Mean-field theory of nuclear structure and dynamics
International Nuclear Information System (INIS)
Negele, J.W.
1982-01-01
The physical and theoretical foundations are presented for the mean-field theory of nuclear structure and dynamics. Salient features of the many-body theory of stationary states are reviewed to motivate the time-dependent mean-field approximation. The time-dependent Hartree-Fock approximation and its limitations are discussed and general theoretical formulations are presented which yield time-dependent mean-field equations in lowest approximation and provide suitable frameworks for overcoming various conceptual and practical limitations of the mean-field theory. Particular emphasis is placed on recent developments utilizing functional integral techniques to obtain a quantum mean-field theory applicable to quantized eigenstates, spontaneous fission, the nuclear partition function, and scattering problems. Applications to a number of simple, idealized systems are presented to verify the approximations for solvable problems and to elucidate the essential features of mean-field dynamics. Finally, calculations utilizing moderately realistic geometries and interactions are reviewed which address heavy-ion collisions, fusion, strongly damped collisions, and fission
Classification of networks of automata by dynamical mean field theory
International Nuclear Information System (INIS)
Burda, Z.; Jurkiewicz, J.; Flyvbjerg, H.
1990-01-01
Dynamical mean field theory is used to classify the 2 24 =65,536 different networks of binary automata on a square lattice with nearest neighbour interactions. Application of mean field theory gives 700 different mean field classes, which fall in seven classes of different asymptotic dynamics characterized by fixed points and two-cycles. (orig.)
Dynamical Mean Field Approximation Applied to Quantum Field Theory
Akerlund, Oscar; Georges, Antoine; Werner, Philipp
2013-12-04
We apply the Dynamical Mean Field (DMFT) approximation to the real, scalar phi^4 quantum field theory. By comparing to lattice Monte Carlo calculations, perturbation theory and standard mean field theory, we test the quality of the approximation in two, three, four and five dimensions. The quantities considered in these tests are the critical coupling for the transition to the ordered phase and the associated critical exponents nu and beta. We also map out the phase diagram in four dimensions. In two and three dimensions, DMFT incorrectly predicts a first order phase transition for all bare quartic couplings, which is problematic, because the second order nature of the phase transition of lattice phi^4-theory is crucial for taking the continuum limit. Nevertheless, by extrapolating the behaviour away from the phase transition, one can obtain critical couplings and critical exponents. They differ from those of mean field theory and are much closer to the correct values. In four dimensions the transition is sec...
Nonequilibrium dynamical mean-field theory
Energy Technology Data Exchange (ETDEWEB)
Eckstein, Martin
2009-12-21
The aim of this thesis is the investigation of strongly interacting quantum many-particle systems in nonequilibrium by means of the dynamical mean-field theory (DMFT). An efficient numerical implementation of the nonequilibrium DMFT equations within the Keldysh formalism is provided, as well a discussion of several approaches to solve effective single-site problem to which lattice models such as the Hubbard-model are mapped within DMFT. DMFT is then used to study the relaxation of the thermodynamic state after a sudden increase of the interaction parameter in two different models: the Hubbard model and the Falicov-Kimball model. In the latter case an exact solution can be given, which shows that the state does not even thermalize after infinite waiting times. For a slow change of the interaction, a transition to adiabatic behavior is found. The Hubbard model, on the other hand, shows a very sensitive dependence of the relaxation on the interaction, which may be called a dynamical phase transition. Rapid thermalization only occurs at the interaction parameter which corresponds to this transition. (orig.)
Nonequilibrium dynamical mean-field theory
International Nuclear Information System (INIS)
Eckstein, Martin
2009-01-01
The aim of this thesis is the investigation of strongly interacting quantum many-particle systems in nonequilibrium by means of the dynamical mean-field theory (DMFT). An efficient numerical implementation of the nonequilibrium DMFT equations within the Keldysh formalism is provided, as well a discussion of several approaches to solve effective single-site problem to which lattice models such as the Hubbard-model are mapped within DMFT. DMFT is then used to study the relaxation of the thermodynamic state after a sudden increase of the interaction parameter in two different models: the Hubbard model and the Falicov-Kimball model. In the latter case an exact solution can be given, which shows that the state does not even thermalize after infinite waiting times. For a slow change of the interaction, a transition to adiabatic behavior is found. The Hubbard model, on the other hand, shows a very sensitive dependence of the relaxation on the interaction, which may be called a dynamical phase transition. Rapid thermalization only occurs at the interaction parameter which corresponds to this transition. (orig.)
Mean field theory for non-abelian gauge theories and fluid dynamics. A brief progress report
International Nuclear Information System (INIS)
Wadia, Spenta R.
2009-01-01
We review the long standing problem of 'mean field theory' for non-abelian gauge theories. As a consequence of the AdS/CFT correspondence, in the large N limit, at strong coupling, and high temperatures and density, the 'mean field theory' is described by the Navier-Stokes equations of fluid dynamics. We also discuss and present results on the non-conformal fluid dynamics of the D1 brane in 1+1 dim. (author)
Quantum mean-field theory of collective dynamics and tunneling
International Nuclear Information System (INIS)
Negele, J.W.
1981-01-01
A fundamental problem in quantum many-body theory is formulation of a microscopic theory of collective motion. For self-bound, saturating systems like finite nuclei described in the context of nonrelativistic quantum mechanics with static interactions, the essential problem is how to formulate a systematic quantal theory in which the relevant collective variables and their dynamics arise directly and naturally from the Hamiltonian and the system under consideration. Significant progress has been made recently in formulating the quantum many-body problem in terms of an expansion about solutions to time-dependent mean-field equations. The essential ideas, principal results, and illustrative examples are summarized. An exact expression for an observable of interest is written using a functional integral representation for the evolution operator, and tractable time-dependent mean field equations are obtained by application of the stationary-phase approximation (SPA) to the functional integral. Corrections to the lowest-order theory may be systematically enumerated. 6 figures
Fictive impurity approach to dynamical mean field theory
Energy Technology Data Exchange (ETDEWEB)
Fuhrmann, A.
2006-10-15
A new extension of the dynamical mean-field theory was investigated in the regime of large Coulomb repulsion. A number of physical quantities such as single-particle density of states, spin-spin correlation, internal energy and Neel temperature, were computed for a two-dimensional Hubbard model at half-filling. The numerical data were compared to our analytical results as well as to the results computed using the dynamical cluster approximation. In the second part of this work we consider a two-plane Hubbard model. The transport properties of the bilayer were investigated and the phase diagram was obtained. (orig.)
Fictive impurity approach to dynamical mean field theory
International Nuclear Information System (INIS)
Fuhrmann, A.
2006-10-01
A new extension of the dynamical mean-field theory was investigated in the regime of large Coulomb repulsion. A number of physical quantities such as single-particle density of states, spin-spin correlation, internal energy and Neel temperature, were computed for a two-dimensional Hubbard model at half-filling. The numerical data were compared to our analytical results as well as to the results computed using the dynamical cluster approximation. In the second part of this work we consider a two-plane Hubbard model. The transport properties of the bilayer were investigated and the phase diagram was obtained. (orig.)
Orbital effect of the magnetic field in dynamical mean-field theory
Acheche, S.; Arsenault, L.-F.; Tremblay, A.-M. S.
2017-12-01
The availability of large magnetic fields at international facilities and of simulated magnetic fields that can reach the flux-quantum-per-unit-area level in cold atoms calls for systematic studies of orbital effects of the magnetic field on the self-energy of interacting systems. Here we demonstrate theoretically that orbital effects of magnetic fields can be treated within single-site dynamical mean-field theory with a translationally invariant quantum impurity problem. As an example, we study the one-band Hubbard model on the square lattice using iterated perturbation theory as an impurity solver. We recover the expected quantum oscillations in the scattering rate, and we show that the magnetic fields allow the interaction-induced effective mass to be measured through the single-particle density of states accessible in tunneling experiments. The orbital effect of magnetic fields on scattering becomes particularly important in the Hofstadter butterfly regime.
Spin and orbital exchange interactions from Dynamical Mean Field Theory
Energy Technology Data Exchange (ETDEWEB)
Secchi, A., E-mail: a.secchi@science.ru.nl [Radboud University, Institute for Molecules and Materials, 6525 AJ Nijmegen (Netherlands); Lichtenstein, A.I., E-mail: alichten@physnet.uni-hamburg.de [Universitat Hamburg, Institut für Theoretische Physik, Jungiusstraße 9, D-20355 Hamburg (Germany); Katsnelson, M.I., E-mail: m.katsnelson@science.ru.nl [Radboud University, Institute for Molecules and Materials, 6525 AJ Nijmegen (Netherlands)
2016-02-15
We derive a set of equations expressing the parameters of the magnetic interactions characterizing a strongly correlated electronic system in terms of single-electron Green's functions and self-energies. This allows to establish a mapping between the initial electronic system and a spin model including up to quadratic interactions between the effective spins, with a general interaction (exchange) tensor that accounts for anisotropic exchange, Dzyaloshinskii–Moriya interaction and other symmetric terms such as dipole–dipole interaction. We present the formulas in a format that can be used for computations via Dynamical Mean Field Theory algorithms. - Highlights: • We give formulas for the exchange interaction tensor in strongly correlated systems. • Interactions are written in terms of electronic Green's functions and self-energies. • The method is suitable for a Dynamical Mean Field Theory implementation. • No quenching of the orbital magnetic moments is assumed. • Spin and orbital contributions to magnetism can be computed separately.
Advances in dynamic and mean field games theory, applications, and numerical methods
Viscolani, Bruno
2017-01-01
This contributed volume considers recent advances in dynamic games and their applications, based on presentations given at the 17th Symposium of the International Society of Dynamic Games, held July 12-15, 2016, in Urbino, Italy. Written by experts in their respective disciplines, these papers cover various aspects of dynamic game theory including mean-field games, stochastic and pursuit-evasion games, and computational methods for dynamic games. Topics covered include Pedestrian flow in crowded environments Models for climate change negotiations Nash Equilibria for dynamic games involving Volterra integral equations Differential games in healthcare markets Linear-quadratic Gaussian dynamic games Aircraft control in wind shear conditions Advances in Dynamic and Mean-Field Games presents state-of-the-art research in a wide spectrum of areas. As such, it serves as a testament to the continued vitality and growth of the field of dynamic games and their applications. It will be of interest to an interdisciplinar...
Non-local correlations within dynamical mean field theory
Energy Technology Data Exchange (ETDEWEB)
Li, Gang
2009-03-15
The contributions from the non-local fluctuations to the dynamical mean field theory (DMFT) were studied using the recently proposed dual fermion approach. Straight forward cluster extensions of DMFT need the solution of a small cluster, where all the short-range correlations are fully taken into account. All the correlations beyond the cluster scope are treated in the mean-field level. In the dual fermion method, only a single impurity problem needs to be solved. Both the short and long-range correlations could be considered on equal footing in this method. The weak-coupling nature of the dual fermion ensures the validity of the finite order diagram expansion. The one and two particle Green's functions calculated from the dual fermion approach agree well with the Quantum Monte Carlo solutions, and the computation time is considerably less than with the latter method. The access of the long-range order allows us to investigate the collective behavior of the electron system, e.g. spin wave excitations. (orig.)
Non-local correlations within dynamical mean field theory
International Nuclear Information System (INIS)
Li, Gang
2009-03-01
The contributions from the non-local fluctuations to the dynamical mean field theory (DMFT) were studied using the recently proposed dual fermion approach. Straight forward cluster extensions of DMFT need the solution of a small cluster, where all the short-range correlations are fully taken into account. All the correlations beyond the cluster scope are treated in the mean-field level. In the dual fermion method, only a single impurity problem needs to be solved. Both the short and long-range correlations could be considered on equal footing in this method. The weak-coupling nature of the dual fermion ensures the validity of the finite order diagram expansion. The one and two particle Green's functions calculated from the dual fermion approach agree well with the Quantum Monte Carlo solutions, and the computation time is considerably less than with the latter method. The access of the long-range order allows us to investigate the collective behavior of the electron system, e.g. spin wave excitations. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Kelly, Aaron; Markland, Thomas E., E-mail: tmarkland@stanford.edu [Department of Chemistry, Stanford University, Stanford, California 94305 (United States); Brackbill, Nora [Department of Physics, Stanford University, Stanford, California 94305 (United States)
2015-03-07
In this article, we show how Ehrenfest mean field theory can be made both a more accurate and efficient method to treat nonadiabatic quantum dynamics by combining it with the generalized quantum master equation framework. The resulting mean field generalized quantum master equation (MF-GQME) approach is a non-perturbative and non-Markovian theory to treat open quantum systems without any restrictions on the form of the Hamiltonian that it can be applied to. By studying relaxation dynamics in a wide range of dynamical regimes, typical of charge and energy transfer, we show that MF-GQME provides a much higher accuracy than a direct application of mean field theory. In addition, these increases in accuracy are accompanied by computational speed-ups of between one and two orders of magnitude that become larger as the system becomes more nonadiabatic. This combination of quantum-classical theory and master equation techniques thus makes it possible to obtain the accuracy of much more computationally expensive approaches at a cost lower than even mean field dynamics, providing the ability to treat the quantum dynamics of atomistic condensed phase systems for long times.
Kelly, Aaron; Brackbill, Nora; Markland, Thomas E
2015-03-07
In this article, we show how Ehrenfest mean field theory can be made both a more accurate and efficient method to treat nonadiabatic quantum dynamics by combining it with the generalized quantum master equation framework. The resulting mean field generalized quantum master equation (MF-GQME) approach is a non-perturbative and non-Markovian theory to treat open quantum systems without any restrictions on the form of the Hamiltonian that it can be applied to. By studying relaxation dynamics in a wide range of dynamical regimes, typical of charge and energy transfer, we show that MF-GQME provides a much higher accuracy than a direct application of mean field theory. In addition, these increases in accuracy are accompanied by computational speed-ups of between one and two orders of magnitude that become larger as the system becomes more nonadiabatic. This combination of quantum-classical theory and master equation techniques thus makes it possible to obtain the accuracy of much more computationally expensive approaches at a cost lower than even mean field dynamics, providing the ability to treat the quantum dynamics of atomistic condensed phase systems for long times.
Energy Technology Data Exchange (ETDEWEB)
Haertle, Rainer [Institut fuer Theoretische Physik, Georg-August-Universitaet Goettingen, Goettingen (Germany); Millis, Andrew J. [Department of Physics, Columbia University, New York (United States)
2016-07-01
We present a new impurity solver for real-time and nonequilibrium dynamical mean field theory applications, based on the recently developed hierarchical quantum master equation approach. Our method employs a hybridization expansion of the time evolution operator, including an advanced, systematic truncation scheme. Convergence to exact results for not too low temperatures has been demonstrated by a direct comparison to quantum Monte Carlo simulations. The approach is time-local, which gives us access to slow dynamics such as, e.g., in the presence of magnetic fields or exchange interactions and to nonequilibrium steady states. Here, we present first results of this new scheme for the description of strongly correlated materials in the framework of dynamical mean field theory, including benchmark and new results for the Hubbard and periodic Anderson model.
Quantum critical point revisited by dynamical mean-field theory
Xu, Wenhu; Kotliar, Gabriel; Tsvelik, Alexei M.
2017-03-01
Dynamical mean-field theory is used to study the quantum critical point (QCP) in the doped Hubbard model on a square lattice. The QCP is characterized by a universal scaling form of the self-energy and a spin density wave instability at an incommensurate wave vector. The scaling form unifies the low-energy kink and the high-energy waterfall feature in the spectral function, while the spin dynamics includes both the critical incommensurate and high-energy antiferromagnetic paramagnons. We use the frequency-dependent four-point correlation function of spin operators to calculate the momentum-dependent correction to the electron self-energy. By comparing with the calculations based on the spin-fermion model, our results indicate the frequency dependence of the quasiparticle-paramagnon vertices is an important factor to capture the momentum dependence in quasiparticle scattering.
Diagrammatic routes to nonlocal correlations beyond dynamical mean field theory
Rohringer, G.; Hafermann, H.; Toschi, A.; Katanin, A. A.; Antipov, A. E.; Katsnelson, M. I.; Lichtenstein, A. I.; Rubtsov, A. N.; Held, K.
2018-04-01
Strong electronic correlations pose one of the biggest challenges to solid state theory. Recently developed methods that address this problem by starting with the local, eminently important correlations of dynamical mean field theory (DMFT) are reviewed. In addition, nonlocal correlations on all length scales are generated through Feynman diagrams, with a local two-particle vertex instead of the bare Coulomb interaction as a building block. With these diagrammatic extensions of DMFT long-range charge, magnetic, and superconducting fluctuations as well as (quantum) criticality can be addressed in strongly correlated electron systems. An overview is provided of the successes and results achieved, mainly for model Hamiltonians, and an outline is given of future prospects for realistic material calculations.
Simple Theory for the Dynamics of Mean-Field-Like Models of Glass-Forming Fluids
Szamel, Grzegorz
2017-10-01
We propose a simple theory for the dynamics of model glass-forming fluids, which should be solvable using a mean-field-like approach. The theory is based on transparent physical assumptions, which can be tested in computer simulations. The theory predicts an ergodicity-breaking transition that is identical to the so-called dynamic transition predicted within the replica approach. Thus, it can provide the missing dynamic component of the random first order transition framework. In the large-dimensional limit the theory reproduces the result of a recent exact calculation of Maimbourg et al. [Phys. Rev. Lett. 116, 015902 (2016), 10.1103/PhysRevLett.116.015902]. Our approach provides an alternative, physically motivated derivation of this result.
Quantum critical point revisited by dynamical mean-field theory
International Nuclear Information System (INIS)
Xu, Wenhu; Kotliar, Gabriel; Rutgers University, Piscataway, NJ; Tsvelik, Alexei M.
2017-01-01
Dynamical mean-field theory is used to study the quantum critical point (QCP) in the doped Hubbard model on a square lattice. We characterize the QCP by a universal scaling form of the self-energy and a spin density wave instability at an incommensurate wave vector. The scaling form unifies the low-energy kink and the high-energy waterfall feature in the spectral function, while the spin dynamics includes both the critical incommensurate and high-energy antiferromagnetic paramagnons. Here, we use the frequency-dependent four-point correlation function of spin operators to calculate the momentum-dependent correction to the electron self-energy. Furthermore, by comparing with the calculations based on the spin-fermion model, our results indicate the frequency dependence of the quasiparticle-paramagnon vertices is an important factor to capture the momentum dependence in quasiparticle scattering.
Mean-field theory of active electrolytes: Dynamic adsorption and overscreening
Frydel, Derek; Podgornik, Rudolf
2018-05-01
We investigate active electrolytes within the mean-field level of description. The focus is on how the double-layer structure of passive, thermalized charges is affected by active dynamics of constituting ions. One feature of active dynamics is that particles adhere to hard surfaces, regardless of chemical properties of a surface and specifically in complete absence of any chemisorption or physisorption. To carry out the mean-field analysis of the system that is out of equilibrium, we develop the "mean-field simulation" technique, where the simulated system consists of charged parallel sheets moving on a line and obeying active dynamics, with the interaction strength rescaled by the number of sheets. The mean-field limit becomes exact in the limit of an infinite number of movable sheets.
Symplectic manifolds, coadjoint orbits, and Mean Field Theory
International Nuclear Information System (INIS)
Rosensteel, G.
1986-01-01
Mean field theory is given a geometrical interpretation as a Hamiltonian dynamical system. The Hartree-Fock phase space is the Grassmann manifold, a symplectic submanifold of the projective space of the full many-fermion Hilbert space. The integral curves of the Hartree-Fock vector field are the time-dependent Hartree-Fock solutions, while the critical points of the energy function are the time-independent states. The mean field theory is generalized beyond determinants to coadjoint orbit spaces of the unitary group; the Grassmann variety is the minimal coadjoint orbit
Xu, Wenhu; Haule, Kristjan; Kotliar, Gabriel
2013-07-19
We investigate the transport properties of a correlated metal within dynamical mean-field theory. Canonical Fermi liquid behavior emerges only below a very low temperature scale T(FL). Surprisingly the quasiparticle scattering rate follows a quadratic temperature dependence up to much higher temperatures and crosses over to saturated behavior around a temperature scale T(sat). We identify these quasiparticles as constituents of the hidden Fermi liquid. The non-Fermi-liquid transport above T(FL), in particular the linear-in-T resistivity, is shown to be a result of a strongly temperature dependent band dispersion. We derive simple expressions for the resistivity, Hall angle, thermoelectric power and Nernst coefficient in terms of a temperature dependent renormalized band structure and the quasiparticle scattering rate. We discuss possible tests of the dynamical mean-field theory picture of transport using ac measurements.
Non-equilibrium mean-field theories on scale-free networks
International Nuclear Information System (INIS)
Caccioli, Fabio; Dall'Asta, Luca
2009-01-01
Many non-equilibrium processes on scale-free networks present anomalous critical behavior that is not explained by standard mean-field theories. We propose a systematic method to derive stochastic equations for mean-field order parameters that implicitly account for the degree heterogeneity. The method is used to correctly predict the dynamical critical behavior of some binary spin models and reaction–diffusion processes. The validity of our non-equilibrium theory is further supported by showing its relation with the generalized Landau theory of equilibrium critical phenomena on networks
Particle Production and Effective Thermalization in Inhomogeneous Mean Field Theory
Aarts, G.; Smit, J.
2000-01-01
As a toy model for dynamics in nonequilibrium quantum field theory we consider the abelian Higgs model in 1+1 dimensions with fermions. In the approximate dynamical equations, inhomogeneous classical (mean) Bose fields are coupled to quantized fermion fields, which are treated with a mode function
Time independent mean-field theory
International Nuclear Information System (INIS)
Negele, J.W.
1980-02-01
The physical and theoretical motivations for the time-dependent mean-field theory are presented, and the successes and limitations of the time-dependent Hartree-Fock initial-vaue problem are reviewed. New theoretical developments are described in the treatment of two-body correlations and the formulation of a quantum mean-field theory of large-amplitude collective motion and tunneling decay. Finally, the mean-field theory is used to obtain new insights into the phenomenon of pion condensation in finite nuclei. 18 figures
International Nuclear Information System (INIS)
Kuchinskii, E. Z.; Nekrasov, I. A.; Sadovskii, M. V.
2008-01-01
The DOS, the dynamic (optical) conductivity, and the phase diagram of a strongly correlated and strongly disordered paramagnetic Anderson-Hubbard model are analyzed within the generalized dynamical mean field theory (DMFT + Σ approximation). Strong correlations are taken into account by the DMFT, and disorder is taken into account via an appropriate generalization of the self-consistent theory of localization. The DMFT effective single-impurity problem is solved by a numerical renormalization group (NRG); we consider the three-dimensional system with a semielliptic DOS. The correlated metal, Mott insulator, and correlated Anderson insulator phases are identified via the evolution of the DOS and dynamic conductivity, demonstrating both the Mott-Hubbard and Anderson metal-insulator transition and allowing the construction of the complete zero-temperature phase diagram of the Anderson-Hubbard model. Rather unusual is the possibility of a disorder-induced Mott insulator-to-metal transition
Quantum Critical Point revisited by the Dynamical Mean Field Theory
Xu, Wenhu; Kotliar, Gabriel; Tsvelik, Alexei
Dynamical mean field theory is used to study the quantum critical point (QCP) in the doped Hubbard model on a square lattice. The QCP is characterized by a universal scaling form of the self energy and a spin density wave instability at an incommensurate wave vector. The scaling form unifies the low energy kink and the high energy waterfall feature in the spectral function, while the spin dynamics includes both the critical incommensurate and high energy antiferromagnetic paramagnons. We use the frequency dependent four-point correlation function of spin operators to calculate the momentum dependent correction to the electron self energy. Our results reveal a substantial difference with the calculations based on the Spin-Fermion model which indicates that the frequency dependence of the the quasiparitcle-paramagnon vertices is an important factor. The authors are supported by Center for Computational Design of Functional Strongly Correlated Materials and Theoretical Spectroscopy under DOE Grant DE-FOA-0001276.
Mean field theory of dynamic phase transitions in ferromagnets
International Nuclear Information System (INIS)
Idigoras, O.; Vavassori, P.; Berger, A.
2012-01-01
We have studied the second order dynamic phase transition (DPT) of the two-dimensional kinetic Ising model by means of numerical calculations. While it is well established that the order parameter Q of the DPT is the average magnetization per external field oscillation cycle, the possible identity of the conjugate field has been addressed only recently. In this work, we demonstrate that our entire set of numerical data is fully consistent with the applied bias field H b being the conjugate field of order parameter Q. For this purpose, we have analyzed the Q(H b )-dependence and we have found that it follows the expected power law behavior with the same critical exponent as the mean field equilibrium case.
Regular and chaotic dynamics in time-dependent relativistic mean-field theory
International Nuclear Information System (INIS)
Vretenar, D.; Ring, P.; Lalazissis, G.A.; Poeschl, W.
1997-01-01
Isoscalar and isovector monopole oscillations that correspond to giant resonances in spherical nuclei are described in the framework of time-dependent relativistic mean-field theory. Time-dependent and self-consistent calculations that reproduce experimental data on monopole resonances in 208 Pb show that the motion of the collective coordinate is regular for isoscalar oscillations, and that it becomes chaotic when initial conditions correspond to the isovector mode. Regular collective dynamics coexists with chaotic oscillations on the microscopic level. Time histories, Fourier spectra, state-space plots, Poincare sections, autocorrelation functions, and Lyapunov exponents are used to characterize the nonlinear system and to identify chaotic oscillations. Analogous considerations apply to higher multipolarities. copyright 1997 The American Physical Society
Mean-field theory and solitonic matter
International Nuclear Information System (INIS)
Cohen, T.D.
1989-01-01
Finite density solitonic matter is considered in the context of quantum field theory. Mean-field theory, which provides a reasonable description for single-soliton properties gives rise to a crystalline description. A heuristic description of solitonic matter is given which shows that the low-density limit of solitonic matter (the limit which is presumably relevant for nuclear matter) does not commute with the mean-field theory limit and gives rise to a Fermi-gas description of the system. It is shown on the basis of a formal expansion of simple soliton models in terms of the coupling constant why one expects mean-field theory to fail at low densities and why the corrections to mean-field theory are nonperturbative. This heuristic description is tested against an exactly solvable 1+1 dimensional model (the sine-Gordon model) and found to give the correct behavior. The relevance of these results to the program of doing nuclear physics based on soliton models is discussed. (orig.)
Czech Academy of Sciences Publication Activity Database
Kolorenč, Jindřich; Shick, Alexander; Lichtenstein, A.I.
2015-01-01
Roč. 92, č. 8 (2015), "085125-1"-"085125-10" ISSN 1098-0121 R&D Projects: GA ČR GC15-05872J Institutional support: RVO:68378271 Keywords : electronic-structure calculations * dynamical mean-field theory * Mott insulators * actinides * oxides * photoemission Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014
Real-Space Application of the Mean-Field Description of Spin-Glass Dynamics
International Nuclear Information System (INIS)
Barrat, Alain; Berthier, Ludovic
2001-01-01
The out of equilibrium dynamics of finite dimensional spin glasses is considered from a point of view going beyond the standard 'mean-field theory' versus 'droplet picture' debate of the past decades. The main predictions of both theories concerning the spin-glass dynamics are discussed. It is shown, in particular, that predictions originating from mean-field ideas concerning the violations of the fluctuation-dissipation theorem apply quantitatively, provided one properly takes into account the role of a spin-glass coherence length, which plays a central role in the droplet picture. Dynamics in a uniform magnetic field is also briefly discussed
Mean-field magnetohydrodynamics and dynamo theory
Krause, F
2013-01-01
Mean-Field Magnetohydrodynamics and Dynamo Theory provides a systematic introduction to mean-field magnetohydrodynamics and the dynamo theory, along with the results achieved. Topics covered include turbulence and large-scale structures; general properties of the turbulent electromotive force; homogeneity, isotropy, and mirror symmetry of turbulent fields; and turbulent electromotive force in the case of non-vanishing mean flow. The turbulent electromotive force in the case of rotational mean motion is also considered. This book is comprised of 17 chapters and opens with an overview of the gen
Czech Academy of Sciences Publication Activity Database
Anisimov, V.I.; Korotin, D. M.; Korotin, M. A.; Kozhevnikov, A, V.; Kuneš, Jan; Shorikov, A.O.; Skornyakov, S.L.; Streltsov, S. V.
2009-01-01
Roč. 21, č. 7 (2009), 075602/1-075602/7 ISSN 0953-8984 Institutional research plan: CEZ:AV0Z10100521 Keywords : iron pnictide * electronic correlations * dynamical mean-field theory Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.964, year: 2009
Wieser, R
2017-05-04
A self-consistent mean field theory is introduced and used to investigate the thermodynamics and spin dynamics of an S = 1 quantum spin system with a magnetic Skyrmion. The temperature dependence of the Skyrmion profile as well as the phase diagram are calculated. In addition, the spin dynamics of a magnetic Skyrmion is described by solving the time dependent Schrödinger equation with additional damping term. The Skyrmion annihilation process driven by an electric field is used to compare the trajectories of the quantum mechanical simulation with a semi-classical description for the spin expectation values using a differential equation similar to the classical Landau-Lifshitz-Gilbert equation.
van Roekeghem, Ambroise; Richard, Pierre; Shi, Xun; Wu, Shangfei; Zeng, Lingkun; Saparov, Bayrammurad; Ohtsubo, Yoshiyuki; Qian, Tian; Sefat, Athena S.; Biermann, Silke; Ding, Hong
2016-06-01
We present a study of the tetragonal to collapsed-tetragonal transition of CaFe2As2 using angle-resolved photoemission spectroscopy and dynamical mean field theory-based electronic structure calculations. We observe that the collapsed-tetragonal phase exhibits reduced correlations and a higher coherence temperature due to the stronger Fe-As hybridization. Furthermore, a comparison of measured photoemission spectra and theoretical spectral functions shows that momentum-dependent corrections to the density functional band structure are essential for the description of low-energy quasiparticle dispersions. We introduce those using the recently proposed combined "screened exchange + dynamical mean field theory" scheme.
Delange, Pascal; Backes, Steffen; van Roekeghem, Ambroise; Pourovskii, Leonid; Jiang, Hong; Biermann, Silke
2018-04-01
The most intriguing properties of emergent materials are typically consequences of highly correlated quantum states of their electronic degrees of freedom. Describing those materials from first principles remains a challenge for modern condensed matter theory. Here, we review, apply and discuss novel approaches to spectral properties of correlated electron materials, assessing current day predictive capabilities of electronic structure calculations. In particular, we focus on the recent Screened Exchange Dynamical Mean-Field Theory scheme and its relation to generalized Kohn-Sham Theory. These concepts are illustrated on the transition metal pnictide BaCo2As2 and elemental zinc and cadmium.
Meta fluid dynamic as a gauge field theory
International Nuclear Information System (INIS)
Mendes, A.C.R.; Neves, C.; Oliveira, W.; Takakura, F.I.
2003-01-01
In this paper, the analog of Maxwell electromagnetism for hydrodynamic turbulence, the meta fluid dynamics, is extended in order to reformulate the meta fluid dynamics as a gauge field theory. That analogy opens up the possibility to investigate this theory as a constrained system. Having this possibility in mind, we propose a Lagrangian to describe this new theory of turbulence and, subsequently, analyze it from the symplectic point of view. From this analysis, a hidden gauge symmetry is revealed, providing a clear interpretation and meaning of the physics behind the meta fluid theory. Also, the geometrical interpretation to the gauge symmetries is discussed. (author)
Mean fields and self consistent normal ordering of lattice spin and gauge field theories
International Nuclear Information System (INIS)
Ruehl, W.
1986-01-01
Classical Heisenberg spin models on lattices possess mean field theories that are well defined real field theories on finite lattices. These mean field theories can be self consistently normal ordered. This leads to a considerable improvement over standard mean field theory. This concept is carried over to lattice gauge theories. We construct first an appropriate real mean field theory. The equations determining the Gaussian kernel necessary for self-consistent normal ordering of this mean field theory are derived. (orig.)
International Nuclear Information System (INIS)
Hattori, Kazumasa
2010-01-01
We investigate a two-orbital Anderson lattice model with Ising orbital intersite exchange interactions on the basis of a dynamical mean field theory combined with the static mean field approximation of intersite orbital interactions. Focusing on Ce-based heavy-fermion compounds, we examine the orbital crossover between two orbital states, when the total f-electron number per site n f is ∼1. We show that a 'meta-orbital' transition, at which the occupancy of two orbitals changes steeply, occurs when the hybridization between the ground-state f-electron orbital and conduction electrons is smaller than that between the excited f-electron orbital and conduction electrons at low pressures. Near the meta-orbital critical end point, orbital fluctuations are enhanced and couple with charge fluctuations. A critical theory of meta-orbital fluctuations is also developed by applying the self-consistent renormalization theory of itinerant electron magnetism to orbital fluctuations. The critical end point, first-order transition, and crossover are described within Gaussian approximations of orbital fluctuations. We discuss the relevance of our results to CeAl 2 , CeCu 2 Si 2 , CeCu 2 Ge 2 , and related compounds, which all have low-lying crystalline-electric-field excited states. (author)
Edison, John R; Monson, Peter A
2013-06-21
This article addresses the accuracy of a dynamic mean field theory (DMFT) for fluids in porous materials [P. A. Monson, J. Chem. Phys. 128, 084701 (2008)]. The theory is used to study the relaxation processes of fluids in pores driven by step changes made to a bulk reservoir in contact with the pore. We compare the results of the DMFT to those obtained by averaging over large numbers of dynamic Monte Carlo (DMC) simulation trajectories. The problem chosen for comparison is capillary condensation in slit pores, driven by step changes in the chemical potential in the bulk reservoir and involving a nucleation process via the formation of a liquid bridge. The principal difference between the DMFT results and DMC is the replacement of a distribution of nucleation times and location along the pore for the formation of liquid bridges by a single time and location. DMFT is seen to yield an otherwise qualitatively accurate description of the dynamic behavior.
Mean field theories and dual variation mathematical structures of the mesoscopic model
Suzuki, Takashi
2015-01-01
Mean field approximation has been adopted to describe macroscopic phenomena from microscopic overviews. It is still in progress; fluid mechanics, gauge theory, plasma physics, quantum chemistry, mathematical oncology, non-equilibirum thermodynamics. spite of such a wide range of scientific areas that are concerned with the mean field theory, a unified study of its mathematical structure has not been discussed explicitly in the open literature. The benefit of this point of view on nonlinear problems should have significant impact on future research, as will be seen from the underlying features of self-assembly or bottom-up self-organization which is to be illustrated in a unified way. The aim of this book is to formulate the variational and hierarchical aspects of the equations that arise in the mean field theory from macroscopic profiles to microscopic principles, from dynamics to equilibrium, and from biological models to models that arise from chemistry and physics.
Dynamic mean field theory for lattice gas models of fluid mixtures confined in mesoporous materials.
Edison, J R; Monson, P A
2013-11-12
We present the extension of dynamic mean field theory (DMFT) for fluids in porous materials (Monson, P. A. J. Chem. Phys. 2008, 128, 084701) to the case of mixtures. The theory can be used to describe the relaxation processes in the approach to equilibrium or metastable equilibrium states for fluids in pores after a change in the bulk pressure or composition. It is especially useful for studying systems where there are capillary condensation or evaporation transitions. Nucleation processes associated with these transitions are emergent features of the theory and can be visualized via the time dependence of the density distribution and composition distribution in the system. For mixtures an important component of the dynamics is relaxation of the composition distribution in the system, especially in the neighborhood of vapor-liquid interfaces. We consider two different types of mixtures, modeling hydrocarbon adsorption in carbon-like slit pores. We first present results on bulk phase equilibria of the mixtures and then the equilibrium (stable/metastable) behavior of these mixtures in a finite slit pore and an inkbottle pore. We then use DMFT to describe the evolution of the density and composition in the pore in the approach to equilibrium after changing the state of the bulk fluid via composition or pressure changes.
Multiagent model and mean field theory of complex auction dynamics
Chen, Qinghua; Huang, Zi-Gang; Wang, Yougui; Lai, Ying-Cheng
2015-09-01
Recent years have witnessed a growing interest in analyzing a variety of socio-economic phenomena using methods from statistical and nonlinear physics. We study a class of complex systems arising from economics, the lowest unique bid auction (LUBA) systems, which is a recently emerged class of online auction game systems. Through analyzing large, empirical data sets of LUBA, we identify a general feature of the bid price distribution: an inverted J-shaped function with exponential decay in the large bid price region. To account for the distribution, we propose a multi-agent model in which each agent bids stochastically in the field of winner’s attractiveness, and develop a theoretical framework to obtain analytic solutions of the model based on mean field analysis. The theory produces bid-price distributions that are in excellent agreement with those from the real data. Our model and theory capture the essential features of human behaviors in the competitive environment as exemplified by LUBA, and may provide significant quantitative insights into complex socio-economic phenomena.
Multiagent model and mean field theory of complex auction dynamics
International Nuclear Information System (INIS)
Chen, Qinghua; Wang, Yougui; Huang, Zi-Gang; Lai, Ying-Cheng
2015-01-01
Recent years have witnessed a growing interest in analyzing a variety of socio-economic phenomena using methods from statistical and nonlinear physics. We study a class of complex systems arising from economics, the lowest unique bid auction (LUBA) systems, which is a recently emerged class of online auction game systems. Through analyzing large, empirical data sets of LUBA, we identify a general feature of the bid price distribution: an inverted J-shaped function with exponential decay in the large bid price region. To account for the distribution, we propose a multi-agent model in which each agent bids stochastically in the field of winner’s attractiveness, and develop a theoretical framework to obtain analytic solutions of the model based on mean field analysis. The theory produces bid-price distributions that are in excellent agreement with those from the real data. Our model and theory capture the essential features of human behaviors in the competitive environment as exemplified by LUBA, and may provide significant quantitative insights into complex socio-economic phenomena. (paper)
Mean field methods for cortical network dynamics
DEFF Research Database (Denmark)
Hertz, J.; Lerchner, Alexander; Ahmadi, M.
2004-01-01
We review the use of mean field theory for describing the dynamics of dense, randomly connected cortical circuits. For a simple network of excitatory and inhibitory leaky integrate- and-fire neurons, we can show how the firing irregularity, as measured by the Fano factor, increases...... with the strength of the synapses in the network and with the value to which the membrane potential is reset after a spike. Generalizing the model to include conductance-based synapses gives insight into the connection between the firing statistics and the high- conductance state observed experimentally in visual...
Mean-field theory for a ferroelectric transition
International Nuclear Information System (INIS)
Dobry, A.; Greco, A.; Stachiotti, M.
1990-01-01
For the treatment of anharmonic models of solids presenting structural transitions, a commonly used approximation is that of self-consistent phonons. Rather than the usual site decoupling, this mean-field theory is based on decoupling of modes in reciprocal space. A self-consistent phonon approximation for the non-linear polarizability model is developed in this work. The model describes the dynamical properties of ferroelectric materials. Phase diagrams as a function of relevant model parameters are presented. An analysis is made of critical behaviour and it is shown that the approximation leads to the same anomalies found in other models. (Author). 9 refs., 3 figs
Haule, Kristjan
2018-04-01
The Dynamical Mean Field Theory (DMFT) in combination with the band structure methods has been able to address reach physics of correlated materials, such as the fluctuating local moments, spin and orbital fluctuations, atomic multiplet physics and band formation on equal footing. Recently it is getting increasingly recognized that more predictive ab-initio theory of correlated systems needs to also address the feedback effect of the correlated electronic structure on the ionic positions, as the metal-insulator transition is almost always accompanied with considerable structural distortions. We will review recently developed extension of merger between the Density Functional Theory (DFT) and DMFT method, dubbed DFT+ embedded DMFT (DFT+eDMFT), whichsuccessfully addresses this challenge. It is based on the stationary Luttinger-Ward functional to minimize the numerical error, it subtracts the exact double-counting of DFT and DMFT, and implements self-consistent forces on all atoms in the unit cell. In a few examples, we will also show how the method elucidated the important feedback effect of correlations on crystal structure in rare earth nickelates to explain the mechanism of the metal-insulator transition. The method showed that such feedback effect is also essential to understand the dynamic stability of the high-temperature body-centered cubic phase of elemental iron, and in particular it predicted strong enhancement of the electron-phonon coupling over DFT values in FeSe, which was very recently verified by pioneering time-domain experiment.
Conserving gapless mean-field theory for weakly interacting Bose gases
International Nuclear Information System (INIS)
Kita, Takafumi
2006-01-01
This paper presents a conserving gapless mean-field theory for weakly interacting Bose gases. We first construct a mean-field Luttinger-Ward thermodynamic functional in terms of the condensate wave function Ψ and the Nambu Green's function G for the quasiparticle field. Imposing its stationarity respect to Ψ and G yields a set of equations to determine the equilibrium for general non-uniform systems. They have a plausible property of satisfying the Hugenholtz-Pines theorem to provide a gapless excitation spectrum. Also, the corresponding dynamical equations of motion obey various conservation laws. Thus, the present mean-field theory shares two important properties with the exact theory: 'conserving' and 'gapless'. The theory is then applied to a homogeneous weakly interacting Bose gas with s-wave scattering length a and particle mass m to clarify its basic thermodynamic properties under two complementary conditions of constant density n and constant pressure p. The superfluid transition is predicted to be first-order because of the non-analytic nature of the order-parameter expansion near T c inherent in Bose systems, i.e., the Landau-Ginzburg expansion is not possible here. The transition temperature T c shows quite a different interaction dependence between the n-fixed and p-fixed cases. In the former case T c increases from the ideal gas value T 0 as T c /T 0 =1+2.33an 1/3 , whereas it decreases in the latter as T c /T 0 =1-3.84a(mp/2πℎ 2 ) 1/5 . Temperature dependences of basic thermodynamic quantities are clarified explicitly. (author)
Time-odd mean fields in covariant density functional theory: Rotating systems
International Nuclear Information System (INIS)
Afanasjev, A. V.; Abusara, H.
2010-01-01
Time-odd mean fields (nuclear magnetism) and their impact on physical observables in rotating nuclei are studied in the framework of covariant density functional theory (CDFT). It is shown that they have profound effect on the dynamic and kinematic moments of inertia. Particle number, configuration, and rotational frequency dependencies of their impact on the moments of inertia have been analyzed in a systematic way. Nuclear magnetism can also considerably modify the band crossing features such as crossing frequencies and the properties of the kinematic and dynamic moments of inertia in the band crossing region. The impact of time-odd mean fields on the moments of inertia in the regions away from band crossing only weakly depends on the relativistic mean-field parametrization, reflecting good localization of the properties of time-odd mean fields in CDFT. The moments of inertia of normal-deformed nuclei considerably deviate from the rigid-body value. On the contrary, superdeformed and hyperdeformed nuclei have the moments of inertia which are close to rigid-body value. The structure of the currents in rotating frame, their microscopic origin, and the relations to the moments of inertia have been systematically analyzed. The phenomenon of signature separation in odd-odd nuclei, induced by time-odd mean fields, has been analyzed in detail.
Band mixing effects in mean field theories
International Nuclear Information System (INIS)
Kuyucak, S.; Morrison, I.
1989-01-01
The 1/N expansion method, which is an angular momentum projected mean field theory, is used to investigate the nature of electromagnetic transitions in the interacting boson model (IBM). Conversely, comparison with the exact IBM results sheds light on the range of validity of the mean field theory. It is shown that the projected mean field results for the E2 transitions among the ground, β and γ bands are incomplete for the spin dependent terms and it is essential to include band mixing effect for a correct (Mikhailov) analysis of E2 data. The algebraic expressions derived are general and will be useful in the analysis of experimental data in terms of both the sd and sdg boson models. 17 refs., 7 figs., 8 tabs
Regularity theory for mean-field game systems
Gomes, Diogo A; Voskanyan, Vardan
2016-01-01
Beginning with a concise introduction to the theory of mean-field games (MFGs), this book presents the key elements of the regularity theory for MFGs. It then introduces a series of techniques for well-posedness in the context of mean-field problems, including stationary and time-dependent MFGs, subquadratic and superquadratic MFG formulations, and distinct classes of mean-field couplings. It also explores stationary and time-dependent MFGs through a series of a-priori estimates for solutions of the Hamilton-Jacobi and Fokker-Planck equation. It shows sophisticated a-priori systems derived using a range of analytical techniques, and builds on previous results to explain classical solutions. The final chapter discusses the potential applications, models and natural extensions of MFGs. As MFGs connect common problems in pure mathematics, engineering, economics and data management, this book is a valuable resource for researchers and graduate students in these fields.
Regularity Theory for Mean-Field Game Systems
Gomes, Diogo A.
2016-09-14
Beginning with a concise introduction to the theory of mean-field games (MFGs), this book presents the key elements of the regularity theory for MFGs. It then introduces a series of techniques for well-posedness in the context of mean-field problems, including stationary and time-dependent MFGs, subquadratic and superquadratic MFG formulations, and distinct classes of mean-field couplings. It also explores stationary and time-dependent MFGs through a series of a-priori estimates for solutions of the Hamilton-Jacobi and Fokker-Planck equation. It shows sophisticated a-priori systems derived using a range of analytical techniques, and builds on previous results to explain classical solutions. The final chapter discusses the potential applications, models and natural extensions of MFGs. As MFGs connect common problems in pure mathematics, engineering, economics and data management, this book is a valuable resource for researchers and graduate students in these fields.
Regularity Theory for Mean-Field Game Systems
Gomes, Diogo A.; Pimentel, Edgard A.; Voskanyan, Vardan K.
2016-01-01
Beginning with a concise introduction to the theory of mean-field games (MFGs), this book presents the key elements of the regularity theory for MFGs. It then introduces a series of techniques for well-posedness in the context of mean-field problems, including stationary and time-dependent MFGs, subquadratic and superquadratic MFG formulations, and distinct classes of mean-field couplings. It also explores stationary and time-dependent MFGs through a series of a-priori estimates for solutions of the Hamilton-Jacobi and Fokker-Planck equation. It shows sophisticated a-priori systems derived using a range of analytical techniques, and builds on previous results to explain classical solutions. The final chapter discusses the potential applications, models and natural extensions of MFGs. As MFGs connect common problems in pure mathematics, engineering, economics and data management, this book is a valuable resource for researchers and graduate students in these fields.
International Nuclear Information System (INIS)
Ertaş, Mehmet; Keskin, Mustafa
2012-01-01
The dynamic magnetic behavior of the mixed Ising bilayer system (σ=2 and S=5/2), with a crystal-field interaction in an oscillating field are studied, within the mean-field approach, by using the Glauber-type stochastic dynamics for both ferromagnetic/ferromagnetic and antiferromagnetic/ferromagnetic interactions. The time variations of average magnetizations and the temperature dependence of the dynamic magnetizations are investigated. The dynamic phase diagrams are presented in the reduced temperature and magnetic field amplitude plane and they exhibit several ordered phases, coexistence phase regions and critical points as well as a re-entrant behavior depending on interaction parameters. -- Highlights: ► Dynamic magnetic behavior of the mixed Ising bilayer system is investigated within the Glauber-type stochastic dynamics. ► The time variations of average magnetizations are studied to find the phases. ► The temperature dependence of the dynamic magnetizations is investigated to obtain the dynamic phase transition points. ► The dynamic phase diagrams are presented and they exhibit several ordered phases, coexistence phase regions and critical points as well as a re-entrant behavior.
Energy Technology Data Exchange (ETDEWEB)
Ertaş, Mehmet [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.tr [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)
2012-07-23
The dynamic magnetic behavior of the mixed Ising bilayer system (σ=2 and S=5/2), with a crystal-field interaction in an oscillating field are studied, within the mean-field approach, by using the Glauber-type stochastic dynamics for both ferromagnetic/ferromagnetic and antiferromagnetic/ferromagnetic interactions. The time variations of average magnetizations and the temperature dependence of the dynamic magnetizations are investigated. The dynamic phase diagrams are presented in the reduced temperature and magnetic field amplitude plane and they exhibit several ordered phases, coexistence phase regions and critical points as well as a re-entrant behavior depending on interaction parameters. -- Highlights: ► Dynamic magnetic behavior of the mixed Ising bilayer system is investigated within the Glauber-type stochastic dynamics. ► The time variations of average magnetizations are studied to find the phases. ► The temperature dependence of the dynamic magnetizations is investigated to obtain the dynamic phase transition points. ► The dynamic phase diagrams are presented and they exhibit several ordered phases, coexistence phase regions and critical points as well as a re-entrant behavior.
Exact mean-field theory of ionic solutions: non-Debye screening
International Nuclear Information System (INIS)
Varela, L.M.; Garcia, Manuel; Mosquera, Victor
2003-01-01
The main aim of this report is to analyze the equilibrium properties of primitive model (PM) ionic solutions in the formally exact mean-field formalism. Previously, we review the main theoretical and numerical results reported throughout the last century for homogeneous (electrolytes) and inhomogeneous (electric double layer, edl) ionic systems, starting with the classical mean-field theory of electrolytes due to Debye and Hueckel (DH). In this formalism, the effective potential is derived from the Poisson-Boltzmann (PB) equation and its asymptotic behavior analyzed in the classical Debye theory of screening. The thermodynamic properties of electrolyte solutions are briefly reviewed in the DH formalism. The main analytical and numerical extensions of DH formalism are revised, ranging from the earliest extensions that overcome the linearization of the PB equation to the more sophisticated integral equation techniques introduced after the late 1960s. Some Monte Carlo and molecular dynamic simulations are also reviewed. The potential distributions in an inhomogeneous ionic system are studied in the classical PB framework, presenting the classical Gouy-Chapman (GC) theory of the electric double layer (edl) in a brief manner. The mean-field theory is adequately contextualized using field theoretic (FT) results and it is proven that the classical PB theory is recovered at the Gaussian or one-loop level of the exact FT, and a systematic way to obtain the corrections to the DH theory is derived. Particularly, it is proven following Kholodenko and Beyerlein that corrections to DH theory effectively lead to a renormalization of charges and Debye screening length. The main analytical and numerical results for this non-Debye screening length are reviewed, ranging from asymptotic expansions, self-consistent theory, nonlinear DH results and hypernetted chain (HNC) calculations. Finally, we study the exact mean-field theory of ionic solutions, the so-called dressed-ion theory
Mean field with corrections in lattice gauge theory
International Nuclear Information System (INIS)
Flyvbjerg, H.; Zuber, J.B.; Lautrup, B.
1981-12-01
A systematic expansion of the path integral for lattice gauge theory is performed around the mean field solution. In this letter the authors present the results for the pure gauge groups Z(2), SU(2) and SO(3). The agreement with Monte Carlo calculations is excellent. For the discrete group the calculation is performed with and without gauge fixing, whereas for the continuous groups gauge fixing is mandatory. In the case of SU(2) the absence of a phase transition is correctly signalled by mean field theory. (Auth.)
Nuclear collective vibrations in extended mean-field theory
Energy Technology Data Exchange (ETDEWEB)
Lacroix, D. [Lab. de Physique Corpusculaire/ ENSICAEN, 14 - Caen (France); Ayik, S. [Tennessee Technological Univ., Cookeville, TN (United States); Chomaz, Ph. [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France)
2003-07-01
The extended mean-field theory, which includes both the incoherent dissipation mechanism due to nucleon-nucleon collisions and the coherent dissipation mechanism due to coupling to low-lying surface vibrations, is briefly reviewed. Expressions of the strength functions for the collective excitations are presented in the small amplitude limit of this approach. This fully microscopic theory is applied by employing effective Skyrme forces to various giant resonance excitations at zero and finite temperature. The theory is able to describe the gross properties of giant resonance excitations, the fragmentation of the strength distributions as well as their fine structure. At finite temperature, the success and limitations of this extended mean-field description are discussed. (authors)
International Nuclear Information System (INIS)
Hasegawa, Hideo
2003-01-01
A dynamical mean-field approximation (DMA) previously proposed by the present author [H. Hasegawa, Phys. Rev E 67, 041903 (2003)] has been extended to ensembles described by a general noisy spiking neuron model. Ensembles of N-unit neurons, each of which is expressed by coupled K-dimensional differential equations (DEs), are assumed to be subject to spatially correlated white noises. The original KN-dimensional stochastic DEs have been replaced by K(K+2)-dimensional deterministic DEs expressed in terms of means and the second-order moments of local and global variables: the fourth-order contributions are taken into account by the Gaussian decoupling approximation. Our DMA has been applied to an ensemble of Hodgkin-Huxley (HH) neurons (K=4), for which effects of the noise, the coupling strength, and the ensemble size on the response to a single-spike input have been investigated. Numerical results calculated by the DMA theory are in good agreement with those obtained by direct simulations, although the former computation is about a thousand times faster than the latter for a typical HH neuron ensemble with N=100
Derivation of mean-field dynamics for fermions
International Nuclear Information System (INIS)
Petrat, Soeren
2014-01-01
In this work, we derive the time-dependent Hartree(-Fock) equations as an effective dynamics for fermionic many-particle systems. Our main results are the first for a quantum mechanical mean-field dynamics for fermions; in previous works, the mean-field limit is usually either coupled to a semiclassical limit, or the interaction is scaled down so much, that the system behaves freely for large particle number N. We mainly consider systems with total kinetic energy bounded by const.N and long-range interaction potentials, e.g., Coulomb interaction. Examples for such systems are large molecules or certain solid states. Our analysis also applies to attractive interactions, as, e.g., in fermionic stars. The fermionic Hartree(-Fock) equations are a standard tool to describe, e.g., excited states or chemical reactions of large molecules (like proteins). A deeper understanding of these equations as an approximation to the time evolution of a many body quantum system is thus highly relevant. We consider the fermionic Hartree equations (i.e., the Hartree-Fock equations without exchange term) in this work, since the exchange term is subleading in our setting. The main result is that the fermionic Hartree dynamics approximates the Schroedinger dynamics well for large N. This statement becomes exact in the thermodynamic limit N→∞. We give explicit values for the rates of convergence. We prove two types of results. The first type is very general and concerns arbitrary free Hamiltonians (e.g., relativistic, non-relativistic, with external fields) and arbitrary interactions. The theorems give explicit conditions on the solutions to the fermionic Hartree equations under which a derivation of the mean-field dynamics succeeds. The second type of results scrutinizes situations where the conditions are fulfilled. These results are about non-relativistic free Hamiltonians with external fields, systems with total kinetic energy bounded by const.N and with long-range interactions of
A self-consistent mean-field approach to the dynamical symmetry breaking
International Nuclear Information System (INIS)
Kunihiro, Teiji; Hatsuda, Tetsuo.
