken along a single trajectory would differ from the corresponding ensemble averages even in the infinite-time limit: ergodicity does not hold. It is worth considering this difference, which we call the nonergodic mismatch, by taking time windows of finite length for temporal averaging. We point out that the probability distribution of the nonergodic mismatch is qualitatively different in ergodic and nonergodic cases: its average is zero and typically nonzero, respectively. A main conclusion is that the difference of the average from zero, which we call the bias, is a useful measure of nonergodicity, for any window length. In contrast, the standard deviation of the nonergodic mismatch, which characterizes the spread between different realizations, exhibits a power-law decrease with increasing window length in both ergodic and nonergodic cases, and this implies that temporal and ensemble averages differ in dynamical systems with finite window lengths. It is the average modulus of the nonergodic mismatch, which we call the ergodicity deficit, that represents the expected deviation from fulfilling the equality of temporal and ensemble averages. As an important finding, we demonstrate that the ergodicity deficit cannot be reduced arbitrarily in nonergodic systems. We illustrate via a conceptual climate model that the nonergodic framework may be useful in Earth system dynamics, within which we propose the measure of nonergodicity, i.e., the bias, as an order-parameter-like quantifier of climate change.
System Dynamics Modeling in Entrepreneurship Research: A Review of the Literature
Directory of Open Access Journals (Sweden)
Mohammad Reza Zali
2014-11-01
Full Text Available System dynamics is a strategic approach for modeling complex systems and analyzing their behavior. Dynamic behavior in entrepreneurial system can be modeled using System Dynamics Approach and dynamic hypotheses about the system`s behavior can be proposed and tested using simulation and computer aided tools. However, as the review of literature shows, studies which link system dynamics modeling with entrepreneurship are rare and fragmented. This article presents a review of studies on the subject followed by integration and discussion on main research issues that have been the focus of previous studies. The main aim of this review is to categorize the available research related to the application of system dynamics modeling in entrepreneurship to integrate research and enable recommendations for future research. The Results reveal that the previous research could be categorized under a two dimensional taxonomy composed of level of analysis and level of modeling. The Level of analysis has three categories: micro level, meso level and macro level. The Level of modeling has six hierarchical levels. This study identifies several gaps in the literature and discusses the future directions in this field.
Information Dynamics of a Nonlinear Stochastic Nanopore System
Directory of Open Access Journals (Sweden)
Claire Gilpin
2018-03-01
Full Text Available Nanopores have become a subject of interest in the scientific community due to their potential uses in nanometer-scale laboratory and research applications, including infectious disease diagnostics and DNA sequencing. Additionally, they display behavioral similarity to molecular and cellular scale physiological processes. Recent advances in information theory have made it possible to probe the information dynamics of nonlinear stochastic dynamical systems, such as autonomously fluctuating nanopore systems, which has enhanced our understanding of the physical systems they model. We present the results of local (LER and specific entropy rate (SER computations from a simulation study of an autonomously fluctuating nanopore system. We learn that both metrics show increases that correspond to fluctuations in the nanopore current, indicating fundamental changes in information generation surrounding these fluctuations.
Directory of Open Access Journals (Sweden)
Hai-gen Yang
2015-09-01
Full Text Available The complex mechanical systems such as high-speed trains, multiple launch rocket system, self-propelled artillery, and industrial robots are becoming increasingly larger in scale and more complicated in structure. Designing these products often requires complex model design, multibody system dynamics calculation, and analysis of large amounts of data repeatedly. In recent 20 years, the transfer matrix method of multibody system has been widely applied in engineering fields and welcomed at home and in abroad for the following features: without global dynamic equations of the system, low orders of involved system matrices, high computational efficiency, and high programming. In order to realize the rapid and visual simulation for complex mechanical system virtual design using transfer matrix method of multibody system, a virtual design software named MSTMMSim is designed and implemented. In the MSTMMSim, the transfer matrix method of multibody system is used as the solver for dynamic modeling and calculation; the Open CASCADE is used for solid geometry modeling. Various auxiliary analytical tools such as curve plot and animation display are provided in the post-processor to analyze and process the simulation results. Two numerical examples are given to verify the validity and accuracy of the software, and a multiple launch rocket system engineering example is given at the end of this article to show that the software provides a powerful platform for complex mechanical systems simulation and virtual design.
Logic-based hierarchies for modeling behavior of complex dynamic systems with applications
International Nuclear Information System (INIS)
Hu, Y.S.; Modarres, M.
2000-01-01
Most complex systems are best represented in the form of a hierarchy. The Goal Tree Success Tree and Master Logic Diagram (GTST-MLD) are proven powerful hierarchic methods to represent complex snap-shot of plant knowledge. To represent dynamic behaviors of complex systems, fuzzy logic is applied to replace binary logic to extend the power of GTST-MLD. Such a fuzzy-logic-based hierarchy is called Dynamic Master Logic Diagram (DMLD). This chapter discusses comparison of the use of GTST-DMLD when applied as a modeling tool for systems whose relationships are modeled by either physical, binary logical or fuzzy logical relationships. This is shown by applying GTST-DMLD to the Direct Containment Heating (DCH) phenomenon at pressurized water reactors which is an important safety issue being addressed by the nuclear industry. (orig.)
Directory of Open Access Journals (Sweden)
J van Olmen
2012-03-01
Full Text Available Frameworks can clarify concepts and improve understanding of underlying mechanisms in the domain of health systems research and strengthening. Many existing frameworks have a limited capacity to analyze interactions and equilibriums within a health system overlooking values as an underlying steering mechanism. This paper introduces the health system dynamics framework and demonstrates its application as a tool for analysis and modelling. The added value of this framework is: 1 consideration of different levels of a health system and tracing how interventions or events at one level influence other elements and other levels; 2 emphasizes the importance of values; 3 a central axis linking governance, human resources, service delivery and population, and 4 taking into account the key elements of complexity in analysis and strategy development. We urge the analysis of individual health systems and meta-analysis, for a better understanding of their functioning and strengthening.
An Almost Sure Ergodic Theorem for Quasistatic Dynamical Systems
International Nuclear Information System (INIS)
Stenlund, Mikko
2016-01-01
We prove an almost sure ergodic theorem for abstract quasistatic dynamical systems, as an attempt of taking steps toward an ergodic theory of such systems. The result at issue is meant to serve as a working counterpart of Birkhoff’s ergodic theorem which fails in the quasistatic setup. It is formulated so that the conditions, which essentially require sufficiently good memory-loss properties, could be verified in a straightforward way in physical applications. We also introduce the concept of a physical family of measures for a quasistatic dynamical system. These objects manifest themselves, for instance, in numerical experiments. We then illustrate the use of the theorem by examples.
An Almost Sure Ergodic Theorem for Quasistatic Dynamical Systems
Energy Technology Data Exchange (ETDEWEB)
Stenlund, Mikko, E-mail: mikko.stenlund@helsinki.fi [University of Helsinki, Department of Mathematics and Statistics (Finland)
2016-09-15
We prove an almost sure ergodic theorem for abstract quasistatic dynamical systems, as an attempt of taking steps toward an ergodic theory of such systems. The result at issue is meant to serve as a working counterpart of Birkhoff’s ergodic theorem which fails in the quasistatic setup. It is formulated so that the conditions, which essentially require sufficiently good memory-loss properties, could be verified in a straightforward way in physical applications. We also introduce the concept of a physical family of measures for a quasistatic dynamical system. These objects manifest themselves, for instance, in numerical experiments. We then illustrate the use of the theorem by examples.
International Nuclear Information System (INIS)
Traore, M.; Chammas, A.; Duviella, E.
2015-01-01
In this paper, we are concerned by the improvement of the safety, availability and reliability of dynamical systems’ components subjected to slow degradations (slow drifts). We propose an architecture for efficient Predictive Maintenance (PM) according to the real time estimate of the future state of the components. The architecture is built on supervision and prognosis tools. The prognosis method is based on an appropriated supervision technique that consists in drift tracking of the dynamical systems using AUDyC (AUto-adaptive and Dynamical Clustering), that is an auto-adaptive dynamical classifier. Thus, due to the complexity and the dynamical of the considered systems, the Failure Mode Effect and Criticity Analysis (FMECA) is used to identify the key components of the systems. A component is defined as an element of the system that can be impacted by only one failure. A failure of a key component causes a long downtime of the system. From the FMECA, a Fault Tree Analysis (FTA) of the system are built to determine the propagation laws of a failure on the system by using a deductive method. The proposed architecture is implemented for the PM of a thermoregulator. The application on this real system highlights the interests and the performances of the proposed architecture
Lan, C. Edward; Ge, Fuying
1989-01-01
Control system design for general nonlinear flight dynamic models is considered through numerical simulation. The design is accomplished through a numerical optimizer coupled with analysis of flight dynamic equations. The general flight dynamic equations are numerically integrated and dynamic characteristics are then identified from the dynamic response. The design variables are determined iteratively by the optimizer to optimize a prescribed objective function which is related to desired dynamic characteristics. Generality of the method allows nonlinear effects to aerodynamics and dynamic coupling to be considered in the design process. To demonstrate the method, nonlinear simulation models for an F-5A and an F-16 configurations are used to design dampers to satisfy specifications on flying qualities and control systems to prevent departure. The results indicate that the present method is simple in formulation and effective in satisfying the design objectives.
A System Structure for a VHTR-SI Process Dynamic Simulation Code
International Nuclear Information System (INIS)
Chang, Jiwoon; Shin, Youngjoon; Kim, Jihwan; Lee, Kiyoung; Lee, Wonjae; Chang, Jonghwa; Youn, Cheung
2008-01-01
The VHTR-SI process dynamic simulation code embedded in a mathematical solution engine is an application software system that simulates the dynamic behavior of the VHTR-SI process. Also, the software system supports a user friendly graphical user interface (GUI) for user input/out. Structured analysis techniques were developed in the late 1970s by Yourdon, DeMarco, Gane and Sarson for applying a systematic approach to a systems analysis. It included the use of data flow diagrams and data modeling and fostered the use of an implementation-independent graphical notation for a documentation. In this paper, we present a system structure for a VHRT-SI process dynamic simulation code by using the methodologies of structured analysis
Dynamic model reduction: An overview of available techniques with application to power systems
Directory of Open Access Journals (Sweden)
Đukić Savo D.
2012-01-01
Full Text Available This paper summarises the model reduction techniques used for the reduction of large-scale linear and nonlinear dynamic models, described by the differential and algebraic equations that are commonly used in control theory. The groups of methods discussed in this paper for reduction of the linear dynamic model are based on singular perturbation analysis, modal analysis, singular value decomposition, moment matching and methods based on a combination of singular value decomposition and moment matching. Among the nonlinear dynamic model reduction methods, proper orthogonal decomposition, the trajectory piecewise linear method, balancing-based methods, reduction by optimising system matrices and projection from a linearised model, are described. Part of the paper is devoted to the techniques commonly used for reduction (equivalencing of large-scale power systems, which are based on coherency, synchrony, singular perturbation analysis, modal analysis and identification. Two (most interesting of the described techniques are applied to the reduction of the commonly used New England 10-generator, 39-bus test power system.
Update on Small Modular Reactors Dynamic System Modeling Tool: Web Application
International Nuclear Information System (INIS)
Hale, Richard Edward; Cetiner, Sacit M.; Fugate, David L.; Batteh, John J; Tiller, Michael M.
2015-01-01
Previous reports focused on the development of component and system models as well as end-to-end system models using Modelica and Dymola for two advanced reactor architectures: (1) Advanced Liquid Metal Reactor and (2) fluoride high-temperature reactor (FHR). The focus of this report is the release of the first beta version of the web-based application for model use and collaboration, as well as an update on the FHR model. The web-based application allows novice users to configure end-to-end system models from preconfigured choices to investigate the instrumentation and controls implications of these designs and allows for the collaborative development of individual component models that can be benchmarked against test systems for potential inclusion in the model library. A description of this application is provided along with examples of its use and a listing and discussion of all the models that currently exist in the library.
Optimized controllers for enhancing dynamic performance of PV interface system
Directory of Open Access Journals (Sweden)
Mahmoud A. Attia
2018-05-01
Full Text Available The dynamic performance of PV interface system can be improved by optimizing the gains of the Proportional–Integral (PI controller. In this work, gravitational search algorithm and harmony search algorithm are utilized to optimal tuning of PI controller gains. Performance comparison between the PV system with optimized PI gains utilizing different techniques are carried out. Finally, the dynamic behavior of the system is studied under hypothetical sudden variations in irradiance. The examination of the proposed techniques for optimal tuning of PI gains is conducted using MATLAB/SIMULINK software package. The main contribution of this work is investigating the dynamic performance of PV interfacing system with application of gravitational search algorithm and harmony search algorithm for optimal PI parameters tuning. Keywords: Photovoltaic power systems, Gravitational search algorithm, Harmony search algorithm, Genetic algorithm, Artificial intelligence
Feedback dynamics and cell function: Why systems biology is called Systems Biology.
Wolkenhauer, Olaf; Mesarovic, Mihajlo
2005-05-01
A new paradigm, like Systems Biology, should challenge the way research has been conducted previously. This Opinion article aims to present Systems Biology, not as the application of engineering principles to biology but as a merger of systems- and control theory with molecular- and cell biology. In our view, the central dogma of Systems Biology is that it is system dynamics that gives rise to the functioning and function of cells. The concepts of feedback regulation and control of pathways and the coordination of cell function are emphasized as an important area of Systems Biology research. The hurdles and risks for this area are discussed from the perspective of dynamic pathway modelling. Most of all, the aim of this article is to promote mathematical modelling and simulation as a part of molecular- and cell biology. Systems Biology is a success if it is widely accepted that there is nothing more practical than a good theory.
Gauge theory for finite-dimensional dynamical systems
International Nuclear Information System (INIS)
Gurfil, Pini
2007-01-01
Gauge theory is a well-established concept in quantum physics, electrodynamics, and cosmology. This concept has recently proliferated into new areas, such as mechanics and astrodynamics. In this paper, we discuss a few applications of gauge theory in finite-dimensional dynamical systems. We focus on the concept of rescriptive gauge symmetry, which is, in essence, rescaling of an independent variable. We show that a simple gauge transformation of multiple harmonic oscillators driven by chaotic processes can render an apparently ''disordered'' flow into a regular dynamical process, and that there exists a strong connection between gauge transformations and reduction theory of ordinary differential equations. Throughout the discussion, we demonstrate the main ideas by considering examples from diverse fields, including quantum mechanics, chemistry, rigid-body dynamics, and information theory
Prototype Development: Context-Driven Dynamic XML Ophthalmologic Data Capture Application
Schwei, Kelsey M; Kadolph, Christopher; Finamore, Joseph; Cancel, Efrain; McCarty, Catherine A; Okorie, Asha; Thomas, Kate L; Allen Pacheco, Jennifer; Pathak, Jyotishman; Ellis, Stephen B; Denny, Joshua C; Rasmussen, Luke V; Tromp, Gerard; Williams, Marc S; Vrabec, Tamara R; Brilliant, Murray H
2017-01-01
Background The capture and integration of structured ophthalmologic data into electronic health records (EHRs) has historically been a challenge. However, the importance of this activity for patient care and research is critical. Objective The purpose of this study was to develop a prototype of a context-driven dynamic extensible markup language (XML) ophthalmologic data capture application for research and clinical care that could be easily integrated into an EHR system. Methods Stakeholders in the medical, research, and informatics fields were interviewed and surveyed to determine data and system requirements for ophthalmologic data capture. On the basis of these requirements, an ophthalmology data capture application was developed to collect and store discrete data elements with important graphical information. Results The context-driven data entry application supports several features, including ink-over drawing capability for documenting eye abnormalities, context-based Web controls that guide data entry based on preestablished dependencies, and an adaptable database or XML schema that stores Web form specifications and allows for immediate changes in form layout or content. The application utilizes Web services to enable data integration with a variety of EHRs for retrieval and storage of patient data. Conclusions This paper describes the development process used to create a context-driven dynamic XML data capture application for optometry and ophthalmology. The list of ophthalmologic data elements identified as important for care and research can be used as a baseline list for future ophthalmologic data collection activities. PMID:28903894
Disease processes as hybrid dynamical systems
Directory of Open Access Journals (Sweden)
Pietro Liò
2012-08-01
Full Text Available We investigate the use of hybrid techniques in complex processes of infectious diseases. Since predictive disease models in biomedicine require a multiscale approach for understanding the molecule-cell-tissue-organ-body interactions, heterogeneous methodologies are often employed for describing the different biological scales. Hybrid models provide effective means for complex disease modelling where the action and dosage of a drug or a therapy could be meaningfully investigated: the infection dynamics can be classically described in a continuous fashion, while the scheduling of multiple treatment discretely. We define an algebraic language for specifying general disease processes and multiple treatments, from which a semantics in terms of hybrid dynamical system can be derived. Then, the application of control-theoretic tools is proposed in order to compute the optimal scheduling of multiple therapies. The potentialities of our approach are shown in the case study of the SIR epidemic model and we discuss its applicability on osteomyelitis, a bacterial infection affecting the bone remodelling system in a specific and multiscale manner. We report that formal languages are helpful in giving a general homogeneous formulation for the different scales involved in a multiscale disease process; and that the combination of hybrid modelling and control theory provides solid grounds for computational medicine.
Reliability of dynamic systems under limited information.
Energy Technology Data Exchange (ETDEWEB)
Field, Richard V., Jr. (.,; .); Grigoriu, Mircea
2006-09-01
A method is developed for reliability analysis of dynamic systems under limited information. The available information includes one or more samples of the system output; any known information on features of the output can be used if available. The method is based on the theory of non-Gaussian translation processes and is shown to be particularly suitable for problems of practical interest. For illustration, we apply the proposed method to a series of simple example problems and compare with results given by traditional statistical estimators in order to establish the accuracy of the method. It is demonstrated that the method delivers accurate results for the case of linear and nonlinear dynamic systems, and can be applied to analyze experimental data and/or mathematical model outputs. Two complex applications of direct interest to Sandia are also considered. First, we apply the proposed method to assess design reliability of a MEMS inertial switch. Second, we consider re-entry body (RB) component vibration response during normal re-entry, where the objective is to estimate the time-dependent probability of component failure. This last application is directly relevant to re-entry random vibration analysis at Sandia, and may provide insights on test-based and/or model-based qualification of weapon components for random vibration environments.
Optically levitated nanoparticle as a model system for stochastic bistable dynamics.
Ricci, F; Rica, R A; Spasenović, M; Gieseler, J; Rondin, L; Novotny, L; Quidant, R
2017-05-09
Nano-mechanical resonators have gained an increasing importance in nanotechnology owing to their contributions to both fundamental and applied science. Yet, their small dimensions and mass raises some challenges as their dynamics gets dominated by nonlinearities that degrade their performance, for instance in sensing applications. Here, we report on the precise control of the nonlinear and stochastic bistable dynamics of a levitated nanoparticle in high vacuum. We demonstrate how it can lead to efficient signal amplification schemes, including stochastic resonance. This work contributes to showing the use of levitated nanoparticles as a model system for stochastic bistable dynamics, with applications to a wide variety of fields.
Static and Dynamic Verification of Critical Software for Space Applications
Moreira, F.; Maia, R.; Costa, D.; Duro, N.; Rodríguez-Dapena, P.; Hjortnaes, K.
Space technology is no longer used only for much specialised research activities or for sophisticated manned space missions. Modern society relies more and more on space technology and applications for every day activities. Worldwide telecommunications, Earth observation, navigation and remote sensing are only a few examples of space applications on which we rely daily. The European driven global navigation system Galileo and its associated applications, e.g. air traffic management, vessel and car navigation, will significantly expand the already stringent safety requirements for space based applications Apart from their usefulness and practical applications, every single piece of onboard software deployed into the space represents an enormous investment. With a long lifetime operation and being extremely difficult to maintain and upgrade, at least when comparing with "mainstream" software development, the importance of ensuring their correctness before deployment is immense. Verification &Validation techniques and technologies have a key role in ensuring that the onboard software is correct and error free, or at least free from errors that can potentially lead to catastrophic failures. Many RAMS techniques including both static criticality analysis and dynamic verification techniques have been used as a means to verify and validate critical software and to ensure its correctness. But, traditionally, these have been isolated applied. One of the main reasons is the immaturity of this field in what concerns to its application to the increasing software product(s) within space systems. This paper presents an innovative way of combining both static and dynamic techniques exploiting their synergy and complementarity for software fault removal. The methodology proposed is based on the combination of Software FMEA and FTA with Fault-injection techniques. The case study herein described is implemented with support from two tools: The SoftCare tool for the SFMEA and SFTA
What are System Dynamics Insights?
Stave, K.; Zimmermann, N. S.; Kim, H.
2016-01-01
This paper explores the concept of system dynamics insights. In our field, the term “insight” is generally understood to mean dynamic insight, that is, a deep understanding about the relationship between structure and behavior. We argue this is only one aspect of the range of insights possible from system dynamics activities, and describe a broader range of potential system dynamics insights. We also propose an initial framework for discussion that relates different types of system dynamics a...
Dynamics of a deep-sea cable system
International Nuclear Information System (INIS)
Gulyaev, V.I.; Koshkin, V.L.; Serpak, I.O.
1995-01-01
We consider the problem of the dynamics of a deep-sea cable system consisting of branches of constant and variable length, interacting with an undercurrent which is variable in depth and direction. We construct a mathematical model for the motion of the element of the cable system. The cables are modeled as inextensible, flexible filaments of variable length. For numerical realization of the problem, we suggest special regularizing transformations of the variables, making it possible (without additional simplifications) to take into account all the characteristic features of the motion of the filaments and to avoid difficulties in the integration of the equations of motion connected with the variability of the length of the branches of the cable system. The proposed mathematical model and the technique for its numerical analysis is applicable for the investigation of the dynamics of a complex for mining minerals from the ocean floor
Advances in dynamical systems and control
Zgurovsky, Mikhail
2016-01-01
Focused on recent advances, this book covers theoretical foundations as well as various applications. It presents modern mathematical modeling approaches to the qualitative and numerical analysis of solutions for complex engineering problems in physics, mechanics, biochemistry, geophysics, biology and climatology. Contributions by an international team of respected authors bridge the gap between abstract mathematical approaches, such as applied methods of modern analysis, algebra, fundamental and computational mechanics, nonautonomous and stochastic dynamical systems on the one hand, and practical applications in nonlinear mechanics, optimization, decision making theory and control theory on the other. As such, the book will be of interest to mathematicians and engineers working at the interface of these fields. .
Machining dynamics fundamentals, applications and practices
Cheng, Kai
2008-01-01
Machining dynamics are vital to the performance of machine tools and machining processes in manufacturing. This book discusses the state-of-the-art applications, practices and research in machining dynamics. It presents basic theory, analysis and control methodology. It is useful for manufacturing engineers, supervisors, engineers and designers.
International Nuclear Information System (INIS)
Haapanen, P.; Korhonen, J.
1995-01-01
The safety assessment of programmable automation systems cannot be totally be based on conventional probabilistic methods because of the difficulties in quantification of the reliability of the software as well as the hardware. Additional means shall therefore be used to gain more confidence on the system dependability. One central confidence building measure is the independent dynamic testing of the completed system. An automated test harness is needed to run the required large amount of test cases in a restricted time span. This paper describes a prototype dynamic testing harness for programmable digital systems developed at VTT. (author). 12 refs, 2 figs, 2 tabs
Vehicle dynamics theory and application
Jazar, Reza N
2014-01-01
This textbook is appropriate for senior undergraduate and first year graduate students in mechanical and automotive engineering. The contents in this book are presented at a theoretical-practical level. It explains vehicle dynamics concepts in detail, concentrating on their practical use. Related theorems and formal proofs are provided, as are real-life applications. Students, researchers and practicing engineers alike will appreciate the user-friendly presentation of a wealth of topics, most notably steering, handling, ride, and related components. This book also: Illustrates all key concepts with examples Includes exercises for each chapter Covers front, rear, and four wheel steering systems, as well as the advantages and disadvantages of different steering schemes Includes an emphasis on design throughout the text, which provides a practical, hands-on approach
Method and system for dynamic probabilistic risk assessment
Dugan, Joanne Bechta (Inventor); Xu, Hong (Inventor)
2013-01-01
The DEFT methodology, system and computer readable medium extends the applicability of the PRA (Probabilistic Risk Assessment) methodology to computer-based systems, by allowing DFT (Dynamic Fault Tree) nodes as pivot nodes in the Event Tree (ET) model. DEFT includes a mathematical model and solution algorithm, supports all common PRA analysis functions and cutsets. Additional capabilities enabled by the DFT include modularization, phased mission analysis, sequence dependencies, and imperfect coverage.
Dynamics of pesticide uptake into plants: From system functioning to parsimonious modeling
DEFF Research Database (Denmark)
Fantke, Peter; Wieland, Peter; Wannaz, Cedric
2013-01-01
Dynamic plant uptake models are suitable for assessing environmental fate and behavior of toxic chemicals in food crops. However, existing tools mostly lack in-depth analysis of system dynamics. Furthermore, no existing model is available as parameterized version that is easily applicable for use...
Persistent topological features of dynamical systems
Energy Technology Data Exchange (ETDEWEB)
Maletić, Slobodan, E-mail: slobodan@hitsz.edu.cn [Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen (China); Institute of Nuclear Sciences Vinča, University of Belgrade, Belgrade (Serbia); Zhao, Yi, E-mail: zhao.yi@hitsz.edu.cn [Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen (China); Rajković, Milan, E-mail: milanr@vinca.rs [Institute of Nuclear Sciences Vinča, University of Belgrade, Belgrade (Serbia)
2016-05-15
Inspired by an early work of Muldoon et al., Physica D 65, 1–16 (1993), we present a general method for constructing simplicial complex from observed time series of dynamical systems based on the delay coordinate reconstruction procedure. The obtained simplicial complex preserves all pertinent topological features of the reconstructed phase space, and it may be analyzed from topological, combinatorial, and algebraic aspects. In focus of this study is the computation of homology of the invariant set of some well known dynamical systems that display chaotic behavior. Persistent homology of simplicial complex and its relationship with the embedding dimensions are examined by studying the lifetime of topological features and topological noise. The consistency of topological properties for different dynamic regimes and embedding dimensions is examined. The obtained results shed new light on the topological properties of the reconstructed phase space and open up new possibilities for application of advanced topological methods. The method presented here may be used as a generic method for constructing simplicial complex from a scalar time series that has a number of advantages compared to the mapping of the same time series to a complex network.
Rigid multibody system dynamics with uncertain rigid bodies
Energy Technology Data Exchange (ETDEWEB)
Batou, A., E-mail: anas.batou@univ-paris-est.fr; Soize, C., E-mail: christian.soize@univ-paris-est.fr [Universite Paris-Est, Laboratoire Modelisation et Simulation Multi Echelle, MSME UMR 8208 CNRS (France)
2012-03-15
This paper is devoted to the construction of a probabilistic model of uncertain rigid bodies for multibody system dynamics. We first construct a stochastic model of an uncertain rigid body by replacing the mass, the center of mass, and the tensor of inertia by random variables. The prior probability distributions of the stochastic model are constructed using the maximum entropy principle under the constraints defined by the available information. The generators of independent realizations corresponding to the prior probability distribution of these random quantities are further developed. Then several uncertain rigid bodies can be linked to each other in order to calculate the random response of a multibody dynamical system. An application is proposed to illustrate the theoretical development.
Modeling of Macroeconomics by a Novel Discrete Nonlinear Fractional Dynamical System
Directory of Open Access Journals (Sweden)
Zhenhua Hu
2013-01-01
Full Text Available We propose a new nonlinear economic system with fractional derivative. According to the Jumarie’s definition of fractional derivative, we obtain a discrete fractional nonlinear economic system. Three variables, the gross domestic production, inflation, and unemployment rate, are considered by this nonlinear system. Based on the concrete macroeconomic data of USA, the coefficients of this nonlinear system are estimated by the method of least squares. The application of discrete fractional economic model with linear and nonlinear structure is shown to illustrate the efficiency of modeling the macroeconomic data with discrete fractional dynamical system. The empirical study suggests that the nonlinear discrete fractional dynamical system can describe the actual economic data accurately and predict the future behavior more reasonably than the linear dynamic system. The method proposed in this paper can be applied to investigate other macroeconomic variables of more states.
Equation-free model reduction for complex dynamical systems
International Nuclear Information System (INIS)
Le Maitre, O. P.; Mathelin, L.; Le Maitre, O. P.
2010-01-01
This paper presents a reduced model strategy for simulation of complex physical systems. A classical reduced basis is first constructed relying on proper orthogonal decomposition of the system. Then, unlike the alternative approaches, such as Galerkin projection schemes for instance, an equation-free reduced model is constructed. It consists in the determination of an explicit transformation, or mapping, for the evolution over a coarse time-step of the projection coefficients of the system state on the reduced basis. The mapping is expressed as an explicit polynomial transformation of the projection coefficients and is computed once and for all in a pre-processing stage using the detailed model equation of the system. The reduced system can then be advanced in time by successive applications of the mapping. The CPU cost of the method lies essentially in the mapping approximation which is performed offline, in a parallel fashion, and only once. Subsequent application of the mapping to perform a time-integration is carried out at a low cost thanks to its explicit character. Application of the method is considered for the 2-D flow around a circular cylinder. We investigate the effectiveness of the reduced model in rendering the dynamics for both asymptotic state and transient stages. It is shown that the method leads to a stable and accurate time-integration for only a fraction of the cost of a detailed simulation, provided that the mapping is properly approximated and the reduced basis remains relevant for the dynamics investigated. (authors)
Statistical dynamics of ultradiffusion in hierarchical systems
International Nuclear Information System (INIS)
Gardner, S.
1987-01-01
In many types of disordered systems which exhibit frustration and competition, an ultrametric topology is found to exist in the space of allowable states. This ultrametric topology of states is associated with a hierarchical relaxation process called ultradiffusion. Ultradiffusion occurs in hierarchical non-linear (HNL) dynamical systems when constraints cause large scale, slow modes of motion to be subordinated to small scale, fast modes. Examples of ultradiffusion are found throughout condensed matter physics and critical phenomena (e.g. the states of spin glasses), in biophysics (e.g. the states of Hopfield networks) and in many other fields including layered computing based upon nonlinear dynamics. The statistical dynamics of ultradiffusion can be treated as a random walk on an ultrametric space. For reversible bifurcating ultrametric spaces the evolution equation governing the probability of a particle being found at site i at time t has a highly degenerate transition matrix. This transition matrix has a fractal geometry similar to the replica form proposed for spin glasses. The authors invert this fractal matrix using a recursive quad-tree (QT) method. Possible applications of hierarchical systems to communications and symbolic computing are discussed briefly
Dynamic Reconfiguration in Real-Time Systems Energy, Performance, and Thermal Perspectives
Wang, Weixun; Ranka, Sanjay
2013-01-01
Given the widespread use of real-time multitasking systems, there are tremendous optimization opportunities if reconfigurable computing can be effectively incorporated while maintaining performance and other design constraints of typical applications. The focus of this book is to describe the dynamic reconfiguration techniques that can be safely used in real-time systems. This book provides comprehensive approaches by considering synergistic effects of computation, communication as well as storage together to significantly improve overall performance, power, energy and temperature. Provides a comprehensive introduction to optimization and dynamic reconfiguration techniques in real-time embedded systems; Covers state-of-the-art techniques and ongoing research in reconfigurable architectures; Focuses on algorithms tuned for dynamic reconfiguration techniques in real-time systems; Provides reference for anyone designing low-power systems, energy-/temperature-constrained devices, and power-performance efficie...
Coupled replicator equations for the dynamics of learning in multiagent systems
Sato, Yuzuru; Crutchfield, James P.
2003-01-01
Starting with a group of reinforcement-learning agents we derive coupled replicator equations that describe the dynamics of collective learning in multiagent systems. We show that, although agents model their environment in a self-interested way without sharing knowledge, a game dynamics emerges naturally through environment-mediated interactions. An application to rock-scissors-paper game interactions shows that the collective learning dynamics exhibits a diversity of competitive and cooperative behaviors. These include quasiperiodicity, stable limit cycles, intermittency, and deterministic chaos—behaviors that should be expected in heterogeneous multiagent systems described by the general replicator equations we derive.
Residual mass considerations in modal analysis of large dynamic structural systems
International Nuclear Information System (INIS)
Shulman, J.S.; Day, J.P.
1991-01-01
Industry guidelines have specified that the seismic evaluation of Moderate and High Hazard Department of Energy (DOE) facilities be accomplished by use of dynamic analysis. The recommended approach is elastic response spectrum dynamic analysis to evaluate the elastic system demand on facility components. The application of modal response spectrum analysis to the seismic evaluation of nuclear facility structures, systems and equipment involves approximations due to limitations on the number of modes typically addressed in the complete dynamic solution. A simplified approach for achieving improved rigor in accounting for responses of the higher frequency modes in a modal response spectrum analysis is demonstrated
Application of the IPEBS method to dynamic contingency analysis
Energy Technology Data Exchange (ETDEWEB)
Martins, A C.B. [FURNAS, Rio de Janeiro, RJ (Brazil); Pedroso, A S [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil)
1994-12-31
Dynamic contingency analysis is certainly a demanding task in the context of dynamic performance evaluation. This paper presents the results of a test for checking the contingency screening capability of the IPEBS method. A brazilian 1100-bus, 112-gen system was used in the test; the ranking of the contingencies based on critical clearing times obtained with IPEBS, was compared with the ranking derived from detailed time-domain simulation. The results of this comparison encourages us to recommended the use of the method in industry applications, in a complementary basis to the current method of time domain simulation. (author) 5 refs., 1 fig., 2 tabs.
Application of Dynamic Systems Family for Synthesis of Fuzzy Control with Account of Non-linearities
Directory of Open Access Journals (Sweden)
Andriy Lozynskyy
2016-01-01
Full Text Available Dynamic system with nonlinearities has been considered. This system has been divided into a set of linear subsystems. A fuzzy controller of the considered system has been synthesized. It takes into account nonlinearities of the system and provides smooth switching between controllers of the linear subsystems. An unstable subsystem has been utilized, which provides better dynamic characteristics of the considered system. Comparison with traditional controller has been conducted. Corresponding qualitative and quantitative estimates have been provided. They testify the expediency of the proposed approach.
