WorldWideScience

Sample records for dynamical domain-wall fermions

  1. Staggered domain wall fermions

    CERN Document Server

    Hoelbling, Christian

    2016-01-01

    We construct domain wall fermions with a staggered kernel and investigate their spectral and chiral properties numerically in the Schwinger model. In some relevant cases we see an improvement of chirality by more than an order of magnitude as compared to usual domain wall fermions. Moreover, we present first results for four-dimensional quantum chromodynamics, where we also observe significant reductions of chiral symmetry violations for staggered domain wall fermions.

  2. Calculation of the neutron electric dipole moment with two dynamical flavors of domain wall fermions

    CERN Document Server

    Berruto, F; Orginos, K; Soni, A

    2005-01-01

    We present a study of the neutron electric dipole moment ($\\vec d_N$) within the framework of lattice QCD with two flavors of dynamical lig ht quarks. The dipole moment is sensitive to the topological structure of the gaug e fields, and accuracy can only be achieved by using dynamical, or sea quark, calc ulations. However, the topological charge evolves slowly in these calculations, le ading to a relatively large uncertainty in $\\vec d_N$. It is shown, using quenched configurations, that a better sampling of the charge d istribution reduces this problem, but because the CP even part of the fermion determinant is absent, both the topological charge dis tribution and $\\vec d_N$ are pathological in the chiral limit. We discuss the statistical and systematic uncertainties arising from the topological charge distr ibution and unphysical size of the quark mass in our calculations and prospects fo r eliminating them. Our calculations employ the RBC collaboration two flavor domain wall fermion and DBW2 gauge action l...

  3. Calculation of the neutron electric dipole moment with two dynamical flavors of domain wall fermions

    Energy Technology Data Exchange (ETDEWEB)

    F. Berruto; T. Blum; K. Orginos; A. Soni

    2005-12-08

    We present a study of the neutron electric dipole moment ({rvec d}{sub N}) within the framework of lattice QCD with two flavors of dynamical light quarks. The dipole moment is sensitive to the topological structure of the gauge fields, and accuracy can only be achieved by using dynamical, or sea quark, calculations. However, the topological charge evolves slowly in these calculations, leading to a relatively large uncertainty in {rvec d}{sub N}. It is shown, using quenched configurations, that a better sampling of the charge distribution reduces this problem, but because the CP even part of the fermion determinant is absent, both the topological charge distribution and {rvec d}{sub N} are pathological in the chiral limit. We discuss the statistical and systematic uncertainties arising from the topological charge distribution and unphysical size of the quark mass in our calculations and prospects for eliminating them. Our calculations employ the RBC collaboration two flavor domain wall fermion and DBW2 gauge action lattices with inverse lattice spacing a{sup -1} {approx} 1.7 GeV, physical volume V {approx} (2 fm){sup 3}, and light quark mass roughly equal to the strange quark mass (m{sub sea} = 0.03 and 0.04). We determine a value of the electric dipole moment that is zero within (statistical) errors, |{rvec d}{sub N}| = -0.04(20) e-{theta}-fm at the smaller sea quark mass. Satisfactory results for the magnetic and electric form factors of the proton and neutron are also obtained and presented.

  4. NUCLEON STRUCTURE IN LATTICE QCD WITH DYNAMICAL DOMAIN--WALL FERMIONS QUARKS.

    Energy Technology Data Exchange (ETDEWEB)

    LIN H.-W.; OHTA, S.

    2006-10-02

    We report RBC and RBC/UKQCD lattice QCD numerical calculations of nucleon electroweak matrix elements with dynamical domain-wall fermions (DWF) quarks. The first, RBC, set of dynamical DWF ensembles employs two degenerate flavors of DWF quarks and the DBW2 gauge action. Three sea quark mass values of 0.04, 0.03 and 0.02 in lattice units are used with 220 gauge configurations each. The lattice cutoff is a{sup -1} {approx} 1.7GeV and the spatial volume is about (1.9fm){sup 3}. Despite the small volume, the ratio of the isovector vector and axial charges g{sub A}/g{sub V} and that of structure function moments {sub u-d}/{sub {Delta}u-{Delta}d} are in agreement with experiment, and show only very mild quark mass dependence. The second, RBC/UK, set of ensembles employs one strange and two degenerate (up and down) dynamical DWF quarks and Iwasaki gauge action. The strange quark mass is set at 0.04, and three up/down mass values of 0.03, 0.02 and 0.01 in lattice units are used. The lattice cutoff is a{sup -1} {approx} 1.6GeV and the spatial volume is about (3.0fm){sup 3}. Even with preliminary statistics of 25-30 gauge configurations, the ratios g{sub A}/g{sub V} and {sub u-d}/{sub {Delta}u-{Delta}d} are consistent with experiment and show only very mild quark mass dependence. Another structure function moment, d{sub 1}, though yet to be renormalized, appears small in both sets.

  5. Multigrid Algorithms for Domain-Wall Fermions

    CERN Document Server

    Cohen, Saul D; Clark, M A; Osborn, J C

    2012-01-01

    We describe an adaptive multigrid algorithm for solving inverses of the domain-wall fermion operator. Our multigrid algorithm uses an adaptive projection of near-null vectors of the domain-wall operator onto coarser four-dimensional lattices. This extension of multigrid techniques to a chiral fermion action will greatly reduce overall computation cost, and the elimination of the fifth dimension in the coarse space reduces the relative cost of using chiral fermions compared to discarding this symmetry. We demonstrate near-elimination of critical slowing as the quark mass is reduced and small volume dependence, which may be suppressed by taking advantage of the recursive nature of the algorithm.

  6. Dynamical domain wall and localization

    Directory of Open Access Journals (Sweden)

    Yuta Toyozato

    2016-03-01

    Full Text Available Based on the previous works (Toyozato et al., 2013 [24]; Higuchi and Nojiri, 2014 [25], we investigate the localization of the fields on the dynamical domain wall, where the four-dimensional FRW universe is realized on the domain wall in the five-dimensional space–time. Especially we show that the chiral spinor can localize on the domain wall, which has not been succeeded in the past works as the seminal work in George et al. (2009 [23].

  7. Diffusion-damped domain wall dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Varga, R; Infante, G [Inst. Phys., Fac. Sci., UPJS, Park Angelinum 9, 04154 Kosice (Slovakia); Badini-Confalonieri, G A; Vazquez, M, E-mail: rvarga@upjs.s [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049, Madrid (Spain)

    2010-01-01

    In the given work, the influence of diffusional damping on the domain wall dynamics of heat treated FeSiBP microwires is presented. Two regions of the domain wall dynamics have been found. At low applied fields diffusion damping prevails, keeping the domain wall velocity and mobility low. At higher fields, the diffusional effects are overcomed and domain wall velocity increases steeply and so does the domain wall mobility.

  8. The M\\"obius Domain Wall Fermion Algorithm

    CERN Document Server

    Brower, Richard C; Orginos, Kostas

    2012-01-01

    We present a review of the properties of generalized domain wall Fermions, based on a (real) M\\"obius transformation on the Wilson overlap kernel, discussing their algorithmic efficiency, the degree of explicit chiral violations measured by the residual mass ($m_{res}$) and the Ward-Takahashi identities. The M\\"obius class interpolates between Shamir's domain wall operator and Bori\\c{c}i's domain wall implementation of Neuberger's overlap operator without increasing the number of Dirac applications per conjugate gradient iteration. A new scaling parameter ($\\alpha$) reduces chiral violations at finite fifth dimension ($L_s$) but yields exactly the same overlap action in the limit $L_s \\rightarrow \\infty$. Through the use of 4d Red/Black preconditioning and optimal tuning for the scaling $\\alpha(L_s)$, we show that chiral symmetry violations are typically reduced by an order of magnitude at fixed $L_s$. At large $L_s$ we argue that the observed scaling for $m_{res} = O(1/L_s)$ for Shamir is replaced by $m_{res...

  9. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP ENTITLED - DOMAIN WALL FERMIONS AT TEN YEARS (VOLUME 84)

    Energy Technology Data Exchange (ETDEWEB)

    BLUM,T.; SONI,A.

    2007-03-15

    The workshop was held to mark the 10th anniversary of the first numerical simulations of QCD using domain wall fermions initiated at BNL. It is very gratifying that in the intervening decade widespread use of domain wall and overlap fermions is being made. It therefore seemed appropriate at this stage for some ''communal introspection'' of the progress that has been made, hurdles that need to be overcome, and physics that can and should be done with chiral fermions. The meeting was very well attended, drawing about 60 registered participants primarily from Europe, Japan and the US. It was quite remarkable that pioneers David Kaplan, Herbert Neuberger, Rajamani Narayanan, Yigal Shamir, Sinya Aoki, and Pavlos Vranas all attended the workshop. Comparisons between domain wall and overlap formulations, with their respective advantages and limitations, were discussed at length, and a broad physics program including pion and kaon physics, the epsilon regime, nucleon structure, and topology, among others, emerged. New machines and improved algorithms have played a key role in realizing realistic dynamical fermion lattice simulations (small quark mass, large volume, and so on), so much in fact that measurements are now as costly. Consequently, ways to make the measurements more efficient were also discussed. We were very pleased to see the keen and ever growing interest in chiral fermions in our community and the significant strides our colleagues have made in bringing chiral fermions to the fore of lattice QCD calculations. Their contributions made the workshop a success, and we thank them deeply for sharing their time and ideas. Finally, we must especially acknowledge Norman Christ and Bob Mawhinney for their early and continued collaboration without which the success of domain wall fermions would not have been possible.

  10. Quark Number Susceptibilities with Domain-Wall Fermions

    CERN Document Server

    Hegde, Prasad; Schmidt, Christian

    2008-01-01

    We present results from calculations of different quark number and hadronic susceptibilities on 2+1-flavor dynamical domain wall ensembles. We find that the iso-spin and electric charge susceptibilities are especially well suited to determine the transition temperature, as these quantities show only small statistical errors. Moreover, the transition values of the coupling obtained from iso-spin and electrical charge susceptibilities are in good agreement with the one obtained from the chiral condensate.

  11. Charm Physics with Domain Wall Fermions and Physical Pion Masses

    CERN Document Server

    Boyle, Peter; Jüttner, Andreas; Khamseh, Ava; Sanfilippo, Francesco; Tsang, Justus Tobias; Witzel, Oliver

    2016-01-01

    We present RBC/UKQCD's charm project using $N_f=2+1$ flavour ensembles with inverse lattice spacings in the range $1.73-2.77\\,\\mathrm{GeV}$ and two physical pion mass ensembles. Domain wall fermions are used for the light as well as the charm quarks. We discuss our strategy for the extraction of the decay constants $f_D$ and $f_{D_s}$ and their extrapolation to the continuum limit, physical pion masses and the physical heavy quark mass. Our preliminary results are $f_D=208.7(2.8)\\,\\mathrm{MeV}$ and $f_{D_s}=246.4(1.9)\\,\\mathrm{MeV}$ where the quoted error is statistical only. We outline our current approach to extend the reach in the heavy quark mass and present preliminary results.

  12. Fermions with a domain-wall mass: explicit greens function and anomaly cancellation

    Science.gov (United States)

    Chandrasekharan, Shailesh

    1994-04-01

    We calculate the explicit Greens function for fermions in 2+1 dimensions, with a domain wall mass. We then show a calculation demonstrating the anomaly cancellation when such fermions move in the background of an abelian gauge field.

  13. Domain wall dynamics of magnetically bistable microwires

    Directory of Open Access Journals (Sweden)

    Ipatov M.

    2012-06-01

    Full Text Available We studied domain wall propagation of magnetically-bistable Fe- Co-rich microwires paying attention on effect of applied and internal stresses. We measured hysteresis loops and domain wall propagation in various magnetic Fe- Co-rich amorphous microwires with metallic nucleus diameters (from 12 □m till 22 □m using Sixtus Tonks-like experiments. Application of tensile stresses results in decreasing of domain wall velocity. We discussed magnetoelastic contribution in dynamics of domain wall propagation. We observed, that microwires with different geometries exhibit v(H dependences with different slopes. Application of stresses resulted in decrease of DW velocity, v, and DW mobility S. Quite fast DW propagation (v till 2500 m/s at H about 30 A/m has been observed in low magnetostrictive magnetically bistable Co56Fe8Ni10Si110B16 microwires. Consequently, we can assume that generally magnetoelastic energy affects DW dynamics: decreasing magnetoelastic energy, Kme, DW velocity increases.

  14. Charm as a domain wall fermion in quenched lattice QCD

    CERN Document Server

    Lin, H W; Soni, A; Yamada, N; Lin, Huey-Wen; Ohta, Shigemi; Soni, Amarjit; Yamada, Norikazu

    2006-01-01

    We report a study describing the charm quark by a domain-wall fermion (DWF) in lattice quantum chromodynamics (QCD). Our study uses a quenched gauge ensemble with the DBW2 rectangle-improved gauge action at a lattice cutoff of $a^{-1} \\sim 3$ GeV. We calculate masses of heavy-light (charmed) and heavy-heavy (charmonium) mesons with spin-parity $J^P = 0^\\mp$ and $1^\\mp$, leptonic decay constants of the charmed pseudoscalar mesons ($D$ and $D_s$), and the $D^0$-$\\bar{D^0}$ mixing parameter. The charm quark mass is found to be $m^{\\bar{\\rm MS}}_{c}(m_{c})=1.24(1)(18)$ GeV. The mass splittings in charmed-meson parity partners $\\Delta_{q,J=0}$ and $\\Delta_{q, J=1}$ are degenerate within statistical errors, in accord with experiment, and they satisfy a relation $\\Delta_{q=ud, J} > \\Delta_{q=s, J}$, also consistent with experiment. A C-odd axial vector charmonium state, $h_c), lies 22(11) MeV above the $\\chi_{c1}$ meson, or $m_{h_{c}} = 3533(11)_{\\rm stat.}$ MeV using the experimental $\\chi_{c1}) mass. However, in t...

  15. Fast domain wall dynamics in amorphous and nanocrystalline magnetic microwires

    Energy Technology Data Exchange (ETDEWEB)

    Varga, R., E-mail: rvarga@upjs.sk [Institute of Physics, Faculty of Science, UPJS, Park Angelinum 9, 041 54, Kosice (Slovakia); Klein, P.; Richter, K. [Institute of Physics, Faculty of Science, UPJS, Park Angelinum 9, 041 54, Kosice (Slovakia); Zhukov, A. [Dept. Fisica de Materiales, Fac. Quimica, UPV/EHU, San Sebastian (Spain); Vazquez, M. [Instituto de Ciencia de Materiales de Madrid, CSIC, Sor Juana Ines de la Cruz 3, 28049 Cantoblanco, Madrid (Spain)

    2012-10-15

    We have studied the effect of thermal treatment on the domain wall dynamics of FeSiB and FeCoMoB microwires. It was shown that annealing in transversal magnetic field increases the domain wall mobility as well as the domain wall velocity. Annealing under the tensile stress hinders the appearance of the monodomain structure but application of tensile stress leads to the magnetic bistability having the domain wall mobility twice higher that in as-cast state. Further increase of the tensile stress reduces the domain wall mobility but the domain wall velocity increases as a result of the decrease of critical propagation field. Annealing of the FeCoMoB microwire by Joule heating leads to introduction of the circular anisotropy that favors the vortex domain wall. Such treatment increases the domain wall mobility as well as the maximum domain wall velocity.

  16. Quark Contributions to Nucleon Momentum and Spin from Domain Wall fermion calculations

    Energy Technology Data Exchange (ETDEWEB)

    Syritsyn, Sergey N.; Green, Jeremy R. [MIT; Negele, John W. [MIT; Pochinsky, Andrew [MIT; Hagler, Philipp G. [Tech. U. Munich; Musch, Bernhard U. [Tech. U. Munich; Schroers, Wolfram

    2011-12-01

    We report contributions to the nucleon spin and momentum from light quarks calculated using dynamical domain wall fermions with pion masses down to 300 MeV and fine lattice spacing a=0.084 fm. Albeit without disconnected diagrams, we observe that spin and orbital angular momenta of both u and d quarks are opposite, almost canceling in the case of the d quark, which agrees with previous calculations using a mixed quark action. We also present the full momentum dependence of n=2 generalized form factors showing little variation with the pion mass.

  17. Non-perturbative renormalization of quark bilinear operators and B_K using domain wall fermions

    CERN Document Server

    Aoki, Y; Christ, N H; Dawson, C; Donnellan, M A; Izubuchi, T; Juttner, A; Li, S; Mawhinney, R D; Noaki, J; Sachrajda, Christopher T C; Soni, A; Tweedie, R J; Yamaguchi, A

    2007-01-01

    We present a calculation of the renormalization coefficients of the quark bilinear operators and the K-Kbar mixing parameter B_K. The coefficients relating the bare lattice operators to those in the RI/MOM scheme are computed non-perturbatively and then matched perturbatively to the MSbar scheme. The coefficients are calculated on the RBC/UKQCD 2+1 flavor dynamical lattice configurations. Specifically we use a 16^3 x 32 lattice volume, the Iwasaki gauge action at beta=2.13 and domain wall fermions with L_s=16.

  18. PREFACE: Domain wall dynamics in nanostructures Domain wall dynamics in nanostructures

    Science.gov (United States)

    Marrows, C. H.; Meier, G.

    2012-01-01

    Domain structures in magnetic materials are ubiquitous and have been studied for decades. The walls that separate them are topological defects in the magnetic order parameter and have a wide variety of complex forms. In general, their investigation is difficult in bulk materials since only the domain structure on the surface of a specimen is visible. Cutting the sample to reveal the interior causes a rearrangement of the domains into a new form. As with many other areas of magnetism, the study of domain wall physics has been revitalised by the advent of nanotechnology. The ability to fabricate nanoscale structures has permitted the formation of simplified and controlled domain patterns; the development of advanced microscopy methods has permitted them to be imaged and then modelled; subjecting them to ultrashort field and current pulses has permitted their dynamics to be explored. The latest results from all of these advances are described in this special issue. Not only has this led to results of great scientific beauty, but also to concepts of great applicability to future information technologies. In this issue the reader will find the latest results for these domain wall dynamics and the high-speed processes of topological structures such as domain walls and magnetic vortices. These dynamics can be driven by the application of magnetic fields, or by flowing currents through spintronic devices using the novel physics of spin-transfer torque. This complexity has been studied using a wide variety of experimental techniques at the edge of the spatial and temporal resolution currently available, and can be described using sophisticated analytical theory and computational modelling. As a result, the dynamics can be engineered to give rise to finely controlled memory and logic devices with new functionality. Moreover, the field is moving to study not only the conventional transition metal ferromagnets, but also complex heterostructures, novel magnets and even other

  19. Solutions of the Ginsparg-Wilson relation and improved domain wall fermions

    CERN Document Server

    Bietenholz, W

    1999-01-01

    We discuss a number of lattice fermion actions solving the Ginsparg-Wilson relation. We also consider short ranged approximate solutions. In particular, we are interested in reducing the lattice artifacts, while avoiding (or suppressing) additive mass renormalization. In this context, we also arrive at a formulation of improved domain wall fermions.

  20. Mixed Meson Mass for Domain-Wall Valence and Staggered Sea Fermions

    Energy Technology Data Exchange (ETDEWEB)

    Konstantinos Orginos; Andre Walker-Loud

    2007-05-01

    Mixed action lattice calculations allow for an additive lattice spacing dependent mass renormalization of mesons composed of one sea and one valence quark, regardless of the type of fermion discretization methods used in the valence and sea sectors. The value of the mass renormalization depends upon the lattice actions used. This mixed meson mass shift is the most important lattice artifact to determine for mixed action calculations: because it modifies the pion mass, it plays a central role in the low energy dynamics of all hadronic correlation functions. We determine the leading order and next to leading order additive mass renormalization of valence-sea mesons for a mixed lattice action with domain-wall valence fermions and staggered sea fermions. We find that on the asqtad improved coarse MILC lattices, the leading order additive mass renormalization for the mixed mesons is Δ(am)^2 LO = 0.0409(11) which corresponds to a^2 Δ_Mix = (319 MeV)^2± (53 MeV)^2 for a = 0.125 fm. We also find significant next to leading order contributions which reduce the mass renormalization by a significant amount, such that for 0 < am_π ≤ 0.22 the mixed meson mass renormalization is well approximated by Δ(am)^2 = 0.0340 (23) or a^2δ_Mix = (290 MeV)^2 ± (76 MeV)^2. The full next-to-leading order analysis is presented in the text.

  1. Domain Wall Fermion Simulations with the Exact One-Flavor Algorithm

    CERN Document Server

    Murphy, D J

    2016-01-01

    As algorithmic developments have driven down the cost of simulating degenerate light quark pairs the relative cost of simulating single quark flavors with the Rational Hybrid Monte Carlo (RHMC) algorithm has become more expensive. TWQCD has proposed an exact one-flavor algorithm (EOFA) that allows for HMC simulations of a single quark flavor without taking a square root of the fermion determinant. We have independently implemented EOFA in the Columbia Physics System (CPS) and BAGEL Fermion Sparse-Matrix Library (BFM) for Shamir and M\\"{o}bius domain wall fermions, and begun to optimize and test our implementation against RHMC. In this talk we discuss the derivation of the EOFA action, our tests of its equivalence to RHMC, and the current state of our implementation and optimization. We find, after introducing a novel preconditioning technique for the EOFA Dirac operator, that EOFA is a factor of 2.4 times faster than RHMC per molecular dynamics trajectory for the strange quark determinant on an $N_{f} = 2+1$ ...

  2. Ultrafast domain wall dynamics in magnetic nanotubes and nanowires

    Science.gov (United States)

    Hertel, R.

    2016-12-01

    The dynamic properties of magnetic domain walls in nanotubes and in cylindrical nanowires can be significantly different from the well known domain wall dynamics in thin films and in flat thin strips. The main differences are the occurrence of chiral symmetry breaking and, perhaps more importantly, the possibility to obtain magnetic domain walls that are stable against the usual Walker breakdown. This stability enables the magnetic field-driven propagation of the domain walls in nanotubes and nanocylinders at constant velocities which are significantly higher than the usual propagation speeds of the domain walls. Simulations predict that the ultrafast motion of magnetic domain walls at velocities in a range above 1000 m s-1 can lead to the spontaneous excitation of spin waves in a process that is the magnetic analog of the Cherenkov effect. In the case of solid cylindrical wires, the domain wall can contain a micromagnetic point singularity. We discuss the current knowledge on the ultrafast dynamics of such Bloch points, which remains still largely unexplored.

  3. Chiral Symmetry Breaking for Domain Wall Fermions in Quenched Lattice QCD

    CERN Document Server

    Wu, L

    2001-01-01

    The domain wall fermion formulation exhibits full chiral symmetry for finite lattice spacing except for the effects of mixing between the domain walls. Close to the continuum limit these symmetry breaking effects should be described by a single residual mass. We determine this mass from the conservation law obeyed by the conserved axial current in quenched simulations with beta=5.7 and 6.0 and domain wall separations varying between 12 and 48 on 8^3x32 and 16^3x32 lattices. Using the resulting values for the residual mass we perform two complete and independent calculations of the pion decay constant. Good agreement is found between these two methods and with experiment.

  4. Nonlinear dynamics of domain walls with cross-ties

    Energy Technology Data Exchange (ETDEWEB)

    Dubovik, M. N., E-mail: dubovik@imp.uran.ru [Russian Academy of Sciences, Institute of Metal Physics, Ural Branch (Russian Federation); Zverev, V. V. [Ural Federal University (Russian Federation); Filippov, B. N. [Russian Academy of Sciences, Institute of Metal Physics, Ural Branch (Russian Federation)

    2016-07-15

    The dynamic behavior of a domain wall with cross-ties is analyzed on the basis of micromagnetic simulation with exact allowance for all main (exchange, magnetoanisotropic, and magnetostatic) interactions in thin magnetically uniaxial ferromagnetic films with planar anisotropy. It is found that the peculiarities of motion of such domain walls are closely related to the behavior of topological defects in the magnetization distribution (generation, motion, and annihilation of vortex–antivortex pairs on the film surface and Bloch points). We observe three different regimes of motion (stationary, periodic, and turbulent regimes), each of which is realized in a certain range of fields oriented along the easy magnetization axis. It is shown that the experimentally observed dynamic bends of the walls with cross-ties are determined by the type of motion of vortices and antivortices. The velocities of domain walls in different regimes are calculated, and the dynamic configurations of the magnetization and existing dynamic transitions between them are investigated.

  5. Nonlinear dynamics of domain walls with cross-ties

    Science.gov (United States)

    Dubovik, M. N.; Zverev, V. V.; Filippov, B. N.

    2016-07-01

    The dynamic behavior of a domain wall with cross-ties is analyzed on the basis of micromagnetic simulation with exact allowance for all main (exchange, magnetoanisotropic, and magnetostatic) interactions in thin magnetically uniaxial ferromagnetic films with planar anisotropy. It is found that the peculiarities of motion of such domain walls are closely related to the behavior of topological defects in the magnetization distribution (generation, motion, and annihilation of vortex-antivortex pairs on the film surface and Bloch points). We observe three different regimes of motion (stationary, periodic, and turbulent regimes), each of which is realized in a certain range of fields oriented along the easy magnetization axis. It is shown that the experimentally observed dynamic bends of the walls with cross-ties are determined by the type of motion of vortices and antivortices. The velocities of domain walls in different regimes are calculated, and the dynamic configurations of the magnetization and existing dynamic transitions between them are investigated.

  6. An exploratory study of heavy domain wall fermions on the lattice

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, P. [School of Physics and Astronomy, University of Edinburgh,Edinburgh, EH9 3JZ (United Kingdom); Jüttner, A. [School of Physics and Astronomy, University of Southampton,Southampton, SO17 1BJ (United Kingdom); Marinković, M. Krstić [School of Physics and Astronomy, University of Southampton,Southampton, SO17 1BJ (United Kingdom); Theoretical Physics Department, CERN,Geneva (Switzerland); Sanfilippo, F.; Spraggs, M.; Tsang, J.T. [School of Physics and Astronomy, University of Southampton,Southampton, SO17 1BJ (United Kingdom); Collaboration: The RBC/UKQCD collaboration

    2016-04-06

    We report on an exploratory study of domain wall fermions (DWF) as a lattice regularisation for heavy quarks. Within the framework of quenched QCD with the tree-level improved Symanzik gauge action we identify the DWF parameters which minimise discretisation effects. We find the corresponding effective 4d overlap operator to be exponentially local, independent of the quark mass. We determine a maximum bare heavy quark mass of am{sub h}≈0.4, below which the approximate chiral symmetry and O(a)-improvement of DWF are sustained. This threshold appears to be largely independent of the lattice spacing. Based on these findings, we carried out a detailed scaling study for the heavy-strange meson dispersion relation and decay constant on four ensembles with lattice spacings in the range 2.0–5.7 GeV. We observe very mild a{sup 2} scaling towards the continuum limit. Our findings establish a sound basis for heavy DWF in dynamical simulations of lattice QCD with relevance to Standard Model phenomenology.

  7. An exploratory study of heavy domain wall fermions on the lattice

    CERN Document Server

    Boyle, Peter; Marinkovic, Marina Krstic; Sanfilippo, Francesco; Spraggs, Matthew; Tsang, Justus Tobias

    2016-01-01

    We report on an exploratory study of domain wall fermions (DWF) as a lattice regularisation for heavy quarks. Within the framework of quenched QCD with the tree-level improved Symanzik gauge action we identify the DWF parameters which minimise discretisation effects. We find the corresponding effective 4$d$ overlap operator to be exponentially local, independent of the quark mass. We determine a maximum bare heavy quark mass of $am_h\\approx 0.4$, below which the approximate chiral symmetry and O(a)-improvement of DWF are sustained. This threshold appears to be largely independent of the lattice spacing. Based on these findings, we carried out a detailed scaling study for the heavy-strange meson dispersion relation and decay constant on four ensembles with lattice spacings in the range $2.0-5.7\\,\\mathrm{GeV}$. We observe very mild $a^2$ scaling towards the continuum limit. Our findings establish a sound basis for heavy DWF in dynamical simulations of lattice QCD with relevance to Standard Model phenomenology.

  8. Localization of vector field on dynamical domain wall

    Directory of Open Access Journals (Sweden)

    Masafumi Higuchi

    2017-03-01

    Full Text Available In the previous works (arXiv:1202.5375 and arXiv:1402.1346, the dynamical domain wall, where the four dimensional FRW universe is embedded in the five dimensional space–time, has been realized by using two scalar fields. In this paper, we consider the localization of vector field in three formulations. The first formulation was investigated in the previous paper (arXiv:1510.01099 for the U(1 gauge field. In the second formulation, we investigate the Dvali–Shifman mechanism (arXiv:hep-th/9612128, where the non-abelian gauge field is confined in the bulk but the gauge symmetry is spontaneously broken on the domain wall. In the third formulation, we investigate the Kaluza–Klein modes coming from the five dimensional graviton. In the Randall–Sundrum model, the graviton was localized on the brane. We show that the (5,μ components (μ=0,1,2,3 of the graviton are also localized on the domain wall and can be regarded as the vector field on the domain wall. There are, however, some corrections coming from the bulk extra dimension if the domain wall universe is expanding.

  9. A construction of the Schr\\"odinger Functional for M\\"obius Domain Wall Fermions

    CERN Document Server

    Murakami, Yuko

    2014-01-01

    We construct the Schr\\"odinger Functional (SF) setup for the M\\"obius domain wall fermions (MDWF). The method is an extension of the method proposed by Takeda for the standard domain wall fermion. In order to fulfill the requirement that the lattice Dirac operator with the SF boundary obeys the L\\"uscher's universality argument: the lattice chiral fermion with the SF boundary condition breaks the chiral symmetry at the temporal boundary, we impose the parity symmetry with respect to the fifth-direction on the MDWF operator. This additional symmetry restricts the choice of the parameter of the MDWF so that the optimal parameter from the Zolotarev optimal approximation cannot be applied. We introduce a modified parameter set having the fifth-dimensional parity symmetry. We investigate the MDWF with the SF boundary by observing eigenvalues of the Hermitian operator and the Ginsparg-Wilson relation violation at the tree-level. We compare the computational cost with that of the standard DWF with the SF scheme.

  10. Charmonium current-current correlators with Mobius domain-wall fermion

    CERN Document Server

    Nakayama, Katsumasa; Hashimoto, Shoji

    2015-01-01

    We calculate the charmonium correlators on the lattice with $n_f = 2+ 1$ Moebius domain wall fermion, and extract the charm quark mass and the strong coupling constant. Time moments are defined by current-current correlators, which have been calculated in the continuum theory by perturbation theory. We extract the charm quark mass by matching the lattice results with the corresponding perturbative QCD calculations, using the recently generated ensembles by the JLQCD collaboration at lattice spacings $a = 0.083, 0.055$, and $0.044$ fm.

  11. Decay constants and spectroscopy of mesons in lattice QCD using domain-wall fermions

    CERN Document Server

    Fahy, B; Hashimoto, S; Kaneko, T; Noaki, J; Tomii, M

    2015-01-01

    We report results of masses and decay constants of light and charmed pseudo-scalar mesons using lattice QCD with M\\"obius domain-wall fermions. Using this formulation we are able to compute pseudo-scalar decay constants through the pseudo-scalar density operator as well as with the axial-vector current. Results are shown from several lattice spacings and pion masses between 230 MeV and 500 MeV. We present an analysis of these results at different quark masses to show the chiral properties of the light mesons masses and decay constants.

  12. Status of nucleon structure calculations with 2+1 flavors of domain wall fermions

    CERN Document Server

    Lin, Meifeng

    2013-01-01

    We report the status of our nucleon structure calculations with 2+1 flavors of domain wall fermions on the RBC-UKQCD $32^3\\times64$ gauge ensembles with the Iwasaki+DSDR action. These ensembles have a fixed lattice scale of 1/a = 1.37 GeV, and two pion masses of about 170 and 250 MeV. Preliminary results for the isovector electromagnectic form factors and their corresponding root-mean-squared (r.m.s.) radii will be presented.

  13. Domain wall dynamics in expanding spaces.

    Science.gov (United States)

    Cao, Francisco J; Zamora-Sillero, Elías; Quintero, Niurka R

    2006-05-01

    We study the effects on the dynamics of kinks due to expansions and contractions of the space. We show that the propagation velocity of the kink can be adiabatically tuned through slow expansions and/or contractions, while its width is given as a function of the velocity. We also analyze the case of fast expansions and/or contractions, where we are no longer on the adiabatic regime. In this case the kink moves more slowly after an expansion-contraction cycle as a consequence of the loss of energy through radiation. All these effects are numerically studied in the nonlinear Klein-Gordon equations (both for the sine-Gordon and for the potential), and they are also studied within the framework of the collective coordinate evolution equations for the width and the center of mass of the kink. These collective coordinate evolution equations are obtained with a procedure that allows us to consider even the case of large expansions and/or contractions.

  14. Localization of Vector Field on Dynamical Domain Wall

    CERN Document Server

    Higuchi, Masafumi

    2016-01-01

    In the previous works (arXiv:1202.5375 and 1402.1346), the dynamical domain wall, where the four dimensional FRW universe is embedded in the five imensional space-time, has been realized by using two scalar fields. In this paper, we consider the localization of vector field in three formulations. The first formulation was investigated in the previous paper (arXiv:1510.01099) for the $U(1)$ gauge field. In the second formulation, we investigate the Dvali-Shifman mechanism (hep-th/9612128), where the non-abelian gauge field is confined in the bulk but the gauge symmetry is spontaneously broken on the domain wall. In the third formulation, we investigate the Kaluza-Klein modes coming from the five dimensional graviton. In the Randall-Sundrum model, the graviton was localized on the brane. We show that the $(5,\\mu)$ components $\\left(\\mu=0,1,2,3\\right)$ of the graviton are also localized on the domain wall and can be regarded as the vector field on the domain wall. There are, however, some corrections coming from...

  15. Critical domain-wall dynamics of model B.

    Science.gov (United States)

    Dong, R H; Zheng, B; Zhou, N J

    2009-05-01

    With Monte Carlo methods, we simulate the critical domain-wall dynamics of model B, taking the two-dimensional Ising model as an example. In the macroscopic short-time regime, a dynamic scaling form is revealed. Due to the existence of the quasirandom walkers, the magnetization shows intrinsic dependence on the lattice size L . An exponent which governs the L dependence of the magnetization is measured to be sigma=0.243(8) .

  16. Study of the conformal region of the SU(3) gauge theory with domain-wall fermions

    CERN Document Server

    Noaki, J; Ishikawa, K-I; Iwasaki, Y; Yoshie, T

    2015-01-01

    We investigate the phase structure of the SU(3) gauge theory with $N_f=8$ by numerical simulations employing the massless Domain-Wall fermions.Our aim is to study directly the massless quark region, since it is the most important region to clarify the properties of conformal theories. When the number of flavor is within the conformal window, it is claimed recently with Wilson quarks that there is the conformal region at the small quark mass region in the parameter space in addition to the confining phase and the deconfining phase. We study the properties of the conformal region investing the spatial Polyakov loops and the temporal meson propagators. Our data imply that there is the conformal region, and a phase transition between the confining phase and the conformal region takes place. These results are consistent with the claim that the conformal window is between $7$ and $16$. Progress reports on other related studies are also presented.

  17. Topological Susceptibility in Two Flavors Lattice QCD with the Optimal Domain-Wall Fermion

    CERN Document Server

    Chiu, Ting-Wai; Mao, Yao-Yuan

    2011-01-01

    We determine the topological susceptibility of the gauge configurations generated by lattice simulations using two flavors of optimal domain-wall fermion on the $ 16^3 \\times 32 $ lattice with length 16 in the fifth dimension, at the lattice spacing $ a \\simeq 0.1 $ fm. Using the adaptive thick-restart Lanczos algorithm, we project the low-lying eigenmodes of the overlap Dirac operator, and obtain the topological charge of each configuration, for eight ensembles with pion masses in the range $ 220-550 $ MeV. From the topological charge, we compute the topological susceptibility and the second normalized cumulant. Our result of the topological susceptibility agrees with the sea-quark mass dependence predicted by the chiral perturbation theory and provides a determination of the chiral condensate, $\\Sigma^{\\bar{MS}}(2 GeV)=[259(6)(7) MeV]^3 $, and the pion decay constant $F_\\pi = 92(12)(2)$ MeV.

  18. Neutron and proton electric dipole moments from Nf=2 +1 domain-wall fermion lattice QCD

    Science.gov (United States)

    Shintani, Eigo; Blum, Thomas; Izubuchi, Taku; Soni, Amarjit; Rbc; Ukqcd Collaborations

    2016-05-01

    We present a lattice calculation of the neutron and proton electric dipole moments (EDMs) with Nf=2 +1 flavors of domain-wall fermions. The neutron and proton EDM form factors are extracted from three-point functions at the next-to-leading order in the θ vacuum of QCD. In this computation, we use pion masses of 0.33 and 0.42 GeV and 2.7 fm3 lattices with Iwasaki gauge action, and a 0.17 GeV pion and a 4.6 fm3 lattice with I-DSDR gauge action, all generated by the RBC and UKQCD collaborations. The all-mode averaging technique enables an efficient and high statistics calculation. Chiral behavior of lattice EDMs is discussed in the context of baryon chiral perturbation theory. In addition, we also show numerical evidence on the relationship of three- and two-point correlation functions with the local topological charge distribution.

  19. Domain-wall spin dynamics in kagome antiferromagnets.

    Science.gov (United States)

    Lhotel, E; Simonet, V; Ortloff, J; Canals, B; Paulsen, C; Suard, E; Hansen, T; Price, D J; Wood, P T; Powell, A K; Ballou, R

    2011-12-16

    We report magnetization and neutron scattering measurements down to 60 mK on a new family of Fe based kagome antiferromagnets, in which a strong local spin anisotropy combined with a low exchange path network connectivity lead to domain walls intersecting the kagome planes through strings of free spins. These produce unfamiliar slow spin dynamics in the ordered phase, evolving from exchange-released spin flips towards a cooperative behavior on decreasing the temperature, probably due to the onset of long-range dipolar interaction. A domain structure of independent magnetic grains is obtained that could be generic to other frustrated magnets.

  20. Dynamics of Biased Domain Walls and the Devaluation Mechanism

    CERN Document Server

    Pina-Avelino, P; Sousa, L

    2008-01-01

    We study the evolution of biased domain walls in the early universe. We explicitly discuss the roles played by the surface tension and volume pressure in the evolution of the walls, and quantify their effects by looking at the collapse of spherical wall solutions. We then apply our results to a particular mechanism, known as the devaluation scenario, in which the dynamics of biased domain walls was suggested as a possible solution to the cosmological constant problem. Our results indicate that devaluation will in general lead to values of the cosmological constant that differ by several orders of magnitude from the observationally inferred value, $\\rho^{1/4}_{vac}\\sim10^{-3} \\rm eV$. We also argue that the reasons behind this are not specific to a particular realization, and are expected to persist in any scenario of this kind, except if a low energy cut-off on the spectra of vacuum energy densities, of the order of the critical density at the present time, is postulated. This implies that any such scenario w...

  1. Dynamics of biased domain walls and the devaluation mechanism

    Science.gov (United States)

    Avelino, P. P.; Martins, C. J. A. P.; Sousa, L.

    2008-08-01

    We study the evolution of biased domain walls in the early universe. We explicitly discuss the roles played by the surface tension and volume pressure in the evolution of the walls, and quantify their effects by looking at the collapse of spherical wall solutions. We then apply our results to a particular mechanism, known as the devaluation scenario, in which the dynamics of biased domain walls was suggested as a possible solution to the cosmological constant problem. Our results indicate that devaluation will, in general, lead to values of the cosmological constant that differ by several orders of magnitude from the observationally inferred value, ρvac1/4˜10-3eV. We also argue that the reasons behind this are not specific to a particular realization, and are expected to persist in any scenario of this kind, except if a low-energy cutoff on the spectra of vacuum energy densities, of the order of the critical density at the present time, is postulated. This implies that any such scenario will require a fine-tuning similar to the usual one.

  2. The QCD chiral transition, $\\ua$ symmetry and the Dirac spectrum using domain wall fermions

    CERN Document Server

    Buchoff, Michael I; Christ, Norman H; Ding, H -T; Jung, Chulwoo; Karsch, F; Mawhinney, R D; Mukherjee, Swagato; Petreczky, P; Renfrew, Dwight; Schroeder, Chris; Vranas, P M; Yin, Hantao; Lin, Zhongjie

    2013-01-01

    We report on a study of the finite-temperature QCD transition region for temperatures between 139 and 196 MeV, with a pion mass of 200 MeV and two space-time volumes: $24^3\\times8$ and $32^3\\times8$, where the larger volume varies in linear size between 5.6 fm (at T=139 MeV) and 4.0 fm (at T=195 MeV). These results are compared with the results of an earlier calculation using the same action and quark masses but a smaller, $16^3\\times8$ volume. The chiral domain wall fermion formulation with a combined Iwasaki and dislocation suppressing determinant ratio gauge action are used. This lattice action accurately reproduces the $\\sua$ and $\\ua$ symmetries of the continuum. Results are reported for the chiral condensates, connected and disconnected susceptibilities and the Dirac eigenvalue spectrum. We find a pseudo-critical temperature, $T_c$, of approximately 165 MeV consistent with previous results and strong finite volume dependence below $T_c$. Clear evidence is seen for $\\ua$ symmetry breaking above $T_c$ whi...

  3. The chiral transition and U(1)_A symmetry restoration from lattice QCD using Domain Wall Fermions

    CERN Document Server

    Bazavov, A; Buchoff, Michael I; Cheng, Michael; Christ, N H; Ding, H -T; Gupta, Rajan; Hegde, Prasad; Jung, Chulwoo; Karsch, F; Lin, Zhongjie; Mawhinney, R D; Mukherjee, Swagato; Petreczky, P; Soltz, R A; Vranas, P M; Yin, Hantao

    2012-01-01

    We present results on both the restoration of the spontaneously broken chiral symmetry and the effective restoration of the anomalously broken U(1)_A symmetry in finite temperature QCD at zero chemical potential using lattice QCD. We employ domain wall fermions on lattices with fixed temporal extent N_\\tau = 8 and spatial extent N_\\sigma = 16 in a temperature range of T = 139 - 195 MeV, corresponding to lattice spacings of a \\approx 0.12 - 0.18 fm. In these calculations, we include two degenerate light quarks and a strange quark at fixed pion mass m_\\pi = 200 MeV. The strange quark mass is set near its physical value. We also present results from a second set of finite temperature gauge configurations at the same volume and temporal extent with slightly heavier pion mass. To study chiral symmetry restoration, we calculate the chiral condensate, the disconnected chiral susceptibility, and susceptibilities in several meson channels of different quantum numbers. To study U(1)_A restoration, we calculate spatial ...

  4. Nucleon structure from mixed action calculations using 2+1 flavors of asqtad sea and domain wall valence fermions

    Energy Technology Data Exchange (ETDEWEB)

    Bratt, Jonathan; Engelhardt, Michael; Haegler, Philipp; Huey-Wen, Lin; Lin, Meifeng; Meyer, Harvey; Musch, Bernhard; Negele, John; Orginos, Konstantinos; Pochinsky, Andrew; Procura, Massimiliano; Richards, David; Schroers, Wolfram; Syritsyn, Sergey

    2010-11-01

    We present high statistics results for the structure of the nucleon from a mixed-action calculation using 2+1 flavors of asqtad sea and domain wall valence fermions. We perform extrapolations of our data based on different chiral effective field theory schemes and compare our results with available information from phenomenology. We discuss vector and axial form factors of the nucleon, moments of generalized parton distributions, including moments of forward parton distributions, and implications for the decomposition of the nucleon spin.

  5. Electric-field-driven dynamics of magnetic domain walls in magnetic nanowires patterned on ferroelectric domains

    OpenAIRE

    Van de Wiele, Ben; Leliaert, Jonathan; Franke, Kévin; van Dijken, Sebastiaan

    2016-01-01

    Strong coupling of magnetic domain walls onto straight ferroelastic boundaries of a ferroelectric layer enables full and reversible electric-field control of magnetic domain wall motion. In this paper, the dynamics of this new driving mechanism is analyzed using micromagnetic simulations. We show that transverse domain walls with a near-180° spin structure are stabilized in magnetic nanowires and that electric fields can move these walls with high velocities. Above a critical velocity, which ...

  6. Current-driven dynamics of chiral ferromagnetic domain walls.

    Science.gov (United States)

    Emori, Satoru; Bauer, Uwe; Ahn, Sung-Min; Martinez, Eduardo; Beach, Geoffrey S D

    2013-07-01

    In most ferromagnets the magnetization rotates from one domain to the next with no preferred handedness. However, broken inversion symmetry can lift the chiral degeneracy, leading to topologically rich spin textures such as spin spirals and skyrmions through the Dzyaloshinskii-Moriya interaction (DMI). Here we show that in ultrathin metallic ferromagnets sandwiched between a heavy metal and an oxide, the DMI stabilizes chiral domain walls (DWs) whose spin texture enables extremely efficient current-driven motion. We show that spin torque from the spin Hall effect drives DWs in opposite directions in Pt/CoFe/MgO and Ta/CoFe/MgO, which can be explained only if the DWs assume a Néel configuration with left-handed chirality. We directly confirm the DW chirality and rigidity by examining current-driven DW dynamics with magnetic fields applied perpendicular and parallel to the spin spiral. This work resolves the origin of controversial experimental results and highlights a new path towards interfacial design of spintronic devices.

  7. Stochastic calculation of the QCD Dirac operator spectrum with Mobius domain-wall fermion

    CERN Document Server

    Cossu, G; Hashimoto, S; Kaneko, T; Noaki, J

    2016-01-01

    We calculate the spectral function of the QCD Dirac operator using the four-dimensional effective operator constructed from the Mobius domain-wall implementation. We utilize the eigenvalue filtering technique combined with the stochastic estimate of the mode number. The spectrum in the entire eigenvalue range is obtained with a single set of measurements. Results on 2+1-flavor ensembles with Mobius domain-wall sea quarks at lattice spacing ~ 0.08 fm are shown.

  8. Modeling thermally activated domain wall dynamics in thin magnetic strips with disorder

    Energy Technology Data Exchange (ETDEWEB)

    Laurson, L; Mughal, A; Serpico, C; Durin, G; Zapperi, S, E-mail: lasse.laurson@gmail.com [ISI Foundation, Torino (Italy)

    2011-04-01

    We study the effect of disorder and temperature on the field-driven dynamics of a transverse domain wall occurring in thin and narrow magnetic strips made of a soft magnetic material such as permalloy. Motivated by a micromagnetic description of such a domain wall, we construct a model based on two coupled flexible lines enclosing the domain wall transition region, capturing both the finite width and the characteristic V-shape of the wall. Disorder is included via randomly distributed pinning centers interacting with the two lines. We study the field-driven dynamics of the domain wall in disordered strips in a finite temperature, and compare our findings to experimental observations of stochastic domain wall dynamics.

  9. Quantum Dynamics of Spin Wave Propagation through Domain Walls

    NARCIS (Netherlands)

    Yuan, S.; Raedt, H. De; Miyashita, S.

    2006-01-01

    Through numerical solution of the time-dependent Schrödinger equation, we demonstrate that magnetic chains with uniaxial anisotropy support stable structures, separating ferromagnetic domains of opposite magnetization. These structures, domain walls in a quantum system, are shown to remain stable if

  10. Optimizing the domain wall fermion Dirac operator using the R-Stream source-to-source compiler

    CERN Document Server

    Lin, Meifeng; Langston, M Harper; Meister, Benoit; Baskaran, Muthu; Izubuchi, Taku; Jung, Chulwoo

    2015-01-01

    The application of the Dirac operator on a spinor field, the Dslash operation, is the most computation-intensive part of the lattice QCD simulations. It is often the key kernel to optimize to achieve maximum performance on various platforms. Here we report on a project to optimize the domain wall fermion Dirac operator in Columbia Physics System (CPS) using the R-Stream source-to-source compiler. Our initial target platform is the Intel PC clusters. We discuss the optimization strategies involved before and after the automatic code generation with R-Stream and present some preliminary benchmark results.

  11. Electric field induced domain-wall dynamics: Depinning and chirality switching

    Science.gov (United States)

    Upadhyaya, Pramey; Dusad, Ritika; Hoffman, Silas; Tserkovnyak, Yaroslav; Alzate, Juan G.; Amiri, Pedram Khalili; Wang, Kang L.

    2013-12-01

    We theoretically study the equilibrium and dynamic properties of nanoscale magnetic tunnel junctions (MTJs) and magnetic wires, in which an electric field controls the magnetic anisotropy through spin-orbit coupling. By performing micromagnetic simulations, we construct a rich phase diagram and find that, in particular, the equilibrium magnetic textures can be tuned between Néel and Bloch domain walls in an elliptical MTJ. Furthermore, we develop a phenomenological model of a quasi-one-dimensional domain wall confined by a parabolic potential and show that, near the Néel-to-Bloch-wall transition, a pulsed electric field induces precessional domain-wall motion which can be used to reverse the chirality of a Néel wall and even depin it. This domain-wall motion controlled by electric fields, in lieu of applied current, may provide a model for ultralow-power domain-wall memory and logic devices.

  12. Lattice QCD calculations of nucleon transverse momentum-dependent parton distributions using clover and domain wall fermions

    CERN Document Server

    Yoon, B; Engelhardt, M; Green, J; Gupta, R; Hägler, P; Musch, B; Negele, J; Pochinsky, A; Syritsyn, S

    2016-01-01

    We present a lattice QCD calculation of transverse momentum dependent parton distribution functions (TMDs) of protons using staple-shaped Wilson lines. For time-reversal odd observables, we calculate the generalized Sivers and Boer-Mulders transverse momentum shifts in SIDIS and DY cases, and for T-even observables we calculate the transversity related to the tensor charge and the generalized worm-gear shift. The calculation is done on two different n_f=2+1 ensembles: domain-wall fermion (DWF) with lattice spacing 0.084 fm and pion mass of 297 MeV, and clover fermion with lattice spacing 0.114 fm and pion mass of 317 MeV. The results from those two different discretizations are consistent with each other.

  13. Electric-field-driven dynamics of magnetic domain walls in magnetic nanowires patterned on ferroelectric domains

    Science.gov (United States)

    Van de Wiele, Ben; Leliaert, Jonathan; Franke, Kévin J. A.; van Dijken, Sebastiaan

    2016-03-01

    Strong coupling of magnetic domain walls onto straight ferroelastic boundaries of a ferroelectric layer enables full and reversible electric-field control of magnetic domain wall motion. In this paper, the dynamics of this new driving mechanism is analyzed using micromagnetic simulations. We show that transverse domain walls with a near-180° spin structure are stabilized in magnetic nanowires and that electric fields can move these walls with high velocities. Above a critical velocity, which depends on material parameters, nanowire geometry and the direction of domain wall motion, the magnetic domain walls depin abruptly from the ferroelastic boundaries. Depinning evolves either smoothly or via the emission and annihilation of a vortex or antivortex core (Walker breakdown). In both cases, the magnetic domain wall slows down after depinning in an oscillatory fashion and eventually comes to a halt. The simulations provide design rules for hybrid ferromagnetic-ferroelectric domain-wall-based devices and indicate that material disorder and structural imperfections only influence Walker-breakdown-like depinning at high domain wall velocities.

  14. Domain wall filters

    CERN Document Server

    Bär, O; Neuberger, H; Witzel, O; Baer, Oliver; Narayanan, Rajamani; Neuberger, Herbert; Witzel, Oliver

    2007-01-01

    We propose using the extra dimension separating the domain walls carrying lattice quarks of opposite handedness to gradually filter out the ultraviolet fluctuations of the gauge fields that are felt by the fermionic excitations living in the bulk. This generalization of the homogeneous domain wall construction has some theoretical features that seem nontrivial.

  15. Fermion masses and mixing in a 4+1-dimensional SU(5) domain-wall brane model

    CERN Document Server

    Callen, Benjamin D

    2010-01-01

    We study the fermion mass and mixing hierarchy problems within the context of the SU(5) 4+1d domain-wall brane model of Davies, George and Volkas. In this model, the ordinary fermion mass relations of SU(5) grand unified theories are avoided since the masses are proportional to overlap integrals of the profiles of the electroweak Higgs and the chiral components of each fermion, which are split into different 3+1d hyperplanes according to their hypercharges. We show that the fermion mass hierarchy without electroweak mixing can be generated naturally from these splittings, that generation of the CKM matrix looks promising, and that the Cabibbo angle along with the mass hierarchy can be generated for the case of Majorana neutrinos from a more modest hierarchy of parameters. We also show that under some assumptions made on the parameter space, the generation of realistic lepton mixing angles is not possible without fine-tuning, which argues for a flavour symmetry to enforce the required relations.

  16. Beyond the quasi-particle: stochastic domain wall dynamics in soft ferromagnetic nanowires

    Science.gov (United States)

    Hayward, T. J.; Omari, K. A.

    2017-03-01

    We study the physical origins of stochastic domain wall pinning in soft ferromagnetic nanowires using focused magneto-optic Kerr effect measurements and dynamic micromagnetic simulations. Our results illustrate the ubiquitous nature of these effects in Ni80Fe20 nanowires, and show that they are not only a result of the magnetisation history of the system (i.e. the magnetisation structure of the injected domain walls), and the onset of non-linear propagation dynamics above the Walker breakdown field, but also a complex interplay between the two. We show that this means that, while micromagnetics can be used to make qualitative predictions of the behaviour of domain walls at defect sites, making quantitative predictions is much more challenging. Together, our results reinforce the view that even in these simple pseudo-one dimensional nanomagnets, domain walls must be considered as complex, dynamically evolving objects rather than simple quasi-particles.

  17. Influence of Dzialoshinskii–Moriya interaction on static and dynamic properties of a transverse domain wall

    Energy Technology Data Exchange (ETDEWEB)

    Kravchuk, Volodymyr P., E-mail: vkravchuk@bitp.kiev.ua

    2014-10-01

    It is shown that the Dzialoshinskii–Moriya interaction leads to asymmetrical deformation of the transverse domain wall profile in one-dimensional biaxial magnet. Amplitude of the deformation is linear with respect to the Dzialoshinskii constant D. Corrections caused by the Dzialoshinskii–Moriya interaction are obtained for the number of the domain wall parameters: energy density, Döring mass, and Walker field. The modified q–Φ model with an additional pair of conjugated collective variables is proposed for studying the dynamical properties of the wall with taking into account the internal degrees of freedom. - Highlights: • Dzialoshinskii–Moriya interaction deforms the domain wall profile asymmetrically. • Extended model with 2 pairs of collective variables is proposed for a domain wall. • The Walker field is slightly changed due to the Dzialoshinskii–Moriya interaction.

  18. Neutron and proton electric dipole moments from $N_f=2+1$ domain-wall fermion lattice QCD

    CERN Document Server

    Shintani, Eigo; Izubuchi, Taku; Soni, Amarjit

    2015-01-01

    We present a lattice calculation of the neutron and proton electric dipole moments (EDM's) with $N_f=2+1$ flavors of domain-wall fermions. The neutron and proton EDM form factors are extracted from three-point functions at the next-to-leading order in the $\\theta$ vacuum of QCD. In this computation, we use pion masses 0.33 and 0.42 GeV and 2.7 fm$^3$ lattices with Iwasaki gauge action and a 0.17 GeV pion and 4.6 fm$^3$ lattice with I-DSDR gauge action, all generated by the RBC and UKQCD collaborations. The all-mode-averaging technique enables an efficient and high statistics calculation. Chiral behavior of lattice EDM's is discussed in the context of baryon chiral perturbation theory. In addition, we also show numerical evidence on relationship of three- and two-point correlation function with local topological distribution.

  19. Spin distributions and dynamics in domain walls guided by soft magnetic nanowire structures

    Science.gov (United States)

    Yang, Jusang; Erskine, James L.

    2017-01-01

    Numerical simulations are used to investigate static and dynamic properties of spin distributions within domain walls confined by rectangular cross section Permalloy nanowire conduits having widths up to 1000 nm and thickness up to 50 nm. Phase boundaries and critical regions associated with domain-wall spin distributions of various topologies [transverse (or asymmetric transverse), vortex, double-vortex, triple-vortex and cross-tie] are accurately determined using high-performance computing resources. Mobility curves are calculated that characterize domain-wall propagation for an interesting region of the spin texture phase diagram: 20 nm thick nanowires with widths of 60-700 nm at axial drive fields extending to 150 Oe. The simulations (and corresponding experiments, which are discussed), reveal new propagating fixed configuration domain-wall topologies with enhanced velocity. Effects of temperature on the spin distributions and dynamics are explored, by conducting simulations that include separately varying temperature-dependent parameters (saturation magnetization and exchange constant) and simulating effects of temperature-dependent fluctuations using the Langevin dynamics feature of the simulation code. Related temperature-dependent experiments are discussed. The simulation studies demonstrate a close connection between static and (field-driven) dynamic spin configurations in nanowire-confined domain walls and demonstrate the importance of exploring model-system parameter space at high numerical precision.

  20. Kaon matrix elements and CP violation from lattice QCD with 2+1 flavors of domain wall fermions

    Science.gov (United States)

    Li, Shu

    Low energy constants describing the weak, two-pion decays of K mesons in chiral perturbation theory are computed using 2+1 flavors of domain wall fermions in a finite volume with spatial extent 2.74 fm and for a single inverse lattice spacing 1/a = 1.73 GeV. Partially quenched perturbation theory is used in both leading and next-to-leading order. The non-perturbative regularization independent RI/MOM renormalization scheme is employed to determine these low energy constants in the continuum, RI normalization scheme with 20% statistical errors but systematic errors which are estimated to lie between 50 and 100% depending on the operator. These low energy constants are then used to estimate the DeltaI = 1/2 and DeltaI = 3/2 K → pipi decay matrix elements and epsilon'/epsilon. The poor convergence of chiral perturbation theory for quark masses as large as that of the strange quark severely limits the accuracy of these results.

  1. The finite temperature QCD using 2+1 flavors of domain wall fermions at N_t = 8

    CERN Document Server

    Cheng, M; Hegde, P; Karsch, F; Li, Min; Lin, M F; Mawhinney, R D; Renfrew, D; Vranas, P

    2009-01-01

    We study the region of the QCD phase transition using 2+1 flavors of domain wall fermions (DWF) and a $16^3 \\times 8$ lattice volume with a fifth dimension of $L_s = 32$. The disconnected light quark chiral susceptibility, quark number susceptibility and the Polyakov loop suggest a chiral and deconfining crossover transition lying between 155 and 185 MeV for our choice of quark mass and lattice spacing. In this region the lattice scale deduced from the Sommer parameter $r_0$ is $a^{-1} \\approx 1.3$ GeV, the pion mass is $\\approx 300$ MeV and the kaon mass is approximately physical. The peak in the chiral susceptibility implies a pseudo critical temperature $T_c = 171(10)(17)$ MeV where the first error is associated with determining the peak location and the second with our unphysical light quark mass and non-zero lattice spacing. The effects of residual chiral symmetry breaking on the chiral condensate and disconnected chiral susceptibility are studied using several values of the valence $L_s$.

