WorldWideScience

Sample records for dynamic virtual nozzle

  1. Gas dynamic virtual nozzle for generation of microscopic droplet streams

    Energy Technology Data Exchange (ETDEWEB)

    DePonte, D P; Weierstall, U; Schmidt, K; Warner, J; Starodub, D; Spence, J C H; Doak, R B [Department of Physics, Arizona State University, Tempe, AZ 85287-1504 (United States)], E-mail: dandeponte@gmail.com

    2008-10-07

    As shown by Ganan-Calvo (1998 Phys. Rev. Lett. 80 285-8), a free liquid jet can be compressed in diameter through gas dynamic forces exerted by a coaxially co-flowing gas, obviating the need for a solid nozzle to form a microscopic liquid jet and thereby alleviating the clogging problems that plague conventional droplet sources of small diameter. We describe in this paper a novel form of droplet beam source based on this principle. The source is miniature, robust, dependable, easily fabricated, essentially immune to clogging and eminently suitable for delivery of microscopic liquid droplets, including hydrated biological samples, into vacuum for analysis using vacuum instrumentation. Monodisperse, single-file droplet streams are generated by triggering the device with a piezoelectric actuator.

  2. Dynamic Virtual Credit Card Numbers

    Science.gov (United States)

    Molloy, Ian; Li, Jiangtao; Li, Ninghui

    Theft of stored credit card information is an increasing threat to e-commerce. We propose a dynamic virtual credit card number scheme that reduces the damage caused by stolen credit card numbers. A user can use an existing credit card account to generate multiple virtual credit card numbers that are either usable for a single transaction or are tied with a particular merchant. We call the scheme dynamic because the virtual credit card numbers can be generated without online contact with the credit card issuers. These numbers can be processed without changing any of the infrastructure currently in place; the only changes will be at the end points, namely, the card users and the card issuers. We analyze the security requirements for dynamic virtual credit card numbers, discuss the design space, propose a scheme using HMAC, and prove its security under the assumption the underlying function is a PRF.

  3. Computational Fluid Dynamics Modeling of a Supersonic Nozzle and Integration into a Variable Cycle Engine Model

    Science.gov (United States)

    Connolly, Joseph W.; Friedlander, David; Kopasakis, George

    2015-01-01

    This paper covers the development of an integrated nonlinear dynamic simulation for a variable cycle turbofan engine and nozzle that can be integrated with an overall vehicle Aero-Propulso-Servo-Elastic (APSE) model. A previously developed variable cycle turbofan engine model is used for this study and is enhanced here to include variable guide vanes allowing for operation across the supersonic flight regime. The primary focus of this study is to improve the fidelity of the model's thrust response by replacing the simple choked flow equation convergent-divergent nozzle model with a MacCormack method based quasi-1D model. The dynamic response of the nozzle model using the MacCormack method is verified by comparing it against a model of the nozzle using the conservation element/solution element method. A methodology is also presented for the integration of the MacCormack nozzle model with the variable cycle engine.

  4. Fluid and structural dynamic design considerations of the HYLIFE nozzle plate

    International Nuclear Information System (INIS)

    Pitts, J.H.; Ojalvo, I.U.

    1981-02-01

    The basic concept of the High Yield Lithium Injection Fusion Energy (HYLIFE) reaction chamber involves a falling liquid-metal (lithium) jet array that absorbs 90% of the energy released from inertial confinement fusion reactions. The key element of the chamber that produces the jet array is the nozzle plate. This paper describes the design and analysis of a nozzle plate which can withstand the structural loads and permit the fluid jet array to be reestablished for a 1-Hz fusion reaction frequency. The shape of the nozzle plate and jet array is dictated by considerations of fluid dynamics and neutron-shielding. A vertical jet array, rather than a single annulus, is used because this design enhances fluid momentum interchange and dissipation of the kinetic energy that occurs when the jets disassemble. Less net outward-directed momentum results than with a single liquid annular flow configuration, thus producing lower stresses in the structural components

  5. Magnetic-Laval-Nozzle Effect on a Magneto-Plasma-Dynamic Arcjet

    International Nuclear Information System (INIS)

    Inutake, Masaaki; Miyazaki, Hiroyuki; Yoshino, Kyohei; Tobari, Hiroyuki; Hattori, Kunihiko; Ando, Akira

    2003-01-01

    A magneto-plasma-dynamic arcjet (MPDA) is one of the promising candidates for a manned interplanetary space thruster with a higher specific impulse and larger thrust. An MPDA with an externally-applied magnetic nozzle is investigated to improve the thrust efficiency. From spectroscopic measurements of the MPDA plasma, it is found that with the increase in the discharge current not only the flow velocity but also the ion temperature increase near the muzzle of the MPDA with a uniform axial magnetic field and so the ion acoustic Mach number is limited to a value less than unity. By installing a Laval-type magnetic nozzle near the muzzle of the MPDA, the subsonic flow is successfully accelerated to a supersonic one by converting the ion thermal energy to the flow energy. The results are compared with the prediction by a1-D isentropic flow model

  6. Dynamically allocated virtual clustering management system

    Science.gov (United States)

    Marcus, Kelvin; Cannata, Jess

    2013-05-01

    The U.S Army Research Laboratory (ARL) has built a "Wireless Emulation Lab" to support research in wireless mobile networks. In our current experimentation environment, our researchers need the capability to run clusters of heterogeneous nodes to model emulated wireless tactical networks where each node could contain a different operating system, application set, and physical hardware. To complicate matters, most experiments require the researcher to have root privileges. Our previous solution of using a single shared cluster of statically deployed virtual machines did not sufficiently separate each user's experiment due to undesirable network crosstalk, thus only one experiment could be run at a time. In addition, the cluster did not make efficient use of our servers and physical networks. To address these concerns, we created the Dynamically Allocated Virtual Clustering management system (DAVC). This system leverages existing open-source software to create private clusters of nodes that are either virtual or physical machines. These clusters can be utilized for software development, experimentation, and integration with existing hardware and software. The system uses the Grid Engine job scheduler to efficiently allocate virtual machines to idle systems and networks. The system deploys stateless nodes via network booting. The system uses 802.1Q Virtual LANs (VLANs) to prevent experimentation crosstalk and to allow for complex, private networks eliminating the need to map each virtual machine to a specific switch port. The system monitors the health of the clusters and the underlying physical servers and it maintains cluster usage statistics for historical trends. Users can start private clusters of heterogeneous nodes with root privileges for the duration of the experiment. Users also control when to shutdown their clusters.

  7. Application of dynamic slip wall modeling to a turbine nozzle guide vane

    Science.gov (United States)

    Bose, Sanjeeb; Talnikar, Chaitanya; Blonigan, Patrick; Wang, Qiqi

    2015-11-01

    Resolution of near-wall turbulent structures is computational prohibitive necessitating the need for wall-modeled large-eddy simulation approaches. Standard wall models are often based on assumptions of equilibrium boundary layers, which do not necessarily account for the dissimilarity of the momentum and thermal boundary layers. We investigate the use of the dynamic slip wall boundary condition (Bose and Moin, 2014) for the prediction of surface heat transfer on a turbine nozzle guide vane (Arts and de Rouvroit, 1992). The heat transfer coefficient is well predicted by the slip wall model, including capturing the transition to turbulence. The sensitivity of the heat transfer coefficient to the incident turbulence intensity will additionally be discussed. Lastly, the behavior of the thermal and momentum slip lengths will be contrasted between regions where the strong Reynolds analogy is invalid (near transition on the suction side) and an isothermal, zero pressure gradient flat plate boundary layer (Wu and Moin, 2010).

  8. On virtual displacement and virtual work in Lagrangian dynamics

    International Nuclear Information System (INIS)

    Ray, Subhankar; Shamanna, J

    2006-01-01

    The confusion and ambiguity encountered by students in understanding virtual displacement and virtual work is discussed in this paper. A definition of virtual displacement is presented that allows one to express them explicitly for holonomic (velocity independent), non-holonomic (velocity dependent), scleronomous (time independent) and rheonomous (time dependent) constraints. It is observed that for holonomic, scleronomous constraints, the virtual displacements are the displacements allowed by the constraints. However, this is not so for a general class of constraints. For simple physical systems, it is shown that the work done by the constraint forces on virtual displacements is zero. This motivates Lagrange's extension of d'Alembert's principle to a system of particles in constrained motion. However, a similar zero work principle does not hold for the allowed displacements. It is also demonstrated that d'Alembert's principle of zero virtual work is necessary for the solvability of a constrained mechanical problem. We identify this special class of constraints, physically realized and solvable, as the ideal constraints. The concept of virtual displacement and the principle of zero virtual work by constraint forces are central to both Lagrange's method of undetermined multipliers and Lagrange's equations in generalized coordinates

  9. Effects of ambient pressure on dynamics of near-nozzle diesel sprays studied by ultrafast x-radiography

    International Nuclear Information System (INIS)

    Cheong, S. K.; Liu, J.; Shu, D.; Wang, J.; Powell, C. F.; Experimental Facilities Division

    2004-01-01

    A time-resolved x-radiographic technique has been employed for measuring the fuel distribution close to a single-hole nozzle fitted in a high-pressure diesel injector. Using a monochromatic synchrotron x-ray beam, it is possible to perform quantitative x-ray absorption measurements and obtain two-dimensional projections of the mass of the fuel spray. We have completed a series of spray measurements in the optically dense, near-nozzle region (ml 15 mm from the nozzle orifice) under ambient pressures of 1, 2, and 5.2 bar Nd2 and 1 bar SFd6 at room temperature with injection pressures of 500 and 1000 bar. The focus of the measurements is on the dynamical behaviors of the fuel jets with an emphasis on their penetration in the near-nozzle region. Careful analysis of the time-resolved, x-radiographic data revealed that the spray penetration in this near-nozzle region was not significantly affected by the limited change of the ambient pressure. In addition, well-defined features of the spray, such as the leading and trailing edges, and fluctuations of fuel mass density in the spray body, allowed us to calculate the leading, trailing, and internal speeds of the sprays

  10. Dynamic 3D echocardiography in virtual reality

    Directory of Open Access Journals (Sweden)

    Simoons Maarten L

    2005-12-01

    Full Text Available Abstract Background This pilot study was performed to evaluate whether virtual reality is applicable for three-dimensional echocardiography and if three-dimensional echocardiographic 'holograms' have the potential to become a clinically useful tool. Methods Three-dimensional echocardiographic data sets from 2 normal subjects and from 4 patients with a mitral valve pathological condition were included in the study. The three-dimensional data sets were acquired with the Philips Sonos 7500 echo-system and transferred to the BARCO (Barco N.V., Kortrijk, Belgium I-space. Ten independent observers assessed the 6 three-dimensional data sets with and without mitral valve pathology. After 10 minutes' instruction in the I-Space, all of the observers could use the virtual pointer that is necessary to create cut planes in the hologram. Results The 10 independent observers correctly assessed the normal and pathological mitral valve in the holograms (analysis time approximately 10 minutes. Conclusion this report shows that dynamic holographic imaging of three-dimensional echocardiographic data is feasible. However, the applicability and use-fullness of this technology in clinical practice is still limited.

  11. Dynamic Analysis for a Geared Turbofan Engine with Variable Area Fan Nozzle

    Science.gov (United States)

    Csank, Jeffrey T.; Thomas, George L.

    2017-01-01

    Aggressive design goals have been set for future aero-propulsion systems with regards to fuel economy, noise, and emissions. To meet these challenging goals, advanced propulsion concepts are being explored and current operating margins are being re-evaluated to find additional concessions that can be made. One advanced propulsion concept being evaluated is a geared turbofan with a variable area fan nozzle (VAFN), developed by NASA. This engine features a small core, a fan driven by the low pressure turbine through a reduction gearbox, and a shape memory alloy (SMA)-actuated VAFN. The VAFN is designed to allow both a small exit area for efficient operation at cruise, while being able to open wider at high power conditions to reduce backpressure on the fan and ensure a safe level of stall margin is maintained. The VAFN is actuated via a SMA-based system instead of a conventional system to decrease overall weight of the system, however, SMA-based actuators respond relatively slowly, which introduces dynamic issues that are investigated in this work. This paper describes both a control system designed specifically for issues associated with SMAs, and dynamic analysis of the geared turbofan VAFN with the SMA actuators. Also, some future recommendations are provided for this type of propulsion system.

  12. Dynamic Extension of a Virtualized Cluster by using Cloud Resources

    International Nuclear Information System (INIS)

    Oberst, Oliver; Hauth, Thomas; Kernert, David; Riedel, Stephan; Quast, Günter

    2012-01-01

    The specific requirements concerning the software environment within the HEP community constrain the choice of resource providers for the outsourcing of computing infrastructure. The use of virtualization in HPC clusters and in the context of cloud resources is therefore a subject of recent developments in scientific computing. The dynamic virtualization of worker nodes in common batch systems provided by ViBatch serves each user with a dynamically virtualized subset of worker nodes on a local cluster. Now it can be transparently extended by the use of common open source cloud interfaces like OpenNebula or Eucalyptus, launching a subset of the virtual worker nodes within the cloud. This paper demonstrates how a dynamically virtualized computing cluster is combined with cloud resources by attaching remotely started virtual worker nodes to the local batch system.

  13. Characterisation of subsonic axisymmetric nozzles

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    2008-01-01

    Roč. 86, č. 11 (2008), s. 1253-1262 ISSN 0263-8762 R&D Projects: GA AV ČR IAA200760705 Institutional research plan: CEZ:AV0Z20760514 Keywords : nozzle * characterisation * nozzle properties * nozzle invariants Subject RIV: BK - Fluid Dynamics Impact factor: 0.989, year: 2008

  14. Dynamics of the nozzle valve with regard to the properties of the piping system

    Directory of Open Access Journals (Sweden)

    Klas Roman

    2018-01-01

    Full Text Available It is obvious that the main function of the nozzle valve is to shut off the stream of fluid in the piping system. The response rate of the valve to the decreasing or reversing flow in the system will then depend on the valve properties and equally on the properties of the piping system. The interaction of these two elements is also important for the origin of pressure pulsations in the system. While the pressure pulsations were the cause for design of this particular valve it should be noted that the general design of the valve for any pipeline system is not possible. The valve cannot properly work under all circumstances and operating conditions. With respect to this, the dynamic properties of the valve will be assessed on the basis of the valve equation of motion and the pipeline model. An adequate response of the whole system can be obtained by combining both approaches. The valve equations of motion are also complemented by CFD simulations, which enable to capture the movement of the valve disc with respect to flow rate.

  15. Use of the FDA nozzle model to illustrate validation techniques in computational fluid dynamics (CFD) simulations.

    Science.gov (United States)

    Hariharan, Prasanna; D'Souza, Gavin A; Horner, Marc; Morrison, Tina M; Malinauskas, Richard A; Myers, Matthew R

    2017-01-01

    A "credible" computational fluid dynamics (CFD) model has the potential to provide a meaningful evaluation of safety in medical devices. One major challenge in establishing "model credibility" is to determine the required degree of similarity between the model and experimental results for the model to be considered sufficiently validated. This study proposes a "threshold-based" validation approach that provides a well-defined acceptance criteria, which is a function of how close the simulation and experimental results are to the safety threshold, for establishing the model validity. The validation criteria developed following the threshold approach is not only a function of Comparison Error, E (which is the difference between experiments and simulations) but also takes in to account the risk to patient safety because of E. The method is applicable for scenarios in which a safety threshold can be clearly defined (e.g., the viscous shear-stress threshold for hemolysis in blood contacting devices). The applicability of the new validation approach was tested on the FDA nozzle geometry. The context of use (COU) was to evaluate if the instantaneous viscous shear stress in the nozzle geometry at Reynolds numbers (Re) of 3500 and 6500 was below the commonly accepted threshold for hemolysis. The CFD results ("S") of velocity and viscous shear stress were compared with inter-laboratory experimental measurements ("D"). The uncertainties in the CFD and experimental results due to input parameter uncertainties were quantified following the ASME V&V 20 standard. The CFD models for both Re = 3500 and 6500 could not be sufficiently validated by performing a direct comparison between CFD and experimental results using the Student's t-test. However, following the threshold-based approach, a Student's t-test comparing |S-D| and |Threshold-S| showed that relative to the threshold, the CFD and experimental datasets for Re = 3500 were statistically similar and the model could be

  16. Combustion Dynamics in Multi-Nozzle Combustors Operating on High-Hydrogen Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Santavicca, Dom; Lieuwen, Tim

    2013-09-30

    Actual gas turbine combustors for power generation applications employ multi-nozzle combustor configurations. Researchers at Penn State and Georgia Tech have extended previous work on the flame response in single-nozzle combustors to the more realistic case of multi-nozzle combustors. Research at Georgia Tech has shown that asymmetry of both the flow field and the acoustic forcing can have a significant effect on flame response and that such behavior is important in multi-flame configurations. As a result, the structure of the flame and its response to forcing is three-dimensional. Research at Penn State has led to the development of a three-dimensional chemiluminescence flame imaging technique that can be used to characterize the unforced (steady) and forced (unsteady) flame structure of multi-nozzle combustors. Important aspects of the flame response in multi-nozzle combustors which are being studied include flame-flame and flame-wall interactions. Research at Penn State using the recently developed three-dimensional flame imaging technique has shown that spatial variations in local flame confinement must be accounted for to accurately predict global flame response in a multi-nozzle can combustor.

  17. Dynamically Allocated Virtual Clustering Management System Users Guide

    Science.gov (United States)

    2016-11-01

    ARL-SR-0366 ● NOV 2016 US Army Research Laboratory Dynamically Allocated Virtual Clustering Management System User’s Guide by... Clustering Management System User’s Guide by Kelvin M Marcus Computational and Information Sciences Directorate, ARL...

  18. Multilaboratory particle image velocimetry analysis of the FDA benchmark nozzle model to support validation of computational fluid dynamics simulations.

    Science.gov (United States)

    Hariharan, Prasanna; Giarra, Matthew; Reddy, Varun; Day, Steven W; Manning, Keefe B; Deutsch, Steven; Stewart, Sandy F C; Myers, Matthew R; Berman, Michael R; Burgreen, Greg W; Paterson, Eric G; Malinauskas, Richard A

    2011-04-01

    This study is part of a FDA-sponsored project to evaluate the use and limitations of computational fluid dynamics (CFD) in assessing blood flow parameters related to medical device safety. In an interlaboratory study, fluid velocities and pressures were measured in a nozzle model to provide experimental validation for a companion round-robin CFD study. The simple benchmark nozzle model, which mimicked the flow fields in several medical devices, consisted of a gradual flow constriction, a narrow throat region, and a sudden expansion region where a fluid jet exited the center of the nozzle with recirculation zones near the model walls. Measurements of mean velocity and turbulent flow quantities were made in the benchmark device at three independent laboratories using particle image velocimetry (PIV). Flow measurements were performed over a range of nozzle throat Reynolds numbers (Re(throat)) from 500 to 6500, covering the laminar, transitional, and turbulent flow regimes. A standard operating procedure was developed for performing experiments under controlled temperature and flow conditions and for minimizing systematic errors during PIV image acquisition and processing. For laminar (Re(throat)=500) and turbulent flow conditions (Re(throat)≥3500), the velocities measured by the three laboratories were similar with an interlaboratory uncertainty of ∼10% at most of the locations. However, for the transitional flow case (Re(throat)=2000), the uncertainty in the size and the velocity of the jet at the nozzle exit increased to ∼60% and was very sensitive to the flow conditions. An error analysis showed that by minimizing the variability in the experimental parameters such as flow rate and fluid viscosity to less than 5% and by matching the inlet turbulence level between the laboratories, the uncertainties in the velocities of the transitional flow case could be reduced to ∼15%. The experimental procedure and flow results from this interlaboratory study (available

  19. Analysis of experiments of the University of Hannover with the Cathare code on fluid dynamic effects in the fuel element top nozzle area during refilling and reflooding

    International Nuclear Information System (INIS)

    Bestion, D.

    1989-11-01

    The CATHARE code is used to calculate the experiment of the University of Hannover concerning the flooding limit at the fuel element top nozzle area. Some qualitative and quantitativ limit at the fuel element top nozzle area. on both the actual fluid dynamics which is observed in the experiments and on the corresponding code behaviour. Shortcomings of the present models are clearly identified. New developments are proposed which should extend the code capabilities

  20. Dynamic 3D echocardiography in virtual reality.

    NARCIS (Netherlands)

    A.E. van den Bosch (Annemien); A.H.J. Koning (Anton); F.J. Meijboom (Folkert); J.S. Vletter-McGhie (Jackie); M.L. Simoons (Maarten); P.J. van der Spek (Peter); A.J.J.C. Bogers (Ad)

    2005-01-01

    textabstractBACKGROUND: This pilot study was performed to evaluate whether virtual reality is applicable for three-dimensional echocardiography and if three-dimensional echocardiographic 'holograms' have the potential to become a clinically useful tool. METHODS: Three-dimensional echocardiographic

  1. Axisymmetric thrust-vectoring nozzle performance prediction

    International Nuclear Information System (INIS)

    Wilson, E. A.; Adler, D.; Bar-Yoseph, P.Z

    1998-01-01

    Throat-hinged geometrically variable converging-diverging thrust-vectoring nozzles directly affect the jet flow geometry and rotation angle at the nozzle exit as a function of the nozzle geometry, the nozzle pressure ratio and flight velocity. The consideration of nozzle divergence in the effective-geometric nozzle relation is theoretically considered here for the first time. In this study, an explicit calculation procedure is presented as a function of nozzle geometry at constant nozzle pressure ratio, zero velocity and altitude, and compared with experimental results in a civil thrust-vectoring scenario. This procedure may be used in dynamic thrust-vectoring nozzle design performance predictions or analysis for civil and military nozzles as well as in the definition of initial jet flow conditions in future numerical VSTOL/TV jet performance studies

  2. Experimental Research of Crosscorrelation-Based Virtual Dynamic Flowmeter

    International Nuclear Information System (INIS)

    Jiang, W L; Sun, H M; Niu, H F; Gao, M

    2006-01-01

    An innovated method for measuring dynamic flow is put forward, and a virtual dynamic flowmeter is established. Basing on the principle of pressure pulse containing the flow information, for the dynamic laminar flow, by means of collecting the pressure signals at two points at interval of L and processing them with crosscorrelation calculation, then the transit time is gained, consequently the average flow rate can be got. This calculation is prosecuted repeatedly according to a certain time step length, thus the average flow rates in each time slice can be acquired. If the step length is decreased to zero, the piecewise average flow rate is approximate to the instant dynamic flow. In order to calibrate the virtual dynamic flowmeter, the unloaded servo cylinder was used for the contrasting experiment. The accuracy and validity of this approach has been proved

  3. Nozzle seal

    International Nuclear Information System (INIS)

    Herman, R.F.

    1977-01-01

    In an illustrative embodiment of the invention, a nuclear reactor pressure vessel, having an internal hoop from which the heated coolant emerges from the reactor core and passes through to the reactor outlet nozzles, is provided with sealing members operatively disposed between the outlet nozzle and the hoop. The sealing members are biased against the pressure vessel and the hoop and are connected by a leak restraining member establishing a leak-proof condition between the inlet and outlet coolants in the region about the outlet nozzle. Furthermore, the flexible responsiveness of the seal assures that the seal will not structurally couple the hoop to the pressure vessel

  4. Nozzle seal

    International Nuclear Information System (INIS)

    Walling, G.A.

    1977-01-01

    In an illustrative embodiment of the invention, a nuclear reactor pressure vessel, having an internal hoop from which the heated coolant emerges from the reactor core and passes through to the reactor outlet nozzles, is provided with sealing rings operatively disposed between the outlet nozzles and the hoop. The sealing rings connected by flexible members are biased against the pressure vessel and the hoop, establishing a leak-proof condition between the inlet and outlet coolants in the region about the outlet nozzle. Furthermore, the flexible responsiveness of the seal assures that the seal will not structurally couple the hoop to the pressure vessel. 4 claims, 2 figures

  5. Generic Film Forms for Dynamic Virtual Video Synthesis

    NARCIS (Netherlands)

    C.A. Lindley

    1999-01-01

    textabstractThe FRAMES project within the RDN CRC (Cooperative Research Centre for Research Data Networks) is developing an experimental environment for video content-based retrieval and dynamic virtual video synthesis from archives of video data. The FRAMES research prototype is a video synthesis

  6. BIOCHEMISTRY TEACHING WITH VIRTUAL DYNAMIC METABOLIC DIAGRAMS

    Directory of Open Access Journals (Sweden)

    G. B. Lazzarotto

    2004-05-01

    Full Text Available This work presents a game like educational software (courseware to study metabolic pathways, calledDiagrama Metabolico Din^amico Virtual (DMDV of Krebs Cycle. The experience acquired teachingwith the logical sequence tray games in the FFFCMPAs Biochemistry Course provides the beddingswith the use of this model as education method. With DMDV, students can assembly the sequenceof reactions that describe the desired metabolic pathway, create situational models which can guidehis/her choices, reduce the subject complexity of the scheme in knowledge construction presentingin a graphical way the current interrelations. Biochemistry teachers can use the present software inclassroom as well as distance classes. This product integrates multimedia resources extensively andis distributed in CD-ROM format. The virtual environment will make possible interaction of thestudent with the environment and with colleagues and teachers, through tools as chats and forum.Experience with the use of this method was carried through with two distinct groups of students.The rst group was composed by 11 students, who were more familiar with the content and answereda specic questionnaire to previously evaluate the software. The second group was formed by 24students regularly registered in the FFFCMPAs Biochemistry Course, who used the software as astudy method. The rst group considered DMDV of easy and pleasant navigation. The knowledgeevaluation of the second group students was made by a written test and the analysis of three conceptualmaps constructed by each one of them: one map before initiating the study with the DMDV, thesecond just after the study and the third one two months later. Every conceptual maps producedafter DMDV method showed an expansion of valid concepts if compared with the rst maps. Simplevisual comparison of maps shows that new elements where added. All students who passed throughthe experiment reached a greater than ve grade in the subjects written

  7. Generation and Application of Virtual Dynamic Learning Environments

    Directory of Open Access Journals (Sweden)

    Esther Zaretsky

    2009-04-01

    Full Text Available The generation of virtual dynamic learning environments by mental imagery improved physical education of student teachers. Up-to-date studies showed that training computerized simulations improved spatial abilities, especially visualization of the body's movements in space, and enhanced academic achievements. The main program of the research concentrated on creating teaching units focusing on a variety of physical skills through computerized dynamic presentations. The findings showed that as the student teachers practiced the creation of simulations through the PowerPoint Software, it became clear to them how the computer is related to physical activities. Consequently their presentations became highly animated, and applied to the natural environment. The student teachers applied their presentations in their practical classroom and reported about their pupils' progress in physical skills. Moreover the motivation of the student teachers and pupils to both modes of learning, manipulating virtually and physically, was enhanced.

  8. Distributed continuous energy scheduling for dynamic virtual power plants

    International Nuclear Information System (INIS)

    Niesse, Astrid

    2015-01-01

    This thesis presents DynaSCOPE as distributed control method for continuous energy scheduling for dynamic virtual power plants (DVPP). DVPPs aggregate the flexibility of distributed energy units to address current energy markets. As an extension of the Virtual Power Plant concept they show high dynamics in aggregation and operation of energy units. Whereas operation schedules are set up for all energy units in a day-ahead planning procedure, incidents may render these schedules infeasible during execution, like deviation from prognoses or outages. Thus, a continuous scheduling process is needed to ensure product fulfillment. With DynaSCOPE, software agents representing single energy units solve this problem in a completely distributed heuristic approach. Using a stepped concept, several damping mechanisms are applied to allow minimum disturbance while continuously trying to fulfill the product as contracted at the market.

  9. Computational Fluid Dynamic (CFD) analysis of axisymmetric plume and base flow of film/dump cooled rocket nozzle

    Science.gov (United States)

    Tucker, P. K.; Warsi, S. A.

    1993-01-01

    Film/dump cooling a rocket nozzle with fuel rich gas, as in the National Launch System (NLS) Space Transportation Main Engine (STME), adds potential complexities for integrating the engine with the vehicle. The chief concern is that once the film coolant is exhausted from the nozzle, conditions may exist during flight for the fuel-rich film gases to be recirculated to the vehicle base region. The result could be significantly higher base temperatures than would be expected from a regeneratively cooled nozzle. CFD analyses were conduced to augment classical scaling techniques for vehicle base environments. The FDNS code with finite rate chemistry was used to simulate a single, axisymmetric STME plume and the NLS base area. Parallel calculations were made of the Saturn V S-1 C/F1 plume base area flows. The objective was to characterize the plume/freestream shear layer for both vehicles as inputs for scaling the S-C/F1 flight data to NLS/STME conditions. The code was validated on high speed flows with relevant physics. This paper contains the calculations for the NLS/STME plume for the baseline nozzle and a modified nozzle. The modified nozzle was intended to reduce the fuel available for recirculation to the vehicle base region. Plumes for both nozzles were calculated at 10kFT and 50kFT.

  10. Molecular dynamics study of Ar flow and He flow inside carbon nanotube junction as a molecular nozzle and diffuser

    Directory of Open Access Journals (Sweden)

    Itsuo Hanasaki, Akihiro Nakatani and Hiroshi Kitagawa

    2004-01-01

    Full Text Available A carbon nanotube junction consists of two connected nanotubes with different diameters. It has been extensively investigated as a molecular electronic device since carbon nanotubes can be metallic and semiconductive, depending on their structure. However, a carbon nanotube junction can also be viewed as a nanoscale nozzle andv diffuser. Here, we focus on the nanotube junction from the perspective of an intersection between machine, material and device. We have conducted a molecular dynamics simulation of the molecular flow inside a modeled (12,12–(8,8 nanotube junction. A strong gravitational field and a periodic boundary condition are applied in the flow direction. We investigated dense-Ar flows and dense-He flows while controlling the temperature of the nanotube junction. The results show that Ar atoms tend to be near to the wall and the density of the Ar is higher in the wide (12,12 nanotube than in the narrow (8,8 nanotube, while it is lower in the wide tube when no flow occurs. The streaming velocities of both the Ar and the He are higher in the narrow nanotube than in the wide nanotube, but the velocity of the Ar is higher than the velocity of the He and the temperature of the flowing Ar is higher than the temperature of the He when the same magnitude of gravitational field is applied.

  11. Kinematic/Dynamic Characteristics for Visual and Kinesthetic Virtual Environments

    Science.gov (United States)

    Bortolussi, Michael R. (Compiler); Adelstein, B. D.; Gold, Miriam

    1996-01-01

    Work was carried out on two topics of principal importance to current progress in virtual environment research at NASA Ames and elsewhere. The first topic was directed at maximizing the temporal dynamic response of visually presented Virtual Environments (VEs) through reorganization and optimization of system hardware and software. The final results of this portion of the work was a VE system in the Advanced Display and Spatial Perception Laboratory at NASA Ames capable of updating at 60 Hz (the maximum hardware refresh rate) with latencies approaching 30 msec. In the course of achieving this system performance, specialized hardware and software tools for measurement of VE latency and analytic models correlating update rate and latency for different system configurations were developed. The second area of activity was the preliminary development and analysis of a novel kinematic architecture for three Degree Of Freedom (DOF) haptic interfaces--devices that provide force feedback for manipulative interaction with virtual and remote environments. An invention disclosure was filed on this work and a patent application is being pursued by NASA Ames. Activities in these two areas are expanded upon below.

  12. Temporal dynamics of blue and green virtual water trade networks

    Science.gov (United States)

    Konar, M.; Dalin, C.; Hanasaki, N.; Rinaldo, A.; Rodriguez-Iturbe, I.

    2012-12-01

    Global food security increasingly relies on the trade of food commodities. Freshwater resources are essential to agricultural production and are thus embodied in the trade of food commodities, referred to as "virtual water trade." Agricultural production predominantly relies on rainwater (i.e., "green water"), though irrigation (i.e., "blue water") does play an important role. These different sources of water have distinctly different opportunity costs, which may be reflected in the way these resources are traded. Thus, the temporal dynamics of the virtual water trade networks from these distinct water sources require characterization. We find that 42 × 109 m3 blue and 310 × 109 m3 green water was traded in 1986, growing to 78 × 109 m3 blue and 594 × 109 m3 green water traded in 2008. Three nations dominate the export of green water resources: the USA, Argentina, and Brazil. As a country increases its export trade partners it tends to export relatively more blue water. However, as a country increases its import trade partners it does not preferentially import water from a specific source. The amount of virtual water that a country imports by increasing its import trade partners has been decreasing over time, with the exception of the soy trade. Both blue and green virtual water networks are efficient: 119 × 109 m3 blue and 105 × 109 m3 green water were saved in 2008. Importantly, trade has been increasingly saving water over time, due to the intensification of crop trade on more water-efficient links.

  13. An Optimization Method for Virtual Globe Ocean Surface Dynamic Visualization

    Directory of Open Access Journals (Sweden)

    HUANG Wumeng

    2016-12-01

    Full Text Available The existing visualization method in the virtual globe mainly uses the projection grid to organize the ocean grid. This special grid organization has the defects in reflecting the difference characteristics of different ocean areas. The method of global ocean visualization based on global discrete grid can make up the defect of the projection grid method by matching with the discrete space of the virtual globe, so it is more suitable for the virtual ocean surface simulation application.But the available global discrete grids method has many problems which limiting its application such as the low efficiency of rendering and loading, the need of repairing grid crevices. To this point, we propose an optimization for the global discrete grids method. At first, a GPU-oriented multi-scale grid model of ocean surface which develops on the foundation of global discrete grids was designed to organize and manage the ocean surface grids. Then, in order to achieve the wind-drive wave dynamic rendering, this paper proposes a dynamic wave rendering method based on the multi-scale ocean surface grid model to support real-time wind field updating. At the same time, considering the effect of repairing grid crevices on the system efficiency, this paper presents an efficient method for repairing ocean surface grid crevices based on the characteristics of ocean grid and GPU technology. At last, the feasibility and validity of the method are verified by the comparison experiment. The experimental results show that the proposed method is efficient, stable and fast, and can compensate for the lack of function of the existing methods, so the application range is more extensive.

  14. The ten stages pilot plant: its utilization in the research of the dynamic behavior and regullating process of a jet nozzle cascade for uranium enrichment

    International Nuclear Information System (INIS)

    Yadoya, R.; Camara, A.S.; Consiglio, R.V.; Bley, P.; Hein, H.; Linder, G.

    1986-01-01

    A ten stage pilot plant to study experimentally dynamic behavior of a uranium enrichment plant based on separation nozzle process was developed and constructed at Karlsruhe Nuclear Research Center. This installation was transfered to the Development Center of Nuclear Technology (CDTN) of Nuclebras in Belo Horizonte, Brazil. The separation elements installed have a new design with higher efficiency, Known as double-deflections system. The power plant has been used to improve the control method and to prove the stability of separation nozzle cascade under pertubations produced artificially. The stabilization process of UF 6 quantity in cascade by UF 6 inventory regulation at bottom stage will have practication in the First Cascade, in Rezende, RJ, Brazil and may be uded i emonstration plant. The experimental results have shown to be comparable with those obtained by computer simulation. (Author) [pt

  15. The influence of the stagnation zone on the fluid dynamics at the nozzle exit of a confined and submerged impinging jet

    Science.gov (United States)

    Jeffers, Nicholas; Stafford, Jason; Conway, Ciaran; Punch, Jeff; Walsh, Edmond

    2016-02-01

    Low profile impinging jets provide a means to achieve high heat transfer coefficients while occupying a small quantity of space. Consequently, they are found in many engineering applications such as electronics cooling, annealing of metals, food processing, and others. This paper investigates the influence of the stagnation zone fluid dynamics on the nozzle exit flow condition of a low profile, submerged, and confined impinging water jet. The jet was geometrically constrained to a round, 16-mm diameter, square-edged nozzle at a jet exit to target surface spacing ( H/ D) that varied between 0.25 choice of inlet boundary conditions in numerical models, and it was found that it is necessary to model a jet tube length {{ L}{/}{ D}} > 0.5—where D is the inner diameter of the jet—in order to minimise modelling uncertainty.

  16. Fuel nozzle assembly

    Science.gov (United States)

    Johnson, Thomas Edward [Greer, SC; Ziminsky, Willy Steve [Simpsonville, SC; Lacey, Benjamin Paul [Greer, SC; York, William David [Greer, SC; Stevenson, Christian Xavier [Inman, SC

    2011-08-30

    A fuel nozzle assembly is provided. The assembly includes an outer nozzle body having a first end and a second end and at least one inner nozzle tube having a first end and a second end. One of the nozzle body or nozzle tube includes a fuel plenum and a fuel passage extending therefrom, while the other of the nozzle body or nozzle tube includes a fuel injection hole slidably aligned with the fuel passage to form a fuel flow path therebetween at an interface between the body and the tube. The nozzle body and the nozzle tube are fixed against relative movement at the first ends of the nozzle body and nozzle tube, enabling the fuel flow path to close at the interface due to thermal growth after a flame enters the nozzle tube.

  17. Modeling Behavior Dynamics using Computational Psychometrics within Virtual Worlds

    Directory of Open Access Journals (Sweden)

    Pietro eCipresso

    2015-11-01

    Full Text Available In case of fire in a building, how will people behave in the crowd? The behavior of each individual affects the behavior of others and, conversely, each one behaves considering the crowd as a whole and the individual others. In this article, I propose a three-step method to explore a brand new way to study behavior dynamics. The first step relies on the creation of specific situations with standard techniques (such as mental imagery, text, video and audio and an advanced technique (Virtual Reality to manipulate experimental settings. The second step concerns the measurement of behavior in one, two or many individuals focusing on parameters extractions to provide information about the behavior dynamics. Finally, the third step, which uses the parameters collected and measured in the previous two steps in order to simulate possible scenarios to forecast through computational models, understand and explain behavior dynamics at the social level. An experimental study was also included to demonstrate the three-step method and a possible scenario.

  18. Modeling behavior dynamics using computational psychometrics within virtual worlds.

    Science.gov (United States)

    Cipresso, Pietro

    2015-01-01

    In case of fire in a building, how will people behave in the crowd? The behavior of each individual affects the behavior of others and, conversely, each one behaves considering the crowd as a whole and the individual others. In this article, I propose a three-step method to explore a brand new way to study behavior dynamics. The first step relies on the creation of specific situations with standard techniques (such as mental imagery, text, video, and audio) and an advanced technique [Virtual Reality (VR)] to manipulate experimental settings. The second step concerns the measurement of behavior in one, two, or many individuals focusing on parameters extractions to provide information about the behavior dynamics. Finally, the third step, which uses the parameters collected and measured in the previous two steps in order to simulate possible scenarios to forecast through computational models, understand, and explain behavior dynamics at the social level. An experimental study was also included to demonstrate the three-step method and a possible scenario.

  19. Dynamic shared state maintenance in distributed virtual environments

    Science.gov (United States)

    Hamza-Lup, Felix George

    Advances in computer networks and rendering systems facilitate the creation of distributed collaborative environments in which the distribution of information at remote locations allows efficient communication. Particularly challenging are distributed interactive Virtual Environments (VE) that allow knowledge sharing through 3D information. The purpose of this work is to address the problem of latency in distributed interactive VE and to develop a conceptual model for consistency maintenance in these environments based on the participant interaction model. An area that needs to be explored is the relationship between the dynamic shared state and the interaction with the virtual entities present in the shared scene. Mixed Reality (MR) and VR environments must bring the human participant interaction into the loop through a wide range of electronic motion sensors, and haptic devices. Part of the work presented here defines a novel criterion for categorization of distributed interactive VE and introduces, as well as analyzes, an adaptive synchronization algorithm for consistency maintenance in such environments. As part of the work, a distributed interactive Augmented Reality (AR) testbed and the algorithm implementation details are presented. Currently the testbed is part of several research efforts at the Optical Diagnostics and Applications Laboratory including 3D visualization applications using custom built head-mounted displays (HMDs) with optical motion tracking and a medical training prototype for endotracheal intubation and medical prognostics. An objective method using quaternion calculus is applied for the algorithm assessment. In spite of significant network latency, results show that the dynamic shared state can be maintained consistent at multiple remotely located sites. In further consideration of the latency problems and in the light of the current trends in interactive distributed VE applications, we propose a hybrid distributed system architecture for

  20. Modeling Dynamic Perceptual Attention in Complex Virtual Environments

    National Research Council Canada - National Science Library

    Kim, Youngjun; van Velsen, Martin; Hill, Jr, Randall W

    2005-01-01

    An important characteristic of a virtual human is the ability to direct its perceptual attention to entities and areas in a virtual environment in a manner that appears believable and serves a functional purpose...

  1. Computational study of performance characteristics for truncated conical aerospike nozzles

    Science.gov (United States)

    Nair, Prasanth P.; Suryan, Abhilash; Kim, Heuy Dong

    2017-12-01

    Aerospike nozzles are advanced rocket nozzles that can maintain its aerodynamic efficiency over a wide range of altitudes. It belongs to class of altitude compensating nozzles. A vehicle with an aerospike nozzle uses less fuel at low altitudes due to its altitude adaptability, where most missions have the greatest need for thrust. Aerospike nozzles are better suited to Single Stage to Orbit (SSTO) missions compared to conventional nozzles. In the current study, the flow through 20% and 40% aerospike nozzle is analyzed in detail using computational fluid dynamics technique. Steady state analysis with implicit formulation is carried out. Reynolds averaged Navier-Stokes equations are solved with the Spalart-Allmaras turbulence model. The results are compared with experimental results from previous work. The transition from open wake to closed wake happens in lower Nozzle Pressure Ratio for 20% as compared to 40% aerospike nozzle.

  2. Stochastic rocket dynamics under random nozzle side loads: Ornstein-Uhlenbeck boundary layer separation and its coarse grained connection to side loading and rocket response

    Energy Technology Data Exchange (ETDEWEB)

    Keanini, R.G.; Srivastava, N.; Tkacik, P.T. [Department of Mechanical Engineering, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28078 (United States); Weggel, D.C. [Department of Civil and Environmental Engineering, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28078 (United States); Knight, P.D. [Mitchell Aerospace and Engineering, Statesville, North Carolina 28677 (United States)

    2011-06-15

    A long-standing, though ill-understood problem in rocket dynamics, rocket response to random, altitude-dependent nozzle side-loads, is investigated. Side loads arise during low altitude flight due to random, asymmetric, shock-induced separation of in-nozzle boundary layers. In this paper, stochastic evolution of the in-nozzle boundary layer separation line, an essential feature underlying side load generation, is connected to random, altitude-dependent rotational and translational rocket response via a set of simple analytical models. Separation line motion, extant on a fast boundary layer time scale, is modeled as an Ornstein-Uhlenbeck process. Pitch and yaw responses, taking place on a long, rocket dynamics time scale, are shown to likewise evolve as OU processes. Stochastic, altitude-dependent rocket translational motion follows from linear, asymptotic versions of the full nonlinear equations of motion; the model is valid in the practical limit where random pitch, yaw, and roll rates all remain small. Computed altitude-dependent rotational and translational velocity and displacement statistics are compared against those obtained using recently reported high fidelity simulations [Srivastava, Tkacik, and Keanini, J. Appl. Phys. 108, 044911 (2010)]; in every case, reasonable agreement is observed. As an important prelude, evidence indicating the physical consistency of the model introduced in the above article is first presented: it is shown that the study's separation line model allows direct derivation of experimentally observed side load amplitude and direction densities. Finally, it is found that the analytical models proposed in this paper allow straightforward identification of practical approaches for: (i) reducing pitch/yaw response to side loads, and (ii) enhancing pitch/yaw damping once side loads cease. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Nozzle airfoil having movable nozzle ribs

    Science.gov (United States)

    Yu, Yufeng Phillip; Itzel, Gary Michael

    2002-01-01

    A nozzle vane or airfoil structure is provided in which the nozzle ribs are connected to the side walls of the vane or airfoil in such a way that the ribs provide the requisite mechanical support between the concave side and convex side of the airfoil but are not locked in the radial direction of the assembly, longitudinally of the airfoil. The ribs may be bi-cast onto a preformed airfoil side wall structure or fastened to the airfoil by an interlocking slide connection and/or welding. By attaching the nozzle ribs to the nozzle airfoil metal in such a way that allows play longitudinally of the airfoil, the temperature difference induced radial thermal stresses at the nozzle airfoil/rib joint area are reduced while maintaining proper mechanical support of the nozzle side walls.

  4. Information dynamics in virtual worlds gaming and beyond

    CERN Document Server

    Evans, Woody

    2011-01-01

    Presents a broad examination of the nature of virtual worlds and the potential they provide in managing and expressing information practices through that medium, grounding information professionals and students of new media in the fundamental elements of virtual worlds and online gaming. The book details the practical issues in finding and using information in virtual environments and presents a general theory of librarianship as it relates to virtual gaming worlds. It is encompassed by a set of best practice methods that libraries can effectively execute in their own environments, meeting the

  5. CrossFlow: Cross-Organizational Workflow Management in Dynamic Virtual Enterprises

    NARCIS (Netherlands)

    Grefen, P.W.P.J.; Aberer, Karl; Hoffner, Yigal; Ludwig, Heiko

    In this report, we present the approach to cross-organizational workflow management of the CrossFlow project. CrossFlow is a European research project aiming at the support of cross-organizational workflows in dynamic virtual enterprises. The cooperation in these virtual enterprises is based on

  6. CrossFlow : cross-organizational workflow management in dynamic virtual enterprises

    NARCIS (Netherlands)

    Grefen, P.W.P.J.; Aberer, K.; Hoffner, Y.

    2000-01-01

    This paper gives a detailed overview of the approach to cross-organizational workflow management developed in the CrossFlow project. CrossFlow is a European research project aiming at the support of cross-organizational workflows in dynamic virtual enterprises. The cooperation in these virtual

  7. Dynamic management of geographic data in a virtual environment

    NARCIS (Netherlands)

    Jense, G.J.; Donkers, K.

    1996-01-01

    In order to achieve true 3D user interaction with geographic information, an interface between a virtual environment system and a geographic information system has been designed and implemented. This VE/GIS interface is based on a loose coupling of the underlying geographic database and the virtual

  8. Cold spray nozzle design

    Science.gov (United States)

    Haynes, Jeffrey D [Stuart, FL; Sanders, Stuart A [Palm Beach Gardens, FL

    2009-06-09

    A nozzle for use in a cold spray technique is described. The nozzle has a passageway for spraying a powder material, the passageway having a converging section and a diverging section, and at least the diverging section being formed from polybenzimidazole. In one embodiment of the nozzle, the converging section is also formed from polybenzimidazole.

  9. SDN/NFV orchestration for dynamic deployment of virtual SDN controllers as VNF for multi-tenant optical networks

    OpenAIRE

    Muñoz, Raül; Vilalta, Ricard; Casellas, Ramon; Martínez, Ricardo; Szyrkowiec, T.; Autenrieth, A.; López, Víctor; López, D.

    2015-01-01

    We propose to virtualize the SDN control functions and move them to the cloud. We experimentally evaluate the first SDN/NFV orchestration architecture to dynamically deploy independent SDN controller instances for each deployed virtual optical network.

  10. Prototype Morphing Fan Nozzle Demonstrated

    Science.gov (United States)

    Lee, Ho-Jun; Song, Gang-Bing

    2004-01-01

    Ongoing research in NASA Glenn Research Center's Structural Mechanics and Dynamics Branch to develop smart materials technologies for aeropropulsion structural components has resulted in the design of the prototype morphing fan nozzle shown in the photograph. This prototype exploits the potential of smart materials to significantly improve the performance of existing aircraft engines by introducing new inherent capabilities for shape control, vibration damping, noise reduction, health monitoring, and flow manipulation. The novel design employs two different smart materials, a shape-memory alloy and magnetorheological fluids, to reduce the nozzle area by up to 30 percent. The prototype of the variable-area fan nozzle implements an overlapping spring leaf assembly to simplify the initial design and to provide ease of structural control. A single bundle of shape memory alloy wire actuators is used to reduce the nozzle geometry. The nozzle is subsequently held in the reduced-area configuration by using magnetorheological fluid brakes. This prototype uses the inherent advantages of shape memory alloys in providing large induced strains and of magnetorheological fluids in generating large resistive forces. In addition, the spring leaf design also functions as a return spring, once the magnetorheological fluid brakes are released, to help force the shape memory alloy wires to return to their original position. A computerized real-time control system uses the derivative-gain and proportional-gain algorithms to operate the system. This design represents a novel approach to the active control of high-bypass-ratio turbofan engines. Researchers have estimated that such engines will reduce thrust specific fuel consumption by 9 percent over that of fixed-geometry fan nozzles. This research was conducted under a cooperative agreement (NCC3-839) at the University of Akron.

  11. Design and analysis approach for linear aerospike nozzle

    International Nuclear Information System (INIS)

    Khan, S.U.; Khan, A.A.; Munir, A.

    2014-01-01

    The paper presents an aerodynamic design of a simplified linear aerospike nozzle and its detailed exhaust flow analysis with no spike truncation. Analytical method with isentropic planar flow was used to generate the nozzle contour through MATLAB . The developed code produces a number of outputs comprising nozzle wall profile, flow properties along the nozzle wall, thrust coefficient, thrust, as well as amount of nozzle truncation. Results acquired from design code and numerical analyses are compared for observing differences. The numerical analysis adopted an inviscid model carried out through commercially available and reliable computational fluid dynamics (CFD) software. Use of the developed code would assist the readers to perform quick analysis of different aerodynamic design parameters for the aerospike nozzle that has tremendous scope of application in future launch vehicles. Keyword: Rocket propulsion, Aerospike Nozzle, Control Design, Computational Fluid Dynamics. (author)

  12. CFD Analysis On The Performance Of Wind Turbine With Nozzles

    Directory of Open Access Journals (Sweden)

    Chunkyraj Kh

    2015-08-01

    Full Text Available In this paper an effort has been made in dealing with fluid characteristic that enters a converging nozzle and analysis of the nozzle is carried out using Computational Fluid Dynamics package ANSYS WORKBENCH 14.5. The paper is the continuation of earlier work Analytical and Experimental performance evaluation of Wind turbine with Nozzles. First the CFD analysis will be carried out on nozzle in-front of wind turbine where streamline velocity at the exit volume flow rate in the nozzle and pressure distribution across the nozzle will be studied. Experiments were conducted on the Wind turbine with nozzles and the corresponding power output at different air speed and different size of nozzles were calculated. Different shapes and dimensions with special contours and profiles of nozzles were studied. It was observed that the special contour nozzles have superior outlet velocity and low pressure at nozzle exit the design has maximum Kinetic energy. These indicators conclude that the contraction designed with the new profile is a good enhancing of the nozzle performance.

  13. Altitude Compensating Nozzle

    Science.gov (United States)

    Ruf, Joseph H.; Jones, Daniel

    2015-01-01

    The dual-bell nozzle (fig. 1) is an altitude-compensating nozzle that has an inner contour consisting of two overlapped bells. At low altitudes, the dual-bell nozzle operates in mode 1, only utilizing the smaller, first bell of the nozzle. In mode 1, the nozzle flow separates from the wall at the inflection point between the two bell contours. As the vehicle reaches higher altitudes, the dual-bell nozzle flow transitions to mode 2, to flow full into the second, larger bell. This dual-mode operation allows near optimal expansion at two altitudes, enabling a higher mission average specific impulse (Isp) relative to that of a conventional, single-bell nozzle. Dual-bell nozzles have been studied analytically and subscale nozzle tests have been completed.1 This higher mission averaged Isp can provide up to a 5% increase2 in payload to orbit for existing launch vehicles. The next important step for the dual-bell nozzle is to confirm its potential in a relevant flight environment. Toward this end, NASA Marshall Space Flight Center (MSFC) and Armstrong Flight Research Center (AFRC) have been working to develop a subscale, hot-fire, dual-bell nozzle test article for flight testing on AFRC's F15-D flight test bed (figs. 2 and 3). Flight test data demonstrating a dual-bell ability to control the mode transition and result in a sufficient increase in a rocket's mission averaged Isp should help convince the launch service providers that the dual-bell nozzle would provide a return on the required investment to bring a dual-bell into flight operation. The Game Changing Department provided 0.2 FTE to ER42 for this effort in 2014.

  14. Advanced exhaust nozzle technology

    Energy Technology Data Exchange (ETDEWEB)

    Glidewell, R J; Warburton, R E

    1981-01-01

    Recent developments in turbine engine exhaust nozzle technology include nonaxisymmetric nozzles, thrust reversing, and thrust vectoring. Trade studies have been performed to determine the impact of these developments on the thrust-to-weight ratio and specific fuel consumption of an advanced high performance, augmented turbofan engine. Results are presented in a manner which provides an understanding of the sources and magnitudes of differences in the basic elements of nozzle internal performance and weight as they relate to conventional, axisymmetric nozzle technology. Conclusions are presented and recommendations are made with regard to future directions of advanced development and demonstration. 5 refs.

  15. Firefighter Nozzle Reaction

    DEFF Research Database (Denmark)

    Chin, Selena K.; Sunderland, Peter B.; Jomaas, Grunde

    2017-01-01

    to anchor forces, the hose becomes straight. The nozzle reaction is found to equal the jet momentum flow rate, and it does not change when an elbow connects the hose to the nozzle. A forward force must be exerted by a firefighter or another anchor that matches the forward force that the jet would exert...... on a perpendicular wall. Three reaction expressions are derived, allowing it to be determined in terms of hose diameter, jet diameter, flow rate, and static pressure upstream of the nozzle. The nozzle reaction predictions used by the fire service are 56% to 90% of those obtained here for typical firefighting hand...

  16. Aeroelastic Modeling of a Nozzle Startup Transient

    Science.gov (United States)

    Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen

    2014-01-01

    Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a tightly coupled aeroelastic modeling algorithm by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed under the framework of modal analysis. Transient aeroelastic nozzle startup analyses at sea level were performed, and the computed transient nozzle fluid-structure interaction physics presented,

  17. Firefighter Nozzle Reaction

    DEFF Research Database (Denmark)

    Chin, Selena K.; Sunderland, Peter B.; Jomaas, Grunde

    2017-01-01

    Nozzle reaction and hose tension are analyzed using conservation of fluid momentum and assuming steady, inviscid flow and a flexible hose in frictionless contact with the ground. An expression that is independent of the bend angle is derived for the hose tension. If this tension is exceeded owing...... to anchor forces, the hose becomes straight. The nozzle reaction is found to equal the jet momentum flow rate, and it does not change when an elbow connects the hose to the nozzle. A forward force must be exerted by a firefighter or another anchor that matches the forward force that the jet would exert...... on a perpendicular wall. Three reaction expressions are derived, allowing it to be determined in terms of hose diameter, jet diameter, flow rate, and static pressure upstream of the nozzle. The nozzle reaction predictions used by the fire service are 56% to 90% of those obtained here for typical firefighting hand...

  18. Research on The Construction of Flexible Multi-body Dynamics Model based on Virtual Components

    Science.gov (United States)

    Dong, Z. H.; Ye, X.; Yang, F.

    2018-05-01

    Focus on the harsh operation condition of space manipulator, which cannot afford relative large collision momentum, this paper proposes a new concept and technology, called soft-contact technology. In order to solve the problem of collision dynamics of flexible multi-body system caused by this technology, this paper also proposes the concepts of virtual components and virtual hinges, and constructs flexible dynamic model based on virtual components, and also studies on its solutions. On this basis, this paper uses NX to carry out model and comparison simulation for space manipulator in 3 different modes. The results show that using the model of multi-rigid body + flexible body hinge + controllable damping can make effective control on amplitude for the force and torque caused by target satellite collision.

  19. Opinion dynamics within a virtual small group: the stubbornness effect

    Science.gov (United States)

    Guazzini, Andrea; Cini, Alessandro; Bagnoli, Franco; Ramasco, José

    2015-09-01

    The modeling of opinion dynamics is social systems has attracted a good deal of attention in the last decade. Even though based on intuition and observation, the mechanisms behind many of these models need solid empirical grounding. In this work, we investigate the relation among subjective variables (such as the personality), the dynamics of the affinity network dynamics, the communication patterns emerging throughout the social interactions and the opinions dynamics in a series of experiments with five small groups of ten people each. In order to ignite the discussion, the polemic topic of animal experimentation was proposed. The groups essentially polarized in two factions with a set of stubborn individuals (those not changing their opinions in time) playing the role of anchors. Our results suggest that the different layers present in the group dynamics (i.e., individual level, group dynamics and meso-communication) are deeply intermingled, specifically the stubbornness effect appears to be related to the dynamical features of the network topologies, and only in an undirected way to the personality of the participants.