Applications of Chaotic Dynamics in Robotics
Directory of Open Access Journals (Sweden)
Xizhe Zang
2016-03-01
Full Text Available This article presents a summary of applications of chaos and fractals in robotics. Firstly, basic concepts of deterministic chaos and fractals are discussed. Then, fundamental tools of chaos theory used for identifying and quantifying chaotic dynamics will be shared. Principal applications of chaos and fractal structures in robotics research, such as chaotic mobile robots, chaotic behaviour exhibited by mobile robots interacting with the environment, chaotic optimization algorithms, chaotic dynamics in bipedal locomotion and fractal mechanisms in modular robots will be presented. A brief survey is reported and an analysis of the reviewed publications is also presented.
International Nuclear Information System (INIS)
Haapanen, P.; Korhonen, J.
1995-01-01
The safety assessment of programmable automation systems can not totally be based on conventional probabilistic methods because of the difficulties in quantification of the reliability of the software as well as the hardware. Additional means shall therefore be used to gain more confidence on the system dependability. One central confidence building measure is the independent dynamic testing of the completed system. An automated test harness is needed to run the required large amount of test cases in a restricted time span. The prototype dynamic testing harness for programmable digital systems developed at the Technical Research Centre of Finland (VTT) is described in the presentation. (12 refs., 2 figs., 2 tabs.)
A self-cognizant dynamic system approach for prognostics and health management
Bai, Guangxing; Wang, Pingfeng; Hu, Chao
2015-03-01
Prognostics and health management (PHM) is an emerging engineering discipline that diagnoses and predicts how and when a system will degrade its performance and lose its partial or whole functionality. Due to the complexity and invisibility of rules and states of most dynamic systems, developing an effective approach to track evolving system states becomes a major challenge. This paper presents a new self-cognizant dynamic system (SCDS) approach that incorporates artificial intelligence into dynamic system modeling for PHM. A feed-forward neural network (FFNN) is selected to approximate a complex system response which is challenging task in general due to inaccessible system physics. The trained FFNN model is then embedded into a dual extended Kalman filter algorithm to track down system dynamics. A recursive computation technique used to update the FFNN model using online measurements is also derived. To validate the proposed SCDS approach, a battery dynamic system is considered as an experimental application. After modeling the battery system by a FFNN model and a state-space model, the state-of-charge (SoC) and state-of-health (SoH) are estimated by updating the FFNN model using the proposed approach. Experimental results suggest that the proposed approach improves the efficiency and accuracy for battery health management.
International Nuclear Information System (INIS)
Koszykowski, M.L.; Pfeffer, G.A.; Noid, D.W.
1987-01-01
Nonlinear dynamics plays a dominant role in a variety of important problems in chemical physics. Examples are unimolecular reactions, infrared multiphoton decomposition of molecules, the pumping process of the gamma ray laser, dissociation of vibrationally excited state-selected van der Waals's complexes, and many other chemical and atomic processes. The present article discusses recent theoretical studies on the quasi-periodic and chaotic dynamic aspects of vibrational-rotational states of atomic, nuclear, and molecular systems using the semiclassical spectral method (SSM). The authors note that the coordinates, momenta, and so on, are found using classical mechanics in the studies included in this review. They outline the semiclassical spectral method and a wide variety of applications. Although this technique was first developed ten years ago, it has proved to be tremendously successful as a tool used in dynamics problems. Applications include problems in nonlinear dynamics, molecular and atomic spectra, surface science, astronomy and stellar dynamics, nuclear physics, and polymer physics
Pilyugin, Sergei Yu
2012-01-01
Dynamical systems are abundant in theoretical physics and engineering. Their understanding, with sufficient mathematical rigor, is vital to solving many problems. This work conveys the modern theory of dynamical systems in a didactically developed fashion.In addition to topological dynamics, structural stability and chaotic dynamics, also generic properties and pseudotrajectories are covered, as well as nonlinearity. The author is an experienced book writer and his work is based on years of teaching.
Review of Dynamic Modeling and Simulation of Large Scale Belt Conveyor System
He, Qing; Li, Hong
Belt conveyor is one of the most important devices to transport bulk-solid material for long distance. Dynamic analysis is the key to decide whether the design is rational in technique, safe and reliable in running, feasible in economy. It is very important to study dynamic properties, improve efficiency and productivity, guarantee conveyor safe, reliable and stable running. The dynamic researches and applications of large scale belt conveyor are discussed. The main research topics, the state-of-the-art of dynamic researches on belt conveyor are analyzed. The main future works focus on dynamic analysis, modeling and simulation of main components and whole system, nonlinear modeling, simulation and vibration analysis of large scale conveyor system.
Dynamics of Multibody Systems Near Lagrangian Points
Wong, Brian
dynamics of two sample rigid bodies when they are in different periodic orbits around a collinear point, and the tether librations of a two-tether system in the same orbits. The results show that the rigid satellites and the tethered system experience greater attitude motions when they are in larger periodic orbits. The dynamics of variable length systems are also studied in order to determine the control cost associated with moving the end bodies in a gapless spiral to cover the area spanned by the system. The control cost is relatively low during tether deployment, and negligible effort is required to maintain the angular velocity of the tethered system after deployment. A set of recommendations for the applications of Lagrangian-point physically-connected systems are presented as well as some future research directions are suggested.
Mathematical Modeling and Dimension Reduction in Dynamical Systems
DEFF Research Database (Denmark)
Elmegård, Michael
. These systems are generically nonlinear and the studies of them often become enormously complex. The framework in which such systems are best understood is via the theory of dynamical systems, where the critical behavior is systematically analyzed by performing bifurcation theory. In that context the current...... thesis is attacking two problems. The first is concerned with the mathematical modelling and analysis of an experiment of a vibro-impacting beam. This type of dynamical system has received much attention in the recent years and they occur frequently in mechanical applications, where they induce noise...... the existence of isolas of subharmonic orbits. These were then verified in the practical experiment in the lab. The second problem that is addressed in the current thesis is a problem that has developed as a consequence of the increasing power of computers which has created the demand for analysis of ever more...
Quantum system driven by incoherent a.c fields: Multi-crossing Landau Zener dynamics
Energy Technology Data Exchange (ETDEWEB)
Jipdi, M.N., E-mail: jmichaelnicky@yahoo.fr; Fai, L.C.; Tchoffo, M.
2016-10-23
The paper investigates the multi-crossing dynamics of a Landau–Zener (LZ) system driven by two sinusoidal a.c fields applying the Dynamic Matrix approach (DMA). The system is shown to follow one-crossing and multi-crossing dynamics for low and high frequency regime respectively. It is shown that in low frequency regime, the resonance phenomenon occurs and leads to the decoupling of basis states; the effective gap vanishes and then the complete blockage of the system. For high frequency, the system achieves multi-crossing dynamics with two fictitious crossings; the system models a Landau–Zener–Stückelberg (LZS) interferometer with critical parameters that tailor probabilities. The system is then shown to depend only on the phase that permits the easiest control with possible application in implementing logic gates.
Dynamical Stability of Imaged Planetary Systems in Formation: Application to HL Tau
Tamayo, D.; Triaud, A. H. M. J.; Menou, K.; Rein, H.
2015-06-01
A recent Atacama Large Millimeter/Submillimeter Array image revealed several concentric gaps in the protoplanetary disk surrounding the young star HL Tau. We consider the hypothesis that these gaps are carved by planets, and present a general framework for understanding the dynamical stability of such systems over typical disk lifetimes, providing estimates for the maximum planetary masses. We collect these easily evaluated constraints into a workflow that can help guide the design and interpretation of new observational campaigns and numerical simulations of gap opening in such systems. We argue that the locations of resonances should be significantly shifted in massive disks like HL Tau, and that theoretical uncertainties in the exact offset, together with observational errors, imply a large uncertainty in the dynamical state and stability in such disks. This presents an important barrier to using systems like HL Tau as a proxy for the initial conditions following planet formation. An important observational avenue to breaking this degeneracy is to search for eccentric gaps, which could implicate resonantly interacting planets. Unfortunately, massive disks like HL Tau should induce swift pericenter precession that would smear out any such eccentric features of planetary origin. This motivates pushing toward more typical, less massive disks. For a nominal non-resonant model of the HL Tau system with five planets, we find a maximum mass for the outer three bodies of approximately 2 Neptune masses. In a resonant configuration, these planets can reach at least the mass of Saturn. The inner two planets’ masses are unconstrained by dynamical stability arguments.
Comparison of dynamic isotope power systems for distributed planet surface applications
Bents, David J.; Mckissock, Barbara I.; Hanlon, James C.; Schmitz, Paul C.; Rodriguez, Carlos D.; Withrow, Colleen A.
1991-01-01
Dynamic isotope power system (DIPS) alternatives were investigated and characterized for the surface mission elements associated with a lunar base and subsequent manned Mars expedition. System designs based on two convertor types were studied. These systems were characterized parametrically and compared over the steady-state electrical output power range 0.2 to 20 kWe. Three methods of thermally integrating the heat source and the Stirling heater head were considered, depending on unit size. Figures of merit were derived from the characterizations and compared over the parametric range. Design impacts of mission environmental factors are discussed and quantitatively assessed.
Stability of dynamical systems
Liao, Xiaoxin; Yu, P 0
2007-01-01
The main purpose of developing stability theory is to examine dynamic responses of a system to disturbances as the time approaches infinity. It has been and still is the object of intense investigations due to its intrinsic interest and its relevance to all practical systems in engineering, finance, natural science and social science. This monograph provides some state-of-the-art expositions of major advances in fundamental stability theories and methods for dynamic systems of ODE and DDE types and in limit cycle, normal form and Hopf bifurcation control of nonlinear dynamic systems.ʺ Presents
Applications of Asymptotic Sampling on High Dimensional Structural Dynamic Problems
DEFF Research Database (Denmark)
Sichani, Mahdi Teimouri; Nielsen, Søren R.K.; Bucher, Christian
2011-01-01
The paper represents application of the asymptotic sampling on various structural models subjected to random excitations. A detailed study on the effect of different distributions of the so-called support points is performed. This study shows that the distribution of the support points has consid...... dimensional reliability problems in structural dynamics.......The paper represents application of the asymptotic sampling on various structural models subjected to random excitations. A detailed study on the effect of different distributions of the so-called support points is performed. This study shows that the distribution of the support points has...... is minimized. Next, the method is applied on different cases of linear and nonlinear systems with a large number of random variables representing the dynamic excitation. The results show that asymptotic sampling is capable of providing good approximations of low failure probability events for very high...
Sustainable Deforestation Evaluation Model and System Dynamics Analysis
Feng, Huirong; Lim, C. W.; Chen, Liqun; Zhou, Xinnian; Zhou, Chengjun; Lin, Yi
2014-01-01
The current study used the improved fuzzy analytic hierarchy process to construct a sustainable deforestation development evaluation system and evaluation model, which has refined a diversified system to evaluate the theory of sustainable deforestation development. Leveraging the visual image of the system dynamics causal and power flow diagram, we illustrated here that sustainable forestry development is a complex system that encompasses the interaction and dynamic development of ecology, economy, and society and has reflected the time dynamic effect of sustainable forestry development from the three combined effects. We compared experimental programs to prove the direct and indirect impacts of the ecological, economic, and social effects of the corresponding deforest techniques and fully reflected the importance of developing scientific and rational ecological harvesting and transportation technologies. Experimental and theoretical results illustrated that light cableway skidding is an ecoskidding method that is beneficial for the sustainable development of resources, the environment, the economy, and society and forecasted the broad potential applications of light cableway skidding in timber production technology. Furthermore, we discussed the sustainable development countermeasures of forest ecosystems from the aspects of causality, interaction, and harmony. PMID:25254225
Sustainable deforestation evaluation model and system dynamics analysis.
Feng, Huirong; Lim, C W; Chen, Liqun; Zhou, Xinnian; Zhou, Chengjun; Lin, Yi
2014-01-01
The current study used the improved fuzzy analytic hierarchy process to construct a sustainable deforestation development evaluation system and evaluation model, which has refined a diversified system to evaluate the theory of sustainable deforestation development. Leveraging the visual image of the system dynamics causal and power flow diagram, we illustrated here that sustainable forestry development is a complex system that encompasses the interaction and dynamic development of ecology, economy, and society and has reflected the time dynamic effect of sustainable forestry development from the three combined effects. We compared experimental programs to prove the direct and indirect impacts of the ecological, economic, and social effects of the corresponding deforest techniques and fully reflected the importance of developing scientific and rational ecological harvesting and transportation technologies. Experimental and theoretical results illustrated that light cableway skidding is an ecoskidding method that is beneficial for the sustainable development of resources, the environment, the economy, and society and forecasted the broad potential applications of light cableway skidding in timber production technology. Furthermore, we discussed the sustainable development countermeasures of forest ecosystems from the aspects of causality, interaction, and harmony.
Sustainable Deforestation Evaluation Model and System Dynamics Analysis
Directory of Open Access Journals (Sweden)
Huirong Feng
2014-01-01
Full Text Available The current study used the improved fuzzy analytic hierarchy process to construct a sustainable deforestation development evaluation system and evaluation model, which has refined a diversified system to evaluate the theory of sustainable deforestation development. Leveraging the visual image of the system dynamics causal and power flow diagram, we illustrated here that sustainable forestry development is a complex system that encompasses the interaction and dynamic development of ecology, economy, and society and has reflected the time dynamic effect of sustainable forestry development from the three combined effects. We compared experimental programs to prove the direct and indirect impacts of the ecological, economic, and social effects of the corresponding deforest techniques and fully reflected the importance of developing scientific and rational ecological harvesting and transportation technologies. Experimental and theoretical results illustrated that light cableway skidding is an ecoskidding method that is beneficial for the sustainable development of resources, the environment, the economy, and society and forecasted the broad potential applications of light cableway skidding in timber production technology. Furthermore, we discussed the sustainable development countermeasures of forest ecosystems from the aspects of causality, interaction, and harmony.
Introduction to differential equations with dynamical systems
Campbell, Stephen L
2011-01-01
Many textbooks on differential equations are written to be interesting to the teacher rather than the student. Introduction to Differential Equations with Dynamical Systems is directed toward students. This concise and up-to-date textbook addresses the challenges that undergraduate mathematics, engineering, and science students experience during a first course on differential equations. And, while covering all the standard parts of the subject, the book emphasizes linear constant coefficient equations and applications, including the topics essential to engineering students. Stephen Campbell and Richard Haberman--using carefully worded derivations, elementary explanations, and examples, exercises, and figures rather than theorems and proofs--have written a book that makes learning and teaching differential equations easier and more relevant. The book also presents elementary dynamical systems in a unique and flexible way that is suitable for all courses, regardless of length.
Combined analytical and numerical approaches in Dynamic Stability analyses of engineering systems
Náprstek, Jiří
2015-03-01
Dynamic Stability is a widely studied area that has attracted many researchers from various disciplines. Although Dynamic Stability is usually associated with mechanics, theoretical physics or other natural and technical disciplines, it is also relevant to social, economic, and philosophical areas of our lives. Therefore, it is useful to occasionally highlight the general aspects of this amazing area, to present some relevant examples and to evaluate its position among the various branches of Rational Mechanics. From this perspective, the aim of this study is to present a brief review concerning the Dynamic Stability problem, its basic definitions and principles, important phenomena, research motivations and applications in engineering. The relationships with relevant systems that are prone to stability loss (encountered in other areas such as physics, other natural sciences and engineering) are also noted. The theoretical background, which is applicable to many disciplines, is presented. In this paper, the most frequently used Dynamic Stability analysis methods are presented in relation to individual dynamic systems that are widely discussed in various engineering branches. In particular, the Lyapunov function and exponent procedures, Routh-Hurwitz, Liénard, and other theorems are outlined together with demonstrations. The possibilities for analytical and numerical procedures are mentioned together with possible feedback from experimental research and testing. The strengths and shortcomings of these approaches are evaluated together with examples of their effective complementing of each other. The systems that are widely encountered in engineering are presented in the form of mathematical models. The analyses of their Dynamic Stability and post-critical behaviour are also presented. The stability limits, bifurcation points, quasi-periodic response processes and chaotic regimes are discussed. The limit cycle existence and stability are examined together with their
Dynamic random walks theory and applications
Guillotin-Plantard, Nadine
2006-01-01
The aim of this book is to report on the progress realized in probability theory in the field of dynamic random walks and to present applications in computer science, mathematical physics and finance. Each chapter contains didactical material as well as more advanced technical sections. Few appendices will help refreshing memories (if necessary!).· New probabilistic model, new results in probability theory· Original applications in computer science· Applications in mathematical physics· Applications in finance
Soliton dynamics in periodic system with different nonlinear media
International Nuclear Information System (INIS)
Zabolotskij, A.A.
2001-01-01
To analyze pulse dynamics in the optical system consisting of periodic sequence of nonlinear media one uses a composition model covering a model of resonance interaction of light ultrashort pulse with energy transition of medium with regard to pumping of the upper level and quasi-integrable model describing propagation of light field in another medium with cubic nonlinearity and dispersion. One additionally takes account of losses and other types of interaction in the from of perturbation members. On the basis of the method of scattering back problem and perturbation theory one developed a simple method to study peculiarities of soliton evolution in such periodic system. Due to its application one managed to describe different modes of soliton evolution in such a system including chaotic dynamics [ru
Isotope techniques in non-destructive testing of dynamic systems
International Nuclear Information System (INIS)
Singh, Gursharan; Pant, H.J.
1996-01-01
A few applications of gamma scanning and radiotracer techniques for Non-destructive Testing (NDT) of dynamic systems in chemical and petrochemical industries are briefly discussed in this paper. Examples of gamma scanning inspections carried out for troubleshooting of various types of columns such as vacuum, extraction, separator and rectifier, with trays and packed beds and having diameters from 1 meter to 8.4 meters are given. Radiotracer applications for Residence Time Distribution (RTD) studies on different systems like an aniline production reactor in a chemical industry and a laboratory scale solid-liquid fluidized bed column are mentioned. (author)
A dynamic isotope power system for Space Exploration Initiative surface transport systems
International Nuclear Information System (INIS)
Hunt, M.E.; Harty, R.B.; Cataldo, R.
1992-03-01
The Dynamic Isotope Power System (DIPS) Demonstration Program, sponsored by the U.S. Department of Energy with support funding from NASA, is currently focused on the development of a standardized 2.5-kWe portable generator for multiple applications on the lunar or Martian surface. A variety of remote and mobile potential applications have been identified by NASA, including surface rovers for both short- and extended-duration missions, remote power to science packages, and backup to central base power. Recent work focused on refining the 2.5-kWe design and emphasizing the compatibility of the system with potential surface transport systems. Work included an evaluation of the design to ensure compatibility with the Martian atmosphere while imposing only a minor mass penalty on lunar operations. Additional work included a study performed to compare the DIPS with regenerative fuel cell systems for lunar mobile and remote power systems. Power requirements were reviewed and a modular system chosen for the comparison. 4 refs
International Nuclear Information System (INIS)
Choi, Kwang Sik; Choi, Young Sung; Han, Kyu Hyun; Kim, Do Hyoung
2007-01-01
The methodology being used today for assuring nuclear safety is based on analytic approaches. In the 21st century, holistic approaches are increasingly used over traditional analytic method that is based on reductionism. Presently, it leads to interest in complexity theory or system dynamics. In this paper, we review global academic trends, social environments, concept of nuclear safety and regulatory frameworks for nuclear safety. We propose a new safety paradigm and also regulatory approach using holistic approach and system dynamics now in fashion
International Nuclear Information System (INIS)
Evdokimov, Nikolai V; Komolov, Pavel V; Komolov, Vladimir P
2001-01-01
The sign correlation of quasiperiodic oscillations with close incommensurable frequencies forms a dynamic chaos, which interferes like noise with a single interference peak and is controlled by the delay of its constituent oscillations. This property of oscillations with incommensurable frequencies can be employed in multichannel information transfer systems to form radar reception patterns and obtain uninterrupted coherent key streams in symmetric cryptographic systems. The review of known results on the generation and properties of quasiperiodic oscillations is complemented by a description of new experiments. (methodological notes)
Far-IR transparency and dynamic infrared signature control with novel conducting polymer systems
Chandrasekhar, Prasanna; Dooley, T. J.
1995-09-01
Materials which possess transparency, coupled with active controllability of this transparency in the infrared (IR), are today an increasingly important requirement, for varied applications. These applications include windows for IR sensors, IR-region flat panel displays used in camouflage as well as in communication and sight through night-vision goggles, coatings with dynamically controllable IR-emissivity, and thermal conservation coatings. Among stringent requirements for these applications are large dynamic ranges (color contrast), 'multi-color' or broad-band characteristics, extended cyclability, long memory retention, matrix addressability, small area fabricability, low power consumption, and environmental stability. Among materials possessing the requirements for variation of IR signature, conducting polymers (CPs) appear to be the only materials with dynamic, actively controllable signature and acceptable dynamic range. Conventional CPs such as poly(alkyl thiophene), poly(pyrrole) or poly(aniline) show very limited dynamic range, especially in the far-IR, while also showing poor transparency. We have developed a number of novel CP systems ('system' implying the CP, the selected dopant, the synthesis method, and the electrolyte) with very wide dynamic range (up to 90% in both important IR regions, 3 - 5 (mu) and 8 - 12 (mu) ), high cyclability (to 105 cycles with less than 10% optical degradation), nearly indefinite optical memory retention, matrix addressability of multi-pixel displays, very wide operating temperature and excellent environmental stability, low charge capacity, and processability into areas from less than 1 mm2 to more than 100 cm2. The criteria used to design and arrive at these CP systems, together with representative IR signature data, are presented in this paper.
Design and Implementation of File Access and Control System Based on Dynamic Web
Institute of Scientific and Technical Information of China (English)
GAO Fuxiang; YAO Lan; BAO Shengfei; YU Ge
2006-01-01
A dynamic Web application, which can help the departments of enterprise to collaborate with each other conveniently, is proposed. Several popular design solutions are introduced at first. Then, dynamic Web system is chosen for developing the file access and control system. Finally, the paper gives the detailed process of the design and implementation of the system, which includes some key problems such as solutions of document management and system security. Additionally, the limitations of the system as well as the suggestions of further improvement are also explained.
Directory of Open Access Journals (Sweden)
ERSHOVA N. M.
2017-05-01
Full Text Available Annotation. Purpose of the article. To present the capabilities of the MVTU 3.7 simulation system while the transient processes studying of complex dynamic systems and the appropriateness of its using in the learning process. Methodology of the research. Computer technology and information technologies are the main tools of the modern IT specialist, therefore, the qualitative preparation of students in this field has a great importance in the general system of specialists training and largely determines the material mastering degree at the senior courses. The absence of standard programs libraries for solving the most frequently encountered engineering problems in modern algorithmic programming languages makes the creating software products process for research of complex dynamic systems very difficult. For help come systems of modeling, mathematical base of which is the theory of automatic control. There are unified principles for their creation, which are based on the description of structural schemes, that is the graphical representation of a mathematical model. The MVTU 3.7 simulation system allows you to model transient processes, investigate stability and perform the synthesis of the parameters of the oscillatory processes of various technical devices: mechanical, hydraulic, heat engineering, electrotechnical, etc., including means and automation systems. The restricted version is applicable to technical devices with 15 degrees of freedom. In the MVTU 3.7 simulation system, the main role is assigned to the graphic editor, with its help a simulation scheme is created on the display screen according to the structural scheme of the research system. Block structures are selected from the graphics database using the mouse. The graphical database is located on the display screen next to the working field. After the simulation scheme creating the function block parameters are assigned, the integration method is selected and the integration
Novel developments in linear modal description of piping system dynamic behavior
International Nuclear Information System (INIS)
Revesz, Z.
1989-01-01
Novel developments in dynamic analysis of piping systems are described. The ASME BPV Codes, 1986 describes methods that are considered as adequate to analyze piping systems under dynamic loading, and also states that the method described in the codes are not the only acceptable ones. With straightforward application of the principles and methods laid down in the code novel numerical techniques can be developed. These techniques allow to obtain correct, conservative estimates of the piping system response and to reduce the computed stresses the same time. Beyond that, the particular algorithm which is presented is also suitable to analyze systems which include non-linear (viscous) damping elements
On some dynamical chameleon systems
Burkin, I. M.; Kuznetsova, O. I.
2018-03-01
It is now well known that dynamical systems can be categorized into systems with self-excited attractors and systems with hidden attractors. A self-excited attractor has a basin of attraction that is associated with an unstable equilibrium, while a hidden attractor has a basin of attraction that does not intersect with small neighborhoods of any equilibrium points. Hidden attractors play the important role in engineering applications because they allow unexpected and potentially disastrous responses to perturbations in a structure like a bridge or an airplane wing. In addition, complex behaviors of chaotic systems have been applied in various areas from image watermarking, audio encryption scheme, asymmetric color pathological image encryption, chaotic masking communication to random number generator. Recently, researchers have discovered the so-called “chameleon systems”. These systems were so named because they demonstrate self-excited or hidden oscillations depending on the value of parameters. The present paper offers a simple algorithm of synthesizing one-parameter chameleon systems. The authors trace the evolution of Lyapunov exponents and the Kaplan-Yorke dimension of such systems which occur when parameters change.
Advanced techniques in dynamic infrared imaging research and application for cancer patients
International Nuclear Information System (INIS)
Boggio, Esteban F.; Santa Cruz, Gustavo A.
2009-01-01
Infrared Imaging for biomedical applications is a non-invasive technique employed to visualize the distribution of infrared radiance coming from the subject under study, either in a static or a dynamic mode. The main difference is that while with the static method basal situations are studied, in the dynamic approach a sequence of thermograms, using thermal stimuli applied onto the patient are acquired, following the temperature evolution throughout the time. Since tumors possess abnormal metabolic activity, a structure and a vascular distribution essentially different from healthy tissue, and a lack of response to homeostatic signals, thermal stresses enhance even more their presence. For this reason, a completely non-invasive system, referred to as Enhancement and Stimulation System (ESS) was constructed, capable of imparting a cool or hot convective air flow onto the surface to examine and permitting to include in the study the time-course of the thermal stress application. In this work, the design of the Dynamic Infrared Imaging-ESS prototype, its characterization and optimization will be presented. In addition, examples of biomedical interest employing small animals will be shown as well. (author)
Progress and monitoring system on compression and transmission technologies of dynamic image
International Nuclear Information System (INIS)
Kobayashi, Hiroyuki; Saijo, Nobuyuki; Nakajo, Ken
2001-01-01
The Toshiba Corporation developed a real-time dynamic image transmission matched with quality of transmission circuit by using MPEG-4 which was recent international standard system for the dynamic image coding system. Concretely, this system made possible on real-time dynamic image transmission even at transmission on wireless circuit such as portable telephone, PHS, wireless LAN, and so on, at viewpoint of the mobile communication. And, by using the wireless circuit, it could be built without any limit of transmission cable, to realize its layout-free establishment. In addition, this system uses only image for communication without using voice, and some devices were carried out to upgrade image and frame speed as possible. Here were described on outlines of transmission system and principle of detection MPEG-4, and function and application of monitoring system using this system. (G.K.)
Dynamic loads on the primary system
International Nuclear Information System (INIS)
Rohde, J.
1980-01-01
As a result of pipe breaks f.ex. in the primary system of a PWR-plant dynamic forces act on the components of the system as well as on their support-structures and internals. The design basis must guarantee that LOCA or system-transient generated loads cannot produce deformations or fractures that endanger the coolability of the reactor, the emergency feedwater supply to the core-region and a safe shut-down of the reactor. In this lecture the first part of a LOCA will be discussed, where the highest dynamic loads on the primary system are expected. In this connection comments are given on the main assumptions and boundary conditions, the related regulations and guide-lines, as well as the possible consequences of an accident. Next, a review is presented of the analytical methods being used for the determination of thermohydraulic generated loads. The stress-calculations on the basis of these load-functions are discussed in the following lectures. The application of the analytical methods, i.e. the different computer codes, and the verification on the basis of the experimental results are described together with a discussion of the theoretical results. In addition a survey will be given of the research work done in connection with the problems of the dynamic loads under accident conditions. Finally, the problems of the fluid-structure interaction will be explained and comments made on computer code development now under way regarding this problem. A short film will be presented to provide a better understanding of fast transient phenomena. (orig./RW)
Application of the integrated safety assessment methodology to the protection of electric systems
International Nuclear Information System (INIS)
Hortal, Javier; Izquierdo, Jose M.
1996-01-01
The generalization of classical techniques for risk assessment incorporating dynamic effects is the main objective of the Integrated Safety Assessment Methodology, as practical implementation of Protection Theory. Transient stability, contingency analysis and protection setpoint verification in electric power systems are particularly appropriate domains of application, since the coupling of reliability and dynamic analysis in the protection assessment process is being increasingly demanded. Suitable techniques for dynamic simulation of sequences of switching events in power systems are derived from the use of quasi-linear equation solution algorithms. The application of the methodology, step by step, is illustrated in a simple but representative example
Nonlinear dynamics non-integrable systems and chaotic dynamics
Borisov, Alexander
2017-01-01
This monograph reviews advanced topics in the area of nonlinear dynamics. Starting with theory of integrable systems – including methods to find and verify integrability – the remainder of the book is devoted to non-integrable systems with an emphasis on dynamical chaos. Topics include structural stability, mechanisms of emergence of irreversible behaviour in deterministic systems as well as chaotisation occurring in dissipative systems.
Directory of Open Access Journals (Sweden)
Yuriy F. Telnov
2013-01-01
Full Text Available The paper represents the technology of application of dynamic intelligent process management system for integrated information-educational environment of university and providing the access for community in order to develop flexible education programs and teaching manuals based on multi-agent and service-oriented architecture. The article depicts the prototype of dynamic intelligent process management system using for forming of educational-methodic body. Efficiency of creation and usage of dynamic intelligent process management system is evaluated.
Quantum dynamics of hydrogen atoms on graphene. I. System-bath modeling.
Bonfanti, Matteo; Jackson, Bret; Hughes, Keith H; Burghardt, Irene; Martinazzo, Rocco
2015-09-28
An accurate system-bath model to investigate the quantum dynamics of hydrogen atoms chemisorbed on graphene is presented. The system comprises a hydrogen atom and the carbon atom from graphene that forms the covalent bond, and it is described by a previously developed 4D potential energy surface based on density functional theory ab initio data. The bath describes the rest of the carbon lattice and is obtained from an empirical force field through inversion of a classical equilibrium correlation function describing the hydrogen motion. By construction, model building easily accommodates improvements coming from the use of higher level electronic structure theory for the system. Further, it is well suited to a determination of the system-environment coupling by means of ab initio molecular dynamics. This paper details the system-bath modeling and shows its application to the quantum dynamics of vibrational relaxation of a chemisorbed hydrogen atom, which is here investigated at T = 0 K with the help of the multi-configuration time-dependent Hartree method. Paper II deals with the sticking dynamics.
Quantum dynamics of hydrogen atoms on graphene. I. System-bath modeling
Energy Technology Data Exchange (ETDEWEB)
Bonfanti, Matteo, E-mail: matteo.bonfanti@unimi.it [Dipartimento di Chimica, Università degli Studi di Milano, v. Golgi 19, 20133 Milano (Italy); Jackson, Bret [Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003 (United States); Hughes, Keith H. [School of Chemistry, Bangor University, Bangor, Gwynedd LL57 2UW (United Kingdom); Burghardt, Irene [Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main (Germany); Martinazzo, Rocco, E-mail: rocco.martinazzo@unimi.it [Dipartimento di Chimica, Università degli Studi di Milano, v. Golgi 19, 20133 Milano (Italy); Istituto di Scienze e Tecnologie Molecolari, Consiglio Nazionale delle Richerche, v. Golgi 19, 20133 Milano (Italy)
2015-09-28
An accurate system-bath model to investigate the quantum dynamics of hydrogen atoms chemisorbed on graphene is presented. The system comprises a hydrogen atom and the carbon atom from graphene that forms the covalent bond, and it is described by a previously developed 4D potential energy surface based on density functional theory ab initio data. The bath describes the rest of the carbon lattice and is obtained from an empirical force field through inversion of a classical equilibrium correlation function describing the hydrogen motion. By construction, model building easily accommodates improvements coming from the use of higher level electronic structure theory for the system. Further, it is well suited to a determination of the system-environment coupling by means of ab initio molecular dynamics. This paper details the system-bath modeling and shows its application to the quantum dynamics of vibrational relaxation of a chemisorbed hydrogen atom, which is here investigated at T = 0 K with the help of the multi-configuration time-dependent Hartree method. Paper II deals with the sticking dynamics.
High speed railway track dynamics models, algorithms and applications
Lei, Xiaoyan
2017-01-01
This book systematically summarizes the latest research findings on high-speed railway track dynamics, made by the author and his research team over the past decade. It explores cutting-edge issues concerning the basic theory of high-speed railways, covering the dynamic theories, models, algorithms and engineering applications of the high-speed train and track coupling system. Presenting original concepts, systematic theories and advanced algorithms, the book places great emphasis on the precision and completeness of its content. The chapters are interrelated yet largely self-contained, allowing readers to either read through the book as a whole or focus on specific topics. It also combines theories with practice to effectively introduce readers to the latest research findings and developments in high-speed railway track dynamics. It offers a valuable resource for researchers, postgraduates and engineers in the fields of civil engineering, transportation, highway & railway engineering.
A method, device and application for the dynamic balancing of a rotating component
International Nuclear Information System (INIS)
Voinis, P.