  2. Topological Domain Wall and Valley Hall Effect in Charge Ordered Phase of Molecular Dirac Fermion System α-(BEDT-TTF)2I3

    Science.gov (United States)

    Matsuno, Genki; Omori, Yukiko; Eguchi, Takaaki; Kobayashi, Akito

    2016-09-01

    The topological domain wall and valley Hall effect are theoretically investigated in the molecular conductor α-(BEDT-TTF)2I3. By using the mean-field theory in an extended Hubbard model, it is demonstrated under a cylinder boundary condition that a domain wall emerges in the charge ordered phase, and exhibits a topological nature near the phase transition to the massless Dirac Fermion phase. The topological nature is well characterized by the Berry curvature, which has opposite signs in two charge ordered phases divided by the domain wall, and gives rise to the valley Hall conductivity with opposite signs, enabling these phases to be distinguished. It is also found that the valley Hall conductivity in the tilted Dirac cones exhibits a characteristic double-peak structure as a function of chemical potential using the semi classical formalism.

  3. Asymmetric driven dynamics of Dzyaloshinskii domain walls in ultrathin ferromagnetic strips with perpendicular magnetic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-Tejerina, L. [Dpto. Electricidad y Electrónica, Facultad de Ciencias, Universidad de Valladolid, 47011 Valladolid (Spain); Alejos, Ó., E-mail: oscaral@ee.uva.es [Dpto. Electricidad y Electrónica, Facultad de Ciencias, Universidad de Valladolid, 47011 Valladolid (Spain); Martínez, E. [Dpto. Física Aplicada, Facultad de Ciencias, Universidad de Salamanca, 37011 Salamanca (Spain); Muñoz, J.M. [Dpto. Electricidad y Electrónica, Facultad de Ciencias, Universidad de Valladolid, 47011 Valladolid (Spain)

    2016-07-01

    The dynamics of domain walls in ultrathin ferromagnetic strips with perpendicular magnetic anisotropy is studied from both numerical and analytical micromagnetics. The influence of a moderate interfacial Dzyaloshinskii–Moriya interaction associated to a bi-layer strip arrangement has been considered, giving rise to the formation of Dzyaloshinskii domain walls. Such walls possess under equilibrium conditions an inner magnetization structure defined by a certain orientation angle that make them to be considered as intermediate configurations between Bloch and Néel walls. Two different dynamics are considered, a field-driven and a current-driven dynamics, in particular, the one promoted by the spin torque due to the spin-Hall effect. Results show an inherent asymmetry associated with the rotation of the domain wall magnetization orientation before reaching the stationary regime, characterized by a constant terminal speed. For a certain initial DW magnetization orientation at rest, the rotation determines whether the reorientation of the DW magnetization prior to reach stationary motion is smooth or abrupt. This asymmetry affects the DW motion, which can even reverse for a short period of time. Additionally, it is found that the terminal speed in the case of the current-driven dynamics may depend on either the initial DW magnetization orientation at rest or the sign of the longitudinally injected current. - Highlights: • The asymmetric response of domain walls in bilayer strips with PMA is studied. • Out-of-plane fields and SHE longitudinal currents are applied. • The response is associated to the rotation of the domain wall inner magnetization. • Clockwise and counter-clockwise magnetization rotations are not equivalent. • The asymmetry results in different travelled distances and/or terminal speeds.

  4. Systematics analyses on nucleon isovector observables in 2+1-flavor dynamical domain-wall lattice QCD near physical mass

    CERN Document Server

    Ohta, Shigemi

    2014-01-01

    Analyses on possible systematics in some isovector nucleon observables in the RBC+UKQCD 2+1-flavor dynamical domain-wall fermion (DWF) lattice-QCD are presented. The vector charge, axial charge, quark momentum and helicity fractions, and transversity are discussed using mainly the Iwasaki\\(\\times\\)DSDR ensemble at pion mass of 170 MeV. No autocorrelation issue is observed in the vector charge and quark momentum and helicity fractions. Blocked Jack-knife analyses expose significant growth of estimated error for the axial charge with increasing block sizes that are similar to or larger than the known autocorrelation time of the gauge-field topological charge. Similar growth is seen in the transversity. These two observables, however, do not seem correlated with the topological charge.

  5. Asymmetric driven dynamics of Dzyaloshinskii domain walls in ultrathin ferromagnetic strips with perpendicular magnetic anisotropy

    Science.gov (United States)

    Sánchez-Tejerina, L.; Alejos, Ó.; Martínez, E.; Muñoz, J. M.

    2016-07-01

    The dynamics of domain walls in ultrathin ferromagnetic strips with perpendicular magnetic anisotropy is studied from both numerical and analytical micromagnetics. The influence of a moderate interfacial Dzyaloshinskii-Moriya interaction associated to a bi-layer strip arrangement has been considered, giving rise to the formation of Dzyaloshinskii domain walls. Such walls possess under equilibrium conditions an inner magnetization structure defined by a certain orientation angle that make them to be considered as intermediate configurations between Bloch and Néel walls. Two different dynamics are considered, a field-driven and a current-driven dynamics, in particular, the one promoted by the spin torque due to the spin-Hall effect. Results show an inherent asymmetry associated with the rotation of the domain wall magnetization orientation before reaching the stationary regime, characterized by a constant terminal speed. For a certain initial DW magnetization orientation at rest, the rotation determines whether the reorientation of the DW magnetization prior to reach stationary motion is smooth or abrupt. This asymmetry affects the DW motion, which can even reverse for a short period of time. Additionally, it is found that the terminal speed in the case of the current-driven dynamics may depend on either the initial DW magnetization orientation at rest or the sign of the longitudinally injected current.

  6. Low field domain wall dynamics in artificial spin-ice basis structure

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, J. [School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore); School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Goolaup, S.; Lim, G. J.; Kerk, I. S.; Lew, W. S., E-mail: wensiang@ntu.edu.sg [School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore); Chang, C. H., E-mail: echchang@ntu.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Roy, K. [School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

    2015-10-28

    Artificial magnetic spin-ice nanostructures provide an ideal platform for the observation of magnetic monopoles. The formation of a magnetic monopole is governed by the motion of a magnetic charge carrier via the propagation of domain walls (DWs) in a lattice. To date, most experiments have been on the static visualization of DW propagation in the lattice. In this paper, we report on the low field dynamics of DW in a unit spin-ice structure measured by magnetoresistance changes. Our results show that reversible DW propagation can be initiated within the spin-ice basis. The initial magnetization configuration of the unit structure strongly influences the direction of DW motion in the branches. Single or multiple domain wall nucleation can be induced in the respective branches of the unit spin ice by the direction of the applied field.

  7. Curvature Perturbation and Domain Wall Formation with Pseudo Scaling Scalar Dynamics

    CERN Document Server

    Ema, Yohei; Takimoto, Masahiro

    2015-01-01

    Cosmological dynamics of scalar field with a monomial potential $\\phi^{n}$ with a general background equation of state is revisited. It is known that if $n$ is smaller than a critical value, the scalar field exhibits a coherent oscillation and if $n$ is larger it obeys a scaling solution without oscillation. We study in detail the case where $n$ is equal to the critical value, and find a peculiar scalar dynamics which is neither oscillating nor scaling solution, and we call it a pseudo scaling solution. We also discuss cosmological implications of a pseudo scaling scalar dynamics, such as the curvature perturbation and the domain wall problem.

  8. Nonsteady dynamic properties of a domain wall for the creep state under an alternating driving field

    Science.gov (United States)

    Zhou, N. J.; Zheng, B.

    2014-07-01

    With Monte Carlo simulations, the nonsteady dynamic properties of a domain wall have been systematically investigated for the thermally activated creep state under an alternating driving field. Taking the driven random-field Ising model in two dimensions as an example, two distinct growth stages of the domain interface are identified with both the correlation length and roughness function. One stage belongs to the universality class of the random depositions, and the other to that of the quenched Edwards-Wilkinson equation. In the latter case, due to the dynamic effect of overhangs, the domain interface may exhibit an intrinsic anomalous scaling behavior, different from that of the quenched Edwards-Wilkinson equation.

  9. Overlap/Domain-wall reweighting

    CERN Document Server

    Fukaya, H; Cossu, G; Hashimoto, S; Kaneko, T; Noaki, J

    2013-01-01

    We investigate the eigenvalues of nearly chiral lattice Dirac operators constructed with five-dimensional implementations. Allowing small violation of the Ginsparg-Wilson relation, the HMC simulation is made much faster while the eigenvalues are not significantly affected. We discuss the possibility of reweighting the gauge configurations generated with domain-wall fermions to those of exactly chiral lattice fermions.

  10. Direct observation of massless domain wall dynamics in nanostripes with perpendicular magnetic anisotropy.

    Science.gov (United States)

    Vogel, J; Bonfim, M; Rougemaille, N; Boulle, O; Miron, I M; Auffret, S; Rodmacq, B; Gaudin, G; Cezar, J C; Sirotti, F; Pizzini, S

    2012-06-15

    Domain wall motion induced by nanosecond current pulses in nanostripes with perpendicular magnetic anisotropy (Pt/Co/AlO(x)) is shown to exhibit negligible inertia. Time-resolved magnetic microscopy during current pulses reveals that the domain walls start moving, with a constant speed, as soon as the current reaches a constant amplitude, and no or little motion takes place after the end of the pulse. The very low "mass" of these domain walls is attributed to the combination of their narrow width and high damping parameter α. Such a small inertia should allow accurate control of domain wall motion by tuning the duration and amplitude of the current pulses.

  11. Spatio-temporal patterns in ultra-slow domain wall creep dynamics

    CERN Document Server

    Ferrero, Ezequiel E; Giamarchi, Thierry; Kolton, Alejandro B; Rosso, Alberto

    2016-01-01

    In presence of impurities, ferromagnetic and ferroelectric domain walls slide only above a finite external field. Close to this depinning threshold, the wall proceeds by large and abrupt jumps, called avalanches, while, at much smaller field, it creeps by thermal activation. In this work we develop a novel numerical technique that captures the ultra-slow creep regime over huge time scales. We point out the existence of activated events that involve collective reorganizations similar to avalanches, but, at variance with them, display correlated spatio-temporal patterns that resemble the complex sequence of aftershocks observed after a large earthquake. Remarkably, we show that events assembly in independent clusters owning the same scale-free statistics as critical depinning avalanches. This correlated dynamics should be experimentally accessible by magneto-optical imaging of ferro- magnetic films.

  12. Dynamical fat link fermions

    CERN Document Server

    Kamleh, W; Williams, A G; Kamleh, Waseem; Leinweber, Derek B.; Williams, Anthony G.; 10.1016/j.nuclphysbps.2003.12.058

    2004-01-01

    The use of APE smearing or other blocking techniques in fermion actions can provide many advantages. There are many variants of these fat link actions in lattice QCD currently, such as FLIC fermions. Frequently, fat link actions make use of the APE blocking technique in combination with a projection of the blocked links back into the special unitary group. This reunitarisation is often performed using an iterative maximisation of a gauge invariant measure. This technique is not differentiable with respect to the gauge field and thus prevents the use of standard Hybrid Monte Carlo simulation algorithms. The use of an alternative projection technique circumvents this difficulty and allows the simulation of dynamical fat link fermions with standard HMC and its variants.

  13. Interplay of domain walls and magnetization rotation on dynamic magnetization process in iron/polymer-matrix soft magnetic composites

    Science.gov (United States)

    Dobák, Samuel; Füzer, Ján; Kollár, Peter; Fáberová, Mária; Bureš, Radovan

    2017-03-01

    This study sheds light on the dynamic magnetization process in iron/resin soft magnetic composites from the viewpoint of quantitative decomposition of their complex permeability spectra into the viscous domain wall motion and magnetization rotation. We present a comprehensive view on this phenomenon over the broad family of samples with different average particles dimension and dielectric matrix content. The results reveal the pure relaxation nature of magnetization processes without observation of spin resonance. The smaller particles and higher amount of insulating resin result in the prevalence of rotations over domain wall movement. The findings are elucidated in terms of demagnetizing effects rising from the heterogeneity of composite materials.

  14. Correlated Switching Dynamics in the Nanoscale Proximity of 90∘ Ferroelectric Domain Walls

    Science.gov (United States)

    Lei, Shiming; Wang, Xueyun; Cheong, S. W.; Chen, L. Q.; Kalinin, Sergei; Gopalan, Venkatraman

    2015-03-01

    Ferroelectrics are materials which have a built in polarization in their crystal structure even in the absence of an electric field. Domain walls themselves can possess dramatically different properties than the bulk ferroelectrics themselves. Previously we discovered that the universally present 180° walls have an order of magnitude lower domain switching threshold field than the bulk. This effect extends up to many microns around a wall, though the wall itself is unit cell thick. Here we present new results on 90° walls in PbTiO3 single crystals that show similar proximity effect and correlated switching. Our SSPFM imaging across the a / c / a domain walls suggests a strong correlated switching behavior in the proximity of the inclined 90° domain walls, even at a small AC driving voltage of 1V without DC bias on the tip. Consistent with phase-field modeling results, the inclined extended domain walls is found to act as nucleation sites in ferroelectric materials, and give rise to the domain wall asymmetrical broadening across the domain wall.

  15. Domain wall motion and precursor dynamics in PbZrO3

    Science.gov (United States)

    Puchberger, S.; Soprunyuk, V.; Majchrowski, A.; Roleder, K.; Schranz, W.

    2016-12-01

    Single crystals of PbZrO3 have been studied by dynamic mechanical analysis measurements in the low-frequency range f =0.02 -50 Hz. The complex Young's modulus exhibits a quite rich behavior and depends strongly on the direction of the applied dynamic force. In pseudocubic [100] c direction, we found intrinsic elastic behavior as expected from the Landau theory; at the antiferroelectric transition Tc≈510 K, a downwards cusp anomaly in Y' accompanied by a peak in Y'' points to a quadratic/linear order parameter/strain coupling in the Landau free energy. Both anomalies are increasing with decreasing frequency showing that the measurements are performed in the limit ω τth>1 . Frequency scans around Tc show energy dissipation, which could result from interphase boundary motion and/or heat diffusion. Above Tc, we observe a pronounced precursor softening, quite similar as it was found in other perovskites, which can be perfectly fitted including isotropic order parameter fluctuations. The low-frequency elastic response in [110] c direction is different. Below Tc, we find in addition to the intrinsic anomaly a strong contribution from ferroelastic domains, which leads to an additional softening in Y'. With decreasing temperatures this superelastic softening gradually disappears, due to an increasing relaxation time τDW for domain wall motion, indicating glassy behavior of domain freezing in PbZrO3. In contrast to the [100] c direction, for forces along [110] c, we found a pronounced precursor hardening, starting at about 60 K above Tc. Since this anomaly is of dynamic nature, starting at the same temperature as the observed birefringence and piezoelectric anomalies [Ko et al. Phys. Rev. B 87, 184110 (2013), 10.1103/PhysRevB.87.184110], we conclude that it originates from slow dynamic polar clusters, which freeze at T*≈550 K>Tc .

  16. Static Properties and Current-Driven Dynamics of Domain Walls in Perpendicular Magnetocrystalline Anisotropy Nanostrips with Rectangular Cross-Section

    Directory of Open Access Journals (Sweden)

    Eduardo Martinez

    2012-01-01

    Full Text Available The current-induced domain wall motion along thin ferromagnetic strips with high perpendicular magnetocrystalline anisotropy is studied by means of full micromagnetic simulations and the extended one-dimensional model, taking into account thermal effects and edge roughness. A slow creep regime, where the motion is controlled by wall pinning and thermal activation, and a flow regime with linear variation of the DW velocity, are observed. In asymmetric stacks, where the Rashba spin-orbit field stabilizes the domain wall against turbulent transformations, the steady linear regime is extended to higher currents, leading to higher velocities than in single-layer or symmetric stacks. The pinning and depinning at and from a local constriction were also studied. The results indicate that engineering pinning sites in these strips provide an efficient pathway to achieve both high stability against thermal fluctuations and low-current depinning avoiding Joule heating. Finally, the current-driven dynamics of a pinned domain wall is examined, and both the direct and the alternating contributions to the induced voltage signal induced are characterized. It was confirmed that the direct contribution to the voltage signal can be linearly enhanced with the number of pinned walls, an observation which could be useful to develop domain-wall-based nano-oscillators.

  17. Universal domain wall dynamics under electric field in Ta/CoFeB/MgO devices with perpendicular anisotropy

    Science.gov (United States)

    Lin, Weiwei; Vernier, Nicolas; Agnus, Guillaume; Garcia, Karin; Ocker, Berthold; Zhao, Weisheng; Fullerton, Eric E.; Ravelosona, Dafiné

    2016-11-01

    Electric field effects in ferromagnetic metal/dielectric structures provide a new route to control domain wall dynamics with low-power dissipation. However, electric field effects on domain wall velocities have only been observed so far in the creep regime where domain wall velocities are low due to strong interactions with pinning sites. Here we show gate voltage modulation of domain wall velocities ranging from the creep to the flow regime in Ta/Co40Fe40B20/MgO/TiO2 structures with perpendicular magnetic anisotropy. We demonstrate a universal description of the role of applied electric fields in the various pinning-dependent regimes by taking into account an effective magnetic field being linear with the electric field. In addition, the electric field effect is found to change sign in the Walker regime. Our results are consistent with voltage-induced modification of magnetic anisotropy. Our work opens new opportunities for the study and optimization of electric field effect at ferromagnetic metal/insulator interfaces.

  18. Gravitational domain walls and the dynamics of the gravitational constant G

    Science.gov (United States)

    Bunster, Claudio; Gomberoff, Andrés

    2017-07-01

    From the point of view of elementary particle physics, the gravitational constant G is extraordinarily small. This has led to asking whether it could have decayed to its present value from an initial one commensurate with microscopical units. A mechanism that leads to such a decay is proposed herein. It is based on assuming that G may take different values within regions of the universe separated by a novel kind of domain wall, a "G -wall." The idea is implemented by introducing a gauge potential Aμ ν ρ, and its conjugate D , which determines the value of G as an integration constant rather than a fundamental constant. The value of G jumps when one goes through a G -wall. The procedure extends one previously developed for the cosmological constant, but the generalization is far from straightforward: (i) The intrinsic geometry of a G -wall is not the same as seen from its two sides because the second law of black hole thermodynamics mandates that the jump in G must cause a discontinuity in the scale of length. (ii) The size of the decay step in G is controlled by a function G (D ) which may be chosen so as to diminish the value of G towards the asymptote G =0 . It is shown that: (i) The dynamics of the gravitational field with G treated as a dynamical variable, coupled to G -walls and matter, follows from an action principle, which is given. (ii) A particle that impinges on a G -wall may be refracted or reflected. (iii) The various forces between two particles change when a G -wall is inserted in between them. (iv) G -walls may be nucleated trough tunneling and thermal effects, whose semiclassical probabilities are evaluated. (v) If the action principle is constructed properly, the entropy of a black hole increases when the value of the gravitational constant is changed through the absorption of a G-wall by the hole.

  19. Analysis of domain wall dynamics based on skewness of magnetic Barkhausen noise for applied stress determination

    Science.gov (United States)

    Ding, Song; Tian, GuiYun; Dobmann, Gerd; Wang, Ping

    2017-01-01

    Skewness of Magnetic Barkhausen Noise (MBN) signal is used as a new feature for applied stress determination. After experimental studies, skewness presents its ability for measuring applied tensile stress compared with conventional feature, meanwhile, a non-linear behavior of this new feature and an independence of the excitation conditions under compressive stress are found and discussed. Effective damping during domain wall motion influencing the asymmetric shape of the MBN statistical distribution function is discussed under compressive and tensile stress variation. Domain wall (DW) energy and distance between pinning edges of the DW are considered altering the characteristic relaxation time, which is the reason for the non-linear phenomenon of skewness.

  20. Coupling between Current and Dynamic Magnetization : from Domain Walls to Spin Waves

    NARCIS (Netherlands)

    Lucassen, M.E.

    2012-01-01

    So far, we have derived some general expressions for domain-wall motion and the spin motive force. We have seen that the β parameter plays a large role in both subjects. In all chapters of this thesis, there is an emphasis on the determination of this parameter. We also know how to incorporate therm

  1. Nonadiabatic spin torque investigated using thermally activated magnetic domain wall dynamics

    NARCIS (Netherlands)

    Eltschka, M.; Wötzel, M.; Rhensius, J.; Krzyk, S.; Nowak, U.; Kläui, M.; Kasama, T.; Dunin-Borkowski, R. E.; Heyderman, L. J.; van Driel, H.J.; Duine, R.A.

    2010-01-01

    Using transmission electron microscopy, we investigate the thermally activated motion of domain walls (DWs) between two positions in Permalloy (Ni80Fe20) nanowires at room temperature. We show that this purely thermal motion is well described by an Arrhenius law, allowing for a description of the DW

  2. Nonadiabatic Spin Torque Investigated Using Thermally Activated Magnetic Domain Wall Dynamics

    DEFF Research Database (Denmark)

    Eltschka, M.; Woetzel, Mathias; Rhensius, J.

    2010-01-01

    Using transmission electron microscopy, we investigate the thermally activated motion of domain walls (DWs) between two positions in Permalloy (Ni80Fe20) nanowires at room temperature. We show that this purely thermal motion is well described by an Arrhenius law, allowing for a description...

  3. Short-distance charmonium correlator on the lattice with M\\"obius domain-wall fermion and a determination of charm quark mass

    CERN Document Server

    Nakayama, Katsumasa; Hashimoto, Shoji

    2016-01-01

    We calculate charmonium correlators on the lattice with 2+1-flavors of sea quarks and charm valence quark both described by the M\\"obius domain-wall fermion. Temporal moments of the correlators are calculated and matched to perturbative QCD formulae to extract the charm quark mass $m_c(\\mu)$ and strong coupling constant $\\alpha_s(\\mu)$. Lattice data at three lattice spacings, 0.044, 0.055, and 0.080~fm, are extrapolated to the continuum limit. The correlators in the vector channel are confirmed to be consistent with the experimental data for $e^+e^-\\to c\\bar{c}$, while the pseudo-scalar channel is used to extract $m_c(\\mu)$ and $\\alpha_s(\\mu)$. We obtain $m_\\mathrm{c}(3 \\mathrm{\\ GeV})$ = 1.003(8)~GeV and $\\alpha_s^{\\bar{\\mathrm{MS}}(4)}(3\\mathrm{\\ GeV})$ = 0.253(12). Dominant source of the error is the truncation of perturbative expansion at $\\alpha_s^3$.

  4. Domain wall description of superconductivity

    CERN Document Server

    Brito, F A; Silva, J C M

    2012-01-01

    In the present work we shall address the issue of electrical conductivity in superconductors in the perspective of superconducting domain wall solutions in the realm of field theory. We take our set up made out of a dynamical complex scalar field coupled to gauge field to be responsible for superconductivity and an extra scalar real field that plays the role of superconducting domain walls. The temperature of the system is interpreted as the parameter to move type I to type II domain walls. Alternatively, this means that the domain wall surface is suffering an acceleration as one goes from one type to another. On the other hand, changing from type I to type II state means a formation of a condensate what is in perfect sense of lowering the temperature around the superconductor. One can think of this scenario as an analog of holographic scenarios where this set up is replaced by a black hole near the domain wall.

  5. Dynamics of domain walls with lines in rare-earth orthoferrites in magnetic and electric fields with exchange relaxation processes taken into account

    Science.gov (United States)

    Ekomasov, E. G.

    2003-08-01

    The influence of exchange relaxation on the dynamics of domain walls with a "fine structure" in rare-earth orthoferrites in the presence of external magnetic and electric fields is investigated. A system of differential equations is obtained which describe the dynamics of a domain wall with a solitary line. The dependence of the steady-state velocity of the domain wall and line on the values of the relaxation parameters and on the components of the magnetic and electric fields is found. The results are compared with the known experimental results.

  6. The dynamics of field and current-driven magnetic domain wall depinning

    Science.gov (United States)

    Beach, Geoffrey; Knutson, Carl; Tsoi, Maxim; Erskine, James

    2008-03-01

    The depinning of a magnetic domain wall from a well-defined potential well was studied experimentally on timescales ranging from minutes down to tens of nanoseconds. At longer timescales, the behavior follows the classical Neel-Brown model of thermal activation, one of the few observations of this process for the ideal case of a single energy barrier. Below one microsecond, however, the depinning rate becomes independent of the activation volume and assumes a more universal behavior. This transition is due to a vanishing of the energy barrier at a critical field, beyond which the rate of depinning depends primarily on the torque supplied by the field and spin current. A dc spin-polarized current flowing across the domain wall has the effect of lowering the energy barrier by an amount that is predominantly quadratic in current, independent of its direction. This is seen to arise from a shift of the wall in the energy potential due to the adiabatic component of spin-transfer torque.

  7. Domain wall dynamics under electric field in CoFeB-MgO structures with perpendicular magnetic anisotropy (Conference Presentation)

    Science.gov (United States)

    Ravelosona, Dafine

    2016-10-01

    One crucial breakthrough in spin electronics has recently been achieved regarding the possibility to move magnetic domain walls (DWs) in magnetic tracks using the sole action of an electrical current instead of a conventional magnetic field. Here, we will present our recent results of DW dynamics obtained in Ta-CoFeB-MgO nanodevices with perpendicular magnetic anisotropy (PMA), which are widely used in STT-RAM applications, and discuss the critical problems to be addressed for implementation into a memory device. Using NV center microscopy to map DW pinning along a magnetic wire, we will first show1 that Ta/CoFeB(1nm)/MgO structures exhibit a very low density of pinning defects with respect to others materials with PMA. Then, we will focus on the possibility to use Electric Field Effect to control domain wall motion with low power dissipation. We will demonstrate gate voltage modulation of DW dynamics using different approaches based on dielectrics, piezoelectrics and ionic liquid layers.

  8. Dynamical fermions in lattice quantum chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Szabo, Kalman

    2007-07-01

    The thesis presentS results in Quantum Chromo Dynamics (QCD) with dynamical lattice fermions. The topological susceptibilty in QCD is determined, the calculations are carried out with dynamical overlap fermions. The most important properties of the quark-gluon plasma phase of QCD are studied, for which dynamical staggered fermions are used. (orig.)

  9. The dynamics of the asymmetric motion of domain walls of sandwich domain structure in a Fe-based amorphous ribbon

    Energy Technology Data Exchange (ETDEWEB)

    Zhmetko, D.N., E-mail: sergey.zhmetko@gmail.com [Department of Physics, Zaporizhzhya National University, 66 Zhukovsky Street, 69063 Zaporizhzhya (Ukraine); Zhmetko, S.D. [Department of Physics, Zaporizhzhya National University, 66 Zhukovsky Street, 69063 Zaporizhzhya (Ukraine); Troschenkov, Y.N. [Institute for Magnetism, 36-b Vernadsky Boulevard, 03142 Kyiv (Ukraine); Matsura, A.V. [Department of Physics, Zaporizhzhya National University, 66 Zhukovsky Street, 69063 Zaporizhzhya (Ukraine)

    2013-08-15

    The frequency dependence of asymmetry of the domain walls velocity relative to the middle plane of amorphous ribbon is investigated. An additional pressure of the same direction acting on each domain wall caused by dependence of eddy current damping on the coordinate of the domain wall is revealed. The microscopic mechanisms of this additional pressure are considered. - Highlights: ► Additional pressure on the domain wall, caused by inhomogeneity of its damping. ► Asymmetry of the coordinate of the nucleation of domain walls and their damping. ► Connection between the components of additional pressure and its direction. ► Interaction of domain walls with the surface defects of the amorphous ribbon.

  10. Localized domain wall nucleation dynamics in asymmetric ferromagnetic rings revealed by direct time-resolved magnetic imaging

    Science.gov (United States)

    Richter, Kornel; Krone, Andrea; Mawass, Mohamad-Assaad; Krüger, Benjamin; Weigand, Markus; Stoll, Hermann; Schütz, Gisela; Kläui, Mathias

    2016-07-01

    We report time-resolved observations of field-induced domain wall nucleation in asymmetric ferromagnetic rings using single direction field pulses and rotating fields. We show that the asymmetric geometry of a ring allows for controlling the position of nucleation events, when a domain wall is nucleated by a rotating magnetic field. Direct observation by scanning transmission x-ray microscopy (STXM) reveals that the nucleation of domain walls occurs through the creation of transient ripplelike structures. This magnetization state is found to exhibit a surprisingly high reproducibility even at room temperature and we determine the combinations of field strengths and field directions that allow for reliable nucleation of domain walls and directly quantify the stability of the magnetic states. Our analysis of the processes occurring during field induced domain wall nucleation shows how the effective fields determine the nucleation location reproducibly, which is a key prerequisite toward using domain walls for spintronic devices.

  11. Domain wall description of superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Brito, F.A. [Departamento de Física, Universidade Federal de Campina Grande, Caixa Postal 10071, 58109-970 Campina Grande, Paraíba (Brazil); Freire, M.L.F. [Departamento de Física, Universidade Estadual da Paraíba, 58109-753 Campina Grande, Paraíba (Brazil); Mota-Silva, J.C. [Departamento de Física, Universidade Federal de Campina Grande, Caixa Postal 10071, 58109-970 Campina Grande, Paraíba (Brazil); Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-970 João Pessoa, Paraíba (Brazil)

    2014-01-20

    In the present work we shall address the issue of electrical conductivity in superconductors in the perspective of superconducting domain wall solutions in the realm of field theory. We take our set up made out of a dynamical complex scalar field coupled to gauge field to be responsible for superconductivity and an extra scalar real field that plays the role of superconducting domain walls. The temperature of the system is interpreted through the fact that the soliton following accelerating orbits is a Rindler observer experiencing a thermal bath.

  12. Domain Walls on Singularities

    CERN Document Server

    Halyo, Edi

    2009-01-01

    We describe domain walls that live on $A_2$ and $A_3$ singularities. The walls are BPS if the singularity is resolved and non--BPS if it is deformed and fibered. We show that these domain walls may interpolate between vacua that support monopoles and/or vortices.

  13. Domain wall partition functions and KP

    CERN Document Server

    Foda, O; Zuparic, M

    2009-01-01

    We observe that the partition function of the six vertex model on a finite square lattice with domain wall boundary conditions is (a restriction of) a KP tau function and express it as an expectation value of charged free fermions (up to an overall normalization).

  14. Characteristic dynamic modes and domain-wall motion in magnetic nanotubes excited by resonant rotating magnetic fields

    Science.gov (United States)

    Yang, Jaehak; Kim, Junhoe; Kim, Bosung; Cho, Young-Jun; Lee, Jae-Hyeok; Kim, Sang-Koog

    2016-07-01

    We performed micromagnetic numerical calculations to explore a cylindrical nanotube's magnetization dynamics and domain-wall (DW) motions driven by eigen-circular-rotating magnetic fields of different frequencies. We discovered the presence of two different localized DW oscillations as well as asymmetric ferromagnetic resonance precession and azimuthal spin-wave modes at the corresponding resonant frequencies of the circular-rotating fields. Associated with these intrinsic modes, there exist very contrasting DW motions of different speed and propagation direction for a given DW chirality. The direction and speed of the DW propagation were found to be controllable according to the rotation sense and frequency of noncontact circular-rotating fields. Furthermore, spin-wave emissions from the moving DW were observed at a specific field frequency along with their Doppler effect. This work furthers the fundamental understanding of soft magnetic nanotubes' intrinsic dynamic modes and spin-wave emissions and offers an efficient means of manipulating the speed and direction of their DW propagations.

  15. Fermion Determinant with Dynamical Chiral Symmetry Breaking

    Institute of Scientific and Technical Information of China (English)

    LU Qin; YANG Hua; WANG Qing

    2002-01-01

    One-loop fermion determinant is discussed for the case in which the dynamical chiral symmetry breakingcaused by momentum-dependent fermion self-energy ∑(p2) takes place. The obtained series generalizes the heat kernelexpansion for hard fermion mass.

  16. Antiferromagnetic domain wall motion driven by spin-orbit torques

    Science.gov (United States)

    Shiino, Takayuki; Oh, Se-Hyeok; Haney, Paul M.; Lee, Seo-Won; Go, Gyungchoon; Park, Byong-Guk; Lee, Kyung-Jin

    2016-01-01

    We theoretically investigate dynamics of antiferromagnetic domain walls driven by spin-orbit torques in antiferromagnet/heavy metal bilayers. We show that spin-orbit torques drive antiferromagnetic domain walls much faster than ferromagnetic domain walls. As the domain wall velocity approaches the maximum spin-wave group velocity, the domain wall undergoes Lorentz contraction and emits spin-waves in the terahertz frequency range. The interplay between spin-orbit torques and the relativistic dynamics of antiferromagnetic domain walls leads to the efficient manipulation of antiferromagnetic spin textures and paves the way for the generation of high frequency signals from antiferromagnets. PMID:27588878

  17. Axion domain wall baryogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Daido, Ryuji; Kitajima, Naoya [Department of Physics, Tohoku University,Sendai 980-8578 (Japan); Takahashi, Fuminobu [Department of Physics, Tohoku University,Sendai 980-8578 (Japan); Kavli IPMU, TODIAS, University of Tokyo,Kashiwa 277-8583 (Japan)

    2015-07-28

    We propose a new scenario of baryogenesis, in which annihilation of axion domain walls generates a sizable baryon asymmetry. Successful baryogenesis is possible for a wide range of the axion mass and decay constant, m≃10{sup 8}–10{sup 13} GeV and f≃10{sup 13}–10{sup 16} GeV. Baryonic isocurvature perturbations are significantly suppressed in our model, in contrast to various spontaneous baryogenesis scenarios in the slow-roll regime. In particular, the axion domain wall baryogenesis is consistent with high-scale inflation which generates a large tensor-to-scalar ratio within the reach of future CMB B-mode experiments. We also discuss the gravitational waves produced by the domain wall annihilation and its implications for the future gravitational wave experiments.

  18. Chiral Dynamics With Wilson Fermions

    CERN Document Server

    Splittorff, K

    2012-01-01

    Close to the continuum the lattice spacing affects the smallest eigenvalues of the Wilson Dirac operator in a very specific manner determined by the way in which the discretization breaks chiral symmetry. These effects can be computed analytically by means of Wilson chiral perturbation theory and Wilson random matrix theory. A number of insights on chiral Dynamics with Wilson fermions can be obtained from the computation of the microscopic spectrum of the Wilson Dirac operator. For example, the unusual volume scaling of the smallest eigenvalues observed in lattice simulations has a natural explanation. The dynamics of the eigenvalues of the Wilson Dirac operator also allow us to determine the additional low energy constants of Wilson chiral perturbation theory and to understand why the Sharpe-Singleton scenario is only realized in unquenched simulations.

  19. Dynamical scaling, domain-growth kinetics, and domain-wall shapes of quenched two-dimensional anisotropic XY models

    DEFF Research Database (Denmark)

    Mouritsen, Ole G.; Praestgaard, Eigil

    1988-01-01

    temperature, the domain-growth kinetics is found to be independent of the value of this parameter over several decades of its range. This suggests that a universal principle is operative. The domain-wall shape is analyzed and shown to be well represented by a hyperbolic tangent function. The growth process......The domain-growth kinetics in two different anisotropic two-dimensional XY-spin models is studied by computer simulation. The models have uniaxial and cubic anisotropy which leads to ground-state orderings which are twofold and fourfold degenerate, respectively. The models are quenched from...... infinite to zero temperature as well as to nonzero temperatures below the ordering transition. The continuous nature of the spin variables causes the domain walls to be ‘‘soft’’ and characterized by a finite thickness. The steady-state thickness of the walls can be varied by a model parameter, P. At zero...

  20. Dynamical fermion masses under the influence of Kaluza-Klein fermions in extra dimensions

    OpenAIRE

    Abe, Hiroyuki; Miguchi, Hironori; Muta, Taizo

    2000-01-01

    The dynamical fermion mass generation in the 4-dimensional brane is discussed in a model with 5-dimensional Kaluza-Klein fermions in interaction with 4-dimensional fermions. It is found that the dynamical fermion masses are generated beyond the critical radius of the compactified extra dimensional space and may be made small compared with masses of the Kaluza-Klein modes.

  1. Dynamical fermion masses under the influence of Kaluza-Klein fermions in extra dimensions

    CERN Document Server

    Abe, H; Muta, T; Abe, Hiroyuki; Miguchi, Hironori; Muta, Taizo

    2000-01-01

    The dynamical fermion mass generation in the 4-dimensional brane is discussedin a model with 5-dimensional Kaluza-Klein fermions in interaction with4-dimensional fermions. It is found that the dynamical fermion masses aregenerated beyond the critical radius of the compactified extra dimensionalspace and may be made small compared with masses of the Kaluza-Klein modes.

  2. Dilaton and dynamical fermion mass generation

    Energy Technology Data Exchange (ETDEWEB)

    Hung, P.Q.; Zoupanos, G.

    1987-05-21

    In gauge theories with a hierarchy of mass scales there might appear a pseudo-Goldstone boson, the dilaton, resulting from the spontaneous breaking of scale symmetry. In addition light pseudoscalar bosons (axions) are expected in this class of models. We show that dynamical generation of fermion masses in these theories and the existence of a dilaton lead to unacceptably high axion masses. Therefore a dynamical fermion mass generation mechanism and a dilaton cannot coexist in a large class of such gauge theories.

  3. Fully antisymmetrised dynamics for bulk fermion systems

    CERN Document Server

    Vantournhout, Klaas

    2011-01-01

    The neutron star's crust and mantel are typical examples of non-uniform bulk systems with spacial localisations. When modelling such systems at low temperatures, as is the case in the crust, one has to work with antisymmetrised many-body states to get the correct fermion behaviour. Fermionic molecular dynamics, which works with an antisymmetrised product of localised wave packets, should be an appropriate choice. Implementing periodic boundary conditions into the fermionic molecular dynamics formalism would allow the study of the neutron star's crust as a bulk quantum system. Unfortunately, the antisymmetrisation is a non-local entanglement which reaches far out of the periodically repeated unit cell. In this proceeding, we give a brief overview how periodic boundary conditions and fermionic molecular dynamics can be combined without truncating the long-range many-body correlation induced by the antisymmetry of the many-body state.

  4. Schwinger model simulations with dynamical overlap fermions

    CERN Document Server

    Bietenholz, W; Volkholz, J

    2007-01-01

    We present simulation results for the 2-flavour Schwinger model with dynamical overlap fermions. In particular we apply the overlap hypercube operator at seven light fermion masses. In each case we collect sizable statistics in the topological sectors 0 and 1. Since the chiral condensate Sigma vanishes in the chiral limit, we observe densities for the microscopic Dirac spectrum, which have not been addressed yet by Random Matrix Theory (RMT). Nevertheless, by confronting the averages of the lowest eigenvalues in different topological sectors with chiral RMT in unitary ensemble we obtain -- for the very light fermion masses -- values for $\\Sigma$ that follow closely the analytical predictions in the continuum.

  5. Schwinger model simulations with dynamical overlap fermions

    Energy Technology Data Exchange (ETDEWEB)

    Bietenholz, W. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Shcheredin, S. [Bielefeld Univ. (Germany). Fakultaet fuer Physik; Volkholz, J. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik

    2007-11-15

    We present simulation results for the 2-flavour Schwinger model with dynamical overlap fermions. In particular we apply the overlap hypercube operator at seven light fermion masses. In each case we collect sizable statistics in the topological sectors 0 and 1. Since the chiral condensate {sigma} vanishes in the chiral limit, we observe densities for the microscopic Dirac spectrum, which have not been addressed yet by Random Matrix Theory (RMT). Nevertheless, by confronting the averages of the lowest eigenvalues in different topological sectors with chiral RMT in unitary ensemble we obtain - for the very light fermion masses - values for {sigma} that follow closely the analytical predictions in the continuum. (orig.)

  6. Dynamical fermion mass hierarchy and flavour mixing

    Energy Technology Data Exchange (ETDEWEB)

    Luest, D.; Papantonopoulos, E.; Zoupanos, G.

    1984-08-01

    The chiral symmetry breaking of high colour representations produces dynamical breaking of the standard electroweak gauge symmetry. By enlarging the colour group and subsequently breaking it down to SU(3)sub(c) fermions acquire radiative masses from the chiral breaking. We present attempts to produce realistic fermion mass matrix in two classes of models depending on the way that the colour group is enlarged. A realistic example is found in one of these classes of models.

  7. Skyrmions from Instantons inside Domain Walls

    CERN Document Server

    Eto, M; Ohashi, K; Tong, D; Eto, Minoru; Nitta, Muneto; Ohashi, Keisuke; Tong, David

    2005-01-01

    Some years ago, Atiyah and Manton described a method to construct approximate Skyrmion solutions from Yang-Mills instantons. Here we present a dynamical realization of this construction using domain walls in a five-dimensional gauge theory. The non-abelian gauge symmetry is broken in each vacuum but restored in the core of the domain wall, allowing instantons to nestle inside the wall. We show that the worldvolume dynamics of the wall is given by the Skyrme model, including the four-derivative term, and the instantons appear as Skyrmions.

  8. Dynamical Fermion Masses Under the Influence of Kaluza-Klein Fermions in Randall-Sundrum Background

    CERN Document Server

    Abe, H; Muta, T; Abe, Hiroyuki; Inagaki, Tomohiro; Muta, Taizo

    2001-01-01

    The dynamical fermion mass generation on the D3-brane in the Randall-Sundrum space-time is discussed in a model with bulk fermions in interaction with fermions on the branes. It is found that the dynamical fermion masses are generated at the natural (R.-S.) radius of the compactified extra space and may be made small compared with masses of the Kaluza-Klein modes which is of order of TeV.

  9. Dynamical fermion masses under the influence of Kaluza-Klein fermions in extradimensions

    OpenAIRE

    Abe, Hiroyuki; Miguchi, Hironori; Muta, Taizo

    2000-01-01

    The dynamical fermion mass generation in the 4-dimensional brane is discussed in a model with 5-dimensional Kaluza-Klein fermions in interaction with 4-dimensional fermions. It is found that the dynamical fermion masses are generated beyond the critical radius of the compactified extra dimensional space and may be made small compared with masses of the Kaluza-Klein modes. 04.50.th, 04.60.-m, 11.15.Pg, 11.30.Qc

  10. Origin of stationary domain wall enhanced ferroelectric susceptibility

    Science.gov (United States)

    Liu, Shi; Cohen, R. E.

    2017-03-01

    Ferroelectrics usually adopt a multidomain state with domain walls separating domains with polarization axes oriented differently. It has long been recognized that domain walls can dramatically impact the properties of ferroelectric materials. The enhancement of low-field susceptibility/permittivity under subswitching conditions is usually attributed to reversible domain wall vibration. Recent experiments highlight the stationary domain wall contribution to the dielectric susceptibility irrespective of any lateral displacements or deformations of the wall. We study the effects of domain walls on the low-field permittivity of PbTiO3 with density functional theory and molecular dynamics simulations. The static dielectric constant is calculated as a function of increasing domain wall density and temperature. We find an increase of dielectric permittivity with increasing domain wall density, which is expected to occur at a low driving field where the lateral motion of domain walls is forbidden. Real-space decomposition of the dielectric response reveals that frustrated dipoles within the finite width of the domain walls are responsible for the enhanced low-field permittivity. We explain the 100 % enhancement of the dielectric susceptibility form domain walls, which arises from the softer potential wells within them.

  11. Anomalous feedback and negative domain wall resistance

    Science.gov (United States)

    Cheng, Ran; Zhu, Jian-Gang; Xiao, Di

    2016-11-01

    Magnetic induction can be regarded as a negative feedback effect, where the motive-force opposes the change of magnetic flux that generates the motive-force. In artificial electromagnetics emerging from spintronics, however, this is not necessarily the case. By studying the current-induced domain wall dynamics in a cylindrical nanowire, we show that the spin motive-force exerting on electrons can either oppose or support the applied current that drives the domain wall. The switching into the anomalous feedback regime occurs when the strength of the dissipative torque β is about twice the value of the Gilbert damping constant α. The anomalous feedback manifests as a negative domain wall resistance, which has an analogy with the water turbine.

  12. Skyrmion domain wall collision and domain wall-gated skyrmion logic

    Science.gov (United States)

    Xing, Xiangjun; Pong, Philip W. T.; Zhou, Yan

    2016-08-01

    Skyrmions and domain walls are significant spin textures of great technological relevance to magnetic memory and logic applications, where they can be used as carriers of information. The unique topology of skyrmions makes them display emergent dynamical properties as compared with domain walls. Some studies have demonstrated that the two topologically inequivalent magnetic objects could be interconverted by using cleverly designed geometric structures. Here, we numerically address the skyrmion domain wall collision in a magnetic racetrack by introducing relative motion between the two objects based on a specially designed junction. An electric current serves as the driving force that moves a skyrmion toward a trapped domain wall pair. We see different types of collision dynamics depending on the driving parameters. Most importantly, the modulation of skyrmion transport using domain walls is realized in this system, allowing a set of domain wall-gated logical NOT, NAND, and NOR gates to be constructed. This work provides a skyrmion-based spin-logic architecture that is fully compatible with racetrack memories.

  13. Heavy Dynamical Fermions in Lattice QCD

    CERN Document Server

    Hasenfratz, Anna; Hasenfratz, Anna; Grand, Thomas A. De

    1994-01-01

    It is expected that the only effect of heavy dynamical fermions in QCD is to renormalize the gauge coupling. We derive a simple expression for the shift in the gauge coupling induced by $N_f$ flavors of heavy fermions. We compare this formula to the shift in the gauge coupling at which the confinement-deconfinement phase transition occurs (at fixed lattice size) from numerical simulations as a function of quark mass and $N_f$. We find remarkable agreement with our expression down to a fairly light quark mass. However, simulations with eight heavy flavors and two light flavors show that the eight flavors do more than just shift the gauge coupling. We observe confinement-deconfinement transitions at $\\beta=0$ induced by a large number of heavy quarks. We comment on the relevance of our results to contemporary simulations of QCD which include dynamical fermions.

  14. Thermally induced magnonic spin current, thermomagnonic torques, and domain-wall dynamics in the presence of Dzyaloshinskii-Moriya interaction

    Science.gov (United States)

    Wang, X.-G.; Chotorlishvili, L.; Guo, G.-H.; Sukhov, A.; Dugaev, V.; Barnaś, J.; Berakdar, J.

    2016-09-01

    Thermally activated domain-wall (DW) motion in magnetic insulators has been considered theoretically, with a particular focus on the role of Dzyaloshinskii-Moriya interaction (DMI) and thermomagnonic torques. The thermally assisted DW motion is a consequence of the magnonic spin current due to the applied thermal bias. In addition to the exchange magnonic spin current and the exchange adiabatic and the entropic spin transfer torques, we also consider the DMI-induced magnonic spin current, thermomagnonic DMI fieldlike torque, and the DMI entropic torque. Analytical estimations are supported by numerical calculations. We found that the DMI has a substantial influence on the size and the geometry of DWs, and that the DWs become oriented parallel to the long axis of the nanostrip. Increasing the temperature smoothes the DWs. Moreover, the thermally induced magnonic current generates a torque on the DWs, which is responsible for their motion. From our analysis it follows that for a large enough DMI the influence of DMI-induced fieldlike torque is much stronger than that of the DMI and the exchange entropic torques. By manipulating the strength of the DMI constant, one can control the speed of the DW motion, and the direction of the DW motion can be switched, as well. We also found that DMI not only contributes to the total magnonic current, but also it modifies the exchange magnonic spin current, and this modification depends on the orientation of the steady-state magnetization. The observed phenomenon can be utilized in spin caloritronics devices, for example in the DMI based thermal diodes. By switching the magnetization direction, one can rectify the total magnonic spin current.

  15. Power optimization for domain wall motion in ferromagnetic nanowires

    Science.gov (United States)

    Tretiakov, O. A.; Liu, Y.; Abanov, Ar.

    2011-04-01

    The current mediated domain-wall dynamics in a thin ferromagnetic wire is investigated. We derive the effective equations of motion of the domain wall. They are used to study the possibility to optimize the power supplied by electric current for the motion of domain walls in a nanowire. We show that a certain resonant time-dependent current moving a domain wall can significantly reduce the Joule heating in the wire, and thus it can lead to a novel proposal for the most energy efficient memory devices. We discuss how Gilbert damping, nonadiabatic spin transfer torque, and the presence of Dzyaloshinskii-Moriya interaction can effect this power optimization.

  16. Power optimization for domain wall motion in ferromagnetic nanowires

    OpenAIRE

    Tretiakov, Oleg A.; Liu, Y.; Abanov, Ar.

    2010-01-01

    The current mediated domain-wall dynamics in a thin ferromagnetic wire is investigated. We derive the effective equations of motion of the domain wall. They are used to study the possibility to optimize the power supplied by electric current for the motion of domain walls in a nanowire. We show that a certain resonant time-dependent current moving a domain wall can significantly reduce the Joule heating in the wire, and thus it can lead to a novel proposal for the most energy efficient memory...

  17. Effective pinning energy landscape perturbations for propagating magnetic domain walls

    Science.gov (United States)

    Burn, D. M.; Atkinson, D.

    2016-01-01

    The interaction between a magnetic domain wall and a pinning site is explored in a planar nanowire using micromagnetics to reveal perturbations of the pinning energetics for propagating domain walls. Numerical simulations in the high damping ’quasi-static’ and low damping ’dynamic’ regimes are compared and show clear differences in de-pinning fields, indicating that dynamical micromagnetic models, which incorporate precessionally limited magnetization processes, are needed to understand domain wall pinning. Differences in the micromagnetic domain wall structure strongly influence the pinning and show periodic behaviour with increasing applied field associated with Walker breakdown. In the propagating regime pinning is complicated. PMID:27694953

  18. Hypercubic smeared links for dynamical fermions

    Energy Technology Data Exchange (ETDEWEB)

    Hasenfratz, A.; Hoffmann, R. [Colorado Univ., Boulder, CO (United States). Dept. of Physics; Schaefer, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2007-02-15

    We investigate a variant of hypercubic gauge link smearing where the SU(3) projection is replaced with a normalization to the corresponding unitary group. This smearing is differentiable and thus suitable for use in dynamical fermion simulations using molecular dynamics type algorithms. We show that this smearing is as efficient as projected hypercubic smearing in removing ultraviolet noise from the gauge fields. We test the normalized hypercubic smearing in dynamical improved (clover) Wilson and valence overlap simulations. (orig.)

  19. Partial dynamical symmetry in a fermion system

    Science.gov (United States)

    Escher; Leviatan

    2000-02-28

    The relevance of the partial dynamical symmetry concept for an interacting fermion system is demonstrated. Hamiltonians with partial SU(3) symmetry are presented in the framework of the symplectic shell model of nuclei and shown to be closely related to the quadrupole-quadrupole interaction. Implications are discussed for the deformed light nucleus 20Ne.

  20. Domain Walls in SU(5)

    CERN Document Server

    Poghosian, L E; Pogosian, Levon; Vachaspati, Tanmay

    2000-01-01

    We consider the Grand Unified SU(5) model with a small or vanishing cubic term in the adjoint scalar field in the potential. This gives the model an approximate or exact Z$_2$ symmetry whose breaking leads to domain walls. The simplest domain wall has the structure of a kink across which the Higgs field changes sign ($\\Phi \\to -\\Phi$) and inside which the full SU(5) is restored. The kink is shown to be perturbatively unstable for all parameters. We then construct a domain wall solution that is lighter than the kink and show it to be perturbatively stable for a range of parameters. The symmetry in the core of this domain wall is smaller than that outside. The interactions of the domain wall with magnetic monopole is discussed and it is shown that magnetic monopoles with certain internal space orientations relative to the wall pass through the domain wall. Magnetic monopoles in other relative internal space orientations are likely to be swept away on collision with the domain walls, suggesting a scenario where ...

  1. Structure of axionic domain walls

    Science.gov (United States)

    Huang, M. C.; Sikivie, P.

    1985-09-01

    The structure of axionic domain walls is investigated using the low-energy effective theory of axions and pions. We derive the spatial dependence of the phases of the Peccei-Quinn scalar field and the QCD quark-antiquark condensates inside an axionic domain wall. Thence an accurate estimate of the wall surface energy density is obtained. The equations of motion for axions, photons, leptons, and baryons in the neighborhood of axionic domain walls are written down and estimates are given for the wall reflection and transmission coefficients of these particles. Finally, we discuss the energy dissipation by axionic domain walls oscillating in the early universe due to the reflection of particles in the primordial soup.

  2. Structure of axionic domain walls

    Energy Technology Data Exchange (ETDEWEB)

    Huang, M.C.; Sikivie, P.

    1985-09-15

    The structure of axionic domain walls is investigated using the low-energy effective theory of axions and pions. We derive the spatial dependence of the phases of the Peccei-Quinn scalar field and the QCD quark-antiquark condensates inside an axionic domain wall. Thence an accurate estimate of the wall surface energy density is obtained. The equations of motion for axions, photons, leptons, and baryons in the neighborhood of axionic domain walls are written down and estimates are given for the wall reflection and transmission coefficients of these particles. Finally, we discuss the energy dissipation by axionic domain walls oscillating in the early universe due to the reflection of particles in the primordial soup.

  3. Axial couplings of heavy hadrons from domain-wall lattice QCD

    CERN Document Server

    Detmold, William; Meinel, Stefan

    2012-01-01

    We calculate matrix elements of the axial current for static-light mesons and baryons in lattice QCD with dynamical domain wall fermions. We use partially quenched heavy hadron chiral perturbation theory in a finite volume to extract the axial couplings g_1, g_2, and g_3 from the data. These axial couplings allow the prediction of strong decay rates and enter chiral extrapolations of most lattice results in the b sector. Our calculations are performed with two lattice spacings and with pion masses down to 227 MeV.

  4. Partial domain wall partition functions

    CERN Document Server

    Foda, O

    2012-01-01

    We consider six-vertex model configurations on a rectangular lattice with n (N) horizontal (vertical) lines, and "partial domain wall boundary conditions" defined as 1. all 2n arrows on the left and right boundaries point inwards, 2. n_u (n_l) arrows on the upper (lower) boundary, such that n_u + n_l = N - n, also point inwards, 3. all remaining n+N arrows on the upper and lower boundaries point outwards, and 4. all spin configurations on the upper and lower boundaries are summed over. To generate (n-by-N) "partial domain wall configurations", one can start from A. (N-by-N) configurations with domain wall boundary conditions and delete n_u (n_l) upper (lower) horizontal lines, or B. (2n-by-N) configurations that represent the scalar product of an n-magnon Bethe eigenstate and an n-magnon generic state on an N-site spin-1/2 chain, and delete the n lines that represent the Bethe eigenstate. The corresponding "partial domain wall partition function" is computed in construction {A} ({B}) as an N-by-N (n-by-n) det...

  5. Coupled Néel domain wall motion in sandwiched perpendicular magnetic anisotropy nanowires

    OpenAIRE

    Purnama, I.; Kerk, I. S.; Lim, G J; Lew, W. S.

    2015-01-01

    The operating performance of a domain wall-based magnetic device relies on the controlled motion of the domain walls within the ferromagnetic nanowires. Here, we report on the dynamics of coupled Néel domain wall in perpendicular magnetic anisotropy (PMA) nanowires via micromagnetic simulations. The coupled Néel domain wall is obtained in a sandwich structure, where two PMA nanowires that are separated by an insulating layer are stacked vertically. Under the application of high current densit...

  6. Evolution of domain wall networks: the PRS algorithm

    CERN Document Server

    Sousa, L

    2011-01-01

    The Press-Ryden-Spergel (PRS) algorithm is a modification to the field theory equations of motion, parametrized by two parameters ($\\alpha$ and $\\beta$), implemented in numerical simulations of cosmological domain wall networks, in order to ensure a fixed comoving resolution. In this paper we explicitly demonstrate that the PRS algorithm provides the correct domain wall dynamics in $N+1$-dimensional Friedmann-Robertson-Walker (FRW) universes if $\\alpha+\\beta/2=N$, fully validating its use in numerical studies of cosmic domain evolution. We further show that this result is valid for generic thin featureless domain walls, independently of the Lagrangian of the model.

  7. Efficient and controlled domain wall nucleation for magnetic shift registers.

    Science.gov (United States)

    Alejos, Oscar; Raposo, Víctor; Sanchez-Tejerina, Luis; Martinez, Eduardo

    2017-09-19

    Ultrathin ferromagnetic strips with high perpendicular anisotropy have been proposed for the development of memory devices where the information is coded in tiny domains separated by domain walls. The design of practical devices requires creating, manipulating and detecting domain walls in ferromagnetic strips. Recent observations have shown highly efficient current-driven domain wall dynamics in multilayers lacking structural symmetry, where the walls adopt a chiral structure and can be driven at high velocities. However, putting such a device into practice requires the continuous and synchronous injection of domain walls as the first step. Here, we propose and demonstrate an efficient and simple scheme for nucleating domain walls using the symmetry of the spin orbit torques. Trains of short sub-nanosecond current pulses are injected in a double bit line to generate a localized longitudinal Oersted field in the ferromagnetic strip. Simultaneously, other current pulses are injected through the heavy metal under the ferromagnetic strip. Notably, the Slonczewski-like spin orbit torque assisted by the Oersted field allows the controlled injection of a series of domain walls, giving rise to a controlled manner for writing binary information and, consequently, to the design of a simple and efficient domain wall shift register.

  8. Simulating the symmetron: domain walls and symmetry-restoring impurities

    CERN Document Server

    Pearson, Jonathan A

    2014-01-01

    In this paper we study the dynamics of relativistic domain walls in the presence of static symmetry-restoring impurities. The field theory is precisely the same as what is known to cosmologists as the "symmetron model", whereby the usual $\\mathbb{Z}_2$ symmetry breaking potential is appended with a space-varying mass-term (the space-variation is set by the profile of the impurity, which we take to be a "tanh"-function). After presenting the outcomes of a suite of different numerical experiments we have three main results: (1) domain walls pin to impurities, (2) domain wall necklaces can be energetically preferred configurations, and (3) impurities significantly modifies the usual ${N}_{\\rm dw}\\propto t^{-1}$ scaling law for random networks of domain walls.

  9. Skyrmion and Baby Skyrmion Formation from Domain Walls

    CERN Document Server

    Winyard, Thomas

    2015-01-01

    We numerically simulate the formation of $(2+1)$-dimensional baby Skyrmions and $(3+1)$-dimensional $SU(2)$ Skyrmions from domain wall collisions. It has been suggested that Skyrmion, anti-Skyrmion pairs can be produced from the interaction of two domain walls. This is confirmed, however it is also demonstrated that the process can require quite precise conditions. An alternative, more stable, formation process is proposed as the interaction of more than two segments of domain wall. This is simulated, requiring far less constraints on the initial conditions used. Finally domain wall networks are considered, demonstrating how Skyrmions may be produced in a complex dynamical system. We show that the local topological charge configurations, formed within the system, are countered by opposite winding on the boundary of the system to conserve topological charge.

  10. Static domain wall in braneworld gravity

    Energy Technology Data Exchange (ETDEWEB)

    Abdalla, M.C.B.; Carlesso, P.F. [UNESP, Universidade Estadual Paulista, Instituto de Fisica Teiorica, Rua Dr. Bento Teobaldo Ferraz 271, Bloco II, Barra-Funda, Caixa Postal 70532-2, Sao Paulo, SP (Brazil); Hoff da Silva, J.M. [UNESP, Universidade Estadual Paulista, Departamento de Fisica e Quimica, Guaratingueta, SP (Brazil)

    2014-01-15

    In this paper we consider a static domain wall inside a 3-brane. Different from the standard achievement obtained in General Relativity, the analysis performed here gives a consistency condition for the existence of static domain walls in a braneworld gravitational scenario. Also the behavior of the domain wall's gravitational field in the newtonian limit is shown. (orig.)

  11. New method for dynamical fermions and chiral-symmetry breaking

    CERN Document Server

    Azcoiti, V; Grillo, A F; Laliena, V; Luo, X Q

    1994-01-01

    The reasons for the feasibility of the Microcanonical Fermionic Average ($MFA$) approach to lattice gauge theory with dynamical fermions are discussed. We then present a new exact algorithm, which is free from systematic errors and convergent even in the chiral limit.

  12. Relative weights approach to dynamical fermions at finite densities

    CERN Document Server

    Greensite, Jeff

    2016-01-01

    The method of relative weights, coupled with mean field theory, is applied to the problem of simulating gauge theories with dynamical staggered fermions at finite densities. We present initial results and discuss issues so far encountered.

  13. QCD thermodynamics with continuum extrapolated dynamical overlap fermions

    CERN Document Server

    Borsanyi, Sz; Lippert, T; Nogradi, D; Pittler, F; Szabo, K K; Toth, B C

    2015-01-01

    We study the finite temperature transition in QCD with two flavors of dynamical fermions at a pseudoscalar pion mass of about 350 MeV. We use lattices with temporal extent of $N_t$=8, 10 and 12. For the first time in the literature a continuum limit is carried out for several observables with dynamical overlap fermions. These findings are compared with results obtained within the staggered fermion formalism at the same pion masses and extrapolated to the continuum limit. The presented results correspond to fixed topology and its effect is studied in the staggered case. Nice agreement is found between the overlap and staggered results.

  14. Topological summation of observables measured with dynamical overlap fermions

    Energy Technology Data Exchange (ETDEWEB)

    Bietenholz, W. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Hip, I. [Zagreb Univ. (Croatia). Faculty of Geothechnical Engineering

    2008-10-15

    HMC histories for light dynamical overlap fermions tend to stay in a fixed topological sector for many trajectories, so that the different sectors are not sampled properly. Therefore the suitable summation of observables, which have been measured in separate sectors, is a major challenge. We explore several techniques for this issue, based on data for the chiral condensate and the (analogue of the) pion mass in the 2-flavour Schwinger model with dynamical overlap-hypercube fermions. (orig.)

  15. Topological Summation of Observables Measured with Dynamical Overlap Fermions

    OpenAIRE

    2008-01-01

    HMC histories for light dynamical overlap fermions tend to stay in a fixed topological sector for many trajectories, so that the different sectors are not sampled properly. Therefore the suitable summation of observables, which have been measured in separate sectors, is a major challenge. We explore several techniques for this issue, based on data for the chiral condensate and the (analogue of the) pion mass in the 2-flavour Schwinger model with dynamical overlap-hypercube fermions.

  16. Domain walls and ferroelectric reversal in corundum derivatives

    Science.gov (United States)

    Ye, Meng; Vanderbilt, David

    2017-01-01

    Domain walls are the topological defects that mediate polarization reversal in ferroelectrics, and they may exhibit quite different geometric and electronic structures compared to the bulk. Therefore, a detailed atomic-scale understanding of the static and dynamic properties of domain walls is of pressing interest. In this work, we use first-principles methods to study the structures of 180∘ domain walls, both in their relaxed state and along the ferroelectric reversal pathway, in ferroelectrics belonging to the family of corundum derivatives. Our calculations predict their orientation, formation energy, and migration energy and also identify important couplings between polarization, magnetization, and chirality at the domain walls. Finally, we point out a strong empirical correlation between the height of the domain-wall-mediated polarization reversal barrier and the local bonding environment of the mobile A cations as measured by bond-valence sums. Our results thus provide both theoretical and empirical guidance for future searches for ferroelectric candidates in materials of the corundum derivative family.

  17. Induced motion of domain walls in multiferroics with quadratic interaction

    Energy Technology Data Exchange (ETDEWEB)

    Gerasimchuk, Victor S., E-mail: viktor.gera@gmail.com [National Technical University of Ukraine “Kyiv Polytechnic Institute”, Peremohy Avenue 37, 03056 Kiev (Ukraine); Shitov, Anatoliy A., E-mail: shitov@mail.ru [Donbass National Academy of Civil Engineering, Derzhavina Street 2, 86123 Makeevka, Donetsk Region (Ukraine)

    2013-10-15

    We theoretically study the dynamics of 180-degree domain wall of the ab-type in magnetic materials with quadratic magnetoelectric interaction in external alternating magnetic and electric fields. The features of the oscillatory and translational motions of the domain walls and stripe structures depending on the parameters of external fields and characteristics of the multiferroics are discussed. The possibility of the domain walls drift in a purely electric field is established. - Highlights: • We study DW and stripe DS in multiferroics with quadratic magnetoelectric interaction. • We build up the theory of oscillatory and translational (drift) DW and DS motion. • DW motion can be caused by crossed alternating electric and magnetic fields. • DW motion can be caused by alternating “pure” electric field. • DW drift velocity is formed by the AFM and Dzyaloshinskii interaction terms.

  18. On the trigonometric Felderhof model with domain wall boundary conditions

    CERN Document Server

    Caradoc, A; Wheeler, M; Zuparic, M; 10.1088/1742-5468/2007/03/P03010

    2008-01-01

    We consider the trigonometric Felderhof model, of free fermions in an external field, on a finite lattice with domain wall boundary conditions. The vertex weights are functions of rapidities and external fields. We obtain a determinant expression for the partition function in the special case where the dependence on the rapidities is eliminated, but for general external field variables. This determinant can be evaluated in product form. In the homogeneous limit, it is proportional to a 2-Toda tau function. Next, we use the algebraic Bethe ansatz factorized basis to obtain a product expression for the partition function in the general case with dependence on all variables.

  19. Domain Wall Propagation through Spin Wave Emission

    NARCIS (Netherlands)

    Wang, X.S.; Yan, P.; Shen, Y.H.; Bauer, G.E.W.; Wang, X.R.

    2012-01-01

    We theoretically study field-induced domain wall motion in an electrically insulating ferromagnet with hard- and easy-axis anisotropies. Domain walls can propagate along a dissipationless wire through spin wave emission locked into the known soliton velocity at low fields. In the presence of damping

  20. Coupled Néel domain wall motion in sandwiched perpendicular magnetic anisotropy nanowires.

    Science.gov (United States)

    Purnama, I; Kerk, I S; Lim, G J; Lew, W S

    2015-03-04

    The operating performance of a domain wall-based magnetic device relies on the controlled motion of the domain walls within the ferromagnetic nanowires. Here, we report on the dynamics of coupled Néel domain wall in perpendicular magnetic anisotropy (PMA) nanowires via micromagnetic simulations. The coupled Néel domain wall is obtained in a sandwich structure, where two PMA nanowires that are separated by an insulating layer are stacked vertically. Under the application of high current density, we found that the Walker breakdown phenomenon is suppressed in the sandwich structure. Consequently, the coupled Néel domain wall of the sandwich structure is able to move faster as compared to individual domain walls in a single PMA nanowire.

  1. Neutral B meson mixing with static heavy and domain-wall light quarks

    CERN Document Server

    Ishikawa, Tomomi; Izubuchi, Taku; Lehner, Christoph; Soni, Amarjit

    2013-01-01

    Neutral B meson mixing matrix elements and B meson decay constants are calculated. Static approximation is used for b quark and domain-wall fermion formalism is employed for light quarks. The calculations are done on 2+1 flavor dynamical ensembles, whose lattice spacings are 0.086 fm and 0.11 fm with a fixed physical spatial volume of about (2.7 fm)^3. In the static quark action, link-smearings are used to improve the signal-to-noise ratio. We employ two kinds of link-smearings and their results are combined in taking a continuum limit. For the matching between the lattice and the continuum theory, one-loop perturbative calculations are used including O(a) improvements to reduce discretization errors. We obtain SU(3) braking ratio \\xi=1.222(60) in the static limit of b quark.

  2. Electric-field-controlled suppression of Walker breakdown and chirality switching in magnetic domain wall motion

    Science.gov (United States)

    Chen, Hong-Bo; Li, You-Quan

    2016-07-01

    We theoretically study the dynamics of a magnetic domain wall controlled by an electric field in the presence of the spin flexoelectric interaction. We reveal that this interaction generates an effective spin torque and results in significant changes in the current-driven domain wall motion. In particular, the electric field can stabilize the domain wall motion, leading to strong suppression of the current-induced Walker breakdown and thus allowing a higher maximum wall velocity. We can furthermore use this electric-field control to efficiently switch the chirality of a moving domain wall in the steady regime.

  3. Dynamical origin of low-mass fermions in Randall-Sundrum background

    CERN Document Server

    Fukazawa, K; Katsuki, Y; Muta, T; Ohkura, K; Fukazawa, Kenji; Inagaki, Tomohiro; Katsuki, Yasuhiko; Muta, Taizo; Ohkura, Kensaku

    2003-01-01

    We investigate a dynamical mechanism to generate fermion mass in the Randall-Sundrum background. We consider four-fermion interaction models where the fermion field propagates in an extra-dimension, i.e. the bulk four-fermion interaction model. It is assumed that two types of fermions with opposite parity exist in the bulk. We show that electroweak-scale mass is dynamically generated for a specific fermion anti-fermion condensation, even if all the scale parameters in the Lagrangian are set to the Planck scale.

  4. Domain wall solutions with Abelian gauge fields

    CERN Document Server

    Rozowsky, J S; Wali, K C

    2004-01-01

    We study kink (domain wall) solutions in a model consisting of two complex scalar fields coupled to two independent Abelian gauge fields in a Lagrangian that has $U(1)\\times U(1)$ gauge plus $\\mathbb{Z}_2$ discrete symmetry. We find consistent solutions such that while the U(1) symmetries of the fields are preserved while in their respective vacua, they are broken on the domain wall. The gauge field solutions show that the domain wall is sandwiched between domains with constant magnetic fields.

  5. Creep of current-driven domain-wall lines: intrinsic versus extrinsic pinning

    NARCIS (Netherlands)

    Duine, R.A.; de Morais Smith, C.

    2008-01-01

    We present a model for current-driven motion of a magnetic domain-wall line, in which the dynamics of the domain wall is equivalent to that of an overdamped vortex line in an anisotropic pinning potential. This potential has both extrinsic contributions due to, e.g., sample inhomogeneities, and an

  6. Finite-Temperature Atomic Structure of 180^o Ferroelectric Domain Walls in PbTiO3

    OpenAIRE

    Angoshtari, Arzhang; Yavari, Arash

    2010-01-01

    In this letter we obtain the finite-temperature structure of 180^o domain walls in PbTiO3 using a quasi-harmonic lattice dynamics approach. We obtain the temperature dependence of the atomic structure of domain walls from 0K up to room temperature. We also show that both Pb-centered and Ti-centered 180^o domain walls are thicker at room temperature; domain wall thickness at T=300K is about three times larger than that of T=0K. Our calculations show that Ti-centered domain walls have a lower f...

  7. Domain wall magneto-Seebeck effect

    Science.gov (United States)

    Krzysteczko, Patryk; Hu, Xiukun; Liebing, Niklas; Sievers, Sibylle; Schumacher, Hans W.

    2015-10-01

    The interplay between charge, spin, and heat currents in magnetic nanostructures subjected to a temperature gradient has led to a variety of novel effects and promising applications studied in the fast-growing field of spin caloritronics. Here, we explore the magnetothermoelectrical properties of an individual magnetic domain wall in a permalloy nanowire. In thermal gradients of the order of few K /μ m along the long wire axis, we find a clear magneto-Seebeck signature due to the presence of a single domain wall. The observed domain wall magneto-Seebeck effect can be explained by the magnetization-dependent Seebeck coefficient of permalloy in combination with the local spin configuration of the domain wall.

  8. Domain Wall Evolution in Phase Transforming Oxides

    Science.gov (United States)

    2015-01-14

    PERFORMING ORGANIZATION NAMES AND ADDRESSES 8. PERFORMI:N’G ORGANIZATION REPORT University ofFioridaOffice ofEngineering NUMBER 339 Wei I Hall ...surveillance, navigation, tlrreat identification, target acquisition, and missile guidance. Domain wall motion, or the planar defects separating regions of...surveillance, navigation, threat identification, target acquisition, and missile guidance. Domain wall motion, or the planar defects separating regions of

  9. Subatomic movements of a domain wall in the Peierls potential

    Science.gov (United States)

    Novoselov, K. S.; Geim, A. K.; Dubonos, S. V.; Hill, E. W.; Grigorieva, I. V.

    2003-12-01

    The discrete nature of crystal lattices plays a role in virtually every material property. But it is only when the size of entities hosted by a crystal becomes comparable to the lattice period-as occurs for dislocations, vortices in superconductors and domain walls-that this discreteness is manifest explicitly. The associated phenomena are usually described in terms of a background Peierls `atomic washboard' energy potential, which was first introduced for the case of dislocation motion in the 1940s. This concept has subsequently been invoked in many situations to describe certain features in the bulk behaviour of materials, but has to date eluded direct detection and experimental scrutiny at a microscopic level. Here we report observations of the motion of a single magnetic domain wall at the scale of the individual peaks and troughs of the atomic energy landscape. Our experiments reveal that domain walls can become trapped between crystalline planes, and that they propagate by distinct jumps that match the lattice periodicity. The jumps between valleys are found to involve unusual dynamics that shed light on the microscopic processes underlying domain-wall propagation. Such observations offer a means for probing experimentally the physics of topological defects in discrete lattices-a field rich in phenomena that have been subject to extensive theoretical study.

  10. Metallic Interface Emerging at Magnetic Domain Wall of Antiferromagnetic Insulator: Fate of Extinct Weyl Electrons

    Directory of Open Access Journals (Sweden)

    Youhei Yamaji

    2014-05-01

    Full Text Available Topological insulators, in contrast to ordinary semiconductors, accompany protected metallic surfaces described by Dirac-type fermions. Here, we theoretically show that another emergent two-dimensional metal embedded in the bulk insulator is realized at a magnetic domain wall. The domain wall has long been studied as an ingredient of both old-fashioned and leading-edge spintronics. The domain wall here, as an interface of seemingly trivial antiferromagnetic insulators, emergently realizes a functional interface preserved by zero modes with robust two-dimensional Fermi surfaces, where pyrochlore iridium oxides proposed to host the condensed-matter realization of Weyl fermions offer such examples at low temperatures. The existence of in-gap states that are pinned at domain walls, theoretically resembling spin or charge solitons in polyacetylene, and protected as the edges of hidden one-dimensional weak Chern insulators characterized by a zero-dimensional class-A topological invariant, solves experimental puzzles observed in R_{2}Ir_{2}O_{7} with rare-earth elements R. The domain wall realizes a novel quantum confinement of electrons and embosses a net uniform magnetization that enables magnetic control of electronic interface transports beyond the semiconductor paradigm.

  11. Chiral damping of magnetic domain walls

    KAUST Repository

    Jué, Emilie

    2015-12-21

    Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics1, current-induced spin–orbit torques2, 3, 4, 5, 6, 7 and some topological magnetic structures8, 9, 10, 11, 12. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii–Moriya interaction (DMI) exhibit identical spatial symmetry13, 14, 15, 16, 17, 18, 19. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. 20).

  12. Chiral damping of magnetic domain walls

    Science.gov (United States)

    Jué, Emilie; Safeer, C. K.; Drouard, Marc; Lopez, Alexandre; Balint, Paul; Buda-Prejbeanu, Liliana; Boulle, Olivier; Auffret, Stephane; Schuhl, Alain; Manchon, Aurelien; Miron, Ioan Mihai; Gaudin, Gilles

    2016-03-01

    Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics, current-induced spin-orbit torques and some topological magnetic structures. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii-Moriya interaction (DMI) exhibit identical spatial symmetry. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. ).

  13. Robust ferromagnetism carried by antiferromagnetic domain walls

    Science.gov (United States)

    Hirose, Hishiro T.; Yamaura, Jun-Ichi; Hiroi, Zenji

    2017-02-01

    Ferroic materials, such as ferromagnetic or ferroelectric materials, have been utilized as recording media for memory devices. A recent trend for downsizing, however, requires an alternative, because ferroic orders tend to become unstable for miniaturization. The domain wall nanoelectronics is a new developing direction for next-generation devices, in which atomic domain walls, rather than conventional, large domains themselves, are the active elements. Here we show that atomically thin magnetic domain walls generated in the antiferromagnetic insulator Cd2Os2O7 carry unusual ferromagnetic moments perpendicular to the wall as well as electron conductivity: the ferromagnetic moments are easily polarized even by a tiny field of 1 mT at high temperature, while, once cooled down, they are surprisingly robust even in an inverse magnetic field of 7 T. Thus, the magnetic domain walls could serve as a new-type of microscopic, switchable and electrically readable magnetic medium which is potentially important for future applications in the domain wall nanoelectronics.

  14. Domain Wall Mobility in Co-Based Amorphous Wire

    Directory of Open Access Journals (Sweden)

    Maria Kladivova

    2007-01-01

    Full Text Available Dynamics of the domain wall between opposite circularly magnetized domains in amorphous cylindrical sample with circular easy direction is theoretically studied. The wall is driven by DC current. Various mechanisms which influence the wall velocity were taken into account: current magnitude, deformation of the mowing wall, Hall effect, axially magnetized domain in the middle of the wire. Theoretical results obtained are in a good agreement with experiments on Cobased amorphous ferromagnetic wires.

  15. On thick domain walls in general relativity

    Science.gov (United States)

    Goetz, Guenter; Noetzold, Dirk

    1989-01-01

    Planar scalar field configurations in general relativity differ considerably from those in flat space. It is shown that static domain walls of finite thickness in curved space-time do not possess a reflection symmetry. At infinity, the space-time tends to the Taub vacuum on one side of the wall and to the Minkowski vacuum (Rindler space-time) on the other. Massive test particles are always accelerated towards the Minkowski side, i.e., domain walls are attractive on the Taub side, but repulsive on the Minkowski side (Taub-vacuum cleaner). It is also proved that the pressure in all directions is always negative. Finally, a brief comment is made concerning the possibility of infinite, i.e., bigger than horizon size, domain walls in our universe. All of the results are independent of the form of the potential V(phi) greater than or equal to 0 of the scalar field phi.

  16. Multiple integral representation for the trigonometric SOS model with domain wall boundaries

    CERN Document Server

    Galleas, W

    2011-01-01

    Using the dynamical Yang-Baxter algebra we derive a functional equation for the partition function of the trigonometric SOS model with domain wall boundary conditions. The solution of the equation is given in terms of a multiple contour integral.

  17. Current-induced domain wall motion in nanoscale ferromagnetic elements

    Energy Technology Data Exchange (ETDEWEB)

    Malinowski, G [Laboratoire de Physique des Solides, CNRS, Universite Paris-sud 11, 91405 Orsay Cedex (France); Boulle, O [SPINTEC, CEA/CNRS/UJF/GINP, INAC, 38054 Grenoble Cedex 9 (France); Klaeui, M, E-mail: Klaeui@uni-mainz.de [SwissFEL, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Laboratory of Nanomagnetism and Spin Dynamics, Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne (Switzerland)

    2011-09-28

    We review the details of domain wall (DW) propagation due to spin-polarized currents that could potentially be used in magnetic data storage devices based on domains and DWs. We discuss briefly the basics of the underlying spin torque effect and show how the two torques arising from the interaction between the spin-polarized charge carriers and the magnetization lead to complex dynamics of a spin texture such as a DW. By direct imaging we show how confined DWs in nanowires can be displaced using currents in in-plane soft-magnetic materials, and that when using short pulses, fast velocities can be attained. For high-anisotropy out-of-plane magnetized wires with narrow DWs we present approaches to deducing the torque terms and show that in these materials potentially more efficient domain wall motion could be achieved.

  18. Rashba Torque Driven Domain Wall Motion in Magnetic Helices.

    Science.gov (United States)

    Pylypovskyi, Oleksandr V; Sheka, Denis D; Kravchuk, Volodymyr P; Yershov, Kostiantyn V; Makarov, Denys; Gaididei, Yuri

    2016-01-01

    Manipulation of the domain wall propagation in magnetic wires is a key practical task for a number of devices including racetrack memory and magnetic logic. Recently, curvilinear effects emerged as an efficient mean to impact substantially the statics and dynamics of magnetic textures. Here, we demonstrate that the curvilinear form of the exchange interaction of a magnetic helix results in an effective anisotropy term and Dzyaloshinskii-Moriya interaction with a complete set of Lifshitz invariants for a one-dimensional system. In contrast to their planar counterparts, the geometrically induced modifications of the static magnetic texture of the domain walls in magnetic helices offer unconventional means to control the wall dynamics relying on spin-orbit Rashba torque. The chiral symmetry breaking due to the Dzyaloshinskii-Moriya interaction leads to the opposite directions of the domain wall motion in left- or right-handed helices. Furthermore, for the magnetic helices, the emergent effective anisotropy term and Dzyaloshinskii-Moriya interaction can be attributed to the clear geometrical parameters like curvature and torsion offering intuitive understanding of the complex curvilinear effects in magnetism.

  19. Photoexcited electron dynamics in Kondo insulators and heavy fermions

    OpenAIRE

    Demsar, Jure; Thorsmolle, Verner K.; Sarrao, John L.; Taylor, Antoinette J.

    2005-01-01

    We have studied the photoexcited carrier relaxation dynamics in the Kondo insulator SmB6 and the heavy fermion metal YbAgCu4 as a function of temperature and excitation level. The dynamic response is found to be both strongly temperature dependent and nonlinear. The data are analyzed with a Rothwarf-Taylor bottleneck model, where the dynamics are governed by the presence of a narrow gap in the density of states near the Fermi level. The remarkable agreement with the model suggests that carrie...

  20. Compactified webs and domain wall partition functions

    Energy Technology Data Exchange (ETDEWEB)

    Shabbir, Khurram [Government College University, Department of Mathematics, Lahore (Pakistan)

    2017-04-15

    In this paper we use the topological vertex formalism to calculate a generalization of the ''domain wall'' partition function of M-strings. This generalization allows calculation of partition function of certain compactified webs using a simple gluing algorithm similar to M-strings case. (orig.)

  1. N=1 domain wall solutions of massive type II supergravity as generalized geometries

    Energy Technology Data Exchange (ETDEWEB)

    Louis, J. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik]|[Hamburg Univ. (Germany). Zentrum fuer Mathematische Physik; Vaula, S. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik]|[Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2006-05-15

    We study N=1 domain wall solutions of type IIB supergravity compactified on a Calabi-Yau manifold in the presence of RR and NS electric and magnetic fluxes. We show that the dynamics of the scalar fields along the direction transverse to the domain wall is described by gradient flow equations controlled by a superpotential W. We then provide a geometrical interpretation of the gradient flow equations in terms of the mirror symmetric compactification of type IIA. They correspond to a set of generalized Hitchin flow equations of a manifold with SU(3) x SU(3)structure which is fibered over the direction transverse to the domain wall. (Orig.)

  2. Partial dynamical symmetry in a fermion system

    CERN Document Server

    Escher, J; Escher, Jutta; Leviatan, Amiram

    2000-01-01

    The relevance of the partial dynamical symmetry concept for an interactingfermion system is demonstrated. Hamiltonians with partial SU(3) symmetry arepresented in the framework of the symplectic shell-model of nuclei and shown tobe closely related to the quadrupole-quadrupole interaction. Implications arediscussed for the deformed light nucleus $^{20}$Ne.

  3. Light hadron spectroscopy with O(a) improved dynamical fermions

    CERN Document Server

    Allton, C R; Bowler, K C; Foster, M; Garden, J; Irving, A C; Kenway, R D; Michael, C; Peisa, J; Pickles, S M; Sexton, J C; Sroczynski, Z; Talevi, M; Wittig, H

    1999-01-01

    We present the first results for the static quark potential and the light hadron spectrum using dynamical fermions at $\\beta=5.2$ using an O(a) improved Wilson fermion action together with the standard Wilson plaquette action for the gauge part. Sea quark masses were chosen such that the pseudoscalar-vector mass ratio, m_PS/m_V$, varies from 0.86 to 0.67. Finite-size effects are studied by using three different volumes, 8^3\\cdot 24, 12^3\\cdot 24 and 16^3\\cdot 24. Comparing our results to previous ones obtained using the quenched approximation, we find evidence for sea quark effects in quantities like the static quark potential and the vector-pseudoscalar hyperfine splitting.

  4. Micromagnetic modeling of domain wall motion in sub-100-nm-wide wires with individual and periodic edge defects

    Directory of Open Access Journals (Sweden)

    S. Dutta

    2015-12-01

    Full Text Available Reducing the switching energy of devices that rely on magnetic domain wall motion requires scaling the devices to widths well below 100 nm, where the nanowire line edge roughness (LER is an inherent source of domain wall pinning. We investigate the effects of periodic and isolated rectangular notches, triangular notches, changes in anisotropy, and roughness measured from images of fabricated wires, in sub-100-nm-wide nanowires with in-plane and perpendicular magnetic anisotropy using micromagnetic modeling. Pinning fields calculated for a model based on discretized images of physical wires are compared to experimental measurements. When the width of the domain wall is smaller than the notch period, the domain wall velocity is modulated as the domain wall propagates along the wire. We find that in sub-30-nm-wide wires, edge defects determine the operating threshold and domain wall dynamics.

  5. Dynamical Twisted Mass Fermions with Light Quarks

    CERN Document Server

    Boucaud, P; Farchioni, F; Frezzotti, R; Giménez, V; Herdoiza, G; Jansen, K; Lubicz, V; Martinelli, G; McNeile, C; Michael, C; Montvay, I; Palao, D; Papinutto, Mauro; Pickavance, J; Rossi, G C; Scorzato, L; Shindler, A; Simula, S; Urbach, C; Wenger, U; Boucaud, Ph.

    2007-01-01

    We present results of dynamical simulations with 2 flavours of degenerate Wilson twisted mass quarks at maximal twist in the range of pseudo scalar masses from 300 to 550 MeV. The simulations are performed at one value of the lattice spacing a \\lesssim 0.1 fm. In order to have O(a) improvement and aiming at small residual cutoff effects, the theory is tuned to maximal twist by requiring the vanishing of the untwisted quark mass. Precise results for the pseudo scalar decay constant and the pseudo scalar mass are confronted with chiral perturbation theory predictions and the low energy constants F, \\bar{l}_3 and \\bar{l}_4 are evaluated with small statistical errors.

  6. Baryon masses with dynamical twisted mass fermions

    CERN Document Server

    Alexandrou, C; Koutsou, G; Baron, R; Guichon, P; Brinet, M; Carbonell, J; Drach, V; Liu, Z; Pène, O; Urbach, C

    2007-01-01

    We present results on the mass of the nucleon and the $\\Delta$ using two dynamical degenerate twisted mass quarks. The evaluation is performed at four quark masses corresponding to a pion mass in the range of 690-300 MeV on lattices of size 2.1 fm and 2.7 fm. We check for cutoff effects by evaluating these baryon masses on lattices of spatial size 2.1 fm with lattice spacings $a(\\beta=3.9)=0.0855(6)$ fm and $a(\\beta=4.05)=0.0666(6)$ fm, determined from the pion sector and find them to be within our statistical errors. Lattice results are extrapolated to the physical limit using continuum chiral perturbation theory. The nucleon mass at the physical point provides a determination of the lattice spacing. Using heavy baryon chiral perturbation theory at ${\\cal O}(p^3)$ we find $a(\\beta=3.9)=0.0879(12)$ fm, with a systematic error due to the chiral extrapolation estimated to be about the same as the statistical error. This value of the lattice spacing is in good agreement with the value determined from the pion se...

  7. Magnetic domain-wall racetrack memory.

    Science.gov (United States)

    Parkin, Stuart S P; Hayashi, Masamitsu; Thomas, Luc

    2008-04-11

    Recent developments in the controlled movement of domain walls in magnetic nanowires by short pulses of spin-polarized current give promise of a nonvolatile memory device with the high performance and reliability of conventional solid-state memory but at the low cost of conventional magnetic disk drive storage. The racetrack memory described in this review comprises an array of magnetic nanowires arranged horizontally or vertically on a silicon chip. Individual spintronic reading and writing nanodevices are used to modify or read a train of approximately 10 to 100 domain walls, which store a series of data bits in each nanowire. This racetrack memory is an example of the move toward innately three-dimensional microelectronic devices.

  8. Domain wall magneto-Seebeck effect

    OpenAIRE

    Krzysteczko, Patryk; Hu, Xiukun; Liebing, Niklas; Sievers, Sibylle; Schumacher, Hans W.

    2014-01-01

    The interplay between charge, spin, and heat currents in magnetic nano systems subjected to a temperature gradient has lead to a variety of novel effects and promising applications studied in the fast-growing field of spincaloritronics. Here we explore the magnetothermoelectrical properties of an individual magnetic domain wall in a permalloy nanowire. In thermal gradients of the order of few Kelvin per micrometer along the long wire axis, we find a clear magneto-Seebeck signature due to the ...

  9. Dynamics of fermions in an amplitude-modulated lattice

    Science.gov (United States)

    Yamakoshi, Tomotake; Watanabe, Shinichi; Ohgoda, Shun; Itin, Alexander P.

    2016-06-01

    We study the dynamics of fermions loaded in an optical lattice with a superimposed parabolic trap potential. In the recent Hamburg experiments [J. Heinze et al., Phys. Rev. Lett. 110, 085302 (2013), 10.1103/PhysRevLett.110.085302] on quantum simulation of photoconductivity, a modulation pulse on the optical lattice transferred part of the population of the lowest band to an excited band, leaving a hole in the particle distribution of the lowest band. The subsequent intricate dynamics of both excited particles and holes can be explained by a semiclassical approach based on the evolution of the Wigner function. Here we provide a more detailed analysis of the dynamics, taking into account the dimensionality of the system and finite-temperature effects, aiming at reproducing experimental results on longer time scales. A semiclassical wave packet is constructed more accurately than in the previous theory. As a result, semiclassical dynamics indeed reproduces experimental data and full quantum numerical calculations with a much better accuracy. In particular, the fascinating phenomenon of collapse and revival of holes is investigated in more detail. We presume that the experimental setup can be used for deeper exploration of nonlinear waves in fermionic gases.

  10. BPS domain walls from backreacted orientifolds

    CERN Document Server

    Blåbäck, Johan; Van Riet, Thomas; Vercnocke, Bert

    2013-01-01

    Compactifications with D-brane and orientifold sources lead to standard gauged supergravity theories if the sources are smeared over the internal directions. It is therefore of interest to find how the solutions described by the gauged supergravity are altered by properly localising the sources. In this paper we analyse this for BPS domain wall solutions in the seven-dimensional gauged supergravity obtained from an O6 toroidal orientifold compactification in massive IIA supergravity. This is one of the simplest no-scale supergravities that can be constructed and analysed in full detail. We find and discuss the BPS domain walls both when the O6 planes are smeared and localised. When the O6 planes are localised the domain wall solutions live in a warped compactification. In order to get explicit expressions we also consider the non-compact versions of the solutions for which the O6 planes have been traded for D6 branes. Through T-duality we obtain partially localised solutions for compactifications to four dime...

  11. Metastable magnetic domain walls in cylindrical nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, C.A.; MacLaren, D.A.; McVitie, S., E-mail: Stephen.McVitie@glasgow.ac.uk

    2015-05-01

    The stability of the asymmetric domain wall (ATDW) in soft magnetic cylindrical nanowires and nanotubes is investigated using micromagnetic simulations. Our calculated phase diagram shows that for cylindrical permalloy nanowires, the transverse domain wall (TDW) is the ground state for radii below 20 nm whilst the Bloch point wall (BPW) is favoured in thicker wires. The ATDW stabilises only as a metastable state but with energy close to that of the BPW. Characterisation of the DW spin structures reveals that the ATDW has a vortex-like surface spin state, in contrast to the divergent surface spins of the TDW. This results in lowering of surface charge above the critical radius. For both cylindrical nanotubes and nanowires we find that ATDWs only appear to exist as metastable static states and are particularly suppressed in nanotubes due to an increase in magnetostatic energy. - Highlights: • We simulate the micromagnetic structures of domain walls in cylindrical nanowires. • A phase diagram identifies ground and metastable states. • Asymmetric transverse walls are metastable in nanowires but suppressed in tubes. • Unrolling surface magnetisation aids visualisation of asymmetry and chirality. • We predict experimental discrimination based on magnetic charge distribution.

  12. Visualizing domain wall and reverse domain superconductivity.

    Science.gov (United States)

    Iavarone, M; Moore, S A; Fedor, J; Ciocys, S T; Karapetrov, G; Pearson, J; Novosad, V; Bader, S D

    2014-08-28

    In magnetically coupled, planar ferromagnet-superconductor (F/S) hybrid structures, magnetic domain walls can be used to spatially confine the superconductivity. In contrast to a superconductor in a uniform applied magnetic field, the nucleation of the superconducting order parameter in F/S structures is governed by the inhomogeneous magnetic field distribution. The interplay between the superconductivity localized at the domain walls and far from the walls leads to effects such as re-entrant superconductivity and reverse domain superconductivity with the critical temperature depending upon the location. Here we use scanning tunnelling spectroscopy to directly image the nucleation of superconductivity at the domain wall in F/S structures realized with Co-Pd multilayers and Pb thin films. Our results demonstrate that such F/S structures are attractive model systems that offer the possibility to control the strength and the location of the superconducting nucleus by applying an external magnetic field, potentially useful to guide vortices for computing application.

  13. Interactions between domain walls and spin currents

    Science.gov (United States)

    Klaui, M.; Laufenberg, M.; Backes, D.; Buhrer, W.; Rudiger, U.; Vila, L.; Vouille, C.; Faini, G.

    2006-03-01

    A promising novel approach for switching magnetic nanostructures is current-induced domain wall propagation (CIDP), where due to a spin torque effect, electrons transfer angular momentum to a head-to-head domain wall and thereby push it in the direction of the electron flow without any externally applied fields. This effect has been observed with a variety of techniques including MFM [1] and spin polarized scanning electron microscopy [2] to directly observe current-induced domain wall propagation in ferromagnetic nanostructures and magnetoresistance measurements to systematically probe the critical current densities as a function of the geometry [3]. The observed wall velocities and critical current densities, where wall motion sets in at room temperature, do not agree well with theoretical 0K calculations [4]. We have therefore measured the critical current densities as a function of the sample temperature. We find that the spin torque effect becomes more efficient at low temperatures, which could account for some of the observed discrepancies between the 300K experiment and the 0K simulation. [1] A. Yamaguchi et al., Phys. Rev. Lett. 92, 77205 (2004); [2] M. Klaui et al., PRL 95, 26601 (2005); [3] M. Klaui et al., PRL 94, 106601 (2005); [4] A. Thiaville et al., EPL 69, 990 (2005); G. Tatara et al., APL 86, 252509 (2005);

  14. Renormalization of domain-wall bilinear operators with short-distance current correlators

    CERN Document Server

    Tomii, M; Fahy, B; Fukaya, H; Hashimoto, S; Kaneko, T; Noaki, J

    2016-01-01

    We determine the renormalization constants for flavor non-singlet fermion bilinear operators of M\\"obius domain-wall fermions. The renormalization condition is imposed on the correlation functions in the coordinate space, such that the non-perturbative lattice calculation reproduces the perturbatively calculated counterpart at short distances. The perturbative expansion is precise as the coefficients are available up to $O(\\alpha_s^4)$. We employ $2+1$-flavor lattice ensembles at three lattice spacings in the range 0.044--0.080~fm.

  15. Hadron Spectrum in QCD with Valence Wilson Fermions and Dynamical Staggered Fermions at $6/g^2=5.6$

    CERN Document Server

    Bitar, K M; Edwards, R G; Gottlieb, S; Heller, U M; Kennedy, A D; Kogut, J B; Krasnitz, A; Liu, W; Ogilvie, M C; Renken, R L; Rossi, P; Sinclair, D K; Sugar, R L; Toussaint, D; Wang, K C

    1992-01-01

    We present an analysis of hadronic spectroscopy for Wilson valence quarks with dynamical staggered fermions at lattice coupling $6/g^2 = \\beta=5.6$ at sea quark mass $am_q=0.01$ and 0.025, and of Wilson valence quarks in quenched approximation at $\\beta=5.85$ and 5.95, both on $16^3 \\times 32$ lattices. We make comparisons with our previous results with dynamical staggered fermions at the same parameter values but on $16^4$ lattices doubled in the temporal direction.

  16. Moments of meson distribution functions with dynamical twisted mass fermions

    CERN Document Server

    Baron, R; Carbonell, J; Jansen, K; Liu, Z; Pène, O; Urbach, C

    2007-01-01

    We present our preliminary results on the lowest moment of quark distribution functions of the pion using two flavor dynamical simulations with Wilson twisted mass fermions at maximal twist. The calculation is done in a range of pion masses from 300 to 500 MeV. A stochastic source method is used to reduce inversions in calculating propagators. Finite volume effects at the lowest quark mass are examined by using two different lattice volumes. Our results show that we achieve statistical errors of only a few percent. We plan to compute renormalization constants non-perturbatively and extend the calculation to two more lattice spacings and to the nucleons.

  17. Domain-wall theory and nonstationarity in driven flow with exclusion

    Science.gov (United States)

    Stinchcombe, R. B.; de Queiroz, S. L. A.

    2016-07-01

    We study the dynamical evolution toward steady state of the stochastic nonequilibrium model known as the totally asymmetric simple exclusion process, in both uniform and nonuniform (staggered) one-dimensional systems with open boundaries. Domain-wall theory and numerical simulations are used and, where pertinent, their results are compared to existing mean-field predictions and exact solutions where available. For uniform chains we find that the inclusion of fluctuations inherent to the domain-wall formulation plays a crucial role in providing good agreement with simulations, which is severely lacking in the corresponding mean-field predictions. For alternating-bond chains the domain-wall predictions for the features of the phase diagram in the parameter space of injection and ejection rates turn out to be realized only in an incipient and quantitatively approximate way. Nevertheless, significant quantitative agreement can be found between several additional domain-wall theory predictions and numerics.

  18. The U(1)A anomaly in high temperature QCD with chiral fermions on the lattice

    CERN Document Server

    Sharma, Sayantan; Karsch, Frithjof; Laermann, Edwin; Mukherjee, Swagato

    2015-01-01

    The magnitude of the $U_A(1)$ symmetry breaking is expected to affect the nature of $N_f=2$ QCD chiral phase transition. The explicit breaking of chiral symmetry due to realistic light quark mass is small, so it is important to use chiral fermions on the lattice to understand the effect of $U_A(1)$ near the chiral crossover temperature, $T_c$. We report our latest results for the eigenvalue spectrum of 2+1 flavour QCD with dynamical Mobius domain wall fermions at finite temperature probed using the overlap operator on $32^3\\times 8$ lattice. We check how sensitive the low-lying eigenvalues are to the sea-light quark mass. We also present a comparison with the earlier independent results with domain wall fermions.

  19. Velocity asymmetry of Dzyaloshinskii domain walls in the creep and flow regimes.

    Science.gov (United States)

    Vaňatka, M; Rojas-Sánchez, J-C; Vogel, J; Bonfim, M; Belmeguenai, M; Roussigné, Y; Stashkevich, A; Thiaville, A; Pizzini, S

    2015-08-19

    We have carried out measurements of domain wall dynamics in a Pt/Co/GdOx(t) wedge sample with perpendicular magnetic anisotropy. When driven by an easy-axis field Hz in the presence of an in-plane field Hx, the domain wall propagation is different along [Formula: see text]x, as expected for samples presenting Dzyaloshinskii-Moriya (DMI) interaction. In the creep regime, the sign and the value of the domain wall velocity asymmetry changes along the wedge. We show that in our samples the domain wall speed versus Hx curves in the creep regime cannot be explained simply in terms of the variation of the domain wall energy with Hx, as suggested by previous works. For this reason the strength and the sign of the DMI cannot be extracted from these measurements. To obtain reliable information on the DMI strength using magnetic field-induced domain wall dynamics, measurements have been performed with high fields, bringing the DW close to the flow regime of propagation. In this case we find large values of the DMI, consistent in magnitude and sign with those obtained from Brillouin light scattering measurements.

  20. Higher dimensional curved domain walls on Kähler surfaces

    Science.gov (United States)

    Akbar, Fiki T.; Gunara, Bobby E.; Radjabaycolle, Flinn C.; Wijaya, Rio N.

    2017-03-01

    In this paper we study some aspects of curved BPS-like domain walls in higher dimensional gravity theory coupled to scalars where the scalars span a complex Kähler surface with scalar potential turned on. Assuming that a fake superpotential has a special form which depends on Kähler potential and a holomorphic function, we prove that BPS-like equations have a local unique solution. Then, we analyze the vacuum structure of the theory including their stability using dynamical system and their existence in ultraviolet-infrared regions using renormalization group flow.

  1. Higher dimensional curved domain walls on Kähler surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Akbar, Fiki T., E-mail: ftakbar@fi.itb.ac.id [Theoretical Physics Laboratory, Theoretical High Energy Physics and Instrumentation Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha no. 10 Bandung, 40132 (Indonesia); Gunara, Bobby E., E-mail: bobby@fi.itb.ac.id [Theoretical Physics Laboratory, Theoretical High Energy Physics and Instrumentation Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha no. 10 Bandung, 40132 (Indonesia); Radjabaycolle, Flinn C. [Theoretical Physics Laboratory, Theoretical High Energy Physics and Instrumentation Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha no. 10 Bandung, 40132 (Indonesia); Departement of Physics, Faculty of Mathematics and Natural Sciences, Cendrawasih University, Jl. Kampwolker Kampus Uncen Baru Waena-Jayapura 99351 (Indonesia); Wijaya, Rio N. [Theoretical Physics Laboratory, Theoretical High Energy Physics and Instrumentation Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha no. 10 Bandung, 40132 (Indonesia)

    2017-03-15

    In this paper we study some aspects of curved BPS-like domain walls in higher dimensional gravity theory coupled to scalars where the scalars span a complex Kähler surface with scalar potential turned on. Assuming that a fake superpotential has a special form which depends on Kähler potential and a holomorphic function, we prove that BPS-like equations have a local unique solution. Then, we analyze the vacuum structure of the theory including their stability using dynamical system and their existence in ultraviolet-infrared regions using renormalization group flow.

  2. Domain walls, domain wall transformations and structural changes in permalloy nanowires when subjected to current pulses

    Energy Technology Data Exchange (ETDEWEB)

    Hempe, E.M. [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Department of Physics, Universitaet Regensburg, Universitaetsstrasse 31, 93040 Regensburg (Germany); Klaeui, M.; Krzyk, S.; Ruediger, U. [Fachbereich Physik, Universitaet Konstanz, Universitaetsstrasse 10, 78457 Konstanz (Germany); Kasama, T. [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Backes, D. [Fachbereich Physik, Universitaet Konstanz, Universitaetsstrasse 10, 78457 Konstanz (Germany); Laboratory for Micro- and Nanotechnology, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Junginger, F. [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Fachbereich Physik, Universitaet Konstanz, Universitaetsstrasse 10, 78457 Konstanz (Germany); Heyderman, L.J. [Laboratory for Micro- and Nanotechnology, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Dunin-Borkowski, R. [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Center for Electron Nanoscopy, DTU (Denmark)

    2007-12-15

    We report the direct transmission electron microscopy observation of spin structure transformations in nanoscale Permalloy zigzag wires due to Joule heating during the injection of current pulses. This heating is sufficient to overcome the energy barriers separating the different metastable domain wall spin structures. Due to the large energy barriers these are stable and observable at room temperature by off-axis electron holography and Fresnel imaging. The interaction between different domain walls is probed and the main pinning mechanism is determined to be the edge roughness. In addition to transformations, we also report on thermally assisted domain wall hopping between two pinning sites and structural changes that occur when the samples are subjected to even higher current pulses. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Casimir effect in Domain Wall formation

    CERN Document Server

    Setare, M R

    2003-01-01

    The Casimir forces on two parallel plates in conformally flat de Sitter background due to conformally coupled massless scalar field satisfying mixed boundary conditions on the plates is investigated. In the general case of mixed boundary conditions formulae are derived for the vacuum expectation values of the energy-momentum tensor and vacuum forces acting on boundaries. Different cosmological constants are assumed for the space between and outside of the plates to have general results applicable to the case of domain wall formations in the early universe.

  4. Manipulating antiferromagnets with magnetic fields: Ratchet motion of multiple domain walls induced by asymmetric field pulses

    Science.gov (United States)

    Gomonay, O.; Kläui, M.; Sinova, J.

    2016-10-01

    Future applications of antiferromagnets (AFs) in many spintronics devices rely on the precise manipulation of domain walls. The conventional approach using static magnetic fields is inefficient due to the low susceptibility of AFs. Recently proposed electrical manipulation with spin-orbit torques is restricted to metals with a specific crystal structure. Here, we propose an alternative, broadly applicable approach: using asymmetric magnetic field pulses to induce controlled ratchet motion of AF domain walls. The efficiency of this approach is based on three peculiarities of AF dynamics. First, a time-dependent magnetic field couples with an AF order parameter stronger than a static magnetic field, which leads to higher mobility of the domain walls. Second, the rate of change of the magnetic field couples with the spatial variation of the AF order parameter inside the domain, and this enables a synchronous motion of multiple domain walls with the same structure. Third, tailored asymmetric field pulses in combination with static friction can prevent backward motion of domain walls and thus lead to the desired controlled ratchet effect. The proposed use of an external field, rather than internal spin-orbit torques, avoids any restrictions on size, conductivity, and crystal structure of the AF material. We believe that our approach paves a way for the development of AF-based devices based on the controlled motion of AF domain walls.

  5. Domain wall brane in squared curvature gravity

    CERN Document Server

    Liu, Yu-Xiao; Zhao, Zhen-Hua; Li, Hai-Tao

    2011-01-01

    We suggest a thick braneworld model in the squared curvature gravity theory. Despite the appearance of higher order derivatives, the localization of gravity and various bulk matter fields is shown to be possible. The existence of the normalizable gravitational zero mode indicates that our four-dimensional gravity is reproduced. In order to localize the chiral fermions on the brane, two types of coupling between the fermions and the brane forming scalar is introduced. The first coupling leads us to a Schr\\"odinger equation with a volcano potential, and the other a P\\"oschl-Teller potential. In both cases, the zero mode exists only for the left-hand fermions. Several massive KK states of the fermions can be trapped on the brane, either as resonant states or as bound states.

  6. Chiral damping in magnetic domain-walls (Conference Presentation)

    Science.gov (United States)

    Jue, Emilie; Safeer, C. K.; Drouard, Marc; Lopez, Alexandre; Balint, Paul; Buda-Prejbeanu, Liliana; Boulle, Olivier; Auffret, Stéphane; Schuhl, Alain; Manchon, Aurélien; Miron, Ioan Mihai; Gaudin, Gilles

    2016-10-01

    The Dzyaloshinskii-Moriya interaction is responsible for chiral magnetic textures (skyrmions, spin spiral structures, …) in systems with structural inversion asymmetry and high spin-orbit coupling. It has been shown that the domain wall (DW) dynamics in such materials can be explained by chiral DWs with (partly or fully) Néel structure, whose stability derives from an interfacial DMI [1]. In this work, we show that DMI is not the only effect inducing chiral dynamics and demonstrate the existence of a chiral damping [2]. This result is supported by the study of the asymmetry induced by an in-plane magnetic field on field induced domain wall motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. Whereas the asymmetry of the DW motion is consistent with the spatial symmetries expected with the DMI, we show that this asymmetry cannot be attributed to an effective field but originates from a purely dissipative mechanism. The observation of chiral damping, not only enriches the spectrum of physical phenomena engendered by the SIA, but since it can coexist with DMI it is essential for conceiving DW and skyrmion devices. [1] A. Thiaville, et al., EPL 100, 57002 (2012) [2] E. Jué, et al., Nat. Mater., in press (doi: 10.1038/nmat4518)

  7. The B -> pi l nu form factor from unquenched lattice QCD with domain-wall light quarks and relativistic b-quarks

    CERN Document Server

    Kawanai, Taichi; Witzel, Oliver

    2012-01-01

    We report on a lattice-QCD calculation of the B to pi l nu form factor with domain-wall light quarks and relativistic b-quarks using the 2 + 1 flavor domain-wall fermion and Iwasaki gauge-field ensembles generated by the RBC and UKQCD Collaborations. We present initial results obtained from the coarser (a ~ 0.11 fm) 24^3 lattices and some of the finer (a ~ 0.086 fm) 32^3 lattices.

  8. Geometrical Dependence of Domain-Wall Propagation and Nucleation Fields in Magnetic-Domain-Wall Sensors

    Science.gov (United States)

    Borie, B.; Kehlberger, A.; Wahrhusen, J.; Grimm, H.; Kläui, M.

    2017-08-01

    We study the key domain-wall properties in segmented nanowire loop-based structures used in domain-wall-based sensors. The two reasons for device failure, namely, distribution of the domain-wall propagation field (depinning) and the nucleation field are determined with magneto-optical Kerr effect and giant-magnetoresistance (GMR) measurements for thousands of elements to obtain significant statistics. Single layers of Ni81 Fe19 , a complete GMR stack with Co90 Fe10 /Ni81Fe19 as a free layer, and a single layer of Co90 Fe10 are deposited and industrially patterned to determine the influence of the shape anisotropy, the magnetocrystalline anisotropy, and the fabrication processes. We show that the propagation field is influenced only slightly by the geometry but significantly by material parameters. Simulations for a realistic wire shape yield a curling-mode type of magnetization configuration close to the nucleation field. Nonetheless, we find that the domain-wall nucleation fields can be described by a typical Stoner-Wohlfarth model related to the measured geometrical parameters of the wires and fitted by considering the process parameters. The GMR effect is subsequently measured in a substantial number of devices (3000) in order to accurately gauge the variation between devices. This measurement scheme reveals a corrected upper limit to the nucleation fields of the sensors that can be exploited for fast characterization of the working elements.

  9. Nucleon form factors on the lattice with light dynamical fermions

    Energy Technology Data Exchange (ETDEWEB)

    Goeckeler, M. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Haegler, P. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Theoretische Physik T39; Horsley, R. [Edinburgh Univ. (GB). School of Physics] (and others)

    2007-09-15

    The electromagnetic form factors provide important insight into the internal structure of the nucleon and continue to be of major interest for experiment and phenomenology. For an intermediate range of momenta the form factors can be calculated on the lattice. However, the reliability of the results is limited by systematic errors mostly due to the required extrapolation to physical quark masses. Chiral effective field theories predict a rather strong quark mass dependence in a range which was yet inaccessible for lattice simulations. We give an update on recent results from the QCDSF collaboration using gauge configurations with dynamical N{sub f}=2, non-perturbatively O(a)-improved Wilson fermions at pion masses as low as 350 MeV. (orig.)

  10. Dynamics of pattern-loaded fermions in bichromatic optical lattices

    Science.gov (United States)

    Reichl, Matthew D.; Mueller, Erich J.

    2016-03-01

    Motivated by experiments in Munich [M. Schreiber et al., Science 349, 842 (2015)., 10.1126/science.aaa7432], we study the dynamics of interacting fermions initially prepared in charge density wave states in one-dimensional bichromatic optical lattices. The experiment sees a marked lack of thermalization, which has been taken as evidence for an interacting generalization of Anderson localization, dubbed "many-body localization." We model the experiments using an interacting Aubry-Andre model and develop a computationally efficient low-density cluster expansion to calculate the even-odd density imbalance as a function of interaction strength and potential strength. Our calculations agree with the experimental results and shed light on the phenomena. We also explore a two-dimensional generalization. The cluster expansion method we develop should have broad applicability to similar problems in nonequilibrium quantum physics.

  11. Non-Markovian Fermionic Stochastic Schr\\"{o}dinger Equation for Open System Dynamics

    CERN Document Server

    Shi, Wufu; Yu, Ting

    2012-01-01

    In this paper we present an exact Grassmann stochastic Schr\\"{o}dinger equation for the dynamics of an open fermionic quantum system coupled to a reservoir consisting of a finite or infinite number of fermions. We use this stochastic approach to derive the exact master equation for a fermionic system strongly coupled to electronic reservoirs. The generality and applicability of this Grassmann stochastic approach is justified and exemplified by several quantum open system problems concerning quantum decoherence and quantum transport for both vacuum and finite-temperature fermionic reservoirs. We show that the quantum coherence property of the quantum dot system can be profoundly modified by the environment memory.

  12. Localization and chiral symmetry in 2+1 flavor domain wall QCD

    CERN Document Server

    Antonio, David J; Boyle, Peter A; Christ, Norman H; Clark, Michael A; Cohen, Saul D; Dawson, Chris; Hart, Alistair; Joó, Balint; Jung, Chulwoo; Kenway, Richard D; Li, Shu; Lin, Meifeng; Mawhinney, Robert D; Maynard, Christopher M; Ohta, Shigemi; Tweedie, Robert J; Yamaguchi, Azusa

    2007-01-01

    We present results for the dependence of the residual mass of domain wall fermions (DWF) on the size of the fifth dimension and its relation to the density and localization properties of low-lying eigenvectors of the corresponding hermitian Wilson Dirac operator for 2+1 flavor domain wall QCD. Using the DBW2 and Iwasaki gauge actions, we generate ensembles of configurations with a $16^3\\times 32$ space-time volume and an extent of 8 in the fifth dimension for the sea quarks. We demonstrate the existence of a regime where the degree of locality, the size of chiral symmetry breaking and the rate of topology change can be acceptable for inverse lattice spacings $a^{-1} \\ge 1.6$ GeV.

  13. Perterbative O(asa) matching in static heavy and domain-wall light quark system

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa,T.

    2008-07-14

    We discuss the perturbative O(a{sub s}a) matching in the static heavy and domain-wall light quark system. The gluon action is the Iwasaki action and the link smearing is performed in the static heavy action. The chiral symmetry of the light quark realized by using the domain-wall fermion formulation does not prohibit the mixing of the operators at O(a). The application of O(a) improvement to the actual data shows that the B meson decay constant f{sub B}, the matrix elements M{sub B} and the B parameter B{sub B} have non-negligible effects, while the effect on the SU(3) breaking ratio {zeta} is small.

  14. Localization and chiral symmetry in 2+1 flavor domain wall QCD

    Energy Technology Data Exchange (ETDEWEB)

    David J. Antonio; Kenneth C. Bowler; Peter A. Boyle; Norman H. Christ; Michael A. Clark; Saul D. Cohen; Chris Dawson; Alistair Hart; Balint Joó; Chulwoo Jung; Richard D. Kenway; Shu Li; Meifeng Lin; Robert D. Mawhinney; Christopher M. Maynard; Shigemi Ohta; Robert J. Tweedie; Azusa Yamaguchi

    2008-01-01

    We present results for the dependence of the residual mass of domain wall fermions (DWF) on the size of the fifth dimension and its relation to the density and localization properties of low-lying eigenvectors of the corresponding hermitian Wilson Dirac operator relevant to simulations of 2+1 flavor domain wall QCD. Using the DBW2 and Iwasaki gauge actions, we generate ensembles of configurations with a $16^3\\times 32$ space-time volume and an extent of 8 in the fifth dimension for the sea quarks. We demonstrate the existence of a regime where the degree of locality, the size of chiral symmetry breaking and the rate of topology change can be acceptable for inverse lattice spacings $a^{-1} \\ge 1.6$ GeV.

  15. Thermal and Quantum Fluctuations around Domain Walls

    CERN Document Server

    Aragão de Carvalho, C

    2002-01-01

    We compute thermal and quantum fluctuations in the background of a domain wall in a scalar field theory at finite temperature using the exact scalar propagator in the subspace orthogonal to the wall's translational mode. The propagator makes it possible to calculate terms of any order in the semiclassical expansion of the partition function of the system. The leading term in the expansion corresponds to the fluctuation determinant, which we compute for arbitrary temperature in space dimensions 1,2, and 3. Our results may be applied to the description of thermal scalar propagation in the presence of soliton defects (in polymers, magnetic materials, etc.) and interfaces which are characterized by kinklike profiles. They lead to predictions as to how classical free energies, surface tensions, and interface profiles are modified by fluctuations, allowing for comparison with both numerical and experimental data. They can also be used to estimate transition temperatures. Furthermore, the simple analytic form of the...

  16. Thick domain wall spacetimes with and without reflection symmetry

    CERN Document Server

    Melfo, A; Skirzewski, A; Melfo, Alejandra; Pantoja, Nelson; Skirzewski, Aureliano

    2003-01-01

    We show that the spacetimes of domain wall solutions to the coupled Einstein-scalar field equations with a given scalar field potential fall into two classes, depending on whether or not reflection symmetry on the wall is imposed. Solutions with reflection symmetry are dynamic, while the asymmetric ones are static. Asymmetric walls are asymptotically flat on one side and reduce to the Taub spacetime on the other. Examples of asymmetric thick walls in D-dimensional spacetimes are given, and results on the thin-wall limit of the dynamic, symmetric walls are extended to the asymmetric case. The particular case of symmetric, static spacetimes is considered and a new family of solutions, including previously known BPS walls, is presented.

  17. Polarization control at spin-driven ferroelectric domain walls

    Science.gov (United States)

    Leo, Naëmi; Bergman, Anders; Cano, Andres; Poudel, Narayan; Lorenz, Bernd; Fiebig, Manfred; Meier, Dennis

    2015-04-01

    Unusual electronic states arise at ferroelectric domain walls due to the local symmetry reduction, strain gradients and electrostatics. This particularly applies to improper ferroelectrics, where the polarization is induced by a structural or magnetic order parameter. Because of the subordinate nature of the polarization, the rigid mechanical and electrostatic boundary conditions that constrain domain walls in proper ferroics are lifted. Here we show that spin-driven ferroelectricity promotes the emergence of charged domain walls. This provides new degrees of flexibility for controlling domain-wall charges in a deterministic and reversible process. We create and position a domain wall by an electric field in Mn0.95Co0.05WO4. With a magnetic field we then rotate the polarization and convert neutral into charged domain walls, while its magnetic properties peg the wall to its location. Using atomistic Landau-Lifshitz-Gilbert simulations we quantify the polarization changes across the two wall types and highlight their general occurrence.

  18. Tachyon condensation due to domain-wall annihilation in Bose-Einstein condensates.

    Science.gov (United States)

    Takeuchi, Hiromitsu; Kasamatsu, Kenichi; Tsubota, Makoto; Nitta, Muneto

    2012-12-14

    We show theoretically that a domain-wall annihilation in two-component Bose-Einstein condensates causes tachyon condensation accompanied by spontaneous symmetry breaking in a two-dimensional subspace. Three-dimensional vortex formation from domain-wall annihilations is considered a kink formation in subspace. Numerical experiments reveal that the subspatial dynamics obey the dynamic scaling law of phase-ordering kinetics. This model is experimentally feasible and provides insights into how the extra dimensions influence subspatial phase transition in higher-dimensional space.

  19. Hamilton-Jacobi method for curved domain walls and cosmologies

    Science.gov (United States)

    Skenderis, Kostas; Townsend, Paul K.

    2006-12-01

    We use Hamiltonian methods to study curved domain walls and cosmologies. This leads naturally to first-order equations for all domain walls and cosmologies foliated by slices of maximal symmetry. For Minkowski and AdS-sliced domain walls (flat and closed FLRW cosmologies) we recover a recent result concerning their (pseudo)supersymmetry. We show how domain-wall stability is consistent with the instability of AdS vacua that violate the Breitenlohner-Freedman bound. We also explore the relationship to Hamilton-Jacobi theory and compute the wave-function of a 3-dimensional closed universe evolving towards de Sitter spacetime.

  20. The defects influence on domain wall propagation in bistable glass-coated microwires

    Energy Technology Data Exchange (ETDEWEB)

    Rodionova, V. [Magnetism Division, Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Immanuel Kant Baltic Federal University, Kaliningrad 236041 (Russian Federation); Dpto. Fisica de Materiales, Fac. Quimicas, UPV/EHU, San Sebastian 20018 (Spain); Zhukova, V., E-mail: valentina.zhukova@ehu.es [Dpto. Fisica de Materiales, Fac. Quimicas, UPV/EHU, San Sebastian 20018 (Spain); Ilyn, M.; Ipatov, M. [Dpto. Fisica de Materiales, Fac. Quimicas, UPV/EHU, San Sebastian 20018 (Spain); Perov, N. [Magnetism Division, Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Zhukov, A. [Dpto. Fisica de Materiales, Fac. Quimicas, UPV/EHU, San Sebastian 20018 (Spain); IKERBASQUE, Basque Foundation for Science, Bilbao 48011 (Spain)

    2012-05-01

    We studied the domain wall (DW) dynamics of magnetically bistable amorphous glass-coated Fe{sub 74}B{sub 13}Si{sub 11}C{sub 2} microwires. In according to our experimental results magnetic field dependences of DW velocity of studied microwires can be divided into two groups: with uniform or uniformly accelerated DW propagation along the microwire. Strong correlation between the type of the magnetic field dependence of domain wall velocity, v(H), and the distribution of the local nucleation fields has been observed. Moreover, we observed abrupt increasing of DW velocity (jump) on the magnetic field dependences of the domain wall velocity, v(H), for the both types of the v(H) dependences. At the same time usual linear increasing of the domain wall velocity with magnetic field persists below these jumps. It was found that the jump height correlates with the location of nucleation place of the new domain wall. We have measured local nucleation field distribution in all the microwires. From local nucleation field distribution we have obtained the DW nucleation locations and estimated the jump height.

  1. A Clash-of-Symmetries Mechanism from Intersecting Domain-Wall Branes

    CERN Document Server

    Callen, Benjamin D

    2013-01-01

    We present a new Clash-of-Symmetries mechanism in the context of an intersecting domain-wall brane model in 5+1-dimensional Minkowskian spacetime recently proposed by the authors. This new application of the Dvali-Shifman idea is designed for localizing gauge fields on a domain-wall intersection and we employ it by adding a gauge group $G$ and giving the scalar fields which form lump-like profiles gauge charges. These fields in turn break $G$ to two different subgroups $H_{1}$ and $H_{2}$ on each domain wall, and the gauge fields of these subgroups are taken to be localized to the respective walls by the confinement dynamics of $G$. There is then a further breaking on the domain-wall intersection to $H_{1}\\cap{}H_{2}$ and gauge fields of this overlap group can then be localized to the intersection if they belong inside non-Abelian subgroups of both $H_{1}$ and $H_{2}$ which are spontaneously broken on the intersection and confining in the 4+1D bulks of the respective domain-wall branes. This mechanism has som...

  2. Violation of chirality of the M\\"obius domain-wall Dirac operator from the eigenmodes

    CERN Document Server

    Cossu, Guido; Hashimoto, Shoji; Tomiya, Akio

    2015-01-01

    We investigate the effects of the violation of the Ginsparg-Wilson (GW) relation in the M\\"obius domain-wall fermion formulation on the lattice with finite fifth dimension. Using a decomposion in terms of the eigenmodes of its four-dimensional effective Dirac operator, we isolate the GW-violating terms for various physical quantities including the residual mass and the meson susceptibilities relevant for the effective restoration of the axial U(1) symmetry at finite temperature. Numerical result shows that the GW-violating effect is more significant, or even overwhelming, for the quantities that are dominated by the low-lying eigenmodes.

  3. Supercurrent enhancement in Bloch domain walls.

    Science.gov (United States)

    Robinson, J W A; Chiodi, F; Egilmez, M; Halász, Gábor B; Blamire, M G

    2012-01-01

    Conventional spin-singlet Cooper pairs convert into spin-triplet pairs in ferromagnetic Josephson junctions in which the superconductor/ferromagnet interfaces (S/F) are magnetically inhomogeneous. Although much of the theoretical work describing this triplet proximity effect has considered ideal junctions with magnetic domain walls (DW) at the interfaces, in practice it is not easily possible to isolate a DW and propagate a supercurrent through it. The rare-earth magnet Gd can form a field-tuneable in-plane Bloch DW if grown between non-co-linearly aligned ferromagnets. Here we report supercurrents through magnetic Ni-Gd-Ni nanopillars: by field annealing at room temperature, we are able to modify the low temperature DW-state in Gd and this result has a striking effect on the junction supercurrent at 4.2 K. We argue that this result can only be explained in terms of the interconversion of triplet and singlet pairs, the efficiency of which depends on the magnetic helicity of the structure.

  4. Dynamic zero modes of Dirac fermions and competing singlet phases of antiferromagnetic order

    CERN Document Server

    Goswami, Pallab

    2016-01-01

    In quantum spin systems, singlet phases often develop in the vicinity of an antiferromagnetic order. Typical settings for such problems arise when itinerant fermions are also present. In this work, we develop a theoretical framework for addressing such competing orders in an itinerant system, described by Dirac fermions strongly coupled to an O(3) nonlinear sigma model. We focus on two spatial dimensions, where upon disordering the antiferromagnetic order by quantum fluctuations the singular tunneling events also known as (anti)hedgehogs can nucleate competing singlet orders in the paramagnetic phase. In the presence of an isolated hedgehog configuration of the nonlinear sigma model field, we show that the fermion determinant vanishes as the dynamic Euclidean Dirac operator supports fermion zero modes of definite chirality. This provides a topological mechanism for suppressing the tunneling events. Using the methodology of quantum chromodynamics, we evaluate the fermion determinant in the close proximity of m...

  5. Second-harmonic imaging of ferroelectric domain walls

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Hvam, Jørn Märcher; Pedersen, Kjeld;

    1998-01-01

    Domain walls in periodically poled ferroelectric KTiOPO4 and LiNbO3 crystals are observed by making use of second-harmonic (SH) generation enhancement in the transition regions between neighboring domains. SH images of domain walls obtained with various samples for different polarization...

  6. On domain-wall/QFT dualities in various dimensions

    NARCIS (Netherlands)

    Behrndt, Klaus; Bergshoeff, Eric; Halbersma, Rein; Schaar, Jan Pieter van der

    1999-01-01

    We investigate domain-wall/quantum field-theory correspondences in various dimensions. Our general analysis covers not only the well studied cases in 10 and 11 dimensions, but also enables us to discuss new cases like a type I/heterotic 6-brane in 10 dimensions and domain-wall dualities in lower

  7. Clusters, Halos, And S-Factors In Fermionic Molecular Dynamics *

    Directory of Open Access Journals (Sweden)

    Feldmeier Hans

    2013-12-01

    Full Text Available In Fermionic Molecular Dynamics antisymmetrized products of Gaussian wave packets are projected on angular momentum, linear momentum, and parity. An appropriately chosen set of these states span the many-body Hilbert space in which the Hamiltonian is diagonalized. The wave packet parameters – position, momentum, width and spin – are obtained by variation under constraints. The great flexibility of this basis allows to describe not only shell-model like states but also exotic states like halos, e.g. the two-proton halo in 17Ne, or cluster states as they appear for example in 12C close to the α breakup threshold where the Hoyle state is located. Even a fully microscopic calculation of the 3He(α,γ7Be capture reaction is possible and yields an astrophysical S-factor that compares very well with newer data. As representatives of numerous results these cases will be discussed in this contribution, some of them not published so far. The Hamiltonian is based on the realistic Argonne V18 nucleon-nucleon interaction.

  8. Contribution of domain wall networks to the CMB power spectrum

    CERN Document Server

    Lazanu, A; Shellard, E P S

    2015-01-01

    We use three domain wall simulations from the radiation era to the late time dark energy domination era based on the PRS algorithm to calculate the energy-momentum tensor components of domain wall networks in an expanding universe. Unequal time correlators in the radiation, matter and cosmological constant epochs are calculated using the scaling regime of each of the simulations. The CMB power spectrum of a network of domain walls is determined. The first ever quantitative constraint for the domain wall surface tension is obtained using a Markov chain Monte Carlo method; an energy scale of domain walls of 0.93 MeV, which is close but below the Zel'dovich bound, is determined.

  9. Contribution of domain wall networks to the CMB power spectrum

    Directory of Open Access Journals (Sweden)

    A. Lazanu

    2015-07-01

    Full Text Available We use three domain wall simulations from the radiation era to the late-time dark energy domination era based on the PRS algorithm to calculate the energy–momentum tensor components of domain wall networks in an expanding universe. Unequal time correlators in the radiation, matter and cosmological constant epochs are calculated using the scaling regime of each of the simulations. The CMB power spectrum of a network of domain walls is determined. The first ever quantitative constraint for the domain wall surface tension is obtained using a Markov chain Monte Carlo method; an energy scale of domain walls of 0.93 MeV, which is close but below the Zel'dovich bound, is determined.

  10. Contribution of domain wall networks to the CMB power spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Lazanu, A., E-mail: A.Lazanu@damtp.cam.ac.uk [Centre for Theoretical Cosmology, Department of Applied Mathematics and Theoretical Physics, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Martins, C.J.A.P., E-mail: Carlos.Martins@astro.up.pt [Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Instituto de Astrofísica e Ciências do Espaço, CAUP, Rua das Estrelas, 4150-762 Porto (Portugal); Shellard, E.P.S., E-mail: E.P.S.Shellard@damtp.cam.ac.uk [Centre for Theoretical Cosmology, Department of Applied Mathematics and Theoretical Physics, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)

    2015-07-30

    We use three domain wall simulations from the radiation era to the late-time dark energy domination era based on the PRS algorithm to calculate the energy–momentum tensor components of domain wall networks in an expanding universe. Unequal time correlators in the radiation, matter and cosmological constant epochs are calculated using the scaling regime of each of the simulations. The CMB power spectrum of a network of domain walls is determined. The first ever quantitative constraint for the domain wall surface tension is obtained using a Markov chain Monte Carlo method; an energy scale of domain walls of 0.93 MeV, which is close but below the Zel'dovich bound, is determined.

  11. J-kink domain walls and the DBI action

    CERN Document Server

    Eto, Minoru

    2015-01-01

    We study $J$-kink domain walls in $D=4$ massive $\\mathbb{C}P^1$ sigma model. The domain walls are not static but stationary, since they rotate in an internal $S^1$ space with a frequency $\\omega$ and a momentum ${\\bf k}$ along the domain wall. They are characterized by a conserved current $J_\\mu = (Q,{\\bf J})$, and are classified into magnetic ($J^2 0$) types. Under a natural assumption that a low energy effective action of the domain wall is dual to the $D=4$ DBI action for a membrane, we are lead to a coincidence between the $J$-kink domain wall and the membrane with constant magnetic field $B$ and electric field ${\\bf E}$. We also find that $(Q, {\\bf J}, \\omega, {\\bf k})$ is dual to $(B, {\\bf E}, H, {\\bf D})$ with $H$ and ${\\bf D}$ being a magnetizing field and a displacement field, respectively.

  12. Nonequilibrium study of the chiral magnetic effect from real-time simulations with dynamical fermions

    Science.gov (United States)

    Mace, Mark; Mueller, Niklas; Schlichting, Sören; Sharma, Sayantan

    2017-02-01

    We present a real-time lattice approach to study the nonequilibrium dynamics of vector and axial charges in S U (N )×U (1 ) gauge theories. Based on a classical description of the non-Abelian and Abelian gauge fields, we include dynamical fermions and develop operator definitions for (improved) Wilson and overlap fermions that allow us to study real-time manifestations of the axial anomaly from first principles. We present a first application of this approach to anomalous transport phenomena such as the chiral magnetic effect (CME) and the chiral separation effect (CSE) by studying the dynamics of fermions during and after a S U (N ) sphaleron transition in the presence of a U (1 ) magnetic field. We investigate the fermion mass and magnetic field dependence of the suggested signatures of the CME and the CSE and point out some important aspects which need to be accounted for in the macroscopic description of anomalous transport phenomena.

  13. Partial Dynamical Symmetry in a Fermionic Many-Body System

    CERN Document Server

    Escher, J

    2000-01-01

    The concept of partial symmetry is introduced for an interacting fermion system. The associated Hamiltonians are shown to be closely related to a realistic nuclear quadrupole-quadrupole interaction. An application to $^{12}$C is presented.

  14. B-meson decay constants from 2+1-flavor lattice QCD with domain-wall light quarks and relativistic heavy quarks

    CERN Document Server

    Christ, Norman H; Izubuchi, Taku; Kawanai, Taichi; Lehner, Christoph; Soni, Amarjit; Van de Water, Ruth S; Witzel, Oliver

    2014-01-01

    We calculate the B-meson decay constants f_B, f_Bs, and their ratio in unquenched lattice QCD using domain-wall light quarks and relativistic b-quarks. We use gauge-field ensembles generated by the RBC and UKQCD collaborations using the domain-wall fermion action and Iwasaki gauge action with three flavors of light dynamical quarks. We analyze data at two lattice spacings of a ~ 0.11, 0.086 fm with unitary pion masses as light as M_pi ~ 290 MeV; this enables us to control the extrapolation to the physical light-quark masses and continuum. For the b-quarks we use the anisotropic clover action with the relativistic heavy-quark interpretation, such that discretization errors from the heavy-quark action are of the same size as from the light-quark sector. We renormalize the lattice heavy-light axial-vector current using a mostly nonperturbative method in which we compute the bulk of the matching factor nonperturbatively, with a small correction, that is close to unity, in lattice perturbation theory. We also impr...

  15. Direct observation of current-induced motion of a 3D vortex domain wall in cylindrical nanowires

    KAUST Repository

    Ivanov, Yurii P.

    2017-05-08

    The current-induced dynamics of 3D magnetic vortex domain walls in cylindrical Co/Ni nanowires are revealed experimentally using Lorentz microscopy and theoretically using micromagnetic simulations. We demonstrate that a spin-polarized electric current can control the reversible motion of 3D vortex domain walls, which travel with a velocity of a few hundred meters per second. This finding is a key step in establishing fast, high-density memory devices based on vertical arrays of cylindrical magnetic nanowires.

  16. Formation of charged ferroelectric domain walls with controlled periodicity.

    Science.gov (United States)

    Bednyakov, Petr S; Sluka, Tomas; Tagantsev, Alexander K; Damjanovic, Dragan; Setter, Nava

    2015-10-30

    Charged domain walls in proper ferroelectrics were shown recently to possess metallic-like conductivity. Unlike conventional heterointerfaces, these walls can be displaced inside a dielectric by an electric field, which is of interest for future electronic circuitry. In addition, theory predicts that charged domain walls may influence the electromechanical response of ferroelectrics, with strong enhancement upon increased charged domain wall density. The existence of charged domain walls in proper ferroelectrics is disfavoured by their high formation energy and methods of their preparation in predefined patterns are unknown. Here we develop the theoretical background for the formation of charged domain walls in proper ferroelectrics using energy considerations and outline favourable conditions for their engineering. We experimentally demonstrate, in BaTiO3 single crystals the controlled build-up of high density charged domain wall patterns, down to a spacing of 7 μm with a predominant mixed electronic and ionic screening scenario, hinting to a possible exploitation of charged domain walls in agile electronics and sensing devices.

  17. Structure of beryllium isotopes in fermionic molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Torabi, Bahram Ramin

    2009-02-16

    Modern theoretical nuclear physics faces two major challenges. The first is finding a suitable interaction, which describes the forces between nucleons. The second challenge is the solution of the nuclear many-body problem for a given nucleus while applying a realistic potential. The potential used in the framework of this thesis is based on the Argonne AV18 potential. It was transformed by means of the Unitary Correlation Operator Method (UCOM) to optimize convergence. The usual phenomenological corrections were applied to improve the potential for the Hilbert space used in Fermionic Molecular Dynamics (FMD). FMD is an approach to solve the nuclear many-body problem. It uses a single-particle basis which is a superposition of Gaussian distributions in phase-space. The most simple many-body state is the antisymmetric product of the singleparticle states: a Slater determinant, the so called intrinsic state. This intrinsic state is projected on parity, total angular momentum and a center of mass momentum zero. The Hilbert space is spanned by several of these projected states. The states are obtained by minimizing their energy while demanding certain constraints. The expectation values of Slater determinants, parity projected and additionally total angular momentum projected Slater determinants are used. The states that are relevant in the low energy regime are obtained by diagonalization. The lowest moments of the mass-, proton- or neutron-distribution and the excitation in proton- and neutron-shells of a harmonic oscillator are some of the used constraints. The low energy regime of the Beryllium isotopes with masses 7 to 14 is calculated by using these states. Energies, radii, electromagnetic transitions, magnetic moments and point density distributions of the low lying states are calculated and are presented in this thesis. (orig.)

  18. The Worldsheet Formulation as an Alternative Method for Simulating Dynamical Fermions

    CERN Document Server

    Fort, H

    1998-01-01

    The recently proposed worldsheet formulation of lattice fermions is tested for the first time carrying out a simulation for the simplest model: the one-flavor, strictly massless lattice Schwinger model. A main advantage of this alternative method for simulating dynamical fermions consists in its economy: it involves many fewer degrees of freedom than the ordinary Kogut-Susskind formulation. The known continuum limit is reproduced by the method for relatively small lattices.

  19. Nanomagnetic engineering of the properties of domain wall atom traps

    CERN Document Server

    Hayward, Thomas J; Weatherill, Kevin J; Schrefl, Thomas; Hughes, Ifan G; Allwood, Dan A

    2011-01-01

    We have used the results of micromagnetic simulations to investigate the effects of nanowire geometry and domain wall magnetization structure on the characteristic parameters of magnetic atom traps formed by domain walls in planar ferromagnetic nanowires. It is found that when traps are formed in the near-field of a domain wall both nanowire geometry and wall structure have a substantial effect on trap frequency and adiabaticity. We also show that in certain regimes a trap's depth depends only on the amplitude of an externally applied rotating magnetic field, thus allowing it to be tuned independently of the trap's other critical parameters.

  20. Scalar triplet on a domain wall: an exact solution

    CERN Document Server

    Gani, Vakhid A; Radomskiy, Roman V

    2016-01-01

    We study a model with a real scalar Higgs field and a scalar triplet field that allows existence of a topological defect -- a domain wall. The wall breaks the global $O(3)$ symmetry of the model, which gives rise to non-Abelian orientational degrees of freedom. We found an exact analytic solution that describes a domain wall with a localized configuration of the triplet field on it. This solution enables one to calculate contributions to the action from the orientational and translational degrees of freedom of the triplet field. We also study the linear stability of the domain wall with the triplet field switched off.

  1. Fermionic corrections to fluid dynamics from BTZ black hole

    Energy Technology Data Exchange (ETDEWEB)

    Gentile, L.G.C. [DISIT, Università del Piemonte Orientale,via T. Michel, 11, Alessandria, 15120 (Italy); Dipartimento di Fisica “Galileo Galilei”,Università di Padova, via Marzolo 8, 35131 Padova (Italy); INFN - Sezione di Padova,via Marzolo 8, 35131, Padova (Italy); Grassi, P.A. [DISIT, Università del Piemonte Orientale,via T. Michel, 11, Alessandria, 15120 (Italy); INFN - Gruppo Collegato di Alessandria, Sezione di Torino,Alessandria (Italy); PH-TH Department, CERN,CH-1211 Geneva 23 (Switzerland); Mezzalira, A. [Dipartimento di Fisica Teorica, Università di Torino,via P. Giuria, 1, Torino, 10125 (Italy); INFN - Gruppo Collegato di Alessandria, Sezione di Torino,Alessandria (Italy)

    2015-11-23

    We reconstruct the complete fermionic orbit of the non-extremal BTZ black hole by acting with finite supersymmetry transformations. The solution satisfies the exact supergravity equations of motion to all orders in the fermonic expansion and the final result is given in terms of fermionic bilinears. By fluid/gravity correspondence, we derive linearized Navier-Stokes equations and a set of new differential equations from Rarita-Schwinger equation. We compute the boundary energy-momentum tensor and we interpret the result as a perfect fluid with a modified definition of fluid velocity. Finally, we derive the modified expression for the entropy of the black hole in terms of the fermionic bilinears.

  2. Comparison between Fermion Bag Approach and Complex Langevin Dynamics for Massive Thirring Model at Finite Density in 0 + 1 Dimensions

    CERN Document Server

    Li, Daming

    2016-01-01

    We consider the massive Thirring model at finite density in 0+1 dimension. The fermion bag approach, Langevin dynamics and complex Langevin dynamics are adopted to attack the sign problem for this model. Compared with the complex Langevin dynamics, both fermion bag approach and Langvin dynamics avoid the sign problem. The fermion density and chiral condensate, which are obtained by these numerical methods, are compared with the exact results. The advantages of the fermion bag approach over the other numerical methods are also discussed.

  3. Ballistic rectification of vortex domain wall chirality at nanowire corners

    Energy Technology Data Exchange (ETDEWEB)

    Omari, K.; Bradley, R. C.; Broomhall, T. J.; Hodges, M. P. P.; Hayward, T. J. [Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom); Rosamond, M. C.; Linfield, E. H. [School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Im, M.-Y. [Center for X-Ray Optics, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-873 (Korea, Republic of); Fischer, P. [Materials Sciences Division, Lawrence Berkley National Laboratory, Berkeley, California 94720 (United States); Department of Physics, University of California, Santa Cruz, California 94056 (United States)

    2015-11-30

    The interactions of vortex domain walls with corners in planar magnetic nanowires are probed using magnetic soft X-ray transmission microscopy. We show that when the domain walls are propagated into sharp corners using applied magnetic fields above a critical value, their chiralities are rectified to either clockwise or anticlockwise circulation depending on whether the corners turn left or right. Single-shot focused magneto-optic Kerr effect measurements are then used to demonstrate how, when combined with modes of domain propagation that conserve vortex chirality, this allows us to dramatically reduce the stochasticity of domain pinning at artificial defect sites. Our results provide a tool for controlling domain wall chirality and pinning behavior both in further experimental studies and in future domain wall-based memory, logic and sensor technologies.

  4. Axion cosmology with long-lived domain walls

    CERN Document Server

    Hiramatsu, Takashi; Saikawa, Ken'ichi; Sekiguchi, Toyokazu

    2012-01-01

    We investigate the cosmological constraints on axion models where the domain wall number is greater than one. In these models, multiple domain walls attached to strings are formed, and they survive for a long time. Their annihilation occurs due to the effects of explicit symmetry breaking term which might be raised by Planck-scale physics. We perform three-dimensional lattice simulations and compute the spectra of axions and gravitational waves produced by long-lived domain walls. Using the numerical results, we estimated relic density of axions and gravitational waves. We find that the existence of long-lived domain walls leads to the overproduction of cold dark matter axions, while the density of gravitational waves is too small to observe at the present time. Combining the results with other observational constraints, we find that the whole parameter region of models are excluded unless an unacceptable fine-tuning exists.

  5. Dynamic zero modes of Dirac fermions and competing singlet phases of antiferromagnetic order

    Science.gov (United States)

    Goswami, Pallab; Si, Qimiao

    2017-06-01

    In quantum spin systems, singlet phases often develop in the vicinity of an antiferromagnetic order. Typical settings for such problems arise when itinerant fermions are also present. In this paper, we develop a theoretical framework for addressing such competing orders in an itinerant system, described by Dirac fermions strongly coupled to an O(3) nonlinear sigma model. We focus on two spatial dimensions, where upon disordering the antiferromagnetic order by quantum fluctuations the singular tunneling events also known as (anti)hedgehogs can nucleate competing singlet orders in the paramagnetic phase. In the presence of an isolated hedgehog configuration of the nonlinear sigma model field, we show that the fermion determinant vanishes as the dynamic Euclidean Dirac operator supports fermion zero modes of definite chirality. This provides a topological mechanism for suppressing the tunneling events. Using the methodology of quantum chromodynamics, we evaluate the fermion determinant in the close proximity of magnetic quantum phase transition, when the antiferromagnetic order-parameter field can be described by a dilute gas of hedgehogs and antihedgehogs. We show how the precise nature of emergent singlet order is determined by the overlap between dynamic fermion zero modes of opposite chirality, localized on the hedgehogs and antihedgehogs. For a Kondo-Heisenberg model on the honeycomb lattice, we demonstrate the competition between spin Peierls order and Kondo singlet formation, thereby elucidating its global phase diagram. We also discuss other physical problems that can be addressed within this general framework.

  6. Enhanced controllability of domain-wall pinning by asymmetric control of domain-wall injection.

    Science.gov (United States)

    Ahn, Sung-Min; Moon, Kyoung-Woong

    2013-03-15

    We investigate a control scheme for enhancing the controllability of domain-wall (DW) pinning on ferromagnetic devices using an interaction between magnetic charges distributed on a nanobar and at a notch, respectively. The scheme is realized at an artificial notch with a nanobar vertical to it on Permalloy nanowires with an asymmetrical pad. Injection fields for injecting the DWs from the asymmetrical pad to the nanowire show an asymmetrical dependence on the saturation angle for initializing the magnetization of the nanowire, and the injected DWs are pinned by the notch with the nanobar vertical to it. We have found that the landscape of the pinning potential energy experienced by the DWs depends on the magnetized direction of the nanobar and that its level is shifted by the injection field, leading to an increase or decrease in the depinning field with respect to the saturation angle. This is consistent with our estimation based on micromagnetic simulation.

  7. Ferroelectricity of domain walls in rare earth iron garnet films.

    Science.gov (United States)

    Popov, A I; Zvezdin, K A; Gareeva, Z V; Mazhitova, F A; Vakhitov, R M; Yumaguzin, A R; Zvezdin, A K

    2016-11-16

    In this paper, we report on electric polarization arising in a vicinity of Bloch-like domain walls in rare-earth iron garnet films. The domain walls generate an intrinsic magnetic field that breaks an antiferroelectric structure formed in the garnets due to an exchange interaction between rare earth and iron sublattices. We explore 180° domain walls whose formation is energetically preferable in the films with perpendicular magnetic anisotropy. Magnetic and electric structures of the 180° quasi-Bloch domain walls have been simulated at various relations between system parameters. Singlet, doublet ground states of rare earth ions and strongly anisotropic rare earth Ising ions have been considered. Our results show that electric polarization appears in rare earth garnet films at Bloch domain walls, and the maximum of magnetic inhomogeneity is not always linked to the maximum of electric polarization. A number of factors including the temperature, the state of the rare earth ion and the type of a wall influence magnetically induced electric polarization. We show that the value of polarization can be enhanced by the shrinking of the Bloch domain wall width, decreasing the temperature, and increasing the deviations of magnetization from the Bloch rotation that are regulated by impacts given by magnetic anisotropies of the films.

  8. Ferroelectricity of domain walls in rare earth iron garnet films

    Science.gov (United States)

    Popov, A. I.; Zvezdin, K. A.; Gareeva, Z. V.; Mazhitova, F. A.; Vakhitov, R. M.; Yumaguzin, A. R.; Zvezdin, A. K.

    2016-11-01

    In this paper, we report on electric polarization arising in a vicinity of Bloch-like domain walls in rare-earth iron garnet films. The domain walls generate an intrinsic magnetic field that breaks an antiferroelectric structure formed in the garnets due to an exchange interaction between rare earth and iron sublattices. We explore 180° domain walls whose formation is energetically preferable in the films with perpendicular magnetic anisotropy. Magnetic and electric structures of the 180° quasi-Bloch domain walls have been simulated at various relations between system parameters. Singlet, doublet ground states of rare earth ions and strongly anisotropic rare earth Ising ions have been considered. Our results show that electric polarization appears in rare earth garnet films at Bloch domain walls, and the maximum of magnetic inhomogeneity is not always linked to the maximum of electric polarization. A number of factors including the temperature, the state of the rare earth ion and the type of a wall influence magnetically induced electric polarization. We show that the value of polarization can be enhanced by the shrinking of the Bloch domain wall width, decreasing the temperature, and increasing the deviations of magnetization from the Bloch rotation that are regulated by impacts given by magnetic anisotropies of the films.

  9. Boltzmann-Langevin one-body dynamics for fermionic systems

    Directory of Open Access Journals (Sweden)

    Napolitani P.

    2012-07-01

    Full Text Available A full implementation of the Boltzmann-Langevin equation for fermionic systems is introduced in a transport model for dissipative collisions among heavy nuclei. Fluctuations are injected in phase space and not, like in more conventional approaches, as a projection on suitable subspaces. The advantage of this model is to be specifically adapted to describe processes characterised by instabilities, like the formation of fragments from a hot nuclear system, and by dissipation, like the transparency in nucleus-nucleus collisions.

  10. Weyl fermions and spin dynamics of metallic ferromagnet SrRuO3

    Science.gov (United States)

    Itoh, Shinichi; Endoh, Yasuo; Yokoo, Tetsuya; Ibuka, Soshi; Park, Je-Geun; Kaneko, Yoshio; Takahashi, Kei S.; Tokura, Yoshinori; Nagaosa, Naoto

    2016-06-01

    Weyl fermions that emerge at band crossings in momentum space caused by the spin-orbit interaction act as magnetic monopoles of the Berry curvature and contribute to a variety of novel transport phenomena such as anomalous Hall effect and magnetoresistance. However, their roles in other physical properties remain mostly unexplored. Here, we provide evidence by neutron Brillouin scattering that the spin dynamics of the metallic ferromagnet SrRuO3 in the very low energy range of milli-electron volts is closely relevant to Weyl fermions near Fermi energy. Although the observed spin wave dispersion is well described by the quadratic momentum dependence, the temperature dependence of the spin wave gap shows a nonmonotonous behaviour, which can be related to that of the anomalous Hall conductivity. This shows that the spin dynamics directly reflects the crucial role of Weyl fermions in the metallic ferromagnet.

  11. Magnetic domain-wall velocity enhancement induced by a transverse magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jusang, E-mail: jsyang@physics.utexas.edu [Department of Physics, The University of Texas at Austin, Austin, TX 78712-1081 (United States); Beach, Geoffrey S.D. [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Knutson, Carl; Erskine, James L. [Department of Physics, The University of Texas at Austin, Austin, TX 78712-1081 (United States)

    2016-01-01

    Spin dynamics of field-driven domain walls (DWs) guided by permalloy nanowires are studied by high-speed magneto-optic polarimetry and numerical simulations. DW velocities and spin configurations are determined as functions of longitudinal drive field, transverse bias field, and nanowire width. Nanowires having cross-sectional dimensions large enough to support vortex wall structures exhibit regions of drive-field strength (at zero bias field) that have enhanced DW velocity resulting from coupled vortex structures that suppress oscillatory motion. Factor of 10 enhancements of the DW velocity are observed above the critical longitudinal drive-field (that marks the onset of oscillatory DW motion) when a transverse bias field is applied. Nanowires having smaller cross-sectional dimensions that support transverse wall structures also exhibit a region of higher mobility above the critical field, and similar transverse-field induced velocity enhancement but with a smaller enhancement factor. The bias-field enhancement of DW velocity is explained by numerical simulations of the spin distribution and dynamics within the propagating DW that reveal dynamic stabilization of coupled vortex structures and suppression of oscillatory motion in the nanowire conduit resulting in uniform DW motion at high speed. The enhanced velocity and drive field range are achieved at the expense of a less compact DW spin distribution. - Highlights: • The transverse magnetic fields can dramatically enhance the domain wall velocity. • The numerical simulation exhibits the four distinct dynamic modes. • Coupled multiple vortex structures within the domain wall become dynamically stable. • The enhanced domain wall velocity is explained by numerical simulations.

  12. Vacuum Polarization and Dynamical Chiral Symmetry Breaking: Phase Diagram of QED with Four-Fermion Contact Interaction

    CERN Document Server

    Akram, F; Gutierrez-Guerrero, L X; Masud, B; Rodriguez-Quintero, J; Calcaneo-Roldan, C; Tejeda-Yeomans, M E

    2012-01-01

    We study chiral symmetry breaking for fundamental charged fermions coupled electromagnetically to photons with the inclusion of four-fermion contact self-interaction term. We employ multiplicatively renormalizable models for the photon dressing function and the electron-photon vertex which minimally ensures mass anomalous dimension = 1. Vacuum polarization screens the interaction strength. Consequently, the pattern of dynamical mass generation for fermions is characterized by a critical number of massless fermion flavors above which chiral symmetry is restored. This effect is in diametrical opposition to the existence of criticality for the minimum interaction strength necessary to break chiral symmetry dynamically. The presence of virtual fermions dictates the nature of phase transition. Miransky scaling laws for the electromagnetic interaction strength and the four-fermion coupling, observed for quenched QED, are replaced by a mean-field power law behavior corresponding to a second order phase transition. T...

  13. A micromagnetic study of the oscillations of pinned domain walls in magnetic ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Alejos, Oscar [Dpto. Electricidad y Electronica, Universidad de Valladolid, 47071 Valladolid (Spain)]. E-mail: oscaral@ee.uva.es; Torres, Carlos [Dpto. Electricidad y Electronica, Universidad de Valladolid, 47071 Valladolid (Spain); Hernandez-Gomez, Pablo [Dpto. Electricidad y Electronica, Universidad de Valladolid, 47071 Valladolid (Spain); Lopez-Diaz, Luis [Dpto. Fisica Aplicada, Universidad de Salamanca, 37071 Salamanca (Spain); Torres, Luis [Dpto. Fisica Aplicada, Universidad de Salamanca, 37071 Salamanca (Spain); Martinez, Eduardo [Dpto. Ingenieria Electromecanica, Universidad de Burgos, 09001 Burgos (Spain)

    2007-09-15

    The work studies the dynamics of domain walls in magnetic ribbons with thicknesses of the order of magnitude of the permalloy exchange length (5.7 nm) by means of micromagnetic simulations. Two small defects are symmetrically placed on both edges of the ribbon, one on each edge, occupying the whole ribbon thickness. One transverse domain wall is pinned by the defects, in a head-to-head configuration. A free wall oscillation is forced by applying a static external magnetic field in the direction of the large axis until the wall reaches a new equilibrium position (elongation), and then removed. Three dynamic regimes are observed depending on the size of the cross ribbon section.

  14. Voltage-controlled domain wall traps in ferromagnetic nanowires

    Science.gov (United States)

    Bauer, Uwe; Emori, Satoru; Beach, Geoffrey S. D.

    2013-06-01

    Electrical control of magnetism has the potential to bring about revolutionary new spintronic devices, many of which rely on efficient manipulation of magnetic domain walls in ferromagnetic nanowires. Recently, it has been shown that voltage-induced charge accumulation at a metal-oxide interface can influence domain wall motion in ultrathin metallic ferromagnets, but the effects have been relatively modest and limited to the slow, thermally activated regime. Here we show that a voltage can generate non-volatile switching of magnetic properties at the nanoscale by modulating interfacial chemistry rather than charge density. Using a solid-state ionic conductor as a gate dielectric, we generate unprecedentedly strong voltage-controlled domain wall traps that function as non-volatile, electrically programmable and switchable pinning sites. Pinning strengths of at least 650 Oe can be readily achieved, enough to bring to a standstill domain walls travelling at speeds of at least ~20 m s-1. We exploit this new magneto-ionic effect to demonstrate a prototype non-volatile memory device in which voltage-controlled domain wall traps facilitate electrical bit selection in a magnetic nanowire register.

  15. Highly Efficient Domain Walls Injection in Perpendicular Magnetic Anisotropy Nanowire.

    Science.gov (United States)

    Zhang, S F; Gan, W L; Kwon, J; Luo, F L; Lim, G J; Wang, J B; Lew, W S

    2016-04-21

    Electrical injection of magnetic domain walls in perpendicular magnetic anisotropy nanowire is crucial for data bit writing in domain wall-based magnetic memory and logic devices. Conventionally, the current pulse required to nucleate a domain wall is approximately ~10(12) A/m(2). Here, we demonstrate an energy efficient structure to inject domain walls. Under an applied electric potential, our proposed Π-shaped stripline generates a highly concentrated current distribution. This creates a highly localized magnetic field that quickly initiates the nucleation of a magnetic domain. The formation and motion of the resulting domain walls can then be electrically detected by means of Ta Hall bars across the nanowire. Our measurements show that the Π-shaped stripline can deterministically write a magnetic data bit in 15 ns even with a relatively low current density of 5.34 × 10(11) A/m(2). Micromagnetic simulations reveal the evolution of the domain nucleation - first, by the formation of a pair of magnetic bubbles, then followed by their rapid expansion into a single domain. Finally, we also demonstrate experimentally that our injection geometry can perform bit writing using only about 30% of the electrical energy as compared to a conventional injection line.

  16. Highly Efficient Domain Walls Injection in Perpendicular Magnetic Anisotropy Nanowire

    Science.gov (United States)

    Zhang, S. F.; Gan, W. L.; Kwon, J.; Luo, F. L.; Lim, G. J.; Wang, J. B.; Lew, W. S.

    2016-04-01

    Electrical injection of magnetic domain walls in perpendicular magnetic anisotropy nanowire is crucial for data bit writing in domain wall-based magnetic memory and logic devices. Conventionally, the current pulse required to nucleate a domain wall is approximately ~1012 A/m2. Here, we demonstrate an energy efficient structure to inject domain walls. Under an applied electric potential, our proposed Π-shaped stripline generates a highly concentrated current distribution. This creates a highly localized magnetic field that quickly initiates the nucleation of a magnetic domain. The formation and motion of the resulting domain walls can then be electrically detected by means of Ta Hall bars across the nanowire. Our measurements show that the Π-shaped stripline can deterministically write a magnetic data bit in 15 ns even with a relatively low current density of 5.34 × 1011 A/m2. Micromagnetic simulations reveal the evolution of the domain nucleation – first, by the formation of a pair of magnetic bubbles, then followed by their rapid expansion into a single domain. Finally, we also demonstrate experimentally that our injection geometry can perform bit writing using only about 30% of the electrical energy as compared to a conventional injection line.

  17. Nucleon form factors with Nf=2 dynamical twisted mass fermions

    CERN Document Server

    Alexandrou, C; Koutsou, G; Baron, R; Guichon, P; Brinet, M; Carbonell, J; Harraud, P -A; Jansen, K

    2009-01-01

    We present results on the electromagnetic and axial nucleon form factors using two degenerate flavors of twisted mass fermions on lattices of spatial size 2.1 fm and 2.7 fm and a lattice spacing of about 0.09 fm. We consider pion masses in the range of 260-470 MeV. We chirally extrapolate results on the nucleon axial ch arge, the isovector Dirac and Pauli root mean squared radii and magnetic moment to the physical point and co mpare to experiment.

  18. Large lepton mixing angles from a 4+1-dimensional SU(5) x A(4) domain-wall braneworld model

    CERN Document Server

    Callen, Benjamin D

    2012-01-01

    We propose an extension of the 4+1D SU(5) domain-wall braneworld of Davies, George and Volkas which includes the addition of a discrete A(4) flavor symmetry. We show that lepton mixing and light Majorana neutrino masses can be generated from the additional A(4) physics while at the same time sufficient parameter freedom can be maintained in the charged fermion sector to produce charged fermion masses and quark mixing naturally from the split fermion mechanism. Importantly, we show that the vacuum realignment problem typical of discrete flavor symmetry models of quark and lepton mixing can be solved by separating the appropriate flavons in the extra dimension, leading to exponentially sensitive suppression of the operators responsible for vacuum realignment.

  19. πK scattering in full QCD with domain-wall valence quarks

    NARCIS (Netherlands)

    Beane, Silas R.; Bedaque, Paulo F.; Luu, Thomas C.; Orginos, Kostas; Pallante, Elisabetta; Parreño, Assumpta; Savage, Martin J.

    2006-01-01

    We calculate the π+K+ scattering length in fully-dynamical lattice QCD with domain-wall valence quarks on MILC lattices with rooted staggered sea-quarks at a lattice spacing of b = 0.125 fm, lattice spatial size of L = 2.5 fm and at pion masses of mπ ~ 290, 350, 490 and 600 MeV. The lattice data, an

  20. Integral formula for elliptic SOS models with domain walls and a reflecting end

    Science.gov (United States)

    Lamers, Jules

    2015-12-01

    In this paper we extend previous work of Galleas and the author to elliptic SOS models. We demonstrate that the dynamical reflection algebra can be exploited to obtain a functional equation characterizing the partition function of an elliptic SOS model with domain-wall boundaries and one reflecting end. Special attention is paid to the structure of the functional equation. Through this approach we find a novel multiple-integral formula for that partition function.

  1. Solutions for Intersecting Domain Walls with Internal Structure in Six Dimensions from a Z_2 x Z_2-invariant Action

    CERN Document Server

    Callen, Benjamin D

    2013-01-01

    We present a generic Z_2 x Z_2-invariant scalar field theory with four real scalar fields in six-dimensional Minkowskian spacetime which yields solutions consisting of two intersecting domain-wall kinks which are each paired by fields with lump-like profiles. For a special parameter choice, analytic solutions can be obtained. We show that the Z_2 x Z_2 symmetry can be maintained while coupling fermions by introducing scalar Yukawa couplings to one kink-lump pair and six-dimensional pseudoscalar Yukawa couplings to the other, and we show that there exists a zero mode localized to the domain-wall junction in this case. We also show that scalar fields can be localized.

  2. Slinky evolution of domain wall brane cosmology

    NARCIS (Netherlands)

    Kadosh, Avihay; Davidson, Aharon; Pallante, Elisabetta

    2012-01-01

    Invoking an initial symmetry between the time t and some extra spatial dimension y, we discuss a novel scenario where the dynamical formation of the 4 dimensional brane and its cosmological evolution are induced simultaneously by a common t y symmetry breaking mechanism. The local maximum of the

  3. Spin torque and interactions in ferromagnetic semiconductor domain walls

    Science.gov (United States)

    Golovatski, Elizabeth Ann

    The motion of domain walls due to the spin torque generated by coherent carrier transport is of considerable interest for the development of spintronic devices. We model the charge and spin transport through domain walls in ferromagnetic semiconductors for various systems. With an appropriate model Hamiltonian for the spin-dependent potential, we calculate wavefunctions inside the domain walls which are then used to calculate transmission and reflection coefficients, which are then in turn used to calculate current and spin torque. Starting with a simple approximation for the change in magnetization inside the domain wall, and ending with a sophisticated transfer matrix method, we model the common pi wall, the less-studied 2pi wall, and a system of two pi walls separated by a variable distance. We uncover an interesting width dependence on the transport properties of the domain wall. 2pi walls in particular, have definitive maximums in resistance and spin torque for certain domain wall widths that can be seen as a function of the spin mistracking in the system---when the spins are either passing straight through the domain wall (narrow walls) or adiabatically following the magnetization (wide walls), the resistance is low as transmission is high. In the intermediate region, there is room for the spins to rotate their magnetization, but not necessarily all the way through a 360 degree rotation, leading to reflection and resistance. We also calculate that there are widths for which the total velocity of a 2pi wall is greater than that of a same-sized pi wall. In the double-wall system, we model how the system reacts to changes in the separation of the domain walls. When the domain walls are far apart, they act as a spin-selective resonant double barrier, with sharp resonance peaks in the transmission profile. Brought closer and closer together, the number and sharpness of the peaks decrease, the spectrum smooths out, and the domain walls brought together have a

  4. Magnetic domain wall conduits for single cell applications

    DEFF Research Database (Denmark)

    Donolato, Marco; Torti, A.; Kostesha, Natalie;

    2011-01-01

    The ability to trap, manipulate and release single cells on a surface is important both for fundamental studies of cellular processes and for the development of novel lab-on-chip miniaturized tools for biological and medical applications. In this paper we demonstrate how magnetic domain walls...... generated in micro- and nano-structures fabricated on a chip surface can be used to handle single yeast cells labeled with magnetic beads. In detail, first we show that the proposed approach maintains the microorganism viable, as proven by monitoring the division of labeled yeast cells trapped by domain...... walls over 16 hours. Moreover, we demonstrate the controlled transport and release of individual yeast cells via displacement and annihilation of individual domain walls in micro- and nano-sized magnetic structures. These results pave the way to the implementation of magnetic devices based on domain...

  5. Domain walls and gravitational waves in the Standard Model

    Science.gov (United States)

    Krajewski, Tomasz; Lalak, Zygmunt; Lewicki, Marek; Olszewski, Paweł

    2016-12-01

    We study domain walls which can be created in the Standard Model under the assumption that it is valid up to very high energy scales. We focus on domain walls interpolating between the physical electroweak vacuum and the global minimum appearing at very high field strengths. The creation of the network which ends up in the electroweak vacuum percolating through the Universe is not as difficult to obtain as one may expect, although it requires certain tuning of initial conditions. Our numerical simulations confirm that such domain walls would swiftly decay and thus cannot dominate the Universe. We discuss the possibility of detection of gravitational waves produced in this scenario. We have found that for the standard cosmology the energy density of these gravitational waves is too small to be observed in present and planned detectors.

  6. Domain walls and gravitational waves in the Standard Model

    CERN Document Server

    Krajewski, Tomasz; Lewicki, Marek; Olszewski, Paweł

    2016-01-01

    We study domain walls which can be created in the Standard Model under the assumption that it is valid up to very high energy scales. We focus on domain walls interpolating between the physical electroweak vacuum and the global minimum appearing at very high field strengths. The creation of the network which ends up in the electroweak vacuum percolating through the Universe is not as difficult to obtain as one may expect, although it requires certain tuning of initial conditions. Our numerical simulations confirm that such domain walls would swiftly decay and thus cannot dominate the Universe. We discuss the possibility of detection of gravitational waves produced in this scenario. We have found that for the standard cosmology the energy density of these gravitational waves is too small to be observed in present and planned detectors.

  7. A review of gravitational waves from cosmic domain walls

    Energy Technology Data Exchange (ETDEWEB)

    Saikawa, Ken' ichi

    2017-03-15

    In this contribution, we discuss the cosmological scenario where unstable domain walls are formed in the early universe and their late-time annihilation produces a significant amount of gravitational waves. After describing cosmological constraints on long-lived domain walls, we estimate the typical amplitude and frequency of gravitational waves observed today. We also review possible extensions of the standard model of particle physics that predict the formation of unstable domain walls and can be probed by observation of relic gravitational waves. It is shown that recent results of pulser timing arrays and direct detection experiments partially exclude the relevant parameter space, and that a much wider parameter space can be covered by the next generation of gravitational wave observatories.

  8. A "Domain Wall" Scenario for the AdS/QCD

    CERN Document Server

    Shuryak, Edward

    2007-01-01

    We propose a scenario for bottom-up gravity dual picture of QCD-like theories, which consists of two near-AdS$_5$ domains separated by the "domain wall" at which the effective coupling relatively rapidly switches from small perturbative value at its UV side to strong at its IR side. The proposed mechanism for this jump is related to instantons, which are located at/near this wall. We further argue that in the limit of large number of colors $N_c\\to\\infty$ the "domain wall" is becoming a singularity. The instanton liquid model is reformulated in $AdS_5$ language, where instantons became point-like quark vertices on the domain wall. Among applications one may consider lowest mesons as collective vibrations of this "wall". We suggest that the "wall" can be observed in a strong-to-weak transitions of various QCD processes and provide estimate for jump magnitude for various exclusive processes.

  9. Critical behavior of spherically symmetric domain wall collapse

    CERN Document Server

    Ikeda, Taishi

    2016-01-01

    Critical collapse of a spherically symmetric domain wall is investigated. The domain wall is made of a minimally coupled scalar field with a double well potential. We consider a sequence of the initial data which describe a momentarily static domain wall characterized by its initial radius. The time evolution is performed by a full general relativistic numerical code for spherically symmetric systems. In this paper, we use the maximal slice gauge condition, in which spacelike time slices may penetrate the black hole horizon differently from other widely used procedures. In this paper, we consider two specific shapes of the double well potential, and observe the Type II critical behavior in both cases. The mass scaling, sub-critical curvature scaling, and those fine structures are confirmed. The index of the scaling behavior agrees with the massless scalar case.

  10. Scalar triplet on a domain wall: an exact solution

    Science.gov (United States)

    Gani, Vakhid A.; Lizunova, Mariya A.; Radomskiy, Roman V.

    2016-04-01

    We study a model with a real scalar Higgs field and a scalar triplet field that allows existence of a topological defect — a domain wall. The wall breaks the global O(3) symmetry of the model, which gives rise to non-Abelian orientational degrees of freedom. We found an exact analytic solution that describes a domain wall with a localized configuration of the triplet field on it. This solution enables one to calculate contributions to the action from the orientational and translational degrees of freedom of the triplet field. We also study the linear stability of the domain wall with the triplet field switched off. We obtain that degrees of freedom localized on the wall can appear or do not appear depending on the parameters of the model.

  11. Light hadrons from Nf=2+1+1 dynamical twisted mass fermions

    NARCIS (Netherlands)

    Baron, R.; Blossier, B.; Boucaud, P.; Carbonell, J.; Deuzeman, A.; Drach, V.; Farchioni, F.; Gimenez, V.; Herdoiza, G.; Jansen, K.; Michael, C.; Montvay, I.; Pallante, E.; Pène, O.; Reker, S.; Urbach, C.; Wagner, M.; Wenger, U.; Collaboration, for the ETM

    2011-01-01

    We present results of lattice QCD simulations with mass-degenerate up and down and mass-split strange and charm (Nf=2+1+1) dynamical quarks using Wilson twisted mass fermions at maximal twist. The tuning of the strange and charm quark masses is performed at three values of the lattice spacing a~0.06

  12. Decaying Domain Walls in an Extended Gravity Model and Cosmology

    CERN Document Server

    Shiraishi, Kiyoshi

    2013-01-01

    We investigate cosmological consequences of an extended gravity model which belongs to the same class studied by Accetta and Steinhardt in an extended inflationary scenario. But we do not worry about inflation in our model; instead, we focus on a topological object formed during cosmological phase transitions. Although domain walls appear during first-order phase transitions such as QCD transition, they decay at the end of the phase transition. Therefore the "domain wall problem" does not exist in the suitable range of pameters and, on the contrary, the "fragments" of walls may become seeds of dark matter. A possible connection to "oscillating universe" model offered by Morikawa et al. is also discussed.

  13. Domain wall stability in ferroelectrics with space charges

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Yinan, E-mail: zuo@mfm.tu-darmstadt.de; Genenko, Yuri A.; Klein, Andreas; Stein, Peter; Xu, Baixiang [Institute of Materials Science, Technische Universität Darmstadt, D-64287 Darmstadt (Germany)

    2014-02-28

    Significant effect of semiconductor properties on domain configurations in ferroelectrics is demonstrated, especially in the case of doped materials. Phase field simulations are performed for ferroelectrics with space charges due to donors and electronic charge carriers. The free charges introduced thereby can act as a source for charge compensation at domain walls with uncompensated polarization bound charges. Results indicate that the equilibrium position of a domain wall with respect to its rotation in a head-to-head or a tail-to-tail domain configuration depends on the charge defect concentration and the Fermi level position.

  14. Magnetoelastic contribution in domain wall propagation of micrometric wires.

    Science.gov (United States)

    Zhukov, A; Blanco, J M; Ipatov, M; Zhukova, V

    2012-09-01

    We report on studies of domain wall propagation of magnetically-bistable Fe-Co-rich microwires paying attention on the effect of applied and internal stresses. We measured magnetic domain propagation in various magnetic Fe-Co-rich amorphous microwires with metallic nucleus diameters (from 2.8 microm to 18 microm) using Sixtus Tonks-like experiments. We found that application of applied stresses and increasing of internal stresses result in decreasing of domain wall (DW) velocity. We assume that in order to achieve higher DW propagation velocity at the same magnetic field and enhanced DW mobility, special attention should be paid to the decrease of magnetoelastic energy.

  15. Chiral fermion dynamics in 2d magnetic vortices: Manifestation of momentum-spin-locking

    Science.gov (United States)

    Pötz, W.; Hammer, René

    2016-11-01

    The electronic surface-states of a topological insulator in the presence of an in-plane magnetization vortex M (ϕ)=M (cos(Φ+νϕ), sin(Φ+νϕ)) are investigated theoretically. For a general angle of magnetization Φ∈[0 ,2 π) and topological charge ν = 1, the modifications to the zero-mass single Dirac cone dispersion are treated exactly and the spectrum of bound eigenstates which forms in the energy window ±M cos(Φ) is derived. The space-time resolved dynamics of Dirac fermions in the presence of such vortices is studied numerically using a single-cone (2 + 1)D finite-difference scheme. In the continuous spectral region, Φ-dependent scattering of Dirac fermions at the vortex is observed. Depending on the type of vortex ( Φ, ν) and the impact parameter, the propagation direction of the Dirac fermion is changed: the magnetization of the vortex exerts a torque onto the fermion spin which, by momentum-spin locking associated with the helical Dirac states, results in an in-plane rotation of the propagation direction of the scattered Dirac fermion. In head-on collisions of a Gaussian wave-packet with ν = 1 vortices a Φ-dependent lensing effect is seen in our simulations. Depending on the direction of incidence, the vortex Φ=-π/2 , ν = 2 is identified as a coherent particle-beam splitter or "condenser" in head-on collisions.

  16. Multiple scattering dynamics of fermions at an isolated p-wave resonance

    CERN Document Server

    Thomas, Ryan; Tiesinga, Eite; Wade, Andrew C J; Blakie, P Blair; Deb, Amita B; Kjærgaard, Niels

    2016-01-01

    The wavefunction for indistinguishable fermions is anti-symmetric under particle exchange, which directly leads to the Pauli exclusion principle, and hence underlies the structure of atoms and the properties of almost all materials. In the dynamics of collisions between two indistinguishable fermions this requirement strictly prohibits scattering into 90 degree angles. Here we experimentally investigate the collisions of ultracold clouds fermionic $\\rm^{40}K$ atoms by directly measuring scattering distributions. With increasing collision energy we identify the Wigner threshold for p-wave scattering with its tell-tale dumb-bell shape and no $90^\\circ$ yield. Above this threshold effects of multiple scattering become manifest as deviations from the underlying binary p-wave shape, adding particles either isotropically or axially. A shape resonance for $\\rm^{40}K$ facilitates the separate observation of these two processes. The isotropically enhanced multiple scattering mode is a generic p-wave threshold phenomen...

  17. Wilson Fermions with Four Fermion Interactions

    CERN Document Server

    Rantaharju, Jarno; Pica, Claudio; Sannino, Francesco

    2016-01-01

    Four fermion interactions appear in many models of Beyond Standard Model physics. In Technicolour and composite Higgs models Standard Model fermion masses can be generated by four fermion terms. They are also expected to modify the dynamics of the new strongly interacting sector. In particular in technicolour models it has been suggested that they can be used to break infrared conformality and produce a walking theory with a large mass anomalous dimension. We study the SU(2) gauge theory with 2 adjoint fermions and a chirally symmetric four fermion term. We demonstrate chiral symmetry breaking at large four fermion coupling and study the phase diagram of the model.

  18. Cosmic bubble and domain wall instabilities II: Fracturing of Colliding Walls

    CERN Document Server

    Braden, Jonathan; Mersini-Houghton, Laura

    2015-01-01

    We study collisions between nearly planar domain walls including the effects of small initial nonplanar fluctuations. These perturbations represent the small fluctuations that must exist in a quantum treatment of the problem. In a previous paper, we demonstrated that at the linear level a subset of these fluctuations experience parametric amplification as a result of their coupling to the planar symmetric background. Here we study the full three-dimensional nonlinear dynamics using lattice simulations, including both the early time regime when the fluctuations are well described by linear perturbation theory as well as the subsequent stage of fully nonlinear evolution. We find that the nonplanar fluctuations have a dramatic effect on the overall evolution of the system. Specifically, once these fluctuations begin to interact nonlinearly the split into a planar symmetric part of the field and the nonplanar fluctuations loses its utility. At this point the colliding domain walls dissolve, with the endpoint of t...

  19. Unstable equilibrium point in chaotic domain-wall motion and Ott-Grebogi-Yorke control

    Science.gov (United States)

    Okuno, H.; Takemura, Y.

    2001-06-01

    A method for finding the unstable equilibrium points in Bloch wall motion is proposed, which is important for controlling the chaotic domain-wall motion by using the Ott-Grebogi-Yorke (OGY) method. The dynamics of Bloch wall motion are expressed by a nonlinear differential equation with the terms of inertia, damping, restoring, and an external magnetic drive force. An equation is transformed into the difference equations by following the OGY method, approximating linearly around an unstable equilibrium point (a saddle point), and adding a controlling input. The unstable equilibrium points are obtained by using the return map and the condition of hyperbolic fixed point. The time series of domain-wall motion successfully controlled on the unstable equilibrium points by the OGY method is shown.

  20. Towards Quantum Turbulence in Cold Atomic Fermionic Superfluids

    CERN Document Server

    Bulgac, Aurel; Wlazłowski, Gabriel

    2016-01-01

    Fermionic superfluids provide a new realization of quantum turbulence, accessible to both experiment and theory, yet relevant to both cold atoms and nuclear astrophysics. In particular, the strongly interacting Fermi gas realized in cold-atom experiments is closely related to dilute neutron matter in the neutron star crust. Unlike the liquid superfluids 4He (bosons) and 3He (fermions), where quantum turbulence has been studied in laboratory for decades, quantum gases, and in particular superfluid Fermi gases stand apart for a number of reasons. Fermi gases admit a rather reliable microscopic description based on density functional theory which describes both static and dynamical phenomena. Cold atom experiments demonstrate exquisite control over particle number, spin polarization, density, temperature, and interacting strength. Topological defects such as domain walls and quantized vortices, which lie at the heart of quantum turbulence, can be created and manipulated with time-dependent external potentials, a...

  1. Digital Quantum Simulation of Z2 Lattice Gauge Theories with Dynamical Fermionic Matter

    Science.gov (United States)

    Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J. Ignacio

    2017-02-01

    We propose a scheme for digital quantum simulation of lattice gauge theories with dynamical fermions. Using a layered optical lattice with ancilla atoms that can move and interact with the other atoms (simulating the physical degrees of freedom), we obtain a stroboscopic dynamics which yields the four-body plaquette interactions, arising in models with (2 +1 ) and higher dimensions, without the use of perturbation theory. As an example we show how to simulate a Z2 model in (2 +1 ) dimensions.

  2. Effects of dynamical FLIC fermions in the quark and gluon propagator

    Science.gov (United States)

    Kamleh, W.; Bowman, P. O.; Leinweber, D. B.; Williams, A. G.; Zhang, J.-B.

    2006-11-01

    In this work we examine the FLIC overlap quark propagator and the gluon propagator on both dynamical and quenched lattices. The tadpole improved Luscher-Weisz gauge action is used in both cases. The dynamical gauge fields use the FLIC fermion action for the sea quark contribution. We observe that the presence of sea quarks causes a suppression of the mass function, quark renormalisation function and gluon dressing function in the infrared. The ultraviolet physics is unaffected.

  3. Wilson Fermions with Four Fermion Interactions

    DEFF Research Database (Denmark)

    Rantaharju, Jarno; Drach, Vincent; Hietanen, Ari;

    2015-01-01

    We present a lattice study of a four fermion theory, known as Nambu Jona-Lasinio (NJL) theory, via Wilson fermions. Four fermion interactions naturally occur in several extensions of the Standard Model as a low energy parameterisation of a more fundamental theory. In models of dynamical electrowe...

  4. Spin pumping by a field-driven domain wall

    NARCIS (Netherlands)

    Duine, R.A.

    2008-01-01

    We present the theory of spin pumping by a field-driven domain wall for the situation that spin is not fully conserved. We calculate the pumped current in a metallic ferromagnet to first order in the time derivative of the magnetization direction. Irrespective of the microscopic details, the result

  5. Magnetic domain wall motion triggered by electric field

    Energy Technology Data Exchange (ETDEWEB)

    Pyatakov, A P; Sergeev, A S; Sechin, D A; Meshkov, G A; Nikolaeva, E P; Nikolaev, A V; Logginov, A S [Physics Department, M.V. Lomonosov Moscow State University, Leninskie gory, Moscow, 119296 (Russian Federation); Zvezdin, A K, E-mail: pyatakov@phys.msu.r [A.M. Prokhorov General Physics Institute, 38, Vavilova st., Moscow, 119991 (Russian Federation)

    2010-01-01

    We propose the new approach to the problem of electrically controlled magnetic state: the electric field driven domain wall motion. The effect is demonstrated in iron garnet films in ambient conditions. The theoretical model based on inhomogenous magnetoelectric interaction provides with the necessary criteria of the effect and the way to maximize it.

  6. On domain wall boundary conditions for the XXZ spin Hamiltonian

    DEFF Research Database (Denmark)

    Orlando, Domenico; Reffert, Susanne; Reshetikhin, Nicolai

    In this note, we derive the spectrum of the infinite quantum XXZ spin chain with domain wall boundary conditions. The eigenstates are constructed as limits of Bethe states for the finite XXZ spin chain with quantum sl(2) invariant boundary conditions....

  7. Casimir densities for parallel plate in the Domain Wall background

    CERN Document Server

    Setare, M R

    2003-01-01

    The Casimir forces on two parallel plates in conformally flat domain wall background due to conformally coupled massless scalar field satisfying mixed boundary conditions on the plates is investigated. In the general case of mixed boundary conditions formulae are derived for the vacuum expectation values of the energy-momentum tensor and vacuum forces acting on boundaries.

  8. Increased magnetic damping of a single domain wall and adjacent magnetic domains detected by spin torque diode in a nanostripe

    Energy Technology Data Exchange (ETDEWEB)

    Lequeux, Steven; Sampaio, Joao; Bortolotti, Paolo; Cros, Vincent; Grollier, Julie [Unité Mixte de Physique CNRS/Thales and Université Paris-Sud 11, 1 Ave. A. Fresnel, 91767 Palaiseau (France); Devolder, Thibaut [Institut d' Electronique Fondamentale, Univ. Paris-Sud, CNRS UMR 8622, Bât. 220, 91405 Orsay Cedex (France); Matsumoto, Rie; Yakushiji, Kay; Kubota, Hitoshi; Fukushima, Akio; Yuasa, Shinji [National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Nishimura, Kazumasa; Nagamine, Yoshinori; Tsunekawa, Koji [Process Development Center, Canon ANELVA Corporation, Kurigi 2-5-1, Asao, Kawasaki, Kanagawa 215-8550 (Japan)

    2015-11-02

    Spin torque resonance has been used to simultaneously probe the dynamics of a magnetic domain wall and of magnetic domains in a nanostripe magnetic tunnel junction. Due to the large associated resistance variations, we are able to analyze quantitatively the resonant properties of these single nanoscale magnetic objects. In particular, we find that the magnetic damping of both the domains and the domain wall is doubled compared to the damping value of the host magnetic layer. We estimate the contributions to the damping arising from the dipolar couplings between the different layers in the junction and from the intralayer spin pumping effect, and find that they cannot explain the large damping enhancement that we observe. We conclude that the measured increased damping is intrinsic to large amplitudes excitations of spatially localized modes or solitons such as vibrating or propagating domain walls.

  9. Extended Fluid-Dynamics and Collective Motion of Two Trapped Fermion Species with Pairing Interactions

    Science.gov (United States)

    Hernández, E. S.; Capuzzi, P.; Szybisz, L.

    2011-02-01

    We extend our earlier fluid-dynamical description of fermion superfluids incorporating the particle energy flow together with the equation of motion for the internal kinetic energy of the pairs. The formal scheme combines a set of equations similar to those of classical hydrodynamics with the equations of motion for the anomalous density and for its related momentum density and kinetic energy density. This dynamical frame represents a second order truncation of an infinite hierarchy of equations of motion isomorphic to the full time dependent Hartree-Fock-Bogoliubov equations in coordinate representation. We analyze the equilibrium solutions and fluctuations for a homogeneous, unpolarized fermion system of two species, and show that the collective spectrum presents the well-known Anderson-Bogoliubov low energy mode of homogeneous superfluids and a pairing vibration near the gap energy.

  10. Nonequilibrium dynamics of a system with two kinds of fermions after a pulse

    Science.gov (United States)

    Zvyagin, A. A.

    2017-02-01

    The nonequilibrium evolution of the system of two kinds of fermions under the action of a pulse of the external field has been studied. The number of fermions of each kind oscillates (with beats and decaying) as a function of the duration of the pulse about the value determined by the magnitude of the pulse, and as a function of the magnitude of the pulse. For low-dimensional systems those oscillations can serve as a non-zero-temperature manifestation of dynamical quantum phase transitions. The response of a Fermi gas or liquid in a tilted magnetic field, an edge state of a topological insulator, a quantum wire with spin-orbit coupling, and a dimerized spin-1/2 chain to the pulse can manifest such dynamical oscillations, which can be observed in experiments.

  11. Mean field and collisional dynamics of interacting fermion-boson systems the Jaynes-Cummings model

    CERN Document Server

    Takano-Natti, E R

    1996-01-01

    A general time-dependent projection technique is applied to the study of the dynamics of quantum correlations in a system consisting of interacting fermionic and bosonic subsystems, described by the Jaynes-Cummings Hamiltonian. The amplitude modulation of the Rabi oscillations which occur for a strong, coherent initial bosonic field is obtained from the spin intrinsic depolarization resulting from collisional corrections to the mean-field approximation.

  12. Bifurcations in Boltzmann–Langevin one body dynamics for fermionic systems

    Energy Technology Data Exchange (ETDEWEB)

    Napolitani, P., E-mail: napolita@ipno.in2p3.fr [IPN, CNRS/IN2P3, Université Paris-Sud 11, 91406 Orsay cedex (France); Colonna, M. [INFN-LNS, Laboratori Nazionali del Sud, 95123 Catania (Italy)

    2013-10-07

    We investigate the occurrence of bifurcations in the dynamical trajectories depicting central nuclear collisions at Fermi energies. The quantitative description of the reaction dynamics is obtained within a new transport model, based on the solution of the Boltzmann–Langevin equation in three dimensions, with a broad applicability for dissipative fermionic dynamics. Dilute systems formed in central collisions are shown to fluctuate between two energetically favourable mechanisms: reverting to a compact shape or rather disintegrating into several fragments. The latter result can be connected to the recent observation of bimodal distributions for quantities characterising fragmentation processes and may suggest new investigations.

  13. Continuum Limit of $B_K$ from 2+1 Flavor Domain Wall QCD

    CERN Document Server

    Aoki, Y; Blum, T; Boyle, P A; Brömmel, D; Christ, N H; Dawson, C; Izubuchi, T; Jung, C; Kelly, C; Kenway, R D; Lightman, M; Mawhinney, R D; Ohta, Shigemi; Sachrajda, C T; Scholz, E E; Soni, A; Sturm, C; Wennekers, J; Zhou, R

    2010-01-01

    We determine the neutral kaon mixing matrix element $B_K$ in the continuum limit with 2+1 flavors of domain wall fermions, using the Iwasaki gauge action at two different lattice spacings. These lattice fermions have near exact chiral symmetry and therefore avoid artificial lattice operator mixing. We introduce a significant improvement to the conventional NPR method in which the bare matrix elements are renormalized non-perturbatively in the RI-MOM scheme and are then converted into the MSbar scheme using continuum perturbation theory. In addition to RI-MOM, we introduce and implement four non-exceptional intermediate momentum schemes that suppress infrared non-perturbative uncertainties in the renormalization procedure. We compute the conversion factors relating the matrix elements in this family of RI-SMOM schemes and MSbar at one-loop order. Comparison of the results obtained using these different intermediate schemes allows for a more reliable estimate of the unknown higher-order contributions and hence ...

  14. Exact BPS domain walls at finite gauge coupling

    CERN Document Server

    Blaschke, Filip

    2016-01-01

    Bogomol'nyi-Prasad-Sommerfield solitons in models with spontaneously broken gauge symmetry have been intensively studied at infinite gauge coupling limit, where the governing equation -- so-called master equation -- is exactly solvable. Except of handful of special solutions, the standing impression is that analytic results at finite coupling are generally unavailable. The aim of this paper is to demonstrate, using domain walls in Abelian-Higgs models as a simplest example, that exact solitons at finite gauge coupling can be readily obtained, if the number of Higgs fields ($N_F$) is large enough. In particular, we present a family of exact solutions, describing $N$ domain walls at arbitrary positions in models with at least $N_F \\geq 2N+1$. We have also found that adding together any pair of solution can produce a new exact solution, if the combined tension is below certain limit.

  15. Evolution of thick domain walls in de Sitter universe

    CERN Document Server

    Dolgov, A D; Rudenko, A S

    2016-01-01

    We consider thick domain walls in a de Sitter universe following paper by Basu and Vilenkin. However, we are interested not only in stationary solutions found therein, but also investigate the general case of domain wall evolution with time. When the wall thickness parameter, $\\delta_0$, is smaller than $H^{-1}/\\sqrt{2}$, where $H$ is the Hubble parameter in de Sitter space-time, then the stationary solutions exist, and initial field configurations tend with time to the stationary ones. However, there are no stationary solutions for $\\delta_0 \\geq H^{-1}/\\sqrt{2}$. We have calculated numerically the rate of the wall expansion in this case and have found that the width of the wall grows exponentially fast for $\\delta_0 \\gg H^{-1}$. An explanation for the critical value $\\delta_{0c} = H^{-1}/\\sqrt{2}$ is also proposed.

  16. Magnetic domain walls of relic neutrinos as Dark Energy

    CERN Document Server

    Yajnik, U A

    2006-01-01

    The observed Dark Energy component of the cosmic energy density is well fitted by domain wall matter which scales as $S(t)^{-1}$ where $S$ is the Friedmann-Robertson-Walker (FRW) scale factor. We show that relic neutrinos of the Big Bang can enter a ferromagnetic state governed by Stoner theory provided they are a degenerate gas and possess a magnetic moment. The domain walls of this ferromagnetism behave as Dark Energy. The degeneracy requirement accords with Big Bang nucleosynthesis expectations of large chemical potentials for neutrinos and provides an estimate for the same. At least one of the the mass eigenstate neutrinos would have to possess a magnetic moment greater than $10^{-9}$ Bohr magneton. Any other relic contributing to Hot Dark Matter could also provide an interesting candidate.

  17. Performance of synthetic antiferromagnetic racetrack memory: domain wall versus skyrmion

    Science.gov (United States)

    Tomasello, R.; Puliafito, V.; Martinez, E.; Manchon, A.; Ricci, M.; Carpentieri, M.; Finocchio, G.

    2017-08-01

    A storage scheme based on racetrack memory, where the information can be coded in a domain or a skyrmion, seems to be an alternative to conventional hard disk drive for high density storage. Here, we perform a full micromagnetic study of the performance of synthetic antiferromagnetic (SAF) racetrack memory in terms of velocity and sensitivity to defects by using experimental parameters. We find that, to stabilize a SAF skyrmion, the Dzyaloshinskii-Moriya interaction in the top and the bottom ferromagnet should have an opposite sign. The velocity of SAF skyrmions and SAF Néel domain walls are of the same order and can reach values larger than 1200 m s-1 if a spin-orbit torque from the spin-Hall effect with opposite sign is applied to both ferromagnets. The presence of disordered anisotropy in the form of randomly distributed grains introduces a threshold current for both SAF skyrmions and SAF domain walls motions.

  18. Performance of synthetic antiferromagnetic racetrack memory: domain wall versus skyrmion

    KAUST Repository

    Tomasello, R

    2017-06-20

    A storage scheme based on racetrack memory, where the information can be coded in a domain or a skyrmion, seems to be an alternative to conventional hard disk drive for high density storage. Here, we perform a full micromagnetic study of the performance of synthetic antiferromagnetic (SAF) racetrack memory in terms of velocity and sensitivity to defects by using experimental parameters. We find that, to stabilize a SAF skyrmion, the Dzyaloshinskii–Moriya interaction in the top and the bottom ferromagnet should have an opposite sign. The velocity of SAF skyrmions and SAF Néel domain walls are of the same order and can reach values larger than 1200 m s−1 if a spin–orbit torque from the spin-Hall effect with opposite sign is applied to both ferromagnets. The presence of disordered anisotropy in the form of randomly distributed grains introduces a threshold current for both SAF skyrmions and SAF domain walls motions.

  19. Evolution of thick domain walls in de Sitter universe

    Science.gov (United States)

    Dolgov, A. D.; Godunov, S. I.; Rudenko, A. S.

    2016-10-01

    We consider thick domain walls in a de Sitter universe following paper by Basu and Vilenkin. However, we are interested not only in stationary solutions found therein, but also investigate the general case of domain wall evolution with time. When the wall thickness parameter, δ0, is smaller than H‑1/√2, where H is the Hubble parameter in de Sitter space-time, then the stationary solutions exist, and initial field configurations tend with time to the stationary ones. However, there are no stationary solutions for δ0 >= H‑1/√2. We have calculated numerically the rate of the wall expansion in this case and have found that the width of the wall grows exponentially fast for δ0 gg H‑1. An explanation for the critical value δ0c = H‑1/√2 is also proposed.

  20. Submicrometric 2D ratchet effect in magnetic domain wall motion

    Energy Technology Data Exchange (ETDEWEB)

    Castán-Guerrero, C., E-mail: ccastan@unizar.es [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC – Universidad de Zaragoza, E-50009 Zaragoza (Spain); Dpto. de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Herrero-Albillos, J. [Fundación ARAID, E-50004 Zaragoza (Spain); Centro Universitario de la Defensa, E-50090 Zaragoza (Spain); Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC – Universidad de Zaragoza, E-50009 Zaragoza (Spain); Sesé, J. [Instituto de Nanociencia de Aragón, Laboratorio de Microscopías Avanzadas, Universidad de Zaragoza, E-50018 Zaragoza (Spain); Dpto. de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Bartolomé, J.; Bartolomé, F. [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC – Universidad de Zaragoza, E-50009 Zaragoza (Spain); Dpto. de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Hierro-Rodriguez, A.; Valdés-Bango, F.; Martín, J.I.; Alameda, J.M. [Dpto. Física, Universidad de Oviedo, Asturias (Spain); CINN (CSIC – Universidad de Oviedo – Principado de Asturias), Asturias (Spain); García, L.M. [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC – Universidad de Zaragoza, E-50009 Zaragoza (Spain); Dpto. de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain)

    2014-12-15

    Strips containing arrays of submicrometric triangular antidots with a 2D square periodicity have been fabricated by electron beam lithography. A clear ratchet effect of 180° domain wall motion under a varying applied field parallel to the walls has been observed. The direction is determined by the direction of the triangle vertices. In contrast, no ratchet effect is observed when the antidot array is constituted by symmetric rhomb-shaped antidots.

  1. New confining force solution of QCD axion domain wall problem

    OpenAIRE

    Barr, S. M.; Kim, Jihn E.

    2014-01-01

    The serious cosmological problems created by the axion-string/axion-domain-wall system in standard axion models are alleviated by positing the existence of a new confining force. The instantons of this force can generate an axion potential that erases the axion strings long before QCD effects become important, thus preventing QCD-generated axion walls from ever appearing. Axion walls generated by the new confining force would decay so early as not to contribute significantly to the energy in ...

  2. Experimental Study on Current-Driven Domain Wall Motion

    Science.gov (United States)

    Ono, T.; Yamaguchi, A.; Tanigawa, H.; Yano, K.; Kasai, S.

    2006-06-01

    Current-driven domain wall (DW) motion for a well-defined single DW in a micro-fabricated magnetic wire with submicron width was investigated by real-space observation with magnetic force microscopy. Magnetic force microscopy visualizes that a single DW introduced in a wire is displaced back and forth by positive and negative pulsed-current, respectively. Effect of the Joule heating, reduction of the threshold current density by shape control, and magnetic ratchet effect are also presented.

  3. Factorized domain wall partition functions in trigonometric vertex models

    CERN Document Server

    Foda, O; Zuparic, M

    2007-01-01

    We obtain factorized domain wall partition functions for two sets of trigonometric vertex models: 1. The N-state Deguchi-Akutsu models, for N = {2, 3, 4} (and conjecture the result for all N >= 5), and 2. The sl(r+1|s+1) Perk-Schultz models, for {r, s = \\N}, where (given the symmetries of these models) the result is independent of {r, s}.

  4. Domain Walls in Supersymmetric Yang-Mills Theories

    CERN Document Server

    Kaplunovsky, V S; Yankielowicz, Shimon; Kaplunovsky, Vadim S.; Sonnenschein, Jacob; Yankielowicz, Shimon

    1999-01-01

    We study BPS saturated domain walls in the supersymmetric SU(2) gauge theory. For a theory with a very light adjoint scalar (mass <~ Lambda/400) we use the perturbed N=2 Seiberg-Witten theory to calculate the actual field configuration of the domain wall. The wall has a sandwich-like five-layer structure of three distinct phases -- electric confinement, Coulomb and oblique confinement -- separated by two separate transition regions. For larger scalar masses, the three-phase structure disappears and the Seiberg-Witten theory becomes inadequate because of two major problems: First, the higher-derivative interactions between the light fields become relevant and second, both the magnetic monopole condensate and the dyon condensate show up in the same region of space, a phenomenon indescribable in terms of a local field theory. Nevertheless, we argue that the BPS saturated domain wall continues to exist in this regime and give a qualitative description of the scalar and gaugino condensates. Finally, we discuss ...

  5. Magnetic domain wall energy in Ni/Co superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Toyoki, Kentaro; Nishimura, Takashi; Harimoto, Shotaro; Shiratsuchi, Yu, E-mail: shiratsuchi@mat.eng.osaka-u.ac.jp; Nakatani, Ryoichi

    2014-12-15

    The magnetic domain wall energy density σ{sub W} of a Ni/Co superlattice possessing perpendicular magnetic anisotropy was determined using the magnetic domain theory derived by Kooy and Enz (1960). To determine σ{sub W}, we obtained the saturation magnetization, magnetic domain period, and perpendicular magnetic anisotropy energy by individual measurements. Using the magnetic domain period and the ferromagnetic layer thickness, we first determined the dipolar length. The estimated dipolar length was about 15–25 nm, which is in good agreement with the change in the magnetization curve with the ferromagnetic layer thickness. By using the dipolar length and saturation magnetization, the σ{sub W} was calculated to be 4–7 erg/cm{sup 2}. - Highlights: • Magnetic domain wall energy of a Ni/Co superlattice was determined experimentally. • The magnetic domain wall energy was estimated to be 4–8 erg/cm{sup 2}. • Using estimated value, the magnetization curves were reproduced well. • The estimated value is reasonable compared with the other ferromagnetic materials.

  6. Hall effect in charged conducting ferroelectric domain walls.

    Science.gov (United States)

    Campbell, M P; McConville, J P V; McQuaid, R G P; Prabhakaran, D; Kumar, A; Gregg, J M

    2016-12-12

    Enhanced conductivity at specific domain walls in ferroelectrics is now an established phenomenon. Surprisingly, however, little is known about the most fundamental aspects of conduction. Carrier types, densities and mobilities have not been determined and transport mechanisms are still a matter of guesswork. Here we demonstrate that intermittent-contact atomic force microscopy (AFM) can detect the Hall effect in conducting domain walls. Studying YbMnO3 single crystals, we have confirmed that p-type conduction occurs in tail-to-tail charged domain walls. By calibration of the AFM signal, an upper estimate of ∼1 × 10(16) cm(-3) is calculated for the mobile carrier density in the wall, around four orders of magnitude below that required for complete screening of the polar discontinuity. A carrier mobility of∼50 cm(2)V(-1)s(-1) is calculated, about an order of magnitude below equivalent carrier mobilities in p-type silicon, but sufficiently high to preclude carrier-lattice coupling associated with small polarons.

  7. Hall effect in charged conducting ferroelectric domain walls

    Science.gov (United States)

    Campbell, M. P.; McConville, J. P. V.; McQuaid, R. G. P.; Prabhakaran, D.; Kumar, A.; Gregg, J. M.

    2016-12-01

    Enhanced conductivity at specific domain walls in ferroelectrics is now an established phenomenon. Surprisingly, however, little is known about the most fundamental aspects of conduction. Carrier types, densities and mobilities have not been determined and transport mechanisms are still a matter of guesswork. Here we demonstrate that intermittent-contact atomic force microscopy (AFM) can detect the Hall effect in conducting domain walls. Studying YbMnO3 single crystals, we have confirmed that p-type conduction occurs in tail-to-tail charged domain walls. By calibration of the AFM signal, an upper estimate of ~1 × 1016 cm-3 is calculated for the mobile carrier density in the wall, around four orders of magnitude below that required for complete screening of the polar discontinuity. A carrier mobility of~50 cm2V-1s-1 is calculated, about an order of magnitude below equivalent carrier mobilities in p-type silicon, but sufficiently high to preclude carrier-lattice coupling associated with small polarons.

  8. Normalizable fermion modes in a holographic superconductor

    CERN Document Server

    Gubser, Steven S; Talavera, Pedro

    2009-01-01

    We consider fermions in a zero-temperature superconducting anti-de Sitter domain wall solution and find continuous bands of normal modes. These bands can be either partially filled or totally empty and gapped. We present a semi-classical argument which approximately captures the main features of the normal mode spectrum.

  9. Sequential injection of domain walls into ferroelectrics at different bias voltages: Paving the way for “domain wall memristors”

    Energy Technology Data Exchange (ETDEWEB)

    Whyte, J. R.; McQuaid, R. G. P.; Einsle, J. F.; Gregg, J. M., E-mail: m.gregg@qub.ac.uk [Centre for Nanostructured Media (CNM), School of Maths and Physics, Queen' s University Belfast, University Road, Belfast BT7 1NN (United Kingdom); Ashcroft, C. M. [Centre for Nanostructured Media (CNM), School of Maths and Physics, Queen' s University Belfast, University Road, Belfast BT7 1NN (United Kingdom); Department of Physics, Cavendish Laboratory, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Canalias, C. [Department of Applied Physics, Royal Institute of Technology, Roslagstullsbacken 21, 10691 Stockholm (Sweden); Gruverman, A. [Department of Physics and Astronomy, University of Nebraska Lincoln, Nebraska 68588–0299 (United States)

    2014-08-14

    Simple meso-scale capacitor structures have been made by incorporating thin (∼300 nm) single crystal lamellae of KTiOPO{sub 4} (KTP) between two coplanar Pt electrodes. The influence that either patterned protrusions in the electrodes or focused ion beam milled holes in the KTP have on the nucleation of reverse domains during switching was mapped using piezoresponse force microscopy imaging. The objective was to assess whether or not variations in the magnitude of field enhancement at localised “hot-spots,” caused by such patterning, could be used to both control the exact locations and bias voltages at which nucleation events occurred. It was found that both the patterning of electrodes and the milling of various hole geometries into the KTP could allow controlled sequential injection of domain wall pairs at different bias voltages; this capability could have implications for the design and operation of domain wall electronic devices, such as memristors, in the future.

  10. Nucleon form factors with dynamical twisted mass fermions

    CERN Document Server

    Alexandrou, C; Brinet, M; Carbonell, J; Drach, V; Harraud, P A; Korzec, T; Koutsou, G

    2008-01-01

    The electromagnetic and axial form factors of the nucleon are evaluated in twisted mass QCD with two degenerate flavors of light, dynamical quarks. The axial charge g_A, magnetic moment and the Dirac and Pauli radii are determined for pion masses in the range 300 MeV to 500 MeV.

  11. Effective action approach to dynamical generation of fermion mixing

    CERN Document Server

    Blasone, Massimo; Smaldone, Luca

    2016-01-01

    In this paper we discuss a mechanism for the dynamical generation of flavor mixing, in the framework of the Nambu--Jona Lasinio model. Our approach is illustrated both with the conventional operatorial formalism and with functional integral and ensuing one-loop effective action. The results obtained are briefly discussed.

  12. Critical behaviour of reduced QED$_{4,3}$ and dynamical fermion gap generation in graphene

    CERN Document Server

    Kotikov, A V

    2016-01-01

    The dynamical generation of a fermion gap in graphene is studied at the infra-red Lorentz-invariant fixed point where the system is described by an effective relativistic-like field theory: reduced QED$_{4,3}$ with $N$ four component fermions ($N=2$ for graphene), where photons are $(3+1)$-dimensional and mediate a fully retarded interaction among $(2+1)$-dimensional fermions. A correspondence between reduced QED$_{4,3}$ and QED$_3$ allows us to derive an exact gap equation for QED$_{4,3}$ up to next-to-leading order. Our results show that a dynamical gap is generated for $\\alpha > \\alpha_c$ where $1.03 < \\alpha_c < 1.08$ in the case $N=2$ or for $N < N_c$ where $N_c$ is such that $\\alpha_c \\to \\infty$ and takes the values $3.24 < N_c < 3.36$. The striking feature of these results is that they are in good agreement with values found in models with instantaneous Coulomb interaction. At the fixed point: $\\alpha = 1/137 \\ll \\alpha_c$, and the system is therefore in the semi-metallic regime in acco...

  13. Critical behavior of reduced QED4 ,3 and dynamical fermion gap generation in graphene

    Science.gov (United States)

    Kotikov, A. V.; Teber, S.

    2016-12-01

    The dynamical generation of a fermion gap in graphene is studied at the infra-red Lorentz-invariant fixed point where the system is described by an effective relativistic-like field theory: reduced QED4 ,3 with N four-component fermions (N =2 for graphene), where photons are (3 +1 ) dimensional and mediate a fully retarded interaction among (2 +1 )-dimensional fermions. A correspondence between reduced QED4 ,3 and QED3 allows us to derive an exact gap equation for QED4 ,3 up to next-to-leading order. Our results show that a dynamical gap is generated for α >αc, where 1.03 <αc<1.08 in the case N =2 or for N

  14. Fluid-dynamical scheme for equilibrium properties of two trapped fermion species with pairing interactions

    Science.gov (United States)

    Capuzzi, P.; Hernández, E. S.; Szybisz, L.

    2008-10-01

    We present a generalization of the fluid-dynamical scheme developed for nuclear physics to the case of two trapped fermion species with pairing interactions. To establish a macroscopic description of the mass and momentum conservation laws, we adopt a generalization of the usual Thomas-Fermi approach that includes the pairing energy. We analyze the equilibrium density and gap profiles for an equal population mixture of harmonically trapped Li6 atoms for different choices of the local equation of state. We examine slight departures from equilibrium within our formulation, finding that density oscillations can propagate as first sound coupled to pairing vibrations, that in a homogeneous fermion system exhibit a Bogoliubov-like quasiparticle spectrum. In this case, the dispersion relation for the coupled modes displays a rich scenario of stable, unstable, and damped regimes.

  15. Baryon axial charges and momentum fractions with N{sub f}=2+1 dynamical fermions

    Energy Technology Data Exchange (ETDEWEB)

    Goeckeler, M.; Haegler, P. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Horsley, R. [Edinburgh Univ. (GB). School of Physics and Astronomy] (and others)

    2011-02-15

    We report on recent results of the QCDSF/UKQCD Collaboration on investigations of baryon structure using configurations generated with N{sub f}=2+1 dynamical flavours of O(a) improved Wilson fermions. With the strange quark mass as an additional dynamical degree of freedom in our simulations we avoid the need for a partially quenched approximation when investigating the properties of particles containing a strange quark, e.g. the hyperons. In particular, we focus on the nucleon and hyperon axial coupling constants and quark momentum fractions. (orig.)

  16. Fluid-dynamical description of the gap fluctuations of two trapped fermion species

    Science.gov (United States)

    Capuzzi, P.; Hernández, E. S.; Szybisz, L.

    2010-11-01

    We apply a recent generalisation of the fluid-dynamical scheme developed for two trapped fermion species with pairing interactions to examine the fluctuations of the gap density coupled to the particle transition density at low energy. The dynamical scheme satisfies Kohn's theorem for both the particle density and the pairing gap. We analyse the form of the gap fluctuations in a spherical trap in terms of their multipolarity and the interaction strength, and find that coupling to the particle density produces considerable stiffness of the gap transition density together with compression towards the centre of the trap.

  17. Digital quantum simulation of $\\mathbb{Z}_2$ lattice gauge theories with dynamical fermionic matter

    CERN Document Server

    Zohar, Erez; Reznik, Benni; Cirac, J Ignacio

    2016-01-01

    We propose a scheme for digital quantum simulation of lattice gauge theories with dynamical fermions. Using a layered optical lattice with ancilla atoms that can move and interact with the other atoms (simulating the physical degrees of freedom), we obtain a stroboscopic dynamics which yields the four-body plaquette interactions, arising in models with $2+1$ and higher dimensions, without the use of perturbation theory. As an example we show how to simulate a $\\mathbb{Z}_2$ model in $2+1$ dimensions.

  18. Transient and steady-state velocity of domain walls for a complete range of drive fields

    Science.gov (United States)

    Bourne, H. C., Jr.; Bartran, D. S.

    1974-01-01

    Approximate analytic solutions for transient and steady-state 180 deg domain wall motion in bulk magnetic material are obtained from the dynamic torque equations with a Gilbert damping term. The results for the Walker region in which the transient solution approaches the familiar Walker steady-state solution are presented in a slightly new form for completeness. An analytic solution corresponding to larger drive fields predicts an oscillatory motion with an average value which decreases with drive field for reasonable values of the damping parameter. These results agree with those obtained by a computer solution of the torque equation and those obtained with the assumption of a very large anisotropy field.

  19. Multiple scattering dynamics of fermions at an isolated p-wave resonance

    Science.gov (United States)

    Thomas, R.; Roberts, K. O.; Tiesinga, E.; Wade, A. C. J.; Blakie, P. B.; Deb, A. B.; Kjærgaard, N.

    2016-07-01

    The wavefunction for indistinguishable fermions is anti-symmetric under particle exchange, which directly leads to the Pauli exclusion principle, and hence underlies the structure of atoms and the properties of almost all materials. In the dynamics of collisions between two indistinguishable fermions, this requirement strictly prohibits scattering into 90° angles. Here we experimentally investigate the collisions of ultracold clouds fermionic 40K atoms by directly measuring scattering distributions. With increasing collision energy we identify the Wigner threshold for p-wave scattering with its tell-tale dumb-bell shape and no 90° yield. Above this threshold, effects of multiple scattering become manifest as deviations from the underlying binary p-wave shape, adding particles either isotropically or axially. A shape resonance for 40K facilitates the separate observation of these two processes. The isotropically enhanced multiple scattering mode is a generic p-wave threshold phenomenon, whereas the axially enhanced mode should occur in any colliding particle system with an elastic scattering resonance.

  20. Light baryon masses with dynamical twisted mass fermions

    CERN Document Server

    Alexandrou, C; Blossier, B; Brinet, M; Carbonell, J; Dimopoulos, P; Drach, V; Farchioni, F; Frezzotti, R; Guichon, P; Herdoiza, G; Jansen, K; Korzec, T; Koutsou, G; Liu, Z; Michael, C; Pène, O; Shindler, A; Urbach, C; Wenger, U

    2008-01-01

    We present results on the mass of the nucleon and the Delta using two dynamical degenerate twisted mass quarks. The evaluation is performed at four quark masses corresponding to a pion mass in the range of about 300-600 MeV on lattices of 2.1-2.7 fm. We check for cut-off effects by evaluating these baryon masses on lattices of spatial size 2.1 fm at beta=3.9 and beta=4.05 and on a lattice of 2.4 fm at beta=3.8. The values we find are compatible within our statistical errors. Lattice results are extrapolated to the physical limit using continuum chiral perturbation theory. Performing a combined fit to our lattice data at beta=3.9 and beta=4.05 we find a nucleon mass of 964\\pm 28 (stat.) \\pm 8 (syst.) MeV. The nucleon mass at the physical point provides an independent determination of the lattice spacing. Using heavy baryon chiral perturbation theory at O(p^3) we find a_{\\beta=3.9}=0.0890\\pm 0.0039(stat.) \\pm 0.0014(syst.) fm, and a_{\\beta=4.05}= 0.0691\\pm 0.0034(stat.) \\pm 0.0010(syst.) fm, in good agreement w...

  1. Light wave propagation through a dilaton-Maxwell domain wall

    CERN Document Server

    Morris, J R

    2015-01-01

    We consider the propagation of electromagnetic waves through a dilaton-Maxwell domain wall of the type introduced by Gibbons and Wells [G.W. Gibbons and C.G. Wells, Class. Quant. Grav. 11, 2499-2506 (1994)]. It is found that if such a wall exists within our observable universe, it would be absurdly thick, or else have a magnetic field in its core which is much stronger than observed intergalactic fields. We conclude that it is highly improbable that any such wall is physically realized.

  2. Domain wall motion by the magnonic spin Seebeck effect.

    Science.gov (United States)

    Hinzke, D; Nowak, U

    2011-07-08

    The recently discovered spin Seebeck effect refers to a spin current induced by a temperature gradient in a ferromagnetic material. It combines spin degrees of freedom with caloric properties, opening the door for the invention of new, spin caloritronic devices. Using spin model simulations as well as an innovative, multiscale micromagnetic framework we show that magnonic spin currents caused by temperature gradients lead to spin transfer torque effects, which can drag a domain wall in a ferromagnetic nanostructure towards the hotter part of the wire. This effect opens new perspectives for the control and manipulation of domain structures.

  3. Domain Walls: Momentum Conservation in Absence of Asymptotic States

    CERN Document Server

    Gal'tsov, D V; Spirin, P

    2016-01-01

    Gravitational potentials of the domain walls in the linearized gravity are growing with distance, so the particle scattering by the wall can not be described in terms of free asymptotic states. In the non-relativistic case this problem is solved using the concept of the potential energy. We show that in the relativistic case one is able to introduce gravitationally dressed momenta the sum of which is conserved up to the momentum flux through the lateral surface of the world tube describing losses due to excitation of the branon waves.

  4. Characterization of magnetic domain walls using electron magnetic chiral dichroism

    Directory of Open Access Journals (Sweden)

    Ren Chao Che, Chong Yun Liang, Xiang He, Hai Hua Liu and Xiao Feng Duan

    2011-01-01

    Full Text Available Domain walls and spin states of permalloy were investigated by electron magnetic chiral dichroism (EMCD technique in Lorentz imaging mode using a JEM-2100F transmission electron microscope. EMCD signals from both Fe and Ni L3,2 edges were detected from the Bloch lines but not from the adjacent main wall. The magnetic polarity orientation of the circular Bloch line is opposite to that of the cross Bloch line. The orientations of Fe and Ni spins are parallel rather than antiparallel, both at the cross Bloch line and circular Bloch line.

  5. Dielectric relaxation and charged domain walls in (K,Na)NbO3-based ferroelectric ceramics

    Science.gov (United States)

    Esin, A. A.; Alikin, D. O.; Turygin, A. P.; Abramov, A. S.; Hreščak, J.; Walker, J.; Rojac, T.; Bencan, A.; Malic, B.; Kholkin, A. L.; Shur, V. Ya.

    2017-02-01

    The influence of domain walls on the macroscopic properties of ferroelectric materials is a well known phenomenon. Commonly, such "extrinsic" contributions to dielectric permittivity are discussed in terms of domain wall displacements under external electric field. In this work, we report on a possible contribution of charged domain walls to low frequency (10-106 Hz) dielectric permittivity in K1-xNaxNbO3 ferroelectric ceramics. It is shown that the effective dielectric response increases with increasing domain wall density. The effect has been attributed to the Maxwell-Wagner-Sillars relaxation. The obtained results may open up possibilities for domain wall engineering in various ferroelectric materials.

  6. Influence of the Magnetic Field on the Fermion Scattering off Bubble and Kink Walls

    CERN Document Server

    Cea, P; Tedesco, L

    2000-01-01

    We investigate the scattering of fermions off domain walls at the electroweak phase transition in presence of a magnetic field. We consider both the bubble wall and the kink domain wall. We derive and solve the Dirac equation for fermions with momentum perpendicular to the walls, and compute the transmission and reflection coefficients. In the case of kink domain wall, we briefly discuss the zero mode solutions localized on the wall. The possibile role of the magnetic field for the electroweak baryogenesis is also discussed.

  7. Ultrafast Relaxation Dynamics of Photo-excited Dirac Fermion in Three Dimensional Dirac Semimetal Cadmium Arsenide

    CERN Document Server

    Lu, Wei; Liu, Xuefeng; Lu, Hong; Li, Caizhen; Lai, Jiawei; Zhao, Chuan; Tian, Ye; Liao, Zhimin; Jia, Shuang; Sun, Dong

    2016-01-01

    Three dimensional (3D) Dirac semimetal exhibiting ultrahigh mobility has recently attracted enormous research interests as 3D analogues of graphene. From the prospects of future application toward electronic/optoelectronic devices with extreme performance, it is crucial to understand the relaxation dynamics of photo-excited carriers and their coupling with lattice. In this work, we report ultrafast transient reflection measurements of photo-excited carrier dynamics in cadmium arsenide (Cd3As2), which is among the most stable Dirac semimetals that have been confirmed experimentally. With low energy probe photon of 0.3 eV, photo-excited Dirac Fermions dynamics closing to Dirac point are probed. Through transient reflection measurements on bulk and nanoplate samples that have different doping intensities, and systematic probe wavelength, pump power and lattice temperature dependent measurements, the dynamical evolution of carrier distributions can be retrieved qualitatively using a two-temperature model. The pho...

  8. Time Evolution of Temperature and Entropy of a Gravitationally Collapsing de Sitter Schwarzschild Domain Wall

    CERN Document Server

    Halstead, Evan

    2011-01-01

    We investigate the time evolution of the temperature and entropy of a gravitationally collapsing de Sitter Schwarzschild domain wall as seen by an asymptotic observer. Recent work has completed this analysis for Schwarzschild and 3+1 BTZ domain walls. There were some striking qualitative differences between the two. Specifically, the BTZ domain wall exhibited a decrease in entropy over time. However, it contained both a cosmological constant and a different topology from the Schwarzschild domain wall, and we wish to isolate which of these is responsible for the qualitative differences. Hence, we will study the de Sitter Schwarzschild domain wall, as it has identical topology to the Schwarzschild domain wall yet also contains a cosmological constant. We utilize a wavefunctional approach where we couple a scalar field to the background of the collapsing domain wall and determine the spectrum of the radiation as a function of time. The fact that the distribution is thermal allows for the determination of the tem...

  9. Relative weights approach to SU(3) gauge theories with dynamical fermions at finite density

    CERN Document Server

    Höllwieser, Roman

    2016-01-01

    We derive effective Polyakov line actions for SU(3) gauge theories with staggered dynamical fermions, for a small sample of lattice couplings, lattice actions, and lattice extensions in the time direction. The derivation is via the method of relative weights, and the theories are solved at finite chemical potential by mean field theory. We find in some instances that the long-range couplings in the effective action are very important to the phase structure, and that these couplings are responsible for long-lived metastable states in the effective theory. Only one of these states corresponds to the underlying lattice gauge theory.

  10. Particle Currents in a Fluid—Dynamical Description of Two Trapped Fermion Species

    Science.gov (United States)

    Hernández, E. S.; Capuzzi, P.; Szybisz, L.

    2011-02-01

    We apply a recent generalization of the fluid-dynamical scheme of nuclear physics that includes the pair density and current of superfluids, to trace the particle transition currents of an unpolarized fermion system in a harmonic trap. These current fluctuations are driven by the equilibrium density and gap and by the oscillations in the particle densities. We analize the velocity portraits of either species for the lowest multipolar excitations employing different equations of state of the unperturbed fluids, in order to establish the role of the equilibrium gap.

  11. An exact representation of the fermion dynamics in terms of Poisson processes

    CERN Document Server

    Beccaria, M; De Angelis, G F; Jona-Lasinio, G; Beccaria, Matteo; Presilla, Carlo; Angelis, Gian Fabrizio De; Jona-Lasinio, Giovanni

    1999-01-01

    We present a simple derivation of a Feynman-Kac type formula to study fermionic systems. In this approach the real time or the imaginary time dynamics is expressed in terms of the evolution of a collection of Poisson processes. A computer implementation of this formula leads to a family of algorithms parametrized by the values of the jump rates of the Poisson processes. From these an optimal algorithm can be chosen which coincides with the Green Function Monte Carlo (GFMC) method in the limit when the latter becomes exact.

  12. Light hadrons from Nf=2+1+1 dynamical twisted mass fermions

    CERN Document Server

    Baron, R; Boucaud, P; Carbonell, J; Deuzeman, A; Drach, V; Farchioni, F; Gimenez, V; Herdoiza, G; Jansen, K; Michael, C; Montvay, I; Pallante, E; Pène, O; Reker, S; Urbach, C; Wagner, M; Wenger, U

    2010-01-01

    We present results of lattice QCD simulations with mass-degenerate up and down and mass-split strange and charm (Nf=2+1+1) dynamical quarks using Wilson twisted mass fermions at maximal twist. The tuning of the strange and charm quark masses is performed at three values of the lattice spacing a~0.06 fm, a~0.08 fm and a~0.09 fm with lattice sizes ranging from L~1.9 fm to L~3.9 fm. We perform a preliminary study of SU(2) chiral perturbation theory by combining our lattice data from these three values of the lattice spacing.

  13. Role of spin diffusion in current-induced domain wall motion for disordered ferromagnets

    KAUST Repository

    Akosa, Collins Ashu

    2015-03-12

    Current-induced spin transfer torque and magnetization dynamics in the presence of spin diffusion in disordered magnetic textures is studied theoretically. We demonstrate using tight-binding calculations that weak, spin-conserving impurity scattering dramatically enhances the nonadiabaticity. To further explore this mechanism, a phenomenological drift-diffusion model for incoherent spin transport is investigated. We show that incoherent spin diffusion indeed produces an additional spatially dependent torque of the form ∼∇2[m×(u⋅∇)m]+ξ∇2[(u⋅∇)m], where m is the local magnetization direction, u is the direction of injected current, and ξ is a parameter characterizing the spin dynamics (precession, dephasing, and spin-flip). This torque, which scales as the inverse square of the domain wall width, only weakly enhances the longitudinal velocity of a transverse domain wall but significantly enhances the transverse velocity of vortex walls. The spatial-dependent spin transfer torque uncovered in this study is expected to have significant impact on the current-driven motion of abrupt two-dimensional textures such as vortices, skyrmions, and merons.

  14. Controlled motion of domain walls in submicron amorphous wires

    Directory of Open Access Journals (Sweden)

    Mihai Ţibu

    2016-05-01

    Full Text Available Results on the control of the domain wall displacement in cylindrical Fe77.5Si7.5B15 amorphous glass-coated submicron wires prepared by rapid quenching from the melt are reported. The control methods have relied on conical notches with various depths, up to a few tens of nm, made in the glass coating and in the metallic nucleus using a focused ion beam (FIB system, and on the use of small nucleation coils at one of the sample ends in order to apply magnetic field pulses aimed to enhance the nucleation of reverse domains. The notch-based method is used for the first time in the case of cylindrical ultrathin wires. The results show that the most efficient technique of controlling the domain wall motion in this type of samples is the simultaneous use of notches and nucleation coils. Their effect depends on wire diameter, notch depth, its position on the wire length, and characteristics of the applied pulse.

  15. Magnetic domain wall induced ferroelectricity in double perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hai Yang; Zhao, Hong Jian, E-mail: dielectric-hjzhao@126.com, E-mail: xmchen59@zju.edu.cn; Chen, Xiang Ming, E-mail: dielectric-hjzhao@126.com, E-mail: xmchen59@zju.edu.cn [Laboratory of Dielectric Materials, Department of Materials Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027 (China); Zhang, Wen Qing [Department of Physics, Shanghai University, 99 Shangda Road, Shanghai 200444 (China)

    2015-04-13

    Recently, a magnetically induced ferroelectricity occurring at magnetic domain wall of double perovskite Lu{sub 2}CoMnO{sub 6} has been reported experimentally. However, there exists a conflict whether the electric polarization is along b or c direction. Here, by first-principles calculations, we show that the magnetic domain wall (with ↑↑↓↓ spin configuration) can lead to the ferroelectric displacements of R{sup 3+}, Ni{sup 2+}, Mn{sup 4+}, and O{sup 2−} ions in double perovskites R{sub 2}NiMnO{sub 6} (R = rare earth ion) via exchange striction. The resulted electric polarization is along b direction with the P2{sub 1} symmetry. We further reveal the origin of the ferroelectric displacements as that: (1) on a structural point of view, such displacements make the two out-of-plane Ni-O-Mn bond angles as well as Ni-Mn distance unequal, and (2) on an energy point of view, such displacements weaken the out-of-plane Ni-Mn super-exchange interaction obviously. Finally, our calculations show that such a kind of ferroelectric order is general in ferromagnetic double perovskites.

  16. Altering critical depinning current via domain wall pile-up in magnetic nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Liwei D.; Jin, Yongmei M., E-mail: ymjin@mtu.edu

    2015-11-01

    An important role of domain wall pile-up in current-driven domain wall depinning in magnetic nanowires is revealed using micromagnetic simulations. It is found that the critical current for domain wall depinning can be substantially reduced and conveniently tuned by controlling domain wall number in the pile-up at pinning site, in analogy to dislocation pile-up responsible for Hall–Petch effect in mechanical strength. Domain wall pinning and depinning at an s-shape bend is considered, and the effects of curvature and current crowding in magnetic circuit on domain wall behaviors are discussed. - Highlights: • Advance fundamental knowledge of current-driven domain wall phenomena. • Provide a novel approach to drastically reduce the critical depinning current. • Solve an outstanding problem of effective control of domain wall pinning/depinning. • Report appealing new findings of magnetic domain wall pile-up mechanism. • Overcome the limitations of materials properties for domain wall-based devices.

  17. Dynamical fermion masses and constraints of gauge invariance in quenched QED3

    Energy Technology Data Exchange (ETDEWEB)

    Bashir, A. [Instituto de Fisica y Matematicas, Universidad Michoacana de San Nicolas de Hidalgo, Apartado Postal 2-82, Morelia, Michoacan 58040 (Mexico)]. E-mail: adnan@itzel.ifm.umich.mx; Raya, A. [Facultad de Ciencias, Universidad de Colima, Bernal Diaz del Castillo no. 340, Col. Villa San Sebastian, Colima, Colima 28045 (Mexico)

    2005-03-07

    Numerical study of the Schwinger-Dyson equation (SDE) for the fermion propagator (FP) to obtain dynamically generated chirally asymmetric solution in an arbitrary covariant gauge {xi} is a complicated exercise specially if one employs a sophisticated form of the fermion-boson interaction complying with the key features of a gauge field theory. However, constraints of gauge invariance can help construct such a solution without having the need to solve the Schwinger-Dyson equation for every value of {xi}. In this article, we propose and implement a method to carry out this task in quenched quantum electrodynamics in a plane (QED3). We start from an approximate analytical form of the solution of the SDE for the FP in the Landau gauge. We consider the cases in which the interaction vertex (i) is bare and (ii) is full. We then apply the Landau-Khalatnikov-Fradkin transformations (LKFT) on the dynamically generated solution and find analytical results for arbitrary value of {xi}. We also compare our results with exact numerical solutions available for a small number of values of {xi} obtained through a direct analysis of the corresponding SDE.

  18. Lattice QCD with Nf = 2 + 1 + 1 domain-wall quarks

    Science.gov (United States)

    Chen, Yu-Chih; Chiu, Ting-Wai

    2017-04-01

    We perform hybrid Monte Carlo simulation of (2 + 1 + 1)-flavors lattice QCD with the optimal domain-wall fermion (which has the effective 4D Dirac operator exactly equal to the Zolotarev optimal rational approximation of the overlap Dirac operator). The gauge ensemble is generated on the 323 × 64 lattice with the extent Ns = 16 in the fifth dimension, and with the plaquette gauge action at β = 6 /g2 = 6.20. The lattice spacing (a ≃ 0.063 fm) is determined by the Wilson flow, using the value √{t0} = 0.1416 (8) fm obtained by the MILC Collaboration for the (2 + 1 + 1)-flavors QCD. The masses of s and c quarks are fixed by the masses of the vector mesons ϕ (1020) and J / ψ (3097) respectively; while the mass of the u / d quarks is heavier than their physical values, with the unitary pion mass Mπ ≃ 280 MeV (and Mπ L ≃ 3). We compute the point-to-point quark propagators, and measure the time-correlation functions of meson and baryon interpolators. Our results of the mass spectra of the lowest-lying hadrons containing s and c quarks are in good agreement with the high energy experimental values, together with the predictions of the charmed baryons which have not been observed in experiments.

  19. Lattice QCD with Nf=2+1+1 domain-wall quarks

    Directory of Open Access Journals (Sweden)

    Yu-Chih Chen

    2017-04-01

    Full Text Available We perform hybrid Monte Carlo simulation of (2+1+1-flavors lattice QCD with the optimal domain-wall fermion (which has the effective 4D Dirac operator exactly equal to the Zolotarev optimal rational approximation of the overlap Dirac operator. The gauge ensemble is generated on the 323×64 lattice with the extent Ns=16 in the fifth dimension, and with the plaquette gauge action at β=6/g2=6.20. The lattice spacing (a≃0.063 fm is determined by the Wilson flow, using the value t0=0.1416(8 fm obtained by the MILC Collaboration for the (2+1+1-flavors QCD. The masses of s and c quarks are fixed by the masses of the vector mesons ϕ(1020 and J/ψ(3097 respectively; while the mass of the u/d quarks is heavier than their physical values, with the unitary pion mass Mπ≃280 MeV (and MπL≃3. We compute the point-to-point quark propagators, and measure the time-correlation functions of meson and baryon interpolators. Our results of the mass spectra of the lowest-lying hadrons containing s and c quarks are in good agreement with the high energy experimental values, together with the predictions of the charmed baryons which have not been observed in experiments.

  20. Steady motion of skyrmions and domains walls under diffusive spin torques

    KAUST Repository

    Elías, Ricardo Gabriel

    2017-03-09

    We explore the role of the spin diffusion of conducting electrons in two-dimensional magnetic textures (domain walls and skyrmions) with spatial variation of the order of the spin precession length λex. The effect of diffusion reflects in four additional torques that are third order in spatial derivatives of magnetization and bilinear in λex and in the nonadiabatic parameter β′. In order to study the dynamics of the solitons when these diffusive torques are present, we derive the Thiele equation in the limit of steady motion and we compare the results with the nondiffusive limit. When considering a homogenous current these torques increase the longitudinal velocity of transverse domain walls of width Δ by a factor (λex/Δ)2(α/3), α being the magnetic damping constant. In the case of single skyrmions with core radius r0 these new contributions tend to increase the Magnus effect in an amount proportional to (λex/r0)2(1+2αβ′).

  1. Magnetic domain-wall motion twisted by nanoscale probe-induced spin transfer

    Science.gov (United States)

    Wang, J.; Xie, L. S.; Wang, C. S.; Zhang, H. Z.; Shu, L.; Bai, J.; Chai, Y. S.; Zhao, X.; Nie, J. C.; Cao, C. B.; Gu, C. Z.; Xiong, C. M.; Sun, Y.; Shi, J.; Salahuddin, S.; Xia, K.; Nan, C. W.; Zhang, J. X.

    2014-12-01

    A method for deterministic control of magnetism using an electrical stimulus is highly desired for the new generation of magnetoelectronic devices. Much effort has been focused on magnetic domain-wall (DW) motion manipulated by a successive injection of spin-polarized current into a magnetic nanostructure. However, an integrant high-threshold current density of 1011˜1012A /m2 inhibits the integration with low-energy-cost technology. Here, we report an approach to manipulate a single magnetic domain wall with a perpendicular anisotropy in a manganite/dielectric/metal capacitor using a probe-induced spin displacement. A spin-transfer torque (STT) occurs in the strongly correlated manganite film during the spin injection into the capacitor from the nanoscale magnetized tip with an ultralow voltage of 0.1 V, where a lower bound of the estimated threshold spin-polarized current density is ˜108A /m2 at the tip/manganite interface. The dynamic of DW motions are analyzed using the Landau-Lifshitz-Gilbert method. This probe-voltage-controlled DW motion, at an ambient condition, demonstrates a critical framework for the fundamental understanding of the manipulation of the nanomagnet systems with low-energy consumption.

  2. Antiferromagnetic order of strongly interacting fermions in a trap: real-space dynamical mean-field analysis

    Energy Technology Data Exchange (ETDEWEB)

    Snoek, M; Titvinidze, I; Toeke, C; Hofstetter, W [Institut fuer Theoretische Physik, Johann Wolfgang Goethe-Universitaet, 60438 Frankfurt/Main (Germany); Byczuk, K [Theoretical Physics III, Center for Electronic Correlations and Magnetism, Institute for Physics, University of Augsburg, 86135 Augsburg (Germany)], E-mail: snoek@itp.uni-frankfurt.de

    2008-09-15

    We apply dynamical mean-field theory to strongly interacting fermions in an inhomogeneous environment. With the help of this real-space dynamical mean-field theory (R-DMFT) we investigate antiferromagnetic states of repulsively interacting fermions with spin1/2 in a harmonic potential. Within R-DMFT, antiferromagnetic order is found to be stable in spatial regions with total particle density close to one, but persists also in parts of the system where the local density significantly deviates from half filling. In systems with spin imbalance, we find that antiferromagnetism is gradually suppressed and phase separation emerges beyond a critical value of the spin imbalance.

  3. Magnetic domain wall engineering in a nanoscale permalloy junction

    Science.gov (United States)

    Wang, Junlin; Zhang, Xichao; Lu, Xianyang; Zhang, Jason; Yan, Yu; Ling, Hua; Wu, Jing; Zhou, Yan; Xu, Yongbing

    2017-08-01

    Nanoscale magnetic junctions provide a useful approach to act as building blocks for magnetoresistive random access memories (MRAM), where one of the key issues is to control the magnetic domain configuration. Here, we study the domain structure and the magnetic switching in the Permalloy (Fe20Ni80) nanoscale magnetic junctions with different thicknesses by using micromagnetic simulations. It is found that both the 90-° and 45-° domain walls can be formed between the junctions and the wire arms depending on the thickness of the device. The magnetic switching fields show distinct thickness dependencies with a broad peak varying from 7 nm to 22 nm depending on the junction sizes, and the large magnetic switching fields favor the stability of the MRAM operation.

  4. BPS domain walls in N=4 supergravity and dual flows

    CERN Document Server

    Cassani, Davide; Faedo, Anton F

    2012-01-01

    We establish the conditions for supersymmetric domain wall solutions to N=4 gauged supergravity in five dimensions. These read as BPS first-order equations for the warp factor and the scalar fields, driven by a superpotential and supplemented by a set of constraints that we specify in detail. Then we apply our results to certain consistent truncations of IIB supergravity, thus exploring their dual field theory renormalization group flows. We find a universal flow deforming superconformal theories on D3-branes at Calabi-Yau cones. Moreover, we obtain a superpotential for the solution corresponding to the baryonic branch of the Klebanov-Strassler theory, as well as the superpotential for the flow describing D3 and wrapped D5-branes on the resolved conifold.