  20. Opinion dynamics within a virtual small group: the stubbornness effect

    Directory of Open Access Journals (Sweden)

    Andrea eGuazzini

    2015-09-01

    Full Text Available The modeling of opinion dynamics is social systems has attracted a good deal of attention in the last decade. Even though based on intuition and observation, the mechanisms behind many of these models need solid empirical grounding. In this work, we investigate the relation among subjective variables (such as the personality, the dynamics of the affinity network dynamics, the communication patterns emerging throughout the social interactions and the opinions dynamics in a series of experiments with five small groups of ten people each. In order to ignite the discussion, the polemic topic of animal experimentation was proposed. The groups essentially polarized in two factions with a set of stubborn individuals (those not changing their opinions in time playing the role of anchors. Our results suggest that the different layers present in the group dynamics (i.e., individual level, group dynamics and meso-communication are deeply intermingled, specifically the stubbornness effect appears to be related to the dynamical features of the network topologies, and only in an undirected way to the personality of the participants.

  1. In Silico Dynamics: computer simulation in a Virtual Embryo (SOT)

    Science.gov (United States)

    Abstract: Utilizing cell biological information to predict higher order biological processes is a significant challenge in predictive toxicology. This is especially true for highly dynamical systems such as the embryo where morphogenesis, growth and differentiation require preci...

  2. Shifty: A Weight-Shifting Dynamic Passive Haptic Proxy to Enhance Object Perception in Virtual Reality.

    Science.gov (United States)

    Zenner, Andre; Kruger, Antonio

    2017-04-01

    We define the concept of Dynamic Passive Haptic Feedback (DPHF) for virtual reality by introducing the weight-shifting physical DPHF proxy object Shifty. This concept combines actuators known from active haptics and physical proxies known from passive haptics to construct proxies that automatically adapt their passive haptic feedback. We describe the concept behind our ungrounded weight-shifting DPHF proxy Shifty and the implementation of our prototype. We then investigate how Shifty can, by automatically changing its internal weight distribution, enhance the user's perception of virtual objects interacted with in two experiments. In a first experiment, we show that Shifty can enhance the perception of virtual objects changing in shape, especially in length and thickness. Here, Shifty was shown to increase the user's fun and perceived realism significantly, compared to an equivalent passive haptic proxy. In a second experiment, Shifty is used to pick up virtual objects of different virtual weights. The results show that Shifty enhances the perception of weight and thus the perceived realism by adapting its kinesthetic feedback to the picked-up virtual object. In the same experiment, we additionally show that specific combinations of haptic, visual and auditory feedback during the pick-up interaction help to compensate for visual-haptic mismatch perceived during the shifting process.

  3. Dynamic virtual AliEn Grid sites on Nimbus with CernVM

    International Nuclear Information System (INIS)

    Harutyunyan, A; Buncic, P; Freeman, T; Keahey, K

    2010-01-01

    We describe the work on enabling one click deployment of Grid sites of AliEn Grid framework on the Nimbus 'science cloud' at the University of Chicago. The integration of computing resources of the cloud with the resource pool of AliEn Grid is achieved by leveraging two mechanisms: the Nimbus Context Broker developed at Argonne National Laboratory and the University of Chicago, and CernVM - a baseline virtual software appliance for LHC experiments developed at CERN. Two approaches of dynamic virtual AliEn Grid site deployment are presented.

  4. The Virtual Brain: a simulator of primate brain network dynamics

    Directory of Open Access Journals (Sweden)

    Paula eSanz Leon

    2013-06-01

    Full Text Available We present TheVirtualBrain (TVB, a neuroinformatics platform for full brainnetwork simulations using biologically realistic connectivity. This simulationenvironment enables the model-based inference of neurophysiological mechanismsacross different brain scales that underlie the generation of macroscopicneuroimaging signals including functional MRI (fMRI, EEG and MEG. Researchersfrom different backgrounds can benefit from an integrative software platformincluding a supporting framework for data management (generation,organization, storage, integration and sharing and a simulation core writtenin Python. TVB allows the reproduction and evaluation of personalizedconfigurations of the brain by using individual subject data. Thispersonalization facilitates an exploration of the consequences of pathologicalchanges in the system, permitting to investigate potential ways to counteractsuch unfavorable processes. The architecture of TVB supports interaction withMATLAB packages, for example, the well known Brain Connectivity Toolbox. TVBcan be used in a client-server configuration, such that it can be remotelyaccessed through the Internet thanks to its web-basedHTML5, JS and WebGL graphical user interface. TVB is alsoaccessible as a standalone cross-platform Python library and application, andusers can interact with the scientific core through the scripting interfaceIDLE, enabling easy modeling, development and debugging of the scientifickernel. This second interface makes TVB extensible by combining it with otherlibraries and modules developed by the Python scientific community. In this article, we describe the theoretical background and foundations that led to thedevelopment of TVB, the architecture and features of its major softwarecomponents as well as potential neuroscience applications.

  5. Modelling fruit-temperature dynamics within apple tree crowns using virtual plants.

    Science.gov (United States)

    Saudreau, M; Marquier, A; Adam, B; Sinoquet, H

    2011-10-01

    Fruit temperature results from a complex system involving the climate, the tree architecture, the fruit location within the tree crown and the fruit thermal properties. Despite much theoretical and experimental evidence for large differences (up to 10 °C in sunny conditions) between fruit temperature and air temperature, fruit temperature is never used in horticultural studies. A way of modelling fruit-temperature dynamics from climate data is addressed in this work. The model is based upon three-dimensional virtual representation of apple trees and links three-dimensional virtual trees with a physical-based fruit-temperature dynamical model. The overall model was assessed by comparing model outputs to field measures of fruit-temperature dynamics. The model was able to simulate both the temperature dynamics at fruit scale, i.e. fruit-temperature gradients and departure from air temperature, and at the tree scale, i.e. the within-tree-crown variability in fruit temperature (average root mean square error value over fruits was 1·43 °C). This study shows that linking virtual plants with the modelling of the physical plant environment offers a relevant framework to address the modelling of fruit-temperature dynamics within a tree canopy. The proposed model offers opportunities for modelling effects of the within-crown architecture on fruit thermal responses in horticultural studies.

  6. The performance model of dynamic virtual organization (VO) formations within grid computing context

    International Nuclear Information System (INIS)

    Han Liangxiu

    2009-01-01

    Grid computing aims to enable 'resource sharing and coordinated problem solving in dynamic, multi-institutional virtual organizations (VOs)'. Within the grid computing context, successful dynamic VO formations mean a number of individuals and institutions associated with certain resources join together and form new VOs in order to effectively execute tasks within given time steps. To date, while the concept of VOs has been accepted, few research has been done on the impact of effective dynamic virtual organization formations. In this paper, we develop a performance model of dynamic VOs formation and analyze the effect of different complex organizational structures and their various statistic parameter properties on dynamic VO formations from three aspects: (1) the probability of a successful VO formation under different organizational structures and statistic parameters change, e.g. average degree; (2) the effect of task complexity on dynamic VO formations; (3) the impact of network scales on dynamic VO formations. The experimental results show that the proposed model can be used to understand the dynamic VO formation performance of the simulated organizations. The work provides a good path to understand how to effectively schedule and utilize resources based on the complex grid network and therefore improve the overall performance within grid environment.

  7. The Virtual Brain: a simulator of primate brain network dynamics.

    Science.gov (United States)

    Sanz Leon, Paula; Knock, Stuart A; Woodman, M Marmaduke; Domide, Lia; Mersmann, Jochen; McIntosh, Anthony R; Jirsa, Viktor

    2013-01-01

    We present The Virtual Brain (TVB), a neuroinformatics platform for full brain network simulations using biologically realistic connectivity. This simulation environment enables the model-based inference of neurophysiological mechanisms across different brain scales that underlie the generation of macroscopic neuroimaging signals including functional MRI (fMRI), EEG and MEG. Researchers from different backgrounds can benefit from an integrative software platform including a supporting framework for data management (generation, organization, storage, integration and sharing) and a simulation core written in Python. TVB allows the reproduction and evaluation of personalized configurations of the brain by using individual subject data. This personalization facilitates an exploration of the consequences of pathological changes in the system, permitting to investigate potential ways to counteract such unfavorable processes. The architecture of TVB supports interaction with MATLAB packages, for example, the well known Brain Connectivity Toolbox. TVB can be used in a client-server configuration, such that it can be remotely accessed through the Internet thanks to its web-based HTML5, JS, and WebGL graphical user interface. TVB is also accessible as a standalone cross-platform Python library and application, and users can interact with the scientific core through the scripting interface IDLE, enabling easy modeling, development and debugging of the scientific kernel. This second interface makes TVB extensible by combining it with other libraries and modules developed by the Python scientific community. In this article, we describe the theoretical background and foundations that led to the development of TVB, the architecture and features of its major software components as well as potential neuroscience applications.

  8. The Virtual Brain: a simulator of primate brain network dynamics

    Science.gov (United States)

    Sanz Leon, Paula; Knock, Stuart A.; Woodman, M. Marmaduke; Domide, Lia; Mersmann, Jochen; McIntosh, Anthony R.; Jirsa, Viktor

    2013-01-01

    We present The Virtual Brain (TVB), a neuroinformatics platform for full brain network simulations using biologically realistic connectivity. This simulation environment enables the model-based inference of neurophysiological mechanisms across different brain scales that underlie the generation of macroscopic neuroimaging signals including functional MRI (fMRI), EEG and MEG. Researchers from different backgrounds can benefit from an integrative software platform including a supporting framework for data management (generation, organization, storage, integration and sharing) and a simulation core written in Python. TVB allows the reproduction and evaluation of personalized configurations of the brain by using individual subject data. This personalization facilitates an exploration of the consequences of pathological changes in the system, permitting to investigate potential ways to counteract such unfavorable processes. The architecture of TVB supports interaction with MATLAB packages, for example, the well known Brain Connectivity Toolbox. TVB can be used in a client-server configuration, such that it can be remotely accessed through the Internet thanks to its web-based HTML5, JS, and WebGL graphical user interface. TVB is also accessible as a standalone cross-platform Python library and application, and users can interact with the scientific core through the scripting interface IDLE, enabling easy modeling, development and debugging of the scientific kernel. This second interface makes TVB extensible by combining it with other libraries and modules developed by the Python scientific community. In this article, we describe the theoretical background and foundations that led to the development of TVB, the architecture and features of its major software components as well as potential neuroscience applications. PMID:23781198

  9. Virtual reality in neurosurgical education: part-task ventriculostomy simulation with dynamic visual and haptic feedback.

    Science.gov (United States)

    Lemole, G Michael; Banerjee, P Pat; Luciano, Cristian; Neckrysh, Sergey; Charbel, Fady T

    2007-07-01

    Mastery of the neurosurgical skill set involves many hours of supervised intraoperative training. Convergence of political, economic, and social forces has limited neurosurgical resident operative exposure. There is need to develop realistic neurosurgical simulations that reproduce the operative experience, unrestricted by time and patient safety constraints. Computer-based, virtual reality platforms offer just such a possibility. The combination of virtual reality with dynamic, three-dimensional stereoscopic visualization, and haptic feedback technologies makes realistic procedural simulation possible. Most neurosurgical procedures can be conceptualized and segmented into critical task components, which can be simulated independently or in conjunction with other modules to recreate the experience of a complex neurosurgical procedure. We use the ImmersiveTouch (ImmersiveTouch, Inc., Chicago, IL) virtual reality platform, developed at the University of Illinois at Chicago, to simulate the task of ventriculostomy catheter placement as a proof-of-concept. Computed tomographic data are used to create a virtual anatomic volume. Haptic feedback offers simulated resistance and relaxation with passage of a virtual three-dimensional ventriculostomy catheter through the brain parenchyma into the ventricle. A dynamic three-dimensional graphical interface renders changing visual perspective as the user's head moves. The simulation platform was found to have realistic visual, tactile, and handling characteristics, as assessed by neurosurgical faculty, residents, and medical students. We have developed a realistic, haptics-based virtual reality simulator for neurosurgical education. Our first module recreates a critical component of the ventriculostomy placement task. This approach to task simulation can be assembled in a modular manner to reproduce entire neurosurgical procedures.

  10. Cold water injection nozzles

    International Nuclear Information System (INIS)

    Kura, Masaaki; Maeda, Masamitsu; Endo, Takio.

    1979-01-01

    Purpose: To inject cold water in a reactor without applying heat cycles to a reactor container and to the inner wall of a feedwater nozzle by securing a perforated plate at the outlet of the cold water injection nozzle. Constitution: A disc-like cap is secured to the final end of a return nozzle of a control rod drive. The cap prevents the flow of a high temperature water flowing downward in the reactor from entering into the nozzle. The cap is perforated with a plurality of bore holes for injecting cold water into the reactor. The cap is made to about 100 mm in thickness so that the cold water passing through the bore holes is heated by the heat conduction in the cap. Accordingly, the flow of high temperature water flowing downwardly in the reactor is inhibited by the cap from backward flowing into the nozzle. Moreover, the flow of the cold water in the nozzle is controlled and rectified when passed through the bore holes in the cap and then injected into the reactor. (Yoshino, Y.)

  11. Virtualization in network and servers infrastructure to support dynamic system reconfiguration in ALMA

    Science.gov (United States)

    Shen, Tzu-Chiang; Ovando, Nicolás.; Bartsch, Marcelo; Simmond, Max; Vélez, Gastón; Robles, Manuel; Soto, Rubén.; Ibsen, Jorge; Saldias, Christian

    2012-09-01

    ALMA is the first astronomical project being constructed and operated under industrial approach due to the huge amount of elements involved. In order to achieve the maximum through put during the engineering and scientific commissioning phase, several production lines have been established to work in parallel. This decision required modification in the original system architecture in which all the elements are controlled and operated within a unique Standard Test Environment (STE). The advance in the network industry and together with the maturity of virtualization paradigm allows us to provide a solution which can replicate the STE infrastructure without changing their network address definition. This is only possible with Virtual Routing and Forwarding (VRF) and Virtual LAN (VLAN) concepts. The solution allows dynamic reconfiguration of antennas and other hardware across the production lines with minimum time and zero human intervention in the cabling. We also push the virtualization even further, classical rack mount servers are being replaced and consolidated by blade servers. On top of them virtualized server are centrally administrated with VMWare ESX. Hardware costs and system administration effort will be reduced considerably. This mechanism has been established and operated successfully during the last two years. This experience gave us confident to propose a solution to divide the main operation array into subarrays using the same concept which will introduce huge flexibility and efficiency for ALMA operation and eventually may simplify the complexity of ALMA core observing software since there will be no need to deal with subarrays complexity at software level.

  12. Axisymmetric nozzles with chamfered contraction

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    2017-01-01

    Roč. 263, August (2017), s. 147-158 ISSN 0924-4247 Institutional support: RVO:61388998 Keywords : nozzles * chamfering * invariant Subject RIV: BK - Fluid Dynamics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.499, year: 2016 http://ac.els-cdn.com/S0924424716310329/1-s2.0-S0924424716310329-main.pdf?_tid=f953dc4c-873c-11e7-b8d0-00000aacb35d&acdnat=1503408341_51527a384c272a3c4e8f43e6046d789d

  13. The dynamic landscape of virtual space explored through a multidisciplinary kaleidoscope

    Directory of Open Access Journals (Sweden)

    C.-I. REZEANU

    2017-07-01

    Full Text Available A social life disconnected from space it`s difficult to conceive. However, in sociology, the concept of space is still underdeveloped, missing from theories, dictionaries, or encyclopaedias. For more than a century, sociologists have assumed space as a passive scene for social actions, and implied as material, static, continuous and linearly travelled. In the new context of information society, economic globalisation, and postmodern hyper-reality, scholars question the conventional definitions of space. We believe sociologists will arrive at a more nuanced understanding of space, by taking an interdisciplinary approach, and focusing on how space is lived. We use virtual space as a proxy for understanding how complex space can be, and frame it through the concept of “cultural landscape” to capture its relational, dynamic, and socially constructed dimensions. Our aim is to illustrate the dynamism, versatility, and fluidity of virtual space by moving from one discipline and theoretical perspective to the other and interpreting the newly configured landscapes. We show that virtual space is a discontinuous imaginary process, organised in networks with multiple layers, experienced as a journey into a narrative text or as a ”consensual hallucination”, where the evanescence of the body and the anonymity of the self boost the quest for authenticity, self-discovery, self-disclosure and intimacy. Nonetheless, virtual space, due to its potential to equalise statuses, minimise authority and multiply the audiences of messages, is becoming the enabler of Habermasian communicative rationality, rousing moral consciousness and triggering civic actions.

  14. A comparative analysis of dynamic grids vs. virtual grids using the A3pviGrid framework.

    Science.gov (United States)

    Shankaranarayanan, Avinas; Amaldas, Christine

    2010-11-01

    With the proliferation of Quad/Multi-core micro-processors in mainstream platforms such as desktops and workstations; a large number of unused CPU cycles can be utilized for running virtual machines (VMs) as dynamic nodes in distributed environments. Grid services and its service oriented business broker now termed cloud computing could deploy image based virtualization platforms enabling agent based resource management and dynamic fault management. In this paper we present an efficient way of utilizing heterogeneous virtual machines on idle desktops as an environment for consumption of high performance grid services. Spurious and exponential increases in the size of the datasets are constant concerns in medical and pharmaceutical industries due to the constant discovery and publication of large sequence databases. Traditional algorithms are not modeled at handing large data sizes under sudden and dynamic changes in the execution environment as previously discussed. This research was undertaken to compare our previous results with running the same test dataset with that of a virtual Grid platform using virtual machines (Virtualization). The implemented architecture, A3pviGrid utilizes game theoretic optimization and agent based team formation (Coalition) algorithms to improve upon scalability with respect to team formation. Due to the dynamic nature of distributed systems (as discussed in our previous work) all interactions were made local within a team transparently. This paper is a proof of concept of an experimental mini-Grid test-bed compared to running the platform on local virtual machines on a local test cluster. This was done to give every agent its own execution platform enabling anonymity and better control of the dynamic environmental parameters. We also analyze performance and scalability of Blast in a multiple virtual node setup and present our findings. This paper is an extension of our previous research on improving the BLAST application framework

  15. The Virtual Mouse Brain: A Computational Neuroinformatics Platform to Study Whole Mouse Brain Dynamics.

    Science.gov (United States)

    Melozzi, Francesca; Woodman, Marmaduke M; Jirsa, Viktor K; Bernard, Christophe

    2017-01-01

    Connectome-based modeling of large-scale brain network dynamics enables causal in silico interrogation of the brain's structure-function relationship, necessitating the close integration of diverse neuroinformatics fields. Here we extend the open-source simulation software The Virtual Brain (TVB) to whole mouse brain network modeling based on individual diffusion magnetic resonance imaging (dMRI)-based or tracer-based detailed mouse connectomes. We provide practical examples on how to use The Virtual Mouse Brain (TVMB) to simulate brain activity, such as seizure propagation and the switching behavior of the resting state dynamics in health and disease. TVMB enables theoretically driven experimental planning and ways to test predictions in the numerous strains of mice available to study brain function in normal and pathological conditions.

  16. Dynamic simulation of perturbation responses in a closed-loop virtual arm model.

    Science.gov (United States)

    Du, Yu-Fan; He, Xin; Lan, Ning

    2010-01-01

    A closed-loop virtual arm (VA) model has been developed in SIMULINK environment by adding spinal reflex circuits and propriospinal neural networks to the open-loop VA model developed in early study [1]. An improved virtual muscle model (VM4.0) is used to speed up simulation and to generate more precise recruitment of muscle force at low levels of muscle activation. Time delays in the reflex loops are determined by their synaptic connections and afferent transmission back to the spinal cord. Reflex gains are properly selected so that closed-loop responses are stable. With the closed-loop VA model, we are developing an approach to evaluate system behaviors by dynamic simulation of perturbation responses. Joint stiffness is calculated based on simulated perturbation responses by a least-squares algorithm in MATLAB. This method of dynamic simulation will be essential for further evaluation of feedforward and reflex control of arm movement and position.

  17. In Silico Dynamics: computer simulation in a Virtual Embryo ...

    Science.gov (United States)

    Abstract: Utilizing cell biological information to predict higher order biological processes is a significant challenge in predictive toxicology. This is especially true for highly dynamical systems such as the embryo where morphogenesis, growth and differentiation require precisely orchestrated interactions between diverse cell populations. In patterning the embryo, genetic signals setup spatial information that cells then translate into a coordinated biological response. This can be modeled as ‘biowiring diagrams’ representing genetic signals and responses. Because the hallmark of multicellular organization resides in the ability of cells to interact with one another via well-conserved signaling pathways, multiscale computational (in silico) models that enable these interactions provide a platform to translate cellular-molecular lesions perturbations into higher order predictions. Just as ‘the Cell’ is the fundamental unit of biology so too should it be the computational unit (‘Agent’) for modeling embryogenesis. As such, we constructed multicellular agent-based models (ABM) with ‘CompuCell3D’ (www.compucell3d.org) to simulate kinematics of complex cell signaling networks and enable critical tissue events for use in predictive toxicology. Seeding the ABMs with HTS/HCS data from ToxCast demonstrated the potential to predict, quantitatively, the higher order impacts of chemical disruption at the cellular or biochemical level. This is demonstrate

  18. Molecular dynamics coupled with a virtual system for effective conformational sampling.

    Science.gov (United States)

    Hayami, Tomonori; Kasahara, Kota; Nakamura, Haruki; Higo, Junichi

    2018-07-15

    An enhanced conformational sampling method is proposed: virtual-system coupled canonical molecular dynamics (VcMD). Although VcMD enhances sampling along a reaction coordinate, this method is free from estimation of a canonical distribution function along the reaction coordinate. This method introduces a virtual system that does not necessarily obey a physical law. To enhance sampling the virtual system couples with a molecular system to be studied. Resultant snapshots produce a canonical ensemble. This method was applied to a system consisting of two short peptides in an explicit solvent. Conventional molecular dynamics simulation, which is ten times longer than VcMD, was performed along with adaptive umbrella sampling. Free-energy landscapes computed from the three simulations mutually converged well. The VcMD provided quicker association/dissociation motions of peptides than the conventional molecular dynamics did. The VcMD method is applicable to various complicated systems because of its methodological simplicity. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  19. Virtual Habitat -a dynamic simulation of closed life support systems -human model status

    Science.gov (United States)

    Markus Czupalla, M. Sc.; Zhukov, Anton; Hwang, Su-Au; Schnaitmann, Jonas

    In order to optimize Life Support Systems on a system level, stability questions must be in-vestigated. To do so the exploration group of the Technical University of Munich (TUM) is developing the "Virtual Habitat" (V-HAB) dynamic LSS simulation software. V-HAB shall provide the possibility to conduct dynamic simulations of entire mission scenarios for any given LSS configuration. The Virtual Habitat simulation tool consists of four main modules: • Closed Environment Module (CEM) -monitoring of compounds in a closed environment • Crew Module (CM) -dynamic human simulation • P/C Systems Module (PCSM) -dynamic P/C subsystems • Plant Module (PM) -dynamic plant simulation The core module of the simulation is the dynamic and environment sensitive human module. Introduced in its basic version in 2008, the human module has been significantly updated since, increasing its capabilities and maturity significantly. In this paper three newly added human model subsystems (thermal regulation, digestion and schedule controller) are introduced touching also on the human stress subsystem which is cur-rently under development. Upon the introduction of these new subsystems, the integration of these into the overall V-HAB human model is discussed, highlighting the impact on the most important I/F. The overall human model capabilities shall further be summarized and presented based on meaningful test cases. In addition to the presentation of the results, the correlation strategy for the Virtual Habitat human model shall be introduced assessing the models current confidence level and giving an outlook on the future correlation strategy. Last but not least, the remaining V-HAB mod-ules shall be introduced shortly showing how the human model is integrated into the overall simulation.

  20. The application of virtual prototyping methods to determine the dynamic parameters of mobile robot

    Science.gov (United States)

    Kurc, Krzysztof; Szybicki, Dariusz; Burghardt, Andrzej; Muszyńska, Magdalena

    2016-04-01

    The paper presents methods used to determine the parameters necessary to build a mathematical model of an underwater robot with a crawler drive. The parameters present in the dynamics equation will be determined by means of advanced mechatronic design tools, including: CAD/CAE software andMES modules. The virtual prototyping process is described as well as the various possible uses (design adaptability) depending on the optional accessories added to the vehicle. A mathematical model is presented to show the kinematics and dynamics of the underwater crawler robot, essential for the design stage.

  1. Identification of Dynamic Flow Stress Curves Using the Virtual Fields Methods: Theoretical Feasibility Analysis

    Science.gov (United States)

    Leem, Dohyun; Kim, Jin-Hwan; Barlat, Frédéric; Song, Jung Han; Lee, Myoung-Gyu

    2018-03-01

    An inverse approach based on the virtual fields method (VFM) is presented to identify the material hardening parameters under dynamic deformation. This dynamic-VFM (D-VFM) method does not require load information for the parameter identification. Instead, it utilizes acceleration fields in a specimen's gage region. To investigate the feasibility of the proposed inverse approach for dynamic deformation, the virtual experiments using dynamic finite element simulations were conducted. The simulation could provide all the necessary data for the identification such as displacement, strain, and acceleration fields. The accuracy of the identification results was evaluated by changing several parameters such as specimen geometry, velocity, and traction boundary conditions. The analysis clearly shows that the D-VFM which utilizes acceleration fields can be a good alternative to the conventional identification procedure that uses load information. Also, it was found that proper deformation conditions are required for generating sufficient acceleration fields during dynamic deformation to enhance the identification accuracy with the D-VFM.

  2. The use of physical and virtual manipulatives in an undergraduate mechanical engineering (Dynamics) course

    Science.gov (United States)

    Pan, Edward A.

    Science, technology, engineering, and mathematics (STEM) education is a national focus. Engineering education, as part of STEM education, needs to adapt to meet the needs of the nation in a rapidly changing world. Using computer-based visualization tools and corresponding 3D printed physical objects may help nontraditional students succeed in engineering classes. This dissertation investigated how adding physical or virtual learning objects (called manipulatives) to courses that require mental visualization of mechanical systems can aid student performance. Dynamics is one such course, and tends to be taught using lecture and textbooks with static diagrams of moving systems. Students often fail to solve the problems correctly and an inability to mentally visualize the system can contribute to student difficulties. This study found no differences between treatment groups on quantitative measures of spatial ability and conceptual knowledge. There were differences between treatments on measures of mechanical reasoning ability, in favor of the use of physical and virtual manipulatives over static diagrams alone. There were no major differences in student performance between the use of physical and virtual manipulatives. Students used the physical and virtual manipulatives to test their theories about how the machines worked, however their actual time handling the manipulatives was extremely limited relative to the amount of time they spent working on the problems. Students used the physical and virtual manipulatives as visual aids when communicating about the problem with their partners, and this behavior was also seen with Traditional group students who had to use the static diagrams and gesture instead. The explanations students gave for how the machines worked provided evidence of mental simulation; however, their causal chain analyses were often flawed, probably due to attempts to decrease cognitive load. Student opinions about the static diagrams and dynamic

  3. Dual-nozzle microfluidic droplet generator

    Science.gov (United States)

    Choi, Ji Wook; Lee, Jong Min; Kim, Tae Hyun; Ha, Jang Ho; Ahrberg, Christian D.; Chung, Bong Geun

    2018-05-01

    The droplet-generating microfluidics has become an important technique for a variety of applications ranging from single cell analysis to nanoparticle synthesis. Although there are a large number of methods for generating and experimenting with droplets on microfluidic devices, the dispensing of droplets from these microfluidic devices is a challenge due to aggregation and merging of droplets at the interface of microfluidic devices. Here, we present a microfluidic dual-nozzle device for the generation and dispensing of uniform-sized droplets. The first nozzle of the microfluidic device is used for the generation of the droplets, while the second nozzle can accelerate the droplets and increase the spacing between them, allowing for facile dispensing of droplets. Computational fluid dynamic simulations were conducted to optimize the design parameters of the microfluidic device.

  4. VR-Cluster: Dynamic Migration for Resource Fragmentation Problem in Virtual Router Platform

    Directory of Open Access Journals (Sweden)

    Xianming Gao

    2016-01-01

    Full Text Available Network virtualization technology is regarded as one of gradual schemes to network architecture evolution. With the development of network functions virtualization, operators make lots of effort to achieve router virtualization by using general servers. In order to ensure high performance, virtual router platform usually adopts a cluster of general servers, which can be also regarded as a special cloud computing environment. However, due to frequent creation and deletion of router instances, it may generate lots of resource fragmentation to prevent platform from establishing new router instances. In order to solve “resource fragmentation problem,” we firstly propose VR-Cluster, which introduces two extra function planes including switching plane and resource management plane. Switching plane is mainly used to support seamless migration of router instances without packet loss; resource management plane can dynamically move router instances from one server to another server by using VR-mapping algorithms. Besides, three VR-mapping algorithms including first-fit mapping algorithm, best-fit mapping algorithm, and worst-fit mapping algorithm are proposed based on VR-Cluster. At last, we establish VR-Cluster protosystem by using general X86 servers, evaluate its migration time, and further analyze advantages and disadvantages of our proposed VR-mapping algorithms to solve resource fragmentation problem.

  5. VEDA: a web-based virtual environment for dynamic atomic force microscopy.

    Science.gov (United States)

    Melcher, John; Hu, Shuiqing; Raman, Arvind

    2008-06-01

    We describe here the theory and applications of virtual environment dynamic atomic force microscopy (VEDA), a suite of state-of-the-art simulation tools deployed on nanoHUB (www.nanohub.org) for the accurate simulation of tip motion in dynamic atomic force microscopy (dAFM) over organic and inorganic samples. VEDA takes advantage of nanoHUB's cyberinfrastructure to run high-fidelity dAFM tip dynamics computations on local clusters and the teragrid. Consequently, these tools are freely accessible and the dAFM simulations are run using standard web-based browsers without requiring additional software. A wide range of issues in dAFM ranging from optimal probe choice, probe stability, and tip-sample interaction forces, power dissipation, to material property extraction and scanning dynamics over hetereogeneous samples can be addressed.

  6. Invited Article: VEDA: A web-based virtual environment for dynamic atomic force microscopy

    Science.gov (United States)

    Melcher, John; Hu, Shuiqing; Raman, Arvind

    2008-06-01

    We describe here the theory and applications of virtual environment dynamic atomic force microscopy (VEDA), a suite of state-of-the-art simulation tools deployed on nanoHUB (www.nanohub.org) for the accurate simulation of tip motion in dynamic atomic force microscopy (dAFM) over organic and inorganic samples. VEDA takes advantage of nanoHUB's cyberinfrastructure to run high-fidelity dAFM tip dynamics computations on local clusters and the teragrid. Consequently, these tools are freely accessible and the dAFM simulations are run using standard web-based browsers without requiring additional software. A wide range of issues in dAFM ranging from optimal probe choice, probe stability, and tip-sample interaction forces, power dissipation, to material property extraction and scanning dynamics over hetereogeneous samples can be addressed.

  7. The self-adaptation to dynamic failures for efficient virtual organization formations in grid computing context

    International Nuclear Information System (INIS)

    Han Liangxiu

    2009-01-01

    Grid computing aims to enable 'resource sharing and coordinated problem solving in dynamic, multi-institutional virtual organizations (VOs)'. However, due to the nature of heterogeneous and dynamic resources, dynamic failures in the distributed grid environment usually occur more than in traditional computation platforms, which cause failed VO formations. In this paper, we develop a novel self-adaptive mechanism to dynamic failures during VO formations. Such a self-adaptive scheme allows an individual and member of VOs to automatically find other available or replaceable one once a failure happens and therefore makes systems automatically recover from dynamic failures. We define dynamic failure situations of a system by using two standard indicators: mean time between failures (MTBF) and mean time to recover (MTTR). We model both MTBF and MTTR as Poisson distributions. We investigate and analyze the efficiency of the proposed self-adaptation mechanism to dynamic failures by comparing the success probability of VO formations before and after adopting it in three different cases: (1) different failure situations; (2) different organizational structures and scales; (3) different task complexities. The experimental results show that the proposed scheme can automatically adapt to dynamic failures and effectively improve the dynamic VO formation performance in the event of node failures, which provide a valuable addition to the field.

  8. Analysis of Nozzle Jet Plume Effects on Sonic Boom Signature

    Science.gov (United States)

    Bui, Trong

    2010-01-01

    An axisymmetric full Navier-Stokes computational fluid dynamics (CFD) study was conducted to examine nozzle exhaust jet plume effects on the sonic boom signature of a supersonic aircraft. A simplified axisymmetric nozzle geometry, representative of the nozzle on the NASA Dryden NF-15B Lift and Nozzle Change Effects on Tail Shock (LaNCETS) research airplane, was considered. The highly underexpanded nozzle flow is found to provide significantly more reduction in the tail shock strength in the sonic boom N-wave pressure signature than perfectly expanded and overexpanded nozzle flows. A tail shock train in the sonic boom signature, similar to what was observed in the LaNCETS flight data, is observed for the highly underexpanded nozzle flow. The CFD results provide a detailed description of the nozzle flow physics involved in the LaNCETS nozzle at different nozzle expansion conditions and help in interpreting LaNCETS flight data as well as in the eventual CFD analysis of a full LaNCETS aircraft. The current study also provided important information on proper modeling of the LaNCETS aircraft nozzle. The primary objective of the current CFD research effort was to support the LaNCETS flight research data analysis effort by studying the detailed nozzle exhaust jet plume s imperfect expansion effects on the sonic boom signature of a supersonic aircraft. Figure 1 illustrates the primary flow physics present in the interaction between the exhaust jet plume shock and the sonic boom coming off of an axisymmetric body in supersonic flight. The steeper tail shock from highly expanded jet plume reduces the dip of the sonic boom N-wave signature. A structured finite-volume compressible full Navier-Stokes CFD code was used in the current study. This approach is not limited by the simplifying assumptions inherent in previous sonic boom analysis efforts. Also, this study was the first known jet plume sonic boom CFD study in which the full viscous nozzle flow field was modeled, without

  9. The effect of virtual reality gaming on dynamic balance in older adults.

    Science.gov (United States)

    Rendon, Abel Angel; Lohman, Everett B; Thorpe, Donna; Johnson, Eric G; Medina, Ernie; Bradley, Bruce

    2012-07-01

    physical therapy interventions that increase functional strength and balance have been shown to reduce falls in older adults. this study compared a virtual reality group (VRG) and a control group (CG). randomised controlled 6-week intervention with pre- and post-test evaluations. outpatient geriatric orthopaedic and balance physical therapy clinic. forty participants were randomised into two groups. the VRG received three different Nintendo® Wii FIT balance interventions three times per week for 6 weeks and the CG received no intervention. compared with the CG, post-intervention measurements showed significant improvements for the VRG in the 8-foot Up & Go test [median decrease of 1.0 versus -0.2 s, (P=0.038) and the Activities-specific Balance Confidence Scale (6.9 versus 1.3%) (P=0.038)]. virtual reality gaming provides clinicians with a useful tool for improving dynamic balance and balance confidence in older adults.

  10. Developing a dynamic virtual stimulation protocol to induce linear egomotion during orthostatic posture control test

    Directory of Open Access Journals (Sweden)

    Paulo José Guimarães Da-Silva

    Full Text Available Abstract Introduction In this work, the effect of a dynamic visual stimulation (DS protocol was used to induce egomotion, the center of pressure (COP displacement response. Methods DS was developed concerning the scenario structure (chessboard-pattern floor and furniture and luminance. To move the scenario in a discrete forward (or backward direction, the furniture is expanded (or reduced and the black and white background is reversed during floor translation while the luminance is increased (or reduced by steps of 2 cd/m2. This protocol was evaluated using COP signals from 29 healthy volunteers: standing on a force platform observing the virtual scene (1.72 × 1.16 m projected 1 m ahead (visual incidence angle: θl = 81.4° and θv = 60.2°, which moves with constant velocity (2 m/s during 250 ms. A set of 100 DS was applied in random order, interspersed by a 10 s of static scene. Results The Tukey post-hoc test (p < 0.001 indicated egomotion in the same direction of DS. COP displacement increased over stimulation (8.4 ± 1.7 to 22.6 ±5.3 mm, as well as time to recover stability (4.1 ± 0.4 to 7.2 ± 0.6 s. The peak of egomotion during DSF occurred 200 ms after DSB (Wilcoxon, p = 0.002. Conclusion The dynamic configuration of this protocol establishes virtual flow effects of linear egomotion dependent on the direction of the dynamic visual stimulation. This finding indicates the potential application of the proposed virtual dynamic stimulation protocol to investigate the cortical visual evoked response in postural control studies.

  11. Virtual Teams and E-Collaboration Technology: A Case Study Investigating the Dynamics of Virtual Team Communication

    Science.gov (United States)

    Mattison, Theresa

    2011-01-01

    The purpose of this study was to determine to what extent the use of e-collaboration tools when used as a primary channel of communication affected virtual team members' trust and motivation, in a spatially dispersed environment. Structured interviews were conducted with 18 project managers, who were responsible for leading virtual projects…

  12. Duplex tab exhaust nozzle

    Science.gov (United States)

    Gutmark, Ephraim Jeff (Inventor); Martens, Steven (nmn) (Inventor)

    2012-01-01

    An exhaust nozzle includes a conical duct terminating in an annular outlet. A row of vortex generating duplex tabs are mounted in the outlet. The tabs have compound radial and circumferential aft inclination inside the outlet for generating streamwise vortices for attenuating exhaust noise while reducing performance loss.

  13. Dynamic MR mammography: multidimensional visualization of contrast enhancement in virtual reality

    International Nuclear Information System (INIS)

    Englmeier, K.-H.; Siebert, M.; Griebel, J.; Lucht, R.; Brix, G.; Knopp, M.

    2000-01-01

    Background: The purpose of this study was the development of a method for fast and efficient analysis of dynamic MR images of the female breast. The image data sets were acquired with a saturation-recovery turbo-FLASH sequence which enables the detection of the kinetics of the contrast agent concentration in the whole breast with a high temporal and spatial resolution. In addition, a morphologic 3D-FLASH data set was acquired. Methods: The dynamic image datasets were analyzed by a pharmacokinetic model which enables the representation of the relevant functional tissue information by two parameters. In order to display simultaneously morphologic and functional tissue information, we developed a multidimensional visualization system, which enables a practical and intuitive human-computer interface in virtual reality. Discussions: The developed system allows the fast and efficient analysis of dynamic MR data sets. An important clinical application is the localization and definition of multiple lesions of the female breast. (orig.) [de

  14. [Dynamic MR mammography. Multidimensional visualization of contrast medium enhancement in virtual reality].

    Science.gov (United States)

    Englmeier, K H; Griebel, J; Lucht, R; Knopp, M; Siebert, M; Brix, G

    2000-03-01

    The purpose of this study was the development of a method for fast and efficient analysis of dynamic MR images of the female breast. The image data sets were acquired with a saturation-recovery turbo-FLASH sequence which enables the detection of the kinetics of the contrast agent concentration in the whole breast with a high temporal and spatial resolution. In addition, a morphologic 3D-FLASH data set was acquired. The dynamic image datasets were analyzed by a pharmacokinetic model which enables the representation of the relevant functional tissue information by two parameters. In order to display simultaneously morphologic and functional tissue information, we developed a multidimensional visualization system, which enables a practical and intuitive human-computer interface in virtual reality. The developed system allows the fast and efficient analysis of dynamic MR data sets. An important clinical application is the localization and definition of multiple lesions of the female breast.

  15. Evaluating energy efficiency for airlines: An application of Virtual Frontier Dynamic Slacks Based Measure

    International Nuclear Information System (INIS)

    Cui, Qiang; Li, Ye; Yu, Chen-lu; Wei, Yi-Ming

    2016-01-01

    The fast growing Revenue Passenger Kilometers and the relatively lagged energy supply of aviation industry impels the airlines to improve energy efficiency. In this paper, we focus on evaluating and analyzing influencing factors for airline energy efficiency. Number of employees and aviation kerosene are chosen as the inputs. Revenue Ton Kilometers, Revenue Passenger Kilometers and total business income are the outputs. Capital stock is selected as the dynamic factor. A new model, Virtual Frontier Dynamic Slacks Based Measure, is proposed to calculate the energy efficiencies of 21 airlines from 2008 to 2012. We verify two important properties to manifest the advantages of the new model. Then a regression is run to analyze the influencing factors of airline energy efficiency. The main findings are: 1. The overall energy efficiency of Malaysia Airlines is the highest during 2008–2012.2. Per capita Gross Domestic Product, the average service age of fleet size and average haul distance have significant impacts on the efficiency score. 3. The difference between full-service carriers and low-cost carriers has no significant effects on airline energy efficiency. - Highlights: • A Virtual Frontier Dynamic Slacks Based Measure is developed. • 21 airlines' energy efficiencies are evaluated. • Malaysia Airlines has the highest overall energy efficiency. • Three explanatory variables have significant impacts.

  16. The Virtual Teacher (VT) Paradigm: Learning New Patterns of Interpersonal Coordination Using the Human Dynamic Clamp.

    Science.gov (United States)

    Kostrubiec, Viviane; Dumas, Guillaume; Zanone, Pier-Giorgio; Kelso, J A Scott

    2015-01-01

    The Virtual Teacher paradigm, a version of the Human Dynamic Clamp (HDC), is introduced into studies of learning patterns of inter-personal coordination. Combining mathematical modeling and experimentation, we investigate how the HDC may be used as a Virtual Teacher (VT) to help humans co-produce and internalize new inter-personal coordination pattern(s). Human learners produced rhythmic finger movements whilst observing a computer-driven avatar, animated by dynamic equations stemming from the well-established Haken-Kelso-Bunz (1985) and Schöner-Kelso (1988) models of coordination. We demonstrate that the VT is successful in shifting the pattern co-produced by the VT-human system toward any value (Experiment 1) and that the VT can help humans learn unstable relative phasing patterns (Experiment 2). Using transfer entropy, we find that information flow from one partner to the other increases when VT-human coordination loses stability. This suggests that variable joint performance may actually facilitate interaction, and in the long run learning. VT appears to be a promising tool for exploring basic learning processes involved in social interaction, unraveling the dynamics of information flow between interacting partners, and providing possible rehabilitation opportunities.

  17. Premixed direct injection nozzle

    Science.gov (United States)

    Zuo, Baifang [Simpsonville, SC; Johnson, Thomas Edward [Greer, SC; Lacy, Benjamin Paul [Greer, SC; Ziminsky, Willy Steve [Simpsonville, SC

    2011-02-15

    An injection nozzle having a main body portion with an outer peripheral wall is disclosed. The nozzle includes a plurality of fuel/air mixing tubes disposed within the main body portion and a fuel flow passage fluidly connected to the plurality of fuel/air mixing tubes. Fuel and air are partially premixed inside the plurality of the tubes. A second body portion, having an outer peripheral wall extending between a first end and an opposite second end, is connected to the main body portion. The partially premixed fuel and air mixture from the first body portion gets further mixed inside the second body portion. The second body portion converges from the first end toward said second end. The second body portion also includes cooling passages that extend along all the walls around the second body to provide thermal damage resistance for occasional flame flash back into the second body.

  18. Limit loads in nozzles

    International Nuclear Information System (INIS)

    Zouain, N.

    1983-01-01

    The static method for the evaluation of the limit loads of a perfectly elasto-plastic structure is presented. Using the static theorem of Limit Analysis and the Finite Element Method, a lower bound for the colapso load can be obtained through a linear programming problem. This formulation if then applied to symmetrically loaded shells of revolution and some numerical results of limit loads in nozzles are also presented. (Author) [pt

  19. Application of the dynamically allocated virtual clustering management system to emulated tactical network experimentation

    Science.gov (United States)

    Marcus, Kelvin

    2014-06-01

    The U.S Army Research Laboratory (ARL) has built a "Network Science Research Lab" to support research that aims to improve their ability to analyze, predict, design, and govern complex systems that interweave the social/cognitive, information, and communication network genres. Researchers at ARL and the Network Science Collaborative Technology Alliance (NS-CTA), a collaborative research alliance funded by ARL, conducted experimentation to determine if automated network monitoring tools and task-aware agents deployed within an emulated tactical wireless network could potentially increase the retrieval of relevant data from heterogeneous distributed information nodes. ARL and NS-CTA required the capability to perform this experimentation over clusters of heterogeneous nodes with emulated wireless tactical networks where each node could contain different operating systems, application sets, and physical hardware attributes. Researchers utilized the Dynamically Allocated Virtual Clustering Management System (DAVC) to address each of the infrastructure support requirements necessary in conducting their experimentation. The DAVC is an experimentation infrastructure that provides the means to dynamically create, deploy, and manage virtual clusters of heterogeneous nodes within a cloud computing environment based upon resource utilization such as CPU load, available RAM and hard disk space. The DAVC uses 802.1Q Virtual LANs (VLANs) to prevent experimentation crosstalk and to allow for complex private networks. Clusters created by the DAVC system can be utilized for software development, experimentation, and integration with existing hardware and software. The goal of this paper is to explore how ARL and the NS-CTA leveraged the DAVC to create, deploy and manage multiple experimentation clusters to support their experimentation goals.

  20. Fast Virtual Fractional Flow Reserve Based Upon Steady-State Computational Fluid Dynamics Analysis

    Directory of Open Access Journals (Sweden)

    Paul D. Morris, PhD

    2017-08-01

    Full Text Available Fractional flow reserve (FFR-guided percutaneous intervention is superior to standard assessment but remains underused. The authors have developed a novel “pseudotransient” analysis protocol for computing virtual fractional flow reserve (vFFR based upon angiographic images and steady-state computational fluid dynamics. This protocol generates vFFR results in 189 s (cf >24 h for transient analysis using a desktop PC, with <1% error relative to that of full-transient computational fluid dynamics analysis. Sensitivity analysis demonstrated that physiological lesion significance was influenced less by coronary or lesion anatomy (33% and more by microvascular physiology (59%. If coronary microvascular resistance can be estimated, vFFR can be accurately computed in less time than it takes to make invasive measurements.

  1. Nozzle Mounting Method Optimization Based on Robot Kinematic Analysis

    Science.gov (United States)

    Chen, Chaoyue; Liao, Hanlin; Montavon, Ghislain; Deng, Sihao

    2016-08-01

    Nowadays, the application of industrial robots in thermal spray is gaining more and more importance. A desired coating quality depends on factors such as a balanced robot performance, a uniform scanning trajectory and stable parameters (e.g. nozzle speed, scanning step, spray angle, standoff distance). These factors also affect the mass and heat transfer as well as the coating formation. Thus, the kinematic optimization of all these aspects plays a key role in order to obtain an optimal coating quality. In this study, the robot performance was optimized from the aspect of nozzle mounting on the robot. An optimized nozzle mounting for a type F4 nozzle was designed, based on the conventional mounting method from the point of view of robot kinematics validated on a virtual robot. Robot kinematic parameters were obtained from the simulation by offline programming software and analyzed by statistical methods. The energy consumptions of different nozzle mounting methods were also compared. The results showed that it was possible to reasonably assign the amount of robot motion to each axis during the process, so achieving a constant nozzle speed. Thus, it is possible optimize robot performance and to economize robot energy.

  2. Extending Virtual Reality simulation of ITER maintenance operations with dynamic effects

    International Nuclear Information System (INIS)

    Heemskerk, C.J.M.; Baar, M.R. de; Boessenkool, H.; Graafland, B.; Haye, M.J.; Koning, J.F.; Vahedi, M.; Visser, M.

    2011-01-01

    Virtual Reality (VR) simulation can be used to study, improve and verify ITER maintenance operations during preparation. VR can also improve the situational awareness of human operators during actual Remote Handling (RH) operations. Until now, VR systems use geometric models of the environment and the objects being handled and kinematic models of the manipulation systems. The addition of dynamic effects into the VR simulation was investigated. Important dynamic effects are forces due to contact transitions and the bending of beams under heavy loads. A novel dynamics simulation module was developed and introduced as an add-on to the VR4Robots VR software. Tests were performed under simplified test conditions and in the context of realistic ITER maintenance tasks on a benchmark product and on the ECRH Upper Port Launcher Plug (UPL). The introduction of dynamic effects into VR simulations was found to add realism and provide new insights in procedure development. The quality of the haptic feedback depends strongly on the haptic device used to 'display' haptic feedback to the operator. Dynamic effect simulation can also form the basis for real-time guidance support to operators during the execution of maintenance tasks (augmented reality).

  3. Novel design for transparent high-pressure fuel injector nozzles

    Science.gov (United States)

    Falgout, Z.; Linne, M.

    2016-08-01

    The efficiency and emissions of internal combustion (IC) engines are closely tied to the formation of the combustible air-fuel mixture. Direct-injection engines have become more common due to their increased practical flexibility and efficiency, and sprays dominate mixture formation in these engines. Spray formation, or rather the transition from a cylindrical liquid jet to a field of isolated droplets, is not completely understood. However, it is known that nozzle orifice flow and cavitation have an important effect on the formation of fuel injector sprays, even if the exact details of this effect remain unknown. A number of studies in recent years have used injectors with optically transparent nozzles (OTN) to allow observation of the nozzle orifice flow. Our goal in this work is to design various OTN concepts that mimic the flow inside commercial injector nozzles, at realistic fuel pressures, and yet still allow access to the very near nozzle region of the spray so that interior flow structure can be correlated with primary breakup dynamics. This goal has not been achieved until now because interior structures can be very complex, and the most appropriate optical materials are brittle and easily fractured by realistic fuel pressures. An OTN design that achieves realistic injection pressures and grants visual access to the interior flow and spray formation will be explained in detail. The design uses an acrylic nozzle, which is ideal for imaging the interior flow. This nozzle is supported from the outside with sapphire clamps, which reduces tensile stresses in the nozzle and increases the nozzle's injection pressure capacity. An ensemble of nozzles were mechanically tested to prove this design concept.

  4. Using a Virtual Class to Demonstrate Computer-Mediated Group Dynamics Concepts

    Science.gov (United States)

    Franz, Timothy M.; Vicker, Lauren A.

    2010-01-01

    We report about an active learning demonstration designed to use a virtual class to present computer-mediated group communication course concepts to show that students can learn about these concepts in a virtual class. We designated 1 class period as a virtual rather than face-to-face class, when class members "attended" virtually using…

  5. A Service-Oriented Approach for Dynamic Chaining of Virtual Network Functions over Multi-Provider Software-Defined Networks

    Directory of Open Access Journals (Sweden)

    Barbara Martini

    2016-06-01

    Full Text Available Emerging technologies such as Software-Defined Networks (SDN and Network Function Virtualization (NFV promise to address cost reduction and flexibility in network operation while enabling innovative network service delivery models. However, operational network service delivery solutions still need to be developed that actually exploit these technologies, especially at the multi-provider level. Indeed, the implementation of network functions as software running over a virtualized infrastructure and provisioned on a service basis let one envisage an ecosystem of network services that are dynamically and flexibly assembled by orchestrating Virtual Network Functions even across different provider domains, thereby coping with changeable user and service requirements and context conditions. In this paper we propose an approach that adopts Service-Oriented Architecture (SOA technology-agnostic architectural guidelines in the design of a solution for orchestrating and dynamically chaining Virtual Network Functions. We discuss how SOA, NFV, and SDN may complement each other in realizing dynamic network function chaining through service composition specification, service selection, service delivery, and placement tasks. Then, we describe the architecture of a SOA-inspired NFV orchestrator, which leverages SDN-based network control capabilities to address an effective delivery of elastic chains of Virtual Network Functions. Preliminary results of prototype implementation and testing activities are also presented. The benefits for Network Service Providers are also described that derive from the adaptive network service provisioning in a multi-provider environment through the orchestration of computing and networking services to provide end users with an enhanced service experience.

  6. A genetic algorithm for a bi-objective mathematical model for dynamic virtual cell formation problem

    Science.gov (United States)

    Moradgholi, Mostafa; Paydar, Mohammad Mahdi; Mahdavi, Iraj; Jouzdani, Javid

    2016-09-01

    Nowadays, with the increasing pressure of the competitive business environment and demand for diverse products, manufacturers are force to seek for solutions that reduce production costs and rise product quality. Cellular manufacturing system (CMS), as a means to this end, has been a point of attraction to both researchers and practitioners. Limitations of cell formation problem (CFP), as one of important topics in CMS, have led to the introduction of virtual CMS (VCMS). This research addresses a bi-objective dynamic virtual cell formation problem (DVCFP) with the objective of finding the optimal formation of cells, considering the material handling costs, fixed machine installation costs and variable production costs of machines and workforce. Furthermore, we consider different skills on different machines in workforce assignment in a multi-period planning horizon. The bi-objective model is transformed to a single-objective fuzzy goal programming model and to show its performance; numerical examples are solved using the LINGO software. In addition, genetic algorithm (GA) is customized to tackle large-scale instances of the problems to show the performance of the solution method.

  7. ANCS: Achieving QoS through Dynamic Allocation of Network Resources in Virtualized Clouds

    Directory of Open Access Journals (Sweden)

    Cheol-Ho Hong

    2016-01-01

    Full Text Available To meet the various requirements of cloud computing users, research on guaranteeing Quality of Service (QoS is gaining widespread attention in the field of cloud computing. However, as cloud computing platforms adopt virtualization as an enabling technology, it becomes challenging to distribute system resources to each user according to the diverse requirements. Although ample research has been conducted in order to meet QoS requirements, the proposed solutions lack simultaneous support for multiple policies, degrade the aggregated throughput of network resources, and incur CPU overhead. In this paper, we propose a new mechanism, called ANCS (Advanced Network Credit Scheduler, to guarantee QoS through dynamic allocation of network resources in virtualization. To meet the various network demands of cloud users, ANCS aims to concurrently provide multiple performance policies; these include weight-based proportional sharing, minimum bandwidth reservation, and maximum bandwidth limitation. In addition, ANCS develops an efficient work-conserving scheduling method for maximizing network resource utilization. Finally, ANCS can achieve low CPU overhead via its lightweight design, which is important for practical deployment.

  8. Dynamically remembered present: Virtual memory as a basis for the stories we live

    Directory of Open Access Journals (Sweden)

    Cornelius W. du Toit

    2013-06-01

    Full Text Available In this article memory was viewed as a crucial key to the discovery of reality. It is the basis of historical research at all levels, hence it is not confined to a function of human consciousness (brain operations: its physical vestiges are discernible in the universe, in fossils, in the DNA of species. Memory inscribes information in various ways. On a human level it is not recalled computer-wise: imagination, emotion and tacit motives play a role in how we remember. The article investigated the way in which memory underlies the operation of every cell in any living organism. Against this background the role of memory in humans and its decisive influence on every level of human life are examined. Gerald Edelman’s work in this regard was considered. Marcel Proust’s focus on memory is an underlying thread running through his novels, unrivalled in literary history. Some prominent examples were analysed in this article. In light of the foregoing the role of memory in religious experience was then discussed. The virtuality of memory is encapsulated in the statement that we remember the present whilst reliving the past. Memory characterised by virtuality is basic to our autobiographic narratives. The nature of memory determines our life stories, hence our perception of the human self as dynamically variable and open to the future.

  9. The dynamics of student learning within a high school virtual reality design class

    Science.gov (United States)

    Morales, Teresa M.

    This mixed method study investigated knowledge and skill development of high school students in a project-based VR design class, in which 3-D projects were developed within a student-centered, student-directed environment. This investigation focused on student content learning, and problem solving. Additionally the social dynamics of the class and the role of peer mentoring were examined to determine how these factors influenced student behavior and learning. Finally, parent and teachers perceptions of the influence of the class were examined. The participants included freshmen through senior students, parents, teachers and the high school principal. Student interviews and classroom observations were used to collect data from students, while teachers and parents completed surveys. The results of this study suggested that this application of virtual reality (VR) learning environment promoted the development of; meaningful cognitive experiences, creativity, leadership, global socialization, problem solving and a deeper understanding of academic content. Further theoretical implications for 3-D virtual reality technology are exceedingly promising, and warrant additional research and development as an instructional tool for practical use.

