Sorin Dan ŞANDOR
2003-01-01
Full Text Available System Dynamics was introduced by Jay W. Forrester in the 1960s. Since then the methodology was adopted in many areas of natural or social sciences. This article tries to present briefly how this methodology works, both as Systems Thinking and as Modelling with Vensim computer software.
Experimental Modeling of Dynamic Systems
Knudsen, Morten Haack
2006-01-01
An engineering course, Simulation and Experimental Modeling, has been developed that is based on a method for direct estimation of physical parameters in dynamic systems. Compared with classical system identification, the method appears to be easier to understand, apply, and combine with physical...
System dynamics modelling of situation awareness
Oosthuizen, R
2015-11-01
Full Text Available . The feedback loops and delays in the Command and Control system also contribute to the complex dynamic behavior. This paper will build on existing situation awareness models to develop a System Dynamics model to support a qualitative investigation through...
Identification and Modelling of Linear Dynamic Systems
Stanislav Kocur
2006-01-01
Full Text Available System identification and modelling are very important parts of system control theory. System control is only as good as good is created model of system. So this article deals with identification and modelling problems. There are simple classification and evolution of identification methods, and then the modelling problem is described. Rest of paper is devoted to two most known and used models of linear dynamic systems.
Stirling Engine Dynamic System Modeling
Nakis, Christopher G.
2004-01-01
The Thermo-Mechanical systems branch at the Glenn Research Center focuses a large amount time on Stirling engines. These engines will be used on missions where solar power is inefficient, especially in deep space. I work with Tim Regan and Ed Lewandowski who are currently developing and validating a mathematical model for the Stirling engines. This model incorporates all aspects of the system including, mechanical, electrical and thermodynamic components. Modeling is done through Simplorer, a program capable of running simulations of the model. Once created and then proven to be accurate, a model is used for developing new ideas for engine design. My largest specific project involves varying key parameters in the model and quantifying the results. This can all be done relatively trouble-free with the help of Simplorer. Once the model is complete, Simplorer will do all the necessary calculations. The more complicated part of this project is determining which parameters to vary. Finding key parameters depends on the potential for a value to be independently altered in the design. For example, a change in one dimension may lead to a proportional change to the rest of the model, and no real progress is made. Also, the ability for a changed value to have a substantial impact on the outputs of the system is important. Results will be condensed into graphs and tables with the purpose of better communication and understanding of the data. With the changing of these parameters, a more optimal design can be created without having to purchase or build any models. Also, hours and hours of results can be simulated in minutes. In the long run, using mathematical models can save time and money. Along with this project, I have many other smaller assignments throughout the summer. My main goal is to assist in the processes of model development, validation and testing.
Modeling the Dynamics of an Information System
Jacek Unold
2003-11-01
Full Text Available The article concentrates on the nature of a social subsystem of an information system. It analyzes the nature of information processes of collectivity within an IS and introduces a model of IS dynamics. The model is based on the assumption that a social subsystem of an information system works as a nonlinear dynamic system. The model of IS dynamics is verified on the indexes of the stock market. It arises from the basic assumption of the technical analysis of the markets, that is, the index chart reflects the play of demand and supply, which in turn represents the crowd sentiment on the market.
Very Large System Dynamics Models - Lessons Learned
Jacob J. Jacobson; Leonard Malczynski
2008-10-01
This paper provides lessons learned from developing several large system dynamics (SD) models. System dynamics modeling practice emphasize the need to keep models small so that they are manageable and understandable. This practice is generally reasonable and prudent; however, there are times that large SD models are necessary. This paper outlines two large SD projects that were done at two Department of Energy National Laboratories, the Idaho National Laboratory and Sandia National Laboratories. This paper summarizes the models and then discusses some of the valuable lessons learned during these two modeling efforts.
Area Logistics System Based on System Dynamics Model
GUI Shouping; ZHU Qiang; LU Lifang
2005-01-01
At present, there are few effective ways to analyze area logistics systems. This paper uses system dynamics to analyze the area logistics system and establishes a system dynamics model for the area logistics system based on the characteristics of the area logistics system and system dynamics. Numerical simulations with the system dynamic model were used to analyze a logistic system. Analysis of the Guangzhou economy shows that the model can reflect the actual state of the system objectively and can be used to make policy and harmonize environment.
Dynamic modeling of the INAPRO aquaponic system
Karimanzira, Divas; Keesman, Karel J.; Kloas, Werner; Baganz, Daniela; Rauschenbach, Thomas
2016-01-01
The use of modeling techniques to analyze aquaponics systems is demonstrated with an example of dynamic modeling for the production of Nile tilapia (Oreochromis niloticus) and tomatoes (Solanum lycopersicon) using the innovative double recirculating aquaponic system ASTAF-PRO. For the management and
Brand Equity Evolution: a System Dynamics Model
Edson Crescitelli
2009-04-01
Full Text Available One of the greatest challenges in brand management lies in monitoring brand equity over time. This paper aimsto present a simulation model able to represent this evolution. The model was drawn on brand equity concepts developed by Aaker and Joachimsthaler (2000, using the system dynamics methodology. The use ofcomputational dynamic models aims to create new sources of information able to sensitize academics and managers alike to the dynamic implications of their brand management. As a result, an easily implementable model was generated, capable of executing continuous scenario simulations by surveying casual relations among the variables that explain brand equity. Moreover, the existence of a number of system modeling tools will allow extensive application of the concepts used in this study in practical situations, both in professional and educational settings
A system dynamics model for communications networks
Awcock, A. J.; King, T. E. G.
1985-09-01
An abstract model of a communications network in system dynamics terminology is developed as implementation of this model by a FORTRAN program package developed at RSRE is discussed. The result of this work is a high-level simulation package in which the performance of adaptive routing algorithms and other network controls may be assessed for a network of arbitrary topology.
Structural system identification: Structural dynamics model validation
Red-Horse, J.R.
1997-04-01
Structural system identification is concerned with the development of systematic procedures and tools for developing predictive analytical models based on a physical structure`s dynamic response characteristics. It is a multidisciplinary process that involves the ability (1) to define high fidelity physics-based analysis models, (2) to acquire accurate test-derived information for physical specimens using diagnostic experiments, (3) to validate the numerical simulation model by reconciling differences that inevitably exist between the analysis model and the experimental data, and (4) to quantify uncertainties in the final system models and subsequent numerical simulations. The goal of this project was to develop structural system identification techniques and software suitable for both research and production applications in code and model validation.
System and mathematical modeling of quadrotor dynamics
Goodman, Jacob M.; Kim, Jinho; Gadsden, S. Andrew; Wilkerson, Stephen A.
2015-05-01
Unmanned aerial systems (UAS) are becoming increasingly visible in our daily lives; and range in operation from search and rescue, monitoring hazardous environments, and to the delivery of goods. One of the most popular UAS are based on a quad-rotor design. These are typically small devices that rely on four propellers for lift and movement. Quad-rotors are inherently unstable, and rely on advanced control methodologies to keep them operating safely and behaving in a predictable and desirable manner. The control of these devices can be enhanced and improved by making use of an accurate dynamic model. In this paper, we examine a simple quadrotor model, and note some of the additional dynamic considerations that were left out. We then compare simulation results of the simple model with that of another comprehensive model.
Modeling the Dynamic Digestive System Microbiome
Anne M. Estes
2015-08-01
Full Text Available “Modeling the Dynamic Digestive System Microbiome” is a hands-on activity designed to demonstrate the dynamics of microbiome ecology using dried pasta and beans to model disturbance events in the human digestive system microbiome. This exercise demonstrates how microbiome diversity is influenced by: 1 niche availability and habitat space and 2 a major disturbance event, such as antibiotic use. Students use a pictorial key to examine prepared models of digestive system microbiomes to determine what the person with the microbiome “ate.” Students then model the effect of taking antibiotics by removing certain “antibiotic sensitive” pasta. Finally, they add in “environmental microbes” or “native microbes” to recolonize the digestive system, determine how resilient their model microbome community is to disturbance, and discuss the implications. Throughout the exercise, students discuss differences in the habitat space available and microbiome community diversity. This exercise can be modified to discuss changes in the microbiome due to diet shifts and the emergence of antibiotic resistance in more depth.
Dynamic modeling of solar dynamic components and systems
Hochstein, John I.; Korakianitis, T.
1992-09-01
The purpose of this grant was to support NASA in modeling efforts to predict the transient dynamic and thermodynamic response of the space station solar dynamic power generation system. In order to meet the initial schedule requirement of providing results in time to support installation of the system as part of the initial phase of space station, early efforts were executed with alacrity and often in parallel. Initially, methods to predict the transient response of a Rankine as well as a Brayton cycle were developed. Review of preliminary design concepts led NASA to select a regenerative gas-turbine cycle using a helium-xenon mixture as the working fluid and, from that point forward, the modeling effort focused exclusively on that system. Although initial project planning called for a three year period of performance, revised NASA schedules moved system installation to later and later phases of station deployment. Eventually, NASA selected to halt development of the solar dynamic power generation system for space station and to reduce support for this project to two-thirds of the original level.
Probabilistic Model for Dynamic Signature Verification System
Chai Tong Yuen
2011-11-01
Full Text Available This study has proposed the algorithm for signature verification system using dynamic parameters of the signature: pen pressure, velocity and position. The system is proposed to read, analyze and verify the signatures from the SUSig online database. Firstly, the testing and reference samples will have to be normalized, re-sampled and smoothed through pre-processing stage. In verification stage, the difference between reference and testing signatures will be calculated based on the proposed thresholded standard deviation method. A probabilistic acceptance model has been designed to enhance the performance of the verification system. The proposed algorithm has reported False Rejection Rate (FRR of 14.8% and False Acceptance Rate (FAR of 2.64%. Meanwhile, the classification rate of the system is around 97%.
Hybrid Dynamical Systems Modeling, Stability, and Robustness
Goebel, Rafal; Teel, Andrew R
2012-01-01
Hybrid dynamical systems exhibit continuous and instantaneous changes, having features of continuous-time and discrete-time dynamical systems. Filled with a wealth of examples to illustrate concepts, this book presents a complete theory of robust asymptotic stability for hybrid dynamical systems that is applicable to the design of hybrid control algorithms--algorithms that feature logic, timers, or combinations of digital and analog components. With the tools of modern mathematical analysis, Hybrid Dynamical Systems unifies and generalizes earlier developments in continuous-time and discret
Hybrid modeling and prediction of dynamical systems
Lloyd, Alun L.; Flores, Kevin B.
2017-01-01
Scientific analysis often relies on the ability to make accurate predictions of a system’s dynamics. Mechanistic models, parameterized by a number of unknown parameters, are often used for this purpose. Accurate estimation of the model state and parameters prior to prediction is necessary, but may be complicated by issues such as noisy data and uncertainty in parameters and initial conditions. At the other end of the spectrum exist nonparametric methods, which rely solely on data to build their predictions. While these nonparametric methods do not require a model of the system, their performance is strongly influenced by the amount and noisiness of the data. In this article, we consider a hybrid approach to modeling and prediction which merges recent advancements in nonparametric analysis with standard parametric methods. The general idea is to replace a subset of a mechanistic model’s equations with their corresponding nonparametric representations, resulting in a hybrid modeling and prediction scheme. Overall, we find that this hybrid approach allows for more robust parameter estimation and improved short-term prediction in situations where there is a large uncertainty in model parameters. We demonstrate these advantages in the classical Lorenz-63 chaotic system and in networks of Hindmarsh-Rose neurons before application to experimentally collected structured population data. PMID:28692642
System Dynamics Modelling for a Balanced Scorecard
Nielsen, Steen; Nielsen, Erland Hejn
2008-01-01
Purpose - To construct a dynamic model/framework inspired by a case study based on an international company. As described by the theory, one of the main difficulties of BSC is to foresee the time lag dimension of different types of indicators and their combined dynamic effects. Design/methodology...
Advances in dynamic network modeling in complex transportation systems
Ukkusuri, Satish V
2013-01-01
This book focuses on the latest in dynamic network modeling, including route guidance and traffic control in transportation systems and other complex infrastructure networks. Covers dynamic traffic assignment, flow modeling, mobile sensor deployment and more.
System Identification by Dynamic Factor Models
C. Heij (Christiaan); W. Scherrer; M. Destler
1996-01-01
textabstractThis paper concerns the modelling of stochastic processes by means of dynamic factor models. In such models the observed process is decomposed into a structured part called the latent process, and a remainder that is called noise. The observed variables are treated in a symmetric way, so
Dynamical modelling of coordinated multiple robot systems
Hayati, Samad
1987-01-01
The state of the art in the modeling of the dynamics of coordinated multiple robot manipulators is summarized and various problems related to this subject are discussed. It is recognized that dynamics modeling is a component used in the design of controllers for multiple cooperating robots. As such, the discussion addresses some problems related to the control of multiple robots. The techniques used to date in the modeling of closed kinematic chains are summarized. Various efforts made to date for the control of coordinated multiple manipulators is summarized.
Dynamical systems and spherically symmetric cosmological models
He, Yanjing
2006-06-01
In this thesis we present a study of the timelike self-similar spherically symmetric cosmological models with two scalar fields with exponential potentials. We first define precisely the timelike self-similar spherically symmetric (TSS) spacetimes. We write the TSS metric in a conformally isometric form in a coordinate system adapted to the geometry of the spacetime manifold. In this coordinate system, both the metric functions of the TSS spacetimes and the potential functions of the scalar fields can be simplified to four undetermined functions of a single coordinate. As a result, the Einstein field equations reduce to an autonomous system of first-order ODEs and polynomial constraints in terms of these undetermined functions. By introducing new bounded variables as well as a new independent variable and solving the constraints, we are able to apply the theory of dynamical systems to study the properties of the TSS solutions. By finding invariant sets and associated monotonic functions, by applying the LaSalle Invariance Principle and the Monotonicity Principle, by applying the [straight phi] t -connected property of a limit set, and using other theorems, we prove that all of the TSS trajectories are heteroclinic trajectories. In addition, we conduct numerical simulations to confirm and support the qualitative analysis. We obtain all possible types of TSS solutions, by analyzing the qualitative behavior of the original system of ODES from those of the reduced one. We obtain asymptotic expressions for the TSS solutions (e.g., the asymptotic expressions for the metric functions, the source functions and the Ricci scalar). In particular, self-similar flat Friedmann-Robertson-Walker spacetimes are examined in order to obtain insights into the issues related to the null surface in general TSS spacetimes in these coordinates. A discussion of the divergence of the spacetime Ricci scalar and the possible extension of the TSS solutions across the null boundary is presented
OFFl Models: Novel Schema for Dynamical Modeling of Biological Systems.
Ogbunugafor, C Brandon; Robinson, Sean P
2016-01-01
Flow diagrams are a common tool used to help build and interpret models of dynamical systems, often in biological contexts such as consumer-resource models and similar compartmental models. Typically, their usage is intuitive and informal. Here, we present a formalized version of flow diagrams as a kind of weighted directed graph which follow a strict grammar, which translate into a system of ordinary differential equations (ODEs) by a single unambiguous rule, and which have an equivalent representation as a relational database. (We abbreviate this schema of "ODEs and formalized flow diagrams" as OFFL.) Drawing a diagram within this strict grammar encourages a mental discipline on the part of the modeler in which all dynamical processes of a system are thought of as interactions between dynamical species that draw parcels from one or more source species and deposit them into target species according to a set of transformation rules. From these rules, the net rate of change for each species can be derived. The modeling schema can therefore be understood as both an epistemic and practical heuristic for modeling, serving both as an organizational framework for the model building process and as a mechanism for deriving ODEs. All steps of the schema beyond the initial scientific (intuitive, creative) abstraction of natural observations into model variables are algorithmic and easily carried out by a computer, thus enabling the future development of a dedicated software implementation. Such tools would empower the modeler to consider significantly more complex models than practical limitations might have otherwise proscribed, since the modeling framework itself manages that complexity on the modeler's behalf. In this report, we describe the chief motivations for OFFL, carefully outline its implementation, and utilize a range of classic examples from ecology and epidemiology to showcase its features.
OFFl Models: Novel Schema for Dynamical Modeling of Biological Systems.
C Brandon Ogbunugafor
Full Text Available Flow diagrams are a common tool used to help build and interpret models of dynamical systems, often in biological contexts such as consumer-resource models and similar compartmental models. Typically, their usage is intuitive and informal. Here, we present a formalized version of flow diagrams as a kind of weighted directed graph which follow a strict grammar, which translate into a system of ordinary differential equations (ODEs by a single unambiguous rule, and which have an equivalent representation as a relational database. (We abbreviate this schema of "ODEs and formalized flow diagrams" as OFFL. Drawing a diagram within this strict grammar encourages a mental discipline on the part of the modeler in which all dynamical processes of a system are thought of as interactions between dynamical species that draw parcels from one or more source species and deposit them into target species according to a set of transformation rules. From these rules, the net rate of change for each species can be derived. The modeling schema can therefore be understood as both an epistemic and practical heuristic for modeling, serving both as an organizational framework for the model building process and as a mechanism for deriving ODEs. All steps of the schema beyond the initial scientific (intuitive, creative abstraction of natural observations into model variables are algorithmic and easily carried out by a computer, thus enabling the future development of a dedicated software implementation. Such tools would empower the modeler to consider significantly more complex models than practical limitations might have otherwise proscribed, since the modeling framework itself manages that complexity on the modeler's behalf. In this report, we describe the chief motivations for OFFL, carefully outline its implementation, and utilize a range of classic examples from ecology and epidemiology to showcase its features.
OFFl Models: Novel Schema for Dynamical Modeling of Biological Systems
2016-01-01
Flow diagrams are a common tool used to help build and interpret models of dynamical systems, often in biological contexts such as consumer-resource models and similar compartmental models. Typically, their usage is intuitive and informal. Here, we present a formalized version of flow diagrams as a kind of weighted directed graph which follow a strict grammar, which translate into a system of ordinary differential equations (ODEs) by a single unambiguous rule, and which have an equivalent representation as a relational database. (We abbreviate this schema of “ODEs and formalized flow diagrams” as OFFL.) Drawing a diagram within this strict grammar encourages a mental discipline on the part of the modeler in which all dynamical processes of a system are thought of as interactions between dynamical species that draw parcels from one or more source species and deposit them into target species according to a set of transformation rules. From these rules, the net rate of change for each species can be derived. The modeling schema can therefore be understood as both an epistemic and practical heuristic for modeling, serving both as an organizational framework for the model building process and as a mechanism for deriving ODEs. All steps of the schema beyond the initial scientific (intuitive, creative) abstraction of natural observations into model variables are algorithmic and easily carried out by a computer, thus enabling the future development of a dedicated software implementation. Such tools would empower the modeler to consider significantly more complex models than practical limitations might have otherwise proscribed, since the modeling framework itself manages that complexity on the modeler’s behalf. In this report, we describe the chief motivations for OFFL, carefully outline its implementation, and utilize a range of classic examples from ecology and epidemiology to showcase its features. PMID:27270918
The social dimensions of system dynamics-based modelling
Vriens, D.J.; Achterbergh, J.M.I.M.
2006-01-01
In this paper, the social dimension of system dynamics (SD)-based modelling is explored. Three manifestations of this dimension are identified: SD-models are made of social systems, they are built in social systems, and SD-models are built for social systems. The paper (1) explains the nature of
Urban eco-efficiency and system dynamics modelling
Hradil, P., Email: petr.hradil@vtt.fi
2012-06-15
Assessment of urban development is generally based on static models of economic, social or environmental impacts. More advanced dynamic models have been used mostly for prediction of population and employment changes as well as for other macro-economic issues. This feasibility study was arranged to test the potential of system dynamic modelling in assessing eco-efficiency changes during urban development. (orig.)
Dynamic modelling of packaging material flow systems.
Tsiliyannis, Christos A
2005-04-01
A dynamic model has been developed for reused and recycled packaging material flows. It allows a rigorous description of the flows and stocks during the transition to new targets imposed by legislation, product demand variations or even by variations in consumer discard behaviour. Given the annual reuse and recycle frequency and packaging lifetime, the model determines all packaging flows (e.g., consumption and reuse) and variables through which environmental policy is formulated, such as recycling, waste and reuse rates and it identifies the minimum number of variables to be surveyed for complete packaging flow monitoring. Simulation of the transition to the new flow conditions is given for flows of packaging materials in Greece, based on 1995--1998 field inventory and statistical data.
Generic solar photovoltaic system dynamic simulation model specification
Ellis, Abraham [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Behnke, Michael Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Elliott, Ryan Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2013-10-01
This document is intended to serve as a specification for generic solar photovoltaic (PV) system positive-sequence dynamic models to be implemented by software developers and approved by the WECC MVWG for use in bulk system dynamic simulations in accordance with NERC MOD standards. Two specific dynamic models are included in the scope of this document. The first, a Central Station PV System model, is intended to capture the most important dynamic characteristics of large scale (> 10 MW) PV systems with a central Point of Interconnection (POI) at the transmission level. The second, a Distributed PV System model, is intended to represent an aggregation of smaller, distribution-connected systems that comprise a portion of a composite load that might be modeled at a transmission load bus.
Research on Dynamic Model's Building of Active Magnetic Suspension Systems
SHI Jian; YAN Guo-zheng; LI Li-chuan; WANG Kun-dong
2006-01-01
An experimental method is introduced in this paper to build the dynamics of AMSS (the active magnetic suspension system), which doesn't depend on system's physical parameters. The rotor can be reliably suspended under the unit feedback control system designed with the primary dynamic model obtained. Online identification in frequency domain is processed to give the precise model. Comparisons show that the experimental method is much closer to the precise model than the theoretic method based on magnetic circuit law. So this experimental method is a good choice to build the primary dynamic model of AMSS.
MULTI-FLEXIBLE SYSTEM DYNAMIC MODELING THEORY AND APPLICATION
仲昕; 周兵; 杨汝清
2001-01-01
The flexible body modeling theory was demonstrated. An example of modeling a kind of automobile's front suspension as a multi-flexible system was shown. Finally, it shows that the simulation results of multi-flexible dynamic model more approach the road test data than those of multi-rigid dynamic model do. Thus, it is fully testified that using multi-flexible body theory to model is necessary and effective.
Stuart, J.G.; Wright, A.D.; Butterfield, C.P.
1996-10-01
Mitigating the effects of damaging wind turbine loads and responses extends the lifetime of the turbine and, consequently, reduces the associated Cost of Energy (COE). Active control of aerodynamic devices is one option for achieving wind turbine load mitigation. Generally speaking, control system design and analysis requires a reasonable dynamic model of {open_quotes}plant,{close_quotes} (i.e., the system being controlled). This paper extends the wind turbine aileron control research, previously conducted at the National Wind Technology Center (NWTC), by presenting a more detailed development of the wind turbine dynamic model. In prior research, active aileron control designs were implemented in an existing wind turbine structural dynamics code, FAST (Fatigue, Aerodynamics, Structures, and Turbulence). In this paper, the FAST code is used, in conjunction with system identification, to generate a wind turbine dynamic model for use in active aileron control system design. The FAST code is described and an overview of the system identification technique is presented. An aileron control case study is used to demonstrate this modeling technique. The results of the case study are then used to propose ideas for generalizing this technique for creating dynamic models for other wind turbine control applications.
Handbook of electrical power system dynamics modeling, stability, and control
Eremia, Mircea
2013-01-01
Complete guidance for understanding electrical power system dynamics and blackouts This handbook offers a comprehensive and up-to-date treatment of power system dynamics. Addressing the full range of topics, from the fundamentals to the latest technologies in modeling, stability, and control, Handbook of Electrical Power System Dynamics provides engineers with hands-on guidance for understanding the phenomena leading to blackouts so they can design the most appropriate solutions for a cost-effective and reliable operation. Focusing on system dynamics, the book details
A System Dynamics Model of Cyclical Office Oversupply
1999-01-01
This article explores office market system dynamics through a simple simulation model. Model lag and adjustment parameters similar to real office markets generate explosive cycles. Simulations show that deviations from equilibrium can be reduced by changing the information structure of the system. System dynamics, principle/agent conflicts, a prisonersâ€™ dilemma game, faulty information (poor forecasting, market research and valuation techniques), regulatory institutions, and differing equil...
Composite modeling method in dynamics of planar mechanical system
2008-01-01
This paper presents a composite modeling method of the forward dynamics in general planar mechanical system. In the modeling process, the system dynamic model is generated by assembling the model units which are kinematical determinate in planar mechanisms rather than the body/joint units in multi-body system. A state space formulation is employed to model both the unit and system models. The validation and feasibility of the method are illustrated by a case study of a four-bar mechanism. The advantage of this method is that the models are easier to reuse and the system is easier to reconfigure. The formulation reveals the relationship between the topology and dynamics of the planar mechanism to some extent.
Composite modeling method in dynamics of planar mechanical system
WANG Hao; LIN ZhongQin; LAI XinMin
2008-01-01
This paper presents a composite modeling method of the forward dynamics in general planar mechanical system.In the modeling process,the system dynamic model is generated by assembling the model units which are kinematical determi-nate in planar mechanisms rather than the body/joint units in multi-body system.A state space formulation is employed to model both the unit and system models.The validation and feasibility of the method are illustrated by a case study of a four-bar mechanism.The advantage of this method is that the models are easier to reuse and the system is easier to reconfigure.The formulation reveals the rela-tionship between the topology and dynamics of the planar mechanism to some extent.
Global dynamical model of the cardiovascular system
Kholodov, A S; Kholodov, Y A; Nadolsky, A A; Shushlebin, A N
2007-01-01
Blood system functions are very diverse and important for most processes in human organism. One of its primary functions is matter transport among different parts of the organism including tissue supplying with oxygen, carbon dioxide excretion, drug propagation etc. Forecasting of these processes under normal conditions and in the presence of different pathologies like atherosclerosis, loss of blood, anatomical abnormalities, pathological changing in chemical transformations and others is significant issue for many physiologists. In this connection should be pointed out that global processes are of special interest as they include feedbacks and interdependences among different regions of the organism. Thus the main goal of this work is to develop the model allowing to describe effectively blood flow in the whole organism. As we interested in global processes the models of the four vascular trees (arterial and venous parts of systemic and pulmonary circulation) must be closed with heart and peripheral circulat...
DYSCO: A software system for modeling general dynamic systems
Berman, Alex
1989-01-01
The DYSCO program has been under development since 1979. It has been funded by Army and Air Force laboratories and by the Kaman Aerospace Corporation. It is presently available at a number of government and nongovernment installations. It has been used to analyze a very broad range of dynamics problems. A principle feature of the software design of DYSCO is the separation of the executive from the technology. The executive, which controls all the operations, is intelligent in the sense that it knows that its function is to assemble differential equations and to prepare them for solution. The technology library contains FORTRAN routines which perform standard functions, such as, computing the equation coefficients of an element (or component) given the local state at any time. The technology library also contains algorithms and procedures for solving the coupled system equations. The system was designed to allow easy additional of technology to the library. Any linear or nonlinear structural entity, control system, or set of ordinary differential equations may be simply coded and added to the library, as well as algorithms for time or frequency domain solution. The program is described with emphasis on its usefulness in easily modeling unusual concepts and configurations, performing analysis of damage, evaluating new algorithms, and simulating dynamic tests.
South African energy model: a system dynamics approach
Musango, JK
2009-07-01
Full Text Available & Andrea Bassi2 1 Council for Scientific and Industrial Research (CSIR), South Africa 2Millenium Institute, Arlington (VA) International Conference of System Dynamics Society Albuquerque, New Mexico July 26 - 31, 2009 South African energy model: a...
Hamiltonian realization of power system dynamic models and its applications
2008-01-01
Power system is a typical energy system. Because Hamiltonian approaches are closely related to the energy of the physical system, they have been widely re-searched in recent years. The realization of the Hamiltonian structure of the nonlinear dynamic system is the basis for the application of the Hamiltonian methods. However, there have been no systematically investigations on the Ham-iltonian realization for different power system dynamic models so far. This paper researches the Hamiltonian realization in power systems dynamics. Starting from the widely used power system dynamic models, the paper reveals the intrinsic Hamiltonian structure of the nonlinear power system dynamics and also proposes approaches to formulate the power system Hamiltonian structure. Furthermore, this paper shows the application of the Hamiltonian structure of the power system dynamics to design non-smooth controller considering the nonlinear ceiling effects from the real physical limits. The general procedure to design controllers via the Hamiltonian structure is also summarized in the paper. The controller design based on the Hamiltonian structure is a completely nonlinear method and there is no lin-earization during the controller design process. Thus, the nonlinear characteristics of the dynamic system are completely kept and fully utilized.
Hamiltonian realization of power system dynamic models and its applications
MA Jin; MEI ShengWei
2008-01-01
Power system is a typical energy system. Because Hamiltonian approaches are closely related to the energy of the physical system, they have been widely re-searched in recent years. The realization of the Hamiltonian structure of the nonlinear dynamic system is the basis for the application of the Hamiltonian methods. However, there have been no systematically investigations on the Ham-iltonian realization for different power system dynamic models so far. This paper researches the Hamiltonian realization in power systems dynamics. Starting from the widely used power system dynamic models, the paper reveals the intrinsic Hamiltonian structure of the nonlinear power system dynamics and also proposes approaches to formulate the power system Hamiltonian structure. Furthermore, this paper shows the application of the Hemiltonian structure of the power system dynamics to design non-smooth controller considering the nonlinear ceiling effects from the real physical limits. The general procedure to design controllers via the Hamiltonian structure is also summarized in the paper. The controller design based on the Hamiltonian structure is a completely nonlinear method and there is no lin-earization during the controller design process. Thus, the nonlinear characteristics of the dynamic system are completely kept and fully utilized.
Dynamic Modeling of Cascading Failure in Power Systems
Song, Jiajia; Ghanavati, Goodarz; Hines, Paul D H
2014-01-01
The modeling of cascading failure in power systems is difficult because of the many different mechanisms involved; no single model captures all of these mechanisms. Understanding the relative importance of these different mechanisms is an important step in choosing which mechanisms need to be modeled for particular types of cascading failure analysis. This work presents a dynamic simulation model of both power networks and protection systems, which can simulate a wider variety of cascading outage mechanisms, relative to existing quasi-steady state (QSS) models. The model allows one to test the impact of different load models and protections on cascading outage sizes. This paper describes each module of the developed dynamic model and demonstrates how different mechanisms interact. In order to test the model we simulated a batch of randomly selected $N-2$ contingencies for several different static load configurations, and found that the distribution of blackout sizes and event lengths from the proposed dynamic...
A Dynamic Systems Theory Model of Visual Perception Development
Coté, Carol A.
2015-01-01
This article presents a model for understanding the development of visual perception from a dynamic systems theory perspective. It contrasts to a hierarchical or reductionist model that is often found in the occupational therapy literature. In this proposed model vision and ocular motor abilities are not foundational to perception, they are seen…
Dynamic wind turbine models in power system simulation tool
Hansen, A.; Jauch, Clemens; Soerensen, P.
The present report describes the dynamic wind turbine models implemented in the power system simulation tool DIgSILENT. The developed models are a part of the results of a national research project, whose overall objective is to create a model database in different simulation tools. The report...... provides a description of the wind turbine modelling, both at a component level and at a system level....
Dynamic inverse models in human-cyber-physical systems
Robinson, Ryan M.; Scobee, Dexter R. R.; Burden, Samuel A.; Sastry, S. Shankar
2016-05-01
Human interaction with the physical world is increasingly mediated by automation. This interaction is characterized by dynamic coupling between robotic (i.e. cyber) and neuromechanical (i.e. human) decision-making agents. Guaranteeing performance of such human-cyber-physical systems will require predictive mathematical models of this dynamic coupling. Toward this end, we propose a rapprochement between robotics and neuromechanics premised on the existence of internal forward and inverse models in the human agent. We hypothesize that, in tele-robotic applications of interest, a human operator learns to invert automation dynamics, directly translating from desired task to required control input. By formulating the model inversion problem in the context of a tracking task for a nonlinear control system in control-a_ne form, we derive criteria for exponential tracking and show that the resulting dynamic inverse model generally renders a portion of the physical system state (i.e., the internal dynamics) unobservable from the human operator's perspective. Under stability conditions, we show that the human can achieve exponential tracking without formulating an estimate of the system's state so long as they possess an accurate model of the system's dynamics. These theoretical results are illustrated using a planar quadrotor example. We then demonstrate that the automation can intervene to improve performance of the tracking task by solving an optimal control problem. Performance is guaranteed to improve under the assumption that the human learns and inverts the dynamic model of the altered system. We conclude with a discussion of practical limitations that may hinder exact dynamic model inversion.
Dynamic Factor Method of Computing Dynamic Mathematical Model for System Simulation
老大中; 吴娟; 杨策; 蒋滋康
2003-01-01
The computational methods of a typical dynamic mathematical model that can describe the differential element and the inertial element for the system simulation are researched. The stability of numerical solutions of the dynamic mathematical model is researched. By means of theoretical analysis, the error formulas, the error sign criteria and the error relationship criterion of the implicit Euler method and the trapezoidal method are given, the dynamic factor affecting the computational accuracy has been found, the formula and the methods of computing the dynamic factor are given. The computational accuracy of the dynamic mathematical model like this can be improved by use of the dynamic factor.
Analysis of Vector-Inflation Models Using Dynamical Systems
Rodriguez, Jose F
2015-01-01
We analyze two possible vector-field models using the techniques of dynamical systems. The first model involves a U(1)-vector field and the second a triad of SU(2)-vector fields. Both models include a gauge-fixing term and a power-law potential. A dynamical system is formulated and it is found that one of the critical points, for each model, corresponds to inflation, the origin of these critical points being the respective gauge-fixing terms. The conditions for the existence of an inflationary era which lasts for at least 60 efolds are studied.
Some generalisations of linear-graph modelling for dynamic systems
de Silva, Clarence W.; Pourazadi, Shahram
2013-11-01
Proper modelling of a dynamic system can benefit analysis, simulation, design, evaluation and control of the system. The linear-graph (LG) approach is suitable for modelling lumped-parameter dynamic systems. By using the concepts of graph trees, it provides a graphical representation of the system, with a direct correspondence to the physical component topology. This paper systematically extends the application of LGs to multi-domain (mixed-domain or multi-physics) dynamic systems by presenting a unified way to represent different domains - mechanical, electrical, thermal and fluid. Preservation of the structural correspondence across domains is a particular advantage of LGs when modelling mixed-domain systems. The generalisation of Thevenin and Norton equivalent circuits to mixed-domain systems, using LGs, is presented. The structure of an LG model may follow a specific pattern. Vector LGs are introduced to take advantage of such patterns, giving a general LG representation for them. Through these vector LGs, the model representation becomes simpler and rather compact, both topologically and parametrically. A new single LG element is defined to facilitate the modelling of distributed-parameter (DP) systems. Examples are presented using multi-domain systems (a motion-control system and a flow-controlled pump), a multi-body mechanical system (robot manipulator) and DP systems (structural rods) to illustrate the application and advantages of the methodologies developed in the paper.
Earth system multi-body restriction dynamics model research
ZHANG; Qingxian; BI; Siwen; GONG; Huili
2006-01-01
Research provides a theoretical basis for an Earth system multi-body mechanics model and its dynamics, including the Earth system multi-body restriction function and its power, Earth system multi-body restriction under decreasing generalized velocity and decreasing partial palstance, the Earth system multi-body decreasing generalized force, a moving mechanics function, and the Earth system multi-body restriction's wattful and wattless forces.
Applications of Nonlinear Dynamics Model and Design of Complex Systems
In, Visarath; Palacios, Antonio
2009-01-01
This edited book is aimed at interdisciplinary, device-oriented, applications of nonlinear science theory and methods in complex systems. In particular, applications directed to nonlinear phenomena with space and time characteristics. Examples include: complex networks of magnetic sensor systems, coupled nano-mechanical oscillators, nano-detectors, microscale devices, stochastic resonance in multi-dimensional chaotic systems, biosensors, and stochastic signal quantization. "applications of nonlinear dynamics: model and design of complex systems" brings together the work of scientists and engineers that are applying ideas and methods from nonlinear dynamics to design and fabricate complex systems.
Mathematical Modeling and Dimension Reduction in Dynamical Systems
Elmegård, Michael
the dimension of a certain class of dynamical systems by construction of k-dimensional submanifolds using the so-called graph transform. The method is suitable for a specific class of problems with spectral gaps, these are often observed. In particular the method is applied to a mechanical system. Furthermore......Processes that change in time are in mathematics typically described by differential equations. These may be applied to model everything from weather forecasting, brain patterns, reaction kinetics, water waves, finance, social dynamics, structural dynamics and electrodynamics to name only a few....... These systems are generically nonlinear and the studies of them often become enormously complex. The framework in which such systems are best understood is via the theory of dynamical systems, where the critical behavior is systematically analyzed by performing bifurcation theory. In that context the current...
Refinement of reduced-models for dynamic systems
2008-01-01
A refinement procedure for the reduced models of structural dynamic systems is presented in this article. The refinement procedure is to "tune" the parameters of a reduced model, which could be obtained from any traditional model reduction scheme, into an improved reduced model. Upon the completion of the refinement, the improved reduced model matches the dynamic characteristics - the chosen structural frequencies and their mode shapes - of the full order model. Mathematically, the procedure to implement the model refinement technique is an application of the recently developed cross-model cross-mode (CMCM) method for model updating. A numerical example of reducing a 5-DOF (degree-of-freedom) classical mass-spring (or shear-building) model into a 3-DOF generalized mass-spring model is demonstrated in this article.
Dynamic Modeling of ThermoFluid Systems
Jensen, Jakob Munch
2003-01-01
formulated. The different models deviate with respect to the detail¿s included and calculation time in connection with simulation. The models have been implemented in a new library named ThermoTwoPhase to the programming language Modelica. A test rig has been built with an evaporator instrumented in a way...
The financial accounting model from a system dynamics' perspective
Melse, E.
2006-01-01
This paper explores the foundation of the financial accounting model. We examine the properties of the accounting equation as the principal algorithm for the design and the development of a System Dynamics model. Key to the perspective is the foundational requirement that resolves the temporal
The financial accounting model from a system dynamics' perspective
Melse, E.
2006-01-01
This paper explores the foundation of the financial accounting model. We examine the properties of the accounting equation as the principal algorithm for the design and the development of a System Dynamics model. Key to the perspective is the foundational requirement that resolves the temporal confl
The financial accounting model from a system dynamics' perspective
Melse, E.
2006-01-01
This paper explores the foundation of the financial accounting model. We examine the properties of the accounting equation as the principal algorithm for the design and the development of a System Dynamics model. Key to the perspective is the foundational requirement that resolves the temporal confl
Automated Qualitative Modeling of Dynamic Physical Systems
1993-01-01
paths of states that match a qualitative history. DATMI differs from QSIM- CHECK in that it first constructs an envisionment of the model, a graph...containing all possible model states where an arc connects two states if one could be a successor of the other. Once it has constructed the envisionment ...DATMI is fairly efficient in finding paths through it that correspond to interpretations of the measurements. However, the number of envisionment
Estimation and Identification for Modeling Dynamic Systems.
1980-02-01
IEEE Transactions on Automatic Control , Vol. AC-20, pp. 775- 782, December 1975. [2] J.M. Mendel...Diego, California, Septer 1975. [3) J.M. Mendel, "Extension of Friedland’s Bias Filtering Technique to a Class of Nonlinear Systems," IEEE Transactions on Automatic Control , Vol...Time Linear Systems," IEEE Transactions on Automatic Control , April 1980. [8] M.S. Grewal and K. Glover, "Relationships
Gorbatov, P.A.; Plyungin, A.V. (Donetskii Politekhnicheskii Institut (USSR))
1990-12-01
Presents calculation methods and mathematical models of dynamic processes that occur in feed systems of cutter loaders with rigid pulling elements. Characteristics of dynamic interactions between driving wheels and the working section of the pulling system are taken into account. Mathematical models are given that describe the dynamic operation of the feed system. A method for calculation of a hydraulic vibration compensating system and its mathematical model is presented. Effectiveness of the vibration compensating system is discussed. 2 refs.
Soil Models and Vehicle System Dynamics
2013-05-07
track links are rigid , and a uniform pressure is applied (see Figure 4 for definition of variables). Models based on the theory of elasticity which do...metals. This approach was later applied to clays by Dafalias and Herrmann [72], extended to pavement based materials by McVay and Taesiri [73], and to...shapes (circles and spheres), although there have been simulations in which non-circular rigid particles are used [80,81]. The disadvantages of using
Modeling mesoscopic phenomena in extended dynamical systems
Bishop, A.; Lomdahl, P.; Jensen, N.G.; Cai, D.S. [Los Alamos National Lab., NM (United States); Mertenz, F. [Bayreuth Univ. (Germany); Konno, Hidetoshi [Tsukuba Univ., Ibaraki (Japan); Salkola, M. [Stanford Univ., CA (United States)
1997-08-01
This is the final report of a three-year, Laboratory-Directed Research and Development project at the Los Alamos National Laboratory (LANL). We have obtained classes of nonlinear solutions on curved geometries that demonstrate a novel interplay between topology and geometric frustration relevant for nanoscale systems. We have analyzed the nature and stability of localized oscillatory nonlinear excitations (multi-phonon bound states) on discrete nonlinear chains, including demonstrations of successful perturbation theories, existence of quasiperiodic excitations, response to external statistical time-dependent fields and point impurities, robustness in the presence of quantum fluctuations, and effects of boundary conditions. We have demonstrated multi-timescale effects for nonlinear Schroedinger descriptions and shown the success of memory function approaches for going beyond these approximations. In addition we have developed a generalized rate-equation framework that allows analysis of the important creation/annihilation processes in driven nonlinear, nonequilibiium systems.
Brillouin spectroscopy of clotting dynamics in a model system
Bustamante-Lopez, Sandra C.; Traverso, Andrew J.; Yakovlev, Vladislav V.; Meissner, Kenith E.
2016-02-01
Keys to successful treatment of disease include early diagnosis and timely treatment. It is hypothesized that early clotting events may contribute to a pro-thrombotic state that exacerbates atherothrombotic vascular disease. Brillouin spectroscopy involves inelastic coupling of light with phonons and enables viscoelastic characterization of samples at the microscale. In this work, we apply Brillouin spectroscopy to a model fibrinogen-thrombin clotting system with the goal of measuring clotting dynamics at the microscale and providing characterization that is not possible with standard rheometric techniques. Here, the clotting dynamics of the model clotting system are measured at various fibrinogen and thrombin concentrations.
Dynamic systems models new methods of parameter and state estimation
2016-01-01
This monograph is an exposition of a novel method for solving inverse problems, a method of parameter estimation for time series data collected from simulations of real experiments. These time series might be generated by measuring the dynamics of aircraft in flight, by the function of a hidden Markov model used in bioinformatics or speech recognition or when analyzing the dynamics of asset pricing provided by the nonlinear models of financial mathematics. Dynamic Systems Models demonstrates the use of algorithms based on polynomial approximation which have weaker requirements than already-popular iterative methods. Specifically, they do not require a first approximation of a root vector and they allow non-differentiable elements in the vector functions being approximated. The text covers all the points necessary for the understanding and use of polynomial approximation from the mathematical fundamentals, through algorithm development to the application of the method in, for instance, aeroplane flight dynamic...
TOWARDS A SYSTEM DYNAMICS MODELING METHOD BASED ON DEMATEL
Fadwa Chaker
2015-05-01
Full Text Available If System Dynamics (SD models are constructed based solely on decision makers' mental models and understanding of the context subject to study, then the resulting systems must necessarily bear some degree of deficiency due to the subjective, limited, and internally inconsistent mental models which led to the conception of these systems. As such, a systematic method for constructing SD models could be essentially helpful in overcoming the biases dictated by the human mind's limited understanding and conceptualization of complex systems. This paper proposes a novel combined method to support SD model construction. The classical Decision Making Trial and Evaluation Laboratory (DEMATEL technique is used to define causal relationships among variables of a system, and to construct the corresponding Impact Relation Maps (IRMs. The novelty of this paper stems from the use of the resulting total influence matrix to derive the system dynamic's Causal Loop Diagram (CLD and then define variable weights in the stock-flow chart equations. This new method allows to overcome the subjectivity bias of SD modeling while projecting DEMATEL in a more dynamic simulation environment, which could significantly improve the strategic choices made by analysts and policy makers.
van Geert, P
2000-01-01
Dynamic systems theory conceives of development as a self-organizational process. Both complexity and order emerge as a product of elementary principles of interaction between components involved in the developmental process. This article presents a dynamic systems model based on a general dual deve
Model Transformers for Dynamical Systems of Dynamic Epistemic Logic
Rendsvig, Rasmus Kræmmer
2015-01-01
I artiklen tages et dynamisk system-perspektiv på dynamisk epistemisk logik, og undersøger opdateringskraften af forskellige måder at definere evolutionsafbildninger på.......I artiklen tages et dynamisk system-perspektiv på dynamisk epistemisk logik, og undersøger opdateringskraften af forskellige måder at definere evolutionsafbildninger på....
Mathematical modeling of earth's dynamical systems a primer
Slingerland, Rudy
2011-01-01
Mathematical Modeling of Earth's Dynamical Systems gives earth scientists the essential skills for translating chemical and physical systems into mathematical and computational models that provide enhanced insight into Earth's processes. Using a step-by-step method, the book identifies the important geological variables of physical-chemical geoscience problems and describes the mechanisms that control these variables. This book is directed toward upper-level undergraduate students, graduate students, researchers, and professionals who want to learn how to abstract complex systems into sets of dynamic equations. It shows students how to recognize domains of interest and key factors, and how to explain assumptions in formal terms. The book reveals what data best tests ideas of how nature works, and cautions against inadequate transport laws, unconstrained coefficients, and unfalsifiable models. Various examples of processes and systems, and ample illustrations, are provided. Students using this text should be f...
Theoretical Model and Dynamic Analysis of Soft Yoke Mooring System
无
2008-01-01
As a popular solution for mooring an FPSO (Floating Production, Storage and Offloading) permanently in shallow water, the soft yoke mooring system has been widely used in ocean oil production activities in the Bohai Bay of China. In order to simulate the interaction mechanism and conduct dynamic analysis of the soft yoke mooring system, a theoretical model with basic dynamic equations is established. A numerical iteration algorithm based on error estimation is developed to solve the equations and calculate the dynamic response of the mooring system due to FPSO motions. Validation is conducted by wave basin experimentation. It is shown that the numerical simulation takes only a few iteration times and the final errors are small. Furthermore, the calculated results of both the static and dynamic responses agree well with those ones obtained by the model test. It indicates that the efficiency, the precision, the reliability and the validity of the developed numerical algorithm and program are rather good. It is proposed to develop a real-time monitoring system to further monitor the dynamic performance of the FPSO with a soft yoke mooring system under various real sea environments.
Nuclear Hybrid Energy System Modeling: RELAP5 Dynamic Coupling Capabilities
Piyush Sabharwall; Nolan Anderson; Haihua Zhao; Shannon Bragg-Sitton; George Mesina
2012-09-01
The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.
From dynamics to structure and function of model biomolecular systems
Fontaine-Vive-Curtaz, F.
2007-01-01
The purpose of this thesis was to extend recent works on structure and dynamics of hydrogen bonded crystals to model biomolecular systems and biological processes. The tools that we have used are neutron scattering (NS) and density functional theory (DFT) and force field (FF) based simulation method
Tinamit: Making coupled system dynamics models accessible to stakeholders
Malard, Julien; Inam Baig, Azhar; Rojas Díaz, Marcela; Hassanzadeh, Elmira; Adamowski, Jan; Tuy, Héctor; Melgar-Quiñonez, Hugo
2017-04-01
Model coupling is increasingly used as a method of combining the best of two models when representing socio-environmental systems, though barriers to successful model adoption by stakeholders are particularly present with the use of coupled models, due to their high complexity and typically low implementation flexibility. Coupled system dynamics - physically-based modelling is a promising method to improve stakeholder participation in environmental modelling while retaining a high level of complexity for physical process representation, as the system dynamics components are readily understandable and can be built by stakeholders themselves. However, this method is not without limitations in practice, including 1) inflexible and complicated coupling methods, 2) difficult model maintenance after the end of the project, and 3) a wide variety of end-user cultures and languages. We have developed the open-source Python-language software tool Tinamit to overcome some of these limitations to the adoption of stakeholder-based coupled system dynamics - physically-based modelling. The software is unique in 1) its inclusion of both a graphical user interface (GUI) and a library of available commands (API) that allow users with little or no coding abilities to rapidly, effectively, and flexibly couple models, 2) its multilingual support for the GUI, allowing users to couple models in their preferred language (and to add new languages as necessary for their community work), and 3) its modular structure allowing for very easy model coupling and modification without the direct use of code, and to which programming-savvy users can easily add support for new types of physically-based models. We discuss how the use of Tinamit for model coupling can greatly increase the accessibility of coupled models to stakeholders, using an example of a stakeholder-built system dynamics model of soil salinity issues in Pakistan coupled with the physically-based soil salinity and water flow model
Dynamic Modeling and Simulation of an Underactuated System
Libardo Duarte Madrid, Juan; Ospina Henao, P. A.; González Querubín, E.
2017-06-01
In this paper, is used the Lagrangian classical mechanics for modeling the dynamics of an underactuated system, specifically a rotary inverted pendulum that will have two equations of motion. A basic design of the system is proposed in SOLIDWORKS 3D CAD software, which based on the material and dimensions of the model provides some physical variables necessary for modeling. In order to verify the results obtained, a comparison the CAD model simulated in the environment SimMechanics of MATLAB software with the mathematical model who was consisting of Euler-Lagrange’s equations implemented in Simulink MATLAB, solved with the ODE23tb method, included in the MATLAB libraries for the solution of systems of equations of the type and order obtained. This article also has a topological analysis of pendulum trajectories through a phase space diagram, which allows the identification of stable and unstable regions of the system.
MATHEMATICAL MODEL FOR ESTIMATION OF MECHANICAL SYSTEM CONDITION IN DYNAMICS
D. N. Mironov
2011-01-01
Full Text Available The paper considers an estimation of a complicated mechanical system condition in dynamics with due account of material degradation and accumulation of micro-damages. An element of continuous medium has been simulated and described with the help of a discrete element. The paper contains description of a model for determination of mechanical system longevity in accordance with number of cycles and operational period.
Modelling and control of dynamic systems using gaussian process models
Kocijan, Juš
2016-01-01
This monograph opens up new horizons for engineers and researchers in academia and in industry dealing with or interested in new developments in the field of system identification and control. It emphasizes guidelines for working solutions and practical advice for their implementation rather than the theoretical background of Gaussian process (GP) models. The book demonstrates the potential of this recent development in probabilistic machine-learning methods and gives the reader an intuitive understanding of the topic. The current state of the art is treated along with possible future directions for research. Systems control design relies on mathematical models and these may be developed from measurement data. This process of system identification, when based on GP models, can play an integral part of control design in data-based control and its description as such is an essential aspect of the text. The background of GP regression is introduced first with system identification and incorporation of prior know...
Dynamic Logics of Dynamical Systems
Platzer, André
2012-01-01
We survey dynamic logics for specifying and verifying properties of dynamical systems, including hybrid systems, distributed hybrid systems, and stochastic hybrid systems. A dynamic logic is a first-order modal logic with a pair of parametrized modal operators for each dynamical system to express necessary or possible properties of their transition behavior. Due to their full basis of first-order modal logic operators, dynamic logics can express a rich variety of system properties, including safety, controllability, reactivity, liveness, and quantified parametrized properties, even about relations between multiple dynamical systems. In this survey, we focus on some of the representatives of the family of differential dynamic logics, which share the ability to express properties of dynamical systems having continuous dynamics described by various forms of differential equations. We explain the dynamical system models, dynamic logics of dynamical systems, their semantics, their axiomatizations, and proof calcul...
Dynamic model for power systems with multiple FACTS controllers
Radman, Ghadir; Raje, Reshma S. [Center for Energy Systems Research, Tennessee Technological University, P.O. Box 5004, Cookeville, TN 38505 (United States)
2008-03-15
Computer simulation and analysis of power systems are necessary for both planning and operation. This requires an appropriate mathematical model of the system that includes many inter-related linear/nonlinear differential and algebraic equations. Such mathematical model is also needed for the design of globally coordinated controllers to improve power system dynamic performance and stability. This paper presents a procedure for finding comprehensive dynamic models of power systems fitted with shunt and/or series connected FACTS controllers such as STATCOM, SSSC, and UPFC. In this procedure, individual components of a power system are modeled using appropriate frame of references. Then all related equations are transformed to a common network frame of reference and tied to each other through the Y-matrix of the transmission network. The procedure is tested on the Western System Coordinating Council (WSCC) test system including FACTS controllers by performing computer simulations of the system for three-phase short circuit faults. MATLAB/Simulink software package is used for the simulations. (author)
Comprehensive Gravity and Dynamics Model Determination of Binary Asteroid Systems
Fahnestock, Eugene G.
2009-09-01
I present the development of additional tools within the framework of JPL's in-house Mirage / Orbit Determination Program (ODP) software to allow the determination of a comprehensive gravity and dynamics model for any binary asteroid system potentially visited by a spacecraft rendezvous mission. This involves a concurrent global solution for the gravity fields of both components, sufficient parametric description of their fully-coupled translational and rotational dynamics, the spacecraft state, and all other relevant force model parameters. This estimation process primarily uses spacecraft radio tracking data (range and Doppler measurements), supplemented by in-situ imaging observations data types. A solution for the gravity field (gravity analysis) and a simultaneous solution for the spacecraft motion and other system properties has been performed before using the ODP for solitary irregular small solar system bodies (e.g. Eros, visited by the NEAR mission), but never for any closely gravitationally bound pair of irregular small solar system bodies. I am expanding NASA's tool set to allow the latter, in preparation for potential future spacecraft rendezvous missions. This is nontrivial, because of the need to incorporate propagation of the binary system's fully-coupled rigid-body dynamical model either along with the spacecraft state within Mirage/ODP or "offline", followed by interpolating an appropriate "binary dynamics ephemeris” representation. Further, this model optionally incorporates formulations for body gravity fields not previously used in this context, and it can be computationally very expensive. However, successfully performing this model determination at a binary asteroid yields valuable science results concerning internal mass distributions and structures of the components and insight into the system's formation and evolution. In this poster I present my current progress in the development of this capability and results for the quality of science
Residual Minimizing Model Reduction for Parameterized Nonlinear Dynamical Systems
Constantine, Paul G
2010-01-01
We present a method for approximating the solution of a parameterized, nonlinear dynamical (or static) system using an affine combination of solutions computed at other points in the input parameter space. The coefficients of the affine combination are computed with a nonlinear least squares procedure that minimizes the residual of the dynamical system. The approximation properties of this residual minimizing scheme are comparable to existing reduced basis and POD-Galerkin model reduction methods, but its implementation requires only independent evaluations of the nonlinear forcing function. We prove some interesting characteristics of the scheme including uniqueness and an interpolatory property, and we present heuristics for mitigating the effects of the ill-conditioning and reducing the overall cost of the method. We apply the method to representative numerical examples from kinetics - a three state system with one parameter controlling the stiffness - and groundwater modeling - a nonlinear parabolic PDE w...
Recursive modular modelling methodology for lumped-parameter dynamic systems.
Orsino, Renato Maia Matarazzo
2017-08-01
This paper proposes a novel approach to the modelling of lumped-parameter dynamic systems, based on representing them by hierarchies of mathematical models of increasing complexity instead of a single (complex) model. Exploring the multilevel modularity that these systems typically exhibit, a general recursive modelling methodology is proposed, in order to conciliate the use of the already existing modelling techniques. The general algorithm is based on a fundamental theorem that states the conditions for computing projection operators recursively. Three procedures for these computations are discussed: orthonormalization, use of orthogonal complements and use of generalized inverses. The novel methodology is also applied for the development of a recursive algorithm based on the Udwadia-Kalaba equation, which proves to be identical to the one of a Kalman filter for estimating the state of a static process, given a sequence of noiseless measurements representing the constraints that must be satisfied by the system.
Parameter Estimation for Dynamic Model of the Financial System
Veronika Novotná
2015-01-01
Full Text Available Economy can be considered a large, open system which is influenced by fluctuations, both internal and external. Based on non-linear dynamics theory, the dynamic models of a financial system try to provide a new perspective by explaining the complicated behaviour of the system not as a result of external influences or random behaviour, but as a result of the behaviour and trends of the system’s internal structures. The present article analyses a chaotic financial system from the point of view of determining the time delay of the model variables – the interest rate, investment demand, and price index. The theory is briefly explained in the first chapters of the paper and serves as a basis for formulating the relations. This article aims to determine the appropriate length of time delay variables in a dynamic model of the financial system in order to express the real economic situation and respect the effect of the history of factors under consideration. The determination of the delay length is carried out for the time series representing Euro area. The methodology for the determination of the time delay is illustrated by a concrete example.
Dynamic wind turbine models in power system simulation tool
Hansen, Anca D.; Iov, Florin; Sørensen, Poul
This report presents a collection of models and control strategies developed and implemented in the power system simulation tool PowerFactory DIgSILENT for different wind turbine concepts. It is the second edition of Risø-R-1400(EN) and it gathers and describes a whole wind turbine model database...... strategies have different goals e.g. fast response over disturbances, optimum power efficiency over a wider range of wind speeds, voltage ride-through capability including grid support. A dynamic model of a DC connection for active stall wind farms to the grid including the control is also implemented...
A system dynamics model to determine products mix
Mahtab Hajghasem
2014-02-01
Full Text Available This paper presents an implementation of system dynamics model to determine appropriate product mix by considering various factors such as labor, materials, overhead, etc. for an Iranian producer of cosmetic and sanitary products. The proposed model of this paper considers three hypotheses including the relationship between product mix and profitability, optimum production capacity and having minimum amount of storage to take advantage of low cost production. The implementation of system dynamics on VENSIM software package has confirmed all three hypotheses of the survey and suggested that in order to reach better mix product, it is necessary to reach optimum production planning, take advantage of all available production capacities and use inventory management techniques.
HE; Chunyang; SHI; Peijun; CHEN; Jin; Li; Xiaobing; PAN; Ya
2005-01-01
Modeling land use scenario changes and its potential impacts on the structure and function of the ecosystem in the typical regions are helpful to understanding the interactive mechanism between land use system and ecological system. A Land Use Scenario Dynamics (LUSD) model by the integration of System Dynamics (SD) model and Cellular Automata (CA) model is developed with land use scenario changes in northern China in the next 20 years simulated in this paper. The basic idea of LUSD model is to simulate the land use scenario demands by using SD model at first, then allocate the land use scenario patterns at the local scale with the considerations of land use suitability, inheritance ability and neighborhood effect by using CA model to satisfy the balance between land use scenario demands and supply. The application of LUSD model in northern China suggests that the model has the ability to reflect the complex behavior of land use system at different scales to some extent and is a useful tool for assessing the potential impacts of land use system on ecological system. In addition, the simulated results also indicate that obvious land use changes will take place in the farming-pastoral zone of northern China in the next 20 years with cultivated land and urban land being the most active land use types.
Solitons in spiraling systems: a continuum model for dynamical phyllotaxis
Nisoli, Cristiano [Los Alamos National Laboratory
2009-01-01
A novel, protean, topological soliton has been shown to emerge in systems of repulsive particles in cylindrical geometries, whose statics is described by the number-theoretical objects of Phyllotaxis. We present a minimal and local continuum model that can explain many of the features of the phyllotactic soliton, such as speed, screw shift, energy transport and, for Wigner crystal on a nanotube, charge. The treatment applies just as well in general to solitons in spiraling systems. Unlike e.g. Sine-Gornon-like solitons, our soliton can exist between non degenerate structure, implies a power flow through the system, dynamics of the domains it separates, and possesses pulses, both static and dynamic. Its applications include from charge transfer in Wigner Crystals on nanotubes or A to B-DNA transitions.
Filtering multiscale dynamical systems in the presence of model error
Harlim, John
2013-01-01
In this review article, we report two important competing data assimilation schemes that were developed in the past 20 years, discuss the current methods that are operationally used in weather forecasting applications, and point out one major challenge in data assimilation community: "utilize these existing schemes in the presence of model error". The aim of this paper is to provide theoretical guidelines to mitigate model error in practical applications of filtering multiscale dynamical systems with reduced models. This is a prototypical situation in many applications due to limited ability to resolve the smaller scale processes as well as the difficulty to model the interaction across scales. We present simple examples to point out the importance of accounting for model error when the separation of scales are not apparent. These examples also elucidate the necessity of treating model error as a stochastic process in a nontrivial fashion for optimal filtering, in the sense that the mean and covariance estima...
A dynamical systems model for nuclear power plant risk
Hess, Stephen Michael
The recent transition to an open access generation marketplace has forced nuclear plant operators to become much more cost conscious and focused on plant performance. Coincidentally, the regulatory perspective also is in a state of transition from a command and control framework to one that is risk-informed and performance-based. Due to these structural changes in the economics and regulatory system associated with commercial nuclear power plant operation, there is an increased need for plant management to explicitly manage nuclear safety risk. Application of probabilistic risk assessment techniques to model plant hardware has provided a significant contribution to understanding the potential initiating events and equipment failures that can lead to core damage accidents. Application of the lessons learned from these analyses has supported improved plant operation and safety over the previous decade. However, this analytical approach has not been nearly as successful in addressing the impact of plant processes and management effectiveness on the risks of plant operation. Thus, the research described in this dissertation presents a different approach to address this issue. Here we propose a dynamical model that describes the interaction of important plant processes among themselves and their overall impact on nuclear safety risk. We first provide a review of the techniques that are applied in a conventional probabilistic risk assessment of commercially operating nuclear power plants and summarize the typical results obtained. The limitations of the conventional approach and the status of research previously performed to address these limitations also are presented. Next, we present the case for the application of an alternative approach using dynamical systems theory. This includes a discussion of previous applications of dynamical models to study other important socio-economic issues. Next, we review the analytical techniques that are applicable to analysis of
System dynamic modeling on construction waste management in Shenzhen, China.
Tam, Vivian W Y; Li, Jingru; Cai, Hong
2014-05-01
This article examines the complexity of construction waste management in Shenzhen, Mainland China. In-depth analysis of waste generation, transportation, recycling, landfill and illegal dumping of various inherent management phases is explored. A system dynamics modeling using Stella model is developed. Effects of landfill charges and also penalties from illegal dumping are also simulated. The results show that the implementation of comprehensive policy on both landfill charges and illegal dumping can effectively control the illegal dumping behavior, and achieve comprehensive construction waste minimization. This article provides important recommendations for effective policy implementation and explores new perspectives for Shenzhen policy makers.
College Teaching Quality Evaluation Based on System Dynamics Model
Zheng Kang-ning
2016-01-01
Full Text Available This paper analyzes the main factors that influence the teaching quality and the cause and effect relationship between them, using system dynamics to establish the evaluation model of teaching quality in Colleges and universities. Taking a college A for example, this model is induced in the simulation of teaching quality, then the change process of teaching quality and feedback mechanism between these effective factors is proposed, as well as the teaching quality change under different policy parameters. And with the purpose of improving teaching quality, some measures are put forward, including staff quality, management quality, organization quality and environment quality.
Sustainable infrastructure system modeling under uncertainties and dynamics
Huang, Yongxi
Infrastructure systems support human activities in transportation, communication, water use, and energy supply. The dissertation research focuses on critical transportation infrastructure and renewable energy infrastructure systems. The goal of the research efforts is to improve the sustainability of the infrastructure systems, with an emphasis on economic viability, system reliability and robustness, and environmental impacts. The research efforts in critical transportation infrastructure concern the development of strategic robust resource allocation strategies in an uncertain decision-making environment, considering both uncertain service availability and accessibility. The study explores the performances of different modeling approaches (i.e., deterministic, stochastic programming, and robust optimization) to reflect various risk preferences. The models are evaluated in a case study of Singapore and results demonstrate that stochastic modeling methods in general offers more robust allocation strategies compared to deterministic approaches in achieving high coverage to critical infrastructures under risks. This general modeling framework can be applied to other emergency service applications, such as, locating medical emergency services. The development of renewable energy infrastructure system development aims to answer the following key research questions: (1) is the renewable energy an economically viable solution? (2) what are the energy distribution and infrastructure system requirements to support such energy supply systems in hedging against potential risks? (3) how does the energy system adapt the dynamics from evolving technology and societal needs in the transition into a renewable energy based society? The study of Renewable Energy System Planning with Risk Management incorporates risk management into its strategic planning of the supply chains. The physical design and operational management are integrated as a whole in seeking mitigations against the
A Dynamical System Analysis of Three Fluid cosmological Model
Mahata, Nilanjana
2015-01-01
In Friedman-Robertson-Walker flat spacetime, we consider a three fluid cosmological model which contains dark matter, dark energy and baryonic matter in the form of perfect fluid with a barotropic equation of state. Dark matter is taken in form of dust and dark energy is described by a scalar field with a potential $V(\\phi)$. Einstein's field equations are reduced to an autonomous dynamical system by suitable redefinition of basic variables. Considering exponential potential for the scalar field, critical points are obtained for the autonomous system. Finally stability of the critical points and cosmological implications are analyzed.
Dynamic Response of Linear Mechanical Systems Modeling, Analysis and Simulation
Angeles, Jorge
2012-01-01
Dynamic Response of Linear Mechanical Systems: Modeling, Analysis and Simulation can be utilized for a variety of courses, including junior and senior-level vibration and linear mechanical analysis courses. The author connects, by means of a rigorous, yet intuitive approach, the theory of vibration with the more general theory of systems. The book features: A seven-step modeling technique that helps structure the rather unstructured process of mechanical-system modeling A system-theoretic approach to deriving the time response of the linear mathematical models of mechanical systems The modal analysis and the time response of two-degree-of-freedom systems—the first step on the long way to the more elaborate study of multi-degree-of-freedom systems—using the Mohr circle Simple, yet powerful simulation algorithms that exploit the linearity of the system for both single- and multi-degree-of-freedom systems Examples and exercises that rely on modern computational toolboxes for both numerical and symbolic compu...
A "Kane's Dynamics" Model for the Active Rack Isolation System
Hampton, R. D.; Beech, G. S.; Rao, N. N. S.; Rupert, J. K.; Kim, Y. K.
2001-01-01
Many microgravity space science experiments require vibratory acceleration levels unachievable without active isolation. The Boeing Corporation's Active Rack Isolation System (ARIS) employs a novel combination of magnetic actuation and mechanical linkages to address these isolation requirements on the International Space Station (ISS). ARIS provides isolation at the rack (International Standard Payload Rack (ISPR)) level. Effective model-based vibration isolation requires: (1) an appropriate isolation device, (2) an adequate dynamic (i.e., mathematical) model of that isolator, and (3) a suitable, corresponding controller. ARIS provides the ISS response to the first requirement. This paper presents one response to the second, in a state space framework intended to facilitate an optimal-controls approach to the third. The authors use "Kane's Dynamics" to develop a state-space, analytical (algebraic) set of linearized equations of motion for ARIS.
A "Kanes's Dynamics" Model for the Active Rack Isolation System
Hampton, R. David; Beech, Geoffrey
1999-01-01
Many microgravity space-science experiments require vibratory acceleration levels unachievable without active isolation. The Boeing Corporation's Active Rack Isolation System (ARIS) employs a novel combination of magnetic actuation and mechanical linkages, to address these isolation requirements on the International Space Station (ISS). ARIS provides isolation at the rack (international Standard Payload Rack, or ISPR) level. Effective model-based vibration isolation requires (1) an appropriate isolation device, (2) an adequate dynamic (i.e., mathematical) model of that isolator, and (3) a suitable, corresponding controller. ARIS provides the ISS response to the first requirement. This paper presents one response to the second, in a state-space framework intended to facilitate an optimal-controls approach to the third. The authors use "Kane's Dynamics" to develop an state-space, analytical (algebraic) set of linearized equations of motion for ARIS.
Bridging emotion theory and neurobiology through dynamic systems modeling.
Lewis, Marc D
2005-04-01
Efforts to bridge emotion theory with neurobiology can be facilitated by dynamic systems (DS) modeling. DS principles stipulate higher-order wholes emerging from lower-order constituents through bidirectional causal processes--offering a common language for psychological and neurobiological models. After identifying some limitations of mainstream emotion theory, I apply DS principles to emotion-cognition relations. I then present a psychological model based on this reconceptualization, identifying trigger, self-amplification, and self-stabilization phases of emotion-appraisal states, leading to consolidating traits. The article goes on to describe neural structures and functions involved in appraisal and emotion, as well as DS mechanisms of integration by which they interact. These mechanisms include nested feedback interactions, global effects of neuromodulation, vertical integration, action-monitoring, and synaptic plasticity, and they are modeled in terms of both functional integration and temporal synchronization. I end by elaborating the psychological model of emotion-appraisal states with reference to neural processes.
Study on system dynamics of evolutionary mix-game models
Gou, Chengling; Guo, Xiaoqian; Chen, Fang
2008-11-01
Mix-game model is ameliorated from an agent-based MG model, which is used to simulate the real financial market. Different from MG, there are two groups of agents in Mix-game: Group 1 plays a majority game and Group 2 plays a minority game. These two groups of agents have different bounded abilities to deal with historical information and to count their own performance. In this paper, we modify Mix-game model by assigning the evolution abilities to agents: if the winning rates of agents are smaller than a threshold, they will copy the best strategies the other agent has; and agents will repeat such evolution at certain time intervals. Through simulations this paper finds: (1) the average winning rates of agents in Group 1 and the mean volatilities increase with the increases of the thresholds of Group 1; (2) the average winning rates of both groups decrease but the mean volatilities of system increase with the increase of the thresholds of Group 2; (3) the thresholds of Group 2 have greater impact on system dynamics than the thresholds of Group 1; (4) the characteristics of system dynamics under different time intervals of strategy change are similar to each other qualitatively, but they are different quantitatively; (5) As the time interval of strategy change increases from 1 to 20, the system behaves more and more stable and the performances of agents in both groups become better also.
Sustainable Deforestation Evaluation Model and System Dynamics Analysis
Huirong Feng
2014-01-01
Full Text Available The current study used the improved fuzzy analytic hierarchy process to construct a sustainable deforestation development evaluation system and evaluation model, which has refined a diversified system to evaluate the theory of sustainable deforestation development. Leveraging the visual image of the system dynamics causal and power flow diagram, we illustrated here that sustainable forestry development is a complex system that encompasses the interaction and dynamic development of ecology, economy, and society and has reflected the time dynamic effect of sustainable forestry development from the three combined effects. We compared experimental programs to prove the direct and indirect impacts of the ecological, economic, and social effects of the corresponding deforest techniques and fully reflected the importance of developing scientific and rational ecological harvesting and transportation technologies. Experimental and theoretical results illustrated that light cableway skidding is an ecoskidding method that is beneficial for the sustainable development of resources, the environment, the economy, and society and forecasted the broad potential applications of light cableway skidding in timber production technology. Furthermore, we discussed the sustainable development countermeasures of forest ecosystems from the aspects of causality, interaction, and harmony.
Sustainable deforestation evaluation model and system dynamics analysis.
Feng, Huirong; Lim, C W; Chen, Liqun; Zhou, Xinnian; Zhou, Chengjun; Lin, Yi
2014-01-01
The current study used the improved fuzzy analytic hierarchy process to construct a sustainable deforestation development evaluation system and evaluation model, which has refined a diversified system to evaluate the theory of sustainable deforestation development. Leveraging the visual image of the system dynamics causal and power flow diagram, we illustrated here that sustainable forestry development is a complex system that encompasses the interaction and dynamic development of ecology, economy, and society and has reflected the time dynamic effect of sustainable forestry development from the three combined effects. We compared experimental programs to prove the direct and indirect impacts of the ecological, economic, and social effects of the corresponding deforest techniques and fully reflected the importance of developing scientific and rational ecological harvesting and transportation technologies. Experimental and theoretical results illustrated that light cableway skidding is an ecoskidding method that is beneficial for the sustainable development of resources, the environment, the economy, and society and forecasted the broad potential applications of light cableway skidding in timber production technology. Furthermore, we discussed the sustainable development countermeasures of forest ecosystems from the aspects of causality, interaction, and harmony.
Dynamical system approach to running Λ cosmological models
Stachowski, Aleksander [Jagiellonian University, Astronomical Observatory, Krakow (Poland); Szydlowski, Marek [Jagiellonian University, Astronomical Observatory, Krakow (Poland); Jagiellonian University, Mark Kac Complex Systems Research Centre, Krakow (Poland)
2016-11-15
We study the dynamics of cosmological models with a time dependent cosmological term. We consider five classes of models; two with the non-covariant parametrization of the cosmological term Λ: Λ(H)CDM cosmologies, Λ(a)CDM cosmologies, and three with the covariant parametrization of Λ: Λ(R)CDM cosmologies, where R(t) is the Ricci scalar, Λ(φ)-cosmologies with diffusion, Λ(X)-cosmologies, where X = (1)/(2)g{sup αβ}∇{sub α}∇{sub β}φ is a kinetic part of the density of the scalar field. We also consider the case of an emergent Λ(a) relation obtained from the behaviour of trajectories in a neighbourhood of an invariant submanifold. In the study of the dynamics we used dynamical system methods for investigating how an evolutionary scenario can depend on the choice of special initial conditions. We show that the methods of dynamical systems allow one to investigate all admissible solutions of a running Λ cosmology for all initial conditions. We interpret Alcaniz and Lima's approach as a scaling cosmology. We formulate the idea of an emergent cosmological term derived directly from an approximation of the exact dynamics. We show that some non-covariant parametrization of the cosmological term like Λ(a), Λ(H) gives rise to the non-physical behaviour of trajectories in the phase space. This behaviour disappears if the term Λ(a) is emergent from the covariant parametrization. (orig.)
Forced versus coupled dynamics in Earth system modelling and prediction
B. Knopf
2005-01-01
Full Text Available We compare coupled nonlinear climate models and their simplified forced counterparts with respect to predictability and phase space topology. Various types of uncertainty plague climate change simulation, which is, in turn, a crucial element of Earth System modelling. Since the currently preferred strategy for simulating the climate system, or the Earth System at large, is the coupling of sub-system modules (representing, e.g. atmosphere, oceans, global vegetation, this paper explicitly addresses the errors and indeterminacies generated by the coupling procedure. The focus is on a comparison of forced dynamics as opposed to fully, i.e. intrinsically, coupled dynamics. The former represents a particular type of simulation, where the time behaviour of one complex systems component is prescribed by data or some other external information source. Such a simplifying technique is often employed in Earth System models in order to save computing resources, in particular when massive model inter-comparisons need to be carried out. Our contribution to the debate is based on the investigation of two representative model examples, namely (i a low-dimensional coupled atmosphere-ocean simulator, and (ii a replica-like simulator embracing corresponding components.Whereas in general the forced version (ii is able to mimic its fully coupled counterpart (i, we show in this paper that for a considerable fraction of parameter- and state-space, the two approaches qualitatively differ. Here we take up a phenomenon concerning the predictability of coupled versus forced models that was reported earlier in this journal: the observation that the time series of the forced version display artificial predictive skill. We present an explanation in terms of nonlinear dynamical theory. In particular we observe an intermittent version of artificial predictive skill, which we call on-off synchronization, and trace it back to the appearance of unstable periodic orbits. We also
Bagdasaryan, Armen
2008-01-01
We present a method of discrete modeling and analysis of multilevel dynamics of complex large-scale hierarchical dynamic systems subject to external dynamic control mechanism. Architectural model of information system supporting simulation and analysis of dynamic processes and development scenarios (strategies) of complex large-scale hierarchical systems is also proposed.
System Dynamics Modelling of the Power Sector in Mauritius
Deenapanray, Prakash N. K.; Bassi, Andrea M.
2015-12-01
A system dynamics model has been developed for the power sector of Mauritius, which captures a range of complex interactions between the economic, social and environmental aspects of the national economy, with deeper emphasis on the role of energy in these interactions. The model has been validated by replicating the historical trends of key development indicators, and its results were compared to the projections of the national utility company. The validation process shows that the model provides a faithful representation of the actual electricity sector of Mauritius, and can be easily adapted to the use of different assumptions. This paper describes the main characteristics of the model and its results as compared to electricity demand projections carried out by the Central Electricity Board to 2022. The results suggest that further analysis could be done to test alternative low carbon investment scenarios.
System Dynamics Modelling of the Power Sector in Mauritius
Deenapanray Prakash N. K.
2015-12-01
Full Text Available A system dynamics model has been developed for the power sector of Mauritius, which captures a range of complex interactions between the economic, social and environmental aspects of the national economy, with deeper emphasis on the role of energy in these interactions. The model has been validated by replicating the historical trends of key development indicators, and its results were compared to the projections of the national utility company. The validation process shows that the model provides a faithful representation of the actual electricity sector of Mauritius, and can be easily adapted to the use of different assumptions. This paper describes the main characteristics of the model and its results as compared to electricity demand projections carried out by the Central Electricity Board to 2022. The results suggest that further analysis could be done to test alternative low carbon investment scenarios.
System Dynamics Modelling in CRM: Window Fashions Gallery
F.T. Yuen
2010-09-01
Full Text Available The core research issue on which this study focuses is customer relationship management (CRM in a designated window fashions firm. A system dynamics-based CRM model is developed to help evaluate the effectiveness of CRM in the firm and examine factors affecting customer satisfaction. Different relationships and linkages between the firm, its employees, and its customers are identified to establish feedback loops that analyze the system over time. The analysis of the CRM model shows that employee satisfaction is the key leverage point affecting customer satisfaction, number of customers, and sales volume of the firm. Product attractiveness and service quality also play an important role in influencing the level of customer satisfaction. On the other hand, advertising and employee training have only minor effects on customer satisfaction.
DIRECT INTEGRATION METHODS WITH INTEGRAL MODEL FOR DYNAMIC SYSTEMS
吕和祥; 于洪洁; 裘春航
2001-01-01
A new approach which is a direct integration method with integral model ( DIM IM) to solve dynamic governing equations is presented. The governing equations are integrated into the integral equations. An algorithm with explicit and predict-correct and selfstarting and fourth-order accuracy to integrate the integral equations is given.Theoretical analysis and numerical examples show that DIM-IM discribed in this paper suitable for strong nonlinear and non-conservative system have higher accuracy than central difference, Houbolt , Newmark and Wilson- Theta methods.
Mechanism of scuffing——a dynamic system model
2001-01-01
Scuffing, a major cause of failure in automobile engines, is considered as a dynamicprocess in this study. Local adhesions may occur randomly in lubricated contacts due to the exis-tence of asperity contact and breakdown of lubricating films. Scuffing would take place if the localevents develop rapidly into a large-scale plastic deformation and catastrophic failure. A systemdynamic established in the present paper allows one to predict dynamic behavior of a tribologicalsystem through numerical solutions of a group of differential equations. A simplified analysis basedon this model confirms that the system will develop into a state of instability if the friction force atthe interface increases with temperature.
A dynamical system connected with inhomogeneous 6-vertex model
Korepanov, I G
1994-01-01
A completely integrable dynamical system in discrete time is studied by means of algebraic geometry. The system is associated with factorization of a linear operator acting in a direct sum of three linear spaces into a product of three operators, each acting nontrivially only in a direct sum of two spaces, and the following reversing of the order of factors. There exists a reduction of the system interpreted as a classical field theory in 2+1-dimensional space-time, the integrals of motion coinciding, in essence, with the statistical sum of an inhomogeneous 6-vertex free-fermion model on the 2-dimensional Kagomé lattice (here the statistical sum is a function of two parameters). Thus, a connection with the "local", or "generalized", quantum Yang-Baxter equation is revealed.
Best practices for system dynamics model design and construction with powersim studio.
Malczynski, Leonard A.
2011-06-01
This guide addresses software quality in the construction of Powersim{reg_sign} Studio 8 system dynamics simulation models. It is the result of almost ten years of experience with the Powersim suite of system dynamics modeling tools (Constructor and earlier Studio versions). It is a guide that proposes a common look and feel for the construction of Powersim Studio system dynamics models.
Dynamic information architecture system (DIAS) : multiple model simulation management.
Simunich, K. L.; Sydelko, P.; Dolph, J.; Christiansen, J.
2002-05-13
Dynamic Information Architecture System (DIAS) is a flexible, extensible, object-based framework for developing and maintaining complex multidisciplinary simulations of a wide variety of application contexts. The modeling domain of a specific DIAS-based simulation is determined by (1) software Entity (domain-specific) objects that represent the real-world entities that comprise the problem space (atmosphere, watershed, human), and (2) simulation models and other data processing applications that express the dynamic behaviors of the domain entities. In DIAS, models communicate only with Entity objects, never with each other. Each Entity object has a number of Parameter and Aspect (of behavior) objects associated with it. The Parameter objects contain the state properties of the Entity object. The Aspect objects represent the behaviors of the Entity object and how it interacts with other objects. DIAS extends the ''Object'' paradigm by abstraction of the object's dynamic behaviors, separating the ''WHAT'' from the ''HOW.'' DIAS object class definitions contain an abstract description of the various aspects of the object's behavior (the WHAT), but no implementation details (the HOW). Separate DIAS models/applications carry the implementation of object behaviors (the HOW). Any model deemed appropriate, including existing legacy-type models written in other languages, can drive entity object behavior. The DIAS design promotes plug-and-play of alternative models, with minimal recoding of existing applications. The DIAS Context Builder object builds a constructs or scenario for the simulation, based on developer specification and user inputs. Because DIAS is a discrete event simulation system, there is a Simulation Manager object with which all events are processed. Any class that registers to receive events must implement an event handler (method) to process the event during execution. Event handlers
REPLACEMENT ANALYSIS FOR DEFECTED PRODUCTS: A SYSTEM DYNAMIC MODELING APPROACH
R. N. Mall
2012-07-01
Full Text Available The current growth in present time due to globalization of markets means more competition for companies especially those in developing economies that have limited analytical tools for business decisions. Market demand uncertainty affects the performance and behavior of the planning processes used by production to satisfy sales. This uncertainty and the resulting instability in the production schedules affect the relationships with the suppliers from whom the company purchases raw materials and component parts. In order to solve the problem, this research developed a SCM system dynamics model that helps business managers and researchers in SCM make better and informed decisions for close life cycle products. The work is focused on the study of behavior of replacement in a supply chain related to closed life-cycle products by system dynamics, that are goods produced and sold and if any defect is found the product is replaced. This study includes the effect of replacement in profit and other variables. This work also includes the development of a model in the system and validation of the model. In this model the relation of the variables like customer, demand, cost, price is studied and the work is focused that what will be the optimum value of the defected product. It has been assumed that if we want to decrease the defected product the cost of the production will increase and that will reduce the profit and if we want to increase the defect the no of customers will decrease and their demand will decrease and this will decrease the profit.
Lessons Learned from Quantitative Dynamical Modeling in Systems Biology
Bachmann, Julie; Matteson, Andrew; Schelke, Max; Kaschek, Daniel; Hug, Sabine; Kreutz, Clemens; Harms, Brian D.; Theis, Fabian J.; Klingmüller, Ursula; Timmer, Jens
2013-01-01
Due to the high complexity of biological data it is difficult to disentangle cellular processes relying only on intuitive interpretation of measurements. A Systems Biology approach that combines quantitative experimental data with dynamic mathematical modeling promises to yield deeper insights into these processes. Nevertheless, with growing complexity and increasing amount of quantitative experimental data, building realistic and reliable mathematical models can become a challenging task: the quality of experimental data has to be assessed objectively, unknown model parameters need to be estimated from the experimental data, and numerical calculations need to be precise and efficient. Here, we discuss, compare and characterize the performance of computational methods throughout the process of quantitative dynamic modeling using two previously established examples, for which quantitative, dose- and time-resolved experimental data are available. In particular, we present an approach that allows to determine the quality of experimental data in an efficient, objective and automated manner. Using this approach data generated by different measurement techniques and even in single replicates can be reliably used for mathematical modeling. For the estimation of unknown model parameters, the performance of different optimization algorithms was compared systematically. Our results show that deterministic derivative-based optimization employing the sensitivity equations in combination with a multi-start strategy based on latin hypercube sampling outperforms the other methods by orders of magnitude in accuracy and speed. Finally, we investigated transformations that yield a more efficient parameterization of the model and therefore lead to a further enhancement in optimization performance. We provide a freely available open source software package that implements the algorithms and examples compared here. PMID:24098642
Lessons learned from quantitative dynamical modeling in systems biology.
Andreas Raue
Full Text Available Due to the high complexity of biological data it is difficult to disentangle cellular processes relying only on intuitive interpretation of measurements. A Systems Biology approach that combines quantitative experimental data with dynamic mathematical modeling promises to yield deeper insights into these processes. Nevertheless, with growing complexity and increasing amount of quantitative experimental data, building realistic and reliable mathematical models can become a challenging task: the quality of experimental data has to be assessed objectively, unknown model parameters need to be estimated from the experimental data, and numerical calculations need to be precise and efficient. Here, we discuss, compare and characterize the performance of computational methods throughout the process of quantitative dynamic modeling using two previously established examples, for which quantitative, dose- and time-resolved experimental data are available. In particular, we present an approach that allows to determine the quality of experimental data in an efficient, objective and automated manner. Using this approach data generated by different measurement techniques and even in single replicates can be reliably used for mathematical modeling. For the estimation of unknown model parameters, the performance of different optimization algorithms was compared systematically. Our results show that deterministic derivative-based optimization employing the sensitivity equations in combination with a multi-start strategy based on latin hypercube sampling outperforms the other methods by orders of magnitude in accuracy and speed. Finally, we investigated transformations that yield a more efficient parameterization of the model and therefore lead to a further enhancement in optimization performance. We provide a freely available open source software package that implements the algorithms and examples compared here.
Modeling the afferent dynamics of the baroreflex control system.
Adam Mahdi
Full Text Available In this study we develop a modeling framework for predicting baroreceptor firing rate as a function of blood pressure. We test models within this framework both quantitatively and qualitatively using data from rats. The models describe three components: arterial wall deformation, stimulation of mechanoreceptors located in the BR nerve-endings, and modulation of the action potential frequency. The three sub-systems are modeled individually following well-established biological principles. The first submodel, predicting arterial wall deformation, uses blood pressure as an input and outputs circumferential strain. The mechanoreceptor stimulation model, uses circumferential strain as an input, predicting receptor deformation as an output. Finally, the neural model takes receptor deformation as an input predicting the BR firing rate as an output. Our results show that nonlinear dependence of firing rate on pressure can be accounted for by taking into account the nonlinear elastic properties of the artery wall. This was observed when testing the models using multiple experiments with a single set of parameters. We find that to model the response to a square pressure stimulus, giving rise to post-excitatory depression, it is necessary to include an integrate-and-fire model, which allows the firing rate to cease when the stimulus falls below a given threshold. We show that our modeling framework in combination with sensitivity analysis and parameter estimation can be used to test and compare models. Finally, we demonstrate that our preferred model can exhibit all known dynamics and that it is advantageous to combine qualitative and quantitative analysis methods.
Positive dynamical systems in discrete time theory, models, and applications
Krause, Ulrich
2015-01-01
This book provides a systematic, rigorous and self-contained treatment of positive dynamical systems. A dynamical system is positive when all relevant variables of a systemare nonnegative in a natural way. This is in biology, demography or economics, where the levels of populations or prices of goods are positive. The principle also finds application in electrical engineering, physics and computer sciences.
A DYNAMICAL SYSTEM APPROACH IN MODELING TECHNOLOGY TRANSFER
Hennie Husniah
2016-05-01
Full Text Available In this paper we discuss a mathematical model of two parties technology transfer from a leader to a follower. The model is reconstructed via dynamical system approach from a known standard Raz and Assa model and we found some important conclusion which have not been discussed in the original model. The model assumes that in the absence of technology transfer from a leader to a follower, both the leader and the follower have a capability to grow independently with a known upper limit of the development. We obtain a rich mathematical structure of the steady state solution of the model. We discuss a special situation in which the upper limit of the technological development of the follower is higher than that of the leader, but the leader has started earlier than the follower in implementing the technology. In this case we show a paradox stating that the follower is unable to reach its original upper limit of the technological development could appear whenever the transfer rate is sufficiently high. We propose a new model to increase realism so that any technological transfer rate could only has a positive effect in accelerating the rate of growth of the follower in reaching its original upper limit of the development.
Modeling Physical Systems Using Vensim PLE Systems Dynamics Software
Widmark, Stephen
2012-01-01
Many physical systems are described by time-dependent differential equations or systems of such equations. This makes it difficult for students in an introductory physics class to solve many real-world problems since these students typically have little or no experience with this kind of mathematics. In my high school physics classes, I address…
Modeling Physical Systems Using Vensim PLE Systems Dynamics Software
Widmark, Stephen
2012-01-01
Many physical systems are described by time-dependent differential equations or systems of such equations. This makes it difficult for students in an introductory physics class to solve many real-world problems since these students typically have little or no experience with this kind of mathematics. In my high school physics classes, I address…
Modeling energy market dynamics using discrete event system simulation
Gutierrez-Alcaraz, G. [Department of Electrical and Electronics Engineering, Instituto Tecnologico de Morelia, Av. Tecnologico 1500, Col. Lomas de Santiaguito 58120, Morelia Michoacan (Mexico); Sheble, G.B. [Department of Electrical and Computer Engineering, Portland State University, Portland, OR 97207-0751 (United States)
2009-10-15
This paper proposes the use of Discrete Event System Simulation to study the interactions among fuel and electricity markets and consumers, and the decision-making processes of fuel companies (FUELCOs), generation companies (GENCOs), and consumers in a simple artificial energy market. In reality, since markets can reach a stable equilibrium or fail, it is important to observe how they behave in a dynamic framework. We consider a Nash-Cournot model in which marketers are depicted as Nash-Cournot players that determine supply to meet end-use consumption. Detailed engineering considerations such as transportation network flows are omitted, because the focus is upon the selection and use of appropriate market models to provide answers to policy questions. (author)
Setting development goals using stochastic dynamical system models
Nicolis, Stamatios C.; Bali Swain, Ranjula; Sumpter, David J. T.
2017-01-01
The Millennium Development Goals (MDG) programme was an ambitious attempt to encourage a globalised solution to important but often-overlooked development problems. The programme led to wide-ranging development but it has also been criticised for unrealistic and arbitrary targets. In this paper, we show how country-specific development targets can be set using stochastic, dynamical system models built from historical data. In particular, we show that the MDG target of two-thirds reduction of child mortality from 1990 levels was infeasible for most countries, especially in sub-Saharan Africa. At the same time, the MDG targets were not ambitious enough for fast-developing countries such as Brazil and China. We suggest that model-based setting of country-specific targets is essential for the success of global development programmes such as the Sustainable Development Goals (SDG). This approach should provide clear, quantifiable targets for policymakers. PMID:28241057
Setting development goals using stochastic dynamical system models.
Ranganathan, Shyam; Nicolis, Stamatios C; Bali Swain, Ranjula; Sumpter, David J T
2017-01-01
The Millennium Development Goals (MDG) programme was an ambitious attempt to encourage a globalised solution to important but often-overlooked development problems. The programme led to wide-ranging development but it has also been criticised for unrealistic and arbitrary targets. In this paper, we show how country-specific development targets can be set using stochastic, dynamical system models built from historical data. In particular, we show that the MDG target of two-thirds reduction of child mortality from 1990 levels was infeasible for most countries, especially in sub-Saharan Africa. At the same time, the MDG targets were not ambitious enough for fast-developing countries such as Brazil and China. We suggest that model-based setting of country-specific targets is essential for the success of global development programmes such as the Sustainable Development Goals (SDG). This approach should provide clear, quantifiable targets for policymakers.
Interacting Ghost Dark Energy Model: Dynamical System Analysis
Golchin, Hanif; Ebrahimi, Esmaeil
2016-01-01
We study the impacts of interaction between dark matter and dark energy in the context of ghost dark energy model. Using the dynamical system analysis, we obtain the fixed points of the system for different types of interactions while the universe is filled with radiation, matter (including dark matter and luminous matter) and dark energy components. We consider the stability of the fixed points in details for different cases. In all cases there is an unstable matter dominated epoch and a stable late time dark energy dominated phase. However, we find that adding the linear interaction, the evolution of ghost dark energy model does not contain the radiation dominated epoch in the early times which is a necessary point in any cosmic model. This failure resolved when we add the non-linear interaction to the model. We also find an upper bound for the value of the coupling constant of the interaction between dark matter and dark energy as b < 0.57 . This bound is necessary to have a decelerating and unstable ma...
Dynamic causal models of neural system dynamics: current state and future extensions
Klaas E Stephan; Lee M Harrison; Stefan J Kiebel; Olivier David; Will D Penny; Karl J Friston
2007-01-01
Complex processes resulting from interaction of multiple elements can rarely be understood by analytical scientific approaches alone; additional, mathematical models of system dynamics are required. This insight, which disciplines like physics have embraced for a long time already, is gradually gaining importance in the study of cognitive processes by functional neuroimaging. In this field, causal mechanisms in neural systems are described in terms of effective connectivity. Recently, dynamic causal modelling (DCM) was introduced as a generic method to estimate effective connectivity from neuroimaging data in a Bayesian fashion. One of the key advantages of DCM over previous methods is that it distinguishes between neural state equations and modality-specific forward models that translate neural activity into a measured signal. Another strength is its natural relation to Bayesian model selection (BMS) procedures. In this article, we review the conceptual and mathematical basis of DCM and its implementation for functional magnetic resonance imaging data and event-related potentials. After introducing the application of BMS in the context of DCM, we conclude with an outlook to future extensions of DCM. These extensions are guided by the long-term goal of using dynamic system models for pharmacological and clinical applications, particularly with regard to synaptic plasticity.
Filtering nonlinear dynamical systems with linear stochastic models
Harlim, J.; Majda, A. J.
2008-06-01
An important emerging scientific issue is the real time filtering through observations of noisy signals for nonlinear dynamical systems as well as the statistical accuracy of spatio-temporal discretizations for filtering such systems. From the practical standpoint, the demand for operationally practical filtering methods escalates as the model resolution is significantly increased. For example, in numerical weather forecasting the current generation of global circulation models with resolution of 35 km has a total of billions of state variables. Numerous ensemble based Kalman filters (Evensen 2003 Ocean Dyn. 53 343-67 Bishop et al 2001 Mon. Weather Rev. 129 420-36 Anderson 2001 Mon. Weather Rev. 129 2884-903 Szunyogh et al 2005 Tellus A 57 528-45 Hunt et al 2007 Physica D 230 112-26) show promising results in addressing this issue; however, all these methods are very sensitive to model resolution, observation frequency, and the nature of the turbulent signals when a practical limited ensemble size (typically less than 100) is used. In this paper, we implement a radical filtering approach to a relatively low (40) dimensional toy model, the L-96 model (Lorenz 1996 Proc. on Predictability (ECMWF, 4-8 September 1995) pp 1-18) in various chaotic regimes in order to address the 'curse of ensemble size' for complex nonlinear systems. Practically, our approach has several desirable features such as extremely high computational efficiency, filter robustness towards variations of ensemble size (we found that the filter is reasonably stable even with a single realization) which makes it feasible for high dimensional problems, and it is independent of any tunable parameters such as the variance inflation coefficient in an ensemble Kalman filter. This radical filtering strategy decouples the problem of filtering a spatially extended nonlinear deterministic system to filtering a Fourier diagonal system of parametrized linear stochastic differential equations (Majda and Grote
Resilience to leaking--dynamic systems modeling of information security.
Hamacher, Kay
2012-01-01
Leaking of confidential material is a major threat to information security within organizations and to society as a whole. This insight has gained traction in the political realm since the activities of Wikileaks, which hopes to attack 'unjust' systems or 'conspiracies'. Eventually, such threats to information security rely on a biologistic argument on the benefits and drawbacks that uncontrolled leaking might pose for 'just' and 'unjust' entities. Such biological metaphors are almost exclusively based on the economic advantage of participants. Here, I introduce a mathematical model of the complex dynamics implied by leaking. The complex interactions of adversaries are modeled by coupled logistic equations including network effects of econo-communication networks. The modeling shows, that there might arise situations where the leaking envisioned and encouraged by Wikileaks and the like can strengthen the defending entity (the 'conspiracy'). In particular, the only severe impact leaking can have on an organization seems to originate in the exploitation of leaks by another entity the organization competes with. Therefore, the model suggests that leaks can be used as a `tactical mean' in direct adversary relations, but do not necessarily increase public benefit and societal immunization to 'conspiracies'. Furthermore, within the model the exploitation of the (open) competition between entities seems to be a more promising approach to control malicious organizations : divide-et-impera policies triumph here.
Resilience to Leaking — Dynamic Systems Modeling of Information Security
Hamacher, Kay
2012-01-01
Leaking of confidential material is a major threat to information security within organizations and to society as a whole. This insight has gained traction in the political realm since the activities of Wikileaks, which hopes to attack ‘unjust’ systems or ‘conspiracies’. Eventually, such threats to information security rely on a biologistic argument on the benefits and drawbacks that uncontrolled leaking might pose for ‘just’ and ‘unjust’ entities. Such biological metaphors are almost exclusively based on the economic advantage of participants. Here, I introduce a mathematical model of the complex dynamics implied by leaking. The complex interactions of adversaries are modeled by coupled logistic equations including network effects of econo-communication networks. The modeling shows, that there might arise situations where the leaking envisioned and encouraged by Wikileaks and the like can strengthen the defending entity (the ‘conspiracy’). In particular, the only severe impact leaking can have on an organization seems to originate in the exploitation of leaks by another entity the organization competes with. Therefore, the model suggests that leaks can be used as a `tactical mean’ in direct adversary relations, but do not necessarily increase public benefit and societal immunization to ‘conspiracies’. Furthermore, within the model the exploitation of the (open) competition between entities seems to be a more promising approach to control malicious organizations : divide-et-impera policies triumph here. PMID:23227151
Resilience to leaking--dynamic systems modeling of information security.
Kay Hamacher
Full Text Available Leaking of confidential material is a major threat to information security within organizations and to society as a whole. This insight has gained traction in the political realm since the activities of Wikileaks, which hopes to attack 'unjust' systems or 'conspiracies'. Eventually, such threats to information security rely on a biologistic argument on the benefits and drawbacks that uncontrolled leaking might pose for 'just' and 'unjust' entities. Such biological metaphors are almost exclusively based on the economic advantage of participants. Here, I introduce a mathematical model of the complex dynamics implied by leaking. The complex interactions of adversaries are modeled by coupled logistic equations including network effects of econo-communication networks. The modeling shows, that there might arise situations where the leaking envisioned and encouraged by Wikileaks and the like can strengthen the defending entity (the 'conspiracy'. In particular, the only severe impact leaking can have on an organization seems to originate in the exploitation of leaks by another entity the organization competes with. Therefore, the model suggests that leaks can be used as a `tactical mean' in direct adversary relations, but do not necessarily increase public benefit and societal immunization to 'conspiracies'. Furthermore, within the model the exploitation of the (open competition between entities seems to be a more promising approach to control malicious organizations : divide-et-impera policies triumph here.
Modeling dynamic behavior of superconducting maglev systems under external disturbances
Huang, Chen-Guang; Xue, Cun; Yong, Hua-Dong; Zhou, You-He
2017-08-01
For a maglev system, vertical and lateral displacements of the levitation body may simultaneously occur under external disturbances, which often results in changes in the levitation and guidance forces and even causes some serious malfunctions. To fully understand the effect of external disturbances on the levitation performance, in this work, we build a two-dimensional numerical model on the basis of Newton's second law of motion and a mathematical formulation derived from magnetoquasistatic Maxwell's equations together with a nonlinear constitutive relation between the electric field and the current density. By using this model, we present an analysis of dynamic behavior for two typical maglev systems consisting of an infinitely long superconductor and a guideway of different arrangements of infinitely long parallel permanent magnets. The results show that during the vertical movement, the levitation force is closely associated with the flux motion and the moving velocity of the superconductor. After being disturbed at the working position, the superconductor has a disturbance-induced initial velocity and then starts to periodically vibrate in both lateral and vertical directions. Meanwhile, the lateral and vertical vibration centers gradually drift along their vibration directions. The larger the initial velocity, the faster their vibration centers drift. However, the vertical drift of the vertical vibration center seems to be independent of the direction of the initial velocity. In addition, due to the lateral and vertical drifts, the equilibrium position of the superconductor in the maglev systems is not a space point but a continuous range.
A linear systems analysis of the yaw dynamics of a dynamically scaled insect model.
Dickson, William B; Polidoro, Peter; Tanner, Melissa M; Dickinson, Michael H
2010-09-01
Recent studies suggest that fruit flies use subtle changes to their wing motion to actively generate forces during aerial maneuvers. In addition, it has been estimated that the passive rotational damping caused by the flapping wings of an insect is around two orders of magnitude greater than that for the body alone. At present, however, the relationships between the active regulation of wing kinematics, passive damping produced by the flapping wings and the overall trajectory of the animal are still poorly understood. In this study, we use a dynamically scaled robotic model equipped with a torque feedback mechanism to study the dynamics of yaw turns in the fruit fly Drosophila melanogaster. Four plausible mechanisms for the active generation of yaw torque are examined. The mechanisms deform the wing kinematics of hovering in order to introduce asymmetry that results in the active production of yaw torque by the flapping wings. The results demonstrate that the stroke-averaged yaw torque is well approximated by a model that is linear with respect to both the yaw velocity and the magnitude of the kinematic deformations. Dynamic measurements, in which the yaw torque produced by the flapping wings was used in real-time to determine the rotation of the robot, suggest that a first-order linear model with stroke-average coefficients accurately captures the yaw dynamics of the system. Finally, an analysis of the stroke-average dynamics suggests that both damping and inertia will be important factors during rapid body saccades of a fruit fly.
Multiscale modeling of the dynamics of multicellular systems
Kosztin, Ioan
2011-03-01
Describing the biomechanical properties of cellular systems, regarded as complex highly viscoelastic materials, is a difficult problem of great conceptual and practical value. Here we present a novel approach, referred to as the Cellular Particle Dynamics (CPD) method, for: (i) quantitatively relating biomechanical properties at the cell level to those at the multicellular and tissue level, and (ii) describing and predicting the time evolution of multicellular systems that undergo biomechanical relaxations. In CPD cells are modeled as an ensemble of cellular particles (CPs) that interact via short range contact interactions, characterized by an attractive (adhesive interaction) and a repulsive (excluded volume interaction) component. The time evolution of the spatial conformation of the multicellular system is determined by following the trajectories of all CPs through integration of their equations of motion. Cell and multicellular level biomechanical properties (e.g., viscosity, surface tension and shear modulus) are determined through the combined use of experiments and theory of continuum viscoelastic media. The same biomechanical properties are also ``measured'' computationally by employing the CPD method, the results being expressed in terms of CPD parameters. Once these parameters have been calibrated experimentally, the formalism provides a systematic framework to predict the time evolution of complex multicellular systems during shape-changing biomechanical transformations. By design, the CPD method is rather flexible and most suitable for multiscale modeling of multicellular system. The spatial level of detail of the system can be easily tuned by changing the number of CPs in a cell. Thus, CPD can be used equally well to describe both cell level processes (e.g., the adhesion of two cells) and tissue level processes (e.g., the formation of 3D constructs of millions of cells through bioprinting). Work supported by NSF [FIBR-0526854 and PHY-0957914
Mixed-Effects State Space Models for Analysis of Longitudinal Dynamic Systems
Liu, Dacheng; Lu, Tao; Niu, Xu-Feng; Wu, Hulin
2010-01-01
The rapid development of new biotechnologies allows us to deeply understand biomedical dynamic systems in more detail and at a cellular level. Many of the subject-specific biomedical systems can be described by a set of differential or difference equations which are similar to engineering dynamic systems. In this paper, motivated by HIV dynamic studies, we propose a class of mixed-effects state space models based on the longitudinal feature of dynamic systems. State space models with mixed-ef...
Research on the Earth system multi-body force system dynamical model
CHEN; Xiaofei; BI; Siwen; WU; Fei; DONG; Qianlin
2006-01-01
This paper presents an overview of the binding force and freedom force of Earth system, and describes force moment to point and line and force system in the Earth system. It introduces the force theory of the Earth system multi-body force system from special or equivalent force system of Earth system mechanics, general force and no-power force of Earth system. Finally it describes the force and moment of nodes of Earth system and provides basic model for the research of the Earth system multi-body dynamics.
Articulated Lifting System Modeling Based on Dynamics of Flexible Multi-Body Systems
无
2007-01-01
In lifting sub-system of deep-sea mining system, spherical joint is used to connect lifting pipes to replace fixed joint. Based on Dynamics of Flexible Multi-body systems, the mechanics model of articulated lifting system is established. Under the four-grade and six-grade oceanic condition, dynamic responses of lifting system are simulated and experiment verified. The simulation results are consistent with experimental ones. The maximum moment of flexion is 322 kN-m on the first pipe under six-grade sea condition. It is seen that the articulated connection can reduce the moment of flexion. The bending deformation of pipe center is researched, and the maximum is 0.000479 m on the first pipe. Deformation has a little effect on the motion of system. It is feasible to analyze articulated lifting system by applying the theory of flexible multi-body dynamics. The articulated lifting system is obviously better than the fixed one.
Description of waste pretreatment and interfacing systems dynamic simulation model
Garbrick, D.J.; Zimmerman, B.D.
1995-05-01
The Waste Pretreatment and Interfacing Systems Dynamic Simulation Model was created to investigate the required pretreatment facility processing rates for both high level and low level waste so that the vitrification of tank waste can be completed according to the milestones defined in the Tri-Party Agreement (TPA). In order to achieve this objective, the processes upstream and downstream of the pretreatment facilities must also be included. The simulation model starts with retrieval of tank waste and ends with vitrification for both low level and high level wastes. This report describes the results of three simulation cases: one based on suggested average facility processing rates, one with facility rates determined so that approximately 6 new DSTs are required, and one with facility rates determined so that approximately no new DSTs are required. It appears, based on the simulation results, that reasonable facility processing rates can be selected so that no new DSTs are required by the TWRS program. However, this conclusion must be viewed with respect to the modeling assumptions, described in detail in the report. Also included in the report, in an appendix, are results of two sensitivity cases: one with glass plant water recycle steams recycled versus not recycled, and one employing the TPA SST retrieval schedule versus a more uniform SST retrieval schedule. Both recycling and retrieval schedule appear to have a significant impact on overall tank usage.
Real time modeling, simulation and control of dynamical systems
Mughal, Asif Mahmood
2016-01-01
This book introduces modeling and simulation of linear time invariant systems and demonstrates how these translate to systems engineering, mechatronics engineering, and biomedical engineering. It is organized into nine chapters that follow the lectures used for a one-semester course on this topic, making it appropriate for students as well as researchers. The author discusses state space modeling derived from two modeling techniques and the analysis of the system and usage of modeling in control systems design. It also contains a unique chapter on multidisciplinary energy systems with a special focus on bioengineering systems and expands upon how the bond graph augments research in biomedical and bio-mechatronics systems.
Dynamic Modeling and Parameter Identification of Power Systems
无
2000-01-01
@@ The generator, the excitation system, the steam turbine and speed governor, and the load are the so called four key models of power systems. Mathematical modeling and parameter identification for the four key models are of great importance as the basis for designing, operating, and analyzing power systems.
Model of the human controller of a dynamic system
Wewerinke, P.H.
1986-01-01
In de last two decades considerable research effort has been devoted to the study of human involvement in dynamic systems. Especially human control behavior has been investigated, but in the restricted sense of continuous regulating against random disturbances, so as to minimize the system state dev
Ebersole, Jay F.
This paper is an exercise in the study of David Easton's "dynamic response model of a political system," as found in "A Systems Analysis of Political Life." After a brief review of the theory, the development of a local "Reduction in Force" policy is described as an example of faculty organization policy influence on…
Ultrafast Structural Dynamics in Combustion Relevant Model Systems
Weber, Peter M. [Brown University
2014-03-31
The research project explored the time resolved structural dynamics of important model reaction system using an array of novel methods that were developed specifically for this purpose. They include time resolved electron diffraction, time resolved relativistic electron diffraction, and time resolved Rydberg fingerprint spectroscopy. Toward the end of the funding period, we also developed time-resolved x-ray diffraction, which uses ultrafast x-ray pulses at LCLS. Those experiments are just now blossoming, as the funding period expired. In the following, the time resolved Rydberg Fingerprint Spectroscopy is discussed in some detail, as it has been a very productive method. The binding energy of an electron in a Rydberg state, that is, the energy difference between the Rydberg level and the ground state of the molecular ion, has been found to be a uniquely powerful tool to characterize the molecular structure. To rationalize the structure sensitivity we invoke a picture from electron diffraction: when it passes the molecular ion core, the Rydberg electron experiences a phase shift compared to an electron in a hydrogen atom. This phase shift requires an adjustment of the binding energy of the electron, which is measurable. As in electron diffraction, the phase shift depends on the molecular, geometrical structure, so that a measurement of the electron binding energy can be interpreted as a measurement of the molecule’s structure. Building on this insight, we have developed a structurally sensitive spectroscopy: the molecule is first elevated to the Rydberg state, and the binding energy is then measured using photoelectron spectroscopy. The molecule’s structure is read out as the binding energy spectrum. Since the photoionization can be done with ultrafast laser pulses, the technique is inherently capable of a time resolution in the femtosecond regime. For the purpose of identifying the structures of molecules during chemical reactions, and for the analysis of
Sternberg, Shlomo
2010-01-01
Celebrated mathematician Shlomo Sternberg, a pioneer in the field of dynamical systems, created this modern one-semester introduction to the subject for his classes at Harvard University. Its wide-ranging treatment covers one-dimensional dynamics, differential equations, random walks, iterated function systems, symbolic dynamics, and Markov chains. Supplementary materials offer a variety of online components, including PowerPoint lecture slides for professors and MATLAB exercises.""Even though there are many dynamical systems books on the market, this book is bound to become a classic. The the
Lode, Axel U.J.
2013-06-03
This thesis explores the quantum many-body tunneling dynamics of open ultracold bosonic systems with the recently developed multiconfigurational time-dependent Hartree for bosons (MCTDHB) method. The capabilities of MCTDHB to provide solutions to the full time-dependent many-body problem are assessed in a benchmark using the analytically solvable harmonic interaction Hamiltonian and a generalization of it with time-dependent both one- and two-body potentials. In a comparison with numerically exact MCTDHB results, it is shown that e.g. lattice methods fail qualitatively to describe the tunneling dynamics. A model assembling the many-body physics of the process from basic simultaneously happening single-particle processes is derived and verified with a numerically exact MCTDHB description. The generality of the model is demonstrated even for strong interactions and large particle numbers. The ejection of the bosons from the source occurs with characteristic velocities. These velocities are defined by the chemical potentials of systems with different particle numbers which are converted to kinetic energy. The tunneling process is accompanied by fragmentation: the ejected bosons lose their coherence with the source and among each other. It is shown that the various aspects of the tunneling dynamics' can be controlled well with the interaction and the potential threshold.
Cao Hong-qing; Kang Li-shan; Yu Jing-xian
2003-01-01
First, an asynchronous distributed parallel evolutionary modeling algorithm (PEMA) for building the model of system of ordinary differential equations for dynamical systems is proposed in this paper. Then a series of parallel experiments have been conducted to systematically test the influence of some important parallel control parameters on the performance of the algorithm. A lot of experimental results are obtained and we make some analysis and explanations to them.
Inverse and forward dynamics: models of multi-body systems.
Otten, E
2003-01-01
Connected multi-body systems exhibit notoriously complex behaviour when driven by external and internal forces and torques. The problem of reconstructing the internal forces and/or torques from the movements and known external forces is called the 'inverse dynamics problem', whereas calculating motion from known internal forces and/or torques and resulting reaction forces is called the 'forward dynamics problem'. When stepping forward to cross the street, people use muscle forces that generate angular accelerations of their body segments and, by virtue of reaction forces from the street, a forward acceleration of the centre of mass of their body. Inverse dynamics calculations applied to a set of motion data from such an event can teach us how temporal patterns of joint torques were responsible for the observed motion. In forward dynamics calculations we may attempt to create motion from such temporal patterns, which is extremely difficult, because of the complex mechanical linkage along the chains forming the multi-body system. To understand, predict and sometimes control multi-body systems, we may want to have mathematical expressions for them. The Newton-Euler, Lagrangian and Featherstone approaches have their advantages and disadvantages. The simulation of collisions and the inclusion of muscle forces or other internal forces are discussed. Also, the possibility to perform a mixed inverse and forward dynamics calculation are dealt with. The use and limitations of these approaches form the conclusion. PMID:14561340
Dynamic hydrologic economic modeling of tradeoffs in hydroelectric systems
Kern, Jordan D.
Hydropower producers face a future beset by unprecedented changes in the electric power industry, including the rapid growth of installed wind power capacity and a vastly increased supply of natural gas due to horizontal hydraulic fracturing (or "fracking"). There is also increased concern surrounding the potential for climate change to impact the magnitude and frequency of droughts. These developments may significantly alter the financial landscape for hydropower producers and have important ramifications for the environmental impacts of dams. Incorporating wind energy into electric power systems has the potential to affect price dynamics in electricity markets and, in so doing, alter the short-term financial signals on which dam operators rely to schedule reservoir releases. Chapter 1 of this doctoral dissertation develops an integrated reservoir-power system model for assessing the impact of large scale wind power integration of hydropower resources. Chapter 2 explores how efforts to reduce the carbon footprint of electric power systems by using wind energy to displace fossil fuel-based generation may inadvertently yield further impacts to river ecosystems by disrupting downstream flow patterns. Increased concern about the potential for climate change to alter the frequency and magnitude of droughts has led to growing interest in "index insurance" that compensates hydropower producers when values of an environmental variable (or index), such as reservoir inflows, crosses an agreed upon threshold (e.g., low flow conditions). Chapter 3 demonstrates the need for such index insurance contracts to also account for changes in natural gas prices in order to be cost-effective. Chapter 4 of this dissertation analyzes how recent low natural gas prices (partly attributable to fracking) have reduced the cost of implementing ramp rate restrictions at dams, which help restore sub-daily variability in river flows by limiting the flexibility of dam operators in scheduling
System Dynamic Modelling for a Balanced Scorecard: A Case Study
Nielsen, Steen; Nielsen, Erland Hejn
Purpose - The purpose of this research is to make an analytical model of the BSC foundation by using a dynamic simulation approach for a 'hypothetical case' model, based on only part of an actual case study of BSC. Design/methodology/approach - The model includes five perspectives and a number...... variables: skills, customer base and work in process. We are able to show that only minimal changes may create large effects on profit. Research limitations/implications - Our analytical model is based on both assumed but also on case documented assumptions of a concrete model. In every such kind of model...... and the number of measures. Originality/value - A large number of case studies and surveys are now present in the literature of BSC. However, there is a lack of more theoretical and analytical modelling of the BSC. Our paper just throws a little light to this modelling approach....
Integrated dynamic landscape analysis and modeling system (IDLAMS) : installation manual.
Li, Z.; Majerus, K. A.; Sundell, R. C.; Sydelko, P. J.; Vogt, M. C.
1999-02-24
The Integrated Dynamic Landscape Analysis and Modeling System (IDLAMS) is a prototype, integrated land management technology developed through a joint effort between Argonne National Laboratory (ANL) and the US Army Corps of Engineers Construction Engineering Research Laboratories (USACERL). Dr. Ronald C. Sundell, Ms. Pamela J. Sydelko, and Ms. Kimberly A. Majerus were the principal investigators (PIs) for this project. Dr. Zhian Li was the primary software developer. Dr. Jeffrey M. Keisler, Mr. Christopher M. Klaus, and Mr. Michael C. Vogt developed the decision analysis component of this project. It was developed with funding support from the Strategic Environmental Research and Development Program (SERDP), a land/environmental stewardship research program with participation from the US Department of Defense (DoD), the US Department of Energy (DOE), and the US Environmental Protection Agency (EPA). IDLAMS predicts land conditions (e.g., vegetation, wildlife habitats, and erosion status) by simulating changes in military land ecosystems for given training intensities and land management practices. It can be used by military land managers to help predict the future ecological condition for a given land use based on land management scenarios of various levels of training intensity. It also can be used as a tool to help land managers compare different land management practices and further determine a set of land management activities and prescriptions that best suit the needs of a specific military installation.
Small System dynamics models for big issues : triple jump towards real-world complexity
Pruyt, E.
2013-01-01
System Dynamics (SD) is a method to describe, model, simulate and analyze dynamically complex issues and/or systems in terms of the processes, information, organizational boundaries and strategies. Quantitative SD modeling, simulation and analysis facilitates the (re)design of systems and design of
Kenbeek, W.K.
2012-01-01
System Dynamics modelling is a promising tool to teach secondary school students how complex systems (such as the climate on earth) work, as well as to give these students the opportunity to experience how System Dynamics modelling can be used in science. However, research to date has shown that stu
Small System dynamics models for big issues : triple jump towards real-world complexity
Pruyt, E.
2013-01-01
System Dynamics (SD) is a method to describe, model, simulate and analyze dynamically complex issues and/or systems in terms of the processes, information, organizational boundaries and strategies. Quantitative SD modeling, simulation and analysis facilitates the (re)design of systems and design of
Ultrafast Structural Dynamics in Combustion Relevant Model Systems
Weber, Peter M. [Brown University
2014-03-31
The research project explored the time resolved structural dynamics of important model reaction system using an array of novel methods that were developed specifically for this purpose. They include time resolved electron diffraction, time resolved relativistic electron diffraction, and time resolved Rydberg fingerprint spectroscopy. Toward the end of the funding period, we also developed time-resolved x-ray diffraction, which uses ultrafast x-ray pulses at LCLS. Those experiments are just now blossoming, as the funding period expired. In the following, the time resolved Rydberg Fingerprint Spectroscopy is discussed in some detail, as it has been a very productive method. The binding energy of an electron in a Rydberg state, that is, the energy difference between the Rydberg level and the ground state of the molecular ion, has been found to be a uniquely powerful tool to characterize the molecular structure. To rationalize the structure sensitivity we invoke a picture from electron diffraction: when it passes the molecular ion core, the Rydberg electron experiences a phase shift compared to an electron in a hydrogen atom. This phase shift requires an adjustment of the binding energy of the electron, which is measurable. As in electron diffraction, the phase shift depends on the molecular, geometrical structure, so that a measurement of the electron binding energy can be interpreted as a measurement of the molecule’s structure. Building on this insight, we have developed a structurally sensitive spectroscopy: the molecule is first elevated to the Rydberg state, and the binding energy is then measured using photoelectron spectroscopy. The molecule’s structure is read out as the binding energy spectrum. Since the photoionization can be done with ultrafast laser pulses, the technique is inherently capable of a time resolution in the femtosecond regime. For the purpose of identifying the structures of molecules during chemical reactions, and for the analysis of
Computational Psychometrics for Modeling System Dynamics during Stressful Disasters
Pietro Cipresso
2017-08-01
Full Text Available Disasters can be very stressful events. However, computational models of stress require data that might be very difficult to collect during disasters. Moreover, personal experiences are not repeatable, so it is not possible to collect bottom-up information when building a coherent model. To overcome these problems, we propose the use of computational models and virtual reality integration to recreate disaster situations, while examining possible dynamics in order to understand human behavior and relative consequences. By providing realistic parameters associated with disaster situations, computational scientists can work more closely with emergency responders to improve the quality of interventions in the future.
Dynamics of Charged Particulate Systems Modeling, Theory and Computation
Zohdi, Tarek I
2012-01-01
The objective of this monograph is to provide a concise introduction to the dynamics of systems comprised of charged small-scale particles. Flowing, small-scale, particles ("particulates'') are ubiquitous in industrial processes and in the natural sciences. Applications include electrostatic copiers, inkjet printers, powder coating machines, etc., and a variety of manufacturing processes. Due to their small-scale size, external electromagnetic fields can be utilized to manipulate and control charged particulates in industrial processes in order to achieve results that are not possible by purely mechanical means alone. A unique feature of small-scale particulate flows is that they exhibit a strong sensitivity to interparticle near-field forces, leading to nonstandard particulate dynamics, agglomeration and cluster formation, which can strongly affect manufactured product quality. This monograph also provides an introduction to the mathematically-related topic of the dynamics of swarms of interacting objects, ...
Fitkov-Norris, Elena; Yeghiazarian, Ara
2016-11-01
The analytical tools available to social scientists have traditionally been adapted from tools originally designed for analysis of natural science phenomena. This article discusses the applicability of systems dynamics - a qualitative based modelling approach, as a possible analysis and simulation tool that bridges the gap between social and natural sciences. After a brief overview of the systems dynamics modelling methodology, the advantages as well as limiting factors of systems dynamics to the potential applications in the field of social sciences and human interactions are discussed. The issues arise with regards to operationalization and quantification of latent constructs at the simulation building stage of the systems dynamics methodology and measurement theory is proposed as a ready and waiting solution to the problem of dynamic model calibration, with a view of improving simulation model reliability and validity and encouraging the development of standardised, modular system dynamics models that can be used in social science research.
IMPLICIT REPRESENTATION FOR THE MODELLING OF HYBRID DYNAMIC SYSTEMS
无
2000-01-01
Hybrid systems can be represented by a discrete event model interacting with a continuous model, and the interface by ideal switching components which modify the topology of a system at the switching time. This paper deals with the modelling of such systems using the bond graph approach. The paper shows the interest of the implicit representation: to derive a unique state equation with jumping parameters, to derive the implicit state equation with index of nilpotency one corresponding to each configuration, to analyze the properties of those models and to compute the discontinuity.
Modeling Dynamic Systems with Efficient Ensembles of Process-Based Models.
Simidjievski, Nikola; Todorovski, Ljupčo; Džeroski, Sašo
2016-01-01
Ensembles are a well established machine learning paradigm, leading to accurate and robust models, predominantly applied to predictive modeling tasks. Ensemble models comprise a finite set of diverse predictive models whose combined output is expected to yield an improved predictive performance as compared to an individual model. In this paper, we propose a new method for learning ensembles of process-based models of dynamic systems. The process-based modeling paradigm employs domain-specific knowledge to automatically learn models of dynamic systems from time-series observational data. Previous work has shown that ensembles based on sampling observational data (i.e., bagging and boosting), significantly improve predictive performance of process-based models. However, this improvement comes at the cost of a substantial increase of the computational time needed for learning. To address this problem, the paper proposes a method that aims at efficiently learning ensembles of process-based models, while maintaining their accurate long-term predictive performance. This is achieved by constructing ensembles with sampling domain-specific knowledge instead of sampling data. We apply the proposed method to and evaluate its performance on a set of problems of automated predictive modeling in three lake ecosystems using a library of process-based knowledge for modeling population dynamics. The experimental results identify the optimal design decisions regarding the learning algorithm. The results also show that the proposed ensembles yield significantly more accurate predictions of population dynamics as compared to individual process-based models. Finally, while their predictive performance is comparable to the one of ensembles obtained with the state-of-the-art methods of bagging and boosting, they are substantially more efficient.
A system dynamic model for analyzing online question & answer markets
Elnaz Amani
2014-03-01
Full Text Available During the past two decades, there have been growing interests on developing websites to build a link between various groups of people to share their knowledge such as Google service. This kind of activity helps fast and reliable distribution of knowledge since someone disseminates a question and various people attempt to provide some responses. This paper presents a system dynamic method for investigating the relationships between various components of a benchmark site. The proposed study develops closed loop dynamic among various components of the survey and provides some necessary actions for development of such systems. The results of our survey have indicated that the new forum could end up having significant number of unanswered questions. Therefore, researchers who work for this forum are suggested to increase their skills and their response rates to reduce the rate of unanswered questions.
When Models Interact with their Subjects: The Dynamics of Model Aware Systems
Vural, Dervis Can
2011-01-01
A scientific model need not be a passive and static descriptor of its subject. If the subject is affected by the model, the model must be updated to explain its affected subject. In this study, two models regarding the dynamics of model aware systems are presented. The first explores the behavior of "prediction seeking" (PSP) and "prediction avoiding" (PAP) populations under the influence of a model that describes them. The second explores the publishing behavior of a group of experimentalists coupled to a model by means of confirmation bias. It is found that model aware systems can exhibit convergent random or oscillatory behavior and display universal 1/f noise. A numerical simulation of the physical experimentalists is compared with actual publications of neutron life time and {\\Lambda} mass measurements and is in good quantitative agreement.
Human growth and body weight dynamics: an integrative systems model.
Rahmandad, Hazhir
2014-01-01
Quantifying human weight and height dynamics due to growth, aging, and energy balance can inform clinical practice and policy analysis. This paper presents the first mechanism-based model spanning full individual life and capturing changes in body weight, composition and height. Integrating previous empirical and modeling findings and validated against several additional empirical studies, the model replicates key trends in human growth including A) Changes in energy requirements from birth to old ages. B) Short and long-term dynamics of body weight and composition. C) Stunted growth with chronic malnutrition and potential for catch up growth. From obesity policy analysis to treating malnutrition and tracking growth trajectories, the model can address diverse policy questions. For example I find that even without further rise in obesity, the gap between healthy and actual Body Mass Indexes (BMIs) has embedded, for different population groups, a surplus of 14%-24% in energy intake which will be a source of significant inertia in obesity trends. In another analysis, energy deficit percentage needed to reduce BMI by one unit is found to be relatively constant across ages. Accompanying documented and freely available simulation model facilitates diverse applications customized to different sub-populations.
A Cell Dynamical System Model for Simulation of Continuum Dynamics of Turbulent Fluid Flows
Selvam, A M
2006-01-01
Atmospheric flows exhibit long-range spatiotemporal correlations manifested as the fractal geometry to the global cloud cover pattern concomitant with inverse power-law form for power spectra of temporal fluctuations of all scales ranging from turbulence (millimeters-seconds) to climate (thousands of kilometers-years). Long-range spatiotemporal correlations are ubiquitous to dynamical systems in nature and are identified as signatures of self-organized criticality. Standard models for turbulent fluid flows in meteorological theory cannot explain satisfactorily the observed multifractal (space-time) structures in atmospheric flows. Numerical models for simulation and prediction of atmospheric flows are subject to deterministic chaos and give unrealistic solutions. Deterministic chaos is a direct consequence of round-off error growth in iterative computations. Round-off error of finite precision computations doubles on an average at each step of iterative computations. Round-off error will propagate to the main...
Coupled Dynamic Modeling of Floating Wind Turbine Systems: Preprint
Wayman, E. N.; Sclavounos, P. D.; Butterfield, S.; Jonkman, J.; Musial, W.
2006-03-01
This article presents a collaborative research program that the Massachusetts Institute of Technology (MIT) and the National Renewable Energy Laboratory (NREL) have undertaken to develop innovative and cost-effective floating and mooring systems for offshore wind turbines in water depths of 10-200 m. Methods for the coupled structural, hydrodynamic, and aerodynamic analysis of floating wind turbine systems are presented in the frequency domain. This analysis was conducted by coupling the aerodynamics and structural dynamics code FAST [4] developed at NREL with the wave load and response simulation code WAMIT (Wave Analysis at MIT) [15] developed at MIT. Analysis tools were developed to consider coupled interactions between the wind turbine and the floating system. These include the gyroscopic loads of the wind turbine rotor on the tower and floater, the aerodynamic damping introduced by the wind turbine rotor, the hydrodynamic damping introduced by wave-body interactions, and the hydrodynamic forces caused by wave excitation. Analyses were conducted for two floater concepts coupled with the NREL 5-MW Offshore Baseline wind turbine in water depths of 10-200 m: the MIT/NREL Shallow Drafted Barge (SDB) and the MIT/NREL Tension Leg Platform (TLP). These concepts were chosen to represent two different methods of achieving stability to identify differences in performance and cost of the different stability methods. The static and dynamic analyses of these structures evaluate the systems' responses to wave excitation at a range of frequencies, the systems' natural frequencies, and the standard deviations of the systems' motions in each degree of freedom in various wind and wave environments. This article in various wind and wave environments. This article explores the effects of coupling the wind turbine with the floating platform, the effects of water depth, and the effects of wind speed on the systems' performance. An economic feasibility analysis of
A perspective on modeling and simulation of complex dynamical systems
Åström, K. J.
2011-09-01
There has been an amazing development of modeling and simulation from its beginning in the 1920s, when the technology was available only at a handful of University groups who had access to a mechanical differential analyzer. Today, tools for modeling and simulation are available for every student and engineer. This paper gives a perspective on the development with particular emphasis on technology and paradigm shifts. Modeling is increasingly important for design and operation of complex natural and man-made systems. Because of the increased use of model based control such as Kalman filters and model predictive control, models are also appearing as components of feedback systems. Modeling and simulation are multidisciplinary, it is used in a wide variety of fields and their development have been strongly influenced by mathematics, numerics, computer science and computer technology.
Kleijnen, J.P.C.
1995-01-01
This tutorial discusses what-if analysis and optimization of System Dynamics models. These problems are solved, using the statistical techniques of regression analysis and design of experiments (DOE). These issues are illustrated by applying the statistical techniques to a System Dynamics model for
Luo, Yiqi; Ahlstrom, Anders; Allison, Steven D.; Batjes, Niels H.; Brovkin, Victor; Carvalhais, N.; Chappell, Adrian; Ciais, Philippe; Davidson, Eric A.; Finzi, Adien; Georgiou, Katerina; Guenet, Bertrand; Hararuk, Oleksandra; Harden, Jennifer W.; He, Yujie; Hopkins, Francesca; Jiang, Lifen; Koven, C.; Jackson, Robert B.; Jones, Chris D.; Lara, Mark J.; Liang, Junyi; McGuire, A. David; Parton, William J.; Peng, Changhui; Randerson, J.; Salazar, Alejandro; Sierra , Carlos A.; Smith, Matthew J.; Tian, Hanqin; Todd-Brown, Katherine EO; Torn, Margaret S.; van Groenigen, Kees Jan; Wang, Ying Ping; West, Tristram O.; Wei, Yaxing; Wieder, William R.; Xia, Jianyang; Xu, Xia; Xu, Xiaofeng; Zhou, Tao
2016-01-21
Soil carbon (C) is a critical component of Earth system models (ESMs) and its diverse representations are a major source of the large spread across models in the terrestrial C sink from the 3rd to 5th assessment reports of the Intergovernmental Panel on Climate Change (IPCC). Improving soil C projections is of a high priority for Earth system modeling in the future IPCC and other assessments. To achieve this goal, we suggest that (1) model structures should reflect real-world processes, (2) parameters should be calibrated to match model outputs with observations, and (3) external forcing variables should accurately prescribe the environmental conditions that soils experience. Firstly, most soil C cycle models simulate C input from litter production and C release through decomposition. The latter process has traditionally been represented by 1st-order decay functions, regulated primarily by temperature, moisture, litter quality, and soil texture. While this formulation well captures macroscopic SOC dynamics, better understanding is needed of their underlying mechanisms as related to microbial processes, depth-dependent environmental controls, and other processes that strongly affect soil C dynamics. Secondly, incomplete use of observations in model parameterization is a major cause of bias in soil C projections from ESMs. Optimal parameter calibration with both pool- and flux-based datasets through data assimilation is among the highest priorities for near-term research to reduce biases among ESMs. Thirdly, external variables are represented inconsistently among ESMs, leading to differences in modeled soil C dynamics. We recommend the implementation of traceability analyses to identify how external variables and model parameterizations influence SOC dynamics in different ESMs. Overall, projections of the terrestrial C sink can be substantially improved when reliable datasets are available to select the most representative model structure, constrain parameters, and
Explorations in combining cognitive models of individuals and system dynamics models of groups.
Backus, George A.
2008-07-01
This report documents a demonstration model of interacting insurgent leadership, military leadership, government leadership, and societal dynamics under a variety of interventions. The primary focus of the work is the portrayal of a token societal model that responds to leadership activities. The model also includes a linkage between leadership and society that implicitly represents the leadership subordinates as they directly interact with the population. The societal model is meant to demonstrate the efficacy and viability of using System Dynamics (SD) methods to simulate populations and that these can then connect to cognitive models depicting individuals. SD models typically focus on average behavior and thus have limited applicability to describe small groups or individuals. On the other hand, cognitive models readily describe individual behavior but can become cumbersome when used to describe populations. Realistic security situations are invariably a mix of individual and population dynamics. Therefore, the ability to tie SD models to cognitive models provides a critical capability that would be otherwise be unavailable.
Mathematical Model of Extrinsic Blood Coagulation Cascade Dynamic System
无
2000-01-01
The blood coagulation system is very important to life. This paper presents a mathematical blood coagulation model for the extrinsic pathway. This model simulates clotting factor VIII, which plays an important role in the coagulation mechanism. The mathematical model is used to study the equilibrium stability, orbit structure, attractors and global stability behavior, with conclusions in accordance with the physiological phenomena. Moreover, the results provide information about blood related illnesses, which can be used for further study of the coagulation mechanism.
Inoue, Kentaro; Maeda, Kazuhiro; Miyabe, Takaaki; Matsuoka, Yu; Kurata, Hiroyuki
2014-09-01
Mathematical modeling has become a standard technique to understand the dynamics of complex biochemical systems. To promote the modeling, we had developed the CADLIVE dynamic simulator that automatically converted a biochemical map into its associated mathematical model, simulated its dynamic behaviors and analyzed its robustness. To enhance the feasibility by CADLIVE and extend its functions, we propose the CADLIVE toolbox available for MATLAB, which implements not only the existing functions of the CADLIVE dynamic simulator, but also the latest tools including global parameter search methods with robustness analysis. The seamless, bottom-up processes consisting of biochemical network construction, automatic construction of its dynamic model, simulation, optimization, and S-system analysis greatly facilitate dynamic modeling, contributing to the research of systems biology and synthetic biology. This application can be freely downloaded from http://www.cadlive.jp/CADLIVE_MATLAB/ together with an instruction.
Xianhong Li
2013-01-01
Full Text Available A general nonlinear time-varying (NLTV dynamic model and linear time-varying (LTV dynamic model are presented for shield tunnel boring machine (TBM cutterhead driving system, respectively. Different gear backlashes and mesh damped and transmission errors are considered in the NLTV dynamic model. The corresponding multiple-input and multiple-output (MIMO state space models are also presented. Through analyzing the linear dynamic model, the optimal reducer ratio (ORR and optimal transmission ratio (OTR are obtained for the shield TBM cutterhead driving system, respectively. The NLTV and LTV dynamic models are numerically simulated, and the effects of physical parameters under various conditions of NLTV dynamic model are analyzed. Physical parameters such as the load torque, gear backlash and transmission error, gear mesh stiffness and damped, pinions inertia and damped, large gear inertia and damped, and motor rotor inertia and damped are investigated in detail to analyze their effects on dynamic response and performances of the shield TBM cutterhead driving system. Some preliminary approaches are proposed to improve dynamic performances of the cutterhead driving system, and dynamic models will provide a foundation for shield TBM cutterhead driving system's cutterhead fault diagnosis, motion control, and torque synchronous control.
Dynamic Gate Product and Artifact Generation from System Models
Jackson, Maddalena
2011-01-01
Model Based Systems Engineering (MBSE) is gaining acceptance as a way to formalize systems engineering practice through the use of models. The traditional method of producing and managing a plethora of disjointed documents and presentations ("Power-Point Engineering") has proven both costly and limiting as a means to manage the complex and sophisticated specifications of modern space systems. We have developed a tool and method to produce sophisticated artifacts as views and by-products of integrated models, allowing us to minimize the practice of "Power-Point Engineering" from model-based projects and demonstrate the ability of MBSE to work within and supersede traditional engineering practices. This paper describes how we have created and successfully used model-based document generation techniques to extract paper artifacts from complex SysML and UML models in support of successful project reviews. Use of formal SysML and UML models for architecture and system design enables production of review documents, textual artifacts, and analyses that are consistent with one-another and require virtually no labor-intensive maintenance across small-scale design changes and multiple authors. This effort thus enables approaches that focus more on rigorous engineering work and less on "PowerPoint engineering" and production of paper-based documents or their "office-productivity" file equivalents.
A System Graph Model of Robot Manipulator Dynamics
Tzvetkova, Galia Vassileva
2002-09-01
A network structure of robot dynamics is discussed. The topology of the network model is presented as a graph with input, intermediate and output variables. Geometric and mass-inertial parameters of the robot links are independent variables while inertial forces, coupling, centrifugal, Coriolis, gravity forces and friction forces are dependent variables for the network. Operators of connections between dependent variables are defined. A parameterization of the operators based on the independent variables is established. En example of a robot with two degrees of freedom is given.
Svensson, Tobias.
1998-10-01
At analysis of a system that continuously is in operation a dynamic computer model of the system can be of great assistance. A well working model and a good simulating program gives the opportunity to test actions on the model before the process is stopped and the actions are implemented in the real system. In many cases it is a condition that a control action is tested and examined in a model before it is implemented in the real system. The first part of this master's thesis aims at modeling, and simulating the power system of a large industry. Measurements performed in the industry makes a comparison between simulation results and real system behavior possible. The simulations that have been performed agree relatively well with the measurements. None of the actions introduced in the model seem to have improved the systems behavior significantly, but some thoughts tested in the model could be worth to follow up on the real system. The second part of this project is a comparison between the two simulating programs EUROSTAG and Power System Blockset, using a model of the system described above in both cases. The simulating time is the most important issue for the judgement of the programs: a simulation in Power System Blockset takes about 10[sup 4] times longer time than a simulation in EUROSTAG. An advantage with Power System Blockset is that measured data such as load variation can be introduced in the model. This is not possible in EUROSTAG Examination paper. 8 refs, 42 figs
无
2009-01-01
In this paper, two sub-grid scale (SGS) models are introduced into the Lattice Boltzmann Method (LBM), i.e., the dynamics SGS model and the dynamical system SGS model, and applied to numerically solving three-dimensional high Re turbulent cavity flows. Results are compared with those obtained from the Smagorinsky model and direct numerical simulation for the same cases. It is shown that the method with LBM dynamics SGS model has advantages of fast computation speed, suitable to simulate high Re turbulent flows. In addition, it can capture detailed fine structures of turbulent flow fields. The method with LBM dynamical system SGS model dose not contain any adjustable parameters, and can be used in simulations of various complicated turbulent flows to obtain correct information of sub-grid flow field, such as the backscatter of energy transportation between large and small scales. A new average method of eliminating the inherent unphysical oscillation of LBM is also given in the paper.
Dynamics of underactuated multibody systems modeling, control and optimal design
Seifried, Robert
2014-01-01
Underactuated multibody systems are intriguing mechatronic systems, as they possess fewer control inputs than degrees of freedom. Some examples are modern light-weight flexible robots and articulated manipulators with passive joints. This book investigates such underactuated multibody systems from an integrated perspective. This includes all major steps from the modeling of rigid and flexible multibody systems, through nonlinear control theory, to optimal system design. The underlying theories and techniques from these different fields are presented using a self-contained and unified approach and notation system. Subsequently, the book focuses on applications to large multibody systems with multiple degrees of freedom, which require a combination of symbolical and numerical procedures. Finally, an integrated, optimization-based design procedure is proposed, whereby both structural and control design are considered concurrently. Each chapter is supplemented by illustrated examples.
Towards a Fast Dynamic Model of the Human Circulatory System
Kaplan, Carolyn; Green, Melissa; Boris, Jay; Oran, Elaine
2011-11-01
We describe a model for systems-level transport in the human circulatory system that is based on a set of equations for a one-dimensional unsteady elastic pipe flow circuit. The system is collapsed from three spatial dimensions and time to one spatial dimension and time by assuming axisymmetric vessel geometry and a parabolic velocity profile across the cylindrical vessels. To drive the fluid, the contractions of a beating heart are modeled as periodic area changes of the elastic vessels. Two different models are compared, both including and neglecting fluid acceleration. Time-resolved distributions of pressure, velocity and area compare reasonably well with reference data. Increasing the rigidity of the vasculature is found to increase peak arterial pressures on the order of ten percent, and including a distributed vascular contraction to model distributed skeletal muscle contractions monotonically increases time-averaged blood flow in the veins, consistent with human physiological response. The circulatory system model presented here simulates the circulatory system on the order of one hundred times faster than real-time; that is, we can compute thousands of heartbeats per minute of CPU time.
Modeling the basal dynamics of p53 system.
Tingzhe Sun
Full Text Available BACKGROUND: The tumor suppressor p53 has become one of most investigated genes. Once activated by stress, p53 leads to cellular responses such as cell cycle arrest and apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: Most previous models have ignored the basal dynamics of p53 under nonstressed conditions. To explore the basal dynamics of p53, we constructed a stochastic delay model by incorporating two negative feedback loops. We found that protein distribution of p53 under nonstressed condition is highly skewed with a fraction of cells showing high p53 levels comparable to those observed under stressed conditions. Under nonstressed conditions, asynchronous and spontaneous p53 pulses are triggered by basal DNA double strand breaks produced during normal cell cycle progression. The first peaking times show a predominant G1 distribution while the second ones are more widely distributed. The spontaneous pulses are triggered by an excitable mechanism. Once initiated, the amplitude and duration of pulses remain unchanged. Furthermore, the spontaneous pulses are filtered by ataxia telangiectasia mutated protein mediated posttranslational modifications and do not result in substantial p21 transcription. If challenged by externally severe DNA damage, cells generate synchronous p53 pulses and induce significantly high levels of p21. The high expression of p21 can also be partially induced by lowering the deacetylation rate. CONCLUSIONS: Our results demonstrated that the dynamics of p53 under nonstressed conditions is initiated by an excitable mechanism and cells become fully responsive only when cells are confronted with severe damage. These findings advance our understanding of the mechanism of p53 pulses and unlock many opportunities to p53-based therapy.
Dynamical system approach to running $\\Lambda$ cosmological models
Stachowski, Aleksander
2016-01-01
We discussed the dynamics of cosmological models in which the cosmological constant term is a time dependent function through the scale factor $a(t)$, Hubble function $H(t)$, Ricci scalar $R(t)$ and scalar field $\\phi(t)$. We considered five classes of models; two non-covariant parametrization of $\\Lambda$: 1) $\\Lambda(H)$CDM cosmologies where $H(t)$ is the Hubble parameter, 2) $\\Lambda(a)$CDM cosmologies where $a(t)$ is the scale factor, and three covariant parametrization of $\\Lambda$: 3) $\\Lambda(R)$CDM cosmologies, where $R(t)$ is the Ricci scalar, 4) $\\Lambda(\\phi)$-cosmologies with diffusion, 5) $\\Lambda(X)$-cosmologies, where $X=\\frac{1}{2}g^{\\alpha\\beta}\
Dynamic model for controller design of condensate throttling systems.
Hu, Yong; Zeng, De-Liang; Liu, Ji-Zhen; Zhao, Zheng; Li, Ya-zhe
2015-09-01
Improving the load adjustment rate of coal-fired power plants in China is very important because of grid load fluctuations and the construction of new large-scale power plants connected to the country's power grid. In this paper, a new application of condensate throttling system for rapid load adjustment is proposed on the basis of the characteristics of turbine-stored energy. To ensure effective and safe operation of the condensate throttling system, a non-linear control model is derived through reasonable simplifications of fundamental physical laws, and the model parameters are identified using experimental data from a 660 MW supercritical coal-fired power plant. The model outputs are compared with actual measured data for different unit loads. Results show that the established model's responses strongly correlate with the actual unit's responses and can be used for controller design.
Kovalevsky D. V.
2014-12-01
Full Text Available The Structural Dynamic Economic Model SDEM-2 is essentially a model of a closed economy growing under conditions of conflict of interests of two powerful aggregate actors: entrepreneurs and wage-earners. We study the economic growth within SDEM-2 both in system dynamic and optimization model setups. For the system dynamic model setup, four alternative control strategies of entrepreneurs are considered in detail: the “altruistic” control strategy, the “moderate output growth” control strategy, the “here and now” control strategy, and the “moderate dividend growth” control strategy. In the optimization setup the Pontryagin's maximum principle is applied to SDEM-2 to solve the linear and logarithmic utility maximization problems. The degree of sub-optimality of system dynamic solutions is evaluated
Knowledge representation and rule-based solution system for dynamic programming model
胡祥培; 王旭茵
2003-01-01
A knowledge representation has been proposed using the state-space theory of Artificial Intelligencefor Dynamic Programming Model, in which a model can be defined as a six-tuple M = (I,G,O,T,D,S). Abuilding block modeling method uses the modules of a six-tuple to form a rule-based solution model. Moreover,a rule-based system has been designed and set up to solve the Dynamic Programming Model. This knowledge-based representation can be easily used to express symbolical knowledge and dynamic characteristics for Dynam-ic Programming Model, and the inference based on the knowledge in the process of solving Dynamic Program-ming Model can also be conveniently realized in computer.
Harmsen, R.W.
1996-09-30
The Waste Pretreatment and Interfacing Systems Dynamic Simulation (ITHINK) Model (see WHC-SD-WM-DR-013) was originally created to investigate the required pretreatment facility processing rates required to meet the Tri-Party Agreement (TPA) waste vitrification milestones. The TPA milestones are satisfied by retrieving the TX tank farm (salt cake) single-shell tanks (SSTs)first and by utilizing a relatively constant retrieval rate to the year 2018 when retrieval is completed.
Yao, Li
2006-01-01
This thesis concerns the modified and improved, time-stepping, dynamic reluctance mesh (DRM) modelling technique for machines and its application to multiple machine systems with their control algorithms. Improvements are suggested which enable the stable solution of the resulting complex non-linear equations. The concept of finite element (FE) derived, overlap-curves has been introduced to facilitate the evaluation of the air-gap reluctances linking the teeth on the rotor to those on the sta...
Yang Yu
2013-01-01
Full Text Available The structural scheme of mechanical elastic energy storage (MEES system served by permanent magnet synchronous motor (PMSM and bidirectional converters is designed. The aim of the research is to model and control the complex electromechanical system. The mechanical device of the complex system is considered as a node in generalized coordinate system, the terse nonlinear dynamic model of electromechanical coupling for the electromechanical system is constructed through Lagrange-Maxwell energy method, and the detailed deduction of the mathematical model is presented in the paper. The theory of direct feedback linearization (DFL is applied to decouple the nonlinear dynamic model and convert the developed model from nonlinear to linear. The optimal control theory is utilized to accomplish speed tracking control for the linearized system. The simulation results in three different cases show that the proposed nonlinear dynamic model of MEES system is correct; the designed algorithm has a better control performance in contrast with the conventional PI control.
Modeling the Afferent Dynamics of the Baroreflex Control System
Ottesen, Johnny T.; Mahdi, Adam; Sturdy, Jacob
2013-01-01
of mechanoreceptors located in the BR nerve-endings, and modulation of the action potential frequency. The three sub-systems are modeled individually following well-established biological principles. The first submodel, predicting arterial wall deformation, uses blood pressure as an input and outputs circumferential...
Bayesian dynamical systems modelling in the social sciences.
Ranganathan, Shyam; Spaiser, Viktoria; Mann, Richard P; Sumpter, David J T
2014-01-01
Data arising from social systems is often highly complex, involving non-linear relationships between the macro-level variables that characterize these systems. We present a method for analyzing this type of longitudinal or panel data using differential equations. We identify the best non-linear functions that capture interactions between variables, employing Bayes factor to decide how many interaction terms should be included in the model. This method punishes overly complicated models and identifies models with the most explanatory power. We illustrate our approach on the classic example of relating democracy and economic growth, identifying non-linear relationships between these two variables. We show how multiple variables and variable lags can be accounted for and provide a toolbox in R to implement our approach.
Morecroft, John
System dynamics is an approach for thinking about and simulating situations and organisations of all kinds and sizes by visualising how the elements fit together, interact and change over time. This chapter, written by John Morecroft, describes modern system dynamics which retains the fundamentals developed in the 1950s by Jay W. Forrester of the MIT Sloan School of Management. It looks at feedback loops and time delays that affect system behaviour in a non-linear way, and illustrates how dynamic behaviour depends upon feedback loop structures. It also recognises improvements as part of the ongoing process of managing a situation in order to achieve goals. Significantly it recognises the importance of context, and practitioner skills. Feedback systems thinking views problems and solutions as being intertwined. The main concepts and tools: feedback structure and behaviour, causal loop diagrams, dynamics, are practically illustrated in a wide variety of contexts from a hot water shower through to a symphony orchestra and the practical application of the approach is described through several real examples of its use for strategic planning and evaluation.
A Dynamic Modeling Toolbox for Air Vehicle Vapor Cycle Systems (Postprint)
2013-10-01
Transcritical Vapor Compression Systems.” Journal of Dynamic Systems, Measurement, and Control, 2004: 54-64. 7. Li, B, Otten, R, Chandan, V, Mohs , W...and Trystram, G. “Low Order Dynamic Model os a Vapor Compression Cycle for Process Control Design.” Journal of Food Process, 2003: 193-199. 13
System dynamics modeling on health care : supply and demand of dementia care
Rouwette, E.A.J.A.
2006-01-01
This presentation will address the use of system dynamics models to analyze complex problems in health care. System dynamics has been used on health related issues since at least the 1960s and in the Netherlands since the 1980s. In this approach a group of experts and stakeholders participates in de
Chellaboina Vijaysekhar
2005-01-01
Full Text Available We develop thermodynamic models for discrete-time large-scale dynamical systems. Specifically, using compartmental dynamical system theory, we develop energy flow models possessing energy conservation, energy equipartition, temperature equipartition, and entropy nonconservation principles for discrete-time, large-scale dynamical systems. Furthermore, we introduce a new and dual notion to entropy; namely, ectropy, as a measure of the tendency of a dynamical system to do useful work and grow more organized, and show that conservation of energy in an isolated thermodynamic system necessarily leads to nonconservation of ectropy and entropy. In addition, using the system ectropy as a Lyapunov function candidate, we show that our discrete-time, large-scale thermodynamic energy flow model has convergent trajectories to Lyapunov stable equilibria determined by the system initial subsystem energies.
Fuzzy cognitive maps outmatch loop analysis in dynamic modeling of ecological systems
Alessandro Ferrarini
2011-01-01
Modeling natural systems is challenging due to their complexity in terms of variables, interactions, and dynamics. Much of this complexity is rooted in the existence of multiple ways through which acting variables affect each other. Besides the simple direct effects, numerous indirect effects emerge in ecological systems. Through an illustrative example, I exemplify here several advantages of fuzzy cognitive maps (FCM) over loop analysis (LA) in dynamic modeling of ecological systems. In addi...
Garcia, H.; Madrigal, M. [Programa de Graduados e Investigacion en Ingenieria Electrica, Instituto Tecnologico de Morelia, Morelia (Mexico); Vyakaranam, B.; Rarick, R.; Villaseca, F.E. [Department of Electrical and Computer Engineering, Cleveland State University, OH (United States)
2011-02-15
In this paper a methodology that extends the dynamic harmonic domain (DHD) analysis of large networks is presented. The method combines DHD analysis and discrete companion circuit modeling resulting in a powerful analytic technique called dynamic companion harmonic circuit modeling. It provides for a complete dynamic harmonic analysis of the system while preserving the advantages of discrete companion circuit models. The methodology is illustrated by its application to a three-node power system, where reactive power compensation is achieved using a fixed-capacitor, thyristor-controlled reactor (FC-TCR) and its control system. (author)
MacLeod, Miles; Nersessian, Nancy J
2015-02-01
In this paper we draw upon rich ethnographic data of two systems biology labs to explore the roles of explanation and understanding in large-scale systems modeling. We illustrate practices that depart from the goal of dynamic mechanistic explanation for the sake of more limited modeling goals. These processes use abstract mathematical formulations of bio-molecular interactions and data fitting techniques which we call top-down abstraction to trade away accurate mechanistic accounts of large-scale systems for specific information about aspects of those systems. We characterize these practices as pragmatic responses to the constraints many modelers of large-scale systems face, which in turn generate more limited pragmatic non-mechanistic forms of understanding of systems. These forms aim at knowledge of how to predict system responses in order to manipulate and control some aspects of them. We propose that this analysis of understanding provides a way to interpret what many systems biologists are aiming for in practice when they talk about the objective of a "systems-level understanding."
Efficient computerized model for dynamic analysis of energy conversion systems
Hughes, R. D.; Lansing, F. L.; Khan, I. R.
1983-02-01
In searching for the optimum parameters that minimize the total life cycle cost of an energy conversion system, various combinations of components are examined and the resulting system performance and associated economics are studied. The systems performance and economics simulation computer program (SPECS) was developed to fill this need. The program simulates the fluid flow, thermal, and electrical characteristics of a system of components on a quasi-steady state basis for a variety of energy conversion systems. A unique approach is used in which the set of characteristic equations is solved by the Newton-Raphson technique. This approach eliminates the tedious iterative loops which are found in comparable programs such as TRNSYS or SOLTES-1. Several efficient features were also incorporated such as the centralized control and energy management scheme, and analogous treatment of energy flow in electrical and mechanical components, and the modeling of components of similar fundamental characteristics using generic subroutines. Initial tests indicate that this model can be used effectively with a relatively small number of time steps and low computer cost.
Birkhoff, George D
1927-01-01
His research in dynamics constitutes the middle period of Birkhoff's scientific career, that of maturity and greatest power. -Yearbook of the American Philosophical Society The author's great book€¦is well known to all, and the diverse active modern developments in mathematics which have been inspired by this volume bear the most eloquent testimony to its quality and influence. -Zentralblatt MATH In 1927, G. D. Birkhoff wrote a remarkable treatise on the theory of dynamical systems that would inspire many later mathematicians to do great work. To a large extent, Birkhoff was writing about his o
Berzina, Alise; Dace, Elina; Bazbauers, Gatis
2010-01-01
This paper discusses the findings of a research project which explored the packaging waste management system in Latvia. The paper focuses on identifying how the policy mechanisms can promote ecodesign implementation and material efficiency improvement and therefore reduce the rate of packaging waste accumulation in landfill. The method used for analyzing the packaging waste management policies is system dynamics modeling. The main conclusion is that the existing legislative instruments can be used to create an effective policy for ecodesign implementation but substantially higher tax rates on packaging materials and waste disposal than the existing have to be applied.
姚志远; 汪凤泉
2004-01-01
An online method of identification of dynamic characteristics only using measured ambient response of structural dynamic system is widely focused on. The Ibrahim and ARMA (AutoRegressive Moving Average ) methods are basic identification methods. A model on dynamic system suffered by random ambient excitation was researched into, and a subspace decomposition method being different from traditional harmonic retrieval method was introduced. Robustness and effectiveness of this approach on identification of vibration characteristics are demonstrated on numerical experiment.
Vahid Behjat
2014-12-01
Full Text Available This research work develops dynamic model of a gearless small scale wind power generation system based on a direct driven single sided outer rotor AFPMSG with coreless armature winding. Dynamic modeling of the AFPMSG based wind turbine requires machine parameters. To this end, a 3D FEM model of the generator is developed and from magnetostatic and transient analysis of the FEM model, machine parameters are calculated and utilized in dynamic modeling of the system. A maximum power point tracking (MPPT-based FOC control approach is used to obtain maximum power from the variable wind speed. The simulation results show the proper performance of the developed dynamic model of the AFPMSG, control approach and power generation system.
Dynamic model of vertical vehicle-subgrade coupled system under secondary suspension
LIANG Bo; LUO Hong; MA Xue-ning
2007-01-01
As it is known, track transportation can be divided into track system above and track system below. While the train is moving, the parts above and below are interacted and influenced. Therefore, in fact, the problem of track transportation is the match between the vehicle and the railway line system. In this paper, on a basis of dynamic analysis of the vehicle-subgrade model of vertical coupled system under primary suspension,utilizing track maintenance standard and simulating track irregularity excitation, the dynamic interaction of vehicle-track-subgrade system is researched in theory and dynamic model of the vertical vehicle-track-subgrade coupled system under secondary suspension is established by compatibility condition of deformation. Even this model considers the actual structure of a vehicle, also considers vibration characteristic of the substructure of track including subgrade and foundation. All these work want to be benefit for understanding and design about the dynamic characters of subgrade in high speed railway.
Evolution of the DeNOC-based dynamic modelling for multibody systems
S. K. Saha
2013-01-01
Full Text Available Dynamic modelling of a multibody system plays very essential role in its analyses. As a result, several methods for dynamic modelling have evolved over the years that allow one to analyse multibody systems in a very efficient manner. One such method of dynamic modelling is based on the concept of the Decoupled Natural Orthogonal Complement (DeNOC matrices. The DeNOC-based methodology for dynamics modelling, since its introduction in 1995, has been applied to a variety of multibody systems such as serial, parallel, general closed-loop, flexible, legged, cam-follower, and space robots. The methodology has also proven useful for modelling of proteins and hyper-degree-of-freedom systems like ropes, chains, etc. This paper captures the evolution of the DeNOC-based dynamic modelling applied to different type of systems, and its benefits over other existing methodologies. It is shown that the DeNOC-based modelling provides deeper understanding of the dynamics of a multibody system. The power of the DeNOC-based modelling has been illustrated using several numerical examples.
System Dynamics Modeling in Entrepreneurship Research: A Review of the Literature
Mohammad Reza Zali
2014-11-01
Full Text Available System dynamics is a strategic approach for modeling complex systems and analyzing their behavior. Dynamic behavior in entrepreneurial system can be modeled using System Dynamics Approach and dynamic hypotheses about the system`s behavior can be proposed and tested using simulation and computer aided tools. However, as the review of literature shows, studies which link system dynamics modeling with entrepreneurship are rare and fragmented. This article presents a review of studies on the subject followed by integration and discussion on main research issues that have been the focus of previous studies. The main aim of this review is to categorize the available research related to the application of system dynamics modeling in entrepreneurship to integrate research and enable recommendations for future research. The Results reveal that the previous research could be categorized under a two dimensional taxonomy composed of level of analysis and level of modeling. The Level of analysis has three categories: micro level, meso level and macro level. The Level of modeling has six hierarchical levels. This study identifies several gaps in the literature and discusses the future directions in this field.
K. Agyapong-Kodua
2012-01-01
Full Text Available Enterprise modelling techniques support business process (reengineering by capturing existing processes and based on perceived outputs, support the design of future process models capable of meeting enterprise requirements. System dynamics modelling tools on the other hand are used extensively for policy analysis and modelling aspects of dynamics which impact on businesses. In this paper, the use of enterprise and system dynamics modelling techniques has been integrated to facilitate qualitative and quantitative reasoning about the structures and behaviours of processes and resource systems used by a Manufacturing Enterprise during the production of composite bearings. The case study testing reported has led to the specification of a new modelling methodology for analysing and managing dynamics and complexities in production systems. This methodology is based on a systematic transformation process, which synergises the use of a selection of public domain enterprise modelling, causal loop and continuous simulation modelling techniques. The success of the modelling process defined relies on the creation of useful CIMOSA process models which are then converted to causal loops. The causal loop models are then structured and translated to equivalent dynamic simulation models using the proprietary continuous simulation modelling tool iThink.
Grammatical Immune System Evolution for reverse engineering nonlinear dynamic Bayesian models.
McKinney, B A; Tian, D
2008-01-01
An artificial immune system algorithm is introduced in which nonlinear dynamic models are evolved to fit time series of interacting biomolecules. This grammar-based machine learning method learns the structure and parameters of the underlying dynamic model. In silico immunogenetic mechanisms for the generation of model-structure diversity are implemented with the aid of a grammar, which also enforces semantic constraints of the evolved models. The grammar acts as a DNA repair polymerase that can identify recombination and hypermutation signals in the antibody (model) genome. These signals contain information interpretable by the grammar to maintain model context. Grammatical Immune System Evolution (GISE) is applied to a nonlinear system identification problem in which a generalized (nonlinear) dynamic Bayesian model is evolved to fit biologically motivated artificial time-series data. From experimental data, we use GISE to infer an improved kinetic model for the oxidative metabolism of 17beta-estradiol (E(2)), the parent hormone of the estrogen metabolism pathway.
Absorptive capacity, technological innovation, and product life cycle: a system dynamics model
Zou, Bo; Guo, Feng; Guo, Jinyu
2016-01-01
.... Based on interviews with 24 Chinese firms, this study develops a system-dynamics model that incorporates an important feedback loop among absorptive capacity, technological innovation, and product life cycle (PLC...
Modelling the Effects of Parking Charge and Supply Policy Using System Dynamics Method
Zhenyu Mei; Qifeng Lou; Wei Zhang; Lihui Zhang; Fei Shi
2017-01-01
.... This paper develops an evaluation model for parking policies using system dynamics. A quantitative study is conducted to examine the effects of parking charge and supply policy on traffic speed...
Dynamic modelling of micropollutants in the integrated urban wastewater system
Lindblom, Erik Ulfson
Hovedemnet for denne ph.d. afhandling er dynamisk modellering af miljøfremmede stoffer ved lave koncentrationer i integrerede urbane spildevandssystemer bestående af kloak¬oplande, spildevandsrensningsanlæg og vandløb. Tilstedeværelse af miljøfremmede stoffer i urbant vand skyldes produktion, brug......-faststof fordelingskoefficient) samt veletablerede matematiske beskrivelser af de fysiske, kemiske og biologiske processer, som optræder i det integrerede spildevands¬system. Denne hypotese undersøges ved at gennemføre udvalgte trin fra en generisk modeludviklings procedure for tre definerede fokusområder indenfor afhandlingens...
Using System Dynamic Model and Neural Network Model to Analyse Water Scarcity in Sudan
Li, Y.; Tang, C.; Xu, L.; Ye, S.
2017-07-01
Many parts of the world are facing the problem of Water Scarcity. Analysing Water Scarcity quantitatively is an important step to solve the problem. Water scarcity in a region is gauged by WSI (water scarcity index), which incorporate water supply and water demand. To get the WSI, Neural Network Model and SDM (System Dynamic Model) that depict how environmental and social factors affect water supply and demand are developed to depict how environmental and social factors affect water supply and demand. The uneven distribution of water resource and water demand across a region leads to an uneven distribution of WSI within this region. To predict WSI for the future, logistic model, Grey Prediction, and statistics are applied in predicting variables. Sudan suffers from severe water scarcity problem with WSI of 1 in 2014, water resource unevenly distributed. According to the result of modified model, after the intervention, Sudan’s water situation will become better.
Andrew J. Dougill
2010-06-01
Full Text Available It is vitally important to identify agroecosystems that may cease functioning because of changing climate or land degradation. However, identifying such systems is confounded on both conceptual and methodological grounds, especially in systems that are moving toward thresholds, a common trait of dryland environments. This study explores these challenges by analyzing how a range of external pressures affect the vulnerability of dryland pastoral systems in the Kalahari. This is achieved by employing dynamic systems modeling approaches to understand the pathways by which communities became vulnerable to drought. Specifically, we evaluate how external pressures have changed: (1 different agroecosystems' abilities to tolerate drought, i.e., ecosystem resilience; (2 rural communities' abilities to adapt to drought, mediated via their access to assets; and (3 the ability of institutions and policy interventions to play a role in mediating drought-related crises, i.e., socio-political governance. This is done by reanalyzing ecological and participatory research findings along with farm-scale livestock offtake data from across the Kalahari in Botswana. An iterative process was followed to establish narratives exploring how external drivers led to changes in agroecosystem resilience, access to assets, and the institutional capacity to buffer the system. We use "causal loop diagrams" and statistical dynamic system models to express key quantitative relationships and establish future scenarios to help define where uncertainties lie by showing where the system is most sensitive to change. We highlight how that greater sharing of land management knowledge and practices between private and communal land managers can provide 'win-win-win' benefits of reducing system vulnerability, increasing economic income, and building social capital. We use future scenario analyses to identify key areas for future studies of climate change adaptation across the Kalahari.
System dynamics of behaviour-evolutionary mix-game models
Gou, Cheng-Ling; Gao, Jie-Ping; Chen, Fang
2010-11-01
In real financial markets there are two kinds of traders: one is fundamentalist, and the other is a trend-follower. The mix-game model is proposed to mimic such phenomena. In a mix-game model there are two groups of agents: Group 1 plays the majority game and Group 2 plays the minority game. In this paper, we investigate such a case that some traders in real financial markets could change their investment behaviours by assigning the evolutionary abilities to agents: if the winning rates of agents are smaller than a threshold, they will join the other group; and agents will repeat such an evolution at certain time intervals. Through the simulations, we obtain the following findings: (i) the volatilities of systems increase with the increase of the number of agents in Group 1 and the times of behavioural changes of all agents; (ii) the performances of agents in both groups and the stabilities of systems become better if all agents take more time to observe their new investment behaviours; (iii) there are two-phase zones of market and non-market and two-phase zones of evolution and non-evolution; (iv) parameter configurations located within the cross areas between the zones of markets and the zones of evolution are suited for simulating the financial markets.
System dynamics of behaviour-evolutionary mix-game models
Gou Cheng-Ling; Gao Jie-Ping; Chen Fang
2010-01-01
In real financial markets there are two kinds of traders:one is fundamentalist,and the other is a trend-follower.The mix-game model is proposed to mimic such phenomena.In a mix-game model there are two groups of agents:Group 1 plays the majority game and Group 2 plays the minority game.In this paper,we investigate such a case that some traders in real financial markets could change their investment behaviours by assigning the evolutionary abilities to agents:if the winning rates of agents are smaller than a threshold,they will join the other group;and agents will repeat such an evolution at certain time intervals.Through the simulations,we obtain the following findings:(i) the volatilities of systems increase with the increase of the number of agents in Group 1 and the times of behavioural changes of all agents;(ii) the performances of agents in both groups and the stabilities of systems become better if all agents take more time to observe their new investment behaviours;(iii) there are two-phase zones of market and non-market and two-phase zones of evolution and non-evolution;(iv) parameter configurations located within the cross areas between the zones of markets and the zones of evolution are suited for simulating the financial markets.
Al-Dabbagh, Ahmad W. [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario (Canada); Lu, Lixuan [Faculty of Energy Systems and Nuclear Science, Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario (Canada)
2010-09-15
Modeling and analysis of system reliability facilitate the identification of areas of potential improvement. The Dynamic Flowgraph Methodology (DFM) is an emerging discrete modeling framework that allows for capturing time dependent behaviour, switching logic and multi-state representation of system components. The objective of this research is to demonstrate the process of dynamic flowgraph modeling of a nuclear-based hydrogen production plant with the copper-chlorine (Cu-Cl) cycle. Modeling of the thermochemical process of the Cu-Cl cycle in conjunction with a networked control system proposed for monitoring and control of the process is provided. This forms the basis for future component selection. (author)
A dynamical system of deposit and loan volumes based on the Lotka-Volterra model
Sumarti, N.; Nurfitriyana, R.; Nurwenda, W.
2014-02-01
In this research, we proposed a dynamical system of deposit and loan volumes of a bank using a predator-prey paradigm, where the predator is loan volumes, and the prey is deposit volumes. The existence of loan depends on the existence of deposit because the bank will allocate the loan volume from a portion of the deposit volume. The dynamical systems have been constructed are a simple model, a model with Michaelis-Menten Response and a model with the Reserve Requirement. Equilibria of the systems are analysed whether they are stable or unstable based on their linearised system.
Dynamics and Collapse in a Power System Model with Voltage Variation: The Damping Effect
Ma, Jinpeng; Sun, Yong; Yuan, Xiaoming; Kurths, Jürgen; Zhan, Meng
2016-01-01
Complex nonlinear phenomena are investigated in a basic power system model of the single-machine-infinite-bus (SMIB) with a synchronous generator modeled by a classical third-order differential equation including both angle dynamics and voltage dynamics, the so-called flux decay equation. In contrast, for the second-order differential equation considering the angle dynamics only, it is the classical swing equation. Similarities and differences of the dynamics generated between the third-order model and the second-order one are studied. We mainly find that, for positive damping, these two models show quite similar behavior, namely, stable fixed point, stable limit cycle, and their coexistence for different parameters. However, for negative damping, the second-order system can only collapse, whereas for the third-order model, more complicated behavior may happen, such as stable fixed point, limit cycle, quasi-periodicity, and chaos. Interesting partial collapse phenomena for angle instability only and not for voltage instability are also found here, including collapse from quasi-periodicity and from chaos etc. These findings not only provide a basic physical picture for power system dynamics in the third-order model incorporating voltage dynamics, but also enable us a deeper understanding of the complex dynamical behavior and even leading to a design of oscillation damping in electric power systems. PMID:27832098
Acquisition Management for Systems-of-Systems: Risk Dynamics and Exploratory Model Experimentation
2011-03-03
2008. "A Network Model of H5N1 Avian Influenza Transmission Dynamics in Domestic Cats," Zoonoses and Public Health, Vol. 55, Issue 8-10, pp 497-506...research.maxwell.af.mil/papers/ay2001/acsc /01-033. pdf [accessed 26 January 2010]. Charles, P. and Turner, P., 2004. “Capabilities Based Acquisition...database]: http://www.dodccrp.org/events/10th_ICCRTS/CD/papers/063. pdf , [accessed 25 January, 2010]. Fowler, C. A. 1994. The Defense Acquisition System
Mixed-effects state-space models for analysis of longitudinal dynamic systems.
Liu, Dacheng; Lu, Tao; Niu, Xu-Feng; Wu, Hulin
2011-06-01
The rapid development of new biotechnologies allows us to deeply understand biomedical dynamic systems in more detail and at a cellular level. Many of the subject-specific biomedical systems can be described by a set of differential or difference equations that are similar to engineering dynamic systems. In this article, motivated by HIV dynamic studies, we propose a class of mixed-effects state-space models based on the longitudinal feature of dynamic systems. State-space models with mixed-effects components are very flexible in modeling the serial correlation of within-subject observations and between-subject variations. The Bayesian approach and the maximum likelihood method for standard mixed-effects models and state-space models are modified and investigated for estimating unknown parameters in the proposed models. In the Bayesian approach, full conditional distributions are derived and the Gibbs sampler is constructed to explore the posterior distributions. For the maximum likelihood method, we develop a Monte Carlo EM algorithm with a Gibbs sampler step to approximate the conditional expectations in the E-step. Simulation studies are conducted to compare the two proposed methods. We apply the mixed-effects state-space model to a data set from an AIDS clinical trial to illustrate the proposed methodologies. The proposed models and methods may also have potential applications in other biomedical system analyses such as tumor dynamics in cancer research and genetic regulatory network modeling. © 2010, The International Biometric Society.
System Solver: an open source tool for mathematically modelling dynamical systems
Efraín Domínguez
2010-10-01
Full Text Available The following paper presents a freeware modelling tool simulating dynamic systems that can be represented by either an ordinary differential equation (ODE or a set of differential equations of different orders. The main idea leading to this software development is related to the fact that many physiccal, biological, ecological, economical, chemical, social and engineering problems can be expressed in this way. Furthermore, the solution to these problems requires some expertise in numerical methods and programming. Such knowledge is uncommon in some of the experts in such scientific domains. A tool to fill in this knowledge gap, increase productivity within modelling-related research and support the teaching of mathematical modelling topics is thus needed. This paper introduces System Solver, a computer application that facilitates the formulation of initial value problems for ODE systems, numerically solves these problems and provides a user with not only the solution but also debugged Visual Basic source code for the application. The obtained code can be easily shared among researchers, which facilitates the replication of numerical experiments even across different operating systems. This software’s introduction is accompanied by examples from different domains, including one example from stochastic modelling.
Physically based dynamic modeling of planar anode-supported sofc cogeneration systems
Albrecht, Kevin J.
Abstract Solid oxide fuel cells (SOFC) have been a key area of academic research interest over the past decade due to their high electrical efficiency, fuel flexibility, and high quality waste heat. These benefits suggest that SOFCs could play a significant role as a future distributed generation, combined heat and power source if life cycle cost can be reduced or significant incentives such as a carbon tax are implemented. At the current point in SOFC development, degradation effects limit the operational lifetime of SOFCs. Other research efforts have suggested that the dynamic operation of SOFCs could improve the economics in addition to reducing degradation. Thus the development of high fidelity modeling tools for the assessment of dynamic SOFC system operation is important to determine the potential load-following ability of SOFC systems. One of the goals of this research is to identify the required level of fidelity necessary for a dynamic SOFC system-level simulation tool. The channel-level steady-state simulation and dynamic response to step changes in current density are presented for a one-dimensional and `quasi' two-dimensional model. The results indicate the predicted temperature gradient is less severe when implementing a higher fidelity `quasi' two-dimensional model. Additionally, the modeling and sizing of the balance of plant components to simulate off-design and system dynamics are presented. The effects of dynamic balance of plant components are compared to the typically accepted steady-state models. The incorporation of the dynamic balance of plant components are shown to have a significant effect on the dynamics of the waste heat recovery, where the power dynamics are only minimally affected. Finally, the steady-state performance at off-design conditions and dynamic response to step changes in the net system power are presented to assess the potential load-following ability of a combined heat and power SOFC system.
A nonlinear dynamical system for combustion instability in a pulse model combustor
Takagi, Kazushi; Gotoda, Hiroshi
2016-11-01
We theoretically and numerically study the bifurcation phenomena of nonlinear dynamical system describing combustion instability in a pulse model combustor on the basis of dynamical system theory and complex network theory. The dynamical behavior of pressure fluctuations undergoes a significant transition from steady-state to deterministic chaos via the period-doubling cascade process known as Feigenbaum scenario with decreasing the characteristic flow time. Recurrence plots and recurrence networks analysis we adopted in this study can quantify the significant changes in dynamic behavior of combustion instability that cannot be captured in the bifurcation diagram.
A dynamic performance simulation model of flat-plate solar collectors for a heat pump system
Arinze, E.A.; Schoenau, G.J.; Sokhansanj, S. (Saskatchewan Univ., Saskatoon, SK (Canada). College of Engineering); Adefila, S.S.; Mumah, S.M. (Ahmadu Bello Univ., Zaria (Nigeria). Dept. of Chemical Engineering)
1993-01-01
Flat-plate collectors are inherently exposed to time-varying meteorological and system parameters. Thus, dynamic modeling, rather than the commonly used steady-state models, is a more accurate approach for the design and performance evaluation of flat-plate solar collectors. The dynamic model presented in this study describes the fluid, plate and cover temperatures of the collector by three different differential equations. Taylor series expansion and the Runge-Kutta method are used in the solution of the differential equations. The accuracy of the dynamic model was tested by comparing the results predicted by the model with experimental performance data obtained for a liquid-cooled flat-plate solar collector with a corrugated transparent fiberglass cover. The predicted results by the dynamic model agreed favorably with the measured experimental data for the flat-plate solar collector. Experimentally determined collector temperatures varied by a maximum of [+-]3[sup o]C from values predicted by the model. (Author)
Dinca, Laurian; Aldemir, Tunc; Rizzoni, Giorgio
1999-06-01
A probabilistic approach is presented which can be used for the estimation of system parameters and unmonitored state variables towards model-based fault diagnosis in dynamic systems. The method can be used with any type of input-output model and can accommodate noisy data and/or parameter/modeling uncertainties. The methodology is based on Markovian representation of system dynamics in discretized state space. The example system used for the illustration of the methodology focuses on the intake, fueling, combustion and exhaust components of internal combustion engines. The results show that the methodology is capable of estimating the system parameters and tracking the unmonitored dynamic variables within user-specified magnitude intervals (which may reflect noise in the monitored data, random changes in the parameters or modeling uncertainties in general) within data collection time and hence has potential for on-line implementation.
REMOTE SYNTHESIS AND CONTROL INFORMATION TECHNOLOGY OF SYSTEM-DYNAMIC MODELS
A. V. Masloboev
2015-07-01
Full Text Available The general line of research is concerned with development of information technologies and computer simulation tools for management information and analytical support of complex semistructured systems. Regional socio-economic systems are consideredas a representative of this system type. Investigation is carried out within the bounds of development strategy implementation of the Arctic zone of the Russian Federation and national safety until 2020 in the Murmansk region, specifically under engineering of high end information infrastructure for innovation and security control problem-solving of regional development. Research methodology consists of system dynamics modeling method, distributed information system engineering technologies, pattern-based modeling and design techniques. The work deals with development of toolkit for decision-making information support problem-solving in the field of innovation security management of regional economics. For that purpose a system-dynamic models suite of innovation process standard components and information technology for remote formation and control of innovation business simulation models under research have been developed. Designed toolkit provides innovation security index dynamics forecasting and innovation business effectiveness of regional economics. Information technology is implemented within the bounds of thin client architecture and is intended for simulation models design process automation of complex systems. Technology implementation software tools provide pattern-based system-dynamic models distributed formation and simulation control of innovation processes. The technology provides availability and reusability index enhancement of information support facilities in application to innovation process simulation at the expense of distributed access to innovation business simulation modeling tools and model synthesis by the reusable components, simulating standard elements of innovation
Modeling of integral-type Stirling refrigerator using system dynamics approach
Huang, B.J.; Chen, H.Y. [National Taiwan Univ., Dept. of Mechanical Engineering, Taipei (Taiwan)
2000-07-01
A modeling of the integral-type Stirling refrigerator (ITSR) using a system dynamics approach is developed in the present study. The system dynamics models are derived to describe the input/output relation of each component of an ITSR. Connecting the equivalent circuits of the components together, we obtain a flow network diagram and derive a transfer function to represent system dynamics behavior of an ITSR. The performance analysis of an ITSR is then easily carried out by use of the transfer function with sinusoidal signal assumption. The performance calculation for a test refrigerator has shown that the analysis is accurate. An empirical correlation for a correction coefficient r in the expansion space was also derived for better results. The present study has demonstrated how a linear system theory or system dynamics approach can be applied to the design of an ITSR. (Author)
Kopasakis, George; Connolly, Joseph W.; Seiel, Jonathan
2016-01-01
A summary of the propulsion system modeling under NASA's High Speed Project (HSP) AeroPropulsoServoElasticity (APSE) task is provided with a focus on the propulsion system for the low-boom supersonic configuration developed by Lockheed Martin and referred to as the N+2 configuration. This summary includes details on the effort to date to develop computational models for the various propulsion system components. The objective of this paper is to summarize the model development effort in this task, while providing more detail in the modeling areas that have not been previously published. The purpose of the propulsion system modeling and the overall APSE effort is to develop an integrated dynamic vehicle model to conduct appropriate unsteady analysis of supersonic vehicle performance. This integrated APSE system model concept includes the propulsion system model, and the vehicle structural aerodynamics model. The development to date of such a preliminary integrated model will also be summarized in this report
Overeem, I.; Hutton, E.; Kettner, A.; Peckham, S. D.; Syvitski, J. P.
2012-12-01
The Community Surface Dynamics Modeling System - CSDMS- develops a software platform with shared and coupled modules for modeling earth surface processes as a community resource. The framework allows prediction of water, sediment and nutrient transport through the landscape and seacape. The underlying paradigm is that the Earth surface we live on is a dynamic system; topography changes with seasons, with landslides and earthquakes, with erosion and deposition. The Earth Surface changes due to storms and floods, and important boundaries, like the coast, are ever-moving features. CSDMS sets out to make better predictions of these changes. Earth surface process modeling bridges the terrestrial, coastal and marine domains and requires understanding of the system over a range of time scales, which inherently needs interdisciplinarity. Members of CSDMS (~830 in July 2012) are largely from academic institutions (˜75%), followed by federal agencies (˜17%), and oil and gas companies (˜5%). Members and governmental bodies meet once annually and rely additionally on web-based information for communication. As an organization that relies on volunteer participation, CSDMS faces challenges to scientific collaboration. Encouraging volunteerism among its members to provide and adapt metadata and model code to be sufficiently standardized for coupling is crucial to building an integrated community modeling system. We here present CSDMS strategies aimed at providing the appropriate technical tools and cyberinfrastructure to support a variety of user types, ranging from advanced to novice modelers. Application of these advances in science is key, both into the educational realm and for managers and decision-makers. We discuss some of the implemented ideas to further organizational transparency and user engagement in small-scale governance, such as advanced trackers and voting systems for model development prioritization through the CSDMS wiki. We analyzed data on community
Dynamic wind turbine models in power system simulation tool DIgSILENT
Hansen, A.D.; Jauch, C.; Sørensen, Poul Ejnar
2004-01-01
The present report describes the dynamic wind turbine models implemented in the power system simulation tool DIgSILENT (Version 12.0). The developed models are a part of the results of a national research project, whose overall objective is to create amodel database in different simulation tools....... The report contains both the description of DIgSILENT built-in models for the electrical components of a grid connected wind turbine (e.g. inductiongenerators, power converters, transformers) and the models developed by the user, in the dynamic simulation language DSL of DIgSILENT, for the non......-electrical components of the wind turbine (wind model, aerodynamic model, mechanical model). Theinitialisation issues on the wind turbine models into the power system simulation are also presented. However, the main attention in this report is drawn to the modelling at the system level of two wind turbine concepts: 1...
Dynamic Modeling of Process Technologies for Closed-Loop Water Recovery Systems
Allada, Rama Kumar; Lange, Kevin E.; Anderson, Molly S.
2012-01-01
Detailed chemical process simulations are a useful tool in designing and optimizing complex systems and architectures for human life support. Dynamic and steady-state models of these systems help contrast the interactions of various operating parameters and hardware designs, which become extremely useful in trade-study analyses. NASA s Exploration Life Support technology development project recently made use of such models to compliment a series of tests on different waste water distillation systems. This paper presents dynamic simulations of chemical process for primary processor technologies including: the Cascade Distillation System (CDS), the Vapor Compression Distillation (VCD) system, the Wiped-Film Rotating Disk (WFRD), and post-distillation water polishing processes such as the Volatiles Removal Assembly (VRA). These dynamic models were developed using the Aspen Custom Modeler (Registered TradeMark) and Aspen Plus(Registered TradeMark) process simulation tools. The results expand upon previous work for water recovery technology models and emphasize dynamic process modeling and results. The paper discusses system design, modeling details, and model results for each technology and presents some comparisons between the model results and available test data. Following these initial comparisons, some general conclusions and forward work are discussed.
Reliability analysis of repairable systems using system dynamics modeling and simulation
Srinivasa Rao, M.; Naikan, V. N. A.
2014-07-01
Repairable standby system's study and analysis is an important topic in reliability. Analytical techniques become very complicated and unrealistic especially for modern complex systems. There have been attempts in the literature to evolve more realistic techniques using simulation approach for reliability analysis of systems. This paper proposes a hybrid approach called as Markov system dynamics (MSD) approach which combines the Markov approach with system dynamics simulation approach for reliability analysis and to study the dynamic behavior of systems. This approach will have the advantages of both Markov as well as system dynamics methodologies. The proposed framework is illustrated for a standby system with repair. The results of the simulation when compared with that obtained by traditional Markov analysis clearly validate the MSD approach as an alternative approach for reliability analysis.
Modeling of Macroeconomics by a Novel Discrete Nonlinear Fractional Dynamical System
Zhenhua Hu
2013-01-01
Full Text Available We propose a new nonlinear economic system with fractional derivative. According to the Jumarie’s definition of fractional derivative, we obtain a discrete fractional nonlinear economic system. Three variables, the gross domestic production, inflation, and unemployment rate, are considered by this nonlinear system. Based on the concrete macroeconomic data of USA, the coefficients of this nonlinear system are estimated by the method of least squares. The application of discrete fractional economic model with linear and nonlinear structure is shown to illustrate the efficiency of modeling the macroeconomic data with discrete fractional dynamical system. The empirical study suggests that the nonlinear discrete fractional dynamical system can describe the actual economic data accurately and predict the future behavior more reasonably than the linear dynamic system. The method proposed in this paper can be applied to investigate other macroeconomic variables of more states.
Dynamic Modeling and Simulation on a Hybrid Power System for Electric Vehicle Applications
Hong-Wen He
2010-11-01
Full Text Available Hybrid power systems, formed by combining high-energy-density batteries and high-power-density ultracapacitors in appropriate ways, provide high-performance and high-efficiency power systems for electric vehicle applications. This paper first establishes dynamic models for the ultracapacitor, the battery and a passive hybrid power system, and then based on the dynamic models a comparative simulation between a battery only power system and the proposed hybrid power system was done under the UDDS (Urban Dynamometer Driving Schedule. The simulation results showed that the hybrid power system could greatly optimize and improve the efficiency of the batteries and their dynamic current was also decreased due to the participation of the ultracapacitors, which would have a good influence on batteries’ cycle life. Finally, the parameter matching for the passive hybrid power system was studied by simulation and comparisons.
Analysis and Modeling of Control Tasks in Dynamic Systems
Ursem, Rasmus Kjær; Krink, Thiemo; Jensen, Mikkel Thomas
2002-01-01
Most applications of evolutionary algorithms deal with static optimization problems. However, in recent years, there has been a growing interest in time-varying (dynamic) problems, which are typically found in real-world scenarios. One major challenge in this field is the design of realistic test...
Tian-Syung Lan
2014-01-01
Full Text Available This study used system dynamics method to investigate the factors affecting elementary school students’ BMI values. The construction of the dynamic model is divided into the qualitative causal loop and the quantitative system dynamics modeling. According to the system dynamics modeling, this study consisted of research on the four dimensions: student’s personal life style, diet-relevant parenting behaviors, advocacy and implementation of school nutrition education, and students’ peer interaction. The results of this study showed that students with more adequate health concepts usually have better eating behaviors and consequently have less chance of becoming obese. In addition, this study also verified that educational attainment and socioeconomic status of parents have a positive correlation with students’ amounts of physical activity, and nutrition education has a prominent influence on changing students’ high-calorie diets.
Hybrid internal model control and proportional control of chaotic dynamical systems
齐冬莲; 姚良宾
2004-01-01
A new chaos control method is proposed to take advantage of chaos or avoid it. The hybrid Internal Model Control and Proportional Control learning scheme are introduced. In order to gain the desired robust performance and ensure the system's stability, Adaptive Momentum Algorithms are also developed. Through properly designing the neural network plant model and neural network controller, the chaotic dynamical systems are controlled while the parameters of the BP neural network are modified. Taking the Lorenz chaotic system as example, the results show that chaotic dynamical systems can be stabilized at the desired orbits by this control strategy.
Hybrid internal model control and proportional control of chaotic dynamical systems.
Qi, Dong-lian; Yao, Liang-bin
2004-01-01
A new chaos control method is proposed to take advantage of chaos or avoid it. The hybrid Internal Model Control and Proportional Control learning scheme are introduced. In order to gain the desired robust performance and ensure the system's stability, Adaptive Momentum Algorithms are also developed. Through properly designing the neural network plant model and neural network controller, the chaotic dynamical systems are controlled while the parameters of the BP neural network are modified. Taking the Lorenz chaotic system as example, the results show that chaotic dynamical systems can be stabilized at the desired orbits by this control strategy.
From animal model to human brain networking: dynamic causal modeling of motivational systems.
Gonen, Tal; Admon, Roee; Podlipsky, Ilana; Hendler, Talma
2012-05-23
An organism's behavior is sensitive to different reinforcements in the environment. Based on extensive animal literature, the reinforcement sensitivity theory (RST) proposes three separate neurobehavioral systems to account for such context-sensitive behavior, affecting the tendency to react to punishment, reward, or goal-conflict stimuli. The translation of animal findings to complex human behavior, however, is far from obvious. To examine whether the neural networks underlying humans' motivational processes are similar to those proposed by the RST model, we conducted a functional MRI study, in which 24 healthy subjects performed an interactive game that engaged the different motivational systems using distinct time periods (states) of punishment, reward, and conflict. Crucially, we found that the different motivational states elicited activations in brain regions that corresponded exactly to the brain systems underlying RST. Moreover, dynamic causal modeling of each motivational system confirmed that the coupling strengths between the key brain regions of each system were enabled selectively by the appropriate motivational state. These results may shed light on the impairments that underlie psychopathologies associated with dysfunctional motivational processes and provide a translational validity for the RST.
Interactive Dynamic-System Simulation
Korn, Granino A
2010-01-01
Showing you how to use personal computers for modeling and simulation, Interactive Dynamic-System Simulation, Second Edition provides a practical tutorial on interactive dynamic-system modeling and simulation. It discusses how to effectively simulate dynamical systems, such as aerospace vehicles, power plants, chemical processes, control systems, and physiological systems. Written by a pioneer in simulation, the book introduces dynamic-system models and explains how software for solving differential equations works. After demonstrating real simulation programs with simple examples, the author
Kopasakis, George; Connolly, Joseph; Seidel, Jonathan
2014-01-01
A summary of the propulsion system modeling under NASA's High Speed Project (HSP) AeroPropulsoServoElasticity (APSE) task is provided with a focus on the propulsion system for the low-boom supersonic configuration developed by Lockheed Martin and referred to as the N+2 configuration. This summary includes details on the effort to date to develop computational models for the various propulsion system components. The objective of this paper is to summarize the model development effort in this task, while providing more detail in the modeling areas that have not been previously published. The purpose of the propulsion system modeling and the overall APSE effort is to develop an integrated dynamic vehicle model to conduct appropriate unsteady analysis of supersonic vehicle performance. This integrated APSE system model concept includes the propulsion system model, and the vehicle structural-aerodynamics model. The development to date of such a preliminary integrated model will also be summarized in this report.propulsion system dynamics, the structural dynamics, and aerodynamics.
Individual-based models of collective dynamics in socio-economic systems
Carro Patiño, Adrián
2016-01-01
The main purpose of this thesis is to contribute to the understanding of how complex collective behaviors emerge in social and economic systems. To this end, we use a combination of mathematical analysis and computational simulations along the lines of the agent- or individual-based modeling paradigm. In particular, we focus on three main topics: opinion dynamics, herding behavior in financial markets, and language competition. Opinion dynamics models focus on the processes of opinion for...
Model Reduction of Linear Switched Systems by Restricting Discrete Dynamics
Bastug, Mert; Petreczky, Mihaly; Wisniewski, Rafal
2014-01-01
We present a procedure for reducing the number of continuous states of discrete-time linear switched systems, such that the reduced system has the same behavior as the original system for a subset of switching sequences. The proposed method is expected to be useful for abstraction based control s...
Adaptive rational block Arnoldi methods for model reductions in large-scale MIMO dynamical systems
Khalide Jbilou
2016-04-01
Full Text Available In recent years, a great interest has been shown towards Krylov subspace techniques applied to model order reduction of large-scale dynamical systems. A special interest has been devoted to single-input single-output (SISO systems by using moment matching techniques based on Arnoldi or Lanczos algorithms. In this paper, we consider multiple-input multiple-output (MIMO dynamical systems and introduce the rational block Arnoldi process to design low order dynamical systems that are close in some sense to the original MIMO dynamical system. Rational Krylov subspace methods are based on the choice of suitable shifts that are selected a priori or adaptively. In this paper, we propose an adaptive selection of those shifts and show the efficiency of this approach in our numerical tests. We also give some new block Arnoldi-like relations that are used to propose an upper bound for the norm of the error on the transfer function.
Cognitive Models for Learning to Control Dynamic Systems
2008-05-30
particle swarm optimization are ( ) ( ) ididid idgdidididiid vxx xpRandcxprandcvwv += −+−+= ()() 21 where d is the dimension, c1 and c2 are...0.9 to 0.4 over 1000 iterations), to set c1 and c2 to about 1.5 or 2.0, and to set the maximum allowable velocity Vmax to the dynamic range of each...where 1 2[ , ,..., ]nx x x x= r is the vector of feasible solution or decision variables. : nif → , 1, 2...,i n= is the i -th objective function
Solano, Javier; Duarte, José; Vargas, Erwin; Cabrera, Jhon; Jácome, Andrés; Botero, Mónica; Rey, Juan
2016-10-01
This paper addresses the Energetic Macroscopic Representation EMR, the modelling and the control of photovoltaic panel PVP generation systems for simulation purposes. The model of the PVP considers the variations on irradiance and temperature. A maximum power point tracking MPPT algorithm is considered to control the power converter. A novel EMR is proposed to consider the dynamic model of the PVP with variations in the irradiance and the temperature. The EMR is evaluated through simulations of a PVP generation system.
Rashmi S
2014-03-01
Full Text Available This paper proposes the Dynamic modeling and performance analysis of Permanent magnet synchronous generator (PMSG based Wind Generation System (WGS. This system consists of Wind Turbine, PMSG, Diode Rectifier, Buck- Boost converter, Voltage source Inverter (VSI. PMSG and Buck Boost converter are employed in WGS to get efficient output according to the load requirement without damaging the system. The output of the VSI is injected to the grid and used for Home Application. The proposed model dynamic simulation results are tested in MATLAB Simulink
Šutová Zuzana
2014-12-01
Full Text Available The article deals with the active control of oscillation patterns in nonlinear dynamical systems and its possible use. The purpose of the research is to prove the possibility of oscillations frequency control based on a change of value of singular perturbation parameter placed into a mathematical model of a nonlinear dynamical system at the highest derivative. This parameter is in singular perturbation theory often called small parameter, as ε → 0+. Oscillation frequency change caused by a different value of the parameter is verified by modelling the system in MATLAB.
DYNAMIC MODELLING OF BAR-GEAR MIXED MULTIBODY SYSTEMS USING A SPECIFIC FINITE ELEMENT METHOD
无
1999-01-01
A new dynamic model for mixed, flexible bar and gear multibody systems is developed based on a specific finite element method, and a new gear-element is proposed. The gear-element can take into account the time variant stiffness, the gear errors and mass unbalance. The model for geared multibody systems can couple the gear meshing and the flexibility of all contained components. The kinematic and dynamic analyses of the geared multibody systems are expounded and illustrated on an example composed of three gears, two bars and one slider.
On the dynamics of chain systems. [applications in manipulator and human body models
Huston, R. L.; Passerello, C. E.
1974-01-01
A computer-oriented method for obtaining dynamical equations of motion for chain systems is presented. A chain system is defined as an arbitrarily assembled set of rigid bodies such that adjoining bodies have at least one common point and such that closed loops are not formed. The equations of motion are developed through the use of Lagrange's form of d'Alembert's principle. The method and procedure is illustrated with an elementary study of a tripod space manipulator. The method is designed for application with systems such as human body models, chains and cables, and dynamic finite-segment models.
Object Oriented Toolbox for Modelling and Simulation of Dynamic Systems
Thomsen, Per Grove; Poulsen, Mikael Zebbelin; Wagner, Falko Jens;
1999-01-01
Design and Implementation of a simulation toolbox based on Object Oriented modelling Techniques.Experimental implementation in C++ using the Godess ODE-solution platform.......Design and Implementation of a simulation toolbox based on Object Oriented modelling Techniques.Experimental implementation in C++ using the Godess ODE-solution platform....
System Dynamics Model for VMI&TPL Integrated Supply Chains
Guo Li
2013-01-01
Full Text Available This paper establishes VMI-APIOBPCS II model by extending VMI-APIOBPCS model from serial supply chain to distribution supply chain. Then TPL is introduced to this VMI distribution supply chain, and operational framework and process of VMI&TPL integrated supply chain are analyzed deeply. On this basis VMI-APIOBPCS II model is then changed to VMI&TPL-APIOBPCS model and VMI&TPL integrated operation mode is simulated. Finally, compared with VMI-APIOBPCS model, the TPL’s important role of goods consolidation and risk sharing in VMI&TPL integrated supply chain is analyzed in detail from the aspects of bullwhip effect, inventory level, service level, and so on.
Model Predictive Controller Design for the Dynamic Positioning System of a Semi-submersible Platform
Hongli Chen; Lei Wan; Fang Wang; Guocheng Zhang
2012-01-01
This paper researches how to apply the advanced control technology of model predictive control (MPC) to the design of the dynamic positioning system (DPS) of a semi-submersible platform.First,a linear low-frequency motion model with three degrees of freedom was established in the context of a semi-submersible platform.Second,a model predictive controller was designed based on a model which took the constraints of the system into account.Third,simulation was carried out to demonstrate the feasibility of the controller.The results show that the model predictive controller has good performance and good at dealing with the constraints of the system.
Modeling and Dynamic Analysis of Cutterhead Driving System in Tunnel Boring Machine
Wei Sun
2017-01-01
Full Text Available Failure of cutterhead driving system (CDS of tunnel boring machine (TBM often occurs under shock and vibration conditions. To investigate the dynamic characteristics and reduce system vibration further, an electromechanical coupling model of CDS is established which includes the model of direct torque control (DTC system for three-phase asynchronous motor and purely torsional dynamic model of multistage gear transmission system. The proposed DTC model can provide driving torque just as the practical inverter motor operates so that the influence of motor operating behavior will not be erroneously estimated. Moreover, nonlinear gear meshing factors, such as time-variant mesh stiffness and transmission error, are involved in the dynamic model. Based on the established nonlinear model of CDS, vibration modes can be classified into three types, that is, rigid motion mode, rotational vibration mode, and planet vibration mode. Moreover, dynamic responses under actual driving torque and idealized equivalent torque are compared, which reveals that the ripple of actual driving torque would aggravate vibration of gear transmission system. Influence index of torque ripple is proposed to show that vibration of system increases with torque ripple. This study provides useful guideline for antivibration design and motor control of CDS in TBM.
Numerical Modeling of Unsteady Thermofluid Dynamics in Cryogenic Systems
Majumdar, Alok
2003-01-01
A finite volume based network analysis procedure has been applied to model unsteady flow without and with heat transfer. Liquid has been modeled as compressible fluid where the compressibility factor is computed from the equation of state for a real fluid. The modeling approach recognizes that the pressure oscillation is linked with the variation of the compressibility factor; therefore, the speed of sound does not explicitly appear in the governing equations. The numerical results of chilldown process also suggest that the flow and heat transfer are strongly coupled. This is evident by observing that the mass flow rate during 90-second chilldown process increases by factor of ten.
Gharib, Sameh
2008-07-01
A new method to synthesize system dynamics (SD) with geographic information systems (GIS) is presented in this research. This new method employs the Object Oriented Paradigm (OOP) as a common platform for the integration process. Recently, GIS software such as ArcGIS has become fully Object-Oriented software, providing the ArcObjects developer kit as a collection of (COM-compliant) objects that can be linked/embedded within other O O software. Vensim software is an Object-Based simulation environment that can be used to build simulation models that may be linked to other applications through its dynamic link library (DLL). We developed a new application, referred to as SDGIS Application, using Microsoft Visual Basic to tightly couple the SD model components with their counterparts in the GIS model (i.e., stocks and flows with the associated geo-referenced features). Initially, the GIS model provides the spatial information to the SD model. The SD model, through simulation, identifies the changes in the spatial features over time and communicates them back to the GIS model. These changes in space in turn impact the decisions taken by the user. Thus, processes can be modelled in time and space in an integrated way while capturing underlying accumulation process, the feedbacks, and nonlinearities. The underlying approach, resulting in creation of the SDGIS application, provides a much-needed capability to model spatially distributed, dynamic feedback processes in time and space, while facilitating an understanding of the interactions between different components within the system. The main strength of this approach is the two-way simultaneous exchange of data between the SD and GIS, providing feedback in time and space. The technique used to build the SDGIS application is different than existing techniques for dynamic modelling such as Cellular Automata; Agent-Based simulation and GIS Model-Builder, and addresses most of the limitations present in these techniques
Dynamic Thermal Model And Control Of A Pem Fuel Cell System
Liso, Vincenzo; Nielsen, Mads Pagh
2013-01-01
A lumped parameter dynamic model is developed for predicting the stack performance, temperatures of the exit reactant gases and coolant liquid outlet in a proton-exchange membrane fuel cell (PEMFC) system. The air compressor, humidifier and cooling heat exchanger models are integrated to study th...
Port-Based Modeling of Dynamic Systems in Terms of Bond Graphs
Breedveld, Peter C.; Troch, I.; Breitenecker, F.
2006-01-01
Port-based modeling of dynamic systems is the topic of the first chapter of the book that will be one of the main results of the European project ‘Geometric Network Modeling and Control of Complex Physical Systems’ (GEOPLEX, IST-2001-34166, Key Action, Action line KAIV: Essential Technologies and In
Optimized Second-Order Dynamical Systems and Their RLC Circuit Models with PWL Controlled Sources
J. Brzobohaty
2004-09-01
Full Text Available Complementary active RLC circuit models with a voltage-controlledvoltage source (VCVS and a current-controlled current source (CCCSfor the second-order autonomous dynamical system realization areproposed. The main advantage of these equivalent circuits is the simplerelation between the state model parameters and their correspondingcircuit parameters, which leads also to simple design formulas.
LU WENLIAN; CHEN TIANPING
2004-01-01
The authors investigate the existence and the global stability of periodic solution for dynamical systems with periodic interconnections, inputs and self-inhibitions. The model is very general, the conditions are quite weak and the results obtained are universal.
Modelling and Simulation of System Dynamics of Hybrid-Driven Precision Press
LI Yonggang; ZHANG Ce; MENG Caifang; SONG Yimin
2005-01-01
Different from conventional mechanical systems with single degree of freedom (DOF), the main idea of the system of hybrid-driven precision press is to combine the motion of a constant speed motor with a servomotor via a two-DOF mechanism to provide flexible output. In order to make the feasibility clear, this paper studies theoretically the dynamic characteristics of this hybrid-driven mechanical system.Firstly,the dynamics model of the whole electromechanical system is set up by combining dynamic equations of DC motors with those of two-DOF nine-bar mechanism deduced by the Lagrange′s formula. Secondly through the numerical solution with the fourth Runge-Kutta, computer simulation about the dynamics is done, which shows that the designed and optimized hybrid-driven precision press is feasible in theory. These provide theoretical basis for later experimental research.
Dutta, Saikat; Choi, Seung-Bok
2016-03-01
It is well known that Macpherson strut suspension systems are widely used in light and medium weight vehicles. The performance of these suspension systems can be enriched by incorporating magneto-rheological (MR) dampers and an appropriate dynamic model is required in order to find out the ride comfort and other performances properly in the sense of practical environment conditions. Therefore, in this work the kinematic and dynamic modeling of Macpherson strut suspension system with MR damper is presented and its responses are evaluated. The governing equations are formulated using the kinematic properties of the suspension system and adopting Lagrange’s equation. In the formulation of the model, both the rotation of the wheel assembly and the lateral stiffness of the tire are considered to represent the nonlinear characteristic of Macpherson type suspension system. The formulated mathematical model is then compared with equivalent conventional quarter car suspension model and the different dynamic responses such as the displacement of the sprung mass are compared to emphasize the effectiveness of the proposed model. Additionally, in this work the important kinematic properties of suspension system such as camber angle, king-pin angle and track width alteration, which cannot be obtained from conventional quarter car suspension model, are evaluated in time and frequency domains. Finally, vibration control responses of the proposed suspension system are presented in time and frequency domains which are achieved from the semi-active sky-hook controller.
Dynamic Modeling of Process Technologies for Closed-Loop Water Recovery Systems
Allada, Rama Kumar; Lange, Kevin; Anderson, Molly
2011-01-01
Detailed chemical process simulations are a useful tool in designing and optimizing complex systems and architectures for human life support. Dynamic and steady-state models of these systems help contrast the interactions of various operating parameters and hardware designs, which become extremely useful in trade-study analyses. NASA s Exploration Life Support technology development project recently made use of such models to compliment a series of tests on different waste water distillation systems. This paper presents dynamic simulations of chemical process for primary processor technologies including: the Cascade Distillation System (CDS), the Vapor Compression Distillation (VCD) system, the Wiped-Film Rotating Disk (WFRD), and post-distillation water polishing processes such as the Volatiles Removal Assembly (VRA) that were developed using the Aspen Custom Modeler and Aspen Plus process simulation tools. The results expand upon previous work for water recovery technology models and emphasize dynamic process modeling and results. The paper discusses system design, modeling details, and model results for each technology and presents some comparisons between the model results and available test data. Following these initial comparisons, some general conclusions and forward work are discussed.
Dynamic modeling and explicit/multi-parametric MPC control of pressure swing adsorption systems
Khajuria, Harish
2011-01-01
Pressure swing adsorption (PSA) is a flexible, albeit complex gas separation system. Due to its inherent nonlinear nature and discontinuous operation, the design of a model based PSA controller, especially with varying operating conditions, is a challenging task. This work focuses on the design of an explicit/multi-parametric model predictive controller for a PSA system. Based on a system involving four adsorbent beds separating 70% H2, 30% CH4 mixture into high purity hydrogen, the key controller objective is to fast track H2 purity to a set point value of 99.99%. To perform this task, a rigorous and systematic framework is employed. First, a high fidelity detailed dynamic model is built to represent the system\\'s real operation, and understand its dynamic behavior. The model is then used to derive appropriate linear models by applying suitable system identification techniques. For the reduced models, a model predictive control (MPC) step is formulated, where latest developments in multi-parametric programming and control are applied to derive a novel explicit MPC controller. To test the performance of the designed controller, closed loop simulations are performed where the dynamic model is used as the virtual plant. Comparison studies of the derived explicit MPC controller are also performed with conventional PID controllers. © 2010 Elsevier Ltd. All rights reserved.
System dynamics modelling and simulating the effects of intellectual capital on economic growth
Ivona Milić Beran
2015-10-01
Full Text Available System dynamics modelling is one of the best scientific methods for modelling complex, nonlinear natural, economic and technical system dynamics as it enables both monitoring and assessment of the effects of intellectual capital on economic growth. Intellectual capital is defined as “the ability to transform knowledge and intangible assets into resources to create wealth for a company and a country.” Transformation of knowledge is crucial. Knowledge increases a country’s wealth only if its importance is recognized and applied differently from existing work practices. The aim of this paper is to show the efficiency of modelling system dynamics and simulating the effects of intellectual capital on economic growth. A computer simulation provided a mathematical model, providing practical insight into the dynamic behavior of the observed system, i.e. the analysis of economic growth and observation of mutual correlation between individual parameters. The results of the simulation are presented in graphical form. The dynamic model of the effects of intellectual capital on Croatia’s economic growth has been verified by comparing simulation results with existing data on economic growth.
MULTI-FLEXIBLE SYSTEM DYNAMIC MODELING THEORY AND APPLICATION
ZHONG; Xin(
2001-01-01
［1］张超群,邓喜君,蔡鹤皋.基于PLC的橡胶包装码垛生产线控制系统设计[J].高技术通讯,1997,7(8)：14～18.［2］Wang R T. Vibration of a T-type curved frame due to a moving force [J]. Journal of Sound and Vibration, 1998,215(1):143～165.［3］Chang C H, Chang G S. In-plane vibrations of X-braced frames [J]. Journal of Engineering Mechanics, 1989,115(11):2368～2385.［4］Chui P P, Chan S L. Vibration and deflection characteristics of semi-rigid jointed frames [J]. Engineering Structures, 1997,19(12):1001～1010.［5］吴锋,张升陛.织机机架结构动态特性分析及织机运转状态下的振动分析[J]. 机械科学与技术,1997,16(3)：463～468.［6］Klasztorny M, Grosel J. Application of the finite element method in dynamic analysis of steel frame foundations for rotary machines [J]. Archives of Civil Engineering, 1998, 44(4):391～426.［7］Leung A Y, Fung T C. Non-linear vibration of frames by the incremental dynamic stiffness method [J]. International Journal for Numerical Methods in Engineering, 1990, 29(2):337～356.［8］Tanaka M, Matsumoto T, Yamashita M. Vibration analysis of 3-D frame structures by boundary element method [A]. In: Proceedings of the 1st Pan-Pacific Conference on Computational Engineering-PCCE'93 [C]. B.V., Elsevier Science Publishers, 1993.［9］清华大学工程力学系固体力学教研组振动组.机械振动(上册)[M].北京：机械工业出版社,1980.104～106,294.
Tahavori, Maryamsadat; Shaker, Hamid Reza
A method for model reduction of dynamical systems with the second order structure is proposed in this paper. The proposed technique preserves the second order structure of the system, and also preserves the stability of the original systems. The method uses the controllability and observability...... gramians within the time interval to build the appropriate Petrov-Galerkin projection for dynamical systems within the time interval of interest. The bound on approximation error is also derived. The numerical results are compared with the counterparts from other techniques. The results confirm...
System dynamics modeling of the impact of Internet-of-Things on intelligent urban transportation
Marshall, Phil
2015-01-01
Urban transportation systems are at the cusp of a major transformation that capitalizes on the proliferation of the Internet-of-Things (IoT), autonomous and cooperative vehicular and intelligent roadway technologies, advanced traffic management systems, and big data analytics. The benefits of these smart-transportation technologies were investigated using System Dynamics modeling, with particular emphasis towards vehicle sharing, intelligent highway systems, and smart-parking solutions. The m...
A System Dynamics Model of the Development of New Technologies for Ship Systems
Monga, Pavinder
2001-01-01
System Dynamics has been applied to various fields in the natural and social sciences. There still remain countless problems and issues where understanding is lacking and the dominant theories are event-oriented rather than dynamic in nature. One such research area is the application of the traditional systems engineering process in new technology development. The Navy has been experiencing large cost overruns in projects dealing with the implementation of new technologies on complex ship ...
A Multilayer Recurrent Fuzzy Neural Network for Accurate Dynamic System Modeling
LIU He; HUANG Dao
2008-01-01
A muitilayer recurrent fuzzy neural network (MRFNN)is proposed for accurate dynamic system modeling.The proposed MRFNN has six layers combined with T-S fuzzy model.The recurrent structures are formed by local feedback connections in the membership layer and the rule layer.With these feedbacks,the fuzzy sets are time-varying and the temporal problem of dynamic system can he solved well.The parameters of MRFNN are learned by chaotic search(CS)and least square estimation(LSE)simultaneously,where CS is for tuning the premise parameters and LSE is for updating the consequent coefficients accordingly.Results of simulations show the proposed approach is effective for dynamic system modeling with high accuracy.
A Study of Developing a System Dynamics Model for the Learning Effectiveness Evaluation
Tian-Syung Lan
2013-01-01
Full Text Available This study used the research method of system dynamics and applied the Vensim software to develop a learning effectiveness evaluation model. This study developed four cause-and-effect chains affecting learning effectiveness, including teachers’ teaching enthusiasm, family involvement, school’s implementation of scientific activities, and creative teaching method, as well as the system dynamics model based on the four cause-and-effect chains. Based on the developed system dynamic model, this study performed simulation to investigate the relationship among family involvement, learning effectiveness, teaching achievement, creative teaching method, and students’ learning interest. The results of this study verified that there are positive correlations between family involvement and students’ learning effectiveness, as well as students’ learning effectiveness and teachers’ teaching achievements. The results also indicated that the use of creative teaching method is able to increase students’ learning interest and learning achievement.
Object Oriented Toolbox for Modelling and Simulation of Dynamical Systems
Poulsen, Mikael Zebbelin; Wagner, Falko Jens; Thomsen, Per Grove
1998-01-01
This paper presents the results of an ongoing project, dealing with design and implementation of a simulation toolbox based on object oriented modelling techniques. The paper describes an experimental implementation of parts of such a toolbox in C++, and discusses the experiences drawn from...
Dynamic Data Driven Applications Systems (DDDAS) modeling for automatic target recognition
Blasch, Erik; Seetharaman, Guna; Darema, Frederica
2013-05-01
The Dynamic Data Driven Applications System (DDDAS) concept uses applications modeling, mathematical algorithms, and measurement systems to work with dynamic systems. A dynamic systems such as Automatic Target Recognition (ATR) is subject to sensor, target, and the environment variations over space and time. We use the DDDAS concept to develop an ATR methodology for multiscale-multimodal analysis that seeks to integrated sensing, processing, and exploitation. In the analysis, we use computer vision techniques to explore the capabilities and analogies that DDDAS has with information fusion. The key attribute of coordination is the use of sensor management as a data driven techniques to improve performance. In addition, DDDAS supports the need for modeling from which uncertainty and variations are used within the dynamic models for advanced performance. As an example, we use a Wide-Area Motion Imagery (WAMI) application to draw parallels and contrasts between ATR and DDDAS systems that warrants an integrated perspective. This elementary work is aimed at triggering a sequence of deeper insightful research towards exploiting sparsely sampled piecewise dense WAMI measurements - an application where the challenges of big-data with regards to mathematical fusion relationships and high-performance computations remain significant and will persist. Dynamic data-driven adaptive computations are required to effectively handle the challenges with exponentially increasing data volume for advanced information fusion systems solutions such as simultaneous target tracking and ATR.
System Dynamic Modelling for a Balanced Scorecard: A Case Study
Nielsen, Steen; Nielsen, Erland Hejn
of financial and non-financial measures. All indicators are defined and related by a number of assumed cause-and-effect relationships. Time lags are included to stipulate one of the most important characteristic of BSC. We use the model to simulation different strategies or scenarios and to reach a kind...... exercise of BSC. It is relativity easy to extend our model to more realistic circumstances, by including more measures or change time lags. Using the assumed cause-and-effect relationships between financial and non-financial performance measures, attention should also be paid to the definitions...... of optimum or 'steady-state-condition. We, also demonstrate through three different scenarios how different variables influence the optimum time that normally also influence decision making. Findings - The results shows how profit, and ROCE (Return-On-Capital-Employed) are influenced by three chosen...
A Structural Reliability Business Process Modelling with System Dynamics Simulation
Lam, C. Y.; S.L. Chan; Ip, W.H.
2010-01-01
Business activity flow analysis enables organizations to manage structured business processes, and can thus help them to improve performance. The six types of business activities identified here (i.e., SOA, SEA, MEA, SPA, MSA and FIA) are correlated and interact with one another, and the decisions from any business activity form feedback loops with previous and succeeding activities, thus allowing the business process to be modelled and simulated. For instance, for any company that is eager t...
Suggestion of a dynamic model of North China basin-range system
无
2003-01-01
It is found from preliminary studies that previous basin-range models have difficulties in explaining the formation of the Mesozoic North-China basin-range system. This work suggests a new model-"tectonic thermal erosion" model, which considers the North China basin of Late Mesozoic and its peripheral ranges as a unified system, identifies relationship between upwelling and lateral spreading of the asthenolith with horizontal movement and deformation of the upper crust in the system, clarifies the effects of underplating erosion on the crustal evolution, and tries to establish an earth-dynamic model of the North China Mesozoic basin-range supported by numerical simulation.
Modeling of Spatial and Temporal Dynamics in Biological Olfactory Systems
2007-09-21
anterior part of piriform cortex can be excited by the temporal encoding and processing. In static systems afferent input alone, the posterior areas...between different odors, but instead seem to encode 2.2.1 Synaptic organization. The piriform cortex (PC), odor concentration. The latency of their...the U.S. government. Nature 387: 285-288 Ketchum KL, Haberly LB (1993a) Synaptic events that generate fast oscillations in piriform cortex. I
Towards a Fast Dynamic Model of the Human Circulatory System
2011-10-06
4.5m for the pulmonary vascular tree. According to Guyton & Hall (2000), about 5 L is considered normal for an adult human, and the area distribution...decreases further, and even falls below the equilibrium pressure. Guyton & Hall (2000) reports that normal mean pressures are 100 mmHg in the arteries, 20...the order of 100 times faster than realtime. Five liters is considered a normal volume for an adult human circulatory system ( Guyton & Hall, 2000
Qi, Cheng; Chang, Ni-Bin
2011-06-01
Accurate prediction of municipal water demand is critically important to water utilities in fast-growing urban regions for drinking water system planning, design, and water utility asset management. Achieving the desired prediction accuracy is challenging, however, because the forecasting model must simultaneously consider a variety of factors associated with climate changes, economic development, population growth and migration, and even consumer behavioral patterns. Traditional forecasting models such as multivariate regression and time series analysis, as well as advanced modeling techniques (e.g., expert systems and artificial neural networks), are often applied for either short- or long-term water demand projections, yet few can adequately manage the dynamics of a water supply system because of the limitations in modeling structures. Potential challenges also arise from a lack of long and continuous historical records of water demand and its dependent variables. The objectives of this study were to (1) thoroughly review water demand forecasting models over the past five decades, and (2) propose a new system dynamics model to reflect the intrinsic relationship between water demand and macroeconomic environment using out-of-sample estimation for long-term municipal water demand forecasts in a fast-growing urban region. This system dynamics model is based on a coupled modeling structure that takes into account the interactions among economic and social dimensions, offering a realistic platform for practical use. Practical implementation of this water demand forecasting tool was assessed by using a case study under the most recent alternate fluctuations of economic boom and downturn environments.
Nonlinear FOPDT Model Identification for the Superheat Dynamic in a Refrigeration System
Yang, Zhenyu; Sun, Zhen; Andersen, Casper
2011-01-01
An on-line nonlinear FOPDT system identification method is proposed and applied to model the superheat dynamic in a supermarket refrigeration system. The considered nonlinear FOPDT model is an extension of the standard FOPDT model by means that its parameters are time dependent. After......-dependent parameters. The proposed method is firstly tested through a number of numerical examples, and then applied to model the superheat dynamic in a supermarket refrigeration system based on experimental data. As shown in these studies, the proposed method is quite promising in terms of reasonable accuracy, large...... the considered system is discretized, the nonlinear FOPDT identification problem is formulated as a Mixed Integer Non-Linear Programming problem, and then an identification algorithm is proposed by combining the Branch-and-Bound method and Least Square technique, in order to on-line identify these time...
RESEARCH ON SYSTEM DYNAMICS MODEL OF CONVEYANCE CAPACITY IN SYMMETRIC COMPOUND CHANNELS
YANG Ke-jun; CAO Shu-you; LIU Xing-nian
2005-01-01
Stage-discharge curves are particularly important in river basin management. For a compound channel, the stage-discharge curve is often difficult to be extrapolated to yield estimates of level for a given frequency of flow. By analyzing a large number of experimental data from Science and Engineering Research Council Flood Channel Facility (SERC-FCF) and applying system dynamics method, the authors established system dynamics model of conveyance capacity when rivers flow in an overbank mode, spilling onto the adjoining flood plain. The model was applied to a compound channel. And the corresponding simulated results are shown to attain high accurcy.
Merrill, Jacqueline A; Deegan, Michael; Wilson, Rosalind V; Kaushal, Rainu; Fredericks, Kimberly
2013-06-01
To evaluate the complex dynamics involved in implementing electronic health information exchange (HIE) for public health reporting at a state health department, and to identify policy implications to inform similar implementations. Qualitative data were collected over 8 months from seven experts at New York State Department of Health who implemented web services and protocols for querying, receipt, and validation of electronic data supplied by regional health information organizations. Extensive project documentation was also collected. During group meetings experts described the implementation process and created reference modes and causal diagrams that the evaluation team used to build a preliminary model. System dynamics modeling techniques were applied iteratively to build causal loop diagrams representing the implementation. The diagrams were validated iteratively by individual experts followed by group review online, and through confirmatory review of documents and artifacts. Three casual loop diagrams captured well-recognized system dynamics: Sliding Goals, Project Rework, and Maturity of Resources. The findings were associated with specific policies that address funding, leadership, ensuring expertise, planning for rework, communication, and timeline management. This evaluation illustrates the value of a qualitative approach to system dynamics modeling. As a tool for strategic thinking on complicated and intense processes, qualitative models can be produced with fewer resources than a full simulation, yet still provide insights that are timely and relevant. System dynamics techniques clarified endogenous and exogenous factors at play in a highly complex technology implementation, which may inform other states engaged in implementing HIE supported by federal Health Information Technology for Economic and Clinical Health (HITECH) legislation.
Performance metric optimization advocates CPFR in supply chains: A system dynamics model based study
Balaji Janamanchi; James R. Burns
2016-01-01
Background: Supply Chain partners often find themselves in rather helpless positions, unable to improve their firm’s performance and profitability because their partners although willing to share production information do not fully collaborate in tackling customer order variations as they don’t seem to appreciate the benefits of such collaboration. Methods: We use a two-player (supplier-manufacturer) System Dynamics model to study the dynamics to assess the impact and usefulness of supply cha...
Linearization models for parabolic dynamical systems via Abel's functional equation
Elin, Mark; Reich, Simeon; Shoikhet, David
2009-01-01
We study linearization models for continuous one-parameter semigroups of parabolic type. In particular, we introduce new limit schemes to obtain solutions of Abel's functional equation and to study asymptotic behavior of such semigroups. The crucial point is that these solutions are univalent functions convex in one direction. In a parallel direction, we find analytic conditions which determine certain geometric properties of those functions, such as the location of their images in either a half-plane or a strip, and their containing either a half-plane or a strip. In the context of semigroup theory these geometric questions may be interpreted as follows: is a given one-parameter continuous semigroup either an outer or an inner conjugate of a group of automorphisms? In other words, the problem is finding a fractional linear model of the semigroup which is defined by a group of automorphisms of the open unit disk. Our results enable us to establish some new important analytic and geometric characteristics of t...
Fuzzy cognitive maps outmatch loop analysis in dynamic modeling of ecological systems
Alessandro Ferrarini
2011-04-01
Full Text Available Modeling natural systems is challenging due to their complexity in terms of variables, interactions, and dynamics. Much of this complexity is rooted in the existence of multiple ways through which acting variables affect each other. Besides the simple direct effects, numerous indirect effects emerge in ecological systems. Through an illustrative example, I exemplify here several advantages of fuzzy cognitive maps (FCM over loop analysis (LA in dynamic modeling of ecological systems. In addition to being able to incorporate information about the magnitude of variables interactions, FCM can make predictions about multiple simultaneous perturbations. Furthermore, FCM allow for the simulation of different magnitude of initial perturbations to the system. Last, FCM estimate the amount of variable increase/decrease, not just the likely direction of change. Hence, even if LA is still much more used than FCM in the scientific literature, FCM can be considered fitter than LA in modeling ecological systems.
Ying Qiu
2015-05-01
Full Text Available Purpose: We attempted to propose an approach to simulate the dynamics of Beijing’s logistics demand, which can do some help to find out the dynamics path of the needed storage and shipment, put forward with logistics policies and enhance logistics service. Design/methodology/approach: We present a paper with system dynamics (SD methodology, which was run by the software of Vensim®. Findings: With SD model, causal loop diagram and stock and flow diagram are constructed, as well as some experiments and policy analysis. The research findings revealed that the increase of average shipping capacity for a vehicle will bring a decrease in congestion and CO2 emission directly and the decrease of the average fuel use for a vehicle can help with the reduction of CO2 emission directly. Both the two parameters are the indirect causes of logistics demand dynamics in Beijing. Originality/value: Researches of this paper are aiming at handling logistics demand dynamics of Beijing, problems belonging to the area of complex systems, with SD model, where, to the best of our knowledge, no significant research has been done.
Apostolopoulos, Yorghos; Lemke, Michael K; Barry, Adam E; Lich, Kristen Hassmiller
2017-07-25
Given the complexity of factors contributing to alcohol misuse, appropriate epistemologies and methodologies are needed to understand and intervene meaningfully. We aimed to (1) provide an overview of computational modeling methodologies, with an emphasis on system dynamics modeling; (2) explain how community-based system dynamics modeling can forge new directions in alcohol prevention research; and (3) present a primer on how to build alcohol misuse simulation models using system dynamics modeling, with an emphasis on stakeholder involvement, data sources and model validation. Throughout, we use alcohol misuse among college students in the United States as a heuristic example for demonstrating these methodologies. System dynamics modeling employs a top-down aggregate approach to understanding dynamically complex problems. Its three foundational properties-stocks, flows and feedbacks-capture non-linearity, time-delayed effects and other system characteristics. As a methodological choice, system dynamics modeling is amenable to participatory approaches; in particular, community-based system dynamics modeling has been used to build impactful models for addressing dynamically complex problems. The process of community-based system dynamics modeling consists of numerous stages: (1) creating model boundary charts, behavior-over-time-graphs and preliminary system dynamics models using group model-building techniques; (2) model formulation; (3) model calibration; (4) model testing and validation; and (5) model simulation using learning-laboratory techniques. Community-based system dynamics modeling can provide powerful tools for policy and intervention decisions that can result ultimately in sustainable changes in research and action in alcohol misuse prevention. © 2017 Society for the Study of Addiction.
Dynamic model of the vergence eye movement system: simulations using MATLAB/SIMULINK.
Hung, G K
1998-01-01
A dynamic model of the vergence eye movement system was developed and simulated using MATLAB/SIMULINK. The model was based on a dual-mode dynamic model previously written in FORTRAN. It consisted of a fast open-loop component and a slow closed-loop component. The new model contained several important modifications. For example, in the fast component, a zero-order hold element replaced the sampler and the target trajectory estimator in the earlier model to provide more stable and accurate responses. Also, a periodicity detector was added to automatically detect periodicity in the stimulus waveform. The stored periodic stimulus, with a reduction in latency, was used to drive the fast component output. Moreover, a connection representing the efference copy signal was added from the fast component output to the disparity input to provide an accurate estimate of the stimulus waveform. Further, Robinson's model of the extraocular muscles replaced the earlier 2nd-order plant to provide more realistic muscle dynamics. The entire model, containing the fast and slow components, was simulated using a variety of stimuli such as pulses, positive and negative ramps, square-wave, and sine-wave. The responses showed dynamic characteristics similar to experimental results. Thus, this new MATLAB/SIMULINK program provides a relatively easy-to-use, versatile, and powerful simulation environment for investigating the basic as well as clinical aspects of vergence dynamics. Moreover, the simulation program has general characteristics that can be modified to represent other oculomotor systems such as the versional and accommodation systems. This provides a framework for future investigation of dynamic interactions between oculomotor systems.
无
2007-01-01
It is devoted to the development of an autonomous flight control system for small size unmanned helicopter based on dynamical model. At first, the mathematical model of a small size helicopter is described. After that simple but effective MTCV control algorithm was proposed. The whole flight control algorithm is composed of two parts:orientation controller based on the model for rotation dynamics and a robust position controller for a double integrator. The MTCV block is also used to achieve translation velocity control. To demonstrate the performance of the presented algorithm, simulation results and results achieved in real flight experiments were presented.
Dynamic modelling of nitrous oxide emissions from three Swedish sludge liquor treatment systems
Lindblom, E.; Arnell, M.; Flores-Alsina, X.
2014-01-01
The objective of this paper is to model the dynamics and validate the results of nitrous oxide (N2O)emissions from three Swedish nitrifying/denitrifying, nitritation and anammox systems treating real anaerobic digester sludge liquor. The Activated Sludge Model No. 1 is extended to describe N2O......) a moving-bed biofilm reactor. Results show that the calibrated model is partly capable of reproducing the behaviour of N2O as well as the nitritation/nitrification/denitrification dynamics. However, the results emphasize that additional work is required before N2O emissions from sludge liquor treatment...
Dynamic modelling of nitrous oxide emissions from three Swedish sludge liquor treatment systems
Lindblom, E.; Arnell, M.; Flores-Alsina, X.
2016-01-01
The objective of this paper is to model the dynamics and validate the results of nitrous oxide (N2O)emissions from three Swedish nitrifying/denitrifying, nitritation and anammox systems treating real anaerobic digester sludge liquor. The Activated Sludge Model No. 1 is extended to describe N2O......) a moving-bed biofilm reactor. Results show that the calibrated model is partly capable of reproducing the behaviour of N2O as well as the nitritation/nitrification/denitrification dynamics. However, the results emphasize that additional work is required before N2O emissions from sludge liquor treatment...
Modelling the Dynamics of the Work-Employment System by Predator-Prey Interactions
Serpa, Nilo
2011-01-01
The broad application range of the predator-prey modelling enabled us to apply it to represent the dynamics of the work-employment system. For the adopted period, we conclude that this dynamics is chaotic in the beginning of the time series and tends to less perturbed states, as time goes by, due to public policies and hidden intrinsic system features. Basic Lotka-Volterra approach was revised and adapted to the reality of the study. The final aim is to provide managers with generalized theoretical elements that allow to a more accurate understanding of the behavior of the work-employment system.
Prediction of dynamics of bellows in exhaust system of vehicle using equivalent beam modeling
Hong, Jin Ho; Kim, Yong Dae; Lee, Nam Young; Lee, Sang Woo [Noise and vibration CAE Team, Hyundai Motor Company, Ulsan (Korea, Republic of)
2015-11-15
The exhaust system is one of the major sources of vibrations, along with the suspension system and engine. When the exhaust system is connected directly to the engine, it transfers vibrations to the vehicle body through the body mounts. Therefore, in order to reduce the vibrations transmitted from the exhaust system, the vibration characteristics of the exhaust system should be predicted. Thus, the dynamic characteristics of the bellows, which form a key component of the exhaust system, must be modeled accurately. However, it is difficult to model the bellows because of the complicated geometry. Though the equivalent beam modeling technique has been applied in the design stage, it is not sufficiently accurate in the case of the bellows which have complicated geometries. In this paper, we present an improved technique for modeling the bellows in a vehicle. The accuracy of the modeling method is verified by comparison with the experimental results.
Fluctuation-Response Relation and modeling in systems with fast and slow dynamics
G. Lacorata
2007-10-01
Full Text Available We show how a general formulation of the Fluctuation-Response Relation is able to describe in detail the connection between response properties to external perturbations and spontaneous fluctuations in systems with fast and slow variables. The method is tested by using the 360-variable Lorenz-96 model, where slow and fast variables are coupled to one another with reciprocal feedback, and a simplified low dimensional system. In the Fluctuation-Response context, the influence of the fast dynamics on the slow dynamics relies in a non trivial behavior of a suitable quadratic response function. This has important consequences for the modeling of the slow dynamics in terms of a Langevin equation: beyond a certain intrinsic time interval even the optimal model can give just statistical prediction.
Advanced High-Temperature Reactor Dynamic System Model Development: April 2012 Status
Qualls, A L; Cetiner, M S; Wilson, Jr, T L
2012-04-30
The Advanced High-Temperature Reactor (AHTR) is a large-output fluoride-salt-cooled high-temperature reactor (FHR). An early-phase preconceptual design of a 1500 MW(e) power plant was developed in 2011 [Refs. 1 and 2]. An updated version of this plant is shown as Fig. 1. FHRs feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The AHTR is designed to be a “walk away” reactor that requires no action to prevent large off-site releases following even severe reactor accidents. This report describes the development of dynamic system models used to further the AHTR design toward that goal. These models predict system response during warmup, startup, normal operation, and limited off-normal operating conditions. Severe accidents that include a loss-of-fluid inventory are not currently modeled. The scope of the models is limited to the plant power system, including the reactor, the primary and intermediate heat transport systems, the power conversion system, and safety-related or auxiliary heat removal systems. The primary coolant system, the intermediate heat transport system and the reactor building structure surrounding them are shown in Fig. 2. These systems are modeled in the most detail because the passive interaction of the primary system with the surrounding structure and heat removal systems, and ultimately the environment, protects the reactor fuel and the vessel from damage during severe reactor transients. The reactor silo also plays an important role during system warmup. The dynamic system modeling tools predict system performance and response. The goal is to accurately predict temperatures and pressures within the primary, intermediate, and power conversion systems and to study the impacts of design changes on those responses. The models are design tools and are not intended to be used in reactor qualification. The important details to capture in the primary
Dynamics of pesticide uptake into plants: From system functioning to parsimonious modeling
Fantke, Peter; Wieland, Peter; Wannaz, Cedric;
2013-01-01
Dynamic plant uptake models are suitable for assessing environmental fate and behavior of toxic chemicals in food crops. However, existing tools mostly lack in-depth analysis of system dynamics. Furthermore, no existing model is available as parameterized version that is easily applicable for use...... harvested for human consumption by taking wheat grains as example. Results show that grains, grain surface and soil are the compartments predominantly influencing the mass evolution of most pesticides in the plant–environment system as a function of substance degradation in plant components and overall...... in spatially resolved frameworks for comparative assessment. In the present paper, we thus analyze the dynamics of substance masses in a multi-compartment plant–environment system by applying mathematical decomposition techniques. We thereby focus on the evolution of pesticide residues in crop components...
A Dynamical Systems Approach to a Bianchi Type I Viscous Magnetohydrodynamic Model
Kohli, Ikjyot Singh
2013-01-01
We use the expansion-normalized variables approach to study the dynamics of a non-tilted Bianchi Type I cosmological model with both a pure, homogeneous source-free magnetic field and viscous fluid with both bulk and shear viscous effects, employing the ideal magnetohydrodynamic approximation. The dynamical system is then studied in detail through a fixed-point analysis which determines the local sink and source behaviour in combination with standard dynamical system theory and numerical experiments that give a very good indication of the asymptotic behaviour of the system. It is further shown that for certain values of the bulk and shear viscosity and equation of state parameters, the model isotropizes at late times.
Salinelli, Ernesto
2014-01-01
This book provides an introduction to the analysis of discrete dynamical systems. The content is presented by an unitary approach that blends the perspective of mathematical modeling together with the ones of several discipline as Mathematical Analysis, Linear Algebra, Numerical Analysis, Systems Theory and Probability. After a preliminary discussion of several models, the main tools for the study of linear and non-linear scalar dynamical systems are presented, paying particular attention to the stability analysis. Linear difference equations are studied in detail and an elementary introduction of Z and Discrete Fourier Transform is presented. A whole chapter is devoted to the study of bifurcations and chaotic dynamics. One-step vector-valued dynamical systems are the subject of three chapters, where the reader can find the applications to positive systems, Markov chains, networks and search engines. The book is addressed mainly to students in Mathematics, Engineering, Physics, Chemistry, Biology and Economic...
Optically levitated nanoparticle as a model system for stochastic bistable dynamics
Ricci, F.; Rica, R. A.; Spasenović, M.; Gieseler, J.; Rondin, L.; Novotny, L.; Quidant, R.
2017-05-01
Nano-mechanical resonators have gained an increasing importance in nanotechnology owing to their contributions to both fundamental and applied science. Yet, their small dimensions and mass raises some challenges as their dynamics gets dominated by nonlinearities that degrade their performance, for instance in sensing applications. Here, we report on the precise control of the nonlinear and stochastic bistable dynamics of a levitated nanoparticle in high vacuum. We demonstrate how it can lead to efficient signal amplification schemes, including stochastic resonance. This work contributes to showing the use of levitated nanoparticles as a model system for stochastic bistable dynamics, with applications to a wide variety of fields.
Dynamical Models of the Solar System Formation and Evolution
Stewart, Glen R.
2002-01-01
synodic periods and the final state is typically reached in 10 to 20 synodic periods. These studies move us closer to understanding the significantly more complex system of Saturn's F ring, where the perturbation magnitude varies over short temporal and spatial time scales due to the orbital eccentricities of the perturbing satellite. We are currently extending the simulation to allow for an eccentric orbit of the satellite.
Dynamic modeling and simulation test of a 60 kW PEMFC generation system
Ying-ying ZHANG; Ji-chang SUN; Ying ZHANG; Xi LI; Guang-yi CAO
2011-01-01
In this paper, a 60 kW proton exchange membrane fuel cell (PEMFC) generation system is modeled in order to design the system parameters and investigate the static and dynamic characteristics for control purposes. To achieve an overall system model, the system is divided into five modules: the PEMFC stack (anode and cathode flows, membrane hydration, and stack voltage and power), cathode air supply (air compressor, supply manifold, cooler, and humidifier), anode fuel supply (hydrogen valve and humidifier), cathode exhaust exit (exit manifold and water return), and power conditioning (DC/DC and DC/AC) modules. Using a combination of empirical and physical modeling techniques, the model is developed to set the operation conditions of current, temperature, and cathode and anode gas flows and pressures, which have major impacts on system performance.The current model is based on a 60 kW PEMFC power plant designed for residential applications and takes account of the electrochemical and thermal aspects of chemical reactions within the stack as well as flows of reactants across the system. The simulation tests show that the system model can represent the static and dynamic characteristics of a 60 kW PEMFC generation system, which is mathematically simple for system parameters and control designs.
The role of model dynamics in ensemble Kalman filter performance for chaotic systems
Ng, G.-H.C.; McLaughlin, D.; Entekhabi, D.; Ahanin, A.
2011-01-01
The ensemble Kalman filter (EnKF) is susceptible to losing track of observations, or 'diverging', when applied to large chaotic systems such as atmospheric and ocean models. Past studies have demonstrated the adverse impact of sampling error during the filter's update step. We examine how system dynamics affect EnKF performance, and whether the absence of certain dynamic features in the ensemble may lead to divergence. The EnKF is applied to a simple chaotic model, and ensembles are checked against singular vectors of the tangent linear model, corresponding to short-term growth and Lyapunov vectors, corresponding to long-term growth. Results show that the ensemble strongly aligns itself with the subspace spanned by unstable Lyapunov vectors. Furthermore, the filter avoids divergence only if the full linearized long-term unstable subspace is spanned. However, short-term dynamics also become important as non-linearity in the system increases. Non-linear movement prevents errors in the long-term stable subspace from decaying indefinitely. If these errors then undergo linear intermittent growth, a small ensemble may fail to properly represent all important modes, causing filter divergence. A combination of long and short-term growth dynamics are thus critical to EnKF performance. These findings can help in developing practical robust filters based on model dynamics. ?? 2011 The Authors Tellus A ?? 2011 John Wiley & Sons A/S.
Xiangyong Chen
2014-01-01
hybrid dynamic systems is established based on Lanchester equation in a (n,1 battle, where a heterogeneous force of n different troop types faces a homogeneous force. This model can be characterized by the interaction of continuous-time models (governed by Lanchester equation, and discrete event systems (described by variable tactics. Furthermore, an expository discussion is presented on an optimal variable tactics control problem for warfare hybrid dynamic system. The optimal control strategies are designed based on dynamic programming and differential game theory. As an example of the consequences of this optimal control problem, we take the (2, 1 case and solve the optimal strategies in a (2, 1 case. Simulation results show the feasibility of warfare hybrid system model and the effectiveness of the optimal control strategies designed.
Modeling the dynamic response of pressures in a distributed helium refrigeration system
Brubaker, John Carl [Illinois Inst. of Technology, Chicago, IL (United States)
1997-12-01
A mathematical model is created of the dynamic response of pressures caused by flow inputs to an existing distributed helium refrigeration system. The dynamic system studied consists of the suction and discharge pressure headers and compressor portions of the refrigeration system used to cool the superconducting magnets of the Tevatron accelerator at the Fermi National Accelerator Laboratory. The modeling method involves identifying the system from data recorded during a series of controlled tests, with effort made to detect locational differences in pressure response around the four mile accelerator circumference. A review of the fluid mechanics associated with the system indicates linear time invariant models are suitable for the identification, particularly since the governing equations of one dimensional fluid flow are approximated by linear differential equations. An outline of the experimental design and the data acquisition system are given, followed by a detailed description of the modeling, which utilized the Matlab programming language and associated System Identification Toolbox. Two representations of the system are presented. One, a black box model, provides a multi-input, multi-output description assembled from the results of single input step function testing. This description indicates definite variation in pressure response with distance from the flow input location, and also suggests subtle differences in response with the input location itself. A second system representation is proposed which details the relation between continuous flow changes and pressure response, and provides explanation of a previously unappreciated pressure feedback internal to the system.
Dynamic modelling and analysis of multi-machine power systems including wind farms
Tabesh, Ahmadreza
2005-11-01
This thesis introduces a small-signal dynamic model, based on a frequency response approach, for the analysis of a multi-machine power system with special focus on an induction machine based wind farm. The proposed approach is an alternative method to the conventional eigenvalue analysis method which is widely employed for small-signal dynamic analyses of power systems. The proposed modelling approach is successfully applied and evaluated for a power system that (i) includes multiple synchronous generators, and (ii) a wind farm based on either fixed-speed, variable-speed, or doubly-fed induction machine based wind energy conversion units. The salient features of the proposed method, as compared with the conventional eigenvalue analysis method, are: (i) computational efficiency since the proposed method utilizes the open-loop transfer-function matrix of the system, (ii) performance indices that are obtainable based on frequency response data and quantitatively describe the dynamic behavior of the system, and (iii) capability to formulate various wind energy conversion unit, within a wind farm, in a modular form. The developed small-signal dynamic model is applied to a set of multi-machine study systems and the results are validated based on comparison (i) with digital time-domain simulation results obtained from PSCAD/EMTDC software tool, and (ii) where applicable with eigenvalue analysis results.
Nonlinear FOPDT Model Identification for the Superheat Dynamic in a Refrigeration System
Yang, Zhenyu; Sun, Zhen; Andersen, Casper
2011-01-01
the considered system is discretized, the nonlinear FOPDT identification problem is formulated as a Mixed Integer Non-Linear Programming problem, and then an identification algorithm is proposed by combining the Branch-and-Bound method and Least Square technique, in order to on-line identify these time......An on-line nonlinear FOPDT system identification method is proposed and applied to model the superheat dynamic in a supermarket refrigeration system. The considered nonlinear FOPDT model is an extension of the standard FOPDT model by means that its parameters are time dependent. After...
Justesen, Kristian Kjær; Andreasen, Søren Juhl; Shaker, Hamid Reza
2014-01-01
In this work, a dynamic MATLAB Simulink model of a H3-350 Reformed Methanol Fuel Cell (RMFC) stand-alone battery charger produced by Serenergy is developed on the basis of theoretical and empirical methods. The advantage of RMFC systems is that they use liquid methanol as a fuel instead of gaseous...... of the reforming process are implemented. Models of the cooling flow of the blowers for the fuel cell and the burner which supplies process heat for the reformer are made. The two blowers have a common exhaust, which means that the two blowers influence each other’s output. The models take this into account using...... an empirical approach. Fin efficiency models for the cooling effect of the air are also developed using empirical methods. A fuel cell model is also implemented based on a standard model which is adapted to fit the measured performance of the H3-350 module. All the individual parts of the model are verified...
Justesen, Kristian Kjær; Andreasen, Søren Juhl; Shaker, Hamid Reza
2013-01-01
In this work, a dynamic MATLAB Simulink model of a H3-350 Reformed Methanol Fuel Cell (RMFC) stand-alone battery charger produced by Serenergy is developed on the basis of theoretical and empirical methods. The advantage of RMFC systems is that they use liquid methanol as a fuel instead of gaseous...... of the reforming process are implemented. Models of the cooling flow of the blowers for the fuel cell and the burner which supplies process heat for the reformer are made. The two blowers have a common exhaust, which means that the two blowers influence each other’s output. The models take this into account using...... an empirical approach. Fin efficiency models for the cooling effect of the air are also developed using empirical methods. A fuel cell model is also implemented based on a standard model which is adapted to fit the measured performance of the H3-350 module. All the individual parts of the model are verified...
Dynamics of high speed wheel/rail system and its modelling
ZHANG ShuGuang; ZHANG WeiHua; JIN XueSong
2007-01-01
With the fast increasing of train speed the interactions among the train, the track, and the power catenary system become very strong. Such interactions are also strongly coupled with the action of high speed airflow due to the high speed running. Hence, the existing research methods and numerical algorithms of railway vehicle/track systems are not fully available for characterizing the transient dynamic and long-term behaviors of train/track at higher speed. The present paper reviews the existing studies on coupling dynamics of railway vehicle/track, and clarifies their advantages and disadvantages and then puts forward an innovation stratagem for high speed railway based on rolling contact of wheel/rail systems. In the innovation stratagem, a comprehensive dynamic model of wheels/rails systems is developed to simultaneously consider the track system, the train, the rolling contact of wheel/rail, the catenary/pantograph system, and the high speed airflow with the train. The motion equations of the subsystems and their coupling boundaries are given and discussed. For the reliability and safety of the high speed train in service, the long-term behavior of the structures of the train and the track is considered in the comprehensive model. Moreover, a generalized failure model, considering the structures and the materials and working in the comprehensive dynamic model of wheels/rails system, as well as the simulation system of structure failure of the high speed train/track is established.Consequently, the present studies on the dynamics of the coupled vehicle/track will be further and largely extended.
Maluleke, George
2016-12-01
Full Text Available The contribution of mining activities to social infrastructure and human development is a complex socio-economic development issue in South Africa. Complexity theory has introduced a new approach to solving problems in social systems, recognising them as complex systems. The socio-economic development system in South Africa falls into this category of complex systems. Analysing such a system requires that a number of feedback loops and details about the issues be analysed simultaneously. This level of complexity is above a human’s ability to comprehend without the aid of tools such as systems thinking and system dynamics. The causality between investment in infrastructure capacity and socio-economic development is dynamic. The relationship is influenced by exogenous feedback that, if not managed, is likely to reverse itself. This paper presents the results of a system dynamics modelling of the relationship, based on the principle of relative attractiveness developed in previous system dynamics research. A Monte Carlo analysis is used to determine the sensitivity of the system to changes in feedback. The paper concludes that the limits to growth in a socio-economic environment are determined by more factors than the availability of capital, and also include land capacity constraints and skills shortage.
Donahue, M M; Buzzard, G T; Rundell, A E
2010-07-01
The sparse grid-based experiment design algorithm sequentially selects an experimental design point to discriminate between hypotheses for given experimental conditions. Sparse grids efficiently screen the global uncertain parameter space to identify acceptable parameter subspaces. Clustering the located acceptable parameter vectors by the similarity of the simulated model trajectories characterises the data-compatible model dynamics. The experiment design algorithm capitalizes on the diversity of the experimentally distinguishable system output dynamics to select the design point that best discerns between competing model-structure and parameter-encoded hypotheses. As opposed to designing the experiments to explicitly reduce uncertainty in the model parameters, this approach selects design points to differentiate between dynamical behaviours. This approach further differs from other experimental design methods in that it simultaneously addresses both parameter- and structural-based uncertainty that is applicable to some ill-posed problems where the number of uncertain parameters exceeds the amount of data, places very few requirements on the model type, available data and a priori parameter estimates, and is performed over the global uncertain parameter space. The experiment design algorithm is demonstrated on a mitogen-activated protein kinase cascade model. The results show that system dynamics are highly uncertain with limited experimental data. Nevertheless, the algorithm requires only three additional experimental data points to simultaneously discriminate between possible model structures and acceptable parameter values. This sparse grid-based experiment design process provides a systematic and computationally efficient exploration over the entire uncertain parameter space of potential model structures to resolve the uncertainty in the non-linear systems biology model dynamics.
Overshoot in biological systems modelled by Markov chains: a non-equilibrium dynamic phenomenon.
Jia, Chen; Qian, Minping; Jiang, Daquan
2014-08-01
A number of biological systems can be modelled by Markov chains. Recently, there has been an increasing concern about when biological systems modelled by Markov chains will perform a dynamic phenomenon called overshoot. In this study, the authors found that the steady-state behaviour of the system will have a great effect on the occurrence of overshoot. They showed that overshoot in general cannot occur in systems that will finally approach an equilibrium steady state. They further classified overshoot into two types, named as simple overshoot and oscillating overshoot. They showed that except for extreme cases, oscillating overshoot will occur if the system is far from equilibrium. All these results clearly show that overshoot is a non-equilibrium dynamic phenomenon with energy consumption. In addition, the main result in this study is validated with real experimental data.
Dynamic fuel cell stack model for real-time simulation based on system identification
Meiler, M.; Schmid, O.; Schudy, M. [Department of MEA and Stack Technology, DaimlerChrysler AG, Neue Str. 95, D-73230 Kirchheim/Teck (Germany); Hofer, E.P. [Department of Measurement, Control and Microtechnology, University of Ulm, Albert-Einstein-Allee 41, D-89081 Ulm (Germany)
2008-02-01
The authors have been developing an empirical mathematical model to predict the dynamic behaviour of a polymer electrolyte membrane fuel cell (PEMFC) stack. Today there is a great number of models, describing steady-state behaviour of fuel cells by estimating the equilibrium voltage for a certain set of operating parameters, but models capable of predicting the transient process between two steady-state points are rare. However, in automotive applications round about 80% of operating situations are dynamic. To improve the reliability of fuel cell systems by model-based control for real-time simulation dynamic fuel cell stack model is needed. Physical motivated models, described by differential equations, usually are complex and need a lot of computing time. To meet the real-time capability the focus is set on empirical models. Fuel cells are highly nonlinear systems, so often used auto-regressive (AR), output-error (OE) or Box-Jenkins (BJ) models do not accomplish satisfying accuracy. Best results are achieved by splitting the behaviour into a nonlinear static and a linear dynamic subsystem, a so-called Uryson-Model. For system identification and model validation load steps with different amplitudes are applied to the fuel cell stack at various operation points and the voltage response is recorded. The presented model is implemented in MATLAB environment and has a computing time of less than 1 ms per step on a standard desktop computer with a 2.8 MHz CPU and 504 MB RAM. Lab tests are carried out at DaimlerChrysler R and D Centre with DaimlerChrysler PEMFC hardware and a good agreement is found between model simulations and lab tests. (author)
Dynamic fuel cell stack model for real-time simulation based on system identification
Meiler, M.; Schmid, O.; Schudy, M.; Hofer, E. P.
The authors have been developing an empirical mathematical model to predict the dynamic behaviour of a polymer electrolyte membrane fuel cell (PEMFC) stack. Today there is a great number of models, describing steady-state behaviour of fuel cells by estimating the equilibrium voltage for a certain set of operating parameters, but models capable of predicting the transient process between two steady-state points are rare. However, in automotive applications round about 80% of operating situations are dynamic. To improve the reliability of fuel cell systems by model-based control for real-time simulation dynamic fuel cell stack model is needed. Physical motivated models, described by differential equations, usually are complex and need a lot of computing time. To meet the real-time capability the focus is set on empirical models. Fuel cells are highly nonlinear systems, so often used auto-regressive (AR), output-error (OE) or Box-Jenkins (BJ) models do not accomplish satisfying accuracy. Best results are achieved by splitting the behaviour into a nonlinear static and a linear dynamic subsystem, a so-called Uryson-Model. For system identification and model validation load steps with different amplitudes are applied to the fuel cell stack at various operation points and the voltage response is recorded. The presented model is implemented in MATLAB environment and has a computing time of less than 1 ms per step on a standard desktop computer with a 2.8 MHz CPU and 504 MB RAM. Lab tests are carried out at DaimlerChrysler R&D Centre with DaimlerChrysler PEMFC hardware and a good agreement is found between model simulations and lab tests.
Dynamics of vehicle-pavement coupled system based on a revised flexible roller contact tire model
无
2009-01-01
A revised flexible roller contact tire model (RFRC tire model) is proposed, which considers not only the geometric and flexible filtering effect, but also tire damping and pavement displacement. A vehi- cle-pavement coupled system is modeled as a two DOF oscillator moving along a simply supported beam on a linear viscoelastic foundation. By using the Galerkin’s and Direct Integral method, dynamical responses of the vehicle-pavement coupled system are obtained based on the RFRC tire model and the traditional single point contact tire model (SPC tire model). The simulation results are compared with test data and the validity of the proposed RFRC tire model is verified. Differences between the two models are also investigated. It is found that the dynamical behaviors for both models agree with each other quite well when road surface roughness is a long harmonic wave. On the other hand, they are different under short harmonic wave or impulse road excitation. Thus the RFRC tire model should be used to compute the tire force and investigate dynamical responses of vehicle and pavement.
Dynamics of vehicle-pavement coupled system based on a revised flexible roller contact tire model
YANG ShaoPu; LI ShaoHua; LU YongJie
2009-01-01
A revised flexible roller contact tire model (RFRC tire model) is proposed, which considers not only the geometric and flexible filtering effect, but also tire damping and pavement displacement. A vehi-cle-pavement coupled system is modeled as a two DOF oscillator moving along a simply supported beam on a linear viscoelastic foundation. By using the Galerkin's and Direct Integral method, dynamical responses of the vehicle-pavement coupled system are obtained based on the RFRC tire model and the traditional single point contact tire model (SPC tire model). The simulation results are compared with test data and the validity of the proposed RFRC tire model is verified. Differences between the two models are also investigated. It is found that the dynamical behaviors for both models agree with each other quite well when road surface roughness is a long harmonic wave. On the other hand, they are different under short harmonic wave or impulse road excitation. Thus the RFRC tire model should be used to compute the tire force and investigate dynamical responses of vehicle and pavement.
Grammatical Immune System Evolution for Reverse Engineering Nonlinear Dynamic Bayesian Models
B.A. McKinney
2008-01-01
Full Text Available An artificial immune system algorithm is introduced in which nonlinear dynamic models are evolved to ﬁ t time series of interacting biomolecules. This grammar-based machine learning method learns the structure and parameters of the underlying dynamic model. In silico immunogenetic mechanisms for the generation of model-structure diversity are implemented with the aid of a grammar, which also enforces semantic constraints of the evolved models. The grammar acts as a DNA repair polymerase that can identify recombination and hypermutation signals in the antibody (model genome. These signals contain information interpretable by the grammar to maintain model context. Grammatical Immune System Evolution (GISE is applied to a nonlinear system identification problem in which a generalized (nonlinear dynamic Bayesian model is evolved to ﬁ t biologically motivated artificial time-series data. From experimental data, we use GISE to infer an improved kinetic model for the oxidative metabolism of 17β-estradiol (E2, the parent hormone of the estrogen metabolism pathway.
Stringer, David Blake
The overarching objective in this research is the development of a robust, rotor dynamic, physics based model of a helicopter drive train as a foundation for the prognostic modeling for rotary-wing transmissions. Rotorcrafts rely on the integrity of their drive trains for their airworthiness. Drive trains rely on gear technology for their integrity and function. Gears alter the vibration characteristics of a mechanical system and significantly contribute to noise, component fatigue, and personal discomfort prevalent in rotorcraft. This research effort develops methodologies for generating a rotor dynamic model of a rotary-wing transmission based on first principles, through (i) development of a three-dimensional gear-mesh stiffness model for helical and spur gears and integration of this model in a finite element rotor dynamic model, (ii) linear and nonlinear analyses of a geared system for comparison and validation of the gear-mesh model, (iii) development of a modal synthesis technique for potentially providing model reduction and faster analysis capabilities for geared systems, and (iv) extension of the gear-mesh model to bevel and epicyclic configurations. In addition to model construction and validation, faults indigenous to geared systems are presented and discussed. Two faults are selected for analysis and seeded into the transmission model. Diagnostic vibration parameters are presented and used as damage indicators in the analysis. The fault models produce results consistent with damage experienced during experimental testing. The results of this research demonstrate the robustness of the physics-based approach in simulating multiple normal and abnormal conditions. The advantages of this physics-based approach, when combined with contemporary probabilistic and time-series techniques, provide a useful method for improving health monitoring technologies in mechanical systems.
A dynamic systems model of basic developmental mechanisms : Piaget, Vygotsky, and beyond
van Geert, P
1998-01-01
A dynamic systems model is proposed on the basis of a general developmental mechanism adopted from the theories of J. Piaget and L. S. Vygotsky, more particularly a mechanism based on the concepts assimilation versus accommodation and actual development versus zone of proximal development. In the
Modelling dynamic liquid-gas systems: Extensions to the volume-of-fluid solver
Heyns, Johan A
2013-06-01
Full Text Available This study presents the extension of the volume-of-fluid solver, interFoam, for improved accuracy and efficiency when modelling dynamic liquid-gas systems. Examples of these include the transportation of liquids, such as in the case of fuel carried...
Modelling the impact of interventions on the dynamics in village poultry systems
Udo, H.M.J.; Asgedom, A.H.; Viets, T.C.
2006-01-01
There are many technical possibilities to improve free-range and backyard poultry keeping. Rural households, however, are not adopting these technologies widely. This paper presents a model approach for ex ante evaluation of interventions in village poultry systems. The dynamic deterministic compute
Winkel, Brian
2012-01-01
We give an example of cross coursing in which a subject or approach in one course in undergraduate mathematics is used in a completely different course. This situation crosses falling body modelling in an upper level differential equations course into a modest discrete dynamical systems unit of a first-year mathematics course. (Contains 1 figure.)
Using System Dynamics to model the HIV/AIDS epidemic in Botswana and Uganda
Howell, R.; Wesselink, O.; Pruyt, E.
2013-01-01
Uganda and Botswana present two interesting and contrasting cases in the AIDS epidemic. System dynamics models of the AIDS epidemic in Botswana and Uganda were created to examine the future development of the virus in both countries and evaluate existing and future policy measures. The effect of exi
Experimental validation of a dynamic waste heat recovery system model for control purposes
Feru, E.; Kupper, F.; Rojer, C.; Seykens, X.L.J.; Scappin, F.; Willems, F.P.T.; Smits, J.; Jager, B. de; Steinbuch, M.
2013-01-01
This paper presents the identification and validation of a dynamic Waste Heat Recovery (WHR) system model. Driven by upcoming CO2 emission targets and increasing fuel costs, engine exhaust gas heat utilization has recently attracted much attention to improve fuel efficiency, especially for heavy-dut
Experimental validation of a dynamic waste heat recovery system model for control purposes
Feru, E.; Kupper, F.; Rojer, C.; Seykens, X.L.J.; Scappin, F.; Willems, F.P.T.; Smits, J.; Jager, B. de; Steinbuch, M.
2013-01-01
This paper presents the identification and validation of a dynamic Waste Heat Recovery (WHR) system model. Driven by upcoming CO2 emission targets and increasing fuel costs, engine exhaust gas heat utilization has recently attracted much attention to improve fuel efficiency, especially for
A Systematic and Numerically Efficient Procedure for Stable Dynamic Model Inversion of LTI Systems
George, K.; Verhaegen, M.; Scherpen, J.M.A.
1999-01-01
Output tracking via the novel Stable Dynamic model Inversion (SDI) technique, applicable to non-minimum phase systems, and which naturally takes into account the presence of noise in target time histories, is considered here. We are motivated by the typical need to replicate time signals in the auto
A dynamic systems model of basic developmental mechanisms : Piaget, Vygotsky, and beyond
van Geert, P
1998-01-01
A dynamic systems model is proposed on the basis of a general developmental mechanism adopted from the theories of J. Piaget and L. S. Vygotsky, more particularly a mechanism based on the concepts assimilation versus accommodation and actual development versus zone of proximal development. In the mo
Quantum dynamics of hydrogen atoms on graphene. I. System-bath modeling
Bonfanti, Matteo, E-mail: matteo.bonfanti@unimi.it [Dipartimento di Chimica, Università degli Studi di Milano, v. Golgi 19, 20133 Milano (Italy); Jackson, Bret [Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003 (United States); Hughes, Keith H. [School of Chemistry, Bangor University, Bangor, Gwynedd LL57 2UW (United Kingdom); Burghardt, Irene [Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main (Germany); Martinazzo, Rocco, E-mail: rocco.martinazzo@unimi.it [Dipartimento di Chimica, Università degli Studi di Milano, v. Golgi 19, 20133 Milano (Italy); Istituto di Scienze e Tecnologie Molecolari, Consiglio Nazionale delle Richerche, v. Golgi 19, 20133 Milano (Italy)
2015-09-28
An accurate system-bath model to investigate the quantum dynamics of hydrogen atoms chemisorbed on graphene is presented. The system comprises a hydrogen atom and the carbon atom from graphene that forms the covalent bond, and it is described by a previously developed 4D potential energy surface based on density functional theory ab initio data. The bath describes the rest of the carbon lattice and is obtained from an empirical force field through inversion of a classical equilibrium correlation function describing the hydrogen motion. By construction, model building easily accommodates improvements coming from the use of higher level electronic structure theory for the system. Further, it is well suited to a determination of the system-environment coupling by means of ab initio molecular dynamics. This paper details the system-bath modeling and shows its application to the quantum dynamics of vibrational relaxation of a chemisorbed hydrogen atom, which is here investigated at T = 0 K with the help of the multi-configuration time-dependent Hartree method. Paper II deals with the sticking dynamics.
A. M. Yusop
2014-01-01
Full Text Available This study presents the behavioral model of thermal temperature and power generation of a thermoelectric-solar hybrid energy system exposed to dynamic transient sources. In the development of thermoelectric-solar hybrid energy system, studies have focused on the regulation of both systems separately. In practice, a separate control system affects hardware pricing. In this study, an inverse dynamic analysis shaping technique based on exponential function is applied to a solar array (SA to stabilize output voltage before this technique is combined with a thermoelectric module (TEM. This method can be used to estimate the maximum power point of the hybrid system by initially shaping the input voltage of SA. The behavior of the overall system can be estimated by controlling the behavior of SA, such that SA can follow the output voltage of TEM as the time constant of TEM is greater than that of SA. Moreover, by employing a continuous and differentiable function, the acquired output behavior of the hybrid system can be attained. Data showing the model is obtained from current experiments with predicted values of temperature, internal resistance, and current attributes of TEM. The simulation results show that the proposed input shaper can be used to trigger the output voltage of SA to follow the TEM behavior under transient conditions.
Butts, Michael; Drews, Martin; Larsen, Morten Andreas Dahl
2014-01-01
To improve our understanding of the impacts of feedback between the atmosphere and the terrestrial water cycle including groundwater and to improve the integration of water resource management modelling for climate adaption we have developed a dynamically coupled climate–hydrological modelling...... system. The OpenMI modelling interface is used to couple a comprehensive hydrological modelling system, MIKE SHE running on personal computers, and a regional climate modelling system, HIRHAM running on a high performance computing platform. The coupled model enables two-way interaction between...... the atmosphere and the groundwater via the land surface and can represent the lateral movement of water in both the surface and subsurface and their interactions, not normally accounted for in climate models. Meso-scale processes are important for climate in general and rainfall in particular. Hydrological...
Nonlinear Dynamic Model-Based Adaptive Control of a Solenoid-Valve System
DongBin Lee
2012-01-01
Full Text Available In this paper, a nonlinear model-based adaptive control approach is proposed for a solenoid-valve system. The challenge is that solenoids and butterfly valves have uncertainties in multiple parameters in the nonlinear model; various kinds of physical appearance such as size and stroke, dynamic parameters including inertia, damping, and torque coefficients, and operational parameters especially, pipe diameters and flow velocities. These uncertainties are making the system not only difficult to adjust to the environment, but also further complicated to develop the appropriate control approach for meeting the system objectives. The main contribution of this research is the application of adaptive control theory and Lyapunov-type stability approach to design a controller for a dynamic model of the solenoid-valve system in the presence of those uncertainties. The control objectives such as set-point regulation, parameter compensation, and stability are supposed to be simultaneously accomplished. The error signals are first formulated based on the nonlinear dynamic models and then the control input is developed using the Lyapunov stability-type analysis to obtain the error bounded while overcoming the uncertainties. The parameter groups are updated by adaptation laws using a projection algorithm. Numerical simulation results are shown to demonstrate good performance of the proposed nonlinear model-based adaptive approach and to compare the performance of the same solenoid-valve system with a non-adaptive method as well.
Dynamical System Approach to Cosmological Models with a Varying Speed of Light
Szydlowski, M; Szydlowski, Marek; Krawiec, Adam
2003-01-01
Methods of dynamical systems have been used to study homogeneous and isotropic cosmological models with a varying speed of light (VSL). We propose two methods of reduction of dynamics to the form of planar Hamiltonian dynamical systems for models with a time dependent equation of state. The solutions are analyzed on two-dimensional phase space in the variables $(x, \\dot{x})$ where $x$ is a function of a scale factor $a$. Then we show how the horizon problem may be solved on some evolutional paths. It is shown that the models with negative curvature overcome the horizon and flatness problems. The presented method of reduction can be adopted to the analysis of dynamics of the universe with the general form of the equation of state $p=\\gamma(a)\\epsilon$. This is demonstrated using as an example the dynamics of VSL models filled with a non-interacting fluid. We demonstrate a new type of evolution near the initial singularity caused by a varying speed of light. The singularity-free oscillating universes are also a...
Modeling and Extended State Observer Based Dynamic Surface Control for Cold Rolling Mill System
Xu Li
2016-01-01
Full Text Available The modeling and control problems are investigated for cold rolling mill system. Firstly, we establish a monitor automatic gauge control (MAGC model for a practical cold rolling mill system. The new model is with mismatched uncertainties. Then, an extended state observer (ESO is developed to estimate uncertainties. In the general high-order systems, the ESO is also used to estimate states. By dynamic surface control method, we design the controller to guarantee stabilization of the cold rolling mill system. Furthermore, we extend proposed method to general high-order systems, in which we analyze the difference from cold rolling mill system. Finally, simulation results for MAGC system are presented to demonstrate the effectiveness of the proposed control strategy.
Big Data’s Tools for Internet Data Analytics: Modelling of System Dynamics
Feldiansyah Nasution
2017-06-01
Full Text Available In this paper, an application based on Apache Hadoop is deployed to gather, store and analyse the data from the internet, especially online and social media. Nowadays, this application is a common tool for media analysis. In our case, it is used to assist in the modelling of system dynamics. Basically, There are several tools that will be used, such as for file system, data crawling from the Internet, data indexing, data storage, and data analytics. The selection of technology is as the industrial trend. Surely, this is not the best approach, but as another perspective for modelling of system dynamics. A system dynamics model is developed to study the profitability of the telecommunication company and how the complaint or negative sentiment will impact to their profits. The clustering analytics are used to identify the components of the system. In continuation of the improvement process, the clustering analytics will be used not only as a one time effort. It runs periodically to develop a better model of the system. Sentiment analysis tool is used as the input for one of the components which is compliant components. The sentiment is sourced from online and social media. Manual investigation and analytics of internet data is required in developing the relationships between the components.
Study on dynamic characteristics of coupled model for deep-water lifting system
Wu, Yunxia; Lu, Jianhui; Zhang, Chunlei
2016-10-01
The underwater installation of marine equipment in deep-water development requires safe lifting and accurate positioning. The heave compensation system is an important technology to ensure normal operation and improve work accuracy. To provide a theoretical basis for the heave compensation system, in this paper, the continuous modeling method is employed to build up a coupled model of deep-water lifting systems in vertical direction. The response characteristics of dynamic movement are investigated. The simulation results show that the resonance problem appears in the process of the whole releasing load, the lifting system generates resonance and the displacement response of the lifting load is maximal when the sinking depth is about 2000 m. This paper also analyzes the main influencing factors on the dynamic response of load including cable stiffness, damping coefficient of the lifting system, mass and added mass of lifting load, among which cable stiffness and damping coefficient of the lifting system have the greatest influence on dynamic response of lifting load when installation load is determined. So the vertical dynamic movement response of the load is reduced by installing a damper on the lifting cable and selecting the appropriate cable stiffness.
Intrinsic dynamics of heart regulatory systems on short time-scales: from experiment to modelling
Khovanov, I A; McClintock, P V E; Stefanovska, A
2009-01-01
We discuss open problems related to the stochastic modeling of cardiac function. The work is based on an experimental investigation of the dynamics of heart rate variability (HRV) in the absence of respiratory perturbations. We consider first the cardiac control system on short time scales via an analysis of HRV within the framework of a random walk approach. Our experiments show that HRV on timescales of less than a minute takes the form of free diffusion, close to Brownian motion, which can be described as a non-stationary process with stationary increments. Secondly, we consider the inverse problem of modeling the state of the control system so as to reproduce the experimentally observed HRV statistics of. We discuss some simple toy models and identify open problems for the modelling of heart dynamics.
Dynamic Model of Kaplan Turbine Regulating System Suitable for Power System Analysis
Jie Zhao
2015-01-01
Full Text Available Accurate modeling of Kaplan turbine regulating system is of great significance for grid security and stability analysis. In this paper, Kaplan turbine regulating system model is divided into the governor system model, the blade control system model, and the turbine and water diversion system model. The Kaplan turbine has its particularity, and the on-cam relationship between the wicket gate opening and the runner blade angle under a certain water head on the whole range was obtained by high-order curve fitting method. Progressively the linearized Kaplan turbine model, improved ideal Kaplan turbine model, and nonlinear Kaplan turbine model were developed. The nonlinear Kaplan turbine model considered the correction function of the blade angle on the turbine power, thereby improving the model simulation accuracy. The model parameters were calculated or obtained by the improved particle swarm optimization (IPSO algorithm. For the blade control system model, the default blade servomotor time constant given by value of one simplified the modeling and experimental work. Further studies combined with measured test data verified the established model accuracy and laid a foundation for further research into the influence of Kaplan turbine connecting to the grid.
Coarse-Grained Molecular Dynamics for Computer Modeling of Nanomechanical Systems
Rudd, R E
2003-11-02
Unique challenges for computer modeling and simulation arise in the course of the development and design of nanoscale mechanical systems. Materials often exhibit unconventional behavior at the nanoscale that can affect device operation and failure. This uncertainty poses a problem because of the limited experimental characterization at these ultra-small length scales. In this Article we give an overview of how we have used concurrent multiscale modeling techniques to address some of these issues. Of particular interest are the dynamic and temperature-dependent processes found in nanomechanical systems. We focus on the behavior of sub-micron mechanical components of Micro-Electro-Mechanical Systems (MEMS) and Nano-Electro-Mechanical Systems (NEMS), especially flexural-mode resonators. The concurrent multiscale methodology we have developed for NEMS employs an atomistic description of millions of atoms in relatively small but key regions of the system, coupled to, and run concurrently with, a generalized finite element model of the periphery. We describe two such techniques. The more precise model, Coarse-Grained Molecular Dynamics (CGMD), describes the dynamics on a mesh of elements, but the equations of motion are built up from the underlying atomistic physics to ensure a smooth coupling between regions governed by different length scales. In many cases the degrees of smoothness of the coupling provided by CGMD is not necessary. The hybrid Coupling of Length Scales (CLS) methodology, combining molecular dynamics with conventional finite element modeling, provides a suitable technique for these cases at a greatly reduced computation expense. We review these models and some of the results we have obtained regarding size effects in the elasticity and dissipation of nanomechanical systems.
Rehan, R; Knight, M A; Unger, A J A; Haas, C T
2013-12-15
This paper develops causal loop diagrams and a system dynamics model for financially sustainable management of urban water distribution networks. The developed causal loop diagrams are a novel contribution in that it illustrates the unique characteristics and feedback loops for financially self-sustaining water distribution networks. The system dynamics model is a mathematical realization of the developed interactions among system variables over time and is comprised of three sectors namely watermains network, consumer, and finance. This is the first known development of a water distribution network system dynamics model. The watermains network sector accounts for the unique characteristics of watermain pipes such as service life, deterioration progression, pipe breaks, and water leakage. The finance sector allows for cash reserving by the utility in addition to the pay-as-you-go and borrowing strategies. The consumer sector includes controls to model water fee growth as a function of service performance and a household's financial burden due to water fees. A series of policy levers are provided that allow the impact of various financing strategies to be evaluated in terms of financial sustainability and household affordability. The model also allows for examination of the impact of different management strategies on the water fee in terms of consistency and stability over time. The paper concludes with a discussion on how the developed system dynamics water model can be used by water utilities to achieve a variety of utility short and long-term objectives and to establish realistic and defensible water utility policies. It also discusses how the model can be used by regulatory bodies, government agencies, the financial industry, and researchers.
Nonlinear dynamic modeling of rotor system supported by angular contact ball bearings
Wang, Hong; Han, Qinkai; Zhou, Daning
2017-02-01
In current bearing dynamic models, the displacement coordinate relations are usually utilized to approximately obtain the contact deformations between the rolling element and raceways, and then the nonlinear restoring forces of the rolling bearing could be calculated accordingly. Although the calculation efficiency is relatively higher, the accuracy is lower as the contact deformations should be solved through iterative analysis. Thus, an improved nonlinear dynamic model is presented in this paper. Considering the preload condition, surface waviness, Hertz contact and elastohydrodynamic lubrication, load distribution analysis is solved iteratively to more accurately obtain the contact deformations and angles between the rolling balls and raceways. The bearing restoring forces are then obtained through iteratively solving the load distribution equations at every time step. Dynamic tests upon a typical rotor system supported by two angular contact ball bearings are conducted to verify the model. Through comparisons, the differences between the nonlinear dynamic model and current models are also pointed out. The effects of axial preload, rotor eccentricity and inner/outer waviness amplitudes on the dynamic response are discussed in detail.
Simplifications in modelling of dynamical response of coupled electro-mechanical system
Darula, Radoslav; Sorokin, Sergey
2016-12-01
The choice of a most suitable model of an electro-mechanical system depends on many variables, such as a scale of the system, type and frequency range of its operation, or power requirements. The article focuses on the model of the electromagnetic element used in passive regime (no feedback loops are assumed) and a general lumped parameter model (a conventional mass-spring-damper system coupled to an electric circuit consisting of a resistance, an inductance and a capacitance) is compared with its simplified version, where the full RLC circuit is replaced with its RL simplification, i.e. the capacitance of the electric system is neglected and just its inductance and the resistance are considered. From the comparison of dynamical responses of these systems, the range of applicability of a simplified model is assessed for free as well as forced vibration.
Feng, Maoyuan; Liu, Pan; Li, Zejun; Zhang, Jingwen; Liu, Dedi; Xiong, Lihua
2016-12-01
Nexus approaches address the complex interconnections across coupled systems, providing a new and effective way to identify the dynamics of coevolution process. The connections across water supply, power generation and environment (WPE) systems are increasingly tight and thus can be profiled as a WPE nexus. This paper aims to model the WPE nexus in the China's Hehuang Region by using the system dynamics approach. Six nonlinear ordinary differential equations of storage, water supply, power generation, population, biomass, and environmental awareness are formulated to dominate the coevolution process. Their constitutive relations are then obtained from observed data to complete the WPE nexus model. The results show that the system dynamics approach is competent in modeling the WPE nexus of the Hehuang Region. The coevolution process is divided into four cyclic stages (i.e., exploitation, deterioration, depression and recovery stages) and terminates with a stationary cycling after thousands of years. The dynamics of state variables are explicitly interpreted to show how different driving variables affect the variations of system states. The observations obtained by modeling the nexus are insightful, improving the understanding of interactions across coupled systems.
Dynamic Modeling of Hydraulic Power Steering System with Variable Ratio Rack and Pinion Gear
Zhang, Nong; Wang, Miao
A comprehensive mathematical model of a typical hydraulic power steering system equipped with variable ratio rack and pinion gear is developed. The steering system’s dynamic characteristics are investigated and its forced vibrations are compared with those obtained from a counterpart system with a constant ratio rack and pinion gear. The modeling details of the mechanism subsystem, hydraulic supply lines subsystem and the rotary spool valve subsystem are provided and included in the integrated steering system model. The numerical simulations are conducted to investigate the dynamics of the nonlinear parametric steering system. From the comparison between simulated results and the experimental ones, it is shown that the model accurately integrates the boost characteristics of the rotary spool valve which is the key component of hydraulic power steering system. The variable ratio rack-pinion gear behaviors significantly differently from its constant ratio counterpart does. It significantly affects not only the system natural frequencies but also reduces vibrations under constant rate and ramp torque steering inputs. The developed steering model produces valid predictions of the system’s behavior and therfore could assist engineers in the design and analysis of integrated steering systems.
A Case of Energy and Ecology System Development and a New Approach to System Dynamics Modeling
JIA Ren-an; YANG Bo; WU Fu-ming; HU Ling
2002-01-01
This paper uses SD rate variable fundamental in-tree modeling, SD branch-vector determinant method and systems archetype as tools to understand the structure and functions of energy and ecology system in Wangheqiu.
Numerical Modelling of Ore-forming Dynamics of Fractal Dispersive Fluid Systems
邓军; 方云; 杨立强; 杨军臣; 孙忠实; 王建平; 丁式江; 王庆飞
2001-01-01
Based on an analysis of the fractal structures and mass transport mechanism of typical shear-fluid-ore formation system, the fractal dispersion theory of the fluid system was used in the dynamic study of the ore formation system. The model of point-source diffusive illuviation of the shear-fluid-ore formation system was constructed, and the numerical simulation of dynamics of the ore formation system was finished. The result shows that: (1) The metallogenic system have nested fractal structure. Different fractal dimension values in different systems show unbalance and inhomogeneity of ore-forming processes in the geohistory. It is an important parameter to symbolize the process of remobilization and accumulation of ore-forming materials. Also it can indicate the dynamics of the metallogenic system quantitatively to some extent. (2) In essence, the fractal dispersive ore-forming dynamics is a combination of multi-processes dominated by fluid dynamics and supplemented by molecule dispersion in fluids and fluid-rock interaction. It changes components and physico-chemical properties of primary rocks and fluids, favouring deposition and mineralization of ore-forming materials. (3) Gold ore-forming processes in different types of shear zones are quite different. (1) In a metallogenic system with inhomogeneous volumetric change and inhomogeneous shear, mineralization occurs in structural barriers in the centre of a shear zone and in geochemical barriers in the shear zone near its boundaries. But there is little possibility of mineralization out of the shear zone. (2) As to a metallogenic system with inhomogeneous volumetric change and simple shear, mineralization may occur only in structural barriers near the centre of the shear zone. (3) In a metallogenic system with homogeneous volumetric change and inhomogeneous shear, mineralization may occur in geochemical barriers both within and out of the shear zone.
Modelling household responses to energy efficiency interventions via system dynamics and survey data
S Davis
2010-12-01
Full Text Available An application of building a system dynamics model of the way households might respond to interventions aimed at reducing energy consumption (specifically the use of electricity is described in this paper. A literature review of past research is used to build an initial integrated model of household consumption, and this model is used to generate a small number of research hypotheses about how households possessing different characteristics might react to various types of interventions. These hypotheses are tested using data gathered from an efficiency intervention conducted in a town in the South African Western Cape in which households were able to exchange regular light bulbs for more efficient compact fluorescent lamp light bulbs. Our experiences are (a that a system dynamics approach proved useful in advancing a non-traditional point of view for which, for historical and economic reasons, data were not abundantly available; (b that, in areas where traditional models are heavily quantitative, some scepticism to a system dynamics model may be expected; and (c that a statistical comparison of model results by means of empirical data may be an effective tool in reducing such scepticism.
Dynamic modeling of hybrid renewable energy systems for off-grid applications
Hasemeyer, Mark David
The volatile prices of fossil fuels and their contribution to global warming have caused many people to turn to renewable energy systems. Many developing communities are forced to use these systems as they are too far from electrical distribution. As a result, numerous software models have been developed to simulate hybrid renewable energy systems. However almost, if not all, implementations are static in design. A static design limits the ability of the model to account for changes over time. Dynamic modeling can be used to fill the gaps where other modeling techniques fall short. This modeling practice allows the user to account for the effects of technological and economic factors over time. These factors can include changes in energy demand, energy production, and income level. Dynamic modeling can be particularly useful for developing communities who are off-grid and developing at rapid rates. In this study, a dynamic model was used to evaluate a real world system. A non-governmental organization interested in improving their current infrastructure was selected. Five different scenarios were analyzed and compared in order to discover which factors the model is most sensitive to. In four of the scenarios, a new energy system was purchased in order to account for the opening of a restaurant that would be used as a source of local income generation. These scenarios were then compared to a base case in which a new system was not purchased, and the restaurant was not opened. Finally, the results were used to determine which variables had the greatest impact on the various outputs of the simulation.
A New Dynamic Model for a Flexible Hub-Beam System
LIU Zhu-yong; HONG Jia-zhen; CAI Guo-ping
2009-01-01
In this paper, a new dynamic model for the flexible hub-beam system is proposed by using the principle of continuum medium mechanics and the finite element discretization method. In the proposed model, the coupling deformation of any element of the beam is only related with the nodal coordinates of this element. So this model is suitable to the rotating beam in an arbitrary shape. Numerical examples of slender beams in straight and irregular shapes are carried out to demonstrate the validation of the proposed model. Simulation results indicate that the proposed model can be used valid for dynamic description of flexible rotating beam in irregular shape, and for both low and high rotation speeds.
Dynamic wind turbine models in power system simulation tool DIgSILENT
Hansen, A.C.; Jauch, C.; Soerensen, P.; Iov, F.; Blaabjerg, F.
2003-12-01
The present report describes the dynamic wind turbine models implemented in the power system simulation tool DIgSILENT (Version 12.0). The developed models are a part of the results of a national research project, whose overall objective is to create a model database in different simulation tools. This model database should be able to support the analysis of the interaction between the mechanical structure of the wind turbine and the electrical grid during different operational modes. The report provides a description of the wind turbines modelling, both at a component level and at a system level. The report contains both the description of DIgSILENT built-in models for the electrical components of a grid connected wind turbine (e.g. induction generators, power converters, transformers) and the models developed by the user, in the dynamic simulation language DSL of DIgSILENT, for the non-electrical components of the wind turbine (wind model, aerodynamic model, mechanical model). The initialisation issues on the wind turbine models into the power system simulation are also presented. However, the main attention in this report is drawn to the modelling at the system level of two wind turbine concepts: 1. Active stall wind turbine with induction generator 2. Variable speed, variable pitch wind turbine with doubly fed induction generator. These wind turbine concept models can be used and even extended for the study of different aspects, e.g. the assessment of power quality, control strategies, connection of the wind turbine at different types of grid and storage systems. For both these two concepts, control strategies are developed and implemented, their performance assessed and discussed by means of simulations. (au)
Hamid Balali
2015-09-01
Full Text Available In the recent decades, due to many different factors, including climate change effects towards be warming and lower precipitation, as well as some structural policies such as more intensive harvesting of groundwater and low price of irrigation water, the level of groundwater has decreased in most plains of Iran. The objective of this study is to model groundwater dynamics to depletion under different economic policies and climate change by using a system dynamics approach. For this purpose a dynamic hydro-economic model which simultaneously simulates the farmer’s economic behavior, groundwater aquifer dynamics, studied area climatology factors and government economical policies related to groundwater, is developed using STELLA 10.0.6. The vulnerability of groundwater balance is forecasted under three scenarios of climate including the Dry, Nor and Wet and also, different scenarios of irrigation water and energy pricing policies. Results show that implementation of some economic policies on irrigation water and energy pricing can significantly affect on groundwater exploitation and its volume balance. By increasing of irrigation water price along with energy price, exploitation of groundwater will improve, in so far as in scenarios S15 and S16, studied area’s aquifer groundwater balance is positive at the end of planning horizon, even in Dry condition of precipitation. Also, results indicate that climate change can affect groundwater recharge. It can generally be expected that increases in precipitation would produce greater aquifer recharge rates.
DAI Yu; LIU Shao-jun
2013-01-01
An integrated dynamic model of China's deep ocean mining system is developed and the fast simulation analysis of its longitudinal reciprocating motion operation processes is achieved.The seafloor tracked miner is built as a three-dimensional single-body model with six-degree-of-freedom.The track-terrain interaction is modeled by partitioning the track-terrain interface into a certain number of mesh elements with three mutually perpendicular forces,including the normal force,the longitudinal shear force and the lateral shear force,acting on the center point of each mesh element.The hydrodynamic force of the miner is considered and applied.By considering the operational safety and collection efficiency,two new mining paths for the miner on the seafloor are proposed,which can be simulated with the established single-body dynamic model of the miner.The pipeline subsystem is built as a three-dimensional multi-body discrete element model,which is divided into rigid elements linked by flexible connectors.The flexible connector without mass is represented by six spring-damper elements.The external hydrodynamic forces of the ocean current from the longitudinal and lateral directions are both considered and modeled based on the Morison formula and applied to the mass center of each corresponding discrete rigid element.The mining ship is simplified and represented by a general kinematic point,whose heave motion induced by the ocean waves and the longitudinal and lateral towing motions are considered and applied.By integrating the single-body dynamic model of the miner and the multi-body discrete element dynamic model of the pipeline,and defining the kinematic equations of the mining ship,the integrated dynamic model of the total deep ocean mining system is formed.The longitudinal reciprocating motion operation modes of the total mining system,which combine the active straight-line and turning motions of the miner and the ship,and the passive towed motions of the pipeline
Links, Jonathan M; Schwartz, Brian S; Lin, Sen; Kanarek, Norma; Mitrani-Reiser, Judith; Sell, Tara Kirk; Watson, Crystal R; Ward, Doug; Slemp, Cathy; Burhans, Robert; Gill, Kimberly; Igusa, Tak; Zhao, Xilei; Aguirre, Benigno; Trainor, Joseph; Nigg, Joanne; Inglesby, Thomas; Carbone, Eric; Kendra, James M
2017-06-21
Policy-makers and practitioners have a need to assess community resilience in disasters. Prior efforts conflated resilience with community functioning, combined resistance and recovery (the components of resilience), and relied on a static model for what is inherently a dynamic process. We sought to develop linked conceptual and computational models of community functioning and resilience after a disaster. We developed a system dynamics computational model that predicts community functioning after a disaster. The computational model outputted the time course of community functioning before, during, and after a disaster, which was used to calculate resistance, recovery, and resilience for all US counties. The conceptual model explicitly separated resilience from community functioning and identified all key components for each, which were translated into a system dynamics computational model with connections and feedbacks. The components were represented by publicly available measures at the county level. Baseline community functioning, resistance, recovery, and resilience evidenced a range of values and geographic clustering, consistent with hypotheses based on the disaster literature. The work is transparent, motivates ongoing refinements, and identifies areas for improved measurements. After validation, such a model can be used to identify effective investments to enhance community resilience.(Disaster Med Public Health Preparedness. 2017;page 1 of 11).
Toward more realistic projections of soil carbon dynamics by Earth system models
Luo, Y.; Ahlström, Anders; Allison, Steven D.; Batjes, Niels H.; Brovkin, V.; Carvalhais, Nuno; Chappell, Adrian; Ciais, Philippe; Davidson, Eric A.; Finzi, Adien; Georgiou, Katerina; Guenet, Bertrand; Hararuk, Oleksandra; Harden, Jennifer; He, Yujie; Hopkins, Francesca; Jiang, L.; Koven, Charles; Jackson, Robert B.; Jones, Chris D.; Lara, M.; Liang, J.; McGuire, Anthony; Parton, William; Peng, Changhui; Randerson, J.; Salazar, Alejandro; Sierra, Carlos A.; Smith, Matthew J.; Tian, Hanqin; Todd-Brown, Katherine E. O; Torn, Margaret S.; van Groenigen, Kees Jan; Wang, Ying; West, Tristram O.; Wei, Yaxing; Wieder, William R.; Xia, Jianyang; Xu, Xia; Xu, Xiaofeng; Zhou, T.
2016-01-01
Soil carbon (C) is a critical component of Earth system models (ESMs), and its diverse representations are a major source of the large spread across models in the terrestrial C sink from the third to fifth assessment reports of the Intergovernmental Panel on Climate Change (IPCC). Improving soil C projections is of a high priority for Earth system modeling in the future IPCC and other assessments. To achieve this goal, we suggest that (1) model structures should reflect real-world processes, (2) parameters should be calibrated to match model outputs with observations, and (3) external forcing variables should accurately prescribe the environmental conditions that soils experience. First, most soil C cycle models simulate C input from litter production and C release through decomposition. The latter process has traditionally been represented by first-order decay functions, regulated primarily by temperature, moisture, litter quality, and soil texture. While this formulation well captures macroscopic soil organic C (SOC) dynamics, better understanding is needed of their underlying mechanisms as related to microbial processes, depth-dependent environmental controls, and other processes that strongly affect soil C dynamics. Second, incomplete use of observations in model parameterization is a major cause of bias in soil C projections from ESMs. Optimal parameter calibration with both pool- and flux-based data sets through data assimilation is among the highest priorities for near-term research to reduce biases among ESMs. Third, external variables are represented inconsistently among ESMs, leading to differences in modeled soil C dynamics. We recommend the implementation of traceability analyses to identify how external variables and model parameterizations influence SOC dynamics in different ESMs. Overall, projections of the terrestrial C sink can be substantially improved when reliable data sets are available to select the most representative model structure
Randers, Jorgen; Golüke, Ulrich; Wenstøp, Fred; Wenstøp, Søren
2016-11-01
We have made a simple system dynamics model, ESCIMO (Earth System Climate Interpretable Model), which runs on a desktop computer in seconds and is able to reproduce the main output from more complex climate models. ESCIMO represents the main causal mechanisms at work in the Earth system and is able to reproduce the broad outline of climate history from 1850 to 2015. We have run many simulations with ESCIMO to 2100 and beyond. In this paper we present the effects of introducing in 2015 six possible global policy interventions that cost around USD 1000 billion per year - around 1 % of world GDP. We tentatively conclude (a) that these policy interventions can at most reduce the global mean surface temperature - GMST - by up to 0.5 °C in 2050 and up to 1.0 °C in 2100 relative to no intervention. The exception is injection of aerosols into the stratosphere, which can reduce the GMST by more than 1.0 °C in a decade but creates other serious problems. We also conclude (b) that relatively cheap human intervention can keep global warming in this century below +2 °C relative to preindustrial times. Finally, we conclude (c) that run-away warming is unlikely to occur in this century but is likely to occur in the longer run. The ensuing warming is slow, however. In ESCIMO, it takes several hundred years to lift the GMST to +3 °C above preindustrial times through gradual self-reinforcing melting of the permafrost. We call for research to test whether more complex climate models support our tentative conclusions from ESCIMO.
The bond graph model of planar flexible multibody mechanical systems and its dynamic principle
无
2006-01-01
In order to increase the efficiency and reliability of the dynamic analysis for flexible planar linkage containing the coupling of multi-energy domains, a method based on bond graph is introduced. From the viewpoint of power conservation, the peculiar property of bond graph multiport element MTF is discussed. The procedure of modeling planar flexible multibody mechanical systems by bond graphs and its dynamic principle are described. To overcome the algebraic difficulty brought by differential causality and nonlinear junction structure, the constraint forces at joints can be considered as unknown effort sources and added to the corresponding O-junctions of system bond graph model. As a result, the automatic modeling on a computer is realized. The validity of the procedure is illustrated by a practical example.
Continuous-discrete model of parasite-host system dynamics: Trigger regime at simplest assumptions
L. V. Nedorezov
2014-09-01
Full Text Available In paper continuous-discrete model of parasite-host system dynamics is analyzed. Within the framework of model it is assumed that appearance of individuals of new generations of both populations is realized at fixed time moments tk=hk, t0=0, k=1,2,... , h=const>0; it means that several processes are compressed together: producing of eggs by hosts, attack of eggs by parasites (with respective transformation of host's eggs into parasite's eggs, staying of hosts and parasites in phase "egg", and appearance of new individuals. It is also assumed that death process of individuals has a continuous nature, but developments of both populations are realized independently between fixed time moments. Dynamic regimes of model are analyzed. In particular, it was obtained that with simplest assumptions about birth process in host population and numbers of attacked hosts regime with two non-trivial stable attractors in phase space of system can be realized.
Dynamic Thermal Model And Control Of A Pem Fuel Cell System
Liso, Vincenzo; Nielsen, Mads Pagh
2013-01-01
A lumped parameter dynamic model is developed for predicting the stack performance, temperatures of the exit reactant gases and coolant liquid outlet in a proton-exchange membrane fuel cell (PEMFC) system. The air compressor, humidifier and cooling heat exchanger models are integrated to study...... the fuel cell system. A PID temperature control is implemented to study the effect of stack temperature on settling times of other variables such as stack voltage, air flow rate, oxygen excess ratio and net power of the stack. The model allows an assessment of the effect of operating parameters (stack...... power output, cooling water flow rate, air flow rate, and environmental temperature) and parameter interactions on the system thermal performance. The model represents a useful tool to determine the operating temperatures of the various components of the thermal system, and thus to fully assess...
Modelling of Nonlinear Dynamic of Mechanic Systems with the Force Tribological Interaction
K.A. Nuzhdin
2015-09-01
Full Text Available This paper considers the mechanisms with different structure: tribometric device and a mechanism for handling of optical glasses. In the first device, the movement of the upper platform is due to a reciprocating friction interaction. In the second device, the processing of the optical element or group of elements occurs due to the rotational motion. Modelling of the dynamic of these systems with Matlab/Simmechanic allowed carrying out the analysis of dynamic of mechanisms, considering nonlinearity tribological interactions for these systems. The article shows that using of the computer models can effectively carry out the selection of the control parameters to create the desired mode of operation, as well as to investigate the behaviour of systems with nonlinear parameters and processes of self-oscillations. The organization of the managed self-oscillation process is realized to create the relevant high-performance manufacturing, for example, for the processing of optical glasses.
Low-order dynamical system model of a fully developed turbulent channel flow
Hamilton, Nicholas; Tutkun, Murat; Cal, Raúl Bayoán
2017-06-01
A reduced order model of a turbulent channel flow is composed from a direct numerical simulation database hosted at the Johns Hopkins University. Snapshot proper orthogonal decomposition (POD) is used to identify the Hilbert space from which the reduced order model is obtained, as the POD basis is defined to capture the optimal energy content by mode. The reduced order model is defined by coupling the evolution of the dynamic POD mode coefficients through their respective time derivative with a least-squares polynomial fit of terms up to third order. Parameters coupling the dynamics of the POD basis are defined in analog to those produced in the classical Galerkin projection. The resulting low-order dynamical system is tested for a range of basis modes demonstrating that the non-linear mode interactions do not lead to a monotonic decrease in error propagation. A basis of five POD modes accounts for 50% of the integrated turbulence kinetic energy but captures only the largest features of the turbulence in the channel flow and is not able to reflect the anticipated flow dynamics. Using five modes, the low-order model is unable to accurately reproduce Reynolds stresses, and the root-mean-square error of the predicted stresses is as great as 30%. Increasing the basis to 28 modes accounts for 90% of the kinetic energy and adds intermediate scales to the dynamical system. The difference between the time derivatives of the random coefficients associated with individual modes and their least-squares fit is amplified in the numerical integration leading to unstable long-time solutions. Periodic recalibration of the dynamical system is undertaken by limiting the integration time to the range of the sampled data and offering the dynamical system new initial conditions. Renewed initial conditions are found by pushing the mode coefficients in the end of the integration time toward a known point along the original trajectories identified through a least-squares projection. Under
LIU Yao-bin; LI Ren-dong; LI Chun-hua
2005-01-01
By means of ISM (Interpretative Structural Modeling) and SD (System Dynamics) methods, this paper made a system dynamics model of urbanization and eco-environment coupling in Jiangsu Province according to the implication and PSR (Pressure State Response) framework of urbanization and eeo-environment coupling. Moreover, five typical scenarios during 2000-2015 have been simulated and analyzed based on the time serial statistical data during 1990-2003 in Jiangsu, which indicates: firstly, there are significant differences between the results and the scenarios,and the five coupling models all have comparative advantages and drawbacks; secondly, in terms of the characteristics and regional development disparities of Jiangsu and the general rule of world urbanization process, this paper reveals that only when either population urbanization model or social urbanization model to be correspondingly adopted, the sustainable development among population, economy, urbanization and eeo-environment can be realized.
A dynamical systems approach to the tilted Bianchi models of solvable type
Coley, Alan; Hervik, Sigbjørn
2005-02-01
We use a dynamical systems approach to analyse the tilting spatially homogeneous Bianchi models of solvable type (e.g., types VIh and VIIh) with a perfect fluid and a linear barotropic γ-law equation of state. In particular, we study the late-time behaviour of tilted Bianchi models, with an emphasis on the existence of equilibrium points and their stability properties. We briefly discuss the tilting Bianchi type V models and the late-time asymptotic behaviour of irrotational Bianchi type VII0 models. We prove the important result that for non-inflationary Bianchi type VIIh models vacuum plane-wave solutions are the only future attracting equilibrium points in the Bianchi type VIIh invariant set. We then investigate the dynamics close to the plane-wave solutions in more detail, and discover some new features that arise in the dynamical behaviour of Bianchi cosmologies with the inclusion of tilt. We point out that in a tiny open set of parameter space in the type IV model (the loophole) there exist closed curves which act as attracting limit cycles. More interestingly, in the Bianchi type VIIh models there is a bifurcation in which a set of equilibrium points turns into closed orbits. There is a region in which both sets of closed curves coexist, and it appears that for the type VIIh models in this region the solution curves approach a compact surface which is topologically a torus.
Update on Small Modular Reactors Dynamics System Modeling Tool -- Molten Salt Cooled Architecture
Hale, Richard Edward [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cetiner, Sacit M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fugate, David L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Qualls, A L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Borum, Robert C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chaleff, Ethan S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rogerson, Doug W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Batteh, John J. [Modelon Corporation (Sweden); Tiller, Michael M. [Xogeny Corporation, Canton, MI (United States)
2014-08-01
The Small Modular Reactor (SMR) Dynamic System Modeling Tool project is in the third year of development. The project is designed to support collaborative modeling and study of various advanced SMR (non-light water cooled) concepts, including the use of multiple coupled reactors at a single site. The objective of the project is to provide a common simulation environment and baseline modeling resources to facilitate rapid development of dynamic advanced reactor SMR models, ensure consistency among research products within the Instrumentation, Controls, and Human-Machine Interface (ICHMI) technical area, and leverage cross-cutting capabilities while minimizing duplication of effort. The combined simulation environment and suite of models are identified as the Modular Dynamic SIMulation (MoDSIM) tool. The critical elements of this effort include (1) defining a standardized, common simulation environment that can be applied throughout the program, (2) developing a library of baseline component modules that can be assembled into full plant models using existing geometry and thermal-hydraulic data, (3) defining modeling conventions for interconnecting component models, and (4) establishing user interfaces and support tools to facilitate simulation development (i.e., configuration and parameterization), execution, and results display and capture.
System dynamics model of Suzhou water resources carrying capacity and its application
Li CHENG
2010-06-01
Full Text Available A model of Suzhou water resources carrying capacity (WRCC was set up using the method of system dynamics (SD. In the model, three different water resources utilization programs were adopted: (1 continuity of existing water utilization, (2 water conservation/saving, and (3 water exploitation. The dynamic variation of the Suzhou WRCC was simulated with the supply-decided principle for the time period of 2001 to 2030, and the results were characterized based on socio-economic factors. The corresponding Suzhou WRCC values for several target years were calculated by the model. Based on these results, proper ways to improve the Suzhou WRCC are proposed. The model also produced an optimized plan, which can provide a scientific basis for the sustainable utilization of Suzhou water resources and for the coordinated development of the society, economy, and water resources.
System dynamics model of Suzhou water resources carrying capacity and its application
Li CHENG
2010-01-01
A model of Suzhou water resources carrying capacity (WRCC) was set up using the method of system dynamics (SD).In the model, three different water resources utilization programs were adopted: (1) continuity of existing water utilization, (2) water conservation/saving, and (3) water exploitation.The dynamic variation of the Suzhou WRCC was simulated with the supply-decided principle for the time period of 2001 to 2030, and the results were characterized based on socio-economic factors.The corresponding Suzhou WRCC values for several target years were calculated by the model.Based on these results, proper ways to improve the Suzhou WRCC are proposed.The model also produced an optimized plan, which can provide a scientific basis for the sustainable utilization of Suzhou water resources and for the coordinated development of the society, economy, and water resources.
Dynamic Modeling of a Roller Chain Drive System Considering the Flexibility of Input Shaft
XU Lixin; YANG Yuhu; CHANG Zongyu; LIU Jianping
2010-01-01
Roller chain drives are widely used in various high-speed, high-load and power transmission applications, but their complex dynamic behavior is not well researched. Most studies were only focused on the analysis of the vibration of chain tight span, and in these models, many factors are neglected. In this paper, a mathematical model is developed to calculate the dynamic response of a roller chain drive working at constant or variable speed condition. In the model, the complete chain transmission with two sprockets and the necessary tight and slack spans is used. The effect of the flexibility of input shaft on dynamic response of the chain system is taken into account, as well as the elastic deformation in the chain, the inertial forces, the gravity and the torque on driven shaft. The nonlinear equations of movement are derived from using Lagrange equations and solved numerically. Given the center distance and the two initial position angles of teeth on driving and driven sprockets corresponding to the first seating roller on each side of the tight span, dynamics of any roller chain drive with two sprockets and two spans can be analyzed by the procedure. Finally, a numerical example is given and the validity of the procedure developed is demonstrated by analyzing the dynamic behavior of a typical roller chain drive. The model can well simulate the transverse and longitudinal vibration of the chain spans and the torsional vibration of the sprockets. This study can provide an effective method for the analysis of the dynamic characteristics of all the chain drive systems.
Options of system integrated environment modelling in the predicated dynamic cyberspace
Janková, Martina; Dvořák, Jiří [Institute of Informatics, Faculty of Business and Management, Brno University of Technology, Brno (Czech Republic)
2015-03-10
In this article there are briefly mentioned some selected options of contemporary conception of cybernetic system models in the corresponding and possible integratable environment with modern system dynamics thinking and all this in the cyberspace of possible projecting of predicted system characteristics. The key to new capabilities of system integration modelling in the considered cyberspace is mainly the ability to improve the environment and the system integration options, all this with the aim of modern control in the hierarchically arranged dynamic cyberspace, e.g. in the currently desired electronic business with information. The aim of this article is to assess generally the trends in the use of modern modelling methods considering the cybernetics applications verified in practice, modern concept of project management and also the potential integration of artificial intelligence in the new projecting and project management of integratable and intelligent models, e.g. with the optimal structures and adaptable behaviour.The article results from the solution of a specific research partial task at the faculty; especially the moments proving that the new economics will be based more and more on information, knowledge system defined cyberspace of modern management, are stressed in the text.
Adaptive modeling, identification, and control of dynamic structural systems. I. Theory
Safak, Erdal
1989-01-01
A concise review of the theory of adaptive modeling, identification, and control of dynamic structural systems based on discrete-time recordings is presented. Adaptive methods have four major advantages over the classical methods: (1) Removal of the noise from the signal is done over the whole frequency band; (2) time-varying characteristics of systems can be tracked; (3) systems with unknown characteristics can be controlled; and (4) a small segment of the data is needed during the computations. Included in the paper are the discrete-time representation of single-input single-output (SISO) systems, models for SISO systems with noise, the concept of stochastic approximation, recursive prediction error method (RPEM) for system identification, and the adaptive control. Guidelines for model selection and model validation and the computational aspects of the method are also discussed in the paper. The present paper is the first of two companion papers. The theory given in the paper is limited to that which is necessary to follow the examples for applications in structural dynamics presented in the second paper.
Ruano, MV; Ribes, J; de Pauw, DJW
2007-01-01
In this work we address the issue of parameter subset selection within the scope of activated sludge model calibration. To this end, we evaluate two approaches: (i) systems analysis and (ii) experience-based approach. The evaluation has been carried out using a dynamic model (ASM2d) calibrated...... based approaches which excluded them from their analysis. Systems analysis reveals that parameter significance ranking and size of the identifiable parameter subset depend on the information content of data available for calibration. However, it suffers from heavy computational demand. In contrast...
Thermodynamic model of a thermal storage air conditioning system with dynamic behavior
Fleming, E; Wen, SY; Shi, L; da Silva, AK
2013-12-01
A thermodynamic model was developed to predict transient behavior of a thermal storage system, using phase change materials (PCMs), for a novel electric vehicle climate conditioning application. The main objectives of the paper are to consider the system's dynamic behavior, such as a dynamic air flow rate into the vehicle's cabin, and to characterize the transient heat transfer process between the thermal storage unit and the vehicle's cabin, while still maintaining accurate solution to the complex phase change heat transfer. The system studied consists of a heat transfer fluid circulating between either of the on-board hot and cold thermal storage units, which we refer to as thermal batteries, and a liquid-air heat exchanger that provides heat exchange with the incoming air to the vehicle cabin. Each thermal battery is a shell-and-tube configuration where a heat transfer fluid flows through parallel tubes, which are surrounded by PCM within a larger shell. The system model incorporates computationally inexpensive semianalytic solution to the conjugated laminar forced convection and phase change problem within the battery and accounts for airside heat exchange using the Number of Transfer Units (NTUs) method for the liquid-air heat exchanger. Using this approach, we are able to obtain an accurate solution to the complex heat transfer problem within the battery while also incorporating the impact of the airside heat transfer on the overall system performance. The implemented model was benchmarked against a numerical study for a melting process and against full system experimental data for solidification using paraffin wax as the PCM. Through modeling, we demonstrate the importance of capturing the airside heat exchange impact on system performance, and we investigate system response to dynamic operating conditions, e.g., air recirculation. (C) 2013 Elsevier Ltd. All rights reserved.
Dynamical model of binary asteroid systems through patched three-body problems
Ferrari, Fabio; Lavagna, Michèle; Howell, Kathleen C.
2016-08-01
The paper presents a strategy for trajectory design in the proximity of a binary asteroid pair. A novel patched approach has been used to design trajectories in the binary system, which is modeled by means of two different three-body systems. The model introduces some degrees of freedom with respect to a classical two-body approach and it is intended to model to higher accuracy the peculiar dynamical properties of such irregular and low gravity field bodies, while keeping the advantages of having a full analytical formulation and low computational cost required. The neighborhood of the asteroid couple is split into two regions of influence where two different three-body problems describe the dynamics of the spacecraft. These regions have been identified by introducing the concept of surface of equivalence (SOE), a three-dimensional surface that serves as boundary between the regions of influence of each dynamical model. A case of study is presented, in terms of potential scenario that may benefit of such an approach in solving its mission analysis. Cost-effective solutions to land a vehicle on the surface of a low gravity body are selected by generating Poincaré maps on the SOE, seeking intersections between stable and unstable manifolds of the two patched three-body systems.
Elizondo, Marcelo A.; Tuffner, Francis K.; Schneider, Kevin P.
2016-01-01
Unlike transmission systems, distribution feeders in North America operate under unbalanced conditions at all times, and generally have a single strong voltage source. When a distribution feeder is connected to a strong substation source, the system is dynamically very stable, even for large transients. However if a distribution feeder, or part of the feeder, is separated from the substation and begins to operate as an islanded microgrid, transient dynamics become more of an issue. To assess the impact of transient dynamics at the distribution level, it is not appropriate to use traditional transmission solvers, which generally assume transposed lines and balanced loads. Full electromagnetic solvers capture a high level of detail, but it is difficult to model large systems because of the required detail. This paper proposes an electromechanical transient model of synchronous machine for distribution-level modeling and microgrids. This approach includes not only the machine model, but also its interface with an unbalanced network solver, and a powerflow method to solve unbalanced conditions without a strong reference bus. The presented method is validated against a full electromagnetic transient simulation.
Beech, G. S.; Hampton, R. D.; Rupert, J. K.
2004-01-01
Many microgravity space-science experiments require vibratory acceleration levels that are unachievable without active isolation. The Boeing Corporation's active rack isolation system (ARIS) employs a novel combination of magnetic actuation and mechanical linkages to address these isolation requirements on the International Space Station. Effective model-based vibration isolation requires: (1) An isolation device, (2) an adequate dynamic; i.e., mathematical, model of that isolator, and (3) a suitable, corresponding controller. This Technical Memorandum documents the validation of that high-fidelity dynamic model of ARIS. The verification of this dynamics model was achieved by utilizing two commercial off-the-shelf (COTS) software tools: Deneb's ENVISION(registered trademark), and Online Dynamics Autolev(trademark). ENVISION is a robotics software package developed for the automotive industry that employs three-dimensional computer-aided design models to facilitate both forward and inverse kinematics analyses. Autolev is a DOS-based interpreter designed, in general, to solve vector-based mathematical problems and specifically to solve dynamics problems using Kane's method. The simplification of this model was achieved using the small-angle theorem for the joint angle of the ARIS actuators. This simplification has a profound effect on the overall complexity of the closed-form solution while yielding a closed-form solution easily employed using COTS control hardware.
Impact of Cross-Axis Structural Dynamics on Validation of Linear Models for Space Launch System
Pei, Jing; Derry, Stephen D.; Zhou Zhiqiang; Newsom, Jerry R.
2014-01-01
A feasibility study was performed to examine the advisability of incorporating a set of Programmed Test Inputs (PTIs) during the Space Launch System (SLS) vehicle flight. The intent of these inputs is to provide validation to the preflight models for control system stability margins, aerodynamics, and structural dynamics. During October 2009, Ares I-X program was successful in carrying out a series of PTI maneuvers which provided a significant amount of valuable data for post-flight analysis. The resulting data comparisons showed excellent agreement with the preflight linear models across the frequency spectrum of interest. However unlike Ares I-X, the structural dynamics associated with the SLS boost phase configuration are far more complex and highly coupled in all three axes. This presents a challenge when implementing this similar system identification technique to SLS. Preliminary simulation results show noticeable mismatches between PTI validation and analytical linear models in the frequency range of the structural dynamics. An alternate approach was examined which demonstrates the potential for better overall characterization of the system frequency response as well as robustness of the control design.
Nonlinear model reduction for dynamical systems using sparse sensor locations from learned libraries
Sargsyan, Syuzanna; Brunton, Steven L.; Kutz, J. Nathan
2015-09-01
We demonstrate the synthesis of sparse sampling and dimensionality reduction to characterize and model nonlinear dynamical systems over a range of bifurcation parameters. First, we construct modal libraries using the classical proper orthogonal decomposition in order to expose the dominant low-rank coherent structures. Here, libraries of the nonlinear terms are also constructed in order to take advantage of the discrete empirical interpolation method and projection that allows for the approximation of nonlinear terms from a sparse number of grid points. The selected grid points are shown to be effective sensing and measurement locations for characterizing the underlying dynamics, stability, and bifurcations of nonlinear dynamical systems. The use of empirical interpolation points and sparse representation facilitates a family of local reduced-order models for each physical regime, rather than a higher-order global model, which has the benefit of physical interpretability of energy transfer between coherent structures. The method advocated also allows for orders-of-magnitude improvement in computational speed and memory requirements. To illustrate the method, the discrete interpolation points and nonlinear modal libraries are used for sparse representation in order to classify and reconstruct the dynamic bifurcation regimes in the complex Ginzburg-Landau equation. It is also shown that point measurements of the nonlinearity are more effective than linear measurements when sensor noise is present.
Theoretical Basis and Application of an Analogue-Dynamical Model in the Lorenz System
REN Hongli; CHOU Jifan; HUANG Jianping; ZHANG Peiqun
2009-01-01
The theoretical basis and application of an analogue-dynamical model (ADM) in the Lorenz system is studied. The ADM can effectively combine statistical and dynamical methods in which the small disturbance of the current initial value superimposed on the historical analogue reference state can be regarded as a prediction objective. Primary analyses show that under the condition of appending disturbances in model parameters, the model errors of ADM are much smaller than those of the pure dynamical model (PDM).The characteristics of predictability on the ADM in the Lorenz system are analyzed in phase space by conducting case studies and global experiments. The results show that the ADM can quite effectively reduce prediction errors and prolong the valid time of the prediction in most situations in contrast to the PDM, but when model errors are considerably small, the latter will be superior to the former. To overcome such a problem, the multi-reference-state updating can be applied to introduce the information of multi-analogue and update analogue and can exhibit exciting performance in the ADM.
Dynamical system analysis of a low-order tropical cyclone model
Daria Schönemann
2012-02-01
Full Text Available Tropical cyclone dynamics is investigated by means of a conceptual box model. The tropical cyclone (TC is divided into three regions, the eye, eyewall and ambient region. The model forms a low-order dynamical system of three ordinary differential equations. These are based on entropy budget equations comprising processes of surface enthalpy transfer, entropy advection, convection and radiative cooling. For tropical ocean parameter settings, the system possesses four non-trivial steady state solutions when the sea surface temperature (SST is above a critical value. Two steady states are unstable while the two remaining states are stable. Bifurcation diagrams provide an explanation why only finite-amplitude perturbations above a critical SST can transform into TCs. Besides SST, relative humidity of the ambient region forms an important model parameter. The surfaces that describe equilibria as a function of SST and relative humidity reveal a cusp-catastrophe where the two non-trivial equilibria split into four. Within the model regime of four equilibria, cyclogenesis becomes very unlikely due to the repelling and attracting effects of the two additional equilibria. The results are in qualitative agreement with observations and evince the relevance of the simple model approach to the dynamics of TC formation and its maximum potential intensity.
Dynamic wind turbine models in power system simulation tool DIgSILENT
Hansen, Anca Daniela; Iov, F.; Sørensen, Poul Ejnar
This report presents a collection of models and control strategies developed and implemented in the power system simulation tool PowerFactory DIgSILENT for different wind turbine concepts. It is the second edition of Risø-R-1400(EN) and it gathers and describes a whole wind turbine model database...... strategies have different goals e.g. fast response over disturbances, optimum power efficiency over a wider range of wind speeds, voltage ride-through capability including grid support. A dynamic model of a DC connection for active stall wind farms to the grid including the control is also implemented...
Dynamic emulation modelling for the optimal operation of water systems: an overview
Castelletti, A.; Galelli, S.; Giuliani, M.
2014-12-01
Despite sustained increase in computing power over recent decades, computational limitations remain a major barrier to the effective and systematic use of large-scale, process-based simulation models in rational environmental decision-making. Whereas complex models may provide clear advantages when the goal of the modelling exercise is to enhance our understanding of the natural processes, they introduce problems of model identifiability caused by over-parameterization and suffer from high computational burden when used in management and planning problems. As a result, increasing attention is now being devoted to emulation modelling (or model reduction) as a way of overcoming these limitations. An emulation model, or emulator, is a low-order approximation of the process-based model that can be substituted for it in order to solve high resource-demanding problems. In this talk, an overview of emulation modelling within the context of the optimal operation of water systems will be provided. Particular emphasis will be given to Dynamic Emulation Modelling (DEMo), a special type of model complexity reduction in which the dynamic nature of the original process-based model is preserved, with consequent advantages in a wide range of problems, particularly feedback control problems. This will be contrasted with traditional non-dynamic emulators (e.g. response surface and surrogate models) that have been studied extensively in recent years and are mainly used for planning purposes. A number of real world numerical experiences will be used to support the discussion ranging from multi-outlet water quality control in water reservoir through erosion/sedimentation rebalancing in the operation of run-off-river power plants to salinity control in lake and reservoirs.
Hess, Stephen M. [Sensortex, Inc., 515 Schoolhouse Road, Kennett Square, PA 19348 (United States)]. E-mail: smhess@sensortex.com; Albano, Alfonso M. [Department of Physics, Bryn Mawr College, Bryn Mawr, PA 19010 (United States); Gaertner, John P. [Electric Power Research Institute, 1300 Harris Boulevard, Charlotte, NC 28262 (United States)
2005-10-01
Application of probabilistic risk assessment (PRA) techniques to model nuclear power plant accident sequences has provided a significant contribution to understanding the potential initiating events, equipment failures and operator errors that can lead to core damage accidents. Application of the lessons learned from these analyses has resulted in significant improvements in plant operation and safety. However, this approach has not been nearly as successful in addressing the impact of plant processes and management effectiveness on the risks of plant operation. The research described in this paper presents an alternative approach to addressing this issue. In this paper we propose a dynamical systems model that describes the interaction of important plant processes on nuclear safety risk. We discuss development of the mathematical model including the identification and interpretation of significant inter-process interactions. Next, we review the techniques applicable to analysis of nonlinear dynamical systems that are utilized in the characterization of the model. This is followed by a preliminary analysis of the model that demonstrates that its dynamical evolution displays features that have been observed at commercially operating plants. From this analysis, several significant insights are presented with respect to the effective control of nuclear safety risk. As an important example, analysis of the model dynamics indicates that significant benefits in effectively managing risk are obtained by integrating the plant operation and work management processes such that decisions are made utilizing a multidisciplinary and collaborative approach. We note that although the model was developed specifically to be applicable to nuclear power plants, many of the insights and conclusions obtained are likely applicable to other process industries.
The effect of food portion sizes on the obesity prevention using system dynamics modelling
Abidin, Norhaslinda Zainal; Zulkepli, Jafri Hj; Zaibidi, Nerda Zura
2014-09-01
The rise in income and population growth have increased the demand for food and induced changes in food habits, food purchasing and consumption patterns in Malaysia. With this transition, one of the plausible causes of weight gain and obesity is the frequent consumption of outside food which is synonymous with bigger portion size. Therefore, the aim of this paper is to develop a system dynamics model to analyse the effect of reducing food portion size on weight and obesity prevention. This study combines the different strands of knowledge comprise of nutrition, physical activity and body metabolism. These elements are synthesized into a system dynamics model called SIMULObese. Findings from this study suggested that changes in eating behavior should not emphasize only on limiting the food portion size consumption. The efforts should also consider other eating events such as controlling the meal frequency and limiting intake of high-calorie food in developing guidelines to prevent obesity.
MODELING OF DYNAMIC SYSTEMS WITH MODULATION BY MEANS OF KRONECKER VECTOR-MATRIX REPRESENTATION
A. S. Vasilyev
2015-09-01
Full Text Available The paper deals with modeling of dynamic systems with modulation by the possibilities of state-space method. This method, being the basis of modern control theory, is based on the possibilities of vector-matrix formalism of linear algebra and helps to solve various problems of technical control of continuous and discrete nature invariant with respect to the dimension of their “input-output” objects. Unfortunately, it turned its back on the wide group of control systems, which hardware environment modulates signals. The marked system deficiency is partially offset by this paper, which proposes Kronecker vector-matrix representations for purposes of system representation of processes with signal modulation. The main result is vector-matrix representation of processes with modulation with no formal difference from continuous systems. It has been found that abilities of these representations could be effectively used in research of systems with modulation. Obtained model representations of processes with modulation are best adapted to the state-space method. These approaches for counting eigenvalues of Kronecker matrix summaries, that are matrix basis of model representations of processes described by Kronecker vector products, give the possibility to use modal direction in research of dynamics for systems with modulation. It is shown that the use of controllability for eigenvalues of general matrixes applied to Kronecker structures enabled to divide successfully eigenvalue spectrum into directed and not directed components. Obtained findings including design problems for models of dynamic processes with modulation based on the features of Kronecker vector and matrix structures, invariant with respect to the dimension of input-output relations, are applicable in the development of alternate current servo drives.
A new simulation model building process for use in dynamic systems integration research
Arbuckle, P. Douglas; Buttrill, Carey S.; Zeiler, Thomas A.
1987-01-01
A framework to build simulation models for aircraft dynamic systems integration is described. The objective of the framework is increased simulation model fidelity and reduced time required to develop and modify these models. The equations of motion for an elastic aircraft and their impact on the framework are discussed in broad terms. A software tool which automatically generates FORTRAN routines for tabular data lookups, the language used to develop a simulation model, and the structures for passing information into a simulation are discussed. A simulation variable nomenclature is presented. The framework has been applied to build an open-loop F/A-18 simulation model. This example model is used to illustrate model reduction issues. Current deficiencies in the framework are identified as areas for future research.
Dynamic behavior of dissymmetric rotor bearings modelled with a periodic coefficient large system
Guilhen, P. M.; Berthier, P.; Ferraris, G.; Lalanne, M.
1987-01-01
The instability and unbalance response of dissymmetric rotor-bearing systems containing periodic coefficients when modeling produces matrices with a large number of degrees of freedom are discussed. It is important to solve the equations and then predict the dynamic behavior of the system. This can be done knowing the instability areas and the unbalance response in the stable areas. One deals here with a large number of equations and a reduction of the number of degrees of freedom of the system is achieved through a pseudo modal method. This method is shown to give satisfactory results.
Arbab Nighat Khizer
2015-01-01
Full Text Available This paper presents a time-domain approach for identification of longitudinal dynamics of single rotor model helicopter. A frequency sweep excitation input signal is applied for hover flying mode widely used for space state linearized model. A fully automated programmed flight test method provides high quality flight data for system identification using the computer controlled flight simulator X-plane©. The flight test data were recorded, analyzed and reduced using the SIDPAC (System Identification Programs for Air Craft toolbox for MATLAB, resulting in an aerodynamic model of single rotor helicopter. Finally, the identified model of single rotor helicopter is validated on Raptor 30-class model helicopter at hover showing the reliability of proposed approach
A dynamic model of plants' blossom based on L-system
Zhang, Ruoran; Zhang, Wenhui; Zhu, Ying; Wang, Huijao
2010-11-01
The article study L-system theory to modeling a visualization system which can expresses plants' growth and blossom by the Delphi language. This is according to growth process in the topology evolution and fractal geometry shape of plant, which extracts plant's growth rules to establish blossom models. The simulation is aim at modeling dynamic procedures, which can produces the lifelike plant images and demonstrates animations of growth processes. This new model emphasizes various parts of plant between space's and time's relationships. This mathematical models use biology to produce plant compartments of blossoms on growth of plants with correct images which ranges from time to time, and provides the lifelike continual growth sequence and through the natural principles to imitates and controls plants' blossoms and plant's diseases.
Population dynamics of an Arctiid caterpillar-tachinid parasitoid system using state-space models.
Karban, Richard; de Valpine, Perry
2010-05-01
1. Population dynamics of insect host-parasitoid systems are important in many natural and managed ecosystems and have inspired much ecological theory. However, ecologists have a limited knowledge about the relative strengths of species interactions, abiotic effects and density dependence in natural host-parasitoid dynamics. Statistical time-series analyses would be more informative by incorporating multiple factors, measurement error and noisy dynamics. 2. We use a novel maximum likelihood and model-selection analysis of a state-space model for host-parasitoid dynamics to examine 21 years of annual census data for woolly bear caterpillars (Platyprepia virginalis) and their locally host-specific tachinid parasitoids (Thelaira americana). 3. Caterpillar densities varied by three orders of magnitude and were driven by density dependence and precipitation from the previous March but not detectably by parasitoids, despite variable and sometimes high (>50%) parasitism. 4. Fly fluctuations, as estimated from per cent parasitism, were affected by density dependence and precipitation from the previous July. There was marginal evidence that host abundance drives fly fluctuations as a generic linear effect but no evidence for classical Nicholson-Bailey coupling. 5. The state-space model analysis includes new methods for likelihood calculation and allows a balanced consideration of effect magnitude and statistical significance in a nonlinear model with multiple alternative explanatory variables.
Control Systems for a Dynamic Multi-Physics Model of a Nuclear Hybrid Energy System
Greenwood, Michael Scott [ORNL; Fugate, David W [ORNL; Cetiner, Sacit M [ORNL
2017-01-01
A Nuclear Hybrid Energy System (NHES) uses a nuclear reactor as the basic power generation unit, and the power generated is used by multiple customers as either thermal power, electrical power, or both. The definition and architecture of a particular NHES can be adapted based on the needs and opportunities of different local markets. For example, locations in need of potable water may be best served by coupling a desalination plant to the NHES. Similarly, a location near oil refineries may have a need for emission-free hydrogen production. Using the flexible, multi-domain capabilities of Modelica, Argonne National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory are investigating the dynamics (e.g., thermal hydraulics and electrical generation/consumption) and cost of a hybrid system. This paper examines the NHES work underway, emphasizing the control system developed for individual subsystems and the overall supervisory control system.
Ecohealth System Dynamic Model as a Planning Tool for the Reduction of Breeding Sites
Respati, T.; Raksanagara, A.; Djuhaeni, H.; Sofyan, A.; Shandriasti, A.
2017-03-01
Dengue is still one of major health problem in Indonesia. Dengue transmission is influenced by dengue prevention and eradication program, community participation, housing environment and climate. The complexity of the disease coupled with limited resources necessitates different approach for prevention methods that include factors contribute to the transmission. One way to prevent the dengue transmission is by reducing the mosquito’s breeding sites. Four factors suspected to influence breeding sites are dengue prevention and eradication program, community participation, housing environment, and weather condition. In order to have an effective program in reducing the breeding site it is needed to have a model which can predict existence of the breeding sites while the four factors under study are controlled. The objective of this study is to develop an Ecohealth model using system dynamic as a planning tool for the reduction of breeding sites to prevent dengue transmission with regard to dengue prevention and eradication program, community participation, housing environment, and weather condition. The methodology is a mixed method study using sequential exploratory design. The study comprised of 3 stages: first a qualitative study to 14 respondents using in-depth interview and 6 respondents for focus group discussion. The results from the first stage was used to develop entomology and household survey questionnaires for second stage conducted in 2036 households across 12 sub districts in Bandung City. Ecohealth system dynamic model was developed using data from first and second stages. Analyses used are thematic analysis for qualitative data; spatial, generalized estimating equation (GEE) and structural equation modeling for quantitative data; also average mean error (AME) and average variance error (AVE) for dynamic system model validation. System dynamic model showed that the most effective approach to eliminate breeding places was by ensuring the availability
Alireza Bafandeh Zendeh
2016-03-01
Full Text Available Due to the complexity of the customer loyalty, we tried to provide a conceptual model to explain it in an Internet service provider company with system dynamics approach. To do so, the customer’s loyalty for statistical population was analyzed according to Sterman’s modeling methodology. First of all the reference modes (historical behavior of customer loyalty was evaluated. Then dynamic hypotheses was developed by utilizing causal - loop diagrams and stock-flow maps, based on theoretical literature. In third stage, initial conditions of variables, parameters, and mathematical functions between them were estimated. The model was tested, finally advertising, quality of services improvement and continuing the current situation scenarios were evaluated. Results showed improving the quality of service scenario is more effectiveness in compare to others
A Comparative Study of Neural Networks and Fuzzy Systems in Modeling of a Nonlinear Dynamic System
Metin Demirtas
2011-07-01
Full Text Available The aim of this paper is to compare the neural networks and fuzzy modeling approaches on a nonlinear system. We have taken Permanent Magnet Brushless Direct Current (PMBDC motor data and have generated models using both approaches. The predictive performance of both methods was compared on the data set for model configurations. The paper describes the results of these tests and discusses the effects of changing model parameters on predictive and practical performance. Modeling sensitivity was used to compare for two methods.
SHEN YuNian; YIN XiaoChun
2009-01-01
A dynamic substructure technique which considers the electromechanlcal coupling effect of the PZT and the inertial effect of flexible components is presented to study the multiple impact dynamic be-havior of micro/nano piezoelectric impact drive systems. It can investigate the step-like motion of ob-ject body and the multiple impacts behaviors reasonably by the comparison of the experimental data and the numerical solution of the spring-mass model. It is expected to have higher accuracy in the numerical simulations of the motion and the responses, especially to high frequency pulse voltage excitations. The present dynamic substructure technique has firstly studied reasonably the propaga-tions of piezoelectric-induced transient waves and impact-induced transient waves. It is helpful to the failure analysis and the design of piezoelectric stack and flexible components. The present dynamic substructure technique can be applied to the transient dynamics optimization design and the precision control of the micro/nano piezoelectric impact drive systems.
无
2009-01-01
A dynamic substructure technique which considers the electromechanical coupling effect of the PZT and the inertial effect of flexible components is presented to study the multiple impact dynamic be- havior of micro/nano piezoelectric impact drive systems. It can investigate the step-like motion of ob- ject body and the multiple impacts behaviors reasonably by the comparison of the experimental data and the numerical solution of the spring-mass model. It is expected to have higher accuracy in the numerical simulations of the motion and the responses, especially to high frequency pulse voltage excitations. The present dynamic substructure technique has firstly studied reasonably the propaga- tions of piezoelectric-induced transient waves and impact-induced transient waves. It is helpful to the failure analysis and the design of piezoelectric stack and flexible components. The present dynamic substructure technique can be applied to the transient dynamics optimization design and the precision control of the micro/nano piezoelectric impact drive systems.
Dynamic Modeling and Damping Function of GUPFC in Multi-Machine Power System
Sasongko Pramono Hadi
2011-11-01
Full Text Available This paper presents a new dynamic model of multi-machine power system equipped with GUPFC for power system study, and using PSS and GUPFC POD controller some effective control schemes are proposed to improve power system stability. Based on UPFC configuration, an additional series boosting transformer is considered to define a GUPFC configuration and its mathematical model; Phillips-Heffron scheme is used to formulate machine model, and modification of network dealing with GUPFC parameter is carried out to develop a MIMO as well as comprehensive power system with GUPFC model. Genetics Algorithm method was proposed to lead-lag compensation design, this technique provides the parameter controller. The controller produced supplementary signals, the PSS for machine and POD for GUPFC. By applying a small disturbance, the dynamic stability power system was investigated. Simulation results show that the proposed power system with GUPFC model is valid and suitable for stability analysis. The installation of GUPFC without POD decreased the damping oscillation. But, the results show that the presence of GUPFC in power system network provided by PSS and POD controller is very potential to improve system stability. A 66% overshoot reduction could be reached, it is obtained 12 s in settling time (shorter, although the rise time become 700 ms longer. Simulation results revealed that the role of POD controller is more dominant than the PSS, however both PSS and GUPFC POD controller simultaneously present a positive interaction. Phase angle of converter C, δC is the most significant control signal POD in oscillation damping.
Franz, G.; Pinto, L.; Ascione, I.; Mateus, M.; Fernandes, R.; Leitão, P.; Neves, R.
2014-12-01
Cohesive sediment dynamics in estuarine systems is a major issue in water quality and engineering problems. Numerical models can help to assess the complex dynamics of cohesive sediments, integrating the information collected in monitoring studies. Following a numerical approach we investigated the main factors that influence the cohesive sediment dynamics in an estuarine system composed of large mudflats (Tagus estuary, Portugal). After a spin up period of the bottom layer and considering the combined effect of waves and currents on the bottom shear stress, the dynamics of cohesive sediment during the fortnightly and daily erosion-sedimentation cycle was properly reproduced by the model. The results of cohesive suspended sediments were validated with data from sixteen monitoring stations located along the estuary and turbidity data measured by two multiparametric probes. The hydrodynamics were previously validated by harmonic analysis and with ADCP data. Although tidal currents are the major cause of cohesive sediment erosion, the results suggest that wind waves also play an important role. The simulated sediment mass involved in the fortnightly tidal cycle was in the same order of magnitude of the annual load from the rivers, as observed in previous studies based on field data.
A system dynamics model of human-water interaction in anthropogenic droughts
Blair, Peter; Buytaert, Wouter
2016-04-01
Modelling is set to be a key part of socio-hydrology's quest to understand the dynamics and long-term consequences of human-water interactions. As a subject in its infancy, still learning the questions to ask, conceptual models are of particular use in trying to understand the general nature of human-water systems. The conceptual model of Di Baldassarre et al. (2013), which investigates human-flood interactions, has been widely discussed, prompting great steps forward in understanding and coverage of socio-hydrology. The development of further conceptual models could generate further discussion and understanding. Flooding is one archetypal example of a system of human-water interaction; another is the case of water stress and drought. There has been a call to recognise and understand anthropogenic drought (Aghakouchak et al. 2015), and so this study investigates the nature of the socio-hydrological dynamics involved in these situations. Here we present a system dynamics model to simulate human-water interactions in the context of water-stressed areas, where drought is induced via a combination of lower than usual water availability and relatively high water use. It is designed based on an analysis of several case-studies where recent droughts have occurred, or where the prospect of drought looms. The locations investigated are Spain, Southeast Brazil, Northeast China and California. The numerical system dynamics model is based on causal loop, and stocks and flows diagrams, which are in turn developed from the qualitative analysis of the different cases studied. The study uses a comparative approach, which has the advantage of eliciting general system characteristics from the similarities between cases, while using the differences to determine the important factors which lead to different system behaviours. References: Aghakouchak, A., Feldman, D., Hoerling, M., Huxman, T., Lund, J., 2015. Recognize anthropogenic drought. Nature, 524, pp.409-411. Di Baldassarre, G
A dynamic optimization model of an integrated coal supply chain system and its application
PENG Hong-jun; ZHOU Mei-hua; LIU Man-zhi; ZHANG Yu; HUANG Yan-bo
2009-01-01
Various nodes, logistics, capital flows, and information flows are required to make systematic decisions concerning the operation of an integrated coal supply system. We describe a quantitative analysis of such a system. A dynamic optimization model of the supply chain is developed. It has achieved optimal system profit under conditions guaranteeing a certain level of customer satisfaction. Applying this model to coal production of the Xuzhou coal mines allows recommendations for a more systematic use of washing and processing, transportation and sale resources for commercial co al production to be made. The results show that this model, which is scientific and effective, has an important value for making reasonable decisions related to complex coal enterprises.
Aires, Filipe; Rossow, William B.; Hansen, James E. (Technical Monitor)
2001-01-01
A new approach is presented for the analysis of feedback processes in a nonlinear dynamical system by observing its variations. The new methodology consists of statistical estimates of the sensitivities between all pairs of variables in the system based on a neural network modeling of the dynamical system. The model can then be used to estimate the instantaneous, multivariate and nonlinear sensitivities, which are shown to be essential for the analysis of the feedbacks processes involved in the dynamical system. The method is described and tested on synthetic data from the low-order Lorenz circulation model where the correct sensitivities can be evaluated analytically.
A Superconducting Levitation Transport Model System for Dynamical and Didactical Studies
Rosenzweig, St.; Reich, E.; Neu, V.; Berger, D.; Peukert, K.; Holzapfel, B.; Schultz, L.; Pospiech, G.
Superconducting levitation transport systems might become very attractive in the near future due to various reasons. The realisation of contactless systems allows e.g. extended maintenance-free operation with high efficiency since such a system only needs energy for cooling and propulsion. We established a small superconducting levitation transport model system called "SupraTrans Min" consisting of permanent magnetic rails and a levitated vehicle including four YBCO-bulk samples in a cryostat. The rail system consists of an oval shaped loop (2.90 m x 1.44 m), which was build up from individual linear and curved track modules. Inside the vehicle position variations of the superconductors are possible. By means of velocity, acceleration and temperature measurements different dynamical aspects of our complex levitation system can be investigated. We also show the broad applicability of the experimental setup for didactical studies in physics.
Kelic, Andjelka [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Zagonel, Aldo A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2008-12-01
A system dynamics model was developed in response to the apparent decline in STEM candidates in the United States and a pending shortage. The model explores the attractiveness of STEM and STEM careers focusing on employers and the workforce. Policies such as boosting STEM literacy, lifting the H-1B visa cap, limiting the offshoring of jobs, and maintaining training are explored as possible solutions. The system is complex, with many feedbacks and long time delays, so solutions that focus on a single point of the system are not effective and cannot solve the problem. A deeper understanding of parts of the system that have not been explored to date is necessary to find a workable solution.
Dynamic modeling and analysis of axial vibration of a coupled propeller and shaft system
Li, Chenyang; Huang, Xiuchang; Hua, Hongxing [Shanghai Jiao Tong University, Shanghai (China)
2016-07-15
The dynamic and acoustic characteristics of a coupled propeller and shaft system which is modeled by the transfer matrix method are studied. The elasticity of the propeller is taken into consideration by employing the equivalent reduced modeling method. Thus the influence of the elastic propeller on the vibro-acoustic responses of the coupled system is investigated. To reduce the axial vibration of the coupled propeller-shaft system, the influence and location of the vibration isolator on the structural and acoustic responses is presented. Simulation results demonstrate that utilizing the relationship between the natural frequency of the propeller and the resonance frequency range of the shaft can control the vibration of the coupled system without other vibration control method. Utilizing a vibration isolator is another effective way to control vibration. The optimal position for the isolator installed between the shaft and the thrust bearing is investigated.
Kelic, Andjelka; Zagonel, Aldo A.
2008-12-01
A system dynamics model was developed in response to the apparent decline in STEM candidates in the United States and a pending shortage. The model explores the attractiveness of STEM and STEM careers focusing on employers and the workforce. Policies such as boosting STEM literacy, lifting the H-1B visa cap, limiting the offshoring of jobs, and maintaining training are explored as possible solutions. The system is complex, with many feedbacks and long time delays, so solutions that focus on a single point of the system are not effective and cannot solve the problem. A deeper understanding of parts of the system that have not been explored to date is necessary to find a workable solution.
Nguyen, Gia Luong Huu
Fuel cells can produce electricity with high efficiency, low pollutants, and low noise. With the advent of fuel cell technologies, fuel cell systems have since been demonstrated as reliable power generators with power outputs from a few watts to a few megawatts. With proper equipment, fuel cell systems can produce heating and cooling, thus increased its overall efficiency. To increase the acceptance from electrical utilities and building owners, fuel cell systems must operate more dynamically and integrate well with renewable energy resources. This research studies the dynamic performance of fuel cells and the integration of fuel cells with other equipment in three levels: (i) the fuel cell stack operating on hydrogen and reformate gases, (ii) the fuel cell system consisting of a fuel reformer, a fuel cell stack, and a heat recovery unit, and (iii) the hybrid energy system consisting of photovoltaic panels, fuel cell system, and energy storage. In the first part, this research studied the steady-state and dynamic performance of a high temperature PEM fuel cell stack. Collaborators at Aalborg University (Aalborg, Denmark) conducted experiments on a high temperature PEM fuel cell short stack at steady-state and transients. Along with the experimental activities, this research developed a first-principles dynamic model of a fuel cell stack. The dynamic model developed in this research was compared to the experimental results when operating on different reformate concentrations. Finally, the dynamic performance of the fuel cell stack for a rapid increase and rapid decrease in power was evaluated. The dynamic model well predicted the performance of the well-performing cells in the experimental fuel cell stack. The second part of the research studied the dynamic response of a high temperature PEM fuel cell system consisting of a fuel reformer, a fuel cell stack, and a heat recovery unit with high thermal integration. After verifying the model performance with the
Lu, Yunfan, E-mail: yunfanlu@yeah.net; Wang, Jun; Niu, Hongli
2015-06-12
An agent-based financial stock price model is developed and investigated by a stochastic interacting epidemic system, which is one of the statistical physics systems and has been used to model the spread of an epidemic or a forest fire. Numerical and statistical analysis are performed on the simulated returns of the proposed financial model. Complexity properties of the financial time series are explored by calculating the correlation dimension and using the modified multiscale entropy method. In order to verify the rationality of the financial model, the real stock market indexes, Shanghai Composite Index and Shenzhen Component Index, are studied in comparison with the simulation data of the proposed model for the different infectiousness parameters. The empirical research reveals that this financial model can reproduce some important features of the real stock markets. - Highlights: • A new agent-based financial price model is developed by stochastic interacting epidemic system. • The structure of the proposed model allows to simulate the financial dynamics. • Correlation dimension and MMSE are applied to complexity analysis of financial time series. • Empirical results show the rationality of the proposed financial model.
Dynamical system synchronization
Luo, Albert C J
2013-01-01
Dynamical System Synchronization (DSS) meticulously presents for the first time the theory of dynamical systems synchronization based on the local singularity theory of discontinuous dynamical systems. The book details the sufficient and necessary conditions for dynamical systems synchronizations, through extensive mathematical expression. Techniques for engineering implementation of DSS are clearly presented compared with the existing techniques. This book also: Presents novel concepts and methods for dynamical system synchronization Extends beyond the Lyapunov theory for dynamical system synchronization Introduces companion and synchronization of discrete dynamical systems Includes local singularity theory for discontinuous dynamical systems Covers the invariant domains of synchronization Features more than 75 illustrations Dynamical System Synchronization is an ideal book for those interested in better understanding new concepts and methodology for dynamical system synchronization, local singularity...
Wassim M. Haddad
2001-01-01
Full Text Available In this paper we develop a unified dynamical systems framework for a general class of systems possessing left-continuous flows; that is, left-continuous dynamical systems. These systems are shown to generalize virtually all existing notions of dynamical systems and include hybrid, impulsive, and switching dynamical systems as special cases. Furthermore, we generalize dissipativity, passivity, and nonexpansivity theory to left-continuous dynamical systems. Specifically, the classical concepts of system storage functions and supply rates are extended to left-continuous dynamical systems providing a generalized hybrid system energy interpretation in terms of stored energy, dissipated energy over the continuous-time dynamics, and dissipated energy over the resetting events. Finally, the generalized dissipativity notions are used to develop general stability criteria for feedback interconnections of left-continuous dynamical systems. These results generalize the positivity and small gain theorems to the case of left-continuous, hybrid, and impulsive dynamical systems.
Complexified dynamical systems
Bender, Carl M [Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Holm, Darryl D [Department of Mathematics, Imperial College, London SW7 2AZ (United Kingdom); Hook, Daniel W [Blackest Laboratory, Imperial College, London SW7 2BZ (United Kingdom)
2007-08-10
Many dynamical systems, such as the Lotka-Volterra predator-prey model and the Euler equations for the free rotation of a rigid body, are PT symmetric. The standard and well-known real solutions to such dynamical systems constitute an infinitessimal subclass of the full set of complex solutions. This paper examines a subset of the complex solutions that contains the real solutions, namely those having PT symmetry. The condition of PT symmetry selects out complex solutions that are periodic. (fast track communication)
Tomaskova H
2016-06-01
Full Text Available Hana Tomaskova,1 Jitka Kuhnova,2 Richard Cimler,1,3 Ondrej Dolezal,1 Kamil Kuca3 1Faculty of Informatics and Management, 2Faculty of Science, 3Center for Basic and Applied Research (CZAV, University of Hradec Králové, Hradec Králové, Czech Republic Introduction: Alzheimer’s disease (AD is a slowly progressing neurodegenerative brain disease with irreversible brain effects; it is the most common cause of dementia. With increasing age, the probability of suffering from AD increases. In this research, population growth of the European Union (EU until the year 2080 and the number of patients with AD are modeled.Aim: The aim of this research is to predict the spread of AD in the EU population until year 2080 using a computer simulation.Methods: For the simulation of the EU population and the occurrence of AD in this population, a system dynamics modeling approach has been used. System dynamics is a useful and effective method for the investigation of complex social systems. Over the past decades, its applicability has been demonstrated in a wide variety of applications. In this research, this method has been used to investigate the growth of the EU population and predict the number of patients with AD. The model has been calibrated on the population prediction data created by Eurostat.Results: Based on data from Eurostat, the EU population until year 2080 has been modeled. In 2013, the population of the EU was 508 million and the number of patients with AD was 7.5 million. Based on the prediction, in 2040, the population of the EU will be 524 million and the number of patients with AD will be 13.1 million. By the year 2080, the EU population will be 520 million and the number of patients with AD will be 13.7 million.Conclusion: System dynamics modeling approach has been used for the prediction of the number of patients with AD in the EU population till the year 2080. These results can be used to determine the economic burden of the treatment of
Investigation of a Ball Screw Feed Drive System Based on Dynamic Modeling for Motion Control
Yi-Cheng Huang
2017-06-01
Full Text Available This paper examines the frequency response relationship between the ball screw nut preload, ball screw torsional stiffness variations and table mass effect for a single-axis feed drive system. Identification for the frequency response of an industrial ball screw drive system is very important for the precision motion when the vibration modes of the system are critical for controller design. In this study, there is translation and rotation modes of a ball screw feed drive system when positioning table is actuated by a servo motor. A lumped dynamic model to study the ball nut preload variation and torsional stiffness of the ball screw drive system is derived first. The mathematical modeling and numerical simulation provide the information of peak frequency response as the different levels of ball nut preload, ball screw torsional stiffness and table mass. The trend of increasing preload will indicate the abrupt peak change in frequency response spectrum analysis in some mode shapes. This study provides an approach to investigate the dynamic frequency response of a ball screw drive system, which provides significant information for better control performance when precise motion control is concerned.
Study on dynamic model of tractor system for automated navigation applications
FENG Lei; HE Yong
2005-01-01
This research aims at using a dynamic model of tractor system to support navigation system design for an automatically guided agricultural tractor. This model, consisting of a bicycle model of the tractor system, has been implemented in the MATLAB environment and was developed based on a John Deere tractor. The simulation results from this MATLAB model was validated through field navigation tests. The accuracy of the trajectory estimation is strongly affected by the determination of the cornering stiffness of the tractor. In this simulation, the tractor cornering stiffness analysis was identified during simulation analysis using the MATLAB model based on the recorded trajectory data. The obtained data was used in simulation analyses for various navigation operations in the field of interest. The analysis on field validation test results indicated that the developed tractor system could accurately estimate wheel trajectories of a tractor system while operating in agricultural fields at various speeds. The results also indicated that the developed system could accurately determine tractor velocity and steering angle while the tractor operates in curved fields.
Dynamical systems for modeling the evolution of the magnetic field of stars and Earth
Popova, H.
2016-02-01
The cycles of solar magnetic activity are connected with a solar dynamo that operates in the convective zone. Solar dynamo mechanism is based on the combined action of the differential rotation and the alpha-effect. Application of these concepts allows us to get an oscillating solution as a wave of the toroidal field propagating from middle latitudes to the equator. We investigated the dynamo model with the meridional circulation by the low-mode approach. This approach is based on an assumption that the solar magnetic field can be described by non-linear dynamical systems with a relatively small number of parameters. Such non-linear dynamical systems are based on the equations of dynamo models. With this method dynamical systems have been built for media which contains the meridional flow and thickness of the convection zone of the star. It was shown the possibility of coexistence of quiasi-biennial and 22-year cycle. We obtained the different regimes (oscillations, vacillations, dynamo-bursts) depending on the value of the dynamo-number, the meridional circulation, and thickness of the convection zone. We discuss the features of these regimes and compare them with the observed features of evolution of the solar and geo magnetic fields. We built theoretical paleomagnetic time scale and butterfly-diagrams for the helicity and toroidal magnetic field for different regimes.
Dynamical systems for modeling evolution of the magnetic field of the Sun, stars and planets
Popova, E.
2016-12-01
The magnetic activity of the Sun, stars and planets are connected with a dynamo process based on the combined action of the differential rotation and the alpha-effect. Application of this concept allows us to get different types of solutions which can describe the magnetic activity of celestial bodies. We investigated the dynamo model with the meridional circulation by the low-mode approach. This approach is based on an assumption that the magnetic field can be described by non-linear dynamical systems with a relatively small number of parameters. Such non-linear dynamical systems are based on the equations of dynamo models. With this method dynamical systems have been built for media which contains the meridional flow and thickness of the spherical shell where dynamo process operates. It was shown the possibility of coexistence of quiasi-biennial oscillations, 22-year cycle, and grand minima of magnetic activity which is consistent with the observational data for the solar activity. We obtained different regimes (oscillations, vacillations, dynamo-bursts) depending on a value of the dynamo-number, the meridional circulation, and thickness of the spherical shell. We discuss features of these regimes and compare them with the observed features of the magnetic fields of the Sun, stars and Earth. We built theoretical paleomagnetic time scale and butterfly-diagrams for the helicity and toroidal magnetic field for different regimes.
Ishikawa, Tomoki; Ohba, Hisateru; Yokooka, Yuki; Nakamura, Kozo; Ogasawara, Katsuhiko
2013-08-27
In Japan, a shortage of physicians, who serve a key role in healthcare provision, has been pointed out as a major medical issue. The healthcare workforce policy planner should consider future dynamic changes in physician numbers. The purpose of this study was to propose a physician supply forecasting methodology by applying system dynamics modeling to estimate future absolute and relative numbers of physicians. We constructed a forecasting model using a system dynamics approach. Forecasting the number of physician was performed for all clinical physician and OB/GYN specialists. Moreover, we conducted evaluation of sufficiency for the number of physicians and sensitivity analysis. As a result, it was forecast that the number of physicians would increase during 2008-2030 and the shortage would resolve at 2026 for all clinical physicians. However, the shortage would not resolve for the period covered. This suggests a need for measures for reconsidering the allocation system of new entry physicians to resolve maldistribution between medical departments, in addition, for increasing the overall number of clinical physicians.
Study of system- size effects in multi- fragmentation using Quantum Molecular Dynamics model
Singh, J; Aichelin, Jörg; Singh, Jaivir; Puri, Rajeev K.
2001-01-01
We report, for the first time, the dependence of the multiplicity of different fragments on the system size employing a quantum molecular dynamics model. This dependence is extracted from the simulations of symmetric collisions of Ca+Ca, Ni+Ni, Nb+Nb, Xe+Xe, Er+Er, Au+Au and U+U at incident energies between 50 A MeV and 1 A GeV. We find that the multiplicity of different fragments scales with the size of the system which can be parameterized by a simple power law.
A convergent scheme for a non-local coupled system modelling dislocations densities dynamics
Hajj, A. El; Forcadel, N.
2008-06-01
In this paper, we study a non-local coupled system that arises in the theory of dislocations densities dynamics. Within the framework of viscosity solutions, we prove a long time existence and uniqueness result for the solution of this model. We also propose a convergent numerical scheme and we prove a Crandall-Lions type error estimate between the continuous solution and the numerical one. As far as we know, this is the first error estimate of Crandall-Lions type for Hamilton-Jacobi systems. We also provide some numerical simulations.
Control method and system for hydraulic machines employing a dynamic joint motion model
Danko, George
2011-11-22
A control method and system for controlling a hydraulically actuated mechanical arm to perform a task, the mechanical arm optionally being a hydraulically actuated excavator arm. The method can include determining a dynamic model of the motion of the hydraulic arm for each hydraulic arm link by relating the input signal vector for each respective link to the output signal vector for the same link. Also the method can include determining an error signal for each link as the weighted sum of the differences between a measured position and a reference position and between the time derivatives of the measured position and the time derivatives of the reference position for each respective link. The weights used in the determination of the error signal can be determined from the constant coefficients of the dynamic model. The error signal can be applied in a closed negative feedback control loop to diminish or eliminate the error signal for each respective link.
Suhir E.
2012-08-01
Full Text Available Some basic problems of the dynamic response of electronic and photonic (E&P systems to shocks and vibrations are addressed and discussed. The emphasis is on analytical (mathematical modeling, the reliability physics behind the addressed phenomena, and design-for-reliability (DfR issues and challenges. The addressed problems include 1 linear response: effect of viscous damping, shock tests vs. drop tests, role of compliant interfaces, and maximum acceleration and maximum dynamic stress as a suitable reliability criterion; 2 nonlinear response: printed circuit board (PCB experiencing an impact load applied to its support contour and ball-grid-array (BGA testing on the board level; 3 shock protection of portable electronics, including the possible use of nano-wires as a suitable protective “cushion”. The fruitfulness of the probabilistic DfR (PDfR concept to quantify and assure the field (operational reliability of E&P devices and systems is also indicated.
Kukona, Anuenue; Tabor, Whitney
2011-08-01
The Visual World Paradigm (VWP) presents listeners with a challenging problem: They must integrate two disparate signals, the spoken language and the visual context, in support of action (e.g., complex movements of the eyes across a scene). We present Impulse Processing, a dynamical systems approach to incremental eye movements in the visual world that suggests a framework for integrating language, vision, and action generally. Our approach assumes that impulses driven by the language and the visual context impinge minutely on a dynamical landscape of attractors corresponding to the potential eye-movement behaviors of the system. We test three unique predictions of our approach in an empirical study in the VWP, and describe an implementation in an artificial neural network. We discuss the Impulse Processing framework in relation to other models of the VWP.
Kukona, Anuenue; Tabor, Whitney
2011-01-01
The visual world paradigm presents listeners with a challenging problem: they must integrate two disparate signals, the spoken language and the visual context, in support of action (e.g., complex movements of the eyes across a scene). We present Impulse Processing, a dynamical systems approach to incremental eye movements in the visual world that suggests a framework for integrating language, vision, and action generally. Our approach assumes that impulses driven by the language and the visual context impinge minutely on a dynamical landscape of attractors corresponding to the potential eye-movement behaviors of the system. We test three unique predictions of our approach in an empirical study in the visual world paradigm, and describe an implementation in an artificial neural network. We discuss the Impulse Processing framework in relation to other models of the visual world paradigm. PMID:21609355
Lucifredi, A.; Rossi, M. [University of Genova (Italy). DIMEC; Mazzieri, C. [ANSALDO RICERCHE, Genova (Italy)
2000-07-01
Since the operational conditions of a hydroelectric unit can vary within a wide range, the monitoring system must be able to distinguish between the variations of the monitored variable caused by variations of the operation conditions and those due to arising and progressing of failures and misoperations. The paper aims to identify the best technique to be adopted for the monitoring system. Three different methods have been implemented and compared. Two of them use statistical techniques: the first, the linear multiple regression, expresses the monitored variable as a linear function of the process parameters (independent variables), while the second, the dynamic kriging technique, is a modified technique of multiple linear regression representing the monitored variable as a linear combination of the process variables in such a way as to minimize the variance of the estimate error. The third is based on neural networks. Tests have shown that the monitoring system based on the kriging technique is not affected by some problems common to the other two models e.g. the requirement of a large amount of data for their tuning, both for training the neural network and defining the optimum plane for the multiple regression, not only in the system starting phase but also after a trivial operation of maintenance involving the substitution of machinery components having a direct impact on the observed variable. Or, in addition, the necessity of different models to describe in a satisfactory way the different ranges of operation of the plant. The monitoring system based on the kriging statistical technique overrides the previous difficulties: it does not require a large amount of data to be tuned and is immediately operational: given two points, the third can be immediately estimated; in addition the model follows the system without adapting itself to it. The results of the experimentation performed seem to indicate that a model based on a neural network or on a linear multiple
Integrated earth system dynamic modeling for life cycle impact assessment of ecosystem services.
Arbault, Damien; Rivière, Mylène; Rugani, Benedetto; Benetto, Enrico; Tiruta-Barna, Ligia
2014-02-15
Despite the increasing awareness of our dependence on Ecosystem Services (ES), Life Cycle Impact Assessment (LCIA) does not explicitly and fully assess the damages caused by human activities on ES generation. Recent improvements in LCIA focus on specific cause-effect chains, mainly related to land use changes, leading to Characterization Factors (CFs) at the midpoint assessment level. However, despite the complexity and temporal dynamics of ES, current LCIA approaches consider the environmental mechanisms underneath ES to be independent from each other and devoid of dynamic character, leading to constant CFs whose representativeness is debatable. This paper takes a step forward and is aimed at demonstrating the feasibility of using an integrated earth system dynamic modeling perspective to retrieve time- and scenario-dependent CFs that consider the complex interlinkages between natural processes delivering ES. The GUMBO (Global Unified Metamodel of the Biosphere) model is used to quantify changes in ES production in physical terms - leading to midpoint CFs - and changes in human welfare indicators, which are considered here as endpoint CFs. The interpretation of the obtained results highlights the key methodological challenges to be solved to consider this approach as a robust alternative to the mainstream rationale currently adopted in LCIA. Further research should focus on increasing the granularity of environmental interventions in the modeling tools to match current standards in LCA and on adapting the conceptual approach to a spatially-explicit integrated model. Copyright © 2013 Elsevier B.V. All rights reserved.
Dynamic wind turbine models in power system simulation tool DIgSILENT
Hansen, A.D.; Iov, F.; Soerensen, Poul.; Cutululis, N.; Jauch, C.; Blaabjerg, F.
2007-08-15
This report presents a collection of models and control strategies developed and implemented in the power system simulation tool PowerFactory DIgSILENT for different wind turbine concepts. It is the second edition of Risoe-R-1400(EN) and it gathers and describes a whole wind turbine model database built-op and developed during several national research projects, carried out at Risoe DTU National Laboratory for Sustainable Energy and Aalborg University, in the period 2001-2007. The overall objective of these projects was to create a wind turbine model database able to support the analysis of the interaction between the mechanical structure of the wind turbine and the electrical grid during different operational modes. The report provides thus a description of the wind turbines modelling, both at a component level and at a system level. The report contains both the description of DIgSILENT built-in models for the electrical components of a grid connected wind turbine (e.g. induction generators, power converters, transformers) and the models developed by the user, in the dynamic simulation language DSL of DIgSILENT, for the non-electrical components of the wind turbine (wind model, aerodynamic model, mechanical model). The initialisation issues on the wind turbine models into the power system simulation are also presented. The main attention in the report is drawn to the modelling at the system level of the following wind turbine concepts: (1) Fixed speed active stall wind turbine concept (2) Variable speed doubly-fed induction generator wind turbine concept (3) Variable speed multi-pole permanent magnet synchronous generator wind turbine concept These wind turbine concept models can be used and even extended for the study of different aspects, e.g. the assessment of power quality, control strategies, connection of the wind turbine at different types of grid and storage systems. Different control strategies have been developed and implemented for these wind turbine
Wahyu Sardjono
2013-06-01
Full Text Available Green Base transceiver station (BTS or known as remote BTS is a special BTS with IP technology-based that has a small capacity and takes low power consumption with standard features suitable for use in rural areas. BTS utilizes 100% solar energy as a source of energy. The infrastructure Green BTS is composed of high-tech devices which is able to save energy, environmentally friendly, small and lightweight. The high rate service calls and SMS on green BTS is caused by the absence of competition telecom operators at a site. The solution to this problem needs to be done with system dynamics modeling approach with the aim to establish causality (cause and effect between the variables. The standard target of model pattern which has been changed on system dynamics can be used to demonstrate the behavior of the model between the number of subscribers, the availability of network capacity and ARPU (average revenue per user on the Green BTS site. On the changed standard target model, the actual revenue is placed as the actual event, the target revenue is as a target; the difference between the actual and target revenue is as gap, gap changes are as the pressure on the target and the corrective action taken against revenue as a corrective action. Based on simulation results, the standard model change targets can be developed by adding two negative loops (balancing loop as an alternative solution towards the achievement of revenue targets that have been set.
Da-Wei Sun; Gui-Ran Chang; Shang Gao; Li-Zhong Jin; Xing-Wei Wang
2012-01-01
Failures are normal rather than exceptional in the cloud computing environmcnts.To improve system availability,replicating the popular data to multiple suitable locations is an advisable choice,as users can access the data from a nearby site.This is,however,not the case for replicas which must have a fixed number of copies on several locations.How to decide a reasonable number and right locations for replicas has become a challenge in the cloud computing.In this paper,a dynamic data replication strategy is put forward with a brief survey of replication strategy suitable for distributed computing environments.It includes:1) analyzing and modeling the relationship between system availability and the number of replicas; 2) evaluating and identifying the popular data and triggering a replication operation when the popularity data passes a dynamic threshold; 3) calculating a suitable number of copies to meet a reasonable system byte effective rate requirement and placing replicas among data nodes in a balanced way; 4) designing the dynamic data replication algorithm in a cloud.Experimental results demonstrate the efficiency and effectiveness of the improved system brought by the proposed strategy in a cloud.
Morioka, Ryoko; Kanaya, Shigehiko; Hirai, Masami Y; Yano, Mitsuru; Ogasawara, Naotake; Saito, Kazuki
2007-01-01
Background Modelling of time series data should not be an approximation of input data profiles, but rather be able to detect and evaluate dynamical changes in the time series data. Objective criteria that can be used to evaluate dynamical changes in data are therefore important to filter experimental noise and to enable extraction of unexpected, biologically important information. Results Here we demonstrate the effectiveness of a Markov model, named the Linear Dynamical System, to simulate the dynamics of a transcript or metabolite time series, and propose a probabilistic index that enables detection of time-sensitive changes. This method was applied to time series datasets from Bacillus subtilis and Arabidopsis thaliana grown under stress conditions; in the former, only gene expression was studied, whereas in the latter, both gene expression and metabolite accumulation. Our method not only identified well-known changes in gene expression and metabolite accumulation, but also detected novel changes that are likely to be responsible for each stress response condition. Conclusion This general approach can be applied to any time-series data profile from which one wishes to identify elements responsible for state transitions, such as rapid environmental adaptation by an organism. PMID:17875221
A stakeholder-based system dynamics model of return-to-work: a research protocol
Arif Jetha
2015-07-01
Full Text Available Background. Returning to work following a job-related injury or illness can be a complex process, influenced by a range of interrelated personal, psychosocial, and organizational components. System dynamics modelling (SDM takes a sociotechnical systems perspective to view return-to-work (RTW as a system made up of multiple feedback relationships between influential components. Design and Methods. To build the RTW SDM, a mixed-method approach will be used. The first stage, that has already been completed, involved creating a baseline model using key informant interviews. Second, in two manufacturing companies, stakeholder-based models will be developed through interviews and focus groups with senior management, frontline workers, and frontline supervisors. Participants will be asked about the RTW process in general and more targeted questions regarding influential components. Participants will also be led through a reference mode exercise where they will be asked to estimate the direction, shape and magnitude of relationships between influential components. Data will be entered into the software program Vensim that provides a platform for visualizing system-structure and simulating the effects of adapting components. Finally, preliminary model validity testing will be conducted to provide insights on model generalizability and sensitivity. Expected Impact of the study for Public Health. The proposed methodology will create a SDM of the RTW process using feedback relationships of influential components. It will also provide an important simulation tool to understand system behaviour that underlies complex RTW cases, and examine anticipated and unanticipated consequences of disability management policies.
Time-resolved spectroscopy at surfaces and adsorbate dynamics: Insights from a model-system approach
Boström, Emil; Mikkelsen, Anders; Verdozzi, Claudio
2016-05-01
We introduce a model description of femtosecond laser induced desorption at surfaces. The substrate part of the system is taken into account as a (possibly semi-infinite) linear chain. Here, being especially interested in the early stages of dissociation, we consider a finite-size implementation of the model (i.e., a finite substrate), for which an exact numerical solution is possible. By time-evolving the many-body wave function, and also using results from a time-dependent density functional theory description for electron-nuclear systems, we analyze the competition between several surface-response mechanisms and electronic correlations in the transient and longer time dynamics under the influence of dipole-coupled fields. Our model allows us to explore how coherent multiple-pulse protocols can impact desorption in a variety of prototypical experiments.
Atmospheric emissions modeling of energetic biomass alternatives using system dynamics approach
Szarka, N. [University of Leoben (Austria). Chair of System Analysis and Environmental Engineering; University of Concepcion (Chile). Environmental Sciences Center; Kakucs, O.; Wolfbauer, J. [University of Leoben (Austria). Chair of System Analysis and Environmental Engineering; Bezama, A. [University of Concepcion (Chile). Environmental Sciences Center
2008-01-15
To simulate the quantitative effects of regional biomass alternatives for energetic purpose (BfE) on air pollutant emissions, a system dynamics model was developed and applied for the EuRegion Austrian-Hungarian cross-border area. The dynamic simulation program Vensim{sup R} was used to build an overall regional model with economic, social and environmental sectors. Within this model, the here-introduced regional air pollution sub-model (RegAir) includes the important human-made emissions of 10 pollutants resulting from all relevant source sectors within the region investigated. Emissions from activities related to biomass production, transport, conversion and final energy consumption were built in detail. After building and calibrating the RegAir model, seven quantitative test scenarios were defined and implemented into the world. Through the scenarios simulation, effects on air emissions were followed and compared over time. The results of these simulations show a significant reduction of CO{sub 2} emission, especially in cases where fossil fuel displacement in heating devices is achieved on the largest scale. On the contrary, traditional air pollutants increase by most BfE options. The results of the RegAir model simulations of BfE alternatives over two decades provide useful quantifications of various air emissions and identify the less pollutant BfE alternatives in the dynamic context of the relevant air pollution sources of the region. After minor structural modification and appropriate calibration, RegAir can be applied to other regions as well. However, it is stated that, to finally decide on the overall most-appropriate options at a regional level, other environmental as well as economic and social effects must be taken into consideration, being the latter the goal of the mentioned overall regional model which serves as a model frame to the RegAir tool. (author)
Dynamic model of frequency control in Danish power system with large scale integration of wind power
Basit, Abdul; Hansen, Anca Daniela; Sørensen, Poul Ejnar
2013-01-01
power system model with large scale of wind power is developed and a case study for an inaccurate wind power forecast is investigated. The goal of this work is to develop an adequate power system model that depicts relevant dynamic features of the power plants and compensates for load generation......This work evaluates the impact of large scale integration of wind power in future power systems when 50% of load demand can be met from wind power. The focus is on active power balance control, where the main source of power imbalance is an inaccurate wind speed forecast. In this study, a Danish...... imbalances, caused by inaccurate wind speed forecast, by an appropriate control of the active power production from power plants....
Control Theory Concepts Applied to Retail Supply Chain: A System Dynamics Modeling Environment Study
Balaji Janamanchi
2013-01-01
Full Text Available Control theory concepts have been long used to successfully manage and optimize complex systems. Using system dynamics (SD modeling methodology, which is continuous deterministic simulation modeling methodology, we apply control theory concepts to develop a suitable performance functional (or objective function that optimizes the performance of a retail supply chain. The focus is to develop insights for inventory management to prevent stock-outs and unfilled orders and to fill customer orders at the lowest possible cost to supply chain partners under different scenarios, in a two-player supplier-retailer supply chain. Moderate levels of inventory, defining appropriate performance functional, appear to be crucial in choosing the right policies for managing retail supply chain systems. The study also demonstrated how multiple objectives can be combined in a single performance functional (or objective function by carefully assigning suitable weights to the components of objectives based on their priority and the existence of possible trade off opportunities.
Pagano, Alessandro; Pluchinotta, Irene; Giordano, Raffaele; Vurro, Michele
2016-04-01
. Moving in such direction, System Dynamics Modeling (SDM) is a suitable operative approach. The SDM allows taking into account all resilience dimensions in an integrated and dynamic way. Furthermore, it allows to combine predictive and learning functionality through feedback mechanisms, and to foster active involvement of stakeholders in the modelling process. The present paper show some results of ongoing research activities. The main aim of the work is to describe using SDM, the relationships and interdependencies between drinking water supply infrastructures and societies in building the resilience of urban communities in case of natural disasters. Reflections are carried out on the comparison between two major earthquakes in Italy: L'Aquila in 2009 and Emilia Romagna in 2012. The model aims at defining a quantitative tool to assess the evolution of resilience of drinking water supply system. Specifically, it has been used to evaluate the impact of actions and strategies for resilience improvement on the dynamic evolution of the system, thus suggesting the most suitable ones.
Orion Active Thermal Control System Dynamic Modeling Using Simulink/MATLAB
Wang, Xiao-Yen J.; Yuko, James
2010-01-01
This paper presents dynamic modeling of the crew exploration vehicle (Orion) active thermal control system (ATCS) using Simulink (Simulink, developed by The MathWorks). The model includes major components in ATCS, such as heat exchangers and radiator panels. The mathematical models of the heat exchanger and radiator are described first. Four different orbits were used to validate the radiator model. The current model results were compared with an independent Thermal Desktop (TD) (Thermal Desktop, PC/CAD-based thermal model builder, developed in Cullimore & Ring (C&R) Technologies) model results and showed good agreement for all orbits. In addition, the Orion ATCS performance was presented for three orbits and the current model results were compared with three sets of solutions- FloCAD (FloCAD, PC/CAD-based thermal/fluid model builder, developed in C&R Technologies) model results, SINDA/FLUINT (SINDA/FLUINT, a generalized thermal/fluid network-style solver ) model results, and independent Simulink model results. For each case, the fluid temperatures at every component on both the crew module and service module sides were plotted and compared. The overall agreement is reasonable for all orbits, with similar behavior and trends for the system. Some discrepancies exist because the control algorithm might vary from model to model. Finally, the ATCS performance for a 45-hr nominal mission timeline was simulated to demonstrate the capability of the model. The results show that the ATCS performs as expected and approximately 2.3 lb water was consumed in the sublimator within the 45 hr timeline before Orion docked at the International Space Station.
A System Dynamics Model to Predict the Human Monocyte Response to Endotoxins
Enrique Álvarez
2017-08-01
Full Text Available System dynamics is a powerful tool that allows modeling of complex and highly networked systems such as those found in the human immune system. We have developed a model that reproduces how the exposure of human monocytes to lipopolysaccharides (LPSs induces an inflammatory state characterized by high production of tumor necrosis factor alpha (TNFα, which is rapidly modulated to enter into a tolerant state, known as endotoxin tolerance (ET. The model contains two subsystems with a total of six states, seven flows, two auxiliary variables, and 14 parameters that interact through six differential and nine algebraic equations. The parameters were estimated and optimized to obtain a model that fits the experimental data obtained from human monocytes treated with various LPS doses. In contrast to publications on other animal models, stimulation of human monocytes with super-low-dose LPSs did not alter the response to a second LPSs challenge, neither inducing ET, nor enhancing the inflammatory response. Moreover, the model confirms the low production of TNFα and increased levels of C–C motif ligand 2 when monocytes exhibit a tolerant state similar to that of patients with sepsis. At present, the model can help us better understand the ET response and might offer new insights on sepsis diagnostics and prognosis by examining the monocyte response to endotoxins in patients with sepsis.
Modeling Regional Dynamics of Human-Rangifer Systems: a Framework for Comparative Analysis
Matthew Berman
2013-12-01
Full Text Available Theoretical models of interaction between wild and domestic reindeer (Rangifer tarandus; caribou in North America can help explain observed social-ecological dynamics of arctic hunting and husbandry systems. Different modes of hunting and husbandry incorporate strategies to mitigate effects of differing patterns of environmental uncertainty. Simulations of simple models of harvested wild and domestic herds with density-dependent recruitment show that random environmental variation produces cycles and crashes in populations that would quickly stabilize at a steady state with nonrandom parameters. Different husbandry goals lead to radically different long-term domestic herd sizes. Wild and domestic herds are typically ecological competitors but social complements. Hypothesized differences in ecological competition and diverse human livelihoods are explored in dynamic social-ecological models in which domestic herds competitively interact with wild herds. These models generate a framework for considering issues in the evolution of Human-Rangifer Systems, such as state-subsidized herding and the use of domestic herds for transportation support in hunting systems. Issues considered include the role of geographic factors, markets for Rangifer products, state-subsidized herding, effects of changes in husbandry goals on fate of wild herds, and how environmental shocks, herd population cycles, and policy shifts might lead to system state changes. The models also suggest speculation on the role of geographic factors in the failure of reindeer husbandry to take hold in the North American Arctic. The analysis concludes with suggested empirical strategies for estimating parameters of the model for use in comparative studies across regions of the Arctic.
Quantifying Key Climate Parameter Uncertainties Using an Earth System Model with a Dynamic 3D Ocean
Olson, R.; Sriver, R. L.; Goes, M. P.; Urban, N.; Matthews, D.; Haran, M.; Keller, K.
2011-12-01
Climate projections hinge critically on uncertain climate model parameters such as climate sensitivity, vertical ocean diffusivity and anthropogenic sulfate aerosol forcings. Climate sensitivity is defined as the equilibrium global mean temperature response to a doubling of atmospheric CO2 concentrations. Vertical ocean diffusivity parameterizes sub-grid scale ocean vertical mixing processes. These parameters are typically estimated using Intermediate Complexity Earth System Models (EMICs) that lack a full 3D representation of the oceans, thereby neglecting the effects of mixing on ocean dynamics and meridional overturning. We improve on these studies by employing an EMIC with a dynamic 3D ocean model to estimate these parameters. We carry out historical climate simulations with the University of Victoria Earth System Climate Model (UVic ESCM) varying parameters that affect climate sensitivity, vertical ocean mixing, and effects of anthropogenic sulfate aerosols. We use a Bayesian approach whereby the likelihood of each parameter combination depends on how well the model simulates surface air temperature and upper ocean heat content. We use a Gaussian process emulator to interpolate the model output to an arbitrary parameter setting. We use Markov Chain Monte Carlo method to estimate the posterior probability distribution function (pdf) of these parameters. We explore the sensitivity of the results to prior assumptions about the parameters. In addition, we estimate the relative skill of different observations to constrain the parameters. We quantify the uncertainty in parameter estimates stemming from climate variability, model and observational errors. We explore the sensitivity of key decision-relevant climate projections to these parameters. We find that climate sensitivity and vertical ocean diffusivity estimates are consistent with previously published results. The climate sensitivity pdf is strongly affected by the prior assumptions, and by the scaling
Naseradinmousavi, Peiman
In this dissertation, the actuator-valve systems as a critical part of the automation system are analyzed. Using physics-based high fidelity modeling, this research provides a set of tools to help understand, predict, optimize, and control the real performance of these complex systems. The work carried out is expected to add to the suite of analytical and numerical tools that are essential for the development of highly automated ship systems. We present an accurate dynamic model, perform nonlinear analysis, and develop optimal design and operation for electromechanical valve systems. The mathematical model derived includes electromagnetics, fluid mechanics, and mechanical dynamics. Nondimensionalization has been carried out in order to reduce the large number of parameters to a few critical independent sets to help carry out a parametric analysis. The system stability analysis is then carried out with the aid of the tools from nonlinear dynamic analysis. This reveals that the system is unstable in a certain region of the parameter space. The system is also shown to exhibit crisis and transient chaotic responses. Smart valves are often operated under local power supply (for various mission-critical reasons) and need to consume as little energy as possible in order to ensure continued operability. The Simulated Annealing (SA) algorithm is utilized to optimize the actuation subsystem yielding the most efficient configuration from the point of view of energy consumption for two sets of design variables. The optimization is particularly important when the smart valves are used in a distributed network. Another aspect of optimality is more subtle and concerns optimal operation given a designed system. Optimal operation comes after the optimal design process to explore if there is any particular method of the valve operation that would yield the minimum possible energy used. The results of our model developed are also validated with the aid of an experimental setup
About a modification of Rogers model of parasite-host system dynamics
L.V. Nedorezov
2012-03-01
Full Text Available In current publication there is the consideration of mathematical model of parasite-host system dynamics for the populations with non-overlapping generations. Within the framework of considering model it is assumed that appearance of individuals of new generation correlates with the death of individuals of the previous one. It is also assumed that between time moments of appearance of individuals of new generations there are the monotonous and independent decreasing of population sizes of interacting species in a result of influence of self-regulative mechanisms and natural death. All survived individuals of the host produce the eggs synchronically, and part of these eggs is attacked by parasites. In model it is assumed that the time for the appearance of hosts and parasites from the eggs is much less than the length of time interval between closed generations. It allows describing of the process of appearance of new generations as "jumps" in changing of population's sizes. For considering model the dynamic regimes of interacting populations are analyzed for various values of model parameters and various assumptions about mechanism of interaction of species. In particular, there is the determination of conditions for parameters when the regimes of population outbreaks are observed in model.
Co-simulation of dynamic systems in parallel and serial model configurations
Sweafford, Trevor [General Motors, Milford (United States); Yoon, Hwan Sik [The University of Alabama, Tuscaloosa (United States)
2013-12-15
Recent advancement in simulation software and computation hardware make it realizable to simulate complex dynamic systems comprised of multiple submodels developed in different modeling languages. The so-called co-simulation enables one to study various aspects of a complex dynamic system with heterogeneous submodels in a cost-effective manner. Among several different model configurations for co-simulation, synchronized parallel configuration is regarded to expedite the simulation process by simulation multiple sub models concurrently on a multi core processor. In this paper, computational accuracies as well as computation time are studied for three different co-simulation frameworks : integrated, serial, and parallel. for this purpose, analytical evaluations of the three different methods are made using the explicit Euler method and then they are applied to two-DOF mass-spring systems. The result show that while the parallel simulation configuration produces the same accurate results as the integrated configuration, results of the serial configuration, results of the serial configuration show a slight deviation. it is also shown that the computation time can be reduced by running simulation in the parallel configuration. Therefore, it can be concluded that the synchronized parallel simulation methodology is the best for both simulation accuracy and time efficiency.
Baccino, Francesco; Marinelli, Mattia; Nørgård, Per; Silvestro, Federico
2014-05-01
The paper aims at characterizing the electrochemical and thermal parameters of a 15 kW/320 kWh vanadium redox flow battery (VRB) installed in the SYSLAB test facility of the DTU Risø Campus and experimentally validating the proposed dynamic model realized in Matlab-Simulink. The adopted testing procedure consists of analyzing the voltage and current values during a power reference step-response and evaluating the relevant electrochemical parameters such as the internal resistance. The results of different tests are presented and used to define the electrical characteristics and the overall efficiency of the battery system. The test procedure has general validity and could also be used for other storage technologies. The storage model proposed and described is suitable for electrical studies and can represent a general model in terms of validity. Finally, the model simulation outputs are compared with experimental measurements during a discharge-charge sequence.
Erickson, Richard A.; Thogmartin, Wayne E.; Russell, Robin E.; Diffendorfer, James E.; Jennifer A. Szymanski,; ,
2014-01-01
Bats are ecologically and economically important species because they consume insects, transport nutrients, and pollinate flowers. Many species of bats, including those in the Myotis genus, are facing population decline and increased extinction risk. Despite these conservation concerns, few models exist for providing insight into the population dynamics of bats in a spatially explicit context. We developed a model for bats by considering the stage-structured colonial life history of Myotis bats with their annual migration behavior. This model provided insight into network dynamics. We specifically focused on two Myotis species living in the eastern United States: the Indiana bat (M. sodalis), which is a Federally listed endangered species, and the little brown bat (M. lucifugus), which is under consideration for listing as an endangered species. We found that multiple equilibria exist for the local, migratory subpopulations even though the total population was constant. These equilibria suggest the location and magnitude of stressors such as White-nose Syndrome, meteorological phenomena, or impacts of wind turbines on survival influence system dynamics and risk of population extirpation in difficult to predict ways.
AMIGO2, a toolbox for dynamic modeling, optimization and control in systems biology
Balsa-Canto, Eva; Henriques, David; Gábor, Attila; Banga, Julio R.
2016-01-01
Motivation: Many problems of interest in dynamic modeling and control of biological systems can be posed as non-linear optimization problems subject to algebraic and dynamic constraints. In the context of modeling, this is the case of, e.g. parameter estimation, optimal experimental design and dynamic flux balance analysis. In the context of control, model-based metabolic engineering or drug dose optimization problems can be formulated as (multi-objective) optimal control problems. Finding a solution to those problems is a very challenging task which requires advanced numerical methods. Results: This work presents the AMIGO2 toolbox: the first multiplatform software tool that automatizes the solution of all those problems, offering a suite of state-of-the-art (multi-objective) global optimizers and advanced simulation approaches. Availability and Implementation: The toolbox and its documentation are available at: sites.google.com/site/amigo2toolbox. Contact: ebalsa@iim.csic.es Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27378288
Elenchezhiyan, M; Prakash, J
2015-09-01
In this work, state estimation schemes for non-linear hybrid dynamic systems subjected to stochastic state disturbances and random errors in measurements using interacting multiple-model (IMM) algorithms are formulated. In order to compute both discrete modes and continuous state estimates of a hybrid dynamic system either an IMM extended Kalman filter (IMM-EKF) or an IMM based derivative-free Kalman filters is proposed in this study. The efficacy of the proposed IMM based state estimation schemes is demonstrated by conducting Monte-Carlo simulation studies on the two-tank hybrid system and switched non-isothermal continuous stirred tank reactor system. Extensive simulation studies reveal that the proposed IMM based state estimation schemes are able to generate fairly accurate continuous state estimates and discrete modes. In the presence and absence of sensor bias, the simulation studies reveal that the proposed IMM unscented Kalman filter (IMM-UKF) based simultaneous state and parameter estimation scheme outperforms multiple-model UKF (MM-UKF) based simultaneous state and parameter estimation scheme.
A Decision Support Systems Using A Combined Dynamic Model For Integrated Watershed Management
Kudo, E.; Ostrowski, M.
In this context A Decision Support System (DSS) is presented using a combined dy- namic model for Integrated Watershed Management (IWM) in a small urbanized basin in Japan. In order to improve today's often unsustainable watershed management, the causes of water problems, which interact with each other, must be identified and adequate actions must be chosen to solve the problems. To achieve the ultimate goal of sustain- able development (SD) for water it is essential to develop and apply generic DSSs. A DSS is frequently defined as a combination of a management information system, a model base and an evaluation / assessment module. The EU Water Framework Di- rectives recently established have a narrow time schedule requiring fast action into this direction, which does hardly allow to develop completely new tolls. Thus we are trying to combine different existing dynamic models that incorporate an urban man- agement model, a water quality analysis model, a groundwater analysis model and a water supply model including geographical information system data. With this com- bined model, the most appropriate and sustainable water management plan in an urban area will be developed while considering land use, ground water level, allocation of drainage system, sewerage, water supply works, water quality, and quantity. Because of sharing input data, using this combined model requires less data than using sev- eral separate models. The DSS can also be used to determine the optimum location of gages and monitoring sites. As a case study, the research will deal with the Taguri-river basin in Japan. This basin is located near Tokyo. Although the area in this basin has about 8 km2 only, there are densely build-up areas, paddy fields, and non-developed areas. The river is polluted due to wastewater from point resources: households, and non-point resources: roads and fields, etc. Overpumping of aquifers results in sinking groundwater tables and land subsidence. Moreover, a decrease
Nuh Erdogan; Humberto Henao; Richard Grisel
2015-10-01
The complexity of electromechanical coupling drive system (ECDS)s, specifically electrical drive systems, makes studying them in their entirety challenging since they consist of elements of diverse nature, i.e. electric, electronics and mechanics. This presents a real struggle to the engineers who want to design and implement such systems with high performance, efficiency and reliability. For this purpose, engineers need a tool capable of modelling and/or simulating components of diverse nature within the ECDS. However, a majority of the available tools are limited in their capacity to describe the characteristics of such components sufficiently. To overcome this difficulty, this paper first proposes an improved methodology of modelling and simulation for ECDS. The approach is based on using domain-based simulators individually, namely electric and mechanic part simulators and also integrating them with a co-simulation. As for the modelling of the drive machine, a finely tuned dynamic model is developed by taking the saturation effect into account. In order to validate the developed model as well as the proposed methodology, an industrial ECDS is tested experimentally. Later, both the experimental and simulation results are compared to prove the accuracy of the developed model and the relevance of the proposed methodology.
Hafez, Hisham; Naggar, M. Hesham El. [Department of Civil Engineering, The University of Western Ontario, London, Ontario N6A 5B9 (Canada); Nakhla, George [Department of Civil Engineering, The University of Western Ontario, London, Ontario N6A 5B9 (Canada); Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B9 (Canada)
2010-07-15
Steady-state operational data from the integrated biohydrogen reactor clarifier system (IBRCS) during anaerobic treatment of glucose-based synthetic wastewater at HRT of 8 h and SRT ranging from 26 to 50 h and organic loading rates of 6.5-206 gCOD/L-d were used to calibrate and verify a process model of the system developed using BioWin. The model accurately predicted biomass concentrations in both the bioreactor and the clarifier supernatant with average percentage errors (APEs) of 4.6% and 10%, respectively. Hydrogen production rates and hydrogen yields predicted by the model were in close agreement with the observed experimental results as reflected by an APE of less than 4%, while the hydrogen content was well correlated with an APE of 10%. The successful modeling culminated in the accurate prediction of soluble metabolites, i.e. volatile fatty acids in the reactor with an APE of 14%. The calibrated model confirmed the advantages of decoupling of the solids retention time (SRT) from the hydraulic retention time (HRT) in biohydrogen production, with the average hydrogen yield decreasing from 3.0 mol H{sub 2}/mol glucose to 0.8 mol H{sub 2}/mol glucose upon elimination of the clarifier. Dynamic modeling showed that the system responds favorably to short-term hydraulic and organic surges, recovering back to the original condition. Furthermore, the dynamic simulation revealed that with a prolonged startup periods of 10 and 30 days, the IBRCS can be operated at an HRT of 4 h and OLR as high as 206 gCOD/L-d without inhibition and/or marked performance deterioration. (author)
An Earth multi-body system elasticity and plasticity dynamics model
ZHANG Qingxian; BI Siwen; GONG Huili
2006-01-01
Research on the elasticity and plasticity dynamics of the Earth multi-body system, including the Earth multi-body system stratum-block's equivalent inertia force system and generalized inertia force, the Earth multi-body system stratum-block's equivalent inertia force system expressed with partial velocity and partial palstance, and Earth multi-body system generalized inertia force expressed with partial velocity and partial palstance. This research provides a theoretical foundation for further investigation of Earth multi-body dynamics.
di, L.; Yu, G.; Chen, N.
2007-12-01
The self-adaptation concept is the central piece of the control theory widely and successfully used in engineering and military systems. Such a system contains a predictor and a measurer. The predictor takes initial condition and makes an initial prediction and the measurer then measures the state of a real world phenomenon. A feedback mechanism is built in that automatically feeds the measurement back to the predictor. The predictor takes the measurement against the prediction to calculate the prediction error and adjust its internal state based on the error. Thus, the predictor learns from the error and makes a more accurate prediction in the next step. By adopting the self-adaptation concept, we proposed the Self-adaptive Earth Predictive System (SEPS) concept for enabling the dynamic coupling between the sensor web and the Earth system models. The concept treats Earth System Models (ESM) and Earth Observations (EO) as integral components of the SEPS coupled by the SEPS framework. EO measures the Earth system state while ESM predicts the evolution of the state. A feedback mechanism processes EO measurements and feeds them into ESM during model runs or as initial conditions. A feed-forward mechanism analyzes the ESM predictions against science goals for scheduling optimized/targeted observations. The SEPS framework automates the Feedback and Feed-forward mechanisms (the FF-loop). Based on open consensus-based standards, a general SEPS framework can be developed for supporting the dynamic, interoperable coupling between ESMs and EO. Such a framework can support the plug-in-and-play capability of both ESMs and diverse sensors and data systems as long as they support the standard interfaces. This presentation discusses the SEPS concept, the service-oriented architecture (SOA) of SEPS framework, standards of choices for the framework, and the implementation. The presentation also presents examples of SEPS to demonstrate dynamic, interoperable, and live coupling of
System dynamic modelling of industrial growth and landscape ecology in China.
Xu, Jian; Kang, Jian; Shao, Long; Zhao, Tianyu
2015-09-15
With the rapid development of large industrial corridors in China, the landscape ecology of the country is currently being affected. Therefore, in this study, a system dynamic model with multi-dimensional nonlinear dynamic prediction function that considers industrial growth and landscape ecology is developed and verified to allow for more sustainable development. Firstly, relationships between industrial development and landscape ecology in China are examined, and five subsystems are then established: industry, population, urban economy, environment and landscape ecology. The main influencing factors are then examined for each subsystem to establish flow charts connecting those factors. Consequently, by connecting the subsystems, an overall industry growth and landscape ecology model is established. Using actual data and landscape index calculated based on GIS of the Ha-Da-Qi industrial corridor, a typical industrial corridor in China, over the period 2005-2009, the model is validated in terms of historical behaviour, logical structure and future prediction, where for 84.8% of the factors, the error rate of the model is less than 5%, the mean error rate of all factors is 2.96% and the error of the simulation test for the landscape ecology subsystem is less than 2%. Moreover, a model application has been made to consider the changes in landscape indices under four industrial development modes, and the optimal industrial growth plan has been examined for landscape ecological protection through the simulation prediction results over 2015-2020. Copyright © 2015 Elsevier Ltd. All rights reserved.
N. Keshta
2008-06-01
Full Text Available The mining of oil sands in northern Alberta, Canada, involves the stripping and salvage of surface soil layers to gain access to the oil mines. The oil sands industry has committed to reconstructing these disturbed watersheds to replicate the performance of the natural soil horizons and to reproduce the various functions of natural watersheds. The selection of the texture and thickness of the reconstructed soil cover layers is based primarily on the concept that all covers must have sufficient moisture for vegetation over the growing season. Assessment of the hydrological performance of the reconstructed soil covers is crucial to select the best cover alternative. A generic system dynamics watershed (GSDW model is developed, based on the existing site-specific SDW model, and applied to five reconstructed watersheds located in the Athabasca mining basin, Alberta, Canada; and one natural watershed (boreal forest located in Saskatchewan, Canada; to simulate the various hydrological processes; in particular, soil moisture patterns and actual evapotranspiration, in reconstructed and natural watersheds. The model is capable of capturing the dynamics of the water balance components in both reconstructed and natural watersheds. The developed GSDW model provides a vital tool, which enables the investigation of the utility of different soil cover alternative designs and evaluation of their performance. Moreover, the model can be used to conduct short- and long- term predictions under different climate scenarios.
Hosseini, Mohammad; Jiang, Yu; Wu, Poliang; Berlin, Richard B; Ren, Shangping; Sha, Lui
2016-11-01
There is a great divide between rural and urban areas, particularly in medical emergency care. Although medical best practice guidelines exist and are in hospital handbooks, they are often lengthy and difficult to apply clinically. The challenges are exaggerated for doctors in rural areas and emergency medical technicians (EMT) during patient transport. In this paper, we propose the concept of distributed executable medical best practice guidance systems to assist adherence to best practice from the time that a patient first presents at a rural hospital, through diagnosis and ambulance transfer to arrival and treatment at a regional tertiary hospital center. We codify complex medical knowledge in the form of simplified distributed executable disease automata, from the thin automata at rural hospitals to the rich automata in the regional center hospitals. However, a main challenge is how to efficiently and safely synchronize distributed best practice models as the communication among medical facilities, devices, and professionals generates a large number of messages. This complex problem of patient diagnosis and transport from rural to center facility is also fraught with many uncertainties and changes resulting in a high degree of dynamism. A critically ill patient's medical conditions can change abruptly in addition to changes in the wireless bandwidth during the ambulance transfer. Such dynamics have yet to be addressed in existing literature on telemedicine. To address this situation, we propose a pathophysiological model-driven message exchange communication architecture that ensures the real-time and dynamic requirements of synchronization among distributed emergency best practice models are met in a reliable and safe manner. Taking the signs, symptoms, and progress of stroke patients transported across a geographically distributed healthcare network as the motivating use case, we implement our communication system and apply it to our developed best practice
Dynamical Systems for Creative Technology
van Amerongen, J.
2010-01-01
Dynamical Systems for Creative Technology gives a concise description of the physical properties of electrical, mechanical and hydraulic systems. Emphasis is placed on modelling the dynamical properties of these systems. By using a system’s approach it is shown that a limited number of mathematical
GONG; Peng
2006-01-01
Similar to species immigration or exotic species invasion, infectious disease transmission is strengthened due to the globalization of human activities. Using schistosomiasis as an example, we propose a conceptual model simulating the spatio-temporal dynamics of infectious diseases. We base the model on the knowledge of the interrelationship among the source, media, and the hosts of the disease. With the endemics data of schistosomiasis in Xichang, China, we demonstrate that the conceptual model is feasible; we introduce how remote sensing and geographic information systems techniques can be used in support of spatio-temporal modeling; we compare the different effects caused to the entire population when selecting different groups of people for schistosomiasis control. Our work illustrates the importance of such a modeling tool in supporting spatial decisions. Our modeling method can be directly applied to such infectious diseases as the plague, lyme disease, and hemorrhagic fever with renal syndrome. The application of remote sensing and geographic information systems can shed light on the modeling of other infectious disease and invasive species studies.
A model-experiment comparison of system dynamics for human walking and running.
Lipfert, Susanne W; Günther, Michael; Renjewski, Daniel; Grimmer, Sten; Seyfarth, Andre
2012-01-07
The human musculo-skeletal system comprises high complexity which makes it difficult to identify underlying basic principles of bipedal locomotion. To tackle this challenge, a common approach is to strip away complexity and formulate a reductive model. With utter simplicity a bipedal spring-mass model gives good predictions of the human gait dynamics, however, it has not been fully investigated whether center of mass motion over time of walking and running is comparable between the model and the human body over a wide range of speed. To test the model's ability in this respect, we compare sagittal center of mass trajectories of model and human data for speeds ranging from 0.5 m/s to 4 m/s. For simulations, system parameters and initial conditions are extracted from experimental observations of 28 subjects. The leg parameters stiffness and length are extracted from functional fitting to the subjects' leg force-length curves. With small variations of the touch-down angle of the leg and the vertical position of the center of mass at apex, we find successful spring-mass simulations for moderate walking and medium running speeds. Predictions of the sagittal center of mass trajectories and ground reaction forces are good, but their amplitudes are overestimated, while contact time is underestimated. At faster walking speeds and slower running speeds we do not find successful model locomotion with the extent of allowed parameter variation. We conclude that the existing limitations may be improved by adding complexity to the model.
JAHAN A; ABDOLSHAH M
2007-01-01
At the first sight it seems that advanced operation research is not used enough in continuous production systems as comparison with mass production, batch production and job shop systems, but really in a comprehensive evaluation the advanced operation research techniques can be used in continuous production systems in developing countries very widely, because of initial inadequate plant layout, stage by stage development of production lines, the purchase of second hand machineries from various countries, plurality of customers. A case of production system planning is proposed for a chemical company in which the above mentioned conditions are almost presented. The goals and constraints in this issue are as follows: ① Minimizing deviation of customer's requirements. ② Maximizing the profit. ③ Minimizing the frequencies of changes in formula production. ④ Minimizing the inventory of final products. ⑤ Balancing the production sections with regard to rate in production. ⑥ Limitation in inventory of raw material. The present situation is in such a way that various techniques such as goal programming, linear programming and dynamic programming can be used. But dynamic production programming issues are divided into two categories, at first one with limitation in production capacity and another with unlimited production capacity. For the first category, a systematic and acceptable solution has not been presented yet. Therefore an innovative method is used to convert the dynamic situation to a zero- one model. At last this issue is changed to a goal programming model with non-linear limitations with the use of GRG algorithm and that's how it is solved.
Nanaeda, Kimihiro; Mueller, Fabian; Brouwer, Jacob; Samuelsen, Scott
Operating strategies of solid oxide fuel cell (SOFC) combined heat and power (CHP) systems are developed and evaluated from a utility, and end-user perspective using a fully integrated SOFC-CHP system dynamic model that resolves the physical states, thermal integration and overall efficiency of the system. The model can be modified for any SOFC-CHP system, but the present analysis is applied to a hotel in southern California based on measured electric and heating loads. Analysis indicates that combined heat and power systems can be operated to benefit both the end-users and the utility, providing more efficient electric generation as well as grid ancillary services, namely dispatchable urban power. Design and operating strategies considered in the paper include optimal sizing of the fuel cell, thermal energy storage to dispatch heat, and operating the fuel cell to provide flexible grid power. Analysis results indicate that with a 13.1% average increase in price-of-electricity (POE), the system can provide the grid with a 50% operating range of dispatchable urban power at an overall thermal efficiency of 80%. This grid-support operating mode increases the operational flexibility of the SOFC-CHP system, which may make the technology an important utility asset for accommodating the increased penetration of intermittent renewable power.
Dynamical Analysis of Sputtering at Threshold Energy Range: Modelling of Ar+Ni(100) Collision System
HUNDUR Yakup; G(U)VEN(C) Ziya B; HIPPLER Rainer
2008-01-01
The sputtering process of Ar+Ni(100) collision systems is investigated by means of constant energy molecular dynamics simulations.The Ni(100) slab is mimicked by an embedded-atom potential,and the interaction between the projectile and the surface is modelled by using the reparametrized ZBL potential.Ni atom emission from the lattice is analysed over the range of 20-50 eV collision energy.Sputtering yield,angular and energy distributions of the scattered Ar and of the sputtered Ni atoms are calculated,and compared to the available theoretical and experimental data.
Forest-fire model as a supercritical dynamic model in financial systems.
Lee, Deokjae; Kim, Jae-Young; Lee, Jeho; Kahng, B
2015-02-01
Recently large-scale cascading failures in complex systems have garnered substantial attention. Such extreme events have been treated as an integral part of self-organized criticality (SOC). Recent empirical work has suggested that some extreme events systematically deviate from the SOC paradigm, requiring a different theoretical framework. We shed additional theoretical light on this possibility by studying financial crisis. We build our model of financial crisis on the well-known forest fire model in scale-free networks. Our analysis shows a nontrivial scaling feature indicating supercritical behavior, which is independent of system size. Extreme events in the supercritical state result from bursting of a fat bubble, seeds of which are sown by a protracted period of a benign financial environment with few shocks. Our findings suggest that policymakers can control the magnitude of financial meltdowns by keeping the economy operating within reasonable duration of a benign environment.
Toward a unified dynamic model for dykes and cone sheets in volcanic systems
Galland, Olivier; Burchardt, Steffi; Hallot, Erwan; Mourgues, Régis; Bulois, Cédric
2014-05-01
Igneous sheet intrusions, such as dykes and cone sheets, represent various geometries of magma channels through the crust. In many volcanoes, they coexist as parts of complex plumbing systems and are likely fed by common sources. How they form is fundamental regarding volcanic hazards, but yet no dynamic model simulates and predicts satisfactorily the diversity of sheet intrusions observed in volcanic systems. Here we present scaled laboratory experiments that reproduced dyke and cone sheet intrusion geometries under controlled conditions. Combined to a parametric study, a dimensional analysis shows that two dimensionless numbers Π1 and Π2 govern the formation of these intrusions. Π1 is geometrical and describes the geometry of the magma source; Π2 is dynamical and compares the local viscous stresses in the flowing magma to the host-rock strength. Plotting our experiments against these two numbers results in a phase diagram evidencing a dyke and a cone-sheet field, separated by a sharp transition that fits a power law. This result shows that dykes and cone sheets correspond to two distinct physical regimes of magma emplacement in the Earth's crust. Cone sheets preferentially form when their source is shallow relative to their size, when the magma influx (or viscosity) is large, or when the host rock is weak. In addition, both dykes and cone sheets may form from the same source, the shift from one regime to the other being then controlled by magma dynamics, i.e. different values of Π2. We compare our phase diagram to geological data and show that the extrapolated empirical dyke-to-cone sheet transition predicts the occurrence of dykes and cone sheets in various natural volcanic settings. This study thus provides a unified dynamic model of sheet intrusions emplacement and captures fundamental mechanisms of magma transport in the Earth's crust.
Synchronized Chaos in Geophysical Fluid Dynamics and in the Predictive Modeling of Natural Systems
Duane, Gregory S.
2008-03-01
The ubiquitous phenomenon of synchronization among regular oscillators in Nature has been shown, in the past two decades, to extend to chaotic systems. Despite sensitive dependence on initial conditions, two chaotic systems will commonly fall into synchronized motion along their strange attractors when only some of the many degrees of freedom of one system are coupled to corresponding variables in the other. In geophysical fluid models, synchronization can mediate scale interactions, so that coupling of degrees of freedom that describe medium-scale components of the flow can result in synchronization, or partial synchronization, at all scales. Chaos synchronization has been used to interpret non-local "teleconnection" patterns in the Earth's climate system and to predict new ones. In the realm of practical meteorology, the fact that two PDE systems, conceived as "truth" and "model", respectively, can be made to synchronize when coupled at only a discrete set of points, explains how observations at a discrete set of weather stations can be sufficient for weather prediction by a synchronously coupled model. Minimizing synchronization error leads to general recipes for assimilation of observed data into a running model that systematize the treatment of nonlinearities in the dynamical equations. Equations can generally be added to adapt parameters as well as states as the model is running, so that the model "learns". The synchronization view of predictive modelling extends to any translationally- any PDE with constant coefficients, the general form of physical theories. The reliance on synchronicity as an organizing principle in Nature, alternative to causality, has philosophical roots in the collaboration of Carl Jung and Wolfgang Pauli, on the one hand, and in traditions outside of European science, on the other.
Documentation of INL’s In Situ Oil Shale Retorting Water Usage System Dynamics Model
Earl D Mattson; Larry Hull
2012-12-01
A system dynamic model was construction to evaluate the water balance for in-situ oil shale conversion. The model is based on a systems dynamics approach and uses the Powersim Studio 9™ software package. Three phases of an in situ retort were consider; a construction phase primarily accounts for water needed for drilling and water produced during dewatering, an operation phase includes the production of water from the retorting process, and a remediation phase water to remove heat and solutes from the subsurface as well as return the ground surface to its natural state. Throughout these three phases, the water is consumed and produced. Consumption is account for through the drill process, dust control, returning the ground water to its initial level and make up water losses during the remedial flushing of the retort zone. Production of water is through the dewatering of the retort zone, and during chemical pyrolysis reaction of the kerogen conversion. The document discusses each of the three phases used in the model.
Kansuporn eSriyudthsak
2016-05-01
Full Text Available The high-throughput acquisition of metabolome data is greatly anticipated for the complete understanding of cellular metabolism in living organisms. A variety of analytical technologies have been developed to acquire large-scale metabolic profiles under different biological or environmental conditions. Time series data are useful for predicting the most likely metabolic pathways because they provide important information regarding the accumulation of metabolites, which implies causal relationships in the metabolic reaction network. Considerable effort has been undertaken to utilize these data for constructing a mathematical model merging system properties and quantitatively characterizing a whole metabolic system in toto. However, there are technical difficulties between benchmarking the provision and utilization of data. Although hundreds of metabolites can be measured, which provide information on the metabolic reaction system, simultaneous measurement of thousands of metabolites is still challenging. In addition, it is nontrivial to logically predict the dynamic behaviors of unmeasurable metabolite concentrations without sufficient information on the metabolic reaction network. Yet, consolidating the advantages of advancements in both metabolomics and mathematical modeling remain to be accomplished. This review outlines the conceptual basis of and recent advances in technologies in both the research fields. It also highlights the potential for constructing a large-scale mathematical model by estimating model parameters from time series metabolome data in order to comprehensively understand metabolism at the systems level.
A system dynamics model for stock and flow of tritium in fusion power plant
Kasada, Ryuta, E-mail: r-kasada@iae.kyoto-u.ac.jp [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kwon, Saerom [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Konishi, Satoshi [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Sakamoto, Yoshiteru; Yamanishi, Toshihiko; Tobita, Kenji [Japan Atomic Energy Agency, Rokkasho-mura, Kamikita-gun, Aomori-ken 039-3212 (Japan)
2015-10-15
Highlights: • System dynamics model of tritium fuel cycle was developed for analyzing stock and flow of tritium in fusion power plants. • Sensitivity of tritium build-up to breeding ratio parameters has been assessed to two plant concepts having 3 GW and 1.5 GW fusion power. • D-D start-up absolutely without initial loading of tritium is possible for both of the 3 GW and 1.5 GW fusion power plant concepts. • Excess stock of tritium is generated by the steady state operation with the value of tritium breeding ratio over unity. - Abstract: In order to analyze self-efficiency of tritium fuel cycle (TFC) and share the systems thinking of TFC among researchers and engineers in the vast area of fusion reactor technology, we develop a system dynamics (SD) TFC model using a commercial software STELLA. The SD-TFC model is illustrated as a pipe diagram which consists of tritium stocks, such as plasma, fuel clean up, isotope separation, fueling with storage and blanket, and pipes connecting among them. By using this model, we survey a possibility of D-D start-up without initial loading of tritium on two kinds of fusion plant having different plasma parameters. The D-D start-up scenario can reduce the necessity of initial loading of tritium through the production in plasma by D-D reaction and in breeding blanket by D-D neutron. The model is also used for considering operation scenario to avoid excess stock of tritium which must be produced at tritium breeding ratio over unity.
Dynamic Modelling of a Wind/Fuel-Cell/Ultra-Capacitor-Based Hybrid Power Generation System
J. Vanishree
2014-01-01
Full Text Available Recent research and development of alternative energy sources have shown excellent potential as a form of contribution to conventional power generation systems. In order to meet sustained load demands during varying natural conditions, different energy sources and converters need to be integrated with each other for extended usage of alternative energy. The paper focuses on the combination of wind, Fuel Cell (FC and Ultra-Capacitor (UC systems for sustained power generation. As the wind turbine output power varies with the wind speed: an FC system with a UC bank can be integrated with the wind turbine to ensure that the system performs under all conditions. A dynamic model, design and simulation of a wind/FC/UC hybrid power generation system with power flow controllers is proposed. In the proposed system, when the wind speed is sufficient, the wind turbine can meet the load demand. If the available power from the wind turbine cannot satisfy the load demand, the FC system can meet the excess power demand, while the UC can meet the load demand above the maximum power available from the FC system for short durations. Furthermore, this system can tolerate the rapid changes in wind speed and suppress the effects of these fluctuations on the equipment side voltage in a novel topology.
Merging spatially variant physical process models under an optimized systems dynamics framework.
Cain, William O. (University of Texas at Austin, Austin, TX); Lowry, Thomas Stephen; Pierce, Suzanne A.; Tidwell, Vincent Carroll
2007-10-01
The complexity of water resource issues, its interconnectedness to other systems, and the involvement of competing stakeholders often overwhelm decision-makers and inhibit the creation of clear management strategies. While a range of modeling tools and procedures exist to address these problems, they tend to be case specific and generally emphasize either a quantitative and overly analytic approach or present a qualitative dialogue-based approach lacking the ability to fully explore consequences of different policy decisions. The integration of these two approaches is needed to drive toward final decisions and engender effective outcomes. Given these limitations, the Computer Assisted Dispute Resolution system (CADRe) was developed to aid in stakeholder inclusive resource planning. This modeling and negotiation system uniquely addresses resource concerns by developing a spatially varying system dynamics model as well as innovative global optimization search techniques to maximize outcomes from participatory dialogues. Ultimately, the core system architecture of CADRe also serves as the cornerstone upon which key scientific innovation and challenges can be addressed.
Lehoucq, Richard B.; Segalman, Daniel Joseph; Hetmaniuk, Ulrich L. (University of Washington, Seattle, WA); Dohrmann, Clark R.
2009-10-01
Advanced computing hardware and software written to exploit massively parallel architectures greatly facilitate the computation of extremely large problems. On the other hand, these tools, though enabling higher fidelity models, have often resulted in much longer run-times and turn-around-times in providing answers to engineering problems. The impediments include smaller elements and consequently smaller time steps, much larger systems of equations to solve, and the inclusion of nonlinearities that had been ignored in days when lower fidelity models were the norm. The research effort reported focuses on the accelerating the analysis process for structural dynamics though combinations of model reduction and mitigation of some factors that lead to over-meshing.
Aalaei, Amin; Davoudpour, Hamid
2012-11-01
This article presents designing a new mathematical model for integrating dynamic cellular manufacturing into supply chain system with an extensive coverage of important manufacturing features consideration of multiple plants location, multi-markets allocation, multi-period planning horizons with demand and part mix variation, machine capacity, and the main constraints are demand of markets satisfaction in each period, machine availability, machine time-capacity, worker assignment, available time of worker, production volume for each plant and the amounts allocated to each market. The aim of the proposed model is to minimize holding and outsourcing costs, inter-cell material handling cost, external transportation cost, procurement & maintenance and overhead cost of machines, setup cost, reconfiguration cost of machines installation and removal, hiring, firing and salary worker costs. Aimed to prove the potential benefits of such a design, presented an example is shown using a proposed model.
System Dynamics Model and Simulation of Employee Work-Family Conflict in the Construction Industry
Guangdong Wu
2016-10-01
Full Text Available The construction industry is a demanding work environment where employees’ work-family conflict is particularly prominent. This conflict has a significant impact on job and family satisfaction and performance of employees. In order to analyze the dynamic evolution of construction industry employee’s work-family conflict between work and family domains, this paper constructs a bi-directional dynamic model framework of work-family conflict by referring to the relevant literature. Consequently, a system dynamics model of employee’s work-family conflict in the construction industry is established, and a simulation is conducted. The simulation results indicate that construction industry employees experience work interference with family conflict (WIFC levels which are significantly greater than the family interference with work conflict (FIWC levels. This study also revealed that improving work flexibility and organizational support can have a positive impact on the satisfaction and performance of construction industry employees from a work and family perspective. Furthermore, improving family support can only significantly improve employee job satisfaction.
System Dynamics Model and Simulation of Employee Work-Family Conflict in the Construction Industry.
Wu, Guangdong; Duan, Kaifeng; Zuo, Jian; Yang, Jianlin; Wen, Shiping
2016-10-28
The construction industry is a demanding work environment where employees' work-family conflict is particularly prominent. This conflict has a significant impact on job and family satisfaction and performance of employees. In order to analyze the dynamic evolution of construction industry employee's work-family conflict between work and family domains, this paper constructs a bi-directional dynamic model framework of work-family conflict by referring to the relevant literature. Consequently, a system dynamics model of employee's work-family conflict in the construction industry is established, and a simulation is conducted. The simulation results indicate that construction industry employees experience work interference with family conflict (WIFC) levels which are significantly greater than the family interference with work conflict (FIWC) levels. This study also revealed that improving work flexibility and organizational support can have a positive impact on the satisfaction and performance of construction industry employees from a work and family perspective. Furthermore, improving family support can only significantly improve employee job satisfaction.
Dynamic modeling efforts for system interface studies for nuclear hydrogen production.
Vilim, R. B.; Nuclear Engineering Division
2007-08-15
System interface studies require not only identifying economically optimal equipment configurations, which involves studying mainly full power steady-state operation, but also assessing the operability of a design during load change and startup and assessing safety-related behavior during upset conditions. This latter task is performed with a dynamic simulation code. This report reviews the requirements of such a code. It considers the types of transients that will need to be simulated, the phenomena that will be present, the models best suited for representing the phenomena, and the type of numerical solution scheme for solving the models to obtain the dynamic response of the combined nuclear-hydrogen plant. Useful insight into plant transient behavior prior to running a dynamics code is obtained by some simple methods that take into account component time constants and energy capacitances. Methods for determining reactor stability, plant startup time, and temperature response during load change, and tripping of the reactor are described. Some preliminary results are presented.
System Dynamics Model and Simulation of Employee Work-Family Conflict in the Construction Industry
Wu, Guangdong; Duan, Kaifeng; Zuo, Jian; Yang, Jianlin; Wen, Shiping
2016-01-01
The construction industry is a demanding work environment where employees’ work-family conflict is particularly prominent. This conflict has a significant impact on job and family satisfaction and performance of employees. In order to analyze the dynamic evolution of construction industry employee’s work-family conflict between work and family domains, this paper constructs a bi-directional dynamic model framework of work-family conflict by referring to the relevant literature. Consequently, a system dynamics model of employee’s work-family conflict in the construction industry is established, and a simulation is conducted. The simulation results indicate that construction industry employees experience work interference with family conflict (WIFC) levels which are significantly greater than the family interference with work conflict (FIWC) levels. This study also revealed that improving work flexibility and organizational support can have a positive impact on the satisfaction and performance of construction industry employees from a work and family perspective. Furthermore, improving family support can only significantly improve employee job satisfaction. PMID:27801857
Design and Optimization of Intelligent Service Robot Suspension System Using Dynamic Model
Choi, Seong Hoon; Park, Tae Won; Lee, Soo Ho; Jung, Sung Pil; Jun, Kab Jin; Yoon, J. W. [Ajou University, Suwon (Korea, Republic of)
2010-08-15
Recently, an intelligent service robot is being developed for use in guiding and providing information to visitors about the building at public institutions. The intelligent robot has a sensor at the bottom to recognize its location. Four wheels, which are arranged in the form of a lozenge, support the robot. This robot cannot be operated on uneven ground because its driving parts are attached to its main body that contains the important internal components. Continuous impact with the ground can change the precise positions of the components and weaken the connection between each structural part. In this paper, the design of the suspension system for such a robot is described. The dynamic model of the robot is created, and the driving characteristics of the robot with the designed suspension system are simulated. Additionally, the suspension system is optimized to reduce the impact for the robot components.
Collective dynamics of multicellular systems
R Maithreye; C Suguna; Somdatta Sinha
2011-11-01
We have studied the collective behaviour of a one-dimensional ring of cells for conditions when the individual uncoupled cells show stable, bistable and oscillatory dynamics. We show that the global dynamics of this model multicellular system depends on the system size, coupling strength and the intrinsic dynamics of the cells. The intrinsic variability in dynamics of the constituent cells are suppressed to stable dynamics, or modiﬁed to intermittency under different conditions. This simple model study reveals that cell–cell communication, system size and intrinsic cellular dynamics can lead to evolution of collective dynamics in structured multicellular biological systems that is signiﬁcantly different from its constituent single-cell behaviour.
Modeling stock price dynamics by continuum percolation system and relevant complex systems analysis
Xiao, Di; Wang, Jun
2012-10-01
The continuum percolation system is developed to model a random stock price process in this work. Recent empirical research has demonstrated various statistical features of stock price changes, the financial model aiming at understanding price fluctuations needs to define a mechanism for the formation of the price, in an attempt to reproduce and explain this set of empirical facts. The continuum percolation model is usually referred to as a random coverage process or a Boolean model, the local interaction or influence among traders is constructed by the continuum percolation, and a cluster of continuum percolation is applied to define the cluster of traders sharing the same opinion about the market. We investigate and analyze the statistical behaviors of normalized returns of the price model by some analysis methods, including power-law tail distribution analysis, chaotic behavior analysis and Zipf analysis. Moreover, we consider the daily returns of Shanghai Stock Exchange Composite Index from January 1997 to July 2011, and the comparisons of return behaviors between the actual data and the simulation data are exhibited.
Linliang Guo
2017-04-01
Full Text Available To satisfy the validation requirements of flight control law for advanced aircraft, a wind tunnel based virtual flight testing has been implemented in a low speed wind tunnel. A 3-degree-of-freedom gimbal, ventrally installed in the model, was used in conjunction with an actively controlled dynamically similar model of aircraft, which was equipped with the inertial measurement unit, attitude and heading reference system, embedded computer and servo-actuators. The model, which could be rotated around its center of gravity freely by the aerodynamic moments, together with the flow field, operator and real time control system made up the closed-loop testing circuit. The model is statically unstable in longitudinal direction, and it can fly stably in wind tunnel with the function of control augmentation of the flight control laws. The experimental results indicate that the model responds well to the operator’s instructions. The response of the model in the tests shows reasonable agreement with the simulation results. The difference of response of angle of attack is less than 0.5°. The effect of stability augmentation and attitude control law was validated in the test, meanwhile the feasibility of virtual flight test technique treated as preliminary evaluation tool for advanced flight vehicle configuration research was also verified.
A system dynamics approach for modeling construction workers' safety attitudes and behaviors.
Shin, Mingyu; Lee, Hyun-Soo; Park, Moonseo; Moon, Myunggi; Han, Sangwon
2014-07-01
Construction accidents are caused by an unsafe act (i.e., a person's behavior or activity that deviates from normal accepted safe procedure) and/or an unsafe condition (i.e., a hazard or an unsafe mechanical or physical environment). While there has been dramatic improvement in creating safer construction environments, relatively little is known regarding the elimination of construction workers' unsafe acts. To address this deficiency, this paper aims to develop a system dynamics (SD)-based model of construction workers' mental processes that can help analyze the feedback mechanisms and the resultant dynamics regarding the workers' safety attitudes and safe behaviors. The developed model is applied to examine the effectiveness of three safety improvement policies: incentives for safe behaviors, and increased levels of communication and immersion in accidents. Application of the model verifies the strong potential of the developed model to provide a better understanding of how to eliminate unsafe acts, and to function as a robust test-bed to assess the effectiveness of safety programs or training sessions before their implementation.
Dynamic Flow Modeling Using Double POD and ANN-ARX System Identification
Siegel, Stefan; Seidel, Jürgen; Cohen, Kelly; Aradag, Selin; McLaughlin, Thomas
2007-11-01
Double Proper Orthogonal Decomposition (DPOD), a modification of conventional POD, is a powerful tool for modeling of transient flow field spatial features, in particular, a 2D cylinder wake at a Reynolds number of 100. To develop a model for control design, the interaction of DPOD mode amplitudes with open-loop control inputs needs to be captured. Traditionally, Galerkin projection onto the Navier Stokes equations has been used for that purpose. Given the stability problems as well as issues in correctly modeling actuation input, we propose a different approach. We demonstrate that the ARX (Auto Regressive eXternal input) system identification method in connection with an Artificial Neural Network (ANN) nonlinear structure leads to a model that captures the dynamic behavior of the unforced and transient forced open loop data used for model development. Moreover, we also show that the model is valid at different Reynolds numbers, for different open loop forcing parameters, as well as for closed loop flow states with excellent accuracy. Thus, we present with this DPOD-ANN-ARX model a paradigm shift for laminar circular cylinder wake modeling that is proven valid for feedback flow controller development.
Topology of sustainable management in dynamical Earth system models with desirable states
Heitzig, J.; Kittel, T.
2015-03-01
To keep the Earth system in a desirable region of its state space, such as the recently suggested "tolerable environment and development window", "planetary boundaries", or "safe (and just) operating space", one not only needs to understand the quantitative internal dynamics of the system and the available options for influencing it (management), but also the structure of the system's state space with regard to certain qualitative differences. Important questions are: which state space regions can be reached from which others with or without leaving the desirable region? Which regions are in a variety of senses "safe" to stay in when management options might break away, and which qualitative decision problems may occur as a consequence of this topological structure? In this article, as a complement to the existing literature on optimal control which is more focussed on quantitative optimization and is much applied in both the engineering and the integrated assessment literature, we develop a mathematical theory of the qualitative topology of the state space of a dynamical system with management options and desirable states. We suggest a certain terminology for the various resulting regions of the state space and perform a detailed formal classification of the possible states with respect to the possibility of avoiding or leaving the undesired region. Our results indicate that before performing some form of quantitative optimization, the sustainable management of the Earth system may require decisions of a more discrete type that come in the form of several dilemmata, e.g., choosing between eventual safety and uninterrupted desirability, or between uninterrupted safety and increasing flexibility. We illustrate the concepts and dilemmata with conceptual models from classical mechanics, climate science, ecology, economics, and coevolutionary Earth system modelling and discuss their potential relevance for the climate and sustainability debate.
Maclay, James D.; Brouwer, Jacob; Samuelsen, G. Scott
A model of a photovoltaic (PV) powered residence in stand-alone configuration was developed and evaluated. The model assesses the sizing, capital costs, control strategies, and efficiencies of reversible fuel cells (RFC), batteries, and ultra-capacitors (UC) both individually, and in combination, as hybrid energy storage devices. The choice of control strategy for a hybrid energy storage system is found to have a significant impact on system efficiency, hydrogen production and component utilization. A hybrid energy storage system comprised of batteries and RFC has the advantage of reduced cost (compared to using a RFC as the sole energy storage device), high system efficiency and hydrogen energy production capacity. A control strategy that preferentially used the RFC before the battery in meeting load demand allows both grid independent operation and better RFC utilization compared to a system that preferentially used the battery before the RFC. Ultra-capacitors coupled with a RFC in a hybrid energy storage system contain insufficient energy density to meet dynamic power demands typical of residential applications.
Richard, Jacques C.
1995-01-01
This paper presents a dynamic model of an internal combustion engine coupled to a variable pitch propeller. The low-order, nonlinear time-dependent model is useful for simulating the propulsion system of general aviation single-engine light aircraft. This model is suitable for investigating engine diagnostics and monitoring and for control design and development. Furthermore, the model may be extended to provide a tool for the study of engine emissions, fuel economy, component effects, alternative fuels, alternative engine cycles, flight simulators, sensors, and actuators. Results show that the model provides a reasonable representation of the propulsion system dynamics from zero to 10 Hertz.
王殿海; 杨少辉; 初连禹
2004-01-01
Car-following models describe how one vehicle follows the preceding vehicles. In order to better model and explain car-following dynamics, this paper categorizes the state of a traveling vehicle into three sub-processes: the starting (acceleration) process, the car-following process, and the stopping (deceleration) process. The starting process primarily involves vehicle acceleration behavior. The stopping process involves not only car-following behavior but also deceleration behavior. This paper regards both the stopping process and the starting process as spring systems. The car-following dynamics during the starting process and the stopping process is modeled in this paper. The parameters of the proposed models, which are represented in the form of trigonometric functions, possess explicit physical meaning and definitive ranges. We have calibrated the model of the starting process using data from the Traffic Engineering Handbook, and obtained reasonable results. Compared with traditional stimulus-response car-following models, this model can better explain traffic flow phenomena and driver behavior theory.
Li, Huanhuan; Chen, Diyi; Zhang, Hao; Wang, Feifei; Ba, Duoduo
2016-12-01
In order to study the nonlinear dynamic behaviors of a hydro-turbine governing system in the process of sudden load increase transient, we establish a novel nonlinear dynamic model of the hydro-turbine governing system which considers the elastic water-hammer model of the penstock and the second-order model of the generator. The six nonlinear dynamic transfer coefficients of the hydro-turbine are innovatively proposed by utilizing internal characteristics and analyzing the change laws of the characteristic parameters of the hydro-turbine governing system. Moreover, from the point of view of engineering, the nonlinear dynamic behaviors of the above system are exhaustively investigated based on bifurcation diagrams and time waveforms. More importantly, all of the above analyses supply theoretical basis for allowing a hydropower station to maintain a stable operation in the process of sudden load increase transient.
Volk, Tyler
1987-01-01
The production of food for human life support for advanced space missions will require the management of many different crops. The research to design these food production capabilities along with the waste management to recycle human metabolic wastes and inedible plant components are parts of Controlled Ecological Life Support Systems (CELSS). Since complete operating CELSS were not yet built, a useful adjunct to the research developing the various pieces of a CELSS are system simulation models that can examine what is currently known about the possible assembly of subsystems into a full CELSS. The growth dynamics of four crops (wheat, soybeans, potatoes, and lettuce) are examined for their general similarities and differences within the context of their important effects upon the dynamics of the gases, liquids, and solids in the CELSS. Data for the four crops currently under active research in the CELSS program using high-production hydroponics are presented. Two differential equations are developed and applied to the general characteristics of each crop growth pattern. Model parameters are determined by closely approximating each crop's data.
Wei-Sheng Wu
2008-01-01
Full Text Available Unicellular organisms such as yeasts have evolved mechanisms to respond to environmental stresses by rapidly reorganizing the gene expression program. Although many stress-response genes in yeast have been discovered by DNA microarrays, the stress-response transcription factors (TFs that regulate these stress-response genes remain to be investigated. In this study, we use a dynamic system model of gene regulation to describe the mechanism of how TFs may control a gene’s expression. Then, based on the dynamic system model, we develop the Stress Regulator Identification Algorithm (SRIA to identify stress-response TFs for six kinds of stresses. We identified some general stress-response TFs that respond to various stresses and some specific stress-response TFs that respond to one specifi c stress. The biological significance of our findings is validated by the literature. We found that a small number of TFs is probably suffi cient to control a wide variety of expression patterns in yeast under different stresses. Two implications can be inferred from this observation. First, the response mechanisms to different stresses may have a bow-tie structure. Second, there may be regulatory cross-talks among different stress responses. In conclusion, this study proposes a network of stress-response regulators and the details of their actions.
Wu, Wei-Sheng; Li, Wen-Hsiung; Chen, Bor-Sen
2008-02-10
Unicellular organisms such as yeasts have evolved mechanisms to respond to environmental stresses by rapidly reorganizing the gene expression program. Although many stress-response genes in yeast have been discovered by DNA microarrays, the stress-response transcription factors (TFs) that regulate these stress-response genes remain to be investigated. In this study, we use a dynamic system model of gene regulation to describe the mechanism of how TFs may control a gene's expression. Then, based on the dynamic system model, we develop the Stress Regulator Identification Algorithm (SRIA) to identify stress-response TFs for six kinds of stresses. We identified some general stress-response TFs that respond to various stresses and some specific stress-response TFs that respond to one specific stress. The biological significance of our findings is validated by the literature. We found that a small number of TFs is probably sufficient to control a wide variety of expression patterns in yeast under different stresses. Two implications can be inferred from this observation. First, the response mechanisms to different stresses may have a bow-tie structure. Second, there may be regulatory cross-talks among different stress responses. In conclusion, this study proposes a network of stress-response regulators and the details of their actions.
Water Usage for In-Situ Oil Shale Retorting – A Systems Dynamics Model
Earl D. Mattson; Larry Hull; Kara Cafferty
2012-12-01
A system dynamic model was construction to evaluate the water balance for in-situ oil shale conversion. The model is based on a systems dynamics approach and uses the Powersim Studio 9™ software package. Three phases of an insitu retort were consider; a construction phase primarily accounts for water needed for drilling and water produced during dewatering, an operation phase includes the production of water from the retorting process, and a remediation phase water to remove heat and solutes from the subsurface as well as return the ground surface to its natural state. Throughout these three phases, the water is consumed and produced. Consumption is account for through the drill process, dust control, returning the ground water to its initial level and make up water losses during the remedial flushing of the retort zone. Production of water is through the dewatering of the retort zone, and during chemical pyrolysis reaction of the kerogen conversion. The major water consumption was during the remediation of the insitu retorting zone.
A Cognitive System Model for Human/Automation Dynamics in Airspace Management
Corker, Kevin M.; Pisanich, Gregory; Lebacqz, J. Victor (Technical Monitor)
1997-01-01
NASA has initiated a significant thrust of research and development focused on providing the flight crew and air traffic managers automation aids to increase capacity in en route and terminal area operations through the use of flexible, more fuel-efficient routing, while improving the level of safety in commercial carrier operations. In that system development, definition of cognitive requirements for integrated multi-operator dynamic aiding systems is fundamental. In order to support that cognitive function definition, we have extended the Man Machine Integrated Design and Analysis System (MIDAS) to include representation of multiple cognitive agents (both human operators and intelligent aiding systems) operating aircraft, airline operations centers and air traffic control centers in the evolving airspace. The demands of this application require representation of many intelligent agents sharing world-models, and coordinating action/intention with cooperative scheduling of goals and actions in a potentially unpredictable world of operations. The MIDAS operator models have undergone significant development in order to understand the requirements for operator aiding and the impact of that aiding in the complex nondeterminate system of national airspace operations. The operator model's structure has been modified to include attention functions, action priority, and situation assessment. The cognitive function model has been expanded to include working memory operations including retrieval from long-term store, interference, visual-motor and verbal articulatory loop functions, and time-based losses. The operator's activity structures have been developed to include prioritization and interruption of multiple parallel activities among multiple operators, to provide for anticipation (knowledge of the intention and action of remote operators), and to respond to failures of the system and other operators in the system in situation-specific paradigms. The model's internal
无
2003-01-01
The bearing is described by constrain matrix, and the spindle system of a NC surface grinding machine is simplified as elastic-coupling beam, then modal synthesis method is used to establish the dynamic model of beam.Moreover, the response of the end of rotor is analyzed, and the natural frequency, principle mode and other dynamic characteristics of the coupling system are studied, the law of bearing stiffness to coupling frequency and amplitude of rotor is also found.Finally, according to the actual condition, a dynamic absorber is designed.The simulation and experimental results show that the amplitude of spindle can be declined effectively when the dynamic absorber is attached.
Application of a New Dynamic Heating System Model Using a Range of Common Control Strategies
Joshua Fong
2016-06-01
Full Text Available This research investigates the overall heating energy consumptions using various control strategies, secondary heat emitters, and primary plant for a building. Previous research has successfully demonstrated that a dynamic distributed heat emitter model embedded within a simplified third-order lumped parameter building model is capable of achieving improved results when compared to other commercially available modelling tools. With the enhanced ability to capture transient effects of emitter thermal capacity, this research studies the influence of control strategies and primary plant configurations on the rate of energy consumption of a heating system. Four alternative control strategies are investigated: zone feedback; weather-compensated; a combination of both of these methods; and thermostatic control. The plant alternative configurations consist of conventional boilers, biomass boilers, and heat pumps supporting radiator heating and underfloor heating. The performance of the model is tested on a primary school building and can be applied to any residential or commercial building with a heating system. Results show that the new methods reported offer greater detail and rigor in the conduct of building energy modelling.
Spardy, Lucy E; Markin, Sergey N; Shevtsova, Natalia A; Prilutsky, Boris I; Rybak, Ilya A; Rubin, Jonathan E
2011-12-01
In this paper we analyze a closed loop neuromechanical model of locomotor rhythm generation. The model is composed of a spinal central pattern generator (CPG) and a single-joint limb, with CPG outputs projecting via motoneurons to muscles that control the limb and afferent signals from the muscles feeding back to the CPG. In a preceding companion paper (Spardy et al 2011 J. Neural Eng. 8 065003), we analyzed how the model generates oscillations in the presence or absence of feedback, identified curves in a phase plane associated with the limb that signify where feedback levels induce phase transitions within the CPG, and explained how increasing feedback strength restores oscillations in a model representation of spinal cord injury; from these steps, we derived insights about features of locomotor rhythms in several scenarios and made predictions about rhythm responses to various perturbations. In this paper, we exploit our analytical observations to construct a reduced model that retains important characteristics from the original system. We prove the existence of an oscillatory solution to the reduced model using a novel version of a Melnikov function, adapted for discontinuous systems, and also comment on the uniqueness and stability of this solution. Our analysis yields a deeper understanding of how the model must be tuned to generate oscillations and how the details of the limb dynamics shape overall model behavior. In particular, we explain how, due to the feedback signals in the model, changes in the strength of a tonic supra-spinal drive to the CPG yield asymmetric alterations in the durations of different locomotor phases, despite symmetry within the CPG itself.
Dynamic Model and Fault Feature Research of Dual-Rotor System with Bearing Pedestal Looseness
Nanfei Wang
2016-01-01
Full Text Available The paper presents a finite element model of dual-rotor system with pedestal looseness stemming from loosened bolts. Dynamic model including bearing pedestal looseness is established based on the dual-rotor test rig. Three-degree-of-freedom (DOF planar rigid motion of loose bearing pedestal is fully considered and collision recovery coefficient is also introduced in the model. Based on the Timoshenko beam elements, using the finite element method, rigid body kinematics, and the Newmark-β algorithm for numerical simulation, dynamic characteristics of the inner and outer rotors and the bearing pedestal plane rigid body motion under bearing pedestal looseness condition are studied. Meanwhile, the looseness experiments under two different speed combinations are carried out, and the experimental results are basically the same. The simulation results are compared with the experimental results, indicating that vibration displacement waveforms of loosened rotor have “clipping” phenomenon. When the bearing pedestal looseness fault occurs, the inner and outer rotors vibration spectrum not only contains the difference and sum frequency of the two rotors’ fundamental frequency but also contains 2X and 3X component of rotor with loosened support, and so forth; low frequency spectrum is more, containing dividing component, and so forth; the rotor displacement spectrums also contain fewer combination frequency components, and so forth; when one side of the inner rotor bearing pedestal is loosened, the inner rotor axis trajectory is drawn into similar-ellipse shape.
Dynamic performance analysis model of high-reliability EMS-Maglev system
FANG You-tong; YAO Ying-ying
2007-01-01
In this paper, a modified transient finite element (FE) algorithm for the performance analysis of magnetically levitated vehicles of electromagnetic type is presented. The algorithm incorporates the external power system and vehicle's movement equations into FE model of transient magnetic field computation directly. Sliding interface between stationary and moving region is used during the transient analysis. The periodic boundaries are implemented in an easy way to reduce the computation scale. It is proved that this method can be used for both electro-motional static and dynamic cases. The test of a transformer and an EMS-Maglev system reveals that the method generates reasonable results at very low computational costs comparing with the transient FE analysis.
Zhao, Meng; Ding, Baocang
2015-03-01
This paper considers the distributed model predictive control (MPC) of nonlinear large-scale systems with dynamically decoupled subsystems. According to the coupled state in the overall cost function of centralized MPC, the neighbors are confirmed and fixed for each subsystem, and the overall objective function is disassembled into each local optimization. In order to guarantee the closed-loop stability of distributed MPC algorithm, the overall compatibility constraint for centralized MPC algorithm is decomposed into each local controller. The communication between each subsystem and its neighbors is relatively low, only the current states before optimization and the optimized input variables after optimization are being transferred. For each local controller, the quasi-infinite horizon MPC algorithm is adopted, and the global closed-loop system is proven to be exponentially stable.
System Dynamics Modelling of the Processes Involving the Maintenance of the Naive T Cell Repertoire
Figueredo, Grazziela P; Whitbrook, Amanda
2010-01-01
The study of immune system aging, i.e. immunosenescence, is a relatively new research topic. It deals with understanding the processes of immunodegradation that indicate signs of functionality loss possibly leading to death. Even though it is not possible to prevent immunosenescence, there is great benefit in comprehending its causes, which may help to reverse some of the damage done and thus improve life expectancy. One of the main factors influencing the process of immunosenescence is the number and phenotypical variety of naive T cells in an individual. This work presents a review of immunosenescence, proposes system dynamics modelling of the processes involving the maintenance of the naive T cell repertoire and presents some preliminary results.
Absorptive capacity, technological innovation, and product life cycle: a system dynamics model.
Zou, Bo; Guo, Feng; Guo, Jinyu
2016-01-01
While past research has recognized the importance of the dynamic nature of absorptive capacity, there is limited knowledge on how to generate a fair and comprehensive analytical framework. Based on interviews with 24 Chinese firms, this study develops a system-dynamics model that incorporates an important feedback loop among absorptive capacity, technological innovation, and product life cycle (PLC). The simulation results reveal that (1) PLC affects the dynamic process of absorptive capacity; (2) the absorptive capacity of a firm peaks in the growth stage of PLC, and (3) the market demand at different PLC stages is the main driving force in firms' technological innovations. This study also explores a sensitivity simulation using the variables of (1) time spent in founding an external knowledge network, (2) research and development period, and (3) knowledge diversity. The sensitivity simulation results show that the changes of these three variables have a greater impact on absorptive capacity and technological innovation during growth and maturity stages than in the introduction and declining stages of PLC. We provide suggestions on how firms can adjust management policies to improve their absorptive capacity and technological innovation performance during different PLC stages.
Matsuura, Tomoaki; Tanimura, Naoki; Hosoda, Kazufumi; Yomo, Tetsuya; Shimizu, Yoshihiro
2017-02-21
To elucidate the dynamic features of a biologically relevant large-scale reaction network, we constructed a computational model of minimal protein synthesis consisting of 241 components and 968 reactions that synthesize the Met-Gly-Gly (MGG) peptide based on an Escherichia coli-based reconstituted in vitro protein synthesis system. We performed a simulation using parameters collected primarily from the literature and found that the rate of MGG peptide synthesis becomes nearly constant in minutes, thus achieving a steady state similar to experimental observations. In addition, concentration changes to 70% of the components, including intermediates, reached a plateau in a few minutes. However, the concentration change of each component exhibits several temporal plateaus, or a quasi-stationary state (QSS), before reaching the final plateau. To understand these complex dynamics, we focused on whether the components reached a QSS, mapped the arrangement of components in a QSS in the entire reaction network structure, and investigated time-dependent changes. We found that components in a QSS form clusters that grow over time but not in a linear fashion, and that this process involves the collapse and regrowth of clusters before the formation of a final large single cluster. These observations might commonly occur in other large-scale biological reaction networks. This developed analysis might be useful for understanding large-scale biological reactions by visualizing complex dynamics, thereby extracting the characteristics of the reaction network, including phase transitions.
Landscape Construction in Dynamical Systems
Tang, Ying; Yuan, Ruoshi; Wang, Gaowei; Ao, Ping
The idea of landscape has been recently applied to study various of biological problems. We demonstrate that a dynamical structure built into nonlinear dynamical systems allows us to construct such a global optimization landscape, which serves as the Lyapunov function for the ordinary differential equation. We find exact constructions on the landscape for a class of dynamical systems, including a van der Pol type oscillator, competitive Lotka-Volterra systems, and a chaotic system. The landscape constructed provides a new angle for understanding and modelling biological network dynamics.
Dynamic system identification and model-based fault diagnosis of an industrial gas turbine prototype
Simani, S. [Universita di Ferrara (Italy). Dipartimento di Ingegneria; Fantuzzi, C. [Universita di Modena e Reggio Emilia (Italy). Dipartimento di Scienze e Metodi per l' Ingegneria
2006-07-15
In this paper, a model-based procedure exploiting analytical redundancy for the detection and isolation of faults on a gas turbine process is presented. The main point of the present work consists of exploiting system identification schemes in connection with observer and filter design procedures for diagnostic purpose. Linear model identification (black-box modelling) and output estimation (dynamic observers and Kalman filters) integrated approaches to fault diagnosis are in particular advantageous in terms of solution complexity and performance. This scheme is especially useful when robust solutions are considered for minimising the effects of modelling errors and noise, while maximising fault sensitivity. A model of the process under investigation is obtained by identification procedures, whilst the residual generation task is achieved by means of output observers and Kalman filters designed in both noise-free and noisy assumptions. The proposed tools have been tested on a single-shaft industrial gas turbine prototype model and they have been evaluated using non-linear simulations, based on the gas turbine data. (author)
A joint-space numerical model of metabolic energy expenditure for human multibody dynamic system.
Kim, Joo H; Roberts, Dustyn
2015-09-01
Metabolic energy expenditure (MEE) is a critical performance measure of human motion. In this study, a general joint-space numerical model of MEE is derived by integrating the laws of thermodynamics and principles of multibody system dynamics, which can evaluate MEE without the limitations inherent in experimental measurements (phase delays, steady state and task restrictions, and limited range of motion) or muscle-space models (complexities and indeterminacies from excessive DOFs, contacts and wrapping interactions, and reliance on in vitro parameters). Muscle energetic components are mapped to the joint space, in which the MEE model is formulated. A constrained multi-objective optimization algorithm is established to estimate the model parameters from experimental walking data also used for initial validation. The joint-space parameters estimated directly from active subjects provide reliable MEE estimates with a mean absolute error of 3.6 ± 3.6% relative to validation values, which can be used to evaluate MEE for complex non-periodic tasks that may not be experimentally verifiable. This model also enables real-time calculations of instantaneous MEE rate as a function of time for transient evaluations. Although experimental measurements may not be completely replaced by model evaluations, predicted quantities can be used as strong complements to increase reliability of the results and yield unique insights for various applications.
A 3D dynamical model of the colliding winds in binary systems
Parkin, E R
2008-01-01
We present a 3D dynamical model of the orbital induced curvature of the wind-wind collision region in binary star systems. Momentum balance equations are used to determine the position and shape of the contact discontinuity between the stars, while further downstream the gas is assumed to behave ballistically. An archimedean spiral structure is formed by the motion of the stars, with clear resemblance to high resolution images of the so-called ``pinwheel nebulae''. A key advantage of this approach over grid or smoothed particle hydrodynamic models is its significantly reduced computational cost, while it also allows the study of the structure obtained in an eccentric orbit. The model is relevant to symbiotic systems and Gamma-ray binaries, as well as systems with O-type and Wolf-Rayet stars. As an example application, we simulate the X-ray emission from hypothetical O+O and WR+O star binaries, and describe a method of ray tracing through the 3D spiral structure to account for absorption by the circumstellar m...
System dynamics model for hospital waste characterization and generation in developing countries.
Eleyan, Derar; Al-Khatib, Issam A; Garfield, Joy
2013-10-01
Waste management policy makers always face the problem of how to predict the future amount and composition of medical solid waste, which, in turn, helps to determine the most appropriate treatment, recycling and disposal strategy. An accurate prediction can assist in both the planning and design of medical solid waste management systems. Insufficient budget and unavailable management capacity are the main reasons for the scarcity of medical solid waste quantities and components historical records, which are so important in long-term system planning and short-term expansion programs. This article presents a new technique, using System Dynamics modeling, to predict generated medical solid waste in a developing urban area, based on a set of limited samples from Jenin District hospitals, Palestine. The findings of the model present the trend of medical solid waste generation together with its different components and indicate that a new forecasting approach may cover a variety of possible causative models and track inevitable uncertainties when traditional statistical least-squared regression methods are unable to handle such issues.
On the Free Vibration Modeling of Spindle Systems: A Calibrated Dynamic Stiffness Matrix
Omar Gaber
2014-01-01
Full Text Available The effect of bearings on the vibrational behavior of machine tool spindles is investigated. This is done through the development of a calibrated dynamic stiffness matrix (CDSM method, where the bearings flexibility is represented by massless linear spring elements with tuneable stiffness. A dedicated MATLAB code is written to develop and to assemble the element stiffness matrices for the system’s multiple components and to apply the boundary conditions. The developed method is applied to an illustrative example of spindle system. When the spindle bearings are modeled as simply supported boundary conditions, the DSM model results in a fundamental frequency much higher than the system’s nominal value. The simply supported boundary conditions are then replaced by linear spring elements, and the spring constants are adjusted such that the resulting calibrated CDSM model leads to the nominal fundamental frequency of the spindle system. The spindle frequency results are also validated against the experimental data. The proposed method can be effectively applied to predict the vibration characteristics of spindle systems supported by bearings.
Multi-asset Black-Scholes model as a variable second class constrained dynamical system
Bustamante, M.; Contreras, M.
2016-09-01
In this paper, we study the multi-asset Black-Scholes model from a structural point of view. For this, we interpret the multi-asset Black-Scholes equation as a multidimensional Schrödinger one particle equation. The analysis of the classical Hamiltonian and Lagrangian mechanics associated with this quantum model implies that, in this system, the canonical momentums cannot always be written in terms of the velocities. This feature is a typical characteristic of the constrained system that appears in the high-energy physics. To study this model in the proper form, one must apply Dirac's method for constrained systems. The results of the Dirac's analysis indicate that in the correlation parameters space of the multi-assets model, there exists a surface (called the Kummer surface ΣK, where the determinant of the correlation matrix is null) on which the constraint number can vary. We study in detail the cases with N = 2 and N = 3 assets. For these cases, we calculate the propagator of the multi-asset Black-Scholes equation and show that inside the Kummer ΣK surface the propagator is well defined, but outside ΣK the propagator diverges and the option price is not well defined. On ΣK the propagator is obtained as a constrained path integral and their form depends on which region of the Kummer surface the correlation parameters lie. Thus, the multi-asset Black-Scholes model is an example of a variable constrained dynamical system, and it is a new and beautiful property that had not been previously observed.
Murawski, Jens; Kleine, Eckhard
2017-04-01
Sea ice remains one of the frontiers of ocean modelling and is of vital importance for the correct forecasts of the northern oceans. At large scale, it is commonly considered a continuous medium whose dynamics is modelled in terms of continuum mechanics. Its specifics are a matter of constitutive behaviour which may be characterised as rigid-plastic. The new developed sea ice dynamic module bases on general principles and follows a systematic approach to the problem. Both drift field and stress field are modelled by a variational property. Rigidity is treated by Lagrangian relaxation. Thus one is led to a sensible numerical method. Modelling fast ice remains to be a challenge. It is understood that ridging and the formation of grounded ice keels plays a role in the process. The ice dynamic model includes a parameterisation of the stress associated with grounded ice keels. Shear against the grounded bottom contact might lead to plastic deformation and the loss of integrity. The numerical scheme involves a potentially large system of linear equations which is solved by pre-conditioned iteration. The entire algorithm consists of several components which result from decomposing the problem. The algorithm has been implemented and tested in practice.
Modal aerosol dynamics modeling
Whitby, E.R.; McMurry, P.H.; Shankar, U.; Binkowski, F.S.
1991-02-01
The report presents the governing equations for representing aerosol dynamics, based on several different representations of the aerosol size distribution. Analytical and numerical solution techniques for these governing equations are also reviewed. Described in detail is a computationally efficient numerical technique for simulating aerosol behavior in systems undergoing simultaneous heat transfer, fluid flow, and mass transfer in and between the gas and condensed phases. The technique belongs to a general class of models known as modal aerosol dynamics (MAD) models. These models solve for the temporal and spatial evolution of the particle size distribution function. Computational efficiency is achieved by representing the complete aerosol population as a sum of additive overlapping populations (modes), and solving for the time rate of change of integral moments of each mode. Applications of MAD models for simulating aerosol dynamics in continuous stirred tank aerosol reactors and flow aerosol reactors are provided. For the application to flow aerosol reactors, the discussion is developed in terms of considerations for merging a MAD model with the SIMPLER routine described by Patankar (1980). Considerations for incorporating a MAD model into the U.S. Environmental Protection Agency's Regional Particulate Model are also described. Numerical and analytical techniques for evaluating the size-space integrals of the modal dynamics equations (MDEs) are described. For multimodal logonormal distributions, an analytical expression for the coagulation integrals of the MDEs, applicable for all size regimes, is derived, and is within 20% of accurate numerical evaluation of the same moment coagulation integrals. A computationally efficient integration technique, based on Gauss-Hermite numerical integration, is also derived.
D. A. Eliseev
2015-01-01
Full Text Available The solution stability of an initial boundary problem for a linear hybrid system of differential equations, which models the rotation of a rigid body with two elastic rods located in the same plane is studied in the paper. To an axis passing through the mass center of the rigid body perpendicularly to the rods location plane is applied the stabilizing moment proportional to the angle of the system rotation, derivative of the angle, integral of the angle. The external moment provides a feedback. A method of studying the behavior of solutions of the initial boundary problem is proposed. This method allows to exclude from the hybrid system of differential equations partial differential equations, which describe the dynamics of distributed elements of a mechanical system. It allows us to build one equation for an angle of the system rotation. Its characteristic equation defines the stability of solutions of all the system. In the space of feedback-coefficients the areas that provide the asymptotic stability of solutions of the initial boundary problem are built up.
Melin, Alexander M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kisner, Roger A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fugate, David L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2013-10-01
This report documents the current status of the modeling, control design, and embedded control research for the magnetic bearing canned rotor pump being used as a demonstration platform for deeply integrating instrumentation and controls (I{\\&}C) into nuclear power plant components. This pump is a highly inter-connected thermo/electro/mechanical system that requires an active control system to operate. Magnetic bearings are inherently unstable system and without active, moment by moment control, the rotor would contact fixed surfaces in the pump causing physical damage. This report details the modeling of the pump rotordynamics, fluid forces, electromagnetic properties of the protective cans, active magnetic bearings, power electronics, and interactions between different dynamical models. The system stability of the unforced and controlled rotor are investigated analytically. Additionally, controllers are designed using proportional derivative (PD) control, proportional integral derivative (PID) control, voltage control, and linear quadratic regulator (LQR) control. Finally, a design optimization problem that joins the electrical, mechanical, magnetic, and control system design into one problem to balance the opposing needs of various design criteria using the embedded system approach is presented.
García-Salcedo, Ricardo; Horta-Rangel, Francisco A; Quiros, Israel; Sanchez-Guzmán, Daniel
2015-01-01
The theory of the dynamical systems is a very complex subject which has brought several surprises in the recent past in connection with the theory of chaos and fractals. The application of the tools of the dynamical systems in cosmological settings is less known in spite of the amount of published scientific papers on this subject. In this paper a -- mostly pedagogical -- introduction to the application in cosmology of the basic tools of the dynamical systems theory is presented. It is shown that, in spite of their amazing simplicity, these allow to extract essential information on the asymptotic dynamics of a wide variety of cosmological models. The power of these tools is illustrated within the context of the so called $\\Lambda$CDM and scalar field models of dark energy. This paper is suitable for teachers, undergraduate and postgraduate students from physics and mathematics disciplines.
Jason Fitzgerald Smith
2012-01-01
Full Text Available Analysis of directionally specific or causal interactions between regions in functional magnetic resonance imaging (fMRI data has proliferated. Here we identify six issues with existing effective connectivity methods that need addressed. The issues are discussed within the framework of Linear Dynamic Systems for fMRI (LDSf. The first concerns the use of deterministic models to identify inter-regional effective connectivity. We show that deterministic dynamics are incapable of identifying the trial-to-trial variability typically investigated as the marker of connectivity while stochastic models can capture this variability. The second concerns the simplistic (constant connectivity modeled by most methods. Connectivity parameters of the LDSf model can vary at the same timescale as the input data. Further, extending LDSf to mixtures of multiple models provides more robust connectivity variation. The third concerns the correct identification of the network itself including the number and anatomical origin of the network nodes. Augmentation of the LDSf state space can identify additional nodes of a network. The fourth concerns the locus of the signal used as a node in a network. A novel extension LDSf incorporating sparse canonical correlations can select most relevant voxels from an anatomically defined region based on connectivity. The fifth concerns connection interpretation. Individual parameter differences have received most attention. We present alternative network descriptors of connectivity changes which consider the whole network. The sixth concerns the temporal resolution of fMRI data relative to the timescale of the inter-regional interactions in the brain. LDSf includes an instantaneous connection term to capture connectivity occurring at timescales faster than the data resolution. The LDS framework can also be extended to statistically combine fMRI and EEG data. The LDSf framework is a promising foundation for effective connectivity
Dynamic Interactive Learning Systems
Sabry, Khaled; Barker, Jeff
2009-01-01
This paper reviews and discusses the notions of interactivity and dynamicity of learning systems in relation to information technologies and design principles that can contribute to interactive and dynamic learning. It explores the concept of dynamic interactive learning systems based on the emerging generation of information as part of a…
System dynamic model and charging control of lead-acid battery for stand-alone solar PV system
Huang, B.J.
2010-05-01
The lead-acid battery which is widely used in stand-alone solar system is easily damaged by a poor charging control which causes overcharging. The battery charging control is thus usually designed to stop charging after the overcharge point. This will reduce the storage energy capacity and reduce the service time in electricity supply. The design of charging control system however requires a good understanding of the system dynamic behaviour of the battery first. In the present study, a first-order system dynamics model of lead-acid battery at different operating points near the overcharge voltage was derived experimentally, from which a charging control system based on PI algorithm was developed using PWM charging technique. The feedback control system for battery charging after the overcharge point (14 V) was designed to compromise between the set-point response and the disturbance rejection. The experimental results show that the control system can suppress the battery voltage overshoot within 0.1 V when the solar irradiation is suddenly changed from 337 to 843 W/m2. A long-term outdoor test for a solar LED lighting system shows that the battery voltage never exceeded 14.1 V for the set point 14 V and the control system can prevent the battery from overcharging. The test result also indicates that the control system is able to increase the charged energy by 78%, as compared to the case that the charging stops after the overcharge point (14 V). © 2010 Elsevier Ltd. All rights reserved.