1984-01-01
The dynamical symmetry breaking phenomena in the Nambu and Jona-Lasimio model are reexamined in the framework of a self-consistent mean-field (SCMF) theory. First, we formulate the SCMF theory in a lucid manner based on a successful decomposition of the Lagrangian into semiclassical and residual interaction parts by imposing a condition that ''the dangerous term'' in Bogoliubov's sense should vanish. Then, we show that the difference of the energy density between the super and normal phases, the correct expression of which the original authors failed to give, can be readily obtained by applying the SCMF theory. Futhermore, it is shown that the expression thus obtained is identical to that of the effective potential (E.P.) given by the path-integral method with an auxiliary field up to the one loop order in the loop expansion, then one finds a new and simple way to get the E.P. Some numerical results of the E.P. and the dynamically generated mass of fermion are also shown. As another demonstration of the powerfulness of the SCMF theory, we derive, in the Appendix, the energy density of the O(N)-phi 4 model including the higher order corrections in the sense of large N expansion. (author)
International Nuclear Information System (INIS)
Souza, Manoelito M. de
1997-01-01
We discuss the physical meaning and the geometric interpretation of implementation in classical field theories. The origin of infinities and other inconsistencies in field theories is traced to fields defined with support on the light cone; a finite and consistent field theory requires a light-cone generator as the field support. Then, we introduce a classical field theory with support on the light cone generators. It results on a description of discrete (point-like) interactions in terms of localized particle-like fields. We find the propagators of these particle-like fields and discuss their physical meaning, properties and consequences. They are conformally invariant, singularity-free, and describing a manifestly covariant (1 + 1)-dimensional dynamics in a (3 = 1) spacetime. Remarkably this conformal symmetry remains even for the propagation of a massive field in four spacetime dimensions. We apply this formalism to Classical electrodynamics and to the General Relativity Theory. The standard formalism with its distributed fields is retrieved in terms of spacetime average of the discrete field. Singularities are the by-products of the averaging process. This new formalism enlighten the meaning and the problem of field theory, and may allow a softer transition to a quantum theory. (author)
International Nuclear Information System (INIS)
Ertaş, Mehmet; Kantar, Ersin; Keskin, Mustafa
2014-01-01
The dynamic phase transitions (DPTs) and dynamic phase diagrams of the kinetic spin-1/2 bilayer system in the presence of a time-dependent oscillating external magnetic field are studied by using Glauber-type stochastic dynamics based on the effective-field theory with correlations for the ferromagnetic/ferromagnetic (FM/FM), antiferromagnetic/ferromagnetic (AFM/FM) and antiferromagnetic/antiferromagnetic (AFM/AFM) interactions. The time variations of average magnetizations and the temperature dependence of the dynamic magnetizations are investigated. The dynamic phase diagrams for the amplitude of the oscillating field versus temperature were presented. The results are compared with the results of the same system within Glauber-type stochastic dynamics based on the mean-field theory. - Highlights: • The Ising bilayer system is investigated within the Glauber dynamics based on EFT. • The time variations of average order parameters to find phases are studied. • The dynamic phase diagrams are found for the different interaction parameters. • The system displays the critical points as well as a re-entrant behavior
Energy Technology Data Exchange (ETDEWEB)
Ertaş, Mehmet; Kantar, Ersin, E-mail: ersinkantar@erciyes.edu.tr; Keskin, Mustafa
2014-05-01
The dynamic phase transitions (DPTs) and dynamic phase diagrams of the kinetic spin-1/2 bilayer system in the presence of a time-dependent oscillating external magnetic field are studied by using Glauber-type stochastic dynamics based on the effective-field theory with correlations for the ferromagnetic/ferromagnetic (FM/FM), antiferromagnetic/ferromagnetic (AFM/FM) and antiferromagnetic/antiferromagnetic (AFM/AFM) interactions. The time variations of average magnetizations and the temperature dependence of the dynamic magnetizations are investigated. The dynamic phase diagrams for the amplitude of the oscillating field versus temperature were presented. The results are compared with the results of the same system within Glauber-type stochastic dynamics based on the mean-field theory. - Highlights: • The Ising bilayer system is investigated within the Glauber dynamics based on EFT. • The time variations of average order parameters to find phases are studied. • The dynamic phase diagrams are found for the different interaction parameters. • The system displays the critical points as well as a re-entrant behavior.
Knolle, Johannes; Bhattacharjee, Subhro; Moessner, Roderich
2018-04-01
We present an augmented parton mean-field theory which (i) reproduces the exact ground state, spectrum, and dynamics of the quantum spin-liquid phase of Kitaev's honeycomb model, and (ii) is amenable to the inclusion of integrability breaking terms, allowing a perturbation theory from a controlled starting point. Thus, we exemplarily study dynamical spin correlations of the honeycomb Kitaev quantum spin liquid within the K -J -Γ model, which includes Heisenberg and symmetric-anisotropic (pseudodipolar) interactions. This allows us to trace changes of the correlations in the regime of slowly moving fluxes, where the theory captures the dominant deviations when integrability is lost. These include an asymmetric shift together with a broadening of the dominant peak in the response as a function of frequency, the generation of further-neighbor correlations and their structure in real and spin space, and a resulting loss of an approximate rotational symmetry of the structure factor in reciprocal space. We discuss the limitations of this approach and also view the neutron-scattering experiments on the putative proximate quantum spin-liquid material α -RuCl3 in the light of the results from this extended parton theory.
Modification of linear response theory for mean-field approximations
Hütter, M.; Öttinger, H.C.
1996-01-01
In the framework of statistical descriptions of many particle systems, the influence of mean-field approximations on the linear response theory is studied. A procedure, analogous to one where no mean-field approximation is involved, is used in order to determine the first order response of the
Biroli, G.; Kotliar, G.
2004-01-01
We reply to the comment by K. Aryanpour, Th. Maier and M. Jarrell (cond-mat/0301460) on our paper (Phys. Rev. B {\\bf 65} 155112 (2002)). We demonstrate using general arguments and explicit examples that whenever the correlation length is finite, local observables converge exponentially fast in the cluster size, $L_{c}$, within Cellular Dynamical Mean Field Theory (CDMFT). This is a faster rate of convergence than the $1/L_{c}^{2}$ behavior of the Dynamical Cluster approximation (DCA) thus ref...
Energy Technology Data Exchange (ETDEWEB)
Deviren, Bayram [Department of Physics, Nevsehir University, 50300 Nevsehir (Turkey); Institute of Science, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.t [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)
2010-07-12
Dynamic aspects of a two-sublattice Ising metamagnet on honeycomb, square and hexagonal lattices under the presence of a time-dependent oscillating external magnetic field are studied by using the effective-field theory with correlations. The set of effective-field dynamic equations is derived by employing Glauber transition rates. The phases in the system are obtained by solving these dynamic equations. The thermal behavior of the dynamic staggered magnetization, the hysteresis loop area and correlation are investigated in order to characterize the nature of the dynamic transitions and to obtain dynamic phase transition temperatures. The phase diagrams are constructed in two different planes, and exhibit dynamic tricritical behavior, which strongly depends on interaction parameters. In order to investigate the spin correlation effect on the dynamic phase diagrams of the system, the results are also given within the framework of the dynamic mean-field approximation.
International Nuclear Information System (INIS)
Deviren, Bayram; Keskin, Mustafa
2010-01-01
Dynamic aspects of a two-sublattice Ising metamagnet on honeycomb, square and hexagonal lattices under the presence of a time-dependent oscillating external magnetic field are studied by using the effective-field theory with correlations. The set of effective-field dynamic equations is derived by employing Glauber transition rates. The phases in the system are obtained by solving these dynamic equations. The thermal behavior of the dynamic staggered magnetization, the hysteresis loop area and correlation are investigated in order to characterize the nature of the dynamic transitions and to obtain dynamic phase transition temperatures. The phase diagrams are constructed in two different planes, and exhibit dynamic tricritical behavior, which strongly depends on interaction parameters. In order to investigate the spin correlation effect on the dynamic phase diagrams of the system, the results are also given within the framework of the dynamic mean-field approximation.
Dark-Bright Soliton Dynamics Beyond the Mean-Field Approximation
Katsimiga, Garyfallia; Koutentakis, Georgios; Mistakidis, Simeon; Kevrekidis, Panagiotis; Schmelcher, Peter; Theory Group of Fundamental Processes in Quantum Physics Team
2017-04-01
The dynamics of dark bright solitons beyond the mean-field approximation is investigated. We first examine the case of a single dark-bright soliton and its oscillations within a parabolic trap. Subsequently, we move to the setting of collisions, comparing the mean-field approximation to that involving multiple orbitals in both the dark and the bright component. Fragmentation is present and significantly affects the dynamics, especially in the case of slower solitons and in that of lower atom numbers. It is shown that the presence of fragmentation allows for bipartite entanglement between the distinguishable species. Most importantly the interplay between fragmentation and entanglement leads to the decay of each of the initial mean-field dark-bright solitons into fast and slow fragmented dark-bright structures. A variety of excitations including dark-bright solitons in multiple (concurrently populated) orbitals is observed. Dark-antidark states and domain-wall-bright soliton complexes can also be observed to arise spontaneously in the beyond mean-field dynamics. Deutsche Forschungsgemeinschaft (DFG) in the framework of the SFB 925 ``Light induced dynamics and control of correlated quantum systems''.
Mean-field theory of differential rotation in density stratified turbulent convection
Rogachevskii, I.
2018-04-01
A mean-field theory of differential rotation in a density stratified turbulent convection has been developed. This theory is based on the combined effects of the turbulent heat flux and anisotropy of turbulent convection on the Reynolds stress. A coupled system of dynamical budget equations consisting in the equations for the Reynolds stress, the entropy fluctuations and the turbulent heat flux has been solved. To close the system of these equations, the spectral approach, which is valid for large Reynolds and Péclet numbers, has been applied. The adopted model of the background turbulent convection takes into account an increase of the turbulence anisotropy and a decrease of the turbulent correlation time with the rotation rate. This theory yields the radial profile of the differential rotation which is in agreement with that for the solar differential rotation.
Development of mean field theories in nuclear physics and in desordered media
International Nuclear Information System (INIS)
Orland, Henri.
1981-04-01
This work, in two parts, deals with the development of mean field theories in nuclear physics (nuclei in balance and collisions of heavy ions) as well as in disordered media. In the first part, two different ways of tackling the problem of developments around mean field theories are explained. Possessing an approach wave function for the system, the natural idea for including the correlations is to develop the exact wave function of the system around the mean field wave function. The first two chapters show two different ways of dealing with this problem: the perturbative approach - Hartree-Fock equations with two body collisions and functional methods. In the second part: mean field theory for spin glasses. The problem for spin glasses is to construct a physically acceptable mean field theory. The importance of this problem in statistical mechanics is linked to the fact that the mean field theory provides a qualitative description of the low temperature phase and is the starting point needed for using more sophisticated methods (renormalization group). Two approaches to this problem are presented, one based on the Sherrington-Kirkpatrick model and the other based on a model of spins with purely local disorder and competitive interaction between the spins [fr
Thermo field dynamics: a quantum field theory at finite temperature
International Nuclear Information System (INIS)
Mancini, F.; Marinaro, M.; Matsumoto, H.
1988-01-01
A brief review of the theory of thermo field dynamics (TFD) is presented. TFD is introduced and developed by Umezawa and his coworkers at finite temperature. The most significant concept in TFD is that of a thermal vacuum which satisfies some conditions denoted as thermal state conditions. The TFD permits to reformulate theories at finite temperature. There is no need in an additional principle to determine particle distributions at T ≠ 0. Temperature and other macroscopic parameters are introduced in the definition of the vacuum state. All operator formalisms used in quantum field theory at T=0 are preserved, although the field degrees of freedom are doubled. 8 refs
General Relativistic Mean Field Theory for rotating nuclei
Energy Technology Data Exchange (ETDEWEB)
Madokoro, Hideki [Kyushu Univ., Fukuoka (Japan). Dept. of Physics; Matsuzaki, Masayuki
1998-03-01
The {sigma}-{omega} model Lagrangian is generalized to an accelerated frame by using the technique of general relativity which is known as tetrad formalism. We apply this model to the description of rotating nuclei within the mean field approximation, which we call General Relativistic Mean Field Theory (GRMFT) for rotating nuclei. The resulting equations of motion coincide with those of Munich group whose formulation was not based on the general relativistic transformation property of the spinor fields. Some numerical results are shown for the yrast states of the Mg isotopes and the superdeformed rotational bands in the A {approx} 60 mass region. (author)
International Nuclear Information System (INIS)
Kinoshita, Takehiro; Fujiyama, Shinya; Idogaki, Toshihiro; Tokita, Masahiko
2009-01-01
The non-equilibrium phase transition in a ferromagnetic Ising model is investigated by use of a new type of effective field theory (EFT) which correctly accounts for all the single-site kinematic relations by differential operator technique. In the presence of a time dependent oscillating external field, with decrease of the temperature the system undergoes a dynamic phase transition, which is characterized by the period averaged magnetization Q, from a dynamically disordered state Q = 0 to the dynamically ordered state Q ≠ 0. The results of the dynamic phase transition point T c determined from the behavior of the dynamic magnetization and the Liapunov exponent provided by EFT are improved than that of the standard mean field theory (MFT), especially for the one dimensional lattice where the standard MFT gives incorrect result of T c = 0 even in the case of zero external field.
Energy Technology Data Exchange (ETDEWEB)
Heilmann, D.B.
2007-02-15
The two-plane HUBBARD model, which is a model for some electronic properties of undoped YBCO superconductors as well as displays a MOTT metal-to-insulator transition and a metal-to-band insulator transition, is studied within Dynamical Mean-Field Theory using HIRSCH-FYE Monte Carlo. In order to find the different transitions and distinguish the types of insulator, we calculate the single-particle spectral densities, the self-energies and the optical conductivities. We conclude that there is a continuous transition from MOTT to band insulator. In the second part, ground state properties of a diagonally disordered HUBBARD model is studied using a generalisation of Path Integral Renormalisation Group, a variational method which can also determine low-lying excitations. In particular, the distribution of antiferromagnetic properties is investigated. We conclude that antiferromagnetism breaks down in a percolation-type transition at a critical disorder, which is not changed appreciably by the inclusion of correlation effects, when compared to earlier studies. Electronic and excitation properties at the system sizes considered turn out to primarily depend on the geometry. (orig.)
International Nuclear Information System (INIS)
Heilmann, D.B.
2007-02-01
The two-plane HUBBARD model, which is a model for some electronic properties of undoped YBCO superconductors as well as displays a MOTT metal-to-insulator transition and a metal-to-band insulator transition, is studied within Dynamical Mean-Field Theory using HIRSCH-FYE Monte Carlo. In order to find the different transitions and distinguish the types of insulator, we calculate the single-particle spectral densities, the self-energies and the optical conductivities. We conclude that there is a continuous transition from MOTT to band insulator. In the second part, ground state properties of a diagonally disordered HUBBARD model is studied using a generalisation of Path Integral Renormalisation Group, a variational method which can also determine low-lying excitations. In particular, the distribution of antiferromagnetic properties is investigated. We conclude that antiferromagnetism breaks down in a percolation-type transition at a critical disorder, which is not changed appreciably by the inclusion of correlation effects, when compared to earlier studies. Electronic and excitation properties at the system sizes considered turn out to primarily depend on the geometry. (orig.)
Mean-field theory and self-consistent dynamo modeling
International Nuclear Information System (INIS)
Yoshizawa, Akira; Yokoi, Nobumitsu
2001-12-01
Mean-field theory of dynamo is discussed with emphasis on the statistical formulation of turbulence effects on the magnetohydrodynamic equations and the construction of a self-consistent dynamo model. The dynamo mechanism is sought in the combination of the turbulent residual-helicity and cross-helicity effects. On the basis of this mechanism, discussions are made on the generation of planetary magnetic fields such as geomagnetic field and sunspots and on the occurrence of flow by magnetic fields in planetary and fusion phenomena. (author)
Stochastic mean-field dynamics for fermions in the weak coupling limit
International Nuclear Information System (INIS)
Lacroix, D.
2005-09-01
Assuming that the effect of the residual interaction beyond mean-field is weak and can be treated as a statistical ensemble of two-body interactions, a Markovian quantum jump theory is developed for fermionic systems. In this theory, jumps occur between many-body densities formed of pairs of states D |Φ a > b | / b | |Φ a > where |Φ a > and |Φ b > are anti-symmetrized products of single-particle states. The underlying Stochastic Mean-Field (SMF) theory is discussed and applied to the monopole vibration of a spherical 40 Ca nucleus under the influence of a statistical ensemble of two-body contact interactions. In this example, the mean-field evolution of one-body observables is recovered by averaging over different stochastic trajectories while fluctuations beyond mean-field are observed. Finally, the nature of the fluctuations is discussed. (author)
Applicability of self-consistent mean-field theory
International Nuclear Information System (INIS)
Guo Lu; Sakata, Fumihiko; Zhao Enguang
2005-01-01
Within the constrained Hartree-Fock (CHF) theory, an analytic condition is derived to estimate whether a concept of the self-consistent mean field is realized in the level repulsive region. The derived condition states that an iterative calculation of the CHF equation does not converge when the quantum fluctuations coming from two-body residual interaction and quadrupole deformation become larger than a single-particle energy difference between two avoided crossing orbits. By means of numerical calculation, it is shown that the analytic condition works well for a realistic case
A mean field theory of coded CDMA systems
International Nuclear Information System (INIS)
Yano, Toru; Tanaka, Toshiyuki; Saad, David
2008-01-01
We present a mean field theory of code-division multiple-access (CDMA) systems with error-control coding. On the basis of the relation between the free energy and mutual information, we obtain an analytical expression of the maximum spectral efficiency of the coded CDMA system, from which a mean-field description of the coded CDMA system is provided in terms of a bank of scalar Gaussian channels whose variances in general vary at different code symbol positions. Regular low-density parity-check (LDPC)-coded CDMA systems are also discussed as an example of the coded CDMA systems
A mean field theory of coded CDMA systems
Energy Technology Data Exchange (ETDEWEB)
Yano, Toru [Graduate School of Science and Technology, Keio University, Hiyoshi, Kohoku-ku, Yokohama-shi, Kanagawa 223-8522 (Japan); Tanaka, Toshiyuki [Graduate School of Informatics, Kyoto University, Yoshida Hon-machi, Sakyo-ku, Kyoto-shi, Kyoto 606-8501 (Japan); Saad, David [Neural Computing Research Group, Aston University, Birmingham B4 7ET (United Kingdom)], E-mail: yano@thx.appi.keio.ac.jp
2008-08-15
We present a mean field theory of code-division multiple-access (CDMA) systems with error-control coding. On the basis of the relation between the free energy and mutual information, we obtain an analytical expression of the maximum spectral efficiency of the coded CDMA system, from which a mean-field description of the coded CDMA system is provided in terms of a bank of scalar Gaussian channels whose variances in general vary at different code symbol positions. Regular low-density parity-check (LDPC)-coded CDMA systems are also discussed as an example of the coded CDMA systems.
Mean Field Theory, Ginzburg Criterion, and Marginal Dimensionality of Phase-Transitions
DEFF Research Database (Denmark)
Als-Nielsen, Jens Aage; Birgenau, R. J.
1977-01-01
By applying a real space version of the Ginzburg criterion, the role of fluctuations and thence the self‐consistency of mean field theory are assessed in a simple fashion for a variety of phase transitions. It is shown that in using this approach the concept of ’’marginal dimensionality’’ emerges...... in a natural way. For example, it is shown that for many homogeneous structural transformations the marginal dimensionality is two, so that mean field theory will be valid for real three‐dimensional systems. It is suggested that this simple self‐consistent approach to Landau theory should be incorporated...
Mean field theory of EM algorithm for Bayesian grey scale image restoration
International Nuclear Information System (INIS)
Inoue, Jun-ichi; Tanaka, Kazuyuki
2003-01-01
The EM algorithm for the Bayesian grey scale image restoration is investigated in the framework of the mean field theory. Our model system is identical to the infinite range random field Q-Ising model. The maximum marginal likelihood method is applied to the determination of hyper-parameters. We calculate both the data-averaged mean square error between the original image and its maximizer of posterior marginal estimate, and the data-averaged marginal likelihood function exactly. After evaluating the hyper-parameter dependence of the data-averaged marginal likelihood function, we derive the EM algorithm which updates the hyper-parameters to obtain the maximum likelihood estimate analytically. The time evolutions of the hyper-parameters and so-called Q function are obtained. The relation between the speed of convergence of the hyper-parameters and the shape of the Q function is explained from the viewpoint of dynamics
Stochastic mean-field dynamics for fermions in the weak coupling limit
Energy Technology Data Exchange (ETDEWEB)
Lacroix, D
2005-09-15
Assuming that the effect of the residual interaction beyond mean-field is weak and can be treated as a statistical ensemble of two-body interactions, a Markovian quantum jump theory is developed for fermionic systems. In this theory, jumps occur between many-body densities formed of pairs of states D |{phi}{sub a}> <|{phi}{sub b}| / <|{phi}{sub b} | |{phi} {sub a}> where |{phi}{sub a}> and |{phi}{sub b}> are anti-symmetrized products of single-particle states. The underlying Stochastic Mean-Field (SMF) theory is discussed and applied to the monopole vibration of a spherical {sup 40}Ca nucleus under the influence of a statistical ensemble of two-body contact interactions. In this example, the mean-field evolution of one-body observables is recovered by averaging over different stochastic trajectories while fluctuations beyond mean-field are observed. Finally, the nature of the fluctuations is discussed. (author)
Quantum mean-field theory of collective dynamics and tunneling
International Nuclear Information System (INIS)
Negele, J.W.; Massachusetts Inst. of Tech., Cambridge
1981-01-01
In collaboration with Shimon Levit and Zvi Paltiel, significant progress has been made recently in formulating the quantum many-body problem in terms of an expansion about solutions to time-dependent mean-field equations. The essential ideas, principal results, and illustrative examples will be summarized here. (orig./HSI)
Mean field theory of nuclei and shell model. Present status and future outlook
International Nuclear Information System (INIS)
Nakada, Hitoshi
2003-01-01
Many of the recent topics of the nuclear structure are concerned on the problems of unstable nuclei. It has been revealed experimentally that the nuclear halos and the neutron skins as well as the cluster structures or the molecule-like structures can be present in the unstable nuclei, and the magic numbers well established in the stable nuclei disappear occasionally while new ones appear. The shell model based on the mean field approximation has been successfully applied to stable nuclei to explain the nuclear structure as the finite many body system quantitatively and it is considered as the standard model at present. If the unstable nuclei will be understood on the same model basis or not is a matter related to fundamental principle of nuclear structure theories. In this lecture, the fundamental concept and the framework of the theory of nuclear structure based on the mean field theory and the shell model are presented to make clear the problems and to suggest directions for future researches. At first fundamental properties of nuclei are described under the subtitles: saturation and magic numbers, nuclear force and effective interactions, nuclear matter, and LS splitting. Then the mean field theory is presented under subtitles: the potential model, the mean field theory, Hartree-Fock approximation for nuclear matter, density dependent force, semiclassical mean field theory, mean field theory and symmetry, Skyrme interaction and density functional, density matrix expansion, finite range interactions, effective masses, and motion of center of mass. The subsequent section is devoted to the shell model with the subtitles: beyond the mean field approximation, core polarization, effective interaction of shell model, one-particle wave function, nuclear deformation and shell model, and shell model of cross shell. Finally structure of unstable nuclei is discussed with the subtitles: general remark on the study of unstable nuclear structure, asymptotic behavior of wave
Probabilistic theory of mean field games with applications
Carmona, René
2018-01-01
This two-volume book offers a comprehensive treatment of the probabilistic approach to mean field game models and their applications. The book is self-contained in nature and includes original material and applications with explicit examples throughout, including numerical solutions. Volume I of the book is entirely devoted to the theory of mean field games without a common noise. The first half of the volume provides a self-contained introduction to mean field games, starting from concrete illustrations of games with a finite number of players, and ending with ready-for-use solvability results. Readers are provided with the tools necessary for the solution of forward-backward stochastic differential equations of the McKean-Vlasov type at the core of the probabilistic approach. The second half of this volume focuses on the main principles of analysis on the Wasserstein space. It includes Lions' approach to the Wasserstein differential calculus, and the applications of its results to the analysis of stochastic...
The relativistic mean-field description of nuclei and nuclear dynamics
International Nuclear Information System (INIS)
Reinhard, P.G.
1989-01-01
The relativistic mean-field model of the nucleus is reviewed. It describes the nucleus as a system of Dirac-Nucleons which interact in a relativistic covariant manner via meson fields. The meson fields are treated as mean fields, i.e. as non quantal c-number fields. The effects of the Dirac sea of the nucleons is neglected. The model is interpreted as a phenomenological ansatz providing a selfconsistent relativistic description of nuclei and nuclear dynamics. It is viewed, so to say, as the relativistic generalisation of the Skyrme-Hartree-Fock ansatz. The capability and the limitations of the model to describe nuclear properties are discussed. Recent applications to spherical and deformed nuclei and to nuclear dynamics are presented. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Lacroix, D
2001-07-01
In this work, we introduce a method to reduce the microscopic mean-field theory to a classical macroscopic dynamics at the initial stage of fusion reaction. We show that TDHF (Time-dependent Hartree-Fock) could be a useful tool to infer information on the fusion barrier as well as on one-body dissipation effect. We apply the reduction of information to the case of head-on reaction between a {sup 16}O and {sup 16,22,24,28}O in order to quantify the effect of neutron skin on fusion. We show that the precise determination of fusion barrier requires, in addition to the relative distance between center of mass, the introduction of an additional collective coordinate that explicitly breaks the neutron-proton symmetry. With this additional collective variable, we obtain a rather precise determination of the barrier position, height and diffuseness as well as one-body friction. (author)
Nonlinear mean field theory for nuclear matter and surface properties
International Nuclear Information System (INIS)
Boguta, J.; Moszkowski, S.A.
1983-01-01
Nuclear matter properties are studied in a nonlinear relativistic mean field theory. We determine the parameters of the model from bulk properties of symmetric nuclear matter and a reasonable value of the effective mass. In this work, we stress the nonrelativistic limit of the theory which is essentially equivalent to a Skyrme hamiltonian, and we show that most of the results can be obtained, to a good approximation, analytically. The strength of the required parameters is determined from the binding energy and density of nuclear matter and the effective nucleon mass. For realistic values of the parameters, the nonrelativistic approximation turns out to be quite satisfactory. Using reasonable values of the parameters, we can account for other key properties of nuclei, such as the spin-orbit coupling, surface energy, and diffuseness of the nuclear surface. Also the energy dependence of the nucleon-nucleus optical model is accounted for reasonably well except near the Fermi surface. It is found, in agreement with empirical results, that the Landau parameter F 0 is quite small in normal nuclear matter. Both density dependence and momentum dependence of the NN interaction, but especially the former, are important for nuclear saturation. The required scalar and vector coupling constants agree fairly well with those obtained from analyses of NN scattering phase shifts with one-boson-exchange models. The mean field theory provides a semiquantitative justification for the weak Skyrme interaction in odd states. The strength of the required nonlinear term is roughly consistent with that derived using a new version of the chiral mean field theory in which the vector mass as well as the nucleon mass is generated by the sigma-field. (orig.)
International Nuclear Information System (INIS)
Sakata, F.; Marumori, T.; Hashimoto, Y.; Tsukuma, H.; Yamamoto, Y.; Terasaki, J.; Iwasawa, Y.; Itabashi, H.
1992-01-01
Since the research field of nuclear physics is expanding rapidly, it is becoming more imperative to develop the microscopie theory of nuclear matter physics which provides us with a unified understanding of diverse phenomena exhibited by nuclei. An estabishment of various stable mean-fields in nuclei allows us to develop the microscopie theory of nuclear collective dynamics within the mean-field approximation. The classical-level theory of nuclear collective dynamics is developed by exploiting the symplectic structure of the timedependent Hartree-Fock (TDHF)-manifold. The importance of exploring the single-particle dynamics, e.g. the level-crossing dynamics in connection with the classical order-to-chaos transition mechanism is pointed out. Since the classical-level theory os directly related to the full quantum mechanical boson expansion theory via the symplectic structure of the TDHF-manifold, the quantum theory of nuclear collective dynamics is developed at the dictation of what os developed on the classical-level theory. The quantum theory thus formulated enables us to introduce the quantum integrability and quantum chaoticity for individual eigenstates. The inter-relationship between the classical-level and quantum theories of nuclear collective dynamics might play a decisive role in developing the quantum theory of many-body problems. (orig.)
Semiclassical approximations in a mean-field theory with collision terms
International Nuclear Information System (INIS)
Galetti, D.
1986-01-01
Semiclassical approximations in a mean-field theory with collision terms are discussed taking the time dependent Hartree-Fock method as framework in the obtainment of the relevant parameters.(L.C.) [pt
Quantum golden field theory - Ten theorems and various conjectures
International Nuclear Information System (INIS)
El Naschie, M.S.
2008-01-01
Ten theorems and few conjectures related to quantum field theory as applied to high energy physics are presented. The work connects classical quantum field theory with the golden mean renormalization groups of non-linear dynamics and E-Infinity theory
Ogawa, Shun; Yamaguchi, Yoshiyuki Y
2015-06-01
An external force dynamically drives an isolated mean-field Hamiltonian system to a long-lasting quasistationary state, whose lifetime increases with population of the system. For second order phase transitions in quasistationary states, two nonclassical critical exponents have been reported individually by using a linear and a nonlinear response theories in a toy model. We provide a simple way to compute the critical exponents all at once, which is an analog of the Landau theory. The present theory extends the universality class of the nonclassical exponents to spatially periodic one-dimensional systems and shows that the exponents satisfy a classical scaling relation inevitably by using a key scaling of momentum.
Some approximate calculations in SU2 lattice mean field theory
International Nuclear Information System (INIS)
Hari Dass, N.D.; Lauwers, P.G.
1981-12-01
Approximate calculations are performed for small Wilson loops of SU 2 lattice gauge theory in mean field approximation. Reasonable agreement is found with Monte Carlo data. Ways of improving these calculations are discussed. (Auth.)
Effective-field theory on the kinetic Ising model
International Nuclear Information System (INIS)
Shi Xiaoling; Wei Guozhu; Li Lin
2008-01-01
As an analytical method, the effective-field theory (EFT) is used to study the dynamical response of the kinetic Ising model in the presence of a sinusoidal oscillating field. The effective-field equations of motion of the average magnetization are given for the square lattice (Z=4) and the simple cubic lattice (Z=6), respectively. The dynamic order parameter, the hysteresis loop area and the dynamic correlation are calculated. In the field amplitude h 0 /ZJ-temperature T/ZJ plane, the phase boundary separating the dynamic ordered and the disordered phase has been drawn, and the dynamical tricritical point has been observed. We also make the compare results of EFT with that given by using the mean field theory (MFT)
Nonlinear many-body reaction theories from nuclear mean field approximations
International Nuclear Information System (INIS)
Griffin, J.J.
1983-01-01
Several methods of utilizing nonlinear mean field propagation in time to describe nuclear reaction have been studied. The property of physical asymptoticity is analyzed in this paper, which guarantees that the prediction by a reaction theory for the physical measurement of internal fragment properties shall not depend upon the precise location of the measuring apparatus. The physical asymptoticity is guaranteed in the Schroedinger collision theory of a scuttering system with translationally invariant interaction by the constancy of the S-matrix elements and by the translational invariance of the internal motion for well-separated fragments. Both conditions are necessary for the physical asymptoticity. The channel asymptotic single-determinantal propagation can be described by the Dirac-TDHF (time dependent Hartree-Fock) time evolution. A new asymptotic Hartree-Fock stationary phase (AHFSP) description together with the S-matrix time-dependent Hartree-Fock (TD-S-HF) theory constitute the second example of a physically asymptotic nonlinear many-body reaction theory. A review of nonlinear mean field many-body reaction theories shows that initial value TDHF is non-asymptotic. The TD-S-HF theory is asymptotic by the construction. The gauge invariant periodic quantized solution of the exact Schroedinger problem has been considered to test whether it includes all of the exact eigenfunctions as it ought to. It did, but included as well an infinity of all spurions solutions. (Kato, T.)
Instability in relativistic mean-field theories of nuclear matter
International Nuclear Information System (INIS)
Friman, B.L.; Henning, P.A.
1988-01-01
We investigate the stability of the nuclear matter ground state with respect to small-perturbations of the meson fields in relativistic mean-field theories. The popular σ-ω model is shown to have an instability at about twice the nuclear density, which gives rise to a new ground state with periodic spin alignment. Taking into account the contributions of the Dirac sea properly, this instability vanishes. Consequences for relativistic heavy-ion-collisions are discussed briefly. (orig.)
Instability in relativistic mean-field theories of nuclear matter
International Nuclear Information System (INIS)
Friman, B.L.; Henning, P.A.
1988-01-01
We investigate the stability of the nuclear matter ground state with respect to small perturbations of the meson fields in relativistic mean-field theories. The popular σ-ω model is shown to have an instability at about twice the nuclear density, which gives rise to a new ground state with periodic spin alignment. Taking into account the contributions of the Dirac sea properly, this instability vanishes. Consequences for relativistic heavy-ion collisions are discussed briefly. (orig.)
Dynamic scattering theory for dark-field electron holography of 3D strain fields
International Nuclear Information System (INIS)
Lubk, Axel; Javon, Elsa; Cherkashin, Nikolay; Reboh, Shay; Gatel, Christophe; Hÿtch, Martin
2014-01-01
Dark-field electron holography maps strain in crystal lattices into reconstructed phases over large fields of view. Here we investigate the details of the lattice strain–reconstructed phase relationship by applying dynamic scattering theory both analytically and numerically. We develop efficient analytic linear projection rules for 3D strain fields, facilitating a straight-forward calculation of reconstructed phases from 3D strained materials. They are used in the following to quantify the influence of various experimental parameters like strain magnitude, specimen thickness, excitation error and surface relaxation. - Author-Highlights: • We derive a simple dynamic scattering formalism for dark field electron holography based on a perturbative two-beam theory. • The formalism facilitates the projection of 3D strain fields by a simple weighting integral. • The weighted projection depends analytically on the diffraction order, the excitation error and the specimen thickness. • The weighting integral formalism represents an important prerequisite towards the development of tomographic strain reconstruction techniques
International Nuclear Information System (INIS)
Bender, C.M.; Cooper, F.
1985-01-01
An apparent difference between formulating mean field perturbation theory for lambdaphi 4 field theory via path integrals or via functional differential equations when there are external sources present is shown not to exist when mean field theory is considered as the N = 1 limit of the 0(N)lambdaphi 4 field theory. A simply method is given for determining the 1/N expansion for the Green's functions in the presence of external sources by directly solving the functional differential equations order by order in 1/N. The 1/N expansion for the effective action GAMMA(phi,chi) is obtained by directly integrating the functional differential equations for the fields phi and chi (equivalent1/2lambda/Nphi/sub α/phi/sup α/-μ 2 ) in the presence of two external sources j = -deltaGAMMA/deltaphi, S = -deltaGAMMA/deltachi
Relativistic mean field theory for unstable nuclei
International Nuclear Information System (INIS)
Toki, Hiroshi
2000-01-01
We discuss the properties of unstable nuclei in the framework of the relativistic mean field (RMF) theory. We take the RMF theory as a phenomenological theory with several parameters, whose form is constrained by the successful microscopic theory (RBHF), and whose values are extracted from the experimental values of unstable nuclei. We find the outcome with the newly obtained parameter sets (TM1 and TMA) is promising in comparison with various experimental data. We calculate systematically the ground state properties of even-even nuclei up to the drip lines; about 2000 nuclei. We find that the neutron magic shells (N=82, 128) at the standard magic numbers stay at the same numbers even far from the stability line and hence provide the feature of the r-process nuclei. However, many proton magic numbers disappear at the neutron numbers far away from the magic numbers due to the deformations. We discuss how to describe giant resonances for the case of the non-linear coupling terms for the sigma and omega mesons in the relativistic RPA. We mention also the importance of the relativistic effect on the spin observables as the Gamow-Teller strength and the longitudinal and transverse spin responses. (author)
Mean field dynamics of networks of delay-coupled noisy excitable units
Energy Technology Data Exchange (ETDEWEB)
Franović, Igor, E-mail: franovic@ipb.ac.rs [Scientific Computing Laboratory, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Todorović, Kristina; Burić, Nikola [Department of Physics and Mathematics, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade (Serbia); Vasović, Nebojša [Department of Applied Mathematics, Faculty of Mining and Geology, University of Belgrade, PO Box 162, Belgrade (Serbia)
2016-06-08
We use the mean-field approach to analyze the collective dynamics in macroscopic networks of stochastic Fitzhugh-Nagumo units with delayed couplings. The conditions for validity of the two main approximations behind the model, called the Gaussian approximation and the Quasi-independence approximation, are examined. It is shown that the dynamics of the mean-field model may indicate in a self-consistent fashion the parameter domains where the Quasi-independence approximation fails. Apart from a network of globally coupled units, we also consider the paradigmatic setup of two interacting assemblies to demonstrate how our framework may be extended to hierarchical and modular networks. In both cases, the mean-field model can be used to qualitatively analyze the stability of the system, as well as the scenarios for the onset and the suppression of the collective mode. In quantitative terms, the mean-field model is capable of predicting the average oscillation frequency corresponding to the global variables of the exact system.
Bent dark soliton dynamics in two spatial dimensions beyond the mean field approximation
Mistakidis, Simeon; Katsimiga, Garyfallia; Koutentakis, Georgios; Kevrekidis, Panagiotis; Schmelcher, Peter; Theory Group of Fundamental Processes in Quantum Physics Team
2017-04-01
The dynamics of a bented dark soliton embedded in two spatial dimensions beyond the mean-field approximation is explored. We examine the case of a single bented dark soliton comparing the mean-field approximation to a correlated approach that involves multiple orbitals. Fragmentation is generally present and significantly affects the dynamics, especially in the case of stronger interparticle interactions and in that of lower atom numbers. It is shown that the presence of fragmentation allows for the appearance of solitonic and vortex structures in the higher-orbital dynamics. In particular, a variety of excitations including dark solitons in multiple orbitals and vortex-antidark complexes is observed to arise spontaneously within the beyond mean-field dynamics. Deutsche Forschungsgemeinschaft (DFG) in the framework of the SFB 925 ``Light induced dynamics and control of correlated quantum systems''.
Mean-field Theory for Some Bus Transport Networks with Random Overlapping Clique Structure
International Nuclear Information System (INIS)
Yang Xuhua; Sun Bao; Wang Bo; Sun Youxian
2010-01-01
Transport networks, such as railway networks and airport networks, are a kind of random network with complex topology. Recently, more and more scholars paid attention to various kinds of transport networks and try to explore their inherent characteristics. Here we study the exponential properties of a recently introduced Bus Transport Networks (BTNs) evolution model with random overlapping clique structure, which gives a possible explanation for the observed exponential distribution of the connectivities of some BTNs of three major cities in China. Applying mean-field theory, we analyze the BTNs model and prove that this model has the character of exponential distribution of the connectivities, and develop a method to predict the growth dynamics of the individual vertices, and use this to calculate analytically the connectivity distribution and the exponents. By comparing mean-field based theoretic results with the statistical data of real BTNs, we observe that, as a whole, both of their data show similar character of exponential distribution of the connectivities, and their exponents have same order of magnitude, which show the availability of the analytical result of this paper. (general)
International Nuclear Information System (INIS)
Guerra, E.M. de
2001-01-01
In these talks, we review non relativistic selfconsistent mean field theories, their scope and limitations. We first discuss static and time dependent mean field approaches for particles and quasiparticles, together with applications. We then discuss extensions that go beyond the non-relativistic independent particle limit. On the one hand, we consider extensions concerned with restoration of symmetries and with the treatment of collective modes, particularly by means of quantized ATDHF. On the other hand, we consider extensions concerned with the relativistic dynamics of bound nucleons. We present data on nucleon momentum distributions that show the need for relativistic mean field approach and probe the limits of the mean field concept. Illustrative applications of various methods are presented stressing the role that selfconsistency plays in providing a unifying reliable framework to study all sorts of properties and phenomena. From global properties such as size, mass, lifetime,.., to detailed structure in excitation spectra (high spin, RPA modes,..), as well as charge, magnetization and velocity distributions. (orig.)
International Nuclear Information System (INIS)
Naik, S.
1990-01-01
We have developed a mean field theory technique to study the confinement-deconfinement phase transition and chiral symmetry restoring phase transition with dynamical fermions and with finite chemical potential and finite temperature. The approximation scheme concerns the saddle point scenario and large space dimension. The static quark-antiquark potentials are identified from the Wilson loop correlation functions in both the fundamental and the adjoint representation of the gauge group with different temperatures. The difference between the responses of the chemical potential to the fermion number with singlet and non-singlet isospin configuration is found. We compare our results with recent Monte Carlo data. (orig.)
The application of mean field theory to image motion estimation.
Zhang, J; Hanauer, G G
1995-01-01
Previously, Markov random field (MRF) model-based techniques have been proposed for image motion estimation. Since motion estimation is usually an ill-posed problem, various constraints are needed to obtain a unique and stable solution. The main advantage of the MRF approach is its capacity to incorporate such constraints, for instance, motion continuity within an object and motion discontinuity at the boundaries between objects. In the MRF approach, motion estimation is often formulated as an optimization problem, and two frequently used optimization methods are simulated annealing (SA) and iterative-conditional mode (ICM). Although the SA is theoretically optimal in the sense of finding the global optimum, it usually takes many iterations to converge. The ICM, on the other hand, converges quickly, but its results are often unsatisfactory due to its "hard decision" nature. Previously, the authors have applied the mean field theory to image segmentation and image restoration problems. It provides results nearly as good as SA but with much faster convergence. The present paper shows how the mean field theory can be applied to MRF model-based motion estimation. This approach is demonstrated on both synthetic and real-world images, where it produced good motion estimates.
Dynamical mechanism of symmetry breaking and particle mass generation in gauge field theories
International Nuclear Information System (INIS)
Miranskij, V.A.; Fomin, P.I.
1985-01-01
The dynamics of the spotaneous symmetry breaking and the particle mass generation in gauge theories with no fundamental scalar fields is considered. The emphasis is on the consideration of the symmetry breaking mechanism connected with the dynamics of the supercritical Coulomb-like forces caused by the gauge boson exchange between fermions. This mechanism is applied to different gauge theories, in particular, to the description of the spontaneous chira symmetry breaking in quantum chromodynamics. The mass relations for pseudoscalar meson nonet are obtained and it is shown that this mechanism resuls in the dynamical realisation of the hypothesis of the partial conservation of the axial-vector currents. The qualitative description of scalar mesons is given. The nature of the ultraviolet divergencies in quantum electrodynamics (QED) is investigated from the viewpoint of the dynamics of the fermion mass generation. The mechanism of the appearance of the additional (in comparison with perturbation theory) ultraviolet divergencies in QED with large bare coupling constant is indicated. The physical phenomenon underlying this mechanism is identified as the field theory analogue of the quantum mechanical ''fall into the centre'' (collapse) phenomenon. The similr phenomenon is shown to take place in some two-dimensional quantum field models. The dynamics of the bifermion condensates formation in tumblin gauge theories is briefly discussed
Mean-field theory of spin-glasses with finite coordination number
Kanter, I.; Sompolinsky, H.
1987-01-01
The mean-field theory of dilute spin-glasses is studied in the limit where the average coordination number is finite. The zero-temperature phase diagram is calculated and the relationship between the spin-glass phase and the percolation transition is discussed. The present formalism is applicable also to graph optimization problems.
Sums over geometries and improvements on the mean field approximation
International Nuclear Information System (INIS)
Sacksteder, Vincent E. IV
2007-01-01
The saddle points of a Lagrangian due to Efetov are analyzed. This Lagrangian was originally proposed as a tool for calculating systematic corrections to the Bethe approximation, a mean-field approximation which is important in statistical mechanics, glasses, coding theory, and combinatorial optimization. Detailed analysis shows that the trivial saddle point generates a sum over geometries reminiscent of dynamically triangulated quantum gravity, which suggests new possibilities to design sums over geometries for the specific purpose of obtaining improved mean-field approximations to D-dimensional theories. In the case of the Efetov theory, the dominant geometries are locally treelike, and the sum over geometries diverges in a way that is similar to quantum gravity's divergence when all topologies are included. Expertise from the field of dynamically triangulated quantum gravity about sums over geometries may be able to remedy these defects and fulfill the Efetov theory's original promise. The other saddle points of the Efetov Lagrangian are also analyzed; the Hessian at these points is nonnormal and pseudo-Hermitian, which is unusual for bosonic theories. The standard formula for Gaussian integrals is generalized to nonnormal kernels
Kinetic Ising model in a time-dependent oscillating external magnetic field: effective-field theory
International Nuclear Information System (INIS)
Deviren, Bayram; Canko, Osman; Keskin, Mustafa
2010-01-01
Recently, Shi et al. [2008 Phys. Lett. A 372 5922] have studied the dynamical response of the kinetic Ising model in the presence of a sinusoidal oscillating field and presented the dynamic phase diagrams by using an effective-field theory (EFT) and a mean-field theory (MFT). The MFT results are in conflict with those of the earlier work of Tomé and de Oliveira, [1990 Phys. Rev. A 41 4251]. We calculate the dynamic phase diagrams and find that our results are similar to those of the earlier work of Tomé and de Oliveira; hence the dynamic phase diagrams calculated by Shi et al. are incomplete within both theories, except the low values of frequencies for the MFT calculation. We also investigate the influence of external field frequency (ω) and static external field amplitude (h 0 ) for both MFT and EFT calculations. We find that the behaviour of the system strongly depends on the values of ω and h 0 . (general)
Nuclear matter in relativistic mean field theory with isovector scalar meson.
Energy Technology Data Exchange (ETDEWEB)
Kubis, S.; Kutschera, M. [Institute of Nuclear Physics, Cracow (Poland)
1996-12-01
Relativistic mean field (RMF) theory of nuclear matter with the isovector scalar mean field corresponding to the {delta}-meson [a{sub 0}(980)] is studied. While the {delta}-meson field vanishes in symmetric nuclear matter, it can influence properties of asymmetric nuclear matter in neutron stars. The RMF contribution due to {delta}-field to the nuclear symmetry energy is negative. To fit the empirical value, E{sub s}{approx}30 MeV, a stronger {rho}-meson coupling is required than in absence of the {delta}-field. The energy per particle of neutron star matter is than larger at high densities than the one with no {delta}-field included. Also, the proton fraction of {beta}-stable matter increases. Splitting of proton and neutron effective masses due to the {delta}-field can affect transport properties of neutron star matter. (author). 4 refs, 6 figs.
Nuclear matter in relativistic mean field theory with isovector scalar meson
International Nuclear Information System (INIS)
Kubis, S.; Kutschera, M.
1996-12-01
Relativistic mean field (RMF) theory of nuclear matter with the isovector scalar mean field corresponding to the δ-meson [a 0 (980)] is studied. While the δ-meson field vanishes in symmetric nuclear matter, it can influence properties of asymmetric nuclear matter in neutron stars. The RMF contribution due to δ-field to the nuclear symmetry energy is negative. To fit the empirical value, E s ∼30 MeV, a stronger ρ-meson coupling is required than in absence of the δ-field. The energy per particle of neutron star matter is than larger at high densities than the one with no δ-field included. Also, the proton fraction of β-stable matter increases. Splitting of proton and neutron effective masses due to the δ-field can affect transport properties of neutron star matter. (author). 4 refs, 6 figs
Mean-field dynamics of a population of stochastic map neurons
Franović, Igor; Maslennikov, Oleg V.; Bačić, Iva; Nekorkin, Vladimir I.
2017-07-01
We analyze the emergent regimes and the stimulus-response relationship of a population of noisy map neurons by means of a mean-field model, derived within the framework of cumulant approach complemented by the Gaussian closure hypothesis. It is demonstrated that the mean-field model can qualitatively account for stability and bifurcations of the exact system, capturing all the generic forms of collective behavior, including macroscopic excitability, subthreshold oscillations, periodic or chaotic spiking, and chaotic bursting dynamics. Apart from qualitative analogies, we find a substantial quantitative agreement between the exact and the approximate system, as reflected in matching of the parameter domains admitting the different dynamical regimes, as well as the characteristic properties of the associated time series. The effective model is further shown to reproduce with sufficient accuracy the phase response curves of the exact system and the assembly's response to external stimulation of finite amplitude and duration.
International Nuclear Information System (INIS)
Schlichting, H.
1985-01-01
We do a linearised mean field calculation in axial gauge for the four dimensional mixed fundamental adjoint SU(2) lattice gauge theory and extract the gluon condensate parameter from the expectation values of the plaquette and the action by subtracting mean field perturbation theory from Monte Carlo data. (orig.)
International Nuclear Information System (INIS)
Rodrigues, Serafim; Terry, John R.; Breakspear, Michael
2006-01-01
In this Letter, the genesis of spike-wave activity-a hallmark of many generalized epileptic seizures-is investigated in a reduced mean-field model of human neural activity. Drawing upon brain modelling and dynamical systems theory, we demonstrate that the thalamic circuitry of the system is crucial for the generation of these abnormal rhythms, observing that the combination of inhibition from reticular nuclei and excitation from the cortical signal, interplay to generate the spike-wave oscillation. The mechanism revealed provides an explanation of why approaches based on linear stability and Heaviside approximations to the activation function have failed to explain the phenomena of spike-wave behaviour in mean-field models. A mathematical understanding of this transition is a crucial step towards relating spiking network models and mean-field approaches to human brain modelling
Shapes and dynamics from the time-dependent mean field
International Nuclear Information System (INIS)
Stevenson, P.D.; Goddard, P.M.; Rios, A.
2015-01-01
Explaining observed properties in terms of underlying shape degrees of freedom is a well-established prism with which to understand atomic nuclei. Self-consistent mean-field models provide one tool to understand nuclear shapes, and their link to other nuclear properties and observables. We present examples of how the time-dependent extension of the mean-field approach can be used in particular to shed light on nuclear shape properties, particularly looking at the giant resonances built on deformed nuclear ground states, and at dynamics in highly-deformed fission isomers. Example calculations are shown of 28 Si in the first case, and 240 Pu in the latter case
An effective correlated mean-field theory applied in the spin-1/2 Ising ferromagnetic model
Energy Technology Data Exchange (ETDEWEB)
Roberto Viana, J.; Salmon, Octávio R. [Universidade Federal do Amazonas – UFAM, Manaus 69077-000, AM (Brazil); Ricardo de Sousa, J. [Universidade Federal do Amazonas – UFAM, Manaus 69077-000, AM (Brazil); National Institute of Science and Technology for Complex Systems, Universidade Federal do Amazonas, 3000, Japiim, 69077-000 Manaus, AM (Brazil); Neto, Minos A.; Padilha, Igor T. [Universidade Federal do Amazonas – UFAM, Manaus 69077-000, AM (Brazil)
2014-11-15
We developed a new treatment for mean-field theory applied in spins systems, denominated effective correlated mean-field (ECMF). We apply this theory to study the spin-1/2 Ising ferromagnetic model with nearest-neighbor interactions on a square lattice. We use clusters of finite sizes and study the criticality of the ferromagnetic system, where we obtain a convergence of critical temperature for the value k{sub B}T{sub c}/J≃2.27905±0.00141. Also the behavior of magnetic and thermodynamic properties, using the condition of minimum energy of the physical system is obtained. - Highlights: • We developed spin models to study real magnetic systems. • We study the thermodynamic and magnetic properties of the ferromagnetism. • We enhanced a mean-field theory applied in spins models.
Transport in simple liquids and dense gases: kinetic mean-field theory and the KAC limit
International Nuclear Information System (INIS)
Karkheck, J.; Stell, G.; Martina, E.
1982-01-01
Maximization of entropy is used in conjunction with the BBGKY hierarchy to obtain a closed one-particle kinetic equation. For an interparticle potential of hard-sphere core plus smooth attractive tail, this equation contains a hard-core collision integral, identical to that of the revised Enskog theory, plus a mean-field term which is linear in the tail strength. The thermodynamics contained therein leads directly to the now-standard statistical-mechanical methods to construct a state-dependent effective hard-core potential in relation to a more realistic potential. These methods induce an extension of the transport coefficients to the Lennard-Jones potential. Predictions of the resulting transport theory compare very favorably with thermal conductivity and shear viscosity experimental results for real simple liquids and dense gases, and also with molecular dynamics simulation results. Poor agreement between theory and experiment is found for moderately dense and dilute gases. The kinetic theory also contains an entropy functional and an H-theorem is proven. Extension to mixtures is straightforward and the Kac-limit is discussed in detail
Double giant resonances in time-dependent relativistic mean-field theory
International Nuclear Information System (INIS)
Ring, P.; Podobnik, B.
1996-01-01
Collective vibrations in spherical nuclei are described in the framework of time-dependent relativistic mean-field theory (RMFT). Isoscalar quadrupole and isovector dipole oscillations that correspond to giant resonances are studied, and possible excitations of higher modes are investigated. We find evidence for modes which can be interpreted as double resonances. In a quantized RMFT they correspond to two-phonon states. (orig.)
On generally covariant quantum field theory and generalized causal and dynamical structures
International Nuclear Information System (INIS)
Bannier, U.
1988-01-01
We give an example of a generally covariant quasilocal algebra associated with the massive free field. Maximal, two-sided ideals of this algebra are algebraic representatives of external metric fields. In some sense, this algebra may be regarded as a concrete realization of Ekstein's ideas of presymmetry in quantum field theory. Using ideas from our example and from usual algebraic quantum field theory, we discuss a generalized scheme, in which maximal ideals are viewed as algebraic representatives of dynamical equations or Lagrangians. The considered frame is no quantum gravity, but may lead to further insight into the relation between quantum theory and space-time geometry. (orig.)
A molecular dynamics algorithm for simulation of field theories in the canonical ensemble
International Nuclear Information System (INIS)
Kogut, J.B.; Sinclair, D.K.
1986-01-01
We add a single scalar degree of freedom (''demon'') to the microcanonical ensemble which converts its molecular dynamics into a simulation method for the canonical ensemble (euclidean path integral) of the underlying field theory. This generalization of the microcanonical molecular dynamics algorithm simulates the field theory at fixed coupling with a completely deterministic procedure. We discuss the finite size effects of the method, the equipartition theorem and ergodicity. The method is applied to the planar model in two dimensions and SU(3) lattice gauge theory with four species of light, dynamical quarks in four dimensions. The method is much less sensitive to its discrete time step than conventional Langevin equation simulations of the canonical ensemble. The method is a straightforward generalization of a procedure introduced by S. Nose for molecular physics. (orig.)
Gukelberger, Jan; Kozik, Evgeny; Hafermann, Hartmut
2017-07-01
The dual fermion approach provides a formally exact prescription for calculating properties of a correlated electron system in terms of a diagrammatic expansion around dynamical mean-field theory (DMFT). Most practical implementations, however, neglect higher-order interaction vertices beyond two-particle scattering in the dual effective action and further truncate the diagrammatic expansion in the two-particle scattering vertex to a leading-order or ladder-type approximation. In this work, we compute the dual fermion expansion for the two-dimensional Hubbard model including all diagram topologies with two-particle interactions to high orders by means of a stochastic diagrammatic Monte Carlo algorithm. We benchmark the obtained self-energy against numerically exact diagrammatic determinant Monte Carlo simulations to systematically assess convergence of the dual fermion series and the validity of these approximations. We observe that, from high temperatures down to the vicinity of the DMFT Néel transition, the dual fermion series converges very quickly to the exact solution in the whole range of Hubbard interactions considered (4 ≤U /t ≤12 ), implying that contributions from higher-order vertices are small. As the temperature is lowered further, we observe slower series convergence, convergence to incorrect solutions, and ultimately divergence. This happens in a regime where magnetic correlations become significant. We find, however, that the self-consistent particle-hole ladder approximation yields reasonable and often even highly accurate results in this regime.
Neutron stars in relativistic mean field theory with isovector scalar meson
International Nuclear Information System (INIS)
Kubis, S.; Kutschera, M.; Stachniewicz, S.
1996-12-01
We study the equation of state (EOS) of neutron star matter in a relativistic mean field (RMF) theory with the isovector scalar mean field corresponding to the δ-meson [a 0 (980)]. A range of values of the δ-meson coupling compatible with the Bonn potentials is explored. Parameters of the model in the isovector sector are constrained to fit the nuclear symmetry energy, E s ∼ 30 MeV. We find that proton fraction of neutron star matter is higher in the presence of the δ-field whereas the energy per particle is lower. The EOS becomes slightly stiffer and the maximum mass of the neutron star increased with increasing δmeson coupling. The effect is stronger for soft EOS. (author). 7 refs, 6 figs, 1 tab
Neutron stars in relativistic mean field theory with isovector scalar meson
International Nuclear Information System (INIS)
Kubis, S.; Kutschera, M.; Stachniewicz, S.
1998-01-01
We study the equation of state (EOS) of β-stable dense matter and models of neutron stars in the relativistic mean field (RMF) theory with the isovector scalar mean field corresponding to the δ-meson (a 0 (980)). A range of values of the δ-meson coupling compatible with the Bonn potentials is explored. Parameters of the model in the isovector sector are constrained to fit the nuclear symmetry energy, E s ∼30 MeV. We find that the quantity most sensitive to the δ-meson coupling is the proton fraction of neutron star matter. It increases significantly in the presence of the δ-field. The energy per baryon also increases but the effect is smaller. The EOS becomes slightly stiffer and the maximum neutron star mass increases for stronger δ-meson coupling. (author)
Neutron stars in relativistic mean field theory with isovector scalar meson
Energy Technology Data Exchange (ETDEWEB)
Kubis, S.; Kutschera, M.; Stachniewicz, S. [Institute of Nuclear Physics, Cracow (Poland)
1996-12-01
We study the equation of state (EOS) of neutron star matter in a relativistic mean field (RMF) theory with the isovector scalar mean field corresponding to the {delta}-meson [a{sub 0}(980)]. A range of values of the {delta}-meson coupling compatible with the Bonn potentials is explored. Parameters of the model in the isovector sector are constrained to fit the nuclear symmetry energy, E{sub s} {approx} 30 MeV. We find that proton fraction of neutron star matter is higher in the presence of the {delta}-field whereas the energy per particle is lower. The EOS becomes slightly stiffer and the maximum mass of the neutron star increased with increasing {delta}meson coupling. The effect is stronger for soft EOS. (author). 7 refs, 6 figs, 1 tab.
Automating the mean-field method for large dynamic gossip networks
Bakhshi, Rena; Endrullis, Jörg; Endrullis, Stefan; Fokkink, Wan; Haverkort, Boudewijn R.H.M.
We investigate an abstraction method, called mean- field method, for the performance evaluation of dynamic net- works with pairwise communication between nodes. It allows us to evaluate systems with very large numbers of nodes, that is, systems of a size where traditional performance evaluation
From 6D superconformal field theories to dynamic gauged linear sigma models
Apruzzi, Fabio; Hassler, Falk; Heckman, Jonathan J.; Melnikov, Ilarion V.
2017-09-01
Compactifications of six-dimensional (6D) superconformal field theories (SCFTs) on four- manifolds generate a large class of novel two-dimensional (2D) quantum field theories. We consider in detail the case of the rank-one simple non-Higgsable cluster 6D SCFTs. On the tensor branch of these theories, the gauge group is simple and there are no matter fields. For compactifications on suitably chosen Kähler surfaces, we present evidence that this provides a method to realize 2D SCFTs with N =(0 ,2 ) supersymmetry. In particular, we find that reduction on the tensor branch of the 6D SCFT yields a description of the same 2D fixed point that is described in the UV by a gauged linear sigma model (GLSM) in which the parameters are promoted to dynamical fields, that is, a "dynamic GLSM" (DGLSM). Consistency of the model requires the DGLSM to be coupled to additional non-Lagrangian sectors obtained from reduction of the antichiral two-form of the 6D theory. These extra sectors include both chiral and antichiral currents, as well as spacetime filling noncritical strings of the 6D theory. For each candidate 2D SCFT, we also extract the left- and right-moving central charges in terms of data of the 6D SCFT and the compactification manifold.
International Nuclear Information System (INIS)
Bruneton, Jean-Philippe
2007-01-01
Field theories with Lorentz (or diffeomorphism invariant) action can exhibit superluminal behavior through the breaking of local Lorentz invariance. Quantum induced superluminal velocities are well-known examples of this effect. The issue of the causal behavior of such propagation is somewhat controversial in the literature and we intend to clarify it. We provide a careful analysis of the meaning of causality in classical relativistic field theories and stress the role played by the Cauchy problem and the notion of chronology. We show that, in general, superluminal behavior threatens causality only if one assumes that a prior chronology in spacetime exists. In the case where superluminal propagation occurs, however, there are at least two nonconformally related metrics in spacetime and thus two available notions of chronology. These two chronologies are on equal footing, and it would thus be misleading to choose ab initio one of them to define causality. Rather, we provide a formulation of causality in which no prior chronology is assumed. We argue that this is the only way to deal with the issue of causality in the case where some degrees of freedom propagate faster than others. In that framework, then, it is shown that superluminal propagation is not necessarily noncausal, the final answer depending on the existence of an initial data formulation. This also depends on global properties of spacetime that we discuss in detail. As an illustration of these conceptual issues, we consider two field theories, namely, k-essence scalar fields and bimetric theories of gravity, and we derive the conditions imposed by causality. We discuss various applications such as the dark energy problem, modified-Newtonian-dynamics-like theories of gravity, and varying speed of light theories
DEFF Research Database (Denmark)
Lerchner, Alexander; Sterner, G.; Hertz, J.
2006-01-01
We present a complete mean field theory for a balanced state of a simple model of an orientation hypercolumn, with a numerical procedure for solving the mean-field equations quantitatively. With our treatment, one can determine self-consistently both the firing rates and the firing correlations...
Dynamic scattering theory for dark-field electron holography of 3D strain fields.
Lubk, Axel; Javon, Elsa; Cherkashin, Nikolay; Reboh, Shay; Gatel, Christophe; Hÿtch, Martin
2014-01-01
Dark-field electron holography maps strain in crystal lattices into reconstructed phases over large fields of view. Here we investigate the details of the lattice strain-reconstructed phase relationship by applying dynamic scattering theory both analytically and numerically. We develop efficient analytic linear projection rules for 3D strain fields, facilitating a straight-forward calculation of reconstructed phases from 3D strained materials. They are used in the following to quantify the influence of various experimental parameters like strain magnitude, specimen thickness, excitation error and surface relaxation. © 2013 Elsevier B.V. All rights reserved.
Active matter beyond mean-field: ring-kinetic theory for self-propelled particles.
Chou, Yen-Liang; Ihle, Thomas
2015-02-01
Recently, Hanke et al. [Phys. Rev. E 88, 052309 (2013)] showed that mean-field kinetic theory fails to describe collective motion in soft active colloids and that correlations must not be neglected. Correlation effects are also expected to be essential in systems of biofilaments driven by molecular motors and in swarms of midges. To obtain correlations in an active matter system from first principles, we derive a ring-kinetic theory for Vicsek-style models of self-propelled agents from the exact N-particle evolution equation in phase space. The theory goes beyond mean-field and does not rely on Boltzmann's approximation of molecular chaos. It can handle precollisional correlations and cluster formation, which are both important to understand the phase transition to collective motion. We propose a diagrammatic technique to perform a small-density expansion of the collision operator and derive the first two equations of the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy. An algorithm is presented that numerically solves the evolution equation for the two-particle correlations on a lattice. Agent-based simulations are performed and informative quantities such as orientational and density correlation functions are compared with those obtained by ring-kinetic theory. Excellent quantitative agreement between simulations and theory is found at not-too-small noises and mean free paths. This shows that there are parameter ranges in Vicsek-like models where the correlated closure of the BBGKY hierarchy gives correct and nontrivial results. We calculate the dependence of the orientational correlations on distance in the disordered phase and find that it seems to be consistent with a power law with an exponent around -1.8, followed by an exponential decay. General limitations of the kinetic theory and its numerical solution are discussed.
Energy Technology Data Exchange (ETDEWEB)
Ertaş, Mehmet [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Kocakaplan, Yusuf [Institute of Science, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.tr [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)
2013-12-15
Dynamic phase diagrams are presented for the kinetic spin-3/2 Blume–Capel model under a time oscillating longitudinal field by use of the effective-field theory with correlations. The dynamic equation of the average magnetization is obtained for the square lattice by utilizing the Glauber-type stochastic process. Dynamic phase diagrams are presented in the reduced temperature and the magnetic field amplitude plane. We also investigated the effect of longitudinal field frequency. Finally, the discussion and comparison of the phase diagrams are given. - Highlights: • Dynamic behaviors in the spin-3/2 Blume–Capel system is investigated by the effective-field theory based on the Glauber-type stochastic dynamics. • The dynamic phase transitions and dynamic phase diagrams are obtained. • The effects of the longitudinal field frequency on the dynamic phase diagrams of the system are investigated. • Dynamic phase diagrams exhibit several ordered phases, coexistence phase regions and several critical points as well as a re-entrant behavior.
International Nuclear Information System (INIS)
Ertaş, Mehmet; Kocakaplan, Yusuf; Keskin, Mustafa
2013-01-01
Dynamic phase diagrams are presented for the kinetic spin-3/2 Blume–Capel model under a time oscillating longitudinal field by use of the effective-field theory with correlations. The dynamic equation of the average magnetization is obtained for the square lattice by utilizing the Glauber-type stochastic process. Dynamic phase diagrams are presented in the reduced temperature and the magnetic field amplitude plane. We also investigated the effect of longitudinal field frequency. Finally, the discussion and comparison of the phase diagrams are given. - Highlights: • Dynamic behaviors in the spin-3/2 Blume–Capel system is investigated by the effective-field theory based on the Glauber-type stochastic dynamics. • The dynamic phase transitions and dynamic phase diagrams are obtained. • The effects of the longitudinal field frequency on the dynamic phase diagrams of the system are investigated. • Dynamic phase diagrams exhibit several ordered phases, coexistence phase regions and several critical points as well as a re-entrant behavior
International Nuclear Information System (INIS)
Bergmann, P.G.
1980-01-01
A problem of construction of the unitary field theory is discussed. The preconditions of the theory are briefly described. The main attention is paid to the geometrical interpretation of physical fields. The meaning of the conceptions of diversity and exfoliation is elucidated. Two unitary field theories are described: the Weyl conformic geometry and Calitzy five-dimensioned theory. It is proposed to consider supersymmetrical theories as a new approach to the problem of a unitary field theory. It is noted that the supergravitational theories are really unitary theories, since the fields figuring there do not assume invariant expansion
International Nuclear Information System (INIS)
Backes, Steffen
2017-04-01
The study of the electronic properties of correlated systems is a very diverse field and has lead to valuable insight into the physics of real materials. In these systems, the decisive factor that governs the physical properties is the ratio between the electronic kinetic energy, which promotes delocalization over the lattice, and the Coulomb interaction, which instead favours localized electronic states. Due to this competition, correlated electronic systems can show unique and interesting properties like the Metal-Insulator transition, diverse phase diagrams, strong temperature dependence and in general a high sensitivity to the environmental conditions. A theoretical description of these systems is not an easy task, since perturbative approaches that do not preserve the competition between the kinetic and interaction terms can only be applied in special limiting cases. One of the most famous approaches to obtain the electronic properties of a real material is the ab initio density functional theory (DFT) method. It allows one to obtain the ground state density of the system under investigation by mapping onto an effective non-interacting system that has to be found self-consistently. While being an exact theory, in practical implementations certain approximations have to be made to the exchange-correlation potential. The local density approximation (LDA), which approximates the exchange-correlation contribution to the total energy by that of a homogeneous electron gas with the corresponding density, has proven quite successful in many cases. Though, this approximation in general leads to an underestimation of electronic correlations and is not able to describe a metal-insulator transition due to electronic localization in the presence of strong Coulomb interaction. A different approach to the interacting electronic problem is the dynamical mean-field theory (DMFT), which is non-perturbative in the kinetic and interaction term but neglects all non
Energy Technology Data Exchange (ETDEWEB)
Backes, Steffen
2017-04-15
The study of the electronic properties of correlated systems is a very diverse field and has lead to valuable insight into the physics of real materials. In these systems, the decisive factor that governs the physical properties is the ratio between the electronic kinetic energy, which promotes delocalization over the lattice, and the Coulomb interaction, which instead favours localized electronic states. Due to this competition, correlated electronic systems can show unique and interesting properties like the Metal-Insulator transition, diverse phase diagrams, strong temperature dependence and in general a high sensitivity to the environmental conditions. A theoretical description of these systems is not an easy task, since perturbative approaches that do not preserve the competition between the kinetic and interaction terms can only be applied in special limiting cases. One of the most famous approaches to obtain the electronic properties of a real material is the ab initio density functional theory (DFT) method. It allows one to obtain the ground state density of the system under investigation by mapping onto an effective non-interacting system that has to be found self-consistently. While being an exact theory, in practical implementations certain approximations have to be made to the exchange-correlation potential. The local density approximation (LDA), which approximates the exchange-correlation contribution to the total energy by that of a homogeneous electron gas with the corresponding density, has proven quite successful in many cases. Though, this approximation in general leads to an underestimation of electronic correlations and is not able to describe a metal-insulator transition due to electronic localization in the presence of strong Coulomb interaction. A different approach to the interacting electronic problem is the dynamical mean-field theory (DMFT), which is non-perturbative in the kinetic and interaction term but neglects all non
Neutron stars in relativistic mean field theory with isovector scalar meson
Energy Technology Data Exchange (ETDEWEB)
Kubis, S.; Kutschera, M.; Stachniewicz, S. [H. Niewodniczanski Institute of Nuclear Physics, Cracow (Poland)
1998-03-01
We study the equation of state (EOS) of {beta}-stable dense matter and models of neutron stars in the relativistic mean field (RMF) theory with the isovector scalar mean field corresponding to the {delta}-meson (a{sub 0}(980)). A range of values of the {delta}-meson coupling compatible with the Bonn potentials is explored. Parameters of the model in the isovector sector are constrained to fit the nuclear symmetry energy, E{sub s}{approx}30 MeV. We find that the quantity most sensitive to the {delta}-meson coupling is the proton fraction of neutron star matter. It increases significantly in the presence of the {delta}-field. The energy per baryon also increases but the effect is smaller. The EOS becomes slightly stiffer and the maximum neutron star mass increases for stronger {delta}-meson coupling. (author) 8 refs, 6 figs, 2 tabs
Berges, J.; Boguslavski, K.; Chatrchyan, A.; Jaeckel, J.
2017-10-01
We study the impact of attractive self-interactions on the nonequilibrium dynamics of relativistic quantum fields with large occupancies at low momenta. Our primary focus is on Bose-Einstein condensation and nonthermal fixed points in such systems. For a model system, we consider O (N ) -symmetric scalar field theories. We use classical-statistical real-time simulations as well as a systematic 1 /N expansion of the quantum (two-particle-irreducible) effective action to next-to-leading order. When the mean self-interactions are repulsive, condensation occurs as a consequence of a universal inverse particle cascade to the zero-momentum mode with self-similar scaling behavior. For attractive mean self-interactions, the inverse cascade is absent, and the particle annihilation rate is enhanced compared to the repulsive case, which counteracts the formation of coherent field configurations. For N ≥2 , the presence of a nonvanishing conserved charge can suppress number-changing processes and lead to the formation of stable localized charge clumps, i.e., Q balls.
International Nuclear Information System (INIS)
Ertas, Mehmet; Keskin, Mustafa; Deviren, Bayram
2010-01-01
The dynamic phase transitions are studied in the spin-2 Ising model under a time-dependent oscillating magnetic field by using the effective-field theory with correlations. The effective-field dynamic equation is derived by employing the Glauber transition rates and the phases in the system are obtained by solving this dynamic equation. The nature (first- or second-order) of the dynamic phase transition is characterized by investigating the thermal behavior of the dynamic order parameter and the dynamic phase transition temperatures are obtained. The dynamic phase diagrams are presented in (T/zJ, h/zJ) plane.
Effective quantum field theories
International Nuclear Information System (INIS)
Georgi, H.M.
1993-01-01
The most appropriate description of particle interactions in the language of quantum field theory depends on the energy at which the interactions are studied; the description is in terms of an ''effective field theory'' that contains explicit reference only to those particles that are actually important at the energy being studied. The various themes of the article are: local quantum field theory, quantum electrodynamics, new physics, dimensional parameters and renormalizability, socio-dynamics of particle theory, spontaneously broken gauge theories, scale dependence, grand unified and effective field theories. 2 figs
The mean field theory in EM procedures for blind Markov random field image restoration.
Zhang, J
1993-01-01
A Markov random field (MRF) model-based EM (expectation-maximization) procedure for simultaneously estimating the degradation model and restoring the image is described. The MRF is a coupled one which provides continuity (inside regions of smooth gray tones) and discontinuity (at region boundaries) constraints for the restoration problem which is, in general, ill posed. The computational difficulty associated with the EM procedure for MRFs is resolved by using the mean field theory from statistical mechanics. An orthonormal blur decomposition is used to reduce the chances of undesirable locally optimal estimates. Experimental results on synthetic and real-world images show that this approach provides good blur estimates and restored images. The restored images are comparable to those obtained by a Wiener filter in mean-square error, but are most visually pleasing.
van Vlimmeren, BAC; Maurits, NM; Zvelindovsky, AV; Sevink, GJA; Fraaije, JGEM
1999-01-01
We simulate the microphase separation dynamics of aqueous solutions of the triblock polymer surfactants (ethylene oxide)(13)(propylene oxide)(30)(ethylene oxide)(13) and (propylene oxide)(19)(ethylene oxide)(33)(propylene oxide)(19) by a dynamic variant of mean-field density functional theory for
Short-range correlations in an extended time-dependent mean-field theory
International Nuclear Information System (INIS)
Madler, P.
1982-01-01
A generalization is performed of the time-dependent mean-field theory by an explicit inclusion of strong short-range correlations on a level of microscopic reversibility relating them to realistic nucleon-nucleon forces. Invoking a least action principle for correlated trial wave functions, equations of motion for the correlation functions and the single-particle model wave function are derived in lowest order of the FAHT cluster expansion. Higher order effects as well as long-range correlations are consider only to the extent to which they contribute to the mean field via a readjusted phenomenological effective two-body interaction. The corresponding correlated stationary problem is investigated and appropriate initial conditions to describe a heavy ion reaction are proposed. The singleparticle density matrix is evaluated
Risk-sensitive mean-field games
Tembine, Hamidou
2014-04-01
In this paper, we study a class of risk-sensitive mean-field stochastic differential games. We show that under appropriate regularity conditions, the mean-field value of the stochastic differential game with exponentiated integral cost functional coincides with the value function satisfying a Hamilton -Jacobi- Bellman (HJB) equation with an additional quadratic term. We provide an explicit solution of the mean-field best response when the instantaneous cost functions are log-quadratic and the state dynamics are affine in the control. An equivalent mean-field risk-neutral problem is formulated and the corresponding mean-field equilibria are characterized in terms of backward-forward macroscopic McKean-Vlasov equations, Fokker-Planck-Kolmogorov equations, and HJB equations. We provide numerical examples on the mean field behavior to illustrate both linear and McKean-Vlasov dynamics. © 1963-2012 IEEE.
Risk-sensitive mean-field games
Tembine, Hamidou; Zhu, Quanyan; Başar, Tamer
2014-01-01
In this paper, we study a class of risk-sensitive mean-field stochastic differential games. We show that under appropriate regularity conditions, the mean-field value of the stochastic differential game with exponentiated integral cost functional coincides with the value function satisfying a Hamilton -Jacobi- Bellman (HJB) equation with an additional quadratic term. We provide an explicit solution of the mean-field best response when the instantaneous cost functions are log-quadratic and the state dynamics are affine in the control. An equivalent mean-field risk-neutral problem is formulated and the corresponding mean-field equilibria are characterized in terms of backward-forward macroscopic McKean-Vlasov equations, Fokker-Planck-Kolmogorov equations, and HJB equations. We provide numerical examples on the mean field behavior to illustrate both linear and McKean-Vlasov dynamics. © 1963-2012 IEEE.
Higher-Spin Triplet Fields and String Theory
Directory of Open Access Journals (Sweden)
D. Sorokin
2010-01-01
Full Text Available We review basic properties of reducible higher-spin multiplets, called triplets, and demonstrate how they naturally appear as part of the spectrum of String Field Theory in the tensionless limit. We show how in the frame-like formulation the triplet fields are endowed with the geometrical meaning of being components of higher-spin vielbeins and connections and present actions describing their free dynamics.
Morton, J Bruce
2014-06-01
Buss and Spencer's monograph is an impressive achievement that is sure to have a lasting impact on the field of child development. The dynamic field theory (DFT) model that forms the heart of this contribution is ambitious in scope, detailed in its implementation, and rigorously tested against data, old and new. As such, the ideas contained in this fine document represent a qualitative advance in our understanding of young children's behavior, and lay a foundation for future research into the developmental origins of executive functioning. © 2014 The Society for Research in Child Development, Inc.
Mean field interaction in biochemical reaction networks
Tembine, Hamidou; Tempone, Raul; Vilanova, Pedro
2011-01-01
In this paper we establish a relationship between chemical dynamics and mean field game dynamics. We show that chemical reaction networks can be studied using noisy mean field limits. We provide deterministic, noisy and switching mean field limits
Topological recursion for Gaussian means and cohomological field theories
Andersen, J. E.; Chekhov, L. O.; Norbury, P.; Penner, R. C.
2015-12-01
We introduce explicit relations between genus-filtrated s-loop means of the Gaussian matrix model and terms of the genus expansion of the Kontsevich-Penner matrix model (KPMM), which is the generating function for volumes of discretized (open) moduli spaces M g,s disc (discrete volumes). Using these relations, we express Gaussian means in all orders of the genus expansion as polynomials in special times weighted by ancestor invariants of an underlying cohomological field theory. We translate the topological recursion of the Gaussian model into recurrence relations for the coefficients of this expansion, which allows proving that they are integers and positive. We find the coefficients in the first subleading order for M g,1 for all g in three ways: using the refined Harer-Zagier recursion, using the Givental-type decomposition of the KPMM, and counting diagrams explicitly.
Energy Technology Data Exchange (ETDEWEB)
Speck, Thomas [Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz (Germany); Menzel, Andreas M.; Bialké, Julian; Löwen, Hartmut [Institut für Theoretische Physik II, Heinrich-Heine-Universität, D-40225 Düsseldorf (Germany)
2015-06-14
Recently, we have derived an effective Cahn-Hilliard equation for the phase separation dynamics of active Brownian particles by performing a weakly non-linear analysis of the effective hydrodynamic equations for density and polarization [Speck et al., Phys. Rev. Lett. 112, 218304 (2014)]. Here, we develop and explore this strategy in more detail and show explicitly how to get to such a large-scale, mean-field description starting from the microscopic dynamics. The effective free energy emerging from this approach has the form of a conventional Ginzburg-Landau function. On the coarsest scale, our results thus agree with the mapping of active phase separation onto that of passive fluids with attractive interactions through a global effective free energy (motility-induced phase transition). Particular attention is paid to the square-gradient term necessary for the phase separation kinetics. We finally discuss results from numerical simulations corroborating the analytical results.
Sine-Gordon mean field theory of a Coulomb gas
Energy Technology Data Exchange (ETDEWEB)
Diehl, Alexandre; Barbosa, Marcia C.; Levin, Yan
1997-12-31
Full text. The Coulomb gas provides a paradigm for the study of various models of critical phenomena. In particular, it is well known that the two dimensional (2 D). Coulomb gas can be directly used to study the superfluidity transition in {sup 4} He films, arrays of Josephson junctions, roughening transition, etc. Not withstanding its versatility, our full understanding of the most basic model of Coulomb gas, namely an ensemble of hard spheres carrying either positive or negative charges at their center, is still lacking. It is now well accepted that at low density the two dimensional plasma of equal number of positive and negative particles undergoes a Kosterlitz-Thouless (KT) metal insulator transition. This transition is of an infinite order and is characterized by a diverging Debye screening length. As the density of particles increases, the validity of the KT theory becomes questionable and the possibility of the KT transition being replaced by some kind of first order discontinuity has been speculated for a long time. In this work sine-Gordon field theory is used to investigate the phase diagram of a neutral Coulomb gas. A variational mean-field free energy is constructed and the corresponding phase diagrams in two and three dimensions are obtained. When analyzed in terms of chemical potential, the sine-Gordon theory predicts the phase diagram topologically identical to the Monte Carlo simulations and a recently developed Debye-Huckel-Bjerrum theory. In 2D, we find that the infinite-order Kosterlitz-Thouless line terminates in a tricritical point, after which the metal-insulator transition becomes first order. However, when the transformation from chemical potential to the density is made the whole insulating phase is mapped onto zero density. (author)
Aryanpour, K.; Pickett, W. E.; Scalettar, R. T.
2006-01-01
We employ dynamical mean field theory (DMFT) with a Quantum Monte Carlo (QMC) atomic solver to investigate the finite temperature Mott transition in the Hubbard model with the nearest neighbor hopping on a triangular lattice at half-filling. We estimate the value of the critical interaction to be $U_c=12.0 \\pm 0.5$ in units of the hopping amplitude $t$ through the evolution of the magnetic moment, spectral function, internal energy and specific heat as the interaction $U$ and temperature $T$ ...
Mean field interaction in biochemical reaction networks
Tembine, Hamidou
2011-09-01
In this paper we establish a relationship between chemical dynamics and mean field game dynamics. We show that chemical reaction networks can be studied using noisy mean field limits. We provide deterministic, noisy and switching mean field limits and illustrate them with numerical examples. © 2011 IEEE.
Directory of Open Access Journals (Sweden)
Claus Toft-Nielsen
2015-05-01
Full Text Available This article investigates digital game play (gaming as a specific media field (Bourdieu, 1984, p. 72, in which especially gaming capital (Consalvo, 2007 functions as a theoretical lens. We aim to analyse the specific practices that constitute and are constituted in and around gaming. This multitude of practices is theoretically qualified by the second generation of practice theorists, including (Bruchler & Postill, 2010; Reckwitz, 2002; Schatzki, 2008; Warde, 2005. The empirical data are drawn from qualitative studies of gamers and gaming practices (focus groups as well as participant observations, and function as exemplary cases that illustrate our theoretical arguments. Our purpose is to analytically operationalize field theory, by means of practice theory, to enhance our understanding of digital games as new media and the specific contexts and media practices herein.
DEFF Research Database (Denmark)
Toft-Nielsen, Claus; Krogager, Stinne Gunder Strøm
2015-01-01
This article investigates digital game play (gaming) as a specific media field (Bourdieu, 1984, p. 72), in which especially gaming capital (Consalvo, 2007) functions as a theoretical lens. We aim to analyse the specific practices that constitute and are constituted in and around gaming....... This multitude of practices is theoretically qualified by the second generation of practice theorists, including (Bruchler & Postill, 2010; Reckwitz, 2002; Schatzki, 2008; Warde, 2005). The empirical data are drawn from qualitative studies of gamers and gaming practices (focus groups as well as participant...... observations), and function as exemplary cases that illustrate our theoretical arguments. Our purpose is to analytically operationalize field theory, by means of practice theory, to enhance our understanding of digital games as new media and the specific contexts and media practices herein....
Mean-field theory of meta-learning
International Nuclear Information System (INIS)
Plewczynski, Dariusz
2009-01-01
We discuss here the mean-field theory for a cellular automata model of meta-learning. Meta-learning is the process of combining outcomes of individual learning procedures in order to determine the final decision with higher accuracy than any single learning method. Our method is constructed from an ensemble of interacting, learning agents that acquire and process incoming information using various types, or different versions, of machine learning algorithms. The abstract learning space, where all agents are located, is constructed here using a fully connected model that couples all agents with random strength values. The cellular automata network simulates the higher level integration of information acquired from the independent learning trials. The final classification of incoming input data is therefore defined as the stationary state of the meta-learning system using simple majority rule, yet the minority clusters that share the opposite classification outcome can be observed in the system. Therefore, the probability of selecting a proper class for a given input data, can be estimated even without the prior knowledge of its affiliation. The fuzzy logic can be easily introduced into the system, even if learning agents are built from simple binary classification machine learning algorithms by calculating the percentage of agreeing agents
International Nuclear Information System (INIS)
Marek-Crnjac, L.
2006-01-01
In the present work we show the connections between the topology of four-manifolds, conformal field theory, the mathematical probability theory and Cantorian space-time. In all these different mathematical fields, we find as the main connection the appearance of the golden mean
Lerchner, A; Hertz, J; Ahmadi, M
2004-01-01
We present a complete mean field theory for a balanced state of a simple model of an orientation hypercolumn. The theory is complemented by a description of a numerical procedure for solving the mean-field equations quantitatively. With our treatment, we can determine self-consistently both the firing rates and the firing correlations, without being restricted to specific neuron models. Here, we solve the analytically derived mean-field equations numerically for integrate-and-fire neurons. Several known key properties of orientation selective cortical neurons emerge naturally from the description: Irregular firing with statistics close to -- but not restricted to -- Poisson statistics; an almost linear gain function (firing frequency as a function of stimulus contrast) of the neurons within the network; and a contrast-invariant tuning width of the neuronal firing. We find that the irregularity in firing depends sensitively on synaptic strengths. If Fano factors are bigger than 1, then they are so for all stim...
Mean field dynamics of some open quantum systems.
Merkli, Marco; Rafiyi, Alireza
2018-04-01
We consider a large number N of quantum particles coupled via a mean field interaction to another quantum system (reservoir). Our main result is an expansion for the averages of observables, both of the particles and of the reservoir, in inverse powers of [Formula: see text]. The analysis is based directly on the Dyson series expansion of the propagator. We analyse the dynamics, in the limit [Formula: see text], of observables of a fixed number n of particles, of extensive particle observables and their fluctuations, as well as of reservoir observables. We illustrate our results on the infinite mode Dicke model and on various energy-conserving models.
Mean field dynamics of some open quantum systems
Merkli, Marco; Rafiyi, Alireza
2018-04-01
We consider a large number N of quantum particles coupled via a mean field interaction to another quantum system (reservoir). Our main result is an expansion for the averages of observables, both of the particles and of the reservoir, in inverse powers of √{N }. The analysis is based directly on the Dyson series expansion of the propagator. We analyse the dynamics, in the limit N →∞ , of observables of a fixed number n of particles, of extensive particle observables and their fluctuations, as well as of reservoir observables. We illustrate our results on the infinite mode Dicke model and on various energy-conserving models.
Conformal Field Theory as Microscopic Dynamics of Incompressible Euler and Navier-Stokes Equations
International Nuclear Information System (INIS)
Fouxon, Itzhak; Oz, Yaron
2008-01-01
We consider the hydrodynamics of relativistic conformal field theories at finite temperature. We show that the limit of slow motions of the ideal hydrodynamics leads to the nonrelativistic incompressible Euler equation. For viscous hydrodynamics we show that the limit of slow motions leads to the nonrelativistic incompressible Navier-Stokes equation. We explain the physical reasons for the reduction and discuss the implications. We propose that conformal field theories provide a fundamental microscopic viewpoint of the equations and the dynamics governed by them
Conformal field theory as microscopic dynamics of incompressible Euler and Navier-Stokes equations.
Fouxon, Itzhak; Oz, Yaron
2008-12-31
We consider the hydrodynamics of relativistic conformal field theories at finite temperature. We show that the limit of slow motions of the ideal hydrodynamics leads to the nonrelativistic incompressible Euler equation. For viscous hydrodynamics we show that the limit of slow motions leads to the nonrelativistic incompressible Navier-Stokes equation. We explain the physical reasons for the reduction and discuss the implications. We propose that conformal field theories provide a fundamental microscopic viewpoint of the equations and the dynamics governed by them.
Self-consistent normal ordering of gauge field theories
International Nuclear Information System (INIS)
Ruehl, W.
1987-01-01
Mean-field theories with a real action of unconstrained fields can be self-consistently normal ordered. This leads to a considerable improvement over standard mean-field theory. This concept is applied to lattice gauge theories. First an appropriate real action mean-field theory is constructed. The equations determining the Gaussian kernel necessary for self-consistent normal ordering of this mean-field theory are derived. (author). 4 refs
Covariant density functional theory beyond mean field and applications for nuclei far from stability
International Nuclear Information System (INIS)
Ring, P
2010-01-01
Density functional theory provides a very powerful tool for a unified microscopic description of nuclei all over the periodic table. It is not only successful in reproducing bulk properties of nuclear ground states such as binding energies, radii, or deformation parameters, but it also allows the investigation of collective phenomena, such as giant resonances and rotational excitations. However, it is based on the mean field concept and therefore it has its limits. We discuss here two methods based based on covariant density functional theory going beyond the mean field concept, (i) models with an energy dependent self energy allowing the coupling to complex configurations and a quantitative description of the width of giant resonances and (ii) methods of configuration mixing between Slater determinants with different deformation and orientation providing are very successful description of transitional nuclei and quantum phase transitions.
Mean-field approximation minimizes relative entropy
International Nuclear Information System (INIS)
Bilbro, G.L.; Snyder, W.E.; Mann, R.C.
1991-01-01
The authors derive the mean-field approximation from the information-theoretic principle of minimum relative entropy instead of by minimizing Peierls's inequality for the Weiss free energy of statistical physics theory. They show that information theory leads to the statistical mechanics procedure. As an example, they consider a problem in binary image restoration. They find that mean-field annealing compares favorably with the stochastic approach
Yoshitake, Junki; Nasu, Joji; Motome, Yukitoshi
2016-10-07
Experimental identification of quantum spin liquids remains a challenge, as the pristine nature is to be seen in asymptotically low temperatures. We here theoretically show that the precursor of quantum spin liquids appears in the spin dynamics in the paramagnetic state over a wide temperature range. Using the cluster dynamical mean-field theory and the continuous-time quantum Monte Carlo method, which are newly developed in the Majorana fermion representation, we calculate the dynamical spin structure factor, relaxation rate in nuclear magnetic resonance, and magnetic susceptibility for the honeycomb Kitaev model whose ground state is a canonical example of the quantum spin liquid. We find that dynamical spin correlations show peculiar temperature and frequency dependence even below the temperature where static correlations saturate. The results provide the experimentally accessible symptoms of the fluctuating fractionalized spins evincing the quantum spin liquids.
Resonances and reactions from mean-field dynamics
Directory of Open Access Journals (Sweden)
Stevenson P. D.
2016-01-01
Full Text Available The time-dependent version of nuclear density functional theory, using functionals derived from Skyrme interactions, is able to approximately describe nuclear dynamics. We present time-dependent results of calculations of dipole resonances, concentrating on excitations of valence neutrons against a proton plus neutron core in the neutron-rich doubly-magic 132Sn nucleus, and results of collision dynamics, highlighting potential routes to ternary fusion, with the example of a collision of 48Ca+48Ca+208Pb resulting in a compound nucleus of element 120 stable against immediate fission.
Pionic atoms, the relativistic mean-field theory and the pion-nucleon scattering lenghts
International Nuclear Information System (INIS)
Goudsmit, P.F.A.; Leisi, H.J.; Matsinos, E.
1991-01-01
Analysing pionic-atom data of isoscalar nuclei within the relativistic mean-field (RMF) theory, we determine the pseudoscalar πNN mixing parameter x=0.24±0.06 (syst.) and the strength of the nuclear scalar meson field for pions, S π =-34±14 (syst.) MeV. We show that these values are compatible with the elementary π-N interaction. Our RMF model provides a solution to the long-standing problem of the s-wave repulsion. (orig.)
Quantum correlated cluster mean-field theory applied to the transverse Ising model.
Zimmer, F M; Schmidt, M; Maziero, Jonas
2016-06-01
Mean-field theory (MFT) is one of the main available tools for analytical calculations entailed in investigations regarding many-body systems. Recently, there has been a surge of interest in ameliorating this kind of method, mainly with the aim of incorporating geometric and correlation properties of these systems. The correlated cluster MFT (CCMFT) is an improvement that succeeded quite well in doing that for classical spin systems. Nevertheless, even the CCMFT presents some deficiencies when applied to quantum systems. In this article, we address this issue by proposing the quantum CCMFT (QCCMFT), which, in contrast to its former approach, uses general quantum states in its self-consistent mean-field equations. We apply the introduced QCCMFT to the transverse Ising model in honeycomb, square, and simple cubic lattices and obtain fairly good results both for the Curie temperature of thermal phase transition and for the critical field of quantum phase transition. Actually, our results match those obtained via exact solutions, series expansions or Monte Carlo simulations.
Elementary methods for statistical systems, mean field, large-n, and duality
International Nuclear Information System (INIS)
Itzykson, C.
1983-01-01
Renormalizable field theories are singled out by such precise restraints that regularization schemes must be used to break these invariances. Statistical methods can be adapted to these problems where asymptotically free models fail. This lecture surveys approximation schemes developed in the context of statistical mechanics. The confluence point of statistical mechanics and field theory is the use of discretized path integrals, where continuous space time has been replaced by a regular lattice. Dynamic variables, a Boltzman weight factor, and boundary conditions are the ingredients. Mean field approximations --field equations, Random field transform, and gauge invariant systems--are surveyed. Under Large-N limits vector models are found to simplify tremendously. The reasons why matrix models drawn from SU (n) gauge theories do not simplify are discussed. In the epilogue, random curves versus random surfaces are offered as an example where global and local symmetries are not alike
Energy Technology Data Exchange (ETDEWEB)
Ertas, Mehmet [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Institute of Science, Erciyes University, 38039 Kayseri (Turkey); Deviren, Bayram [Department of Physics, Nevsehir University, 50300 Nevsehir (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.tr [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)
2012-03-15
The dynamic phase transitions are studied in the kinetic spin-2 Blume-Capel model under a time-dependent oscillating magnetic field using the effective-field theory with correlations. The effective-field dynamic equation for the average magnetization is derived by employing the Glauber transition rates and the phases in the system are obtained by solving this dynamic equation. The nature (first- or second-order) of the dynamic phase transition is characterized by investigating the thermal behavior of the dynamic magnetization and the dynamic phase transition temperatures are obtained. The dynamic phase diagrams are constructed in the reduced temperature and magnetic field amplitude plane and are of seven fundamental types. Phase diagrams contain the paramagnetic (P), ferromagnetic-2 (F{sub 2}) and three coexistence or mixed phase regions, namely the F{sub 2}+P, F{sub 1}+P and F{sub 2}+F{sub 1}+P, which strongly depend on the crystal-field interaction (D) parameter. The system also exhibits the dynamic tricritical behavior. - Highlights: Black-Right-Pointing-Pointer Dynamic phase transitions are studied in spin-2 BC model using EFT. Black-Right-Pointing-Pointer Dynamic phase diagrams are constructed in (T/zJ, h/zJ) plane. Black-Right-Pointing-Pointer Seven fundamental types of dynamic phase diagrams are found in the system. Black-Right-Pointing-Pointer System exhibits dynamic tricritical behavior.
Topological field theory: zero-modes and renormalization
International Nuclear Information System (INIS)
Ouvry, S.; Thompson, G.
1989-09-01
We address the issue of the non-triviality of the observables in various Topological Field Theories by means of the explicit introduction of the zero-modes into the BRST algebra. Supersymmetric quantum mechanics and Topological Yang-Mills theory are dealt with in detail. It is shown that due to the presence of fermionic zero-modes the BRST algebra may be dynamically broken leading to non trivial observables albeit the local cohomology being trivial. However the metric and coupling constant independence of the observables are still valid. A renormalization procedure is given that correctly incorporates the zero-modes. Particular attention is given to the conventional gauge fixing in Topological Yang-Mills theories, with emphasis on the geometrical character of the fields and their role in the non-triviality of the observables
International Nuclear Information System (INIS)
Bleyer, U.; Muecket, J.P.
1980-01-01
In general the Birkhoff theorem is violated in non-Einsteinian theories of gravitation. We show for theories in which the dynamical equations do not follow from the field equations that time-dependent vacuum solutions are needed in order to join nonstatic spherically symmetric incoherent matter distributions. It is shown for Treder's tetrad theories that such vacuum solutions exist and a continuous and unique junction is possible. In generalization of these results we consider the problem in what theories of gravitation the dynamical equations do not follow from the field equations. This consideration leads to non-Einsteinian theories like bimetric theories or Treder's tetrad theories containing supplementary geometrical quantities which are not dynamical variables of the theory. (author)
Studies in quantum field theory
International Nuclear Information System (INIS)
Bender, C.M.; Mandula, J.E.; Shrauner, J.E.
1982-01-01
Washington University is currently conducting research in many areas of high energy theoretical and mathematical physics. These areas include: strong-coupling approximation; classical solutions of non-Abelian gauge theories; mean-field approximation in quantum field theory; path integral and coherent state representations in quantum field theory; lattice gauge calculations; the nature of perturbation theory in large orders; quark condensation in QCD; chiral symmetry breaking; the l/N expansion in quantum field theory; effective potential and action in quantum field theories, including QCD
Dynamical renormalization group approach to relaxation in quantum field theory
International Nuclear Information System (INIS)
Boyanovsky, D.; Vega, H.J. de
2003-01-01
The real time evolution and relaxation of expectation values of quantum fields and of quantum states are computed as initial value problems by implementing the dynamical renormalization group (DRG). Linear response is invoked to set up the renormalized initial value problem to study the dynamics of the expectation value of quantum fields. The perturbative solution of the equations of motion for the field expectation values of quantum fields as well as the evolution of quantum states features secular terms, namely terms that grow in time and invalidate the perturbative expansion for late times. The DRG provides a consistent framework to resum these secular terms and yields a uniform asymptotic expansion at long times. Several relevant cases are studied in detail, including those of threshold infrared divergences which appear in gauge theories at finite temperature and lead to anomalous relaxation. In these cases the DRG is shown to provide a resummation akin to Bloch-Nordsieck but directly in real time and that goes beyond the scope of Bloch-Nordsieck and Dyson resummations. The nature of the resummation program is discussed in several examples. The DRG provides a framework that is consistent, systematic, and easy to implement to study the non-equilibrium relaxational dynamics directly in real time that does not rely on the concept of quasiparticle widths
Superheavy nuclei in the relativistic mean-field theory
International Nuclear Information System (INIS)
Lalazissis, G.A.; Ring, P.; Gambhir, Y.K.
1996-01-01
We have carried out a study of superheavy nuclei in the framework of the relativistic mean-field theory. Relativistic Hartree-Bogoliubov (RHB) calculations have been performed for nuclei with large proton and neutron numbers. A finite-range pairing force of Gogny type has been used in the RHB calculations. The ground-state properties of very heavy nuclei with atomic numbers Z=100-114 and neutron numbers N=154-190 have been obtained. The results show that in addition to N=184 the neutron numbers N=160 and N=166 exhibit an extra stability as compared to their neighbors. For the case of protons the atomic number Z=106 is shown to demonstrate a closed-shell behavior in the region of well deformed nuclei about N=160. The proton number Z=114 also indicates a shell closure. Indications for a doubly magic character at Z=106 and N=160 are observed. Implications of shell closures on a possible synthesis of superheavy nuclei are discussed. (orig.)
Site-disorder driven superconductor–insulator transition: a dynamical mean field study
International Nuclear Information System (INIS)
Kamar, Naushad Ahmad; Vidhyadhiraja, N S
2014-01-01
We investigate the effect of site disorder on the superconducting state in the attractive Hubbard model within the framework of dynamical mean field theory. For a fixed interaction strength (U), the superconducting order parameter decreases monotonically with increasing disorder (x), while the single-particle spectral gap decreases for small x, reaches a minimum and keeps increasing for larger x. Thus, the system remains gapped beyond the destruction of the superconducting state, indicating a disorder-driven superconductor–insulator transition. We investigate this transition in depth considering the effects of weak and strong disorder for a range of interaction strengths. In the clean case, the order parameter is known to increase monotonically with increasing interaction, saturating at a finite value asymptotically for U→∞. The presence of disorder results in destruction of superconductivity at large U, thus drastically modifying the clean case behaviour. A physical understanding of our findings is obtained by invoking particle–hole asymmetry and the probability distributions of the order parameter and spectral gap. (paper)
Mean-field approximations of fixation time distributions of evolutionary game dynamics on graphs
Ying, Li-Min; Zhou, Jie; Tang, Ming; Guan, Shu-Guang; Zou, Yong
2018-02-01
The mean fixation time is often not accurate for describing the timescales of fixation probabilities of evolutionary games taking place on complex networks. We simulate the game dynamics on top of complex network topologies and approximate the fixation time distributions using a mean-field approach. We assume that there are two absorbing states. Numerically, we show that the mean fixation time is sufficient in characterizing the evolutionary timescales when network structures are close to the well-mixing condition. In contrast, the mean fixation time shows large inaccuracies when networks become sparse. The approximation accuracy is determined by the network structure, and hence by the suitability of the mean-field approach. The numerical results show good agreement with the theoretical predictions.
Virtual-site correlation mean field approach to criticality in spin systems
International Nuclear Information System (INIS)
Sen, Aditi; Sen, Ujjwal
2013-01-01
We propose a virtual-site correlation mean field theory for dealing with interacting many-body systems. It involves a coarse-graining technique that terminates a step before the mean field theory: While mean field theory deals with only single-body physical parameters, the virtual-site correlation mean field theory deals with single- as well as two-body ones, and involves a virtual site for every interaction term in the Hamiltonian. We generalize the theory to a cluster virtual-site correlation mean field, that works with a fundamental unit of the lattice of the many-body system. We apply these methods to interacting Ising spin systems in several lattice geometries and dimensions, and show that the predictions of the onset of criticality of these models are generally much better in the proposed theories as compared to the corresponding ones in mean field theories
Multichain Mean-Field Theory of Quasi-One-Dimensional Quantum Spin Systems
International Nuclear Information System (INIS)
Sandvik, A.W.
1999-01-01
A multichain mean-field theory is developed and applied to a two-dimensional system of weakly coupled S=1/2 Heisenberg chains. The environment of a chain C 0 is modeled by a number of neighboring chains C δ , δ=±1, hor-ellipsis,± , with the edge chains C ±n coupled to a staggered field. Using a quantum Monte Carlo method, the effective (2n+1) -chain Hamiltonian is solved self-consistently for n up to 4 . The results are compared with simulation results for the original Hamiltonian on large rectangular lattices. Both methods show that the staggered magnetization M for small interchain couplings α behaves as M∼√(α) enhanced by a multiplicative logarithmic correction. copyright 1999 The American Physical Society
Mean-Field Scenario for the Athermal Creep Dynamics of Yield-Stress Fluids
Liu, Chen; Martens, Kirsten; Barrat, Jean-Louis
2018-01-01
We develop a theoretical description based on an existent mean-field model for the transient dynamics prior to the steady flow of yielding materials. The mean-field model not only reproduces the experimentally observed nonlinear time dependence of the shear-rate response to an external stress, but also allows for the determination of the different physical processes involved in the onset of the reacceleration phase after the initial slowing down and a distinct fluidization phase. The fluidization time displays a power-law dependence on the distance of the applied stress to an age-dependent yield stress, which is not universal but strongly dependent on initial conditions.
Cheng, Shengfeng; Wen, Chengyuan; Egorov, Sergei
2015-03-01
Molecular dynamics simulations and self-consistent field theory calculations are employed to study the interactions between a nanoparticle and a polymer brush at various densities of chains grafted to a plane. Simulations with both implicit and explicit solvent are performed. In either case the nanoparticle is loaded to the brush at a constant velocity. Then a series of simulations are performed to compute the force exerted on the nanoparticle that is fixed at various distances from the grafting plane. The potential of mean force is calculated and compared to the prediction based on a self-consistent field theory. Our simulations show that the explicit solvent leads to effects that are not captured in simulations with implicit solvent, indicating the importance of including explicit solvent in molecular simulations of such systems. Our results also demonstrate an interesting correlation between the force on the nanoparticle and the density profile of the brush. We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Tesla K40 GPU used for this research.
Metric quantum field theory: A preliminary look
International Nuclear Information System (INIS)
Watson, W.N.
1988-01-01
Spacetime coordinates are involved in uncertainty relations; spacetime itself appears to exhibit curvature. Could the continua associated with field variables exhibit curvature? This question, as well as the ideas that (a) difficulties with quantum theories of gravitation may be due to their formulation in an incorrect analogy with other quantum field theories, (b) spacetime variables should not be any more basic than others for describing physical phenomena, and (c) if field continua do not exhibit curvature, the reasons would be of interest, motivated the formulation of a theory of variable curvature and torsion in the electromagnetic four-potential's reciprocal space. Curvature and torsion equation completely analogous to those for a gauge theory of gravitation (the Einstein-Cartan-Sciama-Kibble theory) are assumed for this continuum. The interaction-Hamiltonian density of this theory, to a first approximation, implies that in addition to the Maxwell-Dirac field interaction of ordinary quantum electrodynamics, there should also be an interaction between Dirac-field vector and pseudovector currents unmediated by photons, as well as other interactions involving two or three Dirac-field currents interacting with the Maxwell field at single spacetime events. Calculations expressing Bhabha-scattering cross sections for incident beams with parallel spins differ from those of unmodified quantum electrodynamics by terms of first order in the gravitational constant of the theory, but the corresponding cross section for unpolarized incident beams differs from that of the unmodified theory only by terms of higher order in that constant. Undesirable features of the present theory include its nonrenormalizability, the obscurity of the meaning of its inverse field operator, and its being based on electrodynamics rather than electroweak dynamics
International Nuclear Information System (INIS)
Ertaş, Mehmet; Keskin, Mustafa; Deviren, Bayram
2012-01-01
Using an effective field theory with correlations, we study a kinetic spin-5/2 Blume–Capel model with bilinear exchange interaction and single-ion crystal field on a square lattice. The effective-field dynamic equation is derived by employing the Glauber transition rates. First, the phases in the kinetic system are obtained by solving this dynamic equation. Then, the thermal behavior of the dynamic magnetization, the hysteresis loop area and correlation are investigated in order to characterize the nature of the dynamic transitions and to obtain dynamic phase transition temperatures. Finally, we present the phase diagrams in two planes, namely (T/zJ, h 0 /zJ) and (T/zJ, D/zJ), where T absolute temperature, h 0 , the amplitude of the oscillating field, D, crystal field interaction or single-ion anisotropy constant and z denotes the nearest-neighbor sites of the central site. The phase diagrams exhibit four fundamental phases and ten mixed phases which are composed of binary, ternary and tetrad combination of fundamental phases, depending on the crystal field interaction parameter. Moreover, the phase diagrams contain a dynamic tricritical point (T), a double critical end point (B), a multicritical point (A) and zero-temperature critical point (Z). - Highlights: ► The effective-field theory is used to study the kinetic spin-5/2 Ising Blume–Capel model. ► Time variations of average order parameter have been studied to find phases in the system. ► The dynamic magnetization, hysteresis loop area and correlation have been calculated. ► The dynamic phase boundaries of the system depend on D/zJ. ► The dynamic phase diagrams are presented in the (T/zJ, h 0 /zJ) and (D/zJ, T/zJ) planes.
Energy Technology Data Exchange (ETDEWEB)
Ertas, Mehmet [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.tr [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Deviren, Bayram [Department of Physics, Nevsehir University, 50300 Nevsehir (Turkey)
2012-04-15
Using an effective field theory with correlations, we study a kinetic spin-5/2 Blume-Capel model with bilinear exchange interaction and single-ion crystal field on a square lattice. The effective-field dynamic equation is derived by employing the Glauber transition rates. First, the phases in the kinetic system are obtained by solving this dynamic equation. Then, the thermal behavior of the dynamic magnetization, the hysteresis loop area and correlation are investigated in order to characterize the nature of the dynamic transitions and to obtain dynamic phase transition temperatures. Finally, we present the phase diagrams in two planes, namely (T/zJ, h{sub 0}/zJ) and (T/zJ, D/zJ), where T absolute temperature, h{sub 0}, the amplitude of the oscillating field, D, crystal field interaction or single-ion anisotropy constant and z denotes the nearest-neighbor sites of the central site. The phase diagrams exhibit four fundamental phases and ten mixed phases which are composed of binary, ternary and tetrad combination of fundamental phases, depending on the crystal field interaction parameter. Moreover, the phase diagrams contain a dynamic tricritical point (T), a double critical end point (B), a multicritical point (A) and zero-temperature critical point (Z). - Highlights: Black-Right-Pointing-Pointer The effective-field theory is used to study the kinetic spin-5/2 Ising Blume-Capel model. Black-Right-Pointing-Pointer Time variations of average order parameter have been studied to find phases in the system. Black-Right-Pointing-Pointer The dynamic magnetization, hysteresis loop area and correlation have been calculated. Black-Right-Pointing-Pointer The dynamic phase boundaries of the system depend on D/zJ. Black-Right-Pointing-Pointer The dynamic phase diagrams are presented in the (T/zJ, h{sub 0}/zJ) and (D/zJ, T/zJ) planes.
A thermostatted kinetic theory model for event-driven pedestrian dynamics
Bianca, Carlo; Mogno, Caterina
2018-06-01
This paper is devoted to the modeling of the pedestrian dynamics by means of the thermostatted kinetic theory. Specifically the microscopic interactions among pedestrians and an external force field are modeled for simulating the evacuation of pedestrians from a metro station. The fundamentals of the stochastic game theory and the thermostatted kinetic theory are coupled for the derivation of a specific mathematical model which depicts the time evolution of the distribution of pedestrians at different exits of a metro station. The perturbation theory is employed in order to establish the stability analysis of the nonequilibrium stationary states in the case of a metro station consisting of two exits. A general sensitivity analysis on the initial conditions, the magnitude of the external force field and the number of exits is presented by means of numerical simulations which, in particular, show how the asymptotic distribution and the convergence time are affected by the presence of an external force field. The results show how, in evacuation conditions, the interaction dynamics among pedestrians can be negligible with respect to the external force. The important role of the thermostat term in allowing the reaching of the nonequilibrium stationary state is stressed out. Research perspectives are underlined at the end of paper, in particular for what concerns the derivation of frameworks that take into account the definition of local external actions and the introduction of the space and velocity dynamics.
A New Method and a New Scaling for Deriving Fermionic Mean-Field Dynamics
International Nuclear Information System (INIS)
Petrat, Sören; Pickl, Peter
2016-01-01
We introduce a new method for deriving the time-dependent Hartree or Hartree-Fock equations as an effective mean-field dynamics from the microscopic Schrödinger equation for fermionic many-particle systems in quantum mechanics. The method is an adaption of the method used in Pickl (Lett. Math. Phys. 97 (2) 151–164 2011) for bosonic systems to fermionic systems. It is based on a Gronwall type estimate for a suitable measure of distance between the microscopic solution and an antisymmetrized product state. We use this method to treat a new mean-field limit for fermions with long-range interactions in a large volume. Some of our results hold for singular attractive or repulsive interactions. We can also treat Coulomb interaction assuming either a mild singularity cutoff or certain regularity conditions on the solutions to the Hartree(-Fock) equations. In the considered limit, the kinetic and interaction energy are of the same order, while the average force is subleading. For some interactions, we prove that the Hartree(-Fock) dynamics is a more accurate approximation than a simpler dynamics that one would expect from the subleading force. With our method we also treat the mean-field limit coupled to a semiclassical limit, which was discussed in the literature before, and we recover some of the previous results. All results hold for initial data close (but not necessarily equal) to antisymmetrized product states and we always provide explicit rates of convergence.
LSZ asymptotic condition and dynamic equations in quantum field theory
International Nuclear Information System (INIS)
Arkhipov, A.A.; Savrin, V.I.
1983-01-01
Some techniques that may be appropriate for the derivation of dynamic equations in quantum field theory are considered. A new method of deriving equations based on the use of LSZ asymptotic condition is described. It is proved that with the help of this method it becomes possible to obtain equations for wave functions both of scattering and bound states. Work is described in several papers under the dame title. The first paper is devoted to the Bethe-Salpeter equation
Mean-field games with logistic population dynamics
Gomes, Diogo A.; De Lima Ribeiro, Ricardo
2013-01-01
In its standard form, a mean-field game can be defined by coupled system of equations, a Hamilton-Jacobi equation for the value function of agents and a Fokker-Planck equation for the density of agents. Traditionally, the latter equation is adjoint to the linearization of the former. Since the Fokker-Planck equation models a population dynamic, we introduce natural features such as seeding and birth, and nonlinear death rates. In this paper we analyze a stationary meanfield game in one dimension, illustrating various techniques to obtain regularity of solutions in this class of systems. In particular we consider a logistic-type model for birth and death of the agents which is natural in problems where crowding affects the death rate of the agents. The introduction of these new terms requires a number of new ideas to obtain wellposedness. In a forthcoming publication we will address higher dimensional models. ©2013 IEEE.
Mean-field games with logistic population dynamics
Gomes, Diogo A.
2013-12-01
In its standard form, a mean-field game can be defined by coupled system of equations, a Hamilton-Jacobi equation for the value function of agents and a Fokker-Planck equation for the density of agents. Traditionally, the latter equation is adjoint to the linearization of the former. Since the Fokker-Planck equation models a population dynamic, we introduce natural features such as seeding and birth, and nonlinear death rates. In this paper we analyze a stationary meanfield game in one dimension, illustrating various techniques to obtain regularity of solutions in this class of systems. In particular we consider a logistic-type model for birth and death of the agents which is natural in problems where crowding affects the death rate of the agents. The introduction of these new terms requires a number of new ideas to obtain wellposedness. In a forthcoming publication we will address higher dimensional models. ©2013 IEEE.
Atomically flat superconducting nanofilms: multiband properties and mean-field theory
Shanenko, A. A.; Aguiar, J. Albino; Vagov, A.; Croitoru, M. D.; Milošević, M. V.
2015-05-01
Recent progress in materials synthesis enabled fabrication of superconducting atomically flat single-crystalline metallic nanofilms with thicknesses down to a few monolayers. Interest in such nano-thin systems is attracted by the dimensional 3D-2D crossover in their coherent properties which occurs with decreasing the film thickness. The first fundamental aspect of this crossover is dictated by the Mermin-Wagner-Hohenberg theorem and concerns frustration of the long-range order due to superconductive fluctuations and the possibility to track its impact with an unprecedented level of control. The second important aspect is related to the Fabri-Pérot modes of the electronic motion strongly bound in the direction perpendicular to the nanofilm. The formation of such modes results in a pronounced multiband structure that changes with the nanofilm thickness and affects both the mean-field behavior and superconductive fluctuations. Though the subject is very rich in physics, it is scarcely investigated to date. The main obstacle is that there are no manageable models to study a complex magnetic response in this case. Full microscopic consideration is rather time consuming, if practicable at all, while the standard Ginzburg-Landau theory is not applicable. In the present work we review the main achievements in the subject to date, and construct and justify an efficient multiband mean-field formalism which allows for numerical and even analytical treatment of nano-thin superconductors in applied magnetic fields.
Atomically flat superconducting nanofilms: multiband properties and mean-field theory
International Nuclear Information System (INIS)
Shanenko, A A; Aguiar, J Albino; Vagov, A; Croitoru, M D; Milošević, M V
2015-01-01
Recent progress in materials synthesis enabled fabrication of superconducting atomically flat single-crystalline metallic nanofilms with thicknesses down to a few monolayers. Interest in such nano-thin systems is attracted by the dimensional 3D–2D crossover in their coherent properties which occurs with decreasing the film thickness. The first fundamental aspect of this crossover is dictated by the Mermin–Wagner–Hohenberg theorem and concerns frustration of the long-range order due to superconductive fluctuations and the possibility to track its impact with an unprecedented level of control. The second important aspect is related to the Fabri–Pérot modes of the electronic motion strongly bound in the direction perpendicular to the nanofilm. The formation of such modes results in a pronounced multiband structure that changes with the nanofilm thickness and affects both the mean-field behavior and superconductive fluctuations. Though the subject is very rich in physics, it is scarcely investigated to date. The main obstacle is that there are no manageable models to study a complex magnetic response in this case. Full microscopic consideration is rather time consuming, if practicable at all, while the standard Ginzburg–Landau theory is not applicable. In the present work we review the main achievements in the subject to date, and construct and justify an efficient multiband mean-field formalism which allows for numerical and even analytical treatment of nano-thin superconductors in applied magnetic fields. (paper)
Heterotic/Type-II duality and its field theory avatars
International Nuclear Information System (INIS)
Kiritsis, Elias
1999-01-01
In these lecture notes, I will describe heterotic/type-II duality in six and four dimensions. When supersymmetry is the maximal N=4 it will be shown that the duality reduces in the field theory limit to the Montonen-Olive duality of N=4 Super Yang-Mills theory. We will consider further compactifications of type II theory on Calabi-Yau manifolds. We will understand the physical meaning of geometric conifold singularities and the dynamics of conifold transitions. When the CY manifold is a K3 fibration we will argue that the type-II ground-state is dual to the heterotic theory compactified on K3xT 2 . This allows an exact computation of the low effective action. Taking the field theory limit, α ' →0, we will recover the Seiberg-Witten non-perturbative solution of N=2 gauge theory
Coagulation kinetics beyond mean field theory using an optimised Poisson representation
Energy Technology Data Exchange (ETDEWEB)
Burnett, James [Department of Mathematics, UCL, Gower Street, London WC1E 6BT (United Kingdom); Ford, Ian J. [Department of Physics and Astronomy, UCL, Gower Street, London WC1E 6BT (United Kingdom)
2015-05-21
Binary particle coagulation can be modelled as the repeated random process of the combination of two particles to form a third. The kinetics may be represented by population rate equations based on a mean field assumption, according to which the rate of aggregation is taken to be proportional to the product of the mean populations of the two participants, but this can be a poor approximation when the mean populations are small. However, using the Poisson representation, it is possible to derive a set of rate equations that go beyond mean field theory, describing pseudo-populations that are continuous, noisy, and complex, but where averaging over the noise and initial conditions gives the mean of the physical population. Such an approach is explored for the simple case of a size-independent rate of coagulation between particles. Analytical results are compared with numerical computations and with results derived by other means. In the numerical work, we encounter instabilities that can be eliminated using a suitable “gauge” transformation of the problem [P. D. Drummond, Eur. Phys. J. B 38, 617 (2004)] which we show to be equivalent to the application of the Cameron-Martin-Girsanov formula describing a shift in a probability measure. The cost of such a procedure is to introduce additional statistical noise into the numerical results, but we identify an optimised gauge transformation where this difficulty is minimal for the main properties of interest. For more complicated systems, such an approach is likely to be computationally cheaper than Monte Carlo simulation.
Effective field theory and the quark model
International Nuclear Information System (INIS)
Durand, Loyal; Ha, Phuoc; Jaczko, Gregory
2001-01-01
We analyze the connections between the quark model (QM) and the description of hadrons in the low-momentum limit of heavy-baryon effective field theory in QCD. By using a three-flavor-index representation for the effective baryon fields, we show that the 'nonrelativistic' constituent QM for baryon masses and moments is completely equivalent through O(m s ) to a parametrization of the relativistic field theory in a general spin-flavor basis. The flavor and spin variables can be identified with those of effective valence quarks. Conversely, the spin-flavor description clarifies the structure and dynamical interpretation of the chiral expansion in effective field theory, and provides a direct connection between the field theory and the semirelativistic models for hadrons used in successful dynamical calculations. This allows dynamical information to be incorporated directly into the chiral expansion. We find, for example, that the striking success of the additive QM for baryon magnetic moments is a consequence of the relative smallness of the non-additive spin-dependent corrections
DEFF Research Database (Denmark)
Pedersen, T.G.; Johansen, P.M.
1997-01-01
. The theory provides an explanation for the high long-term stability of the photoinduced anisotropy as well as a theoretical prediction of the temporal behavior of photoinduced birefringence. The theoretical results agree favorably with measurements in the entire range of writing intensities used......A novel mean-field theory of photoinduced reorientation and optical anisotropy in liquid crystalline side-chain polymers is presented and compared with experiments, The reorientation mechanism is based on photoinduced trans cis isomerization and a multidomain model of the material is introduced...
Finite temperature field theory
Das, Ashok
1997-01-01
This book discusses all three formalisms used in the study of finite temperature field theory, namely the imaginary time formalism, the closed time formalism and thermofield dynamics. Applications of the formalisms are worked out in detail. Gauge field theories and symmetry restoration at finite temperature are among the practical examples discussed in depth. The question of gauge dependence of the effective potential and the Nielsen identities are explained. The nonrestoration of some symmetries at high temperature (such as supersymmetry) and theories on nonsimply connected space-times are al
The time-dependent relativistic mean-field theory and the random phase approximation
International Nuclear Information System (INIS)
Ring, P.; Ma, Zhong-yu; Van Giai, Nguyen; Vretenar, D.; Wandelt, A.; Cao, Li-gang
2001-01-01
The Relativistic Random Phase Approximation (RRPA) is derived from the Time-Dependent Relativistic Mean-Field (TD RMF) theory in the limit of small amplitude oscillations. In the no-sea approximation of the RMF theory, the RRPA configuration space includes not only the usual particle-hole ph-states, but also αh-configurations, i.e. pairs formed from occupied states in the Fermi sea and empty negative-energy states in the Dirac sea. The contribution of the negative-energy states to the RRPA matrices is examined in a schematic model, and the large effect of Dirac-sea states on isoscalar strength distributions is illustrated for the giant monopole resonance in 116 Sn. It is shown that, because the matrix elements of the time-like component of the vector-meson fields which couple the αh-configurations with the ph-configurations are strongly reduced with respect to the corresponding matrix elements of the isoscalar scalar meson field, the inclusion of states with unperturbed energies more than 1.2 GeV below the Fermi energy has a pronounced effect on giant resonances with excitation energies in the MeV region. The influence of nuclear magnetism, i.e. the effect of the spatial components of the vector fields is examined, and the difference between the nonrelativistic and relativistic RPA predictions for the nuclear matter compression modulus is explained
Wu, Wei; Wang, Jin
2013-09-28
We established a potential and flux field landscape theory to quantify the global stability and dynamics of general spatially dependent non-equilibrium deterministic and stochastic systems. We extended our potential and flux landscape theory for spatially independent non-equilibrium stochastic systems described by Fokker-Planck equations to spatially dependent stochastic systems governed by general functional Fokker-Planck equations as well as functional Kramers-Moyal equations derived from master equations. Our general theory is applied to reaction-diffusion systems. For equilibrium spatially dependent systems with detailed balance, the potential field landscape alone, defined in terms of the steady state probability distribution functional, determines the global stability and dynamics of the system. The global stability of the system is closely related to the topography of the potential field landscape in terms of the basins of attraction and barrier heights in the field configuration state space. The effective driving force of the system is generated by the functional gradient of the potential field alone. For non-equilibrium spatially dependent systems, the curl probability flux field is indispensable in breaking detailed balance and creating non-equilibrium condition for the system. A complete characterization of the non-equilibrium dynamics of the spatially dependent system requires both the potential field and the curl probability flux field. While the non-equilibrium potential field landscape attracts the system down along the functional gradient similar to an electron moving in an electric field, the non-equilibrium flux field drives the system in a curly way similar to an electron moving in a magnetic field. In the small fluctuation limit, the intrinsic potential field as the small fluctuation limit of the potential field for spatially dependent non-equilibrium systems, which is closely related to the steady state probability distribution functional, is
Relativistic mean field theory for deformed nuclei with pairing correlations
International Nuclear Information System (INIS)
Geng, Lisheng; Toki, Hiroshi; Sugimoto, Satoru; Meng, Jie
2003-01-01
We develop a relativistic mean field (RMF) description of deformed nuclei with pairing correlations in the BCS approximation. The treatment of the pairing correlations for nuclei whose Fermi surfaces are close to the threshold of unbound states needs special attention. With this in mind, we use a delta function interaction for the pairing interaction to pick up those states whose wave functions are concentrated in the nuclear region and employ the standard BCS approximation for the single-particle states obtained from the BMF theory with deformation. We apply the RMF + BCS method to the Zr isotopes and obtain a good description of the binding energies and the nuclear radii of nuclei from the proton drip line to the neutron drip line. (author)
Dynamic Pricing of New Products in Competitive Markets: A Mean-Field Game Approach
Chenavaz, Régis; Paraschiv, Corina; Turinici, Gabriel
2017-01-01
Dynamic pricing of new products has been extensively studied in monopolistic and oligopolistic markets. But, the optimal control and differential game tools used to investigate the pricing behavior on markets with a finite number of firms are not well-suited to model competitive markets with an infinity of firms. Using a mean-field games approach, this paper examines dynamic pricing policies in competitive markets, where no firm exerts market power. The theoretical setting is based on a diffu...
Naturalness of Nonlinear Scalar Self-Couplings in a Relativistic Mean Field Theory for Neutron Stars
International Nuclear Information System (INIS)
Maekawa, Claudio; Razeira, Moises; Vasconcellos, Cesar A. Z.; Dillig, Manfred; Bodmann, Bardo E. J.
2004-01-01
We investigate the role of naturalness in effective field theory. We focus on dense hadronic matter using a generalized relativistic multi-baryon lagrangian density mean field approach which contains nonlinear self-couplings of the σ, δ meson fields and the fundamental baryon octet. We adjust the model parameters to describe bulk static properties of ordinary nuclear matter. Then, we show that our approach represents a natural modelling of nuclear matter under the extreme conditions of density as the ones found in the interior of neutron stars
Out-of-equilibrium dynamical mean-field equations for the perceptron model
Agoritsas, Elisabeth; Biroli, Giulio; Urbani, Pierfrancesco; Zamponi, Francesco
2018-02-01
Perceptrons are the building blocks of many theoretical approaches to a wide range of complex systems, ranging from neural networks and deep learning machines, to constraint satisfaction problems, glasses and ecosystems. Despite their applicability and importance, a detailed study of their Langevin dynamics has never been performed yet. Here we derive the mean-field dynamical equations that describe the continuous random perceptron in the thermodynamic limit, in a very general setting with arbitrary noise and friction kernels, not necessarily related by equilibrium relations. We derive the equations in two ways: via a dynamical cavity method, and via a path-integral approach in its supersymmetric formulation. The end point of both approaches is the reduction of the dynamics of the system to an effective stochastic process for a representative dynamical variable. Because the perceptron is formally very close to a system of interacting particles in a high dimensional space, the methods we develop here can be transferred to the study of liquid and glasses in high dimensions. Potentially interesting applications are thus the study of the glass transition in active matter, the study of the dynamics around the jamming transition, and the calculation of rheological properties in driven systems.
Kalikmanov, V.I.; De Leeuw, S.W.
2002-01-01
We propose a self-consistent mean-field lattice-gas theory of intercalation compounds based on effective interactions between interstitials in the presence of the host atoms. In addition to short-range screened Coulomb repulsions, usually discussed in the lattice gas models, the present theory takes
Fermion boson metamorphosis in field theory
International Nuclear Information System (INIS)
Ha, Y.K.
1982-01-01
In two-dimensional field theories many features are especially transparent if the Fermi fields are represented by non-local expressions of the Bose fields. Such a procedure is known as boson representation. Bilinear quantities appear in the Lagrangian of a fermion theory transform, however, as simple local expressions of the bosons so that the resulting theory may be written as a theory of bosons. Conversely, a theory of bosons may be transformed into an equivalent theory of fermions. Together they provide a basis for generating many interesting equivalences between theories of different types. In the present work a consistent scheme for constructing a canonical Fermi field in terms of a real scalar field is developed and such a procedure is valid and consistent with the tenets of quantum field theory is verified. A boson formulation offers a unifying theme in understanding the structure of many theories. This is illustrated by the boson formulation of a multifermion theory with chiral and internal symmetries. The nature of dynamical generation of mass when the theory undergoes boson transmutation and the preservation of continuous chiral symmetry in the massive case are examined. The dynamics of the system depends to a great extent on the specific number of fermions and different models of the same system can have very different properties. Many unusual symmetries of the fermion theory, such as hidden symmetry, duality and triality symmetries, are only manifest in the boson formulation. The underlying connections between some models with U(N) internal symmetry and another class of fermion models built with Majorana fermions which have O(2N) internal symmetry are uncovered
International Nuclear Information System (INIS)
Kikkinides, E. S.; Monson, P. A.
2015-01-01
Building on recent developments in dynamic density functional theory, we have developed a version of the theory that includes hydrodynamic interactions. This is achieved by combining the continuity and momentum equations eliminating velocity fields, so the resulting model equation contains only terms related to the fluid density and its time and spatial derivatives. The new model satisfies simultaneously continuity and momentum equations under the assumptions of constant dynamic or kinematic viscosity and small velocities and/or density gradients. We present applications of the theory to spinodal decomposition of subcritical temperatures for one-dimensional and three-dimensional density perturbations for both a van der Waals fluid and for a lattice gas model in mean field theory. In the latter case, the theory provides a hydrodynamic extension to the recently studied dynamic mean field theory. We find that the theory correctly describes the transition from diffusive phase separation at short times to hydrodynamic behaviour at long times
Relativistic mean-field theory for unstable nuclei with non-linear σ and ω terms
International Nuclear Information System (INIS)
Sugahara, Y.; Toki, H.
1994-01-01
We search for a new parameter set for the description of stable as well as unstable nuclei in the wide mass range within the relativistic mean-field theory. We include a non-linear ω self-coupling term in addition to the non-linear σ self-coupling terms, the necessity of which is suggested by the relativistic Brueckner-Hartree-Fock (RBHF) theory of nuclear matter. We find two parameter sets, one of which is for nuclei above Z=20 and the other for nuclei below that. The calculated results agree very well with the existing data for finite nuclei. The parameter set for the heavy nuclei provides the equation of state of nuclear matter similar to the one of the RBHF theory. ((orig.))
International Nuclear Information System (INIS)
Bellonzi, Nicole; Jain, Amber; Subotnik, Joseph E.
2016-01-01
We study several recent mean-field semiclassical dynamics methods, focusing on the ability to recover detailed balance for long time (equilibrium) populations. We focus especially on Miller and Cotton’s [J. Phys. Chem. A 117, 7190 (2013)] suggestion to include both zero point electronic energy and windowing on top of Ehrenfest dynamics. We investigate three regimes: harmonic surfaces with weak electronic coupling, harmonic surfaces with strong electronic coupling, and anharmonic surfaces with weak electronic coupling. In most cases, recent additions to Ehrenfest dynamics are a strong improvement upon mean-field theory. However, for methods that include zero point electronic energy, we show that anharmonic potential energy surfaces often lead to numerical instabilities, as caused by negative populations and forces. We also show that, though the effect of negative forces can appear hidden in harmonic systems, the resulting equilibrium limits do remain dependent on any windowing and zero point energy parameters.
International Nuclear Information System (INIS)
Bogolubov, N.N. Jr.; Prykarpatsky, A.K.; Ufuk Taneri
2008-07-01
The main fundamental principles characterizing the vacuum field structure are formulated and the modeling of the related vacuum medium and charged point particle dynamics by means of de- vised field theoretic tools are analyzed. The Maxwell electrodynamic theory is revisited and newly derived from the suggested vacuum field structure principles and the classical special relativity theory relationship between the energy and the corresponding point particle mass is revisited and newly obtained. The Lorentz force expression with respect to arbitrary non-inertial reference frames is revisited and discussed in detail, and some new interpretations of relations between the special relativity theory and quantum mechanics are presented. The famous quantum-mechanical Schroedinger type equations for a relativistic point particle in the external potential and magnetic fields within the quasiclassical approximation as the Planck constant (h/2π) → 0 and the light velocity c → ∞ are obtained. (author)
Nonequilibrium quantum field theories
International Nuclear Information System (INIS)
Niemi, A.J.
1988-01-01
Combining the Feynman-Vernon influence functional formalism with the real-time formulation of finite-temperature quantum field theories we present a general approach to relativistic quantum field theories out of thermal equilibrium. We clarify the physical meaning of the additional fields encountered in the real-time formulation of quantum statistics and outline diagrammatic rules for perturbative nonequilibrium computations. We derive a generalization of Boltzmann's equation which gives a complete characterization of relativistic nonequilibrium phenomena. (orig.)
Mean-field modeling approach for understanding epidemic dynamics in interconnected networks
International Nuclear Information System (INIS)
Zhu, Guanghu; Fu, Xinchu; Tang, Qinggan; Li, Kezan
2015-01-01
Modern systems (e.g., social, communicant, biological networks) are increasingly interconnected each other formed as ‘networks of networks’. Such complex systems usually possess inconsistent topologies and permit agents distributed in different subnetworks to interact directly/indirectly. Corresponding dynamics phenomena, such as the transmission of information, power, computer virus and disease, would exhibit complicated and heterogeneous tempo-spatial patterns. In this paper, we focus on the scenario of epidemic spreading in interconnected networks. We intend to provide a typical mean-field modeling framework to describe the time-evolution dynamics, and offer some mathematical skills to study the spreading threshold and the global stability of the model. Integrating the research with numerical analysis, we are able to quantify the effects of networks structure and epidemiology parameters on the transmission dynamics. Interestingly, we find that the diffusion transition in the whole network is governed by a unique threshold, which mainly depends on the most heterogenous connection patterns of network substructures. Further, the dynamics is highly sensitive to the critical values of cross infectivity with switchable phases.
Nonasymptotic mean-field games
Tembine, Hamidou
2014-01-01
a mean-field framework that is suitable not only for large systems but also for a small world with few number of entities. The applicability of the proposed framework is illustrated through various examples including dynamic auction with asymmetric
Nonasymptotic mean-field games
Tembine, Hamidou
2014-01-01
propose a mean-field framework that is suitable not only for large systems but also for a small world with few number of entities. The applicability of the proposed framework is illustrated through a dynamic auction with asymmetric valuation distributions.
International Nuclear Information System (INIS)
Deviren, Bayram; Keskin, Mustafa
2012-01-01
The dynamical aspects of a cylindrical Ising nanotube in the presence of a time-varying magnetic field are investigated within the effective-field theory with correlations and Glauber-type stochastic approach. Temperature dependence of the dynamic magnetizations, dynamic total magnetization, hysteresis loop areas and correlations are investigated in order to characterize the nature of dynamic transitions as well as to obtain the dynamic phase transition temperatures and compensation behaviors. Some characteristic phenomena are found depending on the ratio of the physical parameters in the surface shell and core, i.e., five different types of compensation behaviors in the Néel classification nomenclature exist in the system. -- Highlights: ► Kinetic cylindrical Ising nanotube is investigated using the effective-field theory. ► The dynamic magnetizations, hysteresis loop areas and correlations are calculated. ► The effects of the exchange interactions have been studied in detail. ► Five different types of compensation behaviors have been found. ► Some characteristic phenomena are found depending on ratio of physical parameters.
Energy Technology Data Exchange (ETDEWEB)
Deviren, Bayram, E-mail: bayram.deviren@nevsehir.edu.tr [Department of Physics, Nevsehir University, 50300 Nevsehir (Turkey); Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)
2012-02-20
The dynamical aspects of a cylindrical Ising nanotube in the presence of a time-varying magnetic field are investigated within the effective-field theory with correlations and Glauber-type stochastic approach. Temperature dependence of the dynamic magnetizations, dynamic total magnetization, hysteresis loop areas and correlations are investigated in order to characterize the nature of dynamic transitions as well as to obtain the dynamic phase transition temperatures and compensation behaviors. Some characteristic phenomena are found depending on the ratio of the physical parameters in the surface shell and core, i.e., five different types of compensation behaviors in the Néel classification nomenclature exist in the system. -- Highlights: ► Kinetic cylindrical Ising nanotube is investigated using the effective-field theory. ► The dynamic magnetizations, hysteresis loop areas and correlations are calculated. ► The effects of the exchange interactions have been studied in detail. ► Five different types of compensation behaviors have been found. ► Some characteristic phenomena are found depending on ratio of physical parameters.
Perturbative algebraic quantum field theory at finite temperature
Energy Technology Data Exchange (ETDEWEB)
Lindner, Falk
2013-08-15
We present the algebraic approach to perturbative quantum field theory for the real scalar field in Minkowski spacetime. In this work we put a special emphasis on the inherent state-independence of the framework and provide a detailed analysis of the state space. The dynamics of the interacting system is constructed in a novel way by virtue of the time-slice axiom in causal perturbation theory. This method sheds new light in the connection between quantum statistical dynamics and perturbative quantum field theory. In particular it allows the explicit construction of the KMS and vacuum state for the interacting, massive Klein-Gordon field which implies the absence of infrared divergences of the interacting theory at finite temperature, in particular for the interacting Wightman and time-ordered functions.
Perturbative algebraic quantum field theory at finite temperature
International Nuclear Information System (INIS)
Lindner, Falk
2013-08-01
We present the algebraic approach to perturbative quantum field theory for the real scalar field in Minkowski spacetime. In this work we put a special emphasis on the inherent state-independence of the framework and provide a detailed analysis of the state space. The dynamics of the interacting system is constructed in a novel way by virtue of the time-slice axiom in causal perturbation theory. This method sheds new light in the connection between quantum statistical dynamics and perturbative quantum field theory. In particular it allows the explicit construction of the KMS and vacuum state for the interacting, massive Klein-Gordon field which implies the absence of infrared divergences of the interacting theory at finite temperature, in particular for the interacting Wightman and time-ordered functions.
Teruo, KISHIMOTO; Tetsuo, KAMMURI; Institute of Physics, University of Tsukuba; Department of Physics, Osaka University
1990-01-01
With the Dynamical Nuclear Field Theory (DNFT) in the Tamm-Dancoff representation we examine higher order corrections in the vibrational mode of a spherical nuclear system. Due to the effects of bubble diagrams, the perturbation expansion in terms of the unrenormalized coupling strength and boson energy fails at full self-consistency. On the other hand, it becomes applicable in the form of linked-cluster expansion when we use thses constants renormalized by the effect of bubble diagrams, in t...
Ni, Fang; Nakatsukasa, Takashi
2018-04-01
To describe quantal collective phenomena, it is useful to requantize the time-dependent mean-field dynamics. We study the time-dependent Hartree-Fock-Bogoliubov (TDHFB) theory for the two-level pairing Hamiltonian, and compare results of different quantization methods. The one constructing microscopic wave functions, using the TDHFB trajectories fulfilling the Einstein-Brillouin-Keller quantization condition, turns out to be the most accurate. The method is based on the stationary-phase approximation to the path integral. We also examine the performance of the collective model which assumes that the pairing gap parameter is the collective coordinate. The applicability of the collective model is limited for the nuclear pairing with a small number of single-particle levels, because the pairing gap parameter represents only a half of the pairing collective space.
A self-consistent mean field theory for diffusion in alloys
International Nuclear Information System (INIS)
Nastar, M.; Barbe, V.
2007-01-01
Starting from a microscopic model of the atomic transport via vacancies and interstitials in alloys, a self-consistent mean field (SCMF) kinetic theory yields the phenomenological coefficients L ij . In this theory, kinetic correlations are accounted for through a set of effective interactions within a non-equilibrium distribution function of the system. The introduction of a master equation describing the evolution with time of the distribution function and its moments leads to general self-consistent kinetic equations. The L ij of a face centered cubic alloy are calculated using the kinetic equations of Nastar (M. Nastar, Philos. Mag., 2005, 85, 3767, ref. 1) derived from a microscopic broken bond model of the vacancy jump frequency. A first approximation leads to an analytical expression of the L ij and a second approximation to a better agreement with the Monte Carlo simulations. A change of sign of the L ij is studied as a function of the microscopic parameters of the jump frequency. The L ij of a cubic centered alloy obtained for the complex diffusion mechanism of the dumbbell configuration of the interstitial are used to study the effect of an on-site rotation of the dumbbell on the transport. (authors)
Hou, Saing Paul; Haddad, Wassim M; Meskin, Nader; Bailey, James M
2015-12-01
With the advances in biochemistry, molecular biology, and neurochemistry there has been impressive progress in understanding the molecular properties of anesthetic agents. However, there has been little focus on how the molecular properties of anesthetic agents lead to the observed macroscopic property that defines the anesthetic state, that is, lack of responsiveness to noxious stimuli. In this paper, we use dynamical system theory to develop a mechanistic mean field model for neural activity to study the abrupt transition from consciousness to unconsciousness as the concentration of the anesthetic agent increases. The proposed synaptic drive firing-rate model predicts the conscious-unconscious transition as the applied anesthetic concentration increases, where excitatory neural activity is characterized by a Poincaré-Andronov-Hopf bifurcation with the awake state transitioning to a stable limit cycle and then subsequently to an asymptotically stable unconscious equilibrium state. Furthermore, we address the more general question of synchronization and partial state equipartitioning of neural activity without mean field assumptions. This is done by focusing on a postulated subset of inhibitory neurons that are not themselves connected to other inhibitory neurons. Finally, several numerical experiments are presented to illustrate the different aspects of the proposed theory.
A dynamic mean-field glass model with reversible mode coupling and a trivial Hamiltonian
International Nuclear Information System (INIS)
Kawasaki, Kyozi; Kim, Bongsoo
2002-01-01
Often the current mode coupling theory (MCT) of glass transitions is compared with mean field theories. We explore this possible correspondence. After showing a simple-minded derivation of MCT with some difficulties we give a concise account of our toy model developed to gain more insight into MCT. We then reduce this toy model by adiabatically eliminating rapidly varying velocity-like variables to obtain a Fokker-Planck equation for the slowly varying density-like variables where the diffusion matrix can be singular. This gives room for non-ergodic stationary solutions of the above equation. (author)
The conceptual framework of quantum field theory
Duncan, Anthony
2012-01-01
The book attempts to provide an introduction to quantum field theory emphasizing conceptual issues frequently neglected in more "utilitarian" treatments of the subject. The book is divided into four parts, entitled respectively "Origins", "Dynamics", "Symmetries", and "Scales". The emphasis is conceptual - the aim is to build the theory up systematically from some clearly stated foundational concepts - and therefore to a large extent anti-historical, but two historical Chapters ("Origins") are included to situate quantum field theory in the larger context of modern physical theories. The three remaining sections of the book follow a step by step reconstruction of this framework beginning with just a few basic assumptions: relativistic invariance, the basic principles of quantum mechanics, and the prohibition of physical action at a distance embodied in the clustering principle. The "Dynamics" section of the book lays out the basic structure of quantum field theory arising from the sequential insertion of quan...
Dynamics of classical and quantum fields an introduction
Setlur, Girish S
2014-01-01
Dynamics of Classical and Quantum Fields: An Introduction focuses on dynamical fields in non-relativistic physics. Written by a physicist for physicists, the book is designed to help readers develop analytical skills related to classical and quantum fields at the non-relativistic level, and think about the concepts and theory through numerous problems. In-depth yet accessible, the book presents new and conventional topics in a self-contained manner that beginners would find useful. A partial list of topics covered includes: Geometrical meaning of Legendre transformation in classical mechanics Dynamical symmetries in the context of Noether's theorem The derivation of the stress energy tensor of the electromagnetic field, the expression for strain energy in elastic bodies, and the Navier Stokes equation Concepts of right and left movers in case of a Fermi gas explained Functional integration is interpreted as a limit of a sequence of ordinary integrations Path integrals for one and two quantum particles and for...
Energy Technology Data Exchange (ETDEWEB)
Ansel' m, A A; D' yakonov, D I [AN SSSR, Leningrad. Inst. Yadernoj Fiziki
1975-01-01
The mechanism of dynamic spontaneous breaking of the Coleman-Weinberg gauge invariance is discussed in which scalar fields assume nonzero mean values owing to quantum effects in higher orders of the perturbation theory. Group renormalization methods are used to study scalar electrodynamics and gauge theories similar to that of Yang and Mills; for these gauge theories it is established that by choosing proper constants it is possible to combine the acquisition of a mass by particles, owing to a dynamic violation of symmetry, with the asymptotic freedom of the theory. The symmetry violation is found to be closely related to infrared poles observed in effective charge for asymptotically free theories. The emerging masses of particles automatically cover these poles. It is proved that physical results due to symmetry violation do not depend, at least in the first non-trivial order of the perturbation theory, on the initial gauging of vector fields.
International Nuclear Information System (INIS)
El-Nabulsi, Ahmad Rami
2009-01-01
Multidimensional fractional actionlike variational problem with time-dependent dynamical fractional exponents is constructed. Fractional Euler-Lagrange equations are derived and discussed in some details. The results obtained are used to explore some novel aspects of fractional quantum field theory where many interesting consequences are revealed, in particular the complexification of quantum field theory, in particular Dirac operators and the novel notion of 'mass without mass'.
Mean-field theory of anyons near Bose statistics
International Nuclear Information System (INIS)
McCabe, J.; MacKenzie, R.
1992-01-01
The validity of a mean-field approximation for a boson-based free anyon gas near Bose statistics is shown. The magnetic properties of the system is discussed in the approximation that the statistical magnetic field is uniform. It is proved that the anyon gas does not exhibit a Meissner effect in the domain of validity the approximation. (K.A.) 7 refs
Correlated effective field theory in transition metal compounds
International Nuclear Information System (INIS)
Mukhopadhyay, Subhasis; Chatterjee, Ibha
2004-01-01
Mean field theory is good enough to study the physical properties at higher temperatures and in higher dimensions. It explains the critical phenomena in a restricted sense. Near the critical temperatures, when fluctuations become important, it may not give the correct results. Similarly in low dimensions, the correlations become important and the mean field theory seems to be inadequate to explain the physical phenomena. At low-temperatures too, the quantum correlations become important and these effects are to be treated in an appropriate way. In 1974, Prof. M.E. Lines of Bell Laboratories, developed a theory which goes beyond the mean field theory and is known as the correlated effective field (CEF) theory. It takes into account the fluctuations in a semiempirical way. Lines and his collaborators used this theory to explain the short-range correlations and their anisotropy in the paramagnetic phase. Later Suzuki et al., Chatterjee and Desai, Mukhopadhyay and Chatterjee applied this theory to the magnetically ordered phase and a tremendous success of the theory has been found in real systems. The success of the CEF theory is discussed in this review. In order to highlight the success of this theory, earlier effective field theories and their improvements over mean field theories e.g., Bethe-Peierls-Weiss method, reaction field approximation, etc., are also discussed in this review for completeness. The beauty of the CEF theory is that it is mean field-like, but captures the essential physics of real systems to a great extent. However, this is a weak correlated theory and as a result is inappropriate for the metallic phase when strong correlations become important. In recent times, transition metal oxides become important due to the discovery of the high-temperature superconductivity and the colossal magnetoresistance phenomena. These oxides seem to be Mott insulators and undergo an insulator to metal transition by applying magnetic field, pressure and by changing
Developing Dynamic Field Theory Architectures for Embodied Cognitive Systems with cedar.
Lomp, Oliver; Richter, Mathis; Zibner, Stephan K U; Schöner, Gregor
2016-01-01
Embodied artificial cognitive systems, such as autonomous robots or intelligent observers, connect cognitive processes to sensory and effector systems in real time. Prime candidates for such embodied intelligence are neurally inspired architectures. While components such as forward neural networks are well established, designing pervasively autonomous neural architectures remains a challenge. This includes the problem of tuning the parameters of such architectures so that they deliver specified functionality under variable environmental conditions and retain these functions as the architectures are expanded. The scaling and autonomy problems are solved, in part, by dynamic field theory (DFT), a theoretical framework for the neural grounding of sensorimotor and cognitive processes. In this paper, we address how to efficiently build DFT architectures that control embodied agents and how to tune their parameters so that the desired cognitive functions emerge while such agents are situated in real environments. In DFT architectures, dynamic neural fields or nodes are assigned dynamic regimes, that is, attractor states and their instabilities, from which cognitive function emerges. Tuning thus amounts to determining values of the dynamic parameters for which the components of a DFT architecture are in the specified dynamic regime under the appropriate environmental conditions. The process of tuning is facilitated by the software framework cedar , which provides a graphical interface to build and execute DFT architectures. It enables to change dynamic parameters online and visualize the activation states of any component while the agent is receiving sensory inputs in real time. Using a simple example, we take the reader through the workflow of conceiving of DFT architectures, implementing them on embodied agents, tuning their parameters, and assessing performance while the system is coupled to real sensory inputs.
Introduction to algebraic quantum field theory
International Nuclear Information System (INIS)
Horuzhy, S.S.
1990-01-01
This volume presents a systematic introduction to the algebraic approach to quantum field theory. The structure of the contents corresponds to the way the subject has advanced. It is shown how the algebraic approach has developed from the purely axiomatic theory of observables via superselection rules into the dynamical formalism of fields and observables. Chapter one discusses axioms and their consequences -many of which are now classical theorems- and deals, in general, with the axiomatic theory of local observable algebras. The absence of field concepts makes this theory incomplete and, in chapter two, superselection rules are shown to be the key to the reconstruction of fields from observables. Chapter three deals with the algebras of Wightman fields, first unbounded operator algebras, then Von Neumann field algebras (with a special section on wedge region algebras) and finally local algebras of free and generalised free fields. (author). 447 refs.; 4 figs
[Studies in quantum field theory
International Nuclear Information System (INIS)
1990-01-01
During the period 4/1/89--3/31/90 the theoretical physics group supported by Department of Energy Contract No. AC02-78ER04915.A015 and consisting of Professors Bender and Shrauner, Associate Professor Papanicolaou, Assistant Professor Ogilvie, and Senior Research Associate Visser has made progress in many areas of theoretical and mathematical physics. Professors Bender and Shrauner, Associate Professor Papanicolaou, Assistant Professor Ogilvie, and Research Associate Visser are currently conducting research in many areas of high energy theoretical and mathematical physics. These areas include: strong-coupling approximation; classical solutions of non-Abelian gauge theories; mean-field approximation in quantum field theory; path integral and coherent state representations in quantum field theory; lattice gauge calculations; the nature of perturbation theory in large order; quark condensation in QCD; chiral symmetry breaking; the 1/N expansion in quantum field theory; effective potential and action in quantum field theories, including OCD; studies of the early universe and inflation, and quantum gravity
Using field theory in hadron physics
International Nuclear Information System (INIS)
Abarbanel, H.D.I.
1979-01-01
The author gives an introductory review about the development of applications of quantum field theory in hadron physics. Especially he discusses the renormalization group and the use of this group for the selection of a field theory. In this framework he compares quantum chromodynamics with quantum electrodynamics. Finally he discusses dynamic mass generation and quark confinement in the framework of quantum chromodynamics. (HSI) [de
Brane dynamics and four-dimensional quantum field theory
International Nuclear Information System (INIS)
Lambert, N.D.; West, P.C.
1999-01-01
We review the relation between the classical dynamics of the M-fivebrane and the quantum low energy effective action for N = 2 Yang-Mills theories. We also discuss some outstanding issues in this correspondence. (author)
International Nuclear Information System (INIS)
Vollendorf, F.
1976-01-01
A theory is developed in which the gravitational as well as the electromagnetic field is described in a purely geometrical manner. In the case of a static central symmetric field Newton's law of gravitation and Schwarzschild's line element are derived by means of an action principle. The same principle leads to Fermat's law which defines the world lines of photons. (orig.) [de
Self-consistent field theory based molecular dynamics with linear system-size scaling
Energy Technology Data Exchange (ETDEWEB)
Richters, Dorothee [Institute of Mathematics and Center for Computational Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 9, D-55128 Mainz (Germany); Kühne, Thomas D., E-mail: kuehne@uni-mainz.de [Institute of Physical Chemistry and Center for Computational Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 7, D-55128 Mainz (Germany); Technical and Macromolecular Chemistry, University of Paderborn, Warburger Str. 100, D-33098 Paderborn (Germany)
2014-04-07
We present an improved field-theoretic approach to the grand-canonical potential suitable for linear scaling molecular dynamics simulations using forces from self-consistent electronic structure calculations. It is based on an exact decomposition of the grand canonical potential for independent fermions and does neither rely on the ability to localize the orbitals nor that the Hamilton operator is well-conditioned. Hence, this scheme enables highly accurate all-electron linear scaling calculations even for metallic systems. The inherent energy drift of Born-Oppenheimer molecular dynamics simulations, arising from an incomplete convergence of the self-consistent field cycle, is circumvented by means of a properly modified Langevin equation. The predictive power of the present approach is illustrated using the example of liquid methane under extreme conditions.
Higgs-Yukawa model with higher dimension operators via extended mean field theory
Akerlund, Oscar
2016-01-01
Using Extended Mean Field Theory (EMFT) on the lattice, we study properties of the Higgs-Yukawa model as an approximation of the Standard Model Higgs sector, and the effect of higher dimension operators. We note that the discussion of vacuum stability is completely modified in the presence of a $\\phi^6$ term, and that the Higgs mass no longer appears fine tuned. We also study the finite temperature transition. Without higher dimension operators the transition is found to be second order (crossover with gauge fields) for the experimental value of the Higgs mass $M_h=125$ GeV. By taking a $\\phi^6$ interaction in the Higgs potential as a proxy for a UV completion of the Standard Model, the transition becomes stronger and turns first order if the scale of new physics, i.e. the mass of the lightest mediator particle, is around $1.5$ TeV. This implies that electroweak baryogenesis may be viable in models which introduce new particles around that scale.
Contraint's theory and relativistic dynamics
International Nuclear Information System (INIS)
Longhi, G.; Lusanna, L.
1987-01-01
The purpose of this Workshop was to examine the current situation of relativistic dynamics. In particular, Dirac-Bergmann's theory of constraints, which lies at the heart of gauge theories, general relativity, relativistic mechanics and string theories, was chosen as the unifying theoretical framework best suited to investigate such a field. The papers discussed were on general relativity; relativistic mechanics; particle physics and mathematical physics. Also discussed were the problems of classical and quantum level, namely the identification of the classical observables of constrained systems, the equivalence of the nonequivalence of the various ways to quantize such systems; the problem of the anomalies; the best geometrical approach to the theory of constraints; the possibility of unifying all the treatments of relativistic mechanics. This book compiles the papers presented at proceedings of relativistic dynamics and constraints theory
Developing dynamic field theory architectures for embodied cognitive systems with cedar
Directory of Open Access Journals (Sweden)
Oliver Lomp
2016-11-01
Full Text Available Embodied artificial cognitive systems such as autonomous robots or intelligent observers connect cognitive processes to sensory and effector systems in real time. Prime candidates for such embodied intelligence are neurally inspired architectures. While components such as forward neural networks are well established, designing pervasively autonomous neural architectures remains a challenge. This includes the problem of tuning the parameters of such architectures so that they deliver specified functionality under variable environmental conditions and retain these functions as the architectures are expanded. The scaling and autonomy problems are solved, in part, by dynamic field theory (DFT, a theoretical framework for the neural grounding of sensorimotor and cognitive processes. In this paper, we address how to efficiently build DFT architectures that control embodied agents and how to tune their parameters so that the desired cognitive functions emerge while such agents are situated in real environments. In DFT architectures, dynamic neural fields or nodes are assigned dynamic regimes, that is, attractor states and their instabilities, from which cognitive function emerges. Tuning thus amounts to determining values of the dynamic parameters for which the components of a DFT architecture are in the specified dynamic regime under the appropriate environmental conditions. The process of tuning is facilitated by the software framework cedar, which provides a graphical interface to build and execute DFT architectures. It enables to change dynamic parameters online and visualize the activation states of any component while the agent is receiving sensory inputs in real-time. Using a simple example, we take the reader through the workflow of conceiving of DFT architectures, implementing them on embodied agents, tuning their parameters, and assessing performance while the system is coupled to real sensory inputs.
Dynamics of Gauge Fields at High Temperature
Nauta, B.J.
2000-01-01
An effective description of dynamical Bose fields is provided by the classical (high-temperature) limit of thermal field theory. The main subject of this thesis is to improve the ensuing classical field theory, that is, to include the dominant quantum corrections and to add counter terms for the
Dynamical theory of subconstituents based on ternary algebras
International Nuclear Information System (INIS)
Bars, I.; Guenaydin, M.
1980-01-01
We propose a dynamical theory of possible fundamental constituents of matter. Our scheme is based on (super) ternary algebras which are building blocks of Lie (super) algebras. Elementary fields, called ''ternons,'' are associated with the elements of a (super) ternary algebra. Effective gauge bosons, ''quarks,'' and ''leptons'' are constructed as composite fields from ternons. We propose two- and four-dimensional (super) ternon theories whose structures are closely related to CP/sub N/ and Yang-Mills theories and their supersymmetric extensions. We conjecture that at large distances (low energies) the ternon theories dynamically produce effective gauge theories and thus may be capable of explaining the present particle-physics phenomenology. Such a scenario is valid in two dimensions
International Nuclear Information System (INIS)
Aref'eva, I.Ya.; Slavnov, A.A.
1981-01-01
This lecture is devoted to the discussion of gauge field theory permitting from the single point of view to describe all the interactions of elementary particles. The authors used electrodynamics and the Einstein theory of gravity to search for a renormgroup fixing a form of Lagrangian. It is shown that the gauge invariance added with the requirement of the minimum number of arbitraries in Lagrangian fixes unambigously the form of the electromagnetic interaction. The generalization of this construction for more complicate charge spaces results in the Yang-Mills theory. The interaction form in this theory is fixed with the relativity principle in the charge space. A quantum scheme of the Yang-Mills fields through the explicit separation of true dynamic variables is suggested. A comfortable relativistically invariant diagram technique for the calculation of a producing potential for the Green functions is described. The Ward generalized identities have been obtained and a procedure of the elimination of ultraviolet and infrared divergencies has been accomplished. Within the framework of QCD (quantum-chromodynamic) the phenomenon of the asymptotic freedom being the most successful prediction of the gauge theory of strong interactions was described. Working methods with QCD outside the framework of the perturbation theory have been described from a coupling constant. QCD is represented as a single theory possessing both the asymptotical freedom and the freedom retaining quarks [ru
High energy approximations in quantum field theory
International Nuclear Information System (INIS)
Orzalesi, C.A.
1975-01-01
New theoretical methods in hadron physics based on a high-energy perturbation theory are discussed. The approximated solutions to quantum field theory obtained by this method appear to be sufficiently simple and rich in structure to encourage hadron dynamics studies. Operator eikonal form for field - theoretic Green's functions is derived and discussion is held on how the eikonal perturbation theory is to be renormalized. This method is extended to massive quantum electrodynamics of scalar charged bosons. Possible developments and applications of this theory are given [pt
An ab initio approach to free-energy reconstruction using logarithmic mean force dynamics
International Nuclear Information System (INIS)
Nakamura, Makoto; Obata, Masao; Morishita, Tetsuya; Oda, Tatsuki
2014-01-01
We present an ab initio approach for evaluating a free energy profile along a reaction coordinate by combining logarithmic mean force dynamics (LogMFD) and first-principles molecular dynamics. The mean force, which is the derivative of the free energy with respect to the reaction coordinate, is estimated using density functional theory (DFT) in the present approach, which is expected to provide an accurate free energy profile along the reaction coordinate. We apply this new method, first-principles LogMFD (FP-LogMFD), to a glycine dipeptide molecule and reconstruct one- and two-dimensional free energy profiles in the framework of DFT. The resultant free energy profile is compared with that obtained by the thermodynamic integration method and by the previous LogMFD calculation using an empirical force-field, showing that FP-LogMFD is a promising method to calculate free energy without empirical force-fields
Critical dynamics a field theory approach to equilibrium and non-equilibrium scaling behavior
Täuber, Uwe C
2014-01-01
Introducing a unified framework for describing and understanding complex interacting systems common in physics, chemistry, biology, ecology, and the social sciences, this comprehensive overview of dynamic critical phenomena covers the description of systems at thermal equilibrium, quantum systems, and non-equilibrium systems. Powerful mathematical techniques for dealing with complex dynamic systems are carefully introduced, including field-theoretic tools and the perturbative dynamical renormalization group approach, rapidly building up a mathematical toolbox of relevant skills. Heuristic and qualitative arguments outlining the essential theory behind each type of system are introduced at the start of each chapter, alongside real-world numerical and experimental data, firmly linking new mathematical techniques to their practical applications. Each chapter is supported by carefully tailored problems for solution, and comprehensive suggestions for further reading, making this an excellent introduction to critic...
Quantum dynamics manipulation using optimal control theory in the presence of laser field noise
Kumar, Praveen; Malinovskaya, Svetlana A.
2010-08-01
We discuss recent advances in optimal control theory (OCT) related to the investigation of the impact of control field noise on controllability of quantum dynamics. Two numerical methods, the gradient method and the iteration method, are paid particular attention. We analyze the problem of designing noisy control fields to maximize the vibrational transition probability in diatomic quantum systems, e.g. the HF and OH molecules. White noise is used as an additive random variable in the amplitude of the control field. It is demonstrated that the convergence is faster in the presence of noise and population transfer is increased by 0.04% for small values of noise compared to the field amplitude.
The Price Equation, Gradient Dynamics, and Continuous Trait Game Theory.
Lehtonen, Jussi
2018-01-01
A recent article convincingly nominated the Price equation as the fundamental theorem of evolution and used it as a foundation to derive several other theorems. A major section of evolutionary theory that was not addressed is that of game theory and gradient dynamics of continuous traits with frequency-dependent fitness. Deriving fundamental results in these fields under the unifying framework of the Price equation illuminates similarities and differences between approaches and allows a simple, unified view of game-theoretical and dynamic concepts. Using Taylor polynomials and the Price equation, I derive a dynamic measure of evolutionary change, a condition for singular points, the convergence stability criterion, and an alternative interpretation of evolutionary stability. Furthermore, by applying the Price equation to a multivariable Taylor polynomial, the direct fitness approach to kin selection emerges. Finally, I compare these results to the mean gradient equation of quantitative genetics and the canonical equation of adaptive dynamics.
A mean-field theory on the differential capacitance of asymmetric ionic liquid electrolytes.
Han, Yining; Huang, Shanghui; Yan, Tianying
2014-07-16
The size of ions significantly influences the electric double layer structure of room temperature ionic liquid (IL) electrolytes and their differential capacitance (Cd). In this study, we extended the mean-field theory (MFT) developed independently by Kornyshev (2007J. Phys. Chem. B 111 5545-57) and Kilic, Bazant, and Ajdari (2007 Phys. Rev. E 75 021502) (the KKBA MFT) to take into account the asymmetric 1:1 IL electrolytes by introducing an additional parameter ξ for the anion/cation volume ratio, besides the ionic compressibility γ in the KKBA MFT. The MFT of asymmetric ions becomes KKBA MFT upon ξ = 1, and further reduces to Gouy-Chapman theory in the γ → 0 limit. The result of the extended MFT demonstrates that the asymmetric ILs give rise to an asymmetric Cd, with the higher peak in Cd occurring at positive polarization for the smaller anionic size. At high potential, Cd decays asymptotically toward KKBA MFT characterized by γ for the negative polarization, and characterized by ξγ for the positive polarization, with inverse-square-root behavior. At low potential, around the potential of zero charge, the asymmetric ions cause a higher Cd, which exceeds that of Gouy-Chapman theory.
Nonasymptotic mean-field games
Tembine, Hamidou
2014-12-01
Mean-field games have been studied under the assumption of very large number of players. For such large systems, the basic idea consists to approximate large games by a stylized game model with a continuum of players. The approach has been shown to be useful in some applications. However, the stylized game model with continuum of decision-makers is rarely observed in practice and the approximation proposed in the asymptotic regime is meaningless for networked systems with few entities. In this paper we propose a mean-field framework that is suitable not only for large systems but also for a small world with few number of entities. The applicability of the proposed framework is illustrated through a dynamic auction with asymmetric valuation distributions.
Nonasymptotic mean-field games
Tembine, Hamidou
2014-12-01
Mean-field games have been studied under the assumption of very large number of players. For such large systems, the basic idea consists of approximating large games by a stylized game model with a continuum of players. The approach has been shown to be useful in some applications. However, the stylized game model with continuum of decision-makers is rarely observed in practice and the approximation proposed in the asymptotic regime is meaningless for networks with few entities. In this paper, we propose a mean-field framework that is suitable not only for large systems but also for a small world with few number of entities. The applicability of the proposed framework is illustrated through various examples including dynamic auction with asymmetric valuation distributions, and spiteful bidders.
Relationship between Feshbach's and Green's function theories of the nucleon-nucleus mean field
International Nuclear Information System (INIS)
Capuzzi, F.; Mahaux, C.
1995-01-01
We clarify the relationship and difference between theories of the optical-model potential which had previously been developed in the framework of Feshbach's projection operator approach to nuclear reactions and of Green's function theory, respectively. For definiteness, we consider the nucleon-nucleus system but all results can readily be adapted to the atomic case. The effects of antisymmetrization are properly taken into account. It is shown that one can develop along closely parallel lines the theories of open-quotes holeclose quotes and open-quotes particleclose quotes mean fields. The open-quotes holeclose quotes one-body Hamiltonians describe the single-particle properties of the system formed when one nucleon is taken away from the target ground state, for instance in knockout of pickup processes. The particle one-body Hamiltonians are associated with the system formed when one nucleon is elastically scattered from the ground state, or is added to it by means of stripping reactions. An infinite number of particle, as well as of hole, Hamiltonians are constructed which all yield exactly the same single-particle wave functions. Many open-quotes equivalentclose quotes one-body Hamiltonians can coexist because these operators have a complicated structure: they are nonlocal, complex, and energy-dependent. They do not have the same analytic properties in the complex energy plane. Their real and imaginary parts fulfill dispersion relations which may be different. It is shown that hole and particle Hamiltonians can also be constructed by decomposing any vector of the Hilbert space into two parts which are not orthogonal to one another, in contrast to Feshbach's original theory; one interest of this procedure is that the construction and properties of the corresponding hole Hamiltonian can be justified in a mathematically rigorous way. We exhibit the relationship between the hole and particle Hamiltonians and the open-quotes mass operator.close quotes
Real-Time Dynamics in U(1 Lattice Gauge Theories with Tensor Networks
Directory of Open Access Journals (Sweden)
T. Pichler
2016-03-01
Full Text Available Tensor network algorithms provide a suitable route for tackling real-time-dependent problems in lattice gauge theories, enabling the investigation of out-of-equilibrium dynamics. We analyze a U(1 lattice gauge theory in (1+1 dimensions in the presence of dynamical matter for different mass and electric-field couplings, a theory akin to quantum electrodynamics in one dimension, which displays string breaking: The confining string between charges can spontaneously break during quench experiments, giving rise to charge-anticharge pairs according to the Schwinger mechanism. We study the real-time spreading of excitations in the system by means of electric-field and particle fluctuations. We determine a dynamical state diagram for string breaking and quantitatively evaluate the time scales for mass production. We also show that the time evolution of the quantum correlations can be detected via bipartite von Neumann entropies, thus demonstrating that the Schwinger mechanism is tightly linked to entanglement spreading. To present a variety of possible applications of this simulation platform, we show how one could follow the real-time scattering processes between mesons and the creation of entanglement during scattering processes. Finally, we test the quality of quantum simulations of these dynamics, quantifying the role of possible imperfections in cold atoms, trapped ions, and superconducting circuit systems. Our results demonstrate how entanglement properties can be used to deepen our understanding of basic phenomena in the real-time dynamics of gauge theories such as string breaking and collisions.
Stability in higher-derivative matter fields theories
International Nuclear Information System (INIS)
Tretyakov, Petr V.
2016-01-01
We discuss possible instabilities in higher-derivative matter field theories. These theories have two free parameters β 1 and β 4 . By using a dynamical system approach we explicitly demonstrate that for the stability of Minkowski space in an expanding universe we need the condition β 4 < 0. By using the quantum field theory approach we also find an additional restriction for the parameters, β 1 > -(1)/(3)β 4 , which is needed to avoid a tachyon-like instability. (orig.)
Maurits, NM; Zvelindovsky, AV; Fraaije, JGEM
1998-01-01
In the present paper, we extend the dynamic mean-field density functional method which describes microphase separation phenomena in polymer liquids, to account for viscoelastic effects. The effect of simple steady shear on polymer orientation and elongation is taken into account by adapting the
Relativistic gravitation theory for the modified Newtonian dynamics paradigm
International Nuclear Information System (INIS)
Bekenstein, Jacob D.
2004-01-01
The modified Newtonian dynamics (MOND) paradigm of Milgrom can boast of a number of successful predictions regarding galactic dynamics; these are made without the assumption that dark matter plays a significant role. MOND requires gravitation to depart from Newtonian theory in the extragalactic regime where dynamical accelerations are small. So far relativistic gravitation theories proposed to underpin MOND have either clashed with the post-Newtonian tests of general relativity, or failed to provide significant gravitational lensing, or violated hallowed principles by exhibiting superluminal scalar waves or an a priori vector field. We develop a relativistic MOND inspired theory which resolves these problems. In it gravitation is mediated by metric, a scalar, and a 4-vector field, all three dynamical. For a simple choice of its free function, the theory has a Newtonian limit for nonrelativistic dynamics with significant acceleration, but a MOND limit when accelerations are small. We calculate the β and γ parameterized post-Newtonian coefficients showing them to agree with solar system measurements. The gravitational light deflection by nonrelativistic systems is governed by the same potential responsible for dynamics of particles. To the extent that MOND successfully describes dynamics of a system, the new theory's predictions for lensing by that system's visible matter will agree as well with observations as general relativity's predictions made with a dynamically successful dark halo model. Cosmological models based on the theory are quite similar to those based on general relativity; they predict slow evolution of the scalar field. For a range of initial conditions, this last result makes it easy to rule out superluminal propagation of metric, scalar, and vector waves
Fewster, Christopher J
2015-08-06
The framework of locally covariant quantum field theory is discussed, motivated in part using 'ignorance principles'. It is shown how theories can be represented by suitable functors, so that physical equivalence of theories may be expressed via natural isomorphisms between the corresponding functors. The inhomogeneous scalar field is used to illustrate the ideas. It is argued that there are two reasonable definitions of the local physical content associated with a locally covariant theory; when these coincide, the theory is said to be dynamically local. The status of the dynamical locality condition is reviewed, as are its applications in relation to (i) the foundational question of what it means for a theory to represent the same physics in different space-times and (ii) a no-go result on the existence of natural states. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Solar system constraints on multifield theories of modified dynamics
Sanders, R. H.
2006-01-01
Any viable theory of modified Newtonian dynamics (MOND) as modified gravity is likely to require fields in addition to the usual tensor field of General Relativity. For these theories, the MOND phenomenology emerges as an effective fifth force probably associated with a scalar field. Here, I
Field-based dynamic light scattering microscopy: theory and numerical analysis.
Joo, Chulmin; de Boer, Johannes F
2013-11-01
We present a theoretical framework for field-based dynamic light scattering microscopy based on a spectral-domain optical coherence phase microscopy (SD-OCPM) platform. SD-OCPM is an interferometric microscope capable of quantitative measurement of amplitude and phase of scattered light with high phase stability. Field-based dynamic light scattering (F-DLS) analysis allows for direct evaluation of complex-valued field autocorrelation function and measurement of localized diffusive and directional dynamic properties of biological and material samples with high spatial resolution. In order to gain insight into the information provided by F-DLS microscopy, theoretical and numerical analyses are performed to evaluate the effect of numerical aperture of the imaging optics. We demonstrate that sharp focusing of fields affects the measured diffusive and transport velocity, which leads to smaller values for the dynamic properties in the sample. An approach for accurately determining the dynamic properties of the samples is discussed.
Finite temperature dynamics of a Holstein polaron: The thermo-field dynamics approach
Chen, Lipeng; Zhao, Yang
2017-12-01
Combining the multiple Davydov D2 Ansatz with the method of thermo-field dynamics, we study finite temperature dynamics of a Holstein polaron on a lattice. It has been demonstrated, using the hierarchy equations of motion method as a benchmark, that our approach provides an efficient, robust description of finite temperature dynamics of the Holstein polaron in the simultaneous presence of diagonal and off-diagonal exciton-phonon coupling. The method of thermo-field dynamics handles temperature effects in the Hilbert space with key numerical advantages over other treatments of finite-temperature dynamics based on quantum master equations in the Liouville space or wave function propagation with Monte Carlo importance sampling. While for weak to moderate diagonal coupling temperature increases inhibit polaron mobility, it is found that off-diagonal coupling induces phonon-assisted transport that dominates at high temperatures. Results on the mean square displacements show that band-like transport features dominate the diagonal coupling cases, and there exists a crossover from band-like to hopping transport with increasing temperature when including off-diagonal coupling. As a proof of concept, our theory provides a unified treatment of coherent and incoherent transport in molecular crystals and is applicable to any temperature.
International Nuclear Information System (INIS)
Sugama, H.
1999-08-01
The Lagrangian formulation of the gyrokinetic theory is generalized in order to describe the particles' dynamics as well as the self-consistent behavior of the electromagnetic fields. The gyrokinetic equation for the particle distribution function and the gyrokinetic Maxwell's equations for the electromagnetic fields are both derived from the variational principle for the Lagrangian consisting of the parts of particles, fields, and their interaction. In this generalized Lagrangian formulation, the energy conservation property for the total nonlinear gyrokinetic system of equations is directly shown from the Noether's theorem. This formulation can be utilized in order to derive the nonlinear gyrokinetic system of equations and the rigorously conserved total energy for fluctuations with arbitrary frequency. (author)
Introductory lectures on conformal field theory and strings
International Nuclear Information System (INIS)
Randjbar-Daemi, S.; Strathdee, J.
1990-01-01
The aim of these lectures is to provide an introduction to a first quantized formulation of string theory. This amounts to developing a consistent set of prescriptions for the perturbative computation of on-shell string amplitudes. The principal tool in this development is 2-dimensional conformal field theory on oriented manifolds of finite genus without boundaries (we treat only closed strings). This class of theory is much simpler than 4-dimensional quantum gravity with which it has many similarities. The geometry is not dynamical in this case, and the matter fields are not sensitive to local features of the geometry but only to global properties which can be characterized by a finite set of parameters (moduli). This can be formulated as field theory on a Riemann surface. We specialize mainly to free field theories for which the quantization problem can be completely solved by elementary means. An introduction to the general case will be given in Lectures II and III where the algebraic approach is discussed. The mathematics of Riemann surfaces is a well developed subject whose formalism is reviewed along with some of the principal theorems in Lecture IV. Physical string states are realized in the Hilbert space of a conformal field theory by the action of so-called ''vertex operators'' on the field theory vacuum state. Correlation functions of these vertex operators serve as ingredients for the computation of string amplitudes. They are to be integrated so as to include the contributions of all conformally inequivalent geometries, and a further manipulation (the GSO projection) is to be performed. These steps are to be regarded as part of the string prescription. The are introduced ad hoc to meet invariance and unitarity requirements. However, in these introductory lectures we give a description only of the integration over geometries (Lecture VII). The GSO projection, and related questions of modular invariance and unitarity are beyond the scope of these lectures
Introductory lectures on Conformal Field Theory and Strings
International Nuclear Information System (INIS)
Randjbar-Daemi, S.; Strathdee, J.
1990-01-01
The aim of these lectures is to provide an introduction to a first quantized formulation of string theory. This amounts to developing a consistent set of prescriptions for the perturbative computation of on-shell string amplitudes. The principal tool in this development is 2-dimensional conformal field theory on oriented manifolds of finite genus without boundaries (we treat only closed strings). This class of theory is much simpler than 4-dimensional quantum gravity with which it has many similarities. The geometry is not dynamical in this case, and the matter fields are not sensitive to local features of the geometry but only to global properties which can be characterized by a finite set of parameters (moduli). This can be formulated as field theory on a Riemann surface. We specialize mainly to free field theories for which the quantization problem can be completely solved by elementary means. An introduction to the general case will be given in Lectures II and III where the algebraic approach is discussed. The mathematics of Riemann surfaces is a well developed subject whose formalism is reviewed along with some of the principal theorems in Lecture IV. Physical string states are realized in the Hilbert space of a conformal field theory by the action of so-called ''vertex operators'' on the field theory vacuum state. Correlation functions of these vertex operators serve as ingredients for the computation of string amplitudes. They are to be integrated so as to include the contributions of all conformally inequivalent geometries, and a further manipulation (the GSO projection) is to be performed. These steps are to be regarded as part of the string prescription. They are introduced ad hoc to meet invariance and unitarity requirements. However, in these introductory lectures we give a description only of the integration over geometries (Lecture VII). The GSO projection, and related questions of modular invariance and unitarity are beyond the scope of these
Microscopic theory of nuclear collective dynamics
International Nuclear Information System (INIS)
Sakata, Fumihiko; Marumori, Toshio; Hashimoto, Yukio; Tsukuma, Hidehiko; Yamamoto, Yoshifumi; Iwasawa, Kazuo.
1990-10-01
A recent development of the INS-TSUKUBA joint research project on large-amplitude collective motion is summarized by putting special emphasis on an inter-relationship between quantum chaos and nuclear spectroscopy. Aiming at introducing various concepts used in this lecture, we start with recapitulating the semi-classical theory of nuclear collective dynamics formulated within the time-dependent Hartree-Fock (TDHF) theory. The central part of the semi-classical theory is provided by the self-consistent collective coordinate (SCC) method which has been developed to properly take account of the non-linear dynamics specific for the finite many-body quantum system. A decisive role of the level crossing dynamics on the order-to-chaos transition of collective motion is discussed in detail. Extending the basic idea of the semi-classical theory, we discuss a full quantum theory of nuclear collective dynamics which allows us to properly define a concept of the quantum integrability as well as the quantum chaoticity for each eigenfunction. The lecture is arranged so as to clearly show the similar structure between the semi-classical and quantum theories of nuclear collective dynamics. Using numerical calculations, we illustrate what the quantum chaos for each eigenfunction means and relate it to the usual definition of quantum chaos for nearest neighbor level spacing statistics based on the random matrix theory. (author)
International Nuclear Information System (INIS)
Edegger, B.
2007-01-01
We consider the theory of high temperature superconductivity from the viewpoint of a strongly correlated electron system. In particular, we discuss Gutzwiller projected wave functions, which incorporate strong correlations by prohibiting double occupancy in orbitals with strong on-site repulsion. After a general overview on high temperature superconductivity, we discuss Anderson's resonating valence bond (RVB) picture and its implementation by renormalized mean field theory (RMFT) and variational Monte Carlo (VMC) techniques. In the following, we present a detailed review on RMFT and VMC results with emphasis on our recent contributions. Especially, we are interested in spectral features of Gutzwiller-Bogolyubov quasiparticles obtained by extending VMC and RMFT techniques to excited states. We explicitly illustrate this method to determine the quasiparticle weight and provide a comparison with angle resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy (STM). We conclude by summarizing recent successes and by discussing open questions, which must be solved for a thorough understanding of high temperature superconductivity by Gutzwiller projected wave functions. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Edegger, B.
2007-08-10
We consider the theory of high temperature superconductivity from the viewpoint of a strongly correlated electron system. In particular, we discuss Gutzwiller projected wave functions, which incorporate strong correlations by prohibiting double occupancy in orbitals with strong on-site repulsion. After a general overview on high temperature superconductivity, we discuss Anderson's resonating valence bond (RVB) picture and its implementation by renormalized mean field theory (RMFT) and variational Monte Carlo (VMC) techniques. In the following, we present a detailed review on RMFT and VMC results with emphasis on our recent contributions. Especially, we are interested in spectral features of Gutzwiller-Bogolyubov quasiparticles obtained by extending VMC and RMFT techniques to excited states. We explicitly illustrate this method to determine the quasiparticle weight and provide a comparison with angle resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy (STM). We conclude by summarizing recent successes and by discussing open questions, which must be solved for a thorough understanding of high temperature superconductivity by Gutzwiller projected wave functions. (orig.)
Gauge theory for finite-dimensional dynamical systems
International Nuclear Information System (INIS)
Gurfil, Pini
2007-01-01
Gauge theory is a well-established concept in quantum physics, electrodynamics, and cosmology. This concept has recently proliferated into new areas, such as mechanics and astrodynamics. In this paper, we discuss a few applications of gauge theory in finite-dimensional dynamical systems. We focus on the concept of rescriptive gauge symmetry, which is, in essence, rescaling of an independent variable. We show that a simple gauge transformation of multiple harmonic oscillators driven by chaotic processes can render an apparently ''disordered'' flow into a regular dynamical process, and that there exists a strong connection between gauge transformations and reduction theory of ordinary differential equations. Throughout the discussion, we demonstrate the main ideas by considering examples from diverse fields, including quantum mechanics, chemistry, rigid-body dynamics, and information theory
Mean-field models and superheavy elements
International Nuclear Information System (INIS)
Reinhard, P.G.; Bender, M.; Maruhn, J.A.; Frankfurt Univ.
2001-03-01
We discuss the performance of two widely used nuclear mean-field models, the relativistic mean-field theory (RMF) and the non-relativistic Skyrme-Hartree-Fock approach (SHF), with particular emphasis on the description of superheavy elements (SHE). We provide a short introduction to the SHF and RMF, the relations between these two approaches and the relations to other nuclear structure models, briefly review the basic properties with respect to normal nuclear observables, and finally present and discuss recent results on the binding properties of SHE computed with a broad selection of SHF and RMF parametrisations. (orig.)
Quantum mean-field approximations for nuclear bound states and tunneling
International Nuclear Information System (INIS)
Negele, J.W.; Levit, S.; Paltiel, Z.; Massachusetts Inst. of Tech., Cambridge
1979-01-01
A conceptual framework has been presented in which observables are approximated in terms of a self-consistent quantum mean-field theory. Since the SPA (Stationary Phase Approximation) determines the optimal mean field to approximate a given observable, it is natural that when one changes the observable, the best mean field to describe it changes as well. Although the theory superficially appears applicable to any observable expressible in terms of an evolution operator, for example an S-matrix element, one would have to go far beyond the SPA to adequately approximate the overlap of two many-body wave functions. The most salient open problems thus concern quantitative assessment of the accuracy of the SPA, reformulation of the theory to accomodate hard cores, and selection of sensible expectation values of few-body operators to address in scattering problems
Numerical calculations in quantum field theories
International Nuclear Information System (INIS)
Rebbi, C.
1984-01-01
Four lecture notes are included: (1) motivation for numerical calculations in Quantum Field Theory; (2) numerical simulation methods; (3) Monte Carlo studies of Quantum Chromo Dynamics; and (4) systems with fermions. 23 references
Piñeiro Orioli, Asier; Boguslavski, Kirill; Berges, Jürgen
2015-07-01
We investigate universal behavior of isolated many-body systems far from equilibrium, which is relevant for a wide range of applications from ultracold quantum gases to high-energy particle physics. The universality is based on the existence of nonthermal fixed points, which represent nonequilibrium attractor solutions with self-similar scaling behavior. The corresponding dynamic universality classes turn out to be remarkably large, encompassing both relativistic as well as nonrelativistic quantum and classical systems. For the examples of nonrelativistic (Gross-Pitaevskii) and relativistic scalar field theory with quartic self-interactions, we demonstrate that infrared scaling exponents as well as scaling functions agree. We perform two independent nonperturbative calculations, first by using classical-statistical lattice simulation techniques and second by applying a vertex-resummed kinetic theory. The latter extends kinetic descriptions to the nonperturbative regime of overoccupied modes. Our results open new perspectives to learn from experiments with cold atoms aspects about the dynamics during the early stages of our universe.
A simple solvable model of quantum field theory of open strings
International Nuclear Information System (INIS)
Kazakov, V.A.; AN SSSR, Moscow
1990-01-01
A model of quantum field theory of open strings without any embedding (D=0) is solved. The world sheets of interacting strings are represented by dynamical planar graphs with dynamical holes of arbitrary sizes. The phenomenon of spontaneous tearing of the world sheet is noticed, which gives a singularity at zero coupling constant of string interaction. This phenomenon can be considered as a nonperturbative effect, similar to renormalons in planar field theories and is closely related to the α' → 0 limit of string field theories. (orig.)
A mean-field theory on the differential capacitance of asymmetric ionic liquid electrolytes
International Nuclear Information System (INIS)
Han, Yining; Huang, Shanghui; Yan, Tianying
2014-01-01
The size of ions significantly influences the electric double layer structure of room temperature ionic liquid (IL) electrolytes and their differential capacitance (C d ). In this study, we extended the mean-field theory (MFT) developed independently by Kornyshev (2007J. Phys. Chem. B 111 5545–57) and Kilic, Bazant, and Ajdari (2007 Phys. Rev. E 75 021502) (the KKBA MFT) to take into account the asymmetric 1:1 IL electrolytes by introducing an additional parameter ξ for the anion/cation volume ratio, besides the ionic compressibility γ in the KKBA MFT. The MFT of asymmetric ions becomes KKBA MFT upon ξ = 1, and further reduces to Gouy–Chapman theory in the γ → 0 limit. The result of the extended MFT demonstrates that the asymmetric ILs give rise to an asymmetric C d , with the higher peak in C d occurring at positive polarization for the smaller anionic size. At high potential, C d decays asymptotically toward KKBA MFT characterized by γ for the negative polarization, and characterized by ξγ for the positive polarization, with inverse-square-root behavior. At low potential, around the potential of zero charge, the asymmetric ions cause a higher C d , which exceeds that of Gouy–Chapman theory. (paper)
One-pion exchange current corrections for nuclear magnetic moments in relativistic mean field theory
International Nuclear Information System (INIS)
Li Jian; Yao, J.M.; Meng Jie; Arima, Akito
2011-01-01
The one-pion exchange current corrections to isoscalar and isovector magnetic moments of double-closed shell nuclei plus and minus one nucleon with A = 15, 17, 39 and 41 have been studied in the relativistic mean field (RMF) theory and compared with previous relativistic and non-relativistic results. It has been found that the one-pion exchange current gives a negligible contribution to the isoscalar magnetic moments but a significant correction to the isovector ones. However, the one-pion exchange current enhances the isovector magnetic moments further and does not improve the corresponding description for the concerned nuclei in the present work. (author)
Bauso, Dario; Dia, Ben Mansour; Djehiche, Boualem; Tembine, Hamidou; Tempone, Raul
2014-01-01
The myth of marriage has been and is still a fascinating historical societal phenomenon. Paradoxically, the empirical divorce rates are at an all-time high. This work describes a unique paradigm for preserving relationships and marital stability from mean-field game theory. We show that optimizing the long-term well-being via effort and society feeling state distribution will help in stabilizing relationships.
Bauso, Dario
2014-01-06
The myth of marriage has been and is still a fascinating historical societal phenomenon. Paradoxically, the empirical divorce rates are at an all-time high. This work describes a unique paradigm for preserving relationships and marital stability from mean-field game theory. We show that optimizing the long-term well-being via effort and society feeling state distribution will help in stabilizing relationships.
General relativity: An introduction to the theory of the gravitational field
International Nuclear Information System (INIS)
Stephani, H.
1985-01-01
The entire treatment presented here is framed by questions which led to and now lead out of the general theory of relativity: can an absolute acceleration be defined meaningfully? Do gravitational effects propagate with infinite velocity as Newton required? Can the general theory correctly reflect the dynamics of the whole universe while consistently describing stellar evolution? Can a theory which presupposes measurement of properties of space through the interaction of matter be made compatible with a theory in which dimensions of the objects measured are so small that location loses meaning? The book gives the mathematics necessary to understand the theory and begins in Riemannian geometry. Contents, abridged: Foundations of Riemannian geometry. Foundations of Einstein's theory of gravitation. Linearised theory of gravitation, far fields and gravitational waves. Invariant characterisation of exact solutions. Gravitational collapse and black holes. Cosmology. Non-Einsteinian theories of gravitation. Index
Study of interacting fields in a canonical formalism in Heisenberg picture of quantum field theory
International Nuclear Information System (INIS)
RANAIVOSON, R.T.R.
2011-01-01
In this work, we have made a study on the canonical formalism of the quantum field theory. Our contribution has been the development of a study using the Heisenberg picture. We showed that this approach may be useful for the description of quantum dynamics of interacting fields in bounded states. Our approach is to start from the lagrangian density of a classical theory from which one deduce the classical evolution equations of the fields via Euler-Lagrange equation for fields and establish the expression of conserved quantities characterizing the dynamics using the Noether theorem. Passing to the canonical quantization, fields and quantities characterizing the dynamics become quantum operators and evolution equations become operatorial evolution equations in Heisenberg picture. Expressions of quantum observable are also deduced from the expressions of classical conserved quantities. After, we showed that using the properties of fields operators and quantum states vectors, one can deduce from the operatorial evolution equations, the evolution equations for the wave functions of fermions and the evolution equations of expectation values of boson fields. For the illustration, various studies were conducted: the case of electrodynamics, the case of a general gauge theory and the case of the Standard Model. [fr
Quantum theory of relativistic charged particles in external fields
International Nuclear Information System (INIS)
Ruijsenaars, S.N.M.
1976-01-01
A study was made on external field theories in which the quantized field corresponds to relativistic elementary particles with non-zero rest mass. These particles are assumed to be charged, thus they have distinct antiparticles. The thesis consists of two parts. The first tries to accommodate the general features of theories of relativistic charged particles in external fields. Spin and dynamics in particular are not specified. In the second part, the results are applied to charged spin-1/2 and spin-0 particles, the dynamics of which are given by the Dirac resp. Klein-Gordon equation. The greater emphasis is on external fields which are rapidly decreasing, infinitely differentiable functions of space-time, but also considers time-independent fields. External fields, other than electromagnetic fields are also considered, e.g. scalar fields
Semiclassical methods in field theories
International Nuclear Information System (INIS)
Ventura, I.
1978-10-01
A new scheme is proposed for semi-classical quantization in field theory - the expansion about the charge (EAC) - which is developed within the canonical formalism. This method is suitable for quantizing theories that are invariant under global gauge transformations. It is used in the treatment of the non relativistic logarithmic theory that was proposed by Bialynicki-Birula and Mycielski - a theory we can formulate in any number of spatial dimensions. The non linear Schroedinger equation is also quantized by means of the EAC. The classical logarithmic theories - both, the non relativistic and the relativistic one - are studied in detail. It is shown that the Bohr-Sommerfeld quantization rule(BSQR) in field theory is, in many cases, equivalent to charge quantization. This rule is then applied to the massive Thirring Model and the logarithmic theories. The BSQR can be see as a simplified and non local version of the EAC [pt
Thermodynamics of perfect fluids from scalar field theory
Ballesteros, Guillermo; Pilo, Luigi
2016-01-01
The low-energy dynamics of relativistic continuous media is given by a shift-symmetric effective theory of four scalar fields. These scalars describe the embedding in spacetime of the medium and play the role of Stuckelberg fields for spontaneously broken spatial and time translations. Perfect fluids are selected imposing a stronger symmetry group or reducing the field content to a single scalar. We explore the relation between the field theory description of perfect fluids to thermodynamics. By drawing the correspondence between the allowed operators at leading order in derivatives and the thermodynamic variables, we find that a complete thermodynamic picture requires the four Stuckelberg fields. We show that thermodynamic stability plus the null energy condition imply dynamical stability. We also argue that a consistent thermodynamic interpretation is not possible if any of the shift symmetries is explicitly broken.
Supercomputers and quantum field theory
International Nuclear Information System (INIS)
Creutz, M.
1985-01-01
A review is given of why recent simulations of lattice gauge theories have resulted in substantial demands from particle theorists for supercomputer time. These calculations have yielded first principle results on non-perturbative aspects of the strong interactions. An algorithm for simulating dynamical quark fields is discussed. 14 refs
Mean Field Games with a Dominating Player
Energy Technology Data Exchange (ETDEWEB)
Bensoussan, A., E-mail: axb046100@utdallas.edu [The University of Texas at Dallas, International Center for Decision and Risk Analysis, Jindal School of Management (United States); Chau, M. H. M., E-mail: michaelchaumanho@gmail.com; Yam, S. C. P., E-mail: scpyam@sta.cuhk.edu.hk [The Chinese University of Hong Kong, Department of Statistics (Hong Kong, People’s Republic of China) (China)
2016-08-15
In this article, we consider mean field games between a dominating player and a group of representative agents, each of which acts similarly and also interacts with each other through a mean field term being substantially influenced by the dominating player. We first provide the general theory and discuss the necessary condition for the optimal controls and equilibrium condition by adopting adjoint equation approach. We then present a special case in the context of linear-quadratic framework, in which a necessary and sufficient condition can be asserted by stochastic maximum principle; we finally establish the sufficient condition that guarantees the unique existence of the equilibrium control. The proof of the convergence result of finite player game to mean field counterpart is provided in Appendix.
Ground-state properties of exotic nuclei near Z=40 in the relativistic mean-field theory
International Nuclear Information System (INIS)
Lalazissis, G.A.
1995-01-01
Study of the ground-state properties of Kr, Sr and Zr isotopes has been performed in the framework of the relativistic mean-field (RMF) theory using the recently proposed relativistic parameter set NL-SH. It is shown that the RMF theory provides an unified and excellent description of the binding energies, isotope shifts and deformation properties of nuclei over a large range of isospin in the Z=40 region. It is observed that the RMF theory with the force NL-SH is able to describe the anomalous kinks in isotope shifts in Kr and Sr nuclei, the problem which has hitherto remained unresolved. This is in contrast with the density-dependent Skyrme-Hartree-Fock approach which does not reproduce the behaviour of the isotope shifts about shell closure. On the Zr chain we predict that the isotope shifts exhibit a trend similar to that of the Kr and Sr nuclei. The RMF theory also predicts shape coexistence in heavy Sr isotopes. Several dramatic shape transitions in the isotopic chains are shown to be a general feature of nuclei in this region. A comparison of the properties with the available mass models shows that the results of the RMF theory are generally in accord with the predictions of the finite-range droplet model. ((orig.))
Phenomenology of noncommutative field theories
International Nuclear Information System (INIS)
Carone, C D
2006-01-01
Experimental limits on the violation of four-dimensional Lorentz invariance imply that noncommutativity among ordinary spacetime dimensions must be small. In this talk, I review the most stringent bounds on noncommutative field theories and suggest a possible means of evading them: noncommutativity may be restricted to extra, compactified spatial dimensions. Such theories have a number of interesting features, including Abelian gauge fields whose Kaluza-Klein excitations have self couplings. We consider six-dimensional QED in a noncommutative bulk, and discuss the collider signatures of the model
Mean Field Type Control with Congestion
Energy Technology Data Exchange (ETDEWEB)
Achdou, Yves, E-mail: achdou@ljll.univ-paris-diderot.fr; Laurière, Mathieu [Univ. Paris Diderot, Sorbonne Paris Cité, Laboratoire Jacques-Louis Lions, UMR 7598, UPMC, CNRS (France)
2016-06-15
We analyze some systems of partial differential equations arising in the theory of mean field type control with congestion effects. We look for weak solutions. Our main result is the existence and uniqueness of suitably defined weak solutions, which are characterized as the optima of two optimal control problems in duality.
Dynamical density functional theory for dense atomic liquids
International Nuclear Information System (INIS)
Archer, A J
2006-01-01
Starting from Newton's equations of motion, we derive a dynamical density functional theory (DDFT) applicable to atomic liquids. The theory has the feature that it requires as input the Helmholtz free energy functional from equilibrium density functional theory. This means that, given a reliable equilibrium free energy functional, the correct equilibrium fluid density profile is guaranteed. We show that when the isothermal compressibility is small, the DDFT generates the correct value for the speed of sound in a dense liquid. We also interpret the theory as a dynamical equation for a coarse grained fluid density and show that the theory can be used (making further approximations) to derive the standard mode coupling theory that is used to describe the glass transition. The present theory should provide a useful starting point for describing the dynamics of inhomogeneous atomic fluids
On the binding energy of double Λ hypernuclei in the relativistic mean field theory
International Nuclear Information System (INIS)
Marcos, S.; Lombard, R.J.
1997-01-01
The binding energy of two Λ hyperons bound to a nuclear core is calculated within the relativistic mean field theory. The starting point is a two body relativistic equation of the Breit type suggested by the RMFT, and corrected for the two-particle interaction. The 2 Λ correlation energy is evaluated and the contribution of the δ and φ mesons, acting solely between hyperons, to the bond energy σB ΛΛ of ( ΛΛ ) 6 He, ( ΛΛ ) 10 Be and ( ΛΛ ) 13 B is calculated. Predictions of the ΔB ΛΛ A dependence are made for heavier Λ-hypernuclei. (K.A.)
High-energy hadron dynamics based on a stochastic-field multieikonal theory
International Nuclear Information System (INIS)
Arnold, R.C.
1977-01-01
Multieikonal theory, using a stochastic-field representation for collective long-range rapidity correlations, is developed and applied to the calculation of Regge-pole parameters, high-transverse-momentum enhancements, and fluctuation patterns in rapidity densities. If a short-range-order model, such as the one-dimensional planar bootstrap, with only leading t-channel meson poles, is utilized as input to the multieikonal method, the pole spectrum is modified in three ways: promotion and renormalization of leading trajectories (suggesting an effective Pomeron above unity at intermediate energies), and a proliferation of dynamical secondary trajectories, reminiscent of dual models. When transverse dimensions are included, the collective effects produce a growth with energy of large-P/sub T/ inclusive cross sections. Typical-event rapidity distributions, at energies of a few TeV, can be estimated by suitable approximations; the fluctuations give rise to ''domain'' patterns, which have the appearance of clusters separated by rapidity gaps. The relations between this approach to strong-interaction dynamics and a possible unification of weak, electromagnetic, and strong interactions are outlined
Fluid Dynamics Theory, Computation, and Numerical Simulation
Pozrikidis, Constantine
2009-01-01
Fluid Dynamics: Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner. The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming. This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice. There are several additions and subject expansions in the Second Edition of Fluid Dynamics, including new Matlab and FORTRAN codes. Two distinguishing features of the discourse are: solution procedures and algorithms are developed immediately after problem formulations are presented, and numerical methods are introduced on a need-to-know basis and in increasing order of difficulty. Matlab codes are presented and discussed for ...
Kucharski, Amir N; Scott, Caitlin E; Davis, Jonathan P; Kekenes-Huskey, Peter M
2016-08-25
Parvalbumin (PV) is a globular calcium (Ca(2+))-selective protein expressed in a variety of biological tissues. Our computational studies of the rat β-parvalbumin (β-PV) isoform seek to elucidate the molecular thermodynamics of Ca(2+) versus magnesium (Mg(2+)) binding at the protein's two EF-hand motifs. Specifically, we have utilized molecular dynamics (MD) simulations and a mean-field electrolyte model (mean spherical approximation (MSA) theory) to delineate how the EF-hand scaffold controls the "local" thermodynamics of Ca(2+) binding selectivity over Mg(2+). Our MD simulations provide the probability density of metal-chelating oxygens within the EF-hand scaffolds for both Ca(2+) and Mg(2+), as well the conformational strain induced by Mg(2+) relative to Ca(2+) binding. MSA theory utilizes the binding domain oxygen and charge distributions to predict the chemical potential of ion binding, as well as their corresponding concentrations within the binding domain. We find that the electrostatic and steric contributions toward ion binding were similar for Mg(2+) and Ca(2+), yet the latter was 5.5 kcal/mol lower in enthalpy when internal strain within the EF hand was considered. We therefore speculate that beyond differences in dehydration energies for the Ca(2+) versus Mg(2+), strain induced in the β-PV EF hand by cation binding significantly contributes to the nearly 10,000-fold difference in binding affinity reported in the literature. We further complemented our analyses of local factors governing cation binding selectivity with whole-protein (global) contributions, such as interhelical residue-residue contacts and solvent exposure of hydrophobic surface. These contributions were found to be comparable for both Ca(2+)- and Mg(2+)-bound β-PV, which may implicate local factors, EF-hand strain, and dehydration, in providing the primary means of selectivity. We anticipate these methods could be used to estimate metal binding thermodynamics across a broad range of
International Nuclear Information System (INIS)
Lalazissis, G.A.; Ring, P.
1996-01-01
A systematic study of the ground-state properties of even-even rare earth nuclei has been performed in the framework of the Relativistic Mean-Field (RMF) theory using the parameter set NL-SH. Nuclear radii, isotope shifts and deformation properties of the heavier rare-earth nuclei have been obtained, which encompass atomic numbers ranging from Z=60 to Z=70 and include a large range of isospin. It is shown that RMF theory is able to provide a good and comprehensive description of the empirical binding energies of the isotopic chains. At the same time the quadrupole deformations β 2 obtained in the RMF theory are found to be in good agreement with the available empirical values. The theory predicts a shape transition from prolate to oblate for nuclei at neutron number N=78 in all the chains. A further addition of neutrons up to the magic number 82 brings about the spherical shape. For nuclei above N=82, the RMF theory predicts the well-known onset of prolate deformation at about N=88, which saturates at about N=102. The deformation properties display an identical behaviour for all the nuclear chains. A good description of the above deformation transitions in the RMF theory in all the isotopic chains leads to a successful reproduction of the anomalous behaviour of the empirical isotopic shifts of the rare-earth nuclei. The RMF theory exhibits a remarkable success in providing a unified and microscopic description of various empirical data. (orig.)
Progress in the axiomatic quantum field theory
International Nuclear Information System (INIS)
Vladimirov, V.S.; Polivanov, M.K.
1975-01-01
The authors consider the development of mathematical methods of solving quantum field theory problems from attempts of simple perfection of usual methods of quantum mechanics by elaborating the methods of perturbation theory and S-matrix, by working out the perturbation theory for quantum electrodynamics, and by applying dispersion relations and S-matrix for strong interactions. The method of dispersion relations results in the majority of radically new ways of describing the scattering amplitude. The grave disadvantage of all the methods is that they little define the dynamics of processes. The dynamic theory in the Heisenberg representation may be constructed on the basis of the axiomatic theory of S-matrix with the casuality condition. Another axiomatic direction has been recently developed; that is the so-called algebraic axiomatics which makes use of methods of Csup(*)-algebras
Supersymmetric rings in field theory
International Nuclear Information System (INIS)
Blanco-Pillado, Jose J.; Redi, Michele
2006-01-01
We study the dynamics of BPS string-like objects obtained by lifting monopole and dyon solutions of N = 2 Super-Yang-Mills theory to five dimensions. We present exact traveling wave solutions which preserve half of the supersymmetries. Upon compactification this leads to macroscopic BPS rings in four dimensions in field theory. Due to the fact that the strings effectively move in six dimensions the same procedure can also be used to obtain rings in five dimensions by using the hidden dimension
Magnetic moments in present relativistic nuclear theories: a mean-field problem
International Nuclear Information System (INIS)
Desplanques, B.
1986-07-01
We show that the magnetic moments of LS closed shell nuclei plus or minus one nucleon derived from non-relativistic Hartree-Fock mean-fields are as bad as those obtained in relativistic approaches of nuclear structure. Deviations with respect to more complete results in both cases are ascribed to the mean-field approximation which neglects some degrees of freedom in the nucleus description. 18 refs
Infrared problems in field perturbation theory
International Nuclear Information System (INIS)
David, Francois.
1982-12-01
The work presented mainly covers questions related to the presence of ''infrared'' divergences in perturbation expansions of the Green functions of certain massless field theories. It is important to determine the mathematical status of perturbation expansions in field theory in order to define the region in which they are valid. Renormalization and the symmetry of a theory are important factors in infrared problems. The main object of this thesis resides in the mathematical techniques employed: integral representations of the Feynman amplitudes; methods for desingularization, regularization and dimensional renormalization. Nonlinear two dimensional space-time sigma models describing Goldstone's low energy boson dynamics associated with a breaking of continuous symmetry are studied. Random surface models are then investigated followed by infrared divergences in super-renormalizable theories. Finally, nonperturbation effects in massless theories are studied by expanding the two-dimensional nonlinear sigma model in 1/N [fr
Non-Abelian gauge theory of fields associated with dyons
International Nuclear Information System (INIS)
Rajput, B.S.; Kumar, S.R.
1983-01-01
A suitable Lorentz invariant non-Abelian gauge theory of the fields associated with dyons has been constructed to describe the dual dynamics between colour isocharges and topological charges. It has been shown that the generalized particle current is gauge covariant and not conserved in non-Abelian theory. It has also been shown that in this theory the unphysical string variables and unphysical charged fields are not needed and that any extra constraint to maintain the dual symmetry of field equation and Lagrangian is also not needed. (author)
An old-timer looks at modern field theory
International Nuclear Information System (INIS)
Weisskopf, V.F.
1977-01-01
Four examples of intuitive reasoning in field theory are presented. The first three are concerned with problems of quantum electro-dynamics, namely, the Lamb shift, the radiative correction to the magnetic moment of the electron (the deviation of the electronic g factor from 2), and the polarization of the vacuum by an external charge. The polarization of the vacuum is a simple example of a typical fact resulting from quantum electro-dynamics: the effective charge e' for processes in which momentum transfers q >> m (electron mass) occur, increases with larger q as e' approximately log (q/m). The fourth example deals with an intuitive approach to the problem of 'asymptotic freedom', a term used for the fact that in certain field theories the effective charge e' decreases with larger g as e' approximately (log q/m)sup(-n) where n in the simplest case is 1/2. In these field theories, usually referred to as 'non-Abelian', not only the particles but also the fields are carriers of charge. (U.K.)
Markov switching mean-variance frontier dynamics: theory and international evidence
M. Guidolin; F. Ria
2010-01-01
It is well-known that regime switching models are able to capture the presence of rich non-linear patterns in the joint distribution of asset returns. After reviewing key concepts and technical issues related to specifying, estimating, and using multivariate Markov switching models in financial applications, in this paper we map the presence of regimes in means, variances, and covariances of asset returns into explicit dynamics of the Markowitz mean-variance frontier. In particular, we show b...
Spectral theorem in noncommutative field theories: Jacobi dynamics
International Nuclear Information System (INIS)
Géré, Antoine; Wallet, Jean-Christophe
2015-01-01
Jacobi operators appear as kinetic operators of several classes of noncommutative field theories (NCFT) considered recently. This paper deals with the case of bounded Jacobi operators. A set of tools mainly issued from operator and spectral theory is given in a way applicable to the study of NCFT. As an illustration, this is applied to a gauge-fixed version of the induced gauge theory on the Moyal plane expanded around a symmetric vacuum. The characterization of the spectrum of the kinetic operator is given, showing a behavior somewhat similar to a massless theory. An attempt to characterize the noncommutative geometry related to the gauge fixed action is presented. Using a Dirac operator obtained from the kinetic operator, it is shown that one can construct an even, regular, weakly real spectral triple. This spectral triple does not define a noncommutative metric space for the Connes spectral distance. (paper)
Dynamic mass generation and renormalizations in quantum field theories
International Nuclear Information System (INIS)
Miransky, V.A.
1979-01-01
It is shown that the dynamic mass generation can destroy the multiplicative renormalization relations and lead to new type divergences in the massive phase. To remove these divergences the values of the bare coupling constants must be fixed. The phase diagrams of gauge theories are discussed
International Nuclear Information System (INIS)
Harada, Masayasu; Kikukawa, Yoshio; Yamawaki, Koichi
2003-01-01
This issue presents the important recent progress in both theoretical and phenomenological issues of strong coupling gauge theories, with/without supersymmetry and extra dimensions, etc. Emphasis in a placed on dynamical symmetry breaking with large anomalous dimensions governed by the dynamics near the nontrivial fixed point. Also presented are recent developments of the corresponding effective field theories. The 43 of the presented papers are indexed individually. (J.P.N)
On the meaning of perturbation expansions in quantum field theory
International Nuclear Information System (INIS)
Burdik, C.; Chyla, J.
1987-01-01
We reformulate perturbation expansions in renormalized quantum field theories in a way that allows straightforward handling of situations when in the conventional approach (i.e. in fixed renormalization scheme) these expansions are divergent. In our approach the results of perturbation calculations of physical quantities appear in the form of (under certain circumstances) convergent expansions in powers of a free parameter χ, characterising the procedure involved. This inherent ambiguity of perturbative calculations is conjectures to be an expression of the underlaying ambiguity in the separation of the full theory into its perturbative and nonperturbative parts. The close connection of our results with the Borel summation technique is demonstrated and their relation to conventional perturbation expansions in fixed renormalization scheme is clarified
Fluid dynamics theory, computation, and numerical simulation
Pozrikidis, C
2001-01-01
Fluid Dynamics Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice There are several additions and subject expansions in the Second Edition of Fluid Dynamics, including new Matlab and FORTRAN codes Two distinguishing features of the discourse are solution procedures and algorithms are developed immediately after problem formulations are presented, and numerical methods are introduced on a need-to-know basis and in increasing order of difficulty Matlab codes are presented and discussed for a broad...
On dynamics of 5D superconformal theories
International Nuclear Information System (INIS)
Smilga, A.V.
2006-02-01
5D superconformal theories involve vacuum valleys characterized in the simplest case by the vacuum expectation value of the real scalar field σ. If ≠ 0, conformal invariance is spontaneously broken and the theory is not renormalizable. In the conformally invariant sector = 0, the theory is intrinsically nonperturbative. We study classical and quantum dynamics of this theory in the limit when field dependence of the spatial coordinates is disregarded. The classical trajectories 'fall' on the singularity at σ = 0. The quantum spectrum involves ghost states with negative energies unbounded from below, but such states fail to form complete 16-plets as is dictated by the presence of four complex supercharges and should be rejected by that reason. Physical excited states come in supermultiplets and have all positive energies. We conjecture that the spectrum of the complete field theory Hamiltonian is nontrivial and has a similar nontrivial ghost-free structure and also speculate that the ghosts in higher-derivative supersymmetric field theories are exterminated by a similar mechanism. (author)
The mean field in many body quantum physics
International Nuclear Information System (INIS)
Llano, M. de
1984-01-01
As an introduction to the quantum problem of many bodies we present a panoramic view of the most elementary theories called mean field theories. They comprise: i) the fermions ideal gas theory which implies, in a simple manner, the stability of white dwarf stars and of neutron stars, ii) the Hartree-Fock approximation for thermodynamical systems which is presented here in the context of a liquid-crystal phase transition, and iii) the Thomas-Fermi theory which is applied to the total binding energy of neutral atoms. (author)
On the initial conditions of time-dependent mean-field equations of evolution. Pt. 2
International Nuclear Information System (INIS)
Troudet, T.; Paris-11 Univ., 91 - Orsay
1986-01-01
We analyze the problem so far untouched of determining the initial mean-field wavefunction in the context of zero-temperature mean-field descriptions of time-dependent expectation values and quantum fluctuations of nuclear observables. The nucleus, at zero temperature, is taken to be in a low-lying excited many-body eigenstate and is approximated by the corresponding RPA wavefunction as a continuous superposition of coherent states (i.e. Slater determinants). A generating function Gsub(A)(lambda) for time-dependent expectation values and quantum fluctuations is constructed within the formalism of functional integration. By applying the saddle-point method to the functional action of Gsub(A)(lambda) and then taking its lambda-derivatives, we recover the well-known TDHF theory and propose a simple determination of the initial Slater determinant for an appropriate mean-field description of time-dependent expectation values. The analog mean-field description of quadratic-quantum fluctuations proceeds similarly and in addition includes the contribution of the uncorrelated TDHF-RPA phonons coupled to collective excitations of the initial (static) mean-field configuration. When the collective TDHF-RPA excitations are solely taken into account, we obtain an improved version of the Balian-Veneroni dispersion formula by showing how to determine the initial mean-field wavefunction. By first taking the lambda-derivatives of Gsub(A)(lambda) before applying the saddle-point method, the initial mean-field wavefunction is found to be non-linearly coupled to the mean-field dynamics themselves. In return, and in contrast to the first quantization scheme, these both depend non-trivially upon the observable A being measured so that approximations must be proposed to simplify the resulting mean-field equations. (orig.)
String dynamics, spontaneous breaking of supersymmetry, and dual scalar field theory
International Nuclear Information System (INIS)
Liu Luxin
2009-01-01
The dynamics of a vortex string, which describes the Nambu-Goldstone modes of the spontaneous breakdown of the target space D=4, N=1 supersymmetry and internal U(1) R symmetry to the world sheet ISO(1,1) symmetry, is constructed by using the approach of nonlinear realization. The resulting action describing the low energy oscillations of the string into the covolume (super)space is found to have an invariant synthesis form of the Akulov-Volkov and Nambu-Goto actions. Its dual scalar field action is obtained by means of introducing two vectorial Lagrangian multipliers into the action of the string.
Energy Technology Data Exchange (ETDEWEB)
Ertaş, Mehmet, E-mail: mehmetertas@erciyes.edu.tr; Keskin, Mustafa
2015-03-01
By using the path probability method (PPM) with point distribution, we study the dynamic phase transitions (DPTs) in the Blume–Emery–Griffiths (BEG) model under an oscillating external magnetic field. The phases in the model are obtained by solving the dynamic equations for the average order parameters and a disordered phase, ordered phase and four mixed phases are found. We also investigate the thermal behavior of the dynamic order parameters to analyze the nature dynamic transitions as well as to obtain the DPT temperatures. The dynamic phase diagrams are presented in three different planes in which exhibit the dynamic tricritical point, double critical end point, critical end point, quadrupole point, triple point as well as the reentrant behavior, strongly depending on the values of the system parameters. We compare and discuss the dynamic phase diagrams with dynamic phase diagrams that were obtained within the Glauber-type stochastic dynamics based on the mean-field theory. - Highlights: • Dynamic magnetic behavior of the Blume–Emery–Griffiths system is investigated by using the path probability method. • The time variations of average magnetizations are studied to find the phases. • The temperature dependence of the dynamic magnetizations is investigated to obtain the dynamic phase transition points. • We compare and discuss the dynamic phase diagrams with dynamic phase diagrams that were obtained within the Glauber-type stochastic dynamics based on the mean-field theory.
International Nuclear Information System (INIS)
Ertaş, Mehmet; Keskin, Mustafa
2015-01-01
By using the path probability method (PPM) with point distribution, we study the dynamic phase transitions (DPTs) in the Blume–Emery–Griffiths (BEG) model under an oscillating external magnetic field. The phases in the model are obtained by solving the dynamic equations for the average order parameters and a disordered phase, ordered phase and four mixed phases are found. We also investigate the thermal behavior of the dynamic order parameters to analyze the nature dynamic transitions as well as to obtain the DPT temperatures. The dynamic phase diagrams are presented in three different planes in which exhibit the dynamic tricritical point, double critical end point, critical end point, quadrupole point, triple point as well as the reentrant behavior, strongly depending on the values of the system parameters. We compare and discuss the dynamic phase diagrams with dynamic phase diagrams that were obtained within the Glauber-type stochastic dynamics based on the mean-field theory. - Highlights: • Dynamic magnetic behavior of the Blume–Emery–Griffiths system is investigated by using the path probability method. • The time variations of average magnetizations are studied to find the phases. • The temperature dependence of the dynamic magnetizations is investigated to obtain the dynamic phase transition points. • We compare and discuss the dynamic phase diagrams with dynamic phase diagrams that were obtained within the Glauber-type stochastic dynamics based on the mean-field theory
System Dynamics as Model-Based Theory Building
Schwaninger, Markus; Grösser, Stefan N.
2008-01-01
This paper introduces model-based theory building as a feature of system dynamics (SD) with large potential. It presents a systemic approach to actualizing that potential, thereby opening up a new perspective on theory building in the social sciences. The question addressed is if and how SD enables the construction of high-quality theories. This contribution is based on field experiment type projects which have been focused on model-based theory building, specifically the construction of a mi...
Aspects of Nonlocality in Quantum Field Theory, Quantum Gravity and Cosmology
Barvinsky, A O
2015-01-01
This paper contains a collection of essays on nonlocal phenomena in quantum field theory, gravity and cosmology. Mechanisms of nonlocal contributions to the quantum effective action are discussed within the covariant perturbation expansion in field strengths and spacetime curvatures and the nonperturbative method based on the late time asymptotics of the heat kernel. Euclidean version of the Schwinger-Keldysh technique for quantum expectation values is presented as a special rule of obtaining the nonlocal effective equations of motion for the mean quantum field from the Euclidean effective action. This rule is applied to a new model of ghost free nonlocal cosmology which can generate the de Sitter stage of cosmological evolution at an arbitrary value of $\\varLambda$ -- a model of dark energy with its scale played by the dynamical variable that can be fixed by a kind of a scaling symmetry breaking mechanism. This model is shown to interpolate between the superhorizon phase of gravity theory mediated by a scala...
Mean field games for cognitive radio networks
Tembine, Hamidou
2012-06-01
In this paper we study mobility effect and power saving in cognitive radio networks using mean field games. We consider two types of users: primary and secondary users. When active, each secondary transmitter-receiver uses carrier sensing and is subject to long-term energy constraint. We formulate the interaction between primary user and large number of secondary users as an hierarchical mean field game. In contrast to the classical large-scale approaches based on stochastic geometry, percolation theory and large random matrices, the proposed mean field framework allows one to describe the evolution of the density distribution and the associated performance metrics using coupled partial differential equations. We provide explicit formulas and algorithmic power management for both primary and secondary users. A complete characterization of the optimal distribution of energy and probability of success is given.
International Nuclear Information System (INIS)
Kaku, M.
1987-01-01
In this article, the authors summarize the rapid progress in constructing string field theory actions, such as the development of the covariant BRST theory. They also present the newer geometric formulation of string field theory, from which the BRST theory and the older light cone theory can be derived from first principles. This geometric formulation allows us to derive the complete field theory of strings from two geometric principles, in the same way that general relativity and Yang-Mills theory can be derived from two principles based on global and local symmetry. The geometric formalism therefore reduces string field theory to a problem of finding an invariant under a new local gauge group they call the universal string group (USG). Thus, string field theory is the gauge theory of the universal string group in much the same way that Yang-Mills theory is the gauge theory of SU(N). The geometric formulation places superstring theory on the same rigorous group theoretical level as general relativity and gauge theory
A symplectic framework for field theories
International Nuclear Information System (INIS)
Kijowski, J.; Tulczyjew, W.M.
1979-01-01
These notes are concerned with the formulation of a new conceptual framework for classical field theories. Although the formulation is based on fairly advanced concepts of symplectic geometry these notes cannot be viewed as a reformulation of known structures in more rigorous and elegant torns. Our intention is rather to communicate to theoretical physicists a set of new physical ideas. We have chosen for this purpose the language of local coordinates which is more elementary and more widely known than the abstract language of modern differntial geometry. Our emphasis is directed more to physical intentions than to mathematical vigour. We start with a symplectic analysis of staties. Both discrete and continuous systems are considered on a largely intuitive level. The notion of reciprocity and potentiality of the theory is discussed. Chapter II is a presentation of particle dynamics together with more rigorous definitions of the geometric structure. Lagrangian-Submanifolds and their generating function 3 are defined and the time evolution of particle states is studied. Chapter II form the main part of these notes. Here we describe the construction of canonical momenta and discuss the field dynamics in finite domains of space-time. We also establish the relation between our symplectic framework and the geometric formulation of the calculus of variations of multiple integrals. In the following chapter we give a few examples of field theories selected to illustrate various features of the new approach. A new formulation of the theory of gravity consists of using the affine connection in space-time as the field configuration. In the past section we present an analysis of hydrodynamics within our framework which reveals a formal analogy with electrodynamics. The discovery of potentials for hydrodynamics and the subsequent formulation of a variational principle provides an excellent example for the fruitfulness of the new approach to field theory. A short review of
[Investigations in dynamics of gauge theories in theoretical particle physics
International Nuclear Information System (INIS)
1993-01-01
The major theme of the theoretical physics research conducted under DOE support over the past several years has been within the rubric of the standard model, and concerned the interplay between symmetries and dynamics. The research was thus carried out mostly in the context of gauge field theories, and usually in the presence of chiral fermions. Dynamical symmetry breaking was examined both from the point of view of perturbation theory, as well as from non-perturbative techniques associated with certain characteristic features of specific theories. Among the topics of research were: the implications of abelian and non-abelian anomalies on the spectrum and possible dynamical symmetry breaking in any theory, topological and conformal properties of quantum fields in two and higher dimensions, the breaking of global chiral symmetries by vector-like gauge theories such as QCD, the phenomenological implications of a strongly interacting Higgs sector in the standard model, and the application of soliton ideas to the physics to be explored at the SSC
International Nuclear Information System (INIS)
Hasegawa, Hideo
2004-01-01
By extending a dynamical mean-field approximation previously proposed by the author [H. Hasegawa, Phys. Rev. E 67, 041903 (2003)], we have developed a semianalytical theory which takes into account a wide range of couplings in a small-world network. Our network consists of noisy N-unit FitzHugh-Nagumo neurons with couplings whose average coordination number Z may change from local (Z<< N) to global couplings (Z=N-1) and/or whose concentration of random couplings p is allowed to vary from regular (p=0) to completely random (p=1). We have taken into account three kinds of spatial correlations: the on-site correlation, the correlation for a coupled pair, and that for a pair without direct couplings. The original 2N-dimensional stochastic differential equations are transformed to 13-dimensional deterministic differential equations expressed in terms of means, variances, and covariances of state variables. The synchronization ratio and the firing-time precision for an applied single spike have been discussed as functions of Z and p. Our calculations have shown that with increasing p, the synchronization is worse because of increased heterogeneous couplings, although the average network distance becomes shorter. Results calculated by our theory are in good agreement with those by direct simulations
Kleeorin, N.
2018-06-01
We discuss a mean-field theory of the generation of large-scale vorticity in a rotating density stratified developed turbulence with inhomogeneous kinetic helicity. We show that the large-scale non-uniform flow is produced due to either a combined action of a density stratified rotating turbulence and uniform kinetic helicity or a combined effect of a rotating incompressible turbulence and inhomogeneous kinetic helicity. These effects result in the formation of a large-scale shear, and in turn its interaction with the small-scale turbulence causes an excitation of the large-scale instability (known as a vorticity dynamo) due to a combined effect of the large-scale shear and Reynolds stress-induced generation of the mean vorticity. The latter is due to the effect of large-scale shear on the Reynolds stress. A fast rotation suppresses this large-scale instability.
Harrison, R. G.
2015-07-01
A mean-field positive-feedback (PFB) theory of ferromagnetism is used to explain the origin of Barkhausen noise (BN) and to show why it is most pronounced in the irreversible regions of the hysteresis loop. By incorporating the ABBM-Sablik model of BN into the PFB theory, we obtain analytical solutions that simultaneously describe both the major hysteresis loop and, by calculating separate expressions for the differential susceptibility in the irreversible and reversible regions, the BN power response at all points of the loop. The PFB theory depends on summing components of the applied field, in particular, the non-monotonic field-magnetization relationship characterizing hysteresis, associated with physical processes occurring in the material. The resulting physical model is then validated by detailed comparisons with measured single-peak BN data in three different steels. It also agrees with the well-known influence of a demagnetizing field on the position and shape of these peaks. The results could form the basis of a physics-based method for modeling and understanding the significance of the observed single-peak (and in multi-constituent materials, multi-peak) BN envelope responses seen in contemporary applications of BN, such as quality control in manufacturing, non-destructive testing, and monitoring the microstructural state of ferromagnetic materials.
Nonrelativistic theory of heavy-ion collisions
International Nuclear Information System (INIS)
Bertsch, G.
1984-01-01
A wide range of phenomena is observed in heavy-ion collisions, calling for a comprehensive theory based on fundamental principles of many-particle quantum mechanics. At low energies, the nuclear dynamics is controlled by the mean field, as we know from spectroscopic nuclear physics. We therefore expect the comprehensive theory of collisions to contain mean-field theory at low energies. The mean-field theory is the subject of the first lectures in this chapter. This theory can be studied quantum mechanically, in which form it is called TDHF (time-dependent Hartree-Fock), or classically, where the equation is called the Vlasov equation. 25 references, 14 figures
Dynamical systems V bifurcation theory and catastrophe theory
1994-01-01
Bifurcation theory and catastrophe theory are two of the best known areas within the field of dynamical systems. Both are studies of smooth systems, focusing on properties that seem to be manifestly non-smooth. Bifurcation theory is concerned with the sudden changes that occur in a system when one or more parameters are varied. Examples of such are familiar to students of differential equations, from phase portraits. Moreover, understanding the bifurcations of the differential equations that describe real physical systems provides important information about the behavior of the systems. Catastrophe theory became quite famous during the 1970's, mostly because of the sensation caused by the usually less than rigorous applications of its principal ideas to "hot topics", such as the characterization of personalities and the difference between a "genius" and a "maniac". Catastrophe theory is accurately described as singularity theory and its (genuine) applications. The authors of this book, the first printing of w...
Unambiguous formalism for higher order Lagrangian field theories
International Nuclear Information System (INIS)
Campos, Cedric M; De Leon, Manuel; De Diego, David MartIn; Vankerschaver, Joris
2009-01-01
The aim of this paper is to propose an unambiguous intrinsic formalism for higher order field theories which avoids the arbitrariness in the generalization of the conventional description of field theories, and implies the existence of different Cartan forms and Legendre transformations. We propose a differential-geometric setting for the dynamics of a higher order field theory, based on the Skinner and Rusk formalism for mechanics. This approach incorporates aspects of both the Lagrangian and the Hamiltonian description, since the field equations are formulated using the Lagrangian on a higher order jet bundle and the canonical multisymplectic form on its affine dual. As both of these objects are uniquely defined, the Skinner-Rusk approach has the advantage that it does not suffer from the arbitrariness in conventional descriptions. The result is that we obtain a unique and global intrinsic version of the Euler-Lagrange equations for higher order field theories. Several examples illustrate our construction.
International Nuclear Information System (INIS)
Frohlich, J.
1976-01-01
We prove that a Symanzik--Nelson positive quantum field theory, i.e., a quantum field theory derived from a Euclidean field theory, has a unique decomposition into pure phases which preserves Symanzik--Nelson positivity and Poincare covariance. We derive useful sufficient conditions for the breakdown of an internal symmetry of such a theory in its pure phases, for the self-adjointness and nontrivially (in the sense of Borchers classes) of its quantum fields, and the existence of time-ordered and retarded products. All these general results are then applied to the P (phi) 2 and the phi 3 4 quantum field models
Austerity and geometric structure of field theories
International Nuclear Information System (INIS)
Kheyfets, A.
1986-01-01
The relation between the austerity idea and the geometric structure of the three basic field theories - electrodynamics, Yang-Mills theory, and general relativity - is studied. One of the most significant manifestations of the austerity idea in field theories is thought to be expressed by the boundary of a boundary principle (BBP). The BBP says that almost all content of the field theories can be deduced from the topological identity of delta dot produced with delta = 0 used twice, at the 1-2-3-dimensional level (providing the homogeneous field equations), and at the 2-3-4-dimensional level (providing the conservation laws for the source currents). There are some difficulties in this line of thought due to the apparent lack of universality in application of the BBP to the three basic modern field theories above. This dissertation: (a) analyzes the difficulties by means of algebraic topology, integration theory, and modern differential geometry based on the concepts of principal bundles and Ehresmann connections: (b) extends the BBP to the unified Kaluza-Klein theory; (c) reformulates the inhomogeneous field equations and the BBP in terms of E. Cartan moment of rotation, in the way universal for the three theories and compatible with the original austerity idea; and (d) underlines the important role of the soldering structure on spacetime, and indicates that the future development of the austerity idea would involve the generalized theories
String theory or field theory?
International Nuclear Information System (INIS)
Marshakov, Andrei V
2002-01-01
The status of string theory is reviewed, and major recent developments - especially those in going beyond perturbation theory in the string theory and quantum field theory frameworks - are analyzed. This analysis helps better understand the role and place of string theory in the modern picture of the physical world. Even though quantum field theory describes a wide range of experimental phenomena, it is emphasized that there are some insurmountable problems inherent in it - notably the impossibility to formulate the quantum theory of gravity on its basis - which prevent it from being a fundamental physical theory of the world of microscopic distances. It is this task, the creation of such a theory, which string theory, currently far from completion, is expected to solve. In spite of its somewhat vague current form, string theory has already led to a number of serious results and greatly contributed to progress in the understanding of quantum field theory. It is these developments which are our concern in this review. (reviews of topical problems)
Superfluid and insulating phases in an interacting-boson model: mean-field theory and the RPA
International Nuclear Information System (INIS)
Sheshadri, K.; Pandit, R.; Krishnamurthy, H.R.; Ramakrishnan, T.V.
1993-01-01
The bosonic Hubbard model is studied via a simple mean-field theory. At zero temperature, in addition to yielding a phase diagram that is qualitatively correct, namely a superfluid phase for non-integer fillings and a Mott transition from a superfluid to an insulating phase for integer fillings, this theory gives results that are in good agreement with Monte Carlo simulations. In particular, the superfluid fraction obtained as a function of the interaction strength U for both integer and non-integer fillings is close to the simulation results. In all phases the excitation spectra are obtained by using the random phase approximation (RPA): the spectrum has a gap in the insulating phase and is gapless (and linear at small wave vectors) in the superfluid phase. Analytic results are presented in the limits of large U and small superfluid density. Finite-temperature phase diagrams and the Mott-insulator-normal-phase crossover are also described. (orig.)
Galois and simple current symmetries in conformal field theory
International Nuclear Information System (INIS)
Schweigert, C.
1995-01-01
In this thesis various aspects of rational field theories are studied. In part I explicit examples for N=2 superconformal field theories are constructed by means of the coset approach. By means of these models string vacua are constructed, and the massless spectra of the string compactifications based on these models are computed. The symmetry of the S matrix, which implements the modular transformation on the space of characters is the subject of Part II. The developed methods are applied to the fusion rings of WZW theories. (HSI)
Neutron fraction and neutrino mean free path predictions in relativistic mean field models
International Nuclear Information System (INIS)
Hutauruk, P.T.P.; Williams, C.K.; Sulaksono, A.; Mart, T.
2004-01-01
The equation of state (EOS) of dense matter and neutrino mean free path (NMFP) in a neutron star have been studied by using relativistic mean field models motivated by effective field theory. It is found that the models predict too large proton fractions, although one of the models (G2) predicts an acceptable EOS. This is caused by the isovector terms. Except G2, the other two models predict anomalous NMFP's. In order to minimize the anomaly, besides an acceptable EOS, a large M* is favorable. A model with large M* retains the regularity in the NMFP even for a small neutron fraction
A Stochastic Maximum Principle for Risk-Sensitive Mean-Field Type Control
Djehiche, Boualem; Tembine, Hamidou; Tempone, Raul
2015-01-01
In this paper we study mean-field type control problems with risk-sensitive performance functionals. We establish a stochastic maximum principle (SMP) for optimal control of stochastic differential equations (SDEs) of mean-field type, in which the drift and the diffusion coefficients as well as the performance functional depend not only on the state and the control but also on the mean of the distribution of the state. Our result extends the risk-sensitive SMP (without mean-field coupling) of Lim and Zhou (2005), derived for feedback (or Markov) type optimal controls, to optimal control problems for non-Markovian dynamics which may be time-inconsistent in the sense that the Bellman optimality principle does not hold. In our approach to the risk-sensitive SMP, the smoothness assumption on the value-function imposed in Lim and Zhou (2005) needs not be satisfied. For a general action space a Peng's type SMP is derived, specifying the necessary conditions for optimality. Two examples are carried out to illustrate the proposed risk-sensitive mean-field type SMP under linear stochastic dynamics with exponential quadratic cost function. Explicit solutions are given for both mean-field free and mean-field models.
A Stochastic Maximum Principle for Risk-Sensitive Mean-Field Type Control
Djehiche, Boualem
2015-02-24
In this paper we study mean-field type control problems with risk-sensitive performance functionals. We establish a stochastic maximum principle (SMP) for optimal control of stochastic differential equations (SDEs) of mean-field type, in which the drift and the diffusion coefficients as well as the performance functional depend not only on the state and the control but also on the mean of the distribution of the state. Our result extends the risk-sensitive SMP (without mean-field coupling) of Lim and Zhou (2005), derived for feedback (or Markov) type optimal controls, to optimal control problems for non-Markovian dynamics which may be time-inconsistent in the sense that the Bellman optimality principle does not hold. In our approach to the risk-sensitive SMP, the smoothness assumption on the value-function imposed in Lim and Zhou (2005) needs not be satisfied. For a general action space a Peng\\'s type SMP is derived, specifying the necessary conditions for optimality. Two examples are carried out to illustrate the proposed risk-sensitive mean-field type SMP under linear stochastic dynamics with exponential quadratic cost function. Explicit solutions are given for both mean-field free and mean-field models.
Fluctuation and dissipation in nonequilibrium quantum field theory
International Nuclear Information System (INIS)
Ramos, Rudnei O.
1994-01-01
The nonequilibrium dynamics of a scalar field is studied using perturbation theory and a real time finite temperature formulation. The evolution equation for the scalar field is explicitly obtained, and terms responsible for noise (fluctuations) and dissipation are identified and studied in the high temperature limit. (author)
Mean Field Games Models-A Brief Survey
Gomes, Diogo A.
2013-11-20
The mean-field framework was developed to study systems with an infinite number of rational agents in competition, which arise naturally in many applications. The systematic study of these problems was started, in the mathematical community by Lasry and Lions, and independently around the same time in the engineering community by P. Caines, Minyi Huang, and Roland Malhamé. Since these seminal contributions, the research in mean-field games has grown exponentially, and in this paper we present a brief survey of mean-field models as well as recent results and techniques. In the first part of this paper, we study reduced mean-field games, that is, mean-field games, which are written as a system of a Hamilton-Jacobi equation and a transport or Fokker-Planck equation. We start by the derivation of the models and by describing some of the existence results available in the literature. Then we discuss the uniqueness of a solution and propose a definition of relaxed solution for mean-field games that allows to establish uniqueness under minimal regularity hypothesis. A special class of mean-field games that we discuss in some detail is equivalent to the Euler-Lagrange equation of suitable functionals. We present in detail various additional examples, including extensions to population dynamics models. This section ends with a brief overview of the random variables point of view as well as some applications to extended mean-field games models. These extended models arise in problems where the costs incurred by the agents depend not only on the distribution of the other agents, but also on their actions. The second part of the paper concerns mean-field games in master form. These mean-field games can be modeled as a partial differential equation in an infinite dimensional space. We discuss both deterministic models as well as problems where the agents are correlated. We end the paper with a mean-field model for price impact. © 2013 Springer Science+Business Media New York.
Mean Field Games Models-A Brief Survey
Gomes, Diogo A.; Saú de, Joã o
2013-01-01
The mean-field framework was developed to study systems with an infinite number of rational agents in competition, which arise naturally in many applications. The systematic study of these problems was started, in the mathematical community by Lasry and Lions, and independently around the same time in the engineering community by P. Caines, Minyi Huang, and Roland Malhamé. Since these seminal contributions, the research in mean-field games has grown exponentially, and in this paper we present a brief survey of mean-field models as well as recent results and techniques. In the first part of this paper, we study reduced mean-field games, that is, mean-field games, which are written as a system of a Hamilton-Jacobi equation and a transport or Fokker-Planck equation. We start by the derivation of the models and by describing some of the existence results available in the literature. Then we discuss the uniqueness of a solution and propose a definition of relaxed solution for mean-field games that allows to establish uniqueness under minimal regularity hypothesis. A special class of mean-field games that we discuss in some detail is equivalent to the Euler-Lagrange equation of suitable functionals. We present in detail various additional examples, including extensions to population dynamics models. This section ends with a brief overview of the random variables point of view as well as some applications to extended mean-field games models. These extended models arise in problems where the costs incurred by the agents depend not only on the distribution of the other agents, but also on their actions. The second part of the paper concerns mean-field games in master form. These mean-field games can be modeled as a partial differential equation in an infinite dimensional space. We discuss both deterministic models as well as problems where the agents are correlated. We end the paper with a mean-field model for price impact. © 2013 Springer Science+Business Media New York.
Dynamics and causality constraints
International Nuclear Information System (INIS)
Sousa, Manoelito M. de
2001-04-01
The physical meaning and the geometrical interpretation of causality implementation in classical field theories are discussed. Causality in field theory are kinematical constraints dynamically implemented via solutions of the field equation, but in a limit of zero-distance from the field sources part of these constraints carries a dynamical content that explains old problems of classical electrodynamics away with deep implications to the nature of physicals interactions. (author)
Meaning of the BRS Lagrangian theory
International Nuclear Information System (INIS)
Cheng, H.; Tsai, E.
1989-01-01
A simplified treatment of the Becchi-Rouet-Stora (BRS) Lagrangian theory is presented. With this treatment we show that the BRS Lagrangian theory in general, and the Feynman-gauge field theory in particular, are effective theories, not the physical theory, and the Feynman gauge is not, strictly speaking, a gauge. The relationship between the quantum states in the BRS Lagrangian theory and those in the physical theory is explicitly given. We also show that one may obtain matrix elements of gauge-invariant operators in the physical theory by calculating corresponding ones in the BRS Lagrangian theory. The formulas which equate such matrix elements are called correspondence formulas. The correspondence formula for the S matrix enables us to equate the scattering amplitudes in the physical theory with those in the BRS Lagrangian theory, thus a proof of the unitary of the Feynman-gauge (as well as other covariant gauges) Feynman rules is rendered unnecessary. This treatment can be applied to various gauge field theories and the examples of the pure Yang-Mills theory and a gauge field theory with a Higgs field is explicitly worked out
Dynamical response of the Ising model to the time dependent magnetic field with white noise
Akıncı, Ümit
2018-03-01
The effect of the white noise in time dependent magnetic field on the dynamic behavior of the Ising model has been investigated within the effective field theory based on Glauber type of stochastic process. Discrete white noise has been chosen from both Gaussian and uniform probability distributions. Detailed investigation on probability distribution of dynamical order parameter results that, both type of noise distributions yield the same probability distribution related to the dynamical order parameter, namely Gaussian probability distribution. The variation of the parameters that describe the probability distribution of dynamical order parameter (mean value and standard deviation) with temperature and strength of the noise have been inspected. Also, it has been shown that, rising strength of the noise can induce dynamical phase transition in the system.
Quantum field theory and statistical mechanics
International Nuclear Information System (INIS)
Jegerlehner, F.
1975-01-01
At first a heuristic understanding is given how the relation between quantum field theory and statistical mechanics near phase transitions comes about. A long range scale invariant theory is constructed, critical indices are calculated and the relations among them are proved, field theoretical Kadanoff-scale transformations are formulated and scaling corrections calculated. A precise meaning to many of Kadanoffs considerations and a model matching Wegners phenomenological scheme is given. It is shown, that soft parametrization is most transparent for the discussion of scaling behaviour. (BJ) [de
Energy Technology Data Exchange (ETDEWEB)
Burrola-Gándara, L. A., E-mail: andres.burrola@gmail.com; Santillan-Rodriguez, C. R.; Rivera-Gomez, F. J.; Saenz-Hernandez, R. J.; Botello-Zubiate, M. E.; Matutes-Aquino, J. A. [Departamento de Física de Materiales, Centro de Investigación en Materiales Avanzados, S.C., Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua 31109 (Mexico)
2015-05-07
Magnetocaloric materials with second order phase transition near the Curie temperature can be described by critical phenomena theory. In this theory, scaling, universality, and renormalization are key concepts from which several phase transition order criteria are derived. In this work, the rescaled universal curve, Banerjee and mean field theory criteria were used to make a comparison for several magnetocaloric materials including pure Gd, SmCo{sub 1.8}Fe{sub 0.2}, MnFeP{sub 0.46}As{sub 0.54}, and La{sub 0.7}Ca{sub 0.15}Sr{sub 0.15}MnO{sub 3}. Pure Gd, SmCo{sub 1.8}Fe{sub 0.2}, and La{sub 0.7}Ca{sub 0.15}Sr{sub 0.15}MnO{sub 3} present a collapse of the rescaled magnetic entropy change curves into a universal curve, which indicates a second order phase transition; applying Banerjee criterion to H/σ vs σ{sup 2} Arrot plots and the mean field theory relation |ΔS{sub M}| ∝ (μ{sub 0}H/T{sub c}){sup 2/3} for the same materials also determines a second order phase transition. However, in the MnFeP{sub 0.46}As{sub 0.54} sample, the Banerjee criterion applied to the H/σ vs σ{sup 2} Arrot plot indicates a first order magnetic phase transition, while the mean field theory prediction for a second order phase transition, |ΔS{sub M}| ∝ (μ{sub 0}H/T{sub c}){sup 2/3}, describes a second order behavior. Also, a mixture of first and second order behavior was indicated by the rescaled universal curve criterion. The diverse results obtained for each criterion in MnFeP{sub 0.46}As{sub 0.54} are apparently related to the magnetoelastic effect and to the simultaneous presence of weak and strong magnetism in Fe (3f) and Mn (3g) alternate atomic layers, respectively. The simultaneous application of the universal curve, the Banerjee and the mean field theory criteria has allowed a better understanding about the nature of the order of the phase transitions in different magnetocaloric materials.
Progress in the axiomatic quantum field theory. [Review
Energy Technology Data Exchange (ETDEWEB)
Vladimirov, V S; Polivanov, M K
1975-01-01
The authors consider the development of mathematical methods of solving quantum field theory problems from attempts of simple perfection of usual methods of quantum mechanics by elaborating the methods of perturbation theory and S-matrix, by working out the perturbation theory for quantum electrodynamics, and by applying dispersion relations and S-matrix for strong interactions. The method of dispersion relations results in the majority of radically new ways of describing the scattering amplitude. The grave disadvantage of all the methods is that they little define the dynamics of processes. The dynamic theory in the Heisenberg representation may be constructed on the basis of the axiomatic theory of S-matrix with the casuality condition. Another axiomatic direction has been recently developed; that is the so-called algebraic axiomatics which makes use of methods of Csup(*)-algebras.
Three-dimensional N=6 superconformal field theories and their membrane dynamics
International Nuclear Information System (INIS)
Berenstein, David; Trancanelli, Diego
2008-01-01
We analyze several aspects of the recent construction of three-dimensional conformal gauge theories by Aharony et al. in various regimes. We pay special attention to understanding how the M-theory geometry and interpretation can be extracted from the analysis of the field theory. We revisit the calculations of the moduli space of vacua and the complete characterization of chiral ring operators by analyzing the field theory compactified on a 2-sphere. We show that many of the states dual to these operators can be interpreted as D-brane states in the weak-coupling limit. Also, various features of the dual AdS geometry can be obtained by performing a strong coupling expansion around moduli space configurations, even though one is not taking the planar expansion. In particular, we show that at strong coupling the corresponding weak-coupling D-brane states of the chiral ring localize on particular submanifolds of the dual geometry that match the M-theory interpretation. We also study the massive spectrum of fields in the moduli space. We use this to investigate the dispersion relation of giant magnons from the field theory point of view. Our analysis predicts the exact functional form of the dispersion relation as a function of the world sheet momentum, independently of integrability assumptions, but not the exact form with respect to the 't Hooft coupling. We also get the dispersion relation of bound states of giant magnons from first principles, providing evidence for the full integrability of the corresponding spin chain model at strong 't Hooft coupling.
Matrix models as non-commutative field theories on R3
International Nuclear Information System (INIS)
Livine, Etera R
2009-01-01
In the context of spin foam models for quantum gravity, group field theories are a useful tool allowing on the one hand a non-perturbative formulation of the partition function and on the other hand admitting an interpretation as generalized matrix models. Focusing on 2d group field theories, we review their explicit relation to matrix models and show their link to a class of non-commutative field theories invariant under a quantum-deformed 3d Poincare symmetry. This provides a simple relation between matrix models and non-commutative geometry. Moreover, we review the derivation of effective 2d group field theories with non-trivial propagators from Boulatov's group field theory for 3d quantum gravity. Besides the fact that this gives a simple and direct derivation of non-commutative field theories for the matter dynamics coupled to (3d) quantum gravity, these effective field theories can be expressed as multi-matrix models with a non-trivial coupling between matrices of different sizes. It should be interesting to analyze this new class of theories, both from the point of view of matrix models as integrable systems and for the study of non-commutative field theories.
High energy hadron dynamics based on a Stochastic-field multi-eikonal theory
International Nuclear Information System (INIS)
Arnold, R.C.
1977-06-01
Multi-eikonal theory, using a stoichastic-field representation for collective long range rapidity correlations, is developed and applied to the calculation of Regge pole parameters, high transverse momentum enhancements, and fluctuation patterns in rapidity densities. If a short-range-order model, such as the one-dimensional planar bootstrap, with only leading t-channel meson poles, is utilized as input to the multi-eikonal method, the pole spectrum is modified in three ways; promotion and renormalization of leading trajectories (suggesting an effective pomeron above unity at intermediate energies), and a proliferation of dynamical secondary trajectories, reminiscent of dual models. When transverse dimensions are included, the collective effects produce a growth with energy of large-P/sub tau/ inclusive cross-sections. Typical-event rapidity distributions, at energies of a few TeV, can be estimated by suitable approximations; the fluctuations give rise to ''domain'' patterns, which have the appearance of clusters separated by rapidity gaps. The relations between this approach to strong-interaction dynamics and a possible unification of weak, electromagnetic, and strong interactions are outlined
The general theory of quantized fields in the 1950s
International Nuclear Information System (INIS)
Wightman, A.S.
1989-01-01
This review describes developments in theoretical particle physics in the 1950s which were important in the race to develop a putative general theory of quantized fields, especially ideas that offered a mathematically rigorous theory. Basic theoretical concepts then available included the Hamiltonian formulation of quantum dynamics, canonical quantization, perturbative renormalization theory and the theory of distributions. Following a description of various important theoretical contributions of this era, the review ends with a summary of the most important contributions of axiomatic field theory to concrete physics applications. (UK)
International Nuclear Information System (INIS)
Eloranta, E.
2003-11-01
The geophysical field theory includes the basic principles of electromagnetism, continuum mechanics, and potential theory upon which the computational modelling of geophysical phenomena is based on. Vector analysis is the main mathematical tool in the field analyses. Electrostatics, stationary electric current, magnetostatics, and electrodynamics form a central part of electromagnetism in geophysical field theory. Potential theory concerns especially gravity, but also electrostatics and magnetostatics. Solid state mechanics and fluid mechanics are central parts in continuum mechanics. Also the theories of elastic waves and rock mechanics belong to geophysical solid state mechanics. The theories of geohydrology and mass transport form one central field theory in geophysical fluid mechanics. Also heat transfer is included in continuum mechanics. (orig.)
Modeling emotional dynamics : currency versus field.
Energy Technology Data Exchange (ETDEWEB)
Sallach, D .L.; Decision and Information Sciences; Univ. of Chicago
2008-08-01
Randall Collins has introduced a simplified model of emotional dynamics in which emotional energy, heightened and focused by interaction rituals, serves as a common denominator for social exchange: a generic form of currency, except that it is active in a far broader range of social transactions. While the scope of this theory is attractive, the specifics of the model remain unconvincing. After a critical assessment of the currency theory of emotion, a field model of emotion is introduced that adds expressiveness by locating emotional valence within its cognitive context, thereby creating an integrated orientation field. The result is a model which claims less in the way of motivational specificity, but is more satisfactory in modeling the dynamic interaction between cognitive and emotional orientations at both individual and social levels.
International Nuclear Information System (INIS)
Ryder, L.H.
1985-01-01
This introduction to the ideas and techniques of quantum field theory presents the material as simply as possible and is designed for graduate research students. After a brief survey of particle physics, the quantum theory of scalar and spinor fields and then of gauge fields, is developed. The emphasis throughout is on functional methods, which have played a large part in modern field theory. The book concludes with a bridge survey of ''topological'' objects in field theory and assumes a knowledge of quantum mechanics and special relativity
Correlation theory of crystal field and anisotropic exchange effects
DEFF Research Database (Denmark)
Lindgård, Per-Anker
1985-01-01
A general theory for including correlation effects in static and dynamic properties is presented in terms of Raccah or Stevens operators. It is explicitly developed for general crystal fields and anisotropic interactions and systems with several sublattices, like the rare earth compounds....... The theory gives explicitly a temperature dependent renormalization of both the crystal field and the interactions, and a damping of the excitations and in addition a central park component. The general theory is illustrated by a discussion of the singlet-doublet system. The correlation effects...
Wu, Sangwook
2009-03-01
We investigate dynamical self-arrest in a diblock copolymer melt using a replica approach within a self-consistent local method based on dynamical mean-field theory (DMFT). The local replica approach effectively predicts (chiN)_{A} for dynamical self-arrest in a block copolymer melt for symmetric and asymmetric cases. We discuss the competition of the cubic and quartic interactions in the Landau free energy for a block copolymer melt in stabilizing a glassy state depending on the chain length. Our local replica theory provides a universal value for the dynamical self-arrest in block copolymer melts with (chiN)_{A} approximately 10.5+64N;{-3/10} for the symmetric case.
Franklin, Joel
2017-01-01
Classical field theory, which concerns the generation and interaction of fields, is a logical precursor to quantum field theory, and can be used to describe phenomena such as gravity and electromagnetism. Written for advanced undergraduates, and appropriate for graduate level classes, this book provides a comprehensive introduction to field theories, with a focus on their relativistic structural elements. Such structural notions enable a deeper understanding of Maxwell's equations, which lie at the heart of electromagnetism, and can also be applied to modern variants such as Chern–Simons and Born–Infeld. The structure of field theories and their physical predictions are illustrated with compelling examples, making this book perfect as a text in a dedicated field theory course, for self-study, or as a reference for those interested in classical field theory, advanced electromagnetism, or general relativity. Demonstrating a modern approach to model building, this text is also ideal for students of theoretic...
Quantum field theory and the internal states of elementary particles
CSIR Research Space (South Africa)
Greben, JM
2011-01-01
Full Text Available A new application of quantum field theory is developed that gives a description of the internal dynamics of dressed elementary particles and predicts their masses. The fermionic and bosonic quantum fields are treated as interdependent fields...
Onset of dynamical chaos in topologically massive gauge theories
International Nuclear Information System (INIS)
Giansanti, A.; Simic, P.D.
1988-01-01
The onset of dynamical chaos is studied numerically in (2+1)-dimensional non-Abelian field theory with the Chern-Simons topological term. In the limit of strong fields, slowly varying in space (spatially homogeneous fields), this theory is an analog to a system of three charged particles moving in a plane in an orthogonal magnetic field and under the influence of a quartic potential. The ''phase transition'' (order chaos) is observed within a narrow energy range. The threshold of the transition depends on the sign of the angular momentum of the field reflecting parity violation in the underlying field theory. The transition region is investigated in some detail and the hyperfine structure of order-chaos-order-... transitions is observed suggesting the necessity of probabilistic description
Theory of gravitational-inertial field of universe. 1
International Nuclear Information System (INIS)
Davtyan, O.K.
1978-01-01
A generalization of the real world tensor by the introduction of a inertial field tensor is proposed. On the basis of variational equations a system of more general covariant equations of the gravitational-inertial field is obtained. In the Einstein approximation these equations reduce to the field equations of Einstein. The solution of fundamental problems in the general theory of relativity by means of the new equations gives the same results as the solution by means of Einstein's equations. However, application of these equations to the cosmologic problem gives a result different from that obtained by Friedmann's theory. In particular, the solution gives the Hubble law as the law of motion of a free body in the inertial field - in contrast to Galileo-Newton's law. (author)
Directory of Open Access Journals (Sweden)
Wilten eNicola
2016-02-01
Full Text Available A fundamental question in computational neuroscience is how to connect a network of spiking neurons to produce desired macroscopic or mean field dynamics. One possible approach is through the Neural Engineering Framework (NEF. The NEF approach requires quantities called decoders which are solved through an optimization problem requiring large matrix inversion. Here, we show how a decoder can be obtained analytically for type I and certain type II firing rates as a function of the heterogeneity of its associated neuron. These decoders generate approximants for functions that converge to the desired function in mean-squared error like 1/N, where N is the number of neurons in the network. We refer to these decoders as scale-invariant decoders due to their structure. These decoders generate weights for a network of neurons through the NEF formula for weights. These weights force the spiking network to have arbitrary and prescribed mean field dynamics. The weights generated with scale-invariant decoders all lie on low dimensional hypersurfaces asymptotically. We demonstrate the applicability of these scale-invariant decoders and weight surfaces by constructing networks of spiking theta neurons that replicate the dynamics of various well known dynamical systems such as the neural integrator, Van der Pol system and the Lorenz system. As these decoders are analytically determined and non-unique, the weights are also analytically determined and non-unique. We discuss the implications for measured weights of neuronal networks
Nicola, Wilten; Tripp, Bryan; Scott, Matthew
2016-01-01
A fundamental question in computational neuroscience is how to connect a network of spiking neurons to produce desired macroscopic or mean field dynamics. One possible approach is through the Neural Engineering Framework (NEF). The NEF approach requires quantities called decoders which are solved through an optimization problem requiring large matrix inversion. Here, we show how a decoder can be obtained analytically for type I and certain type II firing rates as a function of the heterogeneity of its associated neuron. These decoders generate approximants for functions that converge to the desired function in mean-squared error like 1/N, where N is the number of neurons in the network. We refer to these decoders as scale-invariant decoders due to their structure. These decoders generate weights for a network of neurons through the NEF formula for weights. These weights force the spiking network to have arbitrary and prescribed mean field dynamics. The weights generated with scale-invariant decoders all lie on low dimensional hypersurfaces asymptotically. We demonstrate the applicability of these scale-invariant decoders and weight surfaces by constructing networks of spiking theta neurons that replicate the dynamics of various well known dynamical systems such as the neural integrator, Van der Pol system and the Lorenz system. As these decoders are analytically determined and non-unique, the weights are also analytically determined and non-unique. We discuss the implications for measured weights of neuronal networks.
On Social Optima of Non-Cooperative Mean Field Games
Energy Technology Data Exchange (ETDEWEB)
Li, Sen; Zhang, Wei; Zhao, Lin; Lian, Jianming; Kalsi, Karanjit
2016-12-12
This paper studies the social optima in noncooperative mean-field games for a large population of agents with heterogeneous stochastic dynamic systems. Each agent seeks to maximize an individual utility functional, and utility functionals of different agents are coupled through a mean field term that depends on the mean of the population states/controls. The paper has the following contributions. First, we derive a set of control strategies for the agents that possess *-Nash equilibrium property, and converge to the mean-field Nash equilibrium as the population size goes to infinity. Second, we study the social optimal in the mean field game. We derive the conditions, termed the socially optimal conditions, under which the *-Nash equilibrium of the mean field game maximizes the social welfare. Third, a primal-dual algorithm is proposed to compute the *-Nash equilibrium of the mean field game. Since the *-Nash equilibrium of the mean field game is socially optimal, we can compute the equilibrium by solving the social welfare maximization problem, which can be addressed by a decentralized primal-dual algorithm. Numerical simulations are presented to demonstrate the effectiveness of the proposed approach.
Translationally invariant self-consistent field theories
International Nuclear Information System (INIS)
Shakin, C.M.; Weiss, M.S.
1977-01-01
We present a self-consistent field theory which is translationally invariant. The equations obtained go over to the usual Hartree-Fock equations in the limit of large particle number. In addition to deriving the dynamic equations for the self-consistent amplitudes we discuss the calculation of form factors and various other observables
Spin-lattice dynamics simulation of external field effect on magnetic order of ferromagnetic iron
Directory of Open Access Journals (Sweden)
C. P. Chui
2014-03-01
Full Text Available Modeling of field-induced magnetization in ferromagnetic materials has been an active topic in the last dozen years, yet a dynamic treatment of distance-dependent exchange integral has been lacking. In view of that, we employ spin-lattice dynamics (SLD simulations to study the external field effect on magnetic order of ferromagnetic iron. Our results show that an external field can increase the inflection point of the temperature. Also the model provides a better description of the effect of spin correlation in response to an external field than the mean-field theory. An external field has a more prominent effect on the long range magnetic order than on the short range counterpart. Furthermore, an external field allows the magnon dispersion curves and the uniform precession modes to exhibit magnetic order variation from their temperature dependence.
Dynamic random walks theory and applications
Guillotin-Plantard, Nadine
2006-01-01
The aim of this book is to report on the progress realized in probability theory in the field of dynamic random walks and to present applications in computer science, mathematical physics and finance. Each chapter contains didactical material as well as more advanced technical sections. Few appendices will help refreshing memories (if necessary!).· New probabilistic model, new results in probability theory· Original applications in computer science· Applications in mathematical physics· Applications in finance
Field theories with subcanonical fields
International Nuclear Information System (INIS)
Bigi, I.I.Y.
1976-01-01
The properties of quantum field theories with spinor fields of dimension less than the canonical value of 3/2 are studied. As a starting point for the application of common perturbation theory we look for the linear version of these theories. A gange-interaction is introduced and with the aid of power counting the renormalizability of the theory is shown. It follows that in the case of a spinor-field with negative dimension renormalization can only be attained if the interaction has a further symmetry. By this symmetry the theory is determined in an unequivocal way. The gange-interaction introduced in the theory leads to a spontaneous breakdown of scale invariance whereby masses are produced. At the same time the spinor-field operators can now be separated in two orthogonal sections with opposite norm. It is proposed to use the section with negative (positive) norm to describe hadrons (leptons) respectively. (orig./WL) [de
Towards a Dynamic Resource-Based View: Insights from Austrian capital and Entrepreneurship Theory
DEFF Research Database (Denmark)
Foss, Nicolai Juul; Ishikawa, Ibuki
The dominant view in the strategic management field is the resource-based view ("RBV"). It has often been observed that the RBV is lacking in the dynamic dimension. For example, processes of building competitive advantages by means of combining existing complementary resources in novel ways...... are not inquired into. We argue that the RBV may profitably draw on Austrian (Misesian) and Knightian insights in entrepreneurship and capital theory, particularly in its Lachmannian manifestation, in order to strengthen its dynamic components. We link the RBV and Austrian ideas in the context of the theory...... of complex systems pioneered by Herbert Simon. We draw a number of implications for strategic management from this synthesis, notably into resource value and sustainability of competitive advantage.JEL Code: B53, D21, L23, M1...
Ku, Wai Lim; Girvan, Michelle; Ott, Edward
2015-12-01
In this paper, we study dynamical systems in which a large number N of identical Landau-Stuart oscillators are globally coupled via a mean-field. Previously, it has been observed that this type of system can exhibit a variety of different dynamical behaviors. These behaviors include time periodic cluster states in which each oscillator is in one of a small number of groups for which all oscillators in each group have the same state which is different from group to group, as well as a behavior in which all oscillators have different states and the macroscopic dynamics of the mean field is chaotic. We argue that this second type of behavior is "extensive" in the sense that the chaotic attractor in the full phase space of the system has a fractal dimension that scales linearly with N and that the number of positive Lyapunov exponents of the attractor also scales linearly with N. An important focus of this paper is the transition between cluster states and extensive chaos as the system is subjected to slow adiabatic parameter change. We observe discontinuous transitions between the cluster states (which correspond to low dimensional dynamics) and the extensively chaotic states. Furthermore, examining the cluster state, as the system approaches the discontinuous transition to extensive chaos, we find that the oscillator population distribution between the clusters continually evolves so that the cluster state is always marginally stable. This behavior is used to reveal the mechanism of the discontinuous transition. We also apply the Kaplan-Yorke formula to study the fractal structure of the extensively chaotic attractors.
Black hole dynamics in Einstein-Maxwell-dilaton theory
Hirschmann, Eric W.; Lehner, Luis; Liebling, Steven L.; Palenzuela, Carlos
2018-03-01
We consider the properties and dynamics of black holes within a family of alternative theories of gravity, namely Einstein-Maxwell-dilaton theory. We analyze the dynamical evolution of individual black holes as well as the merger of binary black hole systems. We do this for a wide range of parameter values for the family of Einstein-Maxwell-dilaton theories, investigating, in the process, the stability of these black holes. We examine radiative degrees of freedom, explore the impact of the scalar field on the dynamics of merger, and compare with other scalar-tensor theories. We argue that the dilaton can largely be discounted in understanding merging binary systems and that the end states essentially interpolate between charged and uncharged, rotating black holes. For the relatively small charge values considered here, we conclude that these black hole systems will be difficult to distinguish from their analogs within General Relativity.
Field theory modelling of vortex tube entanglement in turbulent magnetohydrodynamics
International Nuclear Information System (INIS)
Moriconi, L.; Nobre, F.A. S.
2000-01-01
Full text follows: We study the dynamics of interacting closed vortex tubes in magnetohydrodynamics, in terms of a (1+1)-dimensional field theory derived within the context of the Martin-Siggia-Rose formalism. The fluid is stirred by large scale stochastic forces which affect smaller scales through foldings of the velocity and magnetic vortex tubes. Numerical computations are done by means of a length-preserving scheme, motivated by the usual self-induction approximation. In order to understand the origin of intermittency effects, we investigate the multifractal exponents for the equilibrium vortex tube configurations, as well as correlations developed between different tubes. (author)
Non-degeneracy, Mean Field Equations and the Onsager Theory of 2D Turbulence
Bartolucci, Daniele; Jevnikar, Aleks; Lee, Youngae; Yang, Wen
2018-04-01
The understanding of some large energy, negative specific heat states in the Onsager description of 2D turbulence seem to require the analysis of a subtle open problem about bubbling solutions of the mean field equation. Motivated by this application we prove that, under suitable non-degeneracy assumptions on the associated m-vortex Hamiltonian, the m-point bubbling solutions of the mean field equation are non-degenerate as well. Then we deduce that the Onsager mean field equilibrium entropy is smooth and strictly convex in the high energy regime on domains of second kind.
Self-consistent mean-field models for nuclear structure
International Nuclear Information System (INIS)
Bender, Michael; Heenen, Paul-Henri; Reinhard, Paul-Gerhard
2003-01-01
The authors review the present status of self-consistent mean-field (SCMF) models for describing nuclear structure and low-energy dynamics. These models are presented as effective energy-density functionals. The three most widely used variants of SCMF's based on a Skyrme energy functional, a Gogny force, and a relativistic mean-field Lagrangian are considered side by side. The crucial role of the treatment of pairing correlations is pointed out in each case. The authors discuss other related nuclear structure models and present several extensions beyond the mean-field model which are currently used. Phenomenological adjustment of the model parameters is discussed in detail. The performance quality of the SCMF model is demonstrated for a broad range of typical applications
Nonequilibrium molecular dynamics theory, algorithms and applications
Todd, Billy D
2017-01-01
Written by two specialists with over twenty-five years of experience in the field, this valuable text presents a wide range of topics within the growing field of nonequilibrium molecular dynamics (NEMD). It introduces theories which are fundamental to the field - namely, nonequilibrium statistical mechanics and nonequilibrium thermodynamics - and provides state-of-the-art algorithms and advice for designing reliable NEMD code, as well as examining applications for both atomic and molecular fluids. It discusses homogenous and inhomogenous flows and pays considerable attention to highly confined fluids, such as nanofluidics. In addition to statistical mechanics and thermodynamics, the book covers the themes of temperature and thermodynamic fluxes and their computation, the theory and algorithms for homogenous shear and elongational flows, response theory and its applications, heat and mass transport algorithms, applications in molecular rheology, highly confined fluids (nanofluidics), the phenomenon of slip and...
Generating functional of the mean field in quantum electrodynamics with non-stable vacuum
International Nuclear Information System (INIS)
Gitman, D.M.; Kuchin, V.A.
1981-01-01
Generating functional for calculating a mean field, in the case of unstable vacuum, in quantum field theory has been suggested. Continual representation for the generating functional of the mean field has been found in the case of quantum electrodynamics with an external field. Generating electron-positron pairs from vacuum [ru
A two-site mean field model of discontinuous dynamic recrystallization
International Nuclear Information System (INIS)
Bernard, P.; Bag, S.; Huang, K.; Loge, R.E.
2011-01-01
Highlights: → Discontinuous dynamic recrystallization (DDRX) is modelled at the grain scale. → The two-site mean field approach allows introducing topological information. → DDRX kinetics, flow stress curves and recrystallized grain size are well predicted. → Temperature, strain rate and initial grain size effects are successfully described. → Grain size dependence naturally emerges from the model and agrees with experiment. - Abstract: The paper describes a new model of discontinuous dynamic recrystallization (DDRX) which can operate in constant or variable thermomechanical conditions. The model considers the elementary physical phenomena at the grain scale such as strain hardening, recovery, grain boundary migration, and nucleation. The microstructure is represented through a set of representative grains defined by their size and dislocation density. It is linked to a constitutive law giving access to the polycrystal flow stress. Interaction between representative grains and the surrounding material is idealized using a two-site approach whereby two homogeneous equivalent media with different dislocation densities are considered. Topological information is incorporated into the model by prescribing the relative weight of these two equivalent media as a function of their volume fractions. This procedure allows accounting for the well-known necklace structures. The model is applied to the prediction of DDRX in 304 L stainless steel, with parameters identified using an inverse methodology based on a genetic algorithm. Results show good agreement with experimental data at different temperatures and strain rates, predicting recrystallization kinetics, recrystallized grain size and stress-strain curve. Parameters identified with one initial grain size lead to accurate results for another initial grain size without introducing any additional parameter.
Proceedings of the 5. Jorge Andre Swieca Summer School Field Theory and Particle Physics
International Nuclear Information System (INIS)
Eboli, O.J.P.; Gomes, M.; Santoro, A.
1989-01-01
Lectures on quantum field theories and particle physics are presented. The part of quantum field theories contains: constrained dynamics; Schroedinger representation in field theory; application of this representation to quantum fields in a Robertson-Walker space-time; Berry connection; problem of construction and classification of conformal field theories; lattice models; two-dimensional S matrices and conformal field theory for unifying perspective of Yang-Baxter algebras; parasupersymmetric quantum mechanics; introduction to string field theory; three dimensional gravity and two-dimensional parafermionic model. The part of particle physics contains: collider physics; strong interactions and use of strings in strong interactions. (M.C.K.)
Soliton excitations in a class of nonlinear field theory models
International Nuclear Information System (INIS)
Makhan'kov, V.G.; Fedyanin, V.K.
1985-01-01
Investigation results of nonlinear models of the field theory with a lagrangian are described. The theory includes models both with zero stable vacuum epsilon=1 and with condensate epsilon=-1 (of disturbed symmetry). Conditions of existence of particle-like solutions (PLS), stability of these solutions are investigated. Soliton dynamics is studied. PLS formfactors are calculated. Statistical mechanics of solitons is built and their dynamic structure factors are calculated
Dimensional analysis in field theory
International Nuclear Information System (INIS)
Stevenson, P.M.
1981-01-01
Dimensional Transmutation (the breakdown of scale invariance in field theories) is reconciled with the commonsense notions of Dimensional Analysis. This makes possible a discussion of the meaning of the Renormalisation Group equations, completely divorced from the technicalities of renormalisation. As illustrations, I describe some very farmiliar QCD results in these terms
Strong dynamics and lattice gauge theory
Schaich, David
In this dissertation I use lattice gauge theory to study models of electroweak symmetry breaking that involve new strong dynamics. Electroweak symmetry breaking (EWSB) is the process by which elementary particles acquire mass. First proposed in the 1960s, this process has been clearly established by experiments, and can now be considered a law of nature. However, the physics underlying EWSB is still unknown, and understanding it remains a central challenge in particle physics today. A natural possibility is that EWSB is driven by the dynamics of some new, strongly-interacting force. Strong interactions invalidate the standard analytical approach of perturbation theory, making these models difficult to study. Lattice gauge theory is the premier method for obtaining quantitatively-reliable, nonperturbative predictions from strongly-interacting theories. In this approach, we replace spacetime by a regular, finite grid of discrete sites connected by links. The fields and interactions described by the theory are likewise discretized, and defined on the lattice so that we recover the original theory in continuous spacetime on an infinitely large lattice with sites infinitesimally close together. The finite number of degrees of freedom in the discretized system lets us simulate the lattice theory using high-performance computing. Lattice gauge theory has long been applied to quantum chromodynamics, the theory of strong nuclear interactions. Using lattice gauge theory to study dynamical EWSB, as I do in this dissertation, is a new and exciting application of these methods. Of particular interest is non-perturbative lattice calculation of the electroweak S parameter. Experimentally S ≈ -0.15(10), which tightly constrains dynamical EWSB. On the lattice, I extract S from the momentum-dependence of vector and axial-vector current correlators. I created and applied computer programs to calculate these correlators and analyze them to determine S. I also calculated the masses
Cosmology from group field theory formalism for quantum gravity.
Gielen, Steffen; Oriti, Daniele; Sindoni, Lorenzo
2013-07-19
We identify a class of condensate states in the group field theory (GFT) formulation of quantum gravity that can be interpreted as macroscopic homogeneous spatial geometries. We then extract the dynamics of such condensate states directly from the fundamental quantum GFT dynamics, following the procedure used in ordinary quantum fluids. The effective dynamics is a nonlinear and nonlocal extension of quantum cosmology. We also show that any GFT model with a kinetic term of Laplacian type gives rise, in a semiclassical (WKB) approximation and in the isotropic case, to a modified Friedmann equation. This is the first concrete, general procedure for extracting an effective cosmological dynamics directly from a fundamental theory of quantum geometry.
Renormalization group study of scalar field theories
International Nuclear Information System (INIS)
Hasenfratz, A.; Hasenfratz, P.
1986-01-01
An approximate RG equation is derived and studied in scalar quantum field theories in d dimensions. The approximation allows for an infinite number of different couplings in the potential, but excludes interactions containing derivatives. The resulting non-linear partial differential equation can be studied by simple means. Both the gaussian and the non-gaussian fixed points are described qualitatively correctly by the equation. The RG flows in d=4 and the problem of defining an ''effective'' field theory are discussed in detail. (orig.)
The field theory approach to percolation processes
International Nuclear Information System (INIS)
Janssen, Hans-Karl; Taeuber, Uwe C.
2005-01-01
We review the field theory approach to percolation processes. Specifically, we focus on the so-called simple and general epidemic processes that display continuous non-equilibrium active to absorbing state phase transitions whose asymptotic features are governed, respectively, by the directed (DP) and dynamic isotropic percolation (dIP) universality classes. We discuss the construction of a field theory representation for these Markovian stochastic processes based on fundamental phenomenological considerations, as well as from a specific microscopic reaction-diffusion model realization. Subsequently we explain how dynamic renormalization group (RG) methods can be applied to obtain the universal properties near the critical point in an expansion about the upper critical dimensions d c = 4 (DP) and 6 (dIP). We provide a detailed overview of results for critical exponents, scaling functions, crossover phenomena, finite-size scaling, and also briefly comment on the influence of long-range spreading, the presence of a boundary, multispecies generalizations, coupling of the order parameter to other conserved modes, and quenched disorder
String theory or field theory?
International Nuclear Information System (INIS)
Marshakov, A.V.
2002-01-01
The status of string theory is reviewed, and major recent developments - especially those in going beyond perturbation theory in the string theory and quantum field theory frameworks - are analyzed. This analysis helps better understand the role and place of experimental phenomena, it is emphasized that there are some insurmountable problems inherent in it - notably the impossibility to formulate the quantum theory of gravity on its basis - which prevent it from being a fundamental physical theory of the world of microscopic distances. It is this task, the creation of such a theory, which string theory, currently far from completion, is expected to solve. In spite of its somewhat vague current form, string theory has already led to a number of serious results and greatly contributed to progress in the understanding of quantum field theory. It is these developments, which are our concern in this review [ru
International Nuclear Information System (INIS)
Prasad, R.
1975-01-01
Results of researches into Unified Field Theory over the past seven years are presented. The subject is dealt with in chapters entitled: the choice of affine connection, algebraic properties of the vector fields, field laws obtained from the affine connection based on the path integral method, application to quantum theory and cosmology, interpretation of physical theory in terms of geometry. (U.K.)
Infrared behavior of massless field theories
International Nuclear Information System (INIS)
Sapirstein, J.R.
1979-01-01
Typical infrared effects in several gauge field theories with massless particles are investigated in perturbation theory. It is first shown that divergences occurring in individual Feynman graphs arising from integrations over the long-wavelength modes of the fields cancel when the graphs are grouped together in a particular way, in a generalization of the Bloch-Nordsieck treatment of QED. As one of the requirements of finiteness is renormalization of the vector propagator off shell, the charge in these theories is not directly related to classical experiment. In an effort to find the meaning of charge the low-energy theorem is considered. Although in lowest order the graphs reproduce the Thompson limit, it is found that loop corrections are singular in the low-energy limit; a simple definition of the charge is thus precluded. Finally, the behavior of the quark color magnetic moment is treated. An apparent infrared singularity of this moment is shown to be due to an improper use of perturbation theory, and is removed and replaced with a finite, field-dependent moment, by use of Furry picture propagators
DEFF Research Database (Denmark)
Scheel, Merry Elisabeth; Pedersen, Birthe D.; Rosenkrands, Vibeke
2008-01-01
Nursing is often described from the point of view of either the natural or the human sciences. In contrast to this, the value foundation in Interactional nursing practice is understood from the point of view of the natural sciences as well as that of the human and social sciences. This article...... presents many-faceted practice-theory of nursing, which is situated in the dynamic field between these three sciences. The focus of the theory is on interaction and practice resulting in a caring practice. Here practice is based on Taylor's and MacIntyre's interpretation of this concept. Action in nursing...... is based on Habermas' three varied modes of action seen in the light of an understanding of the world as a system world and a life world. Nursing as an interactional practice-theory is presented with examples of interpretative nursing science, seen in the ethical action-oriented, socio-cultural framework...
International Nuclear Information System (INIS)
Mack, G.; Kalkreuter, T.; Palma, G.; Speh, M.
1992-05-01
Effective field theories encode the predictions of a quantum field theory at low energy. The effective theory has a fairly low utraviolet cutoff. As a result, loop corrections are small, at least if the effective action contains a term which is quadratic in the fields, and physical predictions can be read straight from the effective Lagrangean. Methods will be discussed how to compute an effective low energy action from a given fundamental action, either analytically or numerically, or by a combination of both methods. Basically, the idea is to integrate out the high frequency components of fields. This requires the choice of a 'blockspin', i.e. the specification af a low frequency field as a function of the fundamental fields. These blockspins will be fields of the effective field theory. The blockspin need not be a field of the same type as one of the fundamental fields, and it may be composite. Special features of blockspin in nonabelian gauge theories will be discussed in some detail. In analytical work and in multigrid updating schemes one needs interpolation kernels A from coarse to fine grid in addition to the averaging kernels C which determines the blockspin. A neural net strategy for finding optimal kernels is presented. Numerical methods are applicable to obtain actions of effective theories on lattices of finite volume. The special case of a 'lattice' with a single site (the constraint effective potential) is of particular interest. In a higgs model, the effective action reduces in this case to the free energy, considered as a function of a gauge covariant magnetization. Its shape determines the phase structure of the theory. Its loop expansion with and without gauge fields can be used to determine finite size corrections to numerical data. (orig.)
International Nuclear Information System (INIS)
Li Ming; Mai Zhenhong; Li Jianhua; Li Chaorong; Cui Shufan
1995-01-01
Based on the statistical theory of X-ray dynamical diffraction for thin films, the mosaicity of three types of semiconductor epitaxic layers has been investigated by analyzing their rocking curves by the X-ray double-crystal diffraction method. It is shown that the statistical theory can provide quantitative information on the mosaicity of the epitaxic layers such as the mean size and the mean disorientation of mosaic blocks in the layers. Some misunderstandings in interpreting experimental data are cleared up by taking into account the effect of diffuse scattering. It is emphasized that attempts to obtain structural parameters of specimens from their rocking curves by means of the Takagi-Taupin equations for coherent fields only are not strictly correct since diffuse scattering causes additional changes in the tails of the rocking curves. (orig.)
Exploring the Nature and Meaning of Theory in the Field of Neuroeducation Studies
Ali Nouri
2016-01-01
Neuroeducation is one of the most exciting research fields which is continually evolving. However, there is a need to develop its theoretical bases in connection to practice. The present paper is a starting attempt in this regard to provide a space from which to think about neuroeducational theory and invoke more investigation in this area. Accordingly, a comprehensive theory of neuroeducation could be defined as grouping or clustering of concepts and propositions that describe and explain th...
Rädler, K.-H.
This article elucidates the basic ideas of electrodynamics and magnetohydrodynamics of mean fields in turbulently moving conducting fluids. It is stressed that the connection of the mean electromotive force with the mean magnetic field and its first spatial derivatives is in general neither local nor instantaneous and that quite a few claims concerning pretended failures of the mean-field concept result from ignoring this aspect. In addition to the mean-field dynamo mechanisms of α2 and α Ω type several others are considered. Much progress in mean-field electrodynamics and magnetohydrodynamics results from the test-field method for calculating the coefficients that determine the connection of the mean electromotive force with the mean magnetic field. As an important example the memory effect in homogeneous isotropic turbulence is explained. In magnetohydrodynamic turbulence there is the possibility of a mean electromotive force that is primarily independent of the mean magnetic field and labeled as Yoshizawa effect. Despite of many efforts there is so far no convincing comprehensive theory of α quenching, that is, the reduction of the α effect with growing mean magnetic field, and of the saturation of mean-field dynamos. Steps toward such a theory are explained. Finally, some remarks on laboratory experiments with dynamos are made.
Majidi, M. A.; Umar, A. S.; Rusydi, A.
2017-04-01
TiO2 has, in recent years, become a hot subject as it holds a promise for spintronic application. Recent experimental study on anatase Ti1-x Ta x O2 (x ~ 0.05) thin films shows that the system changes from non-magnetic to ferromagnetic due to Ti vacancies that are formed when a small percentage of Ti atoms are substituted by Ta. Motivated by those results that reveal the ferromagnetic phase at room temperature, we conduct a theoretical study on the temperature-dependent magnetization and the Currie temperature of that system. We hypothesize that when several Ti vacancies are formed in the system, each of them induces a local magnetic moment, then such moments couple each other through Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, forming a ferromagnetic order. To study the temperature dependence of the magnetization and predict the Curie temperature, we construct a tight-binding based Hamiltonian for this system and use the method of dynamical mean-field theory to perform calculations for various temperatures. Our work is still preliminary. The model and method may need further improvement to be consistent with known existing facts. We present our preliminary results to show how the present model works.
The Modeling and Complexity of Dynamical Systems by Means of Computation and Information Theories
Directory of Open Access Journals (Sweden)
Robert Logozar
2011-12-01
Full Text Available We present the modeling of dynamical systems and finding of their complexity indicators by the use of concepts from computation and information theories, within the framework of J. P. Crutchfield's theory of ε-machines. A short formal outline of the ε-machines is given. In this approach, dynamical systems are analyzed directly from the time series that is received from a properly adjusted measuring instrument. The binary strings are parsed through the parse tree, within which morphologically and probabilistically unique subtrees or morphs are recognized as system states. The outline and precise interrelation of the information-theoretic entropies and complexities emanating from the model is given. The paper serves also as a theoretical foundation for the future presentation of the DSA program that implements the ε-machines modeling up to the stochastic finite automata level.
String cosmology. Large-field inflation in string theory
International Nuclear Information System (INIS)
Westphal, Alexander
2014-09-01
This is a short review of string cosmology. We wish to connect string-scale physics as closely as possible to observables accessible to current or near-future experiments. Our possible best hope to do so is a description of inflation in string theory. The energy scale of inflation can be as high as that of Grand Unification (GUT). If this is the case, this is the closest we can possibly get in energy scales to string-scale physics. Hence, GUT-scale inflation may be our best candidate phenomenon to preserve traces of string-scale dynamics. Our chance to look for such traces is the primordial gravitational wave, or tensor mode signal produced during inflation. For GUT-scale inflation this is strong enough to be potentially visible as a B-mode polarization of the cosmic microwave background (CMB). Moreover, a GUT-scale inflation model has a trans-Planckian excursion of the inflaton scalar field during the observable amount of inflation. Such large-field models of inflation have a clear need for symmetry protection against quantum corrections. This makes them ideal candidates for a description in a candidate fundamental theory like string theory. At the same time the need of large-field inflation models for UV completion makes them particularly susceptible to preserve imprints of their string-scale dynamics in the inflationary observables, the spectral index n s and the fractional tensor mode power r. Hence, we focus this review on axion monodromy inflation as a mechanism of large-field inflation in string theory.
1999-11-08
In these lectures I will build up the concept of field theory using the language of Feynman diagrams. As a starting point, field theory in zero spacetime dimensions is used as a vehicle to develop all the necessary techniques: path integral, Feynman diagrams, Schwinger-Dyson equations, asymptotic series, effective action, renormalization etc. The theory is then extended to more dimensions, with emphasis on the combinatorial aspects of the diagrams rather than their particular mathematical structure. The concept of unitarity is used to, finally, arrive at the various Feynman rules in an actual, four-dimensional theory. The concept of gauge-invariance is developed, and the structure of a non-abelian gauge theory is discussed, again on the level of Feynman diagrams and Feynman rules.
Hamiltonian truncation approach to quenches in the Ising field theory
Directory of Open Access Journals (Sweden)
T. Rakovszky
2016-10-01
Full Text Available In contrast to lattice systems where powerful numerical techniques such as matrix product state based methods are available to study the non-equilibrium dynamics, the non-equilibrium behaviour of continuum systems is much harder to simulate. We demonstrate here that Hamiltonian truncation methods can be efficiently applied to this problem, by studying the quantum quench dynamics of the 1+1 dimensional Ising field theory using a truncated free fermionic space approach. After benchmarking the method with integrable quenches corresponding to changing the mass in a free Majorana fermion field theory, we study the effect of an integrability breaking perturbation by the longitudinal magnetic field. In both the ferromagnetic and paramagnetic phases of the model we find persistent oscillations with frequencies set by the low-lying particle excitations not only for small, but even for moderate size quenches. In the ferromagnetic phase these particles are the various non-perturbative confined bound states of the domain wall excitations, while in the paramagnetic phase the single magnon excitation governs the dynamics, allowing us to capture the time evolution of the magnetisation using a combination of known results from perturbation theory and form factor based methods. We point out that the dominance of low lying excitations allows for the numerical or experimental determination of the mass spectra through the study of the quench dynamics.
Supersymmetry breaking through confining and dual theory gauge dynamics
International Nuclear Information System (INIS)
Csaki, C.; Massachusetts Inst. of Tech., Cambridge, MA; Randall, L.; Massachusetts Inst. of Tech., Cambridge, MA; Skiba, W.; Massachusetts Inst. of Tech., Cambridge, MA; Leigh, R.G.
1997-01-01
We show that theories in the confining, free magnetic, and conformal phases can break supersymmetry through dynamical effects. To illustrate this, we present theories based on the gauge groups SU(n) x SU(4) x U(1) and SU(n) x SU(5) x U(1) with the field content obtained by decomposing an SU(m) theory with an antisymmetric tensor and m - 4 antifundamentals. (orig.)
Deep inelastic lepton-nucleus scattering from the light-cone quantum field theory
International Nuclear Information System (INIS)
Boqiang Ma; Ji Sun
1990-01-01
We show that for deep inelastic lepton-nucleus scattering, the conditions which validate the impulse approximation are hardly satisfied when using ordinary instant form dynamics in the rest frame of the nucleus, whereas they are well satisfied when using instant form dynamics in the infinite-momentum frame, or using light-front form dynamics in an ordinary frame. Therefore a reliable theoretical treatment of deep inelastic lepton-nucleus scattering should be performed in the time-ordered perturbation theory in the infinite-momentum frame, or its equivalent, the light-cone perturbation theory in an ordinary frame. To this end, we extend the light-cone quantum field theory to the baryon-meson field to establish a relativistic composite model of nuclei. We then apply the impulse approximation to deep inelastic lepton-nucleus scattering in this model.(author)
The Global Approach to Quantum Field Theory
International Nuclear Information System (INIS)
Folacci, Antoine; Jensen, Bruce
2003-01-01
Thanks to its impressive success in the second half of the 20th century, both in high-energy physics and in critical phenomena, quantum field theory has enjoyed an abundant literature. We therefore greet yet another book on this subject with caution: what can a monograph on quantum field theory bring now that is new, either conceptually or pedagogically? But when it is written by a physicist such as Bryce DeWitt, who has made his own contribution to the collection of field theory books with The Global Approach to Quantum Field Theory, all suspicion is naturally abandoned. DeWitt has made a formidable contribution to various areas of physics: general relativity, the interpretation of quantum mechanics, and most of all the quantization of non-Abelian gauge theories and quantum gravity. In addition, his pedagogical publications, especially the Les Houches schools of 1963 and 1983, have had a great impact on quantum field theory. We must begin by alerting the potential readers of this book that it cannot be compared to any other book in the field. This uniqueness applies to both the scientific content and the way the ideas are presented. For DeWitt, a central concept of field theory is that of 'space of histories'. For a field varphi i defined on a given spacetime M, the set of all varphi i (x) for all x in all charts of M defines its history. It is the space Phi of all possible histories (dynamically allowed or not) of the fields defined on M which is called the 'pace of histories' by DeWitt. If only bosonic fields are considered, the space of histories is an infinite-dimensional manifold and if fermionic fields are also present, it must be viewed as an infinite-dimensional supermanifold. The fields can then be regarded as coordinates on these structures, and the geometrical notions of differentiation, metric, connections, measure, as well as the geodesics which can be defined on it, are of fundamental importance in the development of the formalism of quantum field
Polyacetylene and relativistic field-theory models
International Nuclear Information System (INIS)
Bishop, A.R.; Campbell, D.K.; Fesser, K.
1981-01-01
Connections between continuum, mean-field, adiabatic Peierls-Froehlich theory in the half-filled band limit and known field theory results are discussed. Particular attention is given to the phi 4 model and to the solvable N = 2 Gross-Neveu model. The latter is equivalent to the Peierls system at a static, semi-classical level. Based on this equivalence we note the prediction of both kink and polaron solitons in models of trans-(CH)/sub x/. Polarons in cis-(CH)/sub x/ are compared with those in the trans isomer. Optical absorption from polarons is described, and general experimental consequences of polarons in (CH)/sub x/ and other conjugated polymers is discussed
Quantum field theory in 2+1 dimensions
International Nuclear Information System (INIS)
Marino, E.C.
1998-01-01
An introductory review is made of many outstanding features of Quantum Field Theory formulated in three-dimensional spacetime. These include topological properties, the Huygens Principle, the Coulomb potential, topological excitations like vortices and skyrmions, dynamical mass generation, fractional spin and statistics, duality nd bosonization. Theories including the Maxwell-Chern-Simons, Abelian Higgs and C P 1 -Nonlinear Sigma Model are used to illustrate the different features. Applications to High-T c Superconductivity and to the Quantum Hall Effect are also presented. (author)
Linear–Quadratic Mean-Field-Type Games: A Direct Method
Directory of Open Access Journals (Sweden)
Tyrone E. Duncan
2018-02-01
Full Text Available In this work, a multi-person mean-field-type game is formulated and solved that is described by a linear jump-diffusion system of mean-field type and a quadratic cost functional involving the second moments, the square of the expected value of the state, and the control actions of all decision-makers. We propose a direct method to solve the game, team, and bargaining problems. This solution approach does not require solving the Bellman–Kolmogorov equations or backward–forward stochastic differential equations of Pontryagin’s type. The proposed method can be easily implemented by beginners and engineers who are new to the emerging field of mean-field-type game theory. The optimal strategies for decision-makers are shown to be in a state-and-mean-field feedback form. The optimal strategies are given explicitly as a sum of the well-known linear state-feedback strategy for the associated deterministic linear–quadratic game problem and a mean-field feedback term. The equilibrium cost of the decision-makers are explicitly derived using a simple direct method. Moreover, the equilibrium cost is a weighted sum of the initial variance and an integral of a weighted variance of the diffusion and the jump process. Finally, the method is used to compute global optimum strategies as well as saddle point strategies and Nash bargaining solution in state-and-mean-field feedback form.
Coherent states field theory in supramolecular polymer physics
Fredrickson, Glenn H.; Delaney, Kris T.
2018-05-01
In 1970, Edwards and Freed presented an elegant representation of interacting branched polymers that resembles the coherent states (CS) formulation of second-quantized field theory. This CS polymer field theory has been largely overlooked during the intervening period in favor of more conventional "auxiliary field" (AF) interacting polymer representations that form the basis of modern self-consistent field theory (SCFT) and field-theoretic simulation approaches. Here we argue that the CS representation provides a simpler and computationally more efficient framework than the AF approach for broad classes of reversibly bonding polymers encountered in supramolecular polymer science. The CS formalism is reviewed, initially for a simple homopolymer solution, and then extended to supramolecular polymers capable of forming reversible linkages and networks. In the context of the Edwards model of a non-reacting homopolymer solution and one and two-component models of telechelic reacting polymers, we discuss the structure of CS mean-field theory, including the equivalence to SCFT, and show how weak-amplitude expansions (random phase approximations) can be readily developed without explicit enumeration of all reaction products in a mixture. We further illustrate how to analyze CS field theories beyond SCFT at the level of Gaussian field fluctuations and provide a perspective on direct numerical simulations using a recently developed complex Langevin technique.
3D quantum gravity and effective noncommutative quantum field theory.
Freidel, Laurent; Livine, Etera R
2006-06-09
We show that the effective dynamics of matter fields coupled to 3D quantum gravity is described after integration over the gravitational degrees of freedom by a braided noncommutative quantum field theory symmetric under a kappa deformation of the Poincaré group.
International Nuclear Information System (INIS)
Bonara, L.; Cotta-Ramusino, P.; Rinaldi, M.
1987-01-01
It is well-known that type I and heterotic superstring theories have a zero mass spectrum which correspond to the field content of N=1 supergravity theory coupled to supersymmetric Yang-Mills theory in 10-D. The authors study the field theory ''per se'', in the hope that simple consistency requirements will determine the theory completely once one knows the field content inherited from string theory. The simplest consistency requirements are: N=1 supersymmetry; and absence of chiral anomalies. This is what the authors discuss in this paper here leaving undetermined the question of the range of validity of the resulting field theory. As is known, a model of N=1 supergravity (SUGRA) coupled to supersymmetric Yang-Mills (SYM) theory was known in the form given by Chapline and Manton. The coupling of SUGRA to SYM was determined by the definition of the ''field strength'' 3-form H in this paper
Electromagnetic Field Theory A Collection of Problems
Mrozynski, Gerd
2013-01-01
After a brief introduction into the theory of electromagnetic fields and the definition of the field quantities the book teaches the analytical solution methods of Maxwell’s equations by means of several characteristic examples. The focus is on static and stationary electric and magnetic fields, quasi stationary fields, and electromagnetic waves. For a deeper understanding, the many depicted field patterns are very helpful. The book offers a collection of problems and solutions which enable the reader to understand and to apply Maxwell’s theory for a broad class of problems including classical static problems right up to waveguide eigenvalue problems. Content Maxwell’s Equations - Electrostatic Fields - Stationary Current Distributions – Magnetic Field of Stationary Currents – Quasi Stationary Fields: Eddy Currents - Electromagnetic Waves Target Groups Advanced Graduate Students in Electrical Engineering, Physics, and related Courses Engineers and Physicists Authors Professor Dr.-Ing. Gerd Mrozynski...
Post-Newtonian celestial dynamics in cosmology: Field equations
Kopeikin, Sergei M.; Petrov, Alexander N.
2013-02-01
Post-Newtonian celestial dynamics is a relativistic theory of motion of massive bodies and test particles under the influence of relatively weak gravitational forces. The standard approach for development of this theory relies upon the key concept of the isolated astronomical system supplemented by the assumption that the background spacetime is flat. The standard post-Newtonian theory of motion was instrumental in the explanation of the existing experimental data on binary pulsars, satellite, and lunar laser ranging, and in building precise ephemerides of planets in the Solar System. Recent studies of the formation of large-scale structures in our Universe indicate that the standard post-Newtonian mechanics fails to describe more subtle dynamical effects in motion of the bodies comprising the astronomical systems of larger size—galaxies and clusters of galaxies—where the Riemann curvature of the expanding Friedmann-Lemaître-Robertson-Walker universe interacts with the local gravitational field of the astronomical system and, as such, cannot be ignored. The present paper outlines theoretical principles of the post-Newtonian mechanics in the expanding Universe. It is based upon the gauge-invariant theory of the Lagrangian perturbations of cosmological manifold caused by an isolated astronomical N-body system (the Solar System, a binary star, a galaxy, and a cluster of galaxies). We postulate that the geometric properties of the background manifold are described by a homogeneous and isotropic Friedmann-Lemaître-Robertson-Walker metric governed by two primary components—the dark matter and the dark energy. The dark matter is treated as an ideal fluid with the Lagrangian taken in the form of pressure along with the scalar Clebsch potential as a dynamic variable. The dark energy is associated with a single scalar field with a potential which is hold unspecified as long as the theory permits. Both the Lagrangians of the dark matter and the scalar field are
International Nuclear Information System (INIS)
Srivastava, Prem P.
1994-01-01
The Dirac procedure is used to construct the Hamiltonian formulation of the scalar field theory on the light-front. The theory is quantized and the mechanism of the spontaneous symmetry breaking in the front form and the instant form dynamics are compared. The phase transition in (φ 4 )2 theory is also discussed and found to be of the second order. (author). 36 refs
Astrophysical data analysis with information field theory
International Nuclear Information System (INIS)
Enßlin, Torsten
2014-01-01
Non-parametric imaging and data analysis in astrophysics and cosmology can be addressed by information field theory (IFT), a means of Bayesian, data based inference on spatially distributed signal fields. IFT is a statistical field theory, which permits the construction of optimal signal recovery algorithms. It exploits spatial correlations of the signal fields even for nonlinear and non-Gaussian signal inference problems. The alleviation of a perception threshold for recovering signals of unknown correlation structure by using IFT will be discussed in particular as well as a novel improvement on instrumental self-calibration schemes. IFT can be applied to many areas. Here, applications in in cosmology (cosmic microwave background, large-scale structure) and astrophysics (galactic magnetism, radio interferometry) are presented
Astrophysical data analysis with information field theory
Enßlin, Torsten
2014-12-01
Non-parametric imaging and data analysis in astrophysics and cosmology can be addressed by information field theory (IFT), a means of Bayesian, data based inference on spatially distributed signal fields. IFT is a statistical field theory, which permits the construction of optimal signal recovery algorithms. It exploits spatial correlations of the signal fields even for nonlinear and non-Gaussian signal inference problems. The alleviation of a perception threshold for recovering signals of unknown correlation structure by using IFT will be discussed in particular as well as a novel improvement on instrumental self-calibration schemes. IFT can be applied to many areas. Here, applications in in cosmology (cosmic microwave background, large-scale structure) and astrophysics (galactic magnetism, radio interferometry) are presented.
Astrophysical data analysis with information field theory
Energy Technology Data Exchange (ETDEWEB)
Enßlin, Torsten, E-mail: ensslin@mpa-garching.mpg.de [Max Planck Institut für Astrophysik, Karl-Schwarzschild-Straße 1, D-85748 Garching, Germany and Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, D-80539 München (Germany)
2014-12-05
Non-parametric imaging and data analysis in astrophysics and cosmology can be addressed by information field theory (IFT), a means of Bayesian, data based inference on spatially distributed signal fields. IFT is a statistical field theory, which permits the construction of optimal signal recovery algorithms. It exploits spatial correlations of the signal fields even for nonlinear and non-Gaussian signal inference problems. The alleviation of a perception threshold for recovering signals of unknown correlation structure by using IFT will be discussed in particular as well as a novel improvement on instrumental self-calibration schemes. IFT can be applied to many areas. Here, applications in in cosmology (cosmic microwave background, large-scale structure) and astrophysics (galactic magnetism, radio interferometry) are presented.
Field-strength formulation of gauge theories. The Hamiltonian approach in the Abelian theory
International Nuclear Information System (INIS)
Mendel, E.; Durand, L.
1984-01-01
We develop a Hamiltonian approach to the field-strength or dual formation of the Abelian gauge theory in which the potential A/sup μ/ is eliminated as a dynamical variable. Our work is based on the covariant gauge x/sup μ/A/sub μ/(x) = 0 which allows a simple elimination of A/sup μ/ in terms of the field strengths F/sup munu/. We obtain complete results for the generating functional for the Green's functions of the theory, Z = Z[f,g], where f and g are nonlocal currents coupled to E and B, and illustrate some unfamiliar aspects of the new formalism
Dynamics of Impurity and Valence Bands in Ga1-xMnxAs Within the Dynamical Mean-Field Approximation
International Nuclear Information System (INIS)
Majidi, M.A.; Moreno, Juana; Jarrell, Mark; Fishman, Randy Scott; Aryanpour, K.A.
2006-01-01
We calculate the density-of-states and the spectral function of Ga 1-x Mn x As within the dynamical mean-field approximation. Our model includes the competing effects of the strong spin-orbit coupling on the J=3/2 GaAs hole bands and the exchange interaction between the magnetic ions and the itinerant holes. We study the quasiparticle and impurity bands in the paramagnetic and ferromagnetic phases for different values of impurity-hole coupling J c at a Mn doping of x=0.05. By analyzing the anisotropic angular distribution of the impurity band carriers at T=0, we conclude that the carrier polarization is optimal when the carriers move along the direction parallel to the average magnetization.
Algebraic conformal field theory
International Nuclear Information System (INIS)
Fuchs, J.; Nationaal Inst. voor Kernfysica en Hoge-Energiefysica
1991-11-01
Many conformal field theory features are special versions of structures which are present in arbitrary 2-dimensional quantum field theories. So it makes sense to describe 2-dimensional conformal field theories in context of algebraic theory of superselection sectors. While most of the results of the algebraic theory are rather abstract, conformal field theories offer the possibility to work out many formulae explicitly. In particular, one can construct the full algebra A-bar of global observables and the endomorphisms of A-bar which represent the superselection sectors. Some explicit results are presented for the level 1 so(N) WZW theories; the algebra A-bar is found to be the enveloping algebra of a Lie algebra L-bar which is an extension of the chiral symmetry algebra of the WZW theory. (author). 21 refs., 6 figs
A real-time extension of density matrix embedding theory for non-equilibrium electron dynamics
Kretchmer, Joshua S.; Chan, Garnet Kin-Lic
2018-02-01
We introduce real-time density matrix embedding theory (DMET), a dynamical quantum embedding theory for computing non-equilibrium electron dynamics in strongly correlated systems. As in the previously developed static DMET, real-time DMET partitions the system into an impurity corresponding to the region of interest coupled to the surrounding environment, which is efficiently represented by a quantum bath of the same size as the impurity. In this work, we focus on a simplified single-impurity time-dependent formulation as a first step toward a multi-impurity theory. The equations of motion of the coupled impurity and bath embedding problem are derived using the time-dependent variational principle. The accuracy of real-time DMET is compared to that of time-dependent complete active space self-consistent field (TD-CASSCF) theory and time-dependent Hartree-Fock (TDHF) theory for a variety of quantum quenches in the single impurity Anderson model (SIAM), in which the Hamiltonian is suddenly changed (quenched) to induce a non-equilibrium state. Real-time DMET shows a marked improvement over the mean-field TDHF, converging to the exact answer even in the non-trivial Kondo regime of the SIAM. However, as expected from analogous behavior in static DMET, the constrained structure of the real-time DMET wavefunction leads to a slower convergence with respect to active space size, in the single-impurity formulation, relative to TD-CASSCF. Our initial results suggest that real-time DMET provides a promising framework to simulate non-equilibrium electron dynamics in which strong electron correlation plays an important role, and lays the groundwork for future multi-impurity formulations.
Generalized quantum mean-field systems and their application to ultracold atoms
International Nuclear Information System (INIS)
Trimborn-Witthaut, Friederike Annemarie
2011-01-01
-symmetric states and discuss their representation by quantum phase space distributions in terms of generalized coherent states. In particular, this allows for an explicit calculation of the evolution equations and bounds for the ground state energy. In the second part of this thesis we analyse the dynamics of ultracold atoms in optical lattices described by the Bose-Hubbard Hamiltonian, which provide an important example of the generalized quantum mean-field systems treated in the first part. In the mean-field limit the dynamics is described by the (discrete) Gross-Pitaevskii equation. We give a detailed analysis of the interplay between dissipation and strong interactions in different dynamical settings, where we especially focus on the relation between the mean-field description and the full many-particle dynamics given by a master equation. (orig.)
Vitale, Valerio; Dziedzic, Jacek; Albaugh, Alex; Niklasson, Anders M N; Head-Gordon, Teresa; Skylaris, Chris-Kriton
2017-03-28
Iterative energy minimization with the aim of achieving self-consistency is a common feature of Born-Oppenheimer molecular dynamics (BOMD) and classical molecular dynamics with polarizable force fields. In the former, the electronic degrees of freedom are optimized, while the latter often involves an iterative determination of induced point dipoles. The computational effort of the self-consistency procedure can be reduced by re-using converged solutions from previous time steps. However, this must be done carefully, as not to break time-reversal symmetry, which negatively impacts energy conservation. Self-consistent schemes based on the extended Lagrangian formalism, where the initial guesses for the optimized quantities are treated as auxiliary degrees of freedom, constitute one elegant solution. We report on the performance of two integration schemes with the same underlying extended Lagrangian structure, which we both employ in two radically distinct regimes-in classical molecular dynamics simulations with the AMOEBA polarizable force field and in BOMD simulations with the Onetep linear-scaling density functional theory (LS-DFT) approach. Both integration schemes are found to offer significant improvements over the standard (unpropagated) molecular dynamics formulation in both the classical and LS-DFT regimes.
Microcanonical quantum field theory
International Nuclear Information System (INIS)
Strominger, A.
1983-01-01
Euclidean quantum field theory is equivalent to the equilibrium statistical mechanics of classical fields in 4+1 dimensions at temperature h. It is well known in statistical mechanics that the theory of systems at fixed temperature is embedded within the more general and fundamental theory of systems at fixed energy. We therefore develop, in precise analogy, a fixed action (macrocanonical) formulation of quantum field theory. For the case of ordinary renormalizable field theories, we show (with one exception) that the microcanonical is entirely equivalent to the canonical formulation. That is, for some particular fixed value of the total action, the Green's functions of the microcanonical theory are equal, in the bulk limit, to those of the canonical theory. The microcanonical perturbation expansion is developed in some detail for lambdaphi 4 . The particular value of the action for which the two formulations are equivalent can be calculated to all orders in perturbation theory. We prove, using Lehmann's Theorem, that this value is one-half Planck unit per degree of freedom, if fermionic degrees of freedom are counted negatively. This is the 4+1 dimensional analog of the equipartition theorem. The one exception to this is supersymmetric theories. A microcanonical formulation exists if and only if supersymmetry is broken. In statistical mechanics and in field theory there are systems for which the canonical description is pathological, but the microcanonical is not. An example of such a field theory is found in one dimension. A semiclassical expansion of the microcanonical theory is well defined, while an expansion of the canonical theory is hoplessly divergent
Structural aspects of quantum field theory and noncommutative geometry
Grensing, Gerhard
2013-01-01
This book is devoted to the subject of quantum field theory. It is divided into two volumes. The first can serve as a textbook on the main techniques and results of quantum field theory, while the second treats more recent developments, in particular the subject of quantum groups and noncommutative geometry, and their interrelation. The first volume is directed at graduate students who want to learn the basic facts about quantum field theory. It begins with a gentle introduction to classical field theory, including the standard model of particle physics, general relativity, and also supergravity. The transition to quantized fields is performed with path integral techniques, by means of which the one-loop renormalization of a self-interacting scalar quantum field, of quantum electrodynamics, and the asymptotic freedom of quantum chromodynamics is treated. In the last part of the first volume, the application of path integral methods to systems of quantum statistical mechanics is covered. The book ends with a r...
Introduction to gauge field theory
International Nuclear Information System (INIS)
Bailin, D.; Love, A.
1986-01-01
This book provides a postgraduate level introduction to gauge field theory entirely from a path integral standpoint without any reliance on the more traditional method of canonical quantisation. The ideas are developed by quantising the self-interacting scalar field theory, and are then used to deal with all the gauge field theories relevant to particle physics, quantum electrodynamics, quantum chromodynamics, electroweak theory, grand unified theories, and field theories at non-zero temperature. The use of these theories to make precise experimental predictions requires the development of the renormalised theories. This book provides a knowledge of relativistic quantum mechanics, but not of quantum field theory. The topics covered form a foundation for a knowledge of modern relativistic quantum field theory, providing a comprehensive coverage with emphasis on the details of actual calculations rather than the phenomenology of the applications
Introduction to gauge field theory
International Nuclear Information System (INIS)
Bailin, David; Love, Alexander
1986-01-01
The book is intended as an introduction to gauge field theory for the postgraduate student of theoretical particle physics. The topics discussed in the book include: path integrals, classical and quantum field theory, scattering amplitudes, feynman rules, renormalisation, gauge field theories, spontaneous symmetry breaking, grand unified theory, and field theories at finite temperature. (UK)
Group field theory and simplicial quantum gravity
International Nuclear Information System (INIS)
Oriti, D
2010-01-01
We present a new group field theory for 4D quantum gravity. It incorporates the constraints that give gravity from BF theory and has quantum amplitudes with the explicit form of simplicial path integrals for first-order gravity. The geometric interpretation of the variables and of the contributions to the quantum amplitudes is manifest. This allows a direct link with other simplicial gravity approaches, like quantum Regge calculus, in the form of the amplitudes of the model, and dynamical triangulations, which we show to correspond to a simple restriction of the same.
Twisted conformal field theories and Morita equivalence
Energy Technology Data Exchange (ETDEWEB)
Marotta, Vincenzo [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' and INFN, Sezione di Napoli, Compl. universitario M. Sant' Angelo, Via Cinthia, 80126 Napoli (Italy); Naddeo, Adele [CNISM, Unita di Ricerca di Salerno and Dipartimento di Fisica ' E.R. Caianiello' , Universita degli Studi di Salerno, Via Salvador Allende, 84081 Baronissi (Italy); Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' , Compl. universitario M. Sant' Angelo, Via Cinthia, 80126 Napoli (Italy)], E-mail: adelenaddeo@yahoo.it
2009-04-01
The Morita equivalence for field theories on noncommutative two-tori is analysed in detail for rational values of the noncommutativity parameter {theta} (in appropriate units): an isomorphism is established between an Abelian noncommutative field theory (NCFT) and a non-Abelian theory of twisted fields on ordinary space. We focus on a particular conformal field theory (CFT), the one obtained by means of the m-reduction procedure [V. Marotta, J. Phys. A 26 (1993) 3481; V. Marotta, Mod. Phys. Lett. A 13 (1998) 853; V. Marotta, Nucl. Phys. B 527 (1998) 717; V. Marotta, A. Sciarrino, Mod. Phys. Lett. A 13 (1998) 2863], and show that it is the Morita equivalent of a NCFT. Finally, the whole m-reduction procedure is shown to be the image in the ordinary space of the Morita duality. An application to the physics of a quantum Hall fluid at Jain fillings {nu}=m/(2pm+1) is explicitly discussed in order to further elucidate such a correspondence and to clarify its role in the physics of strongly correlated systems. A new picture emerges, which is very different from the existing relationships between noncommutativity and many body systems [A.P. Polychronakos, arXiv: 0706.1095].
On the derivation of effective field theories
International Nuclear Information System (INIS)
Uzunov, Dimo I.
2004-12-01
A general self-consistency approach allows a thorough treatment of the corrections to the standard mean-field approximation (MFA). The natural extension of standard MFA with the help of cumulant expansion leads to a new point of view on the effective field theories. The proposed approach can be used for a systematic treatment of fluctuation effects of various length scales and, perhaps, for the development of a new coarse graining procedure. We outline and justify our method by some preliminary calculations. Concrete results are given for the critical temperature and the Landau parameters of the φ 4 -theory - the field counterpart of the Ising model. An important unresolved problem of the modern theory of phase transitions - the problem for the calculation of the true critical temperature, is considered within the framework of the present approach. A comprehensive description of the ground state properties of many-body systems is also demonstrated. (author)
Unified field theory with Einsteinian photons and heavy bosons as field quants
Energy Technology Data Exchange (ETDEWEB)
Treder, H J
1975-08-01
After discussing previously the classical electrodynamics which corresponds to the quantum electrodynamics with two sorts of photons (photons with zero rest mass and nonvanishing rest mass), the general field theory of a vector field A/sup v/ with two sorts if field quanta is given. It is shown that the postulate for the ''unity of the four-current'' determining the physical contents of this theory makes it possible to regard it as a classical ansatz of a unified theory of the electromagnetic and the weak interactions. From the ''unity of the currents'' results that the electrons are delta-like point-particles with a finite self-potential and finite field masses M = epsilon/sup 2//2 kc/sup -2/. The Compton wave-length of the heavy photons k/sup -1/ = h/mc has the meaning of an ''elementary length'' of the electromagnetic interactions and the rest mass m = khc/sup -1/ of these bosons is of the order of a baryon mass. (auth)
Baden Fuller, A J
2014-01-01
Engineering Field Theory focuses on the applications of field theory in gravitation, electrostatics, magnetism, electric current flow, conductive heat transfer, fluid flow, and seepage.The manuscript first ponders on electric flux, electrical materials, and flux function. Discussions focus on field intensity at the surface of a conductor, force on a charged surface, atomic properties, doublet and uniform field, flux tube and flux line, line charge and line sink, field of a surface charge, field intensity, flux density, permittivity, and Coulomb's law. The text then takes a look at gravitation
Dynamic pulsed-field-gradient NMR
Sørland, Geir Humborstad
2014-01-01
Dealing with the basics, theory and applications of dynamic pulsed-field-gradient NMR NMR (PFG NMR), this book describes the essential theory behind diffusion in heterogeneous media that can be combined with NMR measurements to extract important information of the system being investigated. This information could be the surface to volume ratio, droplet size distribution in emulsions, brine profiles, fat content in food stuff, permeability/connectivity in porous materials and medical applications currently being developed. Besides theory and applications it will provide the readers with background knowledge on the experimental set-ups, and most important, deal with the pitfalls that are numerously present in work with PFG-NMR. How to analyze the NMR data and some important basic knowledge on the hardware will be explained, too.
Two-dimensional models in statistical mechanics and field theory
International Nuclear Information System (INIS)
Koberle, R.
1980-01-01
Several features of two-dimensional models in statistical mechanics and Field theory, such as, lattice quantum chromodynamics, Z(N), Gross-Neveu and CP N-1 are discussed. The problems of confinement and dynamical mass generation are also analyzed. (L.C.) [pt
Fast-forward of quantum adiabatic dynamics in electro-magnetic field
Masuda, Shumpei; Nakamura, Katsuhiro
2010-01-01
We show a method to accelerate quantum adiabatic dynamics of wavefunctions under electro-magnetic field by developing the previous theory (Masuda & Nakamura 2008 and 2010). Firstly we investigate the orbital dynamics of a charged particle. We derive the driving field which accelerates quantum adiabatic dynamics in order to obtain the final adiabatic states except for the spatially uniform phase such as the adiabatic phase in any desired short time. Fast-forward of adiabatic squeezing and tran...
New ideas about unified field theory
International Nuclear Information System (INIS)
Gleiser, M.
1986-01-01
An outline of the physical concepts evolution is given from the ancient philosophers to the present time. With qualitative explanations about the meaning of the theories that is the milestones of these concepts evolution, it mentions the ideas which lead the studies to the conception of a unified field theory. Chronologically, it has brief information about the ideas of Laplace (mechanical determinism), Maxwell (the field concept), Einsten (the space-time structure), Heisenberg and Schroedinger (the quantum mechanics), Dirac (the relativistic quantum and the antiparticles), Gell-Mann (the quarks), Weinberg-Salam (Weak interactions and eletromagnetic unification), H. Georgi and S. Glashon (strong interactions plus Weinberg-Salam), Kaluza-Klein (a fifth space-time coordinate), and Zumino-Weiss (supersymmetry and supergravity). (G.D.F.) [pt
Mandl, Franz
2010-01-01
Following on from the successful first (1984) and revised (1993) editions, this extended and revised text is designed as a short and simple introduction to quantum field theory for final year physics students and for postgraduate students beginning research in theoretical and experimental particle physics. The three main objectives of the book are to: Explain the basic physics and formalism of quantum field theory To make the reader proficient in theory calculations using Feynman diagrams To introduce the reader to gauge theories, which play a central role in elementary particle physic
Unitarity condition in covariant quantum field theory with indefinite metric
International Nuclear Information System (INIS)
Slavnov, A.A.
1989-01-01
Conditions that ensure the existence of a unitarity S matrix acting on the subspace of states with positive norm are formulated. A study is made of BRST quantization. The only restriction on the class of theories is that the author assumes asymptotic linearization of the theory, namely, that the asymptotic dynamics is determined by a quadratic Hamiltonian. In field theory this is always the case in the framework of standard perturbation theory. However, in some models, for example, string models, and also outside the framework of perturbation theory, this condition need not be satisfied
Water Bridging Dynamics of Polymerase Chain Reaction in the Gauge Theory Paradigm of Quantum Fields
Directory of Open Access Journals (Sweden)
L. Montagnier
2017-05-01
Full Text Available We discuss the role of water bridging the DNA-enzyme interaction by resorting to recent results showing that London dispersion forces between delocalized electrons of base pairs of DNA are responsible for the formation of dipole modes that can be recognized by Taq polymerase. We describe the dynamic origin of the high efficiency and precise targeting of Taq activity in PCR. The spatiotemporal distribution of interaction couplings, frequencies, amplitudes, and phase modulations comprise a pattern of fields which constitutes the electromagnetic image of DNA in the surrounding water, which is what the polymerase enzyme actually recognizes in the DNA water environment. The experimental realization of PCR amplification, achieved through replacement of the DNA template by the treatment of pure water with electromagnetic signals recorded from viral and bacterial DNA solutions, is found consistent with the gauge theory paradigm of quantum fields.
Energy Technology Data Exchange (ETDEWEB)
Bergshoeff, Eric A. [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Hohm, Olaf [Simons Center for Geometry and Physics, Stony Brook University,Stony Brook, NY 11794-3636 (United States); Penas, Victor A. [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Riccioni, Fabio [INFN - Sezione di Roma, Dipartimento di Fisica, Università di Roma “La Sapienza”,Piazzale Aldo Moro 2, 00185 Roma (Italy)
2016-06-06
We present the dual formulation of double field theory at the linearized level. This is a classically equivalent theory describing the duals of the dilaton, the Kalb-Ramond field and the graviton in a T-duality or O(D,D) covariant way. In agreement with previous proposals, the resulting theory encodes fields in mixed Young-tableau representations, combining them into an antisymmetric 4-tensor under O(D,D). In contrast to previous proposals, the theory also requires an antisymmetric 2-tensor and a singlet, which are not all pure gauge. The need for these additional fields is analogous to a similar phenomenon for “exotic' dualizations, and we clarify this by comparing with the dualizations of the component fields. We close with some speculative remarks on the significance of these observations for the full non-linear theory yet to be constructed.
Relativistic field theory of neutron stars and their hyperon populations
International Nuclear Information System (INIS)
Glendenning, N.K.
1986-01-01
The nuclear many-body problem is examined by means of the formulation of an effective relativistic field theory of interacting hadrons. A relativistic field theory of hadronic matter is especially appropriate for the description of hot or dense matter, because of the appearance of antiparticles and higher baryon resonances and because it automatically respects causality. 8 refs., 7 figs., 1 tab
Nonlocal continuum field theories
2002-01-01
Nonlocal continuum field theories are concerned with material bodies whose behavior at any interior point depends on the state of all other points in the body -- rather than only on an effective field resulting from these points -- in addition to its own state and the state of some calculable external field. Nonlocal field theory extends classical field theory by describing the responses of points within the medium by functionals rather than functions (the "constitutive relations" of classical field theory). Such considerations are already well known in solid-state physics, where the nonlocal interactions between the atoms are prevalent in determining the properties of the material. The tools developed for crystalline materials, however, do not lend themselves to analyzing amorphous materials, or materials in which imperfections are a major part of the structure. Nonlocal continuum theories, by contrast, can describe these materials faithfully at scales down to the lattice parameter. This book presents a unif...
Morse theory interpretation of topological quantum field theories
International Nuclear Information System (INIS)
Labastida, J.M.F.
1989-01-01
Topological quantum field theories are interpreted as a generalized form of Morse theory. This interpretation is applied to formulate the simplest topological quantum field theory: Topological quantum mechanics. The only non-trivial topological invariant corresponding to this theory is computed and identified with the Euler characteristic. Using field theoretical methods this topological invariant is calculated in different ways and in the process a proof of the Gauss-Bonnet-Chern-Avez formula as well as some results of degenerate Morse theory are obtained. (orig.)
Axiomatic conformal field theory
International Nuclear Information System (INIS)
Gaberdiel, M.R.; Goddard, P.
2000-01-01
A new rigourous approach to conformal field theory is presented. The basic objects are families of complex-valued amplitudes, which define a meromorphic conformal field theory (or chiral algebra) and which lead naturally to the definition of topological vector spaces, between which vertex operators act as continuous operators. In fact, in order to develop the theory, Moebius invariance rather than full conformal invariance is required but it is shown that every Moebius theory can be extended to a conformal theory by the construction of a Virasoro field. In this approach, a representation of a conformal field theory is naturally defined in terms of a family of amplitudes with appropriate analytic properties. It is shown that these amplitudes can also be derived from a suitable collection of states in the meromorphic theory. Zhu's algebra then appears naturally as the algebra of conditions which states defining highest weight representations must satisfy. The relationship of the representations of Zhu's algebra to the classification of highest weight representations is explained. (orig.)
International Nuclear Information System (INIS)
Woo, Taeho
2012-01-01
Highlights: ► The popularity of AM is analyzed by the social network theory. ► The graphical and colorful configurations are used for the meaning of the incident. ► The new industrial field is quantified by dynamical investigations. ► AM can be successfully used in nuclear industry for technology innovation. ► The method could be used for other industries. - Abstract: The technology evolution is investigated. The proposed Atomic Multinology (AM) is quantified by the dynamical method incorporated with Monte-Carlo method. There are three kinds of the technologies as the info-technology (IT), nano-technology (NT), and bio-technology (BT), which are applied to the nuclear technology. AM is initiated and modeled for the dynamic quantifications. The social network algorithm is used in the dynamical simulation for the management of the projects. The result shows that the successfulness of the AM increases, where the 60 years are the investigated period. The values of the dynamical simulation increase in later stage, which means that the technology is matured as time goes on.
Gomes, Diogo A.
2014-01-06
In this talk we will report on new results concerning the existence of smooth solutions for time dependent mean-field games. This new result is established through a combination of various tools including several a-priori estimates for time-dependent mean-field games combined with new techniques for the regularity of Hamilton-Jacobi equations.
Gomes, Diogo A.
2014-01-01
In this talk we will report on new results concerning the existence of smooth solutions for time dependent mean-field games. This new result is established through a combination of various tools including several a-priori estimates for time-dependent mean-field games combined with new techniques for the regularity of Hamilton-Jacobi equations.
Light-front field theory in the description of hadrons
Directory of Open Access Journals (Sweden)
Ji Chueng-Ryong
2017-01-01
Full Text Available We discuss the use of light-front field theory in the descriptions of hadrons. In particular, we clarify the confusion in the prevailing notion of the equivalence between the infinite momentum frame and the light-front dynamics and the advantage of the light-front dynamics in hadron physics. As an application, we present our recent work on the flavor asymmetry in the proton sea and identify the presence of the delta-function contributions associated with end-point singularities arising from the chiral effective theory calculation. The results pave the way for phenomenological applications of pion cloud models that are manifestly consistent with the chiral symmetry properties of QCD.
Light-front field theory in the description of hadrons
Ji, Chueng-Ryong
2017-03-01
We discuss the use of light-front field theory in the descriptions of hadrons. In particular, we clarify the confusion in the prevailing notion of the equivalence between the infinite momentum frame and the light-front dynamics and the advantage of the light-front dynamics in hadron physics. As an application, we present our recent work on the flavor asymmetry in the proton sea and identify the presence of the delta-function contributions associated with end-point singularities arising from the chiral effective theory calculation. The results pave the way for phenomenological applications of pion cloud models that are manifestly consistent with the chiral symmetry properties of QCD.
C*-algebraic scattering theory and explicitly solvable quantum field theories
International Nuclear Information System (INIS)
Warchall, H.A.
1985-01-01
A general theoretical framework is developed for the treatment of a class of quantum field theories that are explicitly exactly solvable, but require the use of C*-algebraic techniques because time-dependent scattering theory cannot be constructed in any one natural representation of the observable algebra. The purpose is to exhibit mechanisms by which inequivalent representations of the observable algebra can arise in quantum field theory, in a setting free of other complications commonly associated with the specification of dynamics. One of two major results is the development of necessary and sufficient conditions for the concurrent unitary implementation of two automorphism groups in a class of quasifree representations of the algebra of the canonical commutation relations (CCR). The automorphism groups considered are induced by one-parameter groups of symplectic transformations on the classical phase space over which the Weyl algebra of the CCR is built; each symplectic group is conjugate by a fixed symplectic transformation to a one-parameter unitary group. The second result, an analog to the Birman--Belopol'skii theorem in two-Hilbert-space scattering theory, gives sufficient conditions for the existence of Moller wave morphisms in theories with time-development automorphism groups of the above type. In a paper which follows, this framework is used to analyze a particular model system for which wave operators fail to exist in any natural representation of the observable algebra, but for which wave morphisms and an associated S matrix are easily constructed
On the cluster propagator in quantum field theory
International Nuclear Information System (INIS)
Mogilevskij, O.A.
1983-01-01
The problem is discussed whether it is possible to describe the multiple production processes within the framework of nonlocal quantum field theory. The interaction between the cluster field and the field of scalar particles is introduced. By means of summing up a definite class of Feynman diagrams the cluster propagator with the decreasing imaginary part containing the information about the hadron mass spectrum is obtained
Enforced Scale Selection in Field Theories of Mechanical and Biological Systems
DEFF Research Database (Denmark)
Tarp, Jens Magelund
The collective motion of driven or self-propelled interacting units is in many natural systems known to produce complex patterns. This thesis considers two continuum field theories commonly used in describing pattern formation and dynamics: The first one, the phase field crystal model, which...
Electricity Market Stochastic Dynamic Model and Its Mean Stability Analysis
Directory of Open Access Journals (Sweden)
Zhanhui Lu
2014-01-01
Full Text Available Based on the deterministic dynamic model of electricity market proposed by Alvarado, a stochastic electricity market model, considering the random nature of demand sides, is presented in this paper on the assumption that generator cost function and consumer utility function are quadratic functions. The stochastic electricity market model is a generalization of the deterministic dynamic model. Using the theory of stochastic differential equations, stochastic process theory, and eigenvalue techniques, the determining conditions of the mean stability for this electricity market model under small Gauss type random excitation are provided and testified theoretically. That is, if the demand elasticity of suppliers is nonnegative and the demand elasticity of consumers is negative, then the stochastic electricity market model is mean stable. It implies that the stability can be judged directly by initial data without any computation. Taking deterministic electricity market data combined with small Gauss type random excitation as numerical samples to interpret random phenomena from a statistical perspective, the results indicate the conclusions above are correct, valid, and practical.
Hamiltonian Anomalies from Extended Field Theories
Monnier, Samuel
2015-09-01
We develop a proposal by Freed to see anomalous field theories as relative field theories, namely field theories taking value in a field theory in one dimension higher, the anomaly field theory. We show that when the anomaly field theory is extended down to codimension 2, familiar facts about Hamiltonian anomalies can be naturally recovered, such as the fact that the anomalous symmetry group admits only a projective representation on the Hilbert space, or that the latter is really an abelian bundle gerbe over the moduli space. We include in the discussion the case of non-invertible anomaly field theories, which is relevant to six-dimensional (2, 0) superconformal theories. In this case, we show that the Hamiltonian anomaly is characterized by a degree 2 non-abelian group cohomology class, associated to the non-abelian gerbe playing the role of the state space of the anomalous theory. We construct Dai-Freed theories, governing the anomalies of chiral fermionic theories, and Wess-Zumino theories, governing the anomalies of Wess-Zumino terms and self-dual field theories, as extended field theories down to codimension 2.
N = 1 SU(2) supersymmetric Yang-Mills theory on the lattice with light dynamical Wilson gluinos
International Nuclear Information System (INIS)
Demmouche, Kamel
2009-01-01
The supersymmetric Yang-Mills (SYM) theory with one supercharge (N=1) and one additional Majorana matter-field represents the simplest model of supersymmetric gauge theory. Similarly to QCD, this model includes gauge fields, gluons, with color gauge group SU(N c ) and fermion fields, describing the gluinos. The non-perturbative dynamical features of strongly coupled supersymmetric theories are of great physical interest. For this reason, many efforts are dedicated to their formulation on the lattice. The lattice regularization provides a powerful tool to investigate non-perturbatively the phenomena occurring in SYM such as confinement and chiral symmetry breaking. In this work we perform numerical simulations of the pure SU(2) SYM theory on large lattices with small Majorana gluino masses down to about m g approx 115 MeV with lattice spacing up to a ≅0.1 fm. The gluino dynamics is simulated by the Two-Step Multi-Boson (TSMB) and the Two-Step Polynomial Hybrid Monte Carlo (TS-PHMC) algorithms. Supersymmetry (SUSY) is broken explicitly by the lattice and the Wilson term and softly by the presence of a non-vanishing gluino mass m g ≠0. However, the recovery of SUSY is expected in the infinite volume continuum limit by tuning the bare parameters to the SUSY point in the parameter space. This scenario is studied by the determination of the low-energy mass spectrum and by means of lattice SUSY Ward-Identities (WIs). (orig.)
Pezzotti, Simone; Serva, Alessandra; Gaigeot, Marie-Pierre
2018-05-01
Following our previous work where the existence of a special 2-Dimensional H-Bond (2D-HB)-Network was revealed at the air-water interface [S. Pezzotti et al., J. Phys. Chem. Lett. 8, 3133 (2017)], we provide here a full structural and dynamical characterization of this specific arrangement by means of both Density Functional Theory based and Force Field based molecular dynamics simulations. We show in particular that water at the interface with air reconstructs to maximize H-Bonds formed between interfacial molecules, which leads to the formation of an extended and non-interrupted 2-Dimensional H-Bond structure involving on average ˜90% of water molecules at the interface. We also show that the existence of such an extended structure, composed of H-Bonds all oriented parallel to the surface, constrains the reorientional dynamics of water that is hence slower at the interface than in the bulk. The structure and dynamics of the 2D-HB-Network provide new elements to possibly rationalize several specific properties of the air-water interface, such as water surface tension, anisotropic reorientation of interfacial water under an external field, and proton hopping.
Density dependent hadron field theory
International Nuclear Information System (INIS)
Fuchs, C.; Lenske, H.; Wolter, H.H.
1995-01-01
A fully covariant approach to a density dependent hadron field theory is presented. The relation between in-medium NN interactions and field-theoretical meson-nucleon vertices is discussed. The medium dependence of nuclear interactions is described by a functional dependence of the meson-nucleon vertices on the baryon field operators. As a consequence, the Euler-Lagrange equations lead to baryon rearrangement self-energies which are not obtained when only a parametric dependence of the vertices on the density is assumed. It is shown that the approach is energy-momentum conserving and thermodynamically consistent. Solutions of the field equations are studied in the mean-field approximation. Descriptions of the medium dependence in terms of the baryon scalar and vector density are investigated. Applications to infinite nuclear matter and finite nuclei are discussed. Density dependent coupling constants obtained from Dirac-Brueckner calculations with the Bonn NN potentials are used. Results from Hartree calculations for energy spectra, binding energies, and charge density distributions of 16 O, 40,48 Ca, and 208 Pb are presented. Comparisons to data strongly support the importance of rearrangement in a relativistic density dependent field theory. Most striking is the simultaneous improvement of charge radii, charge densities, and binding energies. The results indicate the appearance of a new ''Coester line'' in the nuclear matter equation of state
Versatility of field theory motivated nuclear effective Lagrangian approach
International Nuclear Information System (INIS)
Arumugam, P.; Sharma, B.K.; Sahu, P.K.; Patra, S.K.; Sil, Tapas; Centelles, M.; Vinas, X.
2004-01-01
We analyze the results for infinite nuclear and neutron matter using the standard relativistic mean field model and its recent effective field theory motivated generalization. For the first time, we show quantitatively that the inclusion in the effective theory of vector meson self-interactions and scalar-vector cross-interactions explains naturally the recent experimental observations of the softness of the nuclear equation of state, without losing the advantages of the standard relativistic model for finite nuclei
[Studies in quantum field theory: Progress report, April 1, 1991--March 31, 1992
International Nuclear Information System (INIS)
Bender, C.M.
1992-01-01
Professors Bender, Bernard, and Shrauner, Assistant Professors Ogilvie and Goltermann, Research Assistant Professors Visser and Petcher, and Research Associate Rivas are currently conducting research in many areas of high energy theoretical and mathematical physics. These areas include: lattice gauge calculations of masses and weak matrix elements; strong-coupling approximation; low-energy effective field theories; classical solutions of non-Abelian gauge theories; mean-field approximation in quantum field theory; path integral and coherent state representations in quantum field theory; the nature of perturbation theory in large order; quark condensation in QCD; chiral fermion theories on the lattice; the 1/N expansion in quantum field theory; effective potential and action in quantum field theories, including QCD; studies of the early universe and inflation; quantum gravity. This work is described in detail in the body of this proposal
Energy Technology Data Exchange (ETDEWEB)
Ertaş, Mehmet, E-mail: mehmetertas@erciyes.edu.tr; Keskin, Mustafa
2015-08-15
Herein we study the dynamic phase transition properties for the mixed spin-(1/2, 1) Ising model on a square lattice under a time-dependent magnetic field by means of the effective-field theory (EFT) with correlations based on Glauber dynamics. We present the dynamic phase diagrams in the reduced magnetic field amplitude and reduced temperature plane and find that the phase diagrams exhibit dynamic tricitical behavior, multicritical and zero-temperature critical points as well as reentrant behavior. We also investigate the influence of frequency (ω) and observe that for small values of ω the mixed phase disappears, but for high values it appears and the system displays reentrant behavior as well as a critical end point. - Highlights: • Dynamic behaviors of a ferrimagnetic mixed spin (1/2, 1) Ising system are studied. • We examined the effects of the Hamiltonian parameters on the dynamic behaviors. • The phase diagrams are obtained in (T-h) plane. • The dynamic phase diagrams exhibit the dynamic tricritical and reentrant behaviors.
International Nuclear Information System (INIS)
Ertaş, Mehmet; Keskin, Mustafa
2015-01-01
Herein we study the dynamic phase transition properties for the mixed spin-(1/2, 1) Ising model on a square lattice under a time-dependent magnetic field by means of the effective-field theory (EFT) with correlations based on Glauber dynamics. We present the dynamic phase diagrams in the reduced magnetic field amplitude and reduced temperature plane and find that the phase diagrams exhibit dynamic tricitical behavior, multicritical and zero-temperature critical points as well as reentrant behavior. We also investigate the influence of frequency (ω) and observe that for small values of ω the mixed phase disappears, but for high values it appears and the system displays reentrant behavior as well as a critical end point. - Highlights: • Dynamic behaviors of a ferrimagnetic mixed spin (1/2, 1) Ising system are studied. • We examined the effects of the Hamiltonian parameters on the dynamic behaviors. • The phase diagrams are obtained in (T-h) plane. • The dynamic phase diagrams exhibit the dynamic tricritical and reentrant behaviors
Alternative interpretation for the moduli fields of string theories
Energy Technology Data Exchange (ETDEWEB)
Matos, Tonatiuh [Departamento de Fisica, CINVESTAV, A.P. 14-740, 07000 Mexico D.F. (Mexico); Luevano, Jose-Ruben [Departamento de Ciencias Basicas, UAM-A, C.P. 02200 Mexico, D.F. (Mexico); Urena-Lopez, L Arturo [Instituto de Fisica, IFUG, A.P. 150, 37150, Leon, Guanajuato (Mexico); Vazquez, J Alberto [Departamento de Fisica, CINVESTAV, A.P. 14-740, 07000 Mexico D.F. (Mexico)
2007-11-15
In this work we provide a basis for studying the cosmologies derived from superstring theory. Distinct features of these cosmologies are the presence of an axion field, and the interaction of the dilaton field with all the other matter fields. We make a first study of the equations of motion and write them as an autonomous dynamical system. The fixed points of the equations and their corresponding stability are determined in turn. We then discuss the viability of the string fields as dark energy and dark matter.
Large N field theories, string theory and gravity
Energy Technology Data Exchange (ETDEWEB)
Maldacena, J [Lyman Laboratory of Physics, Harvard University, Cambridge (United States)
2002-05-15
We describe the holographic correspondence between field theories and string/M theory, focusing on the relation between compactifications of string/ M theory on Anti-de Sitter spaces and conformal field theories. We review the background for this correspondence and discuss its motivations and the evidence for its correctness. We describe the main results that have been derived from the correspondence in the regime that the field theory is approximated by classical or semiclassical gravity. We focus on the case of the N = 4 supersymmetric gauge theory in four dimensions. These lecture notes are based on the Review written by O. Aharony, S. Gubser, J. Maldacena, H. Ooguri and Y. Oz. (author)
Effective field theories for correlated electrons
International Nuclear Information System (INIS)
Wallington, J.P.
1999-10-01
In this thesis, techniques of functional integration are applied to the construction of effective field theories for models of strongly correlated electrons. This is accomplished by means of the Hubbard-Stratonovic transformation which maps a system of interacting fermions onto one of free fermions interacting, not with each other, but with bosonic fields representing the collective modes of the system. Different choices of transformation are investigated throughout the thesis. It is shown that there exists a new group of discrete symmetries and transformations of the Hubbard model. Using this new group, the problem of choosing a Hubbard-Stratonovic decomposition of the Hubbard interaction term is solved. In the context of the exotic doped barium bismuthates, an extended Hubbard model with on-site attraction and nearest neighbour repulsion is studied. Mean field and renormalisation group analyses show a 'pseudospin-flop' from charge density wave to superconductivity as a function of filling. The nearest neighbour attractive Hubbard model on a quasi-2D lattice is studied as a simple phenomenological model for the high-T c cuprates. Mean field theory shows a transition from pure d-wave to pure s-wave superconductivity, via a mixed symmetry s + id state. Using Gaussian fluctuations, the BCS-Bose crossover is examined and suggestions are made about the origin of the angle dependence of the pseudogap. The continuum delta-shell potential model is introduced for anisotropic superconductors. Its mean field phases are studied and found to have some unusual properties. The BCS-Bose crossover is examined and the results are compared with those of the lattice model. Quasi-2D (highly anisotropic 3D) systems are considered. The critical properties of a Bose gas are investigated as the degree of anisotropy is varied. A new 2D Bose condensate state is found. A renormalisation group analysis is used to investigate the crossover from 2D to 3D. (author)
Topics in quantum field theory
International Nuclear Information System (INIS)
Svaiter, N.F.
2006-11-01
This paper presents some important aspects on quantum field theory, covering the following aspects: the triumph and limitations of the quantum field theory; the field theory in curved spaces - Hawking and Unruh-Davies effects; the problem of divergent theory of the zero-point; the problem of the spinning detector and the Trocheries-Takeno vacuum; the field theory at finite temperature - symmetry breaking and phase transition; the problem of the summability of the perturbative series and the perturbative expansion for the strong coupling; quantized fields in presence of classical macroscopic structures; the Parisi-Wu stochastic quantization method
Chiral symmetry breaking and nonperturbative scale anomaly in gauge field theories
International Nuclear Information System (INIS)
Miranskij, V.A.; Gusynin, V.P.
1987-01-01
The nonperturbative dynamics of chiral and scale symmetry breaking in asymtotically free and non-asymptotically free (with an ultraviolet stable fixed point) vector-like gauge theories is investigated. In the two-loop approximation analytical expressions for the chiral and gluon condensates are obtained. The hypothesis about a soft behaviour at small distances of composite operators in non-asymptotically free gauge theories with a fixed point is put forward and substantiated. It is shown that in these theories the form of the scale anomaly depends on the type of the phase in coupling constant to which it relates. A new dilaton effective lagrangian for glueball and chiral fields is suggested. The mass relation for the single scalar fermion-antifermion bound state is obtained. The important ingredient of this approach is a large (d≅ 2) dynamical dimension of composite chiral fields. The application of this approach to QCD and technicolour models is discussed
Theory of interacting quantum fields
International Nuclear Information System (INIS)
Rebenko, Alexei L.
2012-01-01
This monograph is devoted to the systematic presentation of foundations of the quantum field theory. Unlike numerous monographs devoted to this topic, a wide range of problems covered in this book are accompanied by their sufficiently clear interpretations and applications. An important significant feature of this monograph is the desire of the author to present mathematical problems of the quantum field theory with regard to new methods of the constructive and Euclidean field theory that appeared in the last thirty years of the 20 th century and are based on the rigorous mathematical apparatus of functional analysis, the theory of operators, and the theory of generalized functions. The monograph is useful for students, post-graduate students, and young scientists who desire to understand not only the formality of construction of the quantum field theory but also its essence and connection with the classical mechanics, relativistic classical field theory, quantum mechanics, group theory, and the theory of path integral formalism.
International Nuclear Information System (INIS)
Chung, Stephen-wei.
1993-01-01
The authors first construct new parafermions in two-dimensional conformal field theory, generalizing the Z L parafermion theories from integer L to rational L. These non-unitary parafermions have some novel features: an infinite number of currents with negative conformal dimensions for most (if not all) of them. String functions of these new parafermion theories are calculated. They also construct new representations of N = 2 superconformal field theories, whose characters are obtained in terms of these new string functions. They then generalize Felder's BRST cohomology method to construct the characters and branching functions of the SU(2) L x SU(2) K /SU(2) K+L coset theories, where one of the (K,L) is an integer. This method of obtaining the branching functions also serves as a check of their new Z L parafermion theories. The next topic is the Lagrangian formulation of conformal field theory. They construct a chiral gauged WZW theory where the gauge fields are chiral and belong to the subgroups H L and H R , which can be different groups. This new construction is beyond the ordinary vector gauged WZW theory, whose gauge group H is a subgroup of both G L and G R . In the special case where H L = H R , the quantum theory of chiral gauged WZW theory is equivalent to that of the vector gauged WZW theory. It can be further shown that the chiral gauged WZW theory is equivalent to [G L /H L ](z) direct-product [G R /H R ](bar z) coset models in conformal field theory. In the second half of this thesis, they construct topological lattice field theories in three dimensions. After defining a general class of local lattice field theories, they impose invariance under arbitrary topology-preserving deformations of the underlying lattice, which are generated by two local lattice moves. Invariant solutions are in one-to-one correspondence with Hopf algebras satisfying a certain constraint
Ergodic theory and dynamical systems
Coudène, Yves
2016-01-01
This textbook is a self-contained and easy-to-read introduction to ergodic theory and the theory of dynamical systems, with a particular emphasis on chaotic dynamics. This book contains a broad selection of topics and explores the fundamental ideas of the subject. Starting with basic notions such as ergodicity, mixing, and isomorphisms of dynamical systems, the book then focuses on several chaotic transformations with hyperbolic dynamics, before moving on to topics such as entropy, information theory, ergodic decomposition and measurable partitions. Detailed explanations are accompanied by numerous examples, including interval maps, Bernoulli shifts, toral endomorphisms, geodesic flow on negatively curved manifolds, Morse-Smale systems, rational maps on the Riemann sphere and strange attractors. Ergodic Theory and Dynamical Systems will appeal to graduate students as well as researchers looking for an introduction to the subject. While gentle on the beginning student, the book also contains a number of commen...
Introduction to string field theory
International Nuclear Information System (INIS)
Horowitz, G.T.
1989-01-01
A light cone gauge superstring field theory is constructed. The BRST approach is described discussing generalizations to yield gauge invariant free superstring field theory and interacting theory for superstrings. The interaction term is explicitly expressed in terms of first quantized oscillators. A purily cubic action for superstring field theory is also derived. (author)
Scheel, Merry Elisabeth; Pedersen, Birthe D; Rosenkrands, Vibeke
2008-12-01
Nursing is often described from the point of view of either the natural or the human sciences. In contrast to this, the value foundation in Interactional nursing practice is understood from the point of view of the natural sciences as well as that of the human and social sciences. This article presents many-faceted practice-theory of nursing, which is situated in the dynamic field between these three sciences. The focus of the theory is on interaction and practice resulting in a caring practice. Here practice is based on Taylor's and MacIntyre's interpretation of this concept. Action in nursing is based on Habermas' three varied modes of action seen in the light of an understanding of the world as a system world and a life world. Nursing as an interactional practice-theory is presented with examples of interpretative nursing science, seen in the ethical action-oriented, socio-cultural framework of Taylor and Habermas. It is concluded that phenomenologic and socio-cultural research into caring practice as well as an in-depth, comprehensive interpretation of nursing practice are both highly suited to forming the fundamental theoretical framework in nursing, here seen as an interpretative nursing science. Finally, a comparison is drawn between Interactional nursing practice and Benner's theory of nursing practice.
Further Development of HS Field Theory
Abdurrahman, Abdulmajeed; Faridani, Jacqueline; Gassem, Mahmoud
2006-04-01
We present a systematic treatment of the HS Field theory of the open bosonic string and discuss its relationship to other full string field theories of the open bosonic string such as Witten's theory and the CVS theory. In the development of the HS field theory we encounter infinite dimensional matrices arising from the change of representation between the two theories, i.e., the HS field theory and the full string field theory. We give a general procedure of how to invert these gigantic matrices. The inversion of these matrices involves the computation of many infinite sums. We give the values of these sums and state their generalizations arising from considering higher order vertices (i.e., more than three strings) in string field theory. Moreover, we give a general procedure, on how to evaluate the generalized sums, that can be extended to many generic sums of similar properties. We also discuss the conformal operator connecting the HS field theory to that of the CVS string field theory.
DEFF Research Database (Denmark)
Shu, Chuan-Cun; Henriksen, Niels E.
2012-01-01
We implement phase-only shaped laser pulses within quantum optimal control theory for laser-molecule interaction. This approach is applied to the indirect photofragmentation dynamics of NaI in the weak-field limit. It is shown that optimized phase-modulated pulses with a fixed frequency distribut...... distribution can substantially modify transient dissociation probabilities as well as the momentum distribution associated with the relative motion of Na and I. © 2012 American Institute of Physics....
Dynamic statistical information theory
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
In recent years we extended Shannon static statistical information theory to dynamic processes and established a Shannon dynamic statistical information theory, whose core is the evolution law of dynamic entropy and dynamic information. We also proposed a corresponding Boltzmman dynamic statistical information theory. Based on the fact that the state variable evolution equation of respective dynamic systems, i.e. Fokker-Planck equation and Liouville diffusion equation can be regarded as their information symbol evolution equation, we derived the nonlinear evolution equations of Shannon dynamic entropy density and dynamic information density and the nonlinear evolution equations of Boltzmann dynamic entropy density and dynamic information density, that describe respectively the evolution law of dynamic entropy and dynamic information. The evolution equations of these two kinds of dynamic entropies and dynamic informations show in unison that the time rate of change of dynamic entropy densities is caused by their drift, diffusion and production in state variable space inside the systems and coordinate space in the transmission processes; and that the time rate of change of dynamic information densities originates from their drift, diffusion and dissipation in state variable space inside the systems and coordinate space in the transmission processes. Entropy and information have been combined with the state and its law of motion of the systems. Furthermore we presented the formulas of two kinds of entropy production rates and information dissipation rates, the expressions of two kinds of drift information flows and diffusion information flows. We proved that two kinds of information dissipation rates (or the decrease rates of the total information) were equal to their corresponding entropy production rates (or the increase rates of the total entropy) in the same dynamic system. We obtained the formulas of two kinds of dynamic mutual informations and dynamic channel
Complexity in quantum field theory and physics beyond the standard model
International Nuclear Information System (INIS)
Goldfain, Ervin
2006-01-01
Complex quantum field theory (abbreviated c-QFT) is introduced in this paper as an alternative framework for the description of physics beyond the energy range of the standard model. The mathematics of c-QFT is based on fractal differential operators that generalize the momentum operators of conventional quantum field theory (QFT). The underlying premise of our approach is that c-QFT contains the right analytical tools for dealing with the asymptotic regime of QFT. Canonical quantization of c-QFT leads to the following findings: (i) the Fock space of c-QFT includes fractional numbers of particles and antiparticles per state (ii) c-QFT represents a generalization of topological field theory and (iii) classical limit of c-QFT is equivalent to field theory in curved space-time. The first finding provides a field-theoretic motivation for the transfinite discretization approach of El-Naschie's ε (∞) theory. The second and third findings suggest the dynamic unification of boson and fermion fields as particles with fractional spin, as well as the close connection between spin and space-time topology beyond the conventional physics of the standard model
Complexity in quantum field theory and physics beyond the standard model
Energy Technology Data Exchange (ETDEWEB)
Goldfain, Ervin [OptiSolve Consulting, 4422 Cleveland Road, Syracuse, NY 13215 (United States)
2006-05-15
Complex quantum field theory (abbreviated c-QFT) is introduced in this paper as an alternative framework for the description of physics beyond the energy range of the standard model. The mathematics of c-QFT is based on fractal differential operators that generalize the momentum operators of conventional quantum field theory (QFT). The underlying premise of our approach is that c-QFT contains the right analytical tools for dealing with the asymptotic regime of QFT. Canonical quantization of c-QFT leads to the following findings: (i) the Fock space of c-QFT includes fractional numbers of particles and antiparticles per state (ii) c-QFT represents a generalization of topological field theory and (iii) classical limit of c-QFT is equivalent to field theory in curved space-time. The first finding provides a field-theoretic motivation for the transfinite discretization approach of El-Naschie's {epsilon} {sup ({infinity}}{sup )} theory. The second and third findings suggest the dynamic unification of boson and fermion fields as particles with fractional spin, as well as the close connection between spin and space-time topology beyond the conventional physics of the standard model.
Classical open-string field theory: A∞-algebra, renormalization group and boundary states
International Nuclear Information System (INIS)
Nakatsu, Toshio
2002-01-01
We investigate classical bosonic open-string field theory from the perspective of the Wilson renormalization group of world-sheet theory. The microscopic action is identified with Witten's covariant cubic action and the short-distance cut-off scale is introduced by length of open-string strip which appears in the Schwinger representation of open-string propagator. Classical open-string field theory in the title means open-string field theory governed by a classical part of the low energy action. It is obtained by integrating out suitable tree interactions of open-strings and is of non-polynomial type. We study this theory by using the BV formalism. It turns out to be deeply related with deformation theory of A ∞ -algebra. We introduce renormalization group equation of this theory and discuss it from several aspects. It is also discussed that this theory is interpreted as a boundary open-string field theory. Closed-string BRST charge and boundary states of closed-string field theory in the presence of open-string field play important roles
Field theoretic approach to dynamical orbital localization in ab initio molecular dynamics
International Nuclear Information System (INIS)
Thomas, Jordan W.; Iftimie, Radu; Tuckerman, Mark E.
2004-01-01
Techniques from gauge-field theory are employed to derive an alternative formulation of the Car-Parrinello ab initio molecular-dynamics method that allows maximally localized Wannier orbitals to be generated dynamically as the calculation proceeds. In particular, the Car-Parrinello Lagrangian is mapped onto an SU(n) non-Abelian gauge-field theory and the fictitious kinetic energy in the Car-Parrinello Lagrangian is modified to yield a fully gauge-invariant form. The Dirac gauge-fixing method is then employed to derive a set of equations of motion that automatically maintain orbital locality by restricting the orbitals to remain in the 'Wannier gauge'. An approximate algorithm for integrating the equations of motion that is stable and maintains orbital locality is then developed based on the exact equations of motion. It is shown in a realistic application (64 water molecules plus one hydrogen-chloride molecule in a periodic box) that orbital locality can be maintained with only a modest increase in CPU time. The ability to keep orbitals localized in an ab initio molecular-dynamics calculation is a crucial ingredient in the development of emerging linear scaling approaches
Naturality in conformal field theory
International Nuclear Information System (INIS)
Moore, G.; Seiberg, N.
1989-01-01
We discuss constraints on the operator product coefficients in diagonal and nondiagonal rational conformal field theories. Nondiagonal modular invariants always arise from automorphisms of the fusion rule algebra or from extensions of the chiral algebra. Moreover, when the chiral algebra has been maximally extended a strong form of the naturality principle of field theory can be proven for rational conformal field theory: operator product coefficients vanish if and only if the corresponding fusion rules vanish; that is, if and only if the vanishing can be understood in terms of a symmetry. We illustrate these ideas with several examples. We also generalize our ideas about rational conformal field theories to a larger class of theories: 'quasi-rational conformal field theories' and we explore some of their properties. (orig.)
Spinor matter fields in SL(2,C) gauge theories of gravity: Lagrangian and Hamiltonian approaches
Antonowicz, Marek; Szczyrba, Wiktor
1985-06-01
We consider the SL(2,C)-covariant Lagrangian formulation of gravitational theories with the presence of spinor matter fields. The invariance properties of such theories give rise to the conservation laws (the contracted Bianchi identities) having in the presence of matter fields a more complicated form than those known in the literature previously. A general SL(2,C) gauge theory of gravity is cast into an SL(2,C)-covariant Hamiltonian formulation. Breaking the SL(2,C) symmetry of the system to the SU(2) symmetry, by introducing a spacelike slicing of spacetime, we get an SU(2)-covariant Hamiltonian picture. The qualitative analysis of SL(2,C) gauge theories of gravity in the SU(2)-covariant formulation enables us to define the dynamical symplectic variables and the gauge variables of the theory under consideration as well as to divide the set of field equations into the dynamical equations and the constraints. In the SU(2)-covariant Hamiltonian formulation the primary constraints, which are generic for first-order matter Lagrangians (Dirac, Weyl, Fierz-Pauli), can be reduced. The effective matter symplectic variables are given by SU(2)-spinor-valued half-forms on three-dimensional slices of spacetime. The coupled Einstein-Cartan-Dirac (Weyl, Fierz-Pauli) system is analyzed from the (3+1) point of view. This analysis is complete; the field equations of the Einstein-Cartan-Dirac theory split into 18 gravitational dynamical equations, 8 dynamical Dirac equations, and 7 first-class constraints. The system has 4+8=12 independent degrees of freedom in the phase space.
Spinor matter fields in SL(2,C) gauge theories of gravity: Lagrangian and Hamiltonian approaches
International Nuclear Information System (INIS)
Antonowicz, M.; Szczyrba, W.
1985-01-01
We consider the SL(2,C)-covariant Lagrangian formulation of gravitational theories with the presence of spinor matter fields. The invariance properties of such theories give rise to the conservation laws (the contracted Bianchi identities) having in the presence of matter fields a more complicated form than those known in the literature previously. A general SL(2,C) gauge theory of gravity is cast into an SL(2,C)-covariant Hamiltonian formulation. Breaking the SL(2,C) symmetry of the system to the SU(2) symmetry, by introducing a spacelike slicing of spacetime, we get an SU(2)-covariant Hamiltonian picture. The qualitative analysis of SL(2,C) gauge theories of gravity in the SU(2)-covariant formulation enables us to define the dynamical symplectic variables and the gauge variables of the theory under consideration as well as to divide the set of field equations into the dynamical equations and the constraints. In the SU(2)-covariant Hamiltonian formulation the primary constraints, which are generic for first-order matter Lagrangians (Dirac, Weyl, Fierz-Pauli), can be reduced. The effective matter symplectic variables are given by SU(2)-spinor-valued half-forms on three-dimensional slices of spacetime. The coupled Einstein-Cartan-Dirac (Weyl, Fierz-Pauli) system is analyzed from the (3+1) point of view. This analysis is complete; the field equations of the Einstein-Cartan-Dirac theory split into 18 gravitational dynamical equations, 8 dynamical Dirac equations, and 7 first-class constraints. The system has 4+8 = 12 independent degrees of freedom in the phase space
The utility of quantum field theory
International Nuclear Information System (INIS)
Dine, Michael
2001-01-01
This talk surveys a broad range of applications of quantum field theory, as well as some recent developments. The stress is on the notion of effective field theories. Topics include implications of neutrino mass and a possible small value of sin(2β), supersymmetric extensions of the standard model, the use of field theory to understand fundamental issues in string theory (the problem of multiple ground states and the question: does string theory predict low energy supersymmetry), and the use of string theory to solve problems in field theory. Also considered are a new type of field theory, and indications from black hole physics and the cosmological constant problem that effective field theories may not completely describe theories of gravity. (author)
Discussion of the duality in three dimensional quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Ma, Chen-Te, E-mail: yefgst@gmail.com
2017-05-10
We discuss the duality in three dimensional quantum field theory at infrared limit. The starting point is to use a conjecture of a duality between the free fermion and the interacting scalar field theories at the Wilson–Fisher fixed point. The conjecture is useful for deriving various dualities in three dimensions to obtain a duality web. The study is also interesting for understanding the dualities, or equivalence of different theories from the perspective of the renormalization group flow. We first discuss the “derivation” without losing the holonomy. Furthermore, we also derive these dualities from the mean-field study, and consider the extension of the conjecture or dualities at finite temperature.
Grozdanov, Sašo; Poovuttikul, Napat
2018-05-01
In this work, we show how states with conserved numbers of dynamical defects (strings, domain walls, etc.) can be understood as possessing generalized global symmetries even when the microscopic origins of these symmetries are unknown. Using this philosophy, we build an effective theory of a 2 +1 -dimensional fluid state with two perpendicular sets of immersed elastic line defects. When the number of defects is independently conserved in each set, then the state possesses two one-form symmetries. Normally, such viscoelastic states are described as fluids coupled to Goldstone bosons associated with spontaneous breaking of translational symmetry caused by the underlying microscopic structure—the principle feature of which is a transverse sound mode. At the linear, nondissipative level, we verify that our theory, based entirely on symmetry principles, is equivalent to a viscoelastic theory. We then build a simple holographic dual of such a state containing dynamical gravity and two two-form gauge fields, and use it to study its hydrodynamic and higher-energy spectral properties characterized by nonhydrodynamic, gapped modes. Based on the holographic analysis of transverse two-point functions, we study consistency between low-energy predictions of the bulk theory and the effective boundary theory. Various new features of the holographic dictionary are explained in theories with higher-form symmetries, such as the mixed-boundary-condition modification of the quasinormal mode prescription that depends on the running coupling of the boundary double-trace deformations. Furthermore, we examine details of low- and high-energy parts of the spectrum that depend on temperature, line defect densities and the renormalization group scale.
Variational methods for field theories
Energy Technology Data Exchange (ETDEWEB)
Ben-Menahem, S.
1986-09-01
Four field theory models are studied: Periodic Quantum Electrodynamics (PQED) in (2 + 1) dimensions, free scalar field theory in (1 + 1) dimensions, the Quantum XY model in (1 + 1) dimensions, and the (1 + 1) dimensional Ising model in a transverse magnetic field. The last three parts deal exclusively with variational methods; the PQED part involves mainly the path-integral approach. The PQED calculation results in a better understanding of the connection between electric confinement through monopole screening, and confinement through tunneling between degenerate vacua. This includes a better quantitative agreement for the string tensions in the two approaches. Free field theory is used as a laboratory for a new variational blocking-truncation approximation, in which the high-frequency modes in a block are truncated to wave functions that depend on the slower background modes (Boron-Oppenheimer approximation). This ''adiabatic truncation'' method gives very accurate results for ground-state energy density and correlation functions. Various adiabatic schemes, with one variable kept per site and then two variables per site, are used. For the XY model, several trial wave functions for the ground state are explored, with an emphasis on the periodic Gaussian. A connection is established with the vortex Coulomb gas of the Euclidean path integral approach. The approximations used are taken from the realms of statistical mechanics (mean field approximation, transfer-matrix methods) and of quantum mechanics (iterative blocking schemes). In developing blocking schemes based on continuous variables, problems due to the periodicity of the model were solved. Our results exhibit an order-disorder phase transition. The transfer-matrix method is used to find a good (non-blocking) trial ground state for the Ising model in a transverse magnetic field in (1 + 1) dimensions.
Turbulent Diffusion of the Geomagnetic Field and Dynamo Theories
Filippi, Enrico
2016-01-01
The thesis deals with the Dynamo Theories of the Earth’s Magnetic Field and mainly deepens the turbulence phenomena in the fluid Earth’s core. Indeed, we think that these phenomena are very important to understand the recent decay of the geomagnetic field. The thesis concerns also the dynamics of the outer core and some very rapid changes of the geomagnetic field observed in the Earth’s surface and some aspects regarding the (likely) isotropic turbulence in the Magnetohydrodynamics. These top...
Systematic expansion in the order parameter for replica theory of the dynamical glass transition.
Jacquin, Hugo; Zamponi, Francesco
2013-03-28
It has been shown recently that predictions from mode-coupling theory for the glass transition of hard-spheres become increasingly bad when dimensionality increases, whereas replica theory predicts a correct scaling. Nevertheless if one focuses on the regime around the dynamical transition in three dimensions, mode-coupling results are far more convincing than replica theory predictions. It seems thus necessary to reconcile the two theoretic approaches in order to obtain a theory that interpolates between low-dimensional, mode-coupling results, and "mean-field" results from replica theory. Even though quantitative results for the dynamical transition issued from replica theory are not accurate in low dimensions, two different approximation schemes--small cage expansion and replicated hyper-netted-chain (RHNC)--provide the correct qualitative picture for the transition, namely, a discontinuous jump of a static order parameter from zero to a finite value. The purpose of this work is to develop a systematic expansion around the RHNC result in powers of the static order parameter, and to calculate the first correction in this expansion. Interestingly, this correction involves the static three-body correlations of the liquid. More importantly, we separately demonstrate that higher order terms in the expansion are quantitatively relevant at the transition, and that the usual mode-coupling kernel, involving two-body direct correlation functions of the liquid, cannot be recovered from static computations.
Mean-field Ohm's law and coaxial helicity injection in force-free plasmas
International Nuclear Information System (INIS)
Weening, R. H.
2011-01-01
A theoretical analysis of steady-state coaxial helicity injection (CHI) in force-free plasmas is presented using a parallel mean-field Ohm's law that includes resistivity η and hyper-resistivity Λ terms. Using Boozer coordinates, a partial differential equation is derived for the time evolution of the mean-field poloidal magnetic flux, or magnetic Hamiltonian function, from the parallel mean-field Ohm's law. A general expression is obtained from the mean-field theory for the efficiency of CHI current drive in force-free plasmas. Inductances of internal energy, magnetic helicity, and poloidal magnetic flux are used to characterize axisymmetric plasma equilibria that have a model current profile. Using the model current profile, a method is suggested to determine the level of magnetohydrodynamic activity at the magnetic axis and the consequent deviation from the completely relaxed Taylor state. The mean-field Ohm's law model suggests that steady-state CHI can be viewed most simply as a boundary layer problem.
Consistency relations in effective field theory
Energy Technology Data Exchange (ETDEWEB)
Munshi, Dipak; Regan, Donough, E-mail: D.Munshi@sussex.ac.uk, E-mail: D.Regan@sussex.ac.uk [Astronomy Centre, School of Mathematical and Physical Sciences, University of Sussex, Brighton BN1 9QH (United Kingdom)
2017-06-01
The consistency relations in large scale structure relate the lower-order correlation functions with their higher-order counterparts. They are direct outcome of the underlying symmetries of a dynamical system and can be tested using data from future surveys such as Euclid. Using techniques from standard perturbation theory (SPT), previous studies of consistency relation have concentrated on continuity-momentum (Euler)-Poisson system of an ideal fluid. We investigate the consistency relations in effective field theory (EFT) which adjusts the SPT predictions to account for the departure from the ideal fluid description on small scales. We provide detailed results for the 3D density contrast δ as well as the scaled divergence of velocity θ-bar . Assuming a ΛCDM background cosmology, we find the correction to SPT results becomes important at k ∼> 0.05 h/Mpc and that the suppression from EFT to SPT results that scales as square of the wave number k , can reach 40% of the total at k ≈ 0.25 h/Mpc at z = 0. We have also investigated whether effective field theory corrections to models of primordial non-Gaussianity can alter the squeezed limit behaviour, finding the results to be rather insensitive to these counterterms. In addition, we present the EFT corrections to the squeezed limit of the bispectrum in redshift space which may be of interest for tests of theories of modified gravity.
International Nuclear Information System (INIS)
Castro, A; Gross, E K U
2014-01-01
We derive the fundamental equations of an optimal control theory for systems containing both quantum electrons and classical ions. The system is modeled with Ehrenfest dynamics, a non-adiabatic variant of molecular dynamics. The general formulation, that needs the fully correlated many-electron wavefunction, can be simplified by making use of time-dependent density-functional theory. In this case, the optimal control equations require some modifications that we will provide. The abstract general formulation is complemented with the simple example of the H 2 + molecule in the presence of a laser field. (paper)
A new perturbative approximation applied to supersymmetric quantum field theory
International Nuclear Information System (INIS)
Bender, C.M.; Milton, K.A.; Pinsky, S.S.; Simmons, L.M. Jr.; Los Alamos National Lab.
1988-01-01
We show that a recently proposed graphical perturbative calculational scheme in quantum field theory is consistent with global supersymmetry invariance. We examine a two-dimensional supersymmetric quantum field theory in which we do not known of any other means for doing analytical calculations. We illustrate the power of this new technique by computing the ground-state energy density E to second order in this new perturbation theory. We show that there is a beautiful and delicate cancellation between infinite classes of graphs which leads to the result that E=0. (orig.)
Theoretical physics. Field theory
International Nuclear Information System (INIS)
Landau, L.; Lifchitz, E.
2004-01-01
This book is the fifth French edition of the famous course written by Landau/Lifchitz and devoted to both the theory of electromagnetic fields and the gravity theory. The talk of the theory of electromagnetic fields is based on special relativity and relates to only the electrodynamics in vacuum and that of pointwise electric charges. On the basis of the fundamental notions of the principle of relativity and of relativistic mechanics, and by using variational principles, the authors develop the fundamental equations of the electromagnetic field, the wave equation and the processes of emission and propagation of light. The theory of gravitational fields, i.e. the general theory of relativity, is exposed in the last five chapters. The fundamentals of the tensor calculus and all that is related to it are progressively introduced just when needed (electromagnetic field tensor, energy-impulse tensor, or curve tensor...). The worldwide reputation of this book is generally allotted to clearness, to the simplicity and the rigorous logic of the demonstrations. (A.C.)
Schutte, Anne R; Spencer, John P
2007-04-01
The timed-initiation paradigm developed by Ghez and colleagues (1997) has revealed two modes of motor planning: continuous and discrete. Continuous responding occurs when targets are separated by less than 60 degrees of spatial angle, and discrete responding occurs when targets are separated by greater than 60 degrees . Although these two modes are thought to reflect the operation of separable strategic planning systems, a new theory of movement preparation, the Dynamic Field Theory, suggests that two modes emerge flexibly from the same system. Experiment 1 replicated continuous and discrete performance using a task modified to allow for a critical test of the single system view. In Experiment 2, participants were allowed to correct their movements following movement initiation (the standard task does not allow corrections). Results showed continuous planning performance at large and small target separations. These results are consistent with the proposal that the two modes reflect the time-dependent "preshaping" of a single planning system.
Energy flow theory of nonlinear dynamical systems with applications
Xing, Jing Tang
2015-01-01
This monograph develops a generalised energy flow theory to investigate non-linear dynamical systems governed by ordinary differential equations in phase space and often met in various science and engineering fields. Important nonlinear phenomena such as, stabilities, periodical orbits, bifurcations and chaos are tack-led and the corresponding energy flow behaviors are revealed using the proposed energy flow approach. As examples, the common interested nonlinear dynamical systems, such as, Duffing’s oscillator, Van der Pol’s equation, Lorenz attractor, Rössler one and SD oscillator, etc, are discussed. This monograph lights a new energy flow research direction for nonlinear dynamics. A generalised Matlab code with User Manuel is provided for readers to conduct the energy flow analysis of their nonlinear dynamical systems. Throughout the monograph the author continuously returns to some examples in each chapter to illustrate the applications of the discussed theory and approaches. The book can be used as ...
Meaning Finds a Way: Chaos (Theory) and Composition
Kyburz, Bonnie Lenore
2004-01-01
The explanatory power provided by the chaos theory is explored. A dynamic and reciprocal relationship between culture and chaos theory indicates that the progressive cultural work may be formed by the cross-disciplinary resonance of chaos theory.
Vortex operators in gauge field theories
International Nuclear Information System (INIS)
Polchinski, J.
1980-07-01
Several related aspects of the 't Hooft vortex operator are studied. The current picture of the vacuum of quantum chromodynamics, the idea of dual field theories, and the idea of the vortex operator are reviewed first. The Abelian vortex operator written in terms of elementary fields and the calculation of its Green's functions are considered. A two-dimensional solvable model of a Dirac string is presented. The expression of the Green's functions more neatly in terms of Wu and Yang's geometrical idea of sections is addressed. The renormalization of the Green's functions of two kinds of Abelian looplike operators, the Wilson loop and the vortex operator, is studied; for both operators only an overall multiplicative renormalization is needed. In the case of the vortex this involves a surprising cancellation. Next, the dependence of the Green's functions of the Wilson and 't Hooft operators on the nature of the vacuum is discussed. The cluster properties of the Green's functions are emphasized. It is seen that the vortex operator in a massive Abelian theory always has surface-like clustering. The form of Green's functions in terms of Feynman graphs is the same in Higgs and symmetric phases; the difference appears in the sum over all tadpole trees. Finally, systems having fields in the fundamental representation are considered. When these fields enter only weakly into the dynamics, a vortex-like operator is anticipated. Any such operator can no longer be local looplike, but must have commutators at long range. A U(1) lattice gauge theory with two matter fields, one singly charged (fundamental) and one doubly charged (adjoint), is examined. When the fundamental field is weakly coupled, the expected phase transitions are found. When it is strongly coupled, the operator still appears to be a good order parameter, a discontinuous change in its behavior leads to a new phase transition. 18 figures
Mean-field Ensemble Kalman Filter
Law, Kody
2015-01-07
A proof of convergence of the standard EnKF generalized to non-Gaussian state space models is provided. A density-based deterministic approximation of the mean-field limiting EnKF (MFEnKF) is proposed, consisting of a PDE solver and a quadrature rule. Given a certain minimal order of convergence between the two, this extends to the deterministic filter approximation, which is therefore asymptotically superior to standard EnKF for d < 2 . The fidelity of approximation of the true distribution is also established using an extension of total variation metric to random measures. This is limited by a Gaussian bias term arising from non-linearity/non-Gaussianity of the model, which arises in both deterministic and standard EnKF. Numerical results support and extend the theory.
Sadovskii, Michael V
2013-01-01
This book discusses the main concepts of the Standard Model of elementary particles in a compact and straightforward way. The work illustrates the unity of modern theoretical physics by combining approaches and concepts of the quantum field theory and modern condensed matter theory. The inductive approach allows a deep understanding of ideas and methods used for solving problems in this field.
Global integrability of field theories. Proceedings
International Nuclear Information System (INIS)
Calmet, J.; Seiler, W.M.; Tucker, R.W.
2006-01-01
The GIFT 2006 workshop covers topics related to the Global Integration of Field Theories. These topics span several domains of science including Mathematics, Physics and Computer Science. It is indeed an interdisciplinary event and this feature is well illustrated by the diversity of papers presented at the workshop. Physics is our main target. A simple approach would be to state that we investigate systems of partial differential equations since it is widely believed that they provide a fair description of our world. The questions whether this world is Einsteinian or not, is described by String Theory or not are not however on our agenda. At this stage we have defined what we mean with field theories. To assess what global integrability means we surf on the two other domains of our interest. Mathematics delivers the main methodologies and tools to achieve our goal. It is a trivial remark to say that there exists several approaches to investigate the concept of integrability. Only selected ones are to be found in these proceedings. We do not try to define precisely what global integrability means. Instead, we only suggest two tracks. The first one is by analogy with the design of algorithms, in Computer Algebra or Computer Science, to solve systems of differential equations. The case of ODEs is rather well understood since a constructive methodology exists. Although many experts claim that numerous results do exist to solve systems of PDEs, no constructive decision method exists. This is our first track. The second track follows directly since the real world is described by systems of PDEs, which are mainly non-linear ones. To be able to decide in such a case of the existence of solutions would increase immediately the scope of new technologies applicable to indus trial problems. It is this latter remark that led to the European NEST project with the same name. The GIFT project aims at making progresses in the investigation of field theories through the use of very
Global integrability of field theories. Proceedings
Energy Technology Data Exchange (ETDEWEB)
Calmet, J.; Seiler, W.M.; Tucker, R.W. (eds.)
2006-07-01
The GIFT 2006 workshop covers topics related to the Global Integration of Field Theories. These topics span several domains of science including Mathematics, Physics and Computer Science. It is indeed an interdisciplinary event and this feature is well illustrated by the diversity of papers presented at the workshop. Physics is our main target. A simple approach would be to state that we investigate systems of partial differential equations since it is widely believed that they provide a fair description of our world. The questions whether this world is Einsteinian or not, is described by String Theory or not are not however on our agenda. At this stage we have defined what we mean with field theories. To assess what global integrability means we surf on the two other domains of our interest. Mathematics delivers the main methodologies and tools to achieve our goal. It is a trivial remark to say that there exists several approaches to investigate the concept of integrability. Only selected ones are to be found in these proceedings. We do not try to define precisely what global integrability means. Instead, we only suggest two tracks. The first one is by analogy with the design of algorithms, in Computer Algebra or Computer Science, to solve systems of differential equations. The case of ODEs is rather well understood since a constructive methodology exists. Although many experts claim that numerous results do exist to solve systems of PDEs, no constructive decision method exists. This is our first track. The second track follows directly since the real world is described by systems of PDEs, which are mainly non-linear ones. To be able to decide in such a case of the existence of solutions would increase immediately the scope of new technologies applicable to indus trial problems. It is this latter remark that led to the European NEST project with the same name. The GIFT project aims at making progresses in the investigation of field theories through the use of very
Static properties and spin dynamics of the ferromagnetic spin-1 Bose gas in a magnetic field
International Nuclear Information System (INIS)
Kis-Szabo, Krisztian; Szepfalusy, Peter; Szirmai, Gergely
2005-01-01
The properties of spin-1 Bose gases with ferromagnetic interactions in the presence of a nonzero magnetic field are studied. The equation of state and thermodynamic quantities are worked out with the help of a mean-field approximation. The phase diagram besides Bose-Einstein condensation contains a first-order transition where two values of the magnetization coexist. The dynamics is investigated with the help of the random phase approximation. The soft mode corresponding to the critical point of the magnetic phase transition is found to behave like in conventional theory
On the dynamics of excited atoms in time dependent electromagnetic fields
Energy Technology Data Exchange (ETDEWEB)
Foerre, Morten
2004-06-01
This thesis is composed of seven scientific publications written in the period 2001-2004. The focus has been set on Rydberg atoms of hydrogen and lithium in relatively weak electromagnetic fields. Such atoms have been studied extensively during many years, both experimentally and theoretically, They are relatively easy to handle in the laboratory. Their willingness to react to conventional field sources and their long lifetimes, are two reasons for this. Much new insight into fundamental quantum mechanics has been extracted from such studies. By exciting a non-hydrogenic ground state atom or molecule into a highly excited state, many properties of atomic hydrogen are adopted. In many cases the dynamics of such systems can be accurately described by the hydrogenic theory, or alternatively by some slightly modified version like quantum defect theory. In such theories the Rydberg electron(s) of the non-hydrogenic Rydberg system is treated like it is confined in a modified Coulomb potential, which arises from the non-hydrogenic core. defined by the non-excited electrons and the nucleus. The more heavily bound core electrons are less influenced from external perturbations than the excited electrons, giving rise to the so-called frozen-core approximation. where the total effect of the core electrons is put into a modified Coulomb potential. A major part of this thesis has been allocated to the study of core effects in highly excited states of lithium. In collaboration with time experimental group of Erik Horsdal-Pedersen at Aarhus University, we have considered several hydrogenic and non-hydrogenic aspects of such states, when exposed to weak slowly varying electromagnetic fields. The dynamics was restricted to one principal shell (intrashell). Two general features were observed, either the hydrogenic theory applied or alternatively, in case of massive deviation, the dynamics was accurately described by quantum defect theory, clearly demonstrating the usefulness of such
On the dynamics of excited atoms in time dependent electromagnetic fields
International Nuclear Information System (INIS)
Foerre, Morten
2004-06-01
This thesis is composed of seven scientific publications written in the period 2001-2004. The focus has been set on Rydberg atoms of hydrogen and lithium in relatively weak electromagnetic fields. Such atoms have been studied extensively during many years, both experimentally and theoretically, They are relatively easy to handle in the laboratory. Their willingness to react to conventional field sources and their long lifetimes, are two reasons for this. Much new insight into fundamental quantum mechanics has been extracted from such studies. By exciting a non-hydrogenic ground state atom or molecule into a highly excited state, many properties of atomic hydrogen are adopted. In many cases the dynamics of such systems can be accurately described by the hydrogenic theory, or alternatively by some slightly modified version like quantum defect theory. In such theories the Rydberg electron(s) of the non-hydrogenic Rydberg system is treated like it is confined in a modified Coulomb potential, which arises from the non-hydrogenic core. defined by the non-excited electrons and the nucleus. The more heavily bound core electrons are less influenced from external perturbations than the excited electrons, giving rise to the so-called frozen-core approximation. where the total effect of the core electrons is put into a modified Coulomb potential. A major part of this thesis has been allocated to the study of core effects in highly excited states of lithium. In collaboration with time experimental group of Erik Horsdal-Pedersen at Aarhus University, we have considered several hydrogenic and non-hydrogenic aspects of such states, when exposed to weak slowly varying electromagnetic fields. The dynamics was restricted to one principal shell (intrashell). Two general features were observed, either the hydrogenic theory applied or alternatively, in case of massive deviation, the dynamics was accurately described by quantum defect theory, clearly demonstrating the usefulness of such
Nontrivial asymptotically nonfree gauge theories and dynamical unification of couplings
International Nuclear Information System (INIS)
Kubo, J.
1995-01-01
Evidence for the nontriviality of asymptotically nonfree (ANF) Yang-Mills theories is found on the basis of optimized perturbation theory. It is argued that these theories with matter couplings can be made nontrivial by means of the reduction of couplings, leading to the idea of the dynamical unification of couplings (DUC). The second-order reduction of couplings in the ANF SU(3)-gauged Higgs-Yukawa theory, which is assumed to be nontrivial here, is carried out to motivate independent investigations on its nontriviality and DUC
Quantum field theory in flat Robertson-Walker space-time functional Schrodinger picture
International Nuclear Information System (INIS)
Pi, S.Y.
1990-01-01
Quantum field theory in Robertson-Walker space-time is intrinsically time-dependent and the functional Schrodinger picture provides a useful description. This paper discusses free and self-interacting bosonic quantum field theories: Schrodinger picture quantization, time-dependent Gaussian approximations based on variational principles describing time evolution of pure and mixed states, and renormalizability of the Schrodinger picture. The technique introduced can be used to study various dynamical questions in early universe processes
Quantum field theory in flat Robertson-Walker space-time functional Schroedinger picture
International Nuclear Information System (INIS)
Pi, S.Y.
1989-01-01
Quantum field theory in Robertson-Walker space-time is intrinsically time-dependent and the functional Schroedinger picture provides a useful description. We discuss free and self-interacting bosonic quantum field theories: Schroedinger picture quantization, time-dependent Gaussian approximations based on variational principles describing time evolution of pure and mixed states, and renormalizability of the Schroedinger picture. The techniques introduced can be used to study various dynamical questions in early universe processes. (author)
Fluid analog model for boundary effects in field theory
International Nuclear Information System (INIS)
Ford, L. H.; Svaiter, N. F.
2009-01-01
Quantum fluctuations in the density of a fluid with a linear phonon dispersion relation are studied. In particular, we treat the changes in these fluctuations due to nonclassical states of phonons and to the presence of boundaries. These effects are analogous to similar effects in relativistic quantum field theory, and we argue that the case of the fluid is a useful analog model for effects in field theory. We further argue that the changes in the mean squared density are, in principle, observable by light scattering experiments.
Classification of hemispheric monthly mean stratospheric potential vorticity fields
Directory of Open Access Journals (Sweden)
R. Huth
Full Text Available Monthly mean NCEP reanalysis potential vorticity fields at the 650 K isentropic level over the Northern and Southern Hemispheres between 1979 and 1997 were studied using multivariate analysis tools. Principal component analysis in the T-mode was applied to demonstrate the validity of such statistical techniques for the study of stratospheric dynamics and climatology. The method, complementarily applied to both the raw and anomaly fields, was useful in determining and classifying the characteristics of winter and summer PV fields on both hemispheres, in particular, the well-known differences in the behaviour and persistence of the polar vortices. It was possible to identify such features as sudden warming events in the Northern Hemisphere and final warming dates in both hemispheres. The stratospheric impact of other atmospheric processes, such as volcanic eruptions, also identified though the results, must be viewed at this stage as tentative. An interesting change in behaviour around 1990 was detected over both hemispheres.
Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; general circulation; climatology
Quantitative theory of driven nonlinear brain dynamics.
Roberts, J A; Robinson, P A
2012-09-01
Strong periodic stimuli such as bright flashing lights evoke nonlinear responses in the brain and interact nonlinearly with ongoing cortical activity, but the underlying mechanisms for these phenomena are poorly understood at present. The dominant features of these experimentally observed dynamics are reproduced by the dynamics of a quantitative neural field model subject to periodic drive. Model power spectra over a range of drive frequencies show agreement with multiple features of experimental measurements, exhibiting nonlinear effects including entrainment over a range of frequencies around the natural alpha frequency f(α), subharmonic entrainment near 2f(α), and harmonic generation. Further analysis of the driven dynamics as a function of the drive parameters reveals rich nonlinear dynamics that is predicted to be observable in future experiments at high drive amplitude, including period doubling, bistable phase-locking, hysteresis, wave mixing, and chaos indicated by positive Lyapunov exponents. Moreover, photosensitive seizures are predicted for physiologically realistic model parameters yielding bistability between healthy and seizure dynamics. These results demonstrate the applicability of neural field models to the new regime of periodically driven nonlinear dynamics, enabling interpretation of experimental data in terms of specific generating mechanisms and providing new tests of the theory. Copyright © 2012 Elsevier Inc. All rights reserved.
Representing the Electromagnetic Field: How Maxwell's Mathematics Empowered Faraday's Field Theory
Tweney, Ryan D.
2011-07-01
James Clerk Maxwell `translated' Michael Faraday's experimentally-based field theory into the mathematical representation now known as `Maxwell's Equations.' Working with a variety of mathematical representations and physical models Maxwell extended the reach of Faraday's theory and brought it into consistency with other results in the physics of electricity and magnetism. Examination of Maxwell's procedures opens many issues about the role of mathematical representation in physics and the learning background required for its success. Specifically, Maxwell's training in `Cambridge University' mathematical physics emphasized the use of analogous equations across fields of physics and the repeated solving of extremely difficult problems in physics. Such training develops an array of overlearned mathematical representations supported by highly sophisticated cognitive mechanisms for the retrieval of relevant information from long term memory. For Maxwell, mathematics constituted a new form of representation in physics, enhancing the formal derivational and calculational role of mathematics and opening a cognitive means for the conduct of `experiments in the mind' and for sophisticated representations of theory.