  10. Initial virtual flight test for a dynamically similar aircraft model with control augmentation system

    Directory of Open Access Journals (Sweden)

    Linliang Guo

    2017-04-01

    Full Text Available To satisfy the validation requirements of flight control law for advanced aircraft, a wind tunnel based virtual flight testing has been implemented in a low speed wind tunnel. A 3-degree-of-freedom gimbal, ventrally installed in the model, was used in conjunction with an actively controlled dynamically similar model of aircraft, which was equipped with the inertial measurement unit, attitude and heading reference system, embedded computer and servo-actuators. The model, which could be rotated around its center of gravity freely by the aerodynamic moments, together with the flow field, operator and real time control system made up the closed-loop testing circuit. The model is statically unstable in longitudinal direction, and it can fly stably in wind tunnel with the function of control augmentation of the flight control laws. The experimental results indicate that the model responds well to the operator’s instructions. The response of the model in the tests shows reasonable agreement with the simulation results. The difference of response of angle of attack is less than 0.5°. The effect of stability augmentation and attitude control law was validated in the test, meanwhile the feasibility of virtual flight test technique treated as preliminary evaluation tool for advanced flight vehicle configuration research was also verified.

  11. The effects of a spray slurry nozzle on copper CMP for reduction in slurry consumption

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Da Sol; Jeong, Hae Do [Pusan National University, Busan (Korea, Republic of); Lee, Hyun Seop [Tongmyong University, Busan (Korea, Republic of)

    2015-12-15

    The environmental impact of semiconductor manufacturing has been a big social problem, like greenhouse gas emission. Chemical mechanical planarization (CMP), a wet process which consumes chemical slurries, seriously impacts environmental sustain ability and cost-effectiveness. This paper demonstrates the superiority of a full-cone spray slurry nozzle to the conventional tube-type slurry nozzle in Cu CMP. It was observed that the spray nozzle made a weak slurry wave at the retaining ring unlike a conventional nozzle, because the slurry was supplied uniformly in broader areas. Experiments were implemented with different slurry flow rates and spray nozzle heights. Spray nozzle performance is controlled by the spray angle and spray height. The process temperature was obtained with an infrared (IR) sensor and an IR thermal imaging camera to investigate the cooling effect of the spray. The results show that the spray nozzle provides a higher Material removal rate (MRR), lower non-uniformity (NU), and lower temperature than the conventional nozzle. Computational fluid dynamics techniques show that the turbulence kinetic energy and slurry velocity of the spray nozzle are much higher than those of the conventional nozzle. Finally, it can be summarized that the spray nozzle plays a significant role in slurry efficiency by theory of Minimum quantity lubrication (MQL).

  12. The effects of a spray slurry nozzle on copper CMP for reduction in slurry consumption

    International Nuclear Information System (INIS)

    Lee, Da Sol; Jeong, Hae Do; Lee, Hyun Seop

    2015-01-01

    The environmental impact of semiconductor manufacturing has been a big social problem, like greenhouse gas emission. Chemical mechanical planarization (CMP), a wet process which consumes chemical slurries, seriously impacts environmental sustain ability and cost-effectiveness. This paper demonstrates the superiority of a full-cone spray slurry nozzle to the conventional tube-type slurry nozzle in Cu CMP. It was observed that the spray nozzle made a weak slurry wave at the retaining ring unlike a conventional nozzle, because the slurry was supplied uniformly in broader areas. Experiments were implemented with different slurry flow rates and spray nozzle heights. Spray nozzle performance is controlled by the spray angle and spray height. The process temperature was obtained with an infrared (IR) sensor and an IR thermal imaging camera to investigate the cooling effect of the spray. The results show that the spray nozzle provides a higher Material removal rate (MRR), lower non-uniformity (NU), and lower temperature than the conventional nozzle. Computational fluid dynamics techniques show that the turbulence kinetic energy and slurry velocity of the spray nozzle are much higher than those of the conventional nozzle. Finally, it can be summarized that the spray nozzle plays a significant role in slurry efficiency by theory of Minimum quantity lubrication (MQL).

  13. Dynamic study of the virtual prototype of the IAR-99 SOIM Aircraft

    Directory of Open Access Journals (Sweden)

    Daniela BARAN

    2013-09-01

    Full Text Available This paper contains a dynamic study of the IAR-99 SOIM aircraft using ADAMS, multibody dynamic solutions. First, the analysis of the whole airplane is envisaged and then the analysis of the flight control system and the landing gear are considered. The study is performed in the idea of upgrading the IAR-99 aircraft being a continuation of a previous study concerning a flutter analysis [9] of the same aircraft, and will be followed by a paper dedicated to modern tools in the stress analysis of the aeronautical structures. Using ADAMS one can build and test complex virtual prototypes, simulating mechanical systems in a realistic manner, both visually and mathematically which is very useful before developing a real prototype. Engineers can study the dynamics of moving parts and how loads and forces are distributed throughout a complex mechanical system as an airplane. In this way multiple design solutions can be analyzed and evaluated in order to shorten the time and to reduce the cost of a new project.

  14. Visualizing dynamic geosciences phenomena using an octree-based view-dependent LOD strategy within virtual globes

    Science.gov (United States)

    Li, Jing; Wu, Huayi; Yang, Chaowei; Wong, David W.; Xie, Jibo

    2011-09-01

    Geoscientists build dynamic models to simulate various natural phenomena for a better understanding of our planet. Interactive visualizations of these geoscience models and their outputs through virtual globes on the Internet can help the public understand the dynamic phenomena related to the Earth more intuitively. However, challenges arise when the volume of four-dimensional data (4D), 3D in space plus time, is huge for rendering. Datasets loaded from geographically distributed data servers require synchronization between ingesting and rendering data. Also the visualization capability of display clients varies significantly in such an online visualization environment; some may not have high-end graphic cards. To enhance the efficiency of visualizing dynamic volumetric data in virtual globes, this paper proposes a systematic framework, in which an octree-based multiresolution data structure is implemented to organize time series 3D geospatial data to be used in virtual globe environments. This framework includes a view-dependent continuous level of detail (LOD) strategy formulated as a synchronized part of the virtual globe rendering process. Through the octree-based data retrieval process, the LOD strategy enables the rendering of the 4D simulation at a consistent and acceptable frame rate. To demonstrate the capabilities of this framework, data of a simulated dust storm event are rendered in World Wind, an open source virtual globe. The rendering performances with and without the octree-based LOD strategy are compared. The experimental results show that using the proposed data structure and processing strategy significantly enhances the visualization performance when rendering dynamic geospatial phenomena in virtual globes.

  15. DESARROLLO DE UN INSTRUMENTO VIRTUAL PARA EL BALANCEAMIENTO DINAMICO DE ROTORES DEVELOPMENT OF A VIRTUAL INSTRUMENT FOR ROTOR DYNAMICS BALANCING

    Directory of Open Access Journals (Sweden)

    Edgar Estupiñán P

    2006-08-01

    Full Text Available El presente trabajo resalta la importancia del balanceamiento de rotores como principal herramienta dentro de las tareas correctivas del mantenimiento predictivo, con el fin de que se reduzcan las vibraciones y sus efectos secundarios en las máquinas rotatorias. Se ha desarrollado un instrumento virtual para el balanceamiento dinámico de rotores, basado en un sistema de adquisición de datos (SAD. El instrumento tiene incluidos todos los cálculos necesarios para balancear rotores en un plano y en dos planos, a partir de la medición de los datos de vibración, utilizando el procedimiento de los coeficientes de influencia o utilizando un procedimiento de medición sin fase. También se ha incluido un módulo para determinar la severidad vibratoria del rotor y un módulo de análisis de vibraciones, que incluye análisis espectral y de la forma de onda. Este instrumento virtual es una herramienta útil para el balanceamiento de rotores en laboratorio así como también en la industria.This article highlights the importance of rotor balancing like the most important corrective action included in a predictive maintenance program, whose main objective is reducing the vibrations level and its secondary effect in rotary machines. A virtual instrument, based in a data acquisition system has been developed for rotor balancing. With this instrument it is possible to balance rotors in a single or two-plane, using the influence coefficient method or a no phase method. Also the instrument includes a function to determine the vibration severity and a function of vibration analysis with spectral and waveform analysis included. This virtual instrument is useful for rotor balancing in the laboratory as well as in the industry.

  16. Exploring Leadership within the Modern Organization: Understanding the Dynamics of Effective Leadership of a Virtual, Multigenerational Workforce

    Science.gov (United States)

    Schultz, Roger W.

    2010-01-01

    This study examined a relatively new but growing set of leadership challenges that the leader of the modern organization faces more frequently due to the dynamics of the workplace. The new challenges involve leading a workforce virtually, in that more frequently workers are physically dispersed away from the leader and fellow workers. The second…

  17. Closed-form dynamics of a hexarot parallel manipulator by means of the principle of virtual work

    Science.gov (United States)

    Pedrammehr, Siamak; Nahavandi, Saeid; Abdi, Hamid

    2018-04-01

    In this research, a systematic approach to solving the inverse dynamics of hexarot manipulators is addressed using the methodology of virtual work. For the first time, a closed form of the mathematical formulation of the standard dynamic model is presented for this class of mechanisms. An efficient algorithm for solving this closed-form dynamic model of the mechanism is developed and it is used to simulate the dynamics of the system for different trajectories. Validation of the proposed model is performed using SimMechanics and it is shown that the results of the proposed mathematical model match with the results obtained by the SimMechanics model.

  18. DESARROLLO DE UN INSTRUMENTO VIRTUAL PARA EL BALANCEAMIENTO DINAMICO DE ROTORES DEVELOPMENT OF A VIRTUAL INSTRUMENT FOR ROTOR DYNAMICS BALANCING

    OpenAIRE

    Edgar Estupiñán P; César San Martin; Luis Canales M

    2006-01-01

    El presente trabajo resalta la importancia del balanceamiento de rotores como principal herramienta dentro de las tareas correctivas del mantenimiento predictivo, con el fin de que se reduzcan las vibraciones y sus efectos secundarios en las máquinas rotatorias. Se ha desarrollado un instrumento virtual para el balanceamiento dinámico de rotores, basado en un sistema de adquisición de datos (SAD). El instrumento tiene incluidos todos los cálculos necesarios para balancear rotores en un plano ...

  19. Dynamic virtual fixture on the Euclidean group for admittance-type manipulator in deforming environments.

    Science.gov (United States)

    Zhang, Dongwen; Zhu, Qingsong; Xiong, Jing; Wang, Lei

    2014-04-27

    In a deforming anatomic environment, the motion of an instrument suffers from complex geometrical and dynamic constraints, robot assisted minimally invasive surgery therefore requires more sophisticated skills for surgeons. This paper proposes a novel dynamic virtual fixture (DVF) to enhance the surgical operation accuracy of admittance-type medical robotics in the deforming environment. A framework for DVF on the Euclidean Group SE(3) is presented, which unites rotation and translation in a compact form. First, we constructed the holonomic/non-holonomic constraints, and then searched for the corresponded reference to make a distinction between preferred and non-preferred directions. Second, different control strategies are employed to deal with the tasks along the distinguished directions. The desired spatial compliance matrix is synthesized from an allowable motion screw set to filter out the task unrelated components from manual input, the operator has complete control over the preferred directions; while the relative motion between the surgical instrument and the anatomy structures is actively tracked and cancelled, the deviation relative to the reference is compensated jointly by the operator and DVF controllers. The operator, haptic device, admittance-type proxy and virtual deforming environment are involved in a hardware-in-the-loop experiment, human-robot cooperation with the assistance of DVF controller is carried out on a deforming sphere to simulate beating heart surgery, performance of the proposed DVF on admittance-type proxy is evaluated, and both human factors and control parameters are analyzed. The DVF can improve the dynamic properties of human-robot cooperation in a low-frequency (0 ~ 40 rad/sec) deforming environment, and maintain synergy of orientation and translation during the operation. Statistical analysis reveals that the operator has intuitive control over the preferred directions, human and the DVF controller jointly control the

  20. An adaptively refined XFEM with virtual node polygonal elements for dynamic crack problems

    Science.gov (United States)

    Teng, Z. H.; Sun, F.; Wu, S. C.; Zhang, Z. B.; Chen, T.; Liao, D. M.

    2018-02-01

    By introducing the shape functions of virtual node polygonal (VP) elements into the standard extended finite element method (XFEM), a conforming elemental mesh can be created for the cracking process. Moreover, an adaptively refined meshing with the quadtree structure only at a growing crack tip is proposed without inserting hanging nodes into the transition region. A novel dynamic crack growth method termed as VP-XFEM is thus formulated in the framework of fracture mechanics. To verify the newly proposed VP-XFEM, both quasi-static and dynamic cracked problems are investigated in terms of computational accuracy, convergence, and efficiency. The research results show that the present VP-XFEM can achieve good agreement in stress intensity factor and crack growth path with the exact solutions or experiments. Furthermore, better accuracy, convergence, and efficiency of different models can be acquired, in contrast to standard XFEM and mesh-free methods. Therefore, VP-XFEM provides a suitable alternative to XFEM for engineering applications.

  1. Integration agent-based models and GIS as a virtual urban dynamic laboratory

    Science.gov (United States)

    Chen, Peng; Liu, Miaolong

    2007-06-01

    Based on the Agent-based Model and spatial data model, a tight-coupling integrating method of GIS and Agent-based Model (ABM) is to be discussed in this paper. The use of object-orientation for both spatial data and spatial process models facilitates their integration, which can allow exploration and explanation of spatial-temporal phenomena such as urban dynamic. In order to better understand how tight coupling might proceed and to evaluate the possible functional and efficiency gains from such a tight coupling, the agent-based model and spatial data model are discussed, and then the relationships affecting spatial data model and agent-based process models interaction. After that, a realistic crowd flow simulation experiment is presented. Using some tools provided by general GIS systems and a few specific programming languages, a new software system integrating GIS and MAS as a virtual laboratory applicable for simulating pedestrian flows in a crowd activity centre has been developed successfully. Under the environment supported by the software system, as an applicable case, a dynamic evolution process of the pedestrian's flows (dispersed process for the spectators) in a crowds' activity center - The Shanghai Stadium has been simulated successfully. At the end of the paper, some new research problems have been pointed out for the future.

  2. Arcjet nozzle area ratio effects

    Science.gov (United States)

    Curran, Francis M.; Sarmiento, Charles J.; Birkner, Bjorn W.; Kwasny, James

    1990-01-01

    An experimental investigation was conducted to determine the effect of nozzle area ratio on the operating characteristics and performance of a low power dc arcjet thruster. Conical thoriated tungsten nozzle inserts were tested in a modular laboratory arcjet thruster run on hydrogen/nitrogen mixtures simulating the decomposition products of hydrazine. The converging and diverging sides of the inserts had half angles of 30 and 20 degrees, respectively, similar to a flight type unit currently under development. The length of the diverging side was varied to change the area ratio. The nozzle inserts were run over a wide range of specific power. Current, voltage, mass flow rate, and thrust were monitored to provide accurate comparisons between tests. While small differences in performance were observed between the two nozzle inserts, it was determined that for each nozzle insert, arcjet performance improved with increasing nozzle area ratio to the highest area ratio tested and that the losses become very pronounced for area ratios below 50. These trends are somewhat different than those obtained in previous experimental and analytical studies of low Re number nozzles. It appears that arcjet performance can be enhanced via area ratio optimization.

  3. Arcjet Nozzle Area Ratio Effects

    Science.gov (United States)

    Curran, Francis M.; Sarmiento, Charles J.; Birkner, Bjorn W.; Kwasny, James

    1990-01-01

    An experimental investigation was conducted to determine the effect of nozzle area ratio on the operating characteristics and performance of a low power dc arcjet thruster. Conical thoriated tungsten nozzle inserts were tested in a modular laboratory arcjet thruster run on hydrogen/nitrogen mixtures simulating the decomposition products of hydrazine. The converging and diverging sides of the inserts had half angles of 30 and 20 degrees, respectively, similar to a flight type unit currently under development. The length of the diverging side was varied to change the area ratio. The nozzle inserts were run over a wide range of specific power. Current, voltage, mass flow rate, and thrust were monitored to provide accurate comparisons between tests. While small differences in performance were observed between the two nozzle inserts, it was determined that for each nozzle insert, arcjet performance improved with increasing nozzle area ratio to the highest area ratio tested and that the losses become very pronounced for area ratios below 50. These trends are somewhat different than those obtained in previous experimental and analytical studies of low Re number nozzles. It appears that arcjet performance can be enhanced via area ratio optimization.

  4. Injection nozzle for a turbomachine

    Science.gov (United States)

    Uhm, Jong Ho; Johnson, Thomas Edward; Kim, Kwanwoo

    2012-09-11

    A turbomachine includes a compressor, a combustor operatively connected to the compressor, an end cover mounted to the combustor, and an injection nozzle assembly operatively connected to the combustor. The injection nozzle assembly includes a first end portion that extends to a second end portion, and a plurality of tube elements provided at the second end portion. Each of the plurality of tube elements defining a fluid passage includes a body having a first end section that extends to a second end section. The second end section projects beyond the second end portion of the injection nozzle assembly.

  5. Airfoil nozzle and shroud assembly

    Science.gov (United States)

    Shaffer, J.E.; Norton, P.F.

    1997-06-03

    An airfoil and nozzle assembly are disclosed including an outer shroud having a plurality of vane members attached to an inner surface and having a cantilevered end. The assembly further includes a inner shroud being formed by a plurality of segments. Each of the segments having a first end and a second end and having a recess positioned in each of the ends. The cantilevered end of the vane member being positioned in the recess. The airfoil and nozzle assembly being made from a material having a lower rate of thermal expansion than that of the components to which the airfoil and nozzle assembly is attached. 5 figs.

  6. Flow-throttling orifice nozzle

    International Nuclear Information System (INIS)

    Sletten, H.L.

    1975-01-01

    A series-parallel-flow type throttling apparatus to restrict coolant flow to certain fuel assemblies of a nuclear reactor is comprised of an axial extension nozzle of the fuel assembly. The nozzle has a series of concentric tubes with parallel-flow orifice holes in each tube. Flow passes from a high pressure plenum chamber outside the nozzle through the holes in each tube in series to the inside of the innermost tube where the coolant, having dissipated most of its pressure, flows axially to the fuel element. (U.S.)

  7. Nozzle flow calculation for real gases

    International Nuclear Information System (INIS)

    Bier, K.; Ehrler, F.; Hartz, U.; Kissau, G.

    1977-01-01

    The flow of CHF 2 Cl vapor (refrigerant R 22) through a Laval nozzle of annular geometry has been investigated in the region near the saturation line with stagnation pressures up to 85 per cent of the critical pressure. Static pressure profiles measured along the nozzle axis were found in good agreement with profiles calculated for one-dimensional isentropic flow of the real gas the thermal properties of which were derived from an equation of state proposed previously by Rombusch. Minor deviations between measured and calculated static pressure curves occur in the supersonic part of the mozzle, especially when supersaturated states of the vapour are passed. These deviations can be attributed to uncertainties in the calculation of the enthalpy and to a small influence of the static pressure probe. An additional investigation was concerned with an approximate calculation of the nozzle flow of real gases. In this approximation the well known relations of ideal gas dynamics are applied, the ratio of specific heats for the ideal gas being replaced, however, by a suitably adapted isentropic exponent, which can be determined e.g. from measured values of the Laval pressure or of the mass flow. For pressure ratios p/po between 1 and approximately 0.1, corresponding to Mach numbers up to approximately 2.2, all the interesting properties of the investigated flow of CHF 2 Cl vapour are approximated within a few per cent. (orig.) [de

  8. Dynamic concision for three-dimensional reconstruction of human organ built with virtual reality modelling language (VRML)*

    OpenAIRE

    Yu, Zheng-yang; Zheng, Shu-sen; Chen, Lei-ting; He, Xiao-qian; Wang, Jian-jun

    2005-01-01

    This research studies the process of 3D reconstruction and dynamic concision based on 2D medical digital images using virtual reality modelling language (VRML) and JavaScript language, with a focus on how to realize the dynamic concision of 3D medical model with script node and sensor node in VRML. The 3D reconstruction and concision of body internal organs can be built with such high quality that they are better than those obtained from the traditional methods. With the function of dynamic c...

  9. Effect of nozzle arrangement on Venturi scrubber performance

    Energy Technology Data Exchange (ETDEWEB)

    Ananthanarayanan, N.V.; Viswanathan, S.

    1999-12-01

    The effect of nozzle arrangement on flux distribution is studied in a rectangular, pilot-scale, Pease-Anthony-type Venturi scrubber. The annular, two-phase, heterogeneous, three-dimensional gas-liquid flow inside the scrubber is modeled using a commercial computational fluid dynamic (CFD) package, FLUENT. The comparison of predicted liquid drop concentration shows good agreement with experimental data. The model predicts the fraction of liquid flowing as film on the walls reasonably well. Visualization of flux patterns studied using four typical nozzle configurations indicate that the nonuniformity in flux distribution increases when the nozzle-to-nozzle distance is greater than 10% of the width of the side on which the nozzles are placed. An analysis of the effect of multiple jet penetration lengths on liquid flux distribution yielded a comparable distribution at 10--45% less liquid than uniform penetration for a particular nozzle configuration. This would lead to significant improvements in scrubber performance by achieving comparable collection efficiency at a lower pressure drop.

  10. Next-generation nozzle check valve significantly reduces operating costs

    Energy Technology Data Exchange (ETDEWEB)

    Roorda, O. [SMX International, Toronto, ON (Canada)

    2009-01-15

    Check valves perform an important function in preventing reverse flow and protecting plant and mechanical equipment. However, the variety of different types of valves and extreme differences in performance even within one type can change maintenance requirements and life cycle costs, amounting to millions of dollars over the typical 15-year design life of piping components. A next-generation non-slam nozzle check valve which prevents return flow has greatly reduced operating costs by protecting the mechanical equipment in a piping system. This article described the check valve varieties such as the swing check valve, a dual-plate check valve, and nozzle check valves. Advancements in optimized design of a non-slam nozzle check valve were also discussed, with particular reference to computer flow modelling such as computational fluid dynamics; computer stress modelling such as finite element analysis; and flow testing (using rapid prototype development and flow loop testing), both to improve dynamic performance and reduce hydraulic losses. The benefits of maximized dynamic performance and minimized pressure loss from the new designed valve were also outlined. It was concluded that this latest non-slam nozzle check valve design has potential applications in natural gas, liquefied natural gas, and oil pipelines, including subsea applications, as well as refineries, and petrochemical plants among others, and is suitable for horizontal and vertical installation. The result of this next-generation nozzle check valve design is not only superior performance, and effective protection of mechanical equipment but also minimized life cycle costs. 1 fig.

  11. Measurement of unsteady airflow velocity at nozzle outlet

    Science.gov (United States)

    Pyszko, René; Machů, Mário

    2017-09-01

    The paper deals with a method of measuring and evaluating the cooling air flow velocity at the outlet of the flat nozzle for cooling a rolled steel product. The selected properties of the Prandtl and Pitot sensing tubes were measured and compared. A Pitot tube was used for operational measurements of unsteady dynamic pressure of the air flowing from nozzles to abtain the flow velocity. The article also discusses the effects of air temperature, pressure and relative air humidity on air density, as well as the influence of dynamic pressure filtering on the error of averaged velocity.

  12. Analysis of film cooling in rocket nozzles

    Science.gov (United States)

    Woodbury, Keith A.

    1992-01-01

    Computational Fluid Dynamics (CFD) programs are customarily used to compute details of a flow field, such as velocity fields or species concentrations. Generally they are not used to determine the resulting conditions at a solid boundary such as wall shear stress or heat flux. However, determination of this information should be within the capability of a CFD code, as the code supposedly contains appropriate models for these wall conditions. Before such predictions from CFD analyses can be accepted, the credibility of the CFD codes upon which they are based must be established. This report details the progress made in constructing a CFD model to predict the heat transfer to the wall in a film cooled rocket nozzle. Specifically, the objective of this work is to use the NASA code FDNS to predict the heat transfer which will occur during the upcoming hot-firing of the Pratt & Whitney 40K subscale nozzle (1Q93). Toward this end, an M = 3 wall jet is considered, and the resulting heat transfer to the wall is computed. The values are compared against experimental data available in Reference 1. Also, FDNS's ability to compute heat flux in a reacting flow will be determined by comparing the code's predictions against calorimeter data from the hot firing of a 40K combustor. The process of modeling the flow of combusting gases through the Pratt & Whitney 40K subscale combustor and nozzle is outlined. What follows in this report is a brief description of the FDNS code, with special emphasis on how it handles solid wall boundary conditions. The test cases and some FDNS solution are presented next, along with comparison to experimental data. The process of modeling the flow through a chamber and a nozzle using the FDNS code will also be outlined.

  13. Modelling of hydrothermal characteristics of centrifugal nozzles

    International Nuclear Information System (INIS)

    Yarkho, A.A.; Omelchenko, M.P.; Borshchev, V.A.

    1990-01-01

    Presented for the first time is a method of recalculating the hydrothermal characteristics of centrifugal nozzles obtained in laboratory conditions for full-scale nozzles. From the experimental hydrothermal characteristics of nozzles observed in the laboratory it is allowed to calculate the hydrothermal characteristics of any other centrifugal nozzle whose diameter and dimensionless geometric characteristic are known

  14. Effects of Indoor Horseback Riding and Virtual Reality Exercises on the Dynamic Balance Ability of Normal Healthy Adults

    Science.gov (United States)

    Lee, Daehee; Lee, Sangyong; Park, Jungseo

    2014-01-01

    [Purpose] The objective of this study was to determine the effect of indoor horseback riding and virtual reality exercises on the dynamic balance ability of normal adults. [Subjects] This study enrolled 24 normal adults and divided them into two groups: an indoor horseback riding exercise group (IHREG, n = 12) and a virtual reality exercise group (VREG, n = 12). [Methods] IHREG exercised on indoor horseback riding equipment and VREG exercised using the Nintendo Wii Fit three times a week for six weeks. The Biodex Balance System was used to analyze dynamic balance as measured by the overall stability index (OSI), anteroposterior stability index (APSI), and mediolateral stability index (MLSI). [Results] In the within-group comparison, IHREG and VERG both showed significant decreases in the dynamic balance indexes of OSI, APSI, and MLSI after the intervention, but no significant difference was found between the groups. [Conclusion] Both indoor horseback riding and virtual reality exercises were effective at improving the subjects’ dynamic balance ability as measured by OSI, APSI, and MLSI, and can be used as additional exercises for patients with conditions affecting postural control. PMID:25540494

  15. Equivalent nozzle in thermomechanical problems

    International Nuclear Information System (INIS)

    Cesari, F.

    1977-01-01

    When analyzing nuclear vessels, it is most important to study the behavior of the nozzle cylinder-cylinder intersection. For the elastic field, this analysis in three dimensions is quite easy using the method of finite elements. The same analysis in the non-linear field becomes difficult for designs in 3-D. It is therefore necessary to resolve a nozzle in two dimensions equivalent to a 3-D nozzle. The purpose of the present work is to find an equivalent nozzle both with a mechanical and thermal load. This has been achieved by the analysis in three dimensions of a nozzle and a nozzle cylinder-sphere intersection, of a different radius. The equivalent nozzle will be a nozzle with a sphere radius in a given ratio to the radius of a cylinder; thus, the maximum equivalent stress is the same in both 2-D and 3-D. The nozzle examined derived from the intersection of a cylindrical vessel of radius R=191.4 mm and thickness T=6.7 mm with a cylindrical nozzle of radius r=24.675 mm and thickness t=1.350 mm, for which the experimental results for an internal pressure load are known. The structure was subdivided into 96 finite, three-dimensional and isoparametric elements with 60 degrees of freedom and 661 total nodes. Both the analysis with a mechanical load as well as the analysis with a thermal load were carried out on this structure according to the Bersafe system. The thermal load consisted of a transient typical of an accident occurring in a sodium-cooled fast reactor, with a peak of the temperature (540 0 C) for the sodium inside the vessel with an insulating argon temperature constant at 525 0 C. The maximum value of the equivalent tension was found in the internal area at the union towards the vessel side. The analysis of the nozzle in 2-D consists in schematizing the structure as a cylinder-sphere intersection, where the sphere has a given relation to the

  16. High performance Solid Rocket Motor (SRM) submerged nozzle/combustion cavity flowfield assessment

    Science.gov (United States)

    Freeman, J. A.; Chan, J. S.; Murph, J. E.; Xiques, K. E.

    1987-01-01

    Two and three dimensional internal flowfield solutions for critical points in the Space Shuttle solid rocket booster burn time were developed using the Lockheed Huntsville GIM/PAID Navier-Stokes solvers. These perfect gas, viscous solutions for the high performance motor characterize the flow in the aft segment and nozzle of the booster. Two dimensional axisymmetric solutions were developed at t = 20 and t = 85 sec motor burn times. The t = 85 sec solution indicates that the aft segment forward inhibitor stub produces vortices with are shed and convected downwards. A three dimensional 3.5 deg gimbaled nozzle flowfield solution was developed for the aft segment and nozzle at t = 9 sec motor burn time. This perfect gas, viscous analysis, provided a steady state solution for the core region and the flow through the nozzle, but indicated that unsteady flow exists in the region under the nozzle nose and near the flexible boot and nozzle/case joint. The flow in the nozzle/case joint region is characterized by low magnitude pressure waves which travel in the circumferential direction. From the two and three dimensional flowfield calculations presented it can be concluded that there is no evidence from these results that steady state gas dynamics is the primary mechanism resulting in the nozzle pocketing erosion experienced on SRM nozzles 8A or 17B. The steady state flowfield results indicate pocketing erosion is not directly initiated by a steady state gas dynamics phenomenon.

  17. Numerical Simulation of Twin Nozzle Injectors

    OpenAIRE

    Milak, Dino

    2015-01-01

    Fuel injectors for marine applications have traditionally utilized nozzles with symmetric equispaced orifice configuration. But in light of the new marine emission legislations the twin nozzle concept has arisen. The twin nozzle differs from the conventional configuration by utilizing two closely spaced orifices to substitute each orifice in the conventional nozzle. Injector manufacturers regard twin nozzle injectors as a promising approach to facilitate stable spray patterns independent of t...

  18. Dynamic Placement of Virtual Machines with Both Deterministic and Stochastic Demands for Green Cloud Computing

    Directory of Open Access Journals (Sweden)

    Wenying Yue

    2014-01-01

    Full Text Available Cloud computing has come to be a significant commercial infrastructure offering utility-oriented IT services to users worldwide. However, data centers hosting cloud applications consume huge amounts of energy, leading to high operational cost and greenhouse gas emission. Therefore, green cloud computing solutions are needed not only to achieve high level service performance but also to minimize energy consumption. This paper studies the dynamic placement of virtual machines (VMs with deterministic and stochastic demands. In order to ensure a quick response to VM requests and improve the energy efficiency, a two-phase optimization strategy has been proposed, in which VMs are deployed in runtime and consolidated into servers periodically. Based on an improved multidimensional space partition model, a modified energy efficient algorithm with balanced resource utilization (MEAGLE and a live migration algorithm based on the basic set (LMABBS are, respectively, developed for each phase. Experimental results have shown that under different VMs’ stochastic demand variations, MEAGLE guarantees the availability of stochastic resources with a defined probability and reduces the number of required servers by 2.49% to 20.40% compared with the benchmark algorithms. Also, the difference between the LMABBS solution and Gurobi solution is fairly small, but LMABBS significantly excels in computational efficiency.

  19. Dynamic Construction Scheme for Virtualization Security Service in Software-Defined Networks.

    Science.gov (United States)

    Lin, Zhaowen; Tao, Dan; Wang, Zhenji

    2017-04-21

    For a Software Defined Network (SDN), security is an important factor affecting its large-scale deployment. The existing security solutions for SDN mainly focus on the controller itself, which has to handle all the security protection tasks by using the programmability of the network. This will undoubtedly involve a heavy burden for the controller. More devastatingly, once the controller itself is attacked, the entire network will be paralyzed. Motivated by this, this paper proposes a novel security protection architecture for SDN. We design a security service orchestration center in the control plane of SDN, and this center physically decouples from the SDN controller and constructs SDN security services. We adopt virtualization technology to construct a security meta-function library, and propose a dynamic security service composition construction algorithm based on web service composition technology. The rule-combining method is used to combine security meta-functions to construct security services which meet the requirements of users. Moreover, the RETE algorithm is introduced to improve the efficiency of the rule-combining method. We evaluate our solutions in a realistic scenario based on OpenStack. Substantial experimental results demonstrate the effectiveness of our solutions that contribute to achieve the effective security protection with a small burden of the SDN controller.

  20. Combined Ligand/Structure-Based Virtual Screening and Molecular Dynamics Simulations of Steroidal Androgen Receptor Antagonists

    Directory of Open Access Journals (Sweden)

    Yuwei Wang

    2017-01-01

    Full Text Available The antiandrogens, such as bicalutamide, targeting the androgen receptor (AR, are the main endocrine therapies for prostate cancer (PCa. But as drug resistance to antiandrogens emerges in advanced PCa, there presents a high medical need for exploitation of novel AR antagonists. In this work, the relationships between the molecular structures and antiandrogenic activities of a series of 7α-substituted dihydrotestosterone derivatives were investigated. The proposed MLR model obtained high predictive ability. The thoroughly validated QSAR model was used to virtually screen new dihydrotestosterones derivatives taken from PubChem, resulting in the finding of novel compounds CID_70128824, CID_70127147, and CID_70126881, whose in silico bioactivities are much higher than the published best one, even higher than bicalutamide. In addition, molecular docking, molecular dynamics (MD simulations, and MM/GBSA have been employed to analyze and compare the binding modes between the novel compounds and AR. Through the analysis of the binding free energy and residue energy decomposition, we concluded that the newly discovered chemicals can in silico bind to AR with similar position and mechanism to the reported active compound and the van der Waals interaction is the main driving force during the binding process.

  1. Virtual design software for mechanical system dynamics using transfer matrix method of multibody system and its application

    Directory of Open Access Journals (Sweden)

    Hai-gen Yang

    2015-09-01

    Full Text Available The complex mechanical systems such as high-speed trains, multiple launch rocket system, self-propelled artillery, and industrial robots are becoming increasingly larger in scale and more complicated in structure. Designing these products often requires complex model design, multibody system dynamics calculation, and analysis of large amounts of data repeatedly. In recent 20 years, the transfer matrix method of multibody system has been widely applied in engineering fields and welcomed at home and in abroad for the following features: without global dynamic equations of the system, low orders of involved system matrices, high computational efficiency, and high programming. In order to realize the rapid and visual simulation for complex mechanical system virtual design using transfer matrix method of multibody system, a virtual design software named MSTMMSim is designed and implemented. In the MSTMMSim, the transfer matrix method of multibody system is used as the solver for dynamic modeling and calculation; the Open CASCADE is used for solid geometry modeling. Various auxiliary analytical tools such as curve plot and animation display are provided in the post-processor to analyze and process the simulation results. Two numerical examples are given to verify the validity and accuracy of the software, and a multiple launch rocket system engineering example is given at the end of this article to show that the software provides a powerful platform for complex mechanical systems simulation and virtual design.

  2. Uncertainty quantification of dynamic responses in the frequency domain in the context of virtual testing

    Science.gov (United States)

    Brehm, Maik; Deraemaeker, Arnaud

    2015-04-01

    For the development of innovative materials, construction types or maintenance strategies, experimental investigations are inevitable to validate theoretical approaches in praxis. Numerical simulations, embedded in a general virtual testing approach, are alternatives to expensive experimental investigations. The statistical properties of the dynamic response in the frequency domain obtained from continuously measured data are often the basis for many developments, such as the optimization of damage indicators for structural health monitoring systems or the investigation of data-based frequency response function estimates. Two straightforward numerical simulation approaches exist to derive the statistics of a response due to random excitation and measurement errors. One approach is the sample-based technique, wherein for each excitation sample a time integration solution is needed. This can be computationally very demanding if a high accuracy of the statistical properties is of interest. The other approach consists in using the relationship between the excitation and the response directly in the frequency domain, wherein a weakly stationary process is assumed. This approach is inherently related to an infinite time response, which can hardly be derived from measured data. In this paper, a novel approach is proposed that overcomes the limitation of both aforementioned methods, by providing a fast analytical probabilistic framework for uncertainty quantification to determine accurately the statistics of short time dynamic responses. It is assumed that the structural system is known and can be described by deterministic parameters. The influences of signal processing techniques, such as linear combinations, windowing, and segmentation used in Welch's method, are considered as well. The performance of the new algorithm is investigated in comparison to both previous approaches on a three degrees of freedom system. The benchmark shows that the novel approach outperforms

  3. Nonlinear dynamics and chaotization of oscillations of a virtual cathode in an annular electron beam in a uniform external magnetic field

    International Nuclear Information System (INIS)

    Kurkin, S. A.; Koronovski, A. A.; Hramov, A. E.

    2009-01-01

    Results are presented from a numerical study of the effect of an external magnetic field on the conditions and mechanisms for the formation of a virtual cathode in a relativistic electron beam. Characteristic features of the nonlinear dynamics of an electron beam with a virtual cathode are considered when the external magnetic field is varied. Various mechanisms are investigated by which the virtual cathode oscillations become chaotic and their spectrum becomes a multifrequency spectrum, thereby complicating the dynamics of the vircator system. A general mechanism for chaotization of the oscillations of a virtual cathode in a vircator system is revealed: the electron structures that form in an electron beam interact by means of a common space charge field to give rise to additional internal feedback. That the oscillations of a virtual cathode change from the chaotic to the periodic regime is due to the suppression of the mechanism for forming secondary electron structures.

  4. Dynamic concision for three-dimensional reconstruction of human organ built with virtual reality modelling language (VRML)*

    Science.gov (United States)

    Yu, Zheng-yang; Zheng, Shu-sen; Chen, Lei-ting; He, Xiao-qian; Wang, Jian-jun

    2005-01-01

    This research studies the process of 3D reconstruction and dynamic concision based on 2D medical digital images using virtual reality modelling language (VRML) and JavaScript language, with a focus on how to realize the dynamic concision of 3D medical model with script node and sensor node in VRML. The 3D reconstruction and concision of body internal organs can be built with such high quality that they are better than those obtained from the traditional methods. With the function of dynamic concision, the VRML browser can offer better windows for man-computer interaction in real-time environment than ever before. 3D reconstruction and dynamic concision with VRML can be used to meet the requirement for the medical observation of 3D reconstruction and have a promising prospect in the fields of medical imaging. PMID:15973760

  5. Interior flow and near-nozzle spray development in a marine-engine diesel fuel injector

    Science.gov (United States)

    Hult, J.; Simmank, P.; Matlok, S.; Mayer, S.; Falgout, Z.; Linne, M.

    2016-04-01

    A consolidated effort at optically characterising flow patterns, in-nozzle cavitation, and near-nozzle jet structure of a marine diesel fuel injector is presented. A combination of several optical techniques was employed to fully transparent injector models, compound metal-glass and full metal injectors. They were all based on a common real-scale dual nozzle hole geometry for a marine two-stroke diesel engine. In a stationary flow rig, flow velocities in the sac-volume and nozzle holes were measured using PIV, and in-nozzle cavitation visualized using high-resolution shadowgraphs. The effect of varying cavitation number was studied and results compared to CFD predictions. In-nozzle cavitation and near-nozzle jet structure during transient operation were visualized simultaneously, using high-speed imaging in an atmospheric pressure spray rig. Near-nozzle spray formation was investigated using ballistic imaging. Finally, the injector geometry was tested on a full-scale marine diesel engine, where the dynamics of near-nozzle jet development was visualized using high-speed shadowgraphy. The range of studies focused on a single common geometry allows a comprehensive survey of phenomena ranging from first inception of cavitation under well-controlled flow conditions to fuel jet structure at real engine conditions.

  6. INVESTIGATION OF FLOW BEHAVIOR IN MINIMUM QUANTITY LUBRICATION NOZZLE FOR END MILLING PROCESSES

    Directory of Open Access Journals (Sweden)

    M.S. Najiha

    2012-12-01

    Full Text Available Minimum quantity lubrication (MQL is a sustainable manufacturing technique that has replaced conventional flooded lubrication methods and dry machining. In the MQL technique, the lubricant is sprayed onto the friction surfaces through nozzles through small pneumatically-operated pumps. This paper presents an investigation into the flow behavior of the lubricant and air mixture under certain pressures at the tip of a nozzle specially designed for MQL. The nozzle used is an MQL stainless steel nozzle, 6.35 mm in diameter. Computational fluid dynamics is used to determine the flow pattern at the tip of the nozzle where the lubricant and compressed air are mixed to form a mist. The lubricant volume flow is approximately 0.08 ml/cycle of the pump. A transient, pressure-based, three-dimensional analysis is performed with a viscous, realizable k-ε model. The results are obtained in the form of vector plots and flow fields. The flow mixing at the tip of the nozzle is wholly shown through the flow fields and vector plots. This study provides an insight into the flow distribution at the tip of the nozzle for a certain pressure to aid modifications in the design of the nozzle for future MQL studies. It attainable aids to determine the correct pressure for the air jet at the nozzle tip.

  7. Successful application of virtual screening and molecular dynamics simulations against antimalarial molecular targets

    Directory of Open Access Journals (Sweden)

    Renata Rachide Nunes

    Full Text Available The main challenge in the control of malaria has been the emergence of drug-resistant parasites. The presence of drug-resistant Plasmodium sp. has raised the need for new antimalarial drugs. Molecular modelling techniques have been used as tools to develop new drugs. In this study, we employed virtual screening of a pyrazol derivative (Tx001 against four malaria targets: plasmepsin-IV, plasmepsin-II, falcipain-II, and PfATP6. The receiver operating characteristic curves and area under the curve (AUC were established for each molecular target. The AUC values obtained for plasmepsin-IV, plasmepsin-II, and falcipain-II were 0.64, 0.92, and 0.94, respectively. All docking simulations were carried out using AutoDock Vina software. The ligand Tx001 exhibited a better interaction with PfATP6 than with the reference compound (-12.2 versus -6.8 Kcal/mol. The Tx001-PfATP6 complex was submitted to molecular dynamics simulations in vacuum implemented on an NAMD program. The ligand Tx001 docked at the same binding site as thapsigargin, which is a natural inhibitor of PfATP6. Compound TX001 was evaluated in vitro with a P. falciparum strain (W2 and a human cell line (WI-26VA4. Tx001 was discovered to be active against P. falciparum (IC50 = 8.2 µM and inactive against WI-26VA4 (IC50 > 200 µM. Further ligand optimisation cycles generated new prospects for docking and biological assays.

  8. A CFD-based aerodynamic design procedure for hypersonic wind-tunnel nozzles

    Science.gov (United States)

    Korte, John J.

    1993-01-01

    A new procedure which unifies the best of current classical design practices, computational fluid dynamics (CFD), and optimization procedures is demonstrated for designing the aerodynamic lines of hypersonic wind-tunnel nozzles. The new procedure can be used to design hypersonic wind tunnel nozzles with thick boundary layers where the classical design procedure has been shown to break down. An efficient CFD code, which solves the parabolized Navier-Stokes (PNS) equations using an explicit upwind algorithm, is coupled to a least-squares (LS) optimization procedure. A LS problem is formulated to minimize the difference between the computed flow field and the objective function, consisting of the centerline Mach number distribution and the exit Mach number and flow angle profiles. The aerodynamic lines of the nozzle are defined using a cubic spline, the slopes of which are optimized with the design procedure. The advantages of the new procedure are that it allows full use of powerful CFD codes in the design process, solves an optimization problem to determine the new contour, can be used to design new nozzles or improve sections of existing nozzles, and automatically compensates the nozzle contour for viscous effects as part of the unified design procedure. The new procedure is demonstrated by designing two Mach 15, a Mach 12, and a Mach 18 helium nozzles. The flexibility of the procedure is demonstrated by designing the two Mach 15 nozzles using different constraints, the first nozzle for a fixed length and exit diameter and the second nozzle for a fixed length and throat diameter. The computed flow field for the Mach 15 least squares parabolized Navier-Stokes (LS/PNS) designed nozzle is compared with the classically designed nozzle and demonstrates a significant improvement in the flow expansion process and uniform core region.

  9. Nozzle geometry for organic vapor jet printing

    Science.gov (United States)

    Forrest, Stephen R.; McGraw, Gregory

    2017-10-25

    A first device is provided. The device includes a print head. The print head further includes a first nozzle hermetically sealed to a first source of gas. The first nozzle has an aperture having a smallest dimension of 0.5 to 500 microns in a direction perpendicular to a flow direction of the first nozzle. At a distance from the aperture into the first nozzle that is 5 times the smallest dimension of the aperture of the first nozzle, the smallest dimension perpendicular to the flow direction is at least twice the smallest dimension of the aperture of the first nozzle.

  10. Virtual screening for potential inhibitors of Mcl-1 conformations sampled by normal modes, molecular dynamics, and nuclear magnetic resonance

    Directory of Open Access Journals (Sweden)

    Glantz-Gashai Y

    2017-06-01

    Full Text Available Yitav Glantz-Gashai,* Tomer Meirson,* Eli Reuveni, Abraham O Samson Faculty of Medicine in the Galilee, Bar Ilan University, Safed, Israel *These authors contributed equally to this work Abstract: Myeloid cell leukemia-1 (Mcl-1 is often overexpressed in human cancer and is an important target for developing antineoplastic drugs. In this study, a data set containing 2.3 million lead-like molecules and a data set of all the US Food and Drug Administration (FDA-approved drugs are virtually screened for potential Mcl-1 ligands using Protein Data Bank (PDB ID 2MHS. The potential Mcl-1 ligands are evaluated and computationally docked on to three conformation ensembles generated by normal mode analysis (NMA, molecular dynamics (MD, and nuclear magnetic resonance (NMR, respectively. The evaluated potential Mcl-1 ligands are then compared with their clinical use. Remarkably, half of the top 30 potential drugs are used clinically to treat cancer, thus partially validating our virtual screen. The partial validation also favors the idea that the other half of the top 30 potential drugs could be used in the treatment of cancer. The normal mode-, MD-, and NMR-based conformation greatly expand the conformational sampling used herein for in silico identification of potential Mcl-1 inhibitors. Keywords: virtual screening, Mcl-1, molecular dynamics, NMR, normal modes

  11. Focusing liquid microjets with nozzles

    International Nuclear Information System (INIS)

    Acero, A J; Ferrera, C; Montanero, J M; Gañán-Calvo, A M

    2012-01-01

    The stability of flow focusing taking place in a converging–diverging nozzle, as well as the size of the resulting microjets, is examined experimentally in this paper. The results obtained in most aspects of the problem are similar to those of the classical plate-orifice configuration. There is, however, a notable difference between flow focusing in nozzles and in the plate-orifice configuration. In the former case, the liquid meniscus oscillates laterally (global whipping) for a significant area of the control parameter plane, a phenomenon never observed when focusing with the plate-orifice configuration. Global whipping may constitute an important drawback of flow focusing with nozzles because it reduces the robustness of the technique. (paper)

  12. Plasma acceleration by magnetic nozzles and shock waves

    International Nuclear Information System (INIS)

    Hattori, Kunihiko; Murakami, Fumitake; Miyazaki, Hiroyuki; Imasaki, Atsushi; Yoshinuma, Mikirou; Ando, Akira; Inutake, Masaaki

    2001-01-01

    We have measured axial profiles of ion acoustic Mach number, M i , of a plasma flow blowing off from an MPD (magneto-plasma-dynamic) arc-jet in various magnetic configurations. It is found that the Mach number increases in a divergent nozzle up to 3, while it stays at about unity in a uniform magnetic channel. When a magnetic bump is added in the exit of the divergent magnetic nozzle, the Mach number suddenly decreases below unity, due to an occurrence of shock wave. The subsonic flow after the shock wave is re-accelerated to a supersonic flow through a magnetic Laval nozzle. This behavior is explained well by the one-dimensional isotropic flow model. The shock wave is discussed in relation to the Rankine-Hugoniot relation. (author)

  13. A Virtual Class Calculus

    DEFF Research Database (Denmark)

    Ernst, Erik; Ostermann, Klaus; Cook, William Randall

    2006-01-01

    Virtual classes are class-valued attributes of objects. Like virtual methods, virtual classes are defined in an object's class and may be redefined within subclasses. They resemble inner classes, which are also defined within a class, but virtual classes are accessed through object instances...... model for virtual classes has been a long-standing open question. This paper presents a virtual class calculus, vc, that captures the essence of virtual classes in these full-fledged programming languages. The key contributions of the paper are a formalization of the dynamic and static semantics of vc...

  14. A virtual tornadic thunderstorm enabling students to construct knowledge about storm dynamics through data collection and analysis

    Directory of Open Access Journals (Sweden)

    W. A. Gallus Jr.

    2006-01-01

    Full Text Available A visually realistic tornadic supercell thunderstorm has been constructed in a fully immersive virtual reality environment to allow students to better understand the complex small-scale dynamics present in such a storm through data probing. Less-immersive versions have been created that run on PCs, facilitating broader dissemination. The activity has been tested in introductory meteorology classes over the last four years. An exercise involving the virtual storm was first used by a subset of students from a large introductory meteorology course in spring 2002. Surveys were used at that time to evaluate the impact of this activity as a constructivist learning tool. More recently, data probe capabilities were added to the virtual storm activity enabling students to take measurements of temperature, wind, pressure, relative humidity, and vertical velocity at any point within the 3-D volume of the virtual world, and see the data plotted via a graphical user interface. Similar surveys applied to groups of students in 2003 and 2004 suggest that the addition of data probing improved the understanding of storm-scale features, but the improved understanding may not be statistically significant when evaluated using quizzes reflecting short-term retention. The use of the activity was revised in 2005 to first have students pose scientific questions about these storms and think about a scientific strategy to answer their questions before exploring the storm. Once again, scores on quizzes for students who used the virtual storm activity were slightly better than those of students who were exposed to only a typical lecture, but differences were not statistically significant.

  15. Multielement suppressor nozzles for thrust augmentation systems.

    Science.gov (United States)

    Lawrence, R. L.; O'Keefe, J. V.; Tate, R. B.

    1972-01-01

    The noise reduction and nozzle performance characteristics of large-scale, high-aspect-ratio multielement nozzle arrays operated at low velocities were determined by test. The nozzles are selected for application to high-aspect-ratio augmentor suppressors to be used for augmentor wing airplanes. Significant improvements in noise characteristics for multielement nozzles over those of round or high-aspect-ratio slot nozzles are obtained. Elliptical noise patterns typical of slot nozzles are presented for high-aspect-ratio multielement nozzle arrays. Additional advantages are available in OASPL noise reduction from the element size and spacing. Augmentor-suppressor systems can be designed for maximum beam pattern directivity and frequency spectrum shaping advantages. Measurements of the nozzle wakes show a correlation with noise level data and frequency spectrum peaks. The noise and jet wake results are compared with existing prediction procedures based on empirical jet flow equations, Lighthill relationships, Strouhal number, and empirical shock-induced screech noise effects.

  16. Turbomachine combustor nozzle including a monolithic nozzle component and method of forming the same

    Science.gov (United States)

    Stoia, Lucas John; Melton, Patrick Benedict; Johnson, Thomas Edward; Stevenson, Christian Xavier; Vanselow, John Drake; Westmoreland, James Harold

    2016-02-23

    A turbomachine combustor nozzle includes a monolithic nozzle component having a plate element and a plurality of nozzle elements. Each of the plurality of nozzle elements includes a first end extending from the plate element to a second end. The plate element and plurality of nozzle elements are formed as a unitary component. A plate member is joined with the nozzle component. The plate member includes an outer edge that defines first and second surfaces and a plurality of openings extending between the first and second surfaces. The plurality of openings are configured and disposed to register with and receive the second end of corresponding ones of the plurality of nozzle elements.

  17. Simulation of a Downsized FDM Nozzle

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Pimentel, Rodrigo; Pedersen, David B.

    2015-01-01

    This document discusses the simulat-ion of a downsized nozzle for fused deposition modelling (FDM), namely the E3D HotEnd Extruder with manufactured diameters of 200-400 μm in the nozzle tip. The nozzle has been simulated in terms of heat transfer and fluid flow giving an insight into the physical...

  18. Parametric Study of Sealant Nozzle

    Science.gov (United States)

    Yamamoto, Yoshimi

    It has become apparent in recent years the advancement of manufacturing processes in the aerospace industry. Sealant nozzles are a critical device in the use of fuel tank applications for optimal bonds and for ground service support and repair. Sealants has always been a challenging area for optimizing and understanding the flow patterns. A parametric study was conducted to better understand geometric effects of sealant flow and to determine whether the sealant rheology can be numerically modeled. The Star-CCM+ software was used to successfully develop the parametric model, material model, physics continua, and simulate the fluid flow for the sealant nozzle. The simulation results of Semco sealant nozzles showed the geometric effects of fluid flow patterns and the influences from conical area reduction, tip length, inlet diameter, and tip angle parameters. A smaller outlet diameter induced maximum outlet velocity at the exit, and contributed to a high pressure drop. The conical area reduction, tip angle and inlet diameter contributed most to viscosity variation phenomenon. Developing and simulating 2 different flow models (Segregated Flow and Viscous Flow) proved that both can be used to obtain comparable velocity and pressure drop results, however; differences are seen visually in the non-uniformity of the velocity and viscosity fields for the Viscous Flow Model (VFM). A comprehensive simulation setup for sealant nozzles was developed so other analysts can utilize the data.

  19. Process for manufacturing separating nozzles

    International Nuclear Information System (INIS)

    Bier, W.; Linder, G.; Mayer, E.

    1979-01-01

    The final form of the basic body and the unit consisting of the nozzle and peeling orifice provides immovable fixing of these parts. Surfaces of various components can then be milled, using milling tools, in one operation. Assembly can be made automatic. (DG) [de

  20. Nozzle for electric dispersion reactor

    Science.gov (United States)

    Sisson, W.G.; Basaran, O.A.; Harris, M.T.

    1995-11-07

    A nozzle for an electric dispersion reactor includes two concentric electrodes, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode. 4 figs.

  1. Gas Nozzle Effect on the Deposition of Polysilicon by Monosilane Siemens Reactor

    Directory of Open Access Journals (Sweden)

    Seung Oh Kang

    2012-01-01

    Full Text Available Deposition of polysilicon (poly-Si was tried to increase productivity of poly-Si by using two different types of gas nozzle in a monosilane Bell-jar Siemens (MS-Siemens reactor. In a mass production of poly-Si, deposition rate and energy consumption are very important factors because they are main performance indicators of Siemens reactor and they are directly related with the production cost of poly-Si. Type A and B nozzles were used for investigating gas nozzle effect on the deposition of poly-Si in a MS-Siemens reactor. Nozzle design was analyzed by computation cluid dynamics (CFD. Deposition rate and energy consumption of poly-Si were increased when the type B nozzle was used. The highest deposition rate was 1 mm/h, and the lowest energy consumption was 72 kWh⋅kg-1 in this study.

  2. Transient Side Load Analysis of Out-of-Round Film-Cooled Nozzle Extensions

    Science.gov (United States)

    Wang, Ten-See; Lin, Jeff; Ruf, Joe; Guidos, Mike

    2012-01-01

    There was interest in understanding the impact of out-of-round nozzle extension on the nozzle side load during transient startup operations. The out-of-round nozzle extension could be the result of asymmetric internal stresses, deformation induced by previous tests, and asymmetric loads induced by hardware attached to the nozzle. The objective of this study was therefore to computationally investigate the effect of out-of-round nozzle extension on the nozzle side loads during an engine startup transient. The rocket engine studied encompasses a regeneratively cooled chamber and nozzle, along with a film cooled nozzle extension. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and transient inlet boundary flow properties derived from an engine system simulation. Six three-dimensional cases were performed with the out-of-roundness achieved by three different degrees of ovalization, elongated on lateral y and z axes: one slightly out-of-round, one more out-of-round, and one significantly out-of-round. The results show that the separation line jump was the primary source of the peak side loads. Comparing to the peak side load of the perfectly round nozzle, the peak side loads increased for the slightly and more ovalized nozzle extensions, and either increased or decreased for the two significantly ovalized nozzle extensions. A theory based on the counteraction of the flow destabilizing effect of an exacerbated asymmetrical flow caused by a lower degree of ovalization, and the flow stabilizing effect of a more symmetrical flow, created also by ovalization, is presented to explain the observations obtained in this effort.

  3. Dynamics of study strategies and teacher regulation in virtual patient learning activities: a cross sectional survey.

    Science.gov (United States)

    Edelbring, Samuel; Wahlström, Rolf

    2016-04-23

    Students' self-regulated learning becomes essential with increased use of exploratory web-based activities such as virtual patients (VPs). The purpose was to investigate the interplay between students' self-regulated learning strategies and perceived benefit in VP learning activities. A cross-sectional study (n = 150) comparing students' study strategies and perceived benefit of a virtual patient learning activity in a clinical clerkship preparatory course. Teacher regulation varied among three settings and was classified from shared to strong. These settings were compared regarding their respective relations between regulation strategies and perceived benefit of the virtual patient activity. Self-regulation learning strategy was generally associated with perceived benefit of the VP activities (rho 0.27, p strategies can increase the value of flexible web-based learning resources to students.

  4. Dynamic clearance measure to evaluate locomotor and perceptuo-motor strategies used for obstacle circumvention in a virtual environment.

    Science.gov (United States)

    Darekar, Anuja; Lamontagne, Anouk; Fung, Joyce

    2015-04-01

    Circumvention around an obstacle entails a dynamic interaction with the obstacle to maintain a safe clearance. We used a novel mathematical interpolation method based on the modified Shepard's method of Inverse Distance Weighting to compute dynamic clearance that reflected this interaction as well as minimal clearance. This proof-of-principle study included seven young healthy, four post-stroke and four healthy age-matched individuals. A virtual environment designed to assess obstacle circumvention was used to administer a locomotor (walking) and a perceptuo-motor (navigation with a joystick) task. In both tasks, participants were asked to navigate towards a target while avoiding collision with a moving obstacle that approached from either head-on, or 30° left or right. Among young individuals, dynamic clearance did not differ significantly between obstacle approach directions in both tasks. Post-stroke individuals maintained larger and smaller dynamic clearance during the locomotor and the perceptuo-motor task respectively as compared to age-matched controls. Dynamic clearance was larger than minimal distance from the obstacle irrespective of the group, task and obstacle approach direction. Also, in contrast to minimal distance, dynamic clearance can respond differently to different avoidance behaviors. Such a measure can be beneficial in contrasting obstacle avoidance behaviors in different populations with mobility problems. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Chaotic dynamics of electron beam with virtual cathode in the bounded system

    International Nuclear Information System (INIS)

    Anfinogentov, V.G.

    1996-01-01

    The electron beam with a virtual cathode in the bounded system with feedback was studied with the help of PIC simulation. Different types of nonlinear behavior were found. The typical structures were recognized and the effect of feedback on the structure formation was investigated. Relations between nonlinear oscillations and structure formation and interaction are discussed. (author). 5 figs., 7 refs

  6. Virtual Laboratory in the Role of Dynamic Visualisation for Better Understanding of Chemistry in Primary School

    Science.gov (United States)

    Herga, Nataša Rizman; Cagran, Branka; Dinevski, Dejan

    2016-01-01

    Understanding chemistry includes the ability to think on three levels: the macroscopic level, the symbolic level, and the level of particles--sub-microscopic level. Pupils have the most difficulty when trying to understand the sub-microscopic level because it is outside their range of experience. A virtual laboratory enables a simultaneous…

  7. Institutional, Public and Individual Learning Dynamics of the Andy Holt Virtual Library.

    Science.gov (United States)

    Peckham, Robert

    The Andy Holt Virtual Library, with a focus on the Humanities and Fine Arts, is free and open to the public, though designed to serve the learning communities within the College of Humanities and Fine Arts at the University of Tennessee-Martin (UT). It also plays a resource role in UT's New College and the Tennessee Governors School for the…

  8. Virtual Drive Testing of Adaptive Antenna Systems in Dynamic Propagation Scenarios for Vehicle Communications

    DEFF Research Database (Denmark)

    Fan, Wei; Hentilä, Lassi; Zhang, Fengchun

    2018-01-01

    Virtual drive testing (VDT) has gained great interest from both industry and academia, owing to its promise to replay field trials in a controllable laboratory condition. VDT is especially appealing for vehicle communication scenarios, where actual field trials can be difficult to carry out...

  9. Chaotic dynamics of electron beam with virtual cathode in the bounded system

    Energy Technology Data Exchange (ETDEWEB)

    Anfinogentov, V G [College of Applied Science, Saratov (Russian Federation)

    1997-12-31

    The electron beam with a virtual cathode in the bounded system with feedback was studied with the help of PIC simulation. Different types of nonlinear behavior were found. The typical structures were recognized and the effect of feedback on the structure formation was investigated. Relations between nonlinear oscillations and structure formation and interaction are discussed. (author). 5 figs., 7 refs.

  10. Satisfaction with virtual communities in B2B financial services: social dynamics, content and technology

    NARCIS (Netherlands)

    Chompis, E.; Bons, R.W.H.; van den Hooff, B.J.; Feldberg, J.F.M.; Horn, H.

    2014-01-01

    This study explores satisfaction with Virtual Communities in a Financial Services setting. Based on Expectancy Value Theory and the concept of Experiential Value we hypothesize that three sources of value drive user satisfaction in a B2B-VC: social ties, content and technology. We propose a

  11. Nozzle geometry variations on the discharge coefficient

    Directory of Open Access Journals (Sweden)

    M.M.A. Alam

    2016-03-01

    Full Text Available Numerical works have been conducted to investigate the effect of nozzle geometries on the discharge coefficient. Several contoured converging nozzles with finite radius of curvatures, conically converging nozzles and conical divergent orifices have been employed in this investigation. Each nozzle and orifice has a nominal exit diameter of 12.7×10−3 m. A 3rd order MUSCL finite volume method of ANSYS Fluent 13.0 was used to solve the Reynolds-averaged Navier–Stokes equations in simulating turbulent flows through various nozzle inlet geometries. The numerical model was validated through comparison between the numerical results and experimental data. The results obtained show that the nozzle geometry has pronounced effect on the sonic lines and discharge coefficients. The coefficient of discharge was found differ from unity due to the non-uniformity of flow parameters at the nozzle exit and the presence of boundary layer as well.

  12. Rational approach to identify newer caspase-1 inhibitors using pharmacophore based virtual screening, docking and molecular dynamic simulation studies.

    Science.gov (United States)

    Patel, Shivani; Modi, Palmi; Chhabria, Mahesh

    2018-05-01

    Caspase-1 is a key endoprotease responsible for the post-translational processing of pro-inflammatory cytokines IL-1β, 18 & 33. Excessive secretion of IL-1β leads to numerous inflammatory and autoimmune diseases. Thus caspase-1 inhibition would be considered as an important therapeutic strategy for development of newer anti-inflammatory agents. Here we have employed an integrated virtual screening by combining pharmacophore mapping and docking to identify small molecules as caspase-1 inhibitors. The ligand based 3D pharmacophore model was generated having the essential structural features of (HBA, HY & RA) using a data set of 27 compounds. A validated pharmacophore hypothesis (Hypo 1) was used to screen ZINC and Minimaybridge chemical databases. The retrieved virtual hits were filtered by ADMET properties and molecular docking analysis. Subsequently, the cross-docking study was also carried out using crystal structure of caspase-1, 3, 7 and 8 to identify the key residual interaction for specific caspase-1 inhibition. Finally, the best mapped and top scored (ZINC00885612, ZINC72003647, BTB04175 and BTB04410) molecules were subjected to molecular dynamics simulation for accessing the dynamic structure of protein after ligand binding. This study identifies the most promising hits, which can be leads for the development of novel caspase-1 inhibitors as anti-inflammatory agents. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Versatile, immersive, creative and dynamic virtual 3-D healthcare learning environments: a review of the literature.

    Science.gov (United States)

    Hansen, Margaret M

    2008-09-01

    The author provides a critical overview of three-dimensional (3-D) virtual worlds and "serious gaming" that are currently being developed and used in healthcare professional education and medicine. The relevance of this e-learning innovation for teaching students and professionals is debatable and variables influencing adoption, such as increased knowledge, self-directed learning, and peer collaboration, by academics, healthcare professionals, and business executives are examined while looking at various Web 2.0/3.0 applications. There is a need for more empirical research in order to unearth the pedagogical outcomes and advantages associated with this e-learning technology. A brief description of Roger's Diffusion of Innovations Theory and Siemens' Connectivism Theory for today's learners is presented as potential underlying pedagogical tenets to support the use of virtual 3-D learning environments in higher education and healthcare.

  14. Fluid flow nozzle energy harvesters

    Science.gov (United States)

    Sherrit, Stewart; Lee, Hyeong Jae; Walkemeyer, Phillip; Winn, Tyler; Tosi, Luis Phillipe; Colonius, Tim

    2015-04-01

    Power generation schemes that could be used downhole in an oil well to produce about 1 Watt average power with long-life (decades) are actively being developed. A variety of proposed energy harvesting schemes could be used to extract energy from this environment but each of these has their own limitations that limit their practical use. Since vibrating piezoelectric structures are solid state and can be driven below their fatigue limit, harvesters based on these structures are capable of operating for very long lifetimes (decades); thereby, possibly overcoming a principle limitation of existing technology based on rotating turbo-machinery. An initial survey [1] identified that spline nozzle configurations can be used to excite a vibrating piezoelectric structure in such a way as to convert the abundant flow energy into useful amounts of electrical power. This paper presents current flow energy harvesting designs and experimental results of specific spline nozzle/ bimorph design configurations which have generated suitable power per nozzle at or above well production analogous flow rates. Theoretical models for non-dimensional analysis and constitutive electromechanical model are also presented in this paper to optimize the flow harvesting system.

  15. Cognitive Processes (Probably Stimulated By Using Digital Game "Dynamic Metabolic Diagram Virtual Krebs´ Cycle"

    Directory of Open Access Journals (Sweden)

    A. M. P Azevedo

    2006-07-01

    Full Text Available This work describes some of the possible cognitive operations related to the use of an educational game type activity, which  is  part  of  the  software  e-metabolismo,  developed  to  improve  biochemical  learning.  This  interactive  activity, called  DMDV   – Dynamic  Metabolic  Diagram,  allows  participants  to  drag-and-drop  components  of  the  sequence  of chemical  reactions,  which describe  the  metabolic  route  under study.  It  also offers  to the students  quizzes  and texts about  the  subject.  The  suggestion  of  cognitive  processes  possibly  triggered  by  the  software,  which  must  improve effective learning, was based on Jean Piaget’s genetic epistemological ideas to explain the cognitive activity. One of these  processes  is  the  mere  act  of  playing  the  game,  which  Piaget  relates  to  humans  needs  of  learning  rules  of socialization.  It  also  can  be  seen  as  a  first  step  in  cognition  process,  the  so  called  adaptation  function  that  include assimilation and accommodation, interactive processes between intelligent activities and elements from the reality, to became part of the individual´s mental structures. Another example: drag and drop substracts and enzymes pieces in a  virtual  board,  each  one  corresponding  to  an  specific  place  in  a  metabolic  route.  This  operation  can  be  related  to motivation,  an  affective  element  proposed  by  Piaget  to  stimulate  curiosity  and  improve  construction  of  knowledge structures.  Besides  this  issue,  the  act  of  choosing  pieces  is  assumed  to  inform  the  student  previous  knowledge (previous  cognitive  structures,  which,  according  to  Piaget,  must  be  misbalanced  (equilibration  of  new  structures  is supposed to be part of the dynamic

  16. The separation nozzle process for uranium isotope enrichment

    International Nuclear Information System (INIS)

    Becker, E.W.

    1977-01-01

    In the separation nozzle process, uranium isotope separation is brought about by the mass dependence of the centrifugal forces in a curved flow of a UF 6 /H 2 -mixture. Due to the large excess in hydrogen the high ration of UF 6 flow velocity to thermal velocity required for an effective isotope separation is obtained at relatively low expansion ratios and, accordingly, with relatively low gas-dynamic losses. As the optimum Reynolds number of the curved jet is comparatively low and a high absolute pressure is essential for economic reasons, the characteristic dimensions of the nozzle systems are made as small as possible. For commercial application in the near future systems involving mechanical jet deflection were developed. However, promising results were also obtained with separation nozzle systems generating a streamline curvature by the interaction of opposed jets. Most of the development work has been done at the Nuclear Research Center of Karlsruhe. Since 1970 the German company STEAG has been involved in the commercial implementation of the process. Two industrial-scale separative stages were tested successfully. This work constitutes the basis of planning of a separation nozzle demonstration plant to be built in Brazil

  17. Virtual-reality balance training with a video-game system improves dynamic balance in chronic stroke patients.

    Science.gov (United States)

    Cho, Ki Hun; Lee, Kyoung Jin; Song, Chang Ho

    2012-09-01

    Stroke is one of the most serious healthcare problems and a major cause of impairment of cognition and physical functions. Virtual rehabilitation approaches to postural control have been used for enhancing functional recovery that may lead to a decrease in the risk of falling. In the present study, we investigated the effects of virtual reality balance training (VRBT) with a balance board game system on balance of chronic stroke patients. Participants were randomly assigned to 2 groups: VRBT group (11 subjects including 3 women, 65.26 years old) and control group (11 subjects including 5 women, 63.13 years old). Both groups participated in a standard rehabilitation program (physical and occupational therapy) for 60 min a day, 5 times a week for 6 weeks. In addition, the VRBT group participated in VRBT for 30 min a day, 3 times a week for 6 weeks. Static balance (postural sway velocity with eyes open or closed) was evaluated with the posturography. Dynamic balance was evaluated with the Berg Balance Scale (BBS) and Timed Up and Go test (TUG) that measures balance and mobility in dynamic balance. There was greater improvement on BBS (4.00 vs. 2.81 scores) and TUG (-1.33 vs. -0.52 sec) in the VRBT group compared with the control group (P < 0.05), but not on static balance in both groups. In conclusion, we demonstrate a significant improvement in dynamic balance in chronic stroke patients with VRBT. VRBT is feasible and suitable for chronic stroke patients with balance deficit in clinical settings.

  18. Three-Dimensional Flow Behavior Inside the Submerged Entry Nozzle

    Science.gov (United States)

    Real-Ramirez, Cesar Augusto; Carvajal-Mariscal, Ignacio; Sanchez-Silva, Florencio; Cervantes-de-la-Torre, Francisco; Diaz-Montes, Jesus; Gonzalez-Trejo, Jesus

    2018-05-01

    According to various authors, the surface quality of steel depends on the dynamic conditions that occur within the continuous casting mold's upper region. The meniscus, found in that upper region, is where the solidification process begins. The liquid steel is distributed into the mold through a submerged entry nozzle (SEN). In this paper, the dynamic behavior inside the SEN is analyzed by means of physical experiments and numerical simulations. The particle imaging velocimetry technique was used to obtain the vector field in different planes and three-dimensional flow patterns inside the SEN volume. Moreover, large eddy simulation was performed, and the turbulence model results were used to understand the nonlinear flow pattern inside the SEN. Using scaled physical and numerical models, quasi-periodic behavior was observed due to the interaction of two three-dimensional vortices that move inside the SEN lower region located between the exit ports of the nozzle.

  19. Influence of Diesel Nozzle Geometry on Cavitation Using Eulerian Multi-Fluid Method

    Institute of Scientific and Technical Information of China (English)

    张军; 杜青; 杨延相

    2010-01-01

    Dependent on automatically generated unstructured grids, a comprehensive computational fluid dynamics(CFD)numerical simulation is performed to analyze the influence of nozzle geometry on the internal flow characteristics of a multi-hole diesel injector with the multi-phase flow model based on Eulerian multi-fluid method.The diesel components in nozzle are considered as two continuous phases, diesel liquid and diesel vapor respectively.Considering that both of them are fully coupled and interpenetrated, sepa...

  20. Effective hydraulic resistance of actuator nozzle generating a periodic jet

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    2012-01-01

    Roč. 179, JUN 2012 (2012), s. 211-222 ISSN 0924-4247 R&D Projects: GA ČR(CZ) GCP101/11/J019; GA TA ČR(CZ) TA02020795 Institutional research plan: CEZ:AV0Z20760514 Keywords : nozzle * periodic flow * compressibility Subject RIV: BK - Fluid Dynamics Impact factor: 1.841, year: 2012 http://www.sciencedirect.com/science/article/pii/S0924424712001781

  1. Variable volume combustor with pre-nozzle fuel injection system

    Science.gov (United States)

    Keener, Christopher Paul; Johnson, Thomas Edward; McConnaughhay, Johnie Franklin; Ostebee, Heath Michael

    2016-09-06

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of fuel nozzles, a pre-nozzle fuel injection system supporting the fuel nozzles, and a linear actuator to maneuver the fuel nozzles and the pre-nozzle fuel injection system.

  2. Dynamic virtual machine allocation policy in cloud computing complying with service level agreement using CloudSim

    Science.gov (United States)

    Aneri, Parikh; Sumathy, S.

    2017-11-01

    Cloud computing provides services over the internet and provides application resources and data to the users based on their demand. Base of the Cloud Computing is consumer provider model. Cloud provider provides resources which consumer can access using cloud computing model in order to build their application based on their demand. Cloud data center is a bulk of resources on shared pool architecture for cloud user to access. Virtualization is the heart of the Cloud computing model, it provides virtual machine as per application specific configuration and those applications are free to choose their own configuration. On one hand, there is huge number of resources and on other hand it has to serve huge number of requests effectively. Therefore, resource allocation policy and scheduling policy play very important role in allocation and managing resources in this cloud computing model. This paper proposes the load balancing policy using Hungarian algorithm. Hungarian Algorithm provides dynamic load balancing policy with a monitor component. Monitor component helps to increase cloud resource utilization by managing the Hungarian algorithm by monitoring its state and altering its state based on artificial intelligent. CloudSim used in this proposal is an extensible toolkit and it simulates cloud computing environment.

  3. Laval nozzles for cluster-jet targets

    Energy Technology Data Exchange (ETDEWEB)

    Grieser, Silke; Bonaventura, Daniel; Hergemoeller, Ann-Katrin; Hetz, Benjamin; Koehler, Esperanza; Lessmann, Lukas; Khoukaz, Alfons [Institut fuer Kernphysik, Westfaelische Wilhelms-Universitaet Muenster, 48149 Muenster (Germany)

    2016-07-01

    Cluster-jet targets are highly suited for storage ring experiments due to the fact that they provide high and constant beam densities. Therefore, a cluster-jet target is planned to be the first internal target for the PANDA experiment at FAIR. A cluster source generates a continuous flow of cryogenic solid clusters by the expansion of pre-cooled gases within fine Laval nozzles. For the production of clusters the geometry of the nozzle is crucial. The production of such nozzles with their complex inner geometry represents a major technical challenge. The possibility to produce new fine Laval nozzles ensures the operation of cluster-jet targets, e.g. for the PANDA experiment, and opens the way for future investigations on the cluster production process to match the required targets performance. Optimizations on the recently developed production process and the fabrication of new glass nozzles were done. Initial measurements of these nozzles at the PANDA cluster-jet target prototype and the investigation of the cluster beam origin within the nozzle will be presented and discussed. For the future more Laval nozzles with different geometries will be produced and additional measurements with these new nozzles at the PANDA cluster-jet target prototype towards higher performance will be realized.

  4. Fractal analysis of agricultural nozzles spray

    Directory of Open Access Journals (Sweden)

    Francisco Agüera

    2012-02-01

    Full Text Available Fractal scaling of the exponential type is used to establish the cumulative volume (V distribution applied through agricultural spray nozzles in size x droplets, smaller than the characteristic size X. From exponent d, we deduced the fractal dimension (Df which measures the degree of irregularity of the medium. This property is known as 'self-similarity'. Assuming that the droplet set from a spray nozzle is self-similar, the objectives of this study were to develop a methodology for calculating a Df factor associated with a given nozzle and to determine regression coefficients in order to predict droplet spectra factors from a nozzle, taking into account its own Df and pressure operating. Based on the iterated function system, we developed an algorithm to relate nozzle types to a particular value of Df. Four nozzles and five operating pressure droplet size characteristics were measured using a Phase Doppler Particle Analyser (PDPA. The data input consisted of droplet size spectra factors derived from these measurements. Estimated Df values showed dependence on nozzle type and independence of operating pressure. We developed an exponential model based on the Df to enable us to predict droplet size spectra factors. Significant coefficients of determination were found for the fitted model. This model could prove useful as a means of comparing the behavior of nozzles which only differ in not measurable geometric parameters and it can predict droplet spectra factors of a nozzle operating under different pressures from data measured only in extreme work pressures.

  5. SU-F-BRD-11: A Virtual Simulator Designed for Collision Prevention in Proton Therapy

    International Nuclear Information System (INIS)

    Jung, H; Kum, O; Park, H; Choi, D; Han, Y

    2015-01-01

    Purpose: In proton therapy, collisions between patient and nozzle potentially occur in attaining minimal air gap due to the large nozzle structure. Thus, we developed software predicting the collisions of the nozzle and patient by simulating treatments. Methods: 3D modeling of a gantry inner-floor, nozzle and robotic-couch was done by using the SolidWorks based on the manufacturer’s machine data. To obtain patient body information, a 3D-scanner was utilized to scan a patient right before CT scanning. From the acquired images, a 3D-image of the patient’s body contour was reconstructed. The accuracy of the image was confirmed against the CT image for a humanoid phantom. The machine components and the virtual patient were combined on the treatment-room coordinate system, resulting in a virtual simulator. The simulator simulated the motion of its components such as rotation and translation of gantry, nozzle and couch, in real scale. Collision, if any, was examined both in static mode and dynamic mode. The static mode checks only at fixed positions of the machine’s components while dynamic mode examines while one component is in motion. Collision was notified if any voxel of two components, for example a nozzle and a patient or couch, overlapped when calculating volume locations. The event and collision point are visualized and colliding volumes are reported. Results: All components were successfully assembled and the motions could be accurately controlled. The 3D-shape of a phantom agreed with CT images within a deviation of 2 mm. Collision situations can be simulated within minutes and the results are displayed and reported. Conclusion: The developed software will be useful in improving patient safety and clinical efficiency for proton therapy. This work was supported by the National Research Foundation of Korea funded by Ministry of Science, ICT & Future Planning (2012M3A9B6055201, 2013M2A2A7043507), and Samsung Medical Center grant (GFO1130081)

  6. Development of an Aeroelastic Modeling Capability for Transient Nozzle Side Load Analysis

    Science.gov (United States)

    Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen

    2013-01-01

    Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a coupled aeroelastic modeling capability by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed in the framework of modal analysis. Transient aeroelastic nozzle startup analyses of the Block I Space Shuttle Main Engine at sea level were performed. The computed results from the aeroelastic nozzle modeling are presented.

  7. Pairing virtual reality with dynamic posturography serves to differentiate between patients experiencing visual vertigo

    Directory of Open Access Journals (Sweden)

    Streepey Jefferson

    2007-07-01

    Full Text Available Abstract Background To determine if increased visual dependence can be quantified through its impact on automatic postural responses, we have measured the combined effect on the latencies and magnitudes of postural response kinematics of transient optic flow in the pitch plane with platform rotations and translations. Methods Six healthy (29–31 yrs and 4 visually sensitive (27–57 yrs subjects stood on a platform rotated (6 deg of dorsiflexion at 30 deg/sec or translated (5 cm at 5 deg/sec for 200 msec. Subjects either had eyes closed or viewed an immersive, stereo, wide field of view virtual environment (scene moved in upward pitch for a 200 msec period for three 30 sec trials at 5 velocities. RMS values and peak velocities of head, trunk, and head with respect to trunk were calculated. EMG responses of 6 trunk and lower limb muscles were collected and latencies and magnitudes of responses determined. Results No effect of visual velocity was observed in EMG response latencies and magnitudes. Healthy subjects exhibited significant effects (p p Conclusion Differentiation of postural kinematics in visually sensitive subjects when exposed to the combined perturbations suggests that virtual reality technology could be useful for differential diagnosis and specifically designed interventions for individuals whose chief complaint is sensitivity to visual motion.

  8. Heat exchanger nozzle stresses due to pipe vibration

    International Nuclear Information System (INIS)

    Wolgemuth, G.A.

    1983-01-01

    A large diameter pipe in a heavy water production plant was excited into a low frequency vibration due to void collapse of the pipe contents at a sharp vertical drop in the pipe run. Fears that this vibration would fatigue the inlet nozzle to the heat exchanger prompted the introduction of a flow of cold water into the pipe to prevent the two-phase flow from developing but at the cost of reduced heat exchanger efficiency. An investigation was carried out to determine the stress levels in the nozzle with the quenching flow off and suggest means of reducing them if excessive. A finite element dynamic simulation of the pipe run was performed to determine the likely mode shapes. This information was used to optimize the placement of velocity probes on the pipe. Field measurements of vibration were taken for several operating conditions. This data was analyzed and the results used to refine the support stiffness used in the finite element simulation. The finite element model was then used to predict the nozzle forces and moments. In turn this data was used to determine the local stresses in the nozzle. The ASME Section III code was used to determine the allowable fully reversing stresses for the unit in question. It was found that the endurance limit of 83 MPa was exceeded in the analysis only when using the most conservative estimates for each uncertainty. It was recommended that if the safety factor was not deemed high enough, the nozzle should be built up with a reinforcing pad no thicker than 12 mm

  9. Screening of Potential Lead Molecule as Novel MurE Inhibitor: Virtual Screening, Molecular Dynamics and In Vitro Studies.

    Science.gov (United States)

    Zaveri, Kunal; Kiranmayi, Patnala

    2017-01-01

    The prevalence of multi-drug resistance S. aureus is one of the most challenging tasks for the treatment of nosocomial infections. Proteins and enzymes of peptidoglycan biosynthesis pathway are one among the well-studied targets, but many of the enzymes are unexplored as targets. MurE is one such enzyme featured to be a promising target. As MurE plays an important role in ligating the L-lys to stem peptide at third position that is crucial for peptidoglycan synthesis. To screen the potential MurE inhibitor by in silico approach and evaluate the best potential lead molecule by in vitro methods. In the current study, we have employed structure based virtual screening targeting the active site of MurE, followed by Molecular dynamics and in vitro studies. Virtual screening resulted in successful screening of potential lead molecule ((2R)-2-[[1-[(2R)- 2-(benzyloxycarbonylamino) propanoyl] piperidine-4-carbonyl]amino]-5-guanidino-pentan). The molecular dynamics of the MurE and Lead molecule complex emphasizes that lead molecule has shown stable interactions with active site residues Asp 406 and with Glu 460. In vitro studies demonstrate that the lead molecule shows antibacterial activity close to standard antibiotic Vancomycin and higher than that of Ampicillin, Streptomycin and Rifampicin. The MIC of lead molecule at 50μg/mL was observed to be 3.75 μg/mL, MBC being bactericidal with value of 6.25 μg/mL, cytotoxicity showing 34.44% and IC50 of 40.06μg/mL. These results suggest ((2R)-2-[[1-[(2R)-2-(benzyloxycarbonylamino) propanoyl] piperidine-4-carbonyl]amino]-5-guanidino-pentan) as a promising lead molecule for developing a MurE inhibitor against treatment of S. aureus infections. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Computer Graphic Design Using Auto-CAD and Plug Nozzle Research

    Science.gov (United States)

    Rogers, Rayna C.

    2004-01-01

    The purpose of creating computer generated images varies widely. They can be use for computational fluid dynamics (CFD), or as a blueprint for designing parts. The schematic that I will be working on the summer will be used to create nozzles that are a part of a larger system. At this phase in the project, the nozzles needed for the systems have been fabricated. One part of my mission is to create both three dimensional and two dimensional models on Auto-CAD 2002 of the nozzles. The research on plug nozzles will allow me to have a better understanding of how they assist in the thrust need for a missile to take off. NASA and the United States military are working together to develop a new design concept. On most missiles a convergent-divergent nozzle is used to create thrust. However, the two are looking into different concepts for the nozzle. The standard convergent-divergent nozzle forces a mixture of combustible fluids and air through a smaller area in comparison to where the combination was mixed. Once it passes through the smaller area known as A8 it comes out the end of the nozzle which is larger the first or area A9. This creates enough thrust for the mechanism whether it is an F-18 fighter jet or a missile. The A9 section of the convergent-divergent nozzle has a mechanism that controls how large A9 can be. This is needed because the pressure of the air coming out nozzle must be equal to that of the ambient pressure other wise there will be a loss of performance in the machine. The plug nozzle however does not need to have an A9 that can vary. When the air flow comes out it can automatically sense what the ambient pressure is and will adjust accordingly. The objective of this design is to create a plug nozzle that is not as complicated mechanically as it counterpart the convergent-divergent nozzle.

  11. Through an Annular Turbine Nozzle

    Directory of Open Access Journals (Sweden)

    Rainer Kurz

    1995-01-01

    is located in the gas turbine. The experiments were performed using total pressure probes and wall static pressure taps. The pitch variation modifies the flow field both upstream and downstream of the nozzle, although the experiments show that the effect is localized to the immediate neighborhood of the involved blades. The effects on the wakes and on the inviscid flow are discussed separately. The mean velocities show a strong sensitivity to the changes of the pitch, which is due to a potential flow effect rather than a viscous effect.

  12. Trusted Bytecode Virtual Machine Module: A Novel Method for Dynamic Remote Attestation in Cloud Computing

    Directory of Open Access Journals (Sweden)

    Songzhu Mei

    2012-09-01

    Full Text Available Cloud computing bring a tremendous complexity to information security. Remote attestation can be used to establish trust relationship in cloud. TBVMM is designed to extend the existing chain of trust into the software layers to support dynamic remote attestation for cloud computing. TBVMM uses Bayesian network and Kalman filter to solve the dynamicity of the trusted relationship. It is proposed to fill the trust gap between the infrastructure and upper software stacks.

  13. Pengaruh Jarak dan Posisi Nozzle terhadap Daya Turbin Pelton

    OpenAIRE

    Kurniawan, Yani; Pane, Erlanda Augupta; Ismail, Ismail

    2017-01-01

    Pelton Turbine is a turbine which use nozzle as officers the direction of a stream water in order to move around of blade turbine. The rotating of turbine blade efected by some parameters such as the distance of the nozzle, position of nozzle, diameter of nozzle, number of nozzle, and the geometry shape of the blade turbine. An experimental study to analyze the affect of distance and position nozzle to Pelton Turbine of performance. The research method used experiment parameter was position o...

  14. Pengaruh Jarak dan Posisi Nozzle Terhadap Daya Turbin Pelton

    OpenAIRE

    Yani Kurniawan; Erlanda Augupta Pane; Ismail

    2017-01-01

    Pelton Turbine is a turbine which use nozzle as officers the direction of a stream water in order to move around of blade turbine. The rotating of turbine blade efected by some parameters such as the distance of the nozzle, position of nozzle, diameter of nozzle, number of nozzle, and the geometry shape of the blade turbine. An experimental study to analyze the affect of distance and position nozzle to Pelton Turbine of performance. The research method used experiment parameter was position o...

  15. Space Shuttle Redesigned Solid Rocket Motor nozzle natural frequency variations with burn time

    Science.gov (United States)

    Lui, C. Y.; Mason, D. R.

    1991-01-01

    The effects of erosion and thermal degradation on the Space Shuttle Redesigned Solid Rocket Motor (RSRM) nozzle's structural dynamic characteristics were analytically evaluated. Also considered was stiffening of the structure due to internal pressurization. A detailed NASTRAN finite element model of the nozzle was developed and used to evaluate the influence of these effects at several discrete times during motor burn. Methods were developed for treating erosion and thermal degradation, and a procedure was developed to account for internal pressure stiffening using differential stiffness matrix techniques. Results were verified using static firing test accelerometer data. Fast Fourier Transform and Maximum Entropy Method techniques were applied to the data to generate waterfall plots which track modal frequencies with burn time. Results indicate that the lower frequency nozzle 'vectoring' modes are only slightly affected by erosion, thermal effects and internal pressurization. The higher frequency shell modes of the nozzle are, however, significantly reduced.

  16. Palo Verde Unit 3 BMI nozzle modification

    International Nuclear Information System (INIS)

    Waskey, D.

    2015-01-01

    The 61 BMI (Bottom Mount Instrumentation) nozzles of the unit 3 of the Palo Verde plant have been examined through ASME Code Case N722. The nozzle 3 was the only one with leakage noted. The ultrasound testing results are characteristic of PWSCC (Primary Water Stress Corrosion Cracking). The initiation likely occurred at a weld defect which was exposed to the primary water environment resulting in PWSCC. All other nozzles (60) showed no unacceptable indications. Concerning nozzle 3 one crack in J-groove weld connected large defect to primary water. An environmental model has been used to simulate and optimize the repair. The AREVA crew was on site 18 days after contract award and the job was completed in 12 days, 30 hours ahead of baseline schedule. This series of slides describes the examination of the BMI nozzles, the repair steps, and alternative design concepts

  17. Development of Reactor Vessel Bottom Mount Instrumentation Nozzle Routine Inspection Device

    Energy Technology Data Exchange (ETDEWEB)

    Khaled, Atya Ahmed Abdallah; Ihn, Namgung [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2015-10-15

    The primary coolant water of pressurized water reactors has created cracks in j-weld of penetrations with Alloy 600 through a process called primary water stress corrosion cracking. On October 6, 2013, BMI nozzle number 3 at Palo Verde Unit 3 (PVNGS-3) exhibited small white de-posits around the annulus. Nozzle attachment to the RV lower head is by J-groove weld to the inside penetration of the nozzle and the weld material is of Alloy 600 material. Above two cases clearly show the necessity of routine inspection of RV lower head penetration during refueling outage. Nondestructive inspection is generally performed to detect fine cracks or defects that may develop during operation. Defects usually occur at weld regions, hence most non-destructive inspection is to scan and check any defects or crack in the weld region. BMI nozzles at the bottom head of a nuclear reactor vessel (RV) are one of such area for inspection. But BMI nozzles have not been inspected during regular refuel outage due to the relative small size of BMI nozzle and limited impact of the consequences of BMI leak. However, there is growing concern since there have been leaks at nuclear power plants (NPPs) as well as recent operating experience. In this study, we propose a system that is conveniently used for nondestructive inspection of BMI nozzles during regular refueling outage without removing all the reactor internals. A 3D model of the inspection system was also developed along with the RV and internals which permits a virtual 3D simulation to check the design concept and usability of the system.

  18. Design Intend Solving: Dynamic Composition Method for Innovative Design Based on Virtual Cloud Manufacturing Resource Generators

    Directory of Open Access Journals (Sweden)

    Yi-Cong Gao

    2013-01-01

    Full Text Available Recently, there has been growing interest in composition of cloud manufacturing resources (CMRs. Composition of CMRs is a feasible innovation to fulfill the user request while single cloud manufacturing resource cannot satisfy the functionality required by the user. In this paper, we propose a new case-based approach for the composition of CMRs. The basic idea of the present approach is to provide a computational framework for the composition of CMRs by imitating the common design method of reviewing past designs to obtain solution concepts for a new composite cloud manufacturing resource (CCMR. A notion of virtual cloud manufacturing resource generators (VCMRGs is introduced to conceptualize and represent underlying CCMRs contained in existing CCMRs. VCMRGs are derived from previous CCMRs and serve as new conceptual building blocks for the composition of CMRs. Feasible composite CMRs are generated by combining VCMRGs using some adaptation rules. The reuse of prior CCMRs is accomplished via VCMRGs within the framework of case-based reasoning. We demonstrate that the proposed approach yields lower execution time for fulfilling user request and shows good scalability.

  19. On delay adjustment for dynamic load balancing in distributed virtual environments.

    Science.gov (United States)

    Deng, Yunhua; Lau, Rynson W H

    2012-04-01

    Distributed virtual environments (DVEs) are becoming very popular in recent years, due to the rapid growing of applications, such as massive multiplayer online games (MMOGs). As the number of concurrent users increases, scalability becomes one of the major challenges in designing an interactive DVE system. One solution to address this scalability problem is to adopt a multi-server architecture. While some methods focus on the quality of partitioning the load among the servers, others focus on the efficiency of the partitioning process itself. However, all these methods neglect the effect of network delay among the servers on the accuracy of the load balancing solutions. As we show in this paper, the change in the load of the servers due to network delay would affect the performance of the load balancing algorithm. In this work, we conduct a formal analysis of this problem and discuss two efficient delay adjustment schemes to address the problem. Our experimental results show that our proposed schemes can significantly improve the performance of the load balancing algorithm with neglectable computation overhead.

  20. Cloud Radar: Near Real-Time Detection of Security Failures in Dynamic Virtualized Infrastructures

    NARCIS (Netherlands)

    Bleikertz, Sören; Vogel, Carsten; Groß, Thomas

    2014-01-01

    Cloud infrastructures are designed to share physical resources among many different tenants while ensuring overall secu- rity and tenant isolation. The complexity of dynamically changing and growing cloud environments, as well as insider attacks, can lead to misconfigurations that ultimately result

  1. External Cylindrical Nozzle with Controlled Vacuum

    Directory of Open Access Journals (Sweden)

    V. N. Pil'gunov

    2015-01-01

    Full Text Available There is a developed design of the external cylindrical nozzle with a vacuum camera. The paper studies the nozzle controllability of flow rate via regulated connection of the evacuated chamber to the atmosphere through an air throttle. Working capacity of the nozzle with inlet round or triangular orifice are researched. The gap is provided in the nozzle design between the external wall of the inlet orifice and the end face of the straight case in the nozzle case. The presented mathematical model of the nozzle with the evacuated chamber allows us to estimate the expected vacuum amount in the compressed section of a stream and maximum permissible absolute pressure at the inlet orifice. The paper gives experimental characteristics of the fluid flow process through the nozzle for different values of internal diameter of a straight case and an extent of its end face remoteness from an external wall of the inlet orifice. It estimates how geometry of nozzle constructive elements influences on the volume flow rate. It is established that the nozzle capacity significantly depends on the shape of inlet orifice. Triangular orifice nozzles steadily work in the mode of completely filled flow area of the straight case at much more amounts of the limit pressure of the flow. Vacuum depth in the evacuated chamber also depends on the shape of inlet orifice: the greatest vacuum is reached in a nozzle with the triangular orifice which 1.5 times exceeds the greatest vacuum with the round orifice. Possibility to control nozzle capacity through the regulated connection of the evacuated chamber to the atmosphere was experimentally estimated, thus depth of flow rate regulation of the nozzle with a triangular orifice was 45% in comparison with 10% regulation depth of the nozzle with a round orifice. Depth of regulation calculated by a mathematical model appeared to be much more. The paper presents experimental dependences of the flow coefficients of nozzle input orifice

  2. Virtually teaching virtual leadership

    DEFF Research Database (Denmark)

    Henriksen, Thomas Duus; Nielsen, Rikke Kristine; Børgesen, Kenneth

    2017-01-01

    This paper seeks to investigate the challenges to virtual collaboration and leadership on basis of findings from a virtual course on collaboration and leadership. The course used for this experiment was designed as a practical approach, which allowed participants to experience curriculum phenomena....... This experimental course provided insights into the challenges involved in virtual processes, and those experiences where used for addressing the challenges that virtual leadership is confronted with. Emphasis was placed on the reduction of undesired virtual distance and its consequences through affinity building....... We found that student scepticism appeared when a breakdown resulted in increasing virtual distance, and raises questions on how leaders might translate or upgrade their understandings of leadership to handling such increased distance through affinity building....

  3. A virtual clinical trial comparing static versus dynamic PET imaging in measuring response to breast cancer therapy

    Science.gov (United States)

    Wangerin, Kristen A.; Muzi, Mark; Peterson, Lanell M.; Linden, Hannah M.; Novakova, Alena; Mankoff, David A.; E Kinahan, Paul

    2017-05-01

    We developed a method to evaluate variations in the PET imaging process in order to characterize the relative ability of static and dynamic metrics to measure breast cancer response to therapy in a clinical trial setting. We performed a virtual clinical trial by generating 540 independent and identically distributed PET imaging study realizations for each of 22 original dynamic fluorodeoxyglucose (18F-FDG) breast cancer patient studies pre- and post-therapy. Each noise realization accounted for known sources of uncertainty in the imaging process, such as biological variability and SUV uptake time. Four definitions of SUV were analyzed, which were SUVmax, SUVmean, SUVpeak, and SUV50%. We performed a ROC analysis on the resulting SUV and kinetic parameter uncertainty distributions to assess the impact of the variability on the measurement capabilities of each metric. The kinetic macro parameter, K i , showed more variability than SUV (mean CV K i   =  17%, SUV  =  13%), but K i pre- and post-therapy distributions also showed increased separation compared to the SUV pre- and post-therapy distributions (mean normalized difference K i   =  0.54, SUV  =  0.27). For the patients who did not show perfect separation between the pre- and post-therapy parameter uncertainty distributions (ROC AUC  dynamic imaging outperformed SUV in distinguishing metabolic change in response to therapy, ranging from 12 to 14 of 16 patients over all SUV definitions and uptake time scenarios (p  PET imaging.

  4. Auto-adaptative Robot-aided Therapy based in 3D Virtual Tasks controlled by a Supervised and Dynamic Neuro-Fuzzy System

    Directory of Open Access Journals (Sweden)

    Luis Daniel Lledó

    2015-03-01

    Full Text Available This paper presents an application formed by a classification method based on the architecture of ART neural network (Adaptive Resonance Theory and the Fuzzy Set Theory to classify physiological reactions in order to automatically and dynamically adapt a robot-assisted rehabilitation therapy to the patient needs, using a three-dimensional task in a virtual reality system. Firstly, the mathematical and structural model of the neuro-fuzzy classification method is described together with the signal and training data acquisition. Then, the virtual designed task with physics behavior and its development procedure are explained. Finally, the general architecture of the experimentation for the auto-adaptive therapy is presented using the classification method with the virtual reality exercise.

  5. SINGLE PHASE ANALYTICAL MODELS FOR TERRY TURBINE NOZZLE

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Haihua; Zhang, Hongbin; Zou, Ling; O' Brien, James

    2016-11-01

    All BWR RCIC (Reactor Core Isolation Cooling) systems and PWR AFW (Auxiliary Feed Water) systems use Terry turbine, which is composed of the wheel with turbine buckets and several groups of fixed nozzles and reversing chambers inside the turbine casing. The inlet steam is accelerated through the turbine nozzle and impacts on the wheel buckets, generating work to drive the RCIC pump. As part of the efforts to understand the unexpected “self-regulating” mode of the RCIC systems in Fukushima accidents and extend BWR RCIC and PWR AFW operational range and flexibility, mechanistic models for the Terry turbine, based on Sandia National Laboratories’ original work, has been developed and implemented in the RELAP-7 code to simulate the RCIC system. RELAP-7 is a new reactor system code currently under development with the funding support from U.S. Department of Energy. The RELAP-7 code is a fully implicit code and the preconditioned Jacobian-free Newton-Krylov (JFNK) method is used to solve the discretized nonlinear system. This paper presents a set of analytical models for simulating the flow through the Terry turbine nozzles when inlet fluid is pure steam. The implementation of the models into RELAP-7 will be briefly discussed. In the Sandia model, the turbine bucket inlet velocity is provided according to a reduced-order model, which was obtained from a large number of CFD simulations. In this work, we propose an alternative method, using an under-expanded jet model to obtain the velocity and thermodynamic conditions for the turbine bucket inlet. The models include both adiabatic expansion process inside the nozzle and free expansion process out of the nozzle to reach the ambient pressure. The combined models are able to predict the steam mass flow rate and supersonic velocity to the Terry turbine bucket entrance, which are the necessary input conditions for the Terry Turbine rotor model. The nozzle analytical models were validated with experimental data and

  6. Supersonic flaw detection device for nozzle

    International Nuclear Information System (INIS)

    Hata, Moriki.

    1996-01-01

    In a supersonic flaw detection device to be attached to a body surface of a reactor pressure vessel for automatically detecting flaws of a welded portion of a horizontally connected nozzle by using supersonic waves, a running vehicle automatically running along a circumferential direction of the nozzle comprises a supersonic flaw detection means for detecting flaws of the welded portion of the nozzle by using supersonic waves, and an inclination angle sensor for detecting the inclination angle of the running vehicle relative to the central axis of the nozzle. The running distance of the vehicle running along the circumference of the nozzle, namely, the position of the running vehicle from a reference point of the nozzle can be detected accurately by dividing the distance around the nozzle by the inclination angle detected by the inclination angle sensor. Accordingly, disadvantages in the prior art, for example, that the detected values obtained by using an encoder are changed by slipping or idle running of the magnet wheels are eliminated, and accurate flaw detection can be conducted. In addition, an operation of visually adjusting the reference point for the device can be eliminated. An operator's exposure dose can be reduced. (N.H.)

  7. CFD Models of a Serpentine Inlet, Fan, and Nozzle

    Science.gov (United States)

    Chima, R. V.; Arend, D. J.; Castner, R. S.; Slater, J. W.; Truax, P. P.

    2010-01-01

    Several computational fluid dynamics (CFD) codes were used to analyze the Versatile Integrated Inlet Propulsion Aerodynamics Rig (VIIPAR) located at NASA Glenn Research Center. The rig consists of a serpentine inlet, a rake assembly, inlet guide vanes, a 12-in. diameter tip-turbine driven fan stage, exit rakes or probes, and an exhaust nozzle with a translating centerbody. The analyses were done to develop computational capabilities for modeling inlet/fan interaction and to help interpret experimental data. Three-dimensional Reynolds averaged Navier-Stokes (RANS) calculations of the fan stage were used to predict the operating line of the stage, the effects of leakage from the turbine stream, and the effects of inlet guide vane (IGV) setting angle. Coupled axisymmetric calculations of a bellmouth, fan, and nozzle were used to develop techniques for coupling codes together and to investigate possible effects of the nozzle on the fan. RANS calculations of the serpentine inlet were coupled to Euler calculations of the fan to investigate the complete inlet/fan system. Computed wall static pressures along the inlet centerline agreed reasonably well with experimental data but computed total pressures at the aerodynamic interface plane (AIP) showed significant differences from the data. Inlet distortion was shown to reduce the fan corrected flow and pressure ratio, and was not completely eliminated by passage through the fan

  8. Transient Three-Dimensional Side Load Analysis of a Film Cooled Nozzle

    Science.gov (United States)

    Wang, Ten-See; Guidos, Mike

    2008-01-01

    Transient three-dimensional numerical investigations on the side load physics for an engine encompassing a film cooled nozzle extension and a regeneratively cooled thrust chamber, were performed. The objectives of this study are to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet history based on an engine system simulation. Ultimately, the computational results will be provided to the nozzle designers for estimating of effect of the peak side load on the nozzle structure. Computations simulating engine startup at ambient pressures corresponding to sea level and three high altitudes were performed. In addition, computations for both engine startup and shutdown transients were also performed for a stub nozzle, operating at sea level. For engine with the full nozzle extension, computational result shows starting up at sea level, the peak side load occurs when the lambda shock steps into the turbine exhaust flow, while the side load caused by the transition from free-shock separation to restricted-shock separation comes at second; and the side loads decreasing rapidly and progressively as the ambient pressure decreases. For the stub nozzle operating at sea level, the computed side loads during both startup and shutdown becomes very small due to the much reduced flow area.

  9. Copper(I)-induced amplification of a [2]catenane in a virtual dynamic library of macrocyclic alkenes.

    Science.gov (United States)

    Berrocal, José Augusto; Nieuwenhuizen, Marko M L; Mandolini, Luigi; Meijer, E W; Di Stefano, Stefano

    2014-08-28

    Olefin cross-metathesis of diluted dichloromethane solutions (≤0.15 M) of the 28-membered macrocyclic alkene C1, featuring a 1,10-phenanthroline moiety in the backbone, as well as of catenand 1, composed of two identical interlocked C1 units, generates families of noninterlocked oligomers Ci. The composition of the libraries is strongly dependent on the monomer concentration, but independent of whether C1 or 1 is used as feedstock, as expected for truly equilibrated systems. Accordingly, the limiting value 0.022 M approached by the equilibrium concentration of C1 when the total monomer concentration approaches the critical value, as predicted by the Jacobson-Stockmayer theory, provides a reliable estimate of the thermodynamically effective molarity. Catenand 1 behaves as a virtual component of the dynamic libraries, in that there is no detectable trace of its presence in the equilibrated mixtures, but becomes the major component - in the form of its copper(I) complex - when olefin cross-metathesis is carried out in the presence of a copper(I) salt.

  10. A new dynamic 3D virtual methodology for teaching the mechanics of atrial septation as seen in the human heart.

    Science.gov (United States)

    Schleich, Jean-Marc; Dillenseger, Jean-Louis; Houyel, Lucile; Almange, Claude; Anderson, Robert H

    2009-01-01

    Learning embryology remains difficult, since it requires understanding of many complex phenomena. The temporal evolution of developmental events has classically been illustrated using cartoons, which create difficulty in linking spatial and temporal aspects, such correlation being the keystone of descriptive embryology. We synthesized the bibliographic data from recent studies of atrial septal development. On the basis of this synthesis, consensus on the stages of atrial septation as seen in the human heart has been reached by a group of experts in cardiac embryology and pediatric cardiology. This has permitted the preparation of three-dimensional (3D) computer graphic objects for the anatomical components involved in the different stages of normal human atrial septation. We have provided a virtual guide to the process of normal atrial septation, the animation providing an appreciation of the temporal and morphologic events necessary to separate the systemic and pulmonary venous returns. We have shown that our animations of normal human atrial septation increase significantly the teaching of the complex developmental processes involved, and provide a new dynamic for the process of learning.

  11. Computational fluid dynamics as a virtual facility for R and D in the IRIS project: an overview

    International Nuclear Information System (INIS)

    Colombo, E.; Inzoli, F.; Ricotti, M.; Uddin, R.; Yan, Y.; Sobh, N.

    2004-01-01

    The pressurized light water cooled, medium power (1000 MWt) IRIS (International Reactor Innovative and Secure) has been under development for four years by an international consortium of over 21 organizations from ten countries. The plant conceptual design was completed in 2001 and the preliminary design is nearing completion. The pre-application licensing process with NRC started in October, 2002 and IRIS is one of the designs considered by US utilities as part of the ESP (Early Site Permit) process. The development of a new nuclear plant concept presents the opportunity and potential for a significant usage of computational fluid dynamics (CFD) in the design process, as it is in many conventional applications related to power generation. A CFD-Group of international scientists has been given the mission of investigating the many application opportunities for CFD related to the IRIS project and to verify the support that the IRIS design process may gain from CFD in terms of time, costs, resource saving, and visibility. The key objective identified is the use of CFD as a design tool for virtual tests in order to simplify the optimization effort for the nuclear plant's components and support the IRIS testing program. In this paper, the CFD-Group is described in terms of their resources and capabilities. A program of activities with identified goals and a possible schedule is also presented.(author)

  12. Integrated Composite Rocket Nozzle Extension, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop and demonstrate an Integrated Composite Rocket Nozzle Extension (ICRNE) for use in rocket thrust chambers. The ICRNE will utilize an...

  13. Aerospike Nozzle for Rotating Detonation Engine Application

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal presents a graduate MS research thesis on improving the efficiency of rotating detonation engines by using aerospike nozzle technologies. A rotating...

  14. Cross-talk effect in electrostatic based capillary array nozzles

    International Nuclear Information System (INIS)

    Choi, Kyung Hyun; Rahman, Khalid; Khan, Arshad; Kim, Dong Soo

    2011-01-01

    Electrohydrodynamic printing is a promising technique for printed electronics application. Most researchers working in this field are using a single nozzle configuration. However, for large area printing a multi-nozzle setup will be required for time and cost effective process. In this paper the influence of electric field and flow-rate on jetting angle on multi-nozzle array has been investigated experimentally. A three nozzle setup has been used in a linear array by using glass capillary as a nozzle with independent voltage applied on each nozzle and independent ink supply. The experiments are performed by changing the nozzle to nozzle gap and the effect on the jetting angle has been investigated. It has been observed that by increasing the applied voltage the jetting angle also increases at fixed flow-rate. In case of increasing the flow-rate, the jetting angle first increases with increase in flow-rate, but as the flow-rate increases at certain level the jetting angle decreases; moreover, at a high flow-rate the cone-jet length starts increasing. Numerical simulation has been performed to have a better understanding of the electric-field with respect to jetting angles. The influence of one nozzle on another nozzle is also investigated by operating the nozzle independently by using different operating cases. The cross-talk effect is also minimized by reducing the nozzle diameter. At 250 μm nozzle diameter the cross-talk effect was negligible for 5 mm nozzle-to-nozzle gap. This study will help in better understanding of the interaction between different nozzles in multi-nozzle cases and better design of the multi-nozzle system by minimizing the effects of adjacent nozzles for multi-nozzle electrohydrodynamic printing system

  15. Virtual mass effects in two-phase flow. Topical report

    International Nuclear Information System (INIS)

    Cheng, L.Y.; Drew, D.A.; Lahey, R.T. Jr.

    1978-03-01

    The effect of virtual mass on phase separation during the acceleration of a two-phase mixture was studied. Virtual mass can be regarded as an induced inertia on the dispersed phase which is accelerating relative to the continuous phase, and it was found that the virtual mass acceleration is objective, implying an invariance with respect to reference frame. An objective form of the virtual acceleration was derived and required parameters were determined for limiting cases. Analyses determined that experiments on single bubble nozzle/diffuser flow cannot readily discriminate between various virtual mass acceleration models

  16. Experimental study of virtual impactors

    International Nuclear Information System (INIS)

    Yule, T.J.; Broniarck, C.G.

    1979-01-01

    Virtual impactors are currently being used in a number of instruments to separate an aerosol into different size ranges. The virtual impactor is a variation of the standard impactor in which the impaction surface is replaced by an orifice into which particles can pass and be collected or counted. We have made an experimental study of the collection characteristics of virtual impactors. The parameters varied included: acceleration nozzle-to-collection probe distance, the ratio of the collection probe-to-acceleration nozzle diameters, and the ratio of collection probe-to-inlet flows. Measurements were also made with different collection probe geometries. It was found that it is possible to parameterize much of the data by introduction of the Stokes number and an effective minor flow collection efficiency. One disadvantage of the virtual impactor is that in the transition region particles are collected on the inside walls of the collection probe near the probe tip. The amount that is collected is a sensitive function of the probe geometry

  17. Image-based computational fluid dynamics in the lung: virtual reality or new clinical practice?

    Science.gov (United States)

    Burrowes, Kelly S; De Backer, Jan; Kumar, Haribalan

    2017-11-01

    The development and implementation of personalized medicine is paramount to improving the efficiency and efficacy of patient care. In the respiratory system, function is largely dictated by the choreographed movement of air and blood to the gas exchange surface. The passage of air begins in the upper airways, either via the mouth or nose, and terminates at the alveolar interface, while blood flows from the heart to the alveoli and back again. Computational fluid dynamics (CFD) is a well-established tool for predicting fluid flows and pressure distributions within complex systems. Traditionally CFD has been used to aid in the effective or improved design of a system or device; however, it has become increasingly exploited in biological and medical-based applications further broadening the scope of this computational technique. In this review, we discuss the advancement in application of CFD to the respiratory system and the contributions CFD is currently making toward improving precision medicine. The key areas CFD has been applied to in the pulmonary system are in predicting fluid transport and aerosol distribution within the airways. Here we focus our discussion on fluid flows and in particular on image-based clinically focused CFD in the ventilatory system. We discuss studies spanning from the paranasal sinuses through the conducting airways down to the level of the alveolar airways. The combination of imaging and CFD is enabling improved device design in aerosol transport, improved biomarkers of lung function in clinical trials, and improved predictions and assessment of surgical interventions in the nasal sinuses. WIREs Syst Biol Med 2017, 9:e1392. doi: 10.1002/wsbm.1392 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.

  18. Virtual colonoscopy

    Science.gov (United States)

    Colonoscopy - virtual; CT colonography; Computed tomographic colonography; Colography - virtual ... Differences between virtual and conventional colonoscopy include: VC can view the colon from many different angles. This is not as easy ...

  19. Single nozzle spray drift measurements of drift reducing nozzles at two forward speeds

    NARCIS (Netherlands)

    Stallinga, H.; Zande, van de J.C.; Michielsen, J.G.P.; Velde, van P.

    2016-01-01

    In 2011‒2012 single nozzle field experiments were carried out to determine the effect of different flat fan spray nozzles of the spray drift reduction classes 50, 75, 90 and 95% on spray drift at two different forward speeds (7.2 km h-1 and 14.4 km h-1). Experiments were performed with a single

  20. Homology modeling, molecular dynamics, and virtual screening of NorA efflux pump inhibitors of Staphylococcus aureus.

    Science.gov (United States)

    Bhaskar, Baki Vijaya; Babu, Tirumalasetty Muni Chandra; Reddy, Netala Vasudeva; Rajendra, Wudayagiri

    2016-01-01

    Emerging drug resistance in clinical isolates of Staphylococcus aureus might be implicated to the overexpression of NorA efflux pump which is capable of extruding numerous structurally diverse compounds. However, NorA efflux pump is considered as a potential drug target for the development of efflux pump inhibitors. In the present study, NorA model was constructed based on the crystal structure of glycerol-3-phosphate transporter (PDBID: 1PW4). Molecular dynamics (MD) simulation was performed using NAMD2.7 for NorA which is embedded in the hydrated lipid bilayer. Structural design of NorA unveils amino (N)- and carboxyl (C)-terminal domains which are connected by long cytoplasmic loop. N and C domains are composed of six transmembrane α-helices (TM) which exhibits pseudo-twofold symmetry and possess voluminous substrate binding cavity between TM helices. Molecular docking of reserpine, totarol, ferruginol, salvin, thioxanthene, phenothiazine, omeprazole, verapamil, nalidixic acid, ciprofloxacin, levofloxacin, and acridine to NorA found that all the molecules were bound at the large hydrophobic cleft and indicated significant interactions with the key residues. In addition, structure-based virtual screening was employed which indicates that 14 potent novel lead molecules such as CID58685302, CID58685367, CID5799283, CID5578487, CID60028372, ZINC12196383, ZINC72140751, ZINC72137843, ZINC39227983, ZINC43742707, ZINC12196375, ZINC66166948, ZINC39228014, and ZINC14616160 have highest binding affinity for NorA. These lead molecules displayed considerable pharmacological properties as evidenced by Lipinski rule of five and prophecy of toxicity risk assessment. Thus, the present study will be helpful in designing and synthesis of a novel class of NorA efflux pump inhibitors that restore the susceptibilities of drug compounds.

  1. Robotic cleaning of radwaste tank nozzles

    International Nuclear Information System (INIS)

    Boughman, G.; Jones, S.L.

    1992-01-01

    The Susquehanna radwaste processing system includes two reactor water cleanup phase separator tanks and one waste sludge phase separator tank. A system of educator nozzles and associated piping is used to provide mixing in the tanks. The mixture pumped through the nozzles is a dense resin-and-water slurry, and the nozzles tend to plug up during processing. The previous method for clearing the nozzles had been for a worker to enter the tanks and manually insert a hydrolaser into each nozzle, one at a time. The significant radiation exposure and concern for worker safety in the tank led the utility to investigate alternate means for completing this task. The typical tank configuration is shown in a figure. The initial approach investigated was to insert a manipulator arm in the tank. This arm would be installed by workers and then teleoperated from a remote control station. This approach was abandoned because of several considerations including educator location and orientation, excessive installation time, and cost. The next approach was to use a mobile platform that would operate on the tank floor. This approach was selected as being the most feasible solution. After a competitive selection process, REMOTEC was selected to provide the mobile platform. Their proposal was based on the commercial ANDROS Mark 5 platform

  2. Lower nozzle of PWR fuel assembly

    International Nuclear Information System (INIS)

    Furutani, Nobuo.

    1994-01-01

    A lower nozzle comprises a regular square plate and legs. The plate has a plurality of holes for securing thimble tubes and a great number of water flowing ports. Ridges each having a lower end surface inclined toward inner side of the plate are disposed at the outer circumference of the plate. The legs suspend downwardly from the corners of the plate and support the plate at a predetermined gap between a lower reactor core plate and the plate. The inclined surfaces of the ridges disposed at the outer circumference of the plate retain coolants, that were caused to flow to the outside passing between the legs of the nozzle, while dividing them to the inside of the nozzle and circulate the coolants upwardly passing through the water flowing ports of the plate. Further, since obstacles abut against the inclined surfaces of the ridges and flow to the inner side of the lower nozzle, obstacles in the coolants can be captured substantially entirely by the lower nozzle. (I.N.)

  3. Prototype particulate stack sampler with single-cut nozzle and microcomputer calculating/display system

    International Nuclear Information System (INIS)

    Eler, J.C.; Littlefield, L.G.; Tillery, M.I.

    1979-01-01

    A prototype particulate stack sampler (PPSS) has been developed to improve on the existing EPA Method 5 sampling apparatus. Its primary features are (1) higher sampling rate (56 1/min); (2) display (on demand) of all required variables and calculated values by a microcomputer-based calculating and display system; (3) continuous stack gas moisture determination; (4) a virtual impactor nozzle with 3 μm mass median diameter cutpoint which collects fine and coarse particle fractions on separate glass fiber filters; (5) a variable-area inlet to maintain isokinetic sampling conditions; and (6) conversion to stainless steel components from the glass specified by EPA Method 5. The basic sampling techniques of EPA Method 5 have been retained; however, versatility in the form of optional in-stack filters and general modernization of the stack sampler have been provided in the prototype design. Laboratory testing with monodisperse dye aerosols has shown the present variable inlet, virtual impactor nozzle to have a collection efficiency which is less than 77% and significant wall losses. This is primarily due to lack of symmetry in this rectangular jet impactor and short transition lengths dictated by physical design constraints (required passage of the nozzle through a 7.6 cm (3 in) diameter stack port). Electronic components have shown acceptable service in laboratory testing although no field testing of the prototype under a broad range of temperature, humidity, and SO 2 concentration has been undertaken

  4. Li/Li2 supersonic nozzle beam

    International Nuclear Information System (INIS)

    Wu, C.Y.R.; Crooks, J.B.; Yang, S.C.; Way, K.R.; Stwalley, W.C.

    1977-01-01

    The characterization of a lithium supersonic nozzle beam was made using spectroscopic techniques. It is found that at a stagnation pressure of 5.3 kPa (40 torr) and a nozzle throat diameter of 0.4 mm the ground state vibrational population of Li 2 can be described by a Boltzmann distribution with T/sub v/ = 195 +- 30 0 K. The rotational temperature is found to be T/sub r/ = 70 +- 20 0 K by band shape analysis. Measurements by quadrupole mass spectrometer indicates that approximately 10 mole per cent Li 2 dimers are formed at an oven body temperature of 1370 0 K n the supersonic nozzle expansion. This measured mole fraction is in good agreement with the existing dimerization theory

  5. CFD Based Erosion Modelling of Abrasive Waterjet Nozzle using Discrete Phase Method

    International Nuclear Information System (INIS)

    Kamarudin, Naqib Hakim; Prasada Rao, A K; Azhari, Azmir

    2016-01-01

    In Abrasive Waterjet (AWJ) machining, the nozzle is the most critical component that influences the performance, precision and economy. Exposure to a high speed jet and abrasives makes it susceptible to wear erosion which requires for frequent replacement. The present works attempts to simulate the erosion of the nozzle wall using computational fluid dynamics. The erosion rate of the nozzle was simulated under different operating conditions. The simulation was carried out in several steps which is flow modelling, particle tracking and erosion rate calculation. Discrete Phase Method (DPM) and K-ε turbulence model was used for the simulation. Result shows that different operating conditions affect the erosion rate as well as the flow interaction of water, air and abrasives. The simulation results correlates well with past work. (paper)

  6. Aerodynamic forces estimation on jet vanes exposed to supersonic exhaust of a CD Nozzle

    International Nuclear Information System (INIS)

    Bukhari, S.B.H.; Jehan, I.; Zahir, S.; Khan, M.A.

    2003-01-01

    A comprehensive study has been made for the estimation of aerodynamic forces on the jet Vane placed in the supersonic exhaust of a Convergent Divergent, CD-Nozzle. Such a system is used to provide the control forces that consist of four orthogonal vanes mounted in the supersonic exhaust of the CD-Nozzles. The flow field parameters for a CD Nozzle were analyzed and validated earlier. In this paper the published experimental and CFD results from RAMPANT Code from Fluent Inc. were used to estimate the axial and normal forces by using PAK-3D, a Computational Fluid Dynamics (CFD) software based on Navier-Stokes Equations solver. Results got verified quantitatively with a maximum error of 8% between PAK-3D and experiment, while 4% between PAK-3D and a CFD code, RAMPANT for the axial force. (author)

  7. Droplet phase characteristics in liquid-dominated steam--water nozzle flow

    International Nuclear Information System (INIS)

    Alger, T.W.

    1978-01-01

    An experimental study was undertaken to determine the droplet size distribution, the droplet spatial distribution and the mean droplet velocity in low-quality, steam-water flow from a rectangular cross-section, converging-diverging nozzle. A unique forward light scattering technique was developed for droplet size distribution measurements. Droplet spatial variations were investigated using light transmission measurements, and droplet velocities were measured with a laser-Doppler velocimeter (LDV) system incorporating a confocal Fabry-Perot interferometer. Nozzle throat radius of curvature and height were varied to investigte their effects on droplet size. Droplet size distribution measurements yielded a nominal Sauter mean droplet diameter of 1.7 μm and a nominal mass-mean droplet diameter of 2.4 μm. Neither the throat radius of curvature nor the throat height were found to have a significant effect upon the nozzle exit droplet size. The light transmission and LDV measurement results confirmed both the droplet size measurements and demonstrated high spatial uniformity of the droplet phase within the nozzle jet flow. One-dimensional numerical calculations indicated that both the dynamic breakup (thermal equilibrium based on a critical Weber number of 6.0) and the boiling breakup (thermal nonequilibrium based on average droplet temperature) models predicted droplet diameters on the order of 7.5 μm, which are approximately equal to the maximum stable droplet diameters within the nozzle jet flow

  8. Ramjet Nozzle Analysis for Transport Aircraft Configuration for Sustained Hypersonic Flight

    Directory of Open Access Journals (Sweden)

    Raman Baidya

    2018-04-01

    Full Text Available For the past several decades, research dealing with hypersonic flight regimes has been restricted mainly to military applications. Hypersonic transportation could be a possible and affordable solution to travel in the medium term and there is renewed interest from several private organisations for commercial exploitation in this direction. Various combined cycle propulsion configurations have been proposed and the present paper deals with implications for the nozzle component of a ramjet configuration as part of one such combined cycle propulsion configuration. An investigation was undertaken for a method of turbine-based propulsion which enables the hypersonic vehicle to take off under its own power and propel the aircraft under different mission profiles into ramjet operational Mach regimes. The present study details an optimal method of ramjet exhaust expansion to produce sufficient thrust to propel the vehicle into altitudes and Mach regimes where scramjet operation can be initiated. This aspect includes a Computational Fluid Dynamics (CFD-based geometric study to determine the optimal configuration to provide the best thrust values. The CFD parametric analysis investigated three candidate nozzles and indicated that the dual bell nozzle design produced the highest thrust values when compared to other nozzle geometries. The altitude adaptation study also validated the effectiveness of the nozzle thrust at various altitudes without compromising its thrust-producing capabilities. Computational data were validated against published experimental data, which indicated that the computed values correlated well with the experimental data.

  9. An analytical evaluation for the pressure drop characteristics of bottom nozzle flow holes

    International Nuclear Information System (INIS)

    Yang, S. G.; Kim, H. J.; Lim, H. T.; Park, E. J.; Jeon, K. L.

    2002-01-01

    An analytical evaluation for the bottom nozzle flow holes was performed to find a best design concept in terms of pressure drop. For this analysis, Computational Fluid Dynamics (CFD), FLUENT 5.5, code was selected as an analytical evaluation tool. The applicability of CFD code was verified by benchmarking study with Vibration Investigation of Small-scale Test Assemblies (VISTA) test data in several flow conditions and typical flow hole shape. From this verification, the analytical data were benchmarked roughly within 17% to the VISTA test data. And, overall trend under various flow conditions looked very similar between both cases. Based on the evaluated results using CFD code, it is concluded that the deburring and multiple chamfer hole features at leading edge are the excellent design concept to decrease pressure drop across bottom nozzle plate. The deburring and multiple chamfer hole features at leading edge on the bottom nozzle plate have 12% and 17% pressure drop benefit against a single chamfer hole feature on the bottom nozzle plate, respectively. These design features are meaningful and applicable as a low pressure drop design concept of bottom nozzle for Pressurized Water Reactor (PWR) fuel assembly

  10. The effect of nozzle diameter, injection pressure and ambient temperature on spray characteristics in diesel engine

    Science.gov (United States)

    Rhaodah Andsaler, Adiba; Khalid, Amir; Sharifhatul Adila Abdullah, Nor; Sapit, Azwan; Jaat, Norrizam

    2017-04-01

    Mixture formation of the ignition process is a key element in the diesel combustion as it influences the combustion process and exhaust emission. Aim of this study is to elucidate the effects of nozzle diameter, injection pressure and ambient temperature to the formation of spray. This study investigated diesel formation spray using Computational Fluid Dynamics. Multiphase volume of fluid (VOF) behaviour in the chamber are determined by means of transient simulation, Eulerian of two phases is used for implementation of mixing fuel and air. The detail behaviour of spray droplet diameter, spray penetration and spray breakup length was visualised using the ANSYS 16.1. This simulation was done in different nozzle diameter 0.12 mm and 0.2 mm performed at the ambient temperature 500 K and 700 K with different injection pressure 40 MPa, 70 MPa and 140 MPa. Results show that high pressure influence droplet diameter become smaller and the penetration length longer with the high injection pressure apply. Smaller nozzle diameter gives a shorter length of the breakup. It is necessary for nozzle diameter and ambient temperature condition to improve the formation of spray. High injection pressure is most effective in improvement of formation spray under higher ambient temperature and smaller nozzle diameter.

  11. Biannular Airbreathing Nozzle Rig (BANR) facility checkout and plug nozzle performance test data

    Science.gov (United States)

    Cummings, Chase B.

    2010-09-01

    The motivation for development of a supersonic business jet (SSBJ) platform lies in its ability to create a paradigm shift in the speed and reach of commercial, private, and government travel. A full understanding of the performance capabilities of exhaust nozzle configurations intended for use in potential SSBJ propulsion systems is critical to the design of an aircraft of this type. Purdue University's newly operational Biannular Airbreathing Nozzle Rig (BANR) is a highly capable facility devoted to the testing of subscale nozzles of this type. The high accuracy, six-axis force measurement system and complementary mass flowrate measurement capabilities of the BANR facility make it rather ideally suited for exhaust nozzle performance appraisal. Detailed accounts pertaining to methods utilized in the proper checkout of these diagnostic capabilities are contained herein. Efforts to quantify uncertainties associated with critical BANR test measurements are recounted, as well. Results of a second hot-fire test campaign of a subscale Gulfstream Aerospace Corporation (GAC) axisymmetric, shrouded plug nozzle are presented. Determined test article performance parameters (nozzle thrust efficiencies and discharge coefficients) are compared to those of a previous test campaign and numerical simulations of the experimental set-up. Recently acquired data is compared to published findings pertaining to plug nozzle experiments of similar scale and operating range. Suggestions relating to the future advancement and improvement of the BANR facility are provided. Lessons learned with regards to test operations and calibration procedures are divulged in an attempt to aid future facility users, as well.

  12. Touching proteins with virtual bare hands - Visualizing protein-drug complexes and their dynamics in self-made virtual reality using gaming hardware

    Science.gov (United States)

    Ratamero, Erick Martins; Bellini, Dom; Dowson, Christopher G.; Römer, Rudolf A.

    2018-06-01

    The ability to precisely visualize the atomic geometry of the interactions between a drug and its protein target in structural models is critical in predicting the correct modifications in previously identified inhibitors to create more effective next generation drugs. It is currently common practice among medicinal chemists while attempting the above to access the information contained in three-dimensional structures by using two-dimensional projections, which can preclude disclosure of useful features. A more accessible and intuitive visualization of the three-dimensional configuration of the atomic geometry in the models can be achieved through the implementation of immersive virtual reality (VR). While bespoke commercial VR suites are available, in this work, we present a freely available software pipeline for visualising protein structures through VR. New consumer hardware, such as the uc(HTC Vive) and the uc(Oculus Rift) utilized in this study, are available at reasonable prices. As an instructive example, we have combined VR visualization with fast algorithms for simulating intramolecular motions of protein flexibility, in an effort to further improve structure-led drug design by exposing molecular interactions that might be hidden in the less informative static models. This is a paradigmatic test case scenario for many similar applications in computer-aided molecular studies and design.

  13. Combustor nozzles in gas turbine engines

    Science.gov (United States)

    Johnson, Thomas Edward; Keener, Christopher Paul; Stewart, Jason Thurman; Ostebee, Heath Michael

    2017-09-12

    A micro-mixer nozzle for use in a combustor of a combustion turbine engine, the micro-mixer nozzle including: a fuel plenum defined by a shroud wall connecting a periphery of a forward tube sheet to a periphery of an aft tubesheet; a plurality of mixing tubes extending across the fuel plenum for mixing a supply of compressed air and fuel, each of the mixing tubes forming a passageway between an inlet formed through the forward tubesheet and an outlet formed through the aft tubesheet; and a wall mixing tube formed in the shroud wall.

  14. Assessment of a virtual functional prototyping process for the rapid manufacture of passive-dynamic ankle-foot orthoses.

    Science.gov (United States)

    Schrank, Elisa S; Hitch, Lester; Wallace, Kevin; Moore, Richard; Stanhope, Steven J

    2013-10-01

    Passive-dynamic ankle-foot orthosis (PD-AFO) bending stiffness is a key functional characteristic for achieving enhanced gait function. However, current orthosis customization methods inhibit objective premanufacture tuning of the PD-AFO bending stiffness, making optimization of orthosis function challenging. We have developed a novel virtual functional prototyping (VFP) process, which harnesses the strengths of computer aided design (CAD) model parameterization and finite element analysis, to quantitatively tune and predict the functional characteristics of a PD-AFO, which is rapidly manufactured via fused deposition modeling (FDM). The purpose of this study was to assess the VFP process for PD-AFO bending stiffness. A PD-AFO CAD model was customized for a healthy subject and tuned to four bending stiffness values via VFP. Two sets of each tuned model were fabricated via FDM using medical-grade polycarbonate (PC-ISO). Dimensional accuracy of the fabricated orthoses was excellent (average 0.51 ± 0.39 mm). Manufacturing precision ranged from 0.0 to 0.74 Nm/deg (average 0.30 ± 0.36 Nm/deg). Bending stiffness prediction accuracy was within 1 Nm/deg using the manufacturer provided PC-ISO elastic modulus (average 0.48 ± 0.35 Nm/deg). Using an experimentally derived PC-ISO elastic modulus improved the optimized bending stiffness prediction accuracy (average 0.29 ± 0.57 Nm/deg). Robustness of the derived modulus was tested by carrying out the VFP process for a disparate subject, tuning the PD-AFO model to five bending stiffness values. For this disparate subject, bending stiffness prediction accuracy was strong (average 0.20 ± 0.14 Nm/deg). Overall, the VFP process had excellent dimensional accuracy, good manufacturing precision, and strong prediction accuracy with the derived modulus. Implementing VFP as part of our PD-AFO customization and manufacturing framework, which also includes fit customization, provides a novel and powerful method to

  15. Turbocharger with variable nozzle having vane sealing surfaces

    Science.gov (United States)

    Arnold, Philippe [Hennecourt, FR; Petitjean, Dominique [Julienrupt, FR; Ruquart, Anthony [Thaon les Vosges, FR; Dupont, Guillaume [Thaon les Vosges, FR; Jeckel, Denis [Thaon les Vosges, FR

    2011-11-15

    A variable nozzle for a turbocharger includes a plurality of vanes rotatably mounted on a nozzle ring and disposed in a nozzle flow path defined between the nozzle ring and an opposite nozzle wall. Either or both of the faces of the nozzle ring and nozzle wall include(s) at least one step that defines sealing surfaces positioned to be substantially abutted by airfoil surfaces of the vanes in the closed position of the vanes and to be spaced from the airfoil surfaces in positions other than the closed position. This substantial abutment between the airfoil surfaces and the sealing surfaces serves to substantially prevent exhaust gas from leaking past the ends of the airfoil portions. At the same time, clearances between the nozzle ring face and the end faces of the airfoil portions can be sufficiently large to prevent binding of the vanes under all operating conditions.

  16. Effect of Injector Nozzle Holes on Diesel Engine Performance

    OpenAIRE

    Semin,; Yusof, Mohd Yuzri Mohd; Arof, Aminuddin Md; Shaharudin, Daneil Tomo; Ismail, Abdul Rahim

    2010-01-01

    All of the injector nozzle holes have examined and the results are shown that the seven holes nozzle have provided the best burning result for the fuel in-cylinder burned in any different engine speeds and the best burning is in low speed engine. In engine performance effect, all of the nozzles have examined and the five holes nozzle provided the best result in indicted power, indicated torque and ISFC in any different engine speeds.

  17. Oscillations of the fluid flow and the free surface in a cavity with a submerged bifurcated nozzle

    International Nuclear Information System (INIS)

    Kalter, R.; Tummers, M.J.; Kenjereš, S.; Righolt, B.W.; Kleijn, C.R.

    2013-01-01

    Highlights: • Self-sustained oscillations in a thin cavity with submerged nozzle were observed. • Three flow regimes are detected depending on nozzle depth and inlet velocity. • The three flow regimes have been summarized in a flow regime map. • PIV measurements are performed to link free surface behavior to the bulk-flow. • We report a close correlation between jet-behavior and free surface dynamics. -- Abstract: The free surface dynamics and sub-surface flow behavior in a thin (height and width much larger than thickness), liquid filled, rectangular cavity with a submerged bifurcated nozzle were investigated using free surface visualization and particle image velocimetry (PIV). Three regimes in the free surface behavior were identified, depending on nozzle depth and inlet velocity. For small nozzle depths, an irregular free surface is observed without clear periodicities. For intermediate nozzle depths and sufficiently high inlet velocities, natural mode oscillations consistent with gravity waves are present, while at large nozzle depths long term self-sustained asymmetric oscillations occur. For the latter case, time-resolved PIV measurements of the flow below the free surface indicated a strong oscillation of the direction with which each of the two jets issue from the nozzle. The frequency of the jet oscillation is identical to the free surface oscillation frequency. The two jets oscillate in anti-phase, causing the asymmetric free surface oscillation. The jets interact through a cross-flow in the gaps between the inlet channel and the front and back walls of the cavity

  18. A fundamental study of a variable critical nozzle flow

    International Nuclear Information System (INIS)

    Kim, Jea Hyung; Kim, Heuy Dong; Park, Kyung Am

    2003-01-01

    The mass flow rate of gas flow through critical nozzle depends on the nozzle supply conditions and the cross-sectional area at the nozzle throat. In order that the critical nozzle can be operated at a wide range of supply conditions, the nozzle throat diameter should be controlled to change the flow passage area. This can be achieved by means of a variable critical nozzle. In the present study, both experimental and computational works are performed to develop variable critical nozzle. A cone-cylinder with a diameter of d is inserted into conventional critical nozzle. It can move both upstream and downstream, thereby changing the cross-sectional area of the nozzle throat. Computational work using the axisymmetric, compressible Navier-Stokes equations is carried out to simulate the variable critical nozzle flow. An experiment is performed to measure the mass flow rate through variable critical nozzle. The present computational results are in close agreement with measured ones. The boundary layer displacement and momentum thickness are given as a function of Reynolds number. An empirical equation is obtained to predict the discharge coefficient of variable critical nozzle

  19. Shock wave fabricated ceramic-metal nozzles

    NARCIS (Netherlands)

    Carton, E.P.; Stuivinga, M.E.C.; Keizers, H.L.J.; Verbeek, H.J.; Put, P.J. van der

    1999-01-01

    Shock compaction was used in the fabrication of high temperature ceramic-based materials. The materials' development was geared towards the fabrication of nozzles for rocket engines using solid propellants, for which the following metal-ceramic (cermet) materials were fabricated and tested: B4C-Ti

  20. New atomization nozzle for spray drying

    NARCIS (Netherlands)

    Deventer, H.C. van; Houben, R.J.; Koldeweij, R.B.J.

    2013-01-01

    A new atomization nozzle based on ink jet technology is introduced for spray drying. Application areas are the food and dairy industry, in the first instance, because in these industries the quality demands on the final powders are high with respect to heat load, powder shape, and size distribution.

  1. Clamp and Gas Nozzle for TIG Welding

    Science.gov (United States)

    Gue, G. B.; Goller, H. L.

    1982-01-01

    Tool that combines clamp with gas nozzle is aid to tungsten/inert-gas (TIG) welding in hard-to-reach spots. Tool holds work to be welded while directing a stream of argon gas at weld joint, providing an oxygen-free environment for tungsten-arc welding.

  2. Fabrication of Microglass Nozzle for Microdroplet Jetting

    Directory of Open Access Journals (Sweden)

    Dan Xie

    2015-02-01

    Full Text Available An ejection aperture nozzle is the essential part for all microdrop generation techniques. The diameter size, the flow channel geometry, and fluid impedance are the key factors affecting the ejection capacity. A novel low-cost fabrication method of microglass nozzle involving four steps is developed in this work. In the first heating step, the glass pipette is melted and pulled. Then, the second heating step is to determine the tip cone angle and modify the flow channel geometry. The desired included angle is usually of 30~45 degrees. Fine grind can determine the exact diameter of the hole. Postheating step is the final process and it can reduce the sharpness of the edges of the hole. Micronozzles with hole diameters varying from 30 to 100 µm are fabricated by the homemade inexpensive and easy-to-operate setup. Hydrophobic treating method of microglass nozzle to ensure stable and accurate injection is also introduced in this work. According to the jetting results of aqueous solution, UV curing adhesive, and solder, the fabricated microglass nozzle can satisfy the need of microdroplet jetting of multimaterials.

  3. Microalgal cell disruption via ultrasonic nozzle spraying.

    Science.gov (United States)

    Wang, M; Yuan, W

    2015-01-01

    The objective of this study was to understand the effect of operating parameters, including ultrasound amplitude, spraying pressure, nozzle orifice diameter, and initial cell concentration on microalgal cell disruption and lipid extraction in an ultrasonic nozzle spraying system (UNSS). Two algal species including Scenedesmus dimorphus and Nannochloropsis oculata were evaluated. Experimental results demonstrated that the UNSS was effective in the disruption of microalgal cells indicated by significant changes in cell concentration and Nile red-stained lipid fluorescence density between all treatments and the control. It was found that increasing ultrasound amplitude generally enhanced cell disruption and lipid recovery although excessive input energy was not necessary for best results. The effect of spraying pressure and nozzle orifice diameter on cell disruption and lipid recovery was believed to be dependent on the competition between ultrasound-induced cavitation and spraying-generated shear forces. Optimal cell disruption was not always achieved at the highest spraying pressure or biggest nozzle orifice diameter; instead, they appeared at moderate levels depending on the algal strain and specific settings. Increasing initial algal cell concentration significantly reduced cell disruption efficiency. In all UNSS treatments, the effectiveness of cell disruption and lipid recovery was found to be dependent on the algal species treated.

  4. Design criteria for piping and nozzles program

    International Nuclear Information System (INIS)

    Moore, S.E.; Bryson, J.W.

    1977-01-01

    This report reviews the activities and accomplishments of the Design Criteria for Piping and Nozzles program being conducted by the Oak Ridge National Laboratory for the period July 1, 1975, to September 30, 1976. The objectives of the program are to conduct integrated experimental and analytical stress analysis studies of piping system components and isolated and closely-spaced pressure vessel nozzles in order to confirm and/or improve the adequacy of structural design criteria and analytical methods used to assure the safe design of nuclear power plants. Activities this year included the development of a finite-element program for analyzing two closely spaced nozzles in a cylindrical pressure vessel; a limited-parameter study of vessels with isolated nozzles, finite-element studies of piping elbows, a fatigue test of an out-of-round elbow, summary and evaluation of experimental studies on the elastic-response and fatigue failure of tees, parameter studies on the behavior of flanged joints, publication of fifteen topical reports and papers on various experimental and analytical studies; and the development and acceptance of a number of design rules changes to the ASME Code. 2 figures, 2 tables

  5. Evolutionary Optimization of Centrifugal Nozzles for Organic Vapours

    Science.gov (United States)

    Persico, Giacomo

    2017-03-01

    This paper discusses the shape-optimization of non-conventional centrifugal turbine nozzles for Organic Rankine Cycle applications. The optimal aerodynamic design is supported by the use of a non-intrusive, gradient-free technique specifically developed for shape optimization of turbomachinery profiles. The method is constructed as a combination of a geometrical parametrization technique based on B-Splines, a high-fidelity and experimentally validated Computational Fluid Dynamic solver, and a surrogate-based evolutionary algorithm. The non-ideal gas behaviour featuring the flow of organic fluids in the cascades of interest is introduced via a look-up-table approach, which is rigorously applied throughout the whole optimization process. Two transonic centrifugal nozzles are considered, featuring very different loading and radial extension. The use of a systematic and automatic design method to such a non-conventional configuration highlights the character of centrifugal cascades; the blades require a specific and non-trivial definition of the shape, especially in the rear part, to avoid the onset of shock waves. It is shown that the optimization acts in similar way for the two cascades, identifying an optimal curvature of the blade that both provides a relevant increase of cascade performance and a reduction of downstream gradients.

  6. Performance modelling of plasma microthruster nozzles in vacuum

    Science.gov (United States)

    Ho, Teck Seng; Charles, Christine; Boswell, Rod

    2018-05-01

    Computational fluid dynamics and plasma simulations of three geometrical variations of the Pocket Rocket radiofrequency plasma electrothermal microthruster are conducted, comparing pulsed plasma to steady state cold gas operation. While numerical limitations prevent plasma modelling in a vacuum environment, results may be obtained by extrapolating from plasma simulations performed in a pressurised environment, using the performance delta from cold gas simulations performed in both environments. Slip regime boundary layer effects are significant at these operating conditions. The present investigation targets a power budget of ˜10 W for applications on CubeSats. During plasma operation, the thrust force increases by ˜30% with a power efficiency of ˜30 μNW-1. These performance metrics represent instantaneous or pulsed operation and will increase over time as the discharge chamber attains thermal equilibrium with the heated propellant. Additionally, the sculpted nozzle geometry achieves plasma confinement facilitated by the formation of a plasma sheath at the nozzle throat, and fast recombination ensures a neutral exhaust plume that avoids the contamination of solar panels and interference with externally mounted instruments.

  7. Analysis of experiments performed at University of Hannover with Relap5/Mod2 and Cathare codes on fluid dynamic effects in the fuel element top nozzle area during refilling and reflooding

    International Nuclear Information System (INIS)

    Ambrosini, W.; D'Auria, F.; Di Marco, P.; Fantappie, G.; Giot, G.; Emmerechts, D.; Seynhaeve, J.M.; Zhang, J.

    1989-11-01

    The experimental data of flooding and CCFL in the fuel element top nozzle area collected at the University of Hannover have been analyzed with RELAP5/MOD2 and CATHARE V.1.3 codes. Preliminary sensitivity calculations have been performed to evaluate the influence of various parameters and code options on the results. However, an a priori rational assessment procedure has been performed for those parameters non specific in experimental data (e.g. energy loss coefficients in flow restrictions). This procedure is based on single phase flow pressure drops and no further tuning has been performed to fit experimental data. The reported experimental data and some others demonstrate the complex relation-ship among the involved physical quantities (film thickness, pressure drop etc.) even in a simple geometrical condition with well defined boundary conditions. In the application of the two advanced codes to the selected CCFL experiments it appears that sophisticated models do not simulate satisfactorily the measured phenomena mainly when situations similar to nuclear reactors are dealt with (rod bundles). This result should be evaluated considering that: - dimensional phenomena occurring in flooding experiments are not well reproducible with one dimensional models implemented in the two codes; - a rational and reproducible procedure has been used to fix some boundary conditions (K-tuning); there is the evidence that more tuning can be used to get results closer to the experimental ones in each specific situation; - the uncertainty bands in measured experimental results are not (entirely) specified. The work performed demonstrated that further applications to CCFL experiments of present codes appear to be unuseful. New models should be tested and implemented before any attempt to reproduce CCFL in experimental facilities by system codes

  8. Optimization study on pin tip diameter of an impact-pin nozzle at high pressure ratio

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, C. Palani; Lee, Kwon Hee [FMTRC, Daejoo Machinery Co. Ltd., Daegu (Korea, Republic of); Park, Tae Choon; Cha, Bong Jun [Engine Components Research Team, Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Kim, Heuy Dong [Dept. of Mechanical Engineering, Andong National University, Andong (Korea, Republic of)

    2016-09-15

    Wet compression system is typically installed in a gas turbine engine to increase the net power output and efficiency. A crucial component of the wet compression system is the nozzle which generates fine water droplets for injection into the compressor. The main objective of present work is to optimize a kind of nozzle called impact-pin spray nozzle and thereby produce better quality droplets. To achieve this, the dynamics occurring in the water jet impinging on the pin tip, the subsequent formation of water sheet, which finally breaks into water droplets, must be studied. In this manuscript, the progress on the numerical studies on impact-pin nozzle are reported. A small computational domain covering the orifice, pin tip and the region where primary atomization occurs is selected for numerical analysis. The governing equations are selected in three dimensional cartesian form and simulations are performed to predict the dynamics of water jet impinging on the pin. Systematic studies were carried out and the results leading to the choice of turbulence model and the effect of pin tip diameter are reported here. Further studies are proposed to show the future directions of the present research work.

  9. Search for β2 adrenergic receptor ligands by virtual screening via grid computing and investigation of binding modes by docking and molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Qifeng Bai

    Full Text Available We designed a program called MolGridCal that can be used to screen small molecule database in grid computing on basis of JPPF grid environment. Based on MolGridCal program, we proposed an integrated strategy for virtual screening and binding mode investigation by combining molecular docking, molecular dynamics (MD simulations and free energy calculations. To test the effectiveness of MolGridCal, we screened potential ligands for β2 adrenergic receptor (β2AR from a database containing 50,000 small molecules. MolGridCal can not only send tasks to the grid server automatically, but also can distribute tasks using the screensaver function. As for the results of virtual screening, the known agonist BI-167107 of β2AR is ranked among the top 2% of the screened candidates, indicating MolGridCal program can give reasonable results. To further study the binding mode and refine the results of MolGridCal, more accurate docking and scoring methods are used to estimate the binding affinity for the top three molecules (agonist BI-167107, neutral antagonist alprenolol and inverse agonist ICI 118,551. The results indicate agonist BI-167107 has the best binding affinity. MD simulation and free energy calculation are employed to investigate the dynamic interaction mechanism between the ligands and β2AR. The results show that the agonist BI-167107 also has the lowest binding free energy. This study can provide a new way to perform virtual screening effectively through integrating molecular docking based on grid computing, MD simulations and free energy calculations. The source codes of MolGridCal are freely available at http://molgridcal.codeplex.com.

  10. Analysis of Dynamic Fracture Parameters in Functionally Graded Material Plates with Cracks by Graded Finite Element Method and Virtual Crack Closure Technique

    Directory of Open Access Journals (Sweden)

    Li Ming Zhou

    2016-01-01

    Full Text Available Based on the finite element software ABAQUS and graded element method, we developed a dummy node fracture element, wrote the user subroutines UMAT and UEL, and solved the energy release rate component of functionally graded material (FGM plates with cracks. An interface element tailored for the virtual crack closure technique (VCCT was applied. Fixed cracks and moving cracks under dynamic loads were simulated. The results were compared to other VCCT-based analyses. With the implementation of a crack speed function within the element, it can be easily expanded to the cases of varying crack velocities, without convergence difficulty for all cases. Neither singular element nor collapsed element was required. Therefore, due to its simplicity, the VCCT interface element is a potential tool for engineers to conduct dynamic fracture analysis in conjunction with commercial finite element analysis codes.

  11. Fast Virtual Fractional Flow Reserve Based Upon Steady-State Computational Fluid Dynamics Analysis: Results From the VIRTU-Fast Study.

    Science.gov (United States)

    Morris, Paul D; Silva Soto, Daniel Alejandro; Feher, Jeroen F A; Rafiroiu, Dan; Lungu, Angela; Varma, Susheel; Lawford, Patricia V; Hose, D Rodney; Gunn, Julian P

    2017-08-01

    Fractional flow reserve (FFR)-guided percutaneous intervention is superior to standard assessment but remains underused. The authors have developed a novel "pseudotransient" analysis protocol for computing virtual fractional flow reserve (vFFR) based upon angiographic images and steady-state computational fluid dynamics. This protocol generates vFFR results in 189 s (cf >24 h for transient analysis) using a desktop PC, with <1% error relative to that of full-transient computational fluid dynamics analysis. Sensitivity analysis demonstrated that physiological lesion significance was influenced less by coronary or lesion anatomy (33%) and more by microvascular physiology (59%). If coronary microvascular resistance can be estimated, vFFR can be accurately computed in less time than it takes to make invasive measurements.

  12. RANS Analyses of Turbofan Nozzles with Internal Wedge Deflectors for Noise Reduction

    Science.gov (United States)

    DeBonis, James R.

    2009-01-01

    Computational fluid dynamics (CFD) was used to evaluate the flow field and thrust performance of a promising concept for reducing the noise at take-off of dual-stream turbofan nozzles. The concept, offset stream technology, reduces the jet noise observed on the ground by diverting (offsetting) a portion of the fan flow below the core flow, thickening and lengthening this layer between the high-velocity core flow and the ground observers. In this study a wedge placed in the internal fan stream is used as the diverter. Wind, a Reynolds averaged Navier-Stokes (RANS) code, was used to analyze the flow field of the exhaust plume and to calculate nozzle performance. Results showed that the wedge diverts all of the fan flow to the lower side of the nozzle, and the turbulent kinetic energy on the observer side of the nozzle is reduced. This reduction in turbulent kinetic energy should correspond to a reduction in noise. However, because all of the fan flow is diverted, the upper portion of the core flow is exposed to the freestream, and the turbulent kinetic energy on the upper side of the nozzle is increased, creating an unintended noise source. The blockage due to the wedge reduces the fan mass flow proportional to its blockage, and the overall thrust is consequently reduced. The CFD predictions are in very good agreement with experimental flow field data, demonstrating that RANS CFD can accurately predict the velocity and turbulent kinetic energy fields. While this initial design of a large scale wedge nozzle did not meet noise reduction or thrust goals, this study identified areas for improvement and demonstrated that RANS CFD can be used to improve the concept.

  13. Cold Flow Determination of the Internal Flow Environment Around the Submerged TVC Nozzle for the Space Shuttle SRM

    Science.gov (United States)

    Whitesides, R. H.; Ghosh, A.; Jenkins, S. L.; Bacchus, D. L.

    1989-01-01

    A series of subscale cold flow tests was performed to quantify the gas flow characteristics at the aft end of the Space Shuttle Solid Rocket Motor. This information was used to support the analyses of the redesigned nozzle/case joint. A portion of the thermal loads at the joint are due to the circumferential velocities and pressure gradients caused primarily by the gimbaling of the submerged nose TVC nozzle. When the nozzle centerline is vectored with respect to the motor centerline, asymmetries are set up in the flow field under the submerged nozzle and immediately adjacent to the nozzle/case joint. Specific program objectives included: determination of the effects of nozzle gimbal angle and propellant geometry on the circumferential flow field; measurement of the static pressure and gas velocities in the vicinity of the nozzle/case joint; use of scaling laws to apply the subscale cold flow data to the full scale SRM; and generation of data for use in validation of 3-D computational fluid dynamic, CFD, models of the SRM flow field. These tests were conducted in the NASA Marshall Space Flight Center Airflow Facility with a 7.5 percent scale model of the aft segment of the SRM. Static and dynamic pressures were measured in the model to quantify the flow field. Oil flow data was also acquired to obtain qualitative visual descriptions of the flow field. Nozzle gimbal angles of 0, 3.5, and 7 deg were used with propellant grain configurations corresponding to motor burn times of 0, 9, 19, and 114 seconds. This experimental program was successful in generating velocity and pressure gradient data for the flow field around the submerged nose nozzle of the Space Shuttle SRM at various burn times and gimbal angles. The nature of the flow field adjacent to the nozzle/case joint was determined with oil droplet streaks, and the velocity and pressure gradients were quantified with pitot probes and wall static pressure measurements. The data was applied to the full scale SRM thru

  14. Effects of axial gap and nozzle distribution on aerodynamic forces of a supersonic partial-admission turbine

    Directory of Open Access Journals (Sweden)

    Jinpeng JIANG

    2017-12-01

    Full Text Available The turbine in an LH2/LOX rocket engine is designed as a two-stage supersonic partial-admission turbine. Three-dimensional steady and unsteady simulations were conducted to analyze turbine performance and aerodynamic forces on rotor blades. Different configurations were employed to investigate the effects of the axial gap and nozzle distribution on the predicted performance and aerodynamic forces. Rotor blades experience unsteady aerodynamic forces because of the partial admission. Aerodynamic forces show periodicity in the admission region, and are close to zero after leaving the admission region. The unsteady forces in frequency domain indicate that components exist in a wide frequency region, and the admission passing frequency is dominant. Those multiples of the rotational frequency which are multiples of the nozzle number in a full-admission turbine are notable components. Results show that the turbine efficiency decreases as the axial gap between nozzles and the 1st stage rotor (rotor 1 increases. Fluctuation of the circumferential aerodynamic force on rotor 1 blades decreases with the axial gap increasing. The turbine efficiency decreases as the circumferential spacing between nozzles increases. Fluctuations of the circumferential and axial aerodynamic forces increase as the circumferential spacing increases. As for the non-equidistant nozzle distribution, it produces similar turbine performance and amplitude-frequency characteristics of forces to those of the normal configuration, when the mean spacing is equal to that of the normal case. Keywords: Aerodynamic force, Axial gap, Computational fluid dynamics (CFD, Nozzle distribution, Partial admission, Turbine

  15. Nuclear thermal rocket nozzle testing and evaluation program

    International Nuclear Information System (INIS)

    Davidian, K.O.; Kacynski, K.J.

    1993-01-01

    Performance characteristics of the Nuclear Thermal Rocket can be enhanced through the use of unconventional nozzles as part of the propulsion system. In this report, the Nuclear Thermal Rocket nozzle testing and evaluation program being conducted at the NASA Lewis Research Center is outlined and the advantages of a plug nozzle are described. A facility description, experimental designs and schematics are given. Results of pretest performance analyses show that high nozzle performance can be attained despite substantial nozzle length reduction through the use of plug nozzles as compared to a convergent-divergent nozzle. Pretest measurement uncertainty analyses indicate that specific impulse values are expected to be within plus or minus 1.17%

  16. Virtual Reality

    Science.gov (United States)

    1993-04-01

    until exhausted. SECURITY CLASSIFICATION OF THIS PAGE All other editions are obsolete. UNCLASSIFIED " VIRTUAL REALITY JAMES F. DAILEY, LIEUTENANT COLONEL...US" This paper reviews the exciting field of virtual reality . The author describes the basic concepts of virtual reality and finds that its numerous...potential benefits to society could revolutionize everyday life. The various components that make up a virtual reality system are described in detail

  17. Virtual Box

    DEFF Research Database (Denmark)

    Davis, Hilary; Skov, Mikael B.; Stougaard, Malthe

    2007-01-01

    . This paper reports on the design, implementation and initial evaluation of Virtual Box. Virtual Box attempts to create a physical and engaging context in order to support reciprocal interactions with expressive content. An implemented version of Virtual Box is evaluated in a location-aware environment...

  18. Dynamic Eye gaze and its Potential in Virtual Reality Based Applications for Children with Autism Spectrum Disorders.

    Science.gov (United States)

    Lahiri, Uttama; Trewyn, Adam; Warren, Zachary; Sarkar, Nilanjan

    2011-01-01

    Children with Autism Spectrum Disorder are often characterized by deficits in social communication skills. While evidence suggests that intensive individualized interventions can improve aspects of core deficits in Autism Spectrum Disorder, at present numerous potent barriers exist related to accessing and implementing such interventions. Researchers are increasingly employing technology to develop more accessible, quantifiable, and individualized intervention tools to address core vulnerabilities related to autism. The present study describes the development and preliminary application of a Virtual Reality technology aimed at facilitating improvements in social communication skills for adolescents with autism. We present preliminary data from the usability study of this technological application for six adolescents with autism and discuss potential future development and application of adaptive Virtual Reality technology within an intervention framework.

  19. Jet-Surface Interaction: High Aspect Ratio Nozzle Test, Nozzle Design and Preliminary Data

    Science.gov (United States)

    Brown, Clifford; Dippold, Vance

    2015-01-01

    The Jet-Surface Interaction High Aspect Ratio (JSI-HAR) nozzle test is part of an ongoing effort to measure and predict the noise created when an aircraft engine exhausts close to an airframe surface. The JSI-HAR test is focused on parameters derived from the Turbo-electric Distributed Propulsion (TeDP) concept aircraft which include a high-aspect ratio mailslot exhaust nozzle, internal septa, and an aft deck. The size and mass flow rate limits of the test rig also limited the test nozzle to a 16:1 aspect ratio, half the approximately 32:1 on the TeDP concept. Also, unlike the aircraft, the test nozzle must transition from a single round duct on the High Flow Jet Exit Rig, located in the AeroAcoustic Propulsion Laboratory at the NASA Glenn Research Center, to the rectangular shape at the nozzle exit. A parametric nozzle design method was developed to design three low noise round-to-rectangular transitions, with 8:1, 12:1, and 16: aspect ratios, that minimizes flow separations and shocks while providing a flat flow profile at the nozzle exit. These designs validated using the WIND-US CFD code. A preliminary analysis of the test data shows that the actual flow profile is close to that predicted and that the noise results appear consistent with data from previous, smaller scale, tests. The JSI-HAR test is ongoing through October 2015. The results shown in the presentation are intended to provide an overview of the test and a first look at the preliminary results.

  20. Innovative application of virtual display technique in virtual museum

    Science.gov (United States)

    Zhang, Jiankang

    2017-09-01

    Virtual museum refers to display and simulate the functions of real museum on the Internet in the form of 3 Dimensions virtual reality by applying interactive programs. Based on Virtual Reality Modeling Language, virtual museum building and its effective interaction with the offline museum lie in making full use of 3 Dimensions panorama technique, virtual reality technique and augmented reality technique, and innovatively taking advantages of dynamic environment modeling technique, real-time 3 Dimensions graphics generating technique, system integration technique and other key virtual reality techniques to make sure the overall design of virtual museum.3 Dimensions panorama technique, also known as panoramic photography or virtual reality, is a technique based on static images of the reality. Virtual reality technique is a kind of computer simulation system which can create and experience the interactive 3 Dimensions dynamic visual world. Augmented reality, also known as mixed reality, is a technique which simulates and mixes the information (visual, sound, taste, touch, etc.) that is difficult for human to experience in reality. These technologies make virtual museum come true. It will not only bring better experience and convenience to the public, but also be conducive to improve the influence and cultural functions of the real museum.

  1. Wireless virtualization

    CERN Document Server

    Wen, Heming; Le-Ngoc, Tho

    2013-01-01

    This SpringerBriefs is an overview of the emerging field of wireless access and mobile network virtualization. It provides a clear and relevant picture of the current virtualization trends in wireless technologies by summarizing and comparing different architectures, techniques and technologies applicable to a future virtualized wireless network infrastructure. The readers are exposed to a short walkthrough of the future Internet initiative and network virtualization technologies in order to understand the potential role of wireless virtualization in the broader context of next-generation ubiq

  2. Virtual marketing in virtual enterprises

    OpenAIRE

    Ale Ebrahim, Nader; Fattahi, Hamaid Ali; Golnam, Arash

    2008-01-01

    Virtualization caused tremendous evolution in the economics of marketing channels, patterns of physical distribution and the structure of distributors and developed a new concept that is known as virtual marketing (VM). VM combines the powerful technologies of interactive marketing and virtual reality. Virtual enterprise (VE) refers to an organization not having a clear physical locus. In other words, VE is an organization distributed geographically and whose work is coordinated through e...

  3. EXAMPLE OF FLOW MODELLING CHARACTERISTICS IN DIESEL ENGINE NOZZLE

    Directory of Open Access Journals (Sweden)

    Dušan KOLARIČ

    2016-03-01

    Full Text Available Modern transport is still based on vehicles powered by internal combustion engines. Due to stricter ecological requirements, the designers of engines are continually challenged to develop more environmentally friendly engines with the same power and performance. Unfortunately, there are not any significant novelties and innovations available at present which could significantly change the current direction of the development of this type of propulsion machines. That is why the existing ones should be continually developed and improved or optimized their performance. By optimizing, we tend to minimize fuel consumption and lower exhaust emissions in order to meet the norms defined by standards (i.e. Euro standards. Those propulsion engines are actually developed to such extent that our current thinking will not be able to change their basic functionality, but possible opportunities for improvement, especially the improvement of individual components, could be introduced. The latter is possible by computational fluid dynamics (CFD which can relatively quickly and inexpensively produce calculations prior to prototyping and implementation of accurate measurements on the prototype. This is especially useful in early stages of development or at optimization of dimensional small parts of the object where the physical execution of measurements is impossible or very difficult. With advances of computational fluid dynamics, the studies on the nozzles and outlet channel injectors have been relieved. Recently, the observation and better understanding of the flow in nozzles at large pressure and high velocity is recently being possible. This is very important because the injection process, especially the dispersion of jet fuel, is crucial for the combustion process in the cylinder and consequently for the composition of exhaust gases. And finally, the chemical composition of the fuel has a strong impact on the formation of dangerous emissions, too. The

  4. Reactor vessel nozzle cracks: a photoelastic study

    International Nuclear Information System (INIS)

    Smith, C.W.

    1979-01-01

    A method consisting of a marriage between the ''frozen stress'' photoelastic approach and the local stress field equations of linear elastic fracture mechanics for estimating stress intensity factor distributions in three dimensional, finite cracked body problems is reviewed and extensions of the method are indicated. The method is then applied to the nuclear reactor vessel nozzle corner crack problem for both Intermediate Test Vessel and Boiling Water Reactor geometries. Results are compared with those of other investigators. 35 refs

  5. Coherent structures in a supersonic complex nozzle

    Science.gov (United States)

    Magstadt, Andrew; Berry, Matthew; Glauser, Mark

    2016-11-01

    The jet flow from a complex supersonic nozzle is studied through experimental measurements. The nozzle's geometry is motivated by future engine designs for high-performance civilian and military aircraft. This rectangular jet has a single plane of symmetry, an additional shear layer (referred to as a wall jet), and an aft deck representative of airframe integration. The core flow operates at a Mach number of Mj , c = 1 . 6 , and the wall jet is choked (Mj , w = 1 . 0). This high Reynolds number jet flow is comprised of intense turbulence levels, an intricate shock structure, shear and boundary layers, and powerful corner vortices. In the present study, stereo PIV measurements are simultaneously sampled with high-speed pressure measurements, which are embedded in the aft deck, and far-field acoustics in the anechoic chamber at Syracuse University. Time-resolved schlieren measurements have indicated the existence of strong flow events at high frequencies, at a Strouhal number of St = 3 . 4 . These appear to result from von Kàrmàn vortex shedding within the nozzle and pervade the entire flow and acoustic domain. Proper orthogonal decomposition is applied on the current data to identify coherent structures in the jet and study the influence of this vortex street. AFOSR Turbulence and Transition Program (Grant No. FA9550-15-1-0435) with program managers Dr. I. Leyva and Dr. R. Ponnappan.

  6. Head spray nozzle in reactor pressure vessel

    International Nuclear Information System (INIS)

    Hatano, Shun-ichi.

    1990-01-01

    In a reactor pressure vessel of a BWR type reactor, a head spray nozzle is used for cooling the head of the pressure vessel and, in view of the thermal stresses, it is desirable that cooling is applied as uniformly as possible. A conventional head spray is constituted by combining full cone type nozzles. Since the sprayed water is flown down upon water spraying and the sprayed water in the vertical direction is overlapped, the flow rate distribution has a high sharpness to form a shape as having a maximum value near the center and it is difficult to obtain a uniform flow rate distribution in the circumferential direction. Then, in the present invention, flat nozzles each having a spray water cross section of laterally long shape, having less sharpness in the circumferential distribution upon spraying water to the inner wall of the pressure vessel and having a wide angle of water spray are combined, to make the flow rate distribution of spray water uniform in the inner wall of the pressure vessel. Accordingly, the pressure vessel can be cooled uniformly and thermal stresses upon cooling can be decreased. (N.H.)

  7. Stress analysis of PCV nozzle junction

    International Nuclear Information System (INIS)

    Uchiyama, Shoichi; Oikawa, Tsuneo; Hoshino, Seizo

    1976-01-01

    Most of various pressure vessels comprise each one cylindrical shell and one or more nozzles. In this study, in order to analyze the stress in the structures of this type as minutely and exactly as possible, the program for stress analysis by the finite element method was made, which is required for the strength analysis for three-dimensional structures. Especially, the problem of the stress distribution around nozzle junctions was solved theoretically with the program. The program for the analysis developed in this study is provided with various functions, such as the input generator for cylindrical, conical and spherical shells, and plotter, and is very covenient. The accuracy of analysis is very good. The method of analysis and the calculation of the rigidity matrices for the deformation in plane and bending are explained. The result of the stress analysis around the nozzle junctions of a containment vessel with this program was in good agreement with experimental data and the result with SAP-4 code, therefore the propriety of the calculated result with this program was proved. Also calculations were carried out on three cases, namely a flat plate fixed at one end with distributed load, a cylinder fixed at one end with internal pressure, and an I-beam fixed at one end with concentrated load. The calculated results agreed well with theoretical solutions in all cases. (Kako, I.)

  8. Flow energy piezoelectric bimorph nozzle harvester

    Science.gov (United States)

    Sherrit, Stewart; Lee, Hyeong Jae; Walkemeyer, Phillip; Hasenoehrl, Jennifer; Hall, Jeffrey L.; Colonius, Tim; Tosi, Luis Phillipe; Arrazola, Alvaro; Kim, Namhyo; Sun, Kai; Corbett, Gary

    2014-04-01

    There is a need for a long-life power generation scheme that could be used downhole in an oil well to produce 1 Watt average power. There are a variety of existing or proposed energy harvesting schemes that could be used in this environment but each of these has its own limitations. The vibrating piezoelectric structure is in principle capable of operating for very long lifetimes (decades) thereby possibly overcoming a principle limitation of existing technology based on rotating turbo-machinery. In order to determine the feasibility of using piezoelectrics to produce suitable flow energy harvesting, we surveyed experimentally a variety of nozzle configurations that could be used to excite a vibrating piezoelectric structure in such a way as to enable conversion of flow energy into useful amounts of electrical power. These included reed structures, spring mass-structures, drag and lift bluff bodies and a variety of nozzles with varying flow profiles. Although not an exhaustive survey we identified a spline nozzle/piezoelectric bimorph system that experimentally produced up to 3.4 mW per bimorph. This paper will discuss these results and present our initial analyses of the device using dimensional analysis and constitutive electromechanical modeling. The analysis suggests that an order-of-magnitude improvement in power generation from the current design is possible.

  9. Pengaruh Jarak dan Posisi Nozzle Terhadap Daya Turbin Pelton

    Directory of Open Access Journals (Sweden)

    Yani Kurniawan

    2017-12-01

    Full Text Available Pelton Turbine is a turbine which use nozzle as officers the direction of a stream water in order to move around of blade turbine. The rotating of turbine blade efected by some parameters such as the distance of the nozzle, position of nozzle, diameter of nozzle, number of nozzle, and the geometry shape of the blade turbine. An experimental study to analyze the affect of distance and position nozzle to Pelton Turbine of performance. The research method used experiment parameter was position of nozzle with three variations, first position is the right side horizontal of bottom shaft turbine, second position is vertical to down direction, and third position is the left side horizontal of upper shaft turbine. The parameter of nozzle distance used five variations was 24 cm, 23 cm, 22 cm, 21 cm, dan 20 cm, which measured from the end of position nozzle to blade turbine. The result shows that the right side horizontal of bottom shaft turbine with distance of nozzle 23 cm had the maximum performance to produce a power 125 Watt with the rotation of shaft turbine 263 rpm.

  10. Load calculation on the nozzle in a flue gas desulphurization system

    Science.gov (United States)

    Róbert, Olšiak; Zoltán, Fuszko; Zoltán, Csuka

    2017-09-01

    The desulphurization system is used to remove sulfur oxides from exhaust, so-called flue gases through absorbing them via the sprayed suspension. The suspension delivered from the pump system to the atmospheric bi-directional double hollow cone nozzle has the prescribed working pressure. The unknown mechanical load on the solid body of the nozzle is present through the change of moment due to the flow of the suspension through the bi-directional outflow areas [1], [4]. The calculation of the acting forces and torques in the 3 directions was carried out with the methods of computational fluid dynamics (CFD) in the software ANSYS Fluent. The geometric model of the flow areas of the nozzle were created with the methods of reverse engineering. The computational mesh required by the CFD solver was created, and its quality verified with the standard criteria. The used boundary conditions were defined by the hydraulic parameters of the pump system, the properties of the suspension present in the hydraulic system were specified by sample analysis. The post-processed and analyzed results of the CFD calculation, the pressure-field and the velocity magnitudes in particular directions were further used as input parameters at the mechanical analysis of the load on the bi-directional nozzle.

  11. Influence of Fluid–Thermal–Structural Interaction on Boundary Layer Flow in Rectangular Supersonic Nozzles

    Directory of Open Access Journals (Sweden)

    Kalyani Bhide

    2018-03-01

    Full Text Available The aim of this work is to highlight the significance of Fluid–Thermal–Structural Interaction (FTSI as a diagnosis of existing designs, and as a means of preliminary investigation to ensure the feasibility of new designs before conducting experimental and field tests. The novelty of this work lies in the multi-physics simulations, which are, for the first time, performed on rectangular nozzles. An existing experimental supersonic rectangular converging/diverging nozzle geometry is considered for multi-physics 3D simulations. A design that has been improved by eliminating the sharp throat is further investigated to evaluate its structural integrity at design Nozzle Pressure Ratio (NPR 3.67 and off-design (NPR 4.5 conditions. Static structural analysis is performed by unidirectional coupling of pressure loads from steady 3D Computational Fluid Dynamics (CFD and thermal loads from steady thermal conduction simulations, such that the simulations represent the experimental set up. Structural deformation in the existing design is far less than the boundary layer thickness, because the impact of Shock wave Boundary Layer Interaction (SBLI is not as severe. FTSI demonstrates that the discharge coefficient of the improved design is 0.99, and its structural integrity remains intact at off-design conditions. This proves the feasibility of the improved design. Although FTSI influence is shown for a nozzle, the approach can be applied to any product design cycle, or as a prelude to building prototypes.

  12. Transient Three-Dimensional Analysis of Side Load in Liquid Rocket Engine Nozzles

    Science.gov (United States)

    Wang, Ten-See

    2004-01-01

    Three-dimensional numerical investigations on the nozzle start-up side load physics were performed. The objective of this study is to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, and pressure-based computational fluid dynamics formulation, and a simulated inlet condition based on a system calculation. Finite-rate chemistry was used throughout the study so that combustion effect is always included, and the effect of wall cooling on side load physics is studied. The side load physics captured include the afterburning wave, transition from free- shock to restricted-shock separation, and lip Lambda shock oscillation. With the adiabatic nozzle, free-shock separation reappears after the transition from free-shock separation to restricted-shock separation, and the subsequent flow pattern of the simultaneous free-shock and restricted-shock separations creates a very asymmetric Mach disk flow. With the cooled nozzle, the more symmetric restricted-shock separation persisted throughout the start-up transient after the transition, leading to an overall lower side load than that of the adiabatic nozzle. The tepee structures corresponding to the maximum side load were addressed.

  13. Identification of Potent Chloride Intracellular Channel Protein 1 Inhibitors from Traditional Chinese Medicine through Structure-Based Virtual Screening and Molecular Dynamics Analysis

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2017-01-01

    Full Text Available Chloride intracellular channel 1 (CLIC1 is involved in the development of most aggressive human tumors, including gastric, colon, lung, liver, and glioblastoma cancers. It has become an attractive new therapeutic target for several types of cancer. In this work, we aim to identify natural products as potent CLIC1 inhibitors from Traditional Chinese Medicine (TCM database using structure-based virtual screening and molecular dynamics (MD simulation. First, structure-based docking was employed to screen the refined TCM database and the top 500 TCM compounds were obtained and reranked by X-Score. Then, 30 potent hits were achieved from the top 500 TCM compounds using cluster and ligand-protein interaction analysis. Finally, MD simulation was employed to validate the stability of interactions between each hit and CLIC1 protein from docking simulation, and Molecular Mechanics/Generalized Born Surface Area (MM-GBSA analysis was used to refine the virtual hits. Six TCM compounds with top MM-GBSA scores and ideal-binding models were confirmed as the final hits. Our study provides information about the interaction between TCM compounds and CLIC1 protein, which may be helpful for further experimental investigations. In addition, the top 6 natural products structural scaffolds could serve as building blocks in designing drug-like molecules for CLIC1 inhibition.

  14. Augmented Virtuality for Coastal Management: A Holistic Use of In Situ and Remote Sensing for Large Scale Definition of Coastal Dynamics

    Directory of Open Access Journals (Sweden)

    Sandro Bartolini

    2018-03-01

    Full Text Available In this paper, the authors describe the architecture of a multidisciplinary data acquisition and visualization platform devoted to the management of coastal environments. The platform integrates heterogeneous data acquisition sub-systems that can be roughly divided into two main categories: remote sensing systems and in situ sensing systems. Remote sensing solutions that are going to be implemented include aerial and underwater data acquisition while in situ sensing solutions include the use of Radio Frequency IDentification (RFID tracers, Wireless Sensor Networks and imaging techniques. All the data collected by these subsystems are stored, integrated and fused on a single platform that is also in charge of data visualization and analysis. This last task is carried out according to the paradigm of Augmented Virtuality that foresees the augmentation of a virtually reconstructed environment with data collected in the real world. The described solution proposes a novel holistic approach where different disciplines concur, with different data acquisition techniques, to a large scale definition of coastal dynamics, in order to better describe and face the coastal erosion phenomenon. The overall framework has been conceived by the so-called Team COSTE, a joint research team between the Universities of Pisa, Siena and Florence.

  15. Pressure Distribution on Inner Wall of Parabolic Nozzle in Laser Propulsion with Single Pulse

    Science.gov (United States)

    Cui, Cunyan; Hong, Yanji; Wen, Ming; Song, Junling; Fang, Juan

    2011-11-01

    A system based of dynamic pressure sensors was established to study the time resolved pressure distribution on the inner wall of a parabolic nozzle in laser propulsion. Dynamic calibration and static calibration of the test system were made and the results showed that frequency response was up to 412 kHz and linear error was less than 10%. Experimental model was a parabolic nozzle and three test points were preset along one generating line. This study showed that experimental results agreed well with those obtained by numerical calculation way in pressure evolution tendency. The peak value of the calculation was higher than that of the experiment at each tested orifice because of the limitation of the numerical models. The results of this study were very useful for analyzing the energy deposition in laser propulsion and modifying numerical models.

  16. Dynamic virtual optical network embedding in spectral and spatial domains over elastic optical networks with multicore fibers

    Science.gov (United States)

    Zhu, Ruijie; Zhao, Yongli; Yang, Hui; Tan, Yuanlong; Chen, Haoran; Zhang, Jie; Jue, Jason P.

    2016-08-01

    Network virtualization can eradicate the ossification of the infrastructure and stimulate innovation of new network architectures and applications. Elastic optical networks (EONs) are ideal substrate networks for provisioning flexible virtual optical network (VON) services. However, as network traffic continues to increase exponentially, the capacity of EONs will reach the physical limitation soon. To further increase network flexibility and capacity, the concept of EONs is extended into the spatial domain. How to map the VON onto substrate networks by thoroughly using the spectral and spatial resources is extremely important. This process is called VON embedding (VONE).Considering the two kinds of resources at the same time during the embedding process, we propose two VONE algorithms, the adjacent link embedding algorithm (ALEA) and the remote link embedding algorithm (RLEA). First, we introduce a model to solve the VONE problem. Then we design the embedding ability measurement of network elements. Based on the network elements' embedding ability, two VONE algorithms were proposed. Simulation results show that the proposed VONE algorithms could achieve better performance than the baseline algorithm in terms of blocking probability and revenue-to-cost ratio.

  17. Fragment-based virtual screening approach and molecular dynamics simulation studies for identification of BACE1 inhibitor leads.

    Science.gov (United States)

    Manoharan, Prabu; Ghoshal, Nanda

    2018-05-01

    Traditional structure-based virtual screening method to identify drug-like small molecules for BACE1 is so far unsuccessful. Location of BACE1, poor Blood Brain Barrier permeability and P-glycoprotein (Pgp) susceptibility of the inhibitors make it even more difficult. Fragment-based drug design method is suitable for efficient optimization of initial hit molecules for target like BACE1. We have developed a fragment-based virtual screening approach to identify/optimize the fragment molecules as a starting point. This method combines the shape, electrostatic, and pharmacophoric features of known fragment molecules, bound to protein conjugate crystal structure, and aims to identify both chemically and energetically feasible small fragment ligands that bind to BACE1 active site. The two top-ranked fragment hits were subjected for a 53 ns MD simulation. Principle component analysis and free energy landscape analysis reveal that the new ligands show the characteristic features of established BACE1 inhibitors. The potent method employed in this study may serve for the development of potential lead molecules for BACE1-directed Alzheimer's disease therapeutics.

  18. Dynamic control of a moving platform using the CAREN system to optimize walking in virtual reality environments.

    Science.gov (United States)

    Makssoud, Hassan El; Richards, Carol L; Comeau, François

    2009-01-01

    Virtual reality (VR) technology offers the opportunity to expose patients to complex physical environments without physical danger and thus provides a wide range of opportunities for locomotor training or the study of human postural and walking behavior. A VR-based locomotor training system has been developed for gait rehabilitation post-stroke. A clinical study has shown that persons after stroke are able to adapt and benefit from this novel system wherein they walk into virtual environments (VEs) on a self-paced treadmill mounted on a platform with 6 degrees of freedom. This platform is programmed to mimic changes in the terrain encountered in the VEs. While engaging in these VEs, excessive trunk movements and speed alterations have been observed, especially during the pitch perturbations accompanying uphill or downhill terrain changes. An in-depth study of the subject's behavior in relation to the platform movements revealed that the platform rotational axes need to be modified, as previously shown by Barton et al, and in addition did not consider the subject's position on the treadmill. The aim of this study was to determine an optimal solution to simulate walking in real life when engaging in VEs.

  19. Transition of cavitating flow to supercavitation within Venturi nozzle – hysteresis investigation

    OpenAIRE

    Jiří Kozák; Pavel Rudolf; Rostislav Huzlík; Martin Hudec; Radomír Chovanec; Ondřej Urban; Blahoslav Maršálek; Eliška Maršálková; František Pochylý; David Štefan

    2017-01-01

    Cavitation is usually considered as undesirable phenomena. On the other hand, it can be utilized in many applications. One of the technical applications is using cavitation in water treatment, where hydrodynamic cavitation seems to be effective way how to reduce cyanobacteria within large bulks of water. The main scope of this paper is investigation of the cavitation within Venturi nozzle during the transition from fully developed cavitation to supercavitation regime and vice versa. Dynamics ...

  20. Development of top nozzle for Korean standard LWR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. K.; Kim, I. K.; Choi, K. S.; Kim, Y. H.; Lee, J. N.; Kim, H. K. [KNFC, Taejon (Korea, Republic of)

    2001-10-01

    Performance evaluation was executed for each component and its assembly for the deduced Top Nozzles to develop the new Top Nozzle for LWR. This new Top Nozzle is composed of the optimum components among the derived Top Nozzles that have been evaluated in the viewpoint of structural integrity, simpleness of dismantle and assembly, manufacturability etc. In this study, the developed Top Nozzle satisfied all the related design criteria. In special, it makes fuel repair time reduced by assembling and disassembling itself as one body, and improves Fuel Assembly holddown ability by revising the design parameters of its spring and the structural integrity through the betterment of its geometrical shpae of Flange and Holddown Plate as compared with the existing LWR Top Nozzles.

  1. Virtual Exploratories

    DEFF Research Database (Denmark)

    Jensen, Sisse Siggaard

    2006-01-01

    -systems, the paper introduces the designing strategy referred to as virtual exploratories. Some of the advanced virtual worlds may inspire the design of such provoking and challenging virtual exploratories, and especially the Massively Multi-User Online Role-Playing Games (MMORPGS). However, if we have to learn from...... the design and activity of the advanced virtual worlds and role-playing games, then the empirical research on the actors’ activity, while they are acting, is an important precondition to it. A step towards the conception of such a designing strategy for virtual exploratories is currently pursued....... [1] The research project: Actors and Avatars Communicating in Virtual Worlds – an Empirical Analysis of Actors’ Sense-making Strategies When Based on a Communication Theoretical Approach’ (2006-2007) is supported...

  2. Virtual Interactive Space (VIS)

    DEFF Research Database (Denmark)

    Brooks, Anthony Lewis

    2015-01-01

    This paper shares code that enables the making of a Virtual Interactive Space (VIS) where the skin of the invisible active sensor area is dynamically responsive to the velocity of a limb e.g. hand. Used in proprioception training of movement the patch is at the core of the author’s Reafferentation...

  3. Mounting apparatus for a nozzle guide vane assembly

    Science.gov (United States)

    Boyd, Gary L.; Shaffer, James E.

    1995-01-01

    The present invention provides a ceramic nozzle guide assembly with an apparatus for mounting it to a metal nozzle case that includes an intermediate ceramic mounting ring. The mounting ring includes a plurality of projections that are received within a plurality of receptacles formed in the nozzle case. The projections of the mounting ring are secured within the receptacles by a ceramic retainer that allows contact between the two components only along arcuate surfaces thus eliminating sliding contact between the components.

  4. Fluidized-bed calciner with combustion nozzle and shroud

    International Nuclear Information System (INIS)

    Wielang, J.A.; Palmer, W.B.; Kerr, W.B.

    1977-01-01

    A nozzle employed as a burner within a fluidized bed is coaxially enclosed within a tubular shroud that extends beyond the nozzle length into the fluidized bed. The open-ended shroud portion beyond the nozzle end provides an antechamber for mixture and combustion of atomized fuel with an oxygen-containing gas. The arrangement provides improved combustion efficiency and excludes bed particles from the high-velocity, high-temperature portions of the flame to reduce particle attrition. 4 claims, 2 figures

  5. Virtual Reflexes

    OpenAIRE

    Jonker, Catholijn; Broekens, Joost; Plaat, Aske

    2014-01-01

    Virtual Reality is used successfully to treat people for regular phobias. A new challenge is to develop Virtual Reality Exposure Training for social skills. Virtual actors in such systems have to show appropriate social behavior including emotions, gaze, and keeping distance. The behavior must be realistic and real-time. Current approaches consist of four steps: 1) trainee social signal detection, 2) cognitive-affective interpretation, 3) determination of the appropriate bodily responses, and...

  6. Virtual volatility

    Science.gov (United States)

    Silva, A. Christian; Prange, Richard E.

    2007-03-01

    We introduce the concept of virtual volatility. This simple but new measure shows how to quantify the uncertainty in the forecast of the drift component of a random walk. The virtual volatility also is a useful tool in understanding the stochastic process for a given portfolio. In particular, and as an example, we were able to identify mean reversion effect in our portfolio. Finally, we briefly discuss the potential practical effect of the virtual volatility on an investor asset allocation strategy.

  7. Virtual Class Support at the Virtual Machine Level

    DEFF Research Database (Denmark)

    Nielsen, Anders Bach; Ernst, Erik

    2009-01-01

    This paper describes how virtual classes can be supported in a virtual machine.  Main-stream virtual machines such as the Java Virtual Machine and the .NET platform dominate the world today, and many languages are being executed on these virtual machines even though their embodied design choices...... conflict with the design choices of the virtual machine.  For instance, there is a non-trivial mismatch between the main-stream virtual machines mentioned above and dynamically typed languages.  One language concept that creates an even greater mismatch is virtual classes, in particular because fully...... general support for virtual classes requires generation of new classes at run-time by mixin composition.  Languages like CaesarJ and ObjectTeams can express virtual classes restricted to the subset that does not require run-time generation of classes, because of the restrictions imposed by the Java...

  8. Virtual bronchoscopy

    International Nuclear Information System (INIS)

    Rogalla, P.; Meiri, N.; Hamm, B.; Rueckert, J.C.; Schmidt, B.; Witt, C.

    2001-01-01

    Flexible bronchoscopy represents a clinically well-established invasive diagnostic tool. Virtual bronchoscopies, calculated from thin-slice CT sections, allow astonishing immitations of reality although principal differences exist between both technologies: the Fact that colour representation is artificial and concommitant interventions are impossible limits the clinical use of virtual bronchoscopy. However, its value increases when calculations can be attained within minutes due to technological advancements, and when virtually any chest CT is suitable for further postprocessing. Indications, findings and the clinical role of virtual bronchoscopy are discussed. (orig.) [de

  9. Virtual projects

    DEFF Research Database (Denmark)

    Svejvig, Per; Commisso, Trine Hald

    2012-01-01

    that the best practice knowledge has not permeated sufficiently to the practice. Furthermore, the appropriate application of information and communication technology (ICT) remains a big challenge, and finally project managers are not sufficiently trained in organizing and conducting virtual projects....... The overall implications for research and practice are to acknowledge virtual project management as very different to traditional project management and to address this difference.......Virtual projects are common with global competition, market development, and not least the financial crisis forcing organizations to reduce their costs drastically. Organizations therefore have to place high importance on ways to carry out virtual projects and consider appropriate practices...

  10. Variable volume combustor with aerodynamic fuel flanges for nozzle mounting

    Science.gov (United States)

    McConnaughhay, Johnie Franklin; Keener, Christopher Paul; Johnson, Thomas Edward; Ostebee, Heath Michael

    2016-09-20

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles and a fuel injection system for providing a flow of fuel to the micro-mixer fuel nozzles. The fuel injection system may include a number of support struts supporting the fuel nozzles and for providing the flow of fuel therethrough. The fuel injection system also may include a number of aerodynamic fuel flanges connecting the micro-mixer fuel nozzles and the support struts.

  11. Experimental study of subsonic microjet escaping from a rectangular nozzle

    Science.gov (United States)

    Aniskin, V. M.; Maslov, A. A.; Mukhin, K. A.

    2016-10-01

    The first experiments on the subsonic laminar microjets escaping from the nozzles of rectangular shape are carried out. The nozzle size is 83.3x3823 microns. Reynolds number calculated by the nozzle height and the average flow velocity at the nozzle exit ranged from 58 to 154. The working gas was air at room temperature. The velocity decay and velocity fluctuations along the center line of the jet are determined. The fundamental difference between the laminar microjets characteristics and subsonic turbulent jets of macro size is shown. Based on measurements of velocity fluctuations it is shown the presence of laminar-turbulent transition in microjets and its location is determined.

  12. Heat and fluid flow properties of circular impinging jet with a low nozzle to plate spacing. Improvement by nothched nozzle; Nozzle heibankan kyori ga chiisai baai no enkei shototsu funryu no ryudo dennetsu tokusei. Kirikaki nozzle ni yoru kaizen kojo

    Energy Technology Data Exchange (ETDEWEB)

    Shakouchih, T. [Mie University, Mie (Japan). Faculty of Engineering; Matsumoto, A.; Watanabe, A.

    2000-10-25

    It is well known that as decreasing the nozzle to plate spacing considerably the heat transfer coefficient of circular impinging jet, which impinges to the plate normally, increases remarkably. At that time, the flow resistance of nozzle-plate system also increases rapidly. In this study, in order to reduce the flow resistance and to enhance the heat transfer coefficient of the circular impinging jet with a considerably low nozzle to plate spacing, a special nozzle with notches is proposed, and considerable improvement of the flow and heat transfer properties are shown. The mechanism of enhancement of the heat transfer properties is also discussed. (author)

  13. Virtual reality technology and applications

    CERN Document Server

    Mihelj, Matjaž; Beguš, Samo

    2014-01-01

    As virtual reality expands from the imaginary worlds of science fiction and pervades every corner of everyday life, it is becoming increasingly important for students and professionals alike to understand the diverse aspects of this technology. This book aims to provide a comprehensive guide to the theoretical and practical elements of virtual reality, from the mathematical and technological foundations of virtual worlds to the human factors and the applications that enrich our lives: in the fields of medicine, entertainment, education and others. After providing a brief introduction to the topic, the book describes the kinematic and dynamic mathematical models of virtual worlds. It explores the many ways a computer can track and interpret human movement, then progresses through the modalities that make up a virtual world: visual, acoustic and haptic. It explores the interaction between the actual and virtual environments, as well as design principles of the latter. The book closes with an examination of diff...

  14. Ergonomic project of the work and innovation in the virtual-actual dynamic: a theoretical-conceptual contribution

    Directory of Open Access Journals (Sweden)

    Gilbert Cardoso Bouyer

    2015-12-01

    Full Text Available The main purpose of this paper is to amplify the current theoretical scenario of “Ergonomics of Project” area, according to the knowledge creation/innovation theory, and his concepts of virtual and subjectivity in the Work. This theoretical-conceptual article aims to shed new light on the relations between innovation and present-day efforts toward a scientific theory of knowledge in the Work, with its complex structure of theories, hypotheses and disciplines. There is in this paper a new approach to understand  the Contemporary Ergonomic Project in a kind of Socio-Epistemological Engineering initiated by Markus F. Peschl in the University of Vienna. The methods employed were the systematic review and adaptation of Socio-Epistemological Engineering’s concepts in the actual context of epistemological and ontological principles of Ergonomics of Project.

  15. Enhancing Network Communication in NPSNET-V Virtual Environments Using XML-Described Dynamic Behavior (DBP) Protocols

    National Research Council Canada - National Science Library

    Fischer, William

    2001-01-01

    .... Specifically, it describes design of the NPS Dynamic-Behavior-Protocol (DBP) protocols, which are multicast / unicast capable and can be added at runtime to the distributed operating environment...

  16. Varieties of virtualization

    Science.gov (United States)

    Ellis, Stephen R.

    1991-01-01

    Natural environments have a content, i.e., the objects in them; a geometry, i.e., a pattern of rules for positioning and displacing the objects; and a dynamics, i.e., a system of rules describing the effects of forces acting on the objects. Human interaction with most common natural environments has been optimized by centuries of evolution. Virtual environments created through the human-computer interface similarly have a content, geometry, and dynamics, but the arbitrary character of the computer simulation creating them does not insure that human interaction with these virtual environments will be natural. The interaction, indeed, could be supernatural but it also could be impossible. An important determinant of the comprehensibility of a virtual environment is the correspondence between the environmental frames of reference and those associated with the control of environmental objects. The effects of rotation and displacement of control frames of reference with respect to corresponding environmental references differ depending upon whether perceptual judgement or manual tracking performance is measured. The perceptual effects of frame of reference displacement may be analyzed in terms of distortions in the process of virtualizing the synthetic environment space. The effects of frame of reference displacement and rotation have been studied by asking subjects to estimate exocentric direction in a virtual space.

  17. Transient Three-Dimensional Side Load Analysis of Out-of-Round Film Cooled Nozzles

    Science.gov (United States)

    Wang, Ten-See; Lin, Jeff; Ruf, Joe; Guidos, Mike

    2010-01-01

    The objective of this study is to investigate the effect of nozzle out-of-roundness on the transient startup side loads at a high altitude, with an anchored computational methodology. The out-of-roundness could be the result of asymmetric loads induced by hardware attached to the nozzle, asymmetric internal stresses induced by previous tests, and deformation, such as creep, from previous tests. The rocket engine studied encompasses a regeneratively cooled thrust chamber and a film cooled nozzle extension with film coolant distributed from a turbine exhaust manifold. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet history based on an engine system simulation. Transient startup computations were performed with the out-of-roundness achieved by four different degrees of ovalization: one perfectly round, one slightly out-of-round, one more out-of-round, and one significantly out-of-round. The results show that the separation-line-jump is the peak side load physics for the round, slightly our-of-round, and more out-of-round cases, and the peak side load increases as the degree of out-of-roundness increases. For the significantly out-of-round nozzle, however, the peak side load reduces to comparable to that of the round nozzle and the separation line jump is not the peak side load physics. The counter-intuitive result of the significantly out-of-round case is found to be related to a side force reduction mechanism that splits the effect of the separation-line-jump into two parts, not only in the circumferential direction and most importantly in time.

  18. Transient Three-Dimensional Analysis of Nozzle Side Load in Regeneratively Cooled Engines

    Science.gov (United States)

    Wang, Ten-See

    2005-01-01

    Three-dimensional numerical investigations on the start-up side load physics for a regeneratively cooled, high-aspect-ratio nozzle were performed. The objectives of this study are to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet condition based on an engine system simulation. Computations were performed for both the adiabatic and cooled walls in order to understand the effect of boundary conditions. Finite-rate chemistry was used throughout the study so that combustion effect is always included. The results show that three types of shock evolution are responsible for side loads: generation of combustion wave; transitions among free-shock separation, restricted-shock separation, and simultaneous free-shock and restricted shock separations; along with oscillation of shocks across the lip. Wall boundary conditions drastically affect the computed side load physics: the adiabatic nozzle prefers free-shock separation while the cooled nozzle favors restricted-shock separation, resulting in higher peak side load for the cooled nozzle than that of the adiabatic nozzle. By comparing the computed physics with those of test observations, it is concluded that cooled wall is a more realistic boundary condition, and the oscillation of the restricted-shock separation flow pattern across the lip along with its associated tangential shock motion are the dominant side load physics for a regeneratively cooled, high aspect-ratio rocket engine.

  19. BWR feedwater nozzle and control-rod-drive return line nozzle cracking

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    In its 1978 Annual Report to Congress, the Nuclear Regulatory Commission identified as an unresolved safety issue the appearance of cracks in feedwater nozzles at boiling-water reactors (BWRs). Later similar cracking, detected in return water lines for control-rod-drive systems at BWRs, was designated Part II of the issue. This article outlines the resolution of these cracking problems

  20. Nozzle evaluation for Project W-314

    International Nuclear Information System (INIS)

    Galbraith, J.D.

    1998-01-01

    Revisions to the waste transfer system piping to be implemented by Project W-314 will eliminate the need to access a majority of interfarm jumper connections associated with specific process pits. Additionally, connections that formerly facilitated waste transfers from the Plutonium-Uranium Extraction (PUREX) Plant are no longer required. This document identified unneeded process pit jumper connections, describes former designated routing, denotes current status (i.e., open or blanked), and recommends appropriate disposition for all. Blanking of identified nozzles should be accomplished by Project W-314 upon installation of jumpers and acceptance by Tank Waste Remediation System (TWRS) Tank Farm Operations

  1. Bottom nozzle of a LWR fuel assembly

    International Nuclear Information System (INIS)

    Leroux, J.C.

    1991-01-01

    The bottom nozzle consists of a transverse element in form of box having a bending resistant grid structure which has an outer peripheral frame of cross-section corresponding to that of the fuel assembly and which has walls defining large cells. The transverse element has a retainer plate with a regular array of openings. The retainer plate is fixed above and parallel to the grid structure with a spacing in order to form, between the grid structure and the retainer plate a free space for tranquil flow of cooling water and for debris collection [fr

  2. Airfoil shape for a turbine nozzle

    Science.gov (United States)

    Burdgick, Steven Sebastian; Patik, Joseph Francis; Itzel, Gary Michael

    2002-01-01

    A first-stage nozzle vane includes an airfoil having a profile according to Table I. The annulus profile of the hot gas path is defined in conjunction with the airfoil profile and the profile of the inner and outer walls by the Cartesian coordinate values given in Tables I and II, respectively. The airfoil is a three-dimensional bowed design, both in the airfoil body and in the trailing edge. The airfoil is steam and air-cooled by flowing cooling mediums through cavities extending in the vane between inner and outer walls.

  3. Study of nozzle deposit formation mechanism for direct injection gasoline engines; Chokufun gasoline engine yo nozzle no deposit seisei kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, M; Saito, A [Toyota Central Research and Development Labs., Inc., Aichi (Japan); Matsushita, S [Toyota Motor Corp., Aichi (Japan); Shibata, H [Nippon Soken, Inc., Tokyo (Japan); Niwa, Y [Denso Corp., Aichi (Japan)

    1997-10-01

    Nozzles in fuel injectors for direct injection gasoline engines are exposed to high temperature combustion gases and soot. In such a rigorous environment, it is a fear that fuel flow rate changes in injectors by deposit formation on nozzles. Fundamental factors of nozzle deposit formation were investigated through injector bench tests and engine dynamometer tests. Deposit formation processes were observed by SEM through engine dynamometer tests. The investigation results reveal nozzle deposit formation mechanism and how to suppress the deposit. 4 refs., 8 figs., 3 tabs.

  4. Optimum geometry for boiler soot blowers nozzles; Geometria optima de toberas para deshollinadores de caldera

    Energy Technology Data Exchange (ETDEWEB)

    Espinoza Garza, Jesus; Garcia Tinoco, Guillermo J; Martinez Flores, Jose Oscar [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1990-12-31

    For boiler soot blowing converging-diverging nozzles are employed, whose function is to convert thermal energy of a gas into kinetic energy to remove the deposits that adhere to the heat exchanger surfaces. In this paper are described the experimental equipment and the methods for flow, dynamic pressure, discharge velocity and air expansion factor calculation in each nozzle, as a function of its design geometry, utilizing air from a five stage centrifugal compressor. The graphic analysis of the results, concludes that the most efficient nozzles are not the ones than develop the greatest velocity, but the ones of highest dynamic pressure at the outlet. The nozzle geometry that allows obtaining the maximum dynamic air pressure at the discharge is A{sub 2}/A{sub g}=1.3676 [Espanol] Para el deshollinado de calderas se utilizan las toberas convergentes-divergentes, cuya funcion es convertir la energia termica de un gas en energia cinetica para remover los depositos que se adhieren a las superficies de intercambio de calor. En este trabajo se describen el equipo experimental y los metodos de calculo para flujo, presion dinamica, velocidad a la descarga y factor de expansion del aire en cada tobera, como funcion de su geometria de diseno. Durante la experimentacion se evaluaron siete disenos diferentes de toberas, empleando aire de un compresor centrifugo de cinco etapas. Del analisis grafico de los resultados, se concluye que las toberas mas eficientes no son las que desarrollan mayor velocidad sino las de mayor presion dinamica de la salida. La geometria de tobera que permite obtener la maxima presion dinamica del aire a la descarga es A{sub 2}/A{sub g} = 1.3676.

  5. Optimum geometry for boiler soot blowers nozzles; Geometria optima de toberas para deshollinadores de caldera

    Energy Technology Data Exchange (ETDEWEB)

    Espinoza Garza, Jesus; Garcia Tinoco, Guillermo J.; Martinez Flores, Jose Oscar [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1989-12-31

    For boiler soot blowing converging-diverging nozzles are employed, whose function is to convert thermal energy of a gas into kinetic energy to remove the deposits that adhere to the heat exchanger surfaces. In this paper are described the experimental equipment and the methods for flow, dynamic pressure, discharge velocity and air expansion factor calculation in each nozzle, as a function of its design geometry, utilizing air from a five stage centrifugal compressor. The graphic analysis of the results, concludes that the most efficient nozzles are not the ones than develop the greatest velocity, but the ones of highest dynamic pressure at the outlet. The nozzle geometry that allows obtaining the maximum dynamic air pressure at the discharge is A{sub 2}/A{sub g}=1.3676 [Espanol] Para el deshollinado de calderas se utilizan las toberas convergentes-divergentes, cuya funcion es convertir la energia termica de un gas en energia cinetica para remover los depositos que se adhieren a las superficies de intercambio de calor. En este trabajo se describen el equipo experimental y los metodos de calculo para flujo, presion dinamica, velocidad a la descarga y factor de expansion del aire en cada tobera, como funcion de su geometria de diseno. Durante la experimentacion se evaluaron siete disenos diferentes de toberas, empleando aire de un compresor centrifugo de cinco etapas. Del analisis grafico de los resultados, se concluye que las toberas mas eficientes no son las que desarrollan mayor velocidad sino las de mayor presion dinamica de la salida. La geometria de tobera que permite obtener la maxima presion dinamica del aire a la descarga es A{sub 2}/A{sub g} = 1.3676.

  6. Virtual Workshop

    DEFF Research Database (Denmark)

    Buus, Lillian; Bygholm, Ann

    In relation to the Tutor course in the Mediterranean Virtual University (MVU) project, a virtual workshop “Getting experiences with different synchronous communication media, collaboration, and group work” was held with all partner institutions in January 2006. More than 25 key-tutors within MVU...

  7. EURCYL. A program to generate finite element meshes for pressure vessel nozzles

    International Nuclear Information System (INIS)

    De Windt, P.; Reynen, J.

    1974-12-01

    EURCYL is a program dealing with the automatic generation of finite element meshes for pressure vessel nozzles, using isoparametric elements with 8, 20 or 32 nodes. Options exist to generate BWR nozzles as well as PWR nozzles

  8. On the Controllability and Observability of Actively Lubricated Journal Bearings with Pads Featuring Different Nozzle-Pivot Configurations

    DEFF Research Database (Denmark)

    Salazar, Jorge Andrés González; Santos, Ilmar

    2017-01-01

    tilt angle, (iii) the vertical pad movement-due to the pivot flexibility, and (iv) the controllable force as the hydraulic DOF. The test rig consists of a rigid rotor supported by a single rocker-pivoted rigid pad. A thorough parametric study is carried out by investigating the effects of: (a) nozzle-pivot...... offset, (b) pivot flexibility, and (c) bearing loading on these control basics in order to determine the pad with the best control characteristics. Different nozzle-pivot offsets can be set by varying the positioning of either the injection nozzle or the pivot line. The influence of the pivot compliance...... on the bearing dynamics is assessed by benchmarking the results obtained with the flexible pivot against the rigid pivot. Three different bearing loads are studied. According to the results, the proposed configurations, especially the offset-pivot pad with slight offsets, improve the bearing control...

  9. CAN-DO, CFD-based Aerodynamic Nozzle Design and Optimization program for supersonic/hypersonic wind tunnels

    Science.gov (United States)

    Korte, John J.; Kumar, Ajay; Singh, D. J.; White, J. A.

    1992-01-01

    A design program is developed which incorporates a modern approach to the design of supersonic/hypersonic wind-tunnel nozzles. The approach is obtained by the coupling of computational fluid dynamics (CFD) with design optimization. The program can be used to design a 2D or axisymmetric, supersonic or hypersonic, wind-tunnel nozzles that can be modeled with a calorically perfect gas. The nozzle design is obtained by solving a nonlinear least-squares optimization problem (LSOP). The LSOP is solved using an iterative procedure which requires intermediate flowfield solutions. The nozzle flowfield is simulated by solving the Navier-Stokes equations for the subsonic and transonic flow regions and the parabolized Navier-Stokes equations for the supersonic flow regions. The advantages of this method are that the design is based on the solution of the viscous equations eliminating the need to make separate corrections to a design contour, and the flexibility of applying the procedure to different types of nozzle design problems.

  10. Simulation model of converging-diverging (CD) nozzle to improve particle delivery system of deoxyribonucleic acid (DNA)

    Science.gov (United States)

    Sumarsono, Danardono A.; Ibrahim, Fera; Santoso, Satria P.; Sari, Gema P.

    2018-02-01

    Gene gun is a mechanical device which has been used to deliver DNA vaccine into the cells and tissues by increasing the uptake of DNA plasmid so it can generate a high immune response with less amount of DNA. Nozzle is an important part of the gene gun which used to accelerate DNA in particle form with a gas flow to reach adequate momentum to enter the epidermis of human skin and elicit immune response. We developed new designs of nozzle for gene gun to make DNA uptake more efficient in vaccination. We used Computational Fluid Dynamics (CFD) by Autodesk® Simulation 2015 to simulate static fluid pressure and velocity contour of supersonic wave and parametric distance to predict the accuracy of the new nozzle. The result showed that the nozzle could create a shockwave at the distance parametric to the object from 4 to 5 cm using fluid pressure varied between 0.8-1.2 MPa. This is indication a possibility that the DNA particle could penetrate under the mammalian skin. For the future research step, this new nozzle model could be considered for development the main component of the DNA delivery system in vaccination in vivo

  11. Analysis of film cooling in rocket nozzles

    Science.gov (United States)

    Woodbury, Keith A.

    1993-01-01

    This report summarizes the findings on the NASA contract NAG8-212, Task No. 3. The overall project consists of three tasks, all of which have been successfully completed. In addition, some supporting supplemental work, not required by the contract, has been performed and is documented herein. Task 1 involved the modification of the wall functions in the code FDNS (Finite Difference Navier-Stokes) to use a Reynolds Analogy-based method. This task was completed in August, 1992. Task 2 involved the verification of the code against experimentally available data. The data chosen for comparison was from an experiment involving the injection of helium from a wall jet. Results obtained in completing this task also show the sensitivity of the FDNS code to unknown conditions at the injection slot. This task was completed in September, 1992. Task 3 required the computation of the flow of hot exhaust gases through the P&W 40K subscale nozzle. Computations were performed both with and without film coolant injection. This task was completed in July, 1993. The FDNS program tends to overpredict heat fluxes, but, with suitable modeling of backside cooling, may give reasonable wall temperature predictions. For film cooling in the P&W 40K calorimeter subscale nozzle, the average wall temperature is reduced from 1750R to about 1050R by the film cooling. The average wall heat flux is reduced by a factor of 3.

  12. Computational Investigation of Swirling Supersonic Jets Generated Through a Nozzle-Twisted Lance

    Science.gov (United States)

    Li, Mingming; Li, Qiang; Zou, Zongshu; An, Xizhong

    2017-02-01

    The dynamic characteristics of supersonic swirling jets generated through a nozzle-twisted lance are numerically studied. The essential features of the swirling jets are identified by defining a deviation angle. The effects of nozzle twist angle (NTA) on swirling flow intensity, coalescence characteristics, and dynamic parameter distributions of the jets are discussed. The rotational flow characteristics are revealed. The results show that the jets from the nozzle-twisted lance are imparted to a circumferential rotating movement around the lance axis, and such swirling flow is enhanced by increasing NTA. The enhanced swirling flow causes weaker coalescence of the jets, faster attenuations of the axial velocity, and higher heat transfer rate between the jets and surroundings. The supersonic core length, however, is found to be less sensitive to the swirling flow intensity. The radial spreading of the jets, changing non-monotonically with NTA, arrives at its maximum at 5 deg of NTA. Furthermore, the swirling flow induces a considerable tangential velocity component, and as a result, a holistic and effective horizontal swirling flow field develops. The y-vorticity distribution range and the corresponding magnitude turn larger with increasing NTA, which promote the vortex motion of the local fluid element and thus intensify the local mixing.

  13. GEYSERS: a novel architecture for virtualization and co-provisioning of dynamic optical networks and IT services

    NARCIS (Netherlands)

    Escalona, E.; Peng, S.; Nejabati, R.; Simeonidou, D.; García-Espín, J.A.; Ferrer, J.; Figuerola, S.; Landi, G.; Ciulli, N.; Jiménez, J.; Belter, B.; Demchenko, Y.; de Laat, C.; Chen, X.; Yukan, A.; Soudan, S.; Vicat-Blanc, P.; Buysse, J.; de Leenheer, M.; Develder, C.; Tzanakaki, A.; Robinson, P.; Brogle, M.; Bohnert, T.M.

    2011-01-01

    GEYSERS aims at defining an end-to-end network architecture that offers a novel planning, provisioning and operational framework for optical network and IT infrastructure providers and operators. In this framework, physical infrastructure resources (network and IT) are dynamically partitioned to

  14. Grit blasting nozzle fabricated from mild tool steel proves satisfactory

    Science.gov (United States)

    Mc Farland, J. E.; Turbitt, B.

    1966-01-01

    Dry blasting with glass beads through a nozzle assembly descales both the outside and inside surfaces of tubes of Inconel 718 used for the distribution of gaseous oxygen. The inside of the nozzle is coated with polyurethane and the deflector with a commercially available liquid urethane rubber.

  15. Numerical analysis of choked converging nozzle flows with surface ...

    Indian Academy of Sciences (India)

    Choked converging nozzle flow and heat transfer characteristics are numerically investigated by means of a recent computational model that integrates the axisymmetric continuity, state, momentum and energy equations. To predict the combined effects of nozzle geometry, friction and heat transfer rates, analyses are ...

  16. Multi-orifice deposition nozzle for additive manufacturing

    Science.gov (United States)

    Lind, Randall F.; Post, Brian K.; Cini, Colin L.

    2017-11-21

    An additive manufacturing extrusion head includes a nozzle for accepting and depositing a heated material onto a work surface and/or part. The nozzle includes a valve body and an internal poppet body moveable between positions to permit deposition of at least two bead sizes of heated material onto a work surface and/or part.

  17. Noise from Aft Deck Exhaust Nozzles: Differences in Experimental Embodiments

    Science.gov (United States)

    Bridges, James E.

    2014-01-01

    Two embodiments of a rectangular nozzle on an aft deck are compared. In one embodiment the lower lip of the nozzle was extended with the sidewalls becoming triangles. In a second embodiment a rectangular nozzle was fitted with a surface that fit flush to the lower lip and extended outward from the sides of the nozzle, approximating a semi-infinite plane. For the purpose of scale-model testing, making the aft deck an integral part of the nozzle is possible for relatively short deck lengths, but a separate plate model is more flexible, accounts for the expanse of deck to the sides of the nozzle, and allows the nozzle to stand off from the deck. Both embodiments were tested and acoustic far-field results were compared. In both embodiments the extended deck introduces a new noise source, but the amplitude of the new source was dependent upon the span (cross-stream dimension) of the aft deck. The noise increased with deck length (streamwise dimension), and in the case of the beveled nozzle it increased with increasing aspect ratio. In previous studies of slot jets in wings it was noted that the increased noise from the extended aft deck appears as a dipole at the aft deck trailing edge, an acoustic source type with different dependence on velocity than jet mixing noise. The extraneous noise produced by the aft deck in the present studies also shows this behavior both in directivity and in velocity scaling.

  18. Combustor nozzle for a fuel-flexible combustion system

    Science.gov (United States)

    Haynes, Joel Meier [Niskayuna, NY; Mosbacher, David Matthew [Cohoes, NY; Janssen, Jonathan Sebastian [Troy, NY; Iyer, Venkatraman Ananthakrishnan [Mason, OH

    2011-03-22

    A combustor nozzle is provided. The combustor nozzle includes a first fuel system configured to introduce a syngas fuel into a combustion chamber to enable lean premixed combustion within the combustion chamber and a second fuel system configured to introduce the syngas fuel, or a hydrocarbon fuel, or diluents, or combinations thereof into the combustion chamber to enable diffusion combustion within the combustion chamber.

  19. Ultrasonic pattern recognition study of feedwater nozzle inner radius indication

    International Nuclear Information System (INIS)

    Yoneyama, H.; Takama, S.; Kishigami, M.; Sasahara, T.; Ando, H.

    1983-01-01

    A study was made to distinguish defects on feed-water nozzle inner radius from noise echo caused by stainless steel cladding by using ultrasonic pattern recognition method with frequency analysis technique. Experiment has been successfully performed on flat clad plates and nozzle mock-up containing fatigue cracks and the following results which shows the high capability of frequency analysis technique are obtained

  20. Finite element analysis of inclined nozzle-plate junctions

    International Nuclear Information System (INIS)

    Dixit, K.B.; Seth, V.K.; Krishnan, A.; Ramamurthy, T.S.; Dattaguru, B.; Rao, A.K.

    1979-01-01

    Estimation of stress concentration at nozzle to plate or shell junctions is a significant problem in the stress analysis of nuclear reactors. The topic is a subject matter of extensive investigations and earlier considerable success has been reported on analysis for the cases when the nozzle is perpendicular to the plate or is radial to the shell. Analytical methods for the estimation of stress concentrations for the practical situations when the intersecting nozzle is inclined to the plate or is non-radial to the shell is rather scanty. Specific complications arise in dealing with the junction region when the nozzle with circular cross-section meets the non-circular cut-out on the plate or shell. In this paper a finite element analysis is developed for inclined nozzles and results are presented for nozzle-plate junctions. A method of analysis is developed with a view to achieving simultaneously accuracy of results and simplicity in the choice of elements and their connectivity. The circular nozzle is treated by axisymmetric conical shell elements. The nozzle portion in the region around the junction and the flat plate is dealt with by triangular flat shell elements. Special transition elements are developed for joining the flat shell elements with the axisymmetric elements under non-axisymmetric loading. A substructure method of analysis is adopted which achieves considerable economy in handling the structure and also conveniently combines the different types of elements in the structure. (orig.)

  1. Development of a Supersonic Atomic Oxygen Nozzle Beam Source for Crossed Beam Scattering Experiments

    Science.gov (United States)

    Sibener, S. J.; Buss, R. J.; Lee, Y. T.

    1978-05-01

    A high pressure, supersonic, radio frequency discharge nozzle beam source was developed for the production of intense beams of ground state oxygen atoms. An efficient impedance matching scheme was devised for coupling the radio frequency power to the plasma as a function of both gas pressure and composition. Techniques for localizing the discharge directly behind the orifice of a water-cooled quartz nozzle were also developed. The above combine to yield an atomic oxygen beam source which produces high molecular dissociation in oxygen seeded rare gas mixtures at total pressures up to 200 torr: 80 to 90% dissociation for oxygen/argon mixtures and 60 to 70% for oxygen/helium mixtures. Atomic oxygen intensities are found to be greater than 10{sup 17} atom sr{sup -1} sec{sup -1}. A brief discussion of the reaction dynamics of 0 + IC1 ..-->.. I0 + C1 is also presented.

  2. Geometric quasi-similarity: Case of nozzles with quadrant-shaped inlet

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    Roč. 248, September (2016), s. 246-256 ISSN 0924-4247 R&D Projects: GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : nozzles * local geometric similarity * quasi-similarity * reynolds number * euler number * quadrant nozzles Subject RIV: BK - Fluid Dynamics Impact factor: 2.499, year: 2016 http://ac.els-cdn.com/S0924424716303399/1-s2.0-S0924424716303399-main.pdf?_tid=79a1397c-6e8d-11e6-893f-00000aacb361&acdnat=1472546639_01cebf4490123f8e5db56d9c4cda5fd5

  3. Monitoring Approach to Evaluate the Performances of a New Deposition Nozzle Solution for DED Systems

    Directory of Open Access Journals (Sweden)

    Federico Mazzucato

    2017-05-01

    Full Text Available Abstract: In order to improve the process efficiency of a direct energy deposition (DED system, closed loop control systems can be considered for monitoring the deposition and melting processes and adjusting the process parameters in real-time. In this paper, the monitoring of a new deposition nozzle solution for DED systems is approached through a simulation-experimental comparison. The shape of the powder flow at the exit of the nozzle outlet and the spread of the powder particles on the deposition plane are analyzed through 2D images of the powder flow obtained by monitoring the powder depositions with a high-speed camera. These experimental results are then compared with data obtained through a Computational Fluid Dynamics model. Preliminary tests are carried out by varying powder, carrier, and shielding mass flow, demonstrating that the last parameter has a significant influence on the powder distribution and powder flow geometry.

  4. Testing and qualification of CIRCE venturi-nozzle flow meter for large scale experiments

    International Nuclear Information System (INIS)

    Ambrosini, W.; Forgione, N.; Oriolo, F.; Tarantino, M.; Agostini, P.; Benamati, G.; Bertacci, G.; Elmi, N.; Alemberti, A.; Cinotti, L.; Scaddozzo, G.

    2005-01-01

    This paper is focused on the tests carried out at the ENEA Brasimone Centre for the qualification of a large Venturi-Nozzle flow meter operating in Lead Bismuth Eutectic (LBE). Such flow meter has been selected to provide flow rate measurements during the thermal-hydraulic tests that will be performed on the experimental facility CIRCE. This large-scale facility is installed at the ENEA Brasimone Centre for studying the fluid-dynamics and operating behaviour of ADS reactor plants, as well as to qualify several components intended to be used in the LBE technology. The Venturi-Nozzle flow meter has been supplied by the Euromisure s.r.l., together with the calculated theoretical characteristic equation. The results obtained by the tests performed allowed to qualify this theoretical curve supplied by the manufacturer, that presents a very good agreement especially at high flow rate values. (authors)

  5. Influences of hydrodynamic conditions, nozzle geometry on appearance of high submerged cavitating jets

    Directory of Open Access Journals (Sweden)

    Hutli Ezddin

    2013-01-01

    Full Text Available Based on visualization results of highly-submerged cavitating water jet obtained with digital camera, the influences of related parameters such as: injection pressure, nozzle diameter and geometry, nozzle mounting (for convergent / divergent flow, cavitation number and exit jet velocity, were investigated. In addition, the influence of visualization system position was also studied. All the parameters have been found to be of strong influence on the jet appearance and performance. Both hydro-dynamical and geometrical parameters are playing the main role in behavior and intensity of cavitation phenomenon produced by cavitating jet generator. Based on our considerable previous experience in working with cavitating jet generator, the working conditions were chosen in order to obtain measurable phenomenon. [Projekat Ministarstva nauke Republike Srbije, br. TR35046

  6. Tunable aqueous virtual micropore.

    Science.gov (United States)

    Park, Jae Hyun; Guan, Weihua; Reed, Mark A; Krstić, Predrag S

    2012-03-26

    A charged microparticle can be trapped in an aqueous environment by forming a narrow virtual pore--a cylindrical space region in which the particle motion in the radial direction is limited by forces emerging from dynamical interactions of the particle charge and dipole moment with an external radiofrequency quadrupole electric field. If the particle satisfies the trap stability criteria, its mean motion is reduced exponentially with time due to the viscosity of the aqueous environment; thereafter the long-time motion of particle is subject only to random, Brownian fluctuations, whose magnitude, influenced by the electrophoretic and dielectrophoretic effects and added to the particle size, determines the radius of the virtual pore, which is demonstrated by comparison of computer simulations and experiment. The measured size of the virtual nanopore could be utilized to estimate the charge of a trapped micro-object. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Study on steam pressure characteristics in various types of nozzles

    Science.gov (United States)

    Firman; Anshar, Muhammad

    2018-03-01

    Steam Jet Refrigeration (SJR) is one of the most widely applied technologies in the industry. The SJR system was utilizes residual steam from the steam generator and then flowed through the nozzle to a tank that was containing liquid. The nozzle converts the pressure energy into kinetic energy. Thus, it can evaporate the liquid briefly and release it to the condenser. The chilled water, was produced from the condenser, can be used to cool the product through a heat transfer process. This research aims to study the characteristics of vapor pressure in different types of nozzles using a simulation. The Simulation was performed using ANSYS FLUENT software for nozzle types such as convergent, convrgent-parallel, and convergent-divergent. The results of this study was presented the visualization of pressure in nozzles and was been validated with experiment data.

  8. TMI-2 instrument nozzle examinations at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Neimark, L.A.; Shearer, T.L.; Purohit, A.; Hins, A.G.

    1993-09-01

    Six of the 14 instrument-penetration-tube nozzles removed from the lower head of TMI-2 were examined to identify damage mechanisms, provide insight to the fuel relocation scenario, and provide input data to the margin-to-failure analysis. Visual inspection, gamma scanning, metallography, microhardness measurements, and scanning electron microscopy were used to obtain the desired information. The results showed varying degrees of damage to the lower head nozzles, from ∼50% melt-off to no damage at all to near-neighbor nozzles. The elevations of nozzle damage suggested that the lower elevations (near the lower head) were protected from molten fuel, apparently by an insulating layer of fuel debris. The pattern of nozzle damage was consistent with fuel movement toward the hot-spot location identified in the vessel wall. Evidence was found for the existence of a significant quantity of control assembly debris on the lower head before the massive relocation of fuel occurred

  9. Adapting virtual camera behaviour through player modelling

    DEFF Research Database (Denmark)

    Burelli, Paolo; Yannakakis, Georgios N.

    2015-01-01

    Research in virtual camera control has focused primarily on finding methods to allow designers to place cameras effectively and efficiently in dynamic and unpredictable environments, and to generate complex and dynamic plans for cinematography in virtual environments. In this article, we propose...

  10. Development of supersonic plasma flows by use of a magnetic nozzle and an ICRF heating

    Energy Technology Data Exchange (ETDEWEB)

    Inutake, M.; Ando, A.; Hattori, K.; Tobari, H.; Hosokawa, Y.; Sato, R.; Hatanaka, M.; Harata, K. [Tohoku Univ., Dept. of Electrical Engineering, Sendai (Japan)

    2004-07-01

    A high-beta, supersonic plasma flow plays a crucial role in MHD phenomena in space and fusion plasmas. There are a few experimental researches on production and control of a fast flowing plasma in spite of a growing significance in the magnetized-plasma flow dynamics. A magneto-plasma-dynamic arc-jet (MPDA) is one of promising devices to produce a supersonic plasma flow and has been utilized as an electric propulsion device with a higher specific impulse and a relatively larger thrust. We have improved the performance of an MPDA to produce a quasi-steady plasma flow with a transonic and supersonic Mach number in a highly-ionized state. There are two methods in order to control an ion-acoustic Mach number of the plasma flow exhausted from an MPDA: one is to use a magnetic Laval nozzle to convert a thermal energy to a flow energy and the other is a combined system of an ion heating and a divergent magnetic nozzle. The former is an analogous method to a compressible air flow and the latter is the method proposed in an advanced thruster for a manned interplanetary space mission. We have clarified the plasma flow characteristics in various shapes of a magnetic field configuration. It was demonstrated that the Mach number of the plasma flow could increase up to almost 3 in a divergent magnetic nozzle field. This paper reports recent results on the flow field improvements: one is on a magnetic-Laval-nozzle effects observed at the muzzle region of the MPDA, and the other is on ICRF (ion-cyclotron-range of frequency) heating of a supersonic plasma by use of a helical antenna. (authors)

  11. The virtual slice setup.

    Science.gov (United States)

    Lytton, William W; Neymotin, Samuel A; Hines, Michael L

    2008-06-30

    In an effort to design a simulation environment that is more similar to that of neurophysiology, we introduce a virtual slice setup in the NEURON simulator. The virtual slice setup runs continuously and permits parameter changes, including changes to synaptic weights and time course and to intrinsic cell properties. The virtual slice setup permits shocks to be applied at chosen locations and activity to be sampled intra- or extracellularly from chosen locations. By default, a summed population display is shown during a run to indicate the level of activity and no states are saved. Simulations can run for hours of model time, therefore it is not practical to save all of the state variables. These, in any case, are primarily of interest at discrete times when experiments are being run: the simulation can be stopped momentarily at such times to save activity patterns. The virtual slice setup maintains an automated notebook showing shocks and parameter changes as well as user comments. We demonstrate how interaction with a continuously running simulation encourages experimental prototyping and can suggest additional dynamical features such as ligand wash-in and wash-out-alternatives to typical instantaneous parameter change. The virtual slice setup currently uses event-driven cells and runs at approximately 2 min/h on a laptop.

  12. Virtual Teams.

    Science.gov (United States)

    Geber, Beverly

    1995-01-01

    Virtual work teams scattered around the globe are becoming a feature of corporate workplaces. Although most people prefer face-to-face meetings and interactions, reality often requires telecommuting. (JOW)

  13. Virtual data

    International Nuclear Information System (INIS)

    Bjorklund, E.

    1993-01-01

    In the 1970's, when computers were memory limited, operating system designers created the concept of ''virtual memory'' which gave users the ability to address more memory than physically existed. In the 1990s, many large control systems have the potential for becoming data limited. We propose that many of the principles behind virtual memory systems (working sets, locality, caching, and clustering) can also be applied to data-limited systems - creating, in effect, ''virtual data systems.'' At the Los Alamos National Laboratory's Clinton P. Anderson Meson Physics Facility (LAMPF), we have applied these principles to a moderately sized (10,000 data points) data acquisition and control system. To test the principles, we measured the system's performance during tune-up, production, and maintenance periods. In this paper, we present a general discussion of the principles of a virtual data system along with some discussion of our own implementation and the results of our performance measurements

  14. Virtual Worlds for Virtual Organizing

    Science.gov (United States)

    Rhoten, Diana; Lutters, Wayne

    The members and resources of a virtual organization are dispersed across time and space, yet they function as a coherent entity through the use of technologies, networks, and alliances. As virtual organizations proliferate and become increasingly important in society, many may exploit the technical architecture s of virtual worlds, which are the confluence of computer-mediated communication, telepresence, and virtual reality originally created for gaming. A brief socio-technical history describes their early origins and the waves of progress followed by stasis that brought us to the current period of renewed enthusiasm. Examination of contemporary examples demonstrates how three genres of virtual worlds have enabled new arenas for virtual organizing: developer-defined closed worlds, user-modifiable quasi-open worlds, and user-generated open worlds. Among expected future trends are an increase in collaboration born virtually rather than imported from existing organizations, a tension between high-fidelity recreations of the physical world and hyper-stylized imaginations of fantasy worlds, and the growth of specialized worlds optimized for particular sectors, companies, or cultures.

  15. A Basic Study on the Ejection of ICI Nozzle under Severe Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jong Rae; Bae, Ji Hoon; Bang, Kwang Hyun [Korea Maritime and Ocean University, Busan (Korea, Republic of); Park, Jong Woong [Dongguk University, Gyeongju (Korea, Republic of)

    2016-05-15

    Nozzle injection should be blocked because it affect to the environment if its melting core exposes outside. The purpose of this study is to carry out the thermos mechanical analysis due to debris relocation under severe accidents and to predict the nozzle ejection calculated considering the contact between the nozzle and lower head, and the supports of pipe cables. As a result of analyzing process of severe accidents, there was melting reaction between nozzle and the lower head. In this situation, we might predict the non-uniform contact region of nozzle hole of lower head and nozzle outside, delaying ejection of nozzles. But after melting, the average remaining length of the nozzle was 120mm and the maximum vertical displacement of lower nozzle near the weld is 3.3mm so there would be no nozzle this model, because the cable supports restrains the vertical displacement of nozzle.

  16. PULSED MOLECULAR BEAM PRODUCTION WITH NOZZLES

    Energy Technology Data Exchange (ETDEWEB)

    Hagena, Otto-Friedrich

    1963-05-15

    Molecular beam experiments that can be carried out in pulsed operation may be performed at considerably reduced expense for apparatus if, for pulse generation, the gas supply to the beam production system is interrupted as opposed to the usual steady molecular beam. This technique is studied by measuring intensity vs time of molecular beam impulses of varying length, how fast and through which intermediate states the initial intensity of the impulse attains equilibrium, and in which way the intensity of the molecular-beam impulse is affected by the pulse length and by increasing pressure in the first pressure stage. For production of pulses, a magnetically actuated, quick shutting, valve is used whose scaling area is the inlet cone of the nozzle used for the beam generation. The shortest pulses produced had a pulse length of 1.6 ms. (auth)

  17. Specific decontamination methods: water nozzle, cavitation erosion

    International Nuclear Information System (INIS)

    Boulitrop, D.; Gauchon, J.P.; Lecoffre, Y.

    1984-05-01

    The erosion and decontamination tests carried out in the framework of this study, allowed to specify the fields favourable to the use of the high pressure jet taking into account the determinant parameters that are the pressure and the target-nozzle distance. The previous spraying of gels with chemical reagents (sulfuric acid anf hydrazine) allows to get better decontamination factors. Then, the feasibility study of a decontamination method by cavitation erosion is presented. Gelled compounds for decontamination have been developed; their decontamination quality has been evaluated by comparative contamination tests in laboratory and decontamination tests of samples of materials used in nuclear industry; this last method is adapted to remote handling devices and produces a low quantity of secondary effluents, so it allows to clean high contaminated installation on the site without additional exposure of the personnel [fr

  18. Feedback mechanism for smart nozzles and nebulizers

    Science.gov (United States)

    Montaser, Akbar [Potomac, MD; Jorabchi, Kaveh [Arlington, VA; Kahen, Kaveh [Kleinburg, CA

    2009-01-27

    Nozzles and nebulizers able to produce aerosol with optimum and reproducible quality based on feedback information obtained using laser imaging techniques. Two laser-based imaging techniques based on particle image velocimetry (PTV) and optical patternation map and contrast size and velocity distributions for indirect and direct pneumatic nebulizations in plasma spectrometry. Two pulses from thin laser sheet with known time difference illuminate droplets flow field. Charge coupled device (CCL)) captures scattering of laser light from droplets, providing two instantaneous particle images. Pointwise cross-correlation of corresponding images yields two-dimensional velocity map of aerosol velocity field. For droplet size distribution studies, solution is doped with fluorescent dye and both laser induced florescence (LIF) and Mie scattering images are captured simultaneously by two CCDs with the same field of view. Ratio of LIF/Mie images provides relative droplet size information, then scaled by point calibration method via phase Doppler particle analyzer.

  19. Noise Prediction Module for Offset Stream Nozzles

    Science.gov (United States)

    Henderson, Brenda S.

    2011-01-01

    A Modern Design of Experiments (MDOE) analysis of data acquired for an offset stream technology was presented. The data acquisition and concept development were funded under a Supersonics NRA NNX07AC62A awarded to Dimitri Papamoschou at University of California, Irvine. The technology involved the introduction of airfoils in the fan stream of a bypass ratio (BPR) two nozzle system operated at transonic exhaust speeds. The vanes deflected the fan stream relative to the core stream and resulted in reduced sideline noise for polar angles in the peak jet noise direction. Noise prediction models were developed for a range of vane configurations. The models interface with an existing ANOPP module and can be used or future system level studies.

  20. Providing Virtual Execution Environments: A Twofold Illustration

    CERN Document Server

    Grehant, Xavier

    2008-01-01

    Platform virtualization helps solving major grid computing challenges: share resource with flexible, user-controlled and custom execution environments and in the meanwhile, isolate failures and malicious code. Grid resource management tools will evolve to embrace support for virtual resource. We present two open source projects that transparently supply virtual execution environments. Tycoon has been developed at HP Labs to optimise resource usage in creating an economy where users bid to access virtual machines and compete for CPU cycles. SmartDomains provides a peer-to-peer layer that automates virtual machines deployment using a description language and deployment engine from HP Labs. These projects demonstrate both client-server and peer-to-peer approaches to virtual resource management. The first case makes extensive use of virtual machines features for dynamic resource allocation. The second translates virtual machines capabilities into a sophisticated language where resource management components can b...

  1. Flame Interactions and Thermoacoustics in Multiple-Nozzle Combustors

    Science.gov (United States)

    Dolan, Brian

    The first major chapter of original research (Chapter 3) examines thermoacoustic oscillations in a low-emission staged multiple-nozzle lean direct injection (MLDI) combustor. This experimental program investigated a relatively practical combustor sector that was designed and built as part of a commercial development program. The research questions are both practical, such as under what conditions the combustor can be safely operated, and fundamental, including what is most significant to driving the combustion oscillations in this system. A comprehensive survey of operating conditions finds that the low-emission (and low-stability) intermediate and outer stages are necessary to drive significant thermoacoustics. Phase-averaged and time-resolved OH* imaging show that dramatic periodic strengthening and weakening of the reaction zone downstream of the low-emission combustion stages. An acoustic modal analysis shows the pressure wave shapes and identifies the dominant thermoacoustic behavior as the first longitudinal mode for this combustor geometry. Finally, a discussion of the likely significant coupling mechanisms is given. Periodic reaction zone behavior in the low-emission fuel stages is the primary contributor to unsteady heat release. Differences between the fuel stages in the air swirler design, the fuel number of the injectors, the lean blowout point, and the nominal operating conditions all likely contribute to the limit cycle behavior of the low-emission stages. Chapter 4 investigates the effects of interaction between two adjacent swirl-stabilized nozzles using experimental and numerical tools. These studies are more fundamental; while the nozzle hardware is the same as the lean direct injection nozzles used in the MLDI combustion concept, the findings are generally applicable to other swirl-stabilized combustion systems as well. Much of the work utilizes a new experiment where the distance between nozzles was varied to change the level of interaction

  2. Virtual Team Governance: Addressing the Governance Mechanisms and Virtual Team Performance

    Science.gov (United States)

    Zhan, Yihong; Bai, Yu; Liu, Ziheng

    As technology has improved and collaborative software has been developed, virtual teams with geographically dispersed members spread across diverse physical locations have become increasingly prominent. Virtual team is supported by advancing communication technologies, which makes virtual teams able to largely transcend time and space. Virtual teams have changed the corporate landscape, which are more complex and dynamic than traditional teams since the members of virtual teams are spread on diverse geographical locations and their roles in the virtual team are different. Therefore, how to realize good governance of virtual team and arrive at good virtual team performance is becoming critical and challenging. Good virtual team governance is essential for a high-performance virtual team. This paper explores the performance and the governance mechanism of virtual team. It establishes a model to explain the relationship between the performance and the governance mechanisms in virtual teams. This paper is focusing on managing virtual teams. It aims to find the strategies to help business organizations to improve the performance of their virtual teams and arrive at the objectives of good virtual team management.

  3. Pharmacophore-based virtual screening, molecular docking, molecular dynamics simulation, and biological evaluation for the discovery of novel BRD4 inhibitors.

    Science.gov (United States)

    Yan, Guoyi; Hou, Manzhou; Luo, Jiang; Pu, Chunlan; Hou, Xueyan; Lan, Suke; Li, Rui

    2018-02-01

    Bromodomain is a recognition module in the signal transduction of acetylated histone. BRD4, one of the bromodomain members, is emerging as an attractive therapeutic target for several types of cancer. Therefore, in this study, an attempt has been made to screen compounds from an integrated database containing 5.5 million compounds for BRD4 inhibitors using pharmacophore-based virtual screening, molecular docking, and molecular dynamics simulations. As a result, two molecules of twelve hits were found to be active in bioactivity tests. Among the molecules, compound 5 exhibited potent anticancer activity, and the IC 50 values against human cancer cell lines MV4-11, A375, and HeLa were 4.2, 7.1, and 11.6 μm, respectively. After that, colony formation assay, cell cycle, apoptosis analysis, wound-healing migration assay, and Western blotting were carried out to learn the bioactivity of compound 5. © 2017 John Wiley & Sons A/S.

  4. In Silico Identification of Potent PPAR-γ Agonists from Traditional Chinese Medicine: A Bioactivity Prediction, Virtual Screening, and Molecular Dynamics Study

    Directory of Open Access Journals (Sweden)

    Kuan-Chung Chen

    2014-01-01

    Full Text Available The peroxisome proliferator-activated receptors (PPARs related to regulation of lipid metabolism, inflammation, cell proliferation, differentiation, and glucose homeostasis by controlling the related ligand-dependent transcription of networks of genes. They are used to be served as therapeutic targets against metabolic disorder, such as obesity, dyslipidemia, and diabetes; especially, PPAR-γ is the most extensively investigated isoform for the treatment of dyslipidemic type 2 diabetes. In this study, we filter compounds of traditional Chinese medicine (TCM using bioactivities predicted by three distinct prediction models before the virtual screening. For the top candidates, the molecular dynamics (MD simulations were also utilized to investigate the stability of interactions between ligand and PPAR-γ protein. The top two TCM candidates, 5-hydroxy-L-tryptophan and abrine, have an indole ring and carboxyl group to form the H-bonds with the key residues of PPAR-γ protein, such as residues Ser289 and Lys367. The secondary amine group of abrine also stabilized an H-bond with residue Ser289. From the figures of root mean square fluctuations (RMSFs, the key residues were stabilized in protein complexes with 5-Hydroxy-L-tryptophan and abrine as control. Hence, we propose 5-hydroxy-L-tryptophan and abrine as potential lead compounds for further study in drug development process with the PPAR-γ protein.

  5. Application of LBB to a nozzle-pipe interface

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Y.J.; Sohn, G.H.; Kim, Y.J. [and others

    1997-04-01

    Typical LBB (Leak-Before-Break) analysis is performed for the highest stress location for each different type of material in the high energy pipe line. In most cases, the highest stress occurs at the nozzle and pipe interface location at the terminal end. The standard finite element analysis approach to calculate J-Integral values at the crack tip utilizes symmetry conditions when modeling near the nozzle as well as away from the nozzle region to minimize the model size and simplify the calculation of J-integral values at the crack tip. A factor of two is typically applied to the J-integral value to account for symmetric conditions. This simplified analysis can lead to conservative results especially for small diameter pipes where the asymmetry of the nozzle-pipe interface is ignored. The stiffness of the residual piping system and non-symmetries of geometry along with different material for the nozzle, safe end and pipe are usually omitted in current LBB methodology. In this paper, the effects of non-symmetries due to geometry and material at the pipe-nozzle interface are presented. Various LBB analyses are performed for a small diameter piping system to evaluate the effect a nozzle has on the J-integral calculation, crack opening area and crack stability. In addition, material differences between the nozzle and pipe are evaluated. Comparison is made between a pipe model and a nozzle-pipe interface model, and a LBB PED (Piping Evaluation Diagram) curve is developed to summarize the results for use by piping designers.

  6. A Dynamic Consensus Algorithm to Adjust Virtual Impedance Loops for Discharge Rate Balancing of AC Microgrid Energy Storage Units

    DEFF Research Database (Denmark)

    Guan, Yajuan; Meng, Lexuan; Li, Chendan

    2018-01-01

    A dynamic consensus algorithm (DCA)-based coordinated secondary control with an autonomous current-sharing control strategy is proposed in this paper for balancing the discharge rate of energy storage systems (ESSs) in an islanded AC microgrid. The DCA is applied for information sharing between......, the proposed approach can provide higher system reliability, expandability, and flexibility due to its distributed control architecture. The proposed controller can effectively prevent operation failure caused by over-current and unintentional outage of DGs by means of balanced discharge rate control. It can...... also provide fast response and accurate current sharing performance. A generalizable linearized state-space model for n-DG network in the z-domain is also derived and proposed in this paper; the model includes electrical, controller, and communication parts. The system stability and parameter...

  7. Fuel injector nozzle for an internal combustion engine

    Science.gov (United States)

    Cavanagh, Mark S.; Urven, Jr., Roger L.; Lawrence, Keith E.

    2008-11-04

    A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

  8. The fabrication of nozzles for nuclear components by welding

    International Nuclear Information System (INIS)

    Moraes, M.M.; Krausser, P.; Echeverria, J.A.V.

    1986-01-01

    A nozzle with medium outside diameter of 1000 mm and medium thickness of 150 mm composed integrally by deposited metal by submerged-arc (wire S3NiMo1, 0.5mm) was fabricated in NUCLEP. The nondestructive, mechanical, metallographic and chemical testing carried out in a test sample made by the same procedure and welding parameters, showed results according to specifications established for primary components for nuclear power plants, and the tests presented mechanical properties and tenacity better than similar nozzle samples. This nozzle is cheapest concerning to importations, in respecting to its forged similar. (M.C.K.) [pt

  9. Ultra-High Speed Visualization of the Flashing Instability in Micron Size Nozzles under Vacuum Conditions

    KAUST Repository

    Alghamdi, Tariq A.

    2017-11-01

    I visualized the flash-boiling atomization of liquid jets released into a low pressure environment at frame rates of up to five million frames per second. Such a high temporal resolution allowed us to observe for the first time the bubble expansion mechanism that atomizes the jet. To visualize the dynamics in detail, I focused closely to the outflow of the nozzle using a long distance microscope objective. I documented an abrupt transition from a laminar to a fully external flashing jet by systematically reducing the ambient pressure. I performed experiments with different volatile liquids and using nozzles with different inner diameters. The inner diameters of the nozzles varied from 30 to 480 . Perfluorohexane (PFnH) was our main working fluid, but also methanol, ethanol and 1-bromopropane were tested. Surprisingly, minimum intensity profiles revealed spray angles close to ~360°, meaning drops are ejected in all directions. Also, I measured speeds of bubble expansion up to 140 m/s. That is 45 times faster than the upper bound for inertial growth speed in complete vacuum from the Rayleigh-Plesset equation. I also calculated the trajectories of the ejected droplets as well as the drop speed distribution using particle tracking. I expect that our results bring new insight into the flash-boiling atomization mechanism.

  10. Dinâmica de transposição de herbicida através de palha de aveia-preta utilizando diferentes pontas de pulverização Dynamics of herbicide crossing through black oat straw by using different nozzle models

    Directory of Open Access Journals (Sweden)

    A.G.F. Costa

    2004-12-01

    Full Text Available A transposição da palha por herbicidas aplicados em pré ou pós-emergência durante a aplicação é determinante na sua eficiência, dinâmica e impacto ambiental. O experimento foi conduzido no Núcleo de Pesquisas Avançadas em Matologia - FCA/UNESP, campus de Botucatu-SP, tendo como objetivo avaliar o desempenho de diferentes modelos de pontas de pulverização na transposição em quantidades crescentes de palha de aveia-preta (Avena strigosa. Os tratamentos foram constituídos pelo monitoramento do traçador corante Azul Brilhante (FDC-1 a 3.000 ppm, pulverizado com as pontas de pulverização XR11002-VS, TJ60-11002VS, FL-5VS, DG11002-VS, TXVK-8, TT11002-VP e AI11002-VS, utilizando, respectivamente, as pressões de trabalho de 1,4; 2,0; 1,5; 2,0; 4,9; 3,0 e 3,0 kgf cm² e volume de calda de 200, 200, 428, 200, 213 e 270 L ha-1 sobre quantidades de 0, 1, 2, 4, 6, 8, 10 e 12 t ha-1 de palha de aveia-preta. O delineamento utilizado foi o inteiramente casualizado, com sete tratamentos e cinco repetições, as quais foram constituídas de caixas plásticas com palha acondicionada sobre um fundo falso de área conhecida, sendo este lavado após as aplicações, para posterior quantificação do traçador em espectrofotometria. O modelo de Mitscherlich simplificado (Y = 10 ^ (2 - (C*X mostrou ajuste satisfatório para os dados originais de traçador que transpôs a palha, apresentando coeficientes de determinação (R² elevados, oscilando entre 0,9782 e 0,9971. Todos os modelos de pontas de pulverização mostraram-se similares na transposição da palha pelo traçador. As porcentagens médias de transposição foram de 43,00; 18,77; 3,73; 0,78; 0,17; 0,04 e 0,01% para as quantidades de 1, 2, 4, 6, 8, 10 e 12 t ha-1 de palha, respectivamente.Straw crossing by pre- or post-emergence herbicide application determines its effectiveness, dynamics and environmental impact. The trial was carried out at NuPAM - FCA/UNESP, Botucatu Campus, São Paulo

  11. Nozzle flow and atomization characteristics of ethanol blended biodiesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Park, Su Han; Suh, Hyun Kyu; Lee, Chang Sik [Department of Mechanical Engineering, Graduate School of Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul, 133-791 (Korea)

    2010-01-15

    This study was conducted to investigate the injection and atomization characteristics of biodiesel-ethanol blended fuel. The injection performance of biodiesel-ethanol blended fuel was analyzed from the injection rate characteristics using the injection rate measuring system, and the effective injection velocity and effective spray diameter using the nozzle flow model. Moreover, the atomization characteristics, such as local and overall SMD distributions, overall axial velocity and droplet arrival time were analyzed and compared with these from diesel and biodiesel fuels to obtain the atomization characteristics of biodiesel-ethanol blended fuel. It was revealed that ethanol fuel affects the decrease of the peak injection rate and the shortening of the injection delay due to the decrease of fuel properties, such as fuel density and dynamic viscosity. In addition, the ethanol addition improved the atomization performance of biodiesel fuel, because the ethanol blended fuel has a low kinematic viscosity and surface tension, then that has more active interaction with the ambient gas, compared to BD100. (author)

  12. Virtual Vision

    Science.gov (United States)

    Terzopoulos, Demetri; Qureshi, Faisal Z.

    Computer vision and sensor networks researchers are increasingly motivated to investigate complex multi-camera sensing and control issues that arise in the automatic visual surveillance of extensive, highly populated public spaces such as airports and train stations. However, they often encounter serious impediments to deploying and experimenting with large-scale physical camera networks in such real-world environments. We propose an alternative approach called "Virtual Vision", which facilitates this type of research through the virtual reality simulation of populated urban spaces, camera sensor networks, and computer vision on commodity computers. We demonstrate the usefulness of our approach by developing two highly automated surveillance systems comprising passive and active pan/tilt/zoom cameras that are deployed in a virtual train station environment populated by autonomous, lifelike virtual pedestrians. The easily reconfigurable virtual cameras distributed in this environment generate synthetic video feeds that emulate those acquired by real surveillance cameras monitoring public spaces. The novel multi-camera control strategies that we describe enable the cameras to collaborate in persistently observing pedestrians of interest and in acquiring close-up videos of pedestrians in designated areas.

  13. Propagation of temperature disturbances in bounded flows downstream of a nozzle block

    International Nuclear Information System (INIS)

    Krebs, L.

    1979-12-01

    The early detection of cooling disturbances in a fuel element of a sodium cooled reactor is a must for safety reasons. One possibility of achieving this goal is by measuring and analyzing the coolant temperature at the fuel element outlet. Assessment of the potential of this method requires knowledge of the flow phenomena downstream of the fuel element. As a fluid dynamics model of a fuel element a nozzle block is used, the bores of which correspond to the subchannels between the fuel rods. The studies are conducted in water which has kinematic properties comparable to those of sodium. The velocity and temperature fields downstream of the nozzle block are examined for two REYNOLDS numbers. To simulate a disturbed cooling condition, water with a temperature higher by ΔT anti T = 10 K is injected through one subchannel of the nozzle block. At the same time, the volume injected is varied. The central channel and one side channel close to the wall are selected as injection sites. Statisticl analysis of the measured velocity and temperature signals covers the following parameters: Linear averages, intensities, probability densities, spectral power densities, autocorrelation functions, integral turbulence lengths, dissipation lengths, dissipation, skewness and flatness values. On the basis of FOURIER's differential equation of heat conduction a theoretical model is developed to describe both the average temperature field and the intensity field in the flow downstream of the nozzle block. Comparison of measurements and calculations furnishes good agreement and indicates that extrapolation of the model to sodium as a fluid is possible. Supplementary to the measurements and calculations details of the water test rig and the anemometer measuring system used for velocity and temperature measurements are shown in the Appendix. (orig.) 891 GL/orig. 892 KN [de

  14. Real-Time linux dynamic clamp: a fast and flexible way to construct virtual ion channels in living cells.

    Science.gov (United States)

    Dorval, A D; Christini, D J; White, J A

    2001-10-01

    We describe a system for real-time control of biological and other experiments. This device, based around the Real-Time Linux operating system, was tested specifically in the context of dynamic clamping, a demanding real-time task in which a computational system mimics the effects of nonlinear membrane conductances in living cells. The system is fast enough to represent dozens of nonlinear conductances in real time at clock rates well above 10 kHz. Conductances can be represented in deterministic form, or more accurately as discrete collections of stochastically gating ion channels. Tests were performed using a variety of complex models of nonlinear membrane mechanisms in excitable cells, including simulations of spatially extended excitable structures, and multiple interacting cells. Only in extreme cases does the computational load interfere with high-speed "hard" real-time processing (i.e., real-time processing that never falters). Freely available on the worldwide web, this experimental control system combines good performance. immense flexibility, low cost, and reasonable ease of use. It is easily adapted to any task involving real-time control, and excels in particular for applications requiring complex control algorithms that must operate at speeds over 1 kHz.

  15. Virtual Sustainability

    Directory of Open Access Journals (Sweden)

    William Sims Bainbridge

    2010-09-01

    Full Text Available In four ways, massively multiplayer online role-playing games may serve as tools for advancing sustainability goals, and as laboratories for developing alternatives to current social arrangements that have implications for the natural environment. First, by moving conspicuous consumption and other usually costly status competitions into virtual environments, these virtual worlds might reduce the need for physical resources. Second, they provide training that could prepare individuals to be teleworkers, and develop or demonstrate methods for using information technology to replace much transportation technology, notably in commuting. Third, virtual worlds and online games build international cooperation, even blending national cultures, thereby inching us toward not only the world consciousness needed for international agreements about the environment, but also toward non-spatial government that cuts across archaic nationalisms. Finally, realizing the potential social benefits of this new technology may urge us to reconsider a number of traditional societal institutions.

  16. Virtual Tower

    International Nuclear Information System (INIS)

    Wayne, R.A.

    1997-01-01

    The primary responsibility of an intrusion detection system (IDS) operator is to monitor the system, assess alarms, and summon and coordinate the response team when a threat is acknowledged. The tools currently provided to the operator are somewhat limited: monitors must be switched, keystrokes must be entered to call up intrusion sensor data, and communication with the response force must be maintained. The Virtual tower is an operator interface assembled from low-cost commercial-off-the-shelf hardware and software; it enables large amounts of data to be displayed in a virtual manner that provides instant recognition for the operator and increases assessment accuracy in alarm annunciator and control systems. This is accomplished by correlating and fusing the data into a 360-degree visual representation that employs color, auxiliary attributes, video, and directional audio to prompt the operator. The Virtual Tower would be a valuable low-cost enhancement to existing systems

  17. Virtual care

    DEFF Research Database (Denmark)

    Kamp, Annette; Aaløkke Ballegaard, Stinne

    of retrenchment, promising better quality, empowerment of citizens and work that is smarter and more qualified. Through ethnographic field studies we study the introduction of virtual home care in Danish elderly care, focusing on the implications for relational work and care relations. Virtual home care entails...... the performance of specific home care services by means of video conversations rather than physical visits in the citizens’ homes. As scholars within the STS tradition maintain, technologies do not simply replace a human function; they rather transform care work, redistributing tasks between citizens, technology...... point out how issues of trust and surveillance, which are always negotiated in care relations, are in fact accentuated in this kind of virtual care work. Moreover, we stress that the contemporary institutional context, organization and time schedules have a vast impact on the practices developed....

  18. Virtual toolbox

    Science.gov (United States)

    Jacobus, Charles J.; Jacobus, Heidi N.; Mitchell, Brian T.; Riggs, A. J.; Taylor, Mark J.

    1993-04-01

    At least three of the five senses must be fully addressed in a successful virtual reality (VR) system. Sight, sound, and touch are the most critical elements for the creation of the illusion of presence. Since humans depend so much on sight to collect information about their environment, this area has been the focus of much of the prior art in virtual reality, however, it is also crucial that we provide facilities for force, torque, and touch reflection, and sound replay and 3-D localization. In this paper we present a sampling of hardware and software in the virtual environment maker's `toolbox' which can support rapidly building up of customized VR systems. We provide demonstrative examples of how some of the tools work and we speculate about VR applications and future technology needs.

  19. Design and Analyses of High Aspect Ratio Nozzles for Distributed Propulsion Acoustic Measurements

    Science.gov (United States)

    Dippold, Vance F., III

    2016-01-01

    A series of three convergent round-to-rectangular high-aspect ratio nozzles were designed for acoustics measurements. The nozzles have exit area aspect ratios of 8:1, 12:1, and 16:1. With septa inserts, these nozzles will mimic an array of distributed propulsion system nozzles, as found on hybrid wing-body aircraft concepts. Analyses were performed for the three nozzle designs and showed that the flow through the nozzles was free of separated flow and shocks. The exit flow was mostly uniform with the exception of a pair of vortices at each span-wise end of the nozzle.

  20. Virtual polytopes

    International Nuclear Information System (INIS)

    Panina, G Yu; Streinu, I

    2015-01-01

    Originating in diverse branches of mathematics, from polytope algebra and toric varieties to the theory of stressed graphs, virtual polytopes represent a natural algebraic generalization of convex polytopes. Introduced as elements of the Grothendieck group associated to the semigroup of convex polytopes, they admit a variety of geometrizations. The present survey connects the theory of virtual polytopes with other geometrical subjects, describes a series of geometrizations together with relations between them, and gives a selection of applications. Bibliography: 50 titles

  1. Altitude Compensating Nozzle Transonic Performance Flight Demonstration, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Altitude compensating nozzles continue to be of interest for use on future launch vehicle boosters and upper stages because of their higher mission average Isp and...

  2. Design methods of Coanda effect nozzle with two streams

    Directory of Open Access Journals (Sweden)

    Michele TRANCOSSI

    2014-03-01

    Full Text Available This paper continues recent research of the authors about the ACHEON Coanda effect two streams nozzle. This nozzle aims to produce an effective deflection of a propulsive jet with a correspondent deviation of the thrust vector in a 2D plane. On the basis of a previously published mathematical model, based on integral equations, it tries to produce an effective design guideline, which can be adopted for design activities of the nozzle for aeronautic propulsion. The presented model allows defining a governing method for this innovative two stream synthetic jet nozzle. The uncertainness level of the model are discussed and novel aircraft architectures based on it are presented. A CFD validation campaign is produced focusing on validating the model and the designs produced.

  3. Characteristics of Multiplexed Grooved Nozzles for High Flow Rate Electrospray

    International Nuclear Information System (INIS)

    Kim, Kyoung Tae; Kim, Woo Jin; Kim, Sang Soo

    2007-01-01

    The electrospray operated in the cone-jet mode can generate highly charged micro droplets in an almost uniform size at flow rates. Therefore, the multiplexing system which can retain the characteristics of the cone-jet mode is inevitable for the electrospray application. This experiment reports the multiplexed grooved nozzle system with the extractor. The effects of the grooves and the extractor on the performance of the electrospray were evaluated through experiments. Using the grooved nozzle, the stable cone-jet mode can be achieved at the each groove in the grooved mode. Furthermore, the number of nozzles per unit area is increased by the extractor. The multiplexing density is 12 jets per cm 2 at 30 mm distance from the nozzle tip to the ground plate. The multiplexing system for the high flow rate electrospray is realized with the extractor which can diminish the space charge effect without sacrificing characteristics of the cone-jet mode

  4. Characterization of Plasmadynamics within a Small Magnetic Nozzle

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal presents an experimental and theoretical research project intended to develop a more refined model of the underlying physics of magnetic nozzles. The...

  5. Separation of a light additive gas by separation nozzle cascades

    International Nuclear Information System (INIS)

    Becker, E.; Bley, P.; Ehrfeld, W.; Fritz, W.; Steinhaus, H.

    1984-01-01

    Double-turn separation nozzles, in comparison with single-turn separation nozzles, offer much greater advantages in the separation of UF6 and H2 than in the separation of the U isotopes, for which the double-turn separation nozzles were conceived. By using a double-turn separation-nozzle stage as a preseparation stage in combination with a low-temperature separator, one can reduce the ratio of the buffer input stream to the product stream, in contrast with the solution used up to this time, with only a slight increase in cost of about an order of magnitude. The control program in the case of return feeding of the UF6 from the buffer and the danger of production losses connected with it are thereby correspondingly diminished. An example is given of the enrichment of 235U using the title facility with UF6. (orig./PW)

  6. Optimal Thrust Vectoring for an Annular Aerospike Nozzle, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Recent success of an annular aerospike flight test by NASA Dryden has prompted keen interest in providing thrust vector capability to the annular aerospike nozzle...

  7. Effects of injection nozzle exit width on rotating detonation engine

    Science.gov (United States)

    Sun, Jian; Zhou, Jin; Liu, Shijie; Lin, Zhiyong; Cai, Jianhua

    2017-11-01

    A series of numerical simulations of RDE modeling real injection nozzles with different exit widths are performed in this paper. The effects of nozzle exit width on chamber inlet state, plenum flowfield and detonation propagation are analyzed. The results are compared with that using an ideal injection model. Although the ideal injection model is a good approximation method to model RDE inlet, the two-dimensional effects of real nozzles are ignored in the ideal injection model so that some complicated phenomena such as the reflected waves caused by the nozzle walls and the reversed flow into the nozzles can not be modeled accurately. Additionally, the ideal injection model overpredicts the block ratio. In all the cases that stabilize at one-wave mode, the block ratio increases as the nozzle exit width gets smaller. The dual-wave mode case also has a relatively high block ratio. A pressure oscillation in the plenum with the same main frequency with the rotating detonation wave is observed. A parameter σ is applied to describe the non-uniformity in the plenum. σ increases as the nozzle exit width gets larger. Under some condition, the heat release on the interface of fresh premixed gas layer and detonation products can be strong enough to induce a new detonation wave. A spontaneous mode-transition process is observed for the smallest exit width case. Due to the detonation products existing in the premixed gas layer before the detonation wave, the detonation wave will propagate through reactants and products alternately, and therefore its strength will vary with time, especially near the chamber inlet. This tendency gets weaker as the injection nozzle exit width increases.

  8. Study of Liquid Breakup Process in Solid Rocket Motor Nozzle

    Science.gov (United States)

    2016-02-16

    Laboratory, Edwards, CA Abstract In a solid rocket motor (SRM), when the aluminum based propellant combusts, the fuel is oxidized into alumina (Al2O3...34Chemical Erosion of Refractory-Metal Nozzle Inserts in Solid - Propellant Rocket Motors," J. Propulsion and Power, Vol. 25, no.1,, 2009. [4] E. Y. Wong...34 Solid Rocket Nozzle Design Summary," in 4th AIAA Propulsion Joint Specialist Conference, Cleveland, OH, 1968. [5] Nayfeh, A. H.; Saric, W. S

  9. Virtual Reality Hysteroscopy

    Science.gov (United States)

    Levy

    1996-08-01

    New interactive computer technologies are having a significant influence on medical education, training, and practice. The newest innovation in computer technology, virtual reality, allows an individual to be immersed in a dynamic computer-generated, three-dimensional environment and can provide realistic simulations of surgical procedures. A new virtual reality hysteroscope passes through a sensing device that synchronizes movements with a three-dimensional model of a uterus. Force feedback is incorporated into this model, so the user actually experiences the collision of an instrument against the uterine wall or the sensation of the resistance or drag of a resectoscope as it cuts through a myoma in a virtual environment. A variety of intrauterine pathologies and procedures are simulated, including hyperplasia, cancer, resection of a uterine septum, polyp, or myoma, and endometrial ablation. This technology will be incorporated into comprehensive training programs that will objectively assess hand-eye coordination and procedural skills. It is possible that by incorporating virtual reality into hysteroscopic training programs, a decrease in the learning curve and the number of complications presently associated with the procedures may be realized. Prospective studies are required to assess these potential benefits.

  10. Stresses in reactor pressure vessel nozzles -- Calculations and experiments

    International Nuclear Information System (INIS)

    Brumovsky, M.; Polachova, H.

    1995-01-01

    Reactor pressure vessel nozzles are characterized by a high stress concentration which is critical in their low-cycle fatigue assessment. Program of experimental verification of stress/strain field distribution during elastic-plastic loading of a reactor pressure vessel WWER-1000 primary nozzle model in scale 1:3 is presented. While primary nozzle has an ID equal to 850 mm, the model nozzle has ID equal to 280 mm, and was made from 15Kh2NMFA type of steel. Calculation using analytical methods was performed. Comparison of results using different analytical methods -- Neuber's, Hardrath-Ohman's as well as equivalent energy ones, used in different reactor Codes -- is shown. Experimental verification was carried out on model nozzles loaded statically as well as by repeated loading, both in elastic-plastic region. Strain fields were measured using high-strain gauges, which were located in different distances from center of nozzle radius, thus different stress concentration values were reached. Comparison of calculated and experimental data are shown and compared

  11. Reverse flow through a large scale multichannel nozzle

    International Nuclear Information System (INIS)

    Duignan, M.R.; Nash, C.A.

    1992-01-01

    A database was developed for the flow of water through a scaled nozzle of a Savannah River Site reactor inlet plenum. The water flow in the nozzle was such that it ranged from stratified to water solid conditions. Data on the entry of air into the nozzle and plenum as a function of water flow are of interest in loss-of-coolant studies. The scaled nozzle was 44 cm long, had an entrance diameter of 95 mm, an exit opening of 58 mm x 356 mm, and an exit hydraulic diameter approximately equal to that of the inlet. Within the nozzle were three flow-straightening vanes which divided the flow path into four channels. All data were taken at steady-state and isothermal (300 K ± 1.5 K) conditions. During the reverse flow of water through the nozzle the point at which air begins to enter was predicted within 90% by a critical weir-flow calculation. The point of air entry into the plenum itself was found to be a function of flow conditions

  12. Remedial measures for nozzles susceptible to PWSCC

    International Nuclear Information System (INIS)

    Hunt, E.S.

    1992-01-01

    Remediating primary water stress corrosion cracking (PWSCC) is usually directed towards one of the three causes of PWSCC, material susceptiability, tensile stress, and an aggressive environment. The most practical remedial measures for primary loop penetration of PWSCC are considered to be shot peening, electropolishing, stress relief, and electroplating. The objective of shot peening is to induce a comprehensive residual stress on surfaces of Inconel 600 which are exposed to aggressive environments. Experience with steam generator tubes has shown this method is most effective if applied before PWSCC occurs. If it has already occurred, then the peening may retard but not arrest the corrosion. Electroplating consists of plating the inside surface of the Inconel 600 penetration with pure nickel. One of the major problems with this method was in obtaining surfaces uniformly free from pitting and roughness. Electropolishing for PWSCC remediation would remove the high strength cold work surfaces on the insides of nozzles which are produced by mechanical working e.g. machining. 5 figs

  13. Jet Noise Scaling in Dual Stream Nozzles

    Science.gov (United States)

    Khavaran, Abbas; Bridges, James

    2010-01-01

    Power spectral laws in dual stream jets are studied by considering such flows a superposition of appropriate single-stream coaxial jets. Noise generation in each mixing region is modeled using spectral power laws developed earlier for single stream jets as a function of jet temperature and observer angle. Similarity arguments indicate that jet noise in dual stream nozzles may be considered as a composite of four single stream jets representing primary/secondary, secondary/ambient, transition, and fully mixed zones. Frequency filter are designed to highlight spectral contribution from each jet. Predictions are provided at an area ratio of 2.0--bypass ratio from 0.80 to 3.40, and are compared with measurements within a wide range of velocity and temperature ratios. These models suggest that the low frequency noise in unheated jets is dominated by the fully mixed region at all velocity ratios, while the high frequency noise is dominated by the secondary when the velocity ratio is larger than 0.80. Transition and fully mixed jets equally dominate the low frequency noise in heated jets. At velocity ratios less than 0.50, the high frequency noise from primary/bypass becomes a significant contributing factor similar to that in the secondary/ambient jet.

  14. Virtual Savannah

    DEFF Research Database (Denmark)

    Rodil, Kasper; Eskildsen, Søren; Rehm, Matthias

    2012-01-01

    Virtual Savannah is constructed to visualize parts of a curriculum, which the educational service at Aalborg Zoo has difficulties in teaching children visiting the zoo. It contains rich media like audio, text, video and picture galleries about African ecology, but some of this episodic information...

  15. Virtual Reality.

    Science.gov (United States)

    Newby, Gregory B.

    1993-01-01

    Discusses the current state of the art in virtual reality (VR), its historical background, and future possibilities. Highlights include applications in medicine, art and entertainment, science, business, and telerobotics; and VR for information science, including graphical display of bibliographic data, libraries and books, and cyberspace.…

  16. Virtualize Me!

    Science.gov (United States)

    Waters, John K.

    2009-01-01

    John Abdelmalak, director of technology for the School District of the Chathams, was pretty sure it was time to jump on the virtualization bandwagon last year when he invited Dell to conduct a readiness assessment of his district's servers. When he saw just how little of their capacity was being used, he lost all doubt. Abdelmalak is one of many…

  17. Virtual Classroom

    DEFF Research Database (Denmark)

    Christensen, Ove

    2013-01-01

    In the Scandinavian countries: Sweden, Norway and Denmark, the project GNU (Grænseoverskridende Nordisk Undervisning, i.e. Transnational Nordic Teaching) is experimenting with ways of conducting teaching across the borders in the elementary schools. The cloud classes are organised with one class...... and benefits in regard to learning and pedagogy with virtual classroom....

  18. Virtual landmarks

    Science.gov (United States)

    Tong, Yubing; Udupa, Jayaram K.; Odhner, Dewey; Bai, Peirui; Torigian, Drew A.

    2017-03-01

    Much has been published on finding landmarks on object surfaces in the context of shape modeling. While this is still an open problem, many of the challenges of past approaches can be overcome by removing the restriction that landmarks must be on the object surface. The virtual landmarks we propose may reside inside, on the boundary of, or outside the object and are tethered to the object. Our solution is straightforward, simple, and recursive in nature, proceeding from global features initially to local features in later levels to detect landmarks. Principal component analysis (PCA) is used as an engine to recursively subdivide the object region. The object itself may be represented in binary or fuzzy form or with gray values. The method is illustrated in 3D space (although it generalizes readily to spaces of any dimensionality) on four objects (liver, trachea and bronchi, and outer boundaries of left and right lungs along pleura) derived from 5 patient computed tomography (CT) image data sets of the thorax and abdomen. The virtual landmark identification approach seems to work well on different structures in different subjects and seems to detect landmarks that are homologously located in different samples of the same object. The approach guarantees that virtual landmarks are invariant to translation, scaling, and rotation of the object/image. Landmarking techniques are fundamental for many computer vision and image processing applications, and we are currently exploring the use virtual landmarks in automatic anatomy recognition and object analytics.

  19. Insight into the intermolecular recognition mechanism between Keap1 and IKKβ combining homology modelling, protein-protein docking, molecular dynamics simulations and virtual alanine mutation.

    Directory of Open Access Journals (Sweden)

    Zheng-Yu Jiang

    Full Text Available Degradation of certain proteins through the ubiquitin-proteasome pathway is a common strategy taken by the key modulators responsible for stress responses. Kelch-like ECH-associated protein-1(Keap1, a substrate adaptor component of the Cullin3 (Cul3-based ubiquitin E3 ligase complex, mediates the ubiquitination of two key modulators, NF-E2-related factor 2 (Nrf2 and IκB kinase β (IKKβ, which are involved in the redox control of gene transcription. However, compared to the Keap1-Nrf2 protein-protein interaction (PPI, the intermolecular recognition mechanism of Keap1 and IKKβ has been poorly investigated. In order to explore the binding pattern between Keap1 and IKKβ, the PPI model of Keap1 and IKKβ was investigated. The structure of human IKKβ was constructed by means of the homology modeling method and using reported crystal structure of Xenopus laevis IKKβ as the template. A protein-protein docking method was applied to develop the Keap1-IKKβ complex model. After the refinement and visual analysis of docked proteins, the chosen pose was further optimized through molecular dynamics simulations. The resulting structure was utilized to conduct the virtual alanine mutation for the exploration of hot-spots significant for the intermolecular interaction. Overall, our results provided structural insights into the PPI model of Keap1-IKKβ and suggest that the substrate specificity of Keap1 depend on the interaction with the key tyrosines, namely Tyr525, Tyr574 and Tyr334. The study presented in the current project may be useful to design molecules that selectively modulate Keap1. The selective recognition mechanism of Keap1 with IKKβ or Nrf2 will be helpful to further know the crosstalk between NF-κB and Nrf2 signaling.

  20. Investigation of vortex clouds and droplet sizes in heated water spray patterns generated by axisymmetric full cone nozzles.

    Science.gov (United States)

    Naz, M Y; Sulaiman, S A; Ariwahjoedi, B; Ku Shaari, Ku Zilati

    2013-01-01

    The hot water sprays are an important part of many industrial processes, where the detailed knowledge of physical phenomena involved in jet transportation, interaction, secondary breakup, evaporation, and coalescence of droplets is important to reach more efficient processes. The objective of the work was to study the water spray jet breakup dynamics, vortex cloud formation, and droplet size distribution under varying temperature and load pressure. Using a high speed camera, the spray patterns generated by axisymmetric full cone nozzles were visualized as a function water temperature and load pressure. The image analysis confirmed that the spray cone angle and width do not vary significantly with increasing Reynolds and Weber numbers at early injection phases leading to increased macroscopic spray propagation. The formation and decay of semitorus like vortex clouds were also noticed in spray structures generated at near water boiling point temperature. For the nozzle with smallest orifice diameter (1.19 mm), these vortex clouds were very clear at 90°C heating temperature and 1 bar water load pressure. In addition, the sauter mean diameter (SMD) of the spray droplets was also measured by using Phase Doppler Anemometry (PDA) at different locations downstream of the nozzle exit. It was noticed that SMD varies slightly w.r.t. position when measured at room temperature whereas at higher temperature values, it became almost constant at distance of 55 mm downstream of the nozzle exit.

  1. Investigation of Vortex Clouds and Droplet Sizes in Heated Water Spray Patterns Generated by Axisymmetric Full Cone Nozzles

    Directory of Open Access Journals (Sweden)

    M. Y. Naz

    2013-01-01

    Full Text Available The hot water sprays are an important part of many industrial processes, where the detailed knowledge of physical phenomena involved in jet transportation, interaction, secondary breakup, evaporation, and coalescence of droplets is important to reach more efficient processes. The objective of the work was to study the water spray jet breakup dynamics, vortex cloud formation, and droplet size distribution under varying temperature and load pressure. Using a high speed camera, the spray patterns generated by axisymmetric full cone nozzles were visualized as a function water temperature and load pressure. The image analysis confirmed that the spray cone angle and width do not vary significantly with increasing Reynolds and Weber numbers at early injection phases leading to increased macroscopic spray propagation. The formation and decay of semitorus like vortex clouds were also noticed in spray structures generated at near water boiling point temperature. For the nozzle with smallest orifice diameter (1.19 mm, these vortex clouds were very clear at 90°C heating temperature and 1 bar water load pressure. In addition, the sauter mean diameter (SMD of the spray droplets was also measured by using Phase Doppler Anemometry (PDA at different locations downstream of the nozzle exit. It was noticed that SMD varies slightly w.r.t. position when measured at room temperature whereas at higher temperature values, it became almost constant at distance of 55 mm downstream of the nozzle exit.

  2. Personal Virtual Libraries

    Science.gov (United States)

    Pappas, Marjorie L.

    2004-01-01

    Virtual libraries are becoming more and more common. Most states have a virtual library. A growing number of public libraries have a virtual presence on the Web. Virtual libraries are a growing addition to school library media collections. The next logical step would be personal virtual libraries. A personal virtual library (PVL) is a collection…

  3. Multiphysics Simulation of Welding-Arc and Nozzle-Arc System: Mathematical-Model, Solution-Methodology and Validation

    Science.gov (United States)

    Pawar, Sumedh; Sharma, Atul

    2018-01-01

    This work presents mathematical model and solution methodology for a multiphysics engineering problem on arc formation during welding and inside a nozzle. A general-purpose commercial CFD solver ANSYS FLUENT 13.0.0 is used in this work. Arc formation involves strongly coupled gas dynamics and electro-dynamics, simulated by solution of coupled Navier-Stoke equations, Maxwell's equations and radiation heat-transfer equation. Validation of the present numerical methodology is demonstrated with an excellent agreement with the published results. The developed mathematical model and the user defined functions (UDFs) are independent of the geometry and are applicable to any system that involves arc-formation, in 2D axisymmetric coordinates system. The high-pressure flow of SF6 gas in the nozzle-arc system resembles arc chamber of SF6 gas circuit breaker; thus, this methodology can be extended to simulate arcing phenomenon during current interruption.

  4. Virtual Business Collaboration Conceptual Knowledge Model (VBCKM)

    OpenAIRE

    Morcous Massoud Yassa; Fatama A Omara; Hesham A Hassan

    2012-01-01

    Within the context of virtual business collaboration modeling, many pervious works have been accepted to consider some essential virtual business collaborative models. A practical dynamic virtual organization may be a combination of those models and some other elemental features with some modifications to meet the business opportunity requirements. Therefore, some guidelines and rules are needed to help in constructing a practical collaboration model. This work aims to determine the essential...

  5. Software for virtual accelerator designing

    International Nuclear Information System (INIS)

    Kulabukhova, N.; Ivanov, A.; Korkhov, V.; Lazarev, A.

    2012-01-01

    The article discusses appropriate technologies for software implementation of the Virtual Accelerator. The Virtual Accelerator is considered as a set of services and tools enabling transparent execution of computational software for modeling beam dynamics in accelerators on distributed computing resources. Distributed storage and information processing facilities utilized by the Virtual Accelerator make use of the Service-Oriented Architecture (SOA) according to a cloud computing paradigm. Control system tool-kits (such as EPICS, TANGO), computing modules (including high-performance computing), realization of the GUI with existing frameworks and visualization of the data are discussed in the paper. The presented research consists of software analysis for realization of interaction between all levels of the Virtual Accelerator and some samples of middle-ware implementation. A set of the servers and clusters at St.-Petersburg State University form the infrastructure of the computing environment for Virtual Accelerator design. Usage of component-oriented technology for realization of Virtual Accelerator levels interaction is proposed. The article concludes with an overview and substantiation of a choice of technologies that will be used for design and implementation of the Virtual Accelerator. (authors)

  6. The Herbert Virtual Museum

    Directory of Open Access Journals (Sweden)

    Panagiotis Petridis

    2013-01-01

    Full Text Available In recent years, virtual reality and augmented reality have emerged as areas of extreme interest as unique methods for visualising and interacting with digital museum artefacts in a different context, for example, as a virtual museum or exhibition, particularly over the Internet. Modern cultural heritage exhibitions have evolved from static to dynamic exhibitions and challenging explorations. This paper presents two different applications developed for the Herbert Museum and Art Gallery that make the user’s experience more immersive, engaging, and interactive. The first application utilizes mobile phone devices in order to enrich the visitors experience in the museum, and the second application is a serious game for cultural heritage and in particular for museum environments focusing on the younger visitors.

  7. Elliptic nozzle aspect ratio effect on controlled jet propagation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S M Aravindh; Rathakrishnan, Ethirajan, E-mail: aravinds@iitk.ac.in, E-mail: erath@iitk.ac.in [Department of Aerospace Engineering, Indian Institute of Technology, Kanpur (India)

    2017-04-15

    The present study deals with the control of a Mach 2 elliptic jet from a convergent–divergent elliptic nozzle of aspect ratio 4 using tabs at the nozzle exit. The experiments were carried out for rectangular and triangular tabs of the same blockage, placed along the major and minor axes of the nozzle exit, at different levels of nozzle expansion. The triangular tabs along the minor axis promoted superior mixing compared to the other controlled jets and caused substantial core length reduction at all the nozzle pressure ratios studied. The rectangular tabs along the minor axis caused core length reduction at all pressure ratios, but the values were minimal compared to that of triangular tabs along the minor axis. For all the test conditions, the mixing promotion caused by tabs along the major axis was inferior to that of tabs along the minor axis. The waves present in the core of controlled jets were visualized using a shadowgraph. Comparison of the present results with the results of a controlled Mach 2 elliptic jet of aspect ratio 2 (Aravindh Kumar and Sathakrishnan 2016 J. Propulsion Power 32 121–33, Aravindh Kumar and Rathakrishnan 2016 J. Aerospace Eng. at press (doi:10.1177/0954410016652921)) show that for all levels of expansion, the mixing effectiveness of triangular tabs along the minor axis of an aspect ratio 4 nozzle is better than rectangular or triangular tabs along the minor axis of an aspect ratio 2 nozzle. (paper)

  8. Elliptic nozzle aspect ratio effect on controlled jet propagation

    International Nuclear Information System (INIS)

    Kumar, S M Aravindh; Rathakrishnan, Ethirajan

    2017-01-01

    The present study deals with the control of a Mach 2 elliptic jet from a convergent–divergent elliptic nozzle of aspect ratio 4 using tabs at the nozzle exit. The experiments were carried out for rectangular and triangular tabs of the same blockage, placed along the major and minor axes of the nozzle exit, at different levels of nozzle expansion. The triangular tabs along the minor axis promoted superior mixing compared to the other controlled jets and caused substantial core length reduction at all the nozzle pressure ratios studied. The rectangular tabs along the minor axis caused core length reduction at all pressure ratios, but the values were minimal compared to that of triangular tabs along the minor axis. For all the test conditions, the mixing promotion caused by tabs along the major axis was inferior to that of tabs along the minor axis. The waves present in the core of controlled jets were visualized using a shadowgraph. Comparison of the present results with the results of a controlled Mach 2 elliptic jet of aspect ratio 2 (Aravindh Kumar and Sathakrishnan 2016 J. Propulsion Power 32 121–33, Aravindh Kumar and Rathakrishnan 2016 J. Aerospace Eng. at press (doi:10.1177/0954410016652921)) show that for all levels of expansion, the mixing effectiveness of triangular tabs along the minor axis of an aspect ratio 4 nozzle is better than rectangular or triangular tabs along the minor axis of an aspect ratio 2 nozzle. (paper)

  9. Evolving Capabilities for Virtual Globes

    Science.gov (United States)

    Glennon, A.

    2006-12-01

    Though thin-client spatial visualization software like Google Earth and NASA World Wind enjoy widespread popularity, a common criticism is their general lack of analytical functionality. This concern, however, is rapidly being addressed; standard and advanced geographic information system (GIS) capabilities are being developed for virtual globes--though not centralized into a single implementation or software package. The innovation is mostly originating from the user community. Three such capabilities relevant to the earth science, education, and emergency management communities are modeling dynamic spatial phenomena, real-time data collection and visualization, and multi-input collaborative databases. Modeling dynamic spatial phenomena has been facilitated through joining virtual globe geometry definitions--like KML--to relational databases. Real-time data collection uses short scripts to transform user-contributed data into a format usable by virtual globe software. Similarly, collaborative data collection for virtual globes has become possible by dynamically referencing online, multi-person spreadsheets. Examples of these functions include mapping flows within a karst watershed, real-time disaster assessment and visualization, and a collaborative geyser eruption spatial decision support system. Virtual globe applications will continue to evolve further analytical capabilities, more temporal data handling, and from nano to intergalactic scales. This progression opens education and research avenues in all scientific disciplines.

  10. Fluid Structure Interaction in a Cold Flow Test and Transient CFD Analysis of Out-of-Round Nozzles

    Science.gov (United States)

    Ruf, Joseph; Brown, Andrew; McDaniels, David; Wang, Ten-See

    2010-01-01

    This viewgraph presentation describes two nozzle fluid flow interactions. They include: 1) Cold flow nozzle tests with fluid-structure interaction at nozzle separated flow; and 2) CFD analysis for nozzle flow and side loads of nozzle extensions with various out-of-round cases.

  11. Sensorial Virtualization: Coupling Gaming and Virtual Environment

    NARCIS (Netherlands)

    Garbaya, S.; Miraoui, C.; Wendrich, Robert E.; Lim, T.; Stanescu, I.A.; Hauge, J.B.

    2014-01-01

    Virtual reality and virtualization are currently used to design complex systems and demonstrate that they represent the functionalities of real systems. However, the design refinement of the virtual environment (VE) and distributed virtual environment (DVE) are still time consuming and costly, as it

  12. Virtual Presenters: Towards Interactive Virtual Presentations

    NARCIS (Netherlands)

    Nijholt, Antinus; Cappellini, V.; Hemsley, J.

    2005-01-01

    We discuss having virtual presenters in virtual environments that present information to visitors of these environments. Some current research is surveyed and we will look in particular to our research in the context of a virtual meeting room where a virtual presenter uses speech, gestures, pointing

  13. Virtual materiality

    DEFF Research Database (Denmark)

    Søndergaard, Dorte Marie

    as their recounts of them and 3. the consumption of other media products like movies, reality shows, YouTube videos etc. How do we theorize ‘matter’ in such dimensions? Is it possible to theorize virtual matter as ‘materiality’ in line with any real life materiality? What conceptualization will help us understand......? These questions become crucial when we follow matter in and across real life, virtual experience, recounted imagery, night dreams, YouTube videos and even further. Some may already have recognized Phillip’s skeleton army as a transport/transformation from Lord of the Rings, DVD 3, the army which Aragon calls out....... Butler, J. (1993) Bodies that Matter. On the Discursive Limits of “Sex”. London: Routledge. Durkin, K. et al. (1998) Children, Media and Agression. Current Research in Australia and New Zealand. In: Carlson, U. & von Feilitzen, C. (red): Children and Media Violence. Yearbook from the UNESCO International...

  14. The Development of a Virtual Dinosaur Museum

    Science.gov (United States)

    Tarng, Wernhuar; Liou, Hsin-Hun

    2007-01-01

    The objective of this article is to study the network and virtual reality technologies for developing a virtual dinosaur museum, which provides a Web-learning environment for students of all ages and the general public to know more about dinosaurs. We first investigate the method for building the 3D dynamic models of dinosaurs, and then describe…

  15. Research on Development of Turbo-generator with Partial Admission Nozzle for Supercritical CO{sub 2} Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Junhyun; Shin, Hyung-ki; Lee, Gilbong; Baik, Young-Jin [Korea Institute of Energy Research (KIER), Daejeon (Korea, Republic of); Kang, Young-Seok [Korea Aerospace Research Institute (KARI), Daejeon (Korea, Republic of); Kim, Byunghui [InGineers Ltd., Seoul (Korea, Republic of)

    2017-04-15

    A Sub-kWe small-scale experimental test loop was manufactured to investigate characteristics of the supercritical carbon dioxide power cycle. A high-speed turbo-generator was also designed and manufactured. The designed rotational speed of this turbo-generator was 200,000 rpm. Because of the low expansion ratio through the turbine and low mass flowrate, the rotational speed of the turbo-generator was high. Therefore, it was difficult to select the rotating parts and design the turbine wheel, axial force balance and rotor dynamics in the lab-scale experimental test loop. Using only one channel of the nozzle, the partial admission method was adapted to reduce the rotational speed of the rotor. This was the world’s first approach to the supercritical carbon dioxide turbo-generator. A cold-run test using nitrogen gas under an atmospheric condition was conducted to observe the effect of the partial admission nozzle on the rotor dynamics. The vibration level of the rotor was obtained using a gap sensor, and the results showed that the effect of the partial admission nozzle on the rotor dynamics was allowable.

  16. Virtual anthropology.

    Science.gov (United States)

    Weber, Gerhard W

    2015-02-01

    Comparative morphology, dealing with the diversity of form and shape, and functional morphology, the study of the relationship between the structure and the function of an organism's parts, are both important subdisciplines in biological research. Virtual anthropology (VA) contributes to comparative morphology by taking advantage of technological innovations, and it also offers new opportunities for functional analyses. It exploits digital technologies and pools experts from different domains such as anthropology, primatology, medicine, paleontology, mathematics, statistics, computer science, and engineering. VA as a technical term was coined in the late 1990s from the perspective of anthropologists with the intent of being mostly applied to biological questions concerning recent and fossil hominoids. More generally, however, there are advanced methods to study shape and size or to manipulate data digitally suitable for application to all kinds of primates, mammals, other vertebrates, and invertebrates or to issues regarding plants, tools, or other objects. In this sense, we could also call the field "virtual morphology." The approach yields permanently available virtual copies of specimens and data that comprehensively quantify geometry, including previously neglected anatomical regions. It applies advanced statistical methods, supports the reconstruction of specimens based on reproducible manipulations, and promotes the acquisition of larger samples by data sharing via electronic archives. Finally, it can help identify new, hidden traits, which is particularly important in paleoanthropology, where the scarcity of material demands extracting information from fragmentary remains. This contribution presents a current view of the six main work steps of VA: digitize, expose, compare, reconstruct, materialize, and share. The VA machinery has also been successfully used in biomechanical studies which simulate the stress and strains appearing in structures. Although

  17. Virtual automation.

    Science.gov (United States)

    Casis, E; Garrido, A; Uranga, B; Vives, A; Zufiaurre, C

    2001-01-01

    Total laboratory automation (TLA) can be substituted in mid-size laboratories by a computer sample workflow control (virtual automation). Such a solution has been implemented in our laboratory using PSM, software developed in cooperation with Roche Diagnostics (Barcelona, Spain), to this purpose. This software is connected to the online analyzers and to the laboratory information system and is able to control and direct the samples working as an intermediate station. The only difference with TLA is the replacement of transport belts by personnel of the laboratory. The implementation of this virtual automation system has allowed us the achievement of the main advantages of TLA: workload increase (64%) with reduction in the cost per test (43%), significant reduction in the number of biochemistry primary tubes (from 8 to 2), less aliquoting (from 600 to 100 samples/day), automation of functional testing, drastic reduction of preanalytical errors (from 11.7 to 0.4% of the tubes) and better total response time for both inpatients (from up to 48 hours to up to 4 hours) and outpatients (from up to 10 days to up to 48 hours). As an additional advantage, virtual automation could be implemented without hardware investment and significant headcount reduction (15% in our lab).

  18. Virtual Cystoscopy

    International Nuclear Information System (INIS)

    Mejia Restrepo, Jorge; Aldana S, Natalia; Munoz Sierra, Juan; Lopez Amaya, Juan

    2011-01-01

    Introduction: virtual cystoscopy is a minimally invasive procedure that facilitates the evaluation of the urinary tract, allowing intraluminal navigation through the urinary tract structures on the basis of CT imaging reconstructions. it allows detection of various pathologies of the system, through high-sensitivity, three-dimensional lesion visualization with some advantages over conventional cystoscopy. Objective: to describe the technique used for virtual cystoscopy at our institution,and present some representative cases. Materials and methods: We describe the main indications, advantages and limitations of the method, followed by a description of the technique used in our institution, and finally, we present five representative cases of bladder and urethral pathology. Conclusion: virtual cystoscopy is a sensitive technique for the diagnosis of bladder tumors, even those smaller than 5mm. it is the preferred method in patients who have contraindications for conventional cystoscopy, such as prostate hyperplasia, urethral stenoses and active haematuria.it is less invasive and has a lower complication rate when compared with conventional cystoscopy. It has limited use in the assessment of the mucosa and of small, flat lesions.

  19. Critical flashing flows in nozzles with subcooled inlet conditions

    International Nuclear Information System (INIS)

    Abuaf, N.; Jones, O.C. Jr.; Wu, B.J.C.

    1983-01-01

    Examination of a large number of experiments dealing with flashing flows in converging and converging-diverging nozzles reveals that knowledge of the flashing inception point is the key to the prediction of critical flow rates. An extension of the static flashing inception correlation of Jones [16] and Alamgir and Lienhard [17] to flowing systems has allowed the determination of the location of flashing inception in nozzle flows with subcooled inlet conditions. It is shown that in all the experiments examined with subcooled inlet regardless of the degree of inlet subcooling, flashing inception invariably occurred very close to the throat. A correlation is given to predict flashing inception in both pipes and nozzles which matches all data available, but is lacking verification in intermediate nozzle geometries where turbulence may be important. A consequence of this behavior is that the critical mass flux may be correlated to the pressure difference between the nozzle inlet and flashing inception, through a single phase liquid discharge coefficient and an accurate prediction of the flashing inception pressure at the throat. Comparison with the available experiments indicate that the predicted mass fluxes are within 5 percent of the measurements

  20. Thermal-Hydraulic Performance of Scrubbing Nozzle Used for CFVS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun Chul; Lee, Doo Yong; Jung, Woo Young; Lee, Jong Chan; Kim, Gyu Tae [FNC TECH, Yongin (Korea, Republic of)

    2016-05-15

    A Containment Filtered Venting System (CFVS) is the most interested device to mitigate a threat against containment integrity under the severe accident of nuclear power plant by venting with the filtration of the fission products. FNC technology and partners have been developed the self-priming scrubbing nozzle used for the CFVS which is based on the venturi effect. The thermal-hydraulic performances such as passive scrubbing water suction as well as pressure drop across the nozzle have been tested under various thermal-hydraulic conditions. The two types of test section have been built for testing the thermal-hydraulic performance of the self-priming scrubbing nozzle. Through the visualization loop, the liquid suction performance through the slit, pressure drop across the nozzle are measured. The passive water suction flow through the suction slit at the throat is important parameter to define the scrubbing performance of the self-priming scrubbing nozzle. The water suction flow is increased with the increase of the overhead water level at the same inlet gas flow. It is not so much changed with the change of inlet gas flow at the overhead water level.

  1. Shock unsteadiness in a thrust optimized parabolic nozzle

    Science.gov (United States)

    Verma, S. B.

    2009-07-01

    This paper discusses the nature of shock unsteadiness, in an overexpanded thrust optimized parabolic nozzle, prevalent in various flow separation modes experienced during start up {(δ P0 /δ t > 0)} and shut down {(δ P0/δ t The results are based on simultaneously acquired data from real-time wall pressure measurements using Kulite pressure transducers, high-speed schlieren (2 kHz) of the exhaust flow-field and from strain-gauges installed on the nozzle bending tube. Shock unsteadiness in the separation region is seen to increase significantly just before the onset of each flow transition, even during steady nozzle operation. The intensity of this measure ( rms level) is seen to be strongly influenced by relative locations of normal and overexpansion shock, the decrease in radial size of re-circulation zone in the back-flow region, and finally, the local nozzle wall contour. During restricted shock separation, the pressure fluctuations in separation region exhibit periodic characteristics rather than the usually observed characteristics of intermittent separation. The possible physical mechanisms responsible for the generation of flow unsteadiness in various separation modes are discussed. The results are from an experimental study conducted in P6.2 cold-gas subscale test facility using a thrust optimized parabolic nozzle of area-ratio 30.

  2. Extending cavitation models to subcooled and superheated nozzle flow

    International Nuclear Information System (INIS)

    Schmidt, D.P.; Corradini, M.L.

    1997-01-01

    Existing models for cavitating flow are extended to apply to discharge of hot liquid through nozzles. Two types of models are considered: an analytical model and a two-dimensional numerical model. The analytical model of cavitating nozzle flow is reviewed and shown to apply to critical nozzle flow where the liquid is subcooled with respect to the downstream conditions. In this model the liquid and vapor are assumed to be in thermodynamic equilibrium. The success of this analytical model suggests that hydrodynamic effects dominate the subcooled nozzle flow. For more detailed predictions an existing multi-dimensional cavitation model based on hydrodynamic non-equilibrium is modified to apply to discharge of hot liquid. Non-equilibrium rate data from experimental measurements are used to close the equations. The governing equations are solved numerically in time and in two spatial dimensions on a boundary fitted grid. Results are shown for flow through sharp nozzles, and the coefficient of discharge is found to agree with experimental measurements for both subcooled and flashing fluid. (author)

  3. The role of nozzle convergence in diesel combustion

    Energy Technology Data Exchange (ETDEWEB)

    J. Benajes; S. Molina; C. Gonzaalez; R. Donde [CMT-Motores Termicos, Universidad Politecnica de Valencia, Valencia (Spain)

    2008-08-15

    An experimental study has been performed for identifying the role of injector nozzle hole convergence and cavitation in diesel engine combustion and pollutant emissions. For doing so, five nozzles were tested under different operating and experimental conditions. The critical cavitation number of each nozzle was analyzed. With this value, an estimation of the mixing process at different conditions obtained. This data is used to explain the combustion results which are analyzed in terms of the apparent combustion time, rate of heat release, in-cylinder pressures, adiabatic temperatures and soot and NOx emissions. Special emphasis is put in developing an expression to explicitly link the mixing process and the injection rate with the rate of heat release. The results show that the fuel-air mixing process can be improved by the use of both convergent and cavitating nozzles, thus lowering the soot emissions. The NOx production, being dependent of the injection rate and the mixing process, does not necessarily increase with the use of more convergent nozzles. 40 refs., 8 fig., tabs.

  4. Stress analyses of flat plates with attached nozzles. Vol. 2: Experimental stress analyses of a flat plate with one nozzle attached

    International Nuclear Information System (INIS)

    Battiste, R.L.; Peters, W.H.; Ranson, W.F.; Swinson, W.F.

    1975-07-01

    Vol. 1 of this report compares experimental results with theoretical stress distributions for a flat plate with one nozzle configuration and for a flat plate with two closely spaced nozzles attached. This volume contains the complete test results for a flat plate with one nozzle attached that was subjected to 1:1 and 1:2 biaxial planar loadings on the plate, to a thrust loading on the nozzle, and to a moment loading on the nozzle. The plate tested was 36 x 36 x 0.375 in., and the attached nozzle had an outer dia of 2.625 in. and a 0.250-in.-thick wall. The nozzle was located in the center of the plate and was considered to be free of weld distortions and irregularities in the junction area. (U.S.)

  5. Two-beam virtual cathode accelerator

    International Nuclear Information System (INIS)

    Peter, W.

    1992-01-01

    A proposed method to control the motion of a virtual cathode is investigated. Applications to collective ion acceleration and microwave generation are indicated. If two counterstreaming relativistic electron beams of current I are injected into a drift tube of space-charge-limiting current I L = 2I, it is shown that one beam can induce a moving virtual cathode in the other beam. By dynamically varying the current injected into the drift tube region, the virtual cathode can undergo controlled motion. For short drift tubes, the virtual cathodes on each end are strongly-coupled and undergo coherent large-amplitude spatial oscillations within the drift tube

  6. Research on virtualization-based cloud simulation running environment dynamic building technology%基于虚拟化技术的云仿真运行环境动态构建技术

    Institute of Scientific and Technical Information of China (English)

    张雅彬; 李伯虎; 柴旭东; 杨晨

    2012-01-01

    为使得云仿真平台能够支持仿真用户快速、高效、灵活地获得个性化仿真服务,基于虚拟化技术研究了云仿真运行环境动态构建技术,设计了基于虚拟化技术的云仿真运行环境动态构建模型,研究了面向多用户的、以仿真模型需求为依据的云仿真运行环境动态构建的三层映射算法.最后通过一个应用示例说明了基于虚拟化技术的云仿真运行环境动态构建技术的可行性和有效性.%In order to enable a cloud simulation platform (CSP) to support users obtaining individual simulation services quickly, effectively and neatly, the cloud simulation running environment dynamic building technology is researched based on virtualization technology. A virtualization-based cloud simulation running environment dynamic building model is designed and the multi-user oriented three-layer algorithm built dynamically by the cloud simulation running environment is researched according to the demand of simulation resources. Finally, an example is given to show the feasibility and effectiveness.

  7. Nuclear reactor fuel assembly with a removably top nozzle

    International Nuclear Information System (INIS)

    Shallenberger, J.M.; Ferlan, S.J.

    1985-01-01

    The invention relates to a nuclear fuel assembly having an improved attaching structure for removably mounting the top nozzle of the fuel assembly on the upper end of a control-rod guide thimble. The attaching structure comprises an outer socket defined in a portion of the top nozzle, an inner socket extending from the upper end of the guide thimble and removably received in the outer socket for interlocking engagement therewith, and an elongate locking member adapted to be inserted into the inner socket to maintain said interlocking engagement. Removal of the locking member from the inner socket enables the latter to be withdrawn from the outer socket, thereby enabling the top nozzle to be removed from the guide thimble

  8. Top-nozzle mounted replacement guide pin assemblies

    International Nuclear Information System (INIS)

    Gilmore, C.B.; Andrews, W.H.

    1993-01-01

    A replacement guide pin assembly is provided for aligning a nuclear fuel assembly with an upper core plate of a nuclear reactor core. The guide pin assembly includes a guide pin body having a radially expandable base insertable within a hole in the top nozzle, a ferrule insertable within the guide pin base and capable of imparting a radially and outwardly directed force on the expandable base to expand it within the hole of the top nozzle and thereby secure the guide pin body to the top nozzle in response to a predetermined displacement of the ferrule relative to the guide pin body along its longitudinal axis, and a lock screw interfitted with the ferrule and threaded into the guide pin body so as to produce the predetermined displacement of the ferrule. (author)

  9. Effect of nozzle geometry for swirl type twin-fluid water mist nozzle on the spray characteristic

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Soon Hyun; Kim, Do Yeon; Kim, Dong Keon [Pusan National University, Busan (Korea, Republic of); Kim, Bong Hwan [Jinju National University, Jinju (Korea, Republic of)

    2011-07-15

    Experimental investigations on the atomization characteristics of twin-fluid water mist nozzle were conducted using particle image velocimetry (PIV) system and particle motion analysis system (PMAS). The twin-fluid water mist nozzles with swirlers designed two types of swirl angles such as 0 .deg. , 90 .deg. and three different size nozzle hole diameters such as 0.5mm, 1mm, 1.5mm were employed. The experiments were carried out by the injection pressure of water and air divided into 1bar, 2bar respectively. The droplet size of the spray was measured using PMAS. The velocity and turbulence intensity were measured using PIV. The velocity, turbulence intensity and SMD distributions of the sprays were measured along the centerline and radial direction. As the experimental results, swirl angle controlled to droplet sizes. It was found that SMD distribution decreases with the increase of swirl angle. The developed twin-fluid water mist nozzle was satisfied to the criteria of NFPA 750, Class 1. It was proven that the developed nozzle under low pressures could be applied to fire protection system.

  10. Effect of nozzle geometry for swirl type twin-fluid water mist nozzle on the spray characteristic

    International Nuclear Information System (INIS)

    Yoon, Soon Hyun; Kim, Do Yeon; Kim, Dong Keon; Kim, Bong Hwan

    2011-01-01

    Experimental investigations on the atomization characteristics of twin-fluid water mist nozzle were conducted using particle image velocimetry (PIV) system and particle motion analysis system (PMAS). The twin-fluid water mist nozzles with swirlers designed two types of swirl angles such as 0 .deg. , 90 .deg. and three different size nozzle hole diameters such as 0.5mm, 1mm, 1.5mm were employed. The experiments were carried out by the injection pressure of water and air divided into 1bar, 2bar respectively. The droplet size of the spray was measured using PMAS. The velocity and turbulence intensity were measured using PIV. The velocity, turbulence intensity and SMD distributions of the sprays were measured along the centerline and radial direction. As the experimental results, swirl angle controlled to droplet sizes. It was found that SMD distribution decreases with the increase of swirl angle. The developed twin-fluid water mist nozzle was satisfied to the criteria of NFPA 750, Class 1. It was proven that the developed nozzle under low pressures could be applied to fire protection system

  11. The modelling of an SF6 arc in a supersonic nozzle: II. Current zero behaviour of the nozzle arc

    International Nuclear Information System (INIS)

    Zhang, Q; Liu, J; Yan, J D; Fang, M T C

    2016-01-01

    The present work (part II) forms the second part of an investigation into the behaviour of SF 6 nozzle arc. It is concerned with the aerodynamic and electrical behaviour of a transient nozzle arc under a current ramp specified by a rate of current decay (d i /d t ) before current zero and a voltage ramp (d V /d t ) after current zero. The five flow models used in part I [1] for cold gas flow and DC nozzle arcs have been applied to study the transient arc at three stagnation pressures ( P 0 ) and two values of d i /d t for the current ramp, representing a wide range of arcing conditions. An analysis of the physical mechanisms encompassed in each flow model is given with an emphasis on the adequacy of a particular model in describing the rapidly varying arc around current zero. The critical rate of rise of recovery voltage (RRRV) is found computationally and compared with test results of Benenson et al [2]. For transient nozzle arcs, the RRRV is proportional to the square of P 0 , rather than to the square root of P 0 for DC nozzle arcs. The physical mechanisms responsible for the strong dependence of RRRV on P 0 have been investigated. The relative merits of the flow models employed are discussed. (paper)

  12. Effect of fuel and nozzle geometry on the off-axis oscillation of needle in diesel injectors using high-speed X-ray phase contrast imaging

    International Nuclear Information System (INIS)

    Zhang, X.; Liu, J.; Wang, J.

    2016-01-01

    The diesel spray characteristics are strongly influenced by the flow dynamics inside the injector nozzle. Moreover, the off-axis oscillation of needle could lead to variation of orifice flow in the nozzle. In this paper, the needle oscillation was investigated using high-speed X-ray phase contrast imaging and quantitative image processing. The effects of fuel, injection pressure and nozzle geometry on the needle oscillation were analyzed. The results showed that the vertical and horizontal oscillation of needle was independent on the injection pressure. The maximum oscillation range of 14μ m was found. Biodiesel application slightly decreased the needle oscillation due to high viscosity. The needle oscillation range increased generally with increasing hole number. The larger needle oscillation in multi-hole injectors was dominated by the geometry problem or production issue at lower needle lift. In addition, the influence of needle oscillation on the spray morphology was also discussed.

  13. Effect of fuel and nozzle geometry on the off-axis oscillation of needle in diesel injectors using high-speed X-ray phase contrast imaging

    Science.gov (United States)

    Zhang, X.; Liu, J.; Wang, J.

    2016-05-01

    The diesel spray characteristics are strongly influenced by the flow dynamics inside the injector nozzle. Moreover, the off-axis oscillation of needle could lead to variation of orifice flow in the nozzle. In this paper, the needle oscillation was investigated using high-speed X-ray phase contrast imaging and quantitative image processing. The effects of fuel, injection pressure and nozzle geometry on the needle oscillation were analyzed. The results showed that the vertical and horizontal oscillation of needle was independent on the injection pressure. The maximum oscillation range of 14μ m was found. Biodiesel application slightly decreased the needle oscillation due to high viscosity. The needle oscillation range increased generally with increasing hole number. The larger needle oscillation in multi-hole injectors was dominated by the geometry problem or production issue at lower needle lift. In addition, the influence of needle oscillation on the spray morphology was also discussed.

  14. Medical Virtual Public Services

    Directory of Open Access Journals (Sweden)

    Iulia SURUGIU

    2008-01-01

    Full Text Available The healthcare enterprises are very disconnected. This paper intends to propose a solution that will provide citizens, businesses and medical enterprises with improved access to medical virtual public services. Referred medical services are based on existing national medical Web services and which support medically required services provided by physicians and supplementary health care practitioners, laboratory services and diagnostic procedures, clinics and hospitals’ services. Requirements and specific rules of these medical services are considered, and personalization of user preferences will to be supported. The architecture is based on adaptable process management technologies, allowing for virtual services which are dynamically combined from existing national medical services. In this way, a comprehensive workflow process is set up, allowing for service-level agreements, an audit trail and explanation of the process to the end user. The process engine operates on top of a virtual repository, providing a high-level semantic view of information retrieved from heterogeneous information sources, such as national sources of medical services. The system relies on a security framework to ensure all high-level security requirements are met. System’s architecture is business oriented: it focuses on Service Oriented Architecture - SOA concepts, asynchronously combining Web services, Business Process Management – BPM rules and BPEL standards.

  15. Periodismo virtual

    Directory of Open Access Journals (Sweden)

    Carlos Morales

    2015-01-01

    Full Text Available El periodismo virtual se produce en diarios que no ofrecen noticias (concebidas como versión o reflejo de la realidad sino que crean sus propias ficciones, especialmente en primeras planas. El autor del artículo señala que esto esta sucediendo en LA NACIÓN de San José de Costa Rica, diario premiado por la inefable Sociedad Interamericana de Prensa - SIP - y periódico económicamente más importante del país.

  16. RSRM Nozzle-to-Case Joint J-leg Development

    Science.gov (United States)

    Albrechtsen, Kevin U.; Eddy, Norman F.; Ewing, Mark E.; McGuire, John R.

    2003-01-01

    Since the beginning of the Space Shuttle Reusable Solid Rocket Motor (RSRM) program, nozzle-to-case joint polysulfide adhesive gas paths have occurred on several flight motors. These gas paths have allowed hot motor gases to reach the wiper O-ring. Even though these motors continue to fly safely with this condition, a desire was to reduce such occurrences. The RSRM currently uses a J-leg joint configuration on case field joints and igniter inner and outer joints. The J-leg joint configuration has been successfully demonstrated on numerous RSRM flight and static test motors, eliminating hot gas intrusion to the critical O-ring seals on these joints. Using the proven technology demonstrated on the case field joints and igniter joints, a nozzle-to-case joint J-leg design was developed for implementation on RSRM flight motors. This configuration provides an interference fit with nozzle fixed housing phenolics at assembly, with a series of pressurization gaps incorporated outboard of the joint mating surface to aid in joint pressurization and to eliminate any circumferential flow in this region. The joint insulation is bonded to the nozzle phenolics using the same pressure sensitive adhesive used in the case field joints and igniter joints. An enhancement to the nozzle-to-case joint J-leg configuration is the implementation of a carbon rope thermal barrier. The thermal barrier is located downstream of the joint bondline and is positioned within the joint in a manner where any hot gas intrusion into the joint passes through the thermal barrier, reducing gas temperatures to a level that would not affect O-rings downstream of the thermal barrier. This paper discusses the processes used in reaching a final nozzle-to-case joint J-leg design, provides structural and thermal results in support of the design, and identifies fabrication techniques and demonstrations used in arriving at the final configuration.

  17. Optimization design of energy deposition on single expansion ramp nozzle

    Science.gov (United States)

    Ju, Shengjun; Yan, Chao; Wang, Xiaoyong; Qin, Yupei; Ye, Zhifei

    2017-11-01

    Optimization design has been widely used in the aerodynamic design process of scramjets. The single expansion ramp nozzle is an important component for scramjets to produces most of thrust force. A new concept of increasing the aerodynamics of the scramjet nozzle with energy deposition is presented. The essence of the method is to create a heated region in the inner flow field of the scramjet nozzle. In the current study, the two-dimensional coupled implicit compressible Reynolds Averaged Navier-Stokes and Menter's shear stress transport turbulence model have been applied to numerically simulate the flow fields of the single expansion ramp nozzle with and without energy deposition. The numerical results show that the proposal of energy deposition can be an effective method to increase force characteristics of the scramjet nozzle, the thrust coefficient CT increase by 6.94% and lift coefficient CN decrease by 26.89%. Further, the non-dominated sorting genetic algorithm coupled with the Radial Basis Function neural network surrogate model has been employed to determine optimum location and density of the energy deposition. The thrust coefficient CT and lift coefficient CN are selected as objective functions, and the sampling points are obtained numerically by using a Latin hypercube design method. The optimized thrust coefficient CT further increase by 1.94%, meanwhile, the optimized lift coefficient CN further decrease by 15.02% respectively. At the same time, the optimized performances are in good and reasonable agreement with the numerical predictions. The findings suggest that scramjet nozzle design and performance can benefit from the application of energy deposition.

  18. The Role of Virtual Articulator in Prosthetic and Restorative Dentistry

    Science.gov (United States)

    Aljanakh, Mohammad

    2014-01-01

    Virtual reality is a computer based technology linked with the future of dentistry and dental practice. The virtual articulator is one such application in prosthetic and restorative dentistry based on virtual reality that will significantly reduce the limitations of the mechanical articulator, and by simulation of real patient data, allow analyses with regard to static and dynamic occlusion as well as to jaw relation. It is the purpose of this article to present the concepts and strategies for a future replacement of the mechanical articulator by a virtual one. Also, a brief note on virtual reality haptic system has been highlighted along with newly developed touch enabled virtual articulator. PMID:25177664

  19. Intelligent Motion and Interaction Within Virtual Environments

    Science.gov (United States)

    Ellis, Stephen R. (Editor); Slater, Mel (Editor); Alexander, Thomas (Editor)

    2007-01-01

    What makes virtual actors and objects in virtual environments seem real? How can the illusion of their reality be supported? What sorts of training or user-interface applications benefit from realistic user-environment interactions? These are some of the central questions that designers of virtual environments face. To be sure simulation realism is not necessarily the major, or even a required goal, of a virtual environment intended to communicate specific information. But for some applications in entertainment, marketing, or aspects of vehicle simulation training, realism is essential. The following chapters will examine how a sense of truly interacting with dynamic, intelligent agents may arise in users of virtual environments. These chapters are based on presentations at the London conference on Intelligent Motion and Interaction within a Virtual Environments which was held at University College, London, U.K., 15-17 September 2003.

  20. AND - Advanced Nozzle Design; Entwurf eines fortgeschrittenen Stutzendesigns

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, A.; Wernicke, R. [TUEV NORD SysTec, Hamburg (Germany). Mechanische Analyse; Friedrich, M. [FE-DESIGN GmbH, Karlsruhe (Germany). Engineering Services

    2006-07-01

    In this paper it is shown by the example of a nozzle optimisation that the improvement of the traditional component design like nozzles and high pressure header may lead to an increase of the long-time creep resistance. In a next step - on the basis of these results - software tools could be developed, which enable the designing engineer to accomplish a design without complex and costly FEM computations. In the context of a prototype building the manufacturing conditions are to be specified. (orig.)

  1. Shelf life extension for the lot AAE nozzle severance LSCs

    Science.gov (United States)

    Cook, M.

    1990-01-01

    Shelf life extension tests for the remaining lot AAE linear shaped charges for redesigned solid rocket motor nozzle aft exit cone severance were completed in the small motor conditioning and firing bay, T-11. Five linear shaped charge test articles were thermally conditioned and detonated, demonstrating proper end-to-end charge propagation. Penetration depth requirements were exceeded. Results indicate that there was no degradation in performance due to aging or the linear shaped charge curving process. It is recommended that the shelf life of the lot AAE nozzle severance linear shaped charges be extended through January 1992.

  2. Numerical study on drop formation through a micro nozzle

    International Nuclear Information System (INIS)

    Kim, Sung Il; Son, Gi Hun

    2005-01-01

    The drop ejection process from a micro nozzle is investigated by numerically solving the conservation equations for mass and momentum. The liquid-gas interface is tracked by a level set method which is extended for two-fluid flows with irregular solid boundaries. Based on the numerical results, the liquid jet breaking and droplet formation behavior is found to depend strongly on the pulse type of forcing pressure and the contact angle at the gas-liquid-solid interline. The negative pressure forcing can be used to control the formation of satelite droplets. Also, various nozzle shapes are tested to investigate their effect on droplet formation

  3. Multiple-Nozzle Spray Head Applies Foam Insulation

    Science.gov (United States)

    Walls, Joe T.

    1993-01-01

    Spray head equipped with four-nozzle turret mixes two reactive components of polyurethane and polyisocyanurate foam insulating material and sprays reacting mixture onto surface to be insulated. If nozzle in use becomes clogged, fresh one automatically rotated into position, with minimal interruption of spraying process. Incorporates features recirculating and controlling pressures of reactive components to maintain quality of foam by ensuring proper blend at outset. Also used to spray protective coats on or in ships, aircraft, and pipelines. Sprays such reactive adhesives as epoxy/polyurethane mixtures. Components of spray contain solid-particle fillers for strength, fire retardance, toughness, resistance to abrasion, or radar absorption.

  4. Control of Surge in Centrifugal Compressor by Using a Nozzle Injection System: Universality in Optimal Position of Injection Nozzle

    Directory of Open Access Journals (Sweden)

    Toshiyuki Hirano

    2012-01-01

    Full Text Available The passive control method for surge and rotating stall in centrifugal compressors by using a nozzle injection system was proposed to extend the stable operating range to the low flow rate. A part of the flow at the scroll outlet of a compressor was recirculated to an injection nozzle installed on the inner wall of the suction pipe of the compressor through the bypass pipe and injected to the impeller inlet. Two types of compressors were tested at the rotational speeds of 50,000 rpm and 60,000 rpm with the parameter of the circumferential position of the injection nozzle. The present experimental results revealed that the optimum circumferential position, which most effectively reduced the flow rate for the surge inception, existed at the opposite side of the tongue of the scroll against the rotational axis and did not depend on the compressor system and the rotational speeds.

  5. Structure Optimization and Numerical Simulation of Nozzle for High Pressure Water Jetting

    Directory of Open Access Journals (Sweden)

    Shuce Zhang

    2015-01-01

    Full Text Available Three kinds of nozzles normally used in industrial production are numerically simulated, and the structure of nozzle with the best jetting performance out of the three nozzles is optimized. The R90 nozzle displays the most optimal jetting properties, including the smooth transition of the nozzle’s inner surface. Simulation results of all sample nozzles in this study show that the helix nozzle ultimately displays the best jetting performance. Jetting velocity magnitude along Y and Z coordinates is not symmetrical for the helix nozzle. Compared to simply changing the jetting angle, revolving the jet issued from the helix nozzle creates a grinding wheel on the cleaning surface, which makes not only an impact effect but also a shearing action on the cleaning object. This particular shearing action improves the cleaning process overall and forms a wider, effective cleaning range, thus obtaining a broader jet width.

  6. Gas flows in radial micro-nozzles with pseudo-shocks

    Science.gov (United States)

    Kiselev, S. P.; Kiselev, V. P.; Zaikovskii, V. N.

    2017-12-01

    In the present paper, results of an experimental and numerical study of supersonic gas flows in radial micro-nozzles are reported. A distinguishing feature of such flows is the fact that two factors, the nozzle divergence and the wall friction force, exert a substantial influence on the flow structure. Under the action of the wall friction force, in the micro-nozzle there forms a pseudo-shock that separates the supersonic from subsonic flow region. The position of the pseudo-shock can be evaluated from the condition of flow blockage in the nozzle exit section. A detailed qualitative and quantitative analysis of gas flows in radial micro-nozzles is given. It is shown that the gas flow in a micro-nozzle is defined by the complicated structure of the boundary layer in the micro-nozzle, this structure being dependent on the width-to-radius ratio of the nozzle and its inlet-to-outlet pressure ratio.

  7. Experimental assessment of heat and mass transfer of modular nozzles of cooling towers

    Science.gov (United States)

    Merentsov, N. A.; Lebedev, V. N.; Golovanchikov, A. B.; Balashov, V. A.; Nefed'eva, E. E.

    2018-01-01

    Data of experimental study of hydrodynamics, heat and mass transfer of modular nozzles of cooling towers and some comparative characteristics of the packed device with nozzles, which have wide industrial application, are given in the article.

  8. Computational Simulation on a Coaxial Substream Powder Feeding Laval Nozzle of Cold Spraying

    Directory of Open Access Journals (Sweden)

    Guosheng HUANG

    2014-09-01

    Full Text Available In this paper, a substream coaxial powder feeding nozzle was investigated for use in cold spraying. The relationship between nozzle structure and gas flow, the acceleration behavior of copper particles were examined by computational simulation method. Also, one of the nozzle was used to spray copper coating on steel substrate. The simulation results indicate that: the velocity of gas at the center of the nozzle is lower than that of the conventional nozzle. Powders are well restrained near the central line of the nozzle, no collision occurred between the nozzle wall and the powders. This type of nozzle with expansion 3.25 can successfully deposit copper coating on steel substrate, the copper coating has low porosity about 3.1 % – 3.8 % and high bonding strength about 23.5 MPa – 26.8 MPa. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.4244

  9. Structure of the gas-liquid annular two-phase flow in a nozzle section

    International Nuclear Information System (INIS)

    Yoshida, Kenji; Kataoka, Isao; Ohmori, Syuichi; Mori, Michitsugu

    2006-01-01

    Experimental studies on the flow behavior of gas-liquid annular two-phase flow passing through a nozzle section were carried out. This study is concerned with the central steam jet injector for a next generation nuclear reactor. In the central steam jet injector, steam/water annular two-phase flow is formed at the mixing nozzle. To make an appropriate design and to establish the high-performance steam injector system, it is very important to accumulate the fundamental data of the thermo-hydro dynamic characteristics of annular flow passing through a nozzle section. On the other hand, the transient behavior of multiphase flow, in which the interactions between two-phases occur, is one of the most interesting scientific issues and has attracted research attention. In this study, the transient gas-phase turbulence modification in annular flow due to the gas-liquid phase interaction is experimentally investigated. The annular flow passing through a throat section is under the transient state due to the changing cross sectional area of the channel and resultantly the superficial velocities of both phases are changed compared with a fully developed flow in a straight pipe. The measurements for the gas-phase turbulence were precisely performed by using a constant temperature hot-wire anemometer, and made clear the turbulence structure such as velocity profiles, fluctuation velocity profiles. The behavior of the interfacial waves in the liquid film flow such as the ripple or disturbance waves was also observed. The measurements for the liquid film thickness by the electrode needle method were also performed to measure the base film thickness, mean film thickness, maximum film thickness and wave height of the ripple or the disturbance waves. (author)

  10. Methods of Experimental Investigation of Cavitation in a Convergent - Divergent Nozzle of Rectangular Cross Section

    Directory of Open Access Journals (Sweden)

    Jablonská Jana

    2016-08-01

    Full Text Available Cavitation is a phenomenon with both positive and negative effects and with dynamic manifestations in hydraulic, food, chemical and other machinery. This article deals with the detection and dynamic behavior of cavitation clouds in water flows through a rectangular cross-section convergent-divergent nozzle. Cavitation was measured by methods applicable in engineering practice. Pressure, flow rate, noise, vibration, and amount of air dissolved in the liquid were measured and cavitation region was recorded with a high-speed camera. Evaluation of acquired images in connection with measured pressure pulsations and mechanical vibrations was performed with the use of the FFT method. In certain cases, dimensionless parameters were used to generalize the measurements. The results will be used to specify multiphase mathematical cavitation model parameters.

  11. High Velocity Jet Noise Source Location and Reduction. Task 6. Noise Abatement Nozzle Design Guide.

    Science.gov (United States)

    1979-04-01

    the Conical Nozzle 255 on the Bertin Aerotrain . xvi ji4 ’ . _______ p .. LIST OF ILLUSTRATIONS (Continued) Figure Page D-37. Predicted and Measured...Moving-Frame Noise from the 256 Conical Nozzle on the Bertin Aerotrain . D-38. Predicted and Measured Static Noise from the 104-Tube 257 Nozzle on the...Bertin Aerotrain . D-39. Predicted and Measured Moving-Frame Noise from the 104- 258 Tube Nozzle on the Bertin Aerotrain . D-40. Relative Velocity Index m

  12. Analysis and design of optimized truncated scarfed nozzles subject to external flow effects

    Science.gov (United States)

    Shyne, Rickey J.; Keith, Theo G., Jr.

    1990-01-01

    Rao's method for computing optimum thrust nozzles is modified to study the effects of external flow on the performance of a class of exhaust nozzles. Members of this class are termed scarfed nozzles. These are two-dimensional, nonsymmetric nozzles with a flat lower wall. The lower wall (the cowl) is truncated in order to save weight. Results from a parametric investigation are presented to show the effects of the external flowfield on performance.

  13. Trust and virtual worlds

    DEFF Research Database (Denmark)

    Ess, Charles; Thorseth, May

    2011-01-01

    We collect diverse philosophical analyses of the issues and problems clustering around trust online with specific attention to establishing trust in virtual environments. The book moves forward important discussions of how virtual worlds and virtuality are to be defined and understood; the role o...... by virtuality, such as virtual child pornography. The introduction further develops a philosophical anthropology, rooted in Kantian ethics, phenomenology, virtue ethics, and feminist perspectives, that grounds a specific approach to ethical issues in virtual environments....

  14. Realidad virtual y materialidad

    OpenAIRE

    Pérez Herranz, Fernando Miguel

    2009-01-01

    1. Fenomenología de partida: Real / Simbólico / Imaginario 2. Realidad 3. Virtual 3.1. Virtual / real / posible / probable 3.2. Los contextos de la realidad virtual A) REALIDAD VIRTUAL INMERSIVA B) REALIDAD VIRTUAL NO INMERSIVA C) REALIDAD VIRTUAL Y DIGITALIZACIÓN 3.3. Cruce virtual / real 3.4. Cuestiones filosóficas 4. Materialidad 5. Materialidad y descentramiento 5.1. Ejemplos de descentramiento en los contextos de Realidad Virtual A’) DUALISMO CARTESIANO, CUERPO Y «CIBORG » B’) EL ESPÍRIT...

  15. Effects of dimensional size and surface roughness on service performance for a micro Laval nozzle

    International Nuclear Information System (INIS)

    Cai, Yukui; Liu, Zhanqiang; Shi, Zhenyu

    2017-01-01

    Nozzles with large and small dimensions are widely used in various industries. The main objective of this research is to investigate the effects of dimensional size and surface roughness on the service performance of a micro Laval nozzle. The variation of nozzle service performance from the conventional macro to micro scale is presented in this paper. This shows that the dimensional nozzle size has a serious effect on the nozzle gas flow friction. With the decrease of nozzle size, the velocity performance and thrust performance deteriorate. The micro nozzle performance has less sensitivity to the variation of surface roughness than the large scale nozzle does. Surface quality improvement and burr prevention technologies are proposed to reduce the friction effect on the micro nozzle performance. A novel process is then developed to control and depress the burr generation during micro nozzle machining. The polymethyl-methacrylate as a coating material is coated on the rough machined surface before finish machining. Finally, the micro nozzle with a throat diameter of 1 mm is machined successfully. Thrust test results show that the implement and application of this machining process benefit the service performance improvement of the micro nozzle. (paper)

  16. Realidad virtual

    OpenAIRE

    García García, Alberto Luis

    2000-01-01

    Las nuevas tecnologías, basadas en el mundo digital propuesto por la informática, están cambiando nuestra forma de entender el mundo, tanto desde el punto de vista sociocultural como económico. La realidad virtual se vale de códigos icónicos, y con ello se convierte en un paso más hacia la supresión de toda barrera linguística, para llegar a conseguir la gran comunidad global. Es necesario conocer en toda su extensión, una tecnología que está cambiando el modo de comunicarnos. Estos son, a gr...

  17. Nuclear reactor fuel assembly with a removable top nozzle

    International Nuclear Information System (INIS)

    Shallenberger, J.M.; Ferlan, S.J.

    1986-01-01

    This patent describes a fuel assembly having at least one control rod guide thimble and a top nozzle, the top nozzle including a transversely extending adapter plate. An improved attaching structure is described for removably mounting the top nozzle on the guide thimble comprising: (a) means defining an outer socket in the top nozzle, the outer socket defining means including a passageway extending through the adapter plate and having a first mating element defined in the adapter plate within the passageway; (b) means on an upper end of the guide thimble defining an inner socket, the inner socket defining means including an elongated sleeve having an upper end portion. The upper end portion of the sleeve has a second mating element formed thereon and at least one elongated axial slot defined therein for permitting radial movement of the sleeve upper end portion between a compressed releasing position for removing and inserting the inner socket from and into the outer socket and an expanded locking position for locking the inner and outer sockets together

  18. SHINE Tritium Nozzle Design: Activity 6, Task 1 Report

    Energy Technology Data Exchange (ETDEWEB)

    Okhuysen, Brett S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pulliam, Elias Noel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-05

    In FY14, we studied the qualitative and quantitative behavior of a SHINE/PNL tritium nozzle under varying operating conditions. The result is an understanding of the nozzle’s performance in terms of important flow features that manifest themselves under different parametric profiles. In FY15, we will consider nozzle design with a focus on nozzle geometry and integration. From FY14 work, we will understand how the SHINE/PNL nozzle behaves under different operating scenarios. The first task for FY15 is to evaluate the FY14 model as a predictor of the actual flow. Considering different geometries is more time-intensive than parameter studies, therefore we recommend considering any relevant flow features that were not included in the FY14 model. In the absence of experimental data, it is particularly important to consider any sources of heat in the domain or boundary conditions that may affect the flow and incorporate these into the simulation if they are significant. Additionally, any geometric features of the beamline segment should be added to the model such as the orifice plate. The FY14 model works with hydrogen. An improvement that can be made for FY15 is to develop CFD properties for tritium and incorporate those properties into the new models.

  19. Calibration of nozzle for air mass flow measurement

    Science.gov (United States)

    Uher, Jan; Kanta, Lukáš

    2017-09-01

    The effort to make calibration measurement of mass flow through a nozzle was not satisfying. Traversing across the pipe radius with Pitot probe was done. The presence of overshoot behind the bend in the pipe was found. The overshoot led to an asymmetric velocity profile.

  20. 46 CFR 181.320 - Fire hoses and nozzles.

    Science.gov (United States)

    2010-10-01

    ... fittings of brass or other suitable corrosion-resistant material that comply with NFPA 1963 (incorporated..., and an outer cover of rubber or equivalent material, and of sufficient strength to withstand the... corrosion-resistant material. (d) Each nozzle must be of corrosion-resistant material and be capable of...

  1. Separation of finest dusts in Venturi scrubber with hybrid nozzles

    Energy Technology Data Exchange (ETDEWEB)

    Reither, K. [Reither Venturiwaescher GmbH, Troisdorf (Germany); Boerger, G.G.; Listner, U.; Schweitzer, M. [Bayer AG, Leverkusen (Germany)

    2001-03-01

    Venturi scrubbers are high-performance dust separators whose efficiency is closely connected with high pressure losses. The tube-slot Venturi scrubber with hybrid nozzles is a novel scrubber type of simple and compact design, by means of which high separation efficiency is reached with pressure losses practically tending to zero. This new wet scrubber is particularly suitable for refitting existing plants. (orig.)

  2. The jet nozzle process for uranium 235 isotopic enrichment

    International Nuclear Information System (INIS)

    Jordan, I.; Umeda, K.; Brown, A.E.P.

    1979-01-01

    A general survey of the isotopic enrichment of Uranium - 235, principally by jet nozzle process, is made. Theoretical treatment of a single stage and cascade of separation stages of the above process with its development in Germany until 1976 is presented [pt

  3. Design and Analysis of Elliptical Nozzle in AJM Process using ...

    African Journals Online (AJOL)

    Abrasive jet machining (AJM) is a micromachining process, where material is removed from the work piece by the erosion effect of a high speed stream of abrasive particles carried in a gas medium, which are emerging from a nozzle. Abrasive machining includes grinding super finishing honing, lapping polishing etc.

  4. Ayame/PAM-D apogee kick motor nozzle failure analysis

    Science.gov (United States)

    1981-01-01

    The failure of two communication satellites during firing sequence were examined. The correlation/comparison of the circumstances of the Ayame incidents and the failure of the STAR 48 (DM-2) motor are reviewed. The massive nozzle failure of the AKM to determine the impact on spacecraft performance is examined. It is recommended that a closer watch is kept on systems techniques,

  5. Development of rapid mixing fuel nozzle for premixed combustion

    International Nuclear Information System (INIS)

    Katsuki, Masashi; Chung, Jin Do; Kim, Jang Woo; Hwang, Seung Min; Kim, Seung Mo; Ahn, Chul Ju

    2009-01-01

    Combustion in high-preheat and low oxygen concentration atmosphere is one of the attractive measures to reduce nitric oxide emission as well as greenhouse gases from combustion devices, and it is expected to be a key technology for the industrial applications in heating devices and furnaces. Before proceeding to the practical applications, we need to elucidate combustion characteristics of non-premixed and premixed flames in high-preheat and low oxygen concentration conditions from scientific point of view. For the purpose, we have developed a special mixing nozzle to create a homogeneous mixture of fuel and air by rapid mixing, and applied this rapidmixing nozzle to a Bunsen-type burner to observe combustion characteristics of the rapid-mixture. As a result, the combustion of rapid-mixture exhibited the same flame structure and combustion characteristics as the perfectly prepared premixed flame, even though the mixing time of the rapid-mixing nozzle was extremely short as a few milliseconds. Therefore, the rapid-mixing nozzle in this paper can be used to create preheated premixed flames as far as the mixing time is shorter than the ignition delay time of the fuel

  6. High-Melt Carbon-Carbon Coating for Nozzle Extensions

    Science.gov (United States)

    Thompson, James

    2015-01-01

    Carbon-Carbon Advanced Technologies, Inc. (C-CAT), has developed a high-melt coating for use in nozzle extensions in next-generation spacecraft. The coating is composed primarily of carbon-carbon, a carbon-fiber and carbon-matrix composite material that has gained a spaceworthy reputation due to its ability to withstand ultrahigh temperatures. C-CAT's high-melt coating embeds hafnium carbide (HfC) and zirconium diboride (ZrB2) within the outer layers of a carbon-carbon structure. The coating demonstrated enhanced high-temperature durability and suffered no erosion during a test in NASA's Arc Jet Complex. (Test parameters: stagnation heat flux=198 BTD/sq ft-sec; pressure=.265 atm; temperature=3,100 F; four cycles totaling 28 minutes) In Phase I of the project, C-CAT successfully demonstrated large-scale manufacturability with a 40-inch cylinder representing the end of a nozzle extension and a 16-inch flanged cylinder representing the attach flange of a nozzle extension. These demonstrators were manufactured without spalling or delaminations. In Phase II, C-CAT worked with engine designers to develop a nozzle extension stub skirt interfaced with an Aerojet Rocketdyne RL10 engine. All objectives for Phase II were successfully met. Additional nonengine applications for the coating include thermal protection systems (TPS) for next-generation spacecraft and hypersonic aircraft.

  7. Virtual Reality and the Virtual Library.

    Science.gov (United States)

    Oppenheim, Charles

    1993-01-01

    Explains virtual reality, including proper and improper uses of the term, and suggests ways that libraries might be affected by it. Highlights include elements of virtual reality systems; possible virtual reality applications, including architecture, the chemical industry, transport planning, armed forces, and entertainment; and the virtual…

  8. From virtual environment to virtual community

    NARCIS (Netherlands)

    Nijholt, Antinus; Terano, Takao; Nishida, Toyoaki; Namatame, Akira; Tsumoto, Syusaku; Ohsawa, Yukido; Washio, Takashi

    2001-01-01

    We discuss a virtual reality theater environment and its transition to a virtual community by adding domain agents and by allowing multiple users to visit this environment. The environment has been built using VRML (Virtual Reality Modeling Language). We discuss how our ideas about this environment

  9. High Pressure Water Stripping Using Multi-Orifice Nozzles

    Science.gov (United States)

    Hoppe, David

    1999-01-01

    The use of multi-orifice rotary nozzles greatly increases the speed and stripping effectiveness of high pressure water blasting systems, but also greatly increases the complexity of selecting and optimizing the operating parameters. The rotational speed of the nozzle must be coupled with its transverse velocity as it passes across the surface of the substrate being stripped. The radial and angular positions of each orifice must be included in the analysis of the nozzle configuration. Orifices at the outer edge of the nozzle head move at a faster rate than the orifices located near the center. The energy transmitted to the surface from the impact force of the water stream from an outer orifice is therefore spread over a larger area than energy from an inner orifice. Utilizing a larger diameter orifice in the outer radial positions increases the total energy transmitted from the outer orifice to compensate for the wider distribution of energy. The total flow rate from the combination of all orifices must be monitored and should be kept below the pump capacity while choosing orifice to insert in each position. The energy distribution from the orifice pattern is further complicated since the rotary path of all the orifices in the nozzle head pass through the center section. All orifices contribute to the stripping in the center of the path while only the outer most orifice contributes to the stripping at the edge of the nozzle. Additional orifices contribute to the stripping from the outer edge toward the center section. With all these parameters to configure and each parameter change affecting the others, a computer model was developed to track and coordinate these parameters. The computer simulation graphically indicates the cumulative affect from each parameter selected. The result from the proper choices in parameters is a well designed, highly efficient stripping system. A poorly chosen set of parameters will cause the nozzle to strip aggressively in some areas

  10. Microsoft Virtualization Master Microsoft Server, Desktop, Application, and Presentation Virtualization

    CERN Document Server

    Olzak, Thomas; Boomer, Jason; Keefer, Robert M

    2010-01-01

    Microsoft Virtualization helps you understand and implement the latest virtualization strategies available with Microsoft products. This book focuses on: Server Virtualization, Desktop Virtualization, Application Virtualization, and Presentation Virtualization. Whether you are managing Hyper-V, implementing desktop virtualization, or even migrating virtual machines, this book is packed with coverage on all aspects of these processes. Written by a talented team of Microsoft MVPs, Microsoft Virtualization is the leading resource for a full installation, migration, or integration of virtual syste

  11. Design of Single Stage Axial Turbine with Constant Nozzle Angle Blading for Small Turbojet

    Science.gov (United States)

    Putra Adnan, F.; Hartono, Firman

    2018-04-01

    In this paper, an aerodynamic design of a single stage gas generator axial turbine for small turbojet engine is explained. As per design requirement, the turbine should be able to deliver power output of 155 kW at 0.8139 kg/s gas mass flow, inlet total temperature of 1200 K and inlet total pressure of 335330 Pa. The design phase consist of several steps, i.e.: determination of velocity triangles in 2D plane, 2D blading design and 3D flow analysis at design point using Computational Fluid Dynamics method. In the determination of velocity triangles, two conditions are applied: zero inlet swirl (i.e. the gas flow enter the turbine at axial direction) and constant nozzle angle design (i.e. the inlet and outlet angle of the nozzle blade are constant from root to tip). The 2D approach in cascade plane is used to specify airfoil type at root, mean and tip of the blade based on inlet and outlet flow conditions. The 3D approach is done by simulating the turbine in full configuration to evaluate the overall performance of the turbine. The observed parameters including axial gap, stagger angle, and tip clearance affect its output power. Based on analysis results, axial gap and stagger angle are positively correlated with output power up to a certain point at which the power decreases. Tip clearance, however, gives inversely correlation with output power.

  12. Large-eddy simulation of cavitating nozzle flow and primary jet break-up

    Energy Technology Data Exchange (ETDEWEB)

    Örley, F., E-mail: felix.oerley@aer.mw.tum.de; Trummler, T.; Mihatsch, M. S.; Schmidt, S. J.; Adams, N. A. [Institute of Aerodynamics and Fluid Mechanics, Technische Universität München, Boltzmannstr. 15, 85748 Garching bei München (Germany); Hickel, S. [Institute of Aerodynamics and Fluid Mechanics, Technische Universität München, Boltzmannstr. 15, 85748 Garching bei München (Germany); Chair of Computational Aerodynamics, Faculty of Aerospace Engineering, TU Delft, Kluyverweg 1, 2629 HS Delft (Netherlands)

    2015-08-15

    We employ a barotropic two-phase/two-fluid model to study the primary break-up of cavitating liquid jets emanating from a rectangular nozzle, which resembles a high aspect-ratio slot flow. All components (i.e., gas, liquid, and vapor) are represented by a homogeneous mixture approach. The cavitating fluid model is based on a thermodynamic-equilibrium assumption. Compressibility of all phases enables full resolution of collapse-induced pressure wave dynamics. The thermodynamic model is embedded into an implicit large-eddy simulation (LES) environment. The considered configuration follows the general setup of a reference experiment and is a generic reproduction of a scaled-up fuel injector or control valve as found in an automotive engine. Due to the experimental conditions, it operates, however, at significantly lower pressures. LES results are compared to the experimental reference for validation. Three different operating points are studied, which differ in terms of the development of cavitation regions and the jet break-up characteristics. Observed differences between experimental and numerical data in some of the investigated cases can be caused by uncertainties in meeting nominal parameters by the experiment. The investigation reveals that three main mechanisms promote primary jet break-up: collapse-induced turbulent fluctuations near the outlet, entrainment of free gas into the nozzle, and collapse events inside the jet near the liquid-gas interface.

  13. Vortex flow and cavitation in diesel injector nozzles

    Science.gov (United States)

    Andriotis, A.; Gavaises, M.; Arcoumanis, C.

    Flow visualization as well as three-dimensional cavitating flow simulations have been employed for characterizing the formation of cavitation inside transparent replicas of fuel injector valves used in low-speed two-stroke diesel engines. The designs tested have incorporated five-hole nozzles with cylindrical as well as tapered holes operating at different fixed needle lift positions. High-speed images have revealed the formation of an unsteady vapour structure upstream of the injection holes inside the nozzle volume, which is referred to as . Computation of the flow distribution and combination with three-dimensional reconstruction of the location of the strings inside the nozzle volume has revealed that strings are found at the core of recirculation zones; they originate either from pre-existing cavitation sites forming at sharp corners inside the nozzle where the pressure falls below the vapour pressure of the flowing liquid, or even from suction of outside air downstream of the hole exit. Processing of the acquired images has allowed estimation of the mean location and probability of appearance of the cavitating strings in the three-dimensional space as a function of needle lift, cavitation and Reynolds number. The frequency of appearance of the strings has been correlated with the Strouhal number of the vortices developing inside the sac volume; the latter has been found to be a function of needle lift and hole shape. The presence of strings has significantly affected the flow conditions at the nozzle exit, influencing the injected spray. The cavitation structures formed inside the injection holes are significantly altered by the presence of cavitation strings and are jointly responsible for up to 10% variation in the instantaneous fuel injection quantity. Extrapolation using model predictions for real-size injectors operating at realistic injection pressures indicates that cavitation strings are expected to appear within the time scales of typical injection

  14. Shape memory alloy actuation for a variable area fan nozzle

    Science.gov (United States)

    Rey, Nancy; Tillman, Gregory; Miller, Robin M.; Wynosky, Thomas; Larkin, Michael J.; Flamm, Jeffrey D.; Bangert, Linda S.

    2001-06-01

    The ability to control fan nozzle exit area is an enabling technology for next generation high-bypass-ratio turbofan engines. Performance benefits for such designs are estimated at up to 9% in thrust specific fuel consumption (TSFC) relative to current fixed-geometry engines. Conventionally actuated variable area fan nozzle (VAN) concepts tend to be heavy and complicated, with significant aircraft integration, reliability and packaging issues. The goal of this effort was to eliminate these undesirable features and formulate a design that meets or exceeds leakage, durability, reliability, maintenance and manufacturing cost goals. A Shape Memory Alloy (SMA) bundled cable actuator acting to move an array of flaps around the fan nozzle annulus is a concept that meets these requirements. The SMA bundled cable actuator developed by the United Technologies Corporation (Patents Pending) provides significant work output (greater than 2200 in-lb per flap, through the range of motion) in a compact package and minimizes system complexity. Results of a detailed design study indicate substantial engine performance, weight, and range benefits. The SMA- based actuation system is roughly two times lighter than a conventional mechanical system, with significant aircraft direct operating cost savings (2-3%) and range improvements (5-6%) relative to a fixed-geometry nozzle geared turbofan. A full-scale sector model of this VAN system was built and then tested at the Jet Exit Test Facility at NASA Langley to demonstrate the system's ability to achieve 20% area variation of the nozzle under full scale aerodynamic loads. The actuator exceeded requirements, achieving repeated actuation against full-scale loads representative of typical cruise as well as greater than worst-case (ultimate) aerodynamic conditions. Based on these encouraging results, work is continuing with the goal of a flight test on a C-17 transport aircraft.

  15. The using of model calculations for the optimisation of the virtual impactor parameters

    International Nuclear Information System (INIS)

    Kravchuk, T.A.; Lyubinskij, N.N.; Melenevskij, A.Eh.; Shcherbin, V.N.

    2000-01-01

    Some characteristics of virtual impactors have been determined by numerical solution of Navier-Stoces equations and the equations of motion of the particles. The effect of the nozzle Reynolds number, the fractioning of flows passing through the impactor, collection probe diameter, nozzle throat length, nozzle - to -collection probe distance and probe entