Phase multistability in a dynamical small world network
Energy Technology Data Exchange (ETDEWEB)
Shabunin, A. V., E-mail: shabuninav@info.sgu.ru [Radiophysics and Nonlinear Dynamics Department, Saratov State University, Saratov (Russian Federation)
2015-01-15
The effect of phase multistability is explored in a small world network of periodic oscillators with diffusive couplings. The structure of the network represents a ring with additional non-local links, which spontaneously arise and vanish between arbitrary nodes. The dynamics of random couplings is modeled by “birth” and “death” stochastic processes by means of the cellular automate approach. The evolution of the network under gradual increasing of the number of random couplings goes through stages of phases fluctuations and spatial cluster formation. Finally, in the presence of non-local couplings the phase multistability “dies” and only the in-phase regime survives.
Infection dynamics on spatial small-world network models
Iotti, Bryan; Antonioni, Alberto; Bullock, Seth; Darabos, Christian; Tomassini, Marco; Giacobini, Mario
2017-11-01
The study of complex networks, and in particular of social networks, has mostly concentrated on relational networks, abstracting the distance between nodes. Spatial networks are, however, extremely relevant in our daily lives, and a large body of research exists to show that the distances between nodes greatly influence the cost and probability of establishing and maintaining a link. A random geometric graph (RGG) is the main type of synthetic network model used to mimic the statistical properties and behavior of many social networks. We propose a model, called REDS, that extends energy-constrained RGGs to account for the synergic effect of sharing the cost of a link with our neighbors, as is observed in real relational networks. We apply both the standard Watts-Strogatz rewiring procedure and another method that conserves the degree distribution of the network. The second technique was developed to eliminate unwanted forms of spatial correlation between the degree of nodes that are affected by rewiring, limiting the effect on other properties such as clustering and assortativity. We analyze both the statistical properties of these two network types and their epidemiological behavior when used as a substrate for a standard susceptible-infected-susceptible compartmental model. We consider and discuss the differences in properties and behavior between RGGs and REDS as rewiring increases and as infection parameters are changed. We report considerable differences both between the network types and, in the case of REDS, between the two rewiring schemes. We conclude that REDS represent, with the application of these rewiring mechanisms, extremely useful and interesting tools in the study of social and epidemiological phenomena in synthetic complex networks.
Directory of Open Access Journals (Sweden)
Sinisa Pajevic
2009-01-01
Full Text Available Cascading activity is commonly found in complex systems with directed interactions such as metabolic networks, neuronal networks, or disease spreading in social networks. Substantial insight into a system's organization can be obtained by reconstructing the underlying functional network architecture from the observed activity cascades. Here we focus on Bayesian approaches and reduce their computational demands by introducing the Iterative Bayesian (IB and Posterior Weighted Averaging (PWA methods. We introduce a special case of PWA, cast in nonparametric form, which we call the normalized count (NC algorithm. NC efficiently reconstructs random and small-world functional network topologies and architectures from subcritical, critical, and supercritical cascading dynamics and yields significant improvements over commonly used correlation methods. With experimental data, NC identified a functional and structural small-world topology and its corresponding traffic in cortical networks with neuronal avalanche dynamics.
Stretched exponential dynamics of coupled logistic maps on a small-world network
Mahajan, Ashwini V.; Gade, Prashant M.
2018-02-01
We investigate the dynamic phase transition from partially or fully arrested state to spatiotemporal chaos in coupled logistic maps on a small-world network. Persistence of local variables in a coarse grained sense acts as an excellent order parameter to study this transition. We investigate the phase diagram by varying coupling strength and small-world rewiring probability p of nonlocal connections. The persistent region is a compact region bounded by two critical lines where band-merging crisis occurs. On one critical line, the persistent sites shows a nonexponential (stretched exponential) decay for all p while for another one, it shows crossover from nonexponential to exponential behavior as p → 1 . With an effectively antiferromagnetic coupling, coupling to two neighbors on either side leads to exchange frustration. Apart from exchange frustration, non-bipartite topology and nonlocal couplings in a small-world network could be a reason for anomalous relaxation. The distribution of trap times in asymptotic regime has a long tail as well. The dependence of temporal evolution of persistence on initial conditions is studied and a scaling form for persistence after waiting time is proposed. We present a simple possible model for this behavior.
Dynamics in small worlds of tree topologies of wireless sensor networks
DEFF Research Database (Denmark)
Li, Qiao; Zhang, Baihai; Fan, Zhun
2012-01-01
Tree topologies, which construct spatial graphs with large characteristic path lengths and small clustering coefficients, are ubiquitous in deployments of wireless sensor networks. Small worlds are investigated in tree-based networks. Due to link additions, characteristic path lengths reduce...... rapidly and clustering coefficients increase greatly. A tree abstract, Cayley tree, is considered for the study of the navigation algorithm, which runs automatically in the small worlds of tree-based networks. In the further study, epidemics in the small worlds of tree-based wireless sensor networks...
The dynamic consequences of cooperation and competition in small-world networks.
Directory of Open Access Journals (Sweden)
Iván Y Fernández-Rosales
Full Text Available We present a study of the social dynamics among cooperative and competitive actors interacting on a complex network that has a small-world topology. In this model, the state of each actor depends on its previous state in time, its inertia to change, and the influence of its neighboring actors. Using numerical simulations, we determine how the distribution of final states of the actors and measures of the distances between the values of the actors at local and global levels, depend on the number of cooperative to competitive actors and the connectivity of the actors in the network. We find that similar numbers of cooperative and competitive actors yield the lowest values for the local and global measures of the distances between the values of the actors. On the other hand, when the number of either cooperative or competitive actors dominate the system, then the divergence is largest between the values of the actors. Our findings make new testable predictions on how the dynamics of a conflict depends on the strategies chosen by groups of actors and also have implications for the evolution of behaviors.
Transmission of severe acute respiratory syndrome in dynamical small-world networks
Masuda, Naoki; Konno, Norio; Aihara, Kazuyuki
2004-03-01
The outbreak of severe acute respiratory syndrome (SARS) is still threatening the world because of a possible resurgence. In the current situation that effective medical treatments such as antiviral drugs are not discovered yet, dynamical features of the epidemics should be clarified for establishing strategies for tracing, quarantine, isolation, and regulating social behavior of the public at appropriate costs. Here we propose a network model for SARS epidemics and discuss why superspreaders emerged and why SARS spread especially in hospitals, which were key factors of the recent outbreak. We suggest that superspreaders are biologically contagious patients, and they may amplify the spreads by going to potentially contagious places such as hospitals. To avoid mass transmission in hospitals, it may be a good measure to treat suspected cases without hospitalizing them. Finally, we indicate that SARS probably propagates in small-world networks associated with human contacts and that the biological nature of individuals and social group properties are factors more important than the heterogeneous rates of social contacts among individuals. This is in marked contrast with epidemics of sexually transmitted diseases or computer viruses to which scale-free network models often apply.
Directory of Open Access Journals (Sweden)
Tun-Wei Hsu
Full Text Available Hepatic encephalopathy (HE is a complex neuropsychiatric syndrome and a major complication of liver cirrhosis. Dysmetabolism of the brain, related to elevated ammonia levels, interferes with intercortical connectivity and cognitive function. For evaluation of network efficiency, a 'small-world' network model can quantify the effectiveness of information transfer within brain networks. This study aimed to use small-world topology to investigate abnormalities of neuronal connectivity among widely distributed brain regions in patients with liver cirrhosis using resting-state functional magnetic resonance imaging (rs-fMRI. Seventeen cirrhotic patients without HE, 9 with minimal HE, 9 with overt HE, and 35 healthy controls were compared. The interregional correlation matrix was obtained by averaging the rs-fMRI time series over all voxels in each of the 90 regions using the automated anatomical labeling model. Cost and correlation threshold values were then applied to construct the functional brain network. The absolute and relative network efficiencies were calculated; quantifying distinct aspects of the local and global topological network organization. Correlations between network topology parameters, ammonia levels, and the severity of HE were determined using linear regression and ANOVA. The local and global topological efficiencies of the functional connectivity network were significantly disrupted in HE patients; showing abnormal small-world properties. Alterations in regional characteristics, including nodal efficiency and nodal strength, occurred predominantly in the association, primary, and limbic/paralimbic regions. The degree of network organization disruption depended on the severity of HE. Ammonia levels were also significantly associated with the alterations in local network properties. Results indicated that alterations in the rs-fMRI network topology of the brain were associated with HE grade; and that focal or diffuse lesions
Dynamic Evolution with Limited Learning Information on a Small-World Network
International Nuclear Information System (INIS)
Dong Linrong
2010-01-01
This paper investigates the dynamic evolution with limited learning information on a small-world network. In the system, the information among the interaction players is not very lucid, and the players are not allowed to inspect the profit collected by its neighbors, thus the focal player cannot choose randomly a neighbor or the wealthiest one and compare its payoff to copy its strategy. It is assumed that the information acquainted by the player declines in the form of the exponential with the geographical distance between the players, and a parameter V is introduced to denote the inspect-ability about the players. It is found that under the hospitable conditions, cooperation increases with the randomness and is inhibited by the large connectivity for the prisoner's dilemma; however, cooperation is maximal at the moderate rewiring probability and is chaos with the connectivity for the snowdrift game. For the two games, the acuminous sight is in favor of the cooperation under the hospitable conditions; whereas, the myopic eyes are advantageous to cooperation and cooperation increases with the randomness under the hostile condition. (interdisciplinary physics and related areas of science and technology)
A novel Direct Small World network model
Directory of Open Access Journals (Sweden)
LIN Tao
2016-10-01
Full Text Available There is a certain degree of redundancy and low efficiency of existing computer networks.This paper presents a novel Direct Small World network model in order to optimize networks.In this model,several nodes construct a regular network.Then,randomly choose and replot some nodes to generate Direct Small World network iteratively.There is no change in average distance and clustering coefficient.However,the network performance,such as hops,is improved.The experiments prove that compared to traditional small world network,the degree,average of degree centrality and average of closeness centrality are lower in Direct Small World network.This illustrates that the nodes in Direct Small World networks are closer than Watts-Strogatz small world network model.The Direct Small World can be used not only in the communication of the community information,but also in the research of epidemics.
Blackmail propagation on small-world networks
Shao, Zhi-Gang; Jian-Ping Sang; Zou, Xian-Wu; Tan, Zhi-Jie; Jin, Zhun-Zhi
2005-06-01
The dynamics of the blackmail propagation model based on small-world networks is investigated. It is found that for a given transmitting probability λ the dynamical behavior of blackmail propagation transits from linear growth type to logistical growth one with the network randomness p increases. The transition takes place at the critical network randomness pc=1/N, where N is the total number of nodes in the network. For a given network randomness p the dynamical behavior of blackmail propagation transits from exponential decrease type to logistical growth one with the transmitting probability λ increases. The transition occurs at the critical transmitting probability λc=1/, where is the average number of the nearest neighbors. The present work will be useful for understanding computer virus epidemics and other spreading phenomena on communication and social networks.
Impact of Partial Time Delay on Temporal Dynamics of Watts-Strogatz Small-World Neuronal Networks
Yan, Hao; Sun, Xiaojuan
2017-06-01
In this paper, we mainly discuss effects of partial time delay on temporal dynamics of Watts-Strogatz (WS) small-world neuronal networks by controlling two parameters. One is the time delay τ and the other is the probability of partial time delay pdelay. Temporal dynamics of WS small-world neuronal networks are discussed with the aid of temporal coherence and mean firing rate. With the obtained simulation results, it is revealed that for small time delay τ, the probability pdelay could weaken temporal coherence and increase mean firing rate of neuronal networks, which indicates that it could improve neuronal firings of the neuronal networks while destroying firing regularity. For large time delay τ, temporal coherence and mean firing rate do not have great changes with respect to pdelay. Time delay τ always has great influence on both temporal coherence and mean firing rate no matter what is the value of pdelay. Moreover, with the analysis of spike trains and histograms of interspike intervals of neurons inside neuronal networks, it is found that the effects of partial time delays on temporal coherence and mean firing rate could be the result of locking between the period of neuronal firing activities and the value of time delay τ. In brief, partial time delay could have great influence on temporal dynamics of the neuronal networks.
Epidemics in interconnected small-world networks
Liu, M.; Li, D.; Qin, P.; Liu, C.; Wang, H.; Wang, F.
2015-01-01
Networks can be used to describe the interconnections among individuals, which play an important role in the spread of disease. Although the small-world effect has been found to have a significant impact on epidemics in single networks, the small-world effect on epidemics in interconnected networks
Epidemics in interconnected small-world networks.
Liu, Meng; Li, Daqing; Qin, Pengju; Liu, Chaoran; Wang, Huijuan; Wang, Feilong
2015-01-01
Networks can be used to describe the interconnections among individuals, which play an important role in the spread of disease. Although the small-world effect has been found to have a significant impact on epidemics in single networks, the small-world effect on epidemics in interconnected networks has rarely been considered. Here, we study the susceptible-infected-susceptible (SIS) model of epidemic spreading in a system comprising two interconnected small-world networks. We find that the epidemic threshold in such networks decreases when the rewiring probability of the component small-world networks increases. When the infection rate is low, the rewiring probability affects the global steady-state infection density, whereas when the infection rate is high, the infection density is insensitive to the rewiring probability. Moreover, epidemics in interconnected small-world networks are found to spread at different velocities that depend on the rewiring probability.
Epidemics in interconnected small-world networks.
Directory of Open Access Journals (Sweden)
Meng Liu
Full Text Available Networks can be used to describe the interconnections among individuals, which play an important role in the spread of disease. Although the small-world effect has been found to have a significant impact on epidemics in single networks, the small-world effect on epidemics in interconnected networks has rarely been considered. Here, we study the susceptible-infected-susceptible (SIS model of epidemic spreading in a system comprising two interconnected small-world networks. We find that the epidemic threshold in such networks decreases when the rewiring probability of the component small-world networks increases. When the infection rate is low, the rewiring probability affects the global steady-state infection density, whereas when the infection rate is high, the infection density is insensitive to the rewiring probability. Moreover, epidemics in interconnected small-world networks are found to spread at different velocities that depend on the rewiring probability.
Brain networks: small-worlds, after all?
Energy Technology Data Exchange (ETDEWEB)
Muller, Lyle; Destexhe, Alain; Rudolph-Lilith, Michelle [Unité de Neurosciences, Information et Complexité (UNIC), Centre National de la Recherche Scientifique (CNRS), 1 Avenue de la Terrasse, Gif-sur-Yvette (France)
2014-10-01
Since its introduction, the ‘small-world’ effect has played a central role in network science, particularly in the analysis of the complex networks of the nervous system. From the cellular level to that of interconnected cortical regions, many analyses have revealed small-world properties in the networks of the brain. In this work, we revisit the quantification of small-worldness in neural graphs. We find that neural graphs fall into the ‘borderline’ regime of small-worldness, residing close to that of a random graph, especially when the degree sequence of the network is taken into account. We then apply recently introducted analytical expressions for clustering and distance measures, to study this borderline small-worldness regime. We derive theoretical bounds for the minimal and maximal small-worldness index for a given graph, and by semi-analytical means, study the small-worldness index itself. With this approach, we find that graphs with small-worldness equivalent to that observed in experimental data are dominated by their random component. These results provide the first thorough analysis suggesting that neural graphs may reside far away from the maximally small-world regime. (paper)
Brain networks: small-worlds, after all?
International Nuclear Information System (INIS)
Muller, Lyle; Destexhe, Alain; Rudolph-Lilith, Michelle
2014-01-01
Since its introduction, the ‘small-world’ effect has played a central role in network science, particularly in the analysis of the complex networks of the nervous system. From the cellular level to that of interconnected cortical regions, many analyses have revealed small-world properties in the networks of the brain. In this work, we revisit the quantification of small-worldness in neural graphs. We find that neural graphs fall into the ‘borderline’ regime of small-worldness, residing close to that of a random graph, especially when the degree sequence of the network is taken into account. We then apply recently introducted analytical expressions for clustering and distance measures, to study this borderline small-worldness regime. We derive theoretical bounds for the minimal and maximal small-worldness index for a given graph, and by semi-analytical means, study the small-worldness index itself. With this approach, we find that graphs with small-worldness equivalent to that observed in experimental data are dominated by their random component. These results provide the first thorough analysis suggesting that neural graphs may reside far away from the maximally small-world regime. (paper)
Energy Technology Data Exchange (ETDEWEB)
Wu Hao; Jiang Huijun [Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Hou Zhonghuai, E-mail: hzhlj@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)
2011-10-15
Highlights: > We compare neuronal dynamics in dependence on two types of delayed coupling. > Distinct results induced by different delayed coupling can be achieved. > Time delays in type 1 coupling can induce a most spatiotemporal ordered state. > For type 2 coupling, the systems exhibit synchronization transitions with delay. - Abstract: We investigate temporal coherence and spatial synchronization on small-world networks consisting of noisy Terman-Wang (TW) excitable neurons in dependence on two types of time-delayed coupling: {l_brace}x{sub j}(t - {tau}) - x{sub i}(t){r_brace} and {l_brace}x{sub j}(t - {tau}) - x{sub i}(t - {tau}){r_brace}. For the former case, we show that time delay in the coupling can dramatically enhance temporal coherence and spatial synchrony of the noise-induced spike trains. In addition, if the delay time {tau} is tuned to nearly match the intrinsic spike period of the neuronal network, the system dynamics reaches a most ordered state, which is both periodic in time and nearly synchronized in space, demonstrating an interesting resonance phenomenon with delay. For the latter case, however, we cannot achieve a similar spatiotemporal ordered state, but the neuronal dynamics exhibits interesting synchronization transitions with time delay from zigzag fronts of excitations to dynamic clustering anti-phase synchronization (APS), and further to clustered chimera states which have spatially distributed anti-phase coherence separated by incoherence. Furthermore, we also show how these findings are influenced by the change of the noise intensity and the rewiring probability of the small-world networks. Finally, qualitative analysis is given to illustrate the numerical results.
International Nuclear Information System (INIS)
Wu Hao; Jiang Huijun; Hou Zhonghuai
2011-01-01
Highlights: → We compare neuronal dynamics in dependence on two types of delayed coupling. → Distinct results induced by different delayed coupling can be achieved. → Time delays in type 1 coupling can induce a most spatiotemporal ordered state. → For type 2 coupling, the systems exhibit synchronization transitions with delay. - Abstract: We investigate temporal coherence and spatial synchronization on small-world networks consisting of noisy Terman-Wang (TW) excitable neurons in dependence on two types of time-delayed coupling: {x j (t - τ) - x i (t)} and {x j (t - τ) - x i (t - τ)}. For the former case, we show that time delay in the coupling can dramatically enhance temporal coherence and spatial synchrony of the noise-induced spike trains. In addition, if the delay time τ is tuned to nearly match the intrinsic spike period of the neuronal network, the system dynamics reaches a most ordered state, which is both periodic in time and nearly synchronized in space, demonstrating an interesting resonance phenomenon with delay. For the latter case, however, we cannot achieve a similar spatiotemporal ordered state, but the neuronal dynamics exhibits interesting synchronization transitions with time delay from zigzag fronts of excitations to dynamic clustering anti-phase synchronization (APS), and further to clustered chimera states which have spatially distributed anti-phase coherence separated by incoherence. Furthermore, we also show how these findings are influenced by the change of the noise intensity and the rewiring probability of the small-world networks. Finally, qualitative analysis is given to illustrate the numerical results.
International Nuclear Information System (INIS)
Huang Xu-Hui; Hu Gang
2014-01-01
Phase transitions widely exist in nature and occur when some control parameters are changed. In neural systems, their macroscopic states are represented by the activity states of neuron populations, and phase transitions between different activity states are closely related to corresponding functions in the brain. In particular, phase transitions to some rhythmic synchronous firing states play significant roles on diverse brain functions and disfunctions, such as encoding rhythmical external stimuli, epileptic seizure, etc. However, in previous studies, phase transitions in neuronal networks are almost driven by network parameters (e.g., external stimuli), and there has been no investigation about the transitions between typical activity states of neuronal networks in a self-organized way by applying plastic connection weights. In this paper, we discuss phase transitions in electrically coupled and lattice-based small-world neuronal networks (LBSW networks) under spike-timing-dependent plasticity (STDP). By applying STDP on all electrical synapses, various known and novel phase transitions could emerge in LBSW networks, particularly, the phenomenon of self-organized phase transitions (SOPTs): repeated transitions between synchronous and asynchronous firing states. We further explore the mechanics generating SOPTs on the basis of synaptic weight dynamics. (interdisciplinary physics and related areas of science and technology)
Scaling in small-world resistor networks
International Nuclear Information System (INIS)
Korniss, G.; Hastings, M.B.; Bassler, K.E.; Berryman, M.J.; Kozma, B.; Abbott, D.
2006-01-01
We study the effective resistance of small-world resistor networks. Utilizing recent analytic results for the propagator of the Edwards-Wilkinson process on small-world networks, we obtain the asymptotic behavior of the disorder-averaged two-point resistance in the large system-size limit. We find that the small-world structure suppresses large network resistances: both the average resistance and its standard deviation approaches a finite value in the large system-size limit for any non-zero density of random links. We also consider a scenario where the link conductance decays as a power of the length of the random links, l -α . In this case we find that the average effective system resistance diverges for any non-zero value of α
Hierarchical regular small-world networks
International Nuclear Information System (INIS)
Boettcher, Stefan; Goncalves, Bruno; Guclu, Hasan
2008-01-01
Two new networks are introduced that resemble small-world properties. These networks are recursively constructed but retain a fixed, regular degree. They possess a unique one-dimensional lattice backbone overlaid by a hierarchical sequence of long-distance links, mixing real-space and small-world features. Both networks, one 3-regular and the other 4-regular, lead to distinct behaviors, as revealed by renormalization group studies. The 3-regular network is planar, has a diameter growing as √N with system size N, and leads to super-diffusion with an exact, anomalous exponent d w = 1.306..., but possesses only a trivial fixed point T c = 0 for the Ising ferromagnet. In turn, the 4-regular network is non-planar, has a diameter growing as ∼2 √(log 2 N 2 ) , exhibits 'ballistic' diffusion (d w = 1), and a non-trivial ferromagnetic transition, T c > 0. It suggests that the 3-regular network is still quite 'geometric', while the 4-regular network qualifies as a true small world with mean-field properties. As an engineering application we discuss synchronization of processors on these networks. (fast track communication)
A dynamical characterization of the small world phase
Energy Technology Data Exchange (ETDEWEB)
Araujo, Tanya; Vilela Mendes, R.; Seixas, Joao
2003-12-08
Small-world (SW) networks have been identified in many different fields. Topological coefficients like the clustering coefficient and the characteristic path length have been used in the past for a qualitative characterization of these networks. Here a dynamical approach is used to characterize the small-world phenomenon. Using the Watts-Strogatz {beta}-model, a coupled map dynamical system is defined on the network. Entrance to and exit from the SW phase are related to the behavior of the ergodic invariants of the dynamics.
A dynamical characterization of the small world phase
International Nuclear Information System (INIS)
Araujo, Tanya; Vilela Mendes, R.; Seixas, Joao
2003-01-01
Small-world (SW) networks have been identified in many different fields. Topological coefficients like the clustering coefficient and the characteristic path length have been used in the past for a qualitative characterization of these networks. Here a dynamical approach is used to characterize the small-world phenomenon. Using the Watts-Strogatz β-model, a coupled map dynamical system is defined on the network. Entrance to and exit from the SW phase are related to the behavior of the ergodic invariants of the dynamics
Searching in small-world networks
International Nuclear Information System (INIS)
Moura, Alessandro P.S. de; Motter, Adilson E.; Grebogi, Celso
2003-01-01
We study the average time it takes to find a desired node in the Watts-Strogatz family of networks. We consider the case when the look-up time can be neglected and when it is important, where the look-up time is the time needed to choose one among all the neighboring nodes of a node at each step in the search. We show that in both cases, the search time is minimum in the small-world regime, when an appropriate distance between the nodes is defined. Through an analytical model, we show that the search time scales as N 1/D(D+1) for small-world networks, where N is the number of nodes and D is the dimension of the underlying lattice. This model is shown to be in agreement with numerical simulations
Hodge Decomposition of Information Flow on Small-World Networks.
Haruna, Taichi; Fujiki, Yuuya
2016-01-01
We investigate the influence of the small-world topology on the composition of information flow on networks. By appealing to the combinatorial Hodge theory, we decompose information flow generated by random threshold networks on the Watts-Strogatz model into three components: gradient, harmonic and curl flows. The harmonic and curl flows represent globally circular and locally circular components, respectively. The Watts-Strogatz model bridges the two extreme network topologies, a lattice network and a random network, by a single parameter that is the probability of random rewiring. The small-world topology is realized within a certain range between them. By numerical simulation we found that as networks become more random the ratio of harmonic flow to the total magnitude of information flow increases whereas the ratio of curl flow decreases. Furthermore, both quantities are significantly enhanced from the level when only network structure is considered for the network close to a random network and a lattice network, respectively. Finally, the sum of these two ratios takes its maximum value within the small-world region. These findings suggest that the dynamical information counterpart of global integration and that of local segregation are the harmonic flow and the curl flow, respectively, and that a part of the small-world region is dominated by internal circulation of information flow.
Hodge decomposition of information flow on small-world networks
Directory of Open Access Journals (Sweden)
Taichi Haruna
2016-09-01
Full Text Available We investigate the influence of the small-world topology on the composition of information flow on networks. By appealing to the combinatorial Hodge theory, we decompose information flow generated by random threshold networks on the Watts-Strogatz model into three components: gradient, harmonic and curl flows. The harmonic and curl flows represent globally circular and locally circular components, respectively. The Watts-Strogatz model bridges the two extreme network topologies, a lattice network and a random network, by a single parameter that is the probability of random rewiring. The small-world topology is realized within a certain range between them. By numerical simulation we found that as networks become more random the ratio of harmonic flow to the total magnitude of information flow increases whereas the ratio of curl flow decreases. Furthermore, both quantities are significantly enhanced from the level when only network structure is considered for the network close to a random network and a lattice network, respectively. Finally, the sum of these two ratios takes its maximum value within the small-world region. These findings suggest that the dynamical information counterpart of global integration and that of local segregation are the harmonic flow and the curl flow, respectively, and that a part of the small-world region is dominated by internal circulation of information flow.
Network marketing on a small-world network
Kim, Beom Jun; Jun, Tackseung; Kim, Jeong-Yoo; Choi, M. Y.
2006-02-01
We investigate a dynamic model of network marketing in a small-world network structure artificially constructed similarly to the Watts-Strogatz network model. Different from the traditional marketing, consumers can also play the role of the manufacturer's selling agents in network marketing, which is stimulated by the referral fee the manufacturer offers. As the wiring probability α is increased from zero to unity, the network changes from the one-dimensional regular directed network to the star network where all but one player are connected to one consumer. The price p of the product and the referral fee r are used as free parameters to maximize the profit of the manufacturer. It is observed that at α=0 the maximized profit is constant independent of the network size N while at α≠0, it increases linearly with N. This is in parallel to the small-world transition. It is also revealed that while the optimal value of p stays at an almost constant level in a broad range of α, that of r is sensitive to a change in the network structure. The consumer surplus is also studied and discussed.
Multiobjective Bak-Sneppen model on a small-world network
International Nuclear Information System (INIS)
Elettreby, M.F.
2005-01-01
Small-world networks (SWN) are relevant to biological systems. We study the dynamics of the Bak-Sneppen (BS) model on small-world network, including the concepts of extremal dynamics, multiobjective optimization and coherent noise. We find that the small-world structure stabilizes the system. Also, it is more realistic to augment the Bak-Sneppen model by these concepts
Multiobjective Bak-Sneppen model on a small-world network
International Nuclear Information System (INIS)
Elettreby, M.
2004-09-01
Small-world networks (SWN) are relevant to biological systems. We study the dynamics of the Bak-Sneppen (BS) model on small-world network, including the concepts of extremal dynamics, multiobjective optimization and coherent noise. We find that the small-world structure stabilizes the system. Also, it is more realistic to augment the Bak-Sneppen model by these concepts. (author)
Small-world networks of fuzzy chaotic oscillators
Bucolo, M; Fortuna, L
2003-01-01
Small-world topology has been used to build lattices of nonlinear fuzzy systems. Chaotic units, ruled by linguistic description and with specified Lyapunov exponent, have been realized and connected using linear diffusion coefficient. The dynamic features of the networks versus the number of systems connected have been investigated to underline phenomena like spatiotemporal chaos and complete regularization. The synchronization characteristics in case of sparse long-term connections and the performances comparison with regular and random network configurations are shown.
Constructing a Watts-Strogatz network from a small-world network with symmetric degree distribution.
Menezes, Mozart B C; Kim, Seokjin; Huang, Rongbing
2017-01-01
Though the small-world phenomenon is widespread in many real networks, it is still challenging to replicate a large network at the full scale for further study on its structure and dynamics when sufficient data are not readily available. We propose a method to construct a Watts-Strogatz network using a sample from a small-world network with symmetric degree distribution. Our method yields an estimated degree distribution which fits closely with that of a Watts-Strogatz network and leads into accurate estimates of network metrics such as clustering coefficient and degree of separation. We observe that the accuracy of our method increases as network size increases.
International Nuclear Information System (INIS)
Hasegawa, Hideo
2004-01-01
By extending a dynamical mean-field approximation previously proposed by the author [H. Hasegawa, Phys. Rev. E 67, 041903 (2003)], we have developed a semianalytical theory which takes into account a wide range of couplings in a small-world network. Our network consists of noisy N-unit FitzHugh-Nagumo neurons with couplings whose average coordination number Z may change from local (Z<< N) to global couplings (Z=N-1) and/or whose concentration of random couplings p is allowed to vary from regular (p=0) to completely random (p=1). We have taken into account three kinds of spatial correlations: the on-site correlation, the correlation for a coupled pair, and that for a pair without direct couplings. The original 2N-dimensional stochastic differential equations are transformed to 13-dimensional deterministic differential equations expressed in terms of means, variances, and covariances of state variables. The synchronization ratio and the firing-time precision for an applied single spike have been discussed as functions of Z and p. Our calculations have shown that with increasing p, the synchronization is worse because of increased heterogeneous couplings, although the average network distance becomes shorter. Results calculated by our theory are in good agreement with those by direct simulations
Spatial prisoner's dilemma optimally played in small-world networks
International Nuclear Information System (INIS)
Masuda, Naoki; Aihara, Kazuyuki
2003-01-01
Cooperation is commonly found in ecological and social systems even when it apparently seems that individuals can benefit from selfish behavior. We investigate how cooperation emerges with the spatial prisoner's dilemma played in a class of networks ranging from regular lattices to random networks. We find that, among these networks, small-world topology is the optimal structure when we take into account the speed at which cooperative behavior propagates. Our results may explain why the small-world properties are self-organized in real networks
Small-world networks exhibit pronounced intermittent synchronization
Choudhary, Anshul; Mitra, Chiranjit; Kohar, Vivek; Sinha, Sudeshna; Kurths, Jürgen
2017-11-01
We report the phenomenon of temporally intermittently synchronized and desynchronized dynamics in Watts-Strogatz networks of chaotic Rössler oscillators. We consider topologies for which the master stability function (MSF) predicts stable synchronized behaviour, as the rewiring probability (p) is tuned from 0 to 1. MSF essentially utilizes the largest non-zero Lyapunov exponent transversal to the synchronization manifold in making stability considerations, thereby ignoring the other Lyapunov exponents. However, for an N-node networked dynamical system, we observe that the difference in its Lyapunov spectra (corresponding to the N - 1 directions transversal to the synchronization manifold) is crucial and serves as an indicator of the presence of intermittently synchronized behaviour. In addition to the linear stability-based (MSF) analysis, we further provide global stability estimate in terms of the fraction of state-space volume shared by the intermittently synchronized state, as p is varied from 0 to 1. This fraction becomes appreciably large in the small-world regime, which is surprising, since this limit has been otherwise considered optimal for synchronized dynamics. Finally, we characterize the nature of the observed intermittency and its dominance in state-space as network rewiring probability (p) is varied.
The Efficiency of a Small-World Functional Brain Network
Institute of Scientific and Technical Information of China (English)
ZHAO Qing-Bai; ZHANG Xiao-Fei; SUI Dan-Ni; ZHOU Zhi-Jin; CHEN Qi-Cai; TANG Yi-Yuan
2012-01-01
We investigate whether the small-world topology of a functional brain network means high information processing efficiency by calculating the correlation between the small-world measures of a functional brain network and behavioral reaction during an imagery task.Functional brain networks are constructed by multichannel eventrelated potential data,in which the electrodes are the nodes and the functional connectivities between them are the edges.The results show that the correlation between small-world measures and reaction time is task-specific,such that in global imagery,there is a positive correlation between the clustering coefficient and reaction time,while in local imagery the average path length is positively correlated with the reaction time.This suggests that the efficiency of a functional brain network is task-dependent.%We investigate whether the small-world topology of a functional brain network means high information processing efficiency by calculating the correlation between the small-world measures of a functional brain network and behavioral reaction during an imagery task. Functional brain networks are constructed by multichannel event-related potential data, in which the electrodes are the nodes and the functional connectivities between them are the edges. The results show that the correlation between small-world measures and reaction time is task-specific, such that in global imagery, there is a positive correlation between the clustering coefficient and reaction time, while in local imagery the average path length is positively correlated with the reaction time. This suggests that the efficiency of a functional brain network is task-dependent.
Immunizations on small worlds of tree-based wireless sensor networks
International Nuclear Information System (INIS)
Li Qiao; Zhang Bai-Hai; Cui Ling-Guo; Fan Zhun; Vasilakos Athanasios, V.
2012-01-01
The sensor virus is a serious threat, as an attacker can simply send a single packet to compromise the entire sensor network. Epidemics become drastic with link additions among sensors when the small world phenomena occur. Two immunization strategies, uniform immunization and temporary immunization, are conducted on small worlds of tree-based wireless sensor networks to combat the sensor viruses. With the former strategy, the infection extends exponentially, although the immunization effectively reduces the contagion speed. With the latter strategy, recurrent contagion oscillations occur in the small world when the spatial-temporal dynamics of the epidemic are considered. The oscillations come from the small-world structure and the temporary immunization. Mathematical analyses on the small world of the Cayley tree are presented to reveal the epidemic dynamics with the two immunization strategies. (general)
Dong, Lin-Rong
2010-09-01
This paper investigates the dynamic evolution with limited learning information on a small-world network. In the system, the information among the interaction players is not very lucid, and the players are not allowed to inspect the profit collected by its neighbors, thus the focal player cannot choose randomly a neighbor or the wealthiest one and compare its payoff to copy its strategy. It is assumed that the information acquainted by the player declines in the form of the exponential with the geographical distance between the players, and a parameter V is introduced to denote the inspect-ability about the players. It is found that under the hospitable conditions, cooperation increases with the randomness and is inhibited by the large connectivity for the prisoner's dilemma; however, cooperation is maximal at the moderate rewiring probability and is chaos with the connectivity for the snowdrift game. For the two games, the acuminous sight is in favor of the cooperation under the hospitable conditions; whereas, the myopic eyes are advantageous to cooperation and cooperation increases with the randomness under the hostile condition.
Robust emergence of small-world structure in networks of spiking neurons.
Kwok, Hoi Fei; Jurica, Peter; Raffone, Antonino; van Leeuwen, Cees
2007-03-01
Spontaneous activity in biological neural networks shows patterns of dynamic synchronization. We propose that these patterns support the formation of a small-world structure-network connectivity optimal for distributed information processing. We present numerical simulations with connected Hindmarsh-Rose neurons in which, starting from random connection distributions, small-world networks evolve as a result of applying an adaptive rewiring rule. The rule connects pairs of neurons that tend fire in synchrony, and disconnects ones that fail to synchronize. Repeated application of the rule leads to small-world structures. This mechanism is robustly observed for bursting and irregular firing regimes.
Fastest learning in small-world neural networks
International Nuclear Information System (INIS)
Simard, D.; Nadeau, L.; Kroeger, H.
2005-01-01
We investigate supervised learning in neural networks. We consider a multi-layered feed-forward network with back propagation. We find that the network of small-world connectivity reduces the learning error and learning time when compared to the networks of regular or random connectivity. Our study has potential applications in the domain of data-mining, image processing, speech recognition, and pattern recognition
A small-world network model of facial emotion recognition.
Takehara, Takuma; Ochiai, Fumio; Suzuki, Naoto
2016-01-01
Various models have been proposed to increase understanding of the cognitive basis of facial emotions. Despite those efforts, interactions between facial emotions have received minimal attention. If collective behaviours relating to each facial emotion in the comprehensive cognitive system could be assumed, specific facial emotion relationship patterns might emerge. In this study, we demonstrate that the frameworks of complex networks can effectively capture those patterns. We generate 81 facial emotion images (6 prototypes and 75 morphs) and then ask participants to rate degrees of similarity in 3240 facial emotion pairs in a paired comparison task. A facial emotion network constructed on the basis of similarity clearly forms a small-world network, which features an extremely short average network distance and close connectivity. Further, even if two facial emotions have opposing valences, they are connected within only two steps. In addition, we show that intermediary morphs are crucial for maintaining full network integration, whereas prototypes are not at all important. These results suggest the existence of collective behaviours in the cognitive systems of facial emotions and also describe why people can efficiently recognize facial emotions in terms of information transmission and propagation. For comparison, we construct three simulated networks--one based on the categorical model, one based on the dimensional model, and one random network. The results reveal that small-world connectivity in facial emotion networks is apparently different from those networks, suggesting that a small-world network is the most suitable model for capturing the cognitive basis of facial emotions.
Can recurrence networks show small-world property?
International Nuclear Information System (INIS)
Jacob, Rinku; Harikrishnan, K.P.; Misra, R.; Ambika, G.
2016-01-01
Recurrence networks are complex networks, constructed from time series data, having several practical applications. Though their properties when constructed with the threshold value ϵ chosen at or just above the percolation threshold of the network are quite well understood, what happens as the threshold increases beyond the usual operational window is still not clear from a complex network perspective. The present Letter is focused mainly on the network properties at intermediate-to-large values of the recurrence threshold, for which no systematic study has been performed so far. We argue, with numerical support, that recurrence networks constructed from chaotic attractors with ϵ equal to the usual recurrence threshold or slightly above cannot, in general, show small-world property. However, if the threshold is further increased, the recurrence network topology initially changes to a small-world structure and finally to that of a classical random graph as the threshold approaches the size of the strange attractor. - Highlights: • Properties of recurrence networks at intermediate-to-large values of recurrence threshold are analyzed from a complex network perspective. • Using a combined plot of characteristic path length and clustering coefficient, it is shown that the recurrence network constructed with recurrence threshold equal to or just above the percolation threshold cannot, in general, display small-world property. • As the recurrence threshold is increased from its usual operational window, the resulting network makes a smooth transition initially to a small-world network for an intermediate range of thresholds and finally to the classical random graph as the threshold becomes comparable to the size of the attractor.
Can recurrence networks show small-world property?
Energy Technology Data Exchange (ETDEWEB)
Jacob, Rinku, E-mail: rinku.jacob.vallanat@gmail.com [Department of Physics, The Cochin College, Cochin, 682002 (India); Harikrishnan, K.P., E-mail: kp_hk2002@yahoo.co.in [Department of Physics, The Cochin College, Cochin, 682002 (India); Misra, R., E-mail: rmisra@iucaa.in [Inter University Centre for Astronomy and Astrophysics, Pune, 411007 (India); Ambika, G., E-mail: g.ambika@iiserpune.ac.in [Indian Institute of Science Education and Research, Pune, 411008 (India)
2016-08-12
Recurrence networks are complex networks, constructed from time series data, having several practical applications. Though their properties when constructed with the threshold value ϵ chosen at or just above the percolation threshold of the network are quite well understood, what happens as the threshold increases beyond the usual operational window is still not clear from a complex network perspective. The present Letter is focused mainly on the network properties at intermediate-to-large values of the recurrence threshold, for which no systematic study has been performed so far. We argue, with numerical support, that recurrence networks constructed from chaotic attractors with ϵ equal to the usual recurrence threshold or slightly above cannot, in general, show small-world property. However, if the threshold is further increased, the recurrence network topology initially changes to a small-world structure and finally to that of a classical random graph as the threshold approaches the size of the strange attractor. - Highlights: • Properties of recurrence networks at intermediate-to-large values of recurrence threshold are analyzed from a complex network perspective. • Using a combined plot of characteristic path length and clustering coefficient, it is shown that the recurrence network constructed with recurrence threshold equal to or just above the percolation threshold cannot, in general, display small-world property. • As the recurrence threshold is increased from its usual operational window, the resulting network makes a smooth transition initially to a small-world network for an intermediate range of thresholds and finally to the classical random graph as the threshold becomes comparable to the size of the attractor.
Time reversibility of quantum diffusion in small-world networks
Han, Sung-Guk; Kim, Beom Jun
2012-02-01
We study the time-reversal dynamics of a tight-binding electron in the Watts-Strogatz (WS) small-world networks. The localized initial wave packet at time t = 0 diffuses as time proceeds until the time-reversal operation, together with the momentum perturbation of the strength η, is made at the reversal time T. The time irreversibility is measured by I = |Π( t = 2 T) - Π( t = 0)|, where Π is the participation ratio gauging the extendedness of the wavefunction and for convenience, t is measured forward even after the time reversal. When η = 0, the time evolution after T makes the wavefunction at t = 2 T identical to the one at t = 0, and we find I = 0, implying a null irreversibility or a complete reversibility. On the other hand, as η is increased from zero, the reversibility becomes weaker, and we observe enhancement of the irreversibility. We find that I linearly increases with increasing η in the weakly-perturbed region, and that the irreversibility is much stronger in the WS network than in the local regular network.
Broad-scale small-world network topology induces optimal synchronization of flexible oscillators
International Nuclear Information System (INIS)
Markovič, Rene; Gosak, Marko; Marhl, Marko
2014-01-01
The discovery of small-world and scale-free properties of many man-made and natural complex networks has attracted increasing attention. Of particular interest is how the structural properties of a network facilitate and constrain its dynamical behavior. In this paper we study the synchronization of weakly coupled limit-cycle oscillators in dependence on the network topology as well as the dynamical features of individual oscillators. We show that flexible oscillators, characterized by near zero values of divergence, express maximal correlation in broad-scale small-world networks, whereas the non-flexible (rigid) oscillators are best correlated in more heterogeneous scale-free networks. We found that the synchronization behavior is governed by the interplay between the networks global efficiency and the mutual frequency adaptation. The latter differs for flexible and rigid oscillators. The results are discussed in terms of evolutionary advantages of broad-scale small-world networks in biological systems
Small Worlds in the Tree Topologies of Wireless Sensor Networks
DEFF Research Database (Denmark)
Qiao, Li; Lingguo, Cui; Baihai, Zhang
2010-01-01
In this study, the characteristics of small worlds are investigated in the context of the tree topologies of wireless sensor networks. Tree topologies, which construct spatial graphs with larger characteristic path lengths than random graphs and small clustering coefficients, are ubiquitous...... in wireless sensor networks. Suffering from the link rewiring or the link addition, the characteristic path length of the tree topology reduces rapidly and the clustering coefficient increases greatly. The variety of characteristic path length influences the time synchronization characteristics of wireless...... sensor networks greatly. With the increase of the link rewiring or the link addition probability, the time synchronization error decreases drastically. Two novel protocols named LEACH-SW and TREEPSI-SW are proposed to improve the performances of the sensor networks, in which the small world...
Constructing a Watts-Strogatz network from a small-world network with symmetric degree distribution.
Directory of Open Access Journals (Sweden)
Mozart B C Menezes
Full Text Available Though the small-world phenomenon is widespread in many real networks, it is still challenging to replicate a large network at the full scale for further study on its structure and dynamics when sufficient data are not readily available. We propose a method to construct a Watts-Strogatz network using a sample from a small-world network with symmetric degree distribution. Our method yields an estimated degree distribution which fits closely with that of a Watts-Strogatz network and leads into accurate estimates of network metrics such as clustering coefficient and degree of separation. We observe that the accuracy of our method increases as network size increases.
Scaling and percolation in the small-world network model
Energy Technology Data Exchange (ETDEWEB)
Newman, M. E. J. [Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501 (United States); Watts, D. J. [Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501 (United States)
1999-12-01
In this paper we study the small-world network model of Watts and Strogatz, which mimics some aspects of the structure of networks of social interactions. We argue that there is one nontrivial length-scale in the model, analogous to the correlation length in other systems, which is well-defined in the limit of infinite system size and which diverges continuously as the randomness in the network tends to zero, giving a normal critical point in this limit. This length-scale governs the crossover from large- to small-world behavior in the model, as well as the number of vertices in a neighborhood of given radius on the network. We derive the value of the single critical exponent controlling behavior in the critical region and the finite size scaling form for the average vertex-vertex distance on the network, and, using series expansion and Pade approximants, find an approximate analytic form for the scaling function. We calculate the effective dimension of small-world graphs and show that this dimension varies as a function of the length-scale on which it is measured, in a manner reminiscent of multifractals. We also study the problem of site percolation on small-world networks as a simple model of disease propagation, and derive an approximate expression for the percolation probability at which a giant component of connected vertices first forms (in epidemiological terms, the point at which an epidemic occurs). The typical cluster radius satisfies the expected finite size scaling form with a cluster size exponent close to that for a random graph. All our analytic results are confirmed by extensive numerical simulations of the model. (c) 1999 The American Physical Society.
Scaling and percolation in the small-world network model
International Nuclear Information System (INIS)
Newman, M. E. J.; Watts, D. J.
1999-01-01
In this paper we study the small-world network model of Watts and Strogatz, which mimics some aspects of the structure of networks of social interactions. We argue that there is one nontrivial length-scale in the model, analogous to the correlation length in other systems, which is well-defined in the limit of infinite system size and which diverges continuously as the randomness in the network tends to zero, giving a normal critical point in this limit. This length-scale governs the crossover from large- to small-world behavior in the model, as well as the number of vertices in a neighborhood of given radius on the network. We derive the value of the single critical exponent controlling behavior in the critical region and the finite size scaling form for the average vertex-vertex distance on the network, and, using series expansion and Pade approximants, find an approximate analytic form for the scaling function. We calculate the effective dimension of small-world graphs and show that this dimension varies as a function of the length-scale on which it is measured, in a manner reminiscent of multifractals. We also study the problem of site percolation on small-world networks as a simple model of disease propagation, and derive an approximate expression for the percolation probability at which a giant component of connected vertices first forms (in epidemiological terms, the point at which an epidemic occurs). The typical cluster radius satisfies the expected finite size scaling form with a cluster size exponent close to that for a random graph. All our analytic results are confirmed by extensive numerical simulations of the model. (c) 1999 The American Physical Society
Small-world human brain networks: Perspectives and challenges.
Liao, Xuhong; Vasilakos, Athanasios V; He, Yong
2017-06-01
Modelling the human brain as a complex network has provided a powerful mathematical framework to characterize the structural and functional architectures of the brain. In the past decade, the combination of non-invasive neuroimaging techniques and graph theoretical approaches enable us to map human structural and functional connectivity patterns (i.e., connectome) at the macroscopic level. One of the most influential findings is that human brain networks exhibit prominent small-world organization. Such a network architecture in the human brain facilitates efficient information segregation and integration at low wiring and energy costs, which presumably results from natural selection under the pressure of a cost-efficiency balance. Moreover, the small-world organization undergoes continuous changes during normal development and ageing and exhibits dramatic alterations in neurological and psychiatric disorders. In this review, we survey recent advances regarding the small-world architecture in human brain networks and highlight the potential implications and applications in multidisciplinary fields, including cognitive neuroscience, medicine and engineering. Finally, we highlight several challenging issues and areas for future research in this rapidly growing field. Copyright © 2017 Elsevier Ltd. All rights reserved.
Phase synchronization on small-world networks with community structure
International Nuclear Information System (INIS)
Xiao-Hua, Wang; Li-Cheng, Jiao; Jian-She, Wu
2010-01-01
In this paper, we propose a simple model that can generate small-world network with community structure. The network is introduced as a tunable community organization with parameter r, which is directly measured by the ratio of inter- to intra-community connectivity, and a smaller r corresponds to a stronger community structure. The structure properties, including the degree distribution, clustering, the communication efficiency and modularity are also analysed for the network. In addition, by using the Kuramoto model, we investigated the phase synchronization on this network, and found that increasing the fuzziness of community structure will markedly enhance the network synchronizability; however, in an abnormal region (r ≤ 0.001), the network has even worse synchronizability than the case of isolated communities (r = 0). Furthermore, this network exhibits a remarkable synchronization behaviour in topological scales: the oscillators of high densely interconnected communities synchronize more easily, and more rapidly than the whole network. (general)
Structure of Small World Innovation Network and Learning Performance
Directory of Open Access Journals (Sweden)
Shuang Song
2014-01-01
Full Text Available This paper examines the differences of learning performance of 5 MNCs (multinational corporations that filed the largest number of patents in China. We establish the innovation network with the patent coauthorship data by these 5 MNCs and classify the networks by the tail of distribution curve of connections. To make a comparison of the learning performance of these 5 MNCs with differing network structures, we develop an organization learning model by regarding the reality as having m dimensions, which denotes the heterogeneous knowledge about the reality. We further set n innovative individuals that are mutually interactive and own unique knowledge about the reality. A longer (shorter distance between the knowledge of the individual and the reality denotes a lower (higher knowledge level of that individual. Individuals interact with and learn from each other within the small-world network. By making 1,000 numerical simulations and averaging the simulated results, we find that the differing structure of the small-world network leads to the differences of learning performance between these 5 MNCs. The network monopolization negatively impacts and network connectivity positively impacts learning performance. Policy implications in the conclusion section suggest that to improve firm learning performance, it is necessary to establish a flat and connective network.
Growing Homophilic Networks Are Natural Navigable Small Worlds.
Malkov, Yury A; Ponomarenko, Alexander
2016-01-01
Navigability, an ability to find a logarithmically short path between elements using only local information, is one of the most fascinating properties of real-life networks. However, the exact mechanism responsible for the formation of navigation properties remained unknown. We show that navigability can be achieved by using only two ingredients present in the majority of networks: network growth and local homophily, giving a persuasive answer how the navigation appears in real-life networks. A very simple algorithm produces hierarchical self-similar optimally wired navigable small world networks with exponential degree distribution by using only local information. Adding preferential attachment produces a scale-free network which has shorter greedy paths, but worse (power law) scaling of the information extraction locality (algorithmic complexity of a search). Introducing saturation of the preferential attachment leads to truncated scale-free degree distribution that offers a good tradeoff between these parameters and can be useful for practical applications. Several features of the model are observed in real-life networks, in particular in the brain neural networks, supporting the earlier suggestions that they are navigable.
Growing Homophilic Networks Are Natural Navigable Small Worlds.
Directory of Open Access Journals (Sweden)
Yury A Malkov
Full Text Available Navigability, an ability to find a logarithmically short path between elements using only local information, is one of the most fascinating properties of real-life networks. However, the exact mechanism responsible for the formation of navigation properties remained unknown. We show that navigability can be achieved by using only two ingredients present in the majority of networks: network growth and local homophily, giving a persuasive answer how the navigation appears in real-life networks. A very simple algorithm produces hierarchical self-similar optimally wired navigable small world networks with exponential degree distribution by using only local information. Adding preferential attachment produces a scale-free network which has shorter greedy paths, but worse (power law scaling of the information extraction locality (algorithmic complexity of a search. Introducing saturation of the preferential attachment leads to truncated scale-free degree distribution that offers a good tradeoff between these parameters and can be useful for practical applications. Several features of the model are observed in real-life networks, in particular in the brain neural networks, supporting the earlier suggestions that they are navigable.
Disease spreading with epidemic alert on small-world networks
International Nuclear Information System (INIS)
Han, Xiao-Pu
2007-01-01
Base on two-dimension small-world networks, a susceptible-infected model with epidemic alert is proposed in this Letter. In this model, if some parts of the network are alarmed as dangerous, a fraction of edges between the alarmed parts and others will be removed, and two cases of alerting rules that the degree and frequency of contacts kept unchanged are considered respectively. The numerical simulations show that the spreading velocity is reduced by the accurate and timely epidemic alert, and the more accurate and timely, the stronger the deceleration effect. This model indicates that to broadcast epidemic alert timely is helpful and necessary in the control of epidemic spreading, and in agreement with the general view of epidemic alert. This work is helpful to understand the effects of epidemic alert on disease spreading
Damage Spreading in Spatial and Small-world Random Boolean Networks
Energy Technology Data Exchange (ETDEWEB)
Lu, Qiming [Fermilab; Teuscher, Christof [Portland State U.
2014-02-18
The study of the response of complex dynamical social, biological, or technological networks to external perturbations has numerous applications. Random Boolean Networks (RBNs) are commonly used a simple generic model for certain dynamics of complex systems. Traditionally, RBNs are interconnected randomly and without considering any spatial extension and arrangement of the links and nodes. However, most real-world networks are spatially extended and arranged with regular, power-law, small-world, or other non-random connections. Here we explore the RBN network topology between extreme local connections, random small-world, and pure random networks, and study the damage spreading with small perturbations. We find that spatially local connections change the scaling of the relevant component at very low connectivities ($\\bar{K} \\ll 1$) and that the critical connectivity of stability $K_s$ changes compared to random networks. At higher $\\bar{K}$, this scaling remains unchanged. We also show that the relevant component of spatially local networks scales with a power-law as the system size N increases, but with a different exponent for local and small-world networks. The scaling behaviors are obtained by finite-size scaling. We further investigate the wiring cost of the networks. From an engineering perspective, our new findings provide the key design trade-offs between damage spreading (robustness), the network's wiring cost, and the network's communication characteristics.
Small-world topology of functional connectivity in randomly connected dynamical systems
Czech Academy of Sciences Publication Activity Database
Hlinka, Jaroslav; Hartman, David; Paluš, Milan
2012-01-01
Roč. 22, č. 3 (2012), art no 033107 ISSN 1054-1500 R&D Projects: GA ČR GCP103/11/J068 Institutional support: RVO:67985807 Keywords : graph theory * nonlinear dynamical systems * small-world networks Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.188, year: 2012
Critical behavior of the contact process on small-world networks
Ferreira, Ronan S.; Ferreira, Silvio C.
2013-11-01
We investigate the role of clustering on the critical behavior of the contact process (CP) on small-world networks using the Watts-Strogatz (WS) network model with an edge rewiring probability p. The critical point is well predicted by a homogeneous cluster-approximation for the limit of vanishing clustering ( p → 1). The critical exponents and dimensionless moment ratios of the CP are in agreement with those predicted by the mean-field theory for any p > 0. This independence on the network clustering shows that the small-world property is a sufficient condition for the mean-field theory to correctly predict the universality of the model. Moreover, we compare the CP dynamics on WS networks with rewiring probability p = 1 and random regular networks and show that the weak heterogeneity of the WS network slightly changes the critical point but does not alter other critical quantities of the model.
Extraction of network topology from multi-electrode recordings: Is there a small-world effect?
Directory of Open Access Journals (Sweden)
Felipe eGerhard
2011-02-01
Full Text Available The simultaneous recording of the activity of many neurons poses challenges for multivariate data analysis. Here, we propose a general scheme of reconstruction of the functional network from spike train recordings. Effective, causal interactions are estimated by fitting Generalized Linear Models (GLMs on the neural responses, incorporating effects of the neurons' self-history, of input from other neurons in the recorded network and of modulation by an external stimulus. The coupling terms arising from synaptic input can be transformed by thresholding into a binary connectivity matrix which is directed. Each link between two neurons represents a causal influence from one neuron to the other, given the observation of all other neurons from the population. The resulting graph is analyzed with respect to small-world and scale-free properties using quantitative measures for directed networks. Such graph-theoretic analyses have been performed on many complex dynamic networks, including the connectivity structure between different brain areas. Only few studies have attempted to look at the structure of cortical neural networks on the level of individual neurons. Here, using multi-electrode recordings from the visual system of the awake monkey, we find that cortical networks lack scale-free behavior, but show a small, but significant small-world structure. Assuming a simple distance-dependent probabilistic wiring between neurons, we find that this connectivity structure can account for all of the networks' observed small-world-ness. Moreover, for multi-electrode recordings the sampling of neurons is not uniform across the population. We show that the small-world-ness obtained by such a localized sub-sampling overestimates the strength of the true small-world-structure of the network. This bias is likely to be present in all previous experiments based on multi-electrode recordings.
Stability of the spreading in small-world network with predictive controller
International Nuclear Information System (INIS)
Bao, Z.J.; Jiang, Q.Y.; Yan, W.J.; Cao, Y.J.
2010-01-01
In this Letter, we apply the predictive control strategy to suppress the propagation of diseases or viruses in small-world network. The stability of small-world spreading model with predictive controller is investigated. The sufficient and necessary stability condition is given, which is closely related to the controller parameters and small-world rewiring probability p. Our simulations discover a phenomenon that, with the fixed predictive controller parameters, the spreading dynamics become more and more stable when p decreases from a larger value to a smaller one, and the suitable controller parameters can effectively suppress the spreading behaviors even when p varies within the whole spectrum, and the unsuitable controller parameters can lead to oscillation when p lies within a certain range.
Algebraic approach to small-world network models
Rudolph-Lilith, Michelle; Muller, Lyle E.
2014-01-01
We introduce an analytic model for directed Watts-Strogatz small-world graphs and deduce an algebraic expression of its defining adjacency matrix. The latter is then used to calculate the small-world digraph's asymmetry index and clustering coefficient in an analytically exact fashion, valid nonasymptotically for all graph sizes. The proposed approach is general and can be applied to all algebraically well-defined graph-theoretical measures, thus allowing for an analytical investigation of finite-size small-world graphs.
Boaretto, B. R. R.; Budzinski, R. C.; Prado, T. L.; Kurths, J.; Lopes, S. R.
2018-05-01
It is known that neural networks under small-world topology can present anomalous synchronization and nonstationary behavior for weak coupling regimes. Here, we propose methods to suppress the anomalous synchronization and also to diminish the nonstationary behavior occurring in weakly coupled neural network under small-world topology. We consider a network of 2000 thermally sensitive identical neurons, based on the model of Hodgkin-Huxley in a small-world topology, with the probability of adding non local connection equal to p = 0 . 001. Based on experimental protocols to suppress anomalous synchronization, as well as nonstationary behavior of the neural network dynamics, we make use of (i) external stimulus (pulsed current); (ii) biologic parameters changing (neuron membrane conductance changes); and (iii) body temperature changes. Quantification analysis to evaluate phase synchronization makes use of the Kuramoto's order parameter, while recurrence quantification analysis, particularly the determinism, computed over the easily accessible mean field of network, the local field potential (LFP), is used to evaluate nonstationary states. We show that the methods proposed can control the anomalous synchronization and nonstationarity occurring for weak coupling parameter without any effect on the individual neuron dynamics, neither in the expected asymptotic synchronized states occurring for large values of the coupling parameter.
Chaos in complex motor networks induced by Newman—Watts small-world connections
International Nuclear Information System (INIS)
Wei Du-Qu; Luo Xiao-Shu; Zhang Bo
2011-01-01
We investigate how dynamical behaviours of complex motor networks depend on the Newman—Watts small-world (NWSW) connections. Network elements are described by the permanent magnet synchronous motor (PMSM) with the values of parameters at which each individual PMSM is stable. It is found that with the increase of connection probability p, the motor in networks becomes periodic and falls into chaotic motion as p further increases. These phenomena imply that NWSW connections can induce and enhance chaos in motor networks. The possible mechanism behind the action of NWSW connections is addressed based on stability theory. (interdisciplinary physics and related areas of science and technology)
Small-world effect induced by weight randomization on regular networks
International Nuclear Information System (INIS)
Li, Menghui; Fan, Ying; Wang, Dahui; Li, Daqing; Wu, Jinshan; Di, Zengru
2007-01-01
The concept of edge weight provides additional depth for describing and adjusting the properties of networks. Redistribution of edge weight can effectively change the properties of networks even though the corresponding binary topology remains unchanged. Based on regular networks with initially homogeneous dissimilarity weights, random redistribution of edge weight can be enough to induce small world phenomena. The effects of random weight redistribution on both static properties and dynamical models of networks are investigated. The results reveal that randomization of weight can enhance the ability of synchronization of chaotic systems dramatically
Two-dimensional small-world networks: Navigation with local information
International Nuclear Information System (INIS)
Chen Jianzhen; Liu Wei; Zhu Jianyang
2006-01-01
A navigation process is studied on a variant of the Watts-Strogatz small-world network model embedded on a square lattice. With probability p, each vertex sends out a long-range link, and the probability of the other end of this link falling on a vertex at lattice distance r away decays as r -α . Vertices on the network have knowledge of only their nearest neighbors. In a navigation process, messages are forwarded to a designated target. For α 1, a dynamic small world effect is observed, and the behavior of the scaling function at large enough pL is obtained. At α=2 and 3, this kind of scaling breaks down, and different functions of the average actual path length are obtained. For α>3, the average actual path length is nearly linear with network size
Optimal convergence in naming game with geography-based negotiation on small-world networks
Energy Technology Data Exchange (ETDEWEB)
Liu Runran, E-mail: runran@mail.ustc.edu.c [Department of Modern Physics and Nonlinear Science Center, University of Science and Technology of China, Hefei Anhui 230026 (China); Wang Wenxu [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287 (United States); Lai Yingcheng [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287 (United States); Department of Physics, Arizona State University, Tempe, AZ 85287 (United States); Chen Guanrong [Department of Electronic Engineering, City University of Hong Kong, Hong Kong (Hong Kong); Wang Binghong [Department of Modern Physics and Nonlinear Science Center, University of Science and Technology of China, Hefei Anhui 230026 (China); Research Center for Complex System Science, University of Shanghai for Science and Technology and Shanghai Academy of System Science, Shanghai 200093 (China)
2011-01-17
We propose a negotiation strategy to address the effect of geography on the dynamics of naming games over small-world networks. Communication and negotiation frequencies between two agents are determined by their geographical distance in terms of a parameter characterizing the correlation between interaction strength and the distance. A finding is that there exists an optimal parameter value leading to fastest convergence to global consensus on naming. Numerical computations and a theoretical analysis are provided to substantiate our findings.
Optimal convergence in naming game with geography-based negotiation on small-world networks
International Nuclear Information System (INIS)
Liu Runran; Wang Wenxu; Lai Yingcheng; Chen Guanrong; Wang Binghong
2011-01-01
We propose a negotiation strategy to address the effect of geography on the dynamics of naming games over small-world networks. Communication and negotiation frequencies between two agents are determined by their geographical distance in terms of a parameter characterizing the correlation between interaction strength and the distance. A finding is that there exists an optimal parameter value leading to fastest convergence to global consensus on naming. Numerical computations and a theoretical analysis are provided to substantiate our findings.
Influence of choice of null network on small-world parameters of structural correlation networks.
Directory of Open Access Journals (Sweden)
S M Hadi Hosseini
Full Text Available In recent years, coordinated variations in brain morphology (e.g., volume, thickness have been employed as a measure of structural association between brain regions to infer large-scale structural correlation networks. Recent evidence suggests that brain networks constructed in this manner are inherently more clustered than random networks of the same size and degree. Thus, null networks constructed by randomizing topology are not a good choice for benchmarking small-world parameters of these networks. In the present report, we investigated the influence of choice of null networks on small-world parameters of gray matter correlation networks in healthy individuals and survivors of acute lymphoblastic leukemia. Three types of null networks were studied: 1 networks constructed by topology randomization (TOP, 2 networks matched to the distributional properties of the observed covariance matrix (HQS, and 3 networks generated from correlation of randomized input data (COR. The results revealed that the choice of null network not only influences the estimated small-world parameters, it also influences the results of between-group differences in small-world parameters. In addition, at higher network densities, the choice of null network influences the direction of group differences in network measures. Our data suggest that the choice of null network is quite crucial for interpretation of group differences in small-world parameters of structural correlation networks. We argue that none of the available null models is perfect for estimation of small-world parameters for correlation networks and the relative strengths and weaknesses of the selected model should be carefully considered with respect to obtained network measures.
Influence of Choice of Null Network on Small-World Parameters of Structural Correlation Networks
Hosseini, S. M. Hadi; Kesler, Shelli R.
2013-01-01
In recent years, coordinated variations in brain morphology (e.g., volume, thickness) have been employed as a measure of structural association between brain regions to infer large-scale structural correlation networks. Recent evidence suggests that brain networks constructed in this manner are inherently more clustered than random networks of the same size and degree. Thus, null networks constructed by randomizing topology are not a good choice for benchmarking small-world parameters of these networks. In the present report, we investigated the influence of choice of null networks on small-world parameters of gray matter correlation networks in healthy individuals and survivors of acute lymphoblastic leukemia. Three types of null networks were studied: 1) networks constructed by topology randomization (TOP), 2) networks matched to the distributional properties of the observed covariance matrix (HQS), and 3) networks generated from correlation of randomized input data (COR). The results revealed that the choice of null network not only influences the estimated small-world parameters, it also influences the results of between-group differences in small-world parameters. In addition, at higher network densities, the choice of null network influences the direction of group differences in network measures. Our data suggest that the choice of null network is quite crucial for interpretation of group differences in small-world parameters of structural correlation networks. We argue that none of the available null models is perfect for estimation of small-world parameters for correlation networks and the relative strengths and weaknesses of the selected model should be carefully considered with respect to obtained network measures. PMID:23840672
Synchronization and Control of Halo-Chaos in Beam Transport Network with Small World Topology
International Nuclear Information System (INIS)
Liu Qiang; Fang Jinqing; Li Yong
2007-01-01
The synchronous conditions of two kinds of the small-world (SW) network are studied. The small world topology can affect on dynamical behaviors of the beam transport network (BTN) largely, if the BTN is constructed with the SW topology, the global linear coupling and special linear feedback can realize the synchronization control of beam halo-chaos as well as periodic state in the BTN with the SW topology, respectively. This important result can provide an effective way for the experimental study and the engineering design of the BTN in the high-current accelerator driven radioactive clean nuclear power systems, and may have potential use in prospective applications for halo-chaos secure communication.
Network 'small-world-ness': a quantitative method for determining canonical network equivalence.
Directory of Open Access Journals (Sweden)
Mark D Humphries
Full Text Available BACKGROUND: Many technological, biological, social, and information networks fall into the broad class of 'small-world' networks: they have tightly interconnected clusters of nodes, and a shortest mean path length that is similar to a matched random graph (same number of nodes and edges. This semi-quantitative definition leads to a categorical distinction ('small/not-small' rather than a quantitative, continuous grading of networks, and can lead to uncertainty about a network's small-world status. Moreover, systems described by small-world networks are often studied using an equivalent canonical network model--the Watts-Strogatz (WS model. However, the process of establishing an equivalent WS model is imprecise and there is a pressing need to discover ways in which this equivalence may be quantified. METHODOLOGY/PRINCIPAL FINDINGS: We defined a precise measure of 'small-world-ness' S based on the trade off between high local clustering and short path length. A network is now deemed a 'small-world' if S>1--an assertion which may be tested statistically. We then examined the behavior of S on a large data-set of real-world systems. We found that all these systems were linked by a linear relationship between their S values and the network size n. Moreover, we show a method for assigning a unique Watts-Strogatz (WS model to any real-world network, and show analytically that the WS models associated with our sample of networks also show linearity between S and n. Linearity between S and n is not, however, inevitable, and neither is S maximal for an arbitrary network of given size. Linearity may, however, be explained by a common limiting growth process. CONCLUSIONS/SIGNIFICANCE: We have shown how the notion of a small-world network may be quantified. Several key properties of the metric are described and the use of WS canonical models is placed on a more secure footing.
Stability of a neural network model with small-world connections
International Nuclear Information System (INIS)
Li Chunguang; Chen Guanrong
2003-01-01
Small-world networks are highly clustered networks with small distances among the nodes. There are many biological neural networks that present this kind of connection. There are no special weightings in the connections of most existing small-world network models. However, this kind of simply connected model cannot characterize biological neural networks, in which there are different weights in synaptic connections. In this paper, we present a neural network model with weighted small-world connections and further investigate the stability of this model
Synchronizations in small-world networks of spiking neurons: Diffusive versus sigmoid couplings
International Nuclear Information System (INIS)
Hasegawa, Hideo
2005-01-01
By using a semianalytical dynamical mean-field approximation previously proposed by the author [H. Hasegawa, Phys. Rev. E 70, 066107 (2004)], we have studied the synchronization of stochastic, small-world (SW) networks of FitzHugh-Nagumo neurons with diffusive couplings. The difference and similarity between results for diffusive and sigmoid couplings have been discussed. It has been shown that with introducing the weak heterogeneity to regular networks, the synchronization may be slightly increased for diffusive couplings, while it is decreased for sigmoid couplings. This increase in the synchronization for diffusive couplings is shown to be due to their local, negative feedback contributions, but not due to the short average distance in SW networks. Synchronization of SW networks depends not only on their structure but also on the type of couplings
Local stability and Hopf bifurcation in small-world delayed networks
International Nuclear Information System (INIS)
Li Chunguang; Chen Guanrong
2004-01-01
The notion of small-world networks, recently introduced by Watts and Strogatz, has attracted increasing interest in studying the interesting properties of complex networks. Notice that, a signal or influence travelling on a small-world network often is associated with time-delay features, which are very common in biological and physical networks. Also, the interactions within nodes in a small-world network are often nonlinear. In this paper, we consider a small-world networks model with nonlinear interactions and time delays, which was recently considered by Yang. By choosing the nonlinear interaction strength as a bifurcation parameter, we prove that Hopf bifurcation occurs. We determine the stability of the bifurcating periodic solutions and the direction of the Hopf bifurcation by applying the normal form theory and the center manifold theorem. Finally, we show a numerical example to verify the theoretical analysis
Local stability and Hopf bifurcation in small-world delayed networks
Energy Technology Data Exchange (ETDEWEB)
Li Chunguang E-mail: cgli@uestc.edu.cn; Chen Guanrong E-mail: gchen@ee.cityu.edu.hk
2004-04-01
The notion of small-world networks, recently introduced by Watts and Strogatz, has attracted increasing interest in studying the interesting properties of complex networks. Notice that, a signal or influence travelling on a small-world network often is associated with time-delay features, which are very common in biological and physical networks. Also, the interactions within nodes in a small-world network are often nonlinear. In this paper, we consider a small-world networks model with nonlinear interactions and time delays, which was recently considered by Yang. By choosing the nonlinear interaction strength as a bifurcation parameter, we prove that Hopf bifurcation occurs. We determine the stability of the bifurcating periodic solutions and the direction of the Hopf bifurcation by applying the normal form theory and the center manifold theorem. Finally, we show a numerical example to verify the theoretical analysis.
Immunizations on small worlds of tree-based wireless sensor networks
DEFF Research Database (Denmark)
Li, Qiao; Zhang, Bai-Hai; Cui, Ling-Guo
2012-01-01
, are conducted on small worlds of tree-based wireless sensor networks to combat the sensor viruses. With the former strategy, the infection extends exponentially, although the immunization effectively reduces the contagion speed. With the latter strategy, recurrent contagion oscillations occur in the small world......The sensor virus is a serious threat, as an attacker can simply send a single packet to compromise the entire sensor network. Epidemics become drastic with link additions among sensors when the small world phenomena occur. Two immunization strategies, uniform immunization and temporary immunization...
An effective method to improve the robustness of small-world networks under attack
International Nuclear Information System (INIS)
Zhang Zheng-Zhen; Xu Wen-Jun; Lin Jia-Ru; Zeng Shang-You
2014-01-01
In this study, the robustness of small-world networks to three types of attack is investigated. Global efficiency is introduced as the network coefficient to measure the robustness of a small-world network. The simulation results prove that an increase in rewiring probability or average degree can enhance the robustness of the small-world network under all three types of attack. The effectiveness of simultaneously increasing both rewiring probability and average degree is also studied, and the combined increase is found to significantly improve the robustness of the small-world network. Furthermore, the combined effect of rewiring probability and average degree on network robustness is shown to be several times greater than that of rewiring probability or average degree individually. This means that small-world networks with a relatively high rewiring probability and average degree have advantages both in network communications and in good robustness to attacks. Therefore, simultaneously increasing rewiring probability and average degree is an effective method of constructing realistic networks. Consequently, the proposed method is useful to construct efficient and robust networks in a realistic scenario. (interdisciplinary physics and related areas of science and technology)
Storage capacity and retrieval time of small-world neural networks
International Nuclear Information System (INIS)
Oshima, Hiraku; Odagaki, Takashi
2007-01-01
To understand the influence of structure on the function of neural networks, we study the storage capacity and the retrieval time of Hopfield-type neural networks for four network structures: regular, small world, random networks generated by the Watts-Strogatz (WS) model, and the same network as the neural network of the nematode Caenorhabditis elegans. Using computer simulations, we find that (1) as the randomness of network is increased, its storage capacity is enhanced; (2) the retrieval time of WS networks does not depend on the network structure, but the retrieval time of C. elegans's neural network is longer than that of WS networks; (3) the storage capacity of the C. elegans network is smaller than that of networks generated by the WS model, though the neural network of C. elegans is considered to be a small-world network
Graph analysis of structural brain networks in Alzheimer's disease: beyond small world properties.
John, Majnu; Ikuta, Toshikazu; Ferbinteanu, Janina
2017-03-01
Changes in brain connectivity in patients with early Alzheimer's disease (AD) have been investigated using graph analysis. However, these studies were based on small data sets, explored a limited range of network parameters, and did not focus on more restricted sub-networks, where neurodegenerative processes may introduce more prominent alterations. In this study, we constructed structural brain networks out of 87 regions using data from 135 healthy elders and 100 early AD patients selected from the Open Access Series of Imaging Studies (OASIS) database. We evaluated the graph properties of these networks by investigating metrics of network efficiency, small world properties, segregation, product measures of complexity, and entropy. Because degenerative processes take place at different rates in different brain areas, analysis restricted to sub-networks may reveal changes otherwise undetected. Therefore, we first analyzed the graph properties of a network encompassing all brain areas considered together, and then repeated the analysis after dividing the brain areas into two sub-networks constructed by applying a clustering algorithm. At the level of large scale network, the analysis did not reveal differences between AD patients and controls. In contrast, the same analysis performed on the two sub-networks revealed that small worldness diminished with AD only in the sub-network containing the areas of medial temporal lobe known to be heaviest and earliest affected. The second sub-network, which did not present significant AD-induced modifications of 'classical' small world parameters, nonetheless showed a trend towards an increase in small world propensity, a novel metric that unbiasedly quantifies small world structure. Beyond small world properties, complexity and entropy measures indicated that the intricacy of connection patterns and structural diversity decreased in both sub-networks. These results show that neurodegenerative processes impact volumetric
Optimal network structure to induce the maximal small-world effect
International Nuclear Information System (INIS)
Zhang Zheng-Zhen; Xu Wen-Jun; Lin Jia-Ru; Zeng Shang-You
2014-01-01
In this paper, the general efficiency, which is the average of the global efficiency and the local efficiency, is defined to measure the communication efficiency of a network. The increasing ratio of the general efficiency of a small-world network relative to that of the corresponding regular network is used to measure the small-world effect quantitatively. The more considerable the small-world effect, the higher the general efficiency of a network with a certain cost is. It is shown that the small-world effect increases monotonically with the increase of the vertex number. The optimal rewiring probability to induce the best small-world effect is approximately 0.02 and the optimal average connection probability decreases monotonically with the increase of the vertex number. Therefore, the optimal network structure to induce the maximal small-world effect is the structure with the large vertex number (> 500), the small rewiring probability (≍ 0.02) and the small average connection probability (< 0.1). Many previous research results support our results. (interdisciplinary physics and related areas of science and technology)
Lehmann, Jörg; Bernasconi, Jakob
2017-03-01
The redistribution of electrical currents in resistor networks after single-bond failures is analyzed in terms of current-redistribution factors that are shown to depend only on the topology of the network and on the values of the bond resistances. We investigate the properties of these current-redistribution factors for regular network topologies (e.g., d-dimensional hypercubic lattices) as well as for small-world networks. In particular, we find that the statistics of the current redistribution factors exhibits a fat-tail behavior, which reflects the long-range nature of the current redistribution as determined by Kirchhoff's circuit laws.
Cognition Is Related to Resting-State Small-World Network Topology: An Magnetoencephalographic Study
Douw, L.; Schoonheim, M.M.; Landi, D.; van der Meer, M.L.; Geurts, J.J.G.; Reijneveld, J.C.; Klein, M.; Stam, C.J.
2011-01-01
Brain networks and cognition have recently begun to attract attention: studies suggest that more efficiently wired resting-state brain networks are indeed correlated with better cognitive performance. "Small-world" brain networks combine local segregation with global integration, hereby subserving
Complex Behavior in a Selective Aging Neuron Model Based on Small World Networks
International Nuclear Information System (INIS)
Zhang Guiqing; Chen Tianlun
2008-01-01
Complex behavior in a selective aging simple neuron model based on small world networks is investigated. The basic elements of the model are endowed with the main features of a neuron function. The structure of the selective aging neuron model is discussed. We also give some properties of the new network and find that the neuron model displays a power-law behavior. If the brain network is small world-like network, the mean avalanche size is almost the same unless the aging parameter is big enough.
Phase synchronization of non-Abelian oscillators on small-world networks
Energy Technology Data Exchange (ETDEWEB)
Gu, Zhi-Ming [College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Zhao, Ming [Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China); Zhou, Tao [Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China)]. E-mail: zhutou@ustc.edu; Zhu, Chen-Ping [College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Wang, Bing-Hong [Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China)
2007-02-26
In this Letter, by extending the concept of Kuramoto oscillator to the left-invariant flow on general Lie group, we investigate the generalized phase synchronization on networks. The analyses and simulations of some typical dynamical systems on Watts-Strogatz networks are given, including the n-dimensional torus, the identity component of 3-dimensional general linear group, the special unitary group, and the special orthogonal group. In all cases, the greater disorder of networks will predict better synchronizability, and the small-world effect ensures the global synchronization for sufficiently large coupling strength. The collective synchronized behaviors of many dynamical systems, such as the integrable systems, the two-state quantum systems and the top systems, can be described by the present phase synchronization frame. In addition, it is intuitive that the low-dimensional systems are more easily to synchronize, however, to our surprise, we found that the high-dimensional systems display obviously synchronized behaviors in regular networks, while these phenomena cannot be observed in low-dimensional systems.
Phase synchronization of non-Abelian oscillators on small-world networks
International Nuclear Information System (INIS)
Gu, Zhi-Ming; Zhao, Ming; Zhou, Tao; Zhu, Chen-Ping; Wang, Bing-Hong
2007-01-01
In this Letter, by extending the concept of Kuramoto oscillator to the left-invariant flow on general Lie group, we investigate the generalized phase synchronization on networks. The analyses and simulations of some typical dynamical systems on Watts-Strogatz networks are given, including the n-dimensional torus, the identity component of 3-dimensional general linear group, the special unitary group, and the special orthogonal group. In all cases, the greater disorder of networks will predict better synchronizability, and the small-world effect ensures the global synchronization for sufficiently large coupling strength. The collective synchronized behaviors of many dynamical systems, such as the integrable systems, the two-state quantum systems and the top systems, can be described by the present phase synchronization frame. In addition, it is intuitive that the low-dimensional systems are more easily to synchronize, however, to our surprise, we found that the high-dimensional systems display obviously synchronized behaviors in regular networks, while these phenomena cannot be observed in low-dimensional systems
The Topological Analysis of Urban Transit System as a Small-World Network
Zhaosheng Yang; Huxing Zhou; Peng Gao; Hong Chen; Nan Zhang
2011-01-01
This paper proposes a topological analysis of urban transit system based on a functional representation network constructed from the urban transit system in Beijing. The representation gives a functional view on nodes named a transit line. Statistical measures are computed and introduced in complex network analysis. It shows that the urban transit system forms small-world networks and exhibits properties different from random networks and regular networks. Furthermore, the topological propert...
Potts Model in One-Dimension on Directed Small-World Networks
Aquino, Édio O.; Lima, F. W. S.; Araújo, Ascânio D.; Costa Filho, Raimundo N.
2018-06-01
The critical properties of the Potts model with q=3 and 8 states in one-dimension on directed small-world networks are investigated. This disordered system is simulated by updating it with the Monte Carlo heat bath algorithm. The Potts model on these directed small-world networks presents in fact a second-order phase transition with a new set of critical exponents for q=3 considering a rewiring probability p=0.1. For q=8 the system exhibits only a first-order phase transition independent of p.
On the structural properties of small-world networks with range-limited shortcut links
Jia, Tao; Kulkarni, Rahul V.
2013-12-01
We explore a new variant of Small-World Networks (SWNs), in which an additional parameter (r) sets the length scale over which shortcuts are uniformly distributed. When r=0 we have an ordered network, whereas r=1 corresponds to the original Watts-Strogatz SWN model. These limited range SWNs have a similar degree distribution and scaling properties as the original SWN model. We observe the small-world phenomenon for r≪1, indicating that global shortcuts are not necessary for the small-world effect. For limited range SWNs, the average path length changes nonmonotonically with system size, whereas for the original SWN model it increases monotonically. We propose an expression for the average path length for limited range SWNs based on numerical simulations and analytical approximations.
Stochastic resonance in small-world neuronal networks with hybrid electrical–chemical synapses
International Nuclear Information System (INIS)
Wang, Jiang; Guo, Xinmeng; Yu, Haitao; Liu, Chen; Deng, Bin; Wei, Xile; Chen, Yingyuan
2014-01-01
Highlights: •We study stochastic resonance in small-world neural networks with hybrid synapses. •The resonance effect depends largely on the probability of chemical synapse. •An optimal chemical synapse probability exists to evoke network resonance. •Network topology affects the stochastic resonance in hybrid neuronal networks. - Abstract: The dependence of stochastic resonance in small-world neuronal networks with hybrid electrical–chemical synapses on the probability of chemical synapse and the rewiring probability is investigated. A subthreshold periodic signal is imposed on one single neuron within the neuronal network as a pacemaker. It is shown that, irrespective of the probability of chemical synapse, there exists a moderate intensity of external noise optimizing the response of neuronal networks to the pacemaker. Moreover, the effect of pacemaker driven stochastic resonance of the system depends largely on the probability of chemical synapse. A high probability of chemical synapse will need lower noise intensity to evoke the phenomenon of stochastic resonance in the networked neuronal systems. In addition, for fixed noise intensity, there is an optimal chemical synapse probability, which can promote the propagation of the localized subthreshold pacemaker across neural networks. And the optimal chemical synapses probability turns even larger as the coupling strength decreases. Furthermore, the small-world topology has a significant impact on the stochastic resonance in hybrid neuronal networks. It is found that increasing the rewiring probability can always enhance the stochastic resonance until it approaches the random network limit
Complete and phase synchronization in a heterogeneous small-world neuronal network
International Nuclear Information System (INIS)
Fang, Han; Qi-Shao, Lu; Quan-Bao, Ji; Marian, Wiercigroch
2009-01-01
Synchronous firing of neurons is thought to be important for information communication in neuronal networks. This paper investigates the complete and phase synchronization in a heterogeneous small-world chaotic Hindmarsh–Rose neuronal network. The effects of various network parameters on synchronization behaviour are discussed with some biological explanations. Complete synchronization of small-world neuronal networks is studied theoretically by the master stability function method. It is shown that the coupling strength necessary for complete or phase synchronization decreases with the neuron number, the node degree and the connection density are increased. The effect of heterogeneity of neuronal networks is also considered and it is found that the network heterogeneity has an adverse effect on synchrony. (general)
International Nuclear Information System (INIS)
Zhang, Jianbao; Ma, Zhongjun; Chen, Guanrong
2014-01-01
All edges in the classical Watts and Strogatz's small-world network model are unweighted and cooperative (positive). By introducing competitive (negative) inter-cluster edges and assigning edge weights to mimic more realistic networks, this paper develops a modified model which possesses co-competitive weighted couplings and cluster structures while maintaining the common small-world network properties of small average shortest path lengths and large clustering coefficients. Based on theoretical analysis, it is proved that the new model with inter-cluster co-competition balance has an important dynamical property of robust cluster synchronous pattern formation. More precisely, clusters will neither merge nor split regardless of adding or deleting nodes and edges, under the condition of inter-cluster co-competition balance. Numerical simulations demonstrate the robustness of the model against the increase of the coupling strength and several topological variations
Zhang, Jianbao; Ma, Zhongjun; Chen, Guanrong
2014-06-01
All edges in the classical Watts and Strogatz's small-world network model are unweighted and cooperative (positive). By introducing competitive (negative) inter-cluster edges and assigning edge weights to mimic more realistic networks, this paper develops a modified model which possesses co-competitive weighted couplings and cluster structures while maintaining the common small-world network properties of small average shortest path lengths and large clustering coefficients. Based on theoretical analysis, it is proved that the new model with inter-cluster co-competition balance has an important dynamical property of robust cluster synchronous pattern formation. More precisely, clusters will neither merge nor split regardless of adding or deleting nodes and edges, under the condition of inter-cluster co-competition balance. Numerical simulations demonstrate the robustness of the model against the increase of the coupling strength and several topological variations.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Jianbao [School of Science, Hangzhou Dianzi University, Hangzhou 310018 (China); Ma, Zhongjun, E-mail: mzj1234402@163.com [School of Mathematics and Computing Science, Guilin University of Electronic Technology, Guilin 541004 (China); Chen, Guanrong [Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong (China)
2014-06-15
All edges in the classical Watts and Strogatz's small-world network model are unweighted and cooperative (positive). By introducing competitive (negative) inter-cluster edges and assigning edge weights to mimic more realistic networks, this paper develops a modified model which possesses co-competitive weighted couplings and cluster structures while maintaining the common small-world network properties of small average shortest path lengths and large clustering coefficients. Based on theoretical analysis, it is proved that the new model with inter-cluster co-competition balance has an important dynamical property of robust cluster synchronous pattern formation. More precisely, clusters will neither merge nor split regardless of adding or deleting nodes and edges, under the condition of inter-cluster co-competition balance. Numerical simulations demonstrate the robustness of the model against the increase of the coupling strength and several topological variations.
Small-world organization of self-similar modules in functional brain networks
Sigman, Mariano; Gallos, Lazaros; Makse, Hernan
2012-02-01
The modular organization of the brain implies the parallel nature of brain computations. These modules have to remain functionally independent, but at the same time they need to be sufficiently connected to guarantee the unitary nature of brain perception. Small-world architectures have been suggested as probable structures explaining this behavior. However, there is intrinsic tension between shortcuts generating small-worlds and the persistence of modularity. In this talk, we study correlations between the activity in different brain areas. We suggest that the functional brain network formed by the percolation of strong links is highly modular. Contrary to the common view, modules are self-similar and therefore are very far from being small-world. Incorporating the weak ties to the network converts it into a small-world preserving an underlying backbone of well-defined modules. Weak ties are shown to follow a pattern that maximizes information transfer with minimal wiring costs. This architecture is reminiscent of the concept of weak-ties strength in social networks and provides a natural solution to the puzzle of efficient infomration flow in the highly modular structure of the brain.
Small-World and Scale-Free Network Models for IoT Systems
Directory of Open Access Journals (Sweden)
Insoo Sohn
2017-01-01
Full Text Available It is expected that Internet of Things (IoT revolution will enable new solutions and business for consumers and entrepreneurs by connecting billions of physical world devices with varying capabilities. However, for successful realization of IoT, challenges such as heterogeneous connectivity, ubiquitous coverage, reduced network and device complexity, enhanced power savings, and enhanced resource management have to be solved. All these challenges are heavily impacted by the IoT network topology supported by massive number of connected devices. Small-world networks and scale-free networks are important complex network models with massive number of nodes and have been actively used to study the network topology of brain networks, social networks, and wireless networks. These models, also, have been applied to IoT networks to enhance synchronization, error tolerance, and more. However, due to interdisciplinary nature of the network science, with heavy emphasis on graph theory, it is not easy to study the various tools provided by complex network models. Therefore, in this paper, we attempt to introduce basic concepts of graph theory, including small-world networks and scale-free networks, and provide system models that can be easily implemented to be used as a powerful tool in solving various research problems related to IoT.
Critical features of coupling parameter in synchronization of small world neural networks
International Nuclear Information System (INIS)
Li Yanlong; Ma Jun; Xu Wenke; Li Hongbo; Wu Min
2008-01-01
The critical features of a coupling parameter in the synchronization of small world neural networks are investigated. A power law decay form is observed in this spatially extended system, the larger linked degree becomes, the larger critical coupling intensity. There exists maximal and minimal critical coupling intensity for synchronization in the extended system. An approximate synchronization diagram has been constructed. In the case of partial coupling, a primary result is presented about the critical coupling fraction for various linked degree of networks
Finite Memory Walk and Its Application to Small-World Network
Oshima, Hiraku; Odagaki, Takashi
2012-07-01
In order to investigate the effects of cycles on the dynamical process on both regular lattices and complex networks, we introduce a finite memory walk (FMW) as an extension of the simple random walk (SRW), in which a walker is prohibited from moving to sites visited during m steps just before the current position. This walk interpolates the simple random walk (SRW), which has no memory (m = 0), and the self-avoiding walk (SAW), which has an infinite memory (m = ∞). We investigate the FMW on regular lattices and clarify the fundamental characteristics of the walk. We find that (1) the mean-square displacement (MSD) of the FMW shows a crossover from the SAW at a short time step to the SRW at a long time step, and the crossover time is approximately equivalent to the number of steps remembered, and that the MSD can be rescaled in terms of the time step and the size of memory; (2) the mean first-return time (MFRT) of the FMW changes significantly at the number of remembered steps that corresponds to the size of the smallest cycle in the regular lattice, where ``smallest'' indicates that the size of the cycle is the smallest in the network; (3) the relaxation time of the first-return time distribution (FRTD) decreases as the number of cycles increases. We also investigate the FMW on the Watts--Strogatz networks that can generate small-world networks, and show that the clustering coefficient of the Watts--Strogatz network is strongly related to the MFRT of the FMW that can remember two steps.
SmallWorld Behavior of the Worldwide Active Volcanoes Network: Preliminary Results
Spata, A.; Bonforte, A.; Nunnari, G.; Puglisi, G.
2009-12-01
We propose a preliminary complex networks based approach in order to model and characterize volcanoes activity correlation observed on a planetary scale over the last two thousand years. Worldwide volcanic activity is in fact related to the general plate tectonics that locally drives the faults activity, that in turn controls the magma upraise beneath the volcanoes. To find correlations among different volcanoes could indicate a common underlying mechanism driving their activity and could help us interpreting the deeper common dynamics controlling their unrest. All the first evidences found testing the procedure, suggest the suitability of this analysis to investigate global volcanism related to plate tectonics. The first correlations found, in fact, indicate that an underlying common large-scale dynamics seems to drive volcanic activity at least around the Pacific plate, where it collides and subduces beneath American, Eurasian and Australian plates. From this still preliminary analysis, also more complex relationships among volcanoes lying on different tectonic margins have been found, suggesting some more complex interrelationships between different plates. The understanding of eventually detected correlations could be also used to further implement warning systems, relating the unrest probabilities of a specific volcano also to the ongoing activity to the correlated ones. Our preliminary results suggest that, as for other many physical and biological systems, an underlying organizing principle of planetary volcanoes activity might exist and it could be a small-world principle. In fact we found that, from a topological perspective, volcanoes correlations are characterized by the typical features of small-world network: a high clustering coefficient and a low characteristic path length. These features confirm that global volcanoes activity is characterized by both short and long-range correlations. We stress here the fact that numerical simulation carried out in
Small-world network effects on innovation: evidences from nanotechnology patenting
Energy Technology Data Exchange (ETDEWEB)
Shi, Yuan [University of Maryland, Robert H. Smith School of Business (United States); Guan, JianCheng, E-mail: guanjianch@ucas.ac.cn [University of Chinese Academy of Sciences, School of Economics and Management (China)
2016-11-15
This paper explores the effects of collaboration network on innovation in nanotechnology. We extend the idea of small-world to the heterogeneous network positions of actors by capturing the variation of how closely a given actor is connected to others in the same network and how clustered its neighbors are. We test the effects of small-world network in the context of nanotechnology patenting in China. Empirical results reveal that small-worldness, or the co-existence of high clustering and low path length in the network, displays inverse U-shape relationships with future patent output of the individual inventors and the system. Interestingly, the inflection point of the nonlinear relationship is significantly higher at the individual level. Based on these findings, we suggest that researchers of nanotechnology maintain a balance between friends in close-knit inner circles and colleagues in distant areas in their collaboration decisions and that policymakers interested in furthering the field offer collaboration opportunities for researchers in distant locations and areas.
Small-world network effects on innovation: evidences from nanotechnology patenting
International Nuclear Information System (INIS)
Shi, Yuan; Guan, JianCheng
2016-01-01
This paper explores the effects of collaboration network on innovation in nanotechnology. We extend the idea of small-world to the heterogeneous network positions of actors by capturing the variation of how closely a given actor is connected to others in the same network and how clustered its neighbors are. We test the effects of small-world network in the context of nanotechnology patenting in China. Empirical results reveal that small-worldness, or the co-existence of high clustering and low path length in the network, displays inverse U-shape relationships with future patent output of the individual inventors and the system. Interestingly, the inflection point of the nonlinear relationship is significantly higher at the individual level. Based on these findings, we suggest that researchers of nanotechnology maintain a balance between friends in close-knit inner circles and colleagues in distant areas in their collaboration decisions and that policymakers interested in furthering the field offer collaboration opportunities for researchers in distant locations and areas.
Critical behavior and correlations on scale-free small-world networks: Application to network design
Ostilli, M.; Ferreira, A. L.; Mendes, J. F. F.
2011-06-01
We analyze critical phenomena on networks generated as the union of hidden variable models (networks with any desired degree sequence) with arbitrary graphs. The resulting networks are general small worlds similar to those à la Watts and Strogatz, but with a heterogeneous degree distribution. We prove that the critical behavior (thermal or percolative) remains completely unchanged by the presence of finite loops (or finite clustering). Then, we show that, in large but finite networks, correlations of two given spins may be strong, i.e., approximately power-law-like, at any temperature. Quite interestingly, if γ is the exponent for the power-law distribution of the vertex degree, for γ⩽3 and with or without short-range couplings, such strong correlations persist even in the thermodynamic limit, contradicting the common opinion that, in mean-field models, correlations always disappear in this limit. Finally, we provide the optimal choice of rewiring under which percolation phenomena in the rewired network are best performed, a natural criterion to reach best communication features, at least in noncongested regimes.
Driving and driven architectures of directed small-world human brain functional networks.
Directory of Open Access Journals (Sweden)
Chaogan Yan
Full Text Available Recently, increasing attention has been focused on the investigation of the human brain connectome that describes the patterns of structural and functional connectivity networks of the human brain. Many studies of the human connectome have demonstrated that the brain network follows a small-world topology with an intrinsically cohesive modular structure and includes several network hubs in the medial parietal regions. However, most of these studies have only focused on undirected connections between regions in which the directions of information flow are not taken into account. How the brain regions causally influence each other and how the directed network of human brain is topologically organized remain largely unknown. Here, we applied linear multivariate Granger causality analysis (GCA and graph theoretical approaches to a resting-state functional MRI dataset with a large cohort of young healthy participants (n = 86 to explore connectivity patterns of the population-based whole-brain functional directed network. This directed brain network exhibited prominent small-world properties, which obviously improved previous results of functional MRI studies showing weak small-world properties in the directed brain networks in terms of a kernel-based GCA and individual analysis. This brain network also showed significant modular structures associated with 5 well known subsystems: fronto-parietal, visual, paralimbic/limbic, subcortical and primary systems. Importantly, we identified several driving hubs predominantly located in the components of the attentional network (e.g., the inferior frontal gyrus, supplementary motor area, insula and fusiform gyrus and several driven hubs predominantly located in the components of the default mode network (e.g., the precuneus, posterior cingulate gyrus, medial prefrontal cortex and inferior parietal lobule. Further split-half analyses indicated that our results were highly reproducible between two
Synchronization of the small-world neuronal network with unreliable synapses
International Nuclear Information System (INIS)
Li, Chunguang; Zheng, Qunxian
2010-01-01
As is well known, synchronization phenomena are ubiquitous in neuronal systems. Recently a lot of work concerning the synchronization of the neuronal network has been accomplished. In these works, the synapses are usually considered reliable, but experimental results show that, in biological neuronal networks, synapses are usually unreliable. In our previous work, we have studied the synchronization of the neuronal network with unreliable synapses; however, we have not paid attention to the effect of topology on the synchronization of the neuronal network. Several recent studies have found that biological neuronal networks have typical properties of small-world networks, characterized by a short path length and high clustering coefficient. In this work, mainly based on the small-world neuronal network (SWNN) with inhibitory neurons, we study the effect of network topology on the synchronization of the neuronal network with unreliable synapses. Together with the network topology, the effects of the GABAergic reversal potential, time delay and noise are also considered. Interestingly, we found a counter-intuitive phenomenon for the SWNN with specific shortcut adding probability, that is, the less reliable the synapses, the better the synchronization performance of the SWNN. We also consider the effects of both local noise and global noise in this work. It is shown that these two different types of noise have distinct effects on the synchronization: one is negative and the other is positive
Phase Transitions of an Epidemic Spreading Model in Small-World Networks
Hua, Da-Yin; Gao, Ke
2011-06-01
We propose a modified susceptible-infected-refractory-susceptible (SIRS) model to investigate the global oscillations of the epidemic spreading in Watts—Strogatz (WS) small-world networks. It is found that when an individual immunity does not change or decays slowly in an immune period, the system can exhibit complex transition from an infecting stationary state to a large amplitude sustained oscillation or an absorbing state with no infection. When the immunity decays rapidly in the immune period, the transition to the global oscillation disappears and there is no oscillation. Furthermore, based on the spatio-temporal evolution patterns and the phase diagram, it is disclosed that a long immunity period takes an important role in the emergence of the global oscillation in small-world networks.
Small-worldness characteristics and its gender relation in specific hemispheric networks.
Miraglia, F; Vecchio, F; Bramanti, P; Rossini, P M
2015-12-03
Aim of this study was to verify whether the topological organization of human brain functional networks is different for males and females in resting state EEGs. Undirected and weighted brain networks were computed by eLORETA lagged linear connectivity in 130 subjects (59 males and 71 females) within each hemisphere and in four resting state networks (Attentional Network (AN), Frontal Network (FN), Sensorimotor Network (SN), Default Mode Network (DMN)). We found that small-world (SW) architecture in the left hemisphere Frontal network presented differences in both delta and alpha band, in particular lower values in delta and higher in alpha 2 in males respect to females while in the right hemisphere differences were found in lower values of SW in males respect to females in gamma Attentional, delta Sensorimotor and delta and gamma DMNs. Gender small-worldness differences in some of resting state networks indicated that there are specific brain differences in the EEG rhythms when the brain is in the resting-state condition. These specific regions could be considered related to the functions of behavior and cognition and should be taken into account both for research on healthy and brain diseased subjects. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Complex Behavior in an Integrate-and-Fire Neuron Model Based on Small World Networks
International Nuclear Information System (INIS)
Lin Min; Chen Tianlun
2005-01-01
Based on our previously pulse-coupled integrate-and-fire neuron model in small world networks, we investigate the complex behavior of electroencephalographic (EEG)-like activities produced by such a model. We find EEG-like activities have obvious chaotic characteristics. We also analyze the complex behaviors of EEG-like signals, such as spectral analysis, reconstruction of the phase space, the correlation dimension, and so on.
Focus-based filtering + clustering technique for power-law networks with small world phenomenon
Boutin, François; Thièvre, Jérôme; Hascoët, Mountaz
2006-01-01
Realistic interaction networks usually present two main properties: a power-law degree distribution and a small world behavior. Few nodes are linked to many nodes and adjacent nodes are likely to share common neighbors. Moreover, graph structure usually presents a dense core that is difficult to explore with classical filtering and clustering techniques. In this paper, we propose a new filtering technique accounting for a user-focus. This technique extracts a tree-like graph with also power-law degree distribution and small world behavior. Resulting structure is easily drawn with classical force-directed drawing algorithms. It is also quickly clustered and displayed into a multi-level silhouette tree (MuSi-Tree) from any user-focus. We built a new graph filtering + clustering + drawing API and report a case study.
Evaluating the transport in small-world and scale-free networks
International Nuclear Information System (INIS)
Juárez-López, R.; Obregón-Quintana, B.; Hernández-Pérez, R.; Reyes-Ramírez, I.; Guzmán-Vargas, L.
2014-01-01
We present a study of some properties of transport in small-world and scale-free networks. Particularly, we compare two types of transport: subject to friction (electrical case) and in the absence of friction (maximum flow). We found that in clustered networks based on the Watts–Strogatz (WS) model, for both transport types the small-world configurations exhibit the best trade-off between local and global levels. For non-clustered WS networks the local transport is independent of the rewiring parameter, while the transport improves globally. Moreover, we analyzed both transport types in scale-free networks considering tendencies in the assortative or disassortative mixing of nodes. We construct the distribution of the conductance G and flow F to evaluate the effects of the assortative (disassortative) mixing, finding that for scale-free networks, as we introduce different levels of the degree–degree correlations, the power-law decay in the conductances is altered, while for the flow, the power-law tail remains unchanged. In addition, we analyze the effect on the conductance and the flow of the minimum degree and the shortest path between the source and destination nodes, finding notable differences between these two types of transport
A game-theoretic approach to optimize ad hoc networks inspired by small-world network topology
Tan, Mian; Yang, Tinghong; Chen, Xing; Yang, Gang; Zhu, Guoqing; Holme, Petter; Zhao, Jing
2018-03-01
Nodes in ad hoc networks are connected in a self-organized manner. Limited communication radius makes information transmit in multi-hop mode, and each forwarding needs to consume the energy of nodes. Insufficient communication radius or exhaustion of energy may cause the absence of some relay nodes and links, further breaking network connectivity. On the other hand, nodes in the network may refuse to cooperate due to objective faulty or personal selfish, hindering regular communication in the network. This paper proposes a model called Repeated Game in Small World Networks (RGSWN). In this model, we first construct ad hoc networks with small-world feature by forming "communication shortcuts" between multiple-radio nodes. Small characteristic path length reduces average forwarding times in networks; meanwhile high clustering coefficient enhances network robustness. Such networks still maintain relative low global power consumption, which is beneficial to extend the network survival time. Then we use MTTFT strategy (Mend-Tolerance Tit-for-Tat) for repeated game as a rule for the interactions between neighbors in the small-world networks. Compared with other five strategies of repeated game, this strategy not only punishes the nodes' selfishness more reasonably, but also has the best tolerance to the network failure. This work is insightful for designing an efficient and robust ad hoc network.
Critical behavior of the XY-rotor model on regular and small-world networks
De Nigris, Sarah; Leoncini, Xavier
2013-07-01
We study the XY rotors model on small networks whose number of links scales with the system size Nlinks˜Nγ, where 1≤γ≤2. We first focus on regular one-dimensional rings in the microcanonical ensemble. For γ1.5, the system equilibrium properties are found to be identical to the mean field, which displays a second-order phase transition at a critical energy density ɛ=E/N,ɛc=0.75. Moreover, for γc≃1.5 we find that a nontrivial state emerges, characterized by an infinite susceptibility. We then consider small-world networks, using the Watts-Strogatz mechanism on the regular networks parametrized by γ. We first analyze the topology and find that the small-world regime appears for rewiring probabilities which scale as pSW∝1/Nγ. Then considering the XY-rotors model on these networks, we find that a second-order phase transition occurs at a critical energy ɛc which logarithmically depends on the topological parameters p and γ. We also define a critical probability pMF, corresponding to the probability beyond which the mean field is quantitatively recovered, and we analyze its dependence on γ.
Lei, Hui; Cui, Yan; Fan, Jie; Zhang, Xiaocui; Zhong, Mingtian; Yi, Jinyao; Cai, Lin; Yao, Dezhong; Zhu, Xiongzhao
2017-09-01
There are limited data on neurobiological correlates of poor insight in obsessive-compulsive disorder (OCD). This study explored whether specific changes occur in small-world network (SWN) properties in the brain functional network of OCD patients with poor insight. Resting-state electroencephalograms (EEGs) were recorded for 12 medication-free OCD patients with poor insight, 50 medication-free OCD patients with good insight, and 36 healthy controls. Both of the OCD groups exhibited topological alterations in the brain functional network characterized by abnormal small-world parameters at the beta band. However, the alterations at the theta band only existed in the OCD patients with poor insight. A relatively small sample size. Subjects were naïve to medications and those with Axis I comorbidity were excluded, perhaps limiting generalizability. Disrupted functional integrity at the beta bands of the brain functional network may be related to OCD, while disrupted functional integrity at the theta band may be associated with poor insight in OCD patients, thus this study might provide novel insight into our understanding of the pathophysiology of OCD. Copyright © 2017 Elsevier B.V. All rights reserved.
Spiral Wave in Small-World Networks of Hodgkin-Huxley Neurons
International Nuclear Information System (INIS)
Ma Jun; Zhang Cairong; Yang Lijian; Wu Ying
2010-01-01
The effect of small-world connection and noise on the formation and transition of spiral wave in the networks of Hodgkin-Huxley neurons are investigated in detail. Some interesting results are found in our numerical studies. i) The quiescent neurons are activated to propagate electric signal to others by generating and developing spiral wave from spiral seed in small area. ii) A statistical factor is defined to describe the collective properties and phase transition induced by the topology of networks and noise. iii) Stable rotating spiral wave can be generated and keeps robust when the rewiring probability is below certain threshold, otherwise, spiral wave can not be developed from the spiral seed and spiral wave breakup occurs for a stable rotating spiral wave. iv) Gaussian white noise is introduced on the membrane of neurons to study the noise-induced phase transition on spiral wave in small-world networks of neurons. It is confirmed that Gaussian white noise plays active role in supporting and developing spiral wave in the networks of neurons, and appearance of smaller factor of synchronization indicates high possibility to induce spiral wave. (interdisciplinary physics and related areas of science and technology)
A family of small-world network models built by complete graph and iteration-function
Ma, Fei; Yao, Bing
2018-02-01
Small-world networks are popular in real-life complex systems. In the past few decades, researchers presented amounts of small-world models, in which some are stochastic and the rest are deterministic. In comparison with random models, it is not only convenient but also interesting to study the topological properties of deterministic models in some fields, such as graph theory, theorem computer sciences and so on. As another concerned darling in current researches, community structure (modular topology) is referred to as an useful statistical parameter to uncover the operating functions of network. So, building and studying such models with community structure and small-world character will be a demanded task. Hence, in this article, we build a family of sparse network space N(t) which is different from those previous deterministic models. Even though, our models are established in the same way as them, iterative generation. By randomly connecting manner in each time step, every resulting member in N(t) has no absolutely self-similar feature widely shared in a large number of previous models. This makes our insight not into discussing a class certain model, but into investigating a group various ones spanning a network space. Somewhat surprisingly, our results prove all members of N(t) to possess some similar characters: (a) sparsity, (b) exponential-scale feature P(k) ∼α-k, and (c) small-world property. Here, we must stress a very screming, but intriguing, phenomenon that the difference of average path length (APL) between any two members in N(t) is quite small, which indicates this random connecting way among members has no great effect on APL. At the end of this article, as a new topological parameter correlated to reliability, synchronization capability and diffusion properties of networks, the number of spanning trees on a representative member NB(t) of N(t) is studied in detail, then an exact analytical solution for its spanning trees entropy is also
Effects of channel noise on firing coherence of small-world Hodgkin-Huxley neuronal networks
Sun, X. J.; Lei, J. Z.; Perc, M.; Lu, Q. S.; Lv, S. J.
2011-01-01
We investigate the effects of channel noise on firing coherence of Watts-Strogatz small-world networks consisting of biophysically realistic HH neurons having a fraction of blocked voltage-gated sodium and potassium ion channels embedded in their neuronal membranes. The intensity of channel noise is determined by the number of non-blocked ion channels, which depends on the fraction of working ion channels and the membrane patch size with the assumption of homogeneous ion channel density. We find that firing coherence of the neuronal network can be either enhanced or reduced depending on the source of channel noise. As shown in this paper, sodium channel noise reduces firing coherence of neuronal networks; in contrast, potassium channel noise enhances it. Furthermore, compared with potassium channel noise, sodium channel noise plays a dominant role in affecting firing coherence of the neuronal network. Moreover, we declare that the observed phenomena are independent of the rewiring probability.
Heterogeneous delay-induced asynchrony and resonance in a small-world neuronal network system
Yu, Wen-Ting; Tang, Jun; Ma, Jun; Yang, Xianqing
2016-06-01
A neuronal network often involves time delay caused by the finite signal propagation time in a given biological network. This time delay is not a homogenous fluctuation in a biological system. The heterogeneous delay-induced asynchrony and resonance in a noisy small-world neuronal network system are numerically studied in this work by calculating synchronization measure and spike interval distribution. We focus on three different delay conditions: double-values delay, triple-values delay, and Gaussian-distributed delay. Our results show the following: 1) the heterogeneity in delay results in asynchronous firing in the neuronal network, and 2) maximum synchronization could be achieved through resonance given that the delay values are integer or half-integer times of each other.
A review of structural and functional brain networks: small world and atlas.
Yao, Zhijun; Hu, Bin; Xie, Yuanwei; Moore, Philip; Zheng, Jiaxiang
2015-03-01
Brain networks can be divided into two categories: structural and functional networks. Many studies of neuroscience have reported that the complex brain networks are characterized by small-world or scale-free properties. The identification of nodes is the key factor in studying the properties of networks on the macro-, micro- or mesoscale in both structural and functional networks. In the study of brain networks, nodes are always determined by atlases. Therefore, the selection of atlases is critical, and appropriate atlases are helpful to combine the analyses of structural and functional networks. Currently, some problems still exist in the establishment or usage of atlases, which are often caused by the segmentation or the parcellation of the brain. We suggest that quantification of brain networks might be affected by the selection of atlases to a large extent. In the process of building atlases, the influences of single subjects and groups should be balanced. In this article, we focused on the effects of atlases on the analysis of brain networks and the improved divisions based on the tractography or connectivity in the parcellation of atlases.
Altered small-world properties of gray matter networks in breast cancer
Directory of Open Access Journals (Sweden)
Hosseini S M
2012-05-01
Full Text Available Abstract Background Breast cancer survivors, particularly those treated with chemotherapy, are at significantly increased risk for long-term cognitive and neurobiologic impairments. These deficits tend to involve skills that are subserved by distributed brain networks. Additionally, neuroimaging studies have shown a diffuse pattern of brain structure changes in chemotherapy-treated breast cancer survivors that might impact large-scale brain networks. Methods We therefore applied graph theoretical analysis to compare the gray matter structural networks of female breast cancer survivors with a history of chemotherapy treatment and healthy age and education matched female controls. Results Results revealed reduced clustering coefficient and small-world index in the brain network of the breast cancer patients across a range of network densities. In addition, the network of the breast cancer group had less highly interactive nodes and reduced degree/centrality in the frontotemporal regions compared to controls, which may help explain the common impairments of memory and executive functioning among these patients. Conclusions These results suggest that breast cancer and chemotherapy may decrease regional connectivity as well as global network organization and integration, reducing efficiency of the network. To our knowledge, this is the first report of altered large-scale brain networks associated with breast cancer and chemotherapy.
Directory of Open Access Journals (Sweden)
Wei Li
2013-10-01
Full Text Available The patent cooperation network which enterprises join is a very important network platform for enterprises’ open innovation. However, very limited work has been done to empirically investigate the dynamic change process of the network in China. To address this issue, this paper analyzes dynamic change process of cooperation network of enterprises and the small-world effect of the biggest subgroup according to the data of 36731 items of cooperative patents between enterprises from 1985 to 2010 published by the State Intellectual Property Office of China. A conclusion can be drawn from the analysis results that the biggest subgroup has the characteristics of small-world effect, but the overall network structure also has some defects, which limit the development of open innovation. For the first time, suggestions on open innovation strategies are put forward to provide theoretical reference for both the government and enterprises.
Directory of Open Access Journals (Sweden)
Zhekang Dong
2014-01-01
Full Text Available In this paper, we present an implementation scheme of memristor-based multilayer feedforward small-world neural network (MFSNN inspirited by the lack of the hardware realization of the MFSNN on account of the need of a large number of electronic neurons and synapses. More specially, a mathematical closed-form charge-governed memristor model is presented with derivation procedures and the corresponding Simulink model is presented, which is an essential block for realizing the memristive synapse and the activation function in electronic neurons. Furthermore, we investigate a more intelligent memristive PID controller by incorporating the proposed MFSNN into intelligent PID control based on the advantages of the memristive MFSNN on computation speed and accuracy. Finally, numerical simulations have demonstrated the effectiveness of the proposed scheme.
Dong, Zhekang; Duan, Shukai; Hu, Xiaofang; Wang, Lidan; Li, Hai
2014-01-01
In this paper, we present an implementation scheme of memristor-based multilayer feedforward small-world neural network (MFSNN) inspirited by the lack of the hardware realization of the MFSNN on account of the need of a large number of electronic neurons and synapses. More specially, a mathematical closed-form charge-governed memristor model is presented with derivation procedures and the corresponding Simulink model is presented, which is an essential block for realizing the memristive synapse and the activation function in electronic neurons. Furthermore, we investigate a more intelligent memristive PID controller by incorporating the proposed MFSNN into intelligent PID control based on the advantages of the memristive MFSNN on computation speed and accuracy. Finally, numerical simulations have demonstrated the effectiveness of the proposed scheme.
Modeling and Analysis of Epidemic Diffusion within Small-World Network
Directory of Open Access Journals (Sweden)
Ming Liu
2012-01-01
Full Text Available To depict the rule of epidemic diffusion, two different models, the Susceptible-Exposure-Infected-Recovered-Susceptible (SEIRS model and the Susceptible-Exposure-Infected-Quarantine-Recovered-Susceptible (SEIQRS model, are proposed and analyzed within small-world network in this paper. Firstly, the epidemic diffusion models are constructed with mean-filed theory, and condition for the occurrence of disease diffusion is explored. Then, the existence and global stability of the disease-free equilibrium and the endemic equilibrium for these two complex epidemic systems are proved by differential equations knowledge and Routh-Hurwiz theory. At last, a numerical example which includes key parameters analysis and critical topic discussion is presented to test how well the proposed two models may be applied in practice. These works may provide some guidelines for decision makers when coping with epidemic diffusion controlling problems.
A fault-tolerant small world topology control model in ad hoc networks for search and rescue
Tan, Mian; Fang, Ling; Wu, Yue; Zhang, Bo; Chang, Bowen; Holme, Petter; Zhao, Jing
2018-02-01
Due to their self-organized, multi-hop and distributed characteristics, ad hoc networks are useful in search and rescue. Topology control models need to be designed for energy-efficient, robust and fast communication in ad hoc networks. This paper proposes a topology control model which specializes for search and rescue-Compensation Small World-Repeated Game (CSWRG)-which integrates mobility models, constructing small world networks and a game-theoretic approach to the allocation of resources. Simulation results show that our mobility models can enhance the communication performance of the constructed small-world networks. Our strategy, based on repeated game, can suppress selfish behavior and compensate agents that encounter selfish or faulty neighbors. This model could be useful for the design of ad hoc communication networks.
International Nuclear Information System (INIS)
Erkaymaz, Okan; Ozer, Mahmut
2016-01-01
Artificial intelligent systems have been widely used for diagnosis of diseases. Due to their importance, new approaches are attempted consistently to increase the performance of these systems. In this study, we introduce a new approach for diagnosis of diabetes based on the Small-World Feed Forward Artificial Neural Network (SW- FFANN). We construct the small-world network by following the Watts–Strogatz approach, and use this architecture for classifying the diabetes, and compare its performance with that of the regular or the conventional FFANN. We show that the classification performance of the SW-FFANN is better than that of the conventional FFANN. The SW-FFANN approach also results in both the highest output correlation and the best output error parameters. We also perform the accuracy analysis and show that SW-FFANN approach exhibits the highest classifier performance.
Networks of neuroblastoma cells on porous silicon substrates reveal a small world topology
Marinaro, Giovanni; La Rocca, Rosanna; Toma, Andrea; Barberio, Marianna; Cancedda, Laura; Di Fabrizio, Enzo M.; Decuzzi, Paolo C W; Gentile, Francesco T.
2015-01-01
The human brain is a tightly interweaving network of neural cells where the complexity of the network is given by the large number of its constituents and its architecture. The topological structure of neurons in the brain translates into its increased computational capabilities, low energy consumption, and nondeterministic functions, which differentiate human behavior from artificial computational schemes. In this manuscript, we fabricated porous silicon chips with a small pore size ranging from 8 to 75 nm and large fractal dimensions up to Df ∼ 2.8. In culturing neuroblastoma N2A cells on the described substrates, we found that those cells adhere more firmly to and proliferate on the porous surfaces compared to the conventional nominally flat silicon substrates, which were used as controls. More importantly, we observed that N2A cells on the porous substrates create highly clustered, small world topology patterns. We conjecture that neurons with a similar architecture may elaborate information more efficiently than in random or regular grids. Moreover, we hypothesize that systems of neurons on nano-scale geometry evolve in time to form networks in which the propagation of information is maximized. This journal is
Zhang, Yue; Jiang, Yin; Glielmi, Christopher B; Li, Longchuan; Hu, Xiaoping; Wang, Xiaoying; Han, Jisheng; Zhang, Jue; Cui, Cailian; Fang, Jing
2013-09-01
Acupuncture, which is recognized as an alternative and complementary treatment in Western medicine, has long shown efficiencies in chronic pain relief, drug addiction treatment, stroke rehabilitation and other clinical practices. The neural mechanism underlying acupuncture, however, is still unclear. Many studies have focused on the sustained effects of acupuncture on healthy subjects, yet there are very few on the topological organization of functional networks in the whole brain in response to long-duration acupuncture (longer than 20 min). This paper presents a novel study on the effects of long-duration transcutaneous electric acupoint stimulation (TEAS) on the small-world properties of brain functional networks. Functional magnetic resonance imaging was used to construct brain functional networks of 18 healthy subjects (9 males and 9 females) during the resting state. All subjects received both TEAS and minimal TEAS (MTEAS) and were scanned before and after each stimulation. An altered functional network was found with lower local efficiency and no significant change in global efficiency for healthy subjects after TEAS, while no significant difference was observed after MTEAS. The experiments also showed that the nodal efficiencies in several paralimbic/limbic regions were altered by TEAS, and those in middle frontal gyrus and other regions by MTEAS. To remove the psychological effects and the baseline, we compared the difference between diffTEAS (difference between after and before TEAS) and diffMTEAS (difference between after and before MTEAS). The results showed that the local efficiency was decreased and that the nodal efficiencies in frontal gyrus, orbitofrontal cortex, anterior cingulate gyrus and hippocampus gyrus were changed. Based on those observations, we conclude that long-duration TEAS may modulate the short-range connections of brain functional networks and also the limbic system. Copyright © 2013 Elsevier Inc. All rights reserved.
Interictal to Ictal Phase Transition in a Small-World Network
Nemzer, Louis; Cravens, Gary; Worth, Robert
Real-time detection and prediction of seizures in patients with epilepsy is essential for rapid intervention. Here, we perform a full Hodgkin-Huxley calculation using n 50 in silico neurons configured in a small-world network topology to generate simulated EEG signals. The connectivity matrix, constructed using a Watts-Strogatz algorithm, admits randomized or deterministic entries. We find that situations corresponding to interictal (non-seizure) and ictal (seizure) states are separated by a phase transition that can be influenced by congenital channelopathies, anticonvulsant drugs, and connectome plasticity. The interictal phase exhibits scale-free phenomena, as characterized by a power law form of the spectral power density, while the ictal state suffers from pathological synchronization. We compare the results with intracranial EEG data and show how these findings may be used to detect or even predict seizure onset. Along with the balance of excitatory and inhibitory factors, the network topology plays a large role in determining the overall characteristics of brain activity. We have developed a new platform for testing the conditions that contribute to the phase transition between non-seizure and seizure states.
Carbon Reduction Strategies Based on an NW Small-World Network with a Progressive Carbon Tax
Directory of Open Access Journals (Sweden)
Bin Wu
2017-09-01
Full Text Available There is an increasingly urgent need to reduce carbon emissions. Devising effective carbon tax policies has become an important research topic. It is necessary to explore carbon reduction strategies based on the design of carbon tax elements. In this study, we explore the effect of a progressive carbon tax policy on carbon emission reductions using the logical deduction method. We apply experience-weighted attraction learning theory to construct an evolutionary game model for enterprises with different levels of energy consumption in an NW small-world network, and study their strategy choices when faced with a progressive carbon tax policy. The findings suggest that enterprises that adopt other energy consumption strategies gradually transform to a low energy consumption strategy, and that this trend eventually spreads to the entire system. With other conditions unchanged, the rate at which enterprises change to a low energy consumption strategy becomes faster as the discount coefficient, the network externality, and the expected adjustment factor increase. Conversely, the rate of change slows as the cost of converting to a low energy consumption strategy increases.
Yilmaz, Ergin; Baysal, Veli; Ozer, Mahmut; Perc, Matjaž
2016-02-01
We study the effects of an autapse, which is mathematically described as a self-feedback loop, on the propagation of weak, localized pacemaker activity across a Newman-Watts small-world network consisting of stochastic Hodgkin-Huxley neurons. We consider that only the pacemaker neuron, which is stimulated by a subthreshold periodic signal, has an electrical autapse that is characterized by a coupling strength and a delay time. We focus on the impact of the coupling strength, the network structure, the properties of the weak periodic stimulus, and the properties of the autapse on the transmission of localized pacemaker activity. Obtained results indicate the existence of optimal channel noise intensity for the propagation of the localized rhythm. Under optimal conditions, the autapse can significantly improve the propagation of pacemaker activity, but only for a specific range of the autaptic coupling strength. Moreover, the autaptic delay time has to be equal to the intrinsic oscillation period of the Hodgkin-Huxley neuron or its integer multiples. We analyze the inter-spike interval histogram and show that the autapse enhances or suppresses the propagation of the localized rhythm by increasing or decreasing the phase locking between the spiking of the pacemaker neuron and the weak periodic signal. In particular, when the autaptic delay time is equal to the intrinsic period of oscillations an optimal phase locking takes place, resulting in a dominant time scale of the spiking activity. We also investigate the effects of the network structure and the coupling strength on the propagation of pacemaker activity. We find that there exist an optimal coupling strength and an optimal network structure that together warrant an optimal propagation of the localized rhythm.
Gallos, Lazaros K; Makse, Hernán A; Sigman, Mariano
2012-02-21
The human brain is organized in functional modules. Such an organization presents a basic conundrum: Modules ought to be sufficiently independent to guarantee functional specialization and sufficiently connected to bind multiple processors for efficient information transfer. It is commonly accepted that small-world architecture of short paths and large local clustering may solve this problem. However, there is intrinsic tension between shortcuts generating small worlds and the persistence of modularity, a global property unrelated to local clustering. Here, we present a possible solution to this puzzle. We first show that a modified percolation theory can define a set of hierarchically organized modules made of strong links in functional brain networks. These modules are "large-world" self-similar structures and, therefore, are far from being small-world. However, incorporating weaker ties to the network converts it into a small world preserving an underlying backbone of well-defined modules. Remarkably, weak ties are precisely organized as predicted by theory maximizing information transfer with minimal wiring cost. This trade-off architecture is reminiscent of the "strength of weak ties" crucial concept of social networks. Such a design suggests a natural solution to the paradox of efficient information flow in the highly modular structure of the brain.
Song, H. Francis; Wang, Xiao-Jing
2014-12-01
Small-world networks—complex networks characterized by a combination of high clustering and short path lengths—are widely studied using the paradigmatic model of Watts and Strogatz (WS). Although the WS model is already quite minimal and intuitive, we describe an alternative formulation of the WS model in terms of a distance-dependent probability of connection that further simplifies, both practically and theoretically, the generation of directed and undirected WS-type small-world networks. In addition to highlighting an essential feature of the WS model that has previously been overlooked, namely the equivalence to a simple distance-dependent model, this alternative formulation makes it possible to derive exact expressions for quantities such as the degree and motif distributions and global clustering coefficient for both directed and undirected networks in terms of model parameters.
Zhang, Jiang; Li, Yuyao; Chen, Huafu; Ding, Jurong; Yuan, Zhen
2016-11-04
In this study, small-world network analysis was performed to identify the similarities and differences between functional brain networks for right- and left-hand motor imageries (MIs). First, Pearson correlation coefficients among the nodes within the functional brain networks from healthy subjects were calculated. Then, small-world network indicators, including the clustering coefficient, the average path length, the global efficiency, the local efficiency, the average node degree, and the small-world index, were generated for the functional brain networks during both right- and left-hand MIs. We identified large differences in the small-world network indicators between the functional networks during MI and in the random networks. More importantly, the functional brain networks underlying the right- and left-hand MIs exhibited similar small-world properties in terms of the clustering coefficient, the average path length, the global efficiency, and the local efficiency. By contrast, the right- and left-hand MI brain networks showed differences in small-world characteristics, including indicators such as the average node degree and the small-world index. Interestingly, our findings also suggested that the differences in the activity intensity and range, the average node degree, and the small-world index of brain networks between the right- and left-hand MIs were associated with the asymmetry of brain functions.
International Nuclear Information System (INIS)
Yu, Haitao; Guo, Xinmeng; Wang, Jiang; Deng, Bin; Wei, Xile
2014-01-01
The phenomenon of stochastic resonance in Newman-Watts small-world neuronal networks is investigated when the strength of synaptic connections between neurons is adaptively adjusted by spike-time-dependent plasticity (STDP). It is shown that irrespective of the synaptic connectivity is fixed or adaptive, the phenomenon of stochastic resonance occurs. The efficiency of network stochastic resonance can be largely enhanced by STDP in the coupling process. Particularly, the resonance for adaptive coupling can reach a much larger value than that for fixed one when the noise intensity is small or intermediate. STDP with dominant depression and small temporal window ratio is more efficient for the transmission of weak external signal in small-world neuronal networks. In addition, we demonstrate that the effect of stochastic resonance can be further improved via fine-tuning of the average coupling strength of the adaptive network. Furthermore, the small-world topology can significantly affect stochastic resonance of excitable neuronal networks. It is found that there exists an optimal probability of adding links by which the noise-induced transmission of weak periodic signal peaks
Energy Technology Data Exchange (ETDEWEB)
Yu, Haitao; Guo, Xinmeng; Wang, Jiang, E-mail: jiangwang@tju.edu.cn; Deng, Bin; Wei, Xile [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China)
2014-09-01
The phenomenon of stochastic resonance in Newman-Watts small-world neuronal networks is investigated when the strength of synaptic connections between neurons is adaptively adjusted by spike-time-dependent plasticity (STDP). It is shown that irrespective of the synaptic connectivity is fixed or adaptive, the phenomenon of stochastic resonance occurs. The efficiency of network stochastic resonance can be largely enhanced by STDP in the coupling process. Particularly, the resonance for adaptive coupling can reach a much larger value than that for fixed one when the noise intensity is small or intermediate. STDP with dominant depression and small temporal window ratio is more efficient for the transmission of weak external signal in small-world neuronal networks. In addition, we demonstrate that the effect of stochastic resonance can be further improved via fine-tuning of the average coupling strength of the adaptive network. Furthermore, the small-world topology can significantly affect stochastic resonance of excitable neuronal networks. It is found that there exists an optimal probability of adding links by which the noise-induced transmission of weak periodic signal peaks.
Qu, Haibo; Lu, Su; Zhang, Wenjing; Xiao, Yuan; Ning, Gang; Sun, Huaiqiang
2016-10-01
We applied resting-state functional magnetic resonance imaging(rfMRI)combined with graph theory to analyze 90 regions of the infantile small world neural network of the whole brain.We tried to get the following two points clear:1 whether the parameters of the node property of the infantile small world neural network are correlated with the level of infantile intelligence development;2 whether the parameters of the infantile small world neural network are correlated with the children’s baseline parameters,i.e.,the demographic parameters such as gender,age,parents’ education level,etc.Twelve cases of healthy infants were included in the investigation(9males and 3females with the average age of 33.42±8.42 months.)We then evaluated the level of infantile intelligence of all the cases and graded by Gesell Development Scale Test.We used a Siemens 3.0T Trio imaging system to perform resting-state(rs)EPI scans,and collected the BOLD functional Magnetic Resonance Imaging(fMRI)data.We performed the data processing with Statistical Parametric Mapping 5(SPM5)based on Matlab environment.Furthermore,we got the attributes of the whole brain small world and node attributes of 90 encephalic regions of templates of Anatomatic Automatic Labeling(ALL).At last,we carried out correlation study between the above-mentioned attitudes,intelligence scale parameters and demographic data.The results showed that many node attributes of small world neural network were closely correlated with intelligence scale parameters.Betweeness was mainly centered in thalamus,superior frontal gyrus,and occipital lobe(negative correlation).The r value of superior occipital gyrus associated with the individual and social intelligent scale was-0.729(P=0.007);degree was mainly centered in amygdaloid nucleus,superior frontal gyrus,and inferior parietal gyrus(positive correlation).The r value of inferior parietal gyrus associated with the gross motor intelligent scale was 0.725(P=0.008);efficiency was mainly
International Nuclear Information System (INIS)
Dassisti, M.; Carnimeo, L.
2013-01-01
European energy policy pursues the objective of a sustainable, competitive and reliable supply of energy. In 2007, the European Commission adopted a proper energy policy for Europe supported by several documents and included an action plan to meet the major energy challenges Europe has to face. A farsighted diversified yearly mix of energies was suggested to countries, aiming at increasing security of supply and efficiency, but a wide and systemic view of energy interchanges between states was missing. In this paper, a Small-World methodology of analysis of Interchange Energy-Networks (IENs) is presented, with the aim of providing a useful tool for planning sustainable energy policies. A proof case is presented to validate the methodology by considering the European IEN behaviour in the period of economical crisis. This network is approached as a Small World Net from a modelling point of view, by supposing that connections between States are characterised by a probability value depending on economic/political relations between countries. - Highlights: • Different view of the imports and exports of electric energy flows between European for potential use in ruling exchanges. • Panel data from 1996 to 2010 as part of a network of exchanges was considered from Eurostat official database. • The European import/export energy flows modelled as a network with Small World phenomena, interpreting the evolution over the years. • Interesting systemic tool for ruling and governing energy flows between countries
International Nuclear Information System (INIS)
Billaud, Y; Kaiss, A; Drissi, M; Pizzo, Y; Porterie, B; Zekri, N; Acem, Z; Collin, A; Boulet, P; Santoni, P-A; Bosseur, F
2012-01-01
This paper presents the latest developments and validation results of a hybrid model which combines a broad-scale stochastic small-world network model with a macroscopic deterministic approach, to simulate the effects of large fires burning in heterogeneous landscapes. In the extended version of the model, vegetation is depicted as an amorphous network of combustible cells, and both radiation and convection from the flaming zone are considered in the preheating process of unburned cells. Examples are given to illustrate small-world effects and fire behavior near the percolation threshold. The model is applied to a Mediterranean fire that occurred in Corsica in 2009 showing a good agreement in terms of rate of spread, and area and shape of the burn. A study, based on a fractional factorial plan, is conducted to evaluate the influence of variations of model parameters on fire propagation.
Topology of the Italian airport network: A scale-free small-world network with a fractal structure?
International Nuclear Information System (INIS)
Guida, Michele; Maria, Funaro
2007-01-01
In this paper, for the first time we analyze the structure of the Italian Airport Network (IAN) looking at it as a mathematical graph and investigate its topological properties. We find that it has very remarkable features, being like a scale-free network, since both the degree and the 'betweenness centrality' distributions follow a typical power-law known in literature as a Double Pareto Law. From a careful analysis of the data, the Italian Airport Network turns out to have a self-similar structure. In short, it is characterized by a fractal nature, whose typical dimensions can be easily determined from the values of the power-law scaling exponents. Moreover, we show that, according to the period examined, these distributions exhibit a number of interesting features, such as the existence of some 'hubs', i.e. in the graph theory's jargon, nodes with a very large number of links, and others most probably associated with geographical constraints. Also, we find that the IAN can be classified as a small-world network because the average distance between reachable pairs of airports grows at most as the logarithm of the number of airports. The IAN does not show evidence of 'communities' and this result could be the underlying reason behind the smallness of the value of the clustering coefficient, which is related to the probability that two nearest neighbors of a randomly chosen airport are connected
Order parameters and synchronization of FitzHugh–Nagumo small-world networks
International Nuclear Information System (INIS)
Yan-Long, Li; Jun, Ma; Yan-Jun, Liu; Wei, Zhang
2009-01-01
This paper numerically investigates the order parameter and synchronisation in the small world connected FitzHugh–Nagumo excitable systems. The simulations show that the order parameter continuously decreases with increasing D, the quality of the synchronisation worsens for large noise intensity. As the coupling intensity goes up, the quality of the synchronisation worsens, and it finds that the larger rewiring probability becomes the larger order parameter. It obtains the complete phase diagram for a wide range of values of noise intensity D and control parameter g. (cross-disciplinary physics and related areas of science and technology)
International Nuclear Information System (INIS)
Yuan Wujie; Luo Xiaoshu; Jiang Pinqun
2007-01-01
In this paper, we propose a new model of weighted small-world biological neural networks based on biophysical Hodgkin-Huxley neurons with side-restrain mechanism. Then we study excitement properties of the model under alternating current (AC) stimulation. The study shows that the excitement properties in the networks are preferably consistent with the behavior properties of a brain nervous system under different AC stimuli, such as refractory period and the brain neural excitement response induced by different intensities of noise and coupling. The results of the study have reference worthiness for the brain nerve electrophysiology and epistemological science.
Market-oriented Programming Using Small-world Networks for Controlling Building Environments
Shigei, Noritaka; Miyajima, Hiromi; Osako, Tsukasa
The market model, which is one of the economic activity models, is modeled as an agent system, and applying the model to the resource allocation problem has been studied. For air conditioning control of building, which is one of the resource allocation problems, an effective method based on the agent system using auction has been proposed for traditional PID controller. On the other hand, it has been considered that this method is performed by decentralized control. However, its decentralization is not perfect, and its performace is not enough. In this paper, firstly, we propose a perfectly decentralized agent model and show its performance. Secondly, in order to improve the model, we propose the agent model based on small-world model. The effectiveness of the proposed model is shown by simulation.
Varoquaux, G; Gramfort, A; Poline, J B; Thirion, B
2012-01-01
Correlations in the signal observed via functional Magnetic Resonance Imaging (fMRI), are expected to reveal the interactions in the underlying neural populations through hemodynamic response. In particular, they highlight distributed set of mutually correlated regions that correspond to brain networks related to different cognitive functions. Yet graph-theoretical studies of neural connections give a different picture: that of a highly integrated system with small-world properties: local clustering but with short pathways across the complete structure. We examine the conditional independence properties of the fMRI signal, i.e. its Markov structure, to find realistic assumptions on the connectivity structure that are required to explain the observed functional connectivity. In particular we seek a decomposition of the Markov structure into segregated functional networks using decomposable graphs: a set of strongly-connected and partially overlapping cliques. We introduce a new method to efficiently extract such cliques on a large, strongly-connected graph. We compare methods learning different graph structures from functional connectivity by testing the goodness of fit of the model they learn on new data. We find that summarizing the structure as strongly-connected networks can give a good description only for very large and overlapping networks. These results highlight that Markov models are good tools to identify the structure of brain connectivity from fMRI signals, but for this purpose they must reflect the small-world properties of the underlying neural systems. Copyright © 2012 Elsevier Ltd. All rights reserved.
Ma, Fei; Yao, Bing
2017-10-01
It is always an open, demanding and difficult task for generating available model to simulate dynamical functions and reveal inner principles from complex systems and networks. In this article, due to lots of real-life and artificial networks are built from series of simple and small groups (components), we discuss some interesting and helpful network-operation to generate more realistic network models. In view of community structure (modular topology), we present a class of sparse network models N(t , m) . At the moment, we capture the fact the N(t , 4) has not only scale-free feature, which means that the probability that a randomly selected vertex with degree k decays as a power-law, following P(k) ∼k-γ, where γ is the degree exponent, but also small-world property, which indicates that the typical distance between two uniform randomly chosen vertices grows proportionally to logarithm of the order of N(t , 4) , namely, relatively shorter diameter and lower average path length, simultaneously displays higher clustering coefficient. Next, as a new topological parameter correlating to reliability, synchronization capability and diffusion properties of networks, the number of spanning trees over a network is studied in more detail, an exact analytical solution for the number of spanning trees of the N(t , 4) is obtained. Based on the network-operation, part hub-vertex linking with each other will be helpful for structuring various network models and investigating the rules related with real-life networks.
Mapping Koch curves into scale-free small-world networks
International Nuclear Information System (INIS)
Zhang Zhongzhi; Gao Shuyang; Zhou Shuigeng; Chen Lichao; Zhang Hongjuan; Guan Jihong
2010-01-01
The class of Koch fractals is one of the most interesting families of fractals, and the study of complex networks is a central issue in the scientific community. In this paper, inspired by the famous Koch fractals, we propose a mapping technique converting Koch fractals into a family of deterministic networks called Koch networks. This novel class of networks incorporates some key properties characterizing a majority of real-life networked systems-a power-law distribution with exponent in the range between 2 and 3, a high clustering coefficient, a small diameter and average path length and degree correlations. Besides, we enumerate the exact numbers of spanning trees, spanning forests and connected spanning subgraphs in the networks. All these features are obtained exactly according to the proposed generation algorithm of the networks considered. The network representation approach could be used to investigate the complexity of some real-world systems from the perspective of complex networks.
Sun, Xiaojuan; Perc, Matjaž; Kurths, Jürgen
2017-05-01
In this paper, we study effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks. Our focus is on the impact of two parameters, namely the time delay τ and the probability of partial time delay pdelay, whereby the latter determines the probability with which a connection between two neurons is delayed. Our research reveals that partial time delays significantly affect phase synchronization in this system. In particular, partial time delays can either enhance or decrease phase synchronization and induce synchronization transitions with changes in the mean firing rate of neurons, as well as induce switching between synchronized neurons with period-1 firing to synchronized neurons with period-2 firing. Moreover, in comparison to a neuronal network where all connections are delayed, we show that small partial time delay probabilities have especially different influences on phase synchronization of neuronal networks.
Li, Chunguang; Maini, Philip K.
2005-10-01
The Penna bit-string model successfully encompasses many phenomena of population evolution, including inheritance, mutation, evolution, and aging. If we consider social interactions among individuals in the Penna model, the population will form a complex network. In this paper, we first modify the Verhulst factor to control only the birth rate, and introduce activity-based preferential reproduction of offspring in the Penna model. The social interactions among individuals are generated by both inheritance and activity-based preferential increase. Then we study the properties of the complex network generated by the modified Penna model. We find that the resulting complex network has a small-world effect and the assortative mixing property.
Quality of Care as an Emergent Phenomenon out of a Small-World Network of Relational Actors.
Fiorini, Rodolfo; De Giacomo, Piero; Marconi, Pier Luigi; L'Abate, Luciano
2014-01-01
In Healthcare Decision Support System, the development and evaluation of effective "Quality of Care" (QOC) indicators, in simulation-based training, are key feature to develop resilient and antifragile organization scenarios. Is it possible to conceive of QOC not only as a result of a voluntary and rational decision, imposed or even not, but also as an overall system "emergent phenomenon" out of a small-world network of relational synthetic actors, endowed with their own personality profiles to simulate human behaviour (for short, called "subjects")? In order to answer this question and to observe the phenomena of real emergence we should use computational models of high complexity, with heavy computational load and extensive computational time. Nevertheless, De Giacomo's Elementary Pragmatic Model (EPM) intrinsic self-reflexive functional logical closure enables to run simulation examples to classify the outcomes grown out of a small-world network of relational subjects fast and effectively. Therefore, it is possible to take note and to learn of how much strategic systemic interventions can induce context conditions of QOC facilitation, which can improve the effectiveness of specific actions, which otherwise might be paradoxically counterproductive also. Early results are so encouraging to use EPM as basic block to start designing more powerful Evolutive Elementary Pragmatic Model (E2PM) for real emergence computational model, to cope with ontological uncertainty at system level.
Noise influence on spike activation in a Hindmarsh–Rose small-world neural network
International Nuclear Information System (INIS)
Zhe, Sun; Micheletto, Ruggero
2016-01-01
We studied the role of noise in neural networks, especially focusing on its relation to the propagation of spike activity in a small sized system. We set up a source of information using a single neuron that is constantly spiking. This element called initiator x o feeds spikes to the rest of the network that is initially quiescent and subsequently reacts with vigorous spiking after a transitional period of time. We found that noise quickly suppresses the initiator’s influence and favors spontaneous spike activity and, using a decibel representation of noise intensity, we established a linear relationship between noise amplitude and the interval from the initiator’s first spike and the rest of the network activation. We studied the same process with networks of different sizes (number of neurons) and found that the initiator x o has a measurable influence on small networks, but as the network grows in size, spontaneous spiking emerges disrupting its effects on networks of more than about N = 100 neurons. This suggests that the mechanism of internal noise generation allows information transmission within a small neural neighborhood, but decays for bigger network domains. We also analyzed the Fourier spectrum of the whole network membrane potential and verified that noise provokes the reduction of main θ and α peaks before transitioning into chaotic spiking. However, network size does not reproduce a similar phenomena; instead we recorded a reduction in peaks’ amplitude, a better sharpness and definition of Fourier peaks, but not the evident degeneration to chaos observed with increasing external noise. This work aims to contribute to the understanding of the fundamental mechanisms of propagation of spontaneous spiking in neural networks and gives a quantitative assessment of how noise can be used to control and modulate this phenomenon in Hindmarsh−Rose (H−R) neural networks. (paper)
Noise influence on spike activation in a Hindmarsh-Rose small-world neural network
Zhe, Sun; Micheletto, Ruggero
2016-07-01
We studied the role of noise in neural networks, especially focusing on its relation to the propagation of spike activity in a small sized system. We set up a source of information using a single neuron that is constantly spiking. This element called initiator x o feeds spikes to the rest of the network that is initially quiescent and subsequently reacts with vigorous spiking after a transitional period of time. We found that noise quickly suppresses the initiator’s influence and favors spontaneous spike activity and, using a decibel representation of noise intensity, we established a linear relationship between noise amplitude and the interval from the initiator’s first spike and the rest of the network activation. We studied the same process with networks of different sizes (number of neurons) and found that the initiator x o has a measurable influence on small networks, but as the network grows in size, spontaneous spiking emerges disrupting its effects on networks of more than about N = 100 neurons. This suggests that the mechanism of internal noise generation allows information transmission within a small neural neighborhood, but decays for bigger network domains. We also analyzed the Fourier spectrum of the whole network membrane potential and verified that noise provokes the reduction of main θ and α peaks before transitioning into chaotic spiking. However, network size does not reproduce a similar phenomena; instead we recorded a reduction in peaks’ amplitude, a better sharpness and definition of Fourier peaks, but not the evident degeneration to chaos observed with increasing external noise. This work aims to contribute to the understanding of the fundamental mechanisms of propagation of spontaneous spiking in neural networks and gives a quantitative assessment of how noise can be used to control and modulate this phenomenon in Hindmarsh-Rose (H-R) neural networks.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Long Jiang, E-mail: kevinzhlj@163.com [Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002 (China); Zheng, Gang [Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002 (China); College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China); Zhang, Liping [College of Natural Science, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China); Zhong, Jianhui [Department of Biomedical Engineering, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Li, Qiang [College of Natural Science, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China); Zhao, Tie Zhu [Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002 (China); College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China); Lu, Guang Ming, E-mail: cjr.luguangming@vip.163.com [Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002 (China)
2014-10-15
Purpose: To explore changes in functional connectivity and topological organization of brain functional networks in cirrhotic patients with minimal hepatic encephalopathy (MHE) and non hepatic encephalopathy (nonHE) and their relationship with clinical markers. Materials and methods: Resting-state functional MR imaging was acquired in 22 MHE, 29 nonHE patients and 33 healthy controls. Functional connectivity networks were obtained by computing temporal correlations between any pairs of 90 cortical and subcortical regions. Graph analysis measures were quantitatively assessed for each subject. One-way analysis of covariance was applied to identify statistical differences of functional connectivity and network parameters among three groups. Correlations between clinical markers, such as Child–Pugh scores, venous blood ammonia level, and number connection test type A (NCT-A)/digit symbol test (DST) scores, and connectivity/graph metrics were calculated. Results: Thirty functional connectivities represented by edges were found to be abnormal (P < 0.05, FDR corrected) in cirrhotic patients, in which 16 edges (53.3%) were related with sub-cortical regions. MHE patients showed abnormal small-world attributes in the functional connectivity networks. Cirrhotic patients had significantly reduced nodal degree in 8 cortical regions and increased nodal centrality in 3 cortical regions. Twenty edges were correlated with either NCT-A or DST scores, in which 13 edges were related with sub-cortical regions. No correlation was found between Child–Pugh scores and graph theoretical measures in cirrhotic patients. Conclusion: Disturbances of brain functional connectivity and small world property loss are associated with neurocognitive impairment of cirrhotic patients. Reorganization of brain network occurred during disease progression from nonHE to MHE.
International Nuclear Information System (INIS)
Zhang, Long Jiang; Zheng, Gang; Zhang, Liping; Zhong, Jianhui; Li, Qiang; Zhao, Tie Zhu; Lu, Guang Ming
2014-01-01
Purpose: To explore changes in functional connectivity and topological organization of brain functional networks in cirrhotic patients with minimal hepatic encephalopathy (MHE) and non hepatic encephalopathy (nonHE) and their relationship with clinical markers. Materials and methods: Resting-state functional MR imaging was acquired in 22 MHE, 29 nonHE patients and 33 healthy controls. Functional connectivity networks were obtained by computing temporal correlations between any pairs of 90 cortical and subcortical regions. Graph analysis measures were quantitatively assessed for each subject. One-way analysis of covariance was applied to identify statistical differences of functional connectivity and network parameters among three groups. Correlations between clinical markers, such as Child–Pugh scores, venous blood ammonia level, and number connection test type A (NCT-A)/digit symbol test (DST) scores, and connectivity/graph metrics were calculated. Results: Thirty functional connectivities represented by edges were found to be abnormal (P < 0.05, FDR corrected) in cirrhotic patients, in which 16 edges (53.3%) were related with sub-cortical regions. MHE patients showed abnormal small-world attributes in the functional connectivity networks. Cirrhotic patients had significantly reduced nodal degree in 8 cortical regions and increased nodal centrality in 3 cortical regions. Twenty edges were correlated with either NCT-A or DST scores, in which 13 edges were related with sub-cortical regions. No correlation was found between Child–Pugh scores and graph theoretical measures in cirrhotic patients. Conclusion: Disturbances of brain functional connectivity and small world property loss are associated with neurocognitive impairment of cirrhotic patients. Reorganization of brain network occurred during disease progression from nonHE to MHE
The small world of osteocytes: connectomics of the lacuno-canalicular network in bone
International Nuclear Information System (INIS)
Kollmannsberger, Philip; Kerschnitzki, Michael; Repp, Felix; Wagermaier, Wolfgang; Weinkamer, Richard; Fratzl, Peter
2017-01-01
Osteocytes and their cell processes reside in a large, interconnected network of voids pervading the mineralized bone matrix of most vertebrates. This osteocyte lacuno-canalicular network (OLCN) is believed to play important roles in mechanosensing, mineral homeostasis, and for the mechanical properties of bone. While the extracellular matrix structure of bone is extensively studied on ultrastructural and macroscopic scales, there is a lack of quantitative knowledge on how the cellular network is organized. Using a recently introduced imaging and quantification approach, we analyze the OLCN in different bone types from mouse and sheep that exhibit different degrees of structural organization not only of the cell network but also of the fibrous matrix deposited by the cells. We define a number of robust, quantitative measures that are derived from the theory of complex networks. These measures enable us to gain insights into how efficient the network is organized with regard to intercellular transport and communication. Our analysis shows that the cell network in regularly organized, slow-growing bone tissue from sheep is less connected, but more efficiently organized compared to irregular and fast-growing bone tissue from mice. On the level of statistical topological properties (edges per node, edge length and degree distribution), both network types are indistinguishable, highlighting that despite pronounced differences at the tissue level, the topological architecture of the osteocyte canalicular network at the subcellular level may be independent of species and bone type. Our results suggest a universal mechanism underlying the self-organization of individual cells into a large, interconnected network during bone formation and mineralization. (paper)
The small world of osteocytes: connectomics of the lacuno-canalicular network in bone
Kollmannsberger, Philip; Kerschnitzki, Michael; Repp, Felix; Wagermaier, Wolfgang; Weinkamer, Richard; Fratzl, Peter
2017-07-01
Osteocytes and their cell processes reside in a large, interconnected network of voids pervading the mineralized bone matrix of most vertebrates. This osteocyte lacuno-canalicular network (OLCN) is believed to play important roles in mechanosensing, mineral homeostasis, and for the mechanical properties of bone. While the extracellular matrix structure of bone is extensively studied on ultrastructural and macroscopic scales, there is a lack of quantitative knowledge on how the cellular network is organized. Using a recently introduced imaging and quantification approach, we analyze the OLCN in different bone types from mouse and sheep that exhibit different degrees of structural organization not only of the cell network but also of the fibrous matrix deposited by the cells. We define a number of robust, quantitative measures that are derived from the theory of complex networks. These measures enable us to gain insights into how efficient the network is organized with regard to intercellular transport and communication. Our analysis shows that the cell network in regularly organized, slow-growing bone tissue from sheep is less connected, but more efficiently organized compared to irregular and fast-growing bone tissue from mice. On the level of statistical topological properties (edges per node, edge length and degree distribution), both network types are indistinguishable, highlighting that despite pronounced differences at the tissue level, the topological architecture of the osteocyte canalicular network at the subcellular level may be independent of species and bone type. Our results suggest a universal mechanism underlying the self-organization of individual cells into a large, interconnected network during bone formation and mineralization.
Tian, Lixia; Wang, Jinhui; Yan, Chaogan; He, Yong
2011-01-01
We employed resting-state functional MRI (R-fMRI) to investigate hemisphere- and gender-related differences in the topological organization of human brain functional networks. Brain networks were first constructed by measuring inter-regional temporal correlations of R-fMRI data within each hemisphere in 86 young, healthy, right-handed adults (38 males and 48 females) followed by a graph-theory analysis. The hemispheric networks exhibit small-world attributes (high clustering and short paths) that are compatible with previous results in the whole-brain functional networks. Furthermore, we found that compared with females, males have a higher normalized clustering coefficient in the right hemispheric network but a lower clustering coefficient in the left hemispheric network, suggesting a gender-hemisphere interaction. Moreover, we observed significant hemisphere-related differences in the regional nodal characteristics in various brain regions, such as the frontal and occipital regions (leftward asymmetry) and the temporal regions (rightward asymmetry), findings that are consistent with previous studies of brain structural and functional asymmetries. Together, our results suggest that the topological organization of human brain functional networks is associated with gender and hemispheres, and they provide insights into the understanding of functional substrates underlying individual differences in behaviors and cognition. Copyright © 2010 Elsevier Inc. All rights reserved.
Arzouan, Yossi; Solomon, Sorin; Faust, Miriam; Goldstein, Abraham
2011-04-27
Language comprehension is a complex task that involves a wide network of brain regions. We used topological measures to qualify and quantify the functional connectivity of the networks used under various comprehension conditions. To that aim we developed a technique to represent functional networks based on EEG recordings, taking advantage of their excellent time resolution in order to capture the fast processes that occur during language comprehension. Networks were created by searching for a specific causal relation between areas, the negative feedback loop, which is ubiquitous in many systems. This method is a simple way to construct directed graphs using event-related activity, which can then be analyzed topologically. Brain activity was recorded while subjects read expressions of various types and indicated whether they found them meaningful. Slightly different functional networks were obtained for event-related activity evoked by each expression type. The differences reflect the special contribution of specific regions in each condition and the balance of hemispheric activity involved in comprehending different types of expressions and are consistent with the literature in the field. Our results indicate that representing event-related brain activity as a network using a simple temporal relation, such as the negative feedback loop, to indicate directional connectivity is a viable option for investigation which also derives new information about aspects not reflected in the classical methods for investigating brain activity.
Kleczkowski, Adam; Oleś, Katarzyna; Gudowska-Nowak, Ewa; Gilligan, Christopher A
2012-01-07
We present a combined epidemiological and economic model for control of diseases spreading on local and small-world networks. The disease is characterized by a pre-symptomatic infectious stage that makes detection and control of cases more difficult. The effectiveness of local (ring-vaccination or culling) and global control strategies is analysed by comparing the net present values of the combined cost of preventive treatment and illness. The optimal strategy is then selected by minimizing the total cost of the epidemic. We show that three main strategies emerge, with treating a large number of individuals (global strategy, GS), treating a small number of individuals in a well-defined neighbourhood of a detected case (local strategy) and allowing the disease to spread unchecked (null strategy, NS). The choice of the optimal strategy is governed mainly by a relative cost of palliative and preventive treatments. If the disease spreads within the well-defined neighbourhood, the local strategy is optimal unless the cost of a single vaccine is much higher than the cost associated with hospitalization. In the latter case, it is most cost-effective to refrain from prevention. Destruction of local correlations, either by long-range (small-world) links or by inclusion of many initial foci, expands the range of costs for which the NS is most cost-effective. The GS emerges for the case when the cost of prevention is much lower than the cost of treatment and there is a substantial non-local component in the disease spread. We also show that local treatment is only desirable if the disease spreads on a small-world network with sufficiently few long-range links; otherwise it is optimal to treat globally. In the mean-field case, there are only two optimal solutions, to treat all if the cost of the vaccine is low and to treat nobody if it is high. The basic reproduction ratio, R(0), does not depend on the rate of responsive treatment in this case and the disease always invades
Small-world Bias of Correlation Networks: From Brain to Climate
Czech Academy of Sciences Publication Activity Database
Hlinka, Jaroslav; Hartman, David; Jajcay, Nikola; Tomeček, David; Tintěra, J.; Paluš, Milan
2017-01-01
Roč. 27, č. 3 (2017), č. článku 035812. ISSN 1054-1500 R&D Projects: GA ČR GA13-23940S Grant - others:GA MŠk(CZ) LO1611 Institutional support: RVO:67985807 Keywords : statistical properties * networks * brain * time series analysis * computer modeling Subject RIV: IN - Informatics, Computer Science OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 2.283, year: 2016
Rock-scissors-paper game on regular small-world networks
International Nuclear Information System (INIS)
Szabo, Gyoergy; Szolnoki, Attila; Izsak, Rudolf
2004-01-01
The spatial rock-scissors-paper game (or cyclic Lotka-Volterra system) is extended to study how the spatiotemporal patterns are affected by the rewired host lattice providing uniform number of neighbours (degree) at each site. On the square lattice this system exhibits a self-organizing pattern with equal concentration of the competing strategies (species). If the quenched background is constructed by substituting random links for the nearest-neighbour bonds of a square lattice then a limit cycle occurs when the portion of random links exceeds a threshold value. This transition can also be observed if the standard link is replaced temporarily by a random one with a probability P at each step of iteration. Above a second threshold value of P the amplitude of global oscillation increases with time and finally the system reaches one of the homogeneous (absorbing) states. In this case the results of Monte Carlo simulations are compared with the predictions of the dynamical cluster technique evaluating all the configuration probabilities on one-, two-, four- and six-site clusters
Small Worlds and Cultural Polarization
Flache, Andreas; Macy, Michael W.
2011-01-01
Building on Granovetter's theory of the "strength of weak ties,'' research on "small-world'' networks suggests that bridges between clusters in a social network (long-range ties) promote cultural diffusion, homogeneity, and integration. We show that this macro-level implication of network structure
Qian, Yu
2014-01-01
The synchronization transitions in Newman-Watts small-world neuronal networks (SWNNs) induced by time delay and long-range connection (LRC) probability have been investigated by synchronization parameter and space-time plots. Four distinct parameter regions, that is, asynchronous region, transition region, synchronous region, and oscillatory region have been discovered at certain LRC probability as time delay is increased. Interestingly, desynchronization is observed in oscillatory region. More importantly, we consider the spatiotemporal patterns obtained in delayed Newman-Watts SWNNs are the competition results between long-range drivings (LRDs) and neighboring interactions. In addition, for moderate time delay, the synchronization of neuronal network can be enhanced remarkably by increasing LRC probability. Furthermore, lag synchronization has been found between weak synchronization and complete synchronization as LRC probability is a little less than 1.0. Finally, the two necessary conditions, moderate time delay and large numbers of LRCs, are exposed explicitly for synchronization in delayed Newman-Watts SWNNs. PMID:24810595
Aldrich, Preston R.; El-Zabet, Jermeen; Hassan, Seerat; Briguglio, Joseph; Aliaj, Enela; Radcliffe, Maria; Mirza, Taha; Comar, Timothy; Nadolski, Jeremy; Huebner, Cynthia D.
2015-11-01
Several studies have shown that human transportation networks exhibit small-world structure, meaning they have high local clustering and are easily traversed. However, some have concluded this without statistical evaluations, and others have compared observed structure to globally random rather than planar models. Here, we use Monte Carlo randomizations to test US transportation infrastructure data for small-worldness. Coarse-grained network models were generated from GIS data wherein nodes represent the 3105 contiguous US counties and weighted edges represent the number of highway or railroad links between counties; thus, we focus on linkage topologies and not geodesic distances. We compared railroad and highway transportation networks with a simple planar network based on county edge-sharing, and with networks that were globally randomized and those that were randomized while preserving their planarity. We conclude that terrestrial transportation networks have small-world architecture, as it is classically defined relative to global randomizations. However, this topological structure is sufficiently explained by the planarity of the graphs, and in fact the topological patterns established by the transportation links actually serve to reduce the amount of small-world structure.
Najafi, M. N.; Dashti-Naserabadi, H.
2018-03-01
In many situations we are interested in the propagation of energy in some portions of a three-dimensional system with dilute long-range links. In this paper, a sandpile model is defined on the three-dimensional small-world network with real dissipative boundaries and the energy propagation is studied in three dimensions as well as the two-dimensional cross-sections. Two types of cross-sections are defined in the system, one in the bulk and another in the system boundary. The motivation of this is to make clear how the statistics of the avalanches in the bulk cross-section tend to the statistics of the dissipative avalanches, defined in the boundaries as the concentration of long-range links (α ) increases. This trend is numerically shown to be a power law in a manner described in the paper. Two regimes of α are considered in this work. For sufficiently small α s the dominant behavior of the system is just like that of the regular BTW, whereas for the intermediate values the behavior is nontrivial with some exponents that are reported in the paper. It is shown that the spatial extent up to which the statistics is similar to the regular BTW model scales with α just like the dissipative BTW model with the dissipation factor (mass in the corresponding ghost model) m2˜α for the three-dimensional system as well as its two-dimensional cross-sections.
Hu, Yuxiao; Xu, Qiang; Shen, Junkang; Li, Kai; Zhu, Hong; Zhang, Zhiqiang; Lu, Guangming
2015-02-01
Many studies have demonstrated the small-worldness of the human brain, and have revealed a sexual dimorphism in brain network properties. However, little is known about the gender effects on the topological organization of the brain metabolic covariance networks. To investigate the small-worldness and the gender differences in the topological architectures of human brain metabolic networks. FDG-PET data of 400 healthy right-handed subjects (200 women and 200 age-matched men) were involved in the present study. Metabolic networks of each gender were constructed by calculating the covariance of regional cerebral glucose metabolism (rCMglc) across subjects on the basis of AAL parcellation. Gender differences of network and nodal properties were investigated by using the graph theoretical approaches. Moreover, the gender-related difference of rCMglc in each brain region was tested for investigating the relationships between the hub regions and the brain regions showing significant gender-related differences in rCMglc. We found prominent small-world properties in the domain of metabolic networks in each gender. No significant gender difference in the global characteristics was found. Gender differences of nodal characteristic were observed in a few brain regions. We also found bilateral and lateralized distributions of network hubs in the females and males. Furthermore, we first reported that some hubs of a gender located in the brain regions showing weaker rCMglc in this gender than the other gender. The present study demonstrated that small-worldness was existed in metabolic networks, and revealed gender differences of organizational patterns in metabolic network. These results maybe provided insights into the understanding of the metabolic substrates underlying individual differences in cognition and behaviors. © The Foundation Acta Radiologica 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Kim, Sang-Yoon; Lim, Woochang
2017-09-01
We consider an inhomogeneous small-world network (SWN) composed of inhibitory short-range (SR) and long-range (LR) interneurons, and investigate the effect of network architecture on emergence of synchronized brain rhythms by varying the fraction of LR interneurons p long . The betweenness centralities of the LR and SR interneurons (characterizing the potentiality in controlling communication between other interneurons) are distinctly different. Hence, in view of the betweenness, SWNs we consider are inhomogeneous, unlike the "canonical" Watts-Strogatz SWN with nearly the same betweenness centralities. For small p long , the load of communication traffic is much concentrated on a few LR interneurons. However, as p long is increased, the number of LR connections (coming from LR interneurons) increases, and then the load of communication traffic is less concentrated on LR interneurons, which leads to better efficiency of global communication between interneurons. Sparsely synchronized rhythms are thus found to emerge when passing a small critical value p long (c) (≃0.16). The population frequency of the sparsely synchronized rhythm is ultrafast (higher than 100 Hz), while the mean firing rate of individual interneurons is much lower (∼30 Hz) due to stochastic and intermittent neural discharges. These dynamical behaviors in the inhomogeneous SWN are also compared with those in the homogeneous Watts-Strogatz SWN, in connection with their network topologies. Particularly, we note that the main difference between the two types of SWNs lies in the distribution of betweenness centralities. Unlike the case of the Watts-Strogatz SWN, dynamical responses to external stimuli vary depending on the type of stimulated interneurons in the inhomogeneous SWN. We consider two cases of external time-periodic stimuli applied to sub-populations of the LR and SR interneurons, respectively. Dynamical responses (such as synchronization suppression and enhancement) to these two cases of
Cluster-size entropy in the Axelrod model of social influence: Small-world networks and mass media
Gandica, Y.; Charmell, A.; Villegas-Febres, J.; Bonalde, I.
2011-10-01
We study the Axelrod's cultural adaptation model using the concept of cluster-size entropy Sc, which gives information on the variability of the cultural cluster size present in the system. Using networks of different topologies, from regular to random, we find that the critical point of the well-known nonequilibrium monocultural-multicultural (order-disorder) transition of the Axelrod model is given by the maximum of the Sc(q) distributions. The width of the cluster entropy distributions can be used to qualitatively determine whether the transition is first or second order. By scaling the cluster entropy distributions we were able to obtain a relationship between the critical cultural trait qc and the number F of cultural features in two-dimensional regular networks. We also analyze the effect of the mass media (external field) on social systems within the Axelrod model in a square network. We find a partially ordered phase whose largest cultural cluster is not aligned with the external field, in contrast with a recent suggestion that this type of phase cannot be formed in regular networks. We draw a q-B phase diagram for the Axelrod model in regular networks.
Ma, Fei; Su, Jing; Hao, Yongxing; Yao, Bing; Yan, Guanghui
2018-02-01
The problem of uncovering the internal operating function of network models is intriguing, demanded and attractive in researches of complex networks. Notice that, in the past two decades, a great number of artificial models are built to try to answer the above mentioned task. Based on the different growth ways, these previous models can be divided into two categories, one type, possessing the preferential attachment, follows a power-law P(k) ∼k-γ, 2 motivated from a new attachment way, vertex-edge-growth network-operation, more precisely, the couple of both them. We report that this model is sparse, small world and hierarchical. And then, not only is scale-free feature in our model, but also lies the degree parameter γ(≈ 3 . 242) out the typical range. Note that, we suggest that the coexistence of multiple vertex growth ways will have a prominent effect on the power-law parameter γ, and the preferential attachment plays a dominate role on the development of networks over time. At the end of this paper, we obtain an exact analytical expression for the total number of spanning trees of models and also capture spanning trees entropy which we have compared with those of their corresponding component elements.
Li, Meiling; Wang, Junping; Liu, Feng; Chen, Heng; Lu, Fengmei; Wu, Guorong; Yu, Chunshui; Chen, Huafu
2015-05-01
The human brain has been described as a complex network, which integrates information with high efficiency. However, the relationships between the efficiency of human brain functional networks and handedness and brain size remain unclear. Twenty-one left-handed and 32 right-handed healthy subjects underwent a resting-state functional magnetic resonance imaging scan. The whole brain functional networks were constructed by thresholding Pearson correlation matrices of 90 cortical and subcortical regions. Graph theory-based methods were employed to further analyze their topological properties. As expected, all participants demonstrated small-world topology, suggesting a highly efficient topological structure. Furthermore, we found that smaller brains showed higher local efficiency, whereas larger brains showed higher global efficiency, reflecting a suitable efficiency balance between local specialization and global integration of brain functional activity. Compared with right-handers, significant alterations in nodal efficiency were revealed in left-handers, involving the anterior and median cingulate gyrus, middle temporal gyrus, angular gyrus, and amygdala. Our findings indicated that the functional network organization in the human brain was associated with handedness and brain size.
Directory of Open Access Journals (Sweden)
Christos A. Frantzidis
2014-08-01
Full Text Available Previous neuroscientific findings have linked Alzheimer’s disease (AD with less efficient information processing and brain network disorganization. However, pathological alterations of the brain networks during the preclinical phase of amnestic Mild Cognitive Impairment (aMCI remain largely unknown. The present study aimed at comparing patterns of the detection of functional disorganization in MCI relative to Mild Dementia (MD. Participants consisted of 23 cognitively healthy adults, 17 aMCI and 24 mild AD patients who underwent electroencephalographic (EEG data acquisition during a resting-state condition. Synchronization analysis through the Orthogonal Discrete Wavelet Transform (ODWT, and directional brain network analysis were applied on the EEG data. This computational model was performed for networks that have the same number of edges (N=500, 600, 700, 800 edges across all participants and groups (fixed density values. All groups exhibited a small-world (SW brain architecture. However, we found a significant reduction in the SW brain architecture in both aMCI and MD patients relative to the group of Healthy controls. This functional disorganization was also correlated with the participant’s generic cognitive status. The deterioration of the network’s organization was caused mainly by deficient local information processing as quantified by the mean cluster coefficient value. Functional hubs were identified through the normalized betweenness centrality metric. Analysis of the local characteristics showed relative hub preservation even with statistically significant reduced strength. Compensatory phenomena were also evident through the formation of additional hubs on left frontal and parietal regions. Our results indicate a declined functional network organization even during the prodromal phase. Degeneration is evident even in the preclinical phase and coexists with transient network reorganization due to compensation.
Yao, Yuangen; Deng, Haiyou; Ma, Chengzhang; Yi, Ming; Ma, Jun
2017-01-01
Spiral waves are observed in the chemical, physical and biological systems, and the emergence of spiral waves in cardiac tissue is linked to some diseases such as heart ventricular fibrillation and epilepsy; thus it has importance in theoretical studies and potential medical applications. Noise is inevitable in neuronal systems and can change the electrical activities of neuron in different ways. Many previous theoretical studies about the impacts of noise on spiral waves focus an unbounded Gaussian noise and even colored noise. In this paper, the impacts of bounded noise and rewiring of network on the formation and instability of spiral waves are discussed in small-world (SW) network of Hodgkin-Huxley (HH) neurons through numerical simulations, and possible statistical analysis will be carried out. Firstly, we present SW network of HH neurons subjected to bounded noise. Then, it is numerically demonstrated that bounded noise with proper intensity σ, amplitude A, or frequency f can facilitate the formation of spiral waves when rewiring probability p is below certain thresholds. In other words, bounded noise-induced resonant behavior can occur in the SW network of neurons. In addition, rewiring probability p always impairs spiral waves, while spiral waves are confirmed to be robust for small p, thus shortcut-induced phase transition of spiral wave with the increase of p is induced. Furthermore, statistical factors of synchronization are calculated to discern the phase transition of spatial pattern, and it is confirmed that larger factor of synchronization is approached with increasing of rewiring probability p, and the stability of spiral wave is destroyed.
Ma, Fei; Su, Jing; Yao, Bing
2018-05-01
The problem of determining and calculating the number of spanning trees of any finite graph (model) is a great challenge, and has been studied in various fields, such as discrete applied mathematics, theoretical computer science, physics, chemistry and the like. In this paper, firstly, thank to lots of real-life systems and artificial networks built by all kinds of functions and combinations among some simpler and smaller elements (components), we discuss some helpful network-operation, including link-operation and merge-operation, to design more realistic and complicated network models. Secondly, we present a method for computing the total number of spanning trees. As an accessible example, we apply this method to space of trees and cycles respectively, and our results suggest that it is indeed a better one for such models. In order to reflect more widely practical applications and potentially theoretical significance, we study the enumerating method in some existing scale-free network models. On the other hand, we set up a class of new models displaying scale-free feature, that is to say, following P(k) k-γ, where γ is the degree exponent. Based on detailed calculation, the degree exponent γ of our deterministic scale-free models satisfies γ > 3. In the rest of our discussions, we not only calculate analytically the solutions of average path length, which indicates our models have small-world property being prevailing in amounts of complex systems, but also derive the number of spanning trees by means of the recursive method described in this paper, which clarifies our method is convenient to research these models.
Shi, Li; Niu, Xiaoke; Wan, Hong
2015-05-01
The biological networks have been widely reported to present small-world properties. However, the effects of small-world network structure on population's encoding performance remain poorly understood. To address this issue, we applied a small world-based framework to quantify and analyze the response dynamics of cell assemblies recorded from rat primary visual cortex, and further established a population encoding model based on small world-based generalized linear model (SW-GLM). The electrophysiological experimental results show that the small world-based population responses to different topological shapes present significant variation (t test, p 0.8), while no significant variation was found for control networks without considering their spatial connectivity (t test, p > 0.05; effect size: Hedge's g < 0.5). Furthermore, the numerical experimental results show that the predicted response under SW-GLM is more accurate and reliable compared to the control model without small-world structure, and the decoding performance is also improved about 10 % by taking the small-world structure into account. The above results suggest the important role of the small-world neural structure in encoding visual information for the neural population by providing electrophysiological and theoretical evidence, respectively. The study helps greatly to well understand the population encoding mechanisms of visual cortex.
Statistical complexity is maximized in a small-world brain.
Directory of Open Access Journals (Sweden)
Teck Liang Tan
Full Text Available In this paper, we study a network of Izhikevich neurons to explore what it means for a brain to be at the edge of chaos. To do so, we first constructed the phase diagram of a single Izhikevich excitatory neuron, and identified a small region of the parameter space where we find a large number of phase boundaries to serve as our edge of chaos. We then couple the outputs of these neurons directly to the parameters of other neurons, so that the neuron dynamics can drive transitions from one phase to another on an artificial energy landscape. Finally, we measure the statistical complexity of the parameter time series, while the network is tuned from a regular network to a random network using the Watts-Strogatz rewiring algorithm. We find that the statistical complexity of the parameter dynamics is maximized when the neuron network is most small-world-like. Our results suggest that the small-world architecture of neuron connections in brains is not accidental, but may be related to the information processing that they do.
International Nuclear Information System (INIS)
Lin Min; Chen Tianlun
2005-01-01
A lattice model for a set of pulse-coupled integrate-and-fire neurons with small world structure is introduced. We find that our model displays the power-law behavior accompanied with the large-scale synchronized activities among the units. And the different connectivity topologies lead to different behaviors in models of integrate-and-fire neurons.
Small World Properties Generated by a New Algorithm Under Same Degree of All Nodes
International Nuclear Information System (INIS)
Li Yong; Fang Jinqing; Liu Qiang; Liang Yong
2006-01-01
Based on the model of the same degree of all nodes we proposed before, a new algorithm, the so-called 'spread all over vertices' (SAV) algorithm, is proposed for generating small-world properties from a regular ring lattices. During randomly rewiring connections the SAV is used to keep the unchanged number of links. Comparing the SAV algorithm with the Watts-Strogatz model and the 'spread all over boundaries' algorithm, three methods can have the same topological properties of the small world networks. These results offer diverse formation of small world networks. It is helpful to the research of some applications for dynamics of mutual oscillator inside nodes and interacting automata associated with networks.
Sync in Complex Dynamical Networks: Stability, Evolution, Control, and Application
Li, Xiang
2005-01-01
In the past few years, the discoveries of small-world and scale-free properties of many natural and artificial complex networks have stimulated significant advances in better understanding the relationship between the topology and the collective dynamics of complex networks. This paper reports recent progresses in the literature of synchronization of complex dynamical networks including stability criteria, network synchronizability and uniform synchronous criticality in different topologies, ...
Incremental Centrality Algorithms for Dynamic Network Analysis
2013-08-01
literature. 7.1.3 Small World Networks In 1998, Watts and Strogatz introduced a model that starts with a regular lattice (ring) of n nodes and...and S. Strogatz , "Collective Dynamics of ‘Small-World’ Networks," Nature, vol. 393, pp. 440-442, 1998. [13] T. Opsahl, "Structure and Evolution of...34On Random Graphs," Publicationes Mathematicae, vol. 6, 1959. [167] D.J. Watts and S.H. Strogatz , "Collective Dynamics of ‘Small-World’ Networks
The lesioned brain: still a small world?
Directory of Open Access Journals (Sweden)
Linda Douw
2010-11-01
Full Text Available The intra-arterial amobarbital procedure (IAP or Wada test is used to determine language lateralization and contralateral memory functioning in patients eligible for neurosurgery because of pharmaco-resistant epilepsy. During unilateral sedation, functioning of the contralateral hemisphere is assessed by means of neuropsychological tests. We use the IAP as a reversible model for the effect of lesions on brain network topology. Three artifact free epochs (4096 samples were selected from each EEG record before and after amobarbital injection. Functional connectivity was assessed by means of the synchronization likelihood (SL. The resulting functional connectivity matrices were constructed for all six epochs per patient in four frequency bands, and weighted network analysis was performed. The clustering coefficient, average path length, small-world-index, and edge weight correlation were calculated. Recordings of 33 patients were available. Network topology changed significantly after amobarbital injection: clustering decreased in all frequency bands, while path length decreased in the theta and lower alpha band, indicating a shift towards a more random network topology. Likewise, the edge weight correlation decreased after injection of amobarbital in the theta and beta bands. Network characteristics after injection of amobarbital were correlated with memory score: higher theta band small-world-index and increased upper alpha path length were related to better memory score. The whole-brain network topology in patients eligible for epilepsy surgery becomes more random and less optimally organized after selective sedation of one hemisphere, as has been reported in studies with brain tumor patients. Furthermore, memory functioning after injection seems related to network topology, indicating that functional performance is related to topological network properties of the brain.
Network dynamics: The World Wide Web
Adamic, Lada Ariana
Despite its rapidly growing and dynamic nature, the Web displays a number of strong regularities which can be understood by drawing on methods of statistical physics. This thesis finds power-law distributions in website sizes, traffic, and links, and more importantly, develops a stochastic theory which explains them. Power-law link distributions are shown to lead to network characteristics which are especially suitable for scalable localized search. It is also demonstrated that the Web is a "small world": to reach one site from any other takes an average of only 4 hops, while most related sites cluster together. Additional dynamical properties of the Web graph are extracted from diffusion processes.
Small Worldness in Dense and Weighted Connectomes
Colon-Perez, Luis; Couret, Michelle; Triplett, William; Price, Catherine; Mareci, Thomas
2016-05-01
The human brain is a heterogeneous network of connected functional regions; however, most brain network studies assume that all brain connections can be described in a framework of binary connections. The brain is a complex structure of white matter tracts connected by a wide range of tract sizes, which suggests a broad range of connection strengths. Therefore, the assumption that the connections are binary yields an incomplete picture of the brain. Various thresholding methods have been used to remove spurious connections and reduce the graph density in binary networks. But these thresholds are arbitrary and make problematic the comparison of networks created at different thresholds. The heterogeneity of connection strengths can be represented in graph theory by applying weights to the network edges. Using our recently introduced edge weight parameter, we estimated the topological brain network organization using a complimentary weighted connectivity framework to the traditional framework of a binary network. To examine the reproducibility of brain networks in a controlled condition, we studied the topological network organization of a single healthy individual by acquiring 10 repeated diffusion-weighted magnetic resonance image datasets, over a one-month period on the same scanner, and analyzing these networks with deterministic tractography. We applied a threshold to both the binary and weighted networks and determined that the extra degree of freedom that comes with the framework of weighting network connectivity provides a robust result as any threshold level. The proposed weighted connectivity framework provides a stable result and is able to demonstrate the small world property of brain networks in situations where the binary framework is inadequate and unable to demonstrate this network property.
The architecture of dynamic reservoir in the echo state network
Cui, Hongyan; Liu, Xiang; Li, Lixiang
2012-09-01
Echo state network (ESN) has recently attracted increasing interests because of its superior capability in modeling nonlinear dynamic systems. In the conventional echo state network model, its dynamic reservoir (DR) has a random and sparse topology, which is far from the real biological neural networks from both structural and functional perspectives. We hereby propose three novel types of echo state networks with new dynamic reservoir topologies based on complex network theory, i.e., with a small-world topology, a scale-free topology, and a mixture of small-world and scale-free topologies, respectively. We then analyze the relationship between the dynamic reservoir structure and its prediction capability. We utilize two commonly used time series to evaluate the prediction performance of the three proposed echo state networks and compare them to the conventional model. We also use independent and identically distributed time series to analyze the short-term memory and prediction precision of these echo state networks. Furthermore, we study the ratio of scale-free topology and the small-world topology in the mixed-topology network, and examine its influence on the performance of the echo state networks. Our simulation results show that the proposed echo state network models have better prediction capabilities, a wider spectral radius, but retain almost the same short-term memory capacity as compared to the conventional echo state network model. We also find that the smaller the ratio of the scale-free topology over the small-world topology, the better the memory capacities.
Liang, Xia; Wang, Jinhui; Yan, Chaogan; Shu, Ni; Xu, Ke; Gong, Gaolang; He, Yong
2012-01-01
Graph theoretical analysis of brain networks based on resting-state functional MRI (R-fMRI) has attracted a great deal of attention in recent years. These analyses often involve the selection of correlation metrics and specific preprocessing steps. However, the influence of these factors on the topological properties of functional brain networks has not been systematically examined. Here, we investigated the influences of correlation metric choice (Pearson's correlation versus partial correlation), global signal presence (regressed or not) and frequency band selection [slow-5 (0.01-0.027 Hz) versus slow-4 (0.027-0.073 Hz)] on the topological properties of both binary and weighted brain networks derived from them, and we employed test-retest (TRT) analyses for further guidance on how to choose the "best" network modeling strategy from the reliability perspective. Our results show significant differences in global network metrics associated with both correlation metrics and global signals. Analysis of nodal degree revealed differing hub distributions for brain networks derived from Pearson's correlation versus partial correlation. TRT analysis revealed that the reliability of both global and local topological properties are modulated by correlation metrics and the global signal, with the highest reliability observed for Pearson's-correlation-based brain networks without global signal removal (WOGR-PEAR). The nodal reliability exhibited a spatially heterogeneous distribution wherein regions in association and limbic/paralimbic cortices showed moderate TRT reliability in Pearson's-correlation-based brain networks. Moreover, we found that there were significant frequency-related differences in topological properties of WOGR-PEAR networks, and brain networks derived in the 0.027-0.073 Hz band exhibited greater reliability than those in the 0.01-0.027 Hz band. Taken together, our results provide direct evidence regarding the influences of correlation metrics and specific
Li, Meiling; Wang, Junping; Liu, Feng; Chen, Heng; Lu, Fengmei; Wu, Guorong; Yu, Chunshui; Chen, Huafu
2015-01-01
The human brain has been described as a complex network, which integrates information with high efficiency. However, the relationships between the efficiency of human brain functional networks and handedness and brain size remain unclear. Twenty-one left-handed and 32 right-handed healthy subjects underwent a resting-state functional magnetic resonance imaging scan. The whole brain functional networks were constructed by thresholding Pearson correlation matrices of 90 cortical and subcortical...
Directory of Open Access Journals (Sweden)
Xia Liang
Full Text Available Graph theoretical analysis of brain networks based on resting-state functional MRI (R-fMRI has attracted a great deal of attention in recent years. These analyses often involve the selection of correlation metrics and specific preprocessing steps. However, the influence of these factors on the topological properties of functional brain networks has not been systematically examined. Here, we investigated the influences of correlation metric choice (Pearson's correlation versus partial correlation, global signal presence (regressed or not and frequency band selection [slow-5 (0.01-0.027 Hz versus slow-4 (0.027-0.073 Hz] on the topological properties of both binary and weighted brain networks derived from them, and we employed test-retest (TRT analyses for further guidance on how to choose the "best" network modeling strategy from the reliability perspective. Our results show significant differences in global network metrics associated with both correlation metrics and global signals. Analysis of nodal degree revealed differing hub distributions for brain networks derived from Pearson's correlation versus partial correlation. TRT analysis revealed that the reliability of both global and local topological properties are modulated by correlation metrics and the global signal, with the highest reliability observed for Pearson's-correlation-based brain networks without global signal removal (WOGR-PEAR. The nodal reliability exhibited a spatially heterogeneous distribution wherein regions in association and limbic/paralimbic cortices showed moderate TRT reliability in Pearson's-correlation-based brain networks. Moreover, we found that there were significant frequency-related differences in topological properties of WOGR-PEAR networks, and brain networks derived in the 0.027-0.073 Hz band exhibited greater reliability than those in the 0.01-0.027 Hz band. Taken together, our results provide direct evidence regarding the influences of correlation metrics
Nonequilibrium phase transition in directed small-world-Voronoi-Delaunay random lattices
International Nuclear Information System (INIS)
Lima, F.W.S.
2016-01-01
On directed small-world-Voronoi-Delaunay random lattices in two dimensions with quenched connectivity disorder we study the critical properties of the dynamics evolution of public opinion in social influence networks using a simple spin-like model. The system is treated by applying Monte Carlo simulations. We show that directed links on these random lattices may lead to phase diagram with first- and second-order social phase transitions out of equilibrium. (paper)
The small world yields the most effective information spreading
International Nuclear Information System (INIS)
Lü Linyuan; Chen Duanbing; Zhou Tao
2011-01-01
The spreading dynamics of information and diseases are usually analyzed by using a unified framework and analogous models. In this paper, we propose a model to emphasize the essential difference between information spreading and epidemic spreading, where the memory effects, the social reinforcement and the non-redundancy of contacts are taken into account. Under certain conditions, the information spreads faster and broader in regular networks than in random networks, which to some extent supports the recent experimental observation of spreading in online society (Centola D 2010 Science 329 1194). At the same time, the simulation result indicates that the random networks tend to be favorable for effective spreading when the network size increases. This challenges the validity of the above-mentioned experiment for large-scale systems. More importantly, we show that the spreading effectiveness can be sharply enhanced by introducing a little randomness into the regular structure, namely the small-world networks yield the most effective information spreading. This work provides insights into the role of local clustering in information spreading. (paper)
Batalle, Dafnis; Eixarch, Elisenda; Figueras, Francesc; Muñoz-Moreno, Emma; Bargallo, Nuria; Illa, Miriam; Acosta-Rojas, Ruthy; Amat-Roldan, Ivan; Gratacos, Eduard
2012-04-02
Intrauterine growth restriction (IUGR) due to placental insufficiency affects 5-10% of all pregnancies and it is associated with a wide range of short- and long-term neurodevelopmental disorders. Prediction of neurodevelopmental outcomes in IUGR is among the clinical challenges of modern fetal medicine and pediatrics. In recent years several studies have used magnetic resonance imaging (MRI) to demonstrate differences in brain structure in IUGR subjects, but the ability to use MRI for individual predictive purposes in IUGR is limited. Recent research suggests that MRI in vivo access to brain connectivity might have the potential to help understanding cognitive and neurodevelopment processes. Specifically, MRI based connectomics is an emerging approach to extract information from MRI data that exhaustively maps inter-regional connectivity within the brain to build a graph model of its neural circuitry known as brain network. In the present study we used diffusion MRI based connectomics to obtain structural brain networks of a prospective cohort of one year old infants (32 controls and 24 IUGR) and analyze the existence of quantifiable brain reorganization of white matter circuitry in IUGR group by means of global and regional graph theory features of brain networks. Based on global and regional analyses of the brain network topology we demonstrated brain reorganization in IUGR infants at one year of age. Specifically, IUGR infants presented decreased global and local weighted efficiency, and a pattern of altered regional graph theory features. By means of binomial logistic regression, we also demonstrated that connectivity measures were associated with abnormal performance in later neurodevelopmental outcome as measured by Bayley Scale for Infant and Toddler Development, Third edition (BSID-III) at two years of age. These findings show the potential of diffusion MRI based connectomics and graph theory based network characteristics for estimating differences in the
Agent-based modeling and network dynamics
Namatame, Akira
2016-01-01
The book integrates agent-based modeling and network science. It is divided into three parts, namely, foundations, primary dynamics on and of social networks, and applications. The book begins with the network origin of agent-based models, known as cellular automata, and introduce a number of classic models, such as Schelling’s segregation model and Axelrod’s spatial game. The essence of the foundation part is the network-based agent-based models in which agents follow network-based decision rules. Under the influence of the substantial progress in network science in late 1990s, these models have been extended from using lattices into using small-world networks, scale-free networks, etc. The book also shows that the modern network science mainly driven by game-theorists and sociophysicists has inspired agent-based social scientists to develop alternative formation algorithms, known as agent-based social networks. The book reviews a number of pioneering and representative models in this family. Upon the gi...
Exploring the story, science, and adventure of small worlds
Swann, J. L.; Elkins-Tanton, L. T.; Anbar, A. D.; Klug Boonstra, S.; Tamer, A. J.; Mead, C.; Hunsley, D.
2017-12-01
Small worlds are a strategic focus at NASA, reflected by missions such as Osiris Rex and Psyche among others. The Infiniscope project, with funding from NASA SMD, is building on this scientific and public interest to teach formal and informal learners about asteroids and other small worlds. The digital learning experience, "Where are the small worlds?", and future Infiniscope experiences, incorporate a design theory that we describe as "education through exploration" (ETX) which is provided through an adaptive e-learning platform. This design ensures that learners actively engage in exploration and discovery, while receiving targeted feedback to push through challenges. To ensure that this and future experiences reach and meet the needs of as many educators as possible, Infiniscope includes a digital teaching network to host the experiences and support the reuse and adaptation of digital resources in new lessons. "Where are the small worlds?" puts learners in an interactive simulation of the solar system and provides a mission structure in which they hunt for "astrocaches" on near earth objects, main belt asteroids, and Kuiper-belt objects. These activities allow the learner to discover the locations of the small worlds in the solar system and develop an intuitive understanding for the relative motion of objects at various distances from the Sun. The experience is NGSS-aligned and accompanied by a lesson plan for integration into the classroom. In testing with more than 500 middle-school students, 83% of participants said they wanted to do more experiences like "Where are the small worlds?" They also found the experience both "fun" and "interesting" while being moderately difficult. "Where are the small worlds?" is one of many visualizations and lessons that is available within the Infiniscope teaching network. The network already has hundreds of members and is expected to grow in both numbers and engagement over time. Currently, educators can search and use pre
Vaccination intervention on epidemic dynamics in networks
Peng, Xiao-Long; Xu, Xin-Jian; Fu, Xinchu; Zhou, Tao
2013-02-01
Vaccination is an important measure available for preventing or reducing the spread of infectious diseases. In this paper, an epidemic model including susceptible, infected, and imperfectly vaccinated compartments is studied on Watts-Strogatz small-world, Barabási-Albert scale-free, and random scale-free networks. The epidemic threshold and prevalence are analyzed. For small-world networks, the effective vaccination intervention is suggested and its influence on the threshold and prevalence is analyzed. For scale-free networks, the threshold is found to be strongly dependent both on the effective vaccination rate and on the connectivity distribution. Moreover, so long as vaccination is effective, it can linearly decrease the epidemic prevalence in small-world networks, whereas for scale-free networks it acts exponentially. These results can help in adopting pragmatic treatment upon diseases in structured populations.
The Academic Life: Small Worlds, Different Worlds
Locke, William
2010-01-01
"The Academic Life: Small Worlds, Different Worlds" represented an impressive investigation of the largest and most complex national academic community in the world, which seriously attempted a detailed representation of the variations in its form. Its ethnographic orientation to understanding the internal academic life through exploratory…
Effects of small-world connectivity on noise-induced temporal and spatial order in neural media
International Nuclear Information System (INIS)
Perc, Matjaz
2007-01-01
We present an overview of possible effects of small-world connectivity on noise-induced temporal and spatial order in a two-dimensional network of excitable neural media with FitzHugh-Nagumo local dynamics. Small-world networks are characterized by a given fraction of so-called long-range couplings or shortcut links that connect distant units of the system, while all other units are coupled in a diffusive-like manner. Interestingly, already a small fraction of these long-range couplings can have wide-ranging effects on the temporal as well as spatial noise-induced dynamics of the system. Here we present two main effects. First, we show that the temporal order, characterized by the autocorrelation of a firing-rate function, can be greatly enhanced by the introduction of small-world connectivity, whereby the effect increases with the increasing fraction of introduced shortcut links. Second, we show that the introduction of long-range couplings induces disorder of otherwise ordered, spiral-wave-like, noise-induced patterns that can be observed by exclusive diffusive connectivity of spatial units. Thereby, already a small fraction of shortcut links is sufficient to destroy coherent pattern formation in the media. Although the two results seem contradictive, we provide an explanation considering the inherent scale-free nature of small-world networks, which on one hand, facilitates signal transduction and thus temporal order in the system, whilst on the other hand, disrupts the internal spatial scale of the media thereby hindering the existence of coherent wave-like patterns. Additionally, the importance of spatially versus temporally ordered neural network functioning is discussed
Network rewiring dynamics with convergence towards a star network.
Whigham, P A; Dick, G; Parry, M
2016-10-01
Network rewiring as a method for producing a range of structures was first introduced in 1998 by Watts & Strogatz ( Nature 393 , 440-442. (doi:10.1038/30918)). This approach allowed a transition from regular through small-world to a random network. The subsequent interest in scale-free networks motivated a number of methods for developing rewiring approaches that converged to scale-free networks. This paper presents a rewiring algorithm (RtoS) for undirected, non-degenerate, fixed size networks that transitions from regular, through small-world and scale-free to star-like networks. Applications of the approach to models for the spread of infectious disease and fixation time for a simple genetics model are used to demonstrate the efficacy and application of the approach.
Large Scale Community Detection Using a Small World Model
Directory of Open Access Journals (Sweden)
Ranjan Kumar Behera
2017-11-01
Full Text Available In a social network, small or large communities within the network play a major role in deciding the functionalities of the network. Despite of diverse definitions, communities in the network may be defined as the group of nodes that are more densely connected as compared to nodes outside the group. Revealing such hidden communities is one of the challenging research problems. A real world social network follows small world phenomena, which indicates that any two social entities can be reachable in a small number of steps. In this paper, nodes are mapped into communities based on the random walk in the network. However, uncovering communities in large-scale networks is a challenging task due to its unprecedented growth in the size of social networks. A good number of community detection algorithms based on random walk exist in literature. In addition, when large-scale social networks are being considered, these algorithms are observed to take considerably longer time. In this work, with an objective to improve the efficiency of algorithms, parallel programming framework like Map-Reduce has been considered for uncovering the hidden communities in social network. The proposed approach has been compared with some standard existing community detection algorithms for both synthetic and real-world datasets in order to examine its performance, and it is observed that the proposed algorithm is more efficient than the existing ones.
Simulating market dynamics: interactions between consumer psychology and social networks.
Janssen, Marco A; Jager, Wander
2003-01-01
Markets can show different types of dynamics, from quiet markets dominated by one or a few products, to markets with continual penetration of new and reintroduced products. In a previous article we explored the dynamics of markets from a psychological perspective using a multi-agent simulation model. The main results indicated that the behavioral rules dominating the artificial consumer's decision making determine the resulting market dynamics, such as fashions, lock-in, and unstable renewal. Results also show the importance of psychological variables like social networks, preferences, and the need for identity to explain the dynamics of markets. In this article we extend this work in two directions. First, we will focus on a more systematic investigation of the effects of different network structures. The previous article was based on Watts and Strogatz's approach, which describes the small-world and clustering characteristics in networks. More recent research demonstrated that many large networks display a scale-free power-law distribution for node connectivity. In terms of market dynamics this may imply that a small proportion of consumers may have an exceptional influence on the consumptive behavior of others (hubs, or early adapters). We show that market dynamics is a self-organized property depending on the interaction between the agents' decision-making process (heuristics), the product characteristics (degree of satisfaction of unit of consumption, visibility), and the structure of interactions between agents (size of network and hubs in a social network).
Resumption of dynamism in damaged networks of coupled oscillators
Kundu, Srilena; Majhi, Soumen; Ghosh, Dibakar
2018-05-01
Deterioration in dynamical activities may come up naturally or due to environmental influences in a massive portion of biological and physical systems. Such dynamical degradation may have outright effect on the substantive network performance. This requires us to provide some proper prescriptions to overcome undesired circumstances. In this paper, we present a scheme based on external feedback that can efficiently revive dynamism in damaged networks of active and inactive oscillators and thus enhance the network survivability. Both numerical and analytical investigations are performed in order to verify our claim. We also provide a comparative study on the effectiveness of this mechanism for feedbacks to the inactive group or to the active group only. Most importantly, resurrection of dynamical activity is realized even in time-delayed damaged networks, which are considered to be less persistent against deterioration in the form of inactivity in the oscillators. Furthermore, prominence in our approach is substantiated by providing evidence of enhanced network persistence in complex network topologies taking small-world and scale-free architectures, which makes the proposed remedy quite general. Besides the study in the network of Stuart-Landau oscillators, affirmative influence of external feedback has been justified in the network of chaotic Rössler systems as well.
Perception of similarity: a model for social network dynamics
International Nuclear Information System (INIS)
Javarone, Marco Alberto; Armano, Giuliano
2013-01-01
Some properties of social networks (e.g., the mixing patterns and the community structure) appear deeply influenced by the individual perception of people. In this work we map behaviors by considering similarity and popularity of people, also assuming that each person has his/her proper perception and interpretation of similarity. Although investigated in different ways (depending on the specific scientific framework), from a computational perspective similarity is typically calculated as a distance measure. In accordance with this view, to represent social network dynamics we developed an agent-based model on top of a hyperbolic space on which individual distance measures are calculated. Simulations, performed in accordance with the proposed model, generate small-world networks that exhibit a community structure. We deem this model to be valuable for analyzing the relevant properties of real social networks. (paper)
Tracking the dynamic variations in a social network formed through shared interests
Directory of Open Access Journals (Sweden)
Gerold Pedemonte
2009-06-01
Full Text Available We tracked the dynamics of a social network formed by a shared interest in movies. Users-, movie ratings-, and rental date-data from the Netflix Prize dataset were used to construct a series of date-filtered social networks, wherein viewers were linked when they rented the same movie and gave the same rating. We obtained a nearly constant high clustering coefficient (0.60 – 0.85, and a low average path length (1.4 – 2.3 indicating a static 'small-world' network despite the dynamic behavior of the borrowers.
Studying Dynamics in Business Networks
DEFF Research Database (Denmark)
Andersen, Poul Houman; Anderson, Helen; Havila, Virpi
1998-01-01
This paper develops a theory on network dynamics using the concepts of role and position from sociological theory. Moreover, the theory is further tested using case studies from Denmark and Finland......This paper develops a theory on network dynamics using the concepts of role and position from sociological theory. Moreover, the theory is further tested using case studies from Denmark and Finland...
Complexities of social networks: A Physicist's perspective
Sen, Parongama
2006-01-01
The review is a survey of the present status of research in social networks highlighting the topics of small world property, degree distributions, community structure, assortativity, modelling, dynamics and searching in social networks.
Dynamic training algorithm for dynamic neural networks
International Nuclear Information System (INIS)
Tan, Y.; Van Cauwenberghe, A.; Liu, Z.
1996-01-01
The widely used backpropagation algorithm for training neural networks based on the gradient descent has a significant drawback of slow convergence. A Gauss-Newton method based recursive least squares (RLS) type algorithm with dynamic error backpropagation is presented to speed-up the learning procedure of neural networks with local recurrent terms. Finally, simulation examples concerning the applications of the RLS type algorithm to identification of nonlinear processes using a local recurrent neural network are also included in this paper
Rashvand, Habib
2013-01-01
Motivated by the exciting new application paradigm of using amalgamated technologies of the Internet and wireless, the next generation communication networks (also called 'ubiquitous', 'complex' and 'unstructured' networking) are changing the way we develop and apply our future systems and services at home and on local, national and global scales. Whatever the interconnection - a WiMAX enabled networked mobile vehicle, MEMS or nanotechnology enabled distributed sensor systems, Vehicular Ad hoc Networking (VANET) or Mobile Ad hoc Networking (MANET) - all can be classified under new networking s
Dynamic Evolution of Financial Network and its Relation to Economic Crises
Gao, Ya-Chun; Wei, Zong-Wen; Wang, Bing-Hong
2013-02-01
The static topology properties of financial networks have been widely investigated since the work done by Mantegna, yet their dynamic evolution with time is little considered. In this paper, we comprehensively study the dynamic evolution of financial network by a sliding window technique. The vertices and edges of financial network are represented by the stocks from S&P500 components and correlations between pairs of daily returns of price fluctuation, respectively. Furthermore, the duration of stock price fluctuation, spanning from January 4, 1985 to September 14, 2009, makes us to carefully observe the relation between the dynamic topological properties and big financial crashes. The empirical results suggest that the financial network has the robust small-world property when the time evolves, and the topological structure drastically changes when the big financial crashes occur. This correspondence between the dynamic evolution of financial network and big financial crashes may provide a novel view to understand the origin of economic crisis.
Cognitive Dynamic Optical Networks
DEFF Research Database (Denmark)
de Miguel, Ignacio; Duran, Ramon J.; Lorenzo, Ruben M.
2013-01-01
Cognitive networks are a promising solution for the control of heterogeneous optical networks. We review their fundamentals as well as a number of applications developed in the framework of the EU FP7 CHRON project.......Cognitive networks are a promising solution for the control of heterogeneous optical networks. We review their fundamentals as well as a number of applications developed in the framework of the EU FP7 CHRON project....
Periodic dynamics in queuing networks
Energy Technology Data Exchange (ETDEWEB)
Addabbo, Tommaso [Information Engineering Department, University of Siena, Via Roma 56, 53100 Siena (Italy)], E-mail: addabbo@dii.unisi.it; Kocarev, Ljupco [Macedonian Academy of Sciences and Arts, bul. Krste Misirkov 2, P.O. Box 428, 1000 Skopje, Republic of Macedonia (Macedonia, The Former Yugoslav Republic of)], E-mail: lkocarev@ucsd.edu
2009-08-30
This paper deals with state-dependent open Markovian (or exponential) queuing networks, for which arrival and service rates, as well as routing probabilities, may depend on the queue lengths. For a network of this kind, following Mandelbaum and Pats, we provide a formal definition of its associated fluid model, and we focus on the relationships which may occur between the network stochastic dynamics and the deterministic dynamics of its corresponding fluid model, particularly focusing on queuing networks whose fluid models have global periodic attractors.
Cognitive Dynamic Optical Networks
DEFF Research Database (Denmark)
de Miguel, Ignacio; Duran, Ramon J.; Jimenez, Tamara
2013-01-01
The use of cognition is a promising element for the control of heterogeneous optical networks. Not only are cognitive networks able to sense current network conditions and act according to them, but they also take into account the knowledge acquired through past experiences; that is, they include...... learning with the aim of improving performance. In this paper, we review the fundamentals of cognitive networks and focus on their application to the optical networking area. In particular, a number of cognitive network architectures proposed so far, as well as their associated supporting technologies......, are reviewed. Moreover, several applications, mainly developed in the framework of the EU FP7 Cognitive Heterogeneous Reconfigurable Optical Network (CHRON) project, are also described....
Entropy of dynamical social networks
Zhao, Kun; Karsai, Marton; Bianconi, Ginestra
2012-02-01
Dynamical social networks are evolving rapidly and are highly adaptive. Characterizing the information encoded in social networks is essential to gain insight into the structure, evolution, adaptability and dynamics. Recently entropy measures have been used to quantify the information in email correspondence, static networks and mobility patterns. Nevertheless, we still lack methods to quantify the information encoded in time-varying dynamical social networks. In this talk we present a model to quantify the entropy of dynamical social networks and use this model to analyze the data of phone-call communication. We show evidence that the entropy of the phone-call interaction network changes according to circadian rhythms. Moreover we show that social networks are extremely adaptive and are modified by the use of technologies such as mobile phone communication. Indeed the statistics of duration of phone-call is described by a Weibull distribution and is significantly different from the distribution of duration of face-to-face interactions in a conference. Finally we investigate how much the entropy of dynamical social networks changes in realistic models of phone-call or face-to face interactions characterizing in this way different type human social behavior.
Dynamics of Symmetric Conserved Mass Aggregation Model on Complex Networks
Institute of Scientific and Technical Information of China (English)
HUA Da-Yin
2009-01-01
We investigate the dynamical behaviour of the aggregation process in the symmetric conserved mass aggregation model under three different topological structures. The dispersion σ(t, L) = (∑i(mi - ρ0)2/L)1/2 is defined to describe the dynamical behaviour where ρ0 is the density of particle and mi is the particle number on a site. It is found numerically that for a regular lattice and a scale-free network, σ(t, L) follows a power-law scaling σ(t, L) ～ tδ1 and σ(t, L) ～ tδ4 from a random initial condition to the stationary states, respectively. However, for a small-world network, there are two power-law scaling regimes, σ(t, L) ～ tδ2 when t＜T and a(t, L) ～ tδ3 when tT. Moreover, it is found numerically that δ2 is near to δ1 for small rewiring probability q, and δ3 hardly changes with varying q and it is almost the same as δ4. We speculate that the aggregation of the connection degree accelerates the mass aggregation in the initial relaxation stage and the existence of the long-distance interactions in the complex networks results in the acceleration of the mass aggregation when tT for the small-world networks. We also show that the relaxation time T follows a power-law scaling τ Lz and σ(t, L) in the stationary state follows a power-law σs(L) ～ Lσ for three different structures.
Nonlinear Dynamics on Interconnected Networks
Arenas, Alex; De Domenico, Manlio
2016-06-01
Networks of dynamical interacting units can represent many complex systems, from the human brain to transportation systems and societies. The study of these complex networks, when accounting for different types of interactions has become a subject of interest in the last few years, especially because its representational power in the description of users' interactions in diverse online social platforms (Facebook, Twitter, Instagram, etc.) [1], or in representing different transportation modes in urban networks [2,3]. The general name coined for these networks is multilayer networks, where each layer accounts for a type of interaction (see Fig. 1).
Robust adaptive synchronization of general dynamical networks ...
Indian Academy of Sciences (India)
Robust adaptive synchronization; dynamical network; multiple delays; multiple uncertainties. ... Networks such as neural networks, communication transmission networks, social rela- tionship networks etc. ..... a very good effect. Pramana – J.
Dynamic behaviors in directed networks
International Nuclear Information System (INIS)
Park, Sung Min; Kim, Beom Jun
2006-01-01
Motivated by the abundance of directed synaptic couplings in a real biological neuronal network, we investigate the synchronization behavior of the Hodgkin-Huxley model in a directed network. We start from the standard model of the Watts-Strogatz undirected network and then change undirected edges to directed arcs with a given probability, still preserving the connectivity of the network. A generalized clustering coefficient for directed networks is defined and used to investigate the interplay between the synchronization behavior and underlying structural properties of directed networks. We observe that the directedness of complex networks plays an important role in emerging dynamical behaviors, which is also confirmed by a numerical study of the sociological game theoretic voter model on directed networks
National Research Council Canada - National Science Library
Schott, Brian
2004-01-01
...: Declarative Languages and Execution Environment includes topographical soldier interface and a sensor network simulation environment for algorithm development, deployment planning, and operational support. Finally, Task 3...
Dynamic and interacting complex networks
Dickison, Mark E.
This thesis employs methods of statistical mechanics and numerical simulations to study some aspects of dynamic and interacting complex networks. The mapping of various social and physical phenomena to complex networks has been a rich field in the past few decades. Subjects as broad as petroleum engineering, scientific collaborations, and the structure of the internet have all been analyzed in a network physics context, with useful and universal results. In the first chapter we introduce basic concepts in networks, including the two types of network configurations that are studied and the statistical physics and epidemiological models that form the framework of the network research, as well as covering various previously-derived results in network theory that are used in the work in the following chapters. In the second chapter we introduce a model for dynamic networks, where the links or the strengths of the links change over time. We solve the model by mapping dynamic networks to the problem of directed percolation, where the direction corresponds to the time evolution of the network. We show that the dynamic network undergoes a percolation phase transition at a critical concentration pc, that decreases with the rate r at which the network links are changed. The behavior near criticality is universal and independent of r. We find that for dynamic random networks fundamental laws are changed: i) The size of the giant component at criticality scales with the network size N for all values of r, rather than as N2/3 in static network, ii) In the presence of a broad distribution of disorder, the optimal path length between two nodes in a dynamic network scales as N1/2, compared to N1/3 in a static network. The third chapter consists of a study of the effect of quarantine on the propagation of epidemics on an adaptive network of social contacts. For this purpose, we analyze the susceptible-infected-recovered model in the presence of quarantine, where susceptible
Complex networks: Dynamics and security
Indian Academy of Sciences (India)
This paper presents a perspective in the study of complex networks by focusing on how dynamics may affect network security under attacks. ... Department of Mathematics and Statistics, Arizona State University, Tempe, Arizona 85287, USA; Institute of Mathematics and Computer Science, University of Sao Paulo, Brazil ...
Dynamical Response of Networks Under External Perturbations: Exact Results
Chinellato, David D.; Epstein, Irving R.; Braha, Dan; Bar-Yam, Yaneer; de Aguiar, Marcus A. M.
2015-04-01
We give exact statistical distributions for the dynamic response of influence networks subjected to external perturbations. We consider networks whose nodes have two internal states labeled 0 and 1. We let nodes be frozen in state 0, in state 1, and the remaining nodes change by adopting the state of a connected node with a fixed probability per time step. The frozen nodes can be interpreted as external perturbations to the subnetwork of free nodes. Analytically extending and to be smaller than 1 enables modeling the case of weak coupling. We solve the dynamical equations exactly for fully connected networks, obtaining the equilibrium distribution, transition probabilities between any two states and the characteristic time to equilibration. Our exact results are excellent approximations for other topologies, including random, regular lattice, scale-free and small world networks, when the numbers of fixed nodes are adjusted to take account of the effect of topology on coupling to the environment. This model can describe a variety of complex systems, from magnetic spins to social networks to population genetics, and was recently applied as a framework for early warning signals for real-world self-organized economic market crises.
Dynamic capabilities and network benefits
Directory of Open Access Journals (Sweden)
Helge Svare
2017-01-01
Full Text Available The number of publicly funded initiatives to establish or strengthen networks and clusters, in order to enhance innovation, has been increasing. Returns on such investments vary, and the aim of this study is to explore to what extent the variation in benefits for firms participating in networks or clusters can be explained by their dynamic capabilities (DC. Based on survey data from five Norwegian networks, the results suggest that firms with higher DC are more successful in harvesting the potential benefits of being member of a network.
Decoding network dynamics in cancer
DEFF Research Database (Denmark)
Linding, Rune
2014-01-01
Biological systems are composed of highly dynamic and interconnected molecular networks that drive biological decision processes. The goal of network biology is to describe, quantify and predict the information flow and functional behaviour of living systems in a formal language and with an accur......Biological systems are composed of highly dynamic and interconnected molecular networks that drive biological decision processes. The goal of network biology is to describe, quantify and predict the information flow and functional behaviour of living systems in a formal language...... and with an accuracy that parallels our characterisation of other physical systems such as Jumbo-jets. Decades of targeted molecular and biological studies have led to numerous pathway models of developmental and disease related processes. However, so far no global models have been derived from pathways, capable...
Dynamics of associating networks
Tang, Shengchang; Habicht, Axel; Wang, Muzhou; Li, Shuaili; Seiffert, Sebastian; Olsen, Bradley
Associating polymers offer important technological solutions to renewable and self-healing materials, conducting electrolytes for energy storage and transport, and vehicles for cell and protein deliveries. The interplay between polymer topologies and association chemistries warrants new interesting physics from associating networks, yet poses significant challenges to study these systems over a wide range of time and length scales. In a series of studies, we explored self-diffusion mechanisms of associating polymers above the percolation threshold, by combining experimental measurements using forced Rayleigh scattering and analytical insights from a two-state model. Despite the differences in molecular structures, a universal super-diffusion phenomenon is observed when diffusion of molecular species is hindered by dissociation kinetics. The molecular dissociation rate can be used to renormalize shear rheology data, which yields an unprecedented time-temperature-concentration superposition. The obtained shear rheology master curves provide experimental evidence of the relaxation hierarchy in associating networks.
Framework based on communicability and flow to analyze complex network dynamics
Gilson, M.; Kouvaris, N. E.; Deco, G.; Zamora-López, G.
2018-05-01
Graph theory constitutes a widely used and established field providing powerful tools for the characterization of complex networks. The intricate topology of networks can also be investigated by means of the collective dynamics observed in the interactions of self-sustained oscillations (synchronization patterns) or propagationlike processes such as random walks. However, networks are often inferred from real-data-forming dynamic systems, which are different from those employed to reveal their topological characteristics. This stresses the necessity for a theoretical framework dedicated to the mutual relationship between the structure and dynamics in complex networks, as the two sides of the same coin. Here we propose a rigorous framework based on the network response over time (i.e., Green function) to study interactions between nodes across time. For this purpose we define the flow that describes the interplay between the network connectivity and external inputs. This multivariate measure relates to the concepts of graph communicability and the map equation. We illustrate our theory using the multivariate Ornstein-Uhlenbeck process, which describes stable and non-conservative dynamics, but the formalism can be adapted to other local dynamics for which the Green function is known. We provide applications to classical network examples, such as small-world ring and hierarchical networks. Our theory defines a comprehensive framework that is canonically related to directed and weighted networks, thus paving a way to revise the standards for network analysis, from the pairwise interactions between nodes to the global properties of networks including community detection.
Exponentially asymptotical synchronization in uncertain complex dynamical networks with time delay
Energy Technology Data Exchange (ETDEWEB)
Luo Qun; Yang Han; Li Lixiang; Yang Yixian [Information Security Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Han Jiangxue, E-mail: luoqun@bupt.edu.c [National Engineering Laboratory for Disaster Backup and Recovery, Beijing University of Posts and Telecommunications, Beijing 100876 (China)
2010-12-10
Over the past decade, complex dynamical network synchronization has attracted more and more attention and important developments have been made. In this paper, we explore the scheme of globally exponentially asymptotical synchronization in complex dynamical networks with time delay. Based on Lyapunov stability theory and through defining the error function between adjacent nodes, four novel adaptive controllers are designed under four situations where the Lipschitz constants of the state function in nodes are known or unknown and the network structure is certain or uncertain, respectively. These controllers could not only globally asymptotically synchronize all nodes in networks, but also ensure that the error functions do not exceed the pre-scheduled exponential function. Finally, simulations of the synchronization among the chaotic system in the small-world and scale-free network structures are presented, which prove the effectiveness and feasibility of our controllers.
Network Dynamics of Innovation Processes
Iacopini, Iacopo; Milojević, Staša; Latora, Vito
2018-01-01
We introduce a model for the emergence of innovations, in which cognitive processes are described as random walks on the network of links among ideas or concepts, and an innovation corresponds to the first visit of a node. The transition matrix of the random walk depends on the network weights, while in turn the weight of an edge is reinforced by the passage of a walker. The presence of the network naturally accounts for the mechanism of the "adjacent possible," and the model reproduces both the rate at which novelties emerge and the correlations among them observed empirically. We show this by using synthetic networks and by studying real data sets on the growth of knowledge in different scientific disciplines. Edge-reinforced random walks on complex topologies offer a new modeling framework for the dynamics of correlated novelties and are another example of coevolution of processes and networks.
Solving Dynamic Battlespace Movement Problems Using Dynamic Distributed Computer Networks
National Research Council Canada - National Science Library
Bradford, Robert
2000-01-01
.... The thesis designs a system using this architecture that invokes operations research network optimization algorithms to solve problems involving movement of people and equipment over dynamic road networks...
Competitive Dynamics on Complex Networks
Zhao, Jiuhua; Liu, Qipeng; Wang, Xiaofan
2014-07-01
We consider a dynamical network model in which two competitors have fixed and different states, and each normal agent adjusts its state according to a distributed consensus protocol. The state of each normal agent converges to a steady value which is a convex combination of the competitors' states, and is independent of the initial states of agents. This implies that the competition result is fully determined by the network structure and positions of competitors in the network. We compute an Influence Matrix (IM) in which each element characterizing the influence of an agent on another agent in the network. We use the IM to predict the bias of each normal agent and thus predict which competitor will win. Furthermore, we compare the IM criterion with seven node centrality measures to predict the winner. We find that the competitor with higher Katz Centrality in an undirected network or higher PageRank in a directed network is most likely to be the winner. These findings may shed new light on the role of network structure in competition and to what extent could competitors adjust network structure so as to win the competition.
Antagonistic Phenomena in Network Dynamics
Motter, Adilson E.; Timme, Marc
2018-03-01
Recent research on the network modeling of complex systems has led to a convenient representation of numerous natural, social, and engineered systems that are now recognized as networks of interacting parts. Such systems can exhibit a wealth of phenomena that not only cannot be anticipated from merely examining their parts, as per the textbook definition of complexity, but also challenge intuition even when considered in the context of what is now known in network science. Here, we review the recent literature on two major classes of such phenomena that have far-reaching implications: (a) antagonistic responses to changes of states or parameters and (b) coexistence of seemingly incongruous behaviors or properties - both deriving from the collective and inherently decentralized nature of the dynamics. They include effects as diverse as negative compressibility in engineered materials, rescue interactions in biological networks, negative resistance in fluid networks, and the Braess paradox occurring across transport and supply networks. They also include remote synchronization, chimera states, and the converse of symmetry breaking in brain, power-grid, and oscillator networks as well as remote control in biological and bioinspired systems. By offering a unified view of these various scenarios, we suggest that they are representative of a yet broader class of unprecedented network phenomena that ought to be revealed and explained by future research.
Unusual percolation in simple small-world networks.
Cohen, Reuven; Dawid, Daryush Jonathan; Kardar, Mehran; Bar-Yam, Yaneer
2009-06-01
We present an exact solution of percolation in a generalized class of Watts-Strogatz graphs defined on a one-dimensional underlying lattice. We find a nonclassical critical point in the limit of the number of long-range bonds in the system going to zero, with a discontinuity in the percolation probability and a divergence in the mean finite-cluster size. We show that the critical behavior falls into one of three regimes depending on the proportion of occupied long-range to unoccupied nearest-neighbor bonds, with each regime being characterized by different critical exponents. The three regimes can be united by a single scaling function around the critical point. These results can be used to identify the number of long-range links necessary to secure connectivity in a communication or transportation chain. As an example, we can resolve the communication problem in a game of "telephone."
Predicting Hierarchical Structure in Small World Social Networks
DEFF Research Database (Denmark)
Hussain, Dil Muhammad Akbar
2009-01-01
Typisk analytisk foranstaltninger i grafteori gerne grad centralitet, betweenness og nærhed centralities er meget almindelige og har lang tradition for deres vellykkede brug. Men modellering af skjult, terrorister eller kriminelle netværk gennem sociale grafer ikke rigtig give den hierarkiske str...
Asynchronous networks: modularization of dynamics theorem
Bick, Christian; Field, Michael
2017-02-01
Building on the first part of this paper, we develop the theory of functional asynchronous networks. We show that a large class of functional asynchronous networks can be (uniquely) represented as feedforward networks connecting events or dynamical modules. For these networks we can give a complete description of the network function in terms of the function of the events comprising the network: the modularization of dynamics theorem. We give examples to illustrate the main results.
Dawn of small worlds dwarf planets, asteroids, comets
Moltenbrey, Michael
2016-01-01
This book gives a detailed introduction to the thousands and thousands of smaller bodies in the solar system. Written for interested laymen, amateur astronomers and students it describes the nature and origin of asteroids, dwarf planets and comets, and gives detailed information about their role in the solar system. The author nicely reviews the history of small-world-exploration and describes past, current and future space craft missions studying small worlds, and presents their results. Readers will learn that small solar system worlds have a dramatically different nature and appearance than the planets. Even though research activity on small worlds has increased in the recent past many of their properties are still in the dark and need further research.
Modeling and dynamical topology properties of VANET based on complex networks theory
Energy Technology Data Exchange (ETDEWEB)
Zhang, Hong; Li, Jie, E-mail: prof.li@foxmail.com [School of Civil Engineering and Mechanics, Huazhong University of Science and Technology, Wuhan, 430074 (China)
2015-01-15
Vehicular Ad hoc Network (VANET) is a special subset of multi-hop Mobile Ad hoc Networks in which vehicles can not only communicate with each other but also with the fixed equipments along the roads through wireless interfaces. Recently, it has been discovered that essential systems in real world share similar properties. When they are regarded as networks, among which the dynamic topology structure of VANET system is an important issue. Many real world networks are actually growing with preferential attachment like Internet, transportation system and telephone network. Those phenomena have brought great possibility in finding a strategy to calibrate and control the topology parameters which can help find VANET topology change regulation to relieve traffic jam, prevent traffic accident and improve traffic safety. VANET is a typical complex network which has its basic characteristics. In this paper, we focus on the macroscopic Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) inter-vehicle communication network with complex network theory. In particular, this paper is the first one to propose a method analyzing the topological structure and performance of VANET and present the communications in VANET from a new perspective. Accordingly, we propose degree distribution, clustering coefficient and the short path length of complex network to implement our strategy by numerical example and simulation. All the results demonstrate that VANET shows small world network features and is characterized by a truncated scale-free degree distribution with power-law degree distribution. The average path length of the network is simulated numerically, which indicates that the network shows small-world property and is rarely affected by the randomness. What’s more, we carry out extensive simulations of information propagation and mathematically prove the power law property when γ > 2. The results of this study provide useful information for VANET optimization from a
Anomaly Detection in Dynamic Networks
Energy Technology Data Exchange (ETDEWEB)
Turcotte, Melissa [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2014-10-14
Anomaly detection in dynamic communication networks has many important security applications. These networks can be extremely large and so detecting any changes in their structure can be computationally challenging; hence, computationally fast, parallelisable methods for monitoring the network are paramount. For this reason the methods presented here use independent node and edge based models to detect locally anomalous substructures within communication networks. As a first stage, the aim is to detect changes in the data streams arising from node or edge communications. Throughout the thesis simple, conjugate Bayesian models for counting processes are used to model these data streams. A second stage of analysis can then be performed on a much reduced subset of the network comprising nodes and edges which have been identified as potentially anomalous in the first stage. The first method assumes communications in a network arise from an inhomogeneous Poisson process with piecewise constant intensity. Anomaly detection is then treated as a changepoint problem on the intensities. The changepoint model is extended to incorporate seasonal behavior inherent in communication networks. This seasonal behavior is also viewed as a changepoint problem acting on a piecewise constant Poisson process. In a static time frame, inference is made on this extended model via a Gibbs sampling strategy. In a sequential time frame, where the data arrive as a stream, a novel, fast Sequential Monte Carlo (SMC) algorithm is introduced to sample from the sequence of posterior distributions of the change points over time. A second method is considered for monitoring communications in a large scale computer network. The usage patterns in these types of networks are very bursty in nature and don’t fit a Poisson process model. For tractable inference, discrete time models are considered, where the data are aggregated into discrete time periods and probability models are fitted to the
Walking and Talking Geography: A Small-World Approach
Fertig, Gary; Silverman, Rick
2007-01-01
When teaching geography to students in the primary grades, teachers should provide firsthand experiences that young children need to make meaningful sense of their world. David Sobel, author of "Mapmaking with Children: Sense of Place Education for the Elementary Years," suggests that teachers in the early grades adopt a small-world approach to…
Small Worlds Week: Raising Curiosity and Contributing to STEM
Ng, C.; Mayo, L.; Stephenson, B. E.; Keck, A.; Cline, T. D.; Lewis, E. M.
2015-12-01
Dwarf planets, comets, asteroids, and icy moons took center stage in the years 2014-2015 as multiple spacecraft (New Horizons, Dawn, Rosetta, Cassini) and ground-based observing campaigns observed these small and yet amazing celestial bodies. Just prior to the historic New Horizons encounter with the Pluto system, NASA celebrated Small Worlds Week (July 6-10) as a fully online program to highlight small worlds mission discoveries. Small Worlds Week leveraged the infrastructure of Sun-Earth Days that included a robust web design, exemplary education materials, hands-on fun activities, multimedia resources, science and career highlights, and a culminating event. Each day from July 6-9, a new class of solar system small worlds was featured on the website: Monday-comets, Tuesday-asteroids, Wednesday-icy moons, and Thursday-dwarf planets. Then on Friday, July 10, nine scientists from Goddard Space Flight Center, Jet Propulsion Laboratory, Naval Research Laboratory, and Lunar and Planetary Institute gathered online for four hours to answer questions from the public via Facebook and Twitter. Throughout the afternoon the scientists worked closely with a social media expert and several summer interns to reply to inquirers and to archive their chats. By all accounts, Small Worlds Week was a huge success. The group plans to improve and replicate the program during the school year with a more classroom focus, and then to build and extend the program to be held every year. For more information, visit http:// sunearthday.nasa.gov or catch us on Twitter, #nasasww.
A network dynamics approach to chemical reaction networks
van der Schaft, Abraham; Rao, S.; Jayawardhana, B.
2016-01-01
A treatment of chemical reaction network theory is given from the perspective of nonlinear network dynamics, in particular of consensus dynamics. By starting from the complex-balanced assumption the reaction dynamics governed by mass action kinetics can be rewritten into a form which allows for a
Multi-Equilibria Regulation Agent-Based Model of Opinion Dynamics in Social Networks
Directory of Open Access Journals (Sweden)
Andreas Koulouris
2013-01-01
Full Text Available This article investigates the Multiple Equilibria Regulation (MER model, i.e., an agent-based simulation model, to represent opinion dynamics in social networks. It relies on a small set of micro-prerequisites (intra-individual balance and confidence bound, leading to emergence of (nonstationary macro-outcomes. These outcomes may refer to consensus, polarization or fragmentation of opinions about taxation (e.g., congestion pricing or other policy measures, according to the way communication is structured. In contrast with other models of opinion dynamics, it allows for the impact of both the regulation of intra-personal discrepancy and the interpersonal variability of opinions on social learning and network dynamics. Several simulation experiments are presented to demonstrate, through the MER model, the role of different network structures (complete, star, cellular automata, small-world and random graphs on opinion formation dynamics and the overall evolution of the system. The findings can help to identify specific topological characteristics, such as density, number of neighbourhoods and critical nodes-agents, that affect the stability and system dynamics. This knowledge can be used to better organize the information diffusion and learning in the community, enhance the predictability of outcomes and manage possible conflicts. It is shown that a small-world organization, which depicts more realistic aspects of real-life and virtual social systems, provides increased predictability and stability towards a less fragmented and more manageable grouping of opinions, compared to random networks. Such macro-level organizations may be enhanced with use of web-based technologies to increase the density of communication and public acceptability of policy measures.
Tourism-planning network knowledge dynamics
DEFF Research Database (Denmark)
Dredge, Dianne
2014-01-01
This chapter explores the characteristics and functions of tourism networks as a first step in understanding how networks facilitate and reproduce knowledge. A framework to progress understandings of knowledge dynamics in tourism networks is presented that includes four key dimensions: context......, network agents, network boundaries and network resources. A case study of the development of the Next Generation Tourism Handbook (Queensland, Australia), a policy initiative that sought to bring tourism and land use planning knowledge closer together is presented. The case study illustrates...... that the tourism policy and land use planning networks operate in very different spheres and that context, network agents, network boundaries and network resources have a significant influence not only on knowledge dynamics but also on the capacity of network agents to overcome barriers to learning and to innovate....
Traffic Dynamics on Complex Networks: A Survey
Directory of Open Access Journals (Sweden)
Shengyong Chen
2012-01-01
Full Text Available Traffic dynamics on complex networks are intriguing in recent years due to their practical implications in real communication networks. In this survey, we give a brief review of studies on traffic routing dynamics on complex networks. Strategies for improving transport efficiency, including designing efficient routing strategies and making appropriate adjustments to the underlying network structure, are introduced in this survey. Finally, a few open problems are discussed in this survey.
On the agreement between small-world-like OFC model and real earthquakes
Energy Technology Data Exchange (ETDEWEB)
Ferreira, Douglas S.R., E-mail: douglas.ferreira@ifrj.edu.br [Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Paracambi, RJ (Brazil); Geophysics Department, Observatório Nacional, Rio de Janeiro, RJ (Brazil); Papa, Andrés R.R., E-mail: papa@on.br [Geophysics Department, Observatório Nacional, Rio de Janeiro, RJ (Brazil); Instituto de Física, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Menezes, Ronaldo, E-mail: rmenezes@cs.fit.edu [BioComplex Laboratory, Computer Sciences, Florida Institute of Technology, Melbourne (United States)
2015-03-20
In this article we implemented simulations of the OFC model for earthquakes for two different topologies: regular and small-world, where in the latter the links are randomly rewired with probability p. In both topologies, we have studied the distribution of time intervals between consecutive earthquakes and the border effects present in each one. In addition, we also have characterized the influence that the probability p produces in certain characteristics of the lattice and in the intensity of border effects. From the two topologies, networks of consecutive epicenters were constructed, that allowed us to analyze the distribution of connectivities of each one. In our results distributions arise belonging to a family of non-traditional distributions functions, which agrees with previous studies using data from actual earthquakes. Our results reinforce the idea that the Earth is in a critical self-organized state and furthermore point towards temporal and spatial correlations between earthquakes in different places. - Highlights: • OFC model simulations for regular and small-world topologies. • For small-world topology distributions agree remarkably well with actual earthquakes. • Reinforce the idea of a critical self-organized state for the Earth's crust. • Point towards temporal and spatial correlations between far earthquakes in far places.
On the agreement between small-world-like OFC model and real earthquakes
International Nuclear Information System (INIS)
Ferreira, Douglas S.R.; Papa, Andrés R.R.; Menezes, Ronaldo
2015-01-01
In this article we implemented simulations of the OFC model for earthquakes for two different topologies: regular and small-world, where in the latter the links are randomly rewired with probability p. In both topologies, we have studied the distribution of time intervals between consecutive earthquakes and the border effects present in each one. In addition, we also have characterized the influence that the probability p produces in certain characteristics of the lattice and in the intensity of border effects. From the two topologies, networks of consecutive epicenters were constructed, that allowed us to analyze the distribution of connectivities of each one. In our results distributions arise belonging to a family of non-traditional distributions functions, which agrees with previous studies using data from actual earthquakes. Our results reinforce the idea that the Earth is in a critical self-organized state and furthermore point towards temporal and spatial correlations between earthquakes in different places. - Highlights: • OFC model simulations for regular and small-world topologies. • For small-world topology distributions agree remarkably well with actual earthquakes. • Reinforce the idea of a critical self-organized state for the Earth's crust. • Point towards temporal and spatial correlations between far earthquakes in far places
Airborne Network Optimization with Dynamic Network Update
2015-03-26
source si and a target ti . For each commodity (si, ki) the commodity specifies a non- negative demand di [5]. The objective of the multi-commodity...queue predictions, and network con- gestion [15]. The implementation of the DRQC uses the Kalman filter to predict the state of the network and optimize
Learning dynamic Bayesian networks with mixed variables
DEFF Research Database (Denmark)
Bøttcher, Susanne Gammelgaard
This paper considers dynamic Bayesian networks for discrete and continuous variables. We only treat the case, where the distribution of the variables is conditional Gaussian. We show how to learn the parameters and structure of a dynamic Bayesian network and also how the Markov order can be learned...
Temporal fidelity in dynamic social networks
DEFF Research Database (Denmark)
Stopczynski, Arkadiusz; Sapiezynski, Piotr; Pentland, Alex ‘Sandy’
2015-01-01
of the network dynamics can be used to inform the process of measuring social networks. The details of measurement are of particular importance when considering dynamic processes where minute-to-minute details are important, because collection of physical proximity interactions with high temporal resolution...
Revealing networks from dynamics: an introduction
International Nuclear Information System (INIS)
Timme, Marc; Casadiego, Jose
2014-01-01
What can we learn from the collective dynamics of a complex network about its interaction topology? Taking the perspective from nonlinear dynamics, we briefly review recent progress on how to infer structural connectivity (direct interactions) from accessing the dynamics of the units. Potential applications range from interaction networks in physics, to chemical and metabolic reactions, protein and gene regulatory networks as well as neural circuits in biology and electric power grids or wireless sensor networks in engineering. Moreover, we briefly mention some standard ways of inferring effective or functional connectivity. (topical review)
Local Dynamics in Trained Recurrent Neural Networks.
Rivkind, Alexander; Barak, Omri
2017-06-23
Learning a task induces connectivity changes in neural circuits, thereby changing their dynamics. To elucidate task-related neural dynamics, we study trained recurrent neural networks. We develop a mean field theory for reservoir computing networks trained to have multiple fixed point attractors. Our main result is that the dynamics of the network's output in the vicinity of attractors is governed by a low-order linear ordinary differential equation. The stability of the resulting equation can be assessed, predicting training success or failure. As a consequence, networks of rectified linear units and of sigmoidal nonlinearities are shown to have diametrically different properties when it comes to learning attractors. Furthermore, a characteristic time constant, which remains finite at the edge of chaos, offers an explanation of the network's output robustness in the presence of variability of the internal neural dynamics. Finally, the proposed theory predicts state-dependent frequency selectivity in the network response.
Local Dynamics in Trained Recurrent Neural Networks
Rivkind, Alexander; Barak, Omri
2017-06-01
Learning a task induces connectivity changes in neural circuits, thereby changing their dynamics. To elucidate task-related neural dynamics, we study trained recurrent neural networks. We develop a mean field theory for reservoir computing networks trained to have multiple fixed point attractors. Our main result is that the dynamics of the network's output in the vicinity of attractors is governed by a low-order linear ordinary differential equation. The stability of the resulting equation can be assessed, predicting training success or failure. As a consequence, networks of rectified linear units and of sigmoidal nonlinearities are shown to have diametrically different properties when it comes to learning attractors. Furthermore, a characteristic time constant, which remains finite at the edge of chaos, offers an explanation of the network's output robustness in the presence of variability of the internal neural dynamics. Finally, the proposed theory predicts state-dependent frequency selectivity in the network response.
Using Network Dynamical Influence to Drive Consensus
Punzo, Giuliano; Young, George F.; MacDonald, Malcolm; Leonard, Naomi E.
2016-05-01
Consensus and decision-making are often analysed in the context of networks, with many studies focusing attention on ranking the nodes of a network depending on their relative importance to information routing. Dynamical influence ranks the nodes with respect to their ability to influence the evolution of the associated network dynamical system. In this study it is shown that dynamical influence not only ranks the nodes, but also provides a naturally optimised distribution of effort to steer a network from one state to another. An example is provided where the “steering” refers to the physical change in velocity of self-propelled agents interacting through a network. Distinct from other works on this subject, this study looks at directed and hence more general graphs. The findings are presented with a theoretical angle, without targeting particular applications or networked systems; however, the framework and results offer parallels with biological flocks and swarms and opportunities for design of technological networks.
Inferring network topology from complex dynamics
International Nuclear Information System (INIS)
Shandilya, Srinivas Gorur; Timme, Marc
2011-01-01
Inferring the network topology from dynamical observations is a fundamental problem pervading research on complex systems. Here, we present a simple, direct method for inferring the structural connection topology of a network, given an observation of one collective dynamical trajectory. The general theoretical framework is applicable to arbitrary network dynamical systems described by ordinary differential equations. No interference (external driving) is required and the type of dynamics is hardly restricted in any way. In particular, the observed dynamics may be arbitrarily complex; stationary, invariant or transient; synchronous or asynchronous and chaotic or periodic. Presupposing a knowledge of the functional form of the dynamical units and of the coupling functions between them, we present an analytical solution to the inverse problem of finding the network topology from observing a time series of state variables only. Robust reconstruction is achieved in any sufficiently long generic observation of the system. We extend our method to simultaneously reconstructing both the entire network topology and all parameters appearing linear in the system's equations of motion. Reconstruction of network topology and system parameters is viable even in the presence of external noise that distorts the original dynamics substantially. The method provides a conceptually new step towards reconstructing a variety of real-world networks, including gene and protein interaction networks and neuronal circuits.
Effects of average degree of network on an order–disorder transition in opinion dynamics
International Nuclear Information System (INIS)
Cun-Fang, Feng; Jian-Yue, Guan; Ying-Hai, Wang; Zhi-Xi, Wu
2010-01-01
We have investigated the influence of the average degree (k) of network on the location of an order-disorder transition in opinion dynamics. For this purpose, a variant of majority rule (VMR) model is applied to Watts–Strogatz (WS) small-world networks and Barabási–Albert (BA) scale-free networks which may describe some non-trivial properties of social systems. Using Monte Carlo simulations, we find that the order–disorder transition point of the VMR model is greatly affected by the average degree (k) of the networks; a larger value of (k) results in a more ordered state of the system. Comparing WS networks with BA networks, we find WS networks have better orderliness than BA networks when the average degree (k) is small. With the increase of (k), BA networks have a more ordered state. By implementing finite-size scaling analysis, we also obtain critical exponents β/ν, γ/ν and 1/ν for several values of average degree (k). Our results may be helpful to understand structural effects on order–disorder phase transition in the context of the majority rule model. (general)
Convergent dynamics for multistable delayed neural networks
International Nuclear Information System (INIS)
Shih, Chih-Wen; Tseng, Jui-Pin
2008-01-01
This investigation aims at developing a methodology to establish convergence of dynamics for delayed neural network systems with multiple stable equilibria. The present approach is general and can be applied to several network models. We take the Hopfield-type neural networks with both instantaneous and delayed feedbacks to illustrate the idea. We shall construct the complete dynamical scenario which comprises exactly 2 n stable equilibria and exactly (3 n − 2 n ) unstable equilibria for the n-neuron network. In addition, it is shown that every solution of the system converges to one of the equilibria as time tends to infinity. The approach is based on employing the geometrical structure of the network system. Positively invariant sets and componentwise dynamical properties are derived under the geometrical configuration. An iteration scheme is subsequently designed to confirm the convergence of dynamics for the system. Two examples with numerical simulations are arranged to illustrate the present theory
Information governance in dynamic networked business process management
Rasouli, M.; Eshuis, H.; Grefen, P.W.P.J.; Trienekens, J.J.M.; Kusters, R.J.
2016-01-01
Competition in today’s globalized markets forces organizations to collaborate within dynamic business networks to provide mass-customized integrated solutions for customers. The collaboration within dynamic business networks necessitates forming dynamic networked business processes (DNBPs).
Pinning Synchronization of Switched Complex Dynamical Networks
Directory of Open Access Journals (Sweden)
Liming Du
2015-01-01
Full Text Available Network topology and node dynamics play a key role in forming synchronization of complex networks. Unfortunately there is no effective synchronization criterion for pinning synchronization of complex dynamical networks with switching topology. In this paper, pinning synchronization of complex dynamical networks with switching topology is studied. Two basic problems are considered: one is pinning synchronization of switched complex networks under arbitrary switching; the other is pinning synchronization of switched complex networks by design of switching when synchronization cannot achieved by using any individual connection topology alone. For the two problems, common Lyapunov function method and single Lyapunov function method are used respectively, some global synchronization criteria are proposed and the designed switching law is given. Finally, simulation results verify the validity of the results.
Psychology and social networks: a dynamic network theory perspective.
Westaby, James D; Pfaff, Danielle L; Redding, Nicholas
2014-04-01
Research on social networks has grown exponentially in recent years. However, despite its relevance, the field of psychology has been relatively slow to explain the underlying goal pursuit and resistance processes influencing social networks in the first place. In this vein, this article aims to demonstrate how a dynamic network theory perspective explains the way in which social networks influence these processes and related outcomes, such as goal achievement, performance, learning, and emotional contagion at the interpersonal level of analysis. The theory integrates goal pursuit, motivation, and conflict conceptualizations from psychology with social network concepts from sociology and organizational science to provide a taxonomy of social network role behaviors, such as goal striving, system supporting, goal preventing, system negating, and observing. This theoretical perspective provides psychologists with new tools to map social networks (e.g., dynamic network charts), which can help inform the development of change interventions. Implications for social, industrial-organizational, and counseling psychology as well as conflict resolution are discussed, and new opportunities for research are highlighted, such as those related to dynamic network intelligence (also known as cognitive accuracy), levels of analysis, methodological/ethical issues, and the need to theoretically broaden the study of social networking and social media behavior. (PsycINFO Database Record (c) 2014 APA, all rights reserved).
Reduced small world brain connectivity in probands with a family history of epilepsy.
Bharath, R D; Chaitanya, G; Panda, R; Raghavendra, K; Sinha, S; Sahoo, A; Gohel, S; Biswal, B B; Satishchandra, P
2016-12-01
The role of inheritance in ascertaining susceptibility to epilepsy is well established, although the pathogenetic mechanisms are still not very clear. Interviewing for a positive family history is a popular epidemiological tool in the understanding of this susceptibility. Our aim was to visualize and localize network abnormalities that could be associated with a positive family history in a group of patients with hot water epilepsy (HWE) using resting-state functional magnetic resonance imaging (rsfMRI). Graph theory analysis of rsfMRI (clustering coefficient γ; path length λ; small worldness σ) in probands with a positive family history of epilepsy (FHE+, 25) were compared with probands without FHE (FHE-, 33). Whether a closer biological relationship was associated with a higher likelihood of network abnormalities was also ascertained. A positive family history of epilepsy had decreased γ, increased λ and decreased σ in bilateral temporofrontal regions compared to FHE- (false discovery rate corrected P ≤ 0.0062). These changes were more pronounced in probands having first degree relatives and siblings with epilepsy. Probands with multiple types of epilepsy in the family showed decreased σ in comparison to only HWE in the family. Graph theory analysis of the rsfMRI can be used to understand the neurobiology of diseases like genetic susceptibility in HWE. Reduced small worldness, proportional to the degree of relationship, is consistent with the current understanding that disease severity is higher in closer biological relations. © 2016 EAN.
Park, Jihoon; Mori, Hiroki; Okuyama, Yuji; Asada, Minoru
2017-01-01
Chaotic itinerancy is a phenomenon in which the state of a nonlinear dynamical system spontaneously explores and attracts certain states in a state space. From this perspective, the diverse behavior of animals and its spontaneous transitions lead to a complex coupled dynamical system, including a physical body and a brain. Herein, a series of simulations using different types of non-linear oscillator networks (i.e., regular, small-world, scale-free, random) with a musculoskeletal model (i.e., a snake-like robot) as a physical body are conducted to understand how the chaotic itinerancy of bodily behavior emerges from the coupled dynamics between the body and the brain. A behavior analysis (behavior clustering) and network analysis for the classified behavior are then applied. The former consists of feature vector extraction from the motions and classification of the movement patterns that emerged from the coupled dynamics. The network structures behind the classified movement patterns are revealed by estimating the "information networks" different from the given non-linear oscillator networks based on the transfer entropy which finds the information flow among neurons. The experimental results show that: (1) the number of movement patterns and their duration depend on the sensor ratio to control the balance of strength between the body and the brain dynamics and on the type of the given non-linear oscillator networks; and (2) two kinds of information networks are found behind two kinds movement patterns with different durations by utilizing the complex network measures, clustering coefficient and the shortest path length with a negative and a positive relationship with the duration periods of movement patterns. The current results seem promising for a future extension of the method to a more complicated body and environment. Several requirements are also discussed.
Directory of Open Access Journals (Sweden)
Jihoon Park
Full Text Available Chaotic itinerancy is a phenomenon in which the state of a nonlinear dynamical system spontaneously explores and attracts certain states in a state space. From this perspective, the diverse behavior of animals and its spontaneous transitions lead to a complex coupled dynamical system, including a physical body and a brain. Herein, a series of simulations using different types of non-linear oscillator networks (i.e., regular, small-world, scale-free, random with a musculoskeletal model (i.e., a snake-like robot as a physical body are conducted to understand how the chaotic itinerancy of bodily behavior emerges from the coupled dynamics between the body and the brain. A behavior analysis (behavior clustering and network analysis for the classified behavior are then applied. The former consists of feature vector extraction from the motions and classification of the movement patterns that emerged from the coupled dynamics. The network structures behind the classified movement patterns are revealed by estimating the "information networks" different from the given non-linear oscillator networks based on the transfer entropy which finds the information flow among neurons. The experimental results show that: (1 the number of movement patterns and their duration depend on the sensor ratio to control the balance of strength between the body and the brain dynamics and on the type of the given non-linear oscillator networks; and (2 two kinds of information networks are found behind two kinds movement patterns with different durations by utilizing the complex network measures, clustering coefficient and the shortest path length with a negative and a positive relationship with the duration periods of movement patterns. The current results seem promising for a future extension of the method to a more complicated body and environment. Several requirements are also discussed.
Energy Technology Data Exchange (ETDEWEB)
Cabral, Joana [Theoretical and Computational Neuroscience Group, Center of Brain and Cognition, Universitat Pompeu Fabra, Barcelona 08018 (Spain); Department of Psychiatry, University of Oxford, Oxford OX3 7JX (United Kingdom); Fernandes, Henrique M.; Van Hartevelt, Tim J.; Kringelbach, Morten L. [Department of Psychiatry, University of Oxford, Oxford OX3 7JX (United Kingdom); Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Aarhus (Denmark); James, Anthony C. [Department of Psychiatry, University of Oxford, Oxford OX3 7JX (United Kingdom); Highfield Unit, Warneford Hospital, Oxford OX3 7JX (United Kingdom); Deco, Gustavo [Theoretical and Computational Neuroscience Group, Center of Brain and Cognition, Universitat Pompeu Fabra, Barcelona 08018 (Spain); Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010 (Spain)
2013-12-15
The neuropathology of schizophrenia remains unclear. Some insight has come from modern neuroimaging techniques, which offer an unparalleled opportunity to explore in vivo the structure and function of the brain. Using functional magnetic resonance imaging, it has been found that the large-scale resting-state functional connectivity (rsFC) in schizophrenia — measured as the temporal correlations of the blood-oxygen-level-dependent (BOLD) signal — exhibit altered network topology, with lower small-world index. The origin of these rsFC alterations and link with the underlying structural connectivity remain unclear. In this work, we used a computational model of spontaneous large-scale brain activity to explore the role of the structural connectivity in the large-scale dynamics of the brain in health and schizophrenia. The structural connectomes from 15 adolescent patients with early-onset schizophrenia and 15 age- and gender-matched controls were built from diffusion tensor imaging data to detect the white matter tracts between 90 brain areas. Brain areas, simulated using a reduced dynamic mean-field model, receive excitatory input from other areas in proportion to the number of fibre tracts between them. The simulated mean field activity was transformed into BOLD signal, and the properties of the simulated functional networks were analyzed. Our results suggest that the functional alterations observed in schizophrenia are not directly linked to alterations in the structural topology. Instead, subtly randomized and less small-world functional networks appear when the brain operates with lower global coupling, which shifts the dynamics from the optimal healthy regime.
International Nuclear Information System (INIS)
Cabral, Joana; Fernandes, Henrique M.; Van Hartevelt, Tim J.; Kringelbach, Morten L.; James, Anthony C.; Deco, Gustavo
2013-01-01
The neuropathology of schizophrenia remains unclear. Some insight has come from modern neuroimaging techniques, which offer an unparalleled opportunity to explore in vivo the structure and function of the brain. Using functional magnetic resonance imaging, it has been found that the large-scale resting-state functional connectivity (rsFC) in schizophrenia — measured as the temporal correlations of the blood-oxygen-level-dependent (BOLD) signal — exhibit altered network topology, with lower small-world index. The origin of these rsFC alterations and link with the underlying structural connectivity remain unclear. In this work, we used a computational model of spontaneous large-scale brain activity to explore the role of the structural connectivity in the large-scale dynamics of the brain in health and schizophrenia. The structural connectomes from 15 adolescent patients with early-onset schizophrenia and 15 age- and gender-matched controls were built from diffusion tensor imaging data to detect the white matter tracts between 90 brain areas. Brain areas, simulated using a reduced dynamic mean-field model, receive excitatory input from other areas in proportion to the number of fibre tracts between them. The simulated mean field activity was transformed into BOLD signal, and the properties of the simulated functional networks were analyzed. Our results suggest that the functional alterations observed in schizophrenia are not directly linked to alterations in the structural topology. Instead, subtly randomized and less small-world functional networks appear when the brain operates with lower global coupling, which shifts the dynamics from the optimal healthy regime
Müller, Viktor; Perdikis, Dionysios; von Oertzen, Timo; Sleimen-Malkoun, Rita; Jirsa, Viktor; Lindenberger, Ulman
2016-01-01
Resting-state and task-related recordings are characterized by oscillatory brain activity and widely distributed networks of synchronized oscillatory circuits. Electroencephalographic recordings (EEG) were used to assess network structure and network dynamics during resting state with eyes open and closed, and auditory oddball performance through phase synchronization between EEG channels. For this assessment, we constructed a hyper-frequency network (HFN) based on within- and cross-frequency coupling (WFC and CFC, respectively) at 10 oscillation frequencies ranging between 2 and 20 Hz. We found that CFC generally differentiates between task conditions better than WFC. CFC was the highest during resting state with eyes open. Using a graph-theoretical approach (GTA), we found that HFNs possess small-world network (SWN) topology with a slight tendency to random network characteristics. Moreover, analysis of the temporal fluctuations of HFNs revealed specific network topology dynamics (NTD), i.e., temporal changes of different graph-theoretical measures such as strength, clustering coefficient, characteristic path length (CPL), local, and global efficiency determined for HFNs at different time windows. The different topology metrics showed significant differences between conditions in the mean and standard deviation of these metrics both across time and nodes. In addition, using an artificial neural network approach, we found stimulus-related dynamics that varied across the different network topology metrics. We conclude that functional connectivity dynamics (FCD), or NTD, which was found using the HFN approach during rest and stimulus processing, reflects temporal and topological changes in the functional organization and reorganization of neuronal cell assemblies.
Fundamental structures of dynamic social networks
DEFF Research Database (Denmark)
Sekara, Vedran; Stopczynski, Arkadiusz; Jørgensen, Sune Lehmann
2016-01-01
Social systems are in a constant state of flux, with dynamics spanning from minute-by-minute changes to patterns present on the timescale of years. Accurate models of social dynamics are important for understanding the spreading of influence or diseases, formation of friendships...... and their interactions in the network of real-world person-to-person proximity measured via Bluetooth, as well as their telecommunication networks, online social media contacts, geolocation, and demographic data. These high-resolution data allow us to observe social groups directly, rendering community detection......, and the productivity of teams. Although there has been much progress on understanding complex networks over the past decade, little is known about the regularities governing the microdynamics of social networks. Here, we explore the dynamic social network of a densely-connected population of ∼1,000 individuals...
Evolutionary dynamics of complex communications networks
Karyotis, Vasileios; Papavassiliou, Symeon
2013-01-01
Until recently, most network design techniques employed a bottom-up approach with lower protocol layer mechanisms affecting the development of higher ones. This approach, however, has not yielded fascinating results in the case of wireless distributed networks. Addressing the emerging aspects of modern network analysis and design, Evolutionary Dynamics of Complex Communications Networks introduces and develops a top-bottom approach where elements of the higher layer can be exploited in modifying the lowest physical topology-closing the network design loop in an evolutionary fashion similar to
Dynamics on Networks of Manifolds
DeVille, Lee; Lerman, Eugene
2015-03-01
We propose a precise definition of a continuous time dynamical system made up of interacting open subsystems. The interconnections of subsystems are coded by directed graphs. We prove that the appropriate maps of graphs called graph fibrations give rise to maps of dynamical systems. Consequently surjective graph fibrations give rise to invariant subsystems and injective graph fibrations give rise to projections of dynamical systems.
How complex a dynamical network can be?
International Nuclear Information System (INIS)
Baptista, M.S.; Kakmeni, F. Moukam; Del Magno, Gianluigi; Hussein, M.S.
2011-01-01
Positive Lyapunov exponents measure the asymptotic exponential divergence of nearby trajectories of a dynamical system. Not only they quantify how chaotic a dynamical system is, but since their sum is an upper bound for the rate of information production, they also provide a convenient way to quantify the complexity of a dynamical network. We conjecture based on numerical evidences that for a large class of dynamical networks composed by equal nodes, the sum of the positive Lyapunov exponents is bounded by the sum of all the positive Lyapunov exponents of both the synchronization manifold and its transversal directions, the last quantity being in principle easier to compute than the latter. As applications of our conjecture we: (i) show that a dynamical network composed of equal nodes and whose nodes are fully linearly connected produces more information than similar networks but whose nodes are connected with any other possible connecting topology; (ii) show how one can calculate upper bounds for the information production of realistic networks whose nodes have parameter mismatches, randomly chosen; (iii) discuss how to predict the behavior of a large dynamical network by knowing the information provided by a system composed of only two coupled nodes.
Dynamical Adaptation in Terrorist Cells/Networks
DEFF Research Database (Denmark)
Hussain, Dil Muhammad Akbar; Ahmed, Zaki
2010-01-01
Typical terrorist cells/networks have dynamical structure as they evolve or adapt to changes which may occur due to capturing or killing of a member of the cell/network. Analytical measures in graph theory like degree centrality, betweenness and closeness centralities are very common and have long...
The Social Dynamics of Innovation Networks
Rutten, Roel; Benneworth, Paul Stephen; Irawati, Dessy; Boekema, Frans
2014-01-01
The social dynamics of innovation networks captures the important role of trust, social capital, institutions and norms and values in the creation of knowledge in innovation networks. In doing so, this book connects to a long-standing debate on the socio-spatial context of innovation in economic
Dynamic Frequency Control in Power Networks
Zhao, Changhong; Mallada Garcia, Enrique; Low, Steven H.
2016-01-01
Node controllers in power distribution networks in accordance with embodiments of the invention enable dynamic frequency control. One embodiment includes a node controller comprising a network interface a processor; and a memory containing a frequency control application; and a plurality of node operating parameters describing the operating parameters of a node, where the node is selected from a group consisting of at least one generator node in a power distribution network wherein the proces...
Network Physiology: How Organ Systems Dynamically Interact.
Bartsch, Ronny P; Liu, Kang K L; Bashan, Amir; Ivanov, Plamen Ch
2015-01-01
We systematically study how diverse physiologic systems in the human organism dynamically interact and collectively behave to produce distinct physiologic states and functions. This is a fundamental question in the new interdisciplinary field of Network Physiology, and has not been previously explored. Introducing the novel concept of Time Delay Stability (TDS), we develop a computational approach to identify and quantify networks of physiologic interactions from long-term continuous, multi-channel physiological recordings. We also develop a physiologically-motivated visualization framework to map networks of dynamical organ interactions to graphical objects encoded with information about the coupling strength of network links quantified using the TDS measure. Applying a system-wide integrative approach, we identify distinct patterns in the network structure of organ interactions, as well as the frequency bands through which these interactions are mediated. We establish first maps representing physiologic organ network interactions and discover basic rules underlying the complex hierarchical reorganization in physiologic networks with transitions across physiologic states. Our findings demonstrate a direct association between network topology and physiologic function, and provide new insights into understanding how health and distinct physiologic states emerge from networked interactions among nonlinear multi-component complex systems. The presented here investigations are initial steps in building a first atlas of dynamic interactions among organ systems.
Network Physiology: How Organ Systems Dynamically Interact
Bartsch, Ronny P.; Liu, Kang K. L.; Bashan, Amir; Ivanov, Plamen Ch.
2015-01-01
We systematically study how diverse physiologic systems in the human organism dynamically interact and collectively behave to produce distinct physiologic states and functions. This is a fundamental question in the new interdisciplinary field of Network Physiology, and has not been previously explored. Introducing the novel concept of Time Delay Stability (TDS), we develop a computational approach to identify and quantify networks of physiologic interactions from long-term continuous, multi-channel physiological recordings. We also develop a physiologically-motivated visualization framework to map networks of dynamical organ interactions to graphical objects encoded with information about the coupling strength of network links quantified using the TDS measure. Applying a system-wide integrative approach, we identify distinct patterns in the network structure of organ interactions, as well as the frequency bands through which these interactions are mediated. We establish first maps representing physiologic organ network interactions and discover basic rules underlying the complex hierarchical reorganization in physiologic networks with transitions across physiologic states. Our findings demonstrate a direct association between network topology and physiologic function, and provide new insights into understanding how health and distinct physiologic states emerge from networked interactions among nonlinear multi-component complex systems. The presented here investigations are initial steps in building a first atlas of dynamic interactions among organ systems. PMID:26555073
International Nuclear Information System (INIS)
Zhao, Zhiguo; Gu, Huaguang
2015-01-01
Highlights: • Time delay-induced multiple synchronous behaviors was simulated in neuronal networks. • Multiple behaviors appear at time delays shorter than a bursting period of neurons. • The more spikes per burst of bursting, the more synchronous regions of time delay. • From regular to random via small-world networks, synchronous degree becomes weak. • An interpretation of the multiple behaviors and the influence of network are provided. - Abstract: Time delay induced-multiple synchronous behaviors are simulated in neuronal network composed of many inhibitory neurons and appear at different time delays shorter than a period of endogenous bursting of individual neurons. It is different from previous investigations wherein only one of multiple synchronous behaviors appears at time delay shorter than a period of endogenous firing and others appear at time delay longer than the period duration. The bursting patterns of the synchronous behaviors are identified based on the dynamics of an individual neuron stimulated by a signal similar to the inhibitory coupling current, which is applied at the decaying branch of a spike and suitable phase within the quiescent state of the endogenous bursting. If a burst of endogenous bursting contains more spikes, the synchronous behaviors appear at more regions of time delay. As the coupling strength increases, the multiple synchronous behaviors appear in a sequence because the different threshold of coupling current or strength is needed to achieve synchronous behaviors. From regular, to small-world, and to random networks, synchronous degree of the multiple synchronous behaviors becomes weak, and synchronous bursting patterns with lower spikes per burst disappear, which is properly interpreted by the difference of coupling current between neurons induced by different degree and the high threshold of coupling current to achieve synchronization for the absent synchronous bursting patterns. The results of the influence of
Smallest-Small-World Cellular Harmony Search for Optimization of Unconstrained Benchmark Problems
Directory of Open Access Journals (Sweden)
Sung Soo Im
2013-01-01
Full Text Available We presented a new hybrid method that combines cellular harmony search algorithms with the Smallest-Small-World theory. A harmony search (HS algorithm is based on musical performance processes that occur when a musician searches for a better state of harmony. Harmony search has successfully been applied to a wide variety of practical optimization problems. Most of the previous researches have sought to improve the performance of the HS algorithm by changing the pitch adjusting rate and harmony memory considering rate. However, there has been a lack of studies to improve the performance of the algorithm by the formation of population structures. Therefore, we proposed an improved HS algorithm that uses the cellular automata formation and the topological structure of Smallest-Small-World network. The improved HS algorithm has a high clustering coefficient and a short characteristic path length, having good exploration and exploitation efficiencies. Nine benchmark functions were applied to evaluate the performance of the proposed algorithm. Unlike the existing improved HS algorithm, the proposed algorithm is expected to have improved algorithmic efficiency from the formation of the population structure.
A network dynamics approach to chemical reaction networks
van der Schaft, A. J.; Rao, S.; Jayawardhana, B.
2016-04-01
A treatment of a chemical reaction network theory is given from the perspective of nonlinear network dynamics, in particular of consensus dynamics. By starting from the complex-balanced assumption, the reaction dynamics governed by mass action kinetics can be rewritten into a form which allows for a very simple derivation of a number of key results in the chemical reaction network theory, and which directly relates to the thermodynamics and port-Hamiltonian formulation of the system. Central in this formulation is the definition of a balanced Laplacian matrix on the graph of chemical complexes together with a resulting fundamental inequality. This immediately leads to the characterisation of the set of equilibria and their stability. Furthermore, the assumption of complex balancedness is revisited from the point of view of Kirchhoff's matrix tree theorem. Both the form of the dynamics and the deduced behaviour are very similar to consensus dynamics, and provide additional perspectives to the latter. Finally, using the classical idea of extending the graph of chemical complexes by a 'zero' complex, a complete steady-state stability analysis of mass action kinetics reaction networks with constant inflows and mass action kinetics outflows is given, and a unified framework is provided for structure-preserving model reduction of this important class of open reaction networks.
Conflict and convention in dynamic networks.
Foley, Michael; Forber, Patrick; Smead, Rory; Riedl, Christoph
2018-03-01
An important way to resolve games of conflict (snowdrift, hawk-dove, chicken) involves adopting a convention: a correlated equilibrium that avoids any conflict between aggressive strategies. Dynamic networks allow individuals to resolve conflict via their network connections rather than changing their strategy. Exploring how behavioural strategies coevolve with social networks reveals new dynamics that can help explain the origins and robustness of conventions. Here, we model the emergence of conventions as correlated equilibria in dynamic networks. Our results show that networks have the tendency to break the symmetry between the two conventional solutions in a strongly biased way. Rather than the correlated equilibrium associated with ownership norms (play aggressive at home, not away), we usually see the opposite host-guest norm (play aggressive away, not at home) evolve on dynamic networks, a phenomenon common to human interaction. We also show that learning to avoid conflict can produce realistic network structures in a way different than preferential attachment models. © 2017 The Author(s).
Markovian dynamics on complex reaction networks
Energy Technology Data Exchange (ETDEWEB)
Goutsias, J., E-mail: goutsias@jhu.edu; Jenkinson, G., E-mail: jenkinson@jhu.edu
2013-08-10
Complex networks, comprised of individual elements that interact with each other through reaction channels, are ubiquitous across many scientific and engineering disciplines. Examples include biochemical, pharmacokinetic, epidemiological, ecological, social, neural, and multi-agent networks. A common approach to modeling such networks is by a master equation that governs the dynamic evolution of the joint probability mass function of the underlying population process and naturally leads to Markovian dynamics for such process. Due however to the nonlinear nature of most reactions and the large size of the underlying state-spaces, computation and analysis of the resulting stochastic population dynamics is a difficult task. This review article provides a coherent and comprehensive coverage of recently developed approaches and methods to tackle this problem. After reviewing a general framework for modeling Markovian reaction networks and giving specific examples, the authors present numerical and computational techniques capable of evaluating or approximating the solution of the master equation, discuss a recently developed approach for studying the stationary behavior of Markovian reaction networks using a potential energy landscape perspective, and provide an introduction to the emerging theory of thermodynamic analysis of such networks. Three representative problems of opinion formation, transcription regulation, and neural network dynamics are used as illustrative examples.
Markovian dynamics on complex reaction networks
International Nuclear Information System (INIS)
Goutsias, J.; Jenkinson, G.
2013-01-01
Complex networks, comprised of individual elements that interact with each other through reaction channels, are ubiquitous across many scientific and engineering disciplines. Examples include biochemical, pharmacokinetic, epidemiological, ecological, social, neural, and multi-agent networks. A common approach to modeling such networks is by a master equation that governs the dynamic evolution of the joint probability mass function of the underlying population process and naturally leads to Markovian dynamics for such process. Due however to the nonlinear nature of most reactions and the large size of the underlying state-spaces, computation and analysis of the resulting stochastic population dynamics is a difficult task. This review article provides a coherent and comprehensive coverage of recently developed approaches and methods to tackle this problem. After reviewing a general framework for modeling Markovian reaction networks and giving specific examples, the authors present numerical and computational techniques capable of evaluating or approximating the solution of the master equation, discuss a recently developed approach for studying the stationary behavior of Markovian reaction networks using a potential energy landscape perspective, and provide an introduction to the emerging theory of thermodynamic analysis of such networks. Three representative problems of opinion formation, transcription regulation, and neural network dynamics are used as illustrative examples
Learning State Space Dynamics in Recurrent Networks
Simard, Patrice Yvon
Fully recurrent (asymmetrical) networks can be used to learn temporal trajectories. The network is unfolded in time, and backpropagation is used to train the weights. The presence of recurrent connections creates internal states in the system which vary as a function of time. The resulting dynamics can provide interesting additional computing power but learning is made more difficult by the existence of internal memories. This study first exhibits the properties of recurrent networks in terms of convergence when the internal states of the system are unknown. A new energy functional is provided to change the weights of the units in order to the control the stability of the fixed points of the network's dynamics. The power of the resultant algorithm is illustrated with the simulation of a content addressable memory. Next, the more general case of time trajectories on a recurrent network is studied. An application is proposed in which trajectories are generated to draw letters as a function of an input. In another application of recurrent systems, a neural network certain temporal properties observed in human callosally sectioned brains. Finally the proposed algorithm for stabilizing dynamics around fixed points is extended to one for stabilizing dynamics around time trajectories. Its effects are illustrated on a network which generates Lisajous curves.
Dynamic Protection of Optical Networks
DEFF Research Database (Denmark)
Ruepp, Sarah Renée
2008-01-01
This thesis deals with making optical networks resilient to failures. The recovery performance of path, segment and span restoration is evaluated in a network with limited wavelength conversion capability using both standard and enhanced wavelength assignment schemes. The enhanced wavelength...... stubs at the failure adjacent nodes. Both modifcations have a positive influence on the recovery percentage. The recovery enhancements are applicable in both single and multi-domain network environments. Stub release, where the still working parts of a failure affected connection are released prior...... of the modularity of capacity units is investigated for resilient network design. Different span upgrading strategies and algorithms for finding restoration paths are evaluated. Furthermore, the capacity effciency of constraining restoration requests for the same destination node to the same restoration path...
Cognitive radio networks dynamic resource allocation schemes
Wang, Shaowei
2014-01-01
This SpringerBrief presents a survey of dynamic resource allocation schemes in Cognitive Radio (CR) Systems, focusing on the spectral-efficiency and energy-efficiency in wireless networks. It also introduces a variety of dynamic resource allocation schemes for CR networks and provides a concise introduction of the landscape of CR technology. The author covers in detail the dynamic resource allocation problem for the motivations and challenges in CR systems. The Spectral- and Energy-Efficient resource allocation schemes are comprehensively investigated, including new insights into the trade-off
Competing dynamic phases of active polymer networks
Freedman, Simon; Banerjee, Shiladitya; Dinner, Aaron R.
Recent experiments on in-vitro reconstituted assemblies of F-actin, myosin-II motors, and cross-linking proteins show that tuning local network properties can changes the fundamental biomechanical behavior of the system. For example, by varying cross-linker density and actin bundle rigidity, one can switch between contractile networks useful for reshaping cells, polarity sorted networks ideal for directed molecular transport, and frustrated networks with robust structural properties. To efficiently investigate the dynamic phases of actomyosin networks, we developed a coarse grained non-equilibrium molecular dynamics simulation of model semiflexible filaments, molecular motors, and cross-linkers with phenomenologically defined interactions. The simulation's accuracy was verified by benchmarking the mechanical properties of its individual components and collective behavior against experimental results at the molecular and network scales. By adjusting the model's parameters, we can reproduce the qualitative phases observed in experiment and predict the protein characteristics where phase crossovers could occur in collective network dynamics. Our model provides a framework for understanding cells' multiple uses of actomyosin networks and their applicability in materials research. Supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.
Dynamics of High-Resolution Networks
DEFF Research Database (Denmark)
Sekara, Vedran
the unprecedented amounts of information collected by mobile phones to gain detailed insight into the dynamics of social systems. This dissertation presents an unparalleled data collection campaign, collecting highly detailed traces for approximately 1000 people over the course of multiple years. The availability...... are we all affected by an ever changing network structure? Answering these questions will enrich our understanding of ourselves, our organizations, and our societies. Yet, mapping the dynamics of social networks has traditionally been an arduous undertaking. Today, however, it is possible to use...... of such dynamic maps allows us to probe the underlying social network and understand how individuals interact and form lasting friendships. More importantly, these highly detailed dynamic maps provide us new perspectives at traditional problems and allow us to quantify and predict human life....
Control theory of digitally networked dynamic systems
Lunze, Jan
2013-01-01
The book gives an introduction to networked control systems and describes new modeling paradigms, analysis methods for event-driven, digitally networked systems, and design methods for distributed estimation and control. Networked model predictive control is developed as a means to tolerate time delays and packet loss brought about by the communication network. In event-based control the traditional periodic sampling is replaced by state-dependent triggering schemes. Novel methods for multi-agent systems ensure complete or clustered synchrony of agents with identical or with individual dynamic
Traffic Dynamics of Computer Networks
Fekete, Attila
2008-10-01
Two important aspects of the Internet, namely the properties of its topology and the characteristics of its data traffic, have attracted growing attention of the physics community. My thesis has considered problems of both aspects. First I studied the stochastic behavior of TCP, the primary algorithm governing traffic in the current Internet, in an elementary network scenario consisting of a standalone infinite-sized buffer and an access link. The effect of the fast recovery and fast retransmission (FR/FR) algorithms is also considered. I showed that my model can be extended further to involve the effect of link propagation delay, characteristic of WAN. I continued my thesis with the investigation of finite-sized semi-bottleneck buffers, where packets can be dropped not only at the link, but also at the buffer. I demonstrated that the behavior of the system depends only on a certain combination of the parameters. Moreover, an analytic formula was derived that gives the ratio of packet loss rate at the buffer to the total packet loss rate. This formula makes it possible to treat buffer-losses as if they were link-losses. Finally, I studied computer networks from a structural perspective. I demonstrated through fluid simulations that the distribution of resources, specifically the link bandwidth, has a serious impact on the global performance of the network. Then I analyzed the distribution of edge betweenness in a growing scale-free tree under the condition that a local property, the in-degree of the "younger" node of an arbitrary edge, is known in order to find an optimum distribution of link capacity. The derived formula is exact even for finite-sized networks. I also calculated the conditional expectation of edge betweenness, rescaled for infinite networks.
The dynamics of transmission and the dynamics of networks.
Farine, Damien
2017-05-01
A toy example depicted here highlighting the results of a study in this issue of the Journal of Animal Ecology that investigates the impact of network dynamics on potential disease outbreaks. Infections (stars) that spread by contact only (left) reduce the predicted outbreak size compared to situations where individuals can become infected by moving through areas that previously contained infected individuals (right). This is potentially important in species where individuals, or in this case groups, have overlapping ranges (as depicted on the top right). Incorporating network dynamics that maintain information about the ordering of contacts (central blocks; including the ordering of spatial overlap as noted by the arrows that highlight the blue group arriving after the red group in top-right of the figure) is important for capturing how a disease might not have the opportunity to spread to all individuals. By contrast, a static or 'average' network (lower blocks) does not capture any of these dynamics. Interestingly, although static networks generally predict larger outbreak sizes, the authors find that in cases when transmission probability is low, this prediction can switch as a result of changes in the estimated intensity of contacts among individuals. [Colour figure can be viewed at wileyonlinelibrary.com]. Springer, A., Kappeler, P.M. & Nunn, C.L. (2017) Dynamic vs. static social networks in models of parasite transmission: Predicting Cryptosporidium spread in wild lemurs. Journal of Animal Ecology, 86, 419-433. The spread of disease or information through networks can be affected by several factors. Whether and how these factors are accounted for can fundamentally change the predicted impact of a spreading epidemic. Springer, Kappeler & Nunn () investigate the role of different modes of transmission and network dynamics on the predicted size of a disease outbreak across several groups of Verreaux's sifakas, a group-living species of lemur. While some factors
Dynamics-based centrality for directed networks.
Masuda, Naoki; Kori, Hiroshi
2010-11-01
Determining the relative importance of nodes in directed networks is important in, for example, ranking websites, publications, and sports teams, and for understanding signal flows in systems biology. A prevailing centrality measure in this respect is the PageRank. In this work, we focus on another class of centrality derived from the Laplacian of the network. We extend the Laplacian-based centrality, which has mainly been applied to strongly connected networks, to the case of general directed networks such that we can quantitatively compare arbitrary nodes. Toward this end, we adopt the idea used in the PageRank to introduce global connectivity between all the pairs of nodes with a certain strength. Numerical simulations are carried out on some networks. We also offer interpretations of the Laplacian-based centrality for general directed networks in terms of various dynamical and structural properties of networks. Importantly, the Laplacian-based centrality defined as the stationary density of the continuous-time random walk with random jumps is shown to be equivalent to the absorption probability of the random walk with sinks at each node but without random jumps. Similarly, the proposed centrality represents the importance of nodes in dynamics on the original network supplied with sinks but not with random jumps.
Critical dynamics in associative memory networks
Directory of Open Access Journals (Sweden)
Maximilian eUhlig
2013-07-01
Full Text Available Critical behavior in neural networks is characterized by scale-free avalanche size distributions and can be explained by self-regulatory mechanisms. Theoretical and experimental evidence indicates that information storage capacity reaches its maximum in the critical regime. We study the effect of structural connectivity formed by Hebbian learning on the criticality of network dynamics. The network endowed with Hebbian learning only does not allow for simultaneous information storage and criticality. However, the critical regime is can be stabilized by short-term synaptic dynamics in the form of synaptic depression and facilitation or, alternatively, by homeostatic adaptation of the synaptic weights. We show that a heterogeneous distribution of maximal synaptic strengths does not preclude criticality if the Hebbian learning is alternated with periods of critical dynamics recovery. We discuss the relevance of these findings for the flexibility of memory in aging and with respect to the recent theory of synaptic plasticity.
Hydrogen application dynamics and networks
Energy Technology Data Exchange (ETDEWEB)
Schmidt, E. [Air Liquide Large Industries, Champigny-sur-Marne (France)
2010-12-30
The Chemical Industry consumes large volumes of hydrogen as raw material for the manufacture of numerous products (e.g. polyamides and polyurethanes account for 60% of hydrogen demand). The hydrogen demand was in the recent past and will continue to be driven by the polyurethane family. China will host about 60% of new hydrogen needs over the period 2010-2015 becoming the first hydrogen market next year and reaching 25% of market share by 2015 (vs. only 4% in 2001). Air Liquide supplies large volumes of Hydrogen (and other Industrial Gases) to customers by on-site plants and through pipeline networks which offer significant benefits such as higher safety, reliability and flexibility of supply. Thanks to its long term strategy and heavy investment in large units and pipeline networks, Air Liquide is the Industrial Gas leader in most of the world class Petrochemical basins (Rotterdam, Antwerp, US Gulf Coast, Yosu, Caojing,..) (orig.)
Exploring network structure, dynamics, and function using networkx
Energy Technology Data Exchange (ETDEWEB)
Hagberg, Aric [Los Alamos National Laboratory; Swart, Pieter [Los Alamos National Laboratory; S Chult, Daniel [COLGATE UNIV
2008-01-01
NetworkX is a Python language package for exploration and analysis of networks and network algorithms. The core package provides data structures for representing many types of networks, or graphs, including simple graphs, directed graphs, and graphs with parallel edges and self loops. The nodes in NetworkX graphs can be any (hashable) Python object and edges can contain arbitrary data; this flexibility mades NetworkX ideal for representing networks found in many different scientific fields. In addition to the basic data structures many graph algorithms are implemented for calculating network properties and structure measures: shortest paths, betweenness centrality, clustering, and degree distribution and many more. NetworkX can read and write various graph formats for eash exchange with existing data, and provides generators for many classic graphs and popular graph models, such as the Erdoes-Renyi, Small World, and Barabasi-Albert models, are included. The ease-of-use and flexibility of the Python programming language together with connection to the SciPy tools make NetworkX a powerful tool for scientific computations. We discuss some of our recent work studying synchronization of coupled oscillators to demonstrate how NetworkX enables research in the field of computational networks.
Information Dynamics as Foundation for Network Management
2014-12-04
developed to adapt to channel dynamics in a mobile network environment. We devise a low- complexity online scheduling algorithm integrated with the...has been accepted for the Journal on Network and Systems Management in 2014. - RINC programmable platform for Infrastructure -as-a-Service public... backend servers. Rather than implementing load balancing in dedicated appliances, commodity SDN switches can perform this function. We design
Complex networks under dynamic repair model
Chaoqi, Fu; Ying, Wang; Kun, Zhao; Yangjun, Gao
2018-01-01
Invulnerability is not the only factor of importance when considering complex networks' security. It is also critical to have an effective and reasonable repair strategy. Existing research on network repair is confined to the static model. The dynamic model makes better use of the redundant capacity of repaired nodes and repairs the damaged network more efficiently than the static model; however, the dynamic repair model is complex and polytropic. In this paper, we construct a dynamic repair model and systematically describe the energy-transfer relationships between nodes in the repair process of the failure network. Nodes are divided into three types, corresponding to three structures. We find that the strong coupling structure is responsible for secondary failure of the repaired nodes and propose an algorithm that can select the most suitable targets (nodes or links) to repair the failure network with minimal cost. Two types of repair strategies are identified, with different effects under the two energy-transfer rules. The research results enable a more flexible approach to network repair.
perception of communication network fraud dynamics by network ...
African Journals Online (AJOL)
ES Obe
work fraud dynamics by network administrators and stakeholders. In considering ... cyber crime within the last two years. How- ever, two-thirds of the ... ˆ increased exposure to unpredictable fi- nancial losses ... The intentions of the customers are reflected ..... 'There is a 95% confidence that the differ- ence between the ...
Discrete dynamic modeling of cellular signaling networks.
Albert, Réka; Wang, Rui-Sheng
2009-01-01
Understanding signal transduction in cellular systems is a central issue in systems biology. Numerous experiments from different laboratories generate an abundance of individual components and causal interactions mediating environmental and developmental signals. However, for many signal transduction systems there is insufficient information on the overall structure and the molecular mechanisms involved in the signaling network. Moreover, lack of kinetic and temporal information makes it difficult to construct quantitative models of signal transduction pathways. Discrete dynamic modeling, combined with network analysis, provides an effective way to integrate fragmentary knowledge of regulatory interactions into a predictive mathematical model which is able to describe the time evolution of the system without the requirement for kinetic parameters. This chapter introduces the fundamental concepts of discrete dynamic modeling, particularly focusing on Boolean dynamic models. We describe this method step-by-step in the context of cellular signaling networks. Several variants of Boolean dynamic models including threshold Boolean networks and piecewise linear systems are also covered, followed by two examples of successful application of discrete dynamic modeling in cell biology.
Spreading dynamics in complex networks
Pei, Sen; Makse, Hernán A.
2013-12-01
Searching for influential spreaders in complex networks is an issue of great significance for applications across various domains, ranging from epidemic control, innovation diffusion, viral marketing, and social movement to idea propagation. In this paper, we first display some of the most important theoretical models that describe spreading processes, and then discuss the problem of locating both the individual and multiple influential spreaders respectively. Recent approaches in these two topics are presented. For the identification of privileged single spreaders, we summarize several widely used centralities, such as degree, betweenness centrality, PageRank, k-shell, etc. We investigate the empirical diffusion data in a large scale online social community—LiveJournal. With this extensive dataset, we find that various measures can convey very distinct information of nodes. Of all the users in the LiveJournal social network, only a small fraction of them are involved in spreading. For the spreading processes in LiveJournal, while degree can locate nodes participating in information diffusion with higher probability, k-shell is more effective in finding nodes with a large influence. Our results should provide useful information for designing efficient spreading strategies in reality.
Spreading dynamics in complex networks
International Nuclear Information System (INIS)
Pei, Sen; Makse, Hernán A
2013-01-01
Searching for influential spreaders in complex networks is an issue of great significance for applications across various domains, ranging from epidemic control, innovation diffusion, viral marketing, and social movement to idea propagation. In this paper, we first display some of the most important theoretical models that describe spreading processes, and then discuss the problem of locating both the individual and multiple influential spreaders respectively. Recent approaches in these two topics are presented. For the identification of privileged single spreaders, we summarize several widely used centralities, such as degree, betweenness centrality, PageRank, k-shell, etc. We investigate the empirical diffusion data in a large scale online social community—LiveJournal. With this extensive dataset, we find that various measures can convey very distinct information of nodes. Of all the users in the LiveJournal social network, only a small fraction of them are involved in spreading. For the spreading processes in LiveJournal, while degree can locate nodes participating in information diffusion with higher probability, k-shell is more effective in finding nodes with a large influence. Our results should provide useful information for designing efficient spreading strategies in reality. (paper)
Synchronization of coupled chaotic dynamics on networks
Indian Academy of Sciences (India)
We review some recent work on the synchronization of coupled dynamical systems on a variety of networks. When nodes show synchronized behaviour, two interesting phenomena can be observed. First, there are some nodes of the floating type that show intermittent behaviour between getting attached to some clusters ...
Modular networks with hierarchical organization: The dynamical ...
Indian Academy of Sciences (India)
Most of the complex systems seen in real life also have associated dynamics [10], and the ... another example, this time a hierarchical structure, viz., the Cayley tree with b ..... natural constraints operating on networks in real life, such as the ...
Dynamical networks with topological self-organization
Zak, M.
2001-01-01
Coupled evolution of state and topology of dynamical networks is introduced. Due to the well organized tensor structure, the governing equations are presented in a canonical form, and required attractors as well as their basins can be easily implanted and controlled.
Dynamics of nephron-vascular network
DEFF Research Database (Denmark)
Postnov, Dmitry; Postnov, D E; Marsh, D J
2012-01-01
The paper presents a modeling study of the spatial dynamics of a nephro-vascular network consisting of individual nephrons connected via a tree-like vascular branching structure. We focus on the effects of nonlinear mechanisms that are responsible for the formation of synchronous patterns in order...
Discerning connectivity from dynamics in climate networks
Czech Academy of Sciences Publication Activity Database
Paluš, Milan; Hartman, David; Hlinka, Jaroslav; Vejmelka, Martin
2011-01-01
Roč. 18, č. 5 (2011), s. 751-763 ISSN 1023-5809 R&D Projects: GA ČR GCP103/11/J068 Institutional research plan: CEZ:AV0Z10300504 Keywords : complex networks * climate dynamics * connectivity * North Atlantic Oscillation * solar activity Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 1.597, year: 2011
Kurmyshev, Evguenii; Juárez, Héctor A.; González-Silva, Ricardo A.
2011-08-01
Bounded confidence models of opinion dynamics in social networks have been actively studied in recent years, in particular, opinion formation and extremism propagation along with other aspects of social dynamics. In this work, after an analysis of limitations of the Deffuant-Weisbuch (DW) bounded confidence, relative agreement model, we propose the mixed model that takes into account two psychological types of individuals. Concord agents (C-agents) are friendly people; they interact in a way that their opinions always get closer. Agents of the other psychological type show partial antagonism in their interaction (PA-agents). Opinion dynamics in heterogeneous social groups, consisting of agents of the two types, was studied on different social networks: Erdös-Rényi random graphs, small-world networks and complete graphs. Limit cases of the mixed model, pure C- and PA-societies, were also studied. We found that group opinion formation is, qualitatively, almost independent of the topology of networks used in this work. Opinion fragmentation, polarization and consensus are observed in the mixed model at different proportions of PA- and C-agents, depending on the value of initial opinion tolerance of agents. As for the opinion formation and arising of “dissidents”, the opinion dynamics of the C-agents society was found to be similar to that of the DW model, except for the rate of opinion convergence. Nevertheless, mixed societies showed dynamics and bifurcation patterns notably different to those of the DW model. The influence of biased initial conditions over opinion formation in heterogeneous social groups was also studied versus the initial value of opinion uncertainty, varying the proportion of the PA- to C-agents. Bifurcation diagrams showed an impressive evolution of collective opinion, in particular, radical changes of left to right consensus or vice versa at an opinion uncertainty value equal to 0.7 in the model with the PA/C mixture of population near 50/50.
Dynamical Networks Characterization of Space Weather Events
Orr, L.; Chapman, S. C.; Dods, J.; Gjerloev, J. W.
2017-12-01
Space weather can cause disturbances to satellite systems, impacting navigation technology and telecommunications; it can cause power loss and aviation disruption. A central aspect of the earth's magnetospheric response to space weather events are large scale and rapid changes in ionospheric current patterns. Space weather is highly dynamic and there are still many controversies about how the current system evolves in time. The recent SuperMAG initiative, collates ground-based vector magnetic field time series from over 200 magnetometers with 1-minute temporal resolution. In principle this combined dataset is an ideal candidate for quantification using dynamical networks. Network properties and parameters allow us to characterize the time dynamics of the full spatiotemporal pattern of the ionospheric current system. However, applying network methodologies to physical data presents new challenges. We establish whether a given pair of magnetometers are connected in the network by calculating their canonical cross correlation. The magnetometers are connected if their cross correlation exceeds a threshold. In our physical time series this threshold needs to be both station specific, as it varies with (non-linear) individual station sensitivity and location, and able to vary with season, which affects ground conductivity. Additionally, the earth rotates and therefore the ground stations move significantly on the timescales of geomagnetic disturbances. The magnetometers are non-uniformly spatially distributed. We will present new methodology which addresses these problems and in particular achieves dynamic normalization of the physical time series in order to form the network. Correlated disturbances across the magnetometers capture transient currents. Once the dynamical network has been obtained [1][2] from the full magnetometer data set it can be used to directly identify detailed inferred transient ionospheric current patterns and track their dynamics. We will show
Dynamical systems on networks a tutorial
Porter, Mason A
2016-01-01
This volume is a tutorial for the study of dynamical systems on networks. It discusses both methodology and models, including spreading models for social and biological contagions. The authors focus especially on “simple” situations that are analytically tractable, because they are insightful and provide useful springboards for the study of more complicated scenarios. This tutorial, which also includes key pointers to the literature, should be helpful for junior and senior undergraduate students, graduate students, and researchers from mathematics, physics, and engineering who seek to study dynamical systems on networks but who may not have prior experience with graph theory or networks. Mason A. Porter is Professor of Nonlinear and Complex Systems at the Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, UK. He is also a member of the CABDyN Complexity Centre and a Tutorial Fellow of Somerville College. James P. Gleeson is Professor of Industrial and Appli...
Power Aware Dynamic Provisioning of HPC Networks
Energy Technology Data Exchange (ETDEWEB)
Groves, Taylor [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grant, Ryan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-10-01
Future exascale systems are under increased pressure to find power savings. The network, while it consumes a considerable amount of power is often left out of the picture when discussing total system power. Even when network power is being considered, the references are frequently a decade or older and rely on models that lack validation on modern inter- connects. In this work we explore how dynamic mechanisms of an Infiniband network save power and at what granularity we can engage these features. We explore this within the context of the host controller adapter (HCA) on the node and for the fabric, i.e. switches, using three different mechanisms of dynamic link width, frequency and disabling of links for QLogic and Mellanox systems. Our results show that while there is some potential for modest power savings, real world systems need to improved responsiveness to adjustments in order to fully leverage these savings. This page intentionally left blank.
Individual heterogeneity generating explosive system network dynamics.
Manrique, Pedro D; Johnson, Neil F
2018-03-01
Individual heterogeneity is a key characteristic of many real-world systems, from organisms to humans. However, its role in determining the system's collective dynamics is not well understood. Here we study how individual heterogeneity impacts the system network dynamics by comparing linking mechanisms that favor similar or dissimilar individuals. We find that this heterogeneity-based evolution drives an unconventional form of explosive network behavior, and it dictates how a polarized population moves toward consensus. Our model shows good agreement with data from both biological and social science domains. We conclude that individual heterogeneity likely plays a key role in the collective development of real-world networks and communities, and it cannot be ignored.
Individual heterogeneity generating explosive system network dynamics
Manrique, Pedro D.; Johnson, Neil F.
2018-03-01
Individual heterogeneity is a key characteristic of many real-world systems, from organisms to humans. However, its role in determining the system's collective dynamics is not well understood. Here we study how individual heterogeneity impacts the system network dynamics by comparing linking mechanisms that favor similar or dissimilar individuals. We find that this heterogeneity-based evolution drives an unconventional form of explosive network behavior, and it dictates how a polarized population moves toward consensus. Our model shows good agreement with data from both biological and social science domains. We conclude that individual heterogeneity likely plays a key role in the collective development of real-world networks and communities, and it cannot be ignored.
Adaptive-network models of collective dynamics
Zschaler, G.
2012-09-01
Complex systems can often be modelled as networks, in which their basic units are represented by abstract nodes and the interactions among them by abstract links. This network of interactions is the key to understanding emergent collective phenomena in such systems. In most cases, it is an adaptive network, which is defined by a feedback loop between the local dynamics of the individual units and the dynamical changes of the network structure itself. This feedback loop gives rise to many novel phenomena. Adaptive networks are a promising concept for the investigation of collective phenomena in different systems. However, they also present a challenge to existing modelling approaches and analytical descriptions due to the tight coupling between local and topological degrees of freedom. In this work, which is essentially my PhD thesis, I present a simple rule-based framework for the investigation of adaptive networks, using which a wide range of collective phenomena can be modelled and analysed from a common perspective. In this framework, a microscopic model is defined by the local interaction rules of small network motifs, which can be implemented in stochastic simulations straightforwardly. Moreover, an approximate emergent-level description in terms of macroscopic variables can be derived from the microscopic rules, which we use to analyse the system's collective and long-term behaviour by applying tools from dynamical systems theory. We discuss three adaptive-network models for different collective phenomena within our common framework. First, we propose a novel approach to collective motion in insect swarms, in which we consider the insects' adaptive interaction network instead of explicitly tracking their positions and velocities. We capture the experimentally observed onset of collective motion qualitatively in terms of a bifurcation in this non-spatial model. We find that three-body interactions are an essential ingredient for collective motion to emerge
Innovation networking between stability and political dynamics
DEFF Research Database (Denmark)
Koch, Christian
2004-01-01
of the contribution is to challenge and transcend these notions and develop an understanding of innovation networks as an interplay between stable and dynamic elements, where political processes in innovation are much more than a disruptive and even a counterproductive feature. It reviews the growing number...... of studies that highlight the political aspect of innovation. The paper reports on a study of innovation processes conducted within the EU—TSER-programme and a study made under the banner of management of technology. Intensive field studies in two constellations of enterprises were carried out. One......This contribution views innovation as a social activity of building networks, using software product development in multicompany alliances and networks as example. Innovation networks are frequently understood as quite stable arrangements characterised by high trust among the participants. The aim...
Cai, Shuiming; Zhou, Peipei; Liu, Zengrong
2014-09-01
This paper concerns the problem of exponential synchronization for a class of general delayed dynamical networks with hybrid coupling via pinning periodically intermittent control. Both the internal delay and coupling delay are taken into account in the network model. Meanwhile, the transmission delay and self-feedback delay are involved in the delayed coupling term. By establishing a new differential inequality, several simple and useful exponential synchronization criteria are derived analytically. It is shown that the controlled synchronization state can vary in comparison with the conventional synchronized solution, and the degree of the node and the inner delayed coupling matrix play important roles in the controlled synchronization state. By choosing different inner delayed coupling matrices and the degrees of the node, different controlled synchronization states can be obtained. Furthermore, the detail pinning schemes deciding what nodes should be chosen as pinned candidates and how many nodes are needed to be pinned for a fixed coupling strength are provided. The simple procedures illuminating how to design suitable intermittent controllers in real application are also given. Numerical simulations, including an undirected scale-free network and a directed small-world network, are finally presented to demonstrate the effectiveness of the theoretical results.
Nonparametric inference of network structure and dynamics
Peixoto, Tiago P.
The network structure of complex systems determine their function and serve as evidence for the evolutionary mechanisms that lie behind them. Despite considerable effort in recent years, it remains an open challenge to formulate general descriptions of the large-scale structure of network systems, and how to reliably extract such information from data. Although many approaches have been proposed, few methods attempt to gauge the statistical significance of the uncovered structures, and hence the majority cannot reliably separate actual structure from stochastic fluctuations. Due to the sheer size and high-dimensionality of many networks, this represents a major limitation that prevents meaningful interpretations of the results obtained with such nonstatistical methods. In this talk, I will show how these issues can be tackled in a principled and efficient fashion by formulating appropriate generative models of network structure that can have their parameters inferred from data. By employing a Bayesian description of such models, the inference can be performed in a nonparametric fashion, that does not require any a priori knowledge or ad hoc assumptions about the data. I will show how this approach can be used to perform model comparison, and how hierarchical models yield the most appropriate trade-off between model complexity and quality of fit based on the statistical evidence present in the data. I will also show how this general approach can be elegantly extended to networks with edge attributes, that are embedded in latent spaces, and that change in time. The latter is obtained via a fully dynamic generative network model, based on arbitrary-order Markov chains, that can also be inferred in a nonparametric fashion. Throughout the talk I will illustrate the application of the methods with many empirical networks such as the internet at the autonomous systems level, the global airport network, the network of actors and films, social networks, citations among
Volunteerism: Social Network Dynamics and Education
Ajrouch, Kristine J.; Antonucci, Toni C.; Webster, Noah J.
2016-01-01
Objectives . We examine how changes in social networks influence volunteerism through bridging (diversity) and bonding (spending time) mechanisms. We further investigate whether social network change substitutes or amplifies the effects of education on volunteerism. Methods . Data (n = 543) are drawn from a two-wave survey of Social Relations and Health over the Life Course (SRHLC). Zero-inflated negative binomial regressions were conducted to test competing hypotheses about how changes in social network characteristics alone and in conjunction with education level predict likelihood and frequency of volunteering. Results . Changes in social networks were associated with volunteerism: as the proportion of family members decreased and the average number of network members living within a one-hour drive increased over time, participants reported higher odds of volunteering. The substitution hypothesis was supported: social networks that exhibited more geographic proximity and greater contact frequency over-time compensated for lower levels of education to predict volunteering more hours. Discussion . The dynamic role of social networks and the ways in which they may work through bridging and bonding to influence both likelihood and frequency of volunteering are discussed. The potential benefits of volunteerism in light of longer life expectancies and smaller families are also considered. PMID:25512570
Advances in dynamic network modeling in complex transportation systems
Ukkusuri, Satish V
2013-01-01
This book focuses on the latest in dynamic network modeling, including route guidance and traffic control in transportation systems and other complex infrastructure networks. Covers dynamic traffic assignment, flow modeling, mobile sensor deployment and more.
Dynamic social networks based on movement
Scharf, Henry; Hooten, Mevin B.; Fosdick, Bailey K.; Johnson, Devin S.; London, Joshua M.; Durban, John W.
2016-01-01
Network modeling techniques provide a means for quantifying social structure in populations of individuals. Data used to define social connectivity are often expensive to collect and based on case-specific, ad hoc criteria. Moreover, in applications involving animal social networks, collection of these data is often opportunistic and can be invasive. Frequently, the social network of interest for a given population is closely related to the way individuals move. Thus, telemetry data, which are minimally invasive and relatively inexpensive to collect, present an alternative source of information. We develop a framework for using telemetry data to infer social relationships among animals. To achieve this, we propose a Bayesian hierarchical model with an underlying dynamic social network controlling movement of individuals via two mechanisms: an attractive effect and an aligning effect. We demonstrate the model and its ability to accurately identify complex social behavior in simulation, and apply our model to telemetry data arising from killer whales. Using auxiliary information about the study population, we investigate model validity and find the inferred dynamic social network is consistent with killer whale ecology and expert knowledge.
Modeling Insurgent Network Structure and Dynamics
Gabbay, Michael; Thirkill-Mackelprang, Ashley
2010-03-01
We present a methodology for mapping insurgent network structure based on their public rhetoric. Indicators of cooperative links between insurgent groups at both the leadership and rank-and-file levels are used, such as joint policy statements or joint operations claims. In addition, a targeting policy measure is constructed on the basis of insurgent targeting claims. Network diagrams which integrate these measures of insurgent cooperation and ideology are generated for different periods of the Iraqi and Afghan insurgencies. The network diagrams exhibit meaningful changes which track the evolution of the strategic environment faced by insurgent groups. Correlations between targeting policy and network structure indicate that insurgent targeting claims are aimed at establishing a group identity among the spectrum of rank-and-file insurgency supporters. A dynamical systems model of insurgent alliance formation and factionalism is presented which evolves the relationship between insurgent group dyads as a function of their ideological differences and their current relationships. The ability of the model to qualitatively and quantitatively capture insurgent network dynamics observed in the data is discussed.
Dynamic motifs in socio-economic networks
Zhang, Xin; Shao, Shuai; Stanley, H. Eugene; Havlin, Shlomo
2014-12-01
Socio-economic networks are of central importance in economic life. We develop a method of identifying and studying motifs in socio-economic networks by focusing on “dynamic motifs,” i.e., evolutionary connection patterns that, because of “node acquaintances” in the network, occur much more frequently than random patterns. We examine two evolving bi-partite networks: i) the world-wide commercial ship chartering market and ii) the ship build-to-order market. We find similar dynamic motifs in both bipartite networks, even though they describe different economic activities. We also find that “influence” and “persistence” are strong factors in the interaction behavior of organizations. When two companies are doing business with the same customer, it is highly probable that another customer who currently only has business relationship with one of these two companies, will become customer of the second in the future. This is the effect of influence. Persistence means that companies with close business ties to customers tend to maintain their relationships over a long period of time.
Mean field methods for cortical network dynamics
DEFF Research Database (Denmark)
Hertz, J.; Lerchner, Alexander; Ahmadi, M.
2004-01-01
We review the use of mean field theory for describing the dynamics of dense, randomly connected cortical circuits. For a simple network of excitatory and inhibitory leaky integrate- and-fire neurons, we can show how the firing irregularity, as measured by the Fano factor, increases...... with the strength of the synapses in the network and with the value to which the membrane potential is reset after a spike. Generalizing the model to include conductance-based synapses gives insight into the connection between the firing statistics and the high- conductance state observed experimentally in visual...
MONOMIALS AND BASIN CYLINDERS FOR NETWORK DYNAMICS.
Austin, Daniel; Dinwoodie, Ian H
We describe methods to identify cylinder sets inside a basin of attraction for Boolean dynamics of biological networks. Such sets are used for designing regulatory interventions that make the system evolve towards a chosen attractor, for example initiating apoptosis in a cancer cell. We describe two algebraic methods for identifying cylinders inside a basin of attraction, one based on the Groebner fan that finds monomials that define cylinders and the other on primary decomposition. Both methods are applied to current examples of gene networks.
Six Degrees of Information Seeking: Stanley Milgram and the Small World of the Library
James, Kathryn
2006-01-01
Stanley Milgram's 1967 "small world" social connectivity study is used to analyze information connectivity, or patron information-seeking behavior. The "small world" study, upon examination, offers a clear example of the failure of social connectivity. This failure is used to highlight the importance of the subjectivities of patron experience of…
Dynamic Trust Management for Mobile Networks and Its Applications
Bao, Fenye
2013-01-01
Trust management in mobile networks is challenging due to dynamically changing network environments and the lack of a centralized trusted authority. In this dissertation research, we "design" and "validate" a class of dynamic trust management protocols for mobile networks, and demonstrate the utility of dynamic trust management…
Functional asynchronous networks: Factorization of dynamics and function
Directory of Open Access Journals (Sweden)
Bick Christian
2016-01-01
Full Text Available In this note we describe the theory of functional asynchronous networks and one of the main results, the Modularization of Dynamics Theorem, which for a large class of functional asynchronous networks gives a factorization of dynamics in terms of constituent subnetworks. For these networks we can give a complete description of the network function in terms of the function of the events comprising the network and thereby answer a question originally raised by Alon in the context of biological networks.
Activating and inhibiting connections in biological network dynamics
Directory of Open Access Journals (Sweden)
Knight Rob
2008-12-01
Full Text Available Abstract Background Many studies of biochemical networks have analyzed network topology. Such work has suggested that specific types of network wiring may increase network robustness and therefore confer a selective advantage. However, knowledge of network topology does not allow one to predict network dynamical behavior – for example, whether deleting a protein from a signaling network would maintain the network's dynamical behavior, or induce oscillations or chaos. Results Here we report that the balance between activating and inhibiting connections is important in determining whether network dynamics reach steady state or oscillate. We use a simple dynamical model of a network of interacting genes or proteins. Using the model, we study random networks, networks selected for robust dynamics, and examples of biological network topologies. The fraction of activating connections influences whether the network dynamics reach steady state or oscillate. Conclusion The activating fraction may predispose a network to oscillate or reach steady state, and neutral evolution or selection of this parameter may affect the behavior of biological networks. This principle may unify the dynamics of a wide range of cellular networks. Reviewers Reviewed by Sergei Maslov, Eugene Koonin, and Yu (Brandon Xia (nominated by Mark Gerstein. For the full reviews, please go to the Reviewers' comments section.
System crash as dynamics of complex networks.
Yu, Yi; Xiao, Gaoxi; Zhou, Jie; Wang, Yubo; Wang, Zhen; Kurths, Jürgen; Schellnhuber, Hans Joachim
2016-10-18
Complex systems, from animal herds to human nations, sometimes crash drastically. Although the growth and evolution of systems have been extensively studied, our understanding of how systems crash is still limited. It remains rather puzzling why some systems, appearing to be doomed to fail, manage to survive for a long time whereas some other systems, which seem to be too big or too strong to fail, crash rapidly. In this contribution, we propose a network-based system dynamics model, where individual actions based on the local information accessible in their respective system structures may lead to the "peculiar" dynamics of system crash mentioned above. Extensive simulations are carried out on synthetic and real-life networks, which further reveal the interesting system evolution leading to the final crash. Applications and possible extensions of the proposed model are discussed.
Organization of excitable dynamics in hierarchical biological networks.
Directory of Open Access Journals (Sweden)
Mark Müller-Linow
Full Text Available This study investigates the contributions of network topology features to the dynamic behavior of hierarchically organized excitable networks. Representatives of different types of hierarchical networks as well as two biological neural networks are explored with a three-state model of node activation for systematically varying levels of random background network stimulation. The results demonstrate that two principal topological aspects of hierarchical networks, node centrality and network modularity, correlate with the network activity patterns at different levels of spontaneous network activation. The approach also shows that the dynamic behavior of the cerebral cortical systems network in the cat is dominated by the network's modular organization, while the activation behavior of the cellular neuronal network of Caenorhabditis elegans is strongly influenced by hub nodes. These findings indicate the interaction of multiple topological features and dynamic states in the function of complex biological networks.
Dynamics of domain wall networks with junctions
International Nuclear Information System (INIS)
Avelino, P. P.; Oliveira, J. C. R. E.; Martins, C. J. A. P.; Menezes, J.; Menezes, R.
2008-01-01
We use a combination of analytic tools and an extensive set of the largest and most accurate three-dimensional field theory numerical simulations to study the dynamics of domain wall networks with junctions. We build upon our previous work and consider a class of models which, in the limit of large number N of coupled scalar fields, approaches the so-called ''ideal'' model (in terms of its potential to lead to network frustration). We consider values of N between N=2 and N=20, and a range of cosmological epochs, and we also compare this class of models with other toy models used in the past. In all cases we find compelling evidence for a gradual approach to scaling, strongly supporting our no-frustration conjecture. We also discuss the various possible types of junctions (including cases where there is a hierarchy of them) and their roles in the dynamics of the network. Finally, we provide a cosmological Zel'dovich-type bound on the energy scale of this kind of defect network: it must be lower than 10 keV.
The structure of borders in a small world.
Thiemann, Christian; Theis, Fabian; Grady, Daniel; Brune, Rafael; Brockmann, Dirk
2010-11-18
Territorial subdivisions and geographic borders are essential for understanding phenomena in sociology, political science, history, and economics. They influence the interregional flow of information and cross-border trade and affect the diffusion of innovation and technology. However, it is unclear if existing administrative subdivisions that typically evolved decades ago still reflect the most plausible organizational structure of today. The complexity of modern human communication, the ease of long-distance movement, and increased interaction across political borders complicate the operational definition and assessment of geographic borders that optimally reflect the multi-scale nature of today's human connectivity patterns. What border structures emerge directly from the interplay of scales in human interactions is an open question. Based on a massive proxy dataset, we analyze a multi-scale human mobility network and compute effective geographic borders inherent to human mobility patterns in the United States. We propose two computational techniques for extracting these borders and for quantifying their strength. We find that effective borders only partially overlap with existing administrative borders, and show that some of the strongest mobility borders exist in unexpected regions. We show that the observed structures cannot be generated by gravity models for human traffic. Finally, we introduce the concept of link significance that clarifies the observed structure of effective borders. Our approach represents a novel type of quantitative, comparative analysis framework for spatially embedded multi-scale interaction networks in general and may yield important insight into a multitude of spatiotemporal phenomena generated by human activity.
Effects of rewiring strategies on information spreading in complex dynamic networks
Ally, Abdulla F.; Zhang, Ning
2018-04-01
Recent advances in networks and communication services have attracted much interest to understand information spreading in social networks. Consequently, numerous studies have been devoted to provide effective and accurate models for mimicking information spreading. However, knowledge on how to spread information faster and more widely remains a contentious issue. Yet, most existing works are based on static networks which limit the reality of dynamism of entities that participate in information spreading. Using the SIR epidemic model, this study explores and compares effects of two rewiring models (Fermi-Dirac and Linear functions) on information spreading in scale free and small world networks. Our results show that for all the rewiring strategies, the spreading influence replenishes with time but stabilizes in a steady state at later time-steps. This means that information spreading takes-off during the initial spreading steps, after which the spreading prevalence settles toward its equilibrium, with majority of the population having recovered and thus, no longer affecting the spreading. Meanwhile, rewiring strategy based on Fermi-Dirac distribution function in one way or another impedes the spreading process, however, the structure of the networks mimic the spreading, even with a low spreading rate. The worst case can be when the spreading rate is extremely small. The results emphasize that despite a big role of such networks in mimicking the spreading, the role of the parameters cannot be simply ignored. Apparently, the probability of giant degree neighbors being informed grows much faster with the rewiring strategy of linear function compared to that of Fermi-Dirac distribution function. Clearly, rewiring model based on linear function generates the fastest spreading across the networks. Therefore, if we are interested in speeding up the spreading process in stochastic modeling, linear function may play a pivotal role.
Dynamics of the ethanolamine glycerophospholipid remodeling network.
Directory of Open Access Journals (Sweden)
Lu Zhang
Full Text Available Acyl chain remodeling in lipids is a critical biochemical process that plays a central role in disease. However, remodeling remains poorly understood, despite massive increases in lipidomic data. In this work, we determine the dynamic network of ethanolamine glycerophospholipid (PE remodeling, using data from pulse-chase experiments and a novel bioinformatic network inference approach. The model uses a set of ordinary differential equations based on the assumptions that (1 sn1 and sn2 acyl positions are independently remodeled; (2 remodeling reaction rates are constant over time; and (3 acyl donor concentrations are constant. We use a novel fast and accurate two-step algorithm to automatically infer model parameters and their values. This is the first such method applicable to dynamic phospholipid lipidomic data. Our inference procedure closely fits experimental measurements and shows strong cross-validation across six independent experiments with distinct deuterium-labeled PE precursors, demonstrating the validity of our assumptions. In contrast, fits of randomized data or fits using random model parameters are worse. A key outcome is that we are able to robustly distinguish deacylation and reacylation kinetics of individual acyl chain types at the sn1 and sn2 positions, explaining the established prevalence of saturated and unsaturated chains in the respective positions. The present study thus demonstrates that dynamic acyl chain remodeling processes can be reliably determined from dynamic lipidomic data.
Network structure shapes spontaneous functional connectivity dynamics.
Shen, Kelly; Hutchison, R Matthew; Bezgin, Gleb; Everling, Stefan; McIntosh, Anthony R
2015-04-08
The structural organization of the brain constrains the range of interactions between different regions and shapes ongoing information processing. Therefore, it is expected that large-scale dynamic functional connectivity (FC) patterns, a surrogate measure of coordination between brain regions, will be closely tied to the fiber pathways that form the underlying structural network. Here, we empirically examined the influence of network structure on FC dynamics by comparing resting-state FC (rsFC) obtained using BOLD-fMRI in macaques (Macaca fascicularis) to structural connectivity derived from macaque axonal tract tracing studies. Consistent with predictions from simulation studies, the correspondence between rsFC and structural connectivity increased as the sample duration increased. Regions with reciprocal structural connections showed the most stable rsFC across time. The data suggest that the transient nature of FC is in part dependent on direct underlying structural connections, but also that dynamic coordination can occur via polysynaptic pathways. Temporal stability was found to be dependent on structural topology, with functional connections within the rich-club core exhibiting the greatest stability over time. We discuss these findings in light of highly variable functional hubs. The results further elucidate how large-scale dynamic functional coordination exists within a fixed structural architecture. Copyright © 2015 the authors 0270-6474/15/355579-10$15.00/0.
Jablonski, Piotr; Poe, Gina; Zochowski, Michal
2007-03-01
The hippocampus has the capacity for reactivating recently acquired memories and it is hypothesized that one of the functions of sleep reactivation is the facilitation of consolidation of novel memory traces. The dynamic and network processes underlying such a reactivation remain, however, unknown. We show that such a reactivation characterized by local, self-sustained activity of a network region may be an inherent property of the recurrent excitatory-inhibitory network with a heterogeneous structure. The entry into the reactivation phase is mediated through a physiologically feasible regulation of global excitability and external input sources, while the reactivated component of the network is formed through induced network heterogeneities during learning. We show that structural changes needed for robust reactivation of a given network region are well within known physiological parameters.
Discrete Opinion Dynamics on Online Social Networks
Hu, Yan-Li; Bai, Liang; Zhang, Wei-Ming
2013-01-01
This paper focuses on the dynamics of binary opinions {+1, -1} on online social networks consisting of heterogeneous actors. In our model, actors update their opinions under the interplay of social influence and self- affirmation, which leads to rich dynamical behaviors on online social networks. We find that the opinion leading to the consensus features an advantage of the initially weighted fraction based on actors' strength over the other, instead of the population. For the role of specific actors, the consensus converges towards the opinion that a small fraction of high-strength actors hold, and individual diversity of self-affirmation slows down the ordering process of consensus. These indicate that high-strength actors play an essential role in opinion formation with strong social influence as well as high persistence. Further investigations show that the initial fraction of high-strength actors to dominate the evolution depends on the heterogeneity of the strength distribution, and less high-strength actors are needed in the case of a smaller exponent of power-law distribution of actors' strength. Our study provides deep insights into the role of social influence and self-affirmation on opinion formation on online social networks.
Discrete Opinion Dynamics on Online Social Networks
International Nuclear Information System (INIS)
Hu Yan-Li; Bai Liang; Zhang Wei-Ming
2013-01-01
This paper focuses on the dynamics of binary opinions {+1, −1} on online social networks consisting of heterogeneous actors. In our model, actors update their opinions under the interplay of social influence and self- affirmation, which leads to rich dynamical behaviors on online social networks. We find that the opinion leading to the consensus features an advantage of the initially weighted fraction based on actors' strength over the other, instead of the population. For the role of specific actors, the consensus converges towards the opinion that a small fraction of high-strength actors hold, and individual diversity of self-affirmation slows down the ordering process of consensus. These indicate that high-strength actors play an essential role in opinion formation with strong social influence as well as high persistence. Further investigations show that the initial fraction of high-strength actors to dominate the evolution depends on the heterogeneity of the strength distribution, and less high-strength actors are needed in the case of a smaller exponent of power-law distribution of actors' strength. Our study provides deep insights into the role of social influence and self-affirmation on opinion formation on online social networks. (general)
Physical Proximity and Spreading in Dynamic Social Networks
Stopczynski, Arkadiusz; Pentland, Alex Sandy; Lehmann, Sune
2015-01-01
Most infectious diseases spread on a dynamic network of human interactions. Recent studies of social dynamics have provided evidence that spreading patterns may depend strongly on detailed micro-dynamics of the social system. We have recorded every single interaction within a large population, mapping out---for the first time at scale---the complete proximity network for a densely-connected system. Here we show the striking impact of interaction-distance on the network structure and dynamics ...
Pushing the network harder `Dynamic Ratings`
Energy Technology Data Exchange (ETDEWEB)
Liondas, V.; Howatt, C.; Norrie, P. [Prospect Electricity, Blacktown, NSW (Australia)
1995-12-31
The demand for electricity in the area serviced by Prospect Electricity, is increasing, necessitating an increase in power transfer through the distribution system. Satisfying this demand generally requires more electrical infrastructure, but this is becoming less feasible due to economic constraints and environmental considerations. This paper discusses an approach to the dynamic (or real time) rating of different network elements. Dynamic rating is taken to mean that rating which is determined essentially in real time using known temperature constraints for the relevant elements, together with the prevailing ambient or environmental conditions. The purpose of dynamic rating is to achieve greater system utilization, thus allowing significant economic benefits, particularly from deferment of capital expenditure and greater operational flexibility. A number of technologies are being developed to do this for overhead lines, underground cables and transformers. The dynamic rating of cables has proved to be the most intractable part of the dynamic rating project. Work done to date, however, using finite element techniques together with the proposals to further develop point and distributed temperature sensing using fibre optic methods gives some confidence to the future success of this development. (author). 2 tabs., 4 figs., 4 refs.
Energy Technology Data Exchange (ETDEWEB)
Liu, Hui; Song, Yongduan; Xue, Fangzheng; Li, Xiumin, E-mail: xmli@cqu.edu.cn [Key Laboratory of Dependable Service Computing in Cyber Physical Society of Ministry of Education, Chongqing University, Chongqing 400044 (China); College of Automation, Chongqing University, Chongqing 400044 (China)
2015-11-15
In this paper, the generation of multi-clustered structure of self-organized neural network with different neuronal firing patterns, i.e., bursting or spiking, has been investigated. The initially all-to-all-connected spiking neural network or bursting neural network can be self-organized into clustered structure through the symmetric spike-timing-dependent plasticity learning for both bursting and spiking neurons. However, the time consumption of this clustering procedure of the burst-based self-organized neural network (BSON) is much shorter than the spike-based self-organized neural network (SSON). Our results show that the BSON network has more obvious small-world properties, i.e., higher clustering coefficient and smaller shortest path length than the SSON network. Also, the results of larger structure entropy and activity entropy of the BSON network demonstrate that this network has higher topological complexity and dynamical diversity, which benefits for enhancing information transmission of neural circuits. Hence, we conclude that the burst firing can significantly enhance the efficiency of clustering procedure and the emergent clustered structure renders the whole network more synchronous and therefore more sensitive to weak input. This result is further confirmed from its improved performance on stochastic resonance. Therefore, we believe that the multi-clustered neural network which self-organized from the bursting dynamics has high efficiency in information processing.
International Nuclear Information System (INIS)
Liu, Hui; Song, Yongduan; Xue, Fangzheng; Li, Xiumin
2015-01-01
In this paper, the generation of multi-clustered structure of self-organized neural network with different neuronal firing patterns, i.e., bursting or spiking, has been investigated. The initially all-to-all-connected spiking neural network or bursting neural network can be self-organized into clustered structure through the symmetric spike-timing-dependent plasticity learning for both bursting and spiking neurons. However, the time consumption of this clustering procedure of the burst-based self-organized neural network (BSON) is much shorter than the spike-based self-organized neural network (SSON). Our results show that the BSON network has more obvious small-world properties, i.e., higher clustering coefficient and smaller shortest path length than the SSON network. Also, the results of larger structure entropy and activity entropy of the BSON network demonstrate that this network has higher topological complexity and dynamical diversity, which benefits for enhancing information transmission of neural circuits. Hence, we conclude that the burst firing can significantly enhance the efficiency of clustering procedure and the emergent clustered structure renders the whole network more synchronous and therefore more sensitive to weak input. This result is further confirmed from its improved performance on stochastic resonance. Therefore, we believe that the multi-clustered neural network which self-organized from the bursting dynamics has high efficiency in information processing
Opinion dynamics on an adaptive random network
Benczik, I. J.; Benczik, S. Z.; Schmittmann, B.; Zia, R. K. P.
2009-04-01
We revisit the classical model for voter dynamics in a two-party system with two basic modifications. In contrast to the original voter model studied in regular lattices, we implement the opinion formation process in a random network of agents in which interactions are no longer restricted by geographical distance. In addition, we incorporate the rapidly changing nature of the interpersonal relations in the model. At each time step, agents can update their relationships. This update is determined by their own opinion, and by their preference to make connections with individuals sharing the same opinion, or rather with opponents. In this way, the network is built in an adaptive manner, in the sense that its structure is correlated and evolves with the dynamics of the agents. The simplicity of the model allows us to examine several issues analytically. We establish criteria to determine whether consensus or polarization will be the outcome of the dynamics and on what time scales these states will be reached. In finite systems consensus is typical, while in infinite systems a disordered metastable state can emerge and persist for infinitely long time before consensus is reached.
Collective Dynamics in Physical and Social Networks
Isakov, Alexander
We study four systems where individual units come together to display a range of collective behavior. First, we consider a physical system of phase oscillators on a network that expands the Kuramoto model to include oscillator-network interactions and the presence of noise: using a Hebbian-like learning rule, oscillators that synchronize in turn strengthen their connections to each other. We find that the average degree of connectivity strongly affects rates of flipping between aligned and anti-aligned states, and that this result persists to the case of complex networks. Turning to a fully multi-player, multi-strategy evolutionary dynamics model of cooperating bacteria that change who they give resources to and take resources from, we find several regimes that give rise to high levels of collective structure in the resulting networks. In this setting, we also explore the conditions in which an intervention that affects cooperation itself (e.g. "seeding the network with defectors") can lead to wiping out an infection. We find a non-monotonic connection between the percent of disabled cooperation and cure rate, suggesting that in some regimes a limited perturbation can lead to total population collapse. At a larger scale, we study how the locomotor system recovers after amputation in fruit flies. Through experiment and a theoretical model of multi-legged motion controlled by neural oscillators, we find that proprioception plays a role in the ability of flies to control leg forces appropriately to recover from a large initial turning bias induced by the injury. Finally, at the human scale, we consider a social network in a traditional society in Africa to understand how social ties lead to group formation for collective action (stealth raids). We identify critical and distinct roles for both leadership (important for catalyzing a group) and friendship (important for final composition). We conclude with prospects for future work.
Dynamics of neural networks with continuous attractors
Fung, C. C. Alan; Wong, K. Y. Michael; Wu, Si
2008-10-01
We investigate the dynamics of continuous attractor neural networks (CANNs). Due to the translational invariance of their neuronal interactions, CANNs can hold a continuous family of stationary states. We systematically explore how their neutral stability facilitates the tracking performance of a CANN, which is believed to have wide applications in brain functions. We develop a perturbative approach that utilizes the dominant movement of the network stationary states in the state space. We quantify the distortions of the bump shape during tracking, and study their effects on the tracking performance. Results are obtained on the maximum speed for a moving stimulus to be trackable, and the reaction time to catch up an abrupt change in stimulus.
Multinephron dynamics on the renal vascular network
DEFF Research Database (Denmark)
Marsh, Donald J; Wexler, Anthony S; Brazhe, Alexey
2012-01-01
Tubuloglomerular feedback (TGF) and the myogenic mechanism combine in each nephron to regulate blood flow and glomerular filtration rate. Both mechanisms are non-linear, generate self-sustained oscillations, and interact as their signals converge on arteriolar smooth muscle, forming a regulatory...... clusters. In-phase synchronization predominated among nephrons separated by 1 or 3 vascular nodes, and anti-phase synchronization for 5 or 7 nodes of separation. Nephron dynamics were irregular and contained low frequency fluctuations. Results are consistent with simultaneous blood flow measurements...... of both mechanisms in the regulatory ensemble, to examine the effects of network structure on nephron synchronization. Symmetry, as a property of a network, facilitates synchronization. Nephrons received blood from a symmetric electrically conductive vascular tree. Symmetry was created by using identical...
A class of convergent neural network dynamics
Fiedler, Bernold; Gedeon, Tomáš
1998-01-01
We consider a class of systems of differential equations in Rn which exhibits convergent dynamics. We find a Lyapunov function and show that every bounded trajectory converges to the set of equilibria. Our result generalizes the results of Cohen and Grossberg (1983) for convergent neural networks. It replaces the symmetry assumption on the matrix of weights by the assumption on the structure of the connections in the neural network. We prove the convergence result also for a large class of Lotka-Volterra systems. These are naturally defined on the closed positive orthant. We show that there are no heteroclinic cycles on the boundary of the positive orthant for the systems in this class.
Exponential Synchronization of Uncertain Complex Dynamical Networks with Delay Coupling
International Nuclear Information System (INIS)
Wang Lifu; Kong Zhi; Jing Yuanwei
2010-01-01
This paper studies the global exponential synchronization of uncertain complex delayed dynamical networks. The network model considered is general dynamical delay networks with unknown network structure and unknown coupling functions but bounded. Novel delay-dependent linear controllers are designed via the Lyapunov stability theory. Especially, it is shown that the controlled networks are globally exponentially synchronized with a given convergence rate. An example of typical dynamical network of this class, having the Lorenz system at each node, has been used to demonstrate and verify the novel design proposed. And, the numerical simulation results show the effectiveness of proposed synchronization approaches. (general)
Content Dynamics Over the Network Cloud
2015-11-04
AFRL-AFOSR-CL-TR-2015-0003 Content dynamics over the network cloud Fernando Paganini UNIVERSIDAD ORT URUGUAY CUAREIM 1451 MONTEVIDEO, 11100 UY 11/04...approved for public release. FINAL PERFORMANCE REPORT: 7-15-2012 to 7-14-2015 AFOSR GRANT NUMBER: FA9550-12-1-0398 PI: Fernando Paganini Universidad ORT...349-362, Apr 2014. 7. M. Zubeldía, “From resource allocation to neighbor selection in peer-to-peer networks”, MS Thesis, Universidad ORT Uruguay
The Global Carbon Cycle: It's a Small World
Ineson, Philip; Milcu, Alexander; Subke, Jens-Arne; Wildman, Dennis; Anderson, Robert; Manning, Peter; Heinemeyer, Andreas
2010-05-01
temperatures, or cessation of CO2 additions, showed rapid and proportionate decreases in atmospheric CO2 concentrations. The results indicate that short term terrestrial feedbacks are not sufficient to induce a CO2-temperature runaway scenario and suggest that predictions of atmospheric CO2 by current GCMs may under-estimate the CO2 fertilisation effect on plants and, hence, over-estimate future atmospheric CO2 increases. Perhaps, more importantly, the experiments show that the impacts of imposed elevated CO2 and temperature increase can be reversed. Whilst clearly representing a simplified version of terrestrial CO2 dynamics, it is proposed that closed system research represents a new form of test-bed for validation of processes represented within digital global CO2 models.
Reliable dynamics in Boolean and continuous networks
International Nuclear Information System (INIS)
Ackermann, Eva; Drossel, Barbara; Peixoto, Tiago P
2012-01-01
We investigate the dynamical behavior of a model of robust gene regulatory networks which possess ‘entirely reliable’ trajectories. In a Boolean representation, these trajectories are characterized by being insensitive to the order in which the nodes are updated, i.e. they always go through the same sequence of states. The Boolean model for gene activity is compared with a continuous description in terms of differential equations for the concentrations of mRNA and proteins. We found that entirely reliable Boolean trajectories can be reproduced perfectly in the continuous model when realistic Hill coefficients are used. We investigate to what extent this high correspondence between Boolean and continuous trajectories depends on the extent of reliability of the Boolean trajectories, and we identify simple criteria that enable the faithful reproduction of the Boolean dynamics in the continuous description. (paper)
Imaging complex nutrient dynamics in mycelial networks.
Fricker, M D; Lee, J A; Bebber, D P; Tlalka, M; Hynes, J; Darrah, P R; Watkinson, S C; Boddy, L
2008-08-01
techniques shows that as the colony forms, it self-organizes into well demarcated domains that are identifiable by differences in the phase relationship of the pulses. On the centimetre to metre scale, we have begun to use techniques borrowed from graph theory to characterize the development and dynamics of the network, and used these abstracted network models to predict the transport characteristics, resilience, and cost of the network.
Stochastic dynamics of genetic broadcasting networks
Potoyan, Davit A.; Wolynes, Peter G.
2017-11-01
The complex genetic programs of eukaryotic cells are often regulated by key transcription factors occupying or clearing out of a large number of genomic locations. Orchestrating the residence times of these factors is therefore important for the well organized functioning of a large network. The classic models of genetic switches sidestep this timing issue by assuming the binding of transcription factors to be governed entirely by thermodynamic protein-DNA affinities. Here we show that relying on passive thermodynamics and random release times can lead to a "time-scale crisis" for master genes that broadcast their signals to a large number of binding sites. We demonstrate that this time-scale crisis for clearance in a large broadcasting network can be resolved by actively regulating residence times through molecular stripping. We illustrate these ideas by studying a model of the stochastic dynamics of the genetic network of the central eukaryotic master regulator NFκ B which broadcasts its signals to many downstream genes that regulate immune response, apoptosis, etc.
Quantifying the dynamics of coupled networks of switches and oscillators.
Directory of Open Access Journals (Sweden)
Matthew R Francis
Full Text Available Complex network dynamics have been analyzed with models of systems of coupled switches or systems of coupled oscillators. However, many complex systems are composed of components with diverse dynamics whose interactions drive the system's evolution. We, therefore, introduce a new modeling framework that describes the dynamics of networks composed of both oscillators and switches. Both oscillator synchronization and switch stability are preserved in these heterogeneous, coupled networks. Furthermore, this model recapitulates the qualitative dynamics for the yeast cell cycle consistent with the hypothesized dynamics resulting from decomposition of the regulatory network into dynamic motifs. Introducing feedback into the cell-cycle network induces qualitative dynamics analogous to limitless replicative potential that is a hallmark of cancer. As a result, the proposed model of switch and oscillator coupling provides the ability to incorporate mechanisms that underlie the synchronized stimulus response ubiquitous in biochemical systems.
Agent Based Modeling on Organizational Dynamics of Terrorist Network
Bo Li; Duoyong Sun; Renqi Zhu; Ze Li
2015-01-01
Modeling organizational dynamics of terrorist network is a critical issue in computational analysis of terrorism research. The first step for effective counterterrorism and strategic intervention is to investigate how the terrorists operate with the relational network and what affects the performance. In this paper, we investigate the organizational dynamics by employing a computational experimentation methodology. The hierarchical cellular network model and the organizational dynamics model ...
Google matrix, dynamical attractors, and Ulam networks.
Shepelyansky, D L; Zhirov, O V
2010-03-01
We study the properties of the Google matrix generated by a coarse-grained Perron-Frobenius operator of the Chirikov typical map with dissipation. The finite-size matrix approximant of this operator is constructed by the Ulam method. This method applied to the simple dynamical model generates directed Ulam networks with approximate scale-free scaling and characteristics being in certain features similar to those of the world wide web with approximate scale-free degree distributions as well as two characteristics similar to the web: a power-law decay in PageRank that mirrors the decay of PageRank on the world wide web and a sensitivity to the value alpha in PageRank. The simple dynamical attractors play here the role of popular websites with a strong concentration of PageRank. A variation in the Google parameter alpha or other parameters of the dynamical map can drive the PageRank of the Google matrix to a delocalized phase with a strange attractor where the Google search becomes inefficient.
Complex Dynamical Network Control for Trajectory Tracking Using Delayed Recurrent Neural Networks
Directory of Open Access Journals (Sweden)
Jose P. Perez
2014-01-01
Full Text Available In this paper, the problem of trajectory tracking is studied. Based on the V-stability and Lyapunov theory, a control law that achieves the global asymptotic stability of the tracking error between a delayed recurrent neural network and a complex dynamical network is obtained. To illustrate the analytic results, we present a tracking simulation of a dynamical network with each node being just one Lorenz’s dynamical system and three identical Chen’s dynamical systems.
Interestingness-Driven Diffusion Process Summarization in Dynamic Networks
DEFF Research Database (Denmark)
Qu, Qiang; Liu, Siyuan; Jensen, Christian S.
2014-01-01
The widespread use of social networks enables the rapid diffusion of information, e.g., news, among users in very large communities. It is a substantial challenge to be able to observe and understand such diffusion processes, which may be modeled as networks that are both large and dynamic. A key...... tool in this regard is data summarization. However, few existing studies aim to summarize graphs/networks for dynamics. Dynamic networks raise new challenges not found in static settings, including time sensitivity and the needs for online interestingness evaluation and summary traceability, which...... render existing techniques inapplicable. We study the topic of dynamic network summarization: how to summarize dynamic networks with millions of nodes by only capturing the few most interesting nodes or edges over time, and we address the problem by finding interestingness-driven diffusion processes...
Self-organization of complex networks as a dynamical system.
Aoki, Takaaki; Yawata, Koichiro; Aoyagi, Toshio
2015-01-01
To understand the dynamics of real-world networks, we investigate a mathematical model of the interplay between the dynamics of random walkers on a weighted network and the link weights driven by a resource carried by the walkers. Our numerical studies reveal that, under suitable conditions, the co-evolving dynamics lead to the emergence of stationary power-law distributions of the resource and link weights, while the resource quantity at each node ceaselessly changes with time. We analyze the network organization as a deterministic dynamical system and find that the system exhibits multistability, with numerous fixed points, limit cycles, and chaotic states. The chaotic behavior of the system leads to the continual changes in the microscopic network dynamics in the absence of any external random noises. We conclude that the intrinsic interplay between the states of the nodes and network reformation constitutes a major factor in the vicissitudes of real-world networks.
Magnetoencephalography from signals to dynamic cortical networks
Aine, Cheryl
2014-01-01
"Magnetoencephalography (MEG) provides a time-accurate view into human brain function. The concerted action of neurons generates minute magnetic fields that can be detected---totally noninvasively---by sensitive multichannel magnetometers. The obtained millisecond accuracycomplements information obtained by other modern brain-imaging tools. Accurate timing is quintessential in normal brain function, often distorted in brain disorders. The noninvasiveness and time-sensitivityof MEG are great assets to developmental studies, as well. This multiauthored book covers an ambitiously wide range of MEG research from introductory to advanced level, from sensors to signals, and from focal sources to the dynamics of cortical networks. Written by active practioners of this multidisciplinary field, the book contains tutorials for newcomers and chapters of new challenging methods and emerging technologies to advanced MEG users. The reader will obtain a firm grasp of the possibilities of MEG in the study of audition, vision...
Attractor dynamics in local neuronal networks
Directory of Open Access Journals (Sweden)
Jean-Philippe eThivierge
2014-03-01
Full Text Available Patterns of synaptic connectivity in various regions of the brain are characterized by the presence of synaptic motifs, defined as unidirectional and bidirectional synaptic contacts that follow a particular configuration and link together small groups of neurons. Recent computational work proposes that a relay network (two populations communicating via a third, relay population of neurons can generate precise patterns of neural synchronization. Here, we employ two distinct models of neuronal dynamics and show that simulated neural circuits designed in this way are caught in a global attractor of activity that prevents neurons from modulating their response on the basis of incoming stimuli. To circumvent the emergence of a fixed global attractor, we propose a mechanism of selective gain inhibition that promotes flexible responses to external stimuli. We suggest that local neuronal circuits may employ this mechanism to generate precise patterns of neural synchronization whose transient nature delimits the occurrence of a brief stimulus.
Dynamics of subway networks based on vehicles operation timetable
Xiao, Xue-mei; Jia, Li-min; Wang, Yan-hui
2017-05-01
In this paper, a subway network is represented as a dynamic, directed and weighted graph, in which vertices represent subway stations and weights of edges represent the number of vehicles passing through the edges by considering vehicles operation timetable. Meanwhile the definitions of static and dynamic metrics which can represent vertices' and edges' local and global attributes are proposed. Based on the model and metrics, standard deviation is further introduced to study the dynamic properties (heterogeneity and vulnerability) of subway networks. Through a detailed analysis of the Beijing subway network, we conclude that with the existing network structure, the heterogeneity and vulnerability of the Beijing subway network varies over time when the vehicle operation timetable is taken into consideration, and the distribution of edge weights affects the performance of the network. In other words, although the vehicles operation timetable is restrained by the physical structure of the network, it determines the performances and properties of the Beijing subway network.
The stochastic network dynamics underlying perceptual discrimination
Directory of Open Access Journals (Sweden)
Genis Prat-Ortega
2015-04-01
Full Text Available The brain is able to interpret streams of high-dimensional ambiguous information and yield coherent percepts. The mechanisms governing sensory integration have been extensively characterized using time-varying visual stimuli (Britten et al. 1996; Roitman and Shadlen 2002, but some of the basic principles regarding the network dynamics underlying this process remain largely unknown. We captured the basic features of a neural integrator using three canonical one-dimensional models: (1 the Drift Diffusion Model (DDM, (2 the Perfect Integrator (PI which is a particular case of the DDM where the bounds are set to infinity and (3 the double-well potential (DW which captures the dynamics of the attractor networks (Wang 2002; Roxin and Ledberg 2008. Although these models has been widely studied (Bogacz et al. 2006; Roxin and Ledberg 2008; Gold and Shadlen 2002, it has been difficult to experimentally discriminate among them because most of the observables measured are only quantitatively different among these models (e.g. psychometric curves. Here we aim to find experimentally measurable quantities that can yield qualitatively different behaviors depending on the nature of the underlying network dynamics. We examined the categorization dynamics of these models in response to fluctuating stimuli of different duration (T. On each time step, stimuli are drawn from a Gaussian distribution N(μ, σ and the two stimulus categories are defined by μ > 0 and μ < 0. Psychometric curves can therefore be obtained by quantifying the probability of the integrator to yield one category versus μ . We find however that varying σ can reveal more clearly the differences among the different integrators. In the small σ regime, both the DW and the DDM perform transient integration and exhibit a decaying stimulus reverse correlation kernel revealing a primacy effect (Nienborg and Cumming 2009; Wimmer et al. 2015 . In the large σ regime, the integration in the DDM
The Dynamics of Initiative in Communication Networks.
Directory of Open Access Journals (Sweden)
Anders Mollgaard
Full Text Available Human social interaction is often intermittent. Two acquainted persons can have extended periods without social interaction punctuated by periods of repeated interaction. In this case, the repeated interaction can be characterized by a seed initiative by either of the persons and a number of follow-up interactions. The tendency to initiate social interaction plays an important role in the formation of social networks and is in general not symmetric between persons. In this paper, we study the dynamics of initiative by analysing and modeling a detailed call and text message network sampled from a group of 700 individuals. We show that in an average relationship between two individuals, one part is almost twice as likely to initiate communication compared to the other part. The asymmetry has social consequences and ultimately might lead to the discontinuation of a relationship. We explain the observed asymmetry by a positive feedback mechanism where individuals already taking initiative are more likely to take initiative in the future. In general, people with many initiatives receive attention from a broader spectrum of friends than people with few initiatives. Lastly, we compare the likelihood of taking initiative with the basic personality traits of the five factor model.
Choice Shift in Opinion Network Dynamics
Gabbay, Michael
Choice shift is a phenomenon associated with small group dynamics whereby group discussion causes group members to shift their opinions in a more extreme direction so that the mean post-discussion opinion exceeds the mean pre-discussion opinion. Also known as group polarization, choice shift is a robust experimental phenomenon and has been well-studied within social psychology. In opinion network models, shifts toward extremism are typically produced by the presence of stubborn agents at the extremes of the opinion axis, whose opinions are much more resistant to change than moderate agents. However, we present a model in which choice shift can arise without the assumption of stubborn agents; the model evolves member opinions and uncertainties using coupled nonlinear differential equations. In addition, we briefly describe the results of a recent experiment conducted involving online group discussion concerning the outcome of National Football League games are described. The model predictions concerning the effects of network structure, disagreement level, and team choice (favorite or underdog) are in accord with the experimental results. This research was funded by the Office of Naval Research and the Defense Threat Reduction Agency.
Filtering in Hybrid Dynamic Bayesian Networks
Andersen, Morten Nonboe; Andersen, Rasmus Orum; Wheeler, Kevin
2000-01-01
We implement a 2-time slice dynamic Bayesian network (2T-DBN) framework and make a 1-D state estimation simulation, an extension of the experiment in (v.d. Merwe et al., 2000) and compare different filtering techniques. Furthermore, we demonstrate experimentally that inference in a complex hybrid DBN is possible by simulating fault detection in a watertank system, an extension of the experiment in (Koller & Lerner, 2000) using a hybrid 2T-DBN. In both experiments, we perform approximate inference using standard filtering techniques, Monte Carlo methods and combinations of these. In the watertank simulation, we also demonstrate the use of 'non-strict' Rao-Blackwellisation. We show that the unscented Kalman filter (UKF) and UKF in a particle filtering framework outperform the generic particle filter, the extended Kalman filter (EKF) and EKF in a particle filtering framework with respect to accuracy in terms of estimation RMSE and sensitivity with respect to choice of network structure. Especially we demonstrate the superiority of UKF in a PF framework when our beliefs of how data was generated are wrong. Furthermore, we investigate the influence of data noise in the watertank simulation using UKF and PFUKD and show that the algorithms are more sensitive to changes in the measurement noise level that the process noise level. Theory and implementation is based on (v.d. Merwe et al., 2000).
Sparse dynamical Boltzmann machine for reconstructing complex networks with binary dynamics
Chen, Yu-Zhong; Lai, Ying-Cheng
2018-03-01
Revealing the structure and dynamics of complex networked systems from observed data is a problem of current interest. Is it possible to develop a completely data-driven framework to decipher the network structure and different types of dynamical processes on complex networks? We develop a model named sparse dynamical Boltzmann machine (SDBM) as a structural estimator for complex networks that host binary dynamical processes. The SDBM attains its topology according to that of the original system and is capable of simulating the original binary dynamical process. We develop a fully automated method based on compressive sensing and a clustering algorithm to construct the SDBM. We demonstrate, for a variety of representative dynamical processes on model and real world complex networks, that the equivalent SDBM can recover the network structure of the original system and simulates its dynamical behavior with high precision.
Modelling flow dynamics in water distribution networks using ...
African Journals Online (AJOL)
One such approach is the Artificial Neural Networks (ANNs) technique. The advantage of ANNs is that they are robust and can be used to model complex linear and non-linear systems without making implicit assumptions. ANNs can be trained to forecast flow dynamics in a water distribution network. Such flow dynamics ...
Directory of Open Access Journals (Sweden)
Rose D. Bharath
2017-09-01
Full Text Available Background and Purpose: Repetitive transcranial magnetic stimulation (rTMS induces widespread changes in brain connectivity. As the network topology differences induced by a single session of rTMS are less known we undertook this study to ascertain whether the network alterations had a small-world morphology using multi-modal graph theory analysis of simultaneous EEG-fMRI.Method: Simultaneous EEG-fMRI was acquired in duplicate before (R1 and after (R2 a single session of rTMS in 14 patients with Writer’s Cramp (WC. Whole brain neuronal and hemodynamic network connectivity were explored using the graph theory measures and clustering coefficient, path length and small-world index were calculated for EEG and resting state fMRI (rsfMRI. Multi-modal graph theory analysis was used to evaluate the correlation of EEG and fMRI clustering coefficients.Result: A single session of rTMS was found to increase the clustering coefficient and small-worldness significantly in both EEG and fMRI (p < 0.05. Multi-modal graph theory analysis revealed significant modulations in the fronto-parietal regions immediately after rTMS. The rsfMRI revealed additional modulations in several deep brain regions including cerebellum, insula and medial frontal lobe.Conclusion: Multi-modal graph theory analysis of simultaneous EEG-fMRI can supplement motor physiology methods in understanding the neurobiology of rTMS in vivo. Coinciding evidence from EEG and rsfMRI reports small-world morphology for the acute phase network hyper-connectivity indicating changes ensuing low-frequency rTMS is probably not “noise”.
Dynamic Evolution Model Based on Social Network Services
Xiong, Xi; Gou, Zhi-Jian; Zhang, Shi-Bin; Zhao, Wen
2013-11-01
Based on the analysis of evolutionary characteristics of public opinion in social networking services (SNS), in the paper we propose a dynamic evolution model, in which opinions are coupled with topology. This model shows the clustering phenomenon of opinions in dynamic network evolution. The simulation results show that the model can fit the data from a social network site. The dynamic evolution of networks accelerates the opinion, separation and aggregation. The scale and the number of clusters are influenced by confidence limit and rewiring probability. Dynamic changes of the topology reduce the number of isolated nodes, while the increased confidence limit allows nodes to communicate more sufficiently. The two effects make the distribution of opinion more neutral. The dynamic evolution of networks generates central clusters with high connectivity and high betweenness, which make it difficult to control public opinions in SNS.
Dynamic Mobile IP routers in ad hoc networks
Kock, B.A.; Schmidt, J.R.
2005-01-01
This paper describes a concept combining mobile IP and ad hoc routing to create a robust mobile network. In this network all nodes are mobile and globally and locally reachable under the same IP address. Essential for implementing this network are the dynamic mobile IP routers. They act as gateways
Gender, Friendship Networks, and Delinquency: A Dynamic Network Approach.
Haynie, Dana L; Doogan, Nathan J; Soller, Brian
2014-11-01
Researchers have examined selection and influence processes in shaping delinquency similarity among friends, but little is known about the role of gender in moderating these relationships. Our objective is to examine differences between adolescent boys and girls regarding delinquency-based selection and influence processes. Using longitudinal network data from adolescents attending two large schools in AddHealth ( N = 1,857) and stochastic actor-oriented models, we evaluate whether girls are influenced to a greater degree by friends' violence or delinquency than boys (influence hypothesis) and whether girls are more likely to select friends based on violent or delinquent behavior than boys (selection hypothesis). The results indicate that girls are more likely than boys to be influenced by their friends' involvement in violence. Although a similar pattern emerges for nonviolent delinquency, the gender differences are not significant. Some evidence shows that boys are influenced toward increasing their violence or delinquency when exposed to more delinquent or violent friends but are immune to reducing their violence or delinquency when associating with less violent or delinquent friends. In terms of selection dynamics, although both boys and girls have a tendency to select friends based on friends' behavior, girls have a stronger tendency to do so, suggesting that among girls, friends' involvement in violence or delinquency is an especially decisive factor for determining friendship ties.
Gender, Friendship Networks, and Delinquency: A Dynamic Network Approach**
Haynie, Dana L.; Doogan, Nathan J.; Soller, Brian
2014-01-01
Researchers have examined selection and influence processes in shaping delinquency similarity among friends, but little is known about the role of gender in moderating these relationships. Our objective is to examine differences between adolescent boys and girls regarding delinquency-based selection and influence processes. Using longitudinal network data from adolescents attending two large schools in AddHealth (N = 1,857) and stochastic actor-oriented models, we evaluate whether girls are influenced to a greater degree by friends' violence or delinquency than boys (influence hypothesis) and whether girls are more likely to select friends based on violent or delinquent behavior than boys (selection hypothesis). The results indicate that girls are more likely than boys to be influenced by their friends' involvement in violence. Although a similar pattern emerges for nonviolent delinquency, the gender differences are not significant. Some evidence shows that boys are influenced toward increasing their violence or delinquency when exposed to more delinquent or violent friends but are immune to reducing their violence or delinquency when associating with less violent or delinquent friends. In terms of selection dynamics, although both boys and girls have a tendency to select friends based on friends' behavior, girls have a stronger tendency to do so, suggesting that among girls, friends' involvement in violence or delinquency is an especially decisive factor for determining friendship ties. PMID:26097241
Topology Identification of General Dynamical Network with Distributed Time Delays
International Nuclear Information System (INIS)
Zhao-Yan, Wu; Xin-Chu, Fu
2009-01-01
General dynamical networks with distributed time delays are studied. The topology of the networks are viewed as unknown parameters, which need to be identified. Some auxiliary systems (also called the network estimators) are designed to achieve this goal. Both linear feedback control and adaptive strategy are applied in designing these network estimators. Based on linear matrix inequalities and the Lyapunov function method, the sufficient condition for the achievement of topology identification is obtained. This method can also better monitor the switching topology of dynamical networks. Illustrative examples are provided to show the effectiveness of this method. (general)
Dynamic defense and network randomization for computer systems
Chavez, Adrian R.; Stout, William M. S.; Hamlet, Jason R.; Lee, Erik James; Martin, Mitchell Tyler
2018-05-29
The various technologies presented herein relate to determining a network attack is taking place, and further to adjust one or more network parameters such that the network becomes dynamically configured. A plurality of machine learning algorithms are configured to recognize an active attack pattern. Notification of the attack can be generated, and knowledge gained from the detected attack pattern can be utilized to improve the knowledge of the algorithms to detect a subsequent attack vector(s). Further, network settings and application communications can be dynamically randomized, wherein artificial diversity converts control systems into moving targets that help mitigate the early reconnaissance stages of an attack. An attack(s) based upon a known static address(es) of a critical infrastructure network device(s) can be mitigated by the dynamic randomization. Network parameters that can be randomized include IP addresses, application port numbers, paths data packets navigate through the network, application randomization, etc.
Arresting Strategy Based on Dynamic Criminal Networks Changing over Time
Directory of Open Access Journals (Sweden)
Junqing Yuan
2013-01-01
Full Text Available We investigate a sequence of dynamic criminal networks on a time series based on the dynamic network analysis (DNA. According to the change of networks’ structure, networks’ variation trend is analyzed to forecast its future structure. Finally, an optimal arresting time and priority list are designed based on our analysis. Better results can be expected than that based on social network analysis (SNA.
Effects of network structure on the synchronizability of nonlinearly coupled Hindmarsh–Rose neurons
Energy Technology Data Exchange (ETDEWEB)
Li, Chun-Hsien, E-mail: chli@nknucc.nknu.edu.tw [Department of Mathematics, National Kaohsiung Normal University, Yanchao District, Kaohsiung City 82444, Taiwan (China); Yang, Suh-Yuh, E-mail: syyang@math.ncu.edu.tw [Department of Mathematics, National Central University, Jhongli District, Taoyuan City 32001, Taiwan (China)
2015-10-23
This work is devoted to investigate the effects of network structure on the synchronizability of nonlinearly coupled dynamical network of Hindmarsh–Rose neurons with a sigmoidal coupling function. We mainly focus on the networks that exhibit the small-world character or scale-free property. By checking the first nonzero eigenvalue of the outer-coupling matrix, which is closely related to the synchronization threshold, the synchronizabilities of three specific network ensembles with prescribed network structures are compared. Interestingly, we find that networks with more connections will not necessarily result in better synchronizability. - Highlights: • We investigate the effects of network structure on the synchronizability of nonlinearly coupled Hindmarsh–Rose neurons. • We mainly consider the networks that exhibit the small-world character or scale-free property. • The synchronizability of three specific network ensembles with prescribed network structures are compared. • Networks with more connections will not necessarily result in better synchronizability.
Effects of network structure on the synchronizability of nonlinearly coupled Hindmarsh–Rose neurons
International Nuclear Information System (INIS)
Li, Chun-Hsien; Yang, Suh-Yuh
2015-01-01
This work is devoted to investigate the effects of network structure on the synchronizability of nonlinearly coupled dynamical network of Hindmarsh–Rose neurons with a sigmoidal coupling function. We mainly focus on the networks that exhibit the small-world character or scale-free property. By checking the first nonzero eigenvalue of the outer-coupling matrix, which is closely related to the synchronization threshold, the synchronizabilities of three specific network ensembles with prescribed network structures are compared. Interestingly, we find that networks with more connections will not necessarily result in better synchronizability. - Highlights: • We investigate the effects of network structure on the synchronizability of nonlinearly coupled Hindmarsh–Rose neurons. • We mainly consider the networks that exhibit the small-world character or scale-free property. • The synchronizability of three specific network ensembles with prescribed network structures are compared. • Networks with more connections will not necessarily result in better synchronizability
Major component analysis of dynamic networks of physiologic organ interactions
International Nuclear Information System (INIS)
Liu, Kang K L; Ma, Qianli D Y; Ivanov, Plamen Ch; Bartsch, Ronny P
2015-01-01
The human organism is a complex network of interconnected organ systems, where the behavior of one system affects the dynamics of other systems. Identifying and quantifying dynamical networks of diverse physiologic systems under varied conditions is a challenge due to the complexity in the output dynamics of the individual systems and the transient and nonlinear characteristics of their coupling. We introduce a novel computational method based on the concept of time delay stability and major component analysis to investigate how organ systems interact as a network to coordinate their functions. We analyze a large database of continuously recorded multi-channel physiologic signals from healthy young subjects during night-time sleep. We identify a network of dynamic interactions between key physiologic systems in the human organism. Further, we find that each physiologic state is characterized by a distinct network structure with different relative contribution from individual organ systems to the global network dynamics. Specifically, we observe a gradual decrease in the strength of coupling of heart and respiration to the rest of the network with transition from wake to deep sleep, and in contrast, an increased relative contribution to network dynamics from chin and leg muscle tone and eye movement, demonstrating a robust association between network topology and physiologic function. (paper)
Identify Dynamic Network Modules with Temporal and Spatial Constraints
Energy Technology Data Exchange (ETDEWEB)
Jin, R; McCallen, S; Liu, C; Almaas, E; Zhou, X J
2007-09-24
Despite the rapid accumulation of systems-level biological data, understanding the dynamic nature of cellular activity remains a difficult task. The reason is that most biological data are static, or only correspond to snapshots of cellular activity. In this study, we explicitly attempt to detangle the temporal complexity of biological networks by using compilations of time-series gene expression profiling data.We define a dynamic network module to be a set of proteins satisfying two conditions: (1) they form a connected component in the protein-protein interaction (PPI) network; and (2) their expression profiles form certain structures in the temporal domain. We develop the first efficient mining algorithm to discover dynamic modules in a temporal network, as well as frequently occurring dynamic modules across many temporal networks. Using yeast as a model system, we demonstrate that the majority of the identified dynamic modules are functionally homogeneous. Additionally, many of them provide insight into the sequential ordering of molecular events in cellular systems. We further demonstrate that identifying frequent dynamic network modules can significantly increase the signal to noise separation, despite the fact that most dynamic network modules are highly condition-specific. Finally, we note that the applicability of our algorithm is not limited to the study of PPI systems, instead it is generally applicable to the combination of any type of network and time-series data.
Transport on river networks: A dynamical approach
Zaliapin, I; Foufoula-Georgiou, E; Ghil, M
2017-01-01
This study is motivated by problems related to environmental transport on river networks. We establish statistical properties of a flow along a directed branching network and suggest its compact parameterization. The downstream network transport is treated as a particular case of nearest-neighbor hierarchical aggregation with respect to the metric induced by the branching structure of the river network. We describe the static geometric structure of a drainage network by a tree, referred to as...
Mathematical model for spreading dynamics of social network worms
International Nuclear Information System (INIS)
Sun, Xin; Liu, Yan-Heng; Han, Jia-Wei; Liu, Xue-Jie; Li, Bin; Li, Jin
2012-01-01
In this paper, a mathematical model for social network worm spreading is presented from the viewpoint of social engineering. This model consists of two submodels. Firstly, a human behavior model based on game theory is suggested for modeling and predicting the expected behaviors of a network user encountering malicious messages. The game situation models the actions of a user under the condition that the system may be infected at the time of opening a malicious message. Secondly, a social network accessing model is proposed to characterize the dynamics of network users, by which the number of online susceptible users can be determined at each time step. Several simulation experiments are carried out on artificial social networks. The results show that (1) the proposed mathematical model can well describe the spreading dynamics of social network worms; (2) weighted network topology greatly affects the spread of worms; (3) worms spread even faster on hybrid social networks
Bistable responses in bacterial genetic networks: Designs and dynamical consequences
Tiwari, Abhinav; Ray, J. Christian J.; Narula, Jatin; Igoshin, Oleg A.
2011-01-01
A key property of living cells is their ability to react to stimuli with specific biochemical responses. These responses can be understood through the dynamics of underlying biochemical and genetic networks. Evolutionary design principles have been well studied in networks that display graded responses, with a continuous relationship between input signal and system output. Alternatively, biochemical networks can exhibit bistable responses so that over a range of signals the network possesses two stable steady states. In this review, we discuss several conceptual examples illustrating network designs that can result in a bistable response of the biochemical network. Next, we examine manifestations of these designs in bacterial master-regulatory genetic circuits. In particular, we discuss mechanisms and dynamic consequences of bistability in three circuits: two-component systems, sigma-factor networks, and a multistep phosphorelay. Analyzing these examples allows us to expand our knowledge of evolutionary design principles for networks with bistable responses. PMID:21385588
Epidemic dynamics and endemic states in complex networks
Pastor-Satorras, Romualdo; Vespignani, Alessandro
2001-01-01
We study by analytical methods and large scale simulations a dynamical model for the spreading of epidemics in complex networks. In networks with exponentially bounded connectivity we recover the usual epidemic behavior with a threshold defining a critical point below which the infection prevalence is null. On the contrary, on a wide range of scale-free networks we observe the absence of an epidemic threshold and its associated critical behavior. This implies that scale-free networks are pron...
Avoiding the "It's a Small World" Effect: A Lesson Plan to Explore Diversity
Endacott, Jason L.; Bowles, Freddie A.
2013-01-01
Classroom instruction about other cultures all too often resembles the Disney version of "It's a Small World" with Fantasyland-like cultural stereotypes, ceremonial activities, and traditional dress that can lead to serious misunderstandings about the depth and complexity of global societies. Social studies instruction presents the…
International Nuclear Information System (INIS)
Zhang Li-Sheng; Mi Yuan-Yuan; Gu Wei-Feng; Hu Gang
2014-01-01
All dynamic complex networks have two important aspects, pattern dynamics and network topology. Discovering different types of pattern dynamics and exploring how these dynamics depend on network topologies are tasks of both great theoretical importance and broad practical significance. In this paper we study the oscillatory behaviors of excitable complex networks (ECNs) and find some interesting dynamic behaviors of ECNs in oscillatory probability, the multiplicity of oscillatory attractors, period distribution, and different types of oscillatory patterns (e.g., periodic, quasiperiodic, and chaotic). In these aspects, we further explore strikingly sharp differences among network dynamics induced by different topologies (random or scale-free topologies) and different interaction structures (symmetric or asymmetric couplings). The mechanisms behind these differences are explained physically. (interdisciplinary physics and related areas of science and technology)
Opinion competition dynamics on multiplex networks
Amato, R.; Kouvaris, N. E.; San Miguel, M.; Díaz-Guilera, A.
2017-12-01
Multilayer and multiplex networks represent a good proxy for the description of social phenomena where social structure is important and can have different origins. Here, we propose a model of opinion competition where individuals are organized according to two different structures in two layers. Agents exchange opinions according to the Abrams-Strogatz model in each layer separately and opinions can be copied across layers by the same individual. In each layer a different opinion is dominant, so each layer has a different absorbing state. Consensus in one opinion is not the only possible stable solution because of the interaction between the two layers. A new mean field solution has been found where both opinions coexist. In a finite system there is a long transient time for the dynamical coexistence of both opinions. However, the system ends in a consensus state due to finite size effects. We analyze sparse topologies in the two layers and the existence of positive correlations between them, which enables the coexistence of inter-layer groups of agents sharing the same opinion.
Opinion dynamics in activity-driven networks
Li, Dandan; Han, Dun; Ma, Jing; Sun, Mei; Tian, Lixin; Khouw, Timothy; Stanley, H. Eugene
2017-10-01
Social interaction between individuals constantly affects the development of their personal opinions. Previous models such as the Deffuant model and the Hegselmann-Krause (HK) model have assumed that individuals only update their opinions after interacting with neighbors whose opinions are similar to their own. However, people are capable of communicating widely with all of their neighbors to gather their ideas and opinions, even if they encounter a number of opposing attitudes. We propose a model in which agents listen to the opinions of all their neighbors. Continuous opinion dynamics are investigated in activity-driven networks with a tolerance threshold. We study how the initial opinion distribution, tolerance threshold, opinion-updating speed, and activity rate affect the evolution of opinion. We find that when the initial fraction of positive opinion is small, all opinions become negative by the end of the simulation. As the initial fraction of positive opinions rises above a certain value —about 0.45— the final fraction of positive opinions sharply increases and eventually equals 1. Increased tolerance threshold δ is found to lead to a more varied final opinion distribution. We also find that if the negative opinion has an initial advantage, the final fraction of negative opinion increases and reaches its peak as the updating speed λ approaches 0.5. Finally we show that the lower the activity rate of individuals, the greater the fluctuation range of their opinions.
Clustering promotes switching dynamics in networks of noisy neurons
Franović, Igor; Klinshov, Vladimir
2018-02-01
Macroscopic variability is an emergent property of neural networks, typically manifested in spontaneous switching between the episodes of elevated neuronal activity and the quiescent episodes. We investigate the conditions that facilitate switching dynamics, focusing on the interplay between the different sources of noise and heterogeneity of the network topology. We consider clustered networks of rate-based neurons subjected to external and intrinsic noise and derive an effective model where the network dynamics is described by a set of coupled second-order stochastic mean-field systems representing each of the clusters. The model provides an insight into the different contributions to effective macroscopic noise and qualitatively indicates the parameter domains where switching dynamics may occur. By analyzing the mean-field model in the thermodynamic limit, we demonstrate that clustering promotes multistability, which gives rise to switching dynamics in a considerably wider parameter region compared to the case of a non-clustered network with sparse random connection topology.
Synthesis of recurrent neural networks for dynamical system simulation.
Trischler, Adam P; D'Eleuterio, Gabriele M T
2016-08-01
We review several of the most widely used techniques for training recurrent neural networks to approximate dynamical systems, then describe a novel algorithm for this task. The algorithm is based on an earlier theoretical result that guarantees the quality of the network approximation. We show that a feedforward neural network can be trained on the vector-field representation of a given dynamical system using backpropagation, then recast it as a recurrent network that replicates the original system's dynamics. After detailing this algorithm and its relation to earlier approaches, we present numerical examples that demonstrate its capabilities. One of the distinguishing features of our approach is that both the original dynamical systems and the recurrent networks that simulate them operate in continuous time. Copyright © 2016 Elsevier Ltd. All rights reserved.
Efficient Neural Network Modeling for Flight and Space Dynamics Simulation
Directory of Open Access Journals (Sweden)
Ayman Hamdy Kassem
2011-01-01
Full Text Available This paper represents an efficient technique for neural network modeling of flight and space dynamics simulation. The technique will free the neural network designer from guessing the size and structure for the required neural network model and will help to minimize the number of neurons. For linear flight/space dynamics systems, the technique can find the network weights and biases directly by solving a system of linear equations without the need for training. Nonlinear flight dynamic systems can be easily modeled by training its linearized models keeping the same network structure. The training is fast, as it uses the linear system knowledge to speed up the training process. The technique is tested on different flight/space dynamic models and showed promising results.
Complex systems and networks dynamics, controls and applications
Yu, Xinghuo; Chen, Guanrong; Yu, Wenwu
2016-01-01
This elementary book provides some state-of-the-art research results on broad disciplinary sciences on complex networks. It presents an in-depth study with detailed description of dynamics, controls and applications of complex networks. The contents of this book can be summarized as follows. First, the dynamics of complex networks, for example, the cluster dynamic analysis by using kernel spectral methods, community detection algorithms in bipartite networks, epidemiological modeling with demographics and epidemic spreading on multi-layer networks, are studied. Second, the controls of complex networks are investigated including topics like distributed finite-time cooperative control of multi-agent systems by applying homogenous-degree and Lyapunov methods, composite finite-time containment control for disturbed second-order multi-agent systems, fractional-order observer design of multi-agent systems, chaos control and anticontrol of complex systems via Parrondos game and many more. Third, the applications of ...
Controlling the dynamics of multi-state neural networks
International Nuclear Information System (INIS)
Jin, Tao; Zhao, Hong
2008-01-01
In this paper, we first analyze the distribution of local fields (DLF) which is induced by the memory patterns in the Q-Ising model. It is found that the structure of the DLF is closely correlated with the network dynamics and the system performance. However, the design rule adopted in the Q-Ising model, like the other rules adopted for multi-state neural networks with associative memories, cannot be applied to directly control the DLF for a given set of memory patterns, and thus cannot be applied to further study the relationships between the structure of the DLF and the dynamics of the network. We then extend a design rule, which was presented recently for designing binary-state neural networks, to make it suitable for designing general multi-state neural networks. This rule is able to control the structure of the DLF as expected. We show that controlling the DLF not only can affect the dynamic behaviors of the multi-state neural networks for a given set of memory patterns, but also can improve the storage capacity. With the change of the DLF, the network shows very rich dynamic behaviors, such as the 'chaos phase', the 'memory phase', and the 'mixture phase'. These dynamic behaviors are also observed in the binary-state neural networks; therefore, our results imply that they may be the universal behaviors of feedback neural networks
Dynamic Intelligent Feedback Scheduling in Networked Control Systems
Directory of Open Access Journals (Sweden)
Hui-ying Chen
2013-01-01
Full Text Available For the networked control system with limited bandwidth and flexible workload, a dynamic intelligent feedback scheduling strategy is proposed. Firstly, a monitor is used to acquire the current available network bandwidth. Then, the new available bandwidth in the next interval is predicted by using LS_SVM approach. At the same time, the dynamic performance indices of all control loops are obtained with a two-dimensional fuzzy logic modulator. Finally, the predicted network bandwidth is dynamically allocated by the bandwidth manager and the priority allocator in terms of the loops' dynamic performance indices. Simulation results show that the sampling periods and priorities of control loops are adjusted timely according to the network workload condition and the dynamic performance of control loops, which make the system running in the optimal state all the time.
Vecchio, Fabrizio; Di Iorio, Riccardo; Miraglia, Francesca; Granata, Giuseppe; Romanello, Roberto; Bramanti, Placido; Rossini, Paolo Maria
2018-04-01
Transcranial direct current stimulation (tDCS) is a non-invasive technique able to modulate cortical excitability in a polarity-dependent way. At present, only few studies investigated the effects of tDCS on the modulation of functional connectivity between remote cortical areas. The aim of this study was to investigate-through graph theory analysis-how bipolar tDCS modulate cortical networks high-density EEG recordings were acquired before and after bipolar cathodal, anodal and sham tDCS involving the primary motor and pre-motor cortices of the dominant hemispherein 14 healthy subjects. Results showed that, after bipolar anodal tDCS stimulation, brain networks presented a less evident "small world" organization with a global tendency to be more random in its functional connections with respect to prestimulus condition in both hemispheres. Results suggest that tDCS globally modulates the cortical connectivity of the brain, modifying the underlying functional organization of the stimulated networks, which might be related to changes in synaptic efficiency of the motor network and related brain areas. This study demonstrated that graph analysis approach to EEG recordings is able to intercept changes in cortical functions mediated by bipolar anodal tDCS mainly involving the dominant M1 and related motor areas. Concluding, tDCS could be an useful technique to help understanding brain rhythms and their topographic functional organization and specificity.
A User Driven Dynamic Circuit Network Implementation
Energy Technology Data Exchange (ETDEWEB)
Guok, Chin; Robertson, David; Chaniotakis, Evangelos; Thompson, Mary; Johnston, William; Tierney, Brian
2008-10-01
The requirements for network predictability are becoming increasingly critical to the DoE science community where resources are widely distributed and collaborations are world-wide. To accommodate these emerging requirements, the Energy Sciences Network has established a Science Data Network to provide user driven guaranteed bandwidth allocations. In this paper we outline the design, implementation, and secure coordinated use of such a network, as well as some lessons learned.
Traffic Policing in Dynamic Military Networks Using Software Defined Networking
Skappel, Hans Fredrik
2016-01-01
This thesis looks at how Software Defined Networking (SDN) can be used to provide traffic engineering and to police traffic in an Operational Military Network (OMN). SDN is a concept where the control plane is separated from the forwarding plane, and the control plane is capable of controlling forwarding plane elements located on multiple network nodes using the OpenFlow protocol. Specifically, we have discussed the problems in OMNs, and possible SDN approaches to mitigate the challenges. Bas...
Design and implementation of dynamic hybrid Honeypot network
Qiao, Peili; Hu, Shan-Shan; Zhai, Ji-Qiang
2013-05-01
The method of constructing a dynamic and self-adaptive virtual network is suggested to puzzle adversaries, delay and divert attacks, exhaust attacker resources and collect attacking information. The concepts of Honeypot and Honeyd, which is the frame of virtual Honeypot are introduced. The techniques of network scanning including active fingerprint recognition are analyzed. Dynamic virtual network system is designed and implemented. A virtual network similar to real network topology is built according to the collected messages from real environments in this system. By doing this, the system can perplex the attackers when Hackers attack and can further analyze and research the attacks. The tests to this system prove that this design can successfully simulate real network environment and can be used in network security analysis.
Dynamics of epidemic diseases on a growing adaptive network.
Demirel, Güven; Barter, Edmund; Gross, Thilo
2017-02-10
The study of epidemics on static networks has revealed important effects on disease prevalence of network topological features such as the variance of the degree distribution, i.e. the distribution of the number of neighbors of nodes, and the maximum degree. Here, we analyze an adaptive network where the degree distribution is not independent of epidemics but is shaped through disease-induced dynamics and mortality in a complex interplay. We study the dynamics of a network that grows according to a preferential attachment rule, while nodes are simultaneously removed from the network due to disease-induced mortality. We investigate the prevalence of the disease using individual-based simulations and a heterogeneous node approximation. Our results suggest that in this system in the thermodynamic limit no epidemic thresholds exist, while the interplay between network growth and epidemic spreading leads to exponential networks for any finite rate of infectiousness when the disease persists.
Synchronization of complex delayed dynamical networks with nonlinearly coupled nodes
International Nuclear Information System (INIS)
Liu Tao; Zhao Jun; Hill, David J.
2009-01-01
In this paper, we study the global synchronization of nonlinearly coupled complex delayed dynamical networks with both directed and undirected graphs. Via Lyapunov-Krasovskii stability theory and the network topology, we investigate the global synchronization of such networks. Under the assumption that coupling coefficients are known, a family of delay-independent decentralized nonlinear feedback controllers are designed to globally synchronize the networks. When coupling coefficients are unavailable, an adaptive mechanism is introduced to synthesize a family of delay-independent decentralized adaptive controllers which guarantee the global synchronization of the uncertain networks. Two numerical examples of directed and undirected delayed dynamical network are given, respectively, using the Lorenz system as the nodes of the networks, which demonstrate the effectiveness of proposed results.
Energy Efficiency Analysis for Dynamic Routing in Optical Transport Networks
DEFF Research Database (Denmark)
Vizcaíno, Jorge López; Ye, Yabin; Tafur Monroy, Idelfonso
2012-01-01
The energy efficiency in telecommunication networks is gaining more relevance as the Internet traffic is growing. The introduction of OFDM and dynamic operation opens new horizons in the operation of optical networks, improving the network flexibility and its efficiency. In this paper, we compare...... the performance in terms of energy efficiency of a flexible-grid OFDM-based solution with a fixed-grid WDM network in a dynamic scenario with time-varying connections. We highlight the benefits that the bandwidth elasticity and the flexibility of selecting different modulation formats can offer compared...
Perception of Communication Network Fraud Dynamics by Network ...
African Journals Online (AJOL)
In considering the implications of the varied nature of the potential targets, the paper identifies the view to develop effective intelligence analysis methodologies for network fraud detection and prevention by network administrators and stakeholders. The paper further notes that organizations are fighting an increasingly ...
Concurrency-Induced Transitions in Epidemic Dynamics on Temporal Networks.
Onaga, Tomokatsu; Gleeson, James P; Masuda, Naoki
2017-09-08
Social contact networks underlying epidemic processes in humans and animals are highly dynamic. The spreading of infections on such temporal networks can differ dramatically from spreading on static networks. We theoretically investigate the effects of concurrency, the number of neighbors that a node has at a given time point, on the epidemic threshold in the stochastic susceptible-infected-susceptible dynamics on temporal network models. We show that network dynamics can suppress epidemics (i.e., yield a higher epidemic threshold) when the node's concurrency is low, but can also enhance epidemics when the concurrency is high. We analytically determine different phases of this concurrency-induced transition, and confirm our results with numerical simulations.
Concurrency-Induced Transitions in Epidemic Dynamics on Temporal Networks
Onaga, Tomokatsu; Gleeson, James P.; Masuda, Naoki
2017-09-01
Social contact networks underlying epidemic processes in humans and animals are highly dynamic. The spreading of infections on such temporal networks can differ dramatically from spreading on static networks. We theoretically investigate the effects of concurrency, the number of neighbors that a node has at a given time point, on the epidemic threshold in the stochastic susceptible-infected-susceptible dynamics on temporal network models. We show that network dynamics can suppress epidemics (i.e., yield a higher epidemic threshold) when the node's concurrency is low, but can also enhance epidemics when the concurrency is high. We analytically determine different phases of this concurrency-induced transition, and confirm our results with numerical simulations.
Dynamical community structure of populations evolving on genotype networks
International Nuclear Information System (INIS)
Capitán, José A.; Aguirre, Jacobo; Manrubia, Susanna
2015-01-01
Neutral evolutionary dynamics of replicators occurs on large and heterogeneous networks of genotypes. These networks, formed by all genotypes that yield the same phenotype, have a complex architecture that conditions the molecular composition of populations and their movements on genome spaces. Here we consider as an example the case of populations evolving on RNA secondary structure neutral networks and study the community structure of the network revealed through dynamical properties of the population at equilibrium and during adaptive transients. We unveil a rich hierarchical community structure that, eventually, can be traced back to the non-trivial relationship between RNA secondary structure and sequence composition. We demonstrate that usual measures of modularity that only take into account the static, topological structure of networks, cannot identify the community structure disclosed by population dynamics
Spontaneous formation of dynamical groups in an adaptive networked system
International Nuclear Information System (INIS)
Li Menghui; Guan Shuguang; Lai, C-H
2010-01-01
In this work, we investigate a model of an adaptive networked dynamical system, where the coupling strengths among phase oscillators coevolve with the phase states. It is shown that in this model the oscillators can spontaneously differentiate into two dynamical groups after a long time evolution. Within each group, the oscillators have similar phases, while oscillators in different groups have approximately opposite phases. The network gradually converts from the initial random structure with a uniform distribution of connection strengths into a modular structure that is characterized by strong intra-connections and weak inter-connections. Furthermore, the connection strengths follow a power-law distribution, which is a natural consequence of the coevolution of the network and the dynamics. Interestingly, it is found that if the inter-connections are weaker than a certain threshold, the two dynamical groups will almost decouple and evolve independently. These results are helpful in further understanding the empirical observations in many social and biological networks.
Structure-based control of complex networks with nonlinear dynamics.
Zañudo, Jorge Gomez Tejeda; Yang, Gang; Albert, Réka
2017-07-11
What can we learn about controlling a system solely from its underlying network structure? Here we adapt a recently developed framework for control of networks governed by a broad class of nonlinear dynamics that includes the major dynamic models of biological, technological, and social processes. This feedback-based framework provides realizable node overrides that steer a system toward any of its natural long-term dynamic behaviors, regardless of the specific functional forms and system parameters. We use this framework on several real networks, identify the topological characteristics that underlie the predicted node overrides, and compare its predictions to those of structural controllability in control theory. Finally, we demonstrate this framework's applicability in dynamic models of gene regulatory networks and identify nodes whose override is necessary for control in the general case but not in specific model instances.
Global network reorganization during dynamic adaptations of Bacillus subtilis metabolism
DEFF Research Database (Denmark)
Buescher, Joerg Martin; Liebermeister, Wolfram; Jules, Matthieu
2012-01-01
Adaptation of cells to environmental changes requires dynamic interactions between metabolic and regulatory networks, but studies typically address only one or a few layers of regulation. For nutritional shifts between two preferred carbon sources of Bacillus subtilis, we combined statistical...
Wavelength converter placement in optical networks with dynamic traffic
DEFF Research Database (Denmark)
Buron, Jakob Due; Ruepp, Sarah Renée; Wessing, Henrik
2008-01-01
We evaluate the connection provisioning performance of GMPLS-controlled wavelength routed networks under dynamic traffic load and using three different wavelength converter placement heuristics. Results show that a simple uniform placement heuristic matches the performance of complex heuristics...
Epidemic dynamics and endemic states in complex networks
Pastor-Satorras, Romualdo; Vespignani, Alessandro
2001-06-01
We study by analytical methods and large scale simulations a dynamical model for the spreading of epidemics in complex networks. In networks with exponentially bounded connectivity we recover the usual epidemic behavior with a threshold defining a critical point below that the infection prevalence is null. On the contrary, on a wide range of scale-free networks we observe the absence of an epidemic threshold and its associated critical behavior. This implies that scale-free networks are prone to the spreading and the persistence of infections whatever spreading rate the epidemic agents might possess. These results can help understanding computer virus epidemics and other spreading phenomena on communication and social networks.
Epidemic dynamics and endemic states in complex networks
International Nuclear Information System (INIS)
Pastor-Satorras, Romualdo; Vespignani, Alessandro
2001-01-01
We study by analytical methods and large scale simulations a dynamical model for the spreading of epidemics in complex networks. In networks with exponentially bounded connectivity we recover the usual epidemic behavior with a threshold defining a critical point below that the infection prevalence is null. On the contrary, on a wide range of scale-free networks we observe the absence of an epidemic threshold and its associated critical behavior. This implies that scale-free networks are prone to the spreading and the persistence of infections whatever spreading rate the epidemic agents might possess. These results can help understanding computer virus epidemics and other spreading phenomena on communication and social networks
Characterization of Static/Dynamic Topological Routing For Grid Networks
DEFF Research Database (Denmark)
Gutierrez Lopez, Jose Manuel; Cuevas, Ruben; Riaz, M. Tahir
2009-01-01
Grid or 2D Mesh structures are becoming one of the most attractive network topologies to study. They can be used in many different fields raging from future broadband networks to multiprocessors structures. In addition, the high requirements of future services and applications demand more flexible...... and adaptive networks. Topological routing in grid networks is a simple and efficient alternative to traditional routing techniques, e.g. routing tables, and the paper extends this kind of routing providing a "Dynamic" attribute. This new property attempts to improve the overall network performance for future...
Dynamical Encoding by Networks of Competing Neuron Groups: Winnerless Competition
International Nuclear Information System (INIS)
Rabinovich, M.; Volkovskii, A.; Lecanda, P.; Huerta, R.; Abarbanel, H. D. I.; Laurent, G.
2001-01-01
Following studies of olfactory processing in insects and fish, we investigate neural networks whose dynamics in phase space is represented by orbits near the heteroclinic connections between saddle regions (fixed points or limit cycles). These networks encode input information as trajectories along the heteroclinic connections. If there are N neurons in the network, the capacity is approximately e(N-1) ! , i.e., much larger than that of most traditional network structures. We show that a small winnerless competition network composed of FitzHugh-Nagumo spiking neurons efficiently transforms input information into a spatiotemporal output
The Graph Laplacian and the Dynamics of Complex Networks
Energy Technology Data Exchange (ETDEWEB)
Thulasidasan, Sunil [Los Alamos National Laboratory
2012-06-11
In this talk, we explore the structure of networks from a spectral graph-theoretic perspective by analyzing the properties of the Laplacian matrix associated with the graph induced by a network. We will see how the eigenvalues of the graph Laplacian relate to the underlying network structure and dynamics and provides insight into a phenomenon frequently observed in real world networks - the emergence of collective behavior from purely local interactions seen in the coordinated motion of animals and phase transitions in biological networks, to name a few.
Recovery time after localized perturbations in complex dynamical networks
Mitra, Chiranjit; Kittel, Tim; Choudhary, Anshul; Kurths, Jürgen; Donner, Reik V.
2017-10-01
Maintaining the synchronous motion of dynamical systems interacting on complex networks is often critical to their functionality. However, real-world networked dynamical systems operating synchronously are prone to random perturbations driving the system to arbitrary states within the corresponding basin of attraction, thereby leading to epochs of desynchronized dynamics with a priori unknown durations. Thus, it is highly relevant to have an estimate of the duration of such transient phases before the system returns to synchrony, following a random perturbation to the dynamical state of any particular node of the network. We address this issue here by proposing the framework of single-node recovery time (SNRT) which provides an estimate of the relative time scales underlying the transient dynamics of the nodes of a network during its restoration to synchrony. We utilize this in differentiating the particularly slow nodes of the network from the relatively fast nodes, thus identifying the critical nodes which when perturbed lead to significantly enlarged recovery time of the system before resuming synchronized operation. Further, we reveal explicit relationships between the SNRT values of a network, and its global relaxation time when starting all the nodes from random initial conditions. Earlier work on relaxation time generally focused on investigating its dependence on macroscopic topological properties of the respective network. However, we employ the proposed concept for deducing microscopic relationships between topological features of nodes and their respective SNRT values. The framework of SNRT is further extended to a measure of resilience of the different nodes of a networked dynamical system. We demonstrate the potential of SNRT in networks of Rössler oscillators on paradigmatic topologies and a model of the power grid of the United Kingdom with second-order Kuramoto-type nodal dynamics illustrating the conceivable practical applicability of the proposed
Recovery time after localized perturbations in complex dynamical networks
International Nuclear Information System (INIS)
Mitra, Chiranjit; Kittel, Tim; Kurths, Jürgen; Donner, Reik V; Choudhary, Anshul
2017-01-01
Maintaining the synchronous motion of dynamical systems interacting on complex networks is often critical to their functionality. However, real-world networked dynamical systems operating synchronously are prone to random perturbations driving the system to arbitrary states within the corresponding basin of attraction, thereby leading to epochs of desynchronized dynamics with a priori unknown durations. Thus, it is highly relevant to have an estimate of the duration of such transient phases before the system returns to synchrony, following a random perturbation to the dynamical state of any particular node of the network. We address this issue here by proposing the framework of single-node recovery time (SNRT) which provides an estimate of the relative time scales underlying the transient dynamics of the nodes of a network during its restoration to synchrony. We utilize this in differentiating the particularly slow nodes of the network from the relatively fast nodes, thus identifying the critical nodes which when perturbed lead to significantly enlarged recovery time of the system before resuming synchronized operation. Further, we reveal explicit relationships between the SNRT values of a network, and its global relaxation time when starting all the nodes from random initial conditions. Earlier work on relaxation time generally focused on investigating its dependence on macroscopic topological properties of the respective network. However, we employ the proposed concept for deducing microscopic relationships between topological features of nodes and their respective SNRT values. The framework of SNRT is further extended to a measure of resilience of the different nodes of a networked dynamical system. We demonstrate the potential of SNRT in networks of Rössler oscillators on paradigmatic topologies and a model of the power grid of the United Kingdom with second-order Kuramoto-type nodal dynamics illustrating the conceivable practical applicability of the proposed
Successive lag synchronization on dynamical networks with communication delay
International Nuclear Information System (INIS)
Zhang Xin-Jian; Wei Ai-Ju; Li Ke-Zan
2016-01-01
In this paper, successive lag synchronization (SLS) on a dynamical network with communication delay is investigated. In order to achieve SLS on the dynamical network with communication delay, we design linear feedback control and adaptive control, respectively. By using the Lyapunov function method, we obtain some sufficient conditions for global stability of SLS. To verify these results, some numerical examples are further presented. This work may find potential applications in consensus of multi-agent systems. (paper)
Practical synchronization on complex dynamical networks via optimal pinning control
Li, Kezan; Sun, Weigang; Small, Michael; Fu, Xinchu
2015-07-01
We consider practical synchronization on complex dynamical networks under linear feedback control designed by optimal control theory. The control goal is to minimize global synchronization error and control strength over a given finite time interval, and synchronization error at terminal time. By utilizing the Pontryagin's minimum principle, and based on a general complex dynamical network, we obtain an optimal system to achieve the control goal. The result is verified by performing some numerical simulations on Star networks, Watts-Strogatz networks, and Barabási-Albert networks. Moreover, by combining optimal control and traditional pinning control, we propose an optimal pinning control strategy which depends on the network's topological structure. Obtained results show that optimal pinning control is very effective for synchronization control in real applications.
Complex networks: when random walk dynamics equals synchronization
International Nuclear Information System (INIS)
Kriener, Birgit; Anand, Lishma; Timme, Marc
2012-01-01
Synchrony prevalently emerges from the interactions of coupled dynamical units. For simple systems such as networks of phase oscillators, the asymptotic synchronization process is assumed to be equivalent to a Markov process that models standard diffusion or random walks on the same network topology. In this paper, we analytically derive the conditions for such equivalence for networks of pulse-coupled oscillators, which serve as models for neurons and pacemaker cells interacting by exchanging electric pulses or fireflies interacting via light flashes. We find that the pulse synchronization process is less simple, but there are classes of, e.g., network topologies that ensure equivalence. In particular, local dynamical operators are required to be doubly stochastic. These results provide a natural link between stochastic processes and deterministic synchronization on networks. Tools for analyzing diffusion (or, more generally, Markov processes) may now be transferred to pin down features of synchronization in networks of pulse-coupled units such as neural circuits. (paper)
Network dynamics in the healthy and epileptic developing brain
Directory of Open Access Journals (Sweden)
Richard Rosch
2018-03-01
Full Text Available Electroencephalography (EEG allows recording of cortical activity at high temporal resolution. EEG recordings can be summarized along different dimensions using network-level quantitative measures, such as channel-to-channel correlation, or band power distributions across channels. These reveal network patterns that unfold over a range of different timescales and can be tracked dynamically. Here we describe the dynamics of network state transitions in EEG recordings of spontaneous brain activity in normally developing infants and infants with severe early infantile epileptic encephalopathies (n = 8, age: 1–8 months. We describe differences in measures of EEG dynamics derived from band power, and correlation-based summaries of network-wide brain activity. We further show that EEGs from different patient groups and controls may be distinguishable on a small set of the novel quantitative measures introduced here, which describe dynamic network state switching. Quantitative measures related to the sharpness of switching from one correlation pattern to another show the largest differences between groups. These findings reveal that the early epileptic encephalopathies are associated with characteristic dynamic features at the network level. Quantitative network-based analyses like the one presented here may in the future inform the clinical use of quantitative EEG for diagnosis.
Network evolution driven by dynamics applied to graph coloring
International Nuclear Information System (INIS)
Wu Jian-She; Li Li-Guang; Yu Xin; Jiao Li-Cheng; Wang Xiao-Hua
2013-01-01
An evolutionary network driven by dynamics is studied and applied to the graph coloring problem. From an initial structure, both the topology and the coupling weights evolve according to the dynamics. On the other hand, the dynamics of the network are determined by the topology and the coupling weights, so an interesting structure-dynamics co-evolutionary scheme appears. By providing two evolutionary strategies, a network described by the complement of a graph will evolve into several clusters of nodes according to their dynamics. The nodes in each cluster can be assigned the same color and nodes in different clusters assigned different colors. In this way, a co-evolution phenomenon is applied to the graph coloring problem. The proposed scheme is tested on several benchmark graphs for graph coloring
Opinion evolution based on cellular automata rules in small world networks
Shi, Xiao-Ming; Shi, Lun; Zhang, Jie-Fang
2010-03-01
In this paper, we apply cellular automata rules, which can be given by a truth table, to human memory. We design each memory as a tracking survey mode that keeps the most recent three opinions. Each cellular automata rule, as a personal mechanism, gives the final ruling in one time period based on the data stored in one's memory. The key focus of the paper is to research the evolution of people's attitudes to the same question. Based on a great deal of empirical observations from computer simulations, all the rules can be classified into 20 groups. We highlight the fact that the phenomenon shown by some rules belonging to the same group will be altered within several steps by other rules in different groups. It is truly amazing that, compared with the last hundreds of presidential voting in America, the eras of important events in America's history coincide with the simulation results obtained by our model.
Dynamic photonic lightpaths in the StarPlane network
Grosso, P.; Marchal, D.; Maassen, J.; Bernier, E.; Xu, L.; de Laat, C.
2009-01-01
The StarPlane project enables users to dynamically control network photonic paths. Applications running on the Distributed ASCI Supercomputer (DAS-3) can manipulate wavelengths in the Dutch research and education network SURFnet6. The goal is to achieve fast switching times so that when the
Complete synchronization on multi-layer center dynamical networks
International Nuclear Information System (INIS)
Liu Meng; Shao Yingying; Fu Xinchu
2009-01-01
In this paper, complete synchronization of three-layer center networks is studied. By using linear stability analysis approach, several different coupling schemes of three-layer center networks with the Logistic map local dynamics are discussed, and the stability conditions for synchronization are illustrated via some examples.
Collaborative Recurrent Neural Networks forDynamic Recommender Systems
2016-11-22
JMLR: Workshop and Conference Proceedings 63:366–381, 2016 ACML 2016 Collaborative Recurrent Neural Networks for Dynamic Recommender Systems Young...an unprece- dented scale. Although such activity logs are abundantly available, most approaches to recommender systems are based on the rating...Recurrent Neural Network, Recommender System , Neural Language Model, Collaborative Filtering 1. Introduction As ever larger parts of the population
Popularity and Adolescent Friendship Networks : Selection and Influence Dynamics
Dijkstra, Jan Kornelis; Cillessen, Antonius H. N.; Borch, Casey
This study examined the dynamics of popularity in adolescent friendship networks across 3 years in middle school. Longitudinal social network modeling was used to identify selection and influence in the similarity of popularity among friends. It was argued that lower status adolescents strive to
Popularity and Adolescent Friendship Networks: Selection and Influence Dynamics
Dijkstra, J.K.; Cillessen, A.H.N.; Borch, C.
2013-01-01
This study examined the dynamics of popularity in adolescent friendship networks across 3 years in middle school. Longitudinal social network modeling was used to identify selection and influence in the similarity of popularity among friends. It was argued that lower status adolescents strive to
Popularity and Adolescent Friendship Networks: Selection and Influence Dynamics
Dijkstra, Jan Kornelis; Cillessen, Antonius H. N.; Borch, Casey
2013-01-01
This study examined the dynamics of popularity in adolescent friendship networks across 3 years in middle school. Longitudinal social network modeling was used to identify selection and influence in the similarity of popularity among friends. It was argued that lower status adolescents strive to enhance their status through befriending higher…
Non-homogeneous dynamic Bayesian networks for continuous data
Grzegorczyk, Marco; Husmeier, Dirk
Classical dynamic Bayesian networks (DBNs) are based on the homogeneous Markov assumption and cannot deal with non-homogeneous temporal processes. Various approaches to relax the homogeneity assumption have recently been proposed. The present paper presents a combination of a Bayesian network with
Developing a dynamic control system for mine compressed air networks
Van Heerden, S.W.; Pelzer, R.; Marais, J.H.
2014-01-01
Mines in general, make use of compressed air systems for daily operational activities. Compressed air on mines is traditionally distributed via compressed air ring networks where multiple shafts are supplied with compressed air from an integral system. These compressed air networks make use of a number of compressors feeding the ring from various locations in the network. While these mines have sophisticated control systems to control these compressors, they are not dynamic systems. Compresso...
Energy Technology Data Exchange (ETDEWEB)
Kulicke, B [Inst. fuer Hochspannungstechnik und Starkstromanlagen, Berlin (Germany); Schlegel, S [Inst. fuer Hochspannungstechnik und Starkstromanlagen, Berlin (Germany)
1993-06-28
An important part of network operation management is the estimation and maintenance of the security of supply. So far the control personnel has only been supported by static network analyses and safety calculations. The authors describe an expert system, which is coupled to a real time simulation program on a transputer basis, for dynamic network safety calculations. They also introduce the system concept and the most important functions of the expert system. (orig.)
Traffic dynamics on coupled spatial networks
International Nuclear Information System (INIS)
Du, Wen-Bo; Zhou, Xing-Lian; Chen, Zhen; Cai, Kai-Quan; Cao, Xian-Bin
2014-01-01
With the rapid development of modern traffic, various means of transportation systems make it more convenient and diversified for passengers to travel out. In this paper, we establish a two-layered spatial network model where the low-speed lower layer is a regular lattice and the high-speed upper layer is a scale-free network embedded in the lattice. Passengers will travel along the path with the minimal travel time, and they can transfer from one layer to the other, which will induce extra transfer cost. We extensively investigate the traffic process on these coupled spatial networks and focus on the effect of the parameter α, the speed ratio between two networks. It is found that, as α grows, the network capacity of the coupled networks increases in the early stage and then decreases, indicating that cooperation between the coupled networks will induce the highest network capacity at an optimal α. We then provide an explanation for this non-monotonous dependence from a micro-scope point of view. The travel time reliability is also examined. Both in free-flow state and congestion state, the travel time is linearly related to the Euclidean distance. However, the variance of travel time in the congestion state is remarkably larger than that in the free-flow state, namely, people have to set aside more redundant time in an unreliable traffic system
International Nuclear Information System (INIS)
Montani, S.; Portinale, L.; Bobbio, A.; Codetta-Raiteri, D.
2008-01-01
In this paper, we present RADYBAN (Reliability Analysis with DYnamic BAyesian Networks), a software tool which allows to analyze a dynamic fault tree relying on its conversion into a dynamic Bayesian network. The tool implements a modular algorithm for automatically translating a dynamic fault tree into the corresponding dynamic Bayesian network and exploits classical algorithms for the inference on dynamic Bayesian networks, in order to compute reliability measures. After having described the basic features of the tool, we show how it operates on a real world example and we compare the unreliability results it generates with those returned by other methodologies, in order to verify the correctness and the consistency of the results obtained
Small Worlds Week: An online celebration of planetary science using social media to reach millions
Mayo, Louis
2015-11-01
In celebration of the many recent discoveries from New Horizons, Dawn, Rosetta, and Cassini, NASA launched Small Worlds Week, an online, social media driven outreach program leveraging the infrastructure of Sun-Earth Days that included a robust web design, exemplary education materials, hands-on fun activities, multimedia resources, science and career highlights, and a culminating social media event. Each day from July 6-9, a new class of solar system small worlds was featured on the website: Monday-comets, Tuesday-asteroids, Wednesday-icy moons, and Thursday-dwarf planets. Then on Friday, July 10, nine scientists from Goddard Space Flight Center, Jet Propulsion Laboratory, Naval Research Laboratory, and Lunar and Planetary Institute gathered online for four hours to answer questions from the public via Facebook and Twitter. Throughout the afternoon the scientists worked closely with a social media expert and several summer interns to reply to inquirers and to archive their chats. By all accounts, Small Worlds Week was a huge success with 37 million potential views of the social media Q&A posts. The group plans to improve and replicate the program during the school year with a more classroom focus, and then to build and extend the program to be held every year. For more information, visit http:// sunearthday.nasa.gov or catch us on Twitter, #nasasww.
Functional clustering in hippocampal cultures: relating network structure and dynamics
International Nuclear Information System (INIS)
Feldt, S; Dzakpasu, R; Olariu, E; Żochowski, M; Wang, J X; Shtrahman, E
2010-01-01
In this work we investigate the relationship between gross anatomic structural network properties, neuronal dynamics and the resultant functional structure in dissociated rat hippocampal cultures. Specifically, we studied cultures as they developed under two conditions: the first supporting glial cell growth (high glial group), and the second one inhibiting it (low glial group). We then compared structural network properties and the spatio-temporal activity patterns of the neurons. Differences in dynamics between the two groups could be linked to the impact of the glial network on the neuronal network as the cultures developed. We also implemented a recently developed algorithm called the functional clustering algorithm (FCA) to obtain the resulting functional network structure. We show that this new algorithm is useful for capturing changes in functional network structure as the networks evolve over time. The FCA detects changes in functional structure that are consistent with expected dynamical differences due to the impact of the glial network. Cultures in the high glial group show an increase in global synchronization as the cultures age, while those in the low glial group remain locally synchronized. We additionally use the FCA to quantify the amount of synchronization present in the cultures and show that the total level of synchronization in the high glial group is stronger than in the low glial group. These results indicate an interdependence between the glial and neuronal networks present in dissociated cultures
Discriminating lysosomal membrane protein types using dynamic neural network.
Tripathi, Vijay; Gupta, Dwijendra Kumar
2014-01-01
This work presents a dynamic artificial neural network methodology, which classifies the proteins into their classes from their sequences alone: the lysosomal membrane protein classes and the various other membranes protein classes. In this paper, neural networks-based lysosomal-associated membrane protein type prediction system is proposed. Different protein sequence representations are fused to extract the features of a protein sequence, which includes seven feature sets; amino acid (AA) composition, sequence length, hydrophobic group, electronic group, sum of hydrophobicity, R-group, and dipeptide composition. To reduce the dimensionality of the large feature vector, we applied the principal component analysis. The probabilistic neural network, generalized regression neural network, and Elman regression neural network (RNN) are used as classifiers and compared with layer recurrent network (LRN), a dynamic network. The dynamic networks have memory, i.e. its output depends not only on the input but the previous outputs also. Thus, the accuracy of LRN classifier among all other artificial neural networks comes out to be the highest. The overall accuracy of jackknife cross-validation is 93.2% for the data-set. These predicted results suggest that the method can be effectively applied to discriminate lysosomal associated membrane proteins from other membrane proteins (Type-I, Outer membrane proteins, GPI-Anchored) and Globular proteins, and it also indicates that the protein sequence representation can better reflect the core feature of membrane proteins than the classical AA composition.
Fractional Hopfield Neural Networks: Fractional Dynamic Associative Recurrent Neural Networks.
Pu, Yi-Fei; Yi, Zhang; Zhou, Ji-Liu
2017-10-01
This paper mainly discusses a novel conceptual framework: fractional Hopfield neural networks (FHNN). As is commonly known, fractional calculus has been incorporated into artificial neural networks, mainly because of its long-term memory and nonlocality. Some researchers have made interesting attempts at fractional neural networks and gained competitive advantages over integer-order neural networks. Therefore, it is naturally makes one ponder how to generalize the first-order Hopfield neural networks to the fractional-order ones, and how to implement FHNN by means of fractional calculus. We propose to introduce a novel mathematical method: fractional calculus to implement FHNN. First, we implement fractor in the form of an analog circuit. Second, we implement FHNN by utilizing fractor and the fractional steepest descent approach, construct its Lyapunov function, and further analyze its attractors. Third, we perform experiments to analyze the stability and convergence of FHNN, and further discuss its applications to the defense against chip cloning attacks for anticounterfeiting. The main contribution of our work is to propose FHNN in the form of an analog circuit by utilizing a fractor and the fractional steepest descent approach, construct its Lyapunov function, prove its Lyapunov stability, analyze its attractors, and apply FHNN to the defense against chip cloning attacks for anticounterfeiting. A significant advantage of FHNN is that its attractors essentially relate to the neuron's fractional order. FHNN possesses the fractional-order-stability and fractional-order-sensitivity characteristics.
Maritime piracy situation modelling with dynamic Bayesian networks
CSIR Research Space (South Africa)
Dabrowski, James M
2015-05-01
Full Text Available A generative model for modelling maritime vessel behaviour is proposed. The model is a novel variant of the dynamic Bayesian network (DBN). The proposed DBN is in the form of a switching linear dynamic system (SLDS) that has been extended into a...
Stochastic Online Learning in Dynamic Networks under Unknown Models
2016-08-02
The key is to develop online learning strategies at each individual node. Specifically, through local information exchange with its neighbors, each...infinitely repeated game with incomplete information and developed a dynamic pricing strategy referred to as Competitive and Cooperative Demand Learning...Stochastic Online Learning in Dynamic Networks under Unknown Models This research aims to develop fundamental theories and practical algorithms for
The Dynamics of network and dyad level supply management
DEFF Research Database (Denmark)
Ellegaard, Chris
-supplier relation and its immediate network context, are presented. In analysing the data, the dynamic interdependency between management of one level and management of the other, will be demonstrated. The analysis reveals a need for an alternating approach to supply management, which takes the dynamic complexity...
Classification of networks of automata by dynamical mean field theory
International Nuclear Information System (INIS)
Burda, Z.; Jurkiewicz, J.; Flyvbjerg, H.
1990-01-01
Dynamical mean field theory is used to classify the 2 24 =65,536 different networks of binary automata on a square lattice with nearest neighbour interactions. Application of mean field theory gives 700 different mean field classes, which fall in seven classes of different asymptotic dynamics characterized by fixed points and two-cycles. (orig.)
Dynamic baseline detection method for power data network service
Chen, Wei
2017-08-01
This paper proposes a dynamic baseline Traffic detection Method which is based on the historical traffic data for the Power data network. The method uses Cisco's NetFlow acquisition tool to collect the original historical traffic data from network element at fixed intervals. This method uses three dimensions information including the communication port, time, traffic (number of bytes or number of packets) t. By filtering, removing the deviation value, calculating the dynamic baseline value, comparing the actual value with the baseline value, the method can detect whether the current network traffic is abnormal.
Spatial price dynamics: From complex network perspective
Li, Y. L.; Bi, J. T.; Sun, H. J.
2008-10-01
The spatial price problem means that if the supply price plus the transportation cost is less than the demand price, there exists a trade. Thus, after an amount of exchange, the demand price will decrease. This process is continuous until an equilibrium state is obtained. However, how the trade network structure affects this process has received little attention. In this paper, we give a evolving model to describe the levels of spatial price on different complex network structures. The simulation results show that the network with shorter path length is sensitive to the variation of prices.
Scalable Approaches to Control Network Dynamics: Prospects for City Networks
Motter, Adilson E.; Gray, Kimberly A.
2014-07-01
A city is a complex, emergent system and as such can be conveniently represented as a network of interacting components. A fundamental aspect of networks is that the systemic properties can depend as much on the interactions as they depend on the properties of the individual components themselves. Another fundamental aspect is that changes to one component can affect other components, in a process that may cause the entire or a substantial part of the system to change behavior. Over the past 2 decades, much research has been done on the modeling of large and complex networks involved in communication and transportation, disease propagation, and supply chains, as well as emergent phenomena, robustness and optimization in such systems...
Extracting neuronal functional network dynamics via adaptive Granger causality analysis.
Sheikhattar, Alireza; Miran, Sina; Liu, Ji; Fritz, Jonathan B; Shamma, Shihab A; Kanold, Patrick O; Babadi, Behtash
2018-04-24
Quantifying the functional relations between the nodes in a network based on local observations is a key challenge in studying complex systems. Most existing time series analysis techniques for this purpose provide static estimates of the network properties, pertain to stationary Gaussian data, or do not take into account the ubiquitous sparsity in the underlying functional networks. When applied to spike recordings from neuronal ensembles undergoing rapid task-dependent dynamics, they thus hinder a precise statistical characterization of the dynamic neuronal functional networks underlying adaptive behavior. We develop a dynamic estimation and inference paradigm for extracting functional neuronal network dynamics in the sense of Granger, by integrating techniques from adaptive filtering, compressed sensing, point process theory, and high-dimensional statistics. We demonstrate the utility of our proposed paradigm through theoretical analysis, algorithm development, and application to synthetic and real data. Application of our techniques to two-photon Ca 2+ imaging experiments from the mouse auditory cortex reveals unique features of the functional neuronal network structures underlying spontaneous activity at unprecedented spatiotemporal resolution. Our analysis of simultaneous recordings from the ferret auditory and prefrontal cortical areas suggests evidence for the role of rapid top-down and bottom-up functional dynamics across these areas involved in robust attentive behavior.
Dynamic properties of epidemic spreading on finite size complex networks
Li, Ying; Liu, Yang; Shan, Xiu-Ming; Ren, Yong; Jiao, Jian; Qiu, Ben
2005-11-01
The Internet presents a complex topological structure, on which computer viruses can easily spread. By using theoretical analysis and computer simulation methods, the dynamic process of disease spreading on finite size networks with complex topological structure is investigated. On the finite size networks, the spreading process of SIS (susceptible-infected-susceptible) model is a finite Markov chain with an absorbing state. Two parameters, the survival probability and the conditional infecting probability, are introduced to describe the dynamic properties of disease spreading on finite size networks. Our results can help understanding computer virus epidemics and other spreading phenomena on communication and social networks. Also, knowledge about the dynamic character of virus spreading is helpful for adopting immunity policy.
Congested Link Inference Algorithms in Dynamic Routing IP Network
Directory of Open Access Journals (Sweden)
Yu Chen
2017-01-01
Full Text Available The performance descending of current congested link inference algorithms is obviously in dynamic routing IP network, such as the most classical algorithm CLINK. To overcome this problem, based on the assumptions of Markov property and time homogeneity, we build a kind of Variable Structure Discrete Dynamic Bayesian (VSDDB network simplified model of dynamic routing IP network. Under the simplified VSDDB model, based on the Bayesian Maximum A Posteriori (BMAP and Rest Bayesian Network Model (RBNM, we proposed an Improved CLINK (ICLINK algorithm. Considering the concurrent phenomenon of multiple link congestion usually happens, we also proposed algorithm CLILRS (Congested Link Inference algorithm based on Lagrangian Relaxation Subgradient to infer the set of congested links. We validated our results by the experiments of analogy, simulation, and actual Internet.
Actin dynamics and the elasticity of cytoskeletal networks
Directory of Open Access Journals (Sweden)
2009-09-01
Full Text Available The structural integrity of a cell depends on its cytoskeleton, which includes an actin network. This network is transient and depends upon the continual polymerization and depolymerization of actin. The degradation of an actin network, and a corresponding reduction in cell stiffness, can indicate the presence of disease. Numerical simulations will be invaluable for understanding the physics of these systems and the correlation between actin dynamics and elasticity. Here we develop a model that is capable of generating actin network structures. In particular, we develop a model of actin dynamics which considers the polymerization, depolymerization, nucleation, severing, and capping of actin filaments. The structures obtained are then fed directly into a mechanical model. This allows us to qualitatively assess the effects of changing various parameters associated with actin dynamics on the elasticity of the material.
Agent Based Modeling on Organizational Dynamics of Terrorist Network
Directory of Open Access Journals (Sweden)
Bo Li
2015-01-01
Full Text Available Modeling organizational dynamics of terrorist network is a critical issue in computational analysis of terrorism research. The first step for effective counterterrorism and strategic intervention is to investigate how the terrorists operate with the relational network and what affects the performance. In this paper, we investigate the organizational dynamics by employing a computational experimentation methodology. The hierarchical cellular network model and the organizational dynamics model are developed for modeling the hybrid relational structure and complex operational processes, respectively. To intuitively elucidate this method, the agent based modeling is used to simulate the terrorist network and test the performance in diverse scenarios. Based on the experimental results, we show how the changes of operational environments affect the development of terrorist organization in terms of its recovery and capacity to perform future tasks. The potential strategies are also discussed, which can be used to restrain the activities of terrorists.
Dynamic Virtual LANs for Adaptive Network Security
National Research Council Canada - National Science Library
Merani, Diego; Berni, Alessandro; Leonard, Michel
2004-01-01
The development of Network-Enabled capabilities in support of undersea research requires architectures for the interconnection and data sharing that are flexible, scalable, and built on open standards...
Value network dynamics and industry evolution
Vermeulen, B.
2012-01-01
Machines, appliances, and consumption goods are developed and produced in value networks populated by firms ranging from final assemblers, component suppliers, complement providers, the suppliers’ suppliers, all the way upstream to firms that extrude raw material. Evolutionary models of industry
Dynamic Data-Driven UAV Network for Plume Characterization
2016-05-23
AFRL-AFOSR-VA-TR-2016-0203 Dynamic Data-Driven UAV Network for Plume Characterization Kamran Mohseni UNIVERSITY OF FLORIDA Final Report 05/23/2016...AND SUBTITLE Dynamic Data-Driven UAV Network for Plume Characterization 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-13-1-0090 5c. PROGRAM ELEMENT...studied a dynamic data driven (DDD) approach to operation of a heterogeneous team of unmanned aerial vehicles ( UAVs ) or micro/miniature aerial
Network Reconstruction of Dynamic Biological Systems
Asadi, Behrang
2013-01-01
Inference of network topology from experimental data is a central endeavor in biology, since knowledge of the underlying signaling mechanisms a requirement for understanding biological phenomena. As one of the most important tools in bioinformatics area, development of methods to reconstruct biological networks has attracted remarkable attention in the current decade. Integration of different data types can lead to remarkable improvements in our ability to identify the connectivity of differe...
Connectivity, topology and dynamics in climate networks
Czech Academy of Sciences Publication Activity Database
Paluš, Milan; Hartman, David; Hlinka, Jaroslav; Vejmelka, Martin
2012-01-01
Roč. 14, - (2012), s. 8397 ISSN 1607-7962. [European Geosciences Union General Assembly 2012. 22.04.2012-27.04.2012, Vienna] R&D Projects: GA ČR GCP103/11/J068 Institutional support: RVO:67985807 Keywords : complex networks * climate network * connectivity * entropy rate * El Nino Southern Oscillation * North Atlantic Oscillation Subject RIV: BB - Applied Statistics, Operational Research
Dynamic Aggregation Protocol for Wireless Sensor Networks
Mounir Said , Adel; William Ibrahim , Ashraf; Soua , Ahmed; Afifi , Hossam
2013-01-01
International audience; Sensor networks suffer from limited capabilities such as bandwidth, low processing power, and memory size. There is therefore a need for protocols that deliver sensor data in an energy-efficient way to the sink. One of those techniques, it gathers sensors' data in a small size packet suitable for transmission. In this paper, we propose a new Effective Data Aggregation Protocol (DAP) to reduce the energy consumption in Wireless Sensor Networks (WSNs), which prolongs the...
Analysing Stagecoach Network Problem Using Dynamic ...
African Journals Online (AJOL)
In this paper we present a recursive dynamic programming algorithm for solving the stagecoach problem. The algorithm is computationally more efficient than the first method as it obtains its minimum total cost using the suboptimal policies of the different stages without computing the cost of all the routes. By the dynamic ...
Identifying and tracking dynamic processes in social networks
Chung, Wayne; Savell, Robert; Schütt, Jan-Peter; Cybenko, George
2006-05-01
The detection and tracking of embedded malicious subnets in an active social network can be computationally daunting due to the quantity of transactional data generated in the natural interaction of large numbers of actors comprising a network. In addition, detection of illicit behavior may be further complicated by evasive strategies designed to camouflage the activities of the covert subnet. In this work, we move beyond traditional static methods of social network analysis to develop a set of dynamic process models which encode various modes of behavior in active social networks. These models will serve as the basis for a new application of the Process Query System (PQS) to the identification and tracking of covert dynamic processes in social networks. We present a preliminary result from application of our technique in a real-world data stream-- the Enron email corpus.
A Scalable Distribution Network Risk Evaluation Framework via Symbolic Dynamics
Yuan, Kai; Liu, Jian; Liu, Kaipei; Tan, Tianyuan
2015-01-01
Background Evaluations of electric power distribution network risks must address the problems of incomplete information and changing dynamics. A risk evaluation framework should be adaptable to a specific situation and an evolving understanding of risk. Methods This study investigates the use of symbolic dynamics to abstract raw data. After introducing symbolic dynamics operators, Kolmogorov-Sinai entropy and Kullback-Leibler relative entropy are used to quantitatively evaluate relationships between risk sub-factors and main factors. For layered risk indicators, where the factors are categorized into four main factors – device, structure, load and special operation – a merging algorithm using operators to calculate the risk factors is discussed. Finally, an example from the Sanya Power Company is given to demonstrate the feasibility of the proposed method. Conclusion Distribution networks are exposed and can be affected by many things. The topology and the operating mode of a distribution network are dynamic, so the faults and their consequences are probabilistic. PMID:25789859
Cytoskeleton dynamics: Fluctuations within the network
International Nuclear Information System (INIS)
Bursac, Predrag; Fabry, Ben; Trepat, Xavier; Lenormand, Guillaume; Butler, James P.; Wang, Ning; Fredberg, Jeffrey J.; An, Steven S.
2007-01-01
Out-of-equilibrium systems, such as the dynamics of a living cytoskeleton (CSK), are inherently noisy with fluctuations arising from the stochastic nature of the underlying biochemical and molecular events. Recently, such fluctuations within the cell were characterized by observing spontaneous nano-scale motions of an RGD-coated microbead bound to the cell surface [Bursac et al., Nat. Mater. 4 (2005) 557-561]. While these reported anomalous bead motions represent a molecular level reorganization (remodeling) of microstructures in contact with the bead, a precise nature of these cytoskeletal constituents and forces that drive their remodeling dynamics are largely unclear. Here, we focused upon spontaneous motions of an RGD-coated bead and, in particular, assessed to what extent these motions are attributable to (i) bulk cell movement (cell crawling), (ii) dynamics of focal adhesions, (iii) dynamics of lipid membrane, and/or (iv) dynamics of the underlying actin CSK driven by myosin motors
State-dependent intrinsic predictability of cortical network dynamics.
Directory of Open Access Journals (Sweden)
Leila Fakhraei
Full Text Available The information encoded in cortical circuit dynamics is fleeting, changing from moment to moment as new input arrives and ongoing intracortical interactions progress. A combination of deterministic and stochastic biophysical mechanisms governs how cortical dynamics at one moment evolve from cortical dynamics in recently preceding moments. Such temporal continuity of cortical dynamics is fundamental to many aspects of cortex function but is not well understood. Here we study temporal continuity by attempting to predict cortical population dynamics (multisite local field potential based on its own recent history in somatosensory cortex of anesthetized rats and in a computational network-level model. We found that the intrinsic predictability of cortical dynamics was dependent on multiple factors including cortical state, synaptic inhibition, and how far into the future the prediction extends. By pharmacologically tuning synaptic inhibition, we obtained a continuum of cortical states with asynchronous population activity at one extreme and stronger, spatially extended synchrony at the other extreme. Intermediate between these extremes we observed evidence for a special regime of population dynamics called criticality. Predictability of the near future (10-100 ms increased as the cortical state was tuned from asynchronous to synchronous. Predictability of the more distant future (>1 s was generally poor, but, surprisingly, was higher for asynchronous states compared to synchronous states. These experimental results were confirmed in a computational network model of spiking excitatory and inhibitory neurons. Our findings demonstrate that determinism and predictability of network dynamics depend on cortical state and the time-scale of the dynamics.
Tourist activated networks: Implications for dynamic packaging systems in tourism
DEFF Research Database (Denmark)
Zach, Florian; Gretzel, Ulrike; Fesenmaier, Daniel R.
2008-01-01
This paper discusses tourist activated networks as a concept to inform technological applications supporting dynamic bundling and en-route recommendations. Empirical data was collected from travellers who visited a regional destination in the US and then analyzed with respect to its network...... structure. The results indicate that the tourist activated network for the destination is rather sparse and that there are clearly differences in core and peripheral nodes. The findings illustrate the structure of a tourist activated network and provide implications for technology design and tourism...
Irrelevant stimulus processing in ADHD: catecholamine dynamics and attentional networks
Directory of Open Access Journals (Sweden)
Francisco eAboitiz
2014-03-01
Full Text Available A cardinal symptom of Attenion Deficit and Hyperactivity Disorder (ADHD is a general distractibility where children and adults shift their attentional focus to stimuli that are irrelevant to the ongoing behavior. This has been attributed to a deficit in dopaminergic signaling in cortico-striatal networks that regulate goal-directed behavior. Furthermore, recent imaging evidence points to an impairment of large scale, antagonistic brain networks that normally contribute to attentional engagement and disengagement, such as the task-positive networks and the Default Mode Network (DMN. Related networks are the ventral attentional network (VAN involved in attentional shifting, and the salience network (SN related to task expectancy. Here we discuss the tonic-phasic dynamics of catecholaminergic signaling in the brain, and attempt to provide a link between this and the activities of the large-scale cortical networks that regulate behavior. More specifically, we propose that a disbalance of tonic catecholamine levels during task performance produce an emphasis of phasic signaling and increased excitability of the VAN, yielding distractibility symptoms. Likewise, immaturity of the SN may relate to abnormal tonic signaling and an incapacity to build up a proper executive system during task performance. We discuss different lines of evidence including pharmacology, brain imaging and electrophysiology, that are consistent with our proposal. Finally, restoring the pharmacodynamics of catecholaminergic signaling seems crucial to alleviate ADHD symptoms; however, the possibility is open to explore cognitive rehabilitation strategies to top-down modulate network dynamics compensating the pharmacological deficits.
Rumor Diffusion in an Interests-Based Dynamic Social Network
Directory of Open Access Journals (Sweden)
Mingsheng Tang
2013-01-01
Full Text Available To research rumor diffusion in social friend network, based on interests, a dynamic friend network is proposed, which has the characteristics of clustering and community, and a diffusion model is also proposed. With this friend network and rumor diffusion model, based on the zombie-city model, some simulation experiments to analyze the characteristics of rumor diffusion in social friend networks have been conducted. The results show some interesting observations: (1 positive information may evolve to become a rumor through the diffusion process that people may modify the information by word of mouth; (2 with the same average degree, a random social network has a smaller clustering coefficient and is more beneficial for rumor diffusion than the dynamic friend network; (3 a rumor is spread more widely in a social network with a smaller global clustering coefficient than in a social network with a larger global clustering coefficient; and (4 a network with a smaller clustering coefficient has a larger efficiency.
Employing Deceptive Dynamic Network Topology Through Software-Defined Networking
2014-03-01
actions. From [64] . . . . . 37 xi THIS PAGE INTENTIONALLY LEFT BLANK xii List of Acronyms and Abbreviations ACL Access Control List API Application...can be extremely useful in topology mapping through various latency-based geolocation methods [35], [36], [37]. PING 1 7 2 . 2 0 . 5 . 2 ( 1 7 2 . 2 0...defined northbound Applica- tion Programming Interfaces ( APIs ). Figure 3.1: Software-Defined Network Architecture. From [8] 29 3.3 SDN OpenFlow
Recruitment dynamics in adaptive social networks
International Nuclear Information System (INIS)
Shkarayev, Maxim S; Shaw, Leah B; Schwartz, Ira B
2013-01-01
We model recruitment in adaptive social networks in the presence of birth and death processes. Recruitment is characterized by nodes changing their status to that of the recruiting class as a result of contact with recruiting nodes. Only a susceptible subset of nodes can be recruited. The recruiting individuals may adapt their connections in order to improve recruitment capabilities, thus changing the network structure adaptively. We derive a mean-field theory to predict the dependence of the growth threshold of the recruiting class on the adaptation parameter. Furthermore, we investigate the effect of adaptation on the recruitment level, as well as on network topology. The theoretical predictions are compared with direct simulations of the full system. We identify two parameter regimes with qualitatively different bifurcation diagrams depending on whether nodes become susceptible frequently (multiple times in their lifetime) or rarely (much less than once per lifetime). (paper)
Recruitment dynamics in adaptive social networks
Shkarayev, Maxim S.; Schwartz, Ira B.; Shaw, Leah B.
2013-06-01
We model recruitment in adaptive social networks in the presence of birth and death processes. Recruitment is characterized by nodes changing their status to that of the recruiting class as a result of contact with recruiting nodes. Only a susceptible subset of nodes can be recruited. The recruiting individuals may adapt their connections in order to improve recruitment capabilities, thus changing the network structure adaptively. We derive a mean-field theory to predict the dependence of the growth threshold of the recruiting class on the adaptation parameter. Furthermore, we investigate the effect of adaptation on the recruitment level, as well as on network topology. The theoretical predictions are compared with direct simulations of the full system. We identify two parameter regimes with qualitatively different bifurcation diagrams depending on whether nodes become susceptible frequently (multiple times in their lifetime) or rarely (much less than once per lifetime).
Dynamic artificial neural networks with affective systems.
Directory of Open Access Journals (Sweden)
Catherine D Schuman
Full Text Available Artificial neural networks (ANNs are processors that are trained to perform particular tasks. We couple a computational ANN with a simulated affective system in order to explore the interaction between the two. In particular, we design a simple affective system that adjusts the threshold values in the neurons of our ANN. The aim of this paper is to demonstrate that this simple affective system can control the firing rate of the ensemble of neurons in the ANN, as well as to explore the coupling between the affective system and the processes of long term potentiation (LTP and long term depression (LTD, and the effect of the parameters of the affective system on its performance. We apply our networks with affective systems to a simple pole balancing example and briefly discuss the effect of affective systems on network performance.
Cortical electrophysiological network dynamics of feedback learning
Cohen, M.X.; Wilmes, K.A.; van de Vijver, I.
2011-01-01
Understanding the neurophysiological mechanisms of learning is important for both fundamental and clinical neuroscience. We present a neurophysiologically inspired framework for understanding cortical mechanisms of feedback-guided learning. This framework is based on dynamic changes in systems-level
Kim, Sang-Yoon; Lim, Woochang
2017-10-01
For studying how dynamical responses to external stimuli depend on the synaptic-coupling type, we consider two types of excitatory and inhibitory synchronization (i.e., synchronization via synaptic excitation and inhibition) in complex small-world networks of excitatory regular spiking (RS) pyramidal neurons and inhibitory fast spiking (FS) interneurons. For both cases of excitatory and inhibitory synchronization, effects of synaptic couplings on dynamical responses to external time-periodic stimuli S ( t ) (applied to a fraction of neurons) are investigated by varying the driving amplitude A of S ( t ). Stimulated neurons are phase-locked to external stimuli for both cases of excitatory and inhibitory couplings. On the other hand, the stimulation effect on non-stimulated neurons depends on the type of synaptic coupling. The external stimulus S ( t ) makes a constructive effect on excitatory non-stimulated RS neurons (i.e., it causes external phase lockings in the non-stimulated sub-population), while S ( t ) makes a destructive effect on inhibitory non-stimulated FS interneurons (i.e., it breaks up original inhibitory synchronization in the non-stimulated sub-population). As results of these different effects of S ( t ), the type and degree of dynamical response (e.g., synchronization enhancement or suppression), characterized by the dynamical response factor [Formula: see text] (given by the ratio of synchronization degree in the presence and absence of stimulus), are found to vary in a distinctly different way, depending on the synaptic-coupling type. Furthermore, we also measure the matching degree between the dynamics of the two sub-populations of stimulated and non-stimulated neurons in terms of a "cross-correlation" measure [Formula: see text]. With increasing A , based on [Formula: see text], we discuss the cross-correlations between the two sub-populations, affecting the dynamical responses to S ( t ).
The topology and dynamics of complex networks
Dezso, Zoltan
We start with a brief introduction about the topological properties of real networks. Most real networks are scale-free, being characterized by a power-law degree distribution. The scale-free nature of real networks leads to unexpected properties such as the vanishing epidemic threshold. Traditional methods aiming to reduce the spreading rate of viruses cannot succeed on eradicating the epidemic on a scale-free network. We demonstrate that policies that discriminate between the nodes, curing mostly the highly connected nodes, can restore a finite epidemic threshold and potentially eradicate the virus. We find that the more biased a policy is towards the hubs, the more chance it has to bring the epidemic threshold above the virus' spreading rate. We continue by studying a large Web portal as a model system for a rapidly evolving network. We find that the visitation pattern of a news document decays as a power law, in contrast with the exponential prediction provided by simple models of site visitation. This is rooted in the inhomogeneous nature of the browsing pattern characterizing individual users: the time interval between consecutive visits by the same user to the site follows a power law distribution, in contrast with the exponential expected for Poisson processes. We show that the exponent characterizing the individual user's browsing patterns determines the power-law decay in a document's visitation. Finally, we turn our attention to biological networks and demonstrate quantitatively that protein complexes in the yeast, Saccharomyces cerevisiae, are comprised of a core in which subunits are highly coexpressed, display the same deletion phenotype (essential or non-essential) and share identical functional classification and cellular localization. The results allow us to define the deletion phenotype and cellular task of most known complexes, and to identify with high confidence the biochemical role of hundreds of proteins with yet unassigned functionality.
Reliability-based Dynamic Network Design with Stochastic Networks
Li, H.
2009-01-01
Transportation systems are stochastic and dynamic systems. The road capacities and the travel demand are fluctuating from time to time within a day and at the same time from day to day. For road users, the travel time and travel costs experienced over time and space are stochastic, thus desire
Predictive coding of dynamical variables in balanced spiking networks.
Boerlin, Martin; Machens, Christian K; Denève, Sophie
2013-01-01
Two observations about the cortex have puzzled neuroscientists for a long time. First, neural responses are highly variable. Second, the level of excitation and inhibition received by each neuron is tightly balanced at all times. Here, we demonstrate that both properties are necessary consequences of neural networks that represent information efficiently in their spikes. We illustrate this insight with spiking networks that represent dynamical variables. Our approach is based on two assumptions: We assume that information about dynamical variables can be read out linearly from neural spike trains, and we assume that neurons only fire a spike if that improves the representation of the dynamical variables. Based on these assumptions, we derive a network of leaky integrate-and-fire neurons that is able to implement arbitrary linear dynamical systems. We show that the membrane voltage of the neurons is equivalent to a prediction error about a common population-level signal. Among other things, our approach allows us to construct an integrator network of spiking neurons that is robust against many perturbations. Most importantly, neural variability in our networks cannot be equated to noise. Despite exhibiting the same single unit properties as widely used population code models (e.g. tuning curves, Poisson distributed spike trains), balanced networks are orders of magnitudes more reliable. Our approach suggests that spikes do matter when considering how the brain computes, and that the reliability of cortical representations could have been strongly underestimated.
Salience network dynamics underlying successful resistance of temptation
Nomi, Jason S; Calhoun, Vince D; Stelzel, Christine; Paschke, Lena M; Gaschler, Robert; Goschke, Thomas; Walter, Henrik; Uddin, Lucina Q
2017-01-01
Abstract Self-control and the ability to resist temptation are critical for successful completion of long-term goals. Contemporary models in cognitive neuroscience emphasize the primary role of prefrontal cognitive control networks in aligning behavior with such goals. Here, we use gaze pattern analysis and dynamic functional connectivity fMRI data to explore how individual differences in the ability to resist temptation are related to intrinsic brain dynamics of the cognitive control and salience networks. Behaviorally, individuals exhibit greater gaze distance from target location (e.g. higher distractibility) during presentation of tempting erotic images compared with neutral images. Individuals whose intrinsic dynamic functional connectivity patterns gravitate toward configurations in which salience detection systems are less strongly coupled with visual systems resist tempting distractors more effectively. The ability to resist tempting distractors was not significantly related to intrinsic dynamics of the cognitive control network. These results suggest that susceptibility to temptation is governed in part by individual differences in salience network dynamics and provide novel evidence for involvement of brain systems outside canonical cognitive control networks in contributing to individual differences in self-control. PMID:29048582
Dynamic hydro-climatic networks in pristine and regulated rivers
Botter, G.; Basso, S.; Lazzaro, G.; Doulatyari, B.; Biswal, B.; Schirmer, M.; Rinaldo, A.
2014-12-01
Flow patterns observed at-a-station are the dynamical byproduct of a cascade of processes involving different compartments of the hydro-climatic network (e.g., climate, rainfall, soil, vegetation) that regulates the transformation of rainfall into streamflows. In complex branching rivers, flow regimes result from the heterogeneous arrangement around the stream network of multiple hydrologic cascades that simultaneously occur within distinct contributing areas. As such, flow regimes are seen as the integrated output of a complex "network of networks", which can be properly characterized by its degree of temporal variability and spatial heterogeneity. Hydrologic networks that generate river flow regimes are dynamic in nature. In pristine rivers, the time-variance naturally emerges at multiple timescales from climate variability (namely, seasonality and inter-annual fluctuations), implying that the magnitude (and the features) of the water flow between two nodes may be highly variable across different seasons and years. Conversely, the spatial distribution of river flow regimes within pristine rivers involves scale-dependent transport features, as well as regional climatic and soil use gradients, which in small and meso-scale catchments (A guarantee quite uniform flow regimes and high spatial correlations. Human-impacted rivers, instead, constitute hybrid networks where observed spatio-temporal patterns are dominated by anthropogenic shifts, such as landscape alterations and river regulation. In regulated rivers, the magnitude and the features of water flows from node to node may change significantly through time due to damming and withdrawals. However, regulation may impact river regimes in a spatially heterogeneous manner (e.g. in localized river reaches), with a significant decrease of spatial correlations and network connectivity. Provided that the spatial and temporal dynamics of flow regimes in complex rivers may strongly impact important biotic processes
The Effects of Observation Errors on the Attack Vulnerability of Complex Networks
2012-11-01
Watts & Strogatz , 1998), or scale-free communities (Lancichinetti & Fortunato, 2009)), a size (25, 50 or 100 nodes) and a density (0.01, 0.02, 0.05...D. J. & Strogatz , S. H., 1998. Collective dynamics of ’small-world’ networks. Nature, 4 June, Volume 393, pp. 440-442. 13. Wu, J., Deng, H.-Z
Cell fate reprogramming by control of intracellular network dynamics
Zanudo, Jorge G. T.; Albert, Reka
Identifying control strategies for biological networks is paramount for practical applications that involve reprogramming a cell's fate, such as disease therapeutics and stem cell reprogramming. Although the topic of controlling the dynamics of a system has a long history in control theory, most of this work is not directly applicable to intracellular networks. Here we present a network control method that integrates the structural and functional information available for intracellular networks to predict control targets. Formulated in a logical dynamic scheme, our control method takes advantage of certain function-dependent network components and their relation to steady states in order to identify control targets, which are guaranteed to drive any initial state to the target state with 100% effectiveness and need to be applied only transiently for the system to reach and stay in the desired state. We illustrate our method's potential to find intervention targets for cancer treatment and cell differentiation by applying it to a leukemia signaling network and to the network controlling the differentiation of T cells. We find that the predicted control targets are effective in a broad dynamic framework. Moreover, several of the predicted interventions are supported by experiments. This work was supported by NSF Grant PHY 1205840.
Impact of constrained rewiring on network structure and node dynamics
Rattana, P.; Berthouze, L.; Kiss, I. Z.
2014-11-01
In this paper, we study an adaptive spatial network. We consider a susceptible-infected-susceptible (SIS) epidemic on the network, with a link or contact rewiring process constrained by spatial proximity. In particular, we assume that susceptible nodes break links with infected nodes independently of distance and reconnect at random to susceptible nodes available within a given radius. By systematically manipulating this radius we investigate the impact of rewiring on the structure of the network and characteristics of the epidemic. We adopt a step-by-step approach whereby we first study the impact of rewiring on the network structure in the absence of an epidemic, then with nodes assigned a disease status but without disease dynamics, and finally running network and epidemic dynamics simultaneously. In the case of no labeling and no epidemic dynamics, we provide both analytic and semianalytic formulas for the value of clustering achieved in the network. Our results also show that the rewiring radius and the network's initial structure have a pronounced effect on the endemic equilibrium, with increasingly large rewiring radiuses yielding smaller disease prevalence.
Robust adaptive synchronization of general dynamical networks ...
Indian Academy of Sciences (India)
Home; Journals; Pramana – Journal of Physics; Volume 86; Issue 6. Robust ... A robust adaptive synchronization scheme for these general complex networks with multiple delays and uncertainties is established and raised by employing the robust adaptive control principle and the Lyapunov stability theory. We choose ...
Dynamic Optical Networks for Future Internet Environments
Matera, Francesco
2014-05-01
This article reports an overview on the evolution of the optical network scenario taking into account the exponential growth of connected devices, big data, and cloud computing that is driving a concrete transformation impacting the information and communication technology world. This hyper-connected scenario is deeply affecting relationships between individuals, enterprises, citizens, and public administrations, fostering innovative use cases in practically any environment and market, and introducing new opportunities and new challenges. The successful realization of this hyper-connected scenario depends on different elements of the ecosystem. In particular, it builds on connectivity and functionalities allowed by converged next-generation networks and their capacity to support and integrate with the Internet of Things, machine-to-machine, and cloud computing. This article aims at providing some hints of this scenario to contribute to analyze impacts on optical system and network issues and requirements. In particular, the role of the software-defined network is investigated by taking into account all scenarios regarding data centers, cloud computing, and machine-to-machine and trying to illustrate all the advantages that could be introduced by advanced optical communications.
Tahmassebi, Amirhessam; Pinker-Domenig, Katja; Wengert, Georg; Lobbes, Marc; Stadlbauer, Andreas; Romero, Francisco J.; Morales, Diego P.; Castillo, Encarnacion; Garcia, Antonio; Botella, Guillermo; Meyer-Bäse, Anke
2017-05-01
Graph network models in dementia have become an important computational technique in neuroscience to study fundamental organizational principles of brain structure and function of neurodegenerative diseases such as dementia. The graph connectivity is reflected in the connectome, the complete set of structural and functional connections of the graph network, which is mostly based on simple Pearson correlation links. In contrast to simple Pearson correlation networks, the partial correlations (PC) only identify direct correlations while indirect associations are eliminated. In addition to this, the state-of-the-art techniques in brain research are based on static graph theory, which is unable to capture the dynamic behavior of the brain connectivity, as it alters with disease evolution. We propose a new research avenue in neuroimaging connectomics based on combining dynamic graph network theory and modeling strategies at different time scales. We present the theoretical framework for area aggregation and time-scale modeling in brain networks as they pertain to disease evolution in dementia. This novel paradigm is extremely powerful, since we can derive both static parameters pertaining to node and area parameters, as well as dynamic parameters, such as system's eigenvalues. By implementing and analyzing dynamically both disease driven PC-networks and regular concentration networks, we reveal differences in the structure of these network that play an important role in the temporal evolution of this disease. The described research is key to advance biomedical research on novel disease prediction trajectories and dementia therapies.
DEFF Research Database (Denmark)
Hundebøll, Martin; Pedersen, Morten Videbæk; Roetter, Daniel Enrique Lucani
2014-01-01
This work studies the potential and impact of the FRANC network coding protocol for delivering high quality Dynamic Adaptive Streaming over HTTP (DASH) in wireless networks. Although DASH aims to tailor the video quality rate based on the available throughput to the destination, it relies...
International Nuclear Information System (INIS)
Zhang Ang-Hui; Li Xiao-Wen; Su Gui-Feng; Zhang Yi
2015-01-01
We present a multifractal detrended fluctuation analysis (MFDFA) of the time series of return generated by our recently-proposed Ising financial market model with underlying small world topology. The result of the MFDFA shows that there exists obvious multifractal scaling behavior in produced time series. We compare the MFDFA results for original time series with those for shuffled series, and find that its multifractal nature is due to two factors: broadness of probability density function of the series and different correlations in small- and large-scale fluctuations. This may provide new insight to the problem of the origin of multifractality in financial time series. (paper)
Dynamic Network Security Control Using Software Defined Networking
2016-03-24
technologies such as Open vSwitch (OVS) [26], OpenFlow [22], Cisco Nexus 5000V [27], and IBM 5000V [28]. 2.2.4 OpenFlow. The Open Networking Foundation...companies with more than 64 OpenFlow products on the market . Since 2009, ONF released four major revisions to OpenFlow and the latest proposed...2015 from http://www.openvswitch.org, 2014. 27. Cisco Systems. Cisco Nexus 5000 Series Architecture. Retrieved 9 Oc- tober, 2015 from http
Exploring the evolution of node neighborhoods in Dynamic Networks
Orman, Günce Keziban; Labatut, Vincent; Naskali, Ahmet Teoman
2017-09-01
Dynamic Networks are a popular way of modeling and studying the behavior of evolving systems. However, their analysis constitutes a relatively recent subfield of Network Science, and the number of available tools is consequently much smaller than for static networks. In this work, we propose a method specifically designed to take advantage of the longitudinal nature of dynamic networks. It characterizes each individual node by studying the evolution of its direct neighborhood, based on the assumption that the way this neighborhood changes reflects the role and position of the node in the whole network. For this purpose, we define the concept of neighborhood event, which corresponds to the various transformations such groups of nodes can undergo, and describe an algorithm for detecting such events. We demonstrate the interest of our method on three real-world networks: DBLP, LastFM and Enron. We apply frequent pattern mining to extract meaningful information from temporal sequences of neighborhood events. This results in the identification of behavioral trends emerging in the whole network, as well as the individual characterization of specific nodes. We also perform a cluster analysis, which reveals that, in all three networks, one can distinguish two types of nodes exhibiting different behaviors: a very small group of active nodes, whose neighborhood undergo diverse and frequent events, and a very large group of stable nodes.
A mathematical programming approach for sequential clustering of dynamic networks
Silva, Jonathan C.; Bennett, Laura; Papageorgiou, Lazaros G.; Tsoka, Sophia
2016-02-01
A common analysis performed on dynamic networks is community structure detection, a challenging problem that aims to track the temporal evolution of network modules. An emerging area in this field is evolutionary clustering, where the community structure of a network snapshot is identified by taking into account both its current state as well as previous time points. Based on this concept, we have developed a mixed integer non-linear programming (MINLP) model, SeqMod, that sequentially clusters each snapshot of a dynamic network. The modularity metric is used to determine the quality of community structure of the current snapshot and the historical cost is accounted for by optimising the number of node pairs co-clustered at the previous time point that remain so in the current snapshot partition. Our method is tested on social networks of interactions among high school students, college students and members of the Brazilian Congress. We show that, for an adequate parameter setting, our algorithm detects the classes that these students belong more accurately than partitioning each time step individually or by partitioning the aggregated snapshots. Our method also detects drastic discontinuities in interaction patterns across network snapshots. Finally, we present comparative results with similar community detection methods for time-dependent networks from the literature. Overall, we illustrate the applicability of mathematical programming as a flexible, adaptable and systematic approach for these community detection problems. Contribution to the Topical Issue "Temporal Network Theory and Applications", edited by Petter Holme.
Distributed dynamic simulations of networked control and building performance applications.
Yahiaoui, Azzedine
2018-02-01
The use of computer-based automation and control systems for smart sustainable buildings, often so-called Automated Buildings (ABs), has become an effective way to automatically control, optimize, and supervise a wide range of building performance applications over a network while achieving the minimum energy consumption possible, and in doing so generally refers to Building Automation and Control Systems (BACS) architecture. Instead of costly and time-consuming experiments, this paper focuses on using distributed dynamic simulations to analyze the real-time performance of network-based building control systems in ABs and improve the functions of the BACS technology. The paper also presents the development and design of a distributed dynamic simulation environment with the capability of representing the BACS architecture in simulation by run-time coupling two or more different software tools over a network. The application and capability of this new dynamic simulation environment are demonstrated by an experimental design in this paper.
Robustness of pinning a general complex dynamical network
International Nuclear Information System (INIS)
Wang Lei; Sun Youxian
2010-01-01
This Letter studies the robustness problem of pinning a general complex dynamical network toward an assigned synchronous evolution. Several synchronization criteria are presented to guarantee the convergence of the pinning process locally and globally by construction of Lyapunov functions. In particular, if a pinning strategy has been designed for synchronization of a given complex dynamical network, then no matter what uncertainties occur among the pinned nodes, synchronization can still be guaranteed through the pinning. The analytical results show that pinning control has a certain robustness against perturbations on network architecture: adding, deleting and changing the weights of edges. Numerical simulations illustrated by scale-free complex networks verify the theoretical results above-acquired.
Dynamic Relaying in 3GPP LTE-Advanced Networks
Directory of Open Access Journals (Sweden)
Van Phan Vinh
2009-01-01
Full Text Available Relaying is one of the proposed technologies for LTE-Advanced networks. In order to enable a flexible and reliable relaying support, the currently adopted architectural structure of LTE networks has to be modified. In this paper, we extend the LTE architecture to enable dynamic relaying, while maintaining backward compatibility with LTE Release 8 user equipments, and without limiting the flexibility and reliability expected from relaying. With dynamic relaying, relays can be associated with base stations on a need basis rather than in a fixed manner which is based only on initial radio planning. Proposals are also given on how to further improve a relay enhanced LTE network by enabling multiple interfaces between the relay nodes and their controlling base stations, which can possibly be based on technologies different from LTE, so that load balancing can be realized. This load balancing can be either between different base stations or even between different networks.
Node-Dependence-Based Dynamic Incentive Algorithm in Opportunistic Networks
Directory of Open Access Journals (Sweden)
Ruiyun Yu
2014-01-01
Full Text Available Opportunistic networks lack end-to-end paths between source nodes and destination nodes, so the communications are mainly carried out by the “store-carry-forward” strategy. Selfish behaviors of rejecting packet relay requests will severely worsen the network performance. Incentive is an efficient way to reduce selfish behaviors and hence improves the reliability and robustness of the networks. In this paper, we propose the node-dependence-based dynamic gaming incentive (NDI algorithm, which exploits the dynamic repeated gaming to motivate nodes relaying packets for other nodes. The NDI algorithm presents a mechanism of tolerating selfish behaviors of nodes. Reward and punishment methods are also designed based on the node dependence degree. Simulation results show that the NDI algorithm is effective in increasing the delivery ratio and decreasing average latency when there are a lot of selfish nodes in the opportunistic networks.
Triadic closure dynamics drives scaling laws in social multiplex networks
International Nuclear Information System (INIS)
Klimek, Peter; Thurner, Stefan
2013-01-01
Social networks exhibit scaling laws for several structural characteristics, such as degree distribution, scaling of the attachment kernel and clustering coefficients as a function of node degree. A detailed understanding if and how these scaling laws are inter-related is missing so far, let alone whether they can be understood through a common, dynamical principle. We propose a simple model for stationary network formation and show that the three mentioned scaling relations follow as natural consequences of triadic closure. The validity of the model is tested on multiplex data from a well-studied massive multiplayer online game. We find that the three scaling exponents observed in the multiplex data for the friendship, communication and trading networks can simultaneously be explained by the model. These results suggest that triadic closure could be identified as one of the fundamental dynamical principles in social multiplex network formation. (paper)
Dynamic thermo-hydraulic model of district cooling networks
International Nuclear Information System (INIS)
Oppelt, Thomas; Urbaneck, Thorsten; Gross, Ulrich; Platzer, Bernd
2016-01-01
Highlights: • A dynamic thermo-hydraulic model for district cooling networks is presented. • The thermal modelling is based on water segment tracking (Lagrangian approach). • Thus, numerical errors and balance inaccuracies are avoided. • Verification and validation studies proved the reliability of the model. - Abstract: In the present paper, the dynamic thermo-hydraulic model ISENA is presented which can be applied for answering different questions occurring in design and operation of district cooling networks—e.g. related to economic and energy efficiency. The network model consists of a quasistatic hydraulic model and a transient thermal model based on tracking water segments through the whole network (Lagrangian method). Applying this approach, numerical errors and balance inaccuracies can be avoided which leads to a higher quality of results compared to other network models. Verification and validation calculations are presented in order to show that ISENA provides reliable results and is suitable for practical application.
Enabling dynamic network analysis through visualization in TVNViewer
Directory of Open Access Journals (Sweden)
Curtis Ross E
2012-08-01
Full Text Available Abstract Background Many biological processes are context-dependent or temporally specific. As a result, relationships between molecular constituents evolve across time and environments. While cutting-edge machine learning techniques can recover these networks, exploring and interpreting the rewiring behavior is challenging. Information visualization shines in this type of exploratory analysis, motivating the development ofTVNViewer (http://sailing.cs.cmu.edu/tvnviewer, a visualization tool for dynamic network analysis. Results In this paper, we demonstrate visualization techniques for dynamic network analysis by using TVNViewer to analyze yeast cell cycle and breast cancer progression datasets. Conclusions TVNViewer is a powerful new visualization tool for the analysis of biological networks that change across time or space.
Enabling dynamic network analysis through visualization in TVNViewer
2012-01-01
Background Many biological processes are context-dependent or temporally specific. As a result, relationships between molecular constituents evolve across time and environments. While cutting-edge machine learning techniques can recover these networks, exploring and interpreting the rewiring behavior is challenging. Information visualization shines in this type of exploratory analysis, motivating the development ofTVNViewer (http://sailing.cs.cmu.edu/tvnviewer), a visualization tool for dynamic network analysis. Results In this paper, we demonstrate visualization techniques for dynamic network analysis by using TVNViewer to analyze yeast cell cycle and breast cancer progression datasets. Conclusions TVNViewer is a powerful new visualization tool for the analysis of biological networks that change across time or space. PMID:22897913
Dynamics of macro- and microscopic neural networks
DEFF Research Database (Denmark)
Mikkelsen, Kaare
2014-01-01
that the method continues to find use, of which examples are presented. In the second part of the thesis, numerical simulations of networks of neurons are described. To simplify the analysis, a relatively simpled neuron model - Leaky Integrate and Fire - is chosen. The strengths of the connections between...... shown that the syncronizing effect of the plasticity disappears when the strengths of the connections are frozen in time. Subsequently, the so-called ``Sisyphus'' mechanism is discussed, which is shown to cause slow fluctuations in the both the network synchronization and the strengths...... in groups of high internal syncronization. It is demonstrated that these states are exceedingly robust towards additive noise. Studies of simulations such as these are important, in that simple models grant us an efficient way to investigat...
An Efficient Dynamic Trust Evaluation Model for Wireless Sensor Networks
Directory of Open Access Journals (Sweden)
Zhengwang Ye
2017-01-01
Full Text Available Trust evaluation is an effective method to detect malicious nodes and ensure security in wireless sensor networks (WSNs. In this paper, an efficient dynamic trust evaluation model (DTEM for WSNs is proposed, which implements accurate, efficient, and dynamic trust evaluation by dynamically adjusting the weights of direct trust and indirect trust and the parameters of the update mechanism. To achieve accurate trust evaluation, the direct trust is calculated considering multitrust including communication trust, data trust, and energy trust with the punishment factor and regulating function. The indirect trust is evaluated conditionally by the trusted recommendations from a third party. Moreover, the integrated trust is measured by assigning dynamic weights for direct trust and indirect trust and combining them. Finally, we propose an update mechanism by a sliding window based on induced ordered weighted averaging operator to enhance flexibility. We can dynamically adapt the parameters and the interactive history windows number according to the actual needs of the network to realize dynamic update of direct trust value. Simulation results indicate that the proposed dynamic trust model is an efficient dynamic and attack-resistant trust evaluation model. Compared with existing approaches, the proposed dynamic trust model performs better in defending multiple malicious attacks.
LOGISTIC NETWORK REGRESSION FOR SCALABLE ANALYSIS OF NETWORKS WITH JOINT EDGE/VERTEX DYNAMICS.
Almquist, Zack W; Butts, Carter T
2014-08-01
Change in group size and composition has long been an important area of research in the social sciences. Similarly, interest in interaction dynamics has a long history in sociology and social psychology. However, the effects of endogenous group change on interaction dynamics are a surprisingly understudied area. One way to explore these relationships is through social network models. Network dynamics may be viewed as a process of change in the edge structure of a network, in the vertex set on which edges are defined, or in both simultaneously. Although early studies of such processes were primarily descriptive, recent work on this topic has increasingly turned to formal statistical models. Although showing great promise, many of these modern dynamic models are computationally intensive and scale very poorly in the size of the network under study and/or the number of time points considered. Likewise, currently used models focus on edge dynamics, with little support for endogenously changing vertex sets. Here, the authors show how an existing approach based on logistic network regression can be extended to serve as a highly scalable framework for modeling large networks with dynamic vertex sets. The authors place this approach within a general dynamic exponential family (exponential-family random graph modeling) context, clarifying the assumptions underlying the framework (and providing a clear path for extensions), and they show how model assessment methods for cross-sectional networks can be extended to the dynamic case. Finally, the authors illustrate this approach on a classic data set involving interactions among windsurfers on a California beach.
Dynamics in a delayed-neural network
International Nuclear Information System (INIS)
Yuan Yuan
2007-01-01
In this paper, we consider a neural network of four identical neurons with time-delayed connections. Some parameter regions are given for global, local stability and synchronization using the theory of functional differential equations. The root distributions in the corresponding characteristic transcendental equation are analyzed, Pitchfork bifurcation, Hopf and equivariant Hopf bifurcations are investigated by revealing the center manifolds and normal forms. Numerical simulations are shown the agreements with the theoretical results
Dynamic queuing transmission model for dynamic network loading
DEFF Research Database (Denmark)
Raovic, Nevena; Nielsen, Otto Anker; Prato, Carlo Giacomo
2017-01-01
and allowing for the representation of multiple vehicle classes, queue spillbacks and shock waves. The model assumes that a link is split into a moving part plus a queuing part, and p that traffic dynamics are given by a triangular fundamental diagram. A case-study is investigated and the DQTM is compared...
Spatiotemporal Dynamics and Reliable Computations in Recurrent Spiking Neural Networks
Pyle, Ryan; Rosenbaum, Robert
2017-01-01
Randomly connected networks of excitatory and inhibitory spiking neurons provide a parsimonious model of neural variability, but are notoriously unreliable for performing computations. We show that this difficulty is overcome by incorporating the well-documented dependence of connection probability on distance. Spatially extended spiking networks exhibit symmetry-breaking bifurcations and generate spatiotemporal patterns that can be trained to perform dynamical computations under a reservoir computing framework.
Spatiotemporal Dynamics and Reliable Computations in Recurrent Spiking Neural Networks.
Pyle, Ryan; Rosenbaum, Robert
2017-01-06
Randomly connected networks of excitatory and inhibitory spiking neurons provide a parsimonious model of neural variability, but are notoriously unreliable for performing computations. We show that this difficulty is overcome by incorporating the well-documented dependence of connection probability on distance. Spatially extended spiking networks exhibit symmetry-breaking bifurcations and generate spatiotemporal patterns that can be trained to perform dynamical computations under a reservoir computing framework.
SEWER NETWORK DISCHARGE OPTIMIZATION USING THE DYNAMIC PROGRAMMING
Directory of Open Access Journals (Sweden)
Viorel MINZU
2015-12-01
Full Text Available It is necessary to adopt an optimal control that allows an efficient usage of the existing sewer networks, in order to avoid the building of new retention facilities. The main objective of the control action is to minimize the overflow volume of a sewer network. This paper proposes a method to apply a solution obtained by discrete dynamic programming through a realistic closed loop system.
Stochastic population dynamic models as probability networks
M.E. and D.C. Lee. Borsuk
2009-01-01
The dynamics of a population and its response to environmental change depend on the balance of birth, death and age-at-maturity, and there have been many attempts to mathematically model populations based on these characteristics. Historically, most of these models were deterministic, meaning that the results were strictly determined by the equations of the model and...
Catalysis and communication in dynamic molecular networks
Fanlo Virgos, Hugo
2015-01-01
The interactions of a Dynamic Combinatorial Library (DCL) of molecules with specific targets leads to composition changes of the library which can reveal potential guests and / or catalysts. In this thesis some chemical systems have been proposed to achieve a certain level of molecular complexity
User Vulnerability and its Reduction on a Social Networking Site
2014-01-01
Watts and Strogatz 1998]. Thus, it is essential to consider the social utility of vulnerable friends before unfriending them in order to reduce...and Kleinberg 2010] of the social network and the user’s clustering coefficient [Watts and Strogatz 1998]. Thus, it is essential to consider the...Oxford University Press, USA. WATTS, D. AND STROGATZ , S. 1998. Collective Dynamics of Small-world Networks. Nature 393, 6684, 440–442. WONDRACEK, G
Complex and unexpected dynamics in simple genetic regulatory networks
Borg, Yanika; Ullner, Ekkehard; Alagha, Afnan; Alsaedi, Ahmed; Nesbeth, Darren; Zaikin, Alexey
2014-03-01
One aim of synthetic biology is to construct increasingly complex genetic networks from interconnected simpler ones to address challenges in medicine and biotechnology. However, as systems increase in size and complexity, emergent properties lead to unexpected and complex dynamics due to nonlinear and nonequilibrium properties from component interactions. We focus on four different studies of biological systems which exhibit complex and unexpected dynamics. Using simple synthetic genetic networks, small and large populations of phase-coupled quorum sensing repressilators, Goodwin oscillators, and bistable switches, we review how coupled and stochastic components can result in clustering, chaos, noise-induced coherence and speed-dependent decision making. A system of repressilators exhibits oscillations, limit cycles, steady states or chaos depending on the nature and strength of the coupling mechanism. In large repressilator networks, rich dynamics can also be exhibited, such as clustering and chaos. In populations of Goodwin oscillators, noise can induce coherent oscillations. In bistable systems, the speed with which incoming external signals reach steady state can bias the network towards particular attractors. These studies showcase the range of dynamical behavior that simple synthetic genetic networks can exhibit. In addition, they demonstrate the ability of mathematical modeling to analyze nonlinearity and inhomogeneity within these systems.
Deciphering the imprint of topology on nonlinear dynamical network stability
International Nuclear Information System (INIS)
Nitzbon, J; Schultz, P; Heitzig, J; Kurths, J; Hellmann, F
2017-01-01
Coupled oscillator networks show complex interrelations between topological characteristics of the network and the nonlinear stability of single nodes with respect to large but realistic perturbations. We extend previous results on these relations by incorporating sampling-based measures of the transient behaviour of the system, its survivability, as well as its asymptotic behaviour, its basin stability. By combining basin stability and survivability we uncover novel, previously unknown asymptotic states with solitary, desynchronized oscillators which are rotating with a frequency different from their natural one. They occur almost exclusively after perturbations at nodes with specific topological properties. More generally we confirm and significantly refine the results on the distinguished role tree-shaped appendices play for nonlinear stability. We find a topological classification scheme for nodes located in such appendices, that exactly separates them according to their stability properties, thus establishing a strong link between topology and dynamics. Hence, the results can be used for the identification of vulnerable nodes in power grids or other coupled oscillator networks. From this classification we can derive general design principles for resilient power grids. We find that striving for homogeneous network topologies facilitates a better performance in terms of nonlinear dynamical network stability. While the employed second-order Kuramoto-like model is parametrised to be representative for power grids, we expect these insights to transfer to other critical infrastructure systems or complex network dynamics appearing in various other fields. (paper)
Generalized master equations for non-Poisson dynamics on networks.
Hoffmann, Till; Porter, Mason A; Lambiotte, Renaud
2012-10-01
The traditional way of studying temporal networks is to aggregate the dynamics of the edges to create a static weighted network. This implicitly assumes that the edges are governed by Poisson processes, which is not typically the case in empirical temporal networks. Accordingly, we examine the effects of non-Poisson inter-event statistics on the dynamics of edges, and we apply the concept of a generalized master equation to the study of continuous-time random walks on networks. We show that this equation reduces to the standard rate equations when the underlying process is Poissonian and that its stationary solution is determined by an effective transition matrix whose leading eigenvector is easy to calculate. We conduct numerical simulations and also derive analytical results for the stationary solution under the assumption that all edges have the same waiting-time distribution. We discuss the implications of our work for dynamical processes on temporal networks and for the construction of network diagnostics that take into account their nontrivial stochastic nature.
Measuring dynamic process of working memory training with functional brain networks
Directory of Open Access Journals (Sweden)
Hong Wang
2015-12-01
Full Text Available In this paper, we proposed the functional brain networks and graphic theory method to measure the effect of working memory training on the neural activities. 12 subjects were recruited in this study, and they did the same working memory task before they had been trained and after training. We architected functional brain networks based on EEG coherence and calculated properties of brain networks to measure the neural co-activities and the working memory level of subjects. As the result, the internal connections in frontal region decreased after working memory training, but the connection between frontal region and top region increased. And the more small-world feature was observed after training. The features observed above were in alpha (8-13 Hz and beta (13-30 Hz bands. The functional brain networks based on EEG coherence proposed in this paper can be used as the indicator of working memory level.
Applications of flow-networks to opinion-dynamics
Tupikina, Liubov; Kurths, Jürgen
2015-04-01
Networks were successfully applied to describe complex systems, such as brain, climate, processes in society. Recently a socio-physical problem of opinion-dynamics was studied using network techniques. We present the toy-model of opinion-formation based on the physical model of advection-diffusion. We consider spreading of the opinion on the fixed subject, assuming that opinion on society is binary: if person has opinion then the state of the node in the society-network equals 1, if the person doesn't have opinion state of the node equals 0. Opinion can be spread from one person to another if they know each other, or in the network-terminology, if the nodes are connected. We include into the system governed by advection-diffusion equation the external field to model such effects as for instance influence from media. The assumptions for our model can be formulated as the following: 1.the node-states are influenced by the network structure in such a way, that opinion can be spread only between adjacent nodes (the advective term of the opinion-dynamics), 2.the network evolution can have two scenarios: -network topology is not changing with time; -additional links can appear or disappear each time-step with fixed probability which requires adaptive networks properties. Considering these assumptions for our system we obtain the system of equations describing our model-dynamics which corresponds well to other socio-physics models, for instance, the model of the social cohesion and the famous voter-model. We investigate the behavior of the suggested model studying "waiting time" of the system, time to get to the stable state, stability of the model regimes for different values of model parameters and network topology.
Higher-Order Synaptic Interactions Coordinate Dynamics in Recurrent Networks.
Directory of Open Access Journals (Sweden)
Brendan Chambers
2016-08-01
Full Text Available Linking synaptic connectivity to dynamics is key to understanding information processing in neocortex. Circuit dynamics emerge from complex interactions of interconnected neurons, necessitating that links between connectivity and dynamics be evaluated at the network level. Here we map propagating activity in large neuronal ensembles from mouse neocortex and compare it to a recurrent network model, where connectivity can be precisely measured and manipulated. We find that a dynamical feature dominates statistical descriptions of propagating activity for both neocortex and the model: convergent clusters comprised of fan-in triangle motifs, where two input neurons are themselves connected. Fan-in triangles coordinate the timing of presynaptic inputs during ongoing activity to effectively generate postsynaptic spiking. As a result, paradoxically, fan-in triangles dominate the statistics of spike propagation even in randomly connected recurrent networks. Interplay between higher-order synaptic connectivity and the integrative properties of neurons constrains the structure of network dynamics and shapes the routing of information in neocortex.
Coupled disease-behavior dynamics on complex networks: A review
Wang, Zhen; Andrews, Michael A.; Wu, Zhi-Xi; Wang, Lin; Bauch, Chris T.
2015-12-01
It is increasingly recognized that a key component of successful infection control efforts is understanding the complex, two-way interaction between disease dynamics and human behavioral and social dynamics. Human behavior such as contact precautions and social distancing clearly influence disease prevalence, but disease prevalence can in turn alter human behavior, forming a coupled, nonlinear system. Moreover, in many cases, the spatial structure of the population cannot be ignored, such that social and behavioral processes and/or transmission of infection must be represented with complex networks. Research on studying coupled disease-behavior dynamics in complex networks in particular is growing rapidly, and frequently makes use of analysis methods and concepts from statistical physics. Here, we review some of the growing literature in this area. We contrast network-based approaches to homogeneous-mixing approaches, point out how their predictions differ, and describe the rich and often surprising behavior of disease-behavior dynamics on complex networks, and compare them to processes in statistical physics. We discuss how these models can capture the dynamics that characterize many real-world scenarios, thereby suggesting ways that policy makers can better design effective prevention strategies. We also describe the growing sources of digital data that are facilitating research in this area. Finally, we suggest pitfalls which might be faced by researchers in the field, and we suggest several ways in which the field could move forward in the coming years.
Ward, A. S.; Schmadel, N.; Wondzell, S. M.
2017-12-01
River networks are broadly recognized to expand and contract in response to hydrologic forcing. Additionally, the individual controls on river corridor dynamics of hydrologic forcing and geologic setting are well recognized. However, we currently lack tools to integrate our understanding of process dynamics in the river corridor and make predictions at the scale of river networks. In this study, we develop a perceptual model of the river corridor in mountain river networks, translate this into a reduced-complexity mechanistic model, and implement the model in a well-studied headwater catchment. We found that the river network was most sensitive to hydrologic dynamics under the lowest discharges (Qgauge managers of water resources who need to estimate connectivity and flow initiation location along the river corridor over broad, unstudied catchments.
The application of graph theoretical analysis to complex networks in the brain.
Reijneveld, Jaap C; Ponten, Sophie C; Berendse, Henk W; Stam, Cornelis J
2007-11-01
Considering the brain as a complex network of interacting dynamical systems offers new insights into higher level brain processes such as memory, planning, and abstract reasoning as well as various types of brain pathophysiology. This viewpoint provides the opportunity to apply new insights in network sciences, such as the discovery of small world and scale free networks, to data on anatomical and functional connectivity in the brain. In this review we start with some background knowledge on the history and recent advances in network theories in general. We emphasize the correlation between the structural properties of networks and the dynamics of these networks. We subsequently demonstrate through evidence from computational studies, in vivo experiments, and functional MRI, EEG and MEG studies in humans, that both the functional and anatomical connectivity of the healthy brain have many features of a small world network, but only to a limited extent of a scale free network. The small world structure of neural networks is hypothesized to reflect an optimal configuration associated with rapid synchronization and information transfer, minimal wiring costs, resilience to certain types of damage, as well as a balance between local processing and global integration. Eventually, we review the current knowledge on the effects of focal and diffuse brain disease on neural network characteristics, and demonstrate increasing evidence that both cognitive and psychiatric disturbances, as well as risk of epileptic seizures, are correlated with (changes in) functional network architectural features.
Synchronization in Complex Networks of Nonlinear Dynamical Systems
Wu, Chai Wah
2007-01-01
This book brings together two emerging research areas: synchronization in coupled nonlinear systems and complex networks, and study conditions under which a complex network of dynamical systems synchronizes. While there are many texts that study synchronization in chaotic systems or properties of complex networks, there are few texts that consider the intersection of these two very active and interdisciplinary research areas. The main theme of this book is that synchronization conditions can be related to graph theoretical properties of the underlying coupling topology. The book introduces ide