1995-01-01
The dynamic balancing method is based on the detection of the vibrations generated by an unbalance; two satellites are then displaced in order to create a counter-unbalance and their position is measured. Their position is then adjusted so as the unbalance and counter-unbalance phases and intensities differences are inferior to predetermined reference values in order to balance dynamically the rotating component. Application to superpower turbogenerator shafting systems. 4 fig
Data based identification and prediction of nonlinear and complex dynamical systems
Wang, Wen-Xu; Lai, Ying-Cheng; Grebogi, Celso
2016-07-01
The problem of reconstructing nonlinear and complex dynamical systems from measured data or time series is central to many scientific disciplines including physical, biological, computer, and social sciences, as well as engineering and economics. The classic approach to phase-space reconstruction through the methodology of delay-coordinate embedding has been practiced for more than three decades, but the paradigm is effective mostly for low-dimensional dynamical systems. Often, the methodology yields only a topological correspondence of the original system. There are situations in various fields of science and engineering where the systems of interest are complex and high dimensional with many interacting components. A complex system typically exhibits a rich variety of collective dynamics, and it is of great interest to be able to detect, classify, understand, predict, and control the dynamics using data that are becoming increasingly accessible due to the advances of modern information technology. To accomplish these goals, especially prediction and control, an accurate reconstruction of the original system is required. Nonlinear and complex systems identification aims at inferring, from data, the mathematical equations that govern the dynamical evolution and the complex interaction patterns, or topology, among the various components of the system. With successful reconstruction of the system equations and the connecting topology, it may be possible to address challenging and significant problems such as identification of causal relations among the interacting components and detection of hidden nodes. The "inverse" problem thus presents a grand challenge, requiring new paradigms beyond the traditional delay-coordinate embedding methodology. The past fifteen years have witnessed rapid development of contemporary complex graph theory with broad applications in interdisciplinary science and engineering. The combination of graph, information, and nonlinear dynamical
Data based identification and prediction of nonlinear and complex dynamical systems
Energy Technology Data Exchange (ETDEWEB)
Wang, Wen-Xu [School of Systems Science, Beijing Normal University, Beijing, 100875 (China); Business School, University of Shanghai for Science and Technology, Shanghai 200093 (China); Lai, Ying-Cheng, E-mail: Ying-Cheng.Lai@asu.edu [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287 (United States); Department of Physics, Arizona State University, Tempe, AZ 85287 (United States); Institute for Complex Systems and Mathematical Biology, King’s College, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom); Grebogi, Celso [Institute for Complex Systems and Mathematical Biology, King’s College, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom)
2016-07-12
The problem of reconstructing nonlinear and complex dynamical systems from measured data or time series is central to many scientific disciplines including physical, biological, computer, and social sciences, as well as engineering and economics. The classic approach to phase-space reconstruction through the methodology of delay-coordinate embedding has been practiced for more than three decades, but the paradigm is effective mostly for low-dimensional dynamical systems. Often, the methodology yields only a topological correspondence of the original system. There are situations in various fields of science and engineering where the systems of interest are complex and high dimensional with many interacting components. A complex system typically exhibits a rich variety of collective dynamics, and it is of great interest to be able to detect, classify, understand, predict, and control the dynamics using data that are becoming increasingly accessible due to the advances of modern information technology. To accomplish these goals, especially prediction and control, an accurate reconstruction of the original system is required. Nonlinear and complex systems identification aims at inferring, from data, the mathematical equations that govern the dynamical evolution and the complex interaction patterns, or topology, among the various components of the system. With successful reconstruction of the system equations and the connecting topology, it may be possible to address challenging and significant problems such as identification of causal relations among the interacting components and detection of hidden nodes. The “inverse” problem thus presents a grand challenge, requiring new paradigms beyond the traditional delay-coordinate embedding methodology. The past fifteen years have witnessed rapid development of contemporary complex graph theory with broad applications in interdisciplinary science and engineering. The combination of graph, information, and nonlinear
Data based identification and prediction of nonlinear and complex dynamical systems
International Nuclear Information System (INIS)
Wang, Wen-Xu; Lai, Ying-Cheng; Grebogi, Celso
2016-01-01
The problem of reconstructing nonlinear and complex dynamical systems from measured data or time series is central to many scientific disciplines including physical, biological, computer, and social sciences, as well as engineering and economics. The classic approach to phase-space reconstruction through the methodology of delay-coordinate embedding has been practiced for more than three decades, but the paradigm is effective mostly for low-dimensional dynamical systems. Often, the methodology yields only a topological correspondence of the original system. There are situations in various fields of science and engineering where the systems of interest are complex and high dimensional with many interacting components. A complex system typically exhibits a rich variety of collective dynamics, and it is of great interest to be able to detect, classify, understand, predict, and control the dynamics using data that are becoming increasingly accessible due to the advances of modern information technology. To accomplish these goals, especially prediction and control, an accurate reconstruction of the original system is required. Nonlinear and complex systems identification aims at inferring, from data, the mathematical equations that govern the dynamical evolution and the complex interaction patterns, or topology, among the various components of the system. With successful reconstruction of the system equations and the connecting topology, it may be possible to address challenging and significant problems such as identification of causal relations among the interacting components and detection of hidden nodes. The “inverse” problem thus presents a grand challenge, requiring new paradigms beyond the traditional delay-coordinate embedding methodology. The past fifteen years have witnessed rapid development of contemporary complex graph theory with broad applications in interdisciplinary science and engineering. The combination of graph, information, and nonlinear
Gait Dynamics Sensing Using IMU Sensor Array System
Directory of Open Access Journals (Sweden)
Slavomir Kardos
2017-01-01
Full Text Available The article deals with a progressive approach in gait sensing. It is incorporated by IMU (Inertia Measurement Unit complex sensors whose field of acting is mainly the motion sensing in medicine, automotive and other industry, self-balancing systems, etc. They allow acquiring the position and orientation of an object in 3D space. Using several IMU units the sensing array for gait dynamics was made. Based on human gait analysis the 7-sensor array was designed to build a gait motion dynamics sensing system with the possibility of graphical interpretation of data from the sensing modules in real-time graphical application interface under the LabVIEW platform. The results of analyses can serve as the information for medical diagnostic purposes. The main control part of the system is microcontroller, whose function is to control the data collection and flow, provide the communication and power management.
Dynamics of Financial System: A System Dynamics Approach
Girish K. Nair; Lewlyn Lester Raj Rodrigues
2013-01-01
There are several ratios which define the financial health of an organization but the importance of Net cash flow, Gross income, Net income, Pending bills, Receivable bills, Debt, and Book value can never be undermined as they give the exact picture of the financial condition. While there are several approaches to study the dynamics of these variables, system dynamics based modelling and simulation is one of the modern techniques. The paper explores this method to simulate the before mentione...
Vorberger, J.; Chapman, D. A.
2018-01-01
We present a quantum theory for the dynamic structure factors in nonequilibrium, correlated, two-component systems such as plasmas or warm dense matter. The polarization function, which is needed as the input for the calculation of the structure factors, is calculated in nonequilibrium based on a perturbation expansion in the interaction strength. To make our theory applicable for x-ray scattering, a generalized Chihara decomposition for the total electron structure factor in nonequilibrium is derived. Examples are given and the influence of correlations and exchange on the structure and the x-ray-scattering spectrum are discussed for a model nonequilibrium distribution, as often encountered during laser heating of materials, as well as for two-temperature systems.
Vorberger, J; Chapman, D A
2018-01-01
We present a quantum theory for the dynamic structure factors in nonequilibrium, correlated, two-component systems such as plasmas or warm dense matter. The polarization function, which is needed as the input for the calculation of the structure factors, is calculated in nonequilibrium based on a perturbation expansion in the interaction strength. To make our theory applicable for x-ray scattering, a generalized Chihara decomposition for the total electron structure factor in nonequilibrium is derived. Examples are given and the influence of correlations and exchange on the structure and the x-ray-scattering spectrum are discussed for a model nonequilibrium distribution, as often encountered during laser heating of materials, as well as for two-temperature systems.
Dynamics of number systems computation with arbitrary precision
Kurka, Petr
2016-01-01
This book is a source of valuable and useful information on the topics of dynamics of number systems and scientific computation with arbitrary precision. It is addressed to scholars, scientists and engineers, and graduate students. The treatment is elementary and self-contained with relevance both for theory and applications. The basic prerequisite of the book is linear algebra and matrix calculus. .
Molecular dynamics coupled with a virtual system for effective conformational sampling.
Hayami, Tomonori; Kasahara, Kota; Nakamura, Haruki; Higo, Junichi
2018-07-15
An enhanced conformational sampling method is proposed: virtual-system coupled canonical molecular dynamics (VcMD). Although VcMD enhances sampling along a reaction coordinate, this method is free from estimation of a canonical distribution function along the reaction coordinate. This method introduces a virtual system that does not necessarily obey a physical law. To enhance sampling the virtual system couples with a molecular system to be studied. Resultant snapshots produce a canonical ensemble. This method was applied to a system consisting of two short peptides in an explicit solvent. Conventional molecular dynamics simulation, which is ten times longer than VcMD, was performed along with adaptive umbrella sampling. Free-energy landscapes computed from the three simulations mutually converged well. The VcMD provided quicker association/dissociation motions of peptides than the conventional molecular dynamics did. The VcMD method is applicable to various complicated systems because of its methodological simplicity. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
International Nuclear Information System (INIS)
Onodera, T; Tsuboi, H; Hatakeyama, N; Endou, A; Miyamoto, A; Miura, R; Takaba, H; Suzuki, A; Kubo, M
2010-01-01
Tribology at the atomistic and molecular levels has been theoretically studied by a classical molecular dynamics (MD) method. However, this method inherently cannot simulate the tribochemical reaction dynamics because it does not consider the electrons in nature. Although the first-principles based MD method has recently been used for understanding the chemical reaction dynamics of several molecules in the tribology field, the method cannot simulate the tribochemical reaction dynamics of a large complex system including solid surfaces and interfaces due to its huge computation costs. On the other hand, we have developed a quantum chemical MD tribochemical simulator on the basis of a hybrid tight-binding quantum chemical/classical MD method. In the simulator, the central part of the chemical reaction dynamics is calculated by the tight-binding quantum chemical MD method, and the remaining part is calculated by the classical MD method. Therefore, the developed tribochemical simulator realizes the study on tribochemical reaction dynamics of a large complex system, which cannot be treated by using the conventional classical MD or the first-principles MD methods. In this paper, we review our developed quantum chemical MD tribochemical simulator and its application to the tribochemical reaction dynamics of a few lubricant additives
Higher-order spin and charge dynamics in a quantum dot-lead hybrid system.
Otsuka, Tomohiro; Nakajima, Takashi; Delbecq, Matthieu R; Amaha, Shinichi; Yoneda, Jun; Takeda, Kenta; Allison, Giles; Stano, Peter; Noiri, Akito; Ito, Takumi; Loss, Daniel; Ludwig, Arne; Wieck, Andreas D; Tarucha, Seigo
2017-09-22
Understanding the dynamics of open quantum systems is important and challenging in basic physics and applications for quantum devices and quantum computing. Semiconductor quantum dots offer a good platform to explore the physics of open quantum systems because we can tune parameters including the coupling to the environment or leads. Here, we apply the fast single-shot measurement techniques from spin qubit experiments to explore the spin and charge dynamics due to tunnel coupling to a lead in a quantum dot-lead hybrid system. We experimentally observe both spin and charge time evolution via first- and second-order tunneling processes, and reveal the dynamics of the spin-flip through the intermediate state. These results enable and stimulate the exploration of spin dynamics in dot-lead hybrid systems, and may offer useful resources for spin manipulation and simulation of open quantum systems.
Collective intelligence for control of distributed dynamical systems
Wolpert, D. H.; Wheeler, K. R.; Tumer, K.
2000-03-01
We consider the El Farol bar problem, also known as the minority game (W. B. Arthur, The American Economic Review, 84 (1994) 406; D. Challet and Y. C. Zhang, Physica A, 256 (1998) 514). We view it as an instance of the general problem of how to configure the nodal elements of a distributed dynamical system so that they do not "work at cross purposes", in that their collective dynamics avoids frustration and thereby achieves a provided global goal. We summarize a mathematical theory for such configuration applicable when (as in the bar problem) the global goal can be expressed as minimizing a global energy function and the nodes can be expressed as minimizers of local free energy functions. We show that a system designed with that theory performs nearly optimally for the bar problem.
Energy Technology Data Exchange (ETDEWEB)
Campigotto, C
1993-12-01
The first part is concerned with the introduction of quantum groups as an extension of Lie groups. In particular, we study the case of unitary enveloping algebras in dimension 2. We then connect the quantum group formalism to the construction of g CGC recurrent relations. In addition, we construct g-deformed Krawtchouck and Meixner orthogonal polynomials and list their respective main characteristics. The second part deals with some dynamical systems from a classical, a quantum and a gp-analogue point of view. We investigate the Coulomb Kepler system by using the canonical namical systems which contain as special cases some interesting systems for nuclear of atomic physics and for quantum chemistry, such as the Hartmann system, the ring-shaped oscillator, the Smarodinsky-Winternitz system, the Aharonov-Bohen system and the dyania of Dirac and Schroedinger. (author). 291 refs.
Dynamic Parameter-Control Chaotic System.
Hua, Zhongyun; Zhou, Yicong
2016-12-01
This paper proposes a general framework of 1-D chaotic maps called the dynamic parameter-control chaotic system (DPCCS). It has a simple but effective structure that uses the outputs of a chaotic map (control map) to dynamically control the parameter of another chaotic map (seed map). Using any existing 1-D chaotic map as the control/seed map (or both), DPCCS is able to produce a huge number of new chaotic maps. Evaluations and comparisons show that chaotic maps generated by DPCCS are very sensitive to their initial states, and have wider chaotic ranges, better unpredictability and more complex chaotic behaviors than their seed maps. Using a chaotic map of DPCCS as an example, we provide a field-programmable gate array design of this chaotic map to show the simplicity of DPCCS in hardware implementation, and introduce a new pseudo-random number generator (PRNG) to investigate the applications of DPCCS. Analysis and testing results demonstrate the excellent randomness of the proposed PRNG.
Tweed, L. E. L.; Spiegelman, M. W.; Kelemen, P. B.
2017-12-01
Computational thermodynamics has yielded great insights into petrological processes. However, on its own it cannot capture the inherently dynamic nature of many of these processes which depend on the interaction between time-dependent processes including advection, diffusion and chemical reaction. To understand this interplay, and to move away from a purely equilibrium view, requires the integration of computational thermodynamics and fluid mechanics. A key aspect of doing this is the treatment of chemical reactions as time-dependent, irreversible processes. Such a development is integral to understanding a host of petrological questions from the open system evolution of magma chambers to the dynamics of melt migration beneath mid-ocean ridges and flux melting of the mantle wedge in subduction zones. A simple thermodynamically consistent reactive model is developed that can be integrated with conservation equations for mass, momentum and energy. The model rests on the thermodynamic characterization of an independent set of reactions and has the advantage of being completely general and easily extensible to systems comprising multiple solid and liquid phases. The underlying theory is described in detail in another contribution in this session. Here we apply the framework to experimentally constrained simple systems of petrological interest including the fo-qz binary and the fo-qz-k2o ternary. These systems contain a variety of phase topologies including eutectic and peritectic reactions. As the model allows for the seamless exhaustion and stabilization of phases, we can explore the effect that these discontinuous changes have on the compositional and dynamic evolution of the system. To do this we track how the systems respond to sudden changes in intensive variables that perturb them from equilibrium. Such changes are rife in crustal magmatic systems. Simulations for decompression melting are also run to explore the interplay between reactive and advective fluxes
Directory of Open Access Journals (Sweden)
Wu Xuebang
2015-09-01
Full Text Available The general trend in soft matter is to study systems of increasing complexity covering a wide range in time and frequency. Mechanical spectroscopy is a powerful tool for understanding the structure and relaxation dynamics of these materials over a large temperature range and frequency scale. In this work, we collect a few recent applications using low-frequency mechanical spectroscopy for elucidating the structural changes and relaxation dynamics in soft matter, largely based on the author’s group. We illustrate the potential of mechanical spectroscopy with three kinds of soft materials: colloids, polymers and granular systems. Examples include structural changes in colloids, segmental relaxations in amorphous polymers, and resonant dissipation of grain chains in three-dimensional media. The present work shows that mechanical spectroscopy has been applied as a necessary and complementary tool to study the dynamics of such complex systems.
Dynamical systems V bifurcation theory and catastrophe theory
1994-01-01
Bifurcation theory and catastrophe theory are two of the best known areas within the field of dynamical systems. Both are studies of smooth systems, focusing on properties that seem to be manifestly non-smooth. Bifurcation theory is concerned with the sudden changes that occur in a system when one or more parameters are varied. Examples of such are familiar to students of differential equations, from phase portraits. Moreover, understanding the bifurcations of the differential equations that describe real physical systems provides important information about the behavior of the systems. Catastrophe theory became quite famous during the 1970's, mostly because of the sensation caused by the usually less than rigorous applications of its principal ideas to "hot topics", such as the characterization of personalities and the difference between a "genius" and a "maniac". Catastrophe theory is accurately described as singularity theory and its (genuine) applications. The authors of this book, the first printing of w...
Enhanced dynamic data-driven fault detection approach: Application to a two-tank heater system
Harrou, Fouzi
2018-02-12
Principal components analysis (PCA) has been intensively studied and used in monitoring industrial systems. However, data generated from chemical processes are usually correlated in time due to process dynamics, which makes the fault detection based on PCA approach a challenging task. Accounting for the dynamic nature of data can also reflect the performance of the designed fault detection approaches. In PCA-based methods, this dynamic characteristic of the data can be accounted for by using dynamic PCA (DPCA), in which lagged variables are used in the PCA model to capture the time evolution of the process. This paper presents a new approach that combines the DPCA to account for autocorrelation in data and generalized likelihood ratio (GLR) test to detect faults. A DPCA model is applied to perform dimension reduction while appropriately considering the temporal relationships in the data. Specifically, the proposed approach uses the DPCA to generate residuals, and then apply GLR test to reveal any abnormality. The performances of the proposed method are evaluated through a continuous stirred tank heater system.
Phase transitions, nonequilibrium dynamics, and critical behavior of strongly interacting systems
International Nuclear Information System (INIS)
Mottola, E.; Bhattacharya, T.; Cooper, F.
1998-01-01
This is the final report of a three-year, Laboratory Directed Research and Development project at Los Alamos National Laboratory. In this effort, large-scale simulations of strongly interacting systems were performed and a variety of approaches to the nonequilibrium dynamics of phase transitions and critical behavior were investigated. Focus areas included (1) the finite-temperature quantum chromodynamics phase transition and nonequilibrium dynamics of a new phase of matter (the quark-gluon plasma) above the critical temperature, (2) nonequilibrium dynamics of a quantum fields using mean field theory, and (3) stochastic classical field theoretic models with applications to spinodal decomposition and structural phase transitions in a variety of systems, such as spin chains and shape memory alloys
Phase transitions, nonequilibrium dynamics, and critical behavior of strongly interacting systems
Energy Technology Data Exchange (ETDEWEB)
Mottola, E.; Bhattacharya, T.; Cooper, F. [and others
1998-12-31
This is the final report of a three-year, Laboratory Directed Research and Development project at Los Alamos National Laboratory. In this effort, large-scale simulations of strongly interacting systems were performed and a variety of approaches to the nonequilibrium dynamics of phase transitions and critical behavior were investigated. Focus areas included (1) the finite-temperature quantum chromodynamics phase transition and nonequilibrium dynamics of a new phase of matter (the quark-gluon plasma) above the critical temperature, (2) nonequilibrium dynamics of a quantum fields using mean field theory, and (3) stochastic classical field theoretic models with applications to spinodal decomposition and structural phase transitions in a variety of systems, such as spin chains and shape memory alloys.
Investigating the applicability of Dynamic Assessment in Iran: From ...
African Journals Online (AJOL)
3) Teachers with different levels of education held similar and positive attitudes regarding the applicability of dynamic assessment. Key words: Assessment, Dynamic Assessment, Zone of Proximal Development, Interventionist Dynamic Assessment, Interactionist Dynamic Assessment. La présente étude visait à étudier les ...
A phase-space approach to atmospheric dynamics based on observational data. Theory and applications
International Nuclear Information System (INIS)
Wang Risheng.
1994-01-01
This thesis is an attempt to develop systematically a phase-space approach to the atmospheric dynamics based on the theoretical achievement and application experiences in nonlinear time-series analysis. In particular, it is concerned with the derivation of quantities for describing the geometrical structure of the observed dynamics in phase-space (dimension estimation) and the examination of the observed atmospheric fluctuations in the light of phase-space representation. The thesis is, therefore composed of three major parts, i.e. an general survey of the theory of statistical approaches to dynamic systems, the methodology designed for the present study and specific applications with respect to dimension estimation and to a phase-space analysis of the tropical stratospheric quasi-biennial oscillation. (orig./KW)
Analyzing dynamic fault trees derived from model-based system architectures
International Nuclear Information System (INIS)
Dehlinger, Josh; Dugan, Joanne Bechta
2008-01-01
Dependability-critical systems, such as digital instrumentation and control systems in nuclear power plants, necessitate engineering techniques and tools to provide assurances of their safety and reliability. Determining system reliability at the architectural design phase is important since it may guide design decisions and provide crucial information for trade-off analysis and estimating system cost. Despite this, reliability and system engineering remain separate disciplines and engineering processes by which the dependability analysis results may not represent the designed system. In this article we provide an overview and application of our approach to build architecture-based, dynamic system models for dependability-critical systems and then automatically generate Dynamic Fault Trees (DFT) for comprehensive, toolsupported reliability analysis. Specifically, we use the Architectural Analysis and Design Language (AADL) to model the structural, behavioral and failure aspects of the system in a composite architecture model. From the AADL model, we seek to derive the DFT(s) and use Galileo's automated reliability analyses to estimate system reliability. This approach alleviates the dependability engineering - systems engineering knowledge expertise gap, integrates the dependability and system engineering design and development processes and enables a more formal, automated and consistent DFT construction. We illustrate this work using an example based on a dynamic digital feed-water control system for a nuclear reactor
Chaotic Dynamics and Transport in Classical and Quantum Systems
International Nuclear Information System (INIS)
2003-01-01
The aim of this summer school is to provide a set of extended and pedagogical lectures, on the major present-day topics in dynamical systems and statistical mechanics including applications. Some articles are dedicated to chaotic transport in plasma turbulence and to quantum chaos. This document gathers the summaries of some presentations
Large-scale molecular dynamics simulations of self-assembling systems.
Klein, Michael L; Shinoda, Wataru
2008-08-08
Relentless increases in the size and performance of multiprocessor computers, coupled with new algorithms and methods, have led to novel applications of simulations across chemistry. This Perspective focuses on the use of classical molecular dynamics and so-called coarse-grain models to explore phenomena involving self-assembly in complex fluids and biological systems.
Chaotic Dynamics and Transport in Classical and Quantum Systems
Energy Technology Data Exchange (ETDEWEB)
NONE
2003-07-01
The aim of this summer school is to provide a set of extended and pedagogical lectures, on the major present-day topics in dynamical systems and statistical mechanics including applications. Some articles are dedicated to chaotic transport in plasma turbulence and to quantum chaos. This document gathers the summaries of some presentations.
Dynamic modeling of gas turbines in integrated gasification fuel cell systems
Maclay, James Davenport
2009-12-01
Solid oxide fuel cell-gas turbine (SOFC-GT) hybrid systems for use in integrated gasification fuel cell (IGFC) systems operating on coal will stretch existing fossil fuel reserves, generate power with less environmental impact, while having a cost of electricity advantage over most competing technologies. However, the dynamic performance of a SOFC-GT in IGFC applications has not been previously studied in detail. Of particular importance is how the turbo-machinery will be designed, controlled and operated in such applications; this is the focus of the current work. Perturbation and dynamic response analyses using numerical SimulinkRTM models indicate that compressor surge is the predominant concern for safe dynamic turbo-machinery operation while shaft over-speed and excessive turbine inlet temperatures are secondary concerns. Fuel cell temperature gradients and anode-cathode differential pressures were found to be the greatest concerns for safe dynamic fuel cell operation. Two control strategies were compared, that of constant gas turbine shaft speed and constant fuel cell temperature, utilizing a variable speed gas turbine. Neither control strategy could eliminate all vulnerabilities during dynamic operation. Constant fuel cell temperature control ensures safe fuel cell operation, while constant speed control does not. However, compressor surge is more likely with constant fuel cell temperature control than with constant speed control. Design strategies that provide greater surge margin while utilizing constant fuel cell temperature control include increasing turbine design mass flow and decreasing turbine design inlet pressure, increasing compressor design pressure ratio and decreasing compressor design mass flow, decreasing plenum volume, decreasing shaft moment of inertia, decreasing fuel cell pressure drop, maintaining constant compressor inlet air temperature. However, these strategies in some cases incur an efficiency penalty. A broad comparison of cycles
Shadowing in dynamical systems
Pilyugin, Sergei Yu
1999-01-01
This book is an introduction to the theory of shadowing of approximate trajectories in dynamical systems by exact ones. This is the first book completely devoted to the theory of shadowing. It shows the importance of shadowing theory for both the qualitative theory of dynamical systems and the theory of numerical methods. Shadowing Methods allow us to estimate differences between exact and approximate solutions on infinite time intervals and to understand the influence of error terms. The book is intended for specialists in dynamical systems, for researchers and graduate students in the theory of numerical methods.
Application of system dynamics on nuclear policy model
International Nuclear Information System (INIS)
An, N. S.; Kim, J. C.; Kim, D. W.; Kang, S. C.
2000-01-01
A system dynamics model for a nuclear energy policy in Korea (SIMNEP) was developed to analyze the Korea nuclear system and to predict the influence of the nuclear energy policy in the future. Two cases were analyzed using SIMNEP. The first case is to see the effect of the occurrence of severe nuclear accident in foreign country on the Korean government support. In the beginning, the Korean government support drops but jump up to the higher value than normal support due to the intelligentsia support influenced by the delay time of perception. Then, the national government support converges to the normal support. This turns out that the intelligentsia support plays a major role in increasing the government support. The second case is to see the effect of prior efforts on the foreign factors and/or on domestic factors on the U.S. government support. In the short term, effort on the U.S. government is more effective to increase U.S. government support but in the long term (about after 5 years), efforts on the domestic factors influence on the U.S. government support more than efforts on the foreign factors. The Korean government counter reaction among the influencing factors on the U.S. government support plays a major role to explain this result
Performance evaluation of microturbine generation system for microgrid applications
Energy Technology Data Exchange (ETDEWEB)
Salam, A.A.; Mohamed, A.; Hannan, M.A.; Shareef, H.; Wanik, M.Z.C. [Kebangsaan Malaysia Univ., Selangor (Malaysia). Dept. of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment
2009-03-11
A control system for microturbine generation system (MGS) units in microgrid applications was presented. A dynamic model of the microturbine and power electronics interface systems was used to determine converter control strategies for distributed generation operation. Back-to-back converters were used to interface the microturbine-based distributed generation system to the grid. The controllers were used to regulate the output voltage value at the reference bus voltage and the frequency of the whole grid. Reference values were predetermined in the control scheme in order to obtain the desired value of voltage amplitude and frequency. An investigation of system dynamics was conducted using simulations in both grid-connected and islanded modes. Results of the simulations demonstrated the ability of the MGS to improve electricity grid reliability. The model can be used to accurately simulate MGS dynamic performance for both grid- and islanded modes of operation. 10 refs., 17 figs.
Time-Dependent Density Functional Theory for Open Systems and Its Applications.
Chen, Shuguang; Kwok, YanHo; Chen, GuanHua
2018-02-20
Photovoltaic devices, electrochemical cells, catalysis processes, light emitting diodes, scanning tunneling microscopes, molecular electronics, and related devices have one thing in common: open quantum systems where energy and matter are not conserved. Traditionally quantum chemistry is confined to isolated and closed systems, while quantum dissipation theory studies open quantum systems. The key quantity in quantum dissipation theory is the reduced system density matrix. As the reduced system density matrix is an O(M! × M!) matrix, where M is the number of the particles of the system of interest, quantum dissipation theory can only be employed to simulate systems of a few particles or degrees of freedom. It is thus important to combine quantum chemistry and quantum dissipation theory so that realistic open quantum systems can be simulated from first-principles. We have developed a first-principles method to simulate the dynamics of open electronic systems, the time-dependent density functional theory for open systems (TDDFT-OS). Instead of the reduced system density matrix, the key quantity is the reduced single-electron density matrix, which is an N × N matrix where N is the number of the atomic bases of the system of interest. As the dimension of the key quantity is drastically reduced, the TDDFT-OS can thus be used to simulate the dynamics of realistic open electronic systems and efficient numerical algorithms have been developed. As an application, we apply the method to study how quantum interference develops in a molecular transistor in time domain. We include electron-phonon interaction in our simulation and show that quantum interference in the given system is robust against nuclear vibration not only in the steady state but also in the transient dynamics. As another application, by combining TDDFT-OS with Ehrenfest dynamics, we study current-induced dissociation of water molecules under scanning tunneling microscopy and follow its time dependent
Dynamic workload balancing of parallel applications with user-level scheduling on the Grid
Korkhov, Vladimir V; Krzhizhanovskaya, Valeria V
2009-01-01
This paper suggests a hybrid resource management approach for efficient parallel distributed computing on the Grid. It operates on both application and system levels, combining user-level job scheduling with dynamic workload balancing algorithm that automatically adapts a parallel application to the heterogeneous resources, based on the actual resource parameters and estimated requirements of the application. The hybrid environment and the algorithm for automated load balancing are described, the influence of resource heterogeneity level is measured, and the speedup achieved with this technique is demonstrated for different types of applications and resources.
Information dynamics and open systems classical and quantum approach
Ingarden, R S; Ohya, M
1997-01-01
This book aims to present an information-theoretical approach to thermodynamics and its generalisations On the one hand, it generalises the concept of `information thermodynamics' to that of `information dynamics' in order to stress applications outside thermal phenomena On the other hand, it is a synthesis of the dynamics of state change and the theory of complexity, which provide a common framework to treat both physical and nonphysical systems together Both classical and quantum systems are discussed, and two appendices are included to explain principal definitions and some important aspects of the theory of Hilbert spaces and operator algebras The concept of higher-order temperatures is explained and applied to biological and linguistic systems The theory of open systems is presented in a new, much more general form Audience This volume is intended mainly for theoretical and mathematical physicists, but also for mathematicians, experimental physicists, physical chemists, theoretical biologists, communicat...
Complexity in Dynamical Systems
Moore, Cristopher David
The study of chaos has shown us that deterministic systems can have a kind of unpredictability, based on a limited knowledge of their initial conditions; after a finite time, the motion appears essentially random. This observation has inspired a general interest in the subject of unpredictability, and more generally, complexity; how can we characterize how "complex" a dynamical system is?. In this thesis, we attempt to answer this question with a paradigm of complexity that comes from computer science, we extract sets of symbol sequences, or languages, from a dynamical system using standard methods of symbolic dynamics; we then ask what kinds of grammars or automata are needed a generate these languages. This places them in the Chomsky heirarchy, which in turn tells us something about how subtle and complex the dynamical system's behavior is. This gives us insight into the question of unpredictability, since these automata can also be thought of as computers attempting to predict the system. In the culmination of the thesis, we find a class of smooth, two-dimensional maps which are equivalent to the highest class in the Chomsky heirarchy, the turning machine; they are capable of universal computation. Therefore, these systems possess a kind of unpredictability qualitatively different from the usual "chaos": even if the initial conditions are known exactly, questions about the system's long-term dynamics are undecidable. No algorithm exists to answer them. Although this kind of unpredictability has been discussed in the context of distributed, many-degree-of -freedom systems (for instance, cellular automata) we believe this is the first example of such phenomena in a smooth, finite-degree-of-freedom system.
Stochastic linear hybrid systems: Modeling, estimation, and application
Seah, Chze Eng
Hybrid systems are dynamical systems which have interacting continuous state and discrete state (or mode). Accurate modeling and state estimation of hybrid systems are important in many applications. We propose a hybrid system model, known as the Stochastic Linear Hybrid System (SLHS), to describe hybrid systems with stochastic linear system dynamics in each mode and stochastic continuous-state-dependent mode transitions. We then develop a hybrid estimation algorithm, called the State-Dependent-Transition Hybrid Estimation (SDTHE) algorithm, to estimate the continuous state and discrete state of the SLHS from noisy measurements. It is shown that the SDTHE algorithm is more accurate or more computationally efficient than existing hybrid estimation algorithms. Next, we develop a performance analysis algorithm to evaluate the performance of the SDTHE algorithm in a given operating scenario. We also investigate sufficient conditions for the stability of the SDTHE algorithm. The proposed SLHS model and SDTHE algorithm are illustrated to be useful in several applications. In Air Traffic Control (ATC), to facilitate implementations of new efficient operational concepts, accurate modeling and estimation of aircraft trajectories are needed. In ATC, an aircraft's trajectory can be divided into a number of flight modes. Furthermore, as the aircraft is required to follow a given flight plan or clearance, its flight mode transitions are dependent of its continuous state. However, the flight mode transitions are also stochastic due to navigation uncertainties or unknown pilot intents. Thus, we develop an aircraft dynamics model in ATC based on the SLHS. The SDTHE algorithm is then used in aircraft tracking applications to estimate the positions/velocities of aircraft and their flight modes accurately. Next, we develop an aircraft conformance monitoring algorithm to detect any deviations of aircraft trajectories in ATC that might compromise safety. In this application, the SLHS
Chiang, Austin W T; Liu, Wei-Chung; Charusanti, Pep; Hwang, Ming-Jing
2014-01-15
A major challenge in mathematical modeling of biological systems is to determine how model parameters contribute to systems dynamics. As biological processes are often complex in nature, it is desirable to address this issue using a systematic approach. Here, we propose a simple methodology that first performs an enrichment test to find patterns in the values of globally profiled kinetic parameters with which a model can produce the required system dynamics; this is then followed by a statistical test to elucidate the association between individual parameters and different parts of the system's dynamics. We demonstrate our methodology on a prototype biological system of perfect adaptation dynamics, namely the chemotaxis model for Escherichia coli. Our results agreed well with those derived from experimental data and theoretical studies in the literature. Using this model system, we showed that there are motifs in kinetic parameters and that these motifs are governed by constraints of the specified system dynamics. A systematic approach based on enrichment statistical tests has been developed to elucidate the relationships between model parameters and the roles they play in affecting system dynamics of a prototype biological network. The proposed approach is generally applicable and therefore can find wide use in systems biology modeling research.
Management of complex dynamical systems
MacKay, R. S.
2018-02-01
Complex dynamical systems are systems with many interdependent components which evolve in time. One might wish to control their trajectories, but a more practical alternative is to control just their statistical behaviour. In many contexts this would be both sufficient and a more realistic goal, e.g. climate and socio-economic systems. I refer to it as ‘management’ of complex dynamical systems. In this paper, some mathematics for management of complex dynamical systems is developed in the weakly dependent regime, and questions are posed for the strongly dependent regime.
Vehicle systems: coupled and interactive dynamics analysis
Vantsevich, Vladimir V.
2014-11-01
This article formulates a new direction in vehicle dynamics, described as coupled and interactive vehicle system dynamics. Formalised procedures and analysis of case studies are presented. An analytical consideration, which explains the physics of coupled system dynamics and its consequences for dynamics of a vehicle, is given for several sets of systems including: (i) driveline and suspension of a 6×6 truck, (ii) a brake mechanism and a limited slip differential of a drive axle and (iii) a 4×4 vehicle steering system and driveline system. The article introduces a formal procedure to turn coupled system dynamics into interactive dynamics of systems. A new research direction in interactive dynamics of an active steering and a hybrid-electric power transmitting unit is presented and analysed to control power distribution between the drive axles of a 4×4 vehicle. A control strategy integrates energy efficiency and lateral dynamics by decoupling dynamics of the two systems thus forming their interactive dynamics.
Structural system identification: Structural dynamics model validation
Energy Technology Data Exchange (ETDEWEB)
Red-Horse, J.R.
1997-04-01
Structural system identification is concerned with the development of systematic procedures and tools for developing predictive analytical models based on a physical structure`s dynamic response characteristics. It is a multidisciplinary process that involves the ability (1) to define high fidelity physics-based analysis models, (2) to acquire accurate test-derived information for physical specimens using diagnostic experiments, (3) to validate the numerical simulation model by reconciling differences that inevitably exist between the analysis model and the experimental data, and (4) to quantify uncertainties in the final system models and subsequent numerical simulations. The goal of this project was to develop structural system identification techniques and software suitable for both research and production applications in code and model validation.
Dynamic Data Driven Applications Systems (DDDAS)
2013-03-06
detected Level 1 (L1) sensors: PIR & Piezoelectric Level 2 (L2) sensor: Overhead camera (UAV) Level 1.1 sensor: LIDAR Dynamic Influence Diagram ID1...Effects of Porous Shape Memory Alloys • Bayesian Computational Sensor Networks for Aircraft Structural Health Monitoring • Fluid SLAM and the Robotic...Structural Health Monitoring – PI: Thomas Henderson, U. of Utah • Fluid SLAM and the Robotic Reconstruction of Localized Atmospheric Phenomena – PI
Dynamic state estimation assisted power system monitoring and protection
Cui, Yinan
The advent of phasor measurement units (PMUs) has unlocked several novel methods to monitor, control, and protect bulk electric power systems. This thesis introduces the concept of "Dynamic State Estimation" (DSE), aided by PMUs, for wide-area monitoring and protection of power systems. Unlike traditional State Estimation where algebraic variables are estimated from system measurements, DSE refers to a process to estimate the dynamic states associated with synchronous generators. This thesis first establishes the viability of using particle filtering as a technique to perform DSE in power systems. The utility of DSE for protection and wide-area monitoring are then shown as potential novel applications. The work is presented as a collection of several journal and conference papers. In the first paper, we present a particle filtering approach to dynamically estimate the states of a synchronous generator in a multi-machine setting considering the excitation and prime mover control systems. The second paper proposes an improved out-of-step detection method for generators by means of angular difference. The generator's rotor angle is estimated with a particle filter-based dynamic state estimator and the angular separation is then calculated by combining the raw local phasor measurements with this estimate. The third paper introduces a particle filter-based dual estimation method for tracking the dynamic states of a synchronous generator. It considers the situation where the field voltage measurements are not readily available. The particle filter is modified to treat the field voltage as an unknown input which is sequentially estimated along with the other dynamic states. The fourth paper proposes a novel framework for event detection based on energy functions. The key idea is that any event in the system will leave a signature in WAMS data-sets. It is shown that signatures for four broad classes of disturbance events are buried in the components that constitute the
Parametric Identification of Nonlinear Dynamical Systems
Feeny, Brian
2002-01-01
In this project, we looked at the application of harmonic balancing as a tool for identifying parameters (HBID) in a nonlinear dynamical systems with chaotic responses. The main idea is to balance the harmonics of periodic orbits extracted from measurements of each coordinate during a chaotic response. The periodic orbits are taken to be approximate solutions to the differential equations that model the system, the form of the differential equations being known, but with unknown parameters to be identified. Below we summarize the main points addressed in this work. The details of the work are attached as drafts of papers, and a thesis, in the appendix. Our study involved the following three parts: (1) Application of the harmonic balance to a simulation case in which the differential equation model has known form for its nonlinear terms, in contrast to a differential equation model which has either power series or interpolating functions to represent the nonlinear terms. We chose a pendulum, which has sinusoidal nonlinearities; (2) Application of the harmonic balance to an experimental system with known nonlinear forms. We chose a double pendulum, for which chaotic response were easily generated. Thus we confronted a two-degree-of-freedom system, which brought forth challenging issues; (3) A study of alternative reconstruction methods. The reconstruction of the phase space is necessary for the extraction of periodic orbits from the chaotic responses, which is needed in this work. Also, characterization of a nonlinear system is done in the reconstructed phase space. Such characterizations are needed to compare models with experiments. Finally, some nonlinear prediction methods can be applied in the reconstructed phase space. We developed two reconstruction methods that may be considered if the common method (method of delays) is not applicable.
Complexified dynamical systems
International Nuclear Information System (INIS)
Bender, Carl M; Holm, Darryl D; Hook, Daniel W
2007-01-01
Many dynamical systems, such as the Lotka-Volterra predator-prey model and the Euler equations for the free rotation of a rigid body, are PT symmetric. The standard and well-known real solutions to such dynamical systems constitute an infinitessimal subclass of the full set of complex solutions. This paper examines a subset of the complex solutions that contains the real solutions, namely those having PT symmetry. The condition of PT symmetry selects out complex solutions that are periodic. (fast track communication)
Prototype Development: Context-Driven Dynamic XML Ophthalmologic Data Capture Application.
Peissig, Peggy; Schwei, Kelsey M; Kadolph, Christopher; Finamore, Joseph; Cancel, Efrain; McCarty, Catherine A; Okorie, Asha; Thomas, Kate L; Allen Pacheco, Jennifer; Pathak, Jyotishman; Ellis, Stephen B; Denny, Joshua C; Rasmussen, Luke V; Tromp, Gerard; Williams, Marc S; Vrabec, Tamara R; Brilliant, Murray H
2017-09-13
The capture and integration of structured ophthalmologic data into electronic health records (EHRs) has historically been a challenge. However, the importance of this activity for patient care and research is critical. The purpose of this study was to develop a prototype of a context-driven dynamic extensible markup language (XML) ophthalmologic data capture application for research and clinical care that could be easily integrated into an EHR system. Stakeholders in the medical, research, and informatics fields were interviewed and surveyed to determine data and system requirements for ophthalmologic data capture. On the basis of these requirements, an ophthalmology data capture application was developed to collect and store discrete data elements with important graphical information. The context-driven data entry application supports several features, including ink-over drawing capability for documenting eye abnormalities, context-based Web controls that guide data entry based on preestablished dependencies, and an adaptable database or XML schema that stores Web form specifications and allows for immediate changes in form layout or content. The application utilizes Web services to enable data integration with a variety of EHRs for retrieval and storage of patient data. This paper describes the development process used to create a context-driven dynamic XML data capture application for optometry and ophthalmology. The list of ophthalmologic data elements identified as important for care and research can be used as a baseline list for future ophthalmologic data collection activities. ©Peggy Peissig, Kelsey M Schwei, Christopher Kadolph, Joseph Finamore, Efrain Cancel, Catherine A McCarty, Asha Okorie, Kate L Thomas, Jennifer Allen Pacheco, Jyotishman Pathak, Stephen B Ellis, Joshua C Denny, Luke V Rasmussen, Gerard Tromp, Marc S Williams, Tamara R Vrabec, Murray H Brilliant. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 13.09.2017.
Use of System Dynamics Modeling in Medical Education and Research Projects.
Bozikov, Jadranka; Relic, Danko; Dezelic, Gjuro
2018-01-01
The paper reviews experiences and accomplishments in application of system dynamics modeling in education, training and research projects at the Andrija Stampar School of Public Health, a branch of the Zagreb University School of Medicine, Croatia. A number of simulation models developed over the past 40 years are briefly described with regard to real problems concerned, objectives and modeling methods and techniques used. Many of them have been developed as the individual students' projects as a part of their graduation, MSc or PhD theses and subsequently published in journals or conference proceedings. Some of them were later used in teaching and simulation training. System dynamics modeling proved to be not only powerful method for research and decision making but also a useful tool in medical and nursing education enabling better understanding of dynamic systems' behavior.
Inoue, Kentaro; Maeda, Kazuhiro; Miyabe, Takaaki; Matsuoka, Yu; Kurata, Hiroyuki
2014-09-01
Mathematical modeling has become a standard technique to understand the dynamics of complex biochemical systems. To promote the modeling, we had developed the CADLIVE dynamic simulator that automatically converted a biochemical map into its associated mathematical model, simulated its dynamic behaviors and analyzed its robustness. To enhance the feasibility by CADLIVE and extend its functions, we propose the CADLIVE toolbox available for MATLAB, which implements not only the existing functions of the CADLIVE dynamic simulator, but also the latest tools including global parameter search methods with robustness analysis. The seamless, bottom-up processes consisting of biochemical network construction, automatic construction of its dynamic model, simulation, optimization, and S-system analysis greatly facilitate dynamic modeling, contributing to the research of systems biology and synthetic biology. This application can be freely downloaded from http://www.cadlive.jp/CADLIVE_MATLAB/ together with an instruction.
Energy Technology Data Exchange (ETDEWEB)
Morrison, P.J., E-mail: morrison@physics.utexas.edu [Department of Physics and Institute for Fusion Studies, University of Texas, Austin (United States); Vanneste, J. [School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh (United Kingdom)
2016-05-15
A method, called beatification, is presented for rapidly extracting weakly nonlinear Hamiltonian systems that describe the dynamics near equilibria of systems possessing Hamiltonian form in terms of noncanonical Poisson brackets. The procedure applies to systems like fluids and plasmas in terms of Eulerian variables that have such noncanonical Poisson brackets, i.e., brackets with nonstandard and possibly degenerate form. A collection of examples of both finite and infinite dimensions is presented.
Cherniha, Roman
2017-01-01
This book presents several fundamental results in solving nonlinear reaction-diffusion equations and systems using symmetry-based methods. Reaction-diffusion systems are fundamental modeling tools for mathematical biology with applications to ecology, population dynamics, pattern formation, morphogenesis, enzymatic reactions and chemotaxis. The book discusses the properties of nonlinear reaction-diffusion systems, which are relevant for biological applications, from the symmetry point of view, providing rigorous definitions and constructive algorithms to search for conditional symmetry (a nontrivial generalization of the well-known Lie symmetry) of nonlinear reaction-diffusion systems. In order to present applications to population dynamics, it focuses mainly on two- and three-component diffusive Lotka-Volterra systems. While it is primarily a valuable guide for researchers working with reaction-diffusion systems and those developing the theoretical aspects of conditional symmetry conception,...
Distributed-Order Dynamic Systems Stability, Simulation, Applications and Perspectives
Jiao, Zhuang; Podlubny, Igor
2012-01-01
Distributed-order differential equations, a generalization of fractional calculus, are of increasing importance in many fields of science and engineering from the behaviour of complex dielectric media to the modelling of nonlinear systems. This Brief will broaden the toolbox available to researchers interested in modeling, analysis, control and filtering. It contains contextual material outlining the progression from integer-order, through fractional-order to distributed-order systems. Stability issues are addressed with graphical and numerical results highlighting the fundamental differences between constant-, integer-, and distributed-order treatments. The power of the distributed-order model is demonstrated with work on the stability of noncommensurate-order linear time-invariant systems. Generic applications of the distributed-order operator follow: signal processing and viscoelastic damping of a mass–spring set up. A new general approach to discretization of distributed-order derivatives and integrals ...
Influence of changes in initial conditions for the simulation of dynamic systems
Energy Technology Data Exchange (ETDEWEB)
Kotyrba, Martin [Department of Informatics and Computers, University of Ostrava, 30 dubna 22, Ostrava (Czech Republic)
2015-03-10
Chaos theory is a field of study in mathematics, with applications in several disciplines including meteorology, sociology, physics, engineering, economics, biology, and philosophy. Chaos theory studies the behavior of dynamical systems that are highly sensitive to initial conditions—a paradigm popularly referred to as the butterfly effect. Small differences in initial conditions field widely diverging outcomes for such dynamical systems, rendering long-term prediction impossible in general. This happens even though these systems are deterministic, meaning that their future behavior is fully determined by their initial conditions, with no random elements involved. In this paperinfluence of changes in initial conditions will be presented for the simulation of Lorenz system.
Yu, Han; Douglas, Craig C.; Ogden, Fred L.
2012-01-01
The TalbotOgden model is a mass conservative method to simulate flow of a wetting liquid in variably-saturated porous media. The principal feature of this model is the discretization of the moisture content domain into bins. This paper gives an analysis of the relationship between the number of bins and the computed flux. Under the circumstances of discrete bins and discontinuous wetting fronts, we show that fluxes increase with the number of bins. We then apply this analysis to the continuous case and get an upper bound of the difference of infiltration rates when the number of bins tends to infinity. We also extend this model by creating a two dimensional moisture content domain so that there exists a probability distribution of the moisture content for different soil systems. With these theoretical and experimental results and using a Dynamic Data Driven Application System (DDDAS), sensors can be put in soils to detect the infiltration fluxes, which are important to compute the proper number of bins for a specific soil system and predict fluxes. Using this feedback control loop, the extended TalbotOgden model can be made more efficient for estimating infiltration into soils.
Yu, Han
2012-06-02
The TalbotOgden model is a mass conservative method to simulate flow of a wetting liquid in variably-saturated porous media. The principal feature of this model is the discretization of the moisture content domain into bins. This paper gives an analysis of the relationship between the number of bins and the computed flux. Under the circumstances of discrete bins and discontinuous wetting fronts, we show that fluxes increase with the number of bins. We then apply this analysis to the continuous case and get an upper bound of the difference of infiltration rates when the number of bins tends to infinity. We also extend this model by creating a two dimensional moisture content domain so that there exists a probability distribution of the moisture content for different soil systems. With these theoretical and experimental results and using a Dynamic Data Driven Application System (DDDAS), sensors can be put in soils to detect the infiltration fluxes, which are important to compute the proper number of bins for a specific soil system and predict fluxes. Using this feedback control loop, the extended TalbotOgden model can be made more efficient for estimating infiltration into soils.
Automatic invariant detection in dynamic web applications
Groeneveld, F.; Mesbah, A.; Van Deursen, A.
2010-01-01
The complexity of modern web applications increases as client-side JavaScript and dynamic DOM programming are used to offer a more interactive web experience. In this paper, we focus on improving the dependability of such applications by automatically inferring invariants from the client-side and
Hager, P.; Czupalla, M.; Walter, U.
2010-11-01
In this paper we report on the development of a dynamic MATLAB SIMULINK® model for the water and electrolyte balance inside the human body. This model is part of an environmentally sensitive dynamic human model for the optimization and verification of environmental control and life support systems (ECLSS) in space flight applications. An ECLSS provides all vital supplies for supporting human life on board a spacecraft. As human space flight today focuses on medium- to long-term missions, the strategy in ECLSS is shifting to closed loop systems. For these systems the dynamic stability and function over long duration are essential. However, the only evaluation and rating methods for ECLSS up to now are either expensive trial and error breadboarding strategies or static and semi-dynamic simulations. In order to overcome this mismatch the Exploration Group at Technische Universität München (TUM) is developing a dynamic environmental simulation, the "Virtual Habitat" (V-HAB). The central element of this simulation is the dynamic and environmentally sensitive human model. The water subsystem simulation of the human model discussed in this paper is of vital importance for the efficiency of possible ECLSS optimizations, as an over- or under-scaled water subsystem would have an adverse effect on the overall mass budget. On the other hand water has a pivotal role in the human organism. Water accounts for about 60% of the total body mass and is educt and product of numerous metabolic reactions. It is a transport medium for solutes and, due to its high evaporation enthalpy, provides the most potent medium for heat load dissipation. In a system engineering approach the human water balance was worked out by simulating the human body's subsystems and their interactions. The body fluids were assumed to reside in three compartments: blood plasma, interstitial fluid and intracellular fluid. In addition, the active and passive transport of water and solutes between those
Chaos for Discrete Dynamical System
Directory of Open Access Journals (Sweden)
Lidong Wang
2013-01-01
Full Text Available We prove that a dynamical system is chaotic in the sense of Martelli and Wiggins, when it is a transitive distributively chaotic in a sequence. Then, we give a sufficient condition for the dynamical system to be chaotic in the strong sense of Li-Yorke. We also prove that a dynamical system is distributively chaotic in a sequence, when it is chaotic in the strong sense of Li-Yorke.
Moving interface problems and applications in fluid dynamics
Khoo, Boo Cheong; Lin, Ping
2008-01-01
This volume is a collection of research papers presented at the program on Moving Interface Problems and Applications in Fluid Dynamics, which was held between January 8 and March 31, 2007 at the Institute for Mathematical Sciences (IMS) of the National University of Singapore. The topics discussed include modeling and simulations of biological flow coupled to deformable tissue/elastic structure, shock wave and bubble dynamics and various applications including biological treatments with experimental verification, multi-medium flow or multi-phase flow and various applications including cavitation/supercavitation, detonation problems, Newtonian and non-Newtonian fluid, and many other areas. Readers can benefit from some recent research results in these areas.
Dynamic k-out-of-n system reliability with component partnership
International Nuclear Information System (INIS)
Coit, David W.; Chatwattanasiri, Nida; Wattanapongsakorn, Naruemon; Konak, Abdullah
2015-01-01
This paper describes a new k-out-of-n system reliability model that is appropriate for certain design problems when the minimum number of required components, k, changes dynamically in response to failures to maximize the utility of the available collection of functioning components. This new model shares some distinct similarities with weighted k-out-of-n models and for some problems they produce the same result. However, there are subtle and distinct differences, and in practice, there are some complex applications have not been properly explained or modeled by traditional or extended k-out-of-n system models. For this application, components are arranged in a k-out-of-n configuration of heterogeneous components with different performance levels. Component performance is indicated by a component-specific component partnership level; the fewer partners required to operate successfully implies higher performance. The components can work collectively with partners at the same level to maintain system reliability, or they can create a partnership group with components at higher performance levels which serve as replacements to provide the necessary number of working components. When components fail, the dynamic k-out-of-n configuration maintains reliability of the system with changing k by having components create partnerships with other components at the same level or above. To demonstrate the model, a system replacement maintenance policy based on a replacement interval variable is applied to an example system to obtain the optimal replacement time. - Highlights: • A new k-out-of-n system reliability model is presented. • Components can form partnerships with other components. • The new k-out-of-n model is presented with a dynamic or changing k. • The new model is for systems with components that must work together in a group
Ergodic theory and dynamical systems
Coudène, Yves
2016-01-01
This textbook is a self-contained and easy-to-read introduction to ergodic theory and the theory of dynamical systems, with a particular emphasis on chaotic dynamics. This book contains a broad selection of topics and explores the fundamental ideas of the subject. Starting with basic notions such as ergodicity, mixing, and isomorphisms of dynamical systems, the book then focuses on several chaotic transformations with hyperbolic dynamics, before moving on to topics such as entropy, information theory, ergodic decomposition and measurable partitions. Detailed explanations are accompanied by numerous examples, including interval maps, Bernoulli shifts, toral endomorphisms, geodesic flow on negatively curved manifolds, Morse-Smale systems, rational maps on the Riemann sphere and strange attractors. Ergodic Theory and Dynamical Systems will appeal to graduate students as well as researchers looking for an introduction to the subject. While gentle on the beginning student, the book also contains a number of commen...
Pellerin, B. A.; Bergamaschi, B. A.; Downing, B. D.; Saraceno, J.; Fleck, J.; Shanley, J. B.; Aiken, G.; Boss, E.; Fujii, R.
2009-12-01
A critical challenge for understanding the sources, character and cycling of dissolved organic matter (DOM) is making measurements at the time scales in which changes occur in aquatic systems. Traditional approaches for data collection (daily to monthly discrete sampling) are often limited by analytical and field costs, site access and logistical challenges, particularly for long-term sampling at a large number of sites. The ability to make optical measurements of DOM in situ has been known for more than 50 years, but much of the work on in situ DOM absorbance and fluorescence using commercially-available instruments has taken place in the last few years. Here we present several recent examples that highlight the application of in situ measurements for understanding DOM dynamics in riverine systems at intervals of minutes to hours. Examples illustrate the utility of in situ optical sensors for studies of DOM over short-duration events of days to weeks (diurnal cycles, tidal cycles, storm events and snowmelt periods) as well as longer-term continuous monitoring for months to years. We also highlight the application of in situ optical DOM measurements as proxies for constituents that are significantly more difficult and expensive to measure at high frequencies (e.g. methylmercury, trihalomethanes). Relatively simple DOM absorbance and fluorescence measurements made in situ could be incorporated into short and long-term ecological research and monitoring programs, resulting in advanced understanding of organic matter sources, character and cycling in riverine systems.
[Origination of Pareto distribution in complex dynamic systems].
Chernavskiĭ, D S; Nikitin, A P; Chernavskaia, O D
2008-01-01
The Pareto distribution, whose probability density function can be approximated at sufficiently great chi as rho(chi) - chi(-alpha), where alpha > or = 2, is of crucial importance from both the theoretical and practical point of view. The main reason is its qualitative distinction from the normal (Gaussian) distribution. Namely, the probability of high deviations appears to be significantly higher. The conception of the universal applicability of the Gauss law remains to be widely distributed despite the lack of objective confirmation of this notion in a variety of application areas. The origin of the Pareto distribution in dynamic systems located in the gaussian noise field is considered. A simple one-dimensional model is discussed where the system response in a rather wide interval of the variable can be quite precisely approximated by this distribution.
Chaotic dynamics and chaos control in nonlinear laser systems
International Nuclear Information System (INIS)
Fang Jinqing; Yao Weiguang
2001-01-01
Chaotic dynamics and chaos control have become a great challenge in nonlinear laser systems and its advances are reviewed mainly based on the ring cavity laser systems. The principle and stability conditions for time-delay feedback control are analyzed and applied to chaos control in the laser systems. Other advanced methods of chaos control, such as weak spatial perturbation and occasional proportional feedback technique, are discussed. Prospects of chaos control for application (such as improvement of laser power and performance, synchronized chaos secure communication and information processing) are pointed out finally
Dynamical Systems for Creative Technology
van Amerongen, J.
2010-01-01
Dynamical Systems for Creative Technology gives a concise description of the physical properties of electrical, mechanical and hydraulic systems. Emphasis is placed on modelling the dynamical properties of these systems. By using a system’s approach it is shown that a limited number of mathematical
Role of graph architecture in controlling dynamical networks with applications to neural systems
Kim, Jason Z.; Soffer, Jonathan M.; Kahn, Ari E.; Vettel, Jean M.; Pasqualetti, Fabio; Bassett, Danielle S.
2018-01-01
Networked systems display complex patterns of interactions between components. In physical networks, these interactions often occur along structural connections that link components in a hard-wired connection topology, supporting a variety of system-wide dynamical behaviours such as synchronization. Although descriptions of these behaviours are important, they are only a first step towards understanding and harnessing the relationship between network topology and system behaviour. Here, we use linear network control theory to derive accurate closed-form expressions that relate the connectivity of a subset of structural connections (those linking driver nodes to non-driver nodes) to the minimum energy required to control networked systems. To illustrate the utility of the mathematics, we apply this approach to high-resolution connectomes recently reconstructed from Drosophila, mouse, and human brains. We use these principles to suggest an advantage of the human brain in supporting diverse network dynamics with small energetic costs while remaining robust to perturbations, and to perform clinically accessible targeted manipulation of the brain's control performance by removing single edges in the network. Generally, our results ground the expectation of a control system's behaviour in its network architecture, and directly inspire new directions in network analysis and design via distributed control.
The Dynamical Invariant of Open Quantum System
Wu, S. L.; Zhang, X. Y.; Yi, X. X.
2015-01-01
The dynamical invariant, whose expectation value is constant, is generalized to open quantum system. The evolution equation of dynamical invariant (the dynamical invariant condition) is presented for Markovian dynamics. Different with the dynamical invariant for the closed quantum system, the evolution of the dynamical invariant for the open quantum system is no longer unitary, and the eigenvalues of it are time-dependent. Since any hermitian operator fulfilling dynamical invariant condition ...
A TSK neuro-fuzzy approach for modeling highly dynamic systems
Acampora, G.
2011-01-01
This paper introduces a new type of TSK-based neuro-fuzzy approach and its application to modeling highly dynamic systems. In details, our proposal performs an adaptive supervised learning on a collection of time series in order to create a so-called Timed Automata Based Fuzzy Controller, i.e. an
Ligterink, N.E.
2007-01-01
Functional system dynamics is the analysis, modelling, and simulation of continuous systems usually described by partial differential equations. From the infinite degrees of freedom of such systems only a finite number of relevant variables have to be chosen for a practical model description. The
Application of dynamical systems theory to global weather phenomena revealed by satellite imagery
Saltzman, Barry; Ebisuzaki, Wesley; Maasch, Kirk A.; Oglesby, Robert; Pandolfo, Lionel; Tang, Chung-Muh
1989-01-01
Theoretical studies of low frequency and seasonal weather variability; dynamical properties of observational and general circulation model (GCM)-generated records; effects of the hydrologic cycle and latent heat release on extratropical weather; and Earth-system science studies are summarized.
New method to improve dynamic stiffness of electro-hydraulic servo systems
Bai, Yanhong; Quan, Long
2013-09-01
Most current researches working on improving stiffness focus on the application of control theories. But controller in closed-loop hydraulic control system takes effect only after the controlled position is deviated, so the control action is lagged. Thus dynamic performance against force disturbance and dynamic load stiffness can’t be improved evidently by advanced control algorithms. In this paper, the elementary principle of maintaining piston position unchanged under sudden external force load change by charging additional oil is analyzed. On this basis, the conception of raising dynamic stiffness of electro hydraulic position servo system by flow feedforward compensation is put forward. And a scheme using double servo valves to realize flow feedforward compensation is presented, in which another fast response servo valve is added to the regular electro hydraulic servo system and specially utilized to compensate the compressed oil volume caused by load impact in time. The two valves are arranged in parallel to control the cylinder jointly. Furthermore, the model of flow compensation is derived, by which the product of the amplitude and width of the valve’s pulse command signal can be calculated. And determination rules of the amplitude and width of pulse signal are concluded by analysis and simulations. Using the proposed scheme, simulations and experiments at different positions with different force changes are conducted. The simulation and experimental results show that the system dynamic performance against load force impact is largely improved with decreased maximal dynamic position deviation and shortened settling time. That is, system dynamic load stiffness is evidently raised. This paper proposes a new method which can effectively improve the dynamic stiffness of electro-hydraulic servo systems.
Design Patterns Application in the ERP Systems Improvements
Jovičić, Bojan; Vlajić, Siniša
Design patterns application have long been present in software engineering. The same is true for ERP systems in business software. Is it possible that ERP systems do not have a good maintenance score? We have found out that there is room for maintenance improvement and that it is possible to improve ERP systems using design patterns. We have conducted comparative analysis of ease of maintenance of the ERP systems. The results show that the average score for our questions is 64%, with most answers for ERP systems like SAP, Oracle EBS, Dynamics AX. We found that 59% of ERP system developer users are not familiar with design patterns. Based on this research, we have chosen Dynamics AX as the ERP system for examination of design patterns improvement possibilities. We used software metrics to measure improvement possibility. We found that we could increase the Conditional Complexity score 17-fold by introducing design patterns.
Identification of Nonlinear Dynamic Systems Possessing Some Non-linearities
Directory of Open Access Journals (Sweden)
Y. N. Pavlov
2015-01-01
system of the second-order with nonlinearity of the type "quadratic friction" in combination with nonlinearity of the type "dry friction", was developed a software to simulate a process for providing pseudo experimental data containing random accuracy and to determine the parameters of the system. A conducted computational experiment enabled an estimate of the accuracy with which the proposed algorithm determines the parameters of the system. The illustrative numerical simulation has demonstrated that with using the proposed nonlinear dynamic system identification algorithm in frequency hodograph the accuracy of determining the coefficient values of the frequency transfer function of the second order system with a dry and quadratic friction is comparable with the range of measurement accuracy of experimental samples of this system hodograph. Well-known publications do not mention this identification method of the nonlinear dynamic systems. The nonlinear dynamical systems identification method the article describes can find application when determining parameters of various kinds of actuators. The using method of harmonic linearization and identification of dynamical systems by hodographs is promising for solving the problem of the identification of nonlinear systems with different types of nonlinearities.
Liquid gating elastomeric porous system with dynamically controllable gas/liquid transport.
Sheng, Zhizhi; Wang, Honglong; Tang, Yongliang; Wang, Miao; Huang, Lizhi; Min, Lingli; Meng, Haiqiang; Chen, Songyue; Jiang, Lei; Hou, Xu
2018-02-01
The development of membrane technology is central to fields ranging from resource harvesting to medicine, but the existing designs are unable to handle the complex sorting of multiphase substances required for many systems. Especially, the dynamic multiphase transport and separation under a steady-state applied pressure have great benefits for membrane science, but have not been realized at present. Moreover, the incorporation of precisely dynamic control with avoidance of contamination of membranes remains elusive. We show a versatile strategy for creating elastomeric microporous membrane-based systems that can finely control and dynamically modulate the sorting of a wide range of gases and liquids under a steady-state applied pressure, nearly eliminate fouling, and can be easily applied over many size scales, pressures, and environments. Experiments and theoretical calculation demonstrate the stability of our system and the tunability of the critical pressure. Dynamic transport of gas and liquid can be achieved through our gating interfacial design and the controllable pores' deformation without changing the applied pressure. Therefore, we believe that this system will bring new opportunities for many applications, such as gas-involved chemical reactions, fuel cells, multiphase separation, multiphase flow, multiphase microreactors, colloidal particle synthesis, and sizing nano/microparticles.
DEFF Research Database (Denmark)
Guo, Xiaoqiang; Lu, Zhigang; Wang, Baocheng
2014-01-01
models fail to predict the system instabilities. In order to solve the problem, a new modeling approach for inverter-dominated microgrids by using dynamic phasors is presented in this paper. Our findings indicate that the proposed dynamic phasor model is able to predict accurately the stability margins...... of the system, while the conventional reduced-order small signal model fails. In addition, the virtual ω-E frame power control method, which deals with the power coupling caused by the line impedance X/R characteristic, has also been chosen as an application example of the proposed modeling technique....
Generalized decompositions of dynamic systems and vector Lyapunov functions
Ikeda, M.; Siljak, D. D.
1981-10-01
The notion of decomposition is generalized to provide more freedom in constructing vector Lyapunov functions for stability analysis of nonlinear dynamic systems. A generalized decomposition is defined as a disjoint decomposition of a system which is obtained by expanding the state-space of a given system. An inclusion principle is formulated for the solutions of the expansion to include the solutions of the original system, so that stability of the expansion implies stability of the original system. Stability of the expansion can then be established by standard disjoint decompositions and vector Lyapunov functions. The applicability of the new approach is demonstrated using the Lotka-Volterra equations.
Dynamic information architecture system (DIAS) : multiple model simulation management
International Nuclear Information System (INIS)
Simunich, K. L.; Sydelko, P.; Dolph, J.; Christiansen, J.
2002-01-01
Dynamic Information Architecture System (DIAS) is a flexible, extensible, object-based framework for developing and maintaining complex multidisciplinary simulations of a wide variety of application contexts. The modeling domain of a specific DIAS-based simulation is determined by (1) software Entity (domain-specific) objects that represent the real-world entities that comprise the problem space (atmosphere, watershed, human), and (2) simulation models and other data processing applications that express the dynamic behaviors of the domain entities. In DIAS, models communicate only with Entity objects, never with each other. Each Entity object has a number of Parameter and Aspect (of behavior) objects associated with it. The Parameter objects contain the state properties of the Entity object. The Aspect objects represent the behaviors of the Entity object and how it interacts with other objects. DIAS extends the ''Object'' paradigm by abstraction of the object's dynamic behaviors, separating the ''WHAT'' from the ''HOW.'' DIAS object class definitions contain an abstract description of the various aspects of the object's behavior (the WHAT), but no implementation details (the HOW). Separate DIAS models/applications carry the implementation of object behaviors (the HOW). Any model deemed appropriate, including existing legacy-type models written in other languages, can drive entity object behavior. The DIAS design promotes plug-and-play of alternative models, with minimal recoding of existing applications. The DIAS Context Builder object builds a constructs or scenario for the simulation, based on developer specification and user inputs. Because DIAS is a discrete event simulation system, there is a Simulation Manager object with which all events are processed. Any class that registers to receive events must implement an event handler (method) to process the event during execution. Event handlers can schedule other events; create or remove Entities from the
On dynamically consistent Jacobian inverse for non-holonomic robotic systems
Directory of Open Access Journals (Sweden)
Ratajczak Joanna
2017-12-01
Full Text Available This paper presents the dynamically consistent Jacobian inverse for non-holonomic robotic system, and its application to solving the motion planning problem. The system’s kinematics are represented by a driftless control system, and defined in terms of its input-output map in accordance with the endogenous configuration space approach. The dynamically consistent Jacobian inverse (DCJI has been introduced by means of a Riemannian metric in the endogenous configuration space, exploiting the reduced inertia matrix of the system’s dynamics. The consistency condition is formulated as the commutativity property of a diagram of maps. Singular configurations of DCJI are studied, and shown to coincide with the kinematic singularities. A parametric form of DCJI is derived, and used for solving example motion planning problems for the trident snake mobile robot. Some advantages in performance of DCJI in comparison to the Jacobian pseudoinverse are discovered.
Application of a system dynamics model to improve the performance of make-to-order production
Directory of Open Access Journals (Sweden)
Yi-Lun Elaine Ho
2015-08-01
Full Text Available This study provides a system dynamics (SD model of make-to-order (MTO production and discusses the key factors of production improvement. The proposed system can be divided into three subsystems: income/cost, order/production, and human resources (HR. The time delay between customer demand, production demand, order quantity, material demand, and inventory is considered in a practical application. In addition, this paper considers how the cycle time is affected by the total input of HR; how unit transportation cost is influenced by the delivery quantity; and how unit penalty (shortage cost is affected by the amount of shortage. The production capacity, yield, and holding cost needed to satisfy practical demands are all considered. A simulation approach to MTO production for meeting contract requests is presented in this study. Simulation results reveal that the amount of shortage will be the most important factor affecting the policy for the replenishment of material. Although the rise in production capacity leads to a reduced amount of shortage, it does not play a significant role. A sensitivity analysis of the replenishment of material policy is conducted to find out the best suggested policy. The SD model is also shown to quickly simulate changes in system behaviour, which allows an organisation enough time to respond to and conquer any unpredictable situation that might occur.
Dynamic social community detection and its applications.