  5. Investigation of dominant spin wave modes by domain walls collision

    Energy Technology Data Exchange (ETDEWEB)

    Ramu, M.; Purnama, I.; Goolaup, S.; Chandra Sekhar, M.; Lew, W. S., E-mail: wensiang@ntu.edu.sg [School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore)

    2014-06-28

    Spin wave emission due to field-driven domain wall (DW) collision has been investigated numerically and analytically in permalloy nanowires. The spin wave modes generated are diagonally symmetric with respect to the collision point. The non-propagating mode has the highest amplitude along the middle of the width. The frequency of this mode is strongly correlated to the nanowire geometrical dimensions and is independent of the strength of applied field within the range of 0.1 mT to 1 mT. For nanowire with film thickness below 5 nm, a second spin wave harmonic mode is observed. The decay coefficient of the spin wave power suggests that the DWs in a memory device should be at least 300 nm apart for them to be free of interference from the spin waves.

  6. Non-volatile polarization switch of magnetic domain wall velocity

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Z.; Stolichnov, I.; Setter, N. [Ceramics Laboratory, EPFL-Swiss Federal Institute of Technology, Lausanne 1015 (Switzerland); Bernand-Mantel, A.; Schott, Marine; Pizzini, S.; Ranno, L. [University of Grenoble Alpes, Institut Néel, F-38042 Grenoble (France); CNRS, Institut Néel, F-38042 Grenoble (France); Auffret, S.; Gaudin, G. [SPINTEC, UMR-8191, CEA/CNRS/UJF/GINP, INAC, F-38054 Grenoble (France)

    2015-12-21

    Controlled propagation speed of individual magnetic domains in metal channels at the room temperature is obtained via the non-volatile field effect associated with the switchable polarization of P(VDF-TrFE) (polyvinylidene fluoride-trifluoroethylene) ferroelectric polymer. Polarization domains directly written using conducting atomic force microscope probe locally accelerate/decelerate the magnetic domains in the 0.6 nm thick Co film. The change of the magnetic domain wall velocity is consistent with the magnetic anisotropy energy modulation through the polarization upward/downward orientation. Excellent retention is observed. The demonstrated local non-destructive and reversible change of magnetic properties via rewritable patterning of ferroelectric domains could be attractive for exploring the ultimate limit of miniaturization in devices based on ferromagnetic/ferroelectric bilayers.

  7. Depinning of domain walls in permalloy nanowires with asymmetric notches

    Science.gov (United States)

    Gao, Y.; You, B.; Ruan, X. Z.; Liu, M. Y.; Yang, H. L.; Zhan, Q. F.; Li, Z.; Lei, N.; Zhao, W. S.; Pan, D. F.; Wan, J. G.; Wu, J.; Tu, H. Q.; Wang, J.; Zhang, W.; Xu, Y. B.; Du, J.

    2016-09-01

    Effective control of the domain wall (DW) motion along the magnetic nanowires is of great importance for fundamental research and potential application in spintronic devices. In this work, a series of permalloy nanowires with an asymmetric notch in the middle were fabricated with only varying the width (d) of the right arm from 200 nm to 1000 nm. The detailed pinning and depinning processes of DWs in these nanowires have been studied by using focused magneto-optic Kerr effect (FMOKE) magnetometer, magnetic force microscopy (MFM) and micromagnetic simulation. The experimental results unambiguously exhibit the presence of a DW pinned at the notch in a typical sample with d equal to 500 nm. At a certain range of 200 nm notch, resulting in two DW depinning fields. Those two depinning fields have opposite d dependences, which may be originated from different potential well/barrier generated by the asymmetric notch with varying d.

  8. Current-induced domain wall motion in ferromagnetic semiconductors

    Science.gov (United States)

    Ohno, Hideo

    2007-03-01

    Low magnetization (˜0.05 T) and high spin-polarization in ferromagnetism of transition metal-doped GaAs allow us to explore a number of spin-dependent phenomena not readily accessible in metal ferromagnets. Spin-polarized current induced domain wall (DW) motion in (Ga,Mn)As [1, 2] reveals rich physics resulting from the interaction between spin-polarized electrons and localized spins inside a magnetic DW. By using a 30 nm thick (Ga,Mn)As layer (xMn = 0.045) with perpendicular magnetic anisotropy, we have measured by magneto-optical Kerr microscopy a wide range of velocity-current density curves in the sample temperature range of 97 -- 107 K. Two regimes are found in the current density dependence of the DW velocity. At high-current densities (> 2 x 10^5 A/cm^2), the domain wall velocity is approximately a linear function of the current density above a threshold current density. This result will be compared to the recent theories of DW motion. At low-current densities, the functional form of the velocity-current curves follow an empirical scaling law, obtained by modifying the one for magnetic-field induced creep. This shows that current-induced DW creep is present. We have also determined the intrinsic resistance of the DW in a similar configuration [3]. *M. Yamanouchi, D. Chiba, F. Matsukura, and H. Ohno, Nature 428, 539 (2004). *M. Yamanouchi, D. Chiba, F. Matsukura, T. Dietl and H. Ohno, Phys. Rev. Lett. 96, 096601 (2006). *D. Chiba, M. Yamanouchi, F. Matsukura, T. Dietl, and H. Ohno, Phys. Rev. Lett. 96, 096602 (2006).

  9. Influence of boundary geometry in domain wall propagation in magnetic films with asymmetric holes: Micromagnetic calculations

    Energy Technology Data Exchange (ETDEWEB)

    Alija, A; Sobrado, I; Rodriguez-RodrIguez, G; Velez, M; Alameda, J M; MartIn, J I [Dpto. Fisica. Fac. Ciencias. Universidad de Oviedo - CINN. 33007, Oviedo (Spain); Parrondo, J M R, E-mail: a.alija@cinn.e [Dpto. Fisica Atomica, Molecular y Nuclear and GISD. Universidad Complutense de Madrid. 28040, Madrid (Spain)

    2010-01-01

    Micromagnetic simulations have been performed in uniaxial magnetic films with 2D array of asymmetric arrow shape holes. In order to understand the asymmetric pinning potential created by the holes, different boundary geometries conditions are used on the simulations. The depinning fields for forward and backward domain wall propagation have been calculated by the analysis of the energy landscapes as a function of the domain wall position. Domain wall depinning occurs preferentially at the free ends of the domain wall at the film boundaries. We have found that the domain wall propagation is different at the top/bottom boundaries of the simulated film which can be understood in terms of the magnetostatic energy and the chirality of the domain wall.

  10. Nucleon structure from 2+1-flavor dynamical DWF ensembles

    CERN Document Server

    Abramczyk, Michael; Lytle, Andrew; Ohta, Shigemi

    2016-01-01

    Nucleon isovector vector- and axialvector-current form factors, the renormalized isovector transversity and scalar charge, and the bare quark momentum and helicity moments of isovector structure functions are reported with improved statistics from two recent RBC+UKQCD 2+1-flavor dynamical domain-wall fermions ensembles: Iwasaki\\(\\times\\)DSDR gauge \\(32^3\\times64\\) at inverse lattice spacing of 1.38 GeV and pion mass of 249 and 172 MeV.

  11. Current-driven domain wall motion due to volume spin transfer torque in Co/Ni multilayer systems on Au underlayer

    Science.gov (United States)

    Ryu, Kwang-Su; Yang, See-Hun; Thomas, Luc; Parkin, Stuart

    2016-09-01

    We have studied the current-induced domain wall (CIDW) dynamics in perpendicularly magnetized Co/Ni multilayers deposited on Au underlayer, where the conventional spin transfer torque governs the domain wall dynamics, by the Kerr microscope. It is found that the DW angle tilting following Oersted field profile plays an important role in domain wall (DW) motion at high current density J by decreasing DW velocity with the increasing J, while distorting its DW morphology. Also we find that the DW pinning becomes pronounced as the anisotropy decreases by increasing number of Co/Ni repeats. Most remarkably, the DW tilting angle changes its sign by inserting ultrathin Pt layer between Au and Co layer, which suggests that the Dzyaloshinskii-Moriya interaction and spin Hall effect induces opposite effect in DW tilting. Our findings can be of use for application of CIDW to spintronics with perpendicularly magnetized systems.

  12. Interaction between a domain wall and spin supercurrent in easy-cone magnets

    Science.gov (United States)

    Kim, Se Kwon; Tserkovnyak, Yaroslav

    2016-12-01

    A domain wall and spin supercurrent can coexist in magnets with easy-cone anisotropy owing to simultaneous spontaneous breaking of Z2 and U(1) symmetries. Their interaction is theoretically investigated in quasi-one-dimensional ferromagnets within the Landau-Lifshitz-Gilbert phenomenology. Specifically, the spin supercurrent can exert the torque on a domain wall and thereby drive it. We also show, as a reciprocal phenomenon, a field-induced motion of a domain wall can generate spin supercurrent.

  13. Unstable equilibrium point in chaotic domain-wall motion and Ott{endash}Grebogi{endash}Yorke control

    Energy Technology Data Exchange (ETDEWEB)

    Okuno, H.; Takemura, Y.

    2001-06-01

    A method for finding the unstable equilibrium points in Bloch wall motion is proposed, which is important for controlling the chaotic domain-wall motion by using the Ott{endash}Grebogi{endash}Yorke (OGY) method. The dynamics of Bloch wall motion are expressed by a nonlinear differential equation with the terms of inertia, damping, restoring, and an external magnetic drive force. An equation is transformed into the difference equations by following the OGY method, approximating linearly around an unstable equilibrium point (a saddle point), and adding a controlling input. The unstable equilibrium points are obtained by using the return map and the condition of hyperbolic fixed point. The time series of domain-wall motion successfully controlled on the unstable equilibrium points by the OGY method is shown. {copyright} 2001 American Institute of Physics.

  14. Domain walls collision in Fe-rich and Co-rich glass covered microwires

    Directory of Open Access Journals (Sweden)

    Gonzalez J.

    2013-01-01

    Full Text Available We report the results of the investigation of domain walls propagation in Fe-rich and Co-rich microwires performed using Sixtus-Tonks and magneto-optical Kerr effect techniques. It was found that under certain experimental conditions we are able to create the regime of the motion of two domain walls moving to opposite directions which terminates by the collision of the domain walls. Also the domain walls collision was visualized using magneto-optical Kerr effect microscope when the surface giant Barkhausen jump induced by circular magnetic field has been observed.

  15. Far- and near-field second harmonic imaging of ferroelectric domain walls

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Pedersen, Kjeld; Skettrup, Torben

    1998-01-01

    Domain walls in periodically poled ferroelectric LiNbO3 crystals are observed with both far- and near-field imaging techniques that make use of second harmonic generation in the transition regions between neighbouring domains. Second harmonic images of domain walls represent bright lines of about.......5 micrometers in width (as measured with the near-field microscope) for the polarization of the second harmonic radiation perpendicular to the domain walls. Origin and selection rules for the constrast in second harmonic images of domain walls are discussed....

  16. Magnetic soft x-ray microscopy of the domain wall depinning process in permalloy magnetic nanowires.

    Science.gov (United States)

    Im, Mi-Young; Bocklage, Lars; Meier, Guido; Fischer, Peter

    2012-01-18

    Full-field magnetic transmission x-ray microscopy at high spatial resolution down to 20 nm is used to directly observe field-driven domain wall motion in notch-patterned permalloy nanowires. The depinning process of a domain wall around a notch exhibits a stochastic nature in most nanowires. The stochasticity of the domain wall depinning sensitively depends on the geometry of the nanowire such as the wire thickness, the wire width, and the notch depth. We propose an optimized design of the nanowire for deterministic domain wall depinning field at a notch.

  17. Domain wall magnetoresistance in BiFeO3 thin films measured by scanning probe microscopy

    Science.gov (United States)

    Domingo, N.; Farokhipoor, S.; Santiso, J.; Noheda, B.; Catalan, G.

    2017-08-01

    We measure the magnetotransport properties of individual 71° domain walls in multiferroic BiFeO3 by means of conductive—atomic force microscopy (C-AFM) in the presence of magnetic fields up to one Tesla. The results suggest anisotropic magnetoresistance at room temperature, with the sign of the magnetoresistance depending on the relative orientation between the magnetic field and the domain wall plane. A consequence of this finding is that macroscopically averaged magnetoresistance measurements for domain wall bunches are likely to underestimate the magnetoresistance of each individual domain wall.

  18. B-meson decay constants from 2+1-flavor lattice QCD with domain-wall light quarks and relativistic heavy quarks

    Energy Technology Data Exchange (ETDEWEB)

    Christ, Norman H. [Columbia Univ., New York, NY (United States); Flynn, Jonathan M. [Univ. of Southampton, Southampton (United Kingdom); Izubuchi, Taku [Brookhaven National Lab. (BNL), Upton, NY (United States); Kawanai, Taichi [RIKEN, Wako (Japan); Brookhaven National Lab. (BNL), Upton, NY (United States); Lehner, Christoph [Brookhaven National Lab. (BNL), Upton, NY (United States); Soni, Amarjit [Brookhaven National Lab. (BNL), Upton, NY (United States); Van de Water, Ruth S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Witzel, Oliver [Boston Univ., Boston, MA (United States)

    2015-03-10

    We calculate the B-meson decay constants fB, fBs, and their ratio in unquenched lattice QCD using domain-wall light quarks and relativistic b-quarks. We use gauge-field ensembles generated by the RBC and UKQCD collaborations using the domain-wall fermion action and Iwasaki gauge action with three flavors of light dynamical quarks. We analyze data at two lattice spacings of a ≈ 0.11, 0.086 fm with unitary pion masses as light as Mπ ≈ 290 MeV; this enables us to control the extrapolation to the physical light-quark masses and continuum. For the b-quarks we use the anisotropic clover action with the relativistic heavy-quark interpretation, such that discretization errors from the heavy-quark action are of the same size as from the light-quark sector. We renormalize the lattice heavy-light axial-vector current using a mostly nonperturbative method in which we compute the bulk of the matching factor nonperturbatively, with a small correction, that is close to unity, in lattice perturbation theory. We also improve the lattice heavy-light current through O(αsa). We extrapolate our results to the physical light-quark masses and continuum using SU(2) heavy-meson chiral perturbation theory, and provide a complete systematic error budget. We obtain fB0 = 196.2(15.7) MeV, fB+ = 195.4(15.8) MeV, fBs = 235.4(12.2) MeV, fBs/fB0 = 1.193(59), and fBs/fB+ = 1.220(82), where the errors are statistical and total systematic added in quadrature. In addition, these results are in good agreement with other published results and provide an important independent cross check of other three-flavor determinations of B-meson decay constants using staggered light quarks.

  19. Controlling magnetic domain wall motion in the creep regime in He{sup +}-irradiated CoFeB/MgO films with perpendicular anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Herrera Diez, L., E-mail: liza.herrera-diez@ief.u-psud.fr; García-Sánchez, F.; Adam, J.-P.; Devolder, T.; Eimer, S.; El Hadri, M. S.; Ravelosona, D. [Institut d' Electronique Fondamentale, Université Paris-Sud, UMR CNRS 8622, 91405 Orsay (France); Lamperti, A.; Mantovan, R. [Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, 20864 Agrate (MB) (Italy); Ocker, B. [Singulus Technology AG, Hanauer Landstrasse 103, 63796 Kahl am Main (Germany)

    2015-07-20

    This study presents the effective tuning of perpendicular magnetic anisotropy in CoFeB/MgO thin films by He{sup +} ion irradiation and its effect on domain wall motion in a low field regime. Magnetic anisotropy and saturation magnetisation are found to decrease as a function of the irradiation dose which can be related to the observed irradiation-induced changes in stoichiometry at the CoFeB/MgO interface. These changes in the magnetic intrinsic properties of the film are reflected in the domain wall dynamics at low magnetic fields (H) where irradiation is found to induce a significant decrease in domain wall velocity (v). For all irradiation doses, domain wall velocities at low fields are well described by a creep law, where Ln(v) vs. H{sup −1∕4} behaves linearly, up to a maximum field H*, which has been considered as an approximation to the value of the depinning field H{sub dep}. In turn, H* ≈ H{sub dep} is seen to increase as a function of the irradiation dose, indicating an irradiation-induced extension of the creep regime of domain wall motion.

  20. Polyakov line actions from SU(3) lattice gauge theory with dynamical fermions via relative weights

    CERN Document Server

    Höllwieser, Roman

    2016-01-01

    We extract an effective Polyakov line action from an underlying SU(3) lattice gauge theory with dynamical fermions via the relative weights method. The center-symmetry breaking terms in the effective theory are fit to a form suggested by effective action of heavy-dense quarks, and the effective action is solved at finite chemical potential by a mean field approach. We show results for a small sample of lattice couplings, lattice actions, and lattice extensions in the time direction. We find in some instances that the long-range couplings in the effective action are very important to the phase structure, and that these couplings are responsible for long-lived metastable states in the effective theory. Only one of these states corresponds to the underlying lattice gauge theory.

  1. Light hadrons from N{sub f}=2+1+1 dynamical twisted mass fermions

    Energy Technology Data Exchange (ETDEWEB)

    Baron, R. [CEA, Centre de Saclay, Gif-sur-Yvette (France). IRFU/Service de Physique Nucleaire; Blossier, B.; Boucaud, P. [Paris 11 Univ., Orsay (FR). Lab. de Physique Theorique] (and others)

    2011-01-15

    We present results of lattice QCD simulations with mass-degenerate up and down and mass-split strange and charm (N{sub f}=2+1+1) dynamical quarks using Wilson twisted mass fermions at maximal twist. The tuning of the strange and charm quark masses is performed at three values of the lattice spacing a{approx}0.06 fm, a{approx}0.08 fm and a{approx}0.09 fm with lattice sizes ranging from L{approx}1.9 fm to L{approx}3.9 fm. We perform a preliminary study of SU(2) chiral perturbation theory by combining our lattice data from these three values of the lattice spacing. (orig.)

  2. Magnetic Moments of Delta and Omega- baryons with dynamical clover fermions

    Energy Technology Data Exchange (ETDEWEB)

    Aubin, Christopher; Orginos, Konstantinos; Pascalutsa, Vladimir; Vanderhaeghen, Marc

    2009-01-01

    We calculate the magnetic dipole moment of the Delta(1232) and Omega- baryons with 2+1-flavors of clover fermions on anisotropic lattices using a background magnetic field. This is the first dynamical calculation of these magnetic moments using a background field technique. The calculation for Omega- is done at the physical strange quark mass, with the result in units of the physical nuclear magneton µ_(Omega-) = -1.93(8)(12) (where the first error is statistical and the second is systematic) compared to the experimental number: -2.02(5). The Delta has been studied at three unphysical quark masses, corresponding to pion mass 366, 438, and 548 MeV. The pion-mass dependence is compared with the behavior obtained from chiral effective-field theory.

  3. Exact Growth of Entanglement and Dynamical Phase Transition in Global Fermionic Quench

    CERN Document Server

    Paranjape, Shruti

    2016-01-01

    Critical quantum quench of free Dirac fermions in an infinite system is examined carefully. A much broader analysis, with more emphasis on free scalar fields, has been done in hep-th/1512.0218. For specially prepared squeezed states of the massive theory, quenched states obtained are Calabrese-Cardy(CC) states and generalized Calabrese-Cardy(gCC) states with higher-spin charges. Exact time dependence of correlators are computed showing thermalization explicitly. We also calculate the exact monotonic growth of entanglement entropy in CC states. In case of gCC states, for a particular charge, we show that there is a dynamical phase transition from monotonic to non-monotonic entanglement entropy growth when the effective chemical potential is increased beyond a critical value.

  4. Adsorbate induced domain-wall ordering on silicon(111); Adsorbatinduzierte Domaenenwandordnung auf Silizium(111)

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, C.

    2006-09-14

    The gold-induced (5 x 2)-reconstruction on the Si(111) surface has been investigated in detail. Investigations with scanning tunneling microscopy, electron diffraction and simple electron diffraction simulation as combining element are presented. The defect density in the (5 x 2)-reconstructed areas has been analysed in dependency on temperature and gold density on the surface. One important result is the categorization of this reconstruction as domain-wall reconstruction like the other gold induced reconstructions on this surface in the submonolayer-coverage regime. The correlation of the adatoms on the (5 x 2)-reconstructed areas is analysed and the silicon coverage in the areas is determined from the growth dynamics of the reconstruction. Based on this, a new model, which has been developed in cooperation with Steve Erwin from the Naval Research Center, Washington, is presented. (orig.)

  5. Spin-Transfer-Torque-Assisted Domain-Wall Creep in a Co/Pt Multilayer Wire

    Science.gov (United States)

    San Emeterio Alvarez, L.; Wang, K.-Y.; Lepadatu, S.; Landi, S.; Bending, S. J.; Marrows, C. H.

    2010-04-01

    We have studied field- and current-driven domain-wall (DW) creep motion in a perpendicularly magnetized Co/Pt multilayer wire by real-time Kerr microscopy. The application of a dc current of density of ≲107A/cm2 assisted only the DW creeping under field in the same direction as the electron flow, a signature of spin-transfer torque effects. We develop a model dealing with both bidirectional spin-transfer effects and Joule heating, with the same dynamical exponent μ=1/4 for both field- and current-driven creep, and use it to quantify the spin-transfer efficiency as 3.6±0.6Oecm2/MA in our wires, confirming the significant nonadiabatic contribution to the spin torque.

  6. Steady-state configurations of Dzyaloshinskii domain walls driven by field and current

    Science.gov (United States)

    Sánchez-Tejerina, L.; Alejos, O.; Martínez, E.

    2017-02-01

    The dynamics of Dzyaloshinskii domain walls (DDW) in ultrathin ferromagnetic strips with perpendicular magnetic anisotropy, for different values of both perpendicular field and longitudinal current excitation associated to the Spin-Hall effect, has been studied, taking into account different values of the interfacial Dzyaloshinskii-Moriya interaction (DMI). This study has been carried out with the help of the q-Φ one-dimensional model and micromagnetic simulations. We have found that Walker breakdown may be avoided by applying a certain threshold current, even though the inverse effect is also possible. We have also found that, for particular values of field and current, the magnetization within the DDW experiences an abrupt change of orientation, which provokes a change on the contribution of current to the terminal DDW velocity. This effect disappears for sufficiently strong DMI, as it is expected from the model.

  7. Oscillons, solitons, and domain walls in arrays of nonlinear plasmonic nanoparticles.

    Science.gov (United States)

    Noskov, Roman; Belov, Pavel; Kivshar, Yuri

    2012-01-01

    The study of metal nanoparticles plays a central role in the emerging novel technologies employing optics beyond the diffraction limit. Combining strong surface plasmon resonances, high intrinsic nonlinearities and deeply subwavelength scales, arrays of metal nanoparticles offer a unique playground to develop novel concepts for light manipulation at the nanoscale. Here we suggest a novel principle to control localized optical energy in chains of nonlinear subwavelength metal nanoparticles based on the fundamental nonlinear phenomenon of modulation instability. In particular, we demonstrate that modulation instability can lead to the formation of long-lived standing and moving nonlinear localized modes of several distinct types such as bright and dark solitons, oscillons, and domain walls. We analyze the properties of these nonlinear localized modes and reveal different scenarios of their dynamics including transformation of one type of mode to another. We believe this work paves a way towards the development of nonlinear nanophotonics circuitry.

  8. Evidence of domain wall pinning in aluminum substituted cobalt ferrites

    Science.gov (United States)

    Maurya, J. C.; Janrao, P. S.; Datar, A. A.; Kanhe, N. S.; Bhoraskar, S. V.; Mathe, V. L.

    2016-08-01

    In the present work spinel structured cobalt ferrites with aluminum substitution having composition CoAlxFe2-xO4 (x=0.0, 0.1, 0.2 and 0.3) have been synthesized using chemical co-precipitation method. Their microstructural, magnetic, magnetostriction and magnetoimpedance properties have been investigated. The piezomagnetic coefficient (dλ/dH) obtained from magnetostriction data is found to enhance with 0.1 Al substitutions in place of iron which decreases with further increase of Al content. It is noticed that 0.3 Al substitutions in place of Fe introduces domain wall pinning as evidenced from magnetostriction, magnetoimpedance and dc magnetization data. It is noted that ferrites so prepared using a simple procedure are magnetostrictive in good measure and with the addition of very small amount of non-magnetic aluminum their magnetostriction has shown saturation at relatively low magnetic fields. Such magnetostrictive ferrites find their applications in magnetic sensors and actuators.

  9. Domain walls and vortices in linearly coupled systems

    CERN Document Server

    Dror, Nir; Zeng, Jianhua

    2011-01-01

    We investigate 1D and 2D radial domain-wall (DW) states in the system of two nonlinear-Schr\\"{o}dinger/Gross-Pitaevskii equations, which are coupled by the linear mixing and by the nonlinear XPM (cross-phase-modulation). The system has straightforward applications to two-component Bose-Einstein condensates, and to the bimodal light propagation in nonlinear optics. In the former case, the two components represent different hyperfine atomic states, while in the latter setting they correspond to orthogonal polarizations of light. Conditions guaranteeing the stability of flat continuous wave (CW) asymmetric bimodal states are established, followed by the study of families of the corresponding DW patterns. Approximate analytical solutions for the DWs are found near the point of the symmetry-breaking bifurcation of the CW states. An exact DW solution is produced for ratio 3:1 of the XPM and SPM coefficients. The DWs between flat asymmetric states, which are mirror images to each other, are completely stable, and al...

  10. Energy-momentum balance in particle - domain wall perforating collision

    CERN Document Server

    Gal'tsov, D V; Spiirin, P A

    2014-01-01

    We investigate the energy-momentum balance in the perforating collision of a point particle with an infinitely thin planar domain wall within the linearized gravity in arbitrary dimensions. Since the metric of the wall increases with distance, the wall and the particle are never free, and their energy-momentum balance involves not only the instantaneous kinetic momenta, but also the non-local contribution of gravitational stresses. However, careful analysis shows that the stresses can be unambiguously divided between the colliding objects leading to definition of the gravitationally dressed momenta. These take into account for gravity in the same way as the potential energy does in the non-relativistic theory, but our treatment is fully relativistic. Another unusual feature of our problem is the non-vanishing flux of the total energy-momentum tensor through the lateral surface of the world tube. In this case the zero divergence of the energy-momentum tensor does not imply conservation of the total momentum de...

  11. Magnetic domain wall motion in notch patterned permalloy nanowire devices

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ting-Chieh; Kuo, Cheng-Yi; Mishra, Amit K.; Das, Bipul; Wu, Jong-Ching, E-mail: phjcwu@cc.ncue.edu.tw

    2015-11-01

    We report a study of magnetization reversal process of notch-patterned permalloy (Py) nanowires (NWs) by using an in-situ magnetic force microscopy (MFM). Three neighboring straight NWs and an individual straight NW with discs connected to the wires ends are fabricated by standard electron beam lithography through a lift-off technique. MFM images are taken in the presence of an in-plane magnetic field applied along the wires length. As a result, the nucleation, pinning and depinning of domain walls (DWs) along the NW are observed. The artificial constraints (notch) in such symmetrical geometry of NWs indeed serve as pinning sites to pin the DWs. The nature of magnetization reversal, pinning field and depinning field for the DWs that are observed in these permalloy NWs, indicate the key roles of notch depth, the terminal connection structure of NW end and the inter-wire interaction among the NWs. The in-situ MFM measurements are examined with the micromagnetic simulations. Consequently, good agreements are obtained for the DW structures and the effect of DWs pining/depinning, however a dissimilarity in experimental and simulation observations for the direction of propagation of DWs in NWs needs further investigation.

  12. Analytical solution of the strain-controlled magnetic domain wall motion in bilayer piezoelectric/magnetostrictive nanostructures

    Science.gov (United States)

    Consolo, Giancarlo; Valenti, Giovanna

    2017-01-01

    The one-dimensional propagation of magnetic domain walls in an isotropic, linearly elastic, magnetostrictive material is investigated in the framework of the extended Landau-Lifshitz-Gilbert equation where the effects of a spin-polarized current and a rate-independent dry-friction dissipation are taken into account. In our analysis, it is assumed that the ferromagnet is subject to a spatially uniform biaxial in-plain stress generated by a piezoelectric substrate combined with the former in a multiferroic heterostructure. Moreover, a possible connection between the dry-friction mechanism and the piezo-induced strains is conjectured. By adopting the traveling waves ansatz, the effect of such a stress on the domain wall dynamics is explored in both steady and precessional regimes. In particular, it is proved that the magnetoelastic contribution, while it does not formally modify the classical solution, affects both the propagation threshold and the Walker Breakdown conditions involved in the steady regime, in agreement with recent experimental results. In the precessional regime, it is shown that the existence of a correlation between the piezo-induced strains and dry-friction leads to an upward shift of the domain wall velocity.

  13. Domain walls to Boussinesq-type equations in (2 + 1)-dimensions

    Science.gov (United States)

    Triki, H.; Kara, A. H.; Biswas, A.

    2014-07-01

    In this paper, two models with fourth-order dispersion in 2 + 1 dimensions are investigated. Based on Ansatz method, exact domain wall solutions are derived. Parametric conditions for the existence of the domain wall solutions are given. Lie symmetry analysis also retrieves conserved densities of governing nonlinear evolution equations.

  14. Exact solution of eddy current losses produced by a domain wall with nonzero thickness

    Energy Technology Data Exchange (ETDEWEB)

    Real, R.P. del [Laboratorio de Optoelectronica, Area de Cargas Utiles e Instrumentacion, Departamento de Ciencias del Espacio y Tecnologias Electronicas, Instituto Nacional de Tecnica Aeroespacial (INTA), Torrejon de Ardoz 28850 (Spain)]. E-mail: perezrr@inta.es

    2006-08-15

    The influence of the domain wall thickness on eddy current losses has been calculated. It is shown that, for samples with low magnetic anisotropy and small thickness, the reduction of magnetic losses with respect to the zero thickness domain wall must be seriously taken into account.

  15. Efficient stopping of current-driven domain wall using a local Rashba field

    Science.gov (United States)

    Tatara, Gen; Saarikoski, Henri; Mitsumata, Chiharu

    2016-10-01

    We show theoretically that a locally embedded Rashba interaction acts as a strong pinning center for current-driven domain walls and demonstrate efficient capturing and depinning of the wall using a weak Rashba interaction of the order of 0.01 eV Å. Our discovery is expected to be useful for highly reliable control of domain walls in racetrack memories.

  16. Gravitational field of spherical domain wall in higher dimension

    Indian Academy of Sciences (India)

    Farook Rahaman; Mehedi Kalam

    2002-01-01

    An exact solution of Einstein’s equations is found describing the gravitational field of a spherical domain wall with nonvanishing stress component in the direction perpendicular to the plane of the wall. Also we have studied the motion of test particle around the domain wall.

  17. The drift of ab-type domain walls in the weak ferromagnetic

    CERN Document Server

    Gerasimchuk, V S

    2002-01-01

    The drift motion of a ab-type 180-degree domain wall in a weak ferromagnetic is studied in elastic stress fields, generated by a sound wave. Parallel or perpendicularly to the domain wall plane. The dependences of the drift velocity on direction, polarization and amplitude of the acoustic wave are obtained. The drift conditions of the band domain structure are defined.

  18. Current-driven vortex domain wall motion in wire-tube nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Espejo, A. P. [Departamento de Física, Universidad de Santiago de Chile (USACH), Av. Ecuador 3493, 9170124 Santiago (Chile); Institute of Nanostructure and Solid State Physics, University of Hamburg, Jungiusstrasse 11, D-20355 Hamburg (Germany); Vidal-Silva, N. [Departamento de Física, Universidad de Santiago de Chile (USACH), Av. Ecuador 3493, 9170124 Santiago (Chile); López-López, J. A. [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Goerlitz, D.; Nielsch, K. [Institute of Nanostructure and Solid State Physics, University of Hamburg, Jungiusstrasse 11, D-20355 Hamburg (Germany); Escrig, J. [Departamento de Física, Universidad de Santiago de Chile (USACH), Av. Ecuador 3493, 9170124 Santiago (Chile); Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Av. Ecuador 3493, 9170124 Santiago (Chile)

    2015-03-30

    We have investigated the current-driven domain wall motion in nanostructures comprised of a pair of nanotube and nanowire segments. Under certain values of external magnetic fields, it is possible to pin a vortex domain wall in the transition zone between the wire and tube segments. We explored the behavior of this domain wall under the action of an electron flow applied in the opposite direction to the magnetic field. Thus, for a fixed magnetic field, it is possible to release a domain wall pinned simply by increasing the intensity of the current density, or conversely, for a fixed current density, it is possible to release the domain wall simply decreasing the magnetic external field. When the domain wall remains pinned due to the competition between the current density and the magnetic external field, it exhibits a oscillation frequency close to 8 GHz. The amplitude of the oscillations increases with the current density and decreases over time. On the other hand, when the domain wall is released and propagated through the tube segment, this shows the standard separation between a steady and a precessional regime. The ability to pin and release a domain wall by varying the geometric parameters, the current density, or the magnetic field transforms these wire-tube nanostructures in an interesting alternative as an on/off switch nano-transistor.

  19. Measurement of magnetic domain wall width using energy-filtered Fresnel images.

    Science.gov (United States)

    Lloyd, S J; Loudon, J C; Midgley, P A

    2002-08-01

    Magnetic domain walls in Nd2Fe14B have been examined using a series of energy-filtered Fresnel images in the field emission gun transmission electron microscope (FEGTEM). We describe the changes in the intensity distribution of the convergent wall image as a function of defocus, foil thickness and domain wall width. The effect of tilted domain walls and beam convergence on the fringe pattern is also discussed. A comparison of the experimental intensity profile with that from simulations allows the domain wall width to be determined. Measurement of very narrow walls is made possible only by using a relatively thick foil, which necessitates energy-filtering to allow quantitative comparison with simulations. The magnetic domain wall width in Nd2Fe14B was found to be 3 +/- 2 nm.

  20. Modulated Magnetic Nanowires for Controlling Domain Wall Motion: Toward 3D Magnetic Memories

    KAUST Repository

    Ivanov, Yurii P.

    2016-05-03

    Cylindrical magnetic nanowires are attractive materials for next generation data storage devices owing to the theoretically achievable high domain wall velocity and their efficient fabrication in highly dense arrays. In order to obtain control over domain wall motion, reliable and well-defined pinning sites are required. Here, we show that modulated nanowires consisting of alternating nickel and cobalt sections facilitate efficient domain wall pinning at the interfaces of those sections. By combining electron holography with micromagnetic simulations, the pinning effect can be explained by the interaction of the stray fields generated at the interface and the domain wall. Utilizing a modified differential phase contrast imaging, we visualized the pinned domain wall with a high resolution, revealing its three-dimensional vortex structure with the previously predicted Bloch point at its center. These findings suggest the potential of modulated nanowires for the development of high-density, three-dimensional data storage devices. © 2016 American Chemical Society.

  1. Current-driven magnetic domain wall motion and its real-time detection

    Science.gov (United States)

    Kim, Kab-Jin; Yoshimura, Yoko; Ono, Teruo

    2017-08-01

    Current-controlled magnetic domain wall motion has opened the possibility of a novel type of shift register memory device, which has been optimistically predicted to replace existing magnetic memories. Owing to this promising prospect, intensive work has been carried out during the last few decades. In this article, we first review the progress in the study of current-induced magnetic domain wall motion. Underlying mechanisms behind the domain wall motion, which have been discovered during last few decades, as well as technological achievements are presented. We then present our recent experimental results on the real-time detection of current-driven multiple magnetic domain wall motion, which directly demonstrates the operation of a magnetic domain wall shift register.

  2. Magnetic Domain Walls as Hosts of Spin Superfluids and Generators of Skyrmions

    Science.gov (United States)

    Kim, Se Kwon; Tserkovnyak, Yaroslav

    2017-07-01

    A domain wall in a magnet with easy-axis anisotropy is shown to harbor spin superfluid associated with its spontaneous breaking of the U(1) spin-rotational symmetry. The spin superfluid is shown to have several topological properties, which are absent in conventional superfluids. First, the associated phase slips create and destroy Skyrmions to obey the conservation of the total Skyrmion charge, which allows us to use a domain wall as a generator and detector of Skyrmions. Second, the domain wall engenders the emergent magnetic flux for magnons along its length, which are proportional to the spin supercurrent flowing through it, and thereby provides a way to manipulate magnons. Third, the spin supercurrent can be driven by the magnon current traveling across it owing to the spin transfer between the domain wall and magnons, leading to the magnonic manipulation of the spin superfluid. The theory for superfluid spin transport within the domain wall is confirmed by numerical simulations.

  3. Athermal domain-wall creep near a ferroelectric quantum critical point.

    Science.gov (United States)

    Kagawa, Fumitaka; Minami, Nao; Horiuchi, Sachio; Tokura, Yoshinori

    2016-02-16

    Ferroelectric domain walls are typically stationary because of the presence of a pinning potential. Nevertheless, thermally activated, irreversible creep motion can occur under a moderate electric field, thereby underlying rewritable and non-volatile memory applications. Conversely, as the temperature decreases, the occurrence of creep motion becomes less likely and eventually impossible under realistic electric-field magnitudes. Here we show that such frozen ferroelectric domain walls recover their mobility under the influence of quantum fluctuations. Nonlinear permittivity and polarization-retention measurements of an organic charge-transfer complex reveal that ferroelectric domain-wall creep occurs via an athermal process when the system is tuned close to a pressure-driven ferroelectric quantum critical point. Despite the heavy masses of material building blocks such as molecules, the estimated effective mass of the domain wall is comparable to the proton mass, indicating the realization of a ferroelectric domain wall with a quantum-particle nature near the quantum critical point.

  4. Atomic physics and quantum optics using superconducting circuits: from the Dynamical Casimir effect to Majorana fermions

    Science.gov (United States)

    Nori, Franco

    2012-02-01

    This talk will present an overview of some of our recent results on atomic physics and quantum optics using superconducting circuits. Particular emphasis will be given to photons interacting with qubits, interferometry, the Dynamical Casimir effect, and also studying Majorana fermions using superconducting circuits.[4pt] References available online at our web site:[0pt] J.Q. You, Z.D. Wang, W. Zhang, F. Nori, Manipulating and probing Majorana fermions using superconducting circuits, (2011). Arxiv. J.R. Johansson, G. Johansson, C.M. Wilson, F. Nori, Dynamical Casimir effect in a superconducting coplanar waveguide, Phys. Rev. Lett. 103, 147003 (2009). [0pt] J.R. Johansson, G. Johansson, C.M. Wilson, F. Nori, Dynamical Casimir effect in superconducting microwave circuits, Phys. Rev. A 82, 052509 (2010). [0pt] C.M. Wilson, G. Johansson, A. Pourkabirian, J.R. Johansson, T. Duty, F. Nori, P. Delsing, Observation of the Dynamical Casimir Effect in a superconducting circuit. Nature, in press (Nov. 2011). P.D. Nation, J.R. Johansson, M.P. Blencowe, F. Nori, Stimulating uncertainty: Amplifying the quantum vacuum with superconducting circuits, Rev. Mod. Phys., in press (2011). [0pt] J.Q. You, F. Nori, Atomic physics and quantum optics using superconducting circuits, Nature 474, 589 (2011). [0pt] S.N. Shevchenko, S. Ashhab, F. Nori, Landau-Zener-Stuckelberg interferometry, Phys. Reports 492, 1 (2010). [0pt] I. Buluta, S. Ashhab, F. Nori. Natural and artificial atoms for quantum computation, Reports on Progress in Physics 74, 104401 (2011). [0pt] I.Buluta, F. Nori, Quantum Simulators, Science 326, 108 (2009). [0pt] L.F. Wei, K. Maruyama, X.B. Wang, J.Q. You, F. Nori, Testing quantum contextuality with macroscopic superconducting circuits, Phys. Rev. B 81, 174513 (2010). [0pt] J.Q. You, X.-F. Shi, X. Hu, F. Nori, Quantum emulation of a spin system with topologically protected ground states using superconducting quantum circuit, Phys. Rev. A 81, 063823 (2010).

  5. Naturally Light Fermions from Dimensional Reduction

    CERN Document Server

    Bietenholz, W; Wiese, U J

    2004-01-01

    We consider the 3-d Gross-Neveu model in the broken phase and construct a stable brane world by means of a domain wall and an anti-wall. Fermions of opposite chirality are localized on the walls and coupled through the 3-d bulk. At large wall separation \\beta the 2-d correlation length diverges exponentially, hence a 2-d observer cannot distinguish this situation from a 2-d space-time. The 3-d 4-fermion coupling and \\beta fix the effective 2-d coupling such that the asymptotic freedom of the 2-d model arises. This mechanism provides criticality without fine tuning.

  6. Wilson Fermions with Four Fermion Interactions

    CERN Document Server

    Rantaharju, Jarno; Hietanen, Ari; Pica, Claudio; Sannino, Francesco

    2015-01-01

    We present a lattice study of a four fermion theory, known as Nambu Jona-Lasinio (NJL) theory, via Wilson fermions. Four fermion interactions naturally occur in several extensions of the Standard Model as a low energy parameterisation of a more fundamental theory. In models of dynamical electroweak symmetry breaking these operators, at an effective level, are used to endow the Standard Model fermions with masses. Furthermore these operators, when sufficiently strong, can drastically modify the fundamental composite dynamics by, for example, turning a strongly coupled infrared conformal theory into a (near) conformal one with desirable features for model building. As first step, we study spontaneous chiral symmetry breaking for the lattice version of the NJL model.

  7. Enhancement of Local Photovoltaic Current at Ferroelectric Domain Walls in BiFeO3

    Science.gov (United States)

    Yang, Ming-Min; Bhatnagar, Akash; Luo, Zheng-Dong; Alexe, Marin

    2017-02-01

    Domain walls, which are intrinsically two dimensional nano-objects exhibiting nontrivial electronic and magnetic behaviours, have been proven to play a crucial role in photovoltaic properties of ferroelectrics. Despite this recognition, the electronic properties of domain walls under illumination until now have been accessible only to macroscopic studies and their effects upon the conduction of photovoltaic current still remain elusive. The lack of understanding hinders the developing of nanoscale devices based on ferroelectric domain walls. Here, we directly characterize the local photovoltaic and photoconductive properties of 71° domain walls on BiFeO3 thin films with a nanoscale resolution. Local photovoltaic current, proven to be driven by the bulk photovoltaic effect, has been probed over the whole illuminated surface by using a specially designed photoelectric atomic force microscopy and found to be significantly enhanced at domain walls. Additionally, spatially resolved photoconductive current distribution reveals a higher density of excited carriers at domain walls in comparison with domains. Our measurements demonstrate that domain wall enhanced photovoltaic current originates from its high conduction rather than the internal electric field. This photoconduction facilitated local photovoltaic current is likely to be a universal property of topological defects in ferroelectric semiconductors.

  8. Domain wall network as QCD vacuum and the chromomagnetic trap formation under extreme conditions

    Energy Technology Data Exchange (ETDEWEB)

    Nedelko, Sergei N.; Voronin, Vladimir E. [JINR, Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation)

    2015-04-01

    The ensemble of Euclidean gluon field configurations represented by the domain wall network is considered. A single domain wall is given by the sine-Gordon kink for the angle between chromomagnetic and chromoelectric components of the gauge field. The domain wall separates the regions with Abelian self-dual and anti-self-dual fields. The network of the domain wall defects is introduced as a combination of multiplicative and additive superpositions of kinks. The character of the spectrum and eigenmodes of color-charged fluctuations in the presence of the domain wall network is discussed. Conditions for the formation of a stable thick domain wall junction (the chromomagnetic trap) during heavy-ion collisions are discussed, and the spectrum of color-charged quasi-particles inside the trap is evaluated. An important observation is the existence of the critical size L{sub c} of a single trap stable against gluon tachyonic modes. The size L{sub c} is related to the value of gluon condensate left angle g{sup 2} F{sup 2} right angle. The growth of large lumps of merged chromomagnetic traps and the concept of the confinement-deconfinement transition in terms of the ensemble of domain wall networks are outlined. (orig.)

  9. Domain wall motion driven by spin Hall effect—Tuning with in-plane magnetic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Rushforth, A. W., E-mail: andrew.rushforth@nottingham.ac.uk [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

    2014-04-21

    This letter investigates the effects of in-plane magnetic anisotropy on the current induced motion of magnetic domain walls in systems with dominant perpendicular magnetic anisotropy, where accumulated spins from the spin Hall effect in an adjacent heavy metal layer are responsible for driving the domain wall motion. It is found that that the sign and magnitude of the domain wall velocity in the uniform flow regime can be tuned significantly by the in-plane magnetic anisotropy. These effects are sensitive to the ratio of the adiabatic and non-adiabatic spin transfer torque parameters and are robust in the presence of pinning and thermal fluctuations.

  10. Quantum fluctuations in planar domain wall space-times: A possible origin of primordial preferred direction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chih-Hung, E-mail: chwang@phy.ncu.edu.tw [Department of Physics, Tamkang University, Taipei 25137, Taiwan (China); Department of Physics, National Central University, Chungli 320, Taiwan (China); Wu, Yu-Huei, E-mail: yhwu@phy.ncu.edu.tw [Center for Mathematics and Theoretical Physics, National Central University, Chungli 320, Taiwan (China); Department of Physics, National Central University, Chungli 320, Taiwan (China); Hsu, Stephen D.H., E-mail: hsu@uoregon.edu [Institute of Theoretical Science, University of Oregon, Eugene, OR 97403 (United States)

    2012-06-18

    We study the gravitational effects of a planar domain wall on quantum fluctuations of a massless scalar field during inflation. By obtaining an exact solution of the scalar field equation in de-Sitter space, we show that the gravitational effects of the domain wall break the rotational invariance of the primordial power spectrum without affecting the translational invariance. The strength of rotational violation is determined by one dimensionless parameter {beta}, which is a function of two physical parameters, the domain wall surface tension {sigma} and cosmological constant {Lambda}. In the limit of small {beta}, the leading effect of rotational violation of the primordial power spectrum is scale-invariant.

  11. Multi-scalar tachyon potential on non-BPS domain walls

    CERN Document Server

    Brito, F A

    2009-01-01

    We have considered the multi-scalar and multi-tachyon fields living on a 3d domain wall embedded in a 5d dimensional Minkowski spacetime. The effective action for such a domain wall can be found by integrating out the normal modes as vibrating modes around the domain wall solution of a truncated 5d supergravity action. The multi-scalar tachyon potential are good enough to modeling assisted inflation scenario with multi-tachyon fields. The tachyon condensation are also briefly addressed.

  12. Selective domain wall depinning by localized Oersted fields and Joule heating

    Science.gov (United States)

    Ilgaz, Dennis; Kläui, Mathias; Heyne, Lutz; Boulle, Olivier; Zinser, Fabian; Krzyk, Stephen; Fonin, Mikhail; Rüdiger, Ulrich; Backes, Dirk; Heyderman, Laura J.

    2008-09-01

    Using low temperature magnetoresistance measurements, the possibility to selectively move a domain wall locally by applying current pulses through a Au nanowire adjacent to a permalloy element is studied. We find that the domain wall depinning field is drastically modified with increasing current density due to the Joule heating and the Oersted field of the current, and controlled motion due to the Oersted field without any externally applied fields is achieved. By placing the domain wall at various distances from the Au wire, we determine the range of the Joule heating and the Oersted field and both effects can be separated.

  13. Critical Behavior of Four-Terminal Junctions of Bilayer Graphene Domain Walls

    Science.gov (United States)

    Wieder, Benjamin; Zhang, Fan; Kane, Charles

    2014-03-01

    Bilayer graphene in a perpendicular electric field can host domain walls between regions of reversed field direction or interlayer stacking. The gapless modes propagating along these domain walls, while not strictly topological, nevertheless have interesting physical properties, including valley-momentum locking. A junction where four domain walls meet forms the analogue of a quantum point contact. We study theoretically the critical behavior of this junction near the pinch-off transition, which is controlled by a non-trivial quantum critical point. At low temperatures, the transition sharpens and the conductance is described by a universal scaling function, which we compute.

  14. Large exchange-dominated domain wall velocities in antiferromagnetically coupled nanowires

    Directory of Open Access Journals (Sweden)

    Majd Kuteifan

    2016-04-01

    Full Text Available Magnetic nanowires supporting field- and current-driven domain wall motion are envisioned for methods of information storage and processing. A major obstacle for their practical use is the domain-wall velocity, which is traditionally limited for low fields and currents due to the Walker breakdown occurring when the driving component reaches a critical threshold value. We show through numerical and analytical modeling that the Walker breakdown limit can be extended or completely eliminated in antiferromagnetically coupled magnetic nanowires. These coupled nanowires allow for large domain-wall velocities driven by field and/or current as compared to conventional nanowires.

  15. Calculation of Non-Leptonic Kaon Decay Amplitudes from $K\\to\\pi$ Matrix Elements in Quenched Domain-Wall QCD

    CERN Document Server

    Noaki, J I; Aoki, Y; Burkhalter, R; Ejiri, S; Fukugita, M; Hashimoto, S; Ishizuka, N; Iwasaki, Y; Izubuchi, T; Kanaya, K; Kaneko, T; Kuramashi, Y; Lesk, V I; Nagai, K I; Okawa, M; Taniguchi, Y; Ukawa, A; Yoshié, T

    2001-01-01

    We explore application of the domain wall fermion formalism of lattice QCD to calculate the $K\\to\\pi\\pi$ decay amplitudes in terms of the $K\\to\\pi$ and $K\\to 0$ hadronic matrix elements through relations derived in chiral perturbation theory. Numerical simulations are carried out in quenched QCD using domain-wall fermion action for quarks and an RG-improved gauge action for gluons on a $16^3\\times 32\\times 16$ and $24^3\\times 32\\times 16$ lattice at $\\beta=2.6$ corresponding to the lattice spacing $1/a\\approx 2$GeV. Quark loop contractions which appear in Penguin diagrams are calculated by the random noise method, and the $\\Delta I=1/2$ matrix elements which require subtractions with the quark loop contractions are obtained with a statistical accuracy of about 10%. We confirm the chiral properties required of the $K\\to\\pi$ matrix elements. Matching the lattice matrix elements to those in the continuum at $\\mu=1/a$ using the perturbative renormalization factor to one loop order, and running to the scale $\\mu=m...

  16. Magnetization Reversal by Electric-Field Decoupling of Magnetic and Ferroelectric Domain Walls in Multiferroic-Based Heterostructures

    Science.gov (United States)

    Skumryev, V.; Laukhin, V.; Fina, I.; Martí, X.; Sánchez, F.; Gospodinov, M.; Fontcuberta, J.

    2011-02-01

    We demonstrate that the magnetization of a ferromagnet in contact with an antiferromagnetic multiferroic (LuMnO3) can be speedily reversed by electric-field pulsing, and the sign of the magnetic exchange bias can switch and recover isothermally. As LuMnO3 is not ferroelastic, our data conclusively show that this switching is not mediated by strain effects but is a unique electric-field driven decoupling of the ferroelectric and antiferromagnetic domain walls. Their distinct dynamics are essential for the observed magnetic switching.

  17. Universal charge and current on magnetic domain walls in Weyl semimetals

    Science.gov (United States)

    Araki, Yasufumi; Yoshida, Akihide; Nomura, Kentaro

    2016-09-01

    Domain walls in three-dimensional Weyl semimetals, formed by localized magnetic moments, are investigated. There appear bound states around the domain wall with the discrete spectrum, among which we find "Fermi arc" states with the linear dispersion. The Fermi arc modes contribute to the electric charge and current localized at the domain wall, which reveal a universal behavior depending only on chemical potential and the splitting of the Weyl nodes. This equilibrium current can be traced back to the chiral magnetic effect, or the edge counterpart of the anomalous Hall effect in the bulk. We propose a way to manipulate the motion of the domain wall, accompanied with the localized charge, by applying an external electric field.

  18. Liberation of quarks and spinons on domain walls: analogies between gauge theories and quantum magnets

    CERN Document Server

    Sulejmanpasic, Tin; Sandvik, Anders; Unsal, Mithat

    2016-01-01

    In a spontaneously dimerized quantum antiferromagnet (a valence-bond-solid, VBS) in two or three dimensions, elementary spin-1/2 excitations (spinons) are confined by strings akin to the strings confining quarks in non-abelian gauge theories. The VBS has multiple degenerate ground states (vacua) and domain walls between regions of inequivalent vacua. Here we demonstrate that, if the number of vacua is two, the spinons become liberated (deconfined) on the domain wall. This is in close analogy to supersymmetric gauge theories, where quarks deconfine on domain walls separating two vacua, as first conjecture by Rey and Witten. We show that the confinement mechanism in the VBS and Super-Yang-Mills theory are identical in certain regimes. This remarkable close analogy opens doors to improving our understanding of confinement by computational and experimental studies in quantum magnetism. As an illustration, we present a numerical demonstration of spinon deconfinement on domain walls in a two-dimensional quantum mag...

  19. Influence of magnetic domain walls and magnetic field on the thermal conductivity of magnetic nanowires.

    Science.gov (United States)

    Huang, Hao-Ting; Lai, Mei-Feng; Hou, Yun-Fang; Wei, Zung-Hang

    2015-05-13

    We investigated the influence of magnetic domain walls and magnetic fields on the thermal conductivity of suspended magnetic nanowires. The thermal conductivity of the nanowires was obtained using steady-state Joule heating to measure the change in resistance caused by spontaneous heating. The results showed that the thermal conductivity coefficients of straight and wavy magnetic nanowires decreased with an increase in the magnetic domain wall number, implying that the scattering between magnons and domain walls hindered the heat transport process. In addition, we proved that the magnetic field considerably reduced the thermal conductivity of a magnetic nanowire. The influence of magnetic domain walls and magnetic fields on the thermal conductivity of polycrystalline magnetic nanowires can be attributed to the scattering of long-wavelength spin waves mediated by intergrain exchange coupling.

  20. Thermal variations of domain wall thickness and number of domains in magnetic rectangular grains

    Science.gov (United States)

    Xu, Song; Merrill, Ronald T.

    1990-12-01

    Equilibrium domain wall thickness and number of domains in rectangular magnetic grains are determined by using a modified Amar model. It is shown that domain structure, particularly domain wall thickness, in a magnetized grain depends strongly on grain shape and orientation. These dependencies are attributed to the existence of two competing self-magnetostatic interactions, one from the ends of the grain and the other from the sides. One of the consequences of this is that the thermal variation of domain wall thickness in an elongated grain is greater (smaller) than predicted by classical theory when the grain is magnetized along the shortest (longest) dimension. For magnetite, classical theory provides a good approximation in predicting both domain wall thickness and number of domains in equal-dimensional grains larger than about 4 μm.

  1. Analytical modelling and x-ray imaging of oscillations of a single magnetic domain wall

    Energy Technology Data Exchange (ETDEWEB)

    Bocklage, Lars; Kruger, Benjamin; Fischer, Peter; Meier, Guido

    2009-07-10

    Domain-wall oscillation in a pinnig potential is described analytically in a one dimensional model for the feld-driven case. For a proper description the pinning potential has to be extended by nonharmonic contributions. Oscillations of a domain wall are observed on its genuine time scale by magnetic X-ray microscopy. It is shown that the nonharmonic terms are present in real samples with a strong restoring potential. In the framework of our model we gain deep insight into the domain-wall motion by looking at different phase spaces. The corrections of the harmonic potential can change the motion of the domain wall significantly. The damping parameter of permalloy is determined via the direct imaging technique.

  2. Transverse field-induced nucleation pad switching modes during domain wall injection

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, M. T.; Fry, P. W.; Schrefl, T.; Gibbs, M. R. J.; Allwood, D. A.; Im, M.-Y.; Fischer, P.

    2010-03-12

    We have used magnetic transmission X-ray microscopy (M-TXM) to image in-field magnetization configurations of patterned Ni{sub 80}Fe{sub 20} domain wall 'injection pads' and attached planar nanowires. Comparison with micromagnetic simulations suggests that the evolution of magnetic domains in rectangular injection pads depends on the relative orientation of closure domains in the remanent state. The magnetization reversal pathway is also altered by the inclusion of transverse magnetic fields. These different modes explain previous results of domain wall injection into nanowires. Even more striking was the observation of domain walls injecting halfway across the width of wider (>400 nm wide) wires but over wire lengths of several micrometers. These extended Neel walls can interact with adjacent nanowires and cause a switching in the side of the wire undergoing reversal as the domain wall continues to expand.

  3. Current driven domain wall motion in rare-earth transition metal alloys with perpendicular magnetic anisotropy.

    Science.gov (United States)

    Li, Songtian; Liu, Xiaoxi; Morisako, Akimistu

    2012-09-01

    The domain wall movement behaviors under current combining with magnetic field in perpendicularly magnetized TbFeCo wire were studied by a polar magneto-optical Kerr effect microscope. The velocity for domain wall creeping along electrons flowing direction was found to be apparently higher than that of domain wall creeping against electrons flowing, which is the signature of the spin transfer torque effect. By employing the modified field-driven creep motion law, a spin transfer efficiency of 2.7 Oe cm2/10(6) A was determined for TbFeCo wire by treating the spin transfer torque as an effective field adding to the external field. The high spin transfer efficiency suggests that perpendicularly magnetized system with sharp domain walls in TbFeCo film shows high superiorities for applications in spin transfer torque based devices compared with in-plane magnetized systems.

  4. Direct imaging of topological edge states at a bilayer graphene domain wall

    Science.gov (United States)

    Yin, Long-Jing; Jiang, Hua; Qiao, Jia-Bin; He, Lin

    2016-06-01

    The AB-BA domain wall in gapped graphene bilayers is a rare naked structure hosting topological electronic states. Although it has been extensively studied in theory, a direct imaging of its topological edge states is still missing. Here we image the topological edge states at the graphene bilayer domain wall by using scanning tunnelling microscope. The simultaneously obtained atomic-resolution images of the domain wall provide us unprecedented opportunities to measure the spatially varying edge states within it. The one-dimensional conducting channels are observed to be mainly located around the two edges of the domain wall, which is reproduced quite well by our theoretical calculations. Our experiment further demonstrates that the one-dimensional topological states are quite robust even in the presence of high magnetic fields. The result reported here may raise hopes of graphene-based electronics with ultra-low dissipation.

  5. Micromagnetic simulation of thickness variation of Neel cap in hybrid Bloch-Neel domain wall

    Energy Technology Data Exchange (ETDEWEB)

    Lu Mai [Key Lab. of Opto-Electronic Technology and Intelligent Control, Lanzhou Jiaotong University, Ministry of Education, P.O. Box 73, 118 West Anning Road, Lanzhou 730070, Gansu (China) and Department of Signals and Systems, Chalmers University of Technology, SE-412 96, Gothenburg (Sweden)]. E-mail: m.lu@mail.edu.cn; Leonard, Paul J. [Department of Electronic and Electrical Engineering, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom)

    2005-08-01

    The hybrid Bloch-Neel domain wall in iron film has been investigated using three-dimensional micromagnetic calculations. Magnetization distributions in the film plane and cross-section are presented. In the film plane the rotation of magnetization in the 180 deg domain wall takes two different patterns from the bottom layer to the top layer. In cross-section the C-shaped magnetization distribution with hybrid Bloch-Neel domain wall has been found. The thickness of the top Neel cap changes from its largest value as the C-shaped magnetization distribution appears, and becomes thinner as the C-shaped magnetization distribution gradually moves and grows up. The thickness variation of the bottom Neel cap changes in a similar way, but with a reversal pattern. The results in this paper will enrich our knowledge of magnetic domain and domain wall patterns in magnetic materials.

  6. Gapped Fermions in Top-down Holographic Superconductors

    CERN Document Server

    DeWolfe, Oliver; Henriksson, Oscar; Rosen, Christopher

    2016-01-01

    We use holography to compute spectral functions of certain fermionic operators in three different finite-density, zero-temperature states of ABJM theory with a broken U(1) symmetry. In each of the three states, dual to previously studied domain wall solutions of four-dimensional gauged supergravity, we find that the fermionic operators have gapped spectra. In one case the gap can be traced to the small charge of the fermions, while in the other cases it is due to a particular interaction that mixes particles and holes.

  7. Fine Structure Constant, Domain Walls, and Generalized Uncertainty Principle in the Universe

    Directory of Open Access Journals (Sweden)

    Luigi Tedesco

    2011-01-01

    Full Text Available We study the corrections to the fine structure constant from the generalized uncertainty principle in the spacetime of a domain wall. We also calculate the corrections to the standard formula to the energy of the electron in the hydrogen atom to the ground state, in the case of spacetime of a domain wall and generalized uncertainty principle. The results generalize the cases known in literature.

  8. General planar transverse domain walls realized by optimized transverse magnetic field pulses in magnetic biaxial nanowires

    Science.gov (United States)

    Li, Mei; Wang, Jianbo; Lu, Jie

    2017-02-01

    The statics and field-driven dynamics of transverse domain walls (TDWs) in magnetic nanowires (NWs) have attracted continuous interests because of their theoretical significance and application potential in future magnetic logic and memory devices. Recent results demonstrate that uniform transverse magnetic fields (TMFs) can greatly enhance the wall velocity, meantime leave a twisting in the TDW azimuthal distribution. For application in high-density NW devices, it is preferable to erase the twisting so as to minimize magnetization frustrations. Here we report the realization of a completely planar TDW with arbitrary tilting attitude in a magnetic biaxial NW under a TMF pulse with fixed strength and well-designed orientation profile. We smooth any twisting in the TDW azimuthal plane thus completely decouple the polar and azimuthal degrees of freedom. The analytical differential equation describing the polar angle distribution is derived and the resulting solution is not the Walker-ansatz form. With this TMF pulse comoving, the field-driven dynamics of the planar TDW is investigated with the help of the asymptotic expansion method. It turns out the comoving TMF pulse increases the wall velocity under the same axial driving field. These results will help to design a series of modern magnetic devices based on planar TDWs.

  9. Domain wall motion and Barkhausen effect in magnetic nanoparticles for EOR applications

    Science.gov (United States)

    Baig, Mirza Khurram; Soleimani, Hassan; Yahya, Noorhana

    2016-11-01

    The domain wall motion in magnetic nanoparticles is a useful parameter of study. The subject of this research is to study of the phenomenon of discontinuous domain wall motion, or the Barkhausen Effect in magnetic nanoparticles. In this work hematite (Fe2O3) nanoparticles have been synthesized using sol-gel auto-combustion and characterized using X-ray diffraction, Field emission scanning electron microscopy (FESEM), Transmission electron microscope (TEM) and Vibrating sample magnetometer (VSM) for crystal structure, morphology, shape, size and magnetic properties respectively. The FESEM and TEM results show that the particles are spherical in nature and average size is 60nm that is suitable for domain walls and barkhuasen effect. The VSM results show high coercivity 175 Oe and low saturation magnetization due to domain wall pinning and barkhausen effect. The size and magnetic properties reveals the existence of domain walls in the synthesized sample. The magnetic properties confirm the energy losses due to domain wall pinning, discontinuous domain rotation or barkhausen effect during magnetization which is useful for oil-water interfacial tension reduction and viscosity of oil. The high surface charge of magnetic nanoparticles and adsorption at the rock surface is useful for wettability alteration of rocks.

  10. Domain wall solitons and Hopf algebraic translational symmetries in noncommutative field theories

    Science.gov (United States)

    Sasai, Yuya; Sasakura, Naoki

    2008-02-01

    Domain wall solitons are the simplest topological objects in field theories. The conventional translational symmetry in a field theory is the generator of a one-parameter family of domain wall solutions, and induces a massless moduli field which propagates along a domain wall. We study similar issues in braided noncommutative field theories possessing Hopf algebraic translational symmetries. As a concrete example, we discuss a domain wall soliton in the scalar ϕ4 braided noncommutative field theory in Lie-algebraic noncommutative space-time, [xi,xj]=2iκγijkxk (i,j,k=1,2,3), which has a Hopf algebraic translational symmetry. We first discuss the existence of a domain wall soliton in view of Derrick’s theorem, and construct explicitly a one-parameter family of solutions in perturbation of the noncommutativity parameter κ. We then find the massless moduli field which propagates on the domain wall soliton. We further extend our analysis to the general Hopf algebraic translational symmetry.

  11. Domain wall solitons and Hopf algebraic translational symmetries in noncommutative field theories

    CERN Document Server

    Sasai, Yuya

    2007-01-01

    Domain wall solitons are the simplest topological objects in field theories. The conventional translational symmetry in a field theory is the generator of a one-parameter family of domain wall solutions, and induces a massless moduli field which propagates along a domain wall. We study similar issues in braided noncommutative field theories possessing Hopf algebraic translational symmetries. As a concrete example, we discuss a domain wall soliton in the scalar phi^4 braided noncommutative field theory in Lie-algebraic noncommutative spacetime, [x^i,x^j]=2i kappa epsilon^{ijk}x_k (i,j,k=1,2,3), which has a Hopf algebraic translational symmetry. We first discuss the existence of a domain wall soliton in view of Derrick's theorem, and construct explicitly a one-parameter family of solutions in perturbation of the noncommutativity parameter kappa. We then find the massless moduli field which propagates on the domain wall soliton. We further extend our analysis to the general Hopf algebraic translational symmetry.

  12. Diagrammatic Monte Carlo approach for diagrammatic extensions of dynamical mean-field theory -- convergence analysis of the dual fermion technique

    CERN Document Server

    Gukelberger, Jan; Hafermann, Hartmut

    2016-01-01

    The dual-fermion approach provides a formally exact prescription for calculating properties of a correlated electron system in terms of a diagrammatic expansion around dynamical mean-field theory (DMFT). It can address the full range of interactions, the lowest order theory is asymptotically exact in both the weak- and strong-coupling limits, and the technique naturally incorporates long-range correlations beyond the reach of current cluster extensions to DMFT. Most practical implementations, however, neglect higher-order interaction vertices beyond two-particle scattering in the dual effective action and further truncate the diagrammatic expansion in the two-particle scattering vertex to a leading-order or ladder-type approximation. In this work we compute the dual-fermion expansion for the Hubbard model including all diagram topologies with two-particle interactions to high orders by means of a stochastic diagrammatic Monte Carlo algorithm. We use benchmarking against numerically exact Diagrammatic Determin...

  13. Dynamics of fermionic Hubbard models after interaction quenches in one and two dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Hamerla, Simone Anke

    2013-10-15

    In the last years the impressive progress on the experimental side led to a variety of new experiments allowing to address systems out of equilibrium. In this way the behavior of such systems far from equilibrium is no longer a purely theoretical issue but indeed observable. New experimental techniques, like particles trapped in optical lattices, render a realization of quantum systems with nearly arbitrary system parameters possible and provide a possibility to study their time evolution. Systems out of equilibrium are characterized by the fact, that these systems are in highly excited states giving rise to totally new fascinating properties. In the present thesis one- and two-dimensional fermionic Hubbard models out of equilibrium are discussed. The system is taken out of equilibrium by a so-called interaction quench. At the beginning the system is prepared in the groundstate of the non-interacting Hamiltonian. At a time t the interaction between the fermions is suddenly turned on so that the time evolution is governed by the whole, interacting Hamiltonian. Hence the system is prepared in the groundstate of one Hamiltonian but evolves according to a different Hamiltonian. Consequently the system ends up in a highly excited state. To describe such a system a method based on an expansion of the Heisenberg equations of motion to highest order possible is developed in this thesis. This method provides an exact description of the time evolution on short and intermediate time scales after the quench. As the method reveal exact results and does not rely on any perturbative assumption, a study of arbitrarily large interaction strengths is possible. Besides, the method is one of the few methods capable of two-dimensional systems. In the following the method used in this thesis is explained and advantages and disadvantages of the approach are thematized. For this purpose the results of the developed iterated equation of motion approach are compared to results obtained in

  14. Influences of material defects and temp erature on current-driven domain wall mobility%温度、缺陷对磁畴壁动力学行为的影响∗

    Institute of Scientific and Technical Information of China (English)

    朱金荣; 范吕超; 苏垣昌; 胡经国

    2016-01-01

    基于Landau-Lifshitz-Gilbert自旋动力学方法,研究了磁纳米条中缺陷、温度对其电流驱动磁畴壁移动性质的影响。研究结果表明:缺陷能有效钉扎电流对磁畴壁的驱动作用,并且其钉扎能力依赖于其缺陷浓度、位置及形态。而温度能有效地去钉扎。特别地,缺陷处的焦耳热能有效地消除其缺陷对磁畴壁的钉扎作用。进一步的研究表明:其影响磁畴壁移动的缘由在于缺陷、温度能有效调节磁纳米条中磁畴壁的面外磁化强度。%Current-induced domain wall motion, which has potential application in the next-generation data storage and logic device, has attracted much interest in recent years. However, how the material defect and its joule heat influence current-driven domain wall motion in magnetic nanostripe is still unclear. This paper is to deal with these issues by using the Landau-Lifshitz-Gilbert spin dynamics. The results show that the material defect can pin domain wall motion and this pinning effect strongly depends on the defect concentration, location and shape. The pinning effect induced by the defect on domain wall motion results in the increase of threshold current, and the domain wall moves steadily and continuously. Specifically, the probability for domain wall motion induced by pinning effect is nonlinearly increasing with the increase of defect concentration. Namely, the increasing of the pinning ability with the increase of the defect concentration becomes fades away. Initially, when the defect is near to domain wall, the pinning ability is obvious. However, the pinning ability is not linearly increasing with the decrease of the initial distance between the defect and the domain wall. The results also show that the single defect is larger, the probability for domain wall motion induced by defect pining is bigger. Moreover, the material defect can suppress the domain wall trending toward breakdown and make domain wall move

  15. Itinerant spin dynamics in iron-based superconductors and cerium-based heavy-fermion antiferromagnets

    Energy Technology Data Exchange (ETDEWEB)

    Friemel, Gerd

    2014-05-26

    This thesis contains a comprehensive study of the spin excitations by inelastic neutron scattering (INS) in two different correlated electron systems: the alkali-metal iron selenide superconductors (FeSe122) A{sub x}Fe{sub 2-y}Se{sub 2} (A=K, Rb, Cs) and the heavy-fermion antiferromagnet CeB6. Both systems exhibit intense modes in their spin-fluctuation spectrum below their respective transition temperatures that can be derived from the spin dynamics of the itinerant quasiparticles. However, the implications of these observations, presented here, are different for each particular compound. The A{sub x}Fe{sub 2-y}Se{sub 2} superconductors, with a uniform T{sub c} of 32 K, belong to a qualitative new family of superconductors. They possess a distinctly different Fermi surface compared to the iron-arsenide-based analogues XFe{sub 2}As{sub 2} (X=Ca, Sr, Ba). Instead of the central hole pockets at Γ and the electron pockets at X((1)/(2) 0), which are nested by the Q{sub AFM} = ((1)/(2) 0) vector, there exist only large electron pockets at the X point. Therefore, the magnetic instability along Q{sub AFM} that presumably provides the pairing glue for the superconductivity in the shape of spin fluctuations is absent in the FeSe122. The search for spin fluctuations by INS was motivated by a theoretical analysis that predicted their presence at an incommensurate wave vector near Q = (0.5 δ), δ = 0.3125 which results from a quasinesting by Q between the flat parts of the electron pockets. Two samples, namely Rb{sub 0.8}Fe{sub 1.6}Se{sub 2} and K{sub 0.77}Fe{sub 1.85}Se{sub 2}, were prepared and both showed a sizable anisotropic magnetic response at Q{sub sf} = ((1)/(2) (1)/(4)) in the normal state. Furthermore, upon entering the superconducting (SC) state a strong excitation appears at ℎω{sub res} = 14 meV in the spectrum at Q{sub sf}, which is referred to as magnetic resonant mode. This mode is interpreted as a bound spin-1 exciton below the SC charge gap. Its presence

  16. Domain-wall conduction in ferroelectric BiFeO3 controlled by accumulation of charged defects

    Science.gov (United States)

    Rojac, Tadej; Bencan, Andreja; Drazic, Goran; Sakamoto, Naonori; Ursic, Hana; Jancar, Bostjan; Tavcar, Gasper; Makarovic, Maja; Walker, Julian; Malic, Barbara; Damjanovic, Dragan

    2016-11-01

    Mobile charged defects, accumulated in the domain-wall region to screen polarization charges, have been proposed as the origin of the electrical conductivity at domain walls in ferroelectric materials. Despite theoretical and experimental efforts, this scenario has not been directly confirmed, leaving a gap in the understanding of the intriguing electrical properties of domain walls. Here, we provide atomic-scale chemical and structural analyses showing the accumulation of charged defects at domain walls in BiFeO3. The defects were identified as Fe4+ cations and bismuth vacancies, revealing p-type hopping conduction at domain walls caused by the presence of electron holes associated with Fe4+. In agreement with the p-type behaviour, we further show that the local domain-wall conductivity can be tailored by controlling the atmosphere during high-temperature annealing. This work has possible implications for engineering local conductivity in ferroelectrics and for devices based on domain walls.

  17. Electroweak\\/GUT Domain Wall by Hawking Radiation Baryogenesis and Dark Matter from Several Hundred kg Black Holes

    CERN Document Server

    Nagatani, Y

    2001-01-01

    A spherical domain wall around a small black hole is formed by the Hawking radiation from the black hole in the symmetry-broken-phase of the field theory, e.g., the Standard Model (SM) and the Grand Unified Theory (GUT) which have a property of the phase transition. We have obtained two types of the spherical domain wall; (a) thermalized wall which is formed by the local heating up near black hole and symmetry restore locally and (b) dynamical wall which is formed by the balance between the pressure from the Hawking radiation and the pressure from the wall tensions. The electroweak wall is formed as a thermalized wall around a black hole with mass of the several hundred kilogram. The GUT wall is formed as a dynamical wall around much smaller black hole. The electroweak wall around a black hole can produce baryon number by the assumption of the CP-broken phase in the wall. The GUT wall can supply charge into the black hole, namely, the wall causes the spontaneous charging up of the black hole. We propose a cos...

  18. pion Kaon Scattering in full QCD with domain wall valence quarks

    Energy Technology Data Exchange (ETDEWEB)

    Silas Beane; Paulo Bedaque; Thomas Luu; Konstantinos Orginos; Elisabetta Pallante; Assumpta Parreno; Martin Savage

    2006-07-24

    We calculate the {pi}{sup +}K{sup +} scattering length at pion masses of m{sub {pi}} {approx} 290, 350, 490 and 600 MeV in fully-dynamical lattice QCD with domain-wall valence quarks and rooted staggered sea quarks. The lattice data, analyzed at next-to-leading order in chiral perturbation theory, allows an extraction of the full piK scattering amplitude at threshold. Extrapolating to the physical point gives m{sub {pi}} {alpha}{sub 3/2} = -0.0574 {+-} 0.0016{sub -0.0058}{sup +0.0024} and m{sub {pi}} {alpha}{sub 1/2} = 0.1725 {+-} 0.0017{sub -0.0156}{sup +0.0023} for the I = 3/2 and I = 1/2 scattering lengths, respectively, where the first error is statistical and the second error is an estimate of the systematic error due to truncation of the chiral expansion.

  19. Polarization domain wall pulses in a microfiber-based topological insulator fiber laser

    Science.gov (United States)

    Liu, Jingmin; Li, Xingliang; Zhang, Shumin; Zhang, Han; Yan, Peiguang; Han, Mengmeng; Pang, Zhaoguang; Yang, Zhenjun

    2016-07-01

    Topological insulators (TIs), are novel two-dimension materials, which can act as effective saturable absorbers (SAs) in a fiber laser. Moreover, based on the evanescent wave interaction, deposition of the TI on microfiber would create an effective SA, which has combined advantages from the strong nonlinear optical response in TI material together with the sufficiently-long-range interaction length in fiber taper. By using this type of TI SA, various scalar solitons have been obtained in fiber lasers. However, a single mode fiber always exhibits birefringence, and hence can support two orthogonal degenerate modes. Here we investigate experimentally the vector characters of a TI SA fiber laser. Using the saturated absorption and the high nonlinearity of the TI SA, a rich variety of dynamic states, including polarization-locked dark pulses and their harmonic mode locked counterparts, polarization-locked noise-like pulses and their harmonic mode locked counterparts, incoherently coupled polarization domain wall pulses, including bright square pulses, bright-dark pulse pairs, dark pulses and bright square pulse-dark pulse pairs are all observed with different pump powers and polarization states.

  20. Differential Domain Wall Propagation in Y-Shaped Permalloy Nanowire Devices

    Science.gov (United States)

    Das, Bipul; Chen, Ting-Chieh; Shiu, Deng-Shiang; Horng, Lance; Wu, Jong-Ching

    2016-05-01

    Here, we report an investigation of magnetic domain wall (DW) evolution and propagation in Y-shaped permalloy (Py) nanowire (NW) devices. The devices are fabricated using standard electron-beam lithography technique. Each device consists of three connected NWs that form a Y-junction structure with one branch connecting either symmetrically or asymmetrically to a circular disk for DW nucleation. The DW dynamics in the devices are studied by in situ magnetic force microscopy (MFM) by pinning the DWs to triangular notches at each branch of the two devices. We observe that the DW injection field values differ depending on whether they are connected to the circular disks symmetrically or asymmetrically. However, after they pass the Y-junctions, a selection is made by the DWs to propagate easily either through both or through only one particular outgoing branch of the devices. The experimental observations are analyzed by micromagnetic simulation. It can be inferred from the results that the influence of detailed geometrical shape of the devices leads to significantly different interactions among the innate topological defects and the notches with the injected DWs.

  1. Domain wall spin structures in mesoscopic Fe rings probed by high resolution SEMPA

    Science.gov (United States)

    Krautscheid, Pascal; Reeve, Robert M.; Lauf, Maike; Krüger, Benjamin; Kläui, Mathias

    2016-10-01

    We present a combined theoretical and experimental study of the energetic stability and accessibility of different domain wall spin configurations in mesoscopic magnetic iron rings. The evolution is investigated as a function of the width and thickness in a regime of relevance to devices, while Fe is chosen as a material due to its simple growth in combination with attractive magnetic properties including high saturation magnetization and low intrinsic anisotropy. Micromagnetic simulations are performed to predict the lowest energy states of the domain walls, which can be either the transverse or vortex wall spin structure, in good agreement with analytical models, with further simulations revealing the expected low temperature configurations observable on relaxation of the magnetic structure from saturation in an external field. In the latter case, following the domain wall nucleation process, transverse domain walls are found at larger widths and thicknesses than would be expected by just comparing the competing energy terms demonstrating the importance of metastability of the states. The simulations are compared to high spatial resolution experimental images of the magnetization using scanning electron microscopy with polarization analysis to provide a phase diagram of the various spin configurations. In addition to the vortex and simple symmetric transverse domain wall, a significant range of geometries are found to exhibit highly asymmetric transverse domain walls with properties distinct from the symmetric transverse wall. Simulations of the asymmetric walls reveal an evolution of the domain wall tilting angle with ring thickness which can be understood from the thickness dependencies of the contributing energy terms. Analysis of all the data reveals that in addition to the geometry, the influence of materials properties, defects and thermal activation all need to be taken into account in order to understand and reliably control the experimentally accessible

  2. Majorana Fermions in a Box

    CERN Document Server

    Al-Hashimi, M H; Wiese, U -J

    2016-01-01

    Majorana fermion dynamics may arise at the edge of Kitaev wires or superconductors. Alternatively, it can be engineered by using trapped ions or ultracold atoms in an optical lattice as quantum simulators. This motivates the theoretical study of Majorana fermions confined to a finite volume, whose boundary conditions are characterized by self-adjoint extension parameters. While the boundary conditions for Dirac fermions in $(1+1)$-d are characterized by a 1-parameter family, $\\lambda = - \\lambda^*$, of self-adjoint extensions, for Majorana fermions $\\lambda$ is restricted to $\\pm i$. Based on this result, we compute the frequency spectrum of Majorana fermions confined to a 1-d interval. The boundary conditions for Dirac fermions confined to a 3-d region of space are characterized by a 4-parameter family of self-adjoint extensions, which is reduced to two distinct 1-parameter families for Majorana fermions. We also consider the problems related to the quantum mechanical interpretation of the Majorana equation ...

  3. Symmetries of Ginsparg-Wilson Chiral Fermions

    CERN Document Server

    Mandula, Jeffrey E

    2009-01-01

    The group structure of the variant chiral symmetry discovered by Luscher in the Ginsparg-Wilson description of lattice chiral fermions is analyzed. It is shown that the group contains an infinite number of linearly independent symmetry generators, and the Lie algebra is given explicitly. CP is an automorphism of this extended chiral group, and the CP transformation properties of the symmetry generators are found. The group has an infinite-parameter subgroup, and the factor group whose elements are its cosets is isomorphic to the continuum chiral symmetry group. Features of the currents associated with these symmetries are discussed, including the fact that some different, non-commuting symmetry generators lead to the same Noether current. These are universal features of lattice chiral fermions based on the Ginsparg-Wilson relation; they occur in the overlap, domain-wall, and perfect-action formulations. In a solvable example - free overlap fermions - these non-canonical elements of lattice chiral symmetry are...

  4. Domain Walls of D=8 Gauged Supergravities and their D=11 Origin

    CERN Document Server

    Alonso-Alberca, N; Gran, U G; Linares, R; Ortín, Tomas; Roest, D

    2003-01-01

    Performing a Scherk-Schwarz dimensional reduction of D=11 supergravity on a three-dimensional group manifold we construct five D=8 gauged maximal supergravities whose gauge groups are the three-dimensional (non-)compact subgroups of SL(3,R). These cases include the Salam-Sezgin SO(3) gauged supergravity. We construct the most general half-supersymmetric domain wall solutions to these five gauged supergravities. The generic form is a triple domain wall solution whose truncations lead to double and single domain wall solutions. We find that one of the single domain wall solutions has zero potential but nonzero superpotential. Upon uplifting to 11 dimensions each domain wall becomes a purely gravitational 1/2 BPS solution. The corresponding metric has a 7+4 split with a Minkowski 7-metric and a 4-metric that corresponds to a gravitational instanton. These instantons generalize the SO(3) metric of Belinsky, Gibbons, Page and Pope (which includes the Eguchi-Hanson metric) to the other Bianchi types of class A.

  5. Detection of ferromagnetic domain wall pinning and depinning with a semiconductor device

    Energy Technology Data Exchange (ETDEWEB)

    Malec, Chris E.; Bennett, Brian R.; Johnson, Mark B. [Naval Research Laboratory, Washington, D.C. 20375 (United States)

    2015-12-21

    We demonstrate the detection of a ferromagnetic domain wall using a nanoscale Hall cross. A narrow permalloy wire is defined lithographically on top of a Hall cross fabricated from an InAs quantum well. The width of the Hall cross (500 nm–1 μm) is similar to the width of the ferromagnetic wire (200–500 nm), and a geometric pinning site is fabricated in the ferromagnetic wire to trap a domain wall within the area of the Hall cross. The devices provide a signal that is often the same order of magnitude as the offset Hall voltage when a domain wall is located above the Hall cross, and may be useful for memory applications. Different geometries for the Hall cross and ferromagnetic wire are tested, and radiofrequency pulses are sent into the wire to demonstrate current driven domain wall motion. Further changes to the Hall bar geometry with respect to the wire geometry are investigated by numerical computation. A large gain in signal is seen for Hall bars only slightly wider than the ferromagnetic wires as compared to those twice as wide, as well as a larger sensitivity to the exact position of the domain wall with respect to the center of the Hall cross.

  6. Computation of the chiral condensate using $N_f=2$ and $N_f=2+1+1$ dynamical flavors of twisted mass fermions

    CERN Document Server

    Cichy, Krzysztof; Jansen, Karl; Shindler, Andrea

    2013-01-01

    We apply the spectral projector method, recently introduced by Giusti and L\\"uscher, to compute the chiral condensate using $N_f=2$ and $N_f=2+1+1$ dynamical flavors of maximally twisted mass fermions. We present our results for several quark masses at three different lattice spacings which allows us to perform the chiral and continuum extrapolations. In addition we report our analysis on the $O(a)$ improvement of the chiral condensate for twisted mass fermions. We also study the effect of the dynamical strange and charm quarks by comparing our results for $N_f=2$ and $N_f=2+1+1$ dynamical flavors.

  7. Dynamical symmetry restoration for a higher-derivative four-fermion model in an external electromagnetic field

    CERN Document Server

    Elizalde, E; Odintsov, S D; Shilnov, Yu I; Shil'nov, Yu. I.

    1998-01-01

    A four-fermion model with additional higher-derivative terms is investigated in an external electromagnetic field. The effective potential in the leading order of large-N expansion is calculated in external constant magnetic and electric fields. It is shown that, in contrast to the former results concerning the universal character of "magnetic catalysis" in dynamical symmetry breaking, in the present higher-derivative model the magnetic field restores chiral symmetry broken initially on the tree level. Numerical results describing a second-order phase transition that accompanies the symmetry restoration at the quantum level are presented.

  8. An exact representation of the fermion dynamics in terms of Poisson processes and its connection with Monte Carlo algorithms

    Science.gov (United States)

    Beccaria, M.; Presilla, C.; DeAngelis, G. F.; Jona-Lasinio, G.

    1999-11-01

    We present a simple derivation of a Feynman-Kac type formula to study fermionic systems. In this approach the real time or the imaginary time dynamics is expressed in terms of the evolution of a collection of Poisson processes. This formula leads to a family of algorithms parametrized by the values of the jump rates of the Poisson processes. From these an optimal algorithm can be chosen which coincides with the Green Function Monte Carlo method in the limit when the latter becomes exact.

  9. Crossed ratchet effects on magnetic domain walls: geometry and transverse field effects

    Energy Technology Data Exchange (ETDEWEB)

    Alija, A; Hierro-Rodriguez, A; Perez-Junquera, A; Alameda, J M; Martin, J I; Velez, M, E-mail: mvelez@uniovi.es [Dept. Fisica, Universidad de Oviedo-CINN, 33007 Oviedo (Spain)

    2011-08-17

    Domain wall propagation across a 2D array of asymmetric holes is strongly dependent on the domain wall configuration: i.e. on whether the wall is flat or kinked. This results in interesting crossed ratchet and asymmetric accommodation effects that have been studied as a function of geometry and transverse field. Micromagnetic simulations have shown that the observation of crossed ratchet effects is easier for arrow than for triangular holes due to a larger field range in which kink propagation is the preferred mode for domain wall motion. Also, it has been found that dc transverse fields can produce a significant enhancement of the easy axis asymmetric accommodation and, also, that ac transverse fields can be rectified by the crossed ratchet potential.

  10. Valence-bond-solid domain walls in a 2D quantum magnet

    Science.gov (United States)

    Shao, Hui; Guo, Wenan; Sandvik, Anders

    sing quantum Monte Carlo simulations, we study properties of domain walls in a square-lattice S=1/2 Heisenberg model with additional interactions which can drive the system from an antiferromagnetic (AFM) ground state to a valence-bond solid (VBS). We study the finite-size scaling of the domain-wall energy at the putative ''deconfined'' critical AFM-VBS point, which gives access to the critical exponent governing the domain-wall width. This length-scale diverges faster than the correlation length and also is related to the scale of spinon deconfinement. Our results show additional evidence of deconfied quantum criticality and are compatible with critical exponents extracted from finite-size scaling of other quantities. NSFC Grant No. 11175018, NSF Grant No. DMR-1410126.

  11. Domain Wall Motion in Magnetic Nanostrips under the Influence of Rashba Field

    Directory of Open Access Journals (Sweden)

    Vito Puliafito

    2012-01-01

    Full Text Available Spin-orbit Rashba effect applies a torque on the magnetization of a ferromagnetic nanostrip in the case of structural inversion asymmetry, also affecting the steady domain wall motion induced by a spin-polarized current. This influence is here analytically studied in the framework of the extended Landau-Lifshitz-Gilbert equation, including the Rashba effect as an additive term of the effective field. Results of previous micromagnetic simulations and experiments have shown that this field yields an increased value of the Walker breakdown current together with an enlargement of the domain wall width. In order to analytically describe these results, the standard travelling wave ansatz for the steady domain wall motion is here adopted. Results of our investigations reveal the impossibility to reproduce, at the same time, the previous features and suggest the need of a more sophisticated model whose development requires, in turn, additional information to be extracted from ad hoc micromagnetic simulations.

  12. Influence of exchange coupling on current-driven domain wall motion in a nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Komine, Takashi, E-mail: komine@mx.ibaraki.ac.j [Department of Media and Telecommunications Engineering, Ibaraki University, Ibaraki 316-8511 (Japan); Takahashi, Kota; Murakami, Hiroshi; Sugita, Ryuji [Department of Media and Telecommunications Engineering, Ibaraki University, Ibaraki 316-8511 (Japan)

    2010-10-15

    In this study, the effect of exchange stiffness constant on current-driven domain wall motion in nanowires with in-plane magnetic anisotropy (IMA) and perpendicular magnetic anisotropy (PMA) has been investigated using micromagnetic simulation. The critical current density in a nanowire with IMA decreases as the exchange stiffness constant decreases because the domain wall width at the upper edge of the nanowire narrows according to the decrease of the exchange stiffness constant. On the other hand, the critical current density in a nanowire with PMA slightly decreases contrary to that of IMA although the domain wall width reasonably decreases as the exchange stiffness constant decreases. The slight reduction rate of the critical current density is due to the increase of the effective hard-axis anisotropy of PMA nanowire.

  13. Injection and controlled motion of conducting domain walls in improper ferroelectric Cu-Cl boracite

    Science.gov (United States)

    McQuaid, Raymond G. P.; Campbell, Michael P.; Whatmore, Roger W.; Kumar, Amit; Gregg, J. Marty

    2017-05-01

    Ferroelectric domain walls constitute a completely new class of sheet-like functional material. Moreover, since domain walls are generally writable, erasable and mobile, they could be useful in functionally agile devices: for example, creating and moving conducting walls could make or break electrical connections in new forms of reconfigurable nanocircuitry. However, significant challenges exist: site-specific injection and annihilation of planar walls, which show robust conductivity, has not been easy to achieve. Here, we report the observation, mechanical writing and controlled movement of charged conducting domain walls in the improper-ferroelectric Cu3B7O13Cl. Walls are straight, tens of microns long and exist as a consequence of elastic compatibility conditions between specific domain pairs. We show that site-specific injection of conducting walls of up to hundreds of microns in length can be achieved through locally applied point-stress and, once created, that they can be moved and repositioned using applied electric fields.

  14. Domain wall pinning in FeCoCu bamboo-like nanowires

    Science.gov (United States)

    Berganza, Eider; Bran, Cristina; Jaafar, Miriam; Vázquez, Manuel; Asenjo, Agustina

    2016-07-01

    The three dimensional nature of cylindrical magnetic nanowires has opened a new way to control the domain configuration as well as the magnetization reversal process. The pinning effect of the periodic diameter modulations on the domain wall propagation in FeCoCu individual nanowires is determined by Magnetic Force Microscopy, MFM. A main bistable magnetic configuration is firstly concluded from MFM images characterized by the spin reversal between two nearly single domain states with opposite axial magnetization. Complementary micromagnetic simulations confirm a vortex mediated magnetization reversal process. A non-standard variable field MFM imaging procedure allows us to observe metastable magnetic states where the propagating domain wall is pinned at certain positions with enlarged diameter. Moreover, it is demonstrated that it is possible to control the position of the pinned domain walls by an external magnetic field.

  15. Critical behavior of four-terminal conductance of bilayer graphene domain walls

    Science.gov (United States)

    Wieder, Benjamin J.; Zhang, Fan; Kane, C. L.

    2015-08-01

    Bilayer graphene in a perpendicular electric field can host domain walls between regions of reversed field direction or interlayer stacking. The gapless modes propagating along these domain walls, while not strictly topological, nevertheless have interesting physical properties, including valley-momentum locking. A junction where two domain walls intersect forms the analog of a quantum point contact. We study theoretically the critical behavior of this junction near the pinch-off transition, which is controlled by two separate classes of nontrivial quantum critical points. For strong interactions, the junction can host phases of unique charge and valley conductances. For weaker interactions, the low-temperature charge conductance can undergo one of two possible quantum phase transitions, each characterized by a specific critical exponent and a collapse to a universal scaling function, which we compute.

  16. Non-Ising and chiral ferroelectric domain walls revealed by nonlinear optical microscopy

    Science.gov (United States)

    Cherifi-Hertel, Salia; Bulou, Hervé; Hertel, Riccardo; Taupier, Grégory; Dorkenoo, Kokou Dodzi (Honorat); Andreas, Christian; Guyonnet, Jill; Gaponenko, Iaroslav; Gallo, Katia; Paruch, Patrycja

    2017-06-01

    The properties of ferroelectric domain walls can significantly differ from those of their parent material. Elucidating their internal structure is essential for the design of advanced devices exploiting nanoscale ferroicity and such localized functional properties. Here, we probe the internal structure of 180° ferroelectric domain walls in lead zirconate titanate (PZT) thin films and lithium tantalate bulk crystals by means of second-harmonic generation microscopy. In both systems, we detect a pronounced second-harmonic signal at the walls. Local polarimetry analysis of this signal combined with numerical modelling reveals the existence of a planar polarization within the walls, with Néel and Bloch-like configurations in PZT and lithium tantalate, respectively. Moreover, we find domain wall chirality reversal at line defects crossing lithium tantalate crystals. Our results demonstrate a clear deviation from the ideal Ising configuration that is traditionally expected in uniaxial ferroelectrics, corroborating recent theoretical predictions of a more complex, often chiral structure.

  17. Domain wall structure transition during magnetization reversal process in magnetic nanowires

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The analytical micromagnetics and numerical simulations were used to investigate the domain wall structure during the magnetization reversal in nanowires. Micromagnetic analysis shows that the domain wall structure is mainly determined by the competition between the demagnetization energy and exchange energy. The wall with vortex magnetization structure in cross-section is energetically more favorable for wires with large diameter. With the reduction of diameter the exchange energy increases. At a critical diameter the vortex structure can not be sustained and the transition from vortex wall to transverse wall occurs. The critical diameters for this transition are about 40 nm for Ni wire and 20 nm for Fe wire, respectively. A series of micromagnetic simulations on the cone-shaped wire confirm the analytical results. The simulations also show that during the reversal process the vortex domain wall moves much faster than the transverse one.

  18. Imaging and characterization of conducting ferroelectric domain walls by photoemission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Schaab, J.; Meier, D., E-mail: dennis.meier@mat.ethz.ch [Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich (Switzerland); Krug, I. P. [Institut für Optik und Atomare Physik, TU Berlin, Hardenbergstrasse 36, 10623 Berlin (Germany); Forschungszentrum Jülich Peter Grünberg Institute (PGI-6), Leo-Brandt-Strasse, 52425 Jülich (Germany); Nickel, F.; Gottlob, D. M.; Doğanay, H.; Schneider, C. M. [Forschungszentrum Jülich Peter Grünberg Institute (PGI-6), Leo-Brandt-Strasse, 52425 Jülich (Germany); Cano, A. [CNRS, Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France); Hentschel, M. [4th Physics Institute and Research Center SCoPE, University of Suttgart, Pfaffenwaldring 57, 70659 Stuttgart (Germany); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Yan, Z.; Bourret, E. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Ramesh, R. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Materials Science and Engineering, University of California, Berkeley, California 94720 (United States)

    2014-06-09

    High-resolution X-ray photoemission electron microscopy (X-PEEM) is a well-established method for imaging ferroelectric domain structures. Here, we expand the scope of application of X-PEEM and demonstrate its capability for imaging and investigating domain walls in ferroelectrics with high spatial resolution. Using ErMnO{sub 3} as test system, we show that ferroelectric domain walls can be visualized based on photo-induced charging effects and local variations in their electronic conductance can be mapped by analyzing the energy distribution of photoelectrons. Our results open the door for non-destructive, contact-free, and element-specific studies of the electronic and chemical structure at domain walls in ferroelectrics.

  19. Characteristics of domain wall chirality and propagation in a Y-junction nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, W.-Y.; Yoon, Seungha; Kwon, J.-H. [School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005 (Korea, Republic of); Grünberg, P. [Gruenberg Center for Magnetic Nanomaterials, Gwangju Institute of Science and Technology (GIST), Gwangju 61005 (Korea, Republic of); Cho, B. K., E-mail: chobk@gist.ac.kr [School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005 (Korea, Republic of); Gruenberg Center for Magnetic Nanomaterials, Gwangju Institute of Science and Technology (GIST), Gwangju 61005 (Korea, Republic of)

    2016-01-14

    Chirality-dependent propagation of transverse wall along a nanowire was investigated using a Y-junction with spin-valve structure. It was found that the Y-junction can be used for convenient and effective electric detection of transverse domain wall chirality, especially in a nanowire with sub-200 nm width, where it is difficult to electrically detect chirality using conventional artificial defect, such as a notch, due to small resistance change. Domain wall propagation path in the Y-junction was found to be determined by the wall chirality, whether clockwise or counterclockwise. Using the Y-junction nanowire, characteristics of domain wall chirality that was nucleated in a nucleation pad, attached at the end of a nanowire, were studied and found to be in good agreement with the results of theoretical simulation.

  20. Quantum-induced interactions in the moduli space of degenerate BPS domain walls

    Energy Technology Data Exchange (ETDEWEB)

    Alonso-Izquierdo, A. [Departamento de Matematica Aplicada and IUFFyM, Universidad de Salamanca,c/ del Parque 2, 37008-Salamanca (Spain); Guilarte, J. Mateos [Departamento de Fisica Fundamental and IUFFyM, Universidad de Salamanca,Plaza de la Merced s/n, 37008-Salamanca (Spain)

    2014-01-23

    In this paper quantum effects are investigated in a very special two-scalar field model having a moduli space of BPS topological defects. In a (1+1)-dimensional space-time the defects are classically degenerate in mass kinks, but in (3+1) dimensions the kinks become BPS domain walls, all of them sharing the same surface tension at the classical level. The heat kernel/zeta function regularization method will be used to control the divergences induced by the quantum kink and domain wall fluctuations. A generalization of the Gilkey-DeWitt-Avramidi heat kernel expansion will be developed in order to accommodate the infrared divergences due to zero modes in the spectra of the second-order kink and domain wall fluctuation operators, which are respectively N=2×N=2 matrix ordinary or partial differential operators. Use of these tools in the spectral zeta function associated with the Hessian operators paves the way to obtain general formulas for the one-loop kink mass and domain wall tension shifts in any (1+1)- or (3+1)-dimensional N-component scalar field theory model. Application of these formulae to the BPS kinks or domain walls of the N=2 model mentioned above reveals the breaking of the classical mass or surface tension degeneracy at the quantum level. Because the main parameter distinguishing each member in the BPS kink or domain wall moduli space is essentially the distance between the centers of two basic kinks or walls, the breaking of the degeneracy amounts to the surge in quantum-induced forces between the two constituent topological defects. The differences in surface tension induced by one-loop fluctuations of BPS walls give rise mainly to attractive forces between the constituent walls except if the two basic walls are very far apart. Repulsive forces between two close walls only arise if the coupling approaches the critical value from below.

  1. Analysis of ultra-narrow ferromagnetic domain walls

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, Catherine; Paul, David

    2012-01-10

    New materials with high magnetic anisotropy will have domains separated by ultra-narrow ferromagnetic walls with widths on the order of a few unit cells, approaching the limit where the elastic continuum approximation often used in micromagnetic simulations is accurate. The limits of this approximation are explored, and the static and dynamic interactions with intrinsic crystalline defects and external driving elds are modeled. The results developed here will be important when considering the stability of ultra-high-density storage media.

  2. Domain wall velocity measurement in permalloy nanowires with X-ray magnetic circular dichroism imaging and single shot Kerr microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Moore, T.A., E-mail: t.a.moore@physics.or [Fachbereich Physik, Universitaet Konstanz, Universitaetsstrasse 10, 78457 Konstanz (Germany); Klaeui, M.; Heyne, L.; Moehrke, P. [Fachbereich Physik, Universitaet Konstanz, Universitaetsstrasse 10, 78457 Konstanz (Germany); Backes, D.; Rhensius, J. [Fachbereich Physik, Universitaet Konstanz, Universitaetsstrasse 10, 78457 Konstanz (Germany); Laboratory for Micro- and Nanotechnology, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Ruediger, U. [Fachbereich Physik, Universitaet Konstanz, Universitaetsstrasse 10, 78457 Konstanz (Germany); Heyderman, L.J. [Laboratory for Micro- and Nanotechnology, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Mentes, T.O.; Nino, M.A.; Locatelli, A. [Sincrotrone Trieste, 34012 Basovizza-Trieste (Italy); Potenza, A.; Marchetto, H.; Cavill, S.; Dhesi, S.S. [Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE (United Kingdom)

    2010-05-15

    Domain walls (DWs) propagated along nanoscale magnetic wires by current or field pulses could potentially be used for data storage or logic applications, but the understanding of the DW dynamics, particularly under the influence of spin-polarized current, is incomplete. Measuring the velocity can give insights into the physics of the DW motion. Here we demonstrate DW velocity measurements in permalloy (Ni{sub 80}Fe{sub 20}) nanowires (1500 nm width and 20 nm thickness) using the techniques of X-ray magnetic circular dichroism photoemission electron microscopy (XMCD-PEEM) to image the magnetic contrast in the nanowires, and single shot Kerr microscopy, which allows for dynamic measurements. The magnetic imaging yields the average velocity as well as information on the DW spin structure, whereas the single shot method highlights the stochastic nature of the DW motion.

  3. Domain Walls and Textured Vortices in a Two-Component Ginzburg-Landau Model

    DEFF Research Database (Denmark)

    Madsen, Søren Peder; Gaididei, Yu. B.; Christiansen, Peter Leth

    2005-01-01

    We look for domain wall and textured vortex solutions in a two-component Ginzburg-Landau model inspired by two-band superconductivity. The two-dimensional two-component model, with equal coherence lengths and no magnetic field, shows some interesting properties. In the absence of a Josephson type...... coupling between the two order parameters a ''textured vortex'' is found by analytical and numerical solution of the Ginzburg-Landau equations. With a Josephson type coupling between the two order parameters we find the system to split up in two domains separated by a domain wall, where the order parameter...

  4. Gravitational waves from domain walls in the next-to-minimal supersymmetric standard model

    Energy Technology Data Exchange (ETDEWEB)

    Kadota, Kenji [Center for Theoretical Physics of the Universe, Institute for Basic Science,Daejeon 305-811 (Korea, Republic of); Kawasaki, Masahiro [Institute for Cosmic Ray Research, The University of Tokyo,5-1-5 Kashiwa-no-ha, Kashiwa City, Chiba 277-8582 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (WPI),Todai Institutes for Advanced Study, The University of Tokyo,5-1-5 Kashiwa-no-ha, Kashiwa City, Chiba 277-8582 (Japan); Saikawa, Ken’ichi [Department of Physics, Tokyo Institute of Technology,2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan)

    2015-10-16

    The next-to-minimal supersymmetric standard model predicts the formation of domain walls due to the spontaneous breaking of the discrete Z{sub 3}-symmetry at the electroweak phase transition, and they collapse before the epoch of big bang nucleosynthesis if there exists a small bias term in the potential which explicitly breaks the discrete symmetry. Signatures of gravitational waves produced from these unstable domain walls are estimated and their parameter dependence is investigated. It is shown that the amplitude of gravitational waves becomes generically large in the decoupling limit, and that their frequency is low enough to be probed in future pulsar timing observations.

  5. Domain Walls in Non-Equilibrium Systems and the Emergence of Persistent Patterns

    CERN Document Server

    Hagberg, A

    1993-01-01

    Abstract: Domain walls in equilibrium phase transitions propagate in a preferred direction so as to minimize the free energy of the system. As a result, initial spatio-temporal patterns ultimately decay toward uniform states. The absence of a variational principle far from equilibrium allows the coexistence of domain walls propagating in any direction. As a consequence, *persistent* patterns may emerge. We study this mechanism of pattern formation using a non-variational extension of Landau's model for second order phase transitions. PACS numbers: 05.70.Fh, 42.65.Pc, 47.20.Ky, 82.20Mj

  6. Time Variation of the Fine Structure Constant in the Spacetime of a Cosmic Domain Wall

    Science.gov (United States)

    Campanelli, L.; Cea, P.; Tedesco, L.

    The gravitational field produced by a domain wall acts as a medium with spacetime-dependent permittivity ɛ. Therefore, the fine structure constant α=e2/4πɛ will be a time-dependent function at fixed position. The most stringent constraint on the time-variation of α comes from the natural reactor Oklo and gives |˙ α /α | < few × 10-17 yr-1. This limit constrains the tension of a cosmic domain wall to be less than σ ≲ 10-2 MeV3, and then represents the most severe limit on the energy density of a cosmic wall stretching our Universe.

  7. Time Variation of the Fine Structure Constant in the Spacetime of a Domain Wall

    CERN Document Server

    Campanelli, L; Tedesco, L

    2005-01-01

    The gravitational field produced by a domain wall acts as a medium with spacetime-dependent permittivity \\epsilon. Therefore, the fine structure constant \\alpha = e^2/4 \\pi \\epsilon will be a time-dependent function at fixed position. The most stringent constraint on the time-variation of \\alpha comes from the natural reactor Oklo and gives |\\dot{\\alpha}/\\alpha| < few 10^{-17} yr^{-1}. This limit constrains the tension of a cosmic domain wall to be less than \\sigma \\lesssim 10^{-2} MeV^3, and then represents the most severe limit on the energy density of a cosmic wall stretching our Universe.

  8. Effect of Joule heating in current-driven domain wall motion

    OpenAIRE

    A., Yamaguchi; S., Nasu; H., Tanigawa; T., Ono; K., Miyake; Ko, Mibu; T., Shinjo

    2004-01-01

    It was found that high current density needed for the current-driven domain wall motion results in the Joule heating of the sample. The sample temperature, when the current-driven domain wall motion occurred, was estimated by measuring the sample resistance during the application of a pulsed current. The sample temperature was 750 K for the threshold current density of 6.7×1011 A/m2 in a 10-nm-thick Ni81Fe19 wire with a width of 240 nm on thermally oxidized silicon substrate. The temperature ...

  9. Effect of Joule heating in current-driven domain wall motion

    OpenAIRE

    Yamaguchi, A.; Tanigawa, H.; Ono, T.; Nasu, S; Miyake, K.; Mibu, K.; Shinjo, T.

    2004-01-01

    It was found that high current density needed for the current-driven domain wall motion results in the Joule heating of the sample. The sample temperature, when the current-driven domain wall motion occurred, was estimated by measuring the sample resistance during the application of a pulsed-current. The sample temperature was 750 K for the threshold current density of 6.7 x 10^11 A/m2 in a 10 nm-thick Ni81Fe19 wire with a width of 240 nm. The temperature was raised to 830 K for the current d...

  10. Simulations of super-structure domain walls in two dimensional assemblies of magnetic nanoparticles

    DEFF Research Database (Denmark)

    Jordanovic, Jelena; Beleggia, Marco; Schiøtz, Jakob

    2015-01-01

    taking the role of the atomic spins. The coupling is, however, different. The superspins interact only by dipolar interactions as exchange coupling between individual nanoparticles may be neglected due to interparticle spacing. We observe that it is energetically favorable to introduce domain walls...... oriented along the long dimension of nanoparticle assemblies rather than along the short dimension. This is unlike what is typically observed in continuous magnetic materials, where the exchange interaction introduces an energetic cost proportional to the area of the domain walls. Structural disorder...

  11. Domain Walls and Textured Vortices in a Two-Component Ginzburg-Landau Model

    DEFF Research Database (Denmark)

    Madsen, Søren Peder; Gaididei, Yu. B.; Christiansen, Peter Leth

    2005-01-01

    We look for domain wall and textured vortex solutions in a two-component Ginzburg-Landau model inspired by two-band superconductivity. The two-dimensional two-component model, with equal coherence lengths and no magnetic field, shows some interesting properties. In the absence of a Josephson type...... coupling between the two order parameters a ''textured vortex'' is found by analytical and numerical solution of the Ginzburg-Landau equations. With a Josephson type coupling between the two order parameters we find the system to split up in two domains separated by a domain wall, where the order parameter...

  12. Localized NMR Mediated by Electrical-Field-Induced Domain Wall Oscillation in Quantum-Hall-Ferromagnet Nanowire.

    Science.gov (United States)

    Miyamoto, S; Miura, T; Watanabe, S; Nagase, K; Hirayama, Y

    2016-03-09

    We present fractional quantum Hall domain walls confined in a gate-defined wire structure. Our experiments utilize spatial oscillation of domain walls driven by radio frequency electric fields to cause nuclear magnetic resonance. The resulting spectra are discussed in terms of both large quadrupole fields created around the wire and hyperfine fields associated with the oscillating domain walls. This provides the experimental fact that the domain walls survive near the confined geometry despite of potential deformation, by which a localized magnetic resonance is allowed in electrical means.

  13. Topological susceptibility and chiral condensate with $N_f=2+1+1$ dynamical flavors of maximally twisted mass fermions

    CERN Document Server

    Cichy, K; Garcia-Ramos, E; Jansen, K

    2011-01-01

    We study the 'spectral projector' method for the computation of the chiral condensate and the topological susceptibility, using $N_f=2+1+1$ dynamical flavors of maximally twisted mass Wilson fermions. In particular, we perform a study of the quark mass dependence of the chiral condensate $\\Sigma$ and topological susceptibility $\\chi_{top}$ in the range $270 MeV < m_{\\pi} < 500 MeV$ and compare our data with analytical predictions. In addition, we compute $\\chi_{top} in the quenched approximation where we match the lattice spacing to the $N_f=2+1+1$ dynamical simulations. Using the Kaon, $\\eta$ and $\\eta^{\\prime}$ meson masses computed on the $N_f=2+1+1$ ensembles, we then perform a preliminary test of the Witten-Veneziano relation.

  14. Domain wall signatures in BICEP2, Planck, VLT/UVES and Keck/HIRES data?

    CERN Document Server

    Avelino, P P

    2014-01-01

    We consider the possibility that current hints for a spatial variation of the fine structure constant at high redshift could be due to a domain wall network described by a scalar field non-minimally coupled to the electromagnetic field. We show that in order to be cause of the reported spatial variation of the fine structure constant, without being in conflict with the observed anisotropies of the cosmic microwave background, the characteristic scale of the network would have to be of the order of the Hubble radius and the fractional contribution of the domain wall network to the energy density of the Universe would need to be in the range $10^{-10} < \\Omega_{w0} < 10^{-5}$. We argue that for sufficiently large values of $\\Omega_{w0}$ in this range, domain walls could even be responsible for the large scale anomalies in the temperature distribution of the cosmic microwave background detected by Planck and WMAP and for the B-mode polarisation signature detected by BICEP2. Since the domain wall contributi...

  15. Quark matter coupled to domain walls in Bianchi types II, VIII and IX Universes

    Indian Academy of Sciences (India)

    S D Katore; M M Sancheti; S P Hatkar

    2014-10-01

    In this study of Bianchi types II, VIII and IX Universes, quark matter coupled to domain walls in the context of general relativity are explored. To obtain deterministic solution of the Einstein’s field equations, various techniques are adopted. The features of the obtained solution are discussed.

  16. Model of hybrid interfacial domain wall in ferromagnetic/antiferromagnetic bilayers

    Science.gov (United States)

    Zhang, Wen; Zhai, Ya; Lu, Mu; You, Biao; Zhai, Hong-Ru; Caroline, G. Morgan

    2015-04-01

    A general model of a hybrid interfacial domain wall (HIDW) in ferromagnetic/antiferromagnetic exchange biased bilayers is proposed, where an interfacial domain wall is allowed to extend into either the ferromagnetic or antiferromagnetic layer or across both. The proposition is based on our theoretical investigation on thickness and field dependences of ferromagnetic domain wall (FMDW) and antiferromagnetic domain wall (AFDW), respectively. Good match of the simulation to the hysteresis loops of a series of NiFe/FeMn exchange-biased bilayers confirms the existence of the HIDW, where the AFDW part is found to preferentially occupy the entire antiferromagnetic layer while the FMDW shrinks with the increased magnetic field as expected. The observed asymmetry between the ascending and descending branches of the hysteresis loop is explained naturally as a consequence of different partition ratios between AFDW and FMDW. Project supported by the National Basic Research Program, China (Grant No. 2010CB923404), the National Natural Science Foundation for Young Scientists of China (Grant No. 61306121), and the China Postdoctoral Science Foundation (Grant No. 2013M541580).

  17. Direct observation of interlocked domain walls in hexagonal RMnO3 (R=Tm, Lu)

    Science.gov (United States)

    Zhang, Q. H.; Wang, L. J.; Wei, X. K.; Yu, R. C.; Gu, L.; Hirata, A.; Chen, M. W.; Jin, C. Q.; Yao, Y.; Wang, Y. G.; Duan, X. F.

    2012-01-01

    Using state-of-the-art aberration-corrected annular-bright-field and high-angle annular-dark-field scanning transmission electron microscopy, we investigated domain wall structures in multiferroic hexagonal TmMnO3 and LuMnO3 ceramics at the atomic scale. Two types of 180° domain walls (DWs), i.e., the transverse and the longitudinal DWs with uniform displacements of a/3 and 2a/3, respectively, were identified along the b direction, which is in agreement with the interlock between the ferroelectric and structural translation domain walls that had been predicted previously. Across the domain wall the arrangement of MnO5 polyhedra was not found to be inversed, indicating that (i) it has negligible effects on the polarization and (ii) the structures of the neighbor domains with opposite polarizations are not exactly the same. These wall structures are different from the polarization inversion in conventional ferroelectrics and may be used to explain the unusual transport properties and magnetoelectic effects.

  18. Axionic domain wall number related to U(1anom global symmetry

    Directory of Open Access Journals (Sweden)

    Jihn E. Kim

    2016-08-01

    Full Text Available The QCD axion with fa at an intermediate scale, 109 GeV∼1012 GeV, seems in conflict with the gravity spoil of global symmetries and may face the axionic domain wall problem. We point out that the string compactifications with an anomalous U(1 gauge symmetry, allowing desirable chiral matter spectra, circumvent these two problems simultaneously.

  19. Domain walls in noncommutative gauge theories, folded D-branes, and communication with mirror world

    Energy Technology Data Exchange (ETDEWEB)

    Dubovsky, S.L.; Sibiryakov, S.M. E-mail: sibir@ms2.inr.ac.ru

    2004-07-19

    Noncommutative U(N) gauge theories at different N may be often thought of as different sectors of a single theory. For instance, U(1) theory possesses a sequence of vacua labeled by an integer parameter N, and the theory in the vicinity of the Nth vacuum coincides with the U(N) noncommutative gauge theory. We construct domain walls on noncommutative plane, which separate vacua with different gauge groups in gauge theory with adjoint scalar field. The scalar field has nonminimal coupling to the gauge field, such that the scale of noncommutativity is determined by the vacuum value of the scalar field. The domain walls are solutions of the BPS equations in the theory. It is natural to interprete the domain wall as a stack of D-branes plus a stack of folded D-branes. We support this interpretation by the analysis of small fluctuations around domain walls, and suggest that such configurations of branes emerge as solutions of the Matrix model in large class of pp-wave backgrounds with inhomogeneous field strength. We point out that the folded D-brane per se provides an explicit realization of the 'mirror world' idea, and speculate on some phenomenological consequences of this scenario.

  20. Low energy electron imaging of domains and domain walls in magnesium-doped lithium niobate

    Science.gov (United States)

    Nataf, G. F.; Grysan, P.; Guennou, M.; Kreisel, J.; Martinotti, D.; Rountree, C. L.; Mathieu, C.; Barrett, N.

    2016-09-01

    The understanding of domain structures, specifically domain walls, currently attracts a significant attention in the field of (multi)-ferroic materials. In this article, we analyze contrast formation in full field electron microscopy applied to domains and domain walls in the uniaxial ferroelectric lithium niobate, which presents a large 3.8 eV band gap and for which conductive domain walls have been reported. We show that the transition from Mirror Electron Microscopy (MEM - electrons reflected) to Low Energy Electron Microscopy (LEEM - electrons backscattered) gives rise to a robust contrast between domains with upwards (Pup) and downwards (Pdown) polarization, and provides a measure of the difference in surface potential between the domains. We demonstrate that out-of-focus conditions of imaging produce contrast inversion, due to image distortion induced by charged surfaces, and also carry information on the polarization direction in the domains. Finally, we show that the intensity profile at domain walls provides experimental evidence for a local stray, lateral electric field.

  1. Photonic realization of topologically protected bound states in domain-wall waveguide arrays

    CERN Document Server

    Lee-Thorp, James P; Xu, Xinan; Yang, Jinghui; Fefferman, Charles L; Wong, Chee Wei; Weinstein, Michael I

    2016-01-01

    We present an analytical theory of topologically protected photonic states for the two-dimensional Maxwell equations for a class of continuous periodic dielectric structures, modulated by a domain wall. We further numerically confirm the applicability of this theory for three-dimensional structures.

  2. Quantum Oscillations of the Nanoscale Structural Inhomogeneities of the Domain Wall in Magnetic Bubble.

    Science.gov (United States)

    Shevchenko, A B; Barabash, M Yu

    2015-12-01

    It is shown that at low temperatures, quantum oscillations of nanoscale structural inhomogeneities (the vertical Bloch line and the Bloch point) occur in the domain walls of cylindrical magnetic domains formed in a uniaxial magnetic film with strong magnetic anisotropy. The conditions for the excitation of these oscillations are determined.

  3. Hydrodynamics of domain walls in ferroelectrics and multiferroics: Impact on memory devices

    Science.gov (United States)

    Scott, J. F.; Evans, D. M.; Gregg, J. M.; Gruverman, A.

    2016-07-01

    The standard "Kittel Law" for the thickness and shape of ferroelectric, ferroelastic, or ferromagnet domains assumes mechanical equilibrium. The present paper shows that such domains may be highly nonequilibrium, with unusual thicknesses and shapes. In lead germanate and multiferroic lead zirconate titanate iron tantalate domain wall instabilities resemble hydrodynamics (Richtmyer-Meshkov and Helfrich-Hurault, respectively).

  4. Manipulation of a Nuclear Spin by a Magnetic Domain Wall in a Quantum Hall Ferromagnet

    Science.gov (United States)

    Korkusinski, M.; Hawrylak, P.; Liu, H. W.; Hirayama, Y.

    2017-03-01

    The manipulation of a nuclear spin by an electron spin requires the energy to flip the electron spin to be vanishingly small. This can be realized in a many electron system with degenerate ground states of opposite spin polarization in different Landau levels. We present here a microscopic theory of a domain wall between spin unpolarized and spin polarized quantum Hall ferromagnet states at filling factor two with the Zeeman energy comparable to the cyclotron energy. We determine the energies and many-body wave functions of the electronic quantum Hall droplet with up to N = 80 electrons as a function of the total spin, angular momentum, cyclotron and Zeeman energies from the spin singlet ν = 2 phase, through an intermediate polarization state exhibiting a domain wall to the fully spin-polarized phase involving the lowest and the second Landau levels. We demonstrate that the energy needed to flip one electron spin in a domain wall becomes comparable to the energy needed to flip the nuclear spin. The orthogonality of orbital electronic states is overcome by the many-electron character of the domain - the movement of the domain wall relative to the position of the nuclear spin enables the manipulation of the nuclear spin by electrical means.

  5. Low energy electron imaging of domains and domain walls in magnesium-doped lithium niobate

    Science.gov (United States)

    Nataf, G. F.; Grysan, P.; Guennou, M.; Kreisel, J.; Martinotti, D.; Rountree, C. L.; Mathieu, C.; Barrett, N.

    2016-01-01

    The understanding of domain structures, specifically domain walls, currently attracts a significant attention in the field of (multi)-ferroic materials. In this article, we analyze contrast formation in full field electron microscopy applied to domains and domain walls in the uniaxial ferroelectric lithium niobate, which presents a large 3.8 eV band gap and for which conductive domain walls have been reported. We show that the transition from Mirror Electron Microscopy (MEM – electrons reflected) to Low Energy Electron Microscopy (LEEM – electrons backscattered) gives rise to a robust contrast between domains with upwards (Pup) and downwards (Pdown) polarization, and provides a measure of the difference in surface potential between the domains. We demonstrate that out-of-focus conditions of imaging produce contrast inversion, due to image distortion induced by charged surfaces, and also carry information on the polarization direction in the domains. Finally, we show that the intensity profile at domain walls provides experimental evidence for a local stray, lateral electric field. PMID:27608605

  6. Domain Walls and Flux Tubes in N=2 SQCD D-Brane Prototypes

    CERN Document Server

    Shifman, M

    2003-01-01

    This paper could have been entitled "D branes and strings from flesh and blood." We study field theoretic prototypes of D branes/strings. To this end we consider (2+1)-dimensional domain walls in (3+1)-dimensional N=2 SQCD with SU(2) gauge group and two quark flavors in the fundamental representation. This theory is perturbed by a small mass term of the adjoint matter which, in the leading order in the mass parameter, does not break N=2 supersymmetry, and reduces to a (generalized) Fayet-Iliopoulos term in the effective low-energy N=2 SQED. We find 1/2 BPS-saturated domain wall solution interpolating between two quark vacua at weak coupling, and show that this domain wall localizes a U(1) gauge field. To make contact with the brane/string picture we consider the Abrikosov-Nielsen-Olesen magnetic flux tube in one of two quark vacua and demonstrate that it can end on the domain wall. We find an explicit 1/4 BPS-saturated solution for the wall/flux tube junction. We verify that the end point of the flux tube on ...

  7. Towards quantum turbulence in cold atomic fermionic superfluids

    Science.gov (United States)

    Bulgac, Aurel; McNeil Forbes, Michael; Wlazłowski, Gabriel

    2017-01-01

    Fermionic superfluids provide a new realization of quantum turbulence, accessible to both experiment and theory, yet relevant to phenomena from both cold atoms to nuclear astrophysics. In particular, the strongly interacting Fermi gas realized in cold-atom experiments is closely related to dilute neutron matter in neutron star crusts. Unlike the liquid superfluids 4He (bosons) and 3He (fermions), where quantum turbulence has been studied in laboratory for decades, superfluid Fermi gases stand apart for a number of reasons. They admit a rather reliable theoretical description based on density functional theory called the time-dependent superfluid local density approximation that describes both static and dynamic phenomena. Cold atom experiments demonstrate exquisite control over particle number, spin polarization, density, temperature, and interaction strength. Topological defects such as domain walls and quantized vortices, which lie at the heart of quantum turbulence, can be created and manipulated with time-dependent external potentials, and agree with the time-dependent theoretical techniques. While similar experimental and theoretical control exists for weakly interacting Bose gases, the unitary Fermi gas is strongly interacting. The resulting vortex line density is extremely high, and quantum turbulence may thus be realized in small systems where classical turbulence is suppressed. Fermi gases also permit the study of exotic superfluid phenomena such as the Larkin-Ovchinnikov-Fulde-Ferrell pairing mechanism for polarized superfluids which may give rise to 3D supersolids, and a pseudo-gap at finite temperatures that might affect the regime of classical turbulence. The dynamics associated with these phenomena has only started to be explored. Finally, superfluid mixtures have recently been realized, providing experimental access to phenomena like Andreev-Bashkin entrainment predicted decades ago. Superfluid Fermi gases thus provide a rich forum for addressing

  8. Phenomenology of high colour fermions

    Energy Technology Data Exchange (ETDEWEB)

    Lust, D.; Streng, K.H.; Papantonopoulos, E.; Zoupanos, G.

    1986-04-28

    We present the phenomenological consequences of a dynamical scenario for electroweak symmetry breaking and generation of fermion masses, involving the presence of fermions which transform under high colour representations. Particular emphasis is given to the predictions for rare processes and to the possible signals in present and future machines. (orig.).

  9. Transient and steady-state velocity of domain walls for a complete range of drive fields. [in magnetic material

    Science.gov (United States)

    Bourne, H. C., Jr.; Bartran, D. S.

    1974-01-01

    Approximate analytic solutions for transient and steady-state 180 deg domain-wall motion in bulk magnetic material are obtained from the dynamic torque equations with a Gilbert damping term. The results for the Walker region in which the transient solution approaches the familiar Walker steady-state solution are presented in a slightly new form for completeness. An analytic solution corresponding to larger drive fields predicts an oscillatory motion with an average value of the velocity which decreases with drive field for reasonable values of the damping parameter. These results agree with those obtained by others from a computer solution of the torque equation and those obtained by others with the assumption of a very large anisotropy field.

  10. Low temperature and high field regimes of connected kagome artificial spin ice: the role of domain wall topology

    Science.gov (United States)

    Zeissler, Katharina; Chadha, Megha; Lovell, Edmund; Cohen, Lesley F.; Branford, Will R.

    2016-07-01

    Artificial spin ices are frustrated magnetic nanostructures where single domain nanobars act as macrosized spins. In connected kagome artificial spin ice arrays, reversal occurs along one-dimensional chains by propagation of ferromagnetic domain walls through Y-shaped vertices. Both the vertices and the walls are complex chiral objects with well-defined topological edge-charges. At room temperature, it is established that the topological edge-charges determine the exact switching reversal path taken. However, magnetic reversal at low temperatures has received much less attention and how these chiral objects interact at reduced temperature is unknown. In this study we use magnetic force microscopy to image the magnetic reversal process at low temperatures revealing the formation of quite remarkable high energy remanence states and a change in the dynamics of the reversal process. The implication is the breakdown of the artificial spin ice regime in these connected structures at low temperatures.

  11. Fermion frontiers in vector lattice gauge theories: Proceedings. Volume 8

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    The inclusion of fermions into simulations of lattice gauge theories is very difficult both theoretically and numerically. With the presence of Teraflops-scale computers for lattice gauge theory, the authors wanted a forum to discuss new approaches to lattice fermions. The workshop concentrated on approaches which are ripe for study on such large machines. Although lattice chiral fermions are vitally important to understand, there is not technique at hand which is viable on these Teraflops-scale machines for real-world problems. The discussion was therefore focused on recent developments and future prospects for QCD-like theories. For the well-known fermion formulations, the Aoki phase in Wilson fermions, novelties of U{sub A}(1) symmetry and the {eta}{prime} for staggered fermions and new approaches for simulating the determinant for Wilson fermions were discussed. The newer domain-wall fermion formulation was reviewed, with numerical results given by many speakers. The fermion proposal of Friedberg, Lee and Pang was introduced. They also were able to compare and contrast the dependence of QCD and QCD-like SUSY theories on the number of quark flavors. These proceedings consist of several transparencies and a summary page from each speaker. This should serve to outline the major points made in each talk.

  12. Dynamical Twisted Mass Fermions with Light Quarks: Simulation and Analysis Details

    CERN Document Server

    Boucaud, Ph; Farchioni, F; Frezzotti, R; Giménez, V; Herdoiza, G; Jansen, K; Lubicz, V; Michael, C; Münster, G; Palao, D; Rossi, G C; Scorzato, L; Shindler, A; Simula, S; Sudmann, T; Urbach, C; Wenger, U

    2008-01-01

    In a recent paper [hep-lat/0701012] we presented precise lattice QCD results of our European Twisted Mass Collaboration (ETMC). They were obtained by employing two mass-degenerate flavours of twisted mass fermions at maximal twist. In the present paper we give details on our simulations and the computation of physical observables. In particular, we discuss the problem of tuning to maximal twist, the techniques we have used to compute correlators and error estimates. In addition, we provide more information on the algorithm used, the autocorrelation times and scale determination, the evaluation of disconnected contributions and the description of our data by means of chiral perturbation theory formulae.

  13. Coarsening and persistence in a one-dimensional system of orienting arrowheads: Domain-wall kinetics with A +B →0

    Science.gov (United States)

    Khandkar, Mahendra D.; Stinchcombe, Robin; Barma, Mustansir

    2017-01-01

    We demonstrate the large-scale effects of the interplay between shape and hard-core interactions in a system with left- and right-pointing arrowheads on a line, with reorientation dynamics. This interplay leads to the formation of two types of domain walls, > (B ). The correlation length in the equilibrium state diverges exponentially with increasing arrowhead density, with an ordered state of like orientations arising in the limit. In this high-density limit, the A domain walls diffuse, while the B walls are static. In time, the approach to the ordered state is described by a coarsening process governed by the kinetics of domain-wall annihilation A +B →0 , quite different from the A +A →0 kinetics pertinent to the Glauber-Ising model. The survival probability of a finite set of walls is shown to decay exponentially with time, in contrast to the power-law decay known for A +A →0 . In the thermodynamic limit with a finite density of walls, coarsening as a function of time t is studied by simulation. While the number of walls falls as t-1/2, the fraction of persistent arrowheads decays as t-θ where θ is close to 1/4 , quite different from the Ising value. The global persistence too has θ =1/4 , as follows from a heuristic argument. In a generalization where the B walls diffuse slowly, θ varies continuously, increasing with increasing diffusion constant.

  14. Temperature dependence of carrier spin polarization determined from current-induced domain wall motion in a Co/Ni nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, K.; Koyama, T.; Hiramatsu, R.; Kobayashi, K.; Ono, T. [Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Chiba, D. [Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 322-0012 (Japan); Fukami, S. [Green Innovation Research Laboratories, NEC Corporation, 34 Miyukigaoka, Tsukuba, Ibaraki 305-8501 (Japan); Center for Spintronics Integrated Systems, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Tanigawa, H.; Suzuki, T. [RENESAS Electronics Corporation, Sagamihara, Kanagawa 252-5298 (Japan); Ohshima, N. [NEC Energy Device Ltd., 1120 Shimokuzawa, Chuo-ku, Sagamihara, Kanagawa 252-5298 (Japan); Ishiwata, N. [Green Innovation Research Laboratories, NEC Corporation, 34 Miyukigaoka, Tsukuba, Ibaraki 305-8501 (Japan); Nakatani, Y. [University of Electro-communications, Chofu, Tokyo 182-8585 (Japan)

    2012-05-14

    We have investigated the temperature dependence of the current-induced magnetic domain wall (DW) motion in a perpendicularly magnetized Co/Ni nanowire at various temperatures and with various applied currents. The carrier spin polarization was estimated from the measured domain wall velocity. We found that it decreased more with increasing temperature from 100 K to 530 K than the saturation magnetization did.

  15. Phase Diagram of Dynamical Twisted Mass Wilson Fermions at Finite Isospin Chemical Potential

    CERN Document Server

    Janssen, Oliver; Splittorff, K; Verbaarschot, Jacobus J M; Zafeiropoulos, Savvas

    2015-01-01

    We consider the phase diagram of twisted mass Wilson fermions of two-flavor QCD in the parameter space of the quark mass, the isospin chemical potential, the twist angle and the lattice spacing. This work extends earlier studies in the continuum and those at zero chemical potential. We evaluate the phase diagram as well as the spectrum of the (pseudo-)Goldstone bosons using the chiral Lagrangian for twisted mass Wilson fermions at non-zero isospin chemical potential. The phases are obtained from a mean field analysis. At zero twist angle we find that already an infinitesimal isospin chemical potential destroys the Aoki phase. The reason is that in this phase we have massless Goldstone bosons with a non-zero isospin charge. At finite twist angle only two different phases are present, one phase which is continuously connected to the Bose condensed phase at non-zero chemical potential and another phase which is continuously connected to the normal phase. For either zero or maximal twist the phase diagram is more...

  16. Magnetization reversal of the transverse domain wall confined between two clusters of magnetic impurities in a ferromagnetic planar nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Toscano, D., E-mail: danilotoscano@fisica.ufjf.br [Departamento de Física, Laboratório de Simulação Computacional, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais 36036–330 (Brazil); Leonel, S.A., E-mail: sidiney@fisica.ufjf.br [Departamento de Física, Laboratório de Simulação Computacional, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais 36036–330 (Brazil); Coura, P.Z., E-mail: pablo@fisica.ufjf.br [Departamento de Física, Laboratório de Simulação Computacional, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais 36036–330 (Brazil); Sato, F., E-mail: sjfsato@fisica.ufjf.br [Departamento de Física, Laboratório de Simulação Computacional, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais 36036–330 (Brazil); Costa, B.V., E-mail: bvc@fisica.ufmg.br [Departamento de Física, Laboratório de Simulação, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30123–970 (Brazil); Vázquez, M., E-mail: mvazquez@icmm.csic.es [Instituto de Ciencia de Materiales de Madrid, CSIC. 28049 Madrid (Spain)

    2016-12-01

    Numerical simulations have been used to investigate the polarity reversal of the transverse domain wall in rectangular magnetic nanowires and the stabilization of the domain wall position after occurring the polarity reversal. In order to control the wall position we have considered two clusters of magnetic impurities, identical and equidistant from the nanowire width axis. Traps of pinning and blocking for the transverse domain wall can be originated from magnetic impurities, consisting of a local variation of the exchange constant. Under suitable excitation amplitudes it is possible to switch the polarity of the transverse domain wall by applying a nanosecond axial magnetic field pulse in a fast and controllable way. - Highlights: • Traps for pinning and blocking transverse domain walls are proposed. • The traps consisting of localized modifications of the magnetic properties. • The wall polarity can be reversed in a fast and controllable way.

  17. Quantum Measurement-induced Dynamics of Many-Body Ultracold Bosonic and Fermionic Systems in Optical Lattices

    CERN Document Server

    Mazzucchi, Gabriel; Caballero-Benitez, Santiago F; Elliott, Thomas J; Mekhov, Igor B

    2015-01-01

    Trapping ultracold atoms in optical lattices enabled numerous breakthroughs uniting several disciplines. Although the light is a key ingredient in such systems, its quantum properties are typically neglected, reducing the role of light to a classical tool for atom manipulation. Here we show how elevating light to the quantum level leads to novel phenomena, inaccessible in setups based on classical optics. Interfacing a many-body atomic system with quantum light opens it to the environment in an essentially nonlocal way, where spatial coupling can be carefully designed. The competition between typical processes in strongly correlated systems (local tunnelling and interaction) with global measurement backaction leads to novel multimode dynamics and the appearance of long-range correlated tunnelling capable of entangling distant lattices sites, even when tunnelling between neighbouring sites is suppressed by the quantum Zeno effect. We demonstrate both the break-up and protection of strongly interacting fermion ...

  18. Domain walls, $Z(N)$ charge and $A_0$ condensate a canonical ensemble study

    CERN Document Server

    Borisenko, O A; Zinovjev, G M; Petrov, K V

    1996-01-01

    The deconfinement phase transition is studied in the ensemble canonical with respect to triality. Since this ensemble implies a projection to the zero triality sector of the theory we introduce a quantity which is insensitive to $Z(N_c)$ symmetry but can reveal a critical behaviour in the theory with dynamical quarks. Further, we argue that in the canonical ensemble description of full QCD there exist domains of different $Z(N_c)$ phases which are degenerate and possess normal physical properties. This contradicts the predictions of the grand canonical ensemble. We propose a new order parameter to test the realization of the discrete $Z(N_c)$ symmetry at finite temperature and calculate it for the case of $Z(2)$ gauge fields coupled to fundamental fermions.

  19. Fermion confinement via quantum walks in (2+1)-dimensional and (3+1)-dimensional space-time

    Science.gov (United States)

    Márquez-Martín, I.; Di Molfetta, G.; Pérez, A.

    2017-04-01

    We analyze the properties of a two- and three-dimensional quantum walk that are inspired by the idea of a brane-world model put forward by Rubakov and Shaposhnikov [Phys. Lett. B 125, 136 (1983), 10.1016/0370-2693(83)91253-4]. In that model, particles are dynamically confined on the brane due to the interaction with a scalar field. We translated this model into an alternate quantum walk with a coin that depends on the external field, with a dependence which mimics a domain wall solution. As in the original model, fermions (in our case, the walker) become localized in one of the dimensions, not from the action of a random noise on the lattice (as in the case of Anderson localization) but from a regular dependence in space. On the other hand, the resulting quantum walk can move freely along the "ordinary" dimensions.

  20. Field-induced domain wall motion of amorphous [CoSiB/Pt]{sub N} multilayers with perpendicular anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Y. H.; Lee, K. J.; Jung, M. H., E-mail: mhjung@sogang.ac.kr [Department of Physics, Sogang University, Seoul 121-742 (Korea, Republic of); Yoon, J. B.; Cho, J. H.; You, C.-Y. [Department of Physics, Inha University, Incheon 402-751 (Korea, Republic of); Kim, T. W. [Department of Advanced Materials Engineering, Sejong University, Seoul 143-747 (Korea, Republic of)

    2014-05-14

    Amorphous CoSiB/Pt multilayer is a perpendicular magnetic anisotropy material to achieve high squareness, low coercivity, strong anisotropy, and smooth domain wall (DW) motion, because of the smoother interface compared with crystalline multilayers. For [CoSiB(6 Å)/Pt (14 Å)]{sub N} multilayers with N = 3, 6, and 9, we studied the field-induced DW dynamics. The effective anisotropy constant K{sub 1}{sup eff} is 1.5 × 10{sup 6} erg/cm{sup 3} for all the N values, and the linear increment of coercive field H{sub c} with N gives constant exchange coupling J. By analyzing the field dependence of DW images at room temperature, a clear creep motion with the exponent μ = 1/4 could be observed. Even though the pinning field H{sub dep} slightly increases with N, the pinning potential energy U{sub c} is constant (=35 k{sub B}T) for all the N values. These results imply that the amorphous [CoSiB/Pt]{sub N} multilayers are inherently homogeneous compared to crystalline multilayers. For N ≤ 6, the pinning site density ρ{sub pin} is less than 1000/μm{sup 2}, which is about 1 pinning site per the typical device junction size of 30 × 30 nm{sup 2}. Also, the exchange stiffness constant A{sub ex} is obtained to be 0.48 × 10{sup −6} erg/cm, and the domain wall width is expected to be smaller than 5.5 nm. These results may be applicable for spin-transfer-torque magnetic random access memory and DW logic device applications.

  1. Looking at the gluon moment of the nucleon with dynamical twisted mass fermions

    CERN Document Server

    Alexandrou, Constantia; Hadjiyiannakou, Kyriakos; Jansen, Karl; Kostrzewa, Bartosz; Wiese, Christian

    2013-01-01

    To understand the structure of hadrons it is important to know the PDF of their constituents, the quarks and gluons. In our work we aim to compute the first moment of the gluon PDF $\\langle x \\rangle_g$ for the nucleon. We follow two possible approaches in order to extract the gluon moment: the Feynman-Hellmann theorem and a direct method with smearing of the gluon operator. We present preliminary results computed on $24^3 \\times 48$ lattices for the case where the Feynman-Hellman theorem is used and $32^3 \\times 64$ lattices for the direct method, employing $N_f=2+1+1$ maximally twisted mass fermions.

  2. Looking at the gluon moment of the nucleon with dynamical twisted mass fermions

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrou, Constantia [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Drach, Vincent; Wiese, Christian [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Hadjiyiannakou, Kyriakos [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Jansen, Karl [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Kostrzewa, Bartosz [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik

    2013-11-15

    To understand the structure of hadrons it is important to know the PDF of their constituents, the quarks and gluons. In our work we aim to compute the first moment of the gluon PDF left angle x right angle {sub g} for the nucleon. We follow two possible approaches in order to extract the gluon moment: the Feynman-Hellmann theorem and a direct method with smearing of the gluon operator. We present preliminary results computed on 24{sup 3} x 48 lattices for the case where the Feynman-Hellman theorem is used and 32{sup 3} x 64 lattices for the direct method, employing N{sub f}=2+1+1 maximally twisted mass fermions.

  3. On complex Langevin dynamics and zeroes of the measure II: Fermionic determinant

    CERN Document Server

    Aarts, G; Sexty, D; Stamatescu, I -O

    2016-01-01

    Lattice QCD at non-vanishing chemical potential is studied using the complex Langevin equation (CLE). One of the conditions for the correctness of the results of the CLE is that the zeroes of the measure coming from the fermionic determinant are outside of the distribution of the configurations, or at least in a region where support for the distribution is very much suppressed. We investigate this issue for Heavy Dense QCD (HDQCD) and full QCD at high temperatures. In HDQCD it is found that the configurations move closest to the zeroes of the measure around the critical chemical potential of the onset transition, where the sign problem is diminished, but results remain largely unaffected. In full QCD at high temperatures the investigation of the spectrum of the Dirac operator yields a similar observation: the results are unaffected by the issue of the poles.

  4. Protocols for dynamically probing topological edge states and dimerization with fermionic atoms in optical potentials

    Science.gov (United States)

    Metcalf, Mekena; Lai, Chen-Yen; Wright, Kevin; Chien, Chih-Chun

    2017-06-01

    Topological behavior has been observed in quantum systems including ultracold atoms. However, background harmonic traps for cold atoms hinder the direct detection of topological edge states arising at the boundary because the distortion fuses the edge states into the bulk. We propose experimentally feasible protocols to probe localized edge states and dimerization of ultracold fermions. By confining cold atoms in a ring lattice and changing the boundary condition from periodic to open using an off-resonant laser sheet to cut open the ring, topological edge states can be generated. A lattice in a topological configuration can trap a single particle released at the edge as the system evolves in time. Alternatively, depleting an initially filled lattice away from the boundary reveals the occupied edge states. Signatures of dimerization in the presence of contact interactions can be found in selected correlations as the system boundary suddenly changes from periodic to open and exhibit memory effects of the initial state distinguishing different configurations.

  5. Dynamical Electroweak Symmetry Breaking with a Heavy Fermion in Light of Recent LHC Results

    Directory of Open Access Journals (Sweden)

    Pham Q. Hung

    2013-01-01

    Full Text Available The recent announcement of a discovery of a possible Higgs-like particle—its spin and parity are yet to be determined—at the LHC with a mass of 126 GeV necessitates a fresh look at the nature of the electroweak symmetry breaking, in particular if this newly-discovered particle will turn out to have the quantum numbers of a Standard Model Higgs boson. Even if it were a 0+ scalar with the properties expected for a SM Higgs boson, there is still the quintessential hierarchy problem that one has to deal with and which, by itself, suggests a new physics energy scale around 1 TeV. This paper presents a minireview of one possible scenario: the formation of a fermion-antifermion condensate coming from a very heavy fourth generation, carrying the quantum number of the SM Higgs field, and thus breaking the electroweak symmetry.

  6. Switching of ± 360° domain wall states in a nanoring by an azimuthal Oersted field.

    Science.gov (United States)

    Pradhan, N R; Licht, A S; Li, Y; Sun, Y; Tuominen, M T; Aidala, K E

    2011-12-02

    We demonstrate magnetic switching between two 360° domain wall vortex states in cobalt nanorings, which are candidate magnetic states for robust and low power magnetoresistive random access memory (MRAM) devices. These 360° domain wall (DW) or 'twisted onion' states can have clockwise or counterclockwise circulation, the two states for data storage. Reliable switching between the states is necessary for any realistic device. We accomplish this switching by applying a circular Oersted field created by passing current through a metal atomic force microscope tip placed at the center of the ring. After initializing in an onion state, we rotate the DWs to one side of the ring by passing a current through the center, and can switch between the two twisted states by reversing the current, causing the DWs to split and meet again on the opposite side of the ring. A larger current will annihilate the DWs and create a perfect vortex state in the rings.

  7. Kondo effect from a Lorentz-violating domain wall description of superconductivity

    CERN Document Server

    Bazeia, D; Mota-Silva, J C

    2016-01-01

    We extend recent results on domain wall description of superconductivity in an Abelian Higgs model by introducing a particular Lorentz-violating term. The temperature of the system is interpreted through the fact that the soliton following accelerating orbits is a Rindler observer experiencing a thermal bath. We show that this term can be associated with the {\\sl Kondo effect}, that is, the Lorentz-violating parameter is closely related to the concentration of magnetic impurities living on a superconducting domain wall. We also found that the critical temperature decreasing with the impurity concentration as a non-single valued function, for the case $T_K

  8. Using domain walls to perform non-local measurements with high spin signal amplitudes

    Science.gov (United States)

    Savero Torres, W.; Pham, V.-T.; Zahnd, G.; Laczkowski, P.; Nguyen, V.-D.; Beigné, C.; Notin, L.; Jamet, M.; Marty, A.; Vila, L.; Attané, J.-P.

    2016-07-01

    Standard non-local measurements require lateral spin-valves with two different ferromagnetic electrodes, to create and to detect the spin accumulation. Here we show that non-local measurements can also be performed in a cross-shaped nanostructure, made of a single ferromagnetic wire connected to an orthogonal non-magnetic wire. A magnetic domain wall located underneath the ferromagnetic/non-magnetic interface is used to control the magnetizations of the injection and detection zones. As these zones can be very close, our results display spin signals possessing amplitudes larger than those obtained in conventional non-local measurements. We also show that this method can be used as a domain wall detection technique.

  9. Domain wall energy landscapes in amorphous magnetic films with asymmetric arrays of holes

    Energy Technology Data Exchange (ETDEWEB)

    Alija, A; Perez-Junquera, A; RodrIguez-RodrIguez, G; Velez, M; Alameda, J M; MartIn, J I [Depto. Fisica, Fac. Ciencias, Universidad de Oviedo - CINN, Av. Calvo Sotelo s/n, 33007 Oviedo (Spain); Marconi, V I; Kolton, A B; Parrondo, J M R [Depto. Fisica Atomica, Molecular y Nuclear, and GISC, Universidad Complutense, 28040 Madrid (Spain); Anguita, J V [Instituto de Microelectronica de Madrid, CNM-CSIC, Isaac Newton 8, PTM, Tres Cantos, 28760 Madrid (Spain)

    2009-02-21

    Arrays of asymmetric holes have been defined in amorphous Co-Si films by e-beam lithography in order to study domain wall motion across the array subject to the asymmetric pinning potential created by the holes. Experimental results on Kerr effect magnetooptical measurements and hysteresis loops are compared with micromagnetic simulations in films with arrays of triangular holes. These show that the potential asymmetry favours forward wall propagation for flat walls but, if the wall contains a kink, net backward wall propagation is preferred at low fields, in agreement with minor loop experiments. The difference between the fields needed for forward and backward flat wall propagation increases as the size of the triangular holes is reduced, becoming maximum for 1 {mu}m triangles, which is the characteristic length scale set by domain wall width.

  10. Strain-controlled magnetic domain wall propagation in hybrid piezoelectric/ferromagnetic structures

    Science.gov (United States)

    Lei, Na; Devolder, Thibaut; Agnus, Guillaume; Aubert, Pascal; Daniel, Laurent; Kim, Joo-Von; Zhao, Weisheng; Trypiniotis, Theodossis; Cowburn, Russell P.; Chappert, Claude; Ravelosona, Dafiné; Lecoeur, Philippe

    2013-01-01

    The control of magnetic order in nanoscale devices underpins many proposals for integrating spintronics concepts into conventional electronics. A key challenge lies in finding an energy-efficient means of control, as power dissipation remains an important factor limiting future miniaturization of integrated circuits. One promising approach involves magnetoelectric coupling in magnetostrictive/piezoelectric systems, where induced strains can bear directly on the magnetic anisotropy. While such processes have been demonstrated in several multiferroic heterostructures, the incorporation of such complex materials into practical geometries has been lacking. Here we demonstrate the possibility of generating sizeable anisotropy changes, through induced strains driven by applied electric fields, in hybrid piezoelectric/spin-valve nanowires. By combining magneto-optical Kerr effect and magnetoresistance measurements, we show that domain wall propagation fields can be doubled under locally applied strains. These results highlight the prospect of constructing low-power domain wall gates for magnetic logic devices.

  11. Domain wall interactions due to vacuum Dirac field fluctuations in 2 +1 dimensions

    Science.gov (United States)

    Fosco, C. D.; Mazzitelli, F. D.

    2016-07-01

    We evaluate quantum effects due to a two-component Dirac field in 2 +1 spacetime dimensions, coupled to domain-wall-like defects with a smooth shape. We show that these effects induce nontrivial contributions to the (shape-dependent) energy of the domain walls. For a single defect, we study the divergences in the corresponding self-energy, and also consider the role of the massless zero mode—corresponding to the Callan-Harvey mechanism—by coupling the Dirac field to an external gauge field. For two defects, we show that the Dirac field induces a nontrivial, Casimir-like effect between them, and we provide an exact expression for that interaction in the case of two straight-line parallel defects. As is the case for the Casimir interaction energy, the result is finite and unambiguous.

  12. Domain walls in Fe(001) bicrystals-thickness dependence and field-induced transitions

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, M. [Department of Applied physics, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden)]. E-mail: maj.hanson@fy.chalmers.se; Brucas, R. [Department of Applied physics, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden)

    2007-03-15

    Magnetic domain walls (DW's) formed at the grain boundary (GB) of epitaxial bicrystal Fe(001) films, thickness t=50 and 70nm, were studied by magnetic force microscopy. The 'as-grown' samples displayed DW's with different magnetic contrast profiles yielding a single peak for t=50nm and a double peak with a change of sign at the centre of the wall for t=70nm. For t=50nm the wall is characterised as an asymmetric Bloch wall. The double peak of the 70nm thick film transformed into a single peak characteristic for a charged wall, when a field of 30mT was applied along the GB. At remanence this domain wall relaxed to a regular Bloch wall divided into segments of alternating signs.

  13. Some properties of domain wall solution in the Randall-Sundrum model

    Science.gov (United States)

    Ichinose, Shoichi

    2001-12-01

    Properties of the domain wall (kink) solution in the five-dimensional Randall-Sundrum model are examined both analytically and numerically. The configuration is derived by the bulk Higgs mechanism. We focus on (1) the convergence property of the solution, (2) the stablity of the solution, (3) the non-singular property of the Riemann curvature and (4) the behaviours of the warp factor and the Higgs field. It is found that the bulk curvature changes the sign around the surface of the wall. We also present some exact solutions for two simple cases: (a) the no-potential case, (b) the cosmological term-dominated case. Both solutions have the (naked) curvature singularity. We can regard the domain wall solution as a singularity resolution of the exact solutions.

  14. Some Properties of Domain Wall Solution in the Randall-Sundrum Model

    CERN Document Server

    Ichinose, S

    2001-01-01

    Properties of the domain wall (kink) solution in the 5 dimensional Randall-Sundrum model are examined both {\\it analytically} and {\\it numerically}. The configuration is derived by the bulk Higgs mechanism. We focus on 1) the convergence property of the solution, 2) the stableness of the solution, 3) the non-singular property of the Riemann curvature, 4) the behaviours of the warp factor and the Higgs field. It is found that the bulk curvature changes the sign around the surface of the wall. We also present some {\\it exact} solutions for two simple cases: a) the no potential case, b) the cosmological term dominated case. Both solutions have the (naked) curvature singularity. We can regard the domain wall solution as a singularity resolution of the exact solutions.

  15. Quantum transport across van der Waals domain walls in bilayer graphene

    Science.gov (United States)

    Abdullah, H. M.; Van Duppen, B.; Zarenia, M.; Bahlouli, H.; Peeters, F. M.

    2017-10-01

    Bilayer graphene can exhibit deformations such that the two graphene sheets are locally detached from each other resulting in a structure consisting of domains with different van der Waals inter-layer coupling. Here we investigate how the presence of these domains affects the transport properties of bilayer graphene. We derive analytical expressions for the transmission probability, and the corresponding conductance, across walls separating different inter-layer coupling domains. We find that the transmission can exhibit a valley-dependent layer asymmetry and that the domain walls have a considerable effect on the chiral tunnelling properties of the charge carriers. We show that transport measurements allow one to obtain the strength with which the two layers are coupled. We perform numerical calculations for systems with two domain walls and find that the availability of multiple transport channels in bilayer graphene significantly modifies the conductance dependence on inter-layer potential asymmetry.

  16. Single domain wall manipulation in curved nanowires using a mobile, local, circular field

    Science.gov (United States)

    Shortt, Madeline; Bickel, Jessica; Khan, Mina; Tuominen, Mark; Aidala, Katherine

    2014-03-01

    Ferromagnetic nanostructures present exciting physics with a range of potential applications in data storage devices, such as magnetoresistive random access memory (MRAM). These proposals require precise control and understanding of domain wall (DW) movement and interactions. We developed a technique that generates a local circular Oersted field at a precise location by applying current through the tip of the atomic force microscope (AFM). We previously used this technique to control DW motion in nanorings. We extend this method to control individual DW movement in curved nanowires by placing the tip near a 180 DW at the vertex of a curved wire and generating a local field. In this way, we can examine the motion of domain walls through regions with different curvature and the effects of pinning. This work was supported in part by NSF DMR-1207924 and the UMass Center for Hierarchical Manufacturing, NSF CMMI-1025020.

  17. Current induced domain wall motion in nanostripes with perpendicular magnetic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Su Jung; Tan, Reasmey P.; Chun, Byong Sun [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Kim, Young Keun, E-mail: ykim97@korea.ac.k [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of)

    2010-11-15

    We report micromagnetic modeling results of current induced domain wall (DW) motion in magnetic devices with perpendicular magnetic anisotropy by solving the Landau-Lifschitz-Gilbert equation including adiabatic and non-adiabatic terms. A nanostripe model system with dimensions of 500 nm (L)x25 nm (W)x5 nm (H) was selected for calculating the DW motion and its width, as a function of various parameters such as non-adiabatic contribution, anisotropy constant (K{sub u}), saturation magnetization (M{sub s}), and temperature (T). The DW velocity was found to increase when the values of K{sub u} and T were increased and the M{sub s} value decreased. In addition, a reduction of the domain wall width could be achieved by increasing K{sub u} and lowering M{sub s} values regardless of the non-adiabatic constant value.

  18. Partial Breaking of Three-Fold Symmetry via Percolation of a Domain Wall

    CERN Document Server

    Bhattacharya, Soumyadeep

    2016-01-01

    We show that suppression of vortex strings splits the order-disorder transition in the three-state Potts ferromagnet on a simple cubic lattice and opens up an intermediate phase characterized by partial breaking of the three-fold symmetry and long-range order. In contrast, suppression of vortices in the same model on a square lattice results in an intermediate phase with enhanced U(1) symmetry and quasi-long-range order. We show that the difference between the two phases originates from distinct patterns of domain wall proliferation. A domain wall, separating the two most populous spin states, percolates on its own in the former phase but remains at a percolation threshold in the latter.

  19. The Stability of Fake Flat Domain Walls on Kähler Manifold

    Science.gov (United States)

    Akbar, F. T.; Wijaya, R. N.; Gunara, B. E.

    2016-08-01

    In this paper, we study the stability of flat fake domain walls solution of fake N = 1 supergravity in d + 1 dimensions with Kahler surface as the sigma model. We start with Lagrangian for N = 1 fake supergravity which is coupling between gravity and complex scalar in d + 1 dimensions with scalar potential turned on. Then, as in supergravity theory, we demand that the scalar fields span the Kahler manifold. The equations of motion for fields can be reduced into first order equations by defining the superpotential and the resulting equations are called the projection equation and the fake BPS equation. Finally, we discuss about the stability of flat fake domain walls by investigating the critical points of the superpotential and the scalar potential.

  20. Magneto-transport measurements of domain wall propagation in individual multi segmented cylindrical nanowires

    KAUST Repository

    Mohammed, Hanan

    2016-03-01

    Magnetotransport measurements were performed on multisegmented Co/Ni nanowires fabricated by template-assisted electrodeposition. Individual nanowires were isolated and electrodes patterned to study their magnetization reversal process. The magnetoresistance reversal curve of the multisegmented nanowire exhibits a step in the switching field. Micromagnetic simulations of the magnetization reversal process are in agreement with the experimental findings and attribute the step at the switching field to the pinning of a domain wall at the interface of the Co/Ni nanowire.

  1. Domain wall motions in perpendicularly magnetized CoFe/Pd multilayer nanowire

    DEFF Research Database (Denmark)

    Meng, Zhaoliang; Kumar, Manoj; Qiu, Jinjun;

    2014-01-01

    Current-induced domain wall (DW) motion is investigated in a 600nm wide nanowire using multilayer film with a structure of Ta(5nm)/Pd(5nm)/[CoFe(0.4nm)/Pd(1.2nm)]15/Ta(5nm) in terms of anomalous Hall effect measurements. It is found that motion of DWs can be driven by a current density as low as 1...

  2. On-Chip Manipulation of Protein-Coated Magnetic Beads via Domain-Wall Conduits

    DEFF Research Database (Denmark)

    Donolato, Marco; Vavassori, Paolo; Gobbi, Marco;

    2010-01-01

    Geometrically constrained magnetic domain walls (DWs) in magnetic nanowires can be manipulated at the nanometer scale. The inhomogeneous magnetic stray field generated by a DW can capture a magnetic nanoparticle in solution. On-chip nanomanipulation of individual magnetic beads coated with proteins...... is demonstrated through the motion of geometrically constrained DWs in specially designed magnetic nanoconduits fully integrated in a lab-on-a-chip platform....

  3. Theory of domain wall motion mediated magnetoelectric effects in a multiferroic composite

    Science.gov (United States)

    Petrov, V. M.; Srinivasan, G.

    2014-10-01

    A model is discussed for magnetoelectric (ME) interactions originating from the motion of magnetic domain walls (DWs) in a multiferroic composite of orthoferrites RFeO3 (RFO) with magnetic stripe domains and a piezoelectric such as lead magnesium niobate-lead titanate (PMN-PT). The DWs in RFO can be set in motion with an ac magnetic field up to a critical speed of 20 km/s, the highest for any magnetic system, leading to the excitation of bulk and shear magnetoacoustic waves. Thus, the ME coupling will arise from flexural deformation associated with DW motion (rather than the Joule magnetostriction mediated coupling under a static or quasistatic condition). A c plane orthoferrite with a single Néel-type DW in the bc plane and an ac magnetic field H along the c axis is assumed. The deflection in the bilayer due to DW motion is obtained when the DW velocity is a linear function H and the resulting induced voltage across PMN-PT is estimated. It is shown that a combination of spatial and time harmonics of the bending deformation leads to (i) a linear ME coefficient defined by αE=E/H and (ii) a quadratic ME coefficient αEQ=E/H2. The model is applied to yttrium orthoferrites (YFO) and a PMN-PT bilayer since YFO has one of the highest DW mobility amongst the orthoferrites. The coefficient αE is dependent on the DW position, and it is maximum when the DW equilibrium position is at the center of the sample. In YFO/PMN-PT the estimated low-frequency αE ˜ 30 mV/cm Oe and resonance value is 1.5 V/(cm Oe). Since orthoferrites (and PMN-PT) are transparent in the visible region and have a large Faraday rotation, the DW dynamics and the ME coupling could be studied simultaneously. The theory discussed here is of interest for studies on ME coupling and for applications such as magnetically controlled electro-optic devices.

  4. Domain wall pinning sites in Sm(CoFeCuZr) x magnets

    Science.gov (United States)

    Wong, Bunsen Y.; Willard, Matthew; Laughlin, David E.

    1997-05-01

    The magnetic domain structure of Sm(CoFeCuZr) x magnets was studied along various crystallographic zone axes with high resolution Focault mode Lorentz microscopy. The domain wall has been observed to be pinned at (1) 60° hexagonal (H) SmCo 5 cell boundaries, (2) features parallel to RSm 2Co 17c-axis, (3) features parallel to the RSm 2Co 17 basal plane, and (4) linear features with no specific crystallographic direction. The wall pinning features which are parallel to the c-axis were determined to be RSm 2Co 17 antiphase boundaries (APB) and possibly vertical section of HSmCo 5 cell boundaries. Both these microstructure features were found to have a higher Cu content than the RSm 2Co 17 matrix. This chemical inhomogeneity leads to local variations in magnetocrystalline anisotropy assists domain wall pinning, similar to the role of HSmCo 5 suggested previously. Since not all the domain wall pinning features observed are in a strained state, this suggested that chemical segregation to nanostructural features such as HSmCo 5 cell boundaries and APB play a more important role than coherency strain in determining Hci.

  5. Domain wall pinning sites in Sm(CoFeCuZr){sub x} magnets

    Energy Technology Data Exchange (ETDEWEB)

    Wong, B.Y. [Pittsburgh Univ., PA (United States). Dept. of Materials Science and Engineering; Willard, M. [Pittsburgh Univ., PA (United States). Dept. of Materials Science and Engineering; Laughlin, D.E. [Pittsburgh Univ., PA (United States). Dept. of Materials Science and Engineering

    1997-05-01

    The magnetic domain structure of Sm(CoFeCuZr){sub x} magnets was studied along various crystallographic zone axes with high resolution Focault mode Lorentz microscopy. The domain wall has been observed to be pinned at (1) 60 hexagonal (H) SmCo{sub 5} cell boundaries, (2) features parallel to RSm{sub 2}Co{sub 17} c-axis, (3) features parallel to the RSm{sub 2}Co{sub 17} basal plane, and (4) linear features with no specific crystallographic direction. The wall pinning features which are parallel to the c-axis were determined to be RSm{sub 2}Co{sub 17} antiphase boundaries (APB) and possibly vertical section of HSmCo{sub 5} cell boundaries. Both these microstructure features were found to have a higher Cu content than the RSm{sub 2}Co{sub 17} matrix. This chemical inhomogeneity leads to local variations in magnetocrystalline anisotropy which assists domain wall pinning, similar to the role of HSmCo{sub 5} suggested previously. Since not all the domain wall pinning features observed are in a strained state, this suggested that chemical segregation to nanostructural features such as HSmCo{sub 5} cell boundaries and APB play a more important role than coherency strain in determining H{sub ci}. (orig.).

  6. Fermionic cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Chimento, L P; Forte, M [Physics Department, UBA, 1428 Buenos Aires (Argentina); Devecchi, F P; Kremer, G M; Ribas, M O; Samojeden, L L, E-mail: kremer@fisica.ufpr.br, E-mail: devecchi@fisica.ufpr.br, E-mail: chimento@df.uba.ar [Physics Department, UFPR, 81531-990 Curitiba (Brazil)

    2011-07-08

    In this work we review if fermionic sources could be responsible for accelerated periods during the evolution of a FRW universe. In a first attempt, besides the fermionic source, a matter constituent would answer for the decelerated periods. The coupled differential equations that emerge from the field equations are integrated numerically. The self-interaction potential of the fermionic field is considered as a function of the scalar and pseudo-scalar invariants. It is shown that the fermionic field could behave like an inflaton field in the early universe, giving place to a transition to a matter dominated (decelerated) period. In a second formulation we turn our attention to analytical results, specifically using the idea of form-invariance transformations. These transformations can be used for obtaining accelerated cosmologies starting with conventional cosmological models. Here we reconsider the scalar field case and extend the discussion to fermionic fields. Finally we investigate the role of a Dirac field in a Brans-Dicke (BD) context. The results show that this source, in combination with the BD scalar, promote a final eternal accelerated era, after a matter dominated period.

  7. Chiral extension of lattice field theory with Ginsparg-Wilson fermions

    Science.gov (United States)

    Lim, Kyung-Taek

    In 1994, Brower, Shen and Tan proposed "chirally extended QCD" (or XQCD), and current research extends this method to incorporate fermions obeying Ginsparg-Wilson relation, e.g. Overlap fermion. The hope in this research is that the XQCD can overcome the difficulty in standard lattice approach associated with small quark mass by adding explicit fields while maintaining chiral symmetry on the lattice, and that the XQCD has desired continuum limit. I show that the 4-d Yukawa Overlap XQCD fermion action can be derived from the standard 5-d domain-wall action. I also present study on the imaginary part of the determinant of the coset XQCD Dirac operator.

  8. Computation of the chiral condensate using N{sub f}=2 and N{sub f}=2+1+1 dynamical flavors of twisted mass fermions

    Energy Technology Data Exchange (ETDEWEB)

    Cichy, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Poznan Univ. (Poland). Faculty of Physics; Garcia-Ramos, E. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany); Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Shindler, A. [Forschungszentrum Juelich (Germany). IAS; Forschungszentrum Juelich (Germany). IKP; Forschungszentrum Juelich (Germany). JCHP; Collaboration: European Twisted Mass Collaboration

    2013-12-15

    We apply the spectral projector method, recently introduced by Giusti and Luescher, to compute the chiral condensate using N{sub f}=2 and N{sub f}=2+1+1 dynamical flavors of maximally twisted mass fermions. We present our results for several quark masses at three different lattice spacings which allows us to perform the chiral and continuum extrapolations. In addition we report our analysis on the O(a) improvement of the chiral condensate for twisted mass fermions. We also study the effect of the dynamical strange and charm quarks by comparing our results for N{sub f}=2 and N{sub f}=2+1+1 dynamical flavors.

  9. Evolution of defect signatures at ferroelectric domain walls in Mg-doped LiNbO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Nataf, Guillaume F. [Materials, Research and Technology Department, Luxembourg Institute of Science and Technology, 41 Rue du Brill, 4422, Belvaux (Luxembourg); Service de Physique de l' Etat Condense, DSM/IRAMIS/SPEC, CNRS UMR 3680, CEA Saclay, 91191, Gif sur Yvette cedex (France); Guennou, Mael [Materials, Research and Technology Department, Luxembourg Institute of Science and Technology, 41 Rue du Brill, 4422, Belvaux (Luxembourg); Haussmann, Alexander [Institut fuer Angewandte Photophysik, Technische Universitaet Dresden, George-Baehr-Str. 1, 01069, Dresden (Germany); Barrett, Nick [Service de Physique de l' Etat Condense, DSM/IRAMIS/SPEC, CNRS UMR 3680, CEA Saclay, 91191, Gif sur Yvette cedex (France); Kreisel, Jens [Materials, Research and Technology Department, Luxembourg Institute of Science and Technology, 41 Rue du Brill, 4422, Belvaux (Luxembourg); Physics and Materials Science Research Unit, University of Luxembourg, 41 Rue du Brill, 4422, Belvaux (Luxembourg)

    2016-03-15

    The domain structure of uniaxial ferroelectric lithium niobate single crystals is investigated using Raman spectroscopy mapping. The influence of doping with magnesium and poling at room temperature is studied by analysing frequency shifts at domain walls and their variations with dopant concentration and annealing conditions. It is shown that defects are stabilized at domain walls and that changes in the defect structures with Mg concentration can be probed by the shift of Raman modes. We show that the signatures of polar defects in the bulk and at the domain walls differ. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Quantum Interference Control of Ballistic Magneto- resistance in a Magnetic Nanowire Containing Two Atomic- Size Domain Walls

    Directory of Open Access Journals (Sweden)

    V. Fallahi

    2012-06-01

    Full Text Available The magnetoresistance of a one-dimensional electron gas in a metallic ferromagnetic nanowire containing two atomic-size domain walls has been investigated in the presence of spin-orbit interaction. The magnetoresistance is calculated in the ballistic regime, within the Landauer-Büttiker formalism. It has been demonstrated that the conductance of a magnetic nanowire with double domain walls can be controlled through the domain walls separation. Also, we have represented another alternative way that enables us to handle easily the magnetoresistance of such a system as well as its conductance by utilizing the Rashba-type spin-orbit interaction induced by the external gates.

  11. Quarks, Leptons as Fermion-Boson Composite Objects and Flavor-Mixings by Substructure Dynamics

    CERN Document Server

    Matsushima, T

    1999-01-01

    A fermion-boson-type composite model for quarks and leptons is proposed. Elementary fields are only one kind of spin-1/2 and spin-0 preon. Both are in the global supersymmetric pair with the common electric charge of e/6 and belong to the fundamental representations of (3,2,2) under the spontaneously unbroken SU(3)_C*SU(2)_L*SU(2)_R gauge symmetry induced necessarily by the concept of ``Cartan connection'' equipped with ``Soldering Mechanism''. Preons are composed into subquarks which are ``intermediate clusters'' towards quarks and leptons. The mechanism of making higher generations is obtained by adding neutral scalar subquark composed of a preon-antipreon pair in the 3-state of SU(2)_{L,R}. This model predicts the CKM matrix elements : |V_{ts}|=2.6*10^{-2}},|V_{td}|=1.4*10^{-3}; the neutral pseudoscalar meson mass differences : {Delta}M_D\\approx10^{-14} GeV, {Delta}M_{B_s}\\approx10^{-11} GeV,{Delta}M_{T_u}\\approx10^{(-10\\sim{-9})} GeV and {theta}_K={\\theta}_D={\\theta}_{B_s}={\\theta}_{T_c}

  12. The topological structures in strongly coupled QGP with chiral fermions on the lattice

    Science.gov (United States)

    Sharma, Sayantan; Dick, Viktor; Karsch, Frithjof; Laermann, Edwin; Mukherjee, Swagato

    2016-12-01

    The nature of chiral phase transition for two flavor QCD is an interesting but unresolved problem. One of the most intriguing issues is whether or not the anomalous U(1) symmetry in the flavor sector is effectively restored along with the chiral symmetry. This may determine the universality class of the chiral phase transition. Since the physics near the chiral phase transition is essentially non-perturbative, we employ first principles lattice techniques to address this issue. We use overlap fermions, which have exact chiral symmetry on the lattice, to probe the anomalous U(1) symmetry violation of 2+1 flavor dynamical QCD configurations with domain wall fermions. The latter also optimally preserves chiral and flavor symmetries on the lattice, since it is known that the remnant chiral symmetry of the light quarks influences the scaling of the chiral condensate in the crossover transition region. We observe that the anomalous U(1) is not effectively restored in the chiral crossover region. We perform a systematic study of the finite size and cut-off effects since the signals of U(1) violation are sensitive to it. We also provide a glimpse of the microscopic topological structures of the QCD medium that are responsible for the strongly interacting nature of the quark gluon plasma phase. We study the effect of these microscopic constituents through our first calculations for the topological susceptibility of QCD at finite temperature, which could be a crucial input for the equation of state for anomalous hydrodynamics.

  13. The topological structures in strongly coupled QGP with chiral fermions on the lattice

    CERN Document Server

    Sharma, Sayantan; Karsch, Frithjof; Laermann, Edwin; Mukherjee, Swagato

    2016-01-01

    The nature of chiral phase transition for two flavor QCD is an interesting but unresolved problem. One of the most intriguing issues is whether or not the anomalous U(1) symmetry in the flavor sector is effectively restored along with the chiral symmetry. This may determine the universality class of the chiral phase transition. Since the physics near the chiral phase transition is essentially non-perturbative, we employ first principles lattice techniques to address this issue. We use overlap fermions, which have exact chiral symmetry on the lattice, to probe the anomalous U(1) symmetry violation of 2+1 flavor dynamical QCD configurations with domain wall fermions. The latter also optimally preserves chiral and flavor symmetries on the lattice, since it is known that the remnant chiral symmetry of the light quarks influences the scaling of the chiral condensate in the crossover transition region. We observe that the anomalous U(1) is not effectively restored in the chiral crossover region. We perform a system...

  14. Computation of dynamical correlation functions for many-fermion systems with auxiliary-field quantum Monte Carlo

    Science.gov (United States)

    Vitali, Ettore; Shi, Hao; Qin, Mingpu; Zhang, Shiwei

    2016-08-01

    We address the calculation of dynamical correlation functions for many fermion systems at zero temperature, using the auxiliary-field quantum Monte Carlo method. The two-dimensional Hubbard hamiltonian is used as a model system. Although most of the calculations performed here are for cases where the sign problem is absent, the discussions are kept general for applications to physical problems when the sign problem does arise. We study the use of twisted boundary conditions to improve the extrapolation of the results to the thermodynamic limit. A strategy is proposed to drastically reduce finite size effects relying on a minimization among the twist angles. This approach is demonstrated by computing the charge gap at half filling. We obtain accurate results showing the scaling of the gap with the interaction strength U in two dimensions, connecting to the scaling of the unrestricted Hartree-Fock method at small U and Bethe ansatz exact result in one dimension at large U . An alternative algorithm is then proposed to compute dynamical Green functions and correlation functions which explicitly varies the number of particles during the random walks in the manifold of Slater determinants. In dilute systems, such as ultracold Fermi gases, this algorithm enables calculations with much more favorable complexity, with computational cost proportional to basis size or the number of lattice sites.

  15. Fermion Determinants

    OpenAIRE

    Fry, M. P.

    2001-01-01

    The current status of bounds on and limits of fermion determinants in two, three and four dimensions in QED and QCD is reviewed. A new lower bound on the two-dimensional QED determinant is derived. An outline of the demonstration of the continuity of this determinant at zero mass when the background magnetic field flux is zero is also given.

  16. The arctic curve of the domain-wall six-vertex model in its anti-ferroelectric regime

    CERN Document Server

    Colomo, F; Zinn-Justin, P

    2010-01-01

    An explicit expression for the spatial curve separating the region of ferroelectric order (`frozen' zone) from the disordered one (`temperate' zone) in the six-vertex model with domain wall boundary conditions in its anti-ferroelectric regime is obtained.

  17. Microscopic Raman spectroscopy in the vicinity of domain wall of (Na,K)NbO3 piezoelectrics

    Science.gov (United States)

    Taniguchi, Yuya; Kakimoto, Ken-ichi

    2015-10-01

    The domain walls of Mn-doped (Na,K)NbO3 (NKN) crystals and ceramics have been measured by spectroscopy methods. Microscopy-Raman and infrared (IR) spectroscopies were performed vertically to lamellar domain structures by line mapping. Regarding the crystals, large changes were confirmed in the vicinity of domain walls. Both the Raman shift and the peak intensity at approximately 600 cm-1, which include the symmetric stretching modes of the oxygen octahedron, were observed. Similar changes were also characterized for electrically polarized NKN ceramics. In addition, the permittivity of NKN crystals increased in the vicinity of the domain wall, which was measured by IR spectroscopy. These results were attributed to the changes in the oxygen octahedron structures due to local changes in spontaneous polarization directions in the vicinity of the domain walls.

  18. Nucleation process on the 180^o domain wall of PbTiO3 by the external electric field

    Science.gov (United States)

    Shin, Young-Han; Grinberg, Ilya; Chen, I.-Wei; Rappe, Andrew

    2006-03-01

    Ferroelectric oxides are extremely useful as nonvolatile memory storage materials, and the speed at which polar domains can be reversed is a critical characteristic for future development of these materials. However, the size of the critical nucleus during the polarization reversal is still unknown experimentally. If we assume that the magnitudes of local polarizations are the same and their directions are along the external field, it will be triangular and the height of the nucleus along the external field should be much larger than its width following the Miller and Weinreich's study in 1960s. We made an atomic potential for perovskite ferroelectrics based on the first-principles calculation, and performed molecular-dynamics simulations to understand the nucleation and growth process of ferroelectric domains. We find that its shape is close to a square not a triangle and its size much smaller than Miller and Weinreich's. It stems from the small polarizations and the voltex-like flow around the nucleus. To increase the system size we used the stochastic study using the nucleation and growth rates which were obtained from the molecular dynamics simulations. The overall speed of the domain wall motion can be estimated from this stochastic calculation.

  19. Algebraic arctic curves in the domain-wall six-vertex model

    CERN Document Server

    Colomo, F

    2010-01-01

    The arctic curve, i.e. the spatial curve separating ordered (or `frozen') and disordered (or `temperate) regions, of the six-vertex model with domain wall boundary conditions is discussed for the root-of-unity vertex weights. In these cases the curve is described by algebraic equations which can be worked out explicitly from the parametric solution for this curve. Some interesting examples are discussed in detail. The upper bound on the maximal degree of the equation in a generic root-of-unity case is obtained.

  20. Impact of current on static and kinetic depinning fields of domain wall in ferromagnetic nanostrip

    Indian Academy of Sciences (India)

    R Arun; P Sabareesan; M Daniel

    2015-11-01

    The impact of current on static and kinetic depinning fields of a domain wall in a onedimensional ferromagnetic nanostrip is investigated analytically and numerically by solving the Landau–Lifshitz–Gilbert equation with adiabatic and non-adiabatic spin-transfer torques. The results show that in the absence of current, the static depinning field is greater than the kinetic depinning field. Both the depinning fields decrease by increasing the current applied in a direction opposite to the direction of the applied field. Both the depinning fields can also be tuned by the current to make them equal.