Directory of Open Access Journals (Sweden)
Nam P Nguyen
Full Text Available Community structure is one of the most commonly observed features of Online Social Networks (OSNs in reality. The knowledge of this feature is of great advantage: it not only provides helpful insights into developing more efficient social-aware solutions but also promises a wide range of applications enabled by social and mobile networking, such as routing strategies in Mobile Ad Hoc Networks (MANETs and worm containment in OSNs. Unfortunately, understanding this structure is very challenging, especially in dynamic social networks where social interactions are evolving rapidly. Our work focuses on the following questions: How can we efficiently identify communities in dynamic social networks? How can we adaptively update the network community structure based on its history instead of recomputing from scratch? To this end, we present Quick Community Adaptation (QCA, an adaptive modularity-based framework for not only discovering but also tracing the evolution of network communities in dynamic OSNs. QCA is very fast and efficient in the sense that it adaptively updates and discovers the new community structure based on its history together with the network changes only. This flexible approach makes QCA an ideal framework applicable for analyzing large-scale dynamic social networks due to its lightweight computing-resource requirement. To illustrate the effectiveness of our framework, we extensively test QCA on both synthesized and real-world social networks including Enron, arXiv e-print citation, and Facebook networks. Finally, we demonstrate the applicability of QCA in real applications: (1 A social-aware message forwarding strategy in MANETs, and (2 worm propagation containment in OSNs. Competitive results in comparison with other methods reveal that social-based techniques employing QCA as a community detection core outperform current available methods.
Dynamic social community detection and its applications.
Nguyen, Nam P; Dinh, Thang N; Shen, Yilin; Thai, My T
2014-01-01
Community structure is one of the most commonly observed features of Online Social Networks (OSNs) in reality. The knowledge of this feature is of great advantage: it not only provides helpful insights into developing more efficient social-aware solutions but also promises a wide range of applications enabled by social and mobile networking, such as routing strategies in Mobile Ad Hoc Networks (MANETs) and worm containment in OSNs. Unfortunately, understanding this structure is very challenging, especially in dynamic social networks where social interactions are evolving rapidly. Our work focuses on the following questions: How can we efficiently identify communities in dynamic social networks? How can we adaptively update the network community structure based on its history instead of recomputing from scratch? To this end, we present Quick Community Adaptation (QCA), an adaptive modularity-based framework for not only discovering but also tracing the evolution of network communities in dynamic OSNs. QCA is very fast and efficient in the sense that it adaptively updates and discovers the new community structure based on its history together with the network changes only. This flexible approach makes QCA an ideal framework applicable for analyzing large-scale dynamic social networks due to its lightweight computing-resource requirement. To illustrate the effectiveness of our framework, we extensively test QCA on both synthesized and real-world social networks including Enron, arXiv e-print citation, and Facebook networks. Finally, we demonstrate the applicability of QCA in real applications: (1) A social-aware message forwarding strategy in MANETs, and (2) worm propagation containment in OSNs. Competitive results in comparison with other methods reveal that social-based techniques employing QCA as a community detection core outperform current available methods.
Exact combinatorial reliability analysis of dynamic systems with sequence-dependent failures
International Nuclear Information System (INIS)
Xing Liudong; Shrestha, Akhilesh; Dai Yuanshun
2011-01-01
Many real-life fault-tolerant systems are subjected to sequence-dependent failure behavior, in which the order in which the fault events occur is important to the system reliability. Such systems can be modeled by dynamic fault trees (DFT) with priority-AND (pAND) gates. Existing approaches for the reliability analysis of systems subjected to sequence-dependent failures are typically state-space-based, simulation-based or inclusion-exclusion-based methods. Those methods either suffer from the state-space explosion problem or require long computation time especially when results with high degree of accuracy are desired. In this paper, an analytical method based on sequential binary decision diagrams is proposed. The proposed approach can analyze the exact reliability of non-repairable dynamic systems subjected to the sequence-dependent failure behavior. Also, the proposed approach is combinatorial and is applicable for analyzing systems with any arbitrary component time-to-failure distributions. The application and advantages of the proposed approach are illustrated through analysis of several examples. - Highlights: → We analyze the sequence-dependent failure behavior using combinatorial models. → The method has no limitation on the type of time-to-failure distributions. → The method is analytical and based on sequential binary decision diagrams (SBDD). → The method is computationally more efficient than existing methods.
Dynamical System Approaches to Combinatorial Optimization
DEFF Research Database (Denmark)
Starke, Jens
2013-01-01
of large times as an asymptotically stable point of the dynamics. The obtained solutions are often not globally optimal but good approximations of it. Dynamical system and neural network approaches are appropriate methods for distributed and parallel processing. Because of the parallelization......Several dynamical system approaches to combinatorial optimization problems are described and compared. These include dynamical systems derived from penalty methods; the approach of Hopfield and Tank; self-organizing maps, that is, Kohonen networks; coupled selection equations; and hybrid methods...... thereof can be used as models for many industrial problems like manufacturing planning and optimization of flexible manufacturing systems. This is illustrated for an example in distributed robotic systems....
Dynamical systems examples of complex behaviour
Jost, Jürgen
2005-01-01
Our aim is to introduce, explain, and discuss the fundamental problems, ideas, concepts, results, and methods of the theory of dynamical systems and to show how they can be used in speci?c examples. We do not intend to give a comprehensive overview of the present state of research in the theory of dynamical systems, nor a detailed historical account of its development. We try to explain the important results, often neglecting technical re?nements 1 and, usually, we do not provide proofs. One of the basic questions in studying dynamical systems, i.e. systems that evolve in time, is the construction of invariants that allow us to classify qualitative types of dynamical evolution, to distinguish between qualitatively di?erent dynamics, and to studytransitions between di?erent types. Itis also important to ?nd out when a certain dynamic behavior is stable under small perturbations, as well as to understand the various scenarios of instability. Finally, an essential aspect of a dynamic evolution is the transformat...
Molecular dynamics simulations and applications in computational toxicology and nanotoxicology.
Selvaraj, Chandrabose; Sakkiah, Sugunadevi; Tong, Weida; Hong, Huixiao
2018-02-01
Nanotoxicology studies toxicity of nanomaterials and has been widely applied in biomedical researches to explore toxicity of various biological systems. Investigating biological systems through in vivo and in vitro methods is expensive and time taking. Therefore, computational toxicology, a multi-discipline field that utilizes computational power and algorithms to examine toxicology of biological systems, has gained attractions to scientists. Molecular dynamics (MD) simulations of biomolecules such as proteins and DNA are popular for understanding of interactions between biological systems and chemicals in computational toxicology. In this paper, we review MD simulation methods, protocol for running MD simulations and their applications in studies of toxicity and nanotechnology. We also briefly summarize some popular software tools for execution of MD simulations. Published by Elsevier Ltd.
Use of dynamic Bayesian networks for life extension assessment of ageing systems
International Nuclear Information System (INIS)
Ramírez, Pedro A. Pérez; Utne, Ingrid Bouwer
2015-01-01
Extending the operating lifetime of ageing technical systems is of great interest for industrial applications. Life extension requires identifying and selecting decision alternatives which allow for a safe and economic operation of the system beyond its design lifetime. This article proposes a dynamic Bayesian network for assessing the life extension of ageing repairable systems. The main objective of the model is to provide decision support based on the system performance during a finite time horizon, which is defined by the life extension period. The model has three main applications: (i) assessing and selecting optimal decision alternatives for the life extension at present time, based on historical data; (ii) identifying and minimizing the factors that have a negative impact on the system performance; and (iii) reassessing and optimizing the decision alternatives during operation throughout the life extension period, based on updating the model with new operational data gathered. A case study illustrates the application of the model for life extension of a real firewater pump system in an oil and gas facility. The case study analyzes three decision alternatives, where preventive maintenance and functional test policies are optimized, and the uncertainty involved in each alternative is computed. - Highlights: • A dynamic Bayesian network is used for predicting the system performance. • The performance is measured with relevant variables: cost; unavailability; safety. • The model can be used when scarce data is available, no degradation data is needed. • The uncertainty associated to each alternative is computed in the model. • A detailed case study of a real safety system shows the applicability of the model
Halyo, Nesim
1987-01-01
Some measures of eigenvalue and eigenvector sensitivity applicable to both continuous and discrete linear systems are developed and investigated. An infinite series representation is developed for the eigenvalues and eigenvectors of a system. The coefficients of the series are coupled, but can be obtained recursively using a nonlinear coupled vector difference equation. A new sensitivity measure is developed by considering the effects of unmodeled dynamics. It is shown that the sensitivity is high when any unmodeled eigenvalue is near a modeled eigenvalue. Using a simple example where the sensor dynamics have been neglected, it is shown that high feedback gains produce high eigenvalue/eigenvector sensitivity. The smallest singular value of the return difference is shown not to reflect eigenvalue sensitivity since it increases with the feedback gains. Using an upper bound obtained from the infinite series, a procedure to evaluate whether the sensitivity to parameter variations is within given acceptable bounds is developed and demonstrated by an example.
Ligterink, N.E.
2007-01-01
Functional system dynamics is the analysis, modelling, and simulation of continuous systems usually described by partial differential equations. From the infinite degrees of freedom of such systems only a finite number of relevant variables have to be chosen for a practical model description. The proper input and output of the system are an important part of the relevant variables.
Adaptive Integration of Nonsmooth Dynamical Systems
2017-10-11
2017 W911NF-12-R-0012-03: Adaptive Integration of Nonsmooth Dynamical Systems The views, opinions and/or findings contained in this report are those of...Integration of Nonsmooth Dynamical Systems Report Term: 0-Other Email: drum@gwu.edu Distribution Statement: 1-Approved for public release; distribution is...classdrake_1_1systems_1_1_integrator_base.html ; 3) a solver for dynamical systems with arbitrary unilateral and bilateral constraints (the key component of the time stepping systems )- see
Free-piston Stirling engine system considerations for various space power applications
International Nuclear Information System (INIS)
Dochat, G.R.; Dhar, M.
1991-01-01
The U.S. Government is evaluating power requirements for future space applications. As power requirements increase solar or nuclear dynamic systems become increasingly attractive. Free-Piston Stirling Engines (FPSE) have the potential to provide high reliability, long life, and efficient operation. Therefore, they are excellent candidates for the dynamic power conversion module of a space-based, power-generating system. FPSE can be coupled with many potential heat sources (radioisotope, solar, or nuclear reactor), various heat input systems (pumped loop, heat pipe), heat rejection (pumped loop or heat pipe), and various power management and distribution systems (AC, DC, high or low voltage, and fixed or variable load). This paper will review potential space missions that can be met using free-piston Stirling engines and discusses options of various system integration approaches. Currently free-piston Stirling engine technology for space power applications is being developed under contract with NASA-Lewis Research Center. This paper will also briefly outline the program and recent progress
Directory of Open Access Journals (Sweden)
Cristiano M. A. Gomes
2013-07-01
Full Text Available Psychological processes are difficult to be studied due to their complexity. The dynamic system approach shows itself as a good tool for psychology to deal with this complexity issue. We propose two fundamental contributions of the dynamic system approach to psychology and apply it in the study of achievement emotions, appraisal and cognitive achievement. Two hypotheses were investigated: 1 More than one correlation pattern between test achievement, appraisal and emotion will be found; 2 Test achievement, appraisal and emotion form a dynamic system which will be explained by a latent variable that is dependent on the previous state of the system. A sample of thirteen students from seventh to ninth grades performed an inductive reasoning test, appraised their achievement, and declared their emotional valences (from extreme positive to extreme negative. Each variable was measured in 20 different occasions. One correlation matrix of each individual was generated and seven qualitative profiles were identified. Then four different states of relations between the variables were identified through a hidden Markov model. The two hypotheses were not refuted. It’s concluded that the dynamic system approach brings new possibilities to the study of psychological processes.
Dynamics of Large Systems of Nonlinearly Evolving Units
Lu, Zhixin
The dynamics of large systems of many nonlinearly evolving units is a general research area that has great importance for many areas in science and technology, including biology, computation by artificial neural networks, statistical mechanics, flocking in animal groups, the dynamics of coupled neurons in the brain, and many others. While universal principles and techniques are largely lacking in this broad area of research, there is still one particular phenomenon that seems to be broadly applicable. In particular, this is the idea of emergence, by which is meant macroscopic behaviors that "emerge" from a large system of many "smaller or simpler entities such that...large entities" [i.e., macroscopic behaviors] arise which "exhibit properties the smaller/simpler entities do not exhibit." In this thesis we investigate mechanisms and manifestations of emergence in four dynamical systems consisting many nonlinearly evolving units. These four systems are as follows. (a) We first study the motion of a large ensemble of many noninteracting particles in a slowly changing Hamiltonian system that undergoes a separatrix crossing. In such systems, we find that separatrix-crossing induces a counterintuitive effect. Specifically, numerical simulation of two sets of densely sprinkled initial conditions on two energy curves appears to suggest that the two energy curves, one originally enclosing the other, seemingly interchange their positions. This, however, is topologically forbidden. We resolve this paradox by introducing a numerical simulation method we call "robust" and study its consequences. (b) We next study the collective dynamics of oscillatory pacemaker neurons in Suprachiasmatic Nucleus (SCN), which, through synchrony, govern the circadian rhythm of mammals. We start from a high-dimensional description of the many coupled oscillatory neuronal units within the SCN. This description is based on a forced Kuramoto model. We then reduce the system dimensionality by using
Butschli Dynamic Droplet System
DEFF Research Database (Denmark)
Armstrong, R.; Hanczyc, M.
2013-01-01
Dynamical oil-water systems such as droplets display lifelike properties and may lend themselves to chemical programming to perform useful work, specifically with respect to the built environment. We present Butschli water-in-oil droplets as a model for further investigation into the development...... reconstructed the Butschli system and observed its life span under a light microscope, observing chemical patterns and droplet behaviors in nearly three hundred replicate experiments. Self-organizing patterns were observed, and during this dynamic, embodied phase the droplets provided a means of introducing...... temporal and spatial order in the system with the potential for chemical programmability. The authors propose that the discrete formation of dynamic droplets, characterized by their lifelike behavior patterns, during a variable window of time (from 30 s to 30 min after the addition of alkaline water...
Modelling, simulation and applications of longitudinal train dynamics
Cole, Colin; Spiryagin, Maksym; Wu, Qing; Sun, Yan Quan
2017-10-01
Significant developments in longitudinal train simulation and an overview of the approaches to train models and modelling vehicle force inputs are firstly presented. The most important modelling task, that of the wagon connection, consisting of energy absorption devices such as draft gears and buffers, draw gear stiffness, coupler slack and structural stiffness is then presented. Detailed attention is given to the modelling approaches for friction wedge damped and polymer draft gears. A significant issue in longitudinal train dynamics is the modelling and calculation of the input forces - the co-dimensional problem. The need to push traction performances higher has led to research and improvement in the accuracy of traction modelling which is discussed. A co-simulation method that combines longitudinal train simulation, locomotive traction control and locomotive vehicle dynamics is presented. The modelling of other forces, braking propulsion resistance, curve drag and grade forces are also discussed. As extensions to conventional longitudinal train dynamics, lateral forces and coupler impacts are examined in regards to interaction with wagon lateral and vertical dynamics. Various applications of longitudinal train dynamics are then presented. As an alternative to the tradition single wagon mass approach to longitudinal train dynamics, an example incorporating fully detailed wagon dynamics is presented for a crash analysis problem. Further applications of starting traction, air braking, distributed power, energy analysis and tippler operation are also presented.
Dynamic modeling and optimal joint torque coordination of advanced robotic systems
Kang, Hee-Jun
The development is documented of an efficient dynamic modeling algorithm and the subsequent optimal joint input load coordination of advanced robotic systems for industrial application. A closed-form dynamic modeling algorithm for the general closed-chain robotic linkage systems is presented. The algorithm is based on the transfer of system dependence from a set of open chain Lagrangian coordinates to any desired system generalized coordinate set of the closed-chain. Three different techniques for evaluation of the kinematic closed chain constraints allow the representation of the dynamic modeling parameters in terms of system generalized coordinates and have no restriction with regard to kinematic redundancy. The total computational requirement of the closed-chain system model is largely dependent on the computation required for the dynamic model of an open kinematic chain. In order to improve computational efficiency, modification of an existing open-chain KIC based dynamic formulation is made by the introduction of the generalized augmented body concept. This algorithm allows a 44 pct. computational saving over the current optimized one (O(N4), 5995 when N = 6). As means of resolving redundancies in advanced robotic systems, local joint torque optimization is applied for effectively using actuator power while avoiding joint torque limits. The stability problem in local joint torque optimization schemes is eliminated by using fictitious dissipating forces which act in the necessary null space. The performance index representing the global torque norm is shown to be satisfactory. In addition, the resulting joint motion trajectory becomes conservative, after a transient stage, for repetitive cyclic end-effector trajectories. The effectiveness of the null space damping method is shown. The modular robot, which is built of well defined structural modules from a finite-size inventory and is controlled by one general computer system, is another class of evolving
Time delay systems theory, numerics, applications, and experiments
Ersal, Tulga; Orosz, Gábor
2017-01-01
This volume collects contributions related to selected presentations from the 12th IFAC Workshop on Time Delay Systems, Ann Arbor, June 28-30, 2015. The included papers present novel techniques and new results of delayed dynamical systems. The topical spectrum covers control theory, numerical analysis, engineering and biological applications as well as experiments and case studies. The target audience primarily comprises research experts in the field of time delay systems, but the book may also be beneficial for graduate students alike. .
Flat Top Barge 300 feet Using Portable Dynamic Positioning System
Directory of Open Access Journals (Sweden)
Agoes Santoso
2017-03-01
Full Text Available Portable Dynamic Positioning System has not commonly applied to the ship, especially on barge. Besides for Dynamic Positioning function, the system can be used as ship's main propulsion. By using this system, the ship able to not using anchors because the functions can be performed by the Portable Dynamic System. Therefore, research about the application of Portable Dynamic Positioning System on the ship is conducted. This research aims to design a Flat Top Barge 300feet ship, to determine the specifications of Portable Dynamic Positioning System which is used, and to find out the ship stability which is designed on the empty payload condition and maximum payload. This research designed the ships with main dimensions LWL 90.1 meters, 25 meters wide, 5.5 meters high and 4.2 meters draught. To generate the ship with a maximum speed of 8 knots, it takes four thruster supplied with power 225 kW each, so that the total generated power is 1100 kW. This study analyzes three conditions of the ship stability, there are the condition of full payload, empty payload, and maximum payload. Each payload conditions will be analyzed regarding the large payload and draught water produced. The first is full payload conditions resulting payload in the amount of 5650 ton with a draught on the LCF at 4,181 meters. The second is the large empty payload condition displacement is 2809 ton and water draught on the LCF at 1,591. And the last is maximum payload conditions, resulting payload in the amount of 7450 ton with a draught on the LCF at 4,994 meters.
Application of Time-Delay Absorber to Suppress Vibration of a Dynamical System to Tuned Excitation.
El-Ganaini, W A A; El-Gohary, H A
2014-08-01
In this work, we present a comprehensive investigation of the time delay absorber effects on the control of a dynamical system represented by a cantilever beam subjected to tuned excitation forces. Cantilever beam is one of the most widely used system in too many engineering applications, such as mechanical and civil engineering. The main aim of this work is to control the vibration of the beam at simultaneous internal and combined resonance condition, as it is the worst resonance case. Control is conducted via time delay absorber to suppress chaotic vibrations. Time delays often appear in many control systems in the state, in the control input, or in the measurements. Time delay commonly exists in various engineering, biological, and economical systems because of the finite speed of the information processing. It is a source of performance degradation and instability. Multiple time scale perturbation method is applied to obtain a first order approximation for the nonlinear differential equations describing the system behavior. The different resonance cases are reported and studied numerically. The stability of the steady-state solution at the selected worst resonance case is investigated applying Runge-Kutta fourth order method and frequency response equations via Matlab 7.0 and Maple11. Time delay absorber is effective, but within a specified range of time delay. It is the critical factor in selecting such absorber. Time delay absorber is better than the ordinary one as from the effectiveness point of view. The effects of the different absorber parameters on the system behavior and stability are studied numerically. A comparison with the available published work showed a close agreement with some previously published work.
Norton, Tomás; Sun, Da-Wen; Grant, Jim; Fallon, Richard; Dodd, Vincent
2007-09-01
The application of computational fluid dynamics (CFD) in the agricultural industry is becoming ever more important. Over the years, the versatility, accuracy and user-friendliness offered by CFD has led to its increased take-up by the agricultural engineering community. Now CFD is regularly employed to solve environmental problems of greenhouses and animal production facilities. However, due to a combination of increased computer efficacy and advanced numerical techniques, the realism of these simulations has only been enhanced in recent years. This study provides a state-of-the-art review of CFD, its current applications in the design of ventilation systems for agricultural production systems, and the outstanding challenging issues that confront CFD modellers. The current status of greenhouse CFD modelling was found to be at a higher standard than that of animal housing, owing to the incorporation of user-defined routines that simulate crop biological responses as a function of local environmental conditions. Nevertheless, the most recent animal housing simulations have addressed this issue and in turn have become more physically realistic.
Small Stirling dynamic isotope power system for multihundred-watt robotic missions
International Nuclear Information System (INIS)
Bents, D.J.
1991-01-01
Free Piston Stirling Engine (FPSE) and linear alternator (LA) technology is combined with radioisotope heat sources to produce a compact dynamic isotope power system (DIPS) suitable for multihundred watt space application which appears competitive with advance radioisotope thermoelectric generators (RTGs). The small Stirling DIPS is scalable to multihundred watt power levels or lower. The FPSE/LA is a high efficiency convertor in sizes ranging from tens of kilowatts down to only a few watts. At multihundred watt unit size, the FPSE can be directly integrated with the General Purpose Heat Source (GPHS) via radiative coupling; the resulting dynamic isotope power system has a size and weight that compares favorably with the advanced modular (Mod) RTG, but requires less than a third the amount of isotope fuel. Thus the FPSE extends the high efficiency advantage of dynamic systems into a power range never previously considered competitive for DIPS. This results in lower fuel cost and reduced radiological hazard per delivered electrical watt. 33 refs
International Nuclear Information System (INIS)
Kusunoki, T.; Uematsu, H.; Kobayashi, H.
1992-01-01
A marine reactor plant sustains incessant load change and the effects of vibration and ship motions due to the maneuvering and dynamic conditions in the marine environment. The change of process variables of the reactor plant is made in accordance with the load change and other effects, and also results in the propeller revolution change and subsequently affects on ship motions. In order to grasp dynamic behavior of the reactor plant in normal operation, including port entry and departure, and also in abnormal conditions such as anticipated transient and accidents, the Nuclear ship Engineering Simulation SYstem (simply ENSSY, hereinafter) carriers out combined analysis in which the behaviors of the ship propulsion, the reactor plant and the secondary systems are simultaneously calculated in each time step. (author)
Quantum dynamics in open quantum-classical systems.
Kapral, Raymond
2015-02-25
Often quantum systems are not isolated and interactions with their environments must be taken into account. In such open quantum systems these environmental interactions can lead to decoherence and dissipation, which have a marked influence on the properties of the quantum system. In many instances the environment is well-approximated by classical mechanics, so that one is led to consider the dynamics of open quantum-classical systems. Since a full quantum dynamical description of large many-body systems is not currently feasible, mixed quantum-classical methods can provide accurate and computationally tractable ways to follow the dynamics of both the system and its environment. This review focuses on quantum-classical Liouville dynamics, one of several quantum-classical descriptions, and discusses the problems that arise when one attempts to combine quantum and classical mechanics, coherence and decoherence in quantum-classical systems, nonadiabatic dynamics, surface-hopping and mean-field theories and their relation to quantum-classical Liouville dynamics, as well as methods for simulating the dynamics.
Variable threshold algorithm for division of labor analyzed as a dynamical system.
Castillo-Cagigal, Manuel; Matallanas, Eduardo; Navarro, Iñaki; Caamaño-Martín, Estefanía; Monasterio-Huelin, Félix; Gutiérrez, Álvaro
2014-12-01
Division of labor is a widely studied aspect of colony behavior of social insects. Division of labor models indicate how individuals distribute themselves in order to perform different tasks simultaneously. However, models that study division of labor from a dynamical system point of view cannot be found in the literature. In this paper, we define a division of labor model as a discrete-time dynamical system, in order to study the equilibrium points and their properties related to convergence and stability. By making use of this analytical model, an adaptive algorithm based on division of labor can be designed to satisfy dynamic criteria. In this way, we have designed and tested an algorithm that varies the response thresholds in order to modify the dynamic behavior of the system. This behavior modification allows the system to adapt to specific environmental and collective situations, making the algorithm a good candidate for distributed control applications. The variable threshold algorithm is based on specialization mechanisms. It is able to achieve an asymptotically stable behavior of the system in different environments and independently of the number of individuals. The algorithm has been successfully tested under several initial conditions and number of individuals.
Synchronization propensity in networks of dynamical systems: A purely topological indicator
Fasani, S.; Rinaldi, S.
2012-01-01
Synchronization in networks of identical dynamical systems is enhanced by the number of manifolds in which synchrony of groups of systems is conserved or reinforced. Since the number of these invariant manifolds depends only on the coupling architecture of the network, it can be proposed as a purely topological indicator of synchronization propensity. The proposal is empirically validated through the detailed study of an ecological application.
International Nuclear Information System (INIS)
Cugliandolo, Leticia F.
2003-09-01
These lecture notes can be read in two ways. The first two Sections contain a review of the phenomenology of several physical systems with slow nonequilibrium dynamics. In the Conclusions we summarize the scenario for this temporal evolution derived from the solution to some solvable models (p spin and the like) that are intimately connected to the mode coupling approach (and similar ones) to super-cooled liquids. At the end we list a number of open problems of great relevance in this context. These Sections can be read independently of the body of the paper where we present some of the basic analytic techniques used to study the out of equilibrium dynamics of classical and quantum models with and without disorder. We start the technical part by briefly discussing the role played by the environment and by introducing and comparing its representation in the equilibrium and dynamic treatment of classical and quantum systems. We next explain the role played by explicit quenched disorder in both approaches. Later on we focus on analytical techniques; we expand on the dynamic functional methods, and the diagrammatic expansions and resummations used to derive macroscopic equations from the microscopic dynamics. We show why the macroscopic dynamic equations for disordered models and those resulting from self-consistent approximations to non-disordered ones coincide. We review some generic properties of dynamic systems evolving out of equilibrium like the modifications of the fluctuation-dissipation theorem, generic scaling forms of the correlation functions, etc. Finally we solve a family of mean-field models. The connection between the dynamic treatment and the analysis of the free-energy landscape of these models is also presented. We use pedagogical examples all along these lectures to illustrate the properties and results. (author)
Snook, Ian
2007-01-01
The Langevin and Generalised Langevin Approach To The Dynamics Of Atomic, Polymeric And Colloidal Systems is concerned with the description of aspects of the theory and use of so-called random processes to describe the properties of atomic, polymeric and colloidal systems in terms of the dynamics of the particles in the system. It provides derivations of the basic equations, the development of numerical schemes to solve them on computers and gives illustrations of application to typical systems.Extensive appendices are given to enable the reader to carry out computations to illustrate many of the points made in the main body of the book.* Starts from fundamental equations* Gives up-to-date illustration of the application of these techniques to typical systems of interest* Contains extensive appendices including derivations, equations to be used in practice and elementary computer codes
Directory of Open Access Journals (Sweden)
Adrian Petruşel
2015-01-01
Full Text Available We will discuss discrete dynamics generated by single-valued and multivalued operators in spaces endowed with a generalized metric structure. More precisely, the behavior of the sequence (fn(xn∈N of successive approximations in complete generalized gauge spaces is discussed. In the same setting, the case of multivalued operators is also considered. The coupled fixed points for mappings t1:X1×X2→X1 and t2:X1×X2→X2 are discussed and an application to a system of nonlinear integral equations is given.
Dynamical systems, attractors, and neural circuits.
Miller, Paul
2016-01-01
Biology is the study of dynamical systems. Yet most of us working in biology have limited pedagogical training in the theory of dynamical systems, an unfortunate historical fact that can be remedied for future generations of life scientists. In my particular field of systems neuroscience, neural circuits are rife with nonlinearities at all levels of description, rendering simple methodologies and our own intuition unreliable. Therefore, our ideas are likely to be wrong unless informed by good models. These models should be based on the mathematical theories of dynamical systems since functioning neurons are dynamic-they change their membrane potential and firing rates with time. Thus, selecting the appropriate type of dynamical system upon which to base a model is an important first step in the modeling process. This step all too easily goes awry, in part because there are many frameworks to choose from, in part because the sparsely sampled data can be consistent with a variety of dynamical processes, and in part because each modeler has a preferred modeling approach that is difficult to move away from. This brief review summarizes some of the main dynamical paradigms that can arise in neural circuits, with comments on what they can achieve computationally and what signatures might reveal their presence within empirical data. I provide examples of different dynamical systems using simple circuits of two or three cells, emphasizing that any one connectivity pattern is compatible with multiple, diverse functions.
Radiator selection for Space Station Solar Dynamic Power Systems
Fleming, Mike; Hoehn, Frank
A study was conducted to define the best radiator for heat rejection of the Space Station Solar Dynamic Power System. Included in the study were radiators for both the Organic Rankine Cycle and Closed Brayton Cycle heat engines. A number of potential approaches were considered for the Organic Rankine Cycle and a constructable radiator was chosen. Detailed optimizations of this concept were conducted resulting in a baseline for inclusion into the ORC Preliminary Design. A number of approaches were also considered for the CBC radiator. For this application a deployed pumped liquid radiator was selected which was also refined resulting in a baseline for the CBC preliminary design. This paper reports the results and methodology of these studies and describes the preliminary designs of the Space Station Solar Dynamic Power System radiators for both of the candidate heat engine cycles.
Application of LBB to high energy piping systems in operating PWR
Energy Technology Data Exchange (ETDEWEB)
Swamy, S.A.; Bhowmick, D.C. [Westinghouse Nuclear Technology Division, Pittsburgh, PA (United States)
1997-04-01
The amendment to General Design Criterion 4 allows exclusion, from the design basis, of dynamic effects associated with high energy pipe rupture by application of leak-before-break (LBB) technology. This new approach has resulted in substantial financial savings to utilities when applied to the Pressurized Water Reactor (PWR) primary loop piping and auxiliary piping systems made of stainless steel material. To date majority of applications pertain to piping systems in operating plants. Various steps of evaluation associated with the LBB application to an operating plant are described in this paper.
Directory of Open Access Journals (Sweden)
V. A. Gribkov
2015-01-01
Full Text Available We consider the multilink pendulum system consisting of six physical pendulums. A pendulum (carrier has inertia parameters, which significantly exceed the remaining (carried ones placed on the carrier. In addition to the system under analysis, in particular, the paper presents a design scheme for a two-stage liquid fuel rocket using pendulums as the analogues of fluctuating fuel. Pendulum models also find application to solve problems of stabilization of space tether systems. The objective of the study is to determine dynamic characteristics of the said sixmembered pendulum system, as well as to identify specific dynamic properties inherent in objects of this kind. Dynamic characteristics of the system are determined by calculations. A physical model of the pendulum allowed us to compare the calculated and experimental results. To conduct the frequency tests of the pendulum model three pilot units have been created. The first two units turned out to be inappropriate for fulfilling the experimental tasks for various reasons. The third unit enabled us to obtain desirable experimental results. The "calculation–experiment” discrepancy on the natural frequencies of the pendulum model for the majority of frequencies was less than 5%. We analyzed the dynamic features of multilink pendulum systems "carried by the carrier unit links". The analysis results are applicable to the above-noted object classes of rocket and space technology.
Dynamic Stability Experiment of Maglev Systems,
1995-04-01
This report summarizes the research performed on maglev vehicle dynamic stability at Argonne National Laboratory during the past few years. It also... maglev system, it is important to consider this phenomenon in the development of all maglev systems. This report presents dynamic stability experiments...on maglev systems and compares their numerical simulation with predictions calculated by a nonlinear dynamic computer code. Instabilities of an
Dynamics of a quantum two-level system under the action of phase-diffusion field
Energy Technology Data Exchange (ETDEWEB)
Sobakinskaya, E.A. [Institute for Physics of Microstructures of RAS, Nizhny Novgorod, 603950 (Russian Federation); Pankratov, A.L., E-mail: alp@ipm.sci-nnov.ru [Institute for Physics of Microstructures of RAS, Nizhny Novgorod, 603950 (Russian Federation); Vaks, V.L. [Institute for Physics of Microstructures of RAS, Nizhny Novgorod, 603950 (Russian Federation)
2012-01-09
We study a behavior of quantum two-level system, interacting with noisy phase-diffusion field. The dynamics is shown to split into two regimes, determined by the coherence time of the phase-diffusion field. For both regimes we present a model of quantum system behavior and discuss possible applications of the obtained effect for spectroscopy. In particular, the obtained analytical formula for the macroscopic polarization demonstrates that the phase-diffusion field does not affect the absorption line shape, which opens up an intriguing possibility of noisy spectroscopy, based on broadband sources with Lorentzian line shape. -- Highlights: ► We study dynamics of quantum system interacting with noisy phase-diffusion field. ► At short times the phase-diffusion field induces polarization in the quantum system. ► At long times the noise leads to polarization decay and heating of a quantum system. ► Simple model of interaction is derived. ► Application of the described effects for spectroscopy is discussed.
Birkhoff, George D
1927-01-01
His research in dynamics constitutes the middle period of Birkhoff's scientific career, that of maturity and greatest power. -Yearbook of the American Philosophical Society The author's great book€¦is well known to all, and the diverse active modern developments in mathematics which have been inspired by this volume bear the most eloquent testimony to its quality and influence. -Zentralblatt MATH In 1927, G. D. Birkhoff wrote a remarkable treatise on the theory of dynamical systems that would inspire many later mathematicians to do great work. To a large extent, Birkhoff was writing about his o
Distributed applications monitoring at system and network level
Aderholz, Michael; Augé, E; Bagliesi, G; Banistoni, G; Barone, L; Boschini, M; Brunengo, A; Bunn, J J; Butler, J; Campanella, M; Capiluppi, P; D'Amato, M; Darneri, M; Di Mattia, A; Dorokhov, A E; Gagliardi, F; Gaines, I; Gasparini, U; Ghiselli, A; Gordon, J; Grandi, C; Gálvez, P; Harris, F; Holtman, K; Karimäki, V; Karita, Y; Klem, J T; Legrand, I; Leltchouk, M; Linglin, D; Lubrano, P; Luminari, L; McArthur, I C; Michelotto, M; Morita, Y; Nazarenko, A; Newman, H; O'Dell, Vivian; O'Neale, S W; Osculati, B; Pepé, M; Perini, L; Pinfold, James L; Pordes, R; Prelz, F; Putzer, A; Resconi, S; Robertson, L; Rolli, S; Sasaki, T; Sato, H; Schaffer, R D; Schalk, T L; Servoli, L; Sgaravatto, M; Shiers, J; Silvestris, L; Siroli, G P; Sliwa, K; Smith, T; Somigliana, R; Stanescu, C; Stockinger, H E; Ugolotti, D; Valente, E; Vistoli, C; Wilkinson, R P; Willers, Ian Malcolm; Williams, D O
2001-01-01
Most distributed applications are based on architectural models that do not involve real-time knowledge of network status and of their network usage. Moreover the new "network aware" architectures are still under development and their design is not yet complete. We considered, as a use case, an application using ODBMS (Objectivity /DB) for the distributed analysis of experimental data. The dynamic usage of system and network resources at host and application levels has been measured in different client/server configurations, and on several LAN and WAN layouts. The aim was to study the application efficiency and behavior versus the network characteristics and conditions. The most interesting results of the LAN and WAN tests are described. System bottlenecks and limitations have been identified, and efficient working conditions in the different scenarios have been defined. The behavior observed when moving away from the optimal working conditions is also described.
Submodularity in dynamics and control of networked systems
Clark, Andrew; Bushnell, Linda; Poovendran, Radha
2016-01-01
This book presents a framework for the control of networked systems utilizing submodular optimization techniques. The main focus is on selecting input nodes for the control of networked systems, an inherently discrete optimization problem with applications in power system stability, social influence dynamics, and the control of vehicle formations. The first part of the book is devoted to background information on submodular functions, matroids, and submodular optimization, and presents algorithms for distributed submodular optimization that are scalable to large networked systems. In turn, the second part develops a unifying submodular optimization approach to controlling networked systems based on multiple performance and controllability criteria. Techniques are introduced for selecting input nodes to ensure smooth convergence, synchronization, and robustness to environmental and adversarial noise. Submodular optimization is the first unifying approach towards guaranteeing both performance and controllabilit...
Adaptation Decision Support: An Application of System Dynamics Modeling in Coastal Communities
Institute of Scientific and Technical Information of China (English)
Daniel Lane; Shima Beigzadeh; Richard Moll
2017-01-01
This research develops and applies a system dynamics (SD) model for the strategic evaluation of environmental adaptation options for coastal communities.The article defines and estimates asset-based measures for community vulnerability,resilience,and adaptive capacity with respect to the environmental,economic,social,and cultural pillars of the coastal community under threat.The SD model simulates the annual multidimensional dynamic impacts of severe coastal storms and storm surges on the community pillars under alternative adaptation strategies.The calculation of the quantitative measures provides valuable information for decision makers for evaluating the alternative strategies.The adaptation strategies are designed model results illustrated for the specific context of the coastal community of Charlottetown,Prince Edward Island,Canada.The dynamic trend of the measures and model sensitivity analyses for Charlottetown-facing increased frequency of severe storms,storm surges,and sea-level rise-provide impetus for enhanced community strategic planning for the changing coastal environment.This research is presented as part of the International Community-University Research Alliance C-Change project "Managing Adaptation to Environmental Change in Coastal Communities:Canada and the Caribbean" sponsored by the Social Science and Humanities Research Council of Canada and the International Development Resource Centre.
DeGregorio, P.; Lawlor, A.; Dawson, K. A.
2006-04-01
We introduce a new method to describe systems in the vicinity of dynamical arrest. This involves a map that transforms mobile systems at one length scale to mobile systems at a longer length. This map is capable of capturing the singular behavior accrued across very large length scales, and provides a direct route to the dynamical correlation length and other related quantities. The ideas are immediately applicable in two spatial dimensions, and have been applied to a modified Kob-Andersen type model. For such systems the map may be derived in an exact form, and readily solved numerically. We obtain the asymptotic behavior across the whole physical domain of interest in dynamical arrest.
Application of a system modification technique to dynamic tuning of a spinning rotor blade
Spain, C. V.
1987-01-01
An important consideration in the development of modern helicopters is the vibratory response of the main rotor blade. One way to minimize vibration levels is to ensure that natural frequencies of the spinning main rotor blade are well removed from integer multiples of the rotor speed. A technique for dynamically tuning a finite-element model of a rotor blade to accomplish that end is demonstrated. A brief overview is given of the general purpose finite element system known as Engineering Analysis Language (EAL) which was used in this work. A description of the EAL System Modification (SM) processor is then given along with an explanation of special algorithms developed to be used in conjunction with SM. Finally, this technique is demonstrated by dynamically tuning a model of an advanced composite rotor blade.
Multi-time scale dynamics in power electronics-dominated power systems
Yuan, Xiaoming; Hu, Jiabing; Cheng, Shijie
2017-09-01
Electric power infrastructure has recently undergone a comprehensive transformation from electromagnetics to semiconductors. Such a development is attributed to the rapid growth of power electronic converter applications in the load side to realize energy conservation and on the supply side for renewable generations and power transmissions using high voltage direct current transmission. This transformation has altered the fundamental mechanism of power system dynamics, which demands the establishment of a new theory for power system control and protection. This paper presents thoughts on a theoretical framework for the coming semiconducting power systems.
International Nuclear Information System (INIS)
Lin, H.C.; Hsieh, B.J.; Valentin, R.A.
1981-01-01
The endochronic theory of plasticity proposed by Valanis has been applied in predicting the inelastic responses of structural systems. A recently developed convected coordinates finite-element program has been modified to use an endochronic constitutive law. A series of sample problems for a variety of dynamic loadings are presented. The calculations that have been performed comparing classical and endochronic plasticity theories have revealed that the endochronic approach can result in a substantial reduction in computer time for equivalent solution accuracy. This result, combined with the apparent accuracy of material representation indicate that the use of endochronic plasticity has great potential in evaluating the dynamic response of structural systems. (orig.)
Directory of Open Access Journals (Sweden)
Shirley Ye Sheng
2012-06-01
Full Text Available In this article, we illustrate the use of system dynamics modeling approach to study a complex system: word-of-mouth. Word-of-mouth plays an important role in reducing risk and uncertainty in purchase and consumption. Most of the prior research on word-of-mouth focused on studying either the factors that trigger consumers’ participation (sending or receiving in word-of-mouth activities or the impact word-of-mouth information has on consumers’ buying decisions. The relationship between the two decision processes, however, is recursive and dynamic. Most prior studies have not focused on a recursive relationship. Our objective is to present a system dynamics model for the study of the relationship between the buying decision and the decision to participate in word-of-mouth communication. We also discuss how system dynamics modeling can be used in other complex problems in business such as the creation of a global business.
International Nuclear Information System (INIS)
Posch, H.A.; Narnhofer, H.; Thirring, W.
1990-01-01
We study the dynamics of classical particles interacting with attractive Gaussian potentials. This system is thermodynamically not stable and exhibits negative specific heat. The results of the computer simulation of the dynamics are discussed in comparison with various theories. In particular, we find that the condensed phase is a stationary solution of the Vlasov equation, but the Vlasov dynamics cannot describe the collapse. 14 refs., 1 tab., 11 figs. (Authors)
Recent Development in Rigorous Computational Methods in Dynamical Systems
Arai, Zin; Kokubu, Hiroshi; Pilarczyk, Paweł
2009-01-01
We highlight selected results of recent development in the area of rigorous computations which use interval arithmetic to analyse dynamical systems. We describe general ideas and selected details of different ways of approach and we provide specific sample applications to illustrate the effectiveness of these methods. The emphasis is put on a topological approach, which combined with rigorous calculations provides a broad range of new methods that yield mathematically rel...
Goodman, Lawrence E
2001-01-01
Beginning text presents complete theoretical treatment of mechanical model systems and deals with technological applications. Topics include introduction to calculus of vectors, particle motion, dynamics of particle systems and plane rigid bodies, technical applications in plane motions, theory of mechanical vibrations, and more. Exercises and answers appear in each chapter.
System dynamics model of Suzhou water resources carrying capacity and its application
Directory of Open Access Journals (Sweden)
Li Cheng
2010-06-01
Full Text Available A model of Suzhou water resources carrying capacity (WRCC was set up using the method of system dynamics (SD. In the model, three different water resources utilization programs were adopted: (1 continuity of existing water utilization, (2 water conservation/saving, and (3 water exploitation. The dynamic variation of the Suzhou WRCC was simulated with the supply-decided principle for the time period of 2001 to 2030, and the results were characterized based on socio-economic factors. The corresponding Suzhou WRCC values for several target years were calculated by the model. Based on these results, proper ways to improve the Suzhou WRCC are proposed. The model also produced an optimized plan, which can provide a scientific basis for the sustainable utilization of Suzhou water resources and for the coordinated development of the society, economy, and water resources.
Optimization and Control of Bilinear Systems Theory, Algorithms, and Applications
Pardalos, Panos M
2008-01-01
Covers developments in bilinear systems theory Focuses on the control of open physical processes functioning in a non-equilibrium mode Emphasis is on three primary disciplines: modern differential geometry, control of dynamical systems, and optimization theory Includes applications to the fields of quantum and molecular computing, control of physical processes, biophysics, superconducting magnetism, and physical information science
Directory of Open Access Journals (Sweden)
F. A. Romaniouk
2008-01-01
Full Text Available The paper considers problems pertaining to mathematical modeling of a transformer substation with protected electric power lines. It is proposed to use systems of dynamic modeling for investigations applying a method of calculative experiment with the purpose to evaluate behavior of protection and automation at short circuits. The paper contains comparison of results obtained with the help of program-simulated complex on the basis of a complex mathematical model of an object and with the help of dynamic modeling system – MathLab.
Dynamic Non-Hierarchical File Systems for Exascale Storage
Energy Technology Data Exchange (ETDEWEB)
Long, Darrell E. [Univ. of California, Santa Cruz, CA (United States); Miller, Ethan L [Univ. of California, Santa Cruz, CA (United States)
2015-02-24
This constitutes the final report for “Dynamic Non-Hierarchical File Systems for Exascale Storage”. The ultimate goal of this project was to improve data management in scientific computing and high-end computing (HEC) applications, and to achieve this goal we proposed: to develop the first, HEC-targeted, file system featuring rich metadata and provenance collection, extreme scalability, and future storage hardware integration as core design goals, and to evaluate and develop a flexible non-hierarchical file system interface suitable for providing more powerful and intuitive data management interfaces to HEC and scientific computing users. Data management is swiftly becoming a serious problem in the scientific community – while copious amounts of data are good for obtaining results, finding the right data is often daunting and sometimes impossible. Scientists participating in a Department of Energy workshop noted that most of their time was spent “...finding, processing, organizing, and moving data and it’s going to get much worse”. Scientists should not be forced to become data mining experts in order to retrieve the data they want, nor should they be expected to remember the naming convention they used several years ago for a set of experiments they now wish to revisit. Ideally, locating the data you need would be as easy as browsing the web. Unfortunately, existing data management approaches are usually based on hierarchical naming, a 40 year-old technology designed to manage thousands of files, not exabytes of data. Today’s systems do not take advantage of the rich array of metadata that current high-end computing (HEC) file systems can gather, including content-based metadata and provenance1 information. As a result, current metadata search approaches are typically ad hoc and often work by providing a parallel management system to the “main” file system, as is done in Linux (the locate utility), personal computers, and enterprise search
Modular interdependency in complex dynamical systems.
Watson, Richard A; Pollack, Jordan B
2005-01-01
Herbert A. Simon's characterization of modularity in dynamical systems describes subsystems as having dynamics that are approximately independent of those of other subsystems (in the short term). This fits with the general intuition that modules must, by definition, be approximately independent. In the evolution of complex systems, such modularity may enable subsystems to be modified and adapted independently of other subsystems, whereas in a nonmodular system, modifications to one part of the system may result in deleterious side effects elsewhere in the system. But this notion of modularity and its effect on evolvability is not well quantified and is rather simplistic. In particular, modularity need not imply that intermodule dependences are weak or unimportant. In dynamical systems this is acknowledged by Simon's suggestion that, in the long term, the dynamical behaviors of subsystems do interact with one another, albeit in an "aggregate" manner--but this kind of intermodule interaction is omitted in models of modularity for evolvability. In this brief discussion we seek to unify notions of modularity in dynamical systems with notions of how modularity affects evolvability. This leads to a quantifiable measure of modularity and a different understanding of its effect on evolvability.
Nonlinear systems techniques for dynamical analysis and control
Lefeber, Erjen; Arteaga, Ines
2017-01-01
This treatment of modern topics related to the control of nonlinear systems is a collection of contributions celebrating the work of Professor Henk Nijmeijer and honoring his 60th birthday. It addresses several topics that have been the core of Professor Nijmeijer’s work, namely: the control of nonlinear systems, geometric control theory, synchronization, coordinated control, convergent systems and the control of underactuated systems. The book presents recent advances in these areas, contributed by leading international researchers in systems and control. In addition to the theoretical questions treated in the text, particular attention is paid to a number of applications including (mobile) robotics, marine vehicles, neural dynamics and mechanical systems generally. This volume provides a broad picture of the analysis and control of nonlinear systems for scientists and engineers with an interest in the interdisciplinary field of systems and control theory. The reader will benefit from the expert participan...
Directory of Open Access Journals (Sweden)
V.A. Bazhenov
2014-12-01
Full Text Available Authors in their works study vibroimpact system dynamic behaviour by numerical parametric continuation technique combined with shooting and Newton-Raphson’s methods. The technique is adapted to two-mass two-degree-of-freedom vibroimpact system under periodic excitation. Impact is simulated by nonlinear contact interaction force based on Hertz’s contact theory. Stability or instability of obtained periodic solutions is determined by monodromy matrix eigenvalues (multipliers based on Floquet’s theory. In the present paper we describe the state of problem of parameter continuation method using for nonlinear tasks solution. Also we give the short survey of numerous contemporary literature in English and Russian about parameter continuation method application for nonlinear problems. This method is applied for vibroimpact problem solving more rarely because of the difficulties connected with repeated impacts.
International Nuclear Information System (INIS)
Kuwahara, Tomotaka; Mori, Takashi; Saito, Keiji
2016-01-01
This work explores a fundamental dynamical structure for a wide range of many-body quantum systems under periodic driving. Generically, in the thermodynamic limit, such systems are known to heat up to infinite temperature states in the long-time limit irrespective of dynamical details, which kills all the specific properties of the system. In the present study, instead of considering infinitely long-time scale, we aim to provide a general framework to understand the long but finite time behavior, namely the transient dynamics. In our analysis, we focus on the Floquet–Magnus (FM) expansion that gives a formal expression of the effective Hamiltonian on the system. Although in general the full series expansion is not convergent in the thermodynamics limit, we give a clear relationship between the FM expansion and the transient dynamics. More precisely, we rigorously show that a truncated version of the FM expansion accurately describes the exact dynamics for a certain time-scale. Our theory reveals an experimental time-scale for which non-trivial dynamical phenomena can be reliably observed. We discuss several dynamical phenomena, such as the effect of small integrability breaking, efficient numerical simulation of periodically driven systems, dynamical localization and thermalization. Especially on thermalization, we discuss a generic scenario on the prethermalization phenomenon in periodically driven systems. -- Highlights: •A general framework to describe transient dynamics for periodically driven systems. •The theory is applicable to generic quantum many-body systems including long-range interacting systems. •Physical meaning of the truncation of the Floquet–Magnus expansion is rigorously established. •New mechanism of the prethermalization is proposed. •Revealing an experimental time-scale for which non-trivial dynamical phenomena can be reliably observed.
Energy Technology Data Exchange (ETDEWEB)
Kuwahara, Tomotaka, E-mail: tomotaka.phys@gmail.com [Department of Physics, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); WPI, Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Mori, Takashi [Department of Physics, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Saito, Keiji [Department of Physics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522 (Japan)
2016-04-15
This work explores a fundamental dynamical structure for a wide range of many-body quantum systems under periodic driving. Generically, in the thermodynamic limit, such systems are known to heat up to infinite temperature states in the long-time limit irrespective of dynamical details, which kills all the specific properties of the system. In the present study, instead of considering infinitely long-time scale, we aim to provide a general framework to understand the long but finite time behavior, namely the transient dynamics. In our analysis, we focus on the Floquet–Magnus (FM) expansion that gives a formal expression of the effective Hamiltonian on the system. Although in general the full series expansion is not convergent in the thermodynamics limit, we give a clear relationship between the FM expansion and the transient dynamics. More precisely, we rigorously show that a truncated version of the FM expansion accurately describes the exact dynamics for a certain time-scale. Our theory reveals an experimental time-scale for which non-trivial dynamical phenomena can be reliably observed. We discuss several dynamical phenomena, such as the effect of small integrability breaking, efficient numerical simulation of periodically driven systems, dynamical localization and thermalization. Especially on thermalization, we discuss a generic scenario on the prethermalization phenomenon in periodically driven systems. -- Highlights: •A general framework to describe transient dynamics for periodically driven systems. •The theory is applicable to generic quantum many-body systems including long-range interacting systems. •Physical meaning of the truncation of the Floquet–Magnus expansion is rigorously established. •New mechanism of the prethermalization is proposed. •Revealing an experimental time-scale for which non-trivial dynamical phenomena can be reliably observed.
Stability of dynamical systems on the role of monotonic and non-monotonic Lyapunov functions
Michel, Anthony N; Liu, Derong
2015-01-01
The second edition of this textbook provides a single source for the analysis of system models represented by continuous-time and discrete-time, finite-dimensional and infinite-dimensional, and continuous and discontinuous dynamical systems. For these system models, it presents results which comprise the classical Lyapunov stability theory involving monotonic Lyapunov functions, as well as corresponding contemporary stability results involving non-monotonicLyapunov functions.Specific examples from several diverse areas are given to demonstrate the applicability of the developed theory to many important classes of systems, including digital control systems, nonlinear regulator systems, pulse-width-modulated feedback control systems, and artificial neural networks. The authors cover the following four general topics: - Representation and modeling of dynamical systems of the types described above - Presentation of Lyapunov and Lagrange stability theory for dynamical sy...
Nonlinear dynamics new directions theoretical aspects
Ugalde, Edgardo
2015-01-01
This book, along with its companion volume, Nonlinear Dynamics New Directions: Models and Applications, covers topics ranging from fractal analysis to very specific applications of the theory of dynamical systems to biology. This first volume is devoted to fundamental aspects and includes a number of important new contributions as well as some review articles that emphasize new development prospects. The second volume contains mostly new applications of the theory of dynamical systems to both engineering and biology. The topics addressed in the two volumes include a rigorous treatment of fluctuations in dynamical systems, topics in fractal analysis, studies of the transient dynamics in biological networks, synchronization in lasers, and control of chaotic systems, among others. This book also: · Presents a rigorous treatment of fluctuations in dynamical systems and explores a range of topics in fractal analysis, among other fundamental topics · Features recent developments on...
Perspective: Dynamic Shadowing Growth and its Energy Applications
Directory of Open Access Journals (Sweden)
Yiping eZhao
2014-09-01
Full Text Available The unique features of dynamic shadowing growth (DSG in structural and compositional design of nanomaterials are discussed. Their recent applications in energy storage, fuel cell, and solar energy conversion have been reviewed briefly. Future directions for applying DSG nanostructures in renewable energy applications are presented.
Constraint Embedding for Multibody System Dynamics
Jain, Abhinandan
2009-01-01
This paper describes a constraint embedding approach for the handling of local closure constraints in multibody system dynamics. The approach uses spatial operator techniques to eliminate local-loop constraints from the system and effectively convert the system into tree-topology systems. This approach allows the direct derivation of recursive O(N) techniques for solving the system dynamics and avoiding the expensive steps that would otherwise be required for handling the closedchain dynamics. The approach is very effective for systems where the constraints are confined to small-subgraphs within the system topology. The paper provides background on the spatial operator O(N) algorithms, the extensions for handling embedded constraints, and concludes with some examples of such constraints.
Nonlinear control of linear parameter varying systems with applications to hypersonic vehicles
Wilcox, Zachary Donald
The focus of this dissertation is to design a controller for linear parameter varying (LPV) systems, apply it specifically to air-breathing hypersonic vehicles, and examine the interplay between control performance and the structural dynamics design. Specifically a Lyapunov-based continuous robust controller is developed that yields exponential tracking of a reference model, despite the presence of bounded, nonvanishing disturbances. The hypersonic vehicle has time varying parameters, specifically temperature profiles, and its dynamics can be reduced to an LPV system with additive disturbances. Since the HSV can be modeled as an LPV system the proposed control design is directly applicable. The control performance is directly examined through simulations. A wide variety of applications exist that can be effectively modeled as LPV systems. In particular, flight systems have historically been modeled as LPV systems and associated control tools have been applied such as gain-scheduling, linear matrix inequalities (LMIs), linear fractional transformations (LFT), and mu-types. However, as the type of flight environments and trajectories become more demanding, the traditional LPV controllers may no longer be sufficient. In particular, hypersonic flight vehicles (HSVs) present an inherently difficult problem because of the nonlinear aerothermoelastic coupling effects in the dynamics. HSV flight conditions produce temperature variations that can alter both the structural dynamics and flight dynamics. Starting with the full nonlinear dynamics, the aerothermoelastic effects are modeled by a temperature dependent, parameter varying state-space representation with added disturbances. The model includes an uncertain parameter varying state matrix, an uncertain parameter varying non-square (column deficient) input matrix, and an additive bounded disturbance. In this dissertation, a robust dynamic controller is formulated for a uncertain and disturbed LPV system. The developed
Operationalizing sustainability in urban coastal systems: a system dynamics analysis.
Mavrommati, Georgia; Bithas, Kostas; Panayiotidis, Panayiotis
2013-12-15
We propose a system dynamics approach for Ecologically Sustainable Development (ESD) in urban coastal systems. A systematic analysis based on theoretical considerations, policy analysis and experts' knowledge is followed in order to define the concept of ESD. The principles underlying ESD feed the development of a System Dynamics Model (SDM) that connects the pollutant loads produced by urban systems' socioeconomic activities with the ecological condition of the coastal ecosystem that it is delineated in operational terms through key biological elements defined by the EU Water Framework Directive. The receiving waters of the Athens Metropolitan area, which bears the elements of typical high population density Mediterranean coastal city but which currently has also new dynamics induced by the ongoing financial crisis, are used as an experimental system for testing a system dynamics approach to apply the concept of ESD. Systems' thinking is employed to represent the complex relationships among the components of the system. Interconnections and dependencies that determine the potentials for achieving ESD are revealed. The proposed system dynamics analysis can facilitate decision makers to define paths of development that comply with the principles of ESD. Copyright © 2013 Elsevier Ltd. All rights reserved.
Dynamic information architecture system (DIAS) : multiple model simulation management.
Energy Technology Data Exchange (ETDEWEB)
Simunich, K. L.; Sydelko, P.; Dolph, J.; Christiansen, J.
2002-05-13
Dynamic Information Architecture System (DIAS) is a flexible, extensible, object-based framework for developing and maintaining complex multidisciplinary simulations of a wide variety of application contexts. The modeling domain of a specific DIAS-based simulation is determined by (1) software Entity (domain-specific) objects that represent the real-world entities that comprise the problem space (atmosphere, watershed, human), and (2) simulation models and other data processing applications that express the dynamic behaviors of the domain entities. In DIAS, models communicate only with Entity objects, never with each other. Each Entity object has a number of Parameter and Aspect (of behavior) objects associated with it. The Parameter objects contain the state properties of the Entity object. The Aspect objects represent the behaviors of the Entity object and how it interacts with other objects. DIAS extends the ''Object'' paradigm by abstraction of the object's dynamic behaviors, separating the ''WHAT'' from the ''HOW.'' DIAS object class definitions contain an abstract description of the various aspects of the object's behavior (the WHAT), but no implementation details (the HOW). Separate DIAS models/applications carry the implementation of object behaviors (the HOW). Any model deemed appropriate, including existing legacy-type models written in other languages, can drive entity object behavior. The DIAS design promotes plug-and-play of alternative models, with minimal recoding of existing applications. The DIAS Context Builder object builds a constructs or scenario for the simulation, based on developer specification and user inputs. Because DIAS is a discrete event simulation system, there is a Simulation Manager object with which all events are processed. Any class that registers to receive events must implement an event handler (method) to process the event during execution. Event handlers
Wu, Desheng; Ning, Shuang
2018-07-01
Economic development, accompanying with environmental damage and energy depletion, becomes essential nowadays. There is a complicated and comprehensive interaction between economics, environment and energy. Understanding the operating mechanism of Energy-Environment-Economy model (3E) and its key factors is the inherent part in dealing with the issue. In this paper, we combine System Dynamics model and Geographic Information System to analyze the energy-environment-economy (3E) system both temporally and spatially, which explicitly explore the interaction of economics, energy, and environment and effects of the key influencing factors. Beijing is selected as a case study to verify our SD-GIS model. Alternative scenarios, e.g., current, technology, energy and environment scenarios are explored and compared. Simulation results shows that, current scenario is not sustainable; technology scenario is applicable to economic growth; environment scenario maintains a balanced path of development for long term stability. Policy-making insights are given based on our results and analysis. Copyright © 2018 Elsevier Inc. All rights reserved.
Essential uncontrollability of discrete linear, time-invariant, dynamical systems
Cliff, E. M.
1975-01-01
The concept of a 'best approximating m-dimensional subspace' for a given set of vectors in n-dimensional whole space is introduced. Such a subspace is easily described in terms of the eigenvectors of an associated Gram matrix. This technique is used to approximate an achievable set for a discrete linear time-invariant dynamical system. This approximation characterizes the part of the state space that may be reached using modest levels of control. If the achievable set can be closely approximated by a proper subspace of the whole space then the system is 'essentially uncontrollable'. The notion finds application in studies of failure-tolerant systems, and in decoupling.
Segre, Gavriel
2005-01-01
It is shown that the non-adiabatic Hannay's angle of an integrable non-degenerate classical hamiltonian dynamical system may be related to the Aharonov-Anandan phase it develops when it is looked mathematically as a quantum dynamical system.
An enhanced dynamic model of battery using genetic algorithm suitable for photovoltaic applications
International Nuclear Information System (INIS)
Blaifi, S.; Moulahoum, S.; Colak, I.; Merrouche, W.
2016-01-01
Highlights: • We proposed a developed dynamic battery model suitable for photovoltaic systems. • We used genetic algorithm optimization method to find parameters that gives minimized error. • The validation was carried out with real measurements from stand-alone photovoltaic string. - Abstract: Modeling of batteries in photovoltaic systems has been a major issue related to the random dynamic regime imposed by the changes of solar irradiation and ambient temperature added to the complexity of battery electrochemical and electrical behaviors. However, various approaches have been proposed to model the battery behavior by predicting from detailed electrochemical, electrical or analytical models to high-level stochastic models. In this paper, an improvement of dynamic electrical battery model is proposed by automatic parameter extraction using genetic algorithm in order to give usefulness and future implementation for practical application. It is highlighted that the enhancement of 21 values of the parameters of CEIMAT model presents a good agreement with real measurements for different modes like charge or discharge and various conditions.
Modification of the process dynamics in micro-EDM by means of an additional piezo-control system
Herzig, M.; Berger, T.; Schulze, H.-P.; Hackert-Oschätzchen, M.; Kröning, O.; Schubert, A.
2017-10-01
For the application of spark erosion in micro- and precision manufacturing, it is particularly important that small structures with small spark gaps can be machined in the range of a few micrometers. Due to the application of an additional high- dynamic piezo positioning system, smaller feed steps can be implemented which ensure a higher process stability. This additional feed system can be adapted to existing feed systems, whereby the process variable to be influenced is the spark gap. The primary feed system does not have to be directly influenced. The article shows how the structures of parallel regulation circuits for such operating piezo positioning systems are constructed and how they can improve the productivity, the machining accuracy and the surface quality. A selected example shows how the structural design of the highly dynamic system can be designed for different process parameters of industrial basic systems.
Development of research reactor simulator and its application to dynamic test-bed
International Nuclear Information System (INIS)
Kwon, Kee-Choon; Baang, Dane; Park, Jae-Chang; Lee, Seung-Wook; Bae, Sung Won
2014-01-01
We developed a real-time simulator for 'High-flux Advanced Neutron Application ReactOr (HANARO), and the Jordan Research and Training Reactor (JRTR). The main purpose of this simulator is operator training, but we modified this simulator into a dynamic test-bed (DTB) to test the functions and dynamic control performance of reactor regulating system (RRS) in HANARO or JRTR before installation. The simulator hardware consists of a host computer, 6 operator stations, a network switch, and a large display panel. The software includes a mathematical model that implements plant dynamics in real-time, an instructor station module that manages user instructions, and a human machine interface module. The developed research reactor simulators are installed in the Korea Atomic Energy Research Institute nuclear training center for reactor operator training. To use the simulator as a dynamic test-bed, the reactor regulating system modeling software of the simulator was replaced by actual RRS cabinet, and was interfaced using a hard-wired and network-based interface. RRS cabinet generates control signals for reactor power control based on the various feedback signals from DTB, and the DTB runs plant dynamics based on the RRS control signals. Thus the Hardware-In-the-Loop Simulation between RRS and the emulated plant (DTB) has been implemented and tested in this configuration. The test result shows that the developed DTB and actual RRS cabinet works together simultaneously resulting in quite good dynamic control performances. (author)
The Ramifications of Meddling with Systems Governed by Self-organized Critical Dynamics
Carreras, B. A.; Newman, D. E.; Dobson, I.
2002-12-01
Complex natural, well as man-made, systems often exhibit characteristics similar to those seen in self-organized critical (SOC) systems. The concept of self-organized criticality brings together ideas of self-organization of nonlinear dynamical systems with the often-observed near critical behavior of many natural phenomena. These phenomena exhibit self-similarities over extended ranges of spatial and temporal scales. In those systems, scale lengths may be described by fractal geometry and time scales that lead to 1/f-like power spectra. Natural applications include modeling the motion of tectonics plates, forest fires, magnetospheric dynamics, spin glass systems, and turbulent transport. In man-made systems, applications have included traffic dynamics, power and communications networks, and financial markets among many others. Simple cellular automata models such as the running sandpile model have been very useful in reproducing the complexity and characteristics of these systems. One characteristic property of the SOC systems is that they relax through what we call events. These events can happen over all scales of the system. Examples of these events are: earthquakes in the case of plate tectonic; fires in forest evolution extinction in the co evolution of biological species; and blackouts in power transmission systems. In a time-averaged sense, these systems are subcritical (that is, they lie in an average state that should not trigger any events) and the relaxation events happen intermittently. The time spent in a subcritical state relative to the time of the events varies from one system to another. For instance, the chance of finding a forest on fire is very low with the frequency of fires being on the order of one fire every few years and with many of these fires small and inconsequential. Very large fires happen over time periods of decades or even centuries. However, because of their consequences, these large but infrequent events are the important ones
International Nuclear Information System (INIS)
Lloyd, Seth; Viola, Lorenza
2002-01-01
The ability to perform measurements on a quantum system, combined with the ability to feed back the measurement results via coherent control, allows one to control the system to follow any desired coherent or incoherent quantum dynamics. Such universal dynamical control can be achieved, in principle, through the repeated application of only two coherent control operations and a simple 'Yes-No' measurement. As a consequence, a quantum computer can simulate an arbitrary open-system dynamics using just one qubit more than required to simulate closed-system dynamics
Dynamic systems models new methods of parameter and state estimation
2016-01-01
This monograph is an exposition of a novel method for solving inverse problems, a method of parameter estimation for time series data collected from simulations of real experiments. These time series might be generated by measuring the dynamics of aircraft in flight, by the function of a hidden Markov model used in bioinformatics or speech recognition or when analyzing the dynamics of asset pricing provided by the nonlinear models of financial mathematics. Dynamic Systems Models demonstrates the use of algorithms based on polynomial approximation which have weaker requirements than already-popular iterative methods. Specifically, they do not require a first approximation of a root vector and they allow non-differentiable elements in the vector functions being approximated. The text covers all the points necessary for the understanding and use of polynomial approximation from the mathematical fundamentals, through algorithm development to the application of the method in, for instance, aeroplane flight dynamic...
Dynamical Stability of Imaged Planetary Systems in Formation: Application to HL Tau
Tamayo, Daniel; Triaud, Amaury H. M. J.; Menou, Kristen; Rein, Hanno
2015-01-01
A recent ALMA image revealed several concentric gaps in the protoplanetary disk surrounding the young star HL Tau. We consider the hypothesis that these gaps are carved by planets, and present a general framework for understanding the dynamical stability of such systems over typical disk lifetimes, providing estimates for the maximum planetary masses. We collect these easily evaluated constraints into a workflow that can help guide the design and interpretation of new observational campaigns ...
Broken detailed balance and non-equilibrium dynamics in living systems: a review
Gnesotto, F. S.; Mura, F.; Gladrow, J.; Broedersz, C. P.
2018-06-01
Living systems operate far from thermodynamic equilibrium. Enzymatic activity can induce broken detailed balance at the molecular scale. This molecular scale breaking of detailed balance is crucial to achieve biological functions such as high-fidelity transcription and translation, sensing, adaptation, biochemical patterning, and force generation. While biological systems such as motor enzymes violate detailed balance at the molecular scale, it remains unclear how non-equilibrium dynamics manifests at the mesoscale in systems that are driven through the collective activity of many motors. Indeed, in several cellular systems the presence of non-equilibrium dynamics is not always evident at large scales. For example, in the cytoskeleton or in chromosomes one can observe stationary stochastic processes that appear at first glance thermally driven. This raises the question how non-equilibrium fluctuations can be discerned from thermal noise. We discuss approaches that have recently been developed to address this question, including methods based on measuring the extent to which the system violates the fluctuation-dissipation theorem. We also review applications of this approach to reconstituted cytoskeletal networks, the cytoplasm of living cells, and cell membranes. Furthermore, we discuss a more recent approach to detect actively driven dynamics, which is based on inferring broken detailed balance. This constitutes a non-invasive method that uses time-lapse microscopy data, and can be applied to a broad range of systems in cells and tissue. We discuss the ideas underlying this method and its application to several examples including flagella, primary cilia, and cytoskeletal networks. Finally, we briefly discuss recent developments in stochastic thermodynamics and non-equilibrium statistical mechanics, which offer new perspectives to understand the physics of living systems.
Broken detailed balance and non-equilibrium dynamics in living systems: a review.
Gnesotto, F S; Mura, F; Gladrow, J; Broedersz, C P
2018-03-05
Living systems operate far from thermodynamic equilibrium. Enzymatic activity can induce broken detailed balance at the molecular scale. This molecular scale breaking of detailed balance is crucial to achieve biological functions such as high-fidelity transcription and translation, sensing, adaptation, biochemical patterning, and force generation. While biological systems such as motor enzymes violate detailed balance at the molecular scale, it remains unclear how non-equilibrium dynamics manifests at the mesoscale in systems that are driven through the collective activity of many motors. Indeed, in several cellular systems the presence of non-equilibrium dynamics is not always evident at large scales. For example, in the cytoskeleton or in chromosomes one can observe stationary stochastic processes that appear at first glance thermally driven. This raises the question how non-equilibrium fluctuations can be discerned from thermal noise. We discuss approaches that have recently been developed to address this question, including methods based on measuring the extent to which the system violates the fluctuation-dissipation theorem. We also review applications of this approach to reconstituted cytoskeletal networks, the cytoplasm of living cells, and cell membranes. Furthermore, we discuss a more recent approach to detect actively driven dynamics, which is based on inferring broken detailed balance. This constitutes a non-invasive method that uses time-lapse microscopy data, and can be applied to a broad range of systems in cells and tissue. We discuss the ideas underlying this method and its application to several examples including flagella, primary cilia, and cytoskeletal networks. Finally, we briefly discuss recent developments in stochastic thermodynamics and non-equilibrium statistical mechanics, which offer new perspectives to understand the physics of living systems.
Gerschutz, Maria J; Phillips, Chandler A; Reynolds, David B; Repperger, Daniel W
2009-04-01
High-force pneumatic muscle actuators (PMAs) are used for force assistance with minimal displacement applications. However, poor control due to dynamic nonlinearities has limited PMA applications. A simulated control system is developed consisting of: (1) a controller relating an input position angle to an output proportional pressure regulator voltage, (2) a phenomenological model of the PMA with an internal dynamic force loop (system time constant information), (3) a physical model of a human sit-to-stand task and (4) an external position angle feed-back loop. The results indicate that PMA assistance regarding the human sit-to-stand task is feasible within a specified PMA operational pressure range.
Dynamism in Electronic Performance Support Systems.
Laffey, James
1995-01-01
Describes a model for dynamic electronic performance support systems based on NNAble, a system developed by the training group at Apple Computer. Principles for designing dynamic performance support are discussed, including a systems approach, performer-centered design, awareness of situated cognition, organizational memory, and technology use.…
Controlling collective dynamics in complex minority-game resource-allocation systems
Zhang, Ji-Qiang; Huang, Zi-Gang; Dong, Jia-Qi; Huang, Liang; Lai, Ying-Cheng
2013-05-01
Resource allocation takes place in various kinds of real-world complex systems, such as traffic systems, social services institutions or organizations, or even ecosystems. The fundamental principle underlying complex resource-allocation dynamics is Boolean interactions associated with minority games, as resources are generally limited and agents tend to choose the least used resource based on available information. A common but harmful dynamical behavior in resource-allocation systems is herding, where there are time intervals during which a large majority of the agents compete for a few resources, leaving many other resources unused. Accompanying the herd behavior is thus strong fluctuations with time in the number of resources being used. In this paper, we articulate and establish that an intuitive control strategy, namely pinning control, is effective at harnessing the herding dynamics. In particular, by fixing the choices of resources for a few agents while leaving the majority of the agents free, herding can be eliminated completely. Our investigation is systematic in that we consider random and targeted pinning and a variety of network topologies, and we carry out a comprehensive analysis in the framework of mean-field theory to understand the working of control. The basic philosophy is then that, when a few agents waive their freedom to choose resources by receiving sufficient incentives, the majority of the agents benefit in that they will make fair, efficient, and effective use of the available resources. Our work represents a basic and general framework to address the fundamental issue of fluctuations in complex dynamical systems with significant applications to social, economical, and political systems.
Time Delay Systems Methods, Applications and New Trends
Vyhlídal, Tomáš; Niculescu, Silviu-Iulian; Pepe, Pierdomenico
2012-01-01
This volume is concerned with the control and dynamics of time delay systems; a research field with at least six-decade long history that has been very active especially in the past two decades. In parallel to the new challenges emerging from engineering, physics, mathematics, and economics, the volume covers several new directions including topology induced stability, large-scale interconnected systems, roles of networks in stability, and new trends in predictor-based control and consensus dynamics. The associated applications/problems are described by highly complex models, and require solving inverse problems as well as the development of new theories, mathematical tools, numerically-tractable algorithms for real-time control. The volume, which is targeted to present these developments in this rapidly evolving field, captures a careful selection of the most recent papers contributed by experts and collected under five parts: (i) Methodology: From Retarded to Neutral Continuous Delay Models, (ii) Systems, S...
Systems and models with anticipation in physics and its applications
International Nuclear Information System (INIS)
Makarenko, A
2012-01-01
Investigations of recent physics processes and real applications of models require the new more and more improved models which should involved new properties. One of such properties is anticipation (that is taking into accounting some advanced effects).It is considered the special kind of advanced systems – namely a strong anticipatory systems introduced by D. Dubois. Some definitions, examples and peculiarities of solutions are described. The main feature is presumable multivaluedness of the solutions. Presumable physical examples of such systems are proposed: self-organization problems; dynamical chaos; synchronization; advanced potentials; structures in micro-, meso- and macro- levels; cellular automata; computing; neural network theory. Also some applications for modeling social, economical, technical and natural systems are described.
Correlated Levy Noise in Linear Dynamical Systems
International Nuclear Information System (INIS)
Srokowski, T.
2011-01-01
Linear dynamical systems, driven by a non-white noise which has the Levy distribution, are analysed. Noise is modelled by a specific stochastic process which is defined by the Langevin equation with a linear force and the Levy distributed symmetric white noise. Correlation properties of the process are discussed. The Fokker-Planck equation driven by that noise is solved. Distributions have the Levy shape and their width, for a given time, is smaller than for processes in the white noise limit. Applicability of the adiabatic approximation in the case of the linear force is discussed. (author)
Magnetic suspension motorized spindle-cutting system dynamics analysis and vibration control review
Directory of Open Access Journals (Sweden)
Xiaoli QIAO
2016-10-01
Full Text Available The performance of high-speed spindle directly determines the development of high-end machine tools. The cutting system's dynamic characteristics and vibration control effect are inseparable with the performance of the spindle,which influence each other, synergistic effect together the cutting efficiency, the surface quality of the workpiece and tool life in machining process. So, the review status on magnetic suspension motorized spindle, magnetic suspension bearing-flexible rotor system dynamics modeling theory and status of active control technology of flexible magnetic suspension motorized spindle rotor vibration are studied, and the problems which present in the magnetic suspension flexible motorized spindle rotor systems are refined, and the development trend of magnetic levitation motorized spindle and the application prospect is forecasted.
Dynamic analysis of multibody system immersed in a fluid medium
International Nuclear Information System (INIS)
Wu, R.W.; Liu, L.K.; Levy, S.
1977-01-01
This paper is concerned primarily with the development and evaluation of an analysis method for the reponse prediction of immersed systems to seismic and other dynamic excitations. For immersed multibody systems, the hydrodynamic interaction causes coupled motion among the solid bodies. Also, under intense external excitations, impact between bodies may occur. The complex character of such systems inhibit the use of conventional analytical solutions in closed form. Therefore, approximate numerical schemes have been devised. For an incompressible, inviscid fluid, the hydrodynamic forces exerted by the fluid on solid bodies are determined to be linearly proportional to the acceleration of the vibrating solid bodies; i.e., the presence of the fluid only affects the inertia of the solid body system. A finite element computer program has been developed for computing this hydrodynamic (or added) mass effect. This program can be used to determine the hydrodynamic mass of a two-dimensional fluid field with solid bodies of arbitrary geometry. Triangular elements and linear pressure interpolation function are used to discretize the fluid region. The component element method is used to determine the dynamic response of the multibody system to externally applied mechanical loading or support excitation. The present analysis method for predicting the dynamic response of submerged multibody system is quite general and pertains to any number of solid bodies. However in this paper, its application is demonstrated only for 4 and 25 body systems. (Auth.)
The fractional dynamics of quantum systems
Lu, Longzhao; Yu, Xiangyang
2018-05-01
The fractional dynamic process of a quantum system is a novel and complicated problem. The establishment of a fractional dynamic model is a significant attempt that is expected to reveal the mechanism of fractional quantum system. In this paper, a generalized time fractional Schrödinger equation is proposed. To study the fractional dynamics of quantum systems, we take the two-level system as an example and derive the time fractional equations of motion. The basic properties of the system are investigated by solving this set of equations in the absence of light field analytically. Then, when the system is subject to the light field, the equations are solved numerically. It shows that the two-level system described by the time fractional Schrödinger equation we proposed is a confirmable system.
Dynamics of vehicle-road coupled system
Yang, Shaopu; Li, Shaohua
2015-01-01
Vehicle dynamics and road dynamics are usually considered to be two largely independent subjects. In vehicle dynamics, road surface roughness is generally regarded as random excitation of the vehicle, while in road dynamics, the vehicle is generally regarded as a moving load acting on the pavement. This book suggests a new research concept to integrate the vehicle and the road system with the help of a tire model, and establishes a cross-subject research framework dubbed vehicle-pavement coupled system dynamics. In this context, the dynamics of the vehicle, road and the vehicle-road coupled system are investigated by means of theoretical analysis, numerical simulations and field tests. This book will be a valuable resource for university professors, graduate students and engineers majoring in automotive design, mechanical engineering, highway engineering and other related areas. Shaopu Yang is a professor and deputy president of Shijiazhuang Tiedao University, China; Liqun Chen is a professor at Shanghai Univ...
Dynamics of Charged Particulate Systems Modeling, Theory and Computation
Zohdi, Tarek I
2012-01-01
The objective of this monograph is to provide a concise introduction to the dynamics of systems comprised of charged small-scale particles. Flowing, small-scale, particles ("particulates'') are ubiquitous in industrial processes and in the natural sciences. Applications include electrostatic copiers, inkjet printers, powder coating machines, etc., and a variety of manufacturing processes. Due to their small-scale size, external electromagnetic fields can be utilized to manipulate and control charged particulates in industrial processes in order to achieve results that are not possible by purely mechanical means alone. A unique feature of small-scale particulate flows is that they exhibit a strong sensitivity to interparticle near-field forces, leading to nonstandard particulate dynamics, agglomeration and cluster formation, which can strongly affect manufactured product quality. This monograph also provides an introduction to the mathematically-related topic of the dynamics of swarms of interacting objects, ...
Dynamics symmetries of Hamiltonian system on time scales
Energy Technology Data Exchange (ETDEWEB)
Peng, Keke, E-mail: pengkeke88@126.com; Luo, Yiping, E-mail: zjstulyp@126.com [Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018 (China)
2014-04-15
In this paper, the dynamics symmetries of Hamiltonian system on time scales are studied. We study the symmetries and quantities based on the calculation of variation and Lie transformation group. Particular focus lies in: the Noether symmetry leads to the Noether conserved quantity and the Lie symmetry leads to the Noether conserved quantity if the infinitesimal transformations satisfy the structure equation. As the new application of result, at end of the article, we give a simple example of Noether symmetry and Lie symmetry on time scales.
Verburg, D.J.; Papp, Z.; Dorrepaal, M.
2003-01-01
The state-of-the-art intelligent vehicle, autonomous guided vehicle and mobile robotics application domains can be described as collection of interacting highly autonomous complex dynamical systems. Extensive formal analysis of these systems – except special cases – is not feasible, consequently the
Session 6: Dynamic Modeling and Systems Analysis
Csank, Jeffrey; Chapman, Jeffryes; May, Ryan
2013-01-01
These presentations cover some of the ongoing work in dynamic modeling and dynamic systems analysis. The first presentation discusses dynamic systems analysis and how to integrate dynamic performance information into the systems analysis. The ability to evaluate the dynamic performance of an engine design may allow tradeoffs between the dynamic performance and operability of a design resulting in a more efficient engine design. The second presentation discusses the Toolbox for Modeling and Analysis of Thermodynamic Systems (T-MATS). T-MATS is a Simulation system with a library containing the basic building blocks that can be used to create dynamic Thermodynamic Systems. Some of the key features include Turbo machinery components, such as turbines, compressors, etc., and basic control system blocks. T-MAT is written in the Matlab-Simulink environment and is open source software. The third presentation focuses on getting additional performance from the engine by allowing the limit regulators only to be active when a limit is danger of being violated. Typical aircraft engine control architecture is based on MINMAX scheme, which is designed to keep engine operating within prescribed mechanical/operational safety limits. Using a conditionally active min-max limit regulator scheme, additional performance can be gained by disabling non-relevant limit regulators
International Nuclear Information System (INIS)
Sundell-Bergman, Synnove; Avila, Rodolfo; Cruz, Idalmis de la
2008-01-01
Full text: Potential radiological emergencies due to accidental or malicious acts involving nuclear materials requires tools for emergency dose assessment to help in the planning of countermeasures. In urban areas, the municipal sewage systems will receive the wastewater from households, industries and hospitals as well as the run-off water. Investigations have shown that sewage sludge is a sensitive indicator for radionuclides released from hospitals or spread via the atmosphere and thus simulation modelling of the fate of radionuclides entering sewage treatment plants via urban drainage systems could prove useful in emergency situations. A dynamic model (LUCIA) has been developed to assess the radiological consequences of non-homogenous releases of radionuclides to the sewage plants. In the first step the focussing has been on radioactive liquid releases from hospitals and the predictions show that there is a significant probability (> 0,2) that the sewage worker doses exceed 10 μSv/y while doses to farmers or fishermen (downstream plants) are marginal. Comparison of measured and estimated concentration values for iodine-131 reveal that the predictions made by LUCIA are reasonably good and fall within a factor of 2. For the purpose of emergency preparedness, scenarios have been defined and the fate of released radionuclides has been assessed. The main features of the LUCIA model will be presented and the application of the tool for emergency preparedness will be discussed. (author)
International Nuclear Information System (INIS)
Fang Jinqing; Yao Weiguang
1993-01-01
The inverse operator method (IOM) for solutions of nonlinear dynamical systems (NDS) is briefly described and realized by the Mathematics-Mechanization (MM) in computers. For the first time IOM and MM are successfully applied to study the chaotic behaviors of Lorentz equation
Stochastic runaway of dynamical systems
International Nuclear Information System (INIS)
Pfirsch, D.; Graeff, P.
1984-10-01
One-dimensional, stochastic, dynamical systems are well studied with respect to their stability properties. Less is known for the higher dimensional case. This paper derives sufficient and necessary criteria for the asymptotic divergence of the entropy (runaway) and sufficient ones for the moments of n-dimensional, stochastic, dynamical systems. The crucial implication is the incompressibility of their flow defined by the equations of motion in configuration space. Two possible extensions to compressible flow systems are outlined. (orig.)
Information-theoretic characterization of dynamic energy systems
Bevis, Troy Lawson
sources are compounded by the dynamics of the grid itself. Loads are constantly changing, as well as the sources; this can sometimes lead to a quick change in system states. There is a need for a metric to be able to take into consideration all of the factors detailed above; it needs to be able to take into consideration the amount of information that is available in the system and the rate that the information is losing its value. In a dynamic system, the information is only valid for a length of time, and the controller must be able to take into account the decay of currently held information. This thesis will present the information theory metrics in a way that is useful for application to dynamic energy systems. A test case involving synchronization of several generators is presented for analysis and application of the theory. The objective is to synchronize all the generators and connect them to a common bus. As the phase shift of each generator is a random process, the effects of latency and information decay can be directly observed. The results of the experiments clearly show that the expected outcomes are observed and that entropy and information theory is a valid metric for timing requirement extraction.
Fault Diagnosis in Dynamic Systems Using Fuzzy Interacting Observers
Directory of Open Access Journals (Sweden)
N. V. Kolesov
2013-01-01
Full Text Available A method of fault diagnosis in dynamic systems based on a fuzzy approach is proposed. The new method possesses two basic specific features which distinguish it from the other known fuzzy methods based on the application of fuzzy logic and a bank of state observers. First, this method uses a bank of interacting observers instead of traditional independent observers. The second specific feature of the proposed method is the assumption that there is no strict boundary between the serviceable and disabled technical states of the system, which makes it possible to specify a decision making rule for fault diagnosis.
General background and approach to multibody dynamics for space applications
Santini, Paolo; Gasbarri, Paolo
2009-06-01
Multibody dynamics for space applications is dictated by space environment such as space-varying gravity forces, orbital and attitude perturbations, control forces if any. Several methods and formulations devoted to the modeling of flexible bodies undergoing large overall motions were developed in recent years. Most of these different formulations were aimed to face one of the main problems concerning the analysis of spacecraft dynamics namely the reduction of computer simulation time. By virtue of this, the use of symbolic manipulation, recursive formulation and parallel processing algorithms were proposed. All these approaches fall into two categories, the one based on Newton/Euler methods and the one based on Lagrangian methods; both of them have their advantages and disadvantages although in general, Newtonian approaches lend to a better understanding of the physics of problems and in particular of the magnitude of the reactions and of the corresponding structural stresses. Another important issue which must be addressed carefully in multibody space dynamics is relevant to a correct choice of kinematics variables. In fact, when dealing with flexible multibody system the resulting equations include two different types of state variables, the ones associated with large (rigid) displacements and the ones associated with elastic deformations. These two sets of variables have generally two different time scales if we think of the attitude motion of a satellite whose period of oscillation, due to the gravity gradient effects, is of the same order of magnitude as the orbital period, which is much bigger than the one associated with the structural vibration of the satellite itself. Therefore, the numerical integration of the equations of the system represents a challenging problem. This was the abstract and some of the arguments that Professor Paolo Santini intended to present for the Breakwell Lecture; unfortunately a deadly disease attacked him and shortly took him
Application of single photon ECT for dynamic study
International Nuclear Information System (INIS)
Mukai, T.; Ishii, Y.; Tamaki, N.
1982-01-01
Feasibility of dynamic study in a form of ECT using a rotating gamma camera was evaluated. Since it takes longer one around time sampling, application for the dynamic study is limited under following conditions; 1) physiological gated process, 2) slow clearance process, 3) physiological steady state process. The gated study was applicated for heart pumping action synchronized with ECG. The ECG gated heart ECT either of blood pool or myocardium was useful to reveal a subtle wall motion abnormalities in a tomographic plane, even when a planar imaging failed to reveal it. As for slow dynamic process of tracer, an excretion process of hepatobiliary agent, was subjected to be analyzed in order to calculate clearance rate at each pixel. As for steady state process, an ECT of regional celebral blood flow (rCBF) was investigated during continuous infusion into intracarotid artery. All of these technique were proved to have a clinical feasibility and to potentiate usefulness of the single photon ECT (SPECT)
The brain as a dynamic physical system.
McKenna, T M; McMullen, T A; Shlesinger, M F
1994-06-01
The brain is a dynamic system that is non-linear at multiple levels of analysis. Characterization of its non-linear dynamics is fundamental to our understanding of brain function. Identifying families of attractors in phase space analysis, an approach which has proven valuable in describing non-linear mechanical and electrical systems, can prove valuable in describing a range of behaviors and associated neural activity including sensory and motor repertoires. Additionally, transitions between attractors may serve as useful descriptors for analysing state changes in neurons and neural ensembles. Recent observations of synchronous neural activity, and the emerging capability to record the spatiotemporal dynamics of neural activity by voltage-sensitive dyes and electrode arrays, provide opportunities for observing the population dynamics of neural ensembles within a dynamic systems context. New developments in the experimental physics of complex systems, such as the control of chaotic systems, selection of attractors, attractor switching and transient states, can be a source of powerful new analytical tools and insights into the dynamics of neural systems.
System dynamics and control with bond graph modeling
Kypuros, Javier
2013-01-01
Part I Dynamic System ModelingIntroduction to System DynamicsIntroductionSystem Decomposition and Model ComplexityMathematical Modeling of Dynamic SystemsAnalysis and Design of Dynamic SystemsControl of Dynamic SystemsDiagrams of Dynamic SystemsA Graph-Centered Approach to ModelingSummaryPracticeExercisesBasic Bond Graph ElementsIntroductionPower and Energy VariablesBasic 1-Port ElementsBasic 2-Ports ElementsJunction ElementsSimple Bond Graph ExamplesSummaryPracticeExercisesBond Graph Synthesis and Equation DerivationIntroductionGeneral GuidelinesMechanical TranslationMechanical RotationElectrical CircuitsHydraulic CircuitsMixed SystemsState Equation DerivationState-Space RepresentationsAlgebraic Loops and Derivative CausalitySummaryPracticeExercisesImpedance Bond GraphsIntroductionLaplace Transform of the State-Space EquationBasic 1-Port ImpedancesImpedance Bond Graph SynthesisJunctions, Transformers, and GyratorsEffort and Flow DividersSign ChangesTransfer Function DerivationAlternative Derivation of Transf...
DYNAMICS OF FINANCIAL SYSTEM: A SYSTEM DYNAMICS APPROACH
Directory of Open Access Journals (Sweden)
Girish K Nair
2013-01-01
Full Text Available There are several ratios which define the financial health of an organization but the importance of Net cash flow, Gross income, Net income, Pending bills, Receivable bills, Debt, and Book value can never be undermined as they give the exact picture of the financial condition. While there are several approaches to study the dynamics of these variables, system dynamics based modelling and simulation is one of the modern techniques. The paper explores this method to simulate the before mentioned parameters during production capacity expansion in an electronic industry. Debt and Book value have shown a non-linear pattern of variation which is discussed. The model can be used by the financial experts as a decision support tool in arriving at conclusions in connection to the expansion plans of the organization.
Antunes, J; Debut, V
2017-02-01
Most musical instruments consist of dynamical subsystems connected at a number of constraining points through which energy flows. For physical sound synthesis, one important difficulty deals with enforcing these coupling constraints. While standard techniques include the use of Lagrange multipliers or penalty methods, in this paper, a different approach is explored, the Udwadia-Kalaba (U-K) formulation, which is rooted on analytical dynamics but avoids the use of Lagrange multipliers. This general and elegant formulation has been nearly exclusively used for conceptual systems of discrete masses or articulated rigid bodies, namely, in robotics. However its natural extension to deal with continuous flexible systems is surprisingly absent from the literature. Here, such a modeling strategy is developed and the potential of combining the U-K equation for constrained systems with the modal description is shown, in particular, to simulate musical instruments. Objectives are twofold: (1) Develop the U-K equation for constrained flexible systems with subsystems modelled through unconstrained modes; and (2) apply this framework to compute string/body coupled dynamics. This example complements previous work [Debut, Antunes, Marques, and Carvalho, Appl. Acoust. 108, 3-18 (2016)] on guitar modeling using penalty methods. Simulations show that the proposed technique provides similar results with a significant improvement in computational efficiency.
An Axiomatic Representation of System Dynamics
Baianu, I
2004-01-01
An axiomatic representation of system dynamics is introduced in terms of categories, functors, organismal supercategories, limits and colimits of diagrams. Specific examples are considered in Complex Systems Biology, such as ribosome biogenesis and Hormonal Control in human subjects. "Fuzzy" Relational Structures are also proposed for flexible representations of biological system dynamics and organization.
Controlling chaos in discontinuous dynamical systems
International Nuclear Information System (INIS)
Danca, Marius-F.
2004-01-01
In this paper we consider the possibility to implement the technique of changes in the system variables to control the chaos introduced by Gueemez and Matias for continuous dynamical systems to a class of discontinuous dynamical systems. The approach is realized via differential inclusions following the Filippov theory. Three practical examples are considered
Rajamani, Rajesh
2012-01-01
Vehicle Dynamics and Control provides a comprehensive coverage of vehicle control systems and the dynamic models used in the development of these control systems. The control system applications covered in the book include cruise control, adaptive cruise control, ABS, automated lane keeping, automated highway systems, yaw stability control, engine control, passive, active and semi-active suspensions, tire-road friction coefficient estimation, rollover prevention, and hybrid electric vehicle. In developing the dynamic model for each application, an effort is made to both keep the model simple enough for control system design but at the same time rich enough to capture the essential features of the dynamics. A special effort has been made to explain the several different tire models commonly used in literature and to interpret them physically. In the second edition of the book, chapters on roll dynamics, rollover prevention and hybrid electric vehicles have been added, and the chapter on electronic stability co...
Wisdom, Jack
2002-01-01
In these 18 years, the research has touched every major dynamical problem in the solar system, including: the effect of chaotic zones on the distribution of asteroids, the delivery of meteorites along chaotic pathways, the chaotic motion of Pluto, the chaotic motion of the outer planets and that of the whole solar system, the delivery of short period comets from the Kuiper belt, the tidal evolution of the Uranian arid Galilean satellites, the chaotic tumbling of Hyperion and other irregular satellites, the large chaotic variations of the obliquity of Mars, the evolution of the Earth-Moon system, and the resonant core- mantle dynamics of Earth and Venus. It has introduced new analytical and numerical tools that are in widespread use. Today, nearly every long-term integration of our solar system, its subsystems, and other solar systems uses algorithms that was invented. This research has all been primarily Supported by this sequence of PGG NASA grants. During this period published major investigations of tidal evolution of the Earth-Moon system and of the passage of the Earth and Venus through non-linear core-mantle resonances were completed. It has published a major innovation in symplectic algorithms: the symplectic corrector. A paper was completed on non-perturbative hydrostatic equilibrium.
Dynamical systems in classical mechanics
Kozlov, V V
1995-01-01
This book shows that the phenomenon of integrability is related not only to Hamiltonian systems, but also to a wider variety of systems having invariant measures that often arise in nonholonomic mechanics. Each paper presents unique ideas and original approaches to various mathematical problems related to integrability, stability, and chaos in classical dynamics. Topics include… the inverse Lyapunov theorem on stability of equilibria geometrical aspects of Hamiltonian mechanics from a hydrodynamic perspective current unsolved problems in the dynamical systems approach to classical mechanics
Fault diagnosis for dynamic power system
International Nuclear Information System (INIS)
Thabet, A.; Abdelkrim, M.N.; Boutayeb, M.; Didier, G.; Chniba, S.
2011-01-01
The fault diagnosis problem for dynamic power systems is treated, the nonlinear dynamic model based on a differential algebraic equations is transformed with reduced index to a simple dynamic model. Two nonlinear observers are used for generating the fault signals for comparison purposes, one of them being an extended Kalman estimator and the other a new extended kalman filter with moving horizon with a study of convergence based on the choice of matrix of covariance of the noises of system and measurements. The paper illustrates a simulation study applied on IEEE 3 buses test system.
2012-03-30
... DEPARTMENT OF TRANSPORTATION Dynamic Mobility Applications and Data Capture Management Programs... stakeholders an update on the Data Capture and Management (DCM) and Dynamic Mobility Applications (DMA... critical issues designed to garner stakeholder feedback. About the Dynamic Mobility Application and Data...
Information Processing Capacity of Dynamical Systems
Dambre, Joni; Verstraeten, David; Schrauwen, Benjamin; Massar, Serge
2012-07-01
Many dynamical systems, both natural and artificial, are stimulated by time dependent external signals, somehow processing the information contained therein. We demonstrate how to quantify the different modes in which information can be processed by such systems and combine them to define the computational capacity of a dynamical system. This is bounded by the number of linearly independent state variables of the dynamical system, equaling it if the system obeys the fading memory condition. It can be interpreted as the total number of linearly independent functions of its stimuli the system can compute. Our theory combines concepts from machine learning (reservoir computing), system modeling, stochastic processes, and functional analysis. We illustrate our theory by numerical simulations for the logistic map, a recurrent neural network, and a two-dimensional reaction diffusion system, uncovering universal trade-offs between the non-linearity of the computation and the system's short-term memory.
Information Processing Capacity of Dynamical Systems
Dambre, Joni; Verstraeten, David; Schrauwen, Benjamin; Massar, Serge
2012-01-01
Many dynamical systems, both natural and artificial, are stimulated by time dependent external signals, somehow processing the information contained therein. We demonstrate how to quantify the different modes in which information can be processed by such systems and combine them to define the computational capacity of a dynamical system. This is bounded by the number of linearly independent state variables of the dynamical system, equaling it if the system obeys the fading memory condition. It can be interpreted as the total number of linearly independent functions of its stimuli the system can compute. Our theory combines concepts from machine learning (reservoir computing), system modeling, stochastic processes, and functional analysis. We illustrate our theory by numerical simulations for the logistic map, a recurrent neural network, and a two-dimensional reaction diffusion system, uncovering universal trade-offs between the non-linearity of the computation and the system's short-term memory. PMID:22816038
Attractors for discrete periodic dynamical systems
John E. Franke; James F. Selgrade
2003-01-01
A mathematical framework is introduced to study attractors of discrete, nonautonomous dynamical systems which depend periodically on time. A structure theorem for such attractors is established which says that the attractor of a time-periodic dynamical system is the unin of attractors of appropriate autonomous maps. If the nonautonomous system is a perturbation of an...
Pant, Sanjay; Lombardi, Damiano
2015-10-01
A new approach for assessing parameter identifiability of dynamical systems in a Bayesian setting is presented. The concept of Shannon entropy is employed to measure the inherent uncertainty in the parameters. The expected reduction in this uncertainty is seen as the amount of information one expects to gain about the parameters due to the availability of noisy measurements of the dynamical system. Such expected information gain is interpreted in terms of the variance of a hypothetical measurement device that can measure the parameters directly, and is related to practical identifiability of the parameters. If the individual parameters are unidentifiable, correlation between parameter combinations is assessed through conditional mutual information to determine which sets of parameters can be identified together. The information theoretic quantities of entropy and information are evaluated numerically through a combination of Monte Carlo and k-nearest neighbour methods in a non-parametric fashion. Unlike many methods to evaluate identifiability proposed in the literature, the proposed approach takes the measurement-noise into account and is not restricted to any particular noise-structure. Whilst computationally intensive for large dynamical systems, it is easily parallelisable and is non-intrusive as it does not necessitate re-writing of the numerical solvers of the dynamical system. The application of such an approach is presented for a variety of dynamical systems--ranging from systems governed by ordinary differential equations to partial differential equations--and, where possible, validated against results previously published in the literature. Copyright © 2015 Elsevier Inc. All rights reserved.
Application of superconducting magnet energy storage to improve power system dynamic performance
International Nuclear Information System (INIS)
Mitani, Y.; Tsuji, K.; Murakami, Y.
1988-01-01
The application of Superconducting Magnet Energy Storage (SMES) to the stabilization of a power system with long distance bulk power transmission lines which has the problem of poorly damped power oscillations, is presented. Control schemes for stabilization using SMES which is capable of controlling active and reactive power simultaneously in four quadrant ranges, is proposed. The effective locations and the necessary capacities of SMES for power system stabilizing control are discussed in detail. Results of numerical analysis and experiments in an artificial power transmission system demonstrate the significant effect of the control by SMES on the improvement of power system oscillatory performance
A digital-signal-processor-based optical tomographic system for dynamic imaging of joint diseases
Lasker, Joseph M.
Over the last decade, optical tomography (OT) has emerged as viable biomedical imaging modality. Various imaging systems have been developed that are employed in preclinical as well as clinical studies, mostly targeting breast imaging, brain imaging, and cancer related studies. Of particular interest are so-called dynamic imaging studies where one attempts to image changes in optical properties and/or physiological parameters as they occur during a system perturbation. To successfully perform dynamic imaging studies, great effort is put towards system development that offers increasingly enhanced signal-to-noise performance at ever shorter data acquisition times, thus capturing high fidelity tomographic data within narrower time periods. Towards this goal, I have developed in this thesis a dynamic optical tomography system that is, unlike currently available analog instrumentation, based on digital data acquisition and filtering techniques. At the core of this instrument is a digital signal processor (DSP) that collects, collates, and processes the digitized data set. Complementary protocols between the DSP and a complex programmable logic device synchronizes the sampling process and organizes data flow. Instrument control is implemented through a comprehensive graphical user interface which integrates automated calibration, data acquisition, and signal post-processing. Real-time data is generated at frame rates as high as 140 Hz. An extensive dynamic range (˜190 dB) accommodates a wide scope of measurement geometries and tissue types. Performance analysis demonstrates very low system noise (˜1 pW rms noise equivalent power), excellent signal precision (˜0.04%--0.2%) and long term system stability (˜1% over 40 min). Experiments on tissue phantoms validate spatial and temporal accuracy of the system. As a potential new application of dynamic optical imaging I present the first application of this method to use vascular hemodynamics as a means of characterizing
The application of 99mTc-EC renal dynamic imaging in urinary system calculus
International Nuclear Information System (INIS)
Dai Ruqi; Li Shiyun; Liu Xueshu; Huang Wei
2002-01-01
Objective: To evaluate the clinical value of 99m Tc-EC renal dynamic imaging (RDI) for diagnosis of urinary system calculus. Methods: 135 case with confirmed urinary system calculus by ultrasound and IVP were examined by 99m Tc-EC renal dynamic imaging and to analyze the degree of hydronephrosis and the remaining renal function. The quantitative indexes used were effective renal plasma flow (ERPF) and peak uptake rate (PUR). Results: RDI almost accorded with IVP in renal calculus complicated by mild and moderate hydronephrosis cases. On other cases of the severe hydronephrosis and serious renal insufficiency, RDI was more sensitive than IVP which had no excretion in 6 patients with hydronephrosis. ERPF and PUR showed the remaining function of the morbid kidney more accurately than other methods. In severe and mild hydronephrosis the ERPF were 84.3 ± 49 ml/min and 202.2 ± 52.4 ml/min, the PUR were 20.4 ± 11.5% and 48.5 ± 13.6% respectively. Conclusion: RDI can correctly reflect the degree of hydronephrosis and the remaining function of the morbid kidney in urinary system calculus, which would be helpful for the clinical surgical planning
Dynamical system approach to phyllotaxis
DEFF Research Database (Denmark)
D'ovidio, Francesco; Mosekilde, Erik
2000-01-01
and not a dynamical system, mainly because new active elements are added at each step, and thus the dimension of the "natural" phase space is not conserved. Here a construction is presented by which a well defined dynamical system can be obtained, and a bifurcation analysis can be carried out. Stable and unstable...... of the Jacobian, and thus the eigenvalues, is given. It is likely that problems of the above type often arise in biology, and especially in morphogenesis, where growing systems are modeled....
Resonance capture and dynamics of three-planet systems
Charalambous, C.; Martí, J. G.; Beaugé, C.; Ramos, X. S.
2018-06-01
We present a series of dynamical maps for fictitious three-planet systems in initially circular coplanar orbits. These maps have unveiled a rich resonant structure involving two or three planets, as well as indicating possible migration routes from secular to double resonances or pure three-planet commensurabilities. These structures are then compared to the present-day orbital architecture of observed resonant chains. In a second part of the paper, we describe N-body simulations of type-I migration. Depending on the orbital decay time-scale, we show that three-planet systems may be trapped in different combinations of independent commensurabilities: (i) double resonances, (ii) intersection between a two-planet and a first-order three-planet resonances, and (iii) simultaneous libration in two first-order three-planet resonances. These latter outcomes are found for slow migrations, while double resonances are almost always the final outcome in high-density discs. Finally, we discuss an application to the TRAPPIST-1 system. We find that, for low migration rates and planetary masses of the order of the estimated values, most three-planet sub-systems are able to reach the observed double resonances after following evolutionary routes defined by pure three-planet resonances. The final orbital configuration shows resonance offsets comparable with present-day values without the need of tidal dissipation. For the 8/5 resonance proposed to dominate the dynamics of the two inner planets, we find little evidence of its dynamical significance; instead, we propose that this relation between mean motions could be a consequence of the interaction between a pure three-planet resonance and a two-planet commensurability between planets c and d.
System dynamics modelling of situation awareness
CSIR Research Space (South Africa)
Oosthuizen, R
2015-11-01
Full Text Available . The feedback loops and delays in the Command and Control system also contribute to the complex dynamic behavior. This paper will build on existing situation awareness models to develop a System Dynamics model to support a qualitative investigation through...
Dynamical critical phenomena in driven-dissipative systems.
Sieberer, L M; Huber, S D; Altman, E; Diehl, S
2013-05-10
We explore the nature of the Bose condensation transition in driven open quantum systems, such as exciton-polariton condensates. Using a functional renormalization group approach formulated in the Keldysh framework, we characterize the dynamical critical behavior that governs decoherence and an effective thermalization of the low frequency dynamics. We identify a critical exponent special to the driven system, showing that it defines a new dynamical universality class. Hence critical points in driven systems lie beyond the standard classification of equilibrium dynamical phase transitions. We show how the new critical exponent can be probed in experiments with driven cold atomic systems and exciton-polariton condensates.
Stochastic Thermodynamics: A Dynamical Systems Approach
Directory of Open Access Journals (Sweden)
Tanmay Rajpurohit
2017-12-01
Full Text Available In this paper, we develop an energy-based, large-scale dynamical system model driven by Markov diffusion processes to present a unified framework for statistical thermodynamics predicated on a stochastic dynamical systems formalism. Specifically, using a stochastic state space formulation, we develop a nonlinear stochastic compartmental dynamical system model characterized by energy conservation laws that is consistent with statistical thermodynamic principles. In particular, we show that the difference between the average supplied system energy and the average stored system energy for our stochastic thermodynamic model is a martingale with respect to the system filtration. In addition, we show that the average stored system energy is equal to the mean energy that can be extracted from the system and the mean energy that can be delivered to the system in order to transfer it from a zero energy level to an arbitrary nonempty subset in the state space over a finite stopping time.
Invariant Measures for Dissipative Dynamical Systems: Abstract Results and Applications
Chekroun, Mickaël D.; Glatt-Holtz, Nathan E.
2012-12-01
In this work we study certain invariant measures that can be associated to the time averaged observation of a broad class of dissipative semigroups via the notion of a generalized Banach limit. Consider an arbitrary complete separable metric space X which is acted on by any continuous semigroup { S( t)} t ≥ 0. Suppose that { S( t)} t ≥ 0 possesses a global attractor {{A}}. We show that, for any generalized Banach limit LIM T → ∞ and any probability distribution of initial conditions {{m}_0}, that there exists an invariant probability measure {{m}}, whose support is contained in {{A}}, such that intX \\varphi(x) d{m}(x) = \\underset{t rightarrow infty}LIM1/T int_0^T int_X \\varphi(S(t) x) d{m}_0(x) dt, for all observables φ living in a suitable function space of continuous mappings on X. This work is based on the framework of Foias et al. (Encyclopedia of mathematics and its applications, vol 83. Cambridge University Press, Cambridge, 2001); it generalizes and simplifies the proofs of more recent works (Wang in Disc Cont Dyn Syst 23(1-2):521-540, 2009; Lukaszewicz et al. in J Dyn Diff Eq 23(2):225-250, 2011). In particular our results rely on the novel use of a general but elementary topological observation, valid in any metric space, which concerns the growth of continuous functions in the neighborhood of compact sets. In the case when { S( t)} t ≥ 0 does not possess a compact absorbing set, this lemma allows us to sidestep the use of weak compactness arguments which require the imposition of cumbersome weak continuity conditions and thus restricts the phase space X to the case of a reflexive Banach space. Two examples of concrete dynamical systems where the semigroup is known to be non-compact are examined in detail. We first consider the Navier-Stokes equations with memory in the diffusion terms. This is the so called Jeffery's model which describes certain classes of viscoelastic fluids. We then consider a family of neutral delay differential
Dynamics of the diffusive DM-DE interaction – Dynamical system approach
Energy Technology Data Exchange (ETDEWEB)
Haba, Zbigniew [Institute of Theoretical Physics, University of Wroclaw, Plac Maxa Borna 9, 50-204 Wrocław (Poland); Stachowski, Aleksander; Szydłowski, Marek, E-mail: zhab@ift.uni.wroc.pl, E-mail: aleksander.stachowski@uj.edu.pl, E-mail: marek.szydlowski@uj.edu.pl [Astronomical Observatory, Jagiellonian University, Orla 171, 30-244 Krakow (Poland)
2016-07-01
We discuss dynamics of a model of an energy transfer between dark energy (DE) and dark matter (DM) . The energy transfer is determined by a non-conservation law resulting from a diffusion of dark matter in an environment of dark energy. The relativistic invariance defines the diffusion in a unique way. The system can contain baryonic matter and radiation which do not interact with the dark sector. We treat the Friedman equation and the conservation laws as a closed dynamical system. The dynamics of the model is examined using the dynamical systems methods for demonstration how solutions depend on initial conditions. We also fit the model parameters using astronomical observation: SNIa, H ( z ), BAO and Alcock-Paczynski test. We show that the model with diffuse DM-DE is consistent with the data.
Reconceptualizing Learning as a Dynamical System.
Ennis, Catherine D.
1992-01-01
Dynamical systems theory can increase our understanding of the constantly evolving learning process. Current research using experimental and interpretive paradigms focuses on describing the attractors and constraints stabilizing the educational process. Dynamical systems theory focuses attention on critical junctures in the learning process as…
Mumba, Chisoni; Skjerve, Eystein; Rich, Magda; Rich, Karl M
2017-01-01
East Coast Fever (ECF) is the most economically important production disease among traditional beef cattle farmers in Zambia. Despite the disease control efforts by the government, donors, and farmers, ECF cases are increasing. Why does ECF oscillate over time? Can alternative approaches such as systems thinking contribute solutions to the complex ECF problem, avoid unintended consequences, and achieve sustainable results? To answer these research questions and inform the design and implementation of ECF interventions, we qualitatively investigated the influence of dynamic socio-economic, cultural, and ecological factors. We used system dynamics modelling to specify these dynamics qualitatively, and an innovative participatory framework called spatial group model building (SGMB). SGMB uses participatory geographical information system (GIS) concepts and techniques to capture the role of spatial phenomenon in the context of complex systems, allowing stakeholders to identify spatial phenomenon directly on physical maps and integrate such information in model development. Our SGMB process convened focus groups of beef value chain stakeholders in two distinct production systems. The focus groups helped to jointly construct a series of interrelated system dynamics models that described ECF in a broader systems context. Thus, a complementary objective of this study was to demonstrate the applicability of system dynamics modelling and SGMB in animal health. The SGMB process revealed policy leverage points in the beef cattle value chain that could be targeted to improve ECF control. For example, policies that develop sustainable and stable cattle markets and improve household income availability may have positive feedback effects on investment in animal health. The results obtained from a SGMB process also demonstrated that a "one-size-fits-all" approach may not be equally effective in policing ECF in different agro-ecological zones due to the complex interactions of socio
Directory of Open Access Journals (Sweden)
Chisoni Mumba
Full Text Available East Coast Fever (ECF is the most economically important production disease among traditional beef cattle farmers in Zambia. Despite the disease control efforts by the government, donors, and farmers, ECF cases are increasing. Why does ECF oscillate over time? Can alternative approaches such as systems thinking contribute solutions to the complex ECF problem, avoid unintended consequences, and achieve sustainable results? To answer these research questions and inform the design and implementation of ECF interventions, we qualitatively investigated the influence of dynamic socio-economic, cultural, and ecological factors. We used system dynamics modelling to specify these dynamics qualitatively, and an innovative participatory framework called spatial group model building (SGMB. SGMB uses participatory geographical information system (GIS concepts and techniques to capture the role of spatial phenomenon in the context of complex systems, allowing stakeholders to identify spatial phenomenon directly on physical maps and integrate such information in model development. Our SGMB process convened focus groups of beef value chain stakeholders in two distinct production systems. The focus groups helped to jointly construct a series of interrelated system dynamics models that described ECF in a broader systems context. Thus, a complementary objective of this study was to demonstrate the applicability of system dynamics modelling and SGMB in animal health. The SGMB process revealed policy leverage points in the beef cattle value chain that could be targeted to improve ECF control. For example, policies that develop sustainable and stable cattle markets and improve household income availability may have positive feedback effects on investment in animal health. The results obtained from a SGMB process also demonstrated that a "one-size-fits-all" approach may not be equally effective in policing ECF in different agro-ecological zones due to the complex
Adaptive estimation for control of uncertain nonlinear systems with applications to target tracking
Madyastha, Venkatesh Kattigari
2005-08-01
Design of nonlinear observers has received considerable attention since the early development of methods for linear state estimation. The most popular approach is the extended Kalman filter (EKF), that goes through significant degradation in the presence of nonlinearities, particularly if unmodeled dynamics are coupled to the process and the measurement. For uncertain nonlinear systems, adaptive observers have been introduced to estimate the unknown state variables where no priori information about the unknown parameters is available. While establishing global results, these approaches are applicable only to systems transformable to output feedback form. Over the recent years, neural network (NN) based identification and estimation schemes have been proposed that relax the assumptions on the system at the price of sacrificing on the global nature of the results. However, most of the NN based adaptive observer approaches in the literature require knowledge of the full dimension of the system, therefore may not be suitable for systems with unmodeled dynamics. We first propose a novel approach to nonlinear state estimation from the perspective of augmenting a linear time invariant observer with an adaptive element. The class of nonlinear systems treated here are finite but of otherwise unknown dimension. The objective is to improve the performance of the linear observer when applied to a nonlinear system. The approach relies on the ability of the NNs to approximate the unknown dynamics from finite time histories of available measurements. Next we investigate nonlinear state estimation from the perspective of adaptively augmenting an existing time varying observer, such as an EKF. EKFs find their applications mostly in target tracking problems. The proposed approaches are robust to unmodeled dynamics, including unmodeled disturbances. Lastly, we consider the problem of adaptive estimation in the presence of feedback control for a class of uncertain nonlinear systems
Modeling multibody systems with uncertainties. Part II: Numerical applications
Energy Technology Data Exchange (ETDEWEB)
Sandu, Corina, E-mail: csandu@vt.edu; Sandu, Adrian; Ahmadian, Mehdi [Virginia Polytechnic Institute and State University, Mechanical Engineering Department (United States)
2006-04-15
This study applies generalized polynomial chaos theory to model complex nonlinear multibody dynamic systems operating in the presence of parametric and external uncertainty. Theoretical and computational aspects of this methodology are discussed in the companion paper 'Modeling Multibody Dynamic Systems With Uncertainties. Part I: Theoretical and Computational Aspects .In this paper we illustrate the methodology on selected test cases. The combined effects of parametric and forcing uncertainties are studied for a quarter car model. The uncertainty distributions in the system response in both time and frequency domains are validated against Monte-Carlo simulations. Results indicate that polynomial chaos is more efficient than Monte Carlo and more accurate than statistical linearization. The results of the direct collocation approach are similar to the ones obtained with the Galerkin approach. A stochastic terrain model is constructed using a truncated Karhunen-Loeve expansion. The application of polynomial chaos to differential-algebraic systems is illustrated using the constrained pendulum problem. Limitations of the polynomial chaos approach are studied on two different test problems, one with multiple attractor points, and the second with a chaotic evolution and a nonlinear attractor set. The overall conclusion is that, despite its limitations, generalized polynomial chaos is a powerful approach for the simulation of multibody dynamic systems with uncertainties.
Modeling multibody systems with uncertainties. Part II: Numerical applications
International Nuclear Information System (INIS)
Sandu, Corina; Sandu, Adrian; Ahmadian, Mehdi
2006-01-01
This study applies generalized polynomial chaos theory to model complex nonlinear multibody dynamic systems operating in the presence of parametric and external uncertainty. Theoretical and computational aspects of this methodology are discussed in the companion paper 'Modeling Multibody Dynamic Systems With Uncertainties. Part I: Theoretical and Computational Aspects .In this paper we illustrate the methodology on selected test cases. The combined effects of parametric and forcing uncertainties are studied for a quarter car model. The uncertainty distributions in the system response in both time and frequency domains are validated against Monte-Carlo simulations. Results indicate that polynomial chaos is more efficient than Monte Carlo and more accurate than statistical linearization. The results of the direct collocation approach are similar to the ones obtained with the Galerkin approach. A stochastic terrain model is constructed using a truncated Karhunen-Loeve expansion. The application of polynomial chaos to differential-algebraic systems is illustrated using the constrained pendulum problem. Limitations of the polynomial chaos approach are studied on two different test problems, one with multiple attractor points, and the second with a chaotic evolution and a nonlinear attractor set. The overall conclusion is that, despite its limitations, generalized polynomial chaos is a powerful approach for the simulation of multibody dynamic systems with uncertainties
Dynamical system of scalar field from 2-dimension to 3-D and its cosmological implications
Energy Technology Data Exchange (ETDEWEB)
Fang, Wei [Shanghai Normal University, Department of Physics, Shanghai (China); The Shanghai Key Lab for Astrophysics, Shanghai (China); Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Tu, Hong [Shanghai Normal University, Department of Physics, Shanghai (China); The Shanghai Key Lab for Astrophysics, Shanghai (China); Huang, Jiasheng [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Shu, Chenggang [The Shanghai Key Lab for Astrophysics, Shanghai (China)
2016-09-15
We give the three-dimensional dynamical autonomous systems for most of the popular scalar field dark energy models including (phantom) quintessence, (phantom) tachyon, K-essence, and general non-canonical scalar field models, change the dynamical variables from variables (x, y, λ) to observable related variables (w{sub φ}, Ω{sub φ}, λ), and show the intimate relationships between those scalar fields that the three-dimensional system of K-essence can reduce to (phantom) tachyon, general non-canonical scalar field can reduce to (phantom) quintessence and K-essence can also reduce to (phantom) quintessence for some special cases. For the applications of the three-dimensional dynamical systems, we investigate several special cases and give the exactly dynamical solutions in detail. In the end of this paper, we argue that it is more convenient and also has more physical meaning to express the differential equations of dynamical systems in (w{sub φ}, Ω{sub φ}, λ) instead of variables (x, y, λ) and to investigate the dynamical system in three dimensions instead of two dimensions. We also raise a question about the possibility of the chaotic behavior in the spatially flat single scalar field FRW cosmological models in the presence of ordinary matter. (orig.)
Nonlinear dynamic analysis of piping systems using the pseudo force method
International Nuclear Information System (INIS)
Prachuktam, S.; Bezler, P.; Hartzman, M.
1979-01-01
Simple piping systems are composed of linear elastic elements and can be analyzed using conventional linear methods. The introduction of constraint springs separated from the pipe with clearance gaps to such systems to cope with the pipe whip or other extreme excitation conditions introduces nonlinearities to the system, the nonlinearities being associated with the gaps. Since these spring-damper constraints are usually limited in number, descretely located, and produce only weak nonlinearities, the analysis of linear systems including these nonlinearities can be carried out by using modified linear methods. In particular, the application of pseudo force methods wherein the nonlinearities are treated as displacement dependent forcing functions acting on the linear system were investigated. The nonlinearities induced by the constraints are taken into account as generalized pseudo forces on the right-hand side of the governing dynamic equilibrium equations. Then an existing linear elastic finite element piping code, EPIPE, was modified to permit application of the procedure. This option was inserted such that the analyses could be performed using either the direct integration method or via a modal superposition method, the Newmark-Beta integration procedure being employed in both methods. The modified code was proof tested against several problems taken from the literature or developed with the nonlinear dynamics code OSCIL. The problems included a simple pipe loop, cantilever beam, and lumped mass system subjected to pulsed and periodic forcing functions. The problems were selected to gage the overall accuracy of the method and to insure that it properly predicted the jump phenomena associated with nonlinear systems. (orig.)
Regression testing Ajax applications : Coping with dynamism
Roest, D.; Mesbah, A.; Van Deursen, A.
2009-01-01
Note: This paper is a pre-print of: Danny Roest, Ali Mesbah and Arie van Deursen. Regression Testing AJAX Applications: Coping with Dynamism. In Proceedings of the 3rd International Conference on Software Testing, Verification and Validation (ICST’10), Paris, France. IEEE Computer Society, 2010.
Delay dynamics of neuromorphic optoelectronic nanoscale resonators: Perspectives and applications
Romeira, Bruno; Figueiredo, José M. L.; Javaloyes, Julien
2017-11-01
With the recent exponential growth of applications using artificial intelligence (AI), the development of efficient and ultrafast brain-like (neuromorphic) systems is crucial for future information and communication technologies. While the implementation of AI systems using computer algorithms of neural networks is emerging rapidly, scientists are just taking the very first steps in the development of the hardware elements of an artificial brain, specifically neuromorphic microchips. In this review article, we present the current state of the art of neuromorphic photonic circuits based on solid-state optoelectronic oscillators formed by nanoscale double barrier quantum well resonant tunneling diodes. We address, both experimentally and theoretically, the key dynamic properties of recently developed artificial solid-state neuron microchips with delayed perturbations and describe their role in the study of neural activity and regenerative memory. This review covers our recent research work on excitable and delay dynamic characteristics of both single and autaptic (delayed) artificial neurons including all-or-none response, spike-based data encoding, storage, signal regeneration and signal healing. Furthermore, the neural responses of these neuromorphic microchips display all the signatures of extended spatio-temporal localized structures (LSs) of light, which are reviewed here in detail. By taking advantage of the dissipative nature of LSs, we demonstrate potential applications in optical data reconfiguration and clock and timing at high-speeds and with short transients. The results reviewed in this article are a key enabler for the development of high-performance optoelectronic devices in future high-speed brain-inspired optical memories and neuromorphic computing.
Kao, Jui-Hsiang; Tseng, Po-Yuan
2018-01-01
The objective of this paper is to describe the application of CFD (Computational fluid dynamics) technology in the matching of turbine blades and generator to increase the efficiency of a vertical axis wind turbine (VAWT). A VAWT is treated as the study case here. The SST (Shear-Stress Transport) k-ω turbulence model with SIMPLE algorithm method in transient state is applied to solve the T (torque)-N (r/min) curves of the turbine blades at different wind speed. The T-N curves of the generator at different CV (constant voltage) model are measured. Thus, the T-N curves of the turbine blades at different wind speed can be matched by the T-N curves of the generator at different CV model to find the optimal CV model. As the optimal CV mode is selected, the characteristics of the operating points, such as tip speed ratio, revolutions per minute, blade torque, and efficiency, can be identified. The results show that, if the two systems are matched well, the final output power at a high wind speed of 9-10 m/s will be increased by 15%.
Some problems of dynamical systems on three dimensional manifolds
International Nuclear Information System (INIS)
Dong Zhenxie.
1985-08-01
It is important to study the dynamical systems on 3-dimensional manifolds, its importance is showing up in its close relation with our life. Because of the complication of topological structure of Dynamical systems on 3-dimensional manifolds, generally speaking, the search for 3-dynamical systems is not easier than 2-dynamical systems. This paper is a summary of the partial result of dynamical systems on 3-dimensional manifolds. (author)
Dynamic Reconfiguration in Mobile Systems
Smit, Gerardus Johannes Maria; Glesner, Manfred; Zipf, Peter; Smit, L.T.; Havinga, Paul J.M.; Heysters, P.M.; Renovell, Michel; Rosien, M.A.J.
Dynamically reconfigurable systems have the potential of realising efficient systems as well as providing adaptability to changing system requirements. Such systems are suitable for future mobile multimedia systems that have limited battery resources, must handle diverse data types, and must operate
Directory of Open Access Journals (Sweden)
Meng-Rong Li
2018-01-01
Full Text Available Considering the phenomenon of the mean reversion and the different speeds of stock prices in the bull market and in the bear market, we propose four dynamic models each of which is represented by a parameterized ordinary differential equation in this study. Based on existing studies, the models are in the form of either the logistic growth or the law of Newton’s cooling. We solve the models by dynamic integration and apply them to the daily closing prices of the Taiwan stock index, Taiwan Stock Exchange Capitalization Weighted Stock Index. The empirical study shows that some of the models fit the prices well and the forecasting ability of the best model is acceptable even though the martingale forecasts the prices slightly better. To increase the forecasting ability and to broaden the scope of applications of the dynamic models, we will model the coefficients of the dynamic models in the future. Applying the models to the market without the price limit is also our future work.
Understanding and Modeling Teams As Dynamical Systems
Gorman, Jamie C.; Dunbar, Terri A.; Grimm, David; Gipson, Christina L.
2017-01-01
By its very nature, much of teamwork is distributed across, and not stored within, interdependent people working toward a common goal. In this light, we advocate a systems perspective on teamwork that is based on general coordination principles that are not limited to cognitive, motor, and physiological levels of explanation within the individual. In this article, we present a framework for understanding and modeling teams as dynamical systems and review our empirical findings on teams as dynamical systems. We proceed by (a) considering the question of why study teams as dynamical systems, (b) considering the meaning of dynamical systems concepts (attractors; perturbation; synchronization; fractals) in the context of teams, (c) describe empirical studies of team coordination dynamics at the perceptual-motor, cognitive-behavioral, and cognitive-neurophysiological levels of analysis, and (d) consider the theoretical and practical implications of this approach, including new kinds of explanations of human performance and real-time analysis and performance modeling. Throughout our discussion of the topics we consider how to describe teamwork using equations and/or modeling techniques that describe the dynamics. Finally, we consider what dynamical equations and models do and do not tell us about human performance in teams and suggest future research directions in this area. PMID:28744231
Dynamic MR imaging of the musculoskeletal system
International Nuclear Information System (INIS)
Shah, A.S.; Hylton, H.; Hentz, V.R.; Schattner, P.
1991-01-01
This paper reports on dynamic MR imaging which is an MR technique that allows imaging of the musculoskeletal system in motion. Current methods for observing the articulation of muscles and joints are limited to acquisition of stationary images at different spatial orientations. These images are then replayed from computer memory to simulate motion. Unlike stationary acquisition, dynamic MR imaging allows the volume of interest to be subjected to motion and dynamic stress, which is important for detecting stress-induced pathology. To demonstrate the utility of dynamic MR imaging, a system for imaging a moving wrist has been developed. The system consists of apparatus capable of providing simultaneous radialulnar deviation and flexion-extension, and hardware for system control and acquisition gating. The apparatus is mounted on the patient bed and is transferable to a variety of standard clinical MR imaging systems. Images were obtained during motion, and the ability of dynamic MR imaging to accurately image the moving wrist with very little motion artifact was demonstrated
Dynamical systems on 2- and 3-manifolds
Grines, Viacheslav Z; Pochinka, Olga V
2016-01-01
This book provides an introduction to the topological classification of smooth structurally stable diffeomorphisms on closed orientable 2- and 3-manifolds.The topological classification is one of the main problems of the theory of dynamical systems and the results presented in this book are mostly for dynamical systems satisfying Smale's Axiom A. The main results on the topological classification of discrete dynamical systems are widely scattered among many papers and surveys. This book presents these results fluidly, systematically, and for the first time in one publication. Additionally, this book discusses the recent results on the topological classification of Axiom A diffeomorphisms focusing on the nontrivial effects of the dynamical systems on 2- and 3-manifolds. The classical methods and approaches which are considered to be promising for the further research are also discussed. < The reader needs to be familiar with the basic concepts of the qualitative theory of dynamical systems which are present...
Narcissistic group dynamics of multiparty systems
Schruijer, S.G.L.
2015-01-01
Purpose – This paper aims to introduce and illustrate the notion of narcissistic group dynamics. It is claimed that narcissism does not simply reside within individuals but can be characteristic of groups and social systems. In this case, the focus is on narcissistic dynamics in multiparty systems.
Lattice dynamics of impurity clusters : application to pairs
International Nuclear Information System (INIS)
Chandralekha Devi, N.; Behera, S.N.
1979-01-01
A general solution is obtained for the lattice dynamics of a cluster of n-impurity atoms using the double-time Green's function formalism. The cluster is characterized by n-mass defect and m-force constant change parameters. It is shown that this general solution for the Green's function for the n-impurity cluster can also be expressed in terms of the Green's function for the (n-1)-impurity cluster. As an application, the cluster impurity modes for a pair are calculated using the Debye model for the host lattice dynamics. The splitting of the high frequency local modes and nearly zero frequency resonant modes due to pairs show an oscillatory behaviour on varying the distance of separation between the two impurity atoms. These oscillations are most prominent for two similar impurities and get damped for two dissimilar impurities or if one of the impurities produces a force constant change. The predictions of the calculation provide qualitative explanation of the data obtained from the infrared measurements of the resonant modes in mixed crystal system of KBrsub(1-c)Clsub(c):Lisup(+) and KBrsub(1-c)Isub(c):Lisup(+). (author)
Dynamic fuel cell models and their application in hardware in the loop simulation
Energy Technology Data Exchange (ETDEWEB)
Lemes, Zijad; Maencher, H. [MAGNUM Automatisierungstechnik GmbH, Bunsenstr. 22, D-64293 Darmstadt (Germany); Vath, Andreas; Hartkopf, Th. [Technische Universitaet Darmstadt/Institut fuer Elektrische Energiewandlung, Landgraf-Georg-Str. 4, D-64283 Darmstadt (Germany)
2006-03-21
Currently, fuel cell technology plays an important role in the development of alternative energy converters for mobile, portable and stationary applications. With the help of physical based models of fuel cell systems and appropriate test benches it is possible to design different applications and investigate their stationary and dynamic behaviour. The polymer electrolyte membrane (PEM) fuel cell system model includes gas humidifier, air and hydrogen supply, current converter and a detailed stack model incorporating the physical characteristics of the different layers. In particular, the use of these models together with hardware in the loop (HIL) capable test stands helps to decrease the costs and accelerate the development of fuel cell systems. The interface program provides fast data exchange between the test bench and the physical model of the fuel cell or any other systems in real time. So the flexibility and efficiency of the test bench increase fundamentally, because it is possible to replace real components with their mathematical models. (author)
Nonlinear dynamics of fractional order Duffing system
International Nuclear Information System (INIS)
Li, Zengshan; Chen, Diyi; Zhu, Jianwei; Liu, Yongjian
2015-01-01
In this paper, we analyze the nonlinear dynamics of fractional order Duffing system. First, we present the fractional order Duffing system and the numerical algorithm. Second, nonlinear dynamic behaviors of Duffing system with a fixed fractional order is studied by using bifurcation diagrams, phase portraits, Poincare maps and time domain waveforms. The fractional order Duffing system shows some interesting dynamical behaviors. Third, a series of Duffing systems with different fractional orders are analyzed by using bifurcation diagrams. The impacts of fractional orders on the tendency of dynamical motion, the periodic windows in chaos, the bifurcation points and the distance between the first and the last bifurcation points are respectively studied, in which some basic laws are discovered and summarized. This paper reflects that the integer order system and the fractional order one have close relationship and an integer order system is a special case of fractional order ones.
Dynamics of Open Systems with Affine Maps
International Nuclear Information System (INIS)
Zhang Da-Jian; Liu Chong-Long; Tong Dian-Min
2015-01-01
Many quantum systems of interest are initially correlated with their environments and the reduced dynamics of open systems are an interesting while challenging topic. Affine maps, as an extension of completely positive maps, are a useful tool to describe the reduced dynamics of open systems with initial correlations. However, it is unclear what kind of initial state shares an affine map. In this study, we give a sufficient condition of initial states, in which the reduced dynamics can always be described by an affine map. Our result shows that if the initial states of the combined system constitute a convex set, and if the correspondence between the initial states of the open system and those of the combined system, defined by taking the partial trace, is a bijection, then the reduced dynamics of the open system can be described by an affine map. (paper)
Dynamic Programming Approach for Construction of Association Rule Systems
Alsolami, Fawaz
2016-11-18
In the paper, an application of dynamic programming approach for optimization of association rules from the point of view of knowledge representation is considered. The association rule set is optimized in two stages, first for minimum cardinality and then for minimum length of rules. Experimental results present cardinality of the set of association rules constructed for information system and lower bound on minimum possible cardinality of rule set based on the information obtained during algorithm work as well as obtained results for length.
A Dynamic Wind Generation Model for Power Systems Studies
Estanqueiro, Ana
2007-01-01
In this paper, a wind park dynamic model is presented together with a base methodology for its application to power system studies. This detailed wind generation model addresses the wind turbine components and phenomena more relevant to characterize the power quality of a grid connected wind park, as well as the wind park response to the grid fast perturbations, e.g., low voltage ride through fault. The developed model was applied to the operating conditions of the selected sets of wind turbi...
Dynamic Programming Approach for Construction of Association Rule Systems
Alsolami, Fawaz; Amin, Talha M.; Chikalov, Igor; Moshkov, Mikhail; Zielosko, Beata
2016-01-01
In the paper, an application of dynamic programming approach for optimization of association rules from the point of view of knowledge representation is considered. The association rule set is optimized in two stages, first for minimum cardinality and then for minimum length of rules. Experimental results present cardinality of the set of association rules constructed for information system and lower bound on minimum possible cardinality of rule set based on the information obtained during algorithm work as well as obtained results for length.
On the dynamics of a generalized predator-prey system with Z-type control.
Lacitignola, Deborah; Diele, Fasma; Marangi, Carmela; Provenzale, Antonello
2016-10-01
We apply the Z-control approach to a generalized predator-prey system and consider the specific case of indirect control of the prey population. We derive the associated Z-controlled model and investigate its properties from the point of view of the dynamical systems theory. The key role of the design parameter λ for the successful application of the method is stressed and related to specific dynamical properties of the Z-controlled model. Critical values of the design parameter are also found, delimiting the λ-range for the effectiveness of the Z-method. Analytical results are then numerically validated by the means of two ecological models: the classical Lotka-Volterra model and a model related to a case study of the wolf-wild boar dynamics in the Alta Murgia National Park. Investigations on these models also highlight how the Z-control method acts in respect to different dynamical regimes of the uncontrolled model. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
X-ray testing for short-time dynamic applications
International Nuclear Information System (INIS)
Kurfiss, Malte; Moser, Stefan; Popko, Gregor; Nau, Siegfried
2017-01-01
For nondestructive testing purposes new challenges are short-time dynamic processes. The application of x-ray flash tubes and modern high-speed cameras allows the observation of the opening of air-bags or the energy absorption of compressed tubes as occurring during a vehicle crash. Special algorithms designed for computerized tomography analyses allow the 3D reconstruction at individual time points of the dynamic process. Possibilities and limitations of the actual techniques are discussed.
Synchronization of hypernetworks of coupled dynamical systems
International Nuclear Information System (INIS)
Sorrentino, Francesco
2012-01-01
We consider the synchronization of coupled dynamical systems when different types of interactions are simultaneously present. We assume that a set of dynamical systems is coupled through the connections of two or more distinct networks (each of which corresponds to a distinct type of interaction), and we refer to such a system as a dynamical hypernetwork. Applications include neural networks made up of both electrical gap junctions and chemical synapses, the coordinated motion of shoals of fish communicating through both vision and flow sensing, and hypernetworks of coupled chaotic oscillators. We first analyze the case of a hypernetwork made up of m = 2 networks. We look for the necessary and sufficient conditions for synchronization. We attempt to reduce the linear stability problem to a master stability function (MSF) form, i.e. decoupling the effects of the coupling functions from the structure of the networks. Unfortunately, we are unable to obtain a reduction in an MSF form for the general case. However, we show that such a reduction is possible in three cases of interest: (i) the Laplacian matrices associated with the two networks commute; (ii) one of the two networks is unweighted and fully connected; and (iii) one of the two networks is such that the coupling strength from node i to node j is a function of j but not of i. Furthermore, we define a class of networks such that if either one of the two coupling networks belongs to this class, the reduction can be obtained independently of the other network. As an example of interest, we study synchronization of a neural hypernetwork for which the connections can be either chemical synapses or electrical gap junctions. We propose a generalization of our stability results to the case of hypernetworks formed of m ⩾ 2 networks. (paper)
Application of GPRS and GIS in Boiler Remote Monitoring System
Hongchao Wang; Yifeng Wu
2012-01-01
Application of GPRS and GIS in boiler remote monitoring system was designed in this paper by combining the advantage of GPRS and GIS in remote data transmission with configuration monitoring technology. The detail information of the operating conditions of the industrial boiler can be viewed by marking the location of boiler on the electronic map dynamically which can realize the unified management for industrial boiler of a region or city conveniently. Experimental application show that the ...
Data-Driven Modeling of Complex Systems by means of a Dynamical ANN
Seleznev, A.; Mukhin, D.; Gavrilov, A.; Loskutov, E.; Feigin, A.
2017-12-01
The data-driven methods for modeling and prognosis of complex dynamical systems become more and more popular in various fields due to growth of high-resolution data. We distinguish the two basic steps in such an approach: (i) determining the phase subspace of the system, or embedding, from available time series and (ii) constructing an evolution operator acting in this reduced subspace. In this work we suggest a novel approach combining these two steps by means of construction of an artificial neural network (ANN) with special topology. The proposed ANN-based model, on the one hand, projects the data onto a low-dimensional manifold, and, on the other hand, models a dynamical system on this manifold. Actually, this is a recurrent multilayer ANN which has internal dynamics and capable of generating time series. Very important point of the proposed methodology is the optimization of the model allowing us to avoid overfitting: we use Bayesian criterion to optimize the ANN structure and estimate both the degree of evolution operator nonlinearity and the complexity of nonlinear manifold which the data are projected on. The proposed modeling technique will be applied to the analysis of high-dimensional dynamical systems: Lorenz'96 model of atmospheric turbulence, producing high-dimensional space-time chaos, and quasi-geostrophic three-layer model of the Earth's atmosphere with the natural orography, describing the dynamics of synoptical vortexes as well as mesoscale blocking systems. The possibility of application of the proposed methodology to analyze real measured data is also discussed. The study was supported by the Russian Science Foundation (grant #16-12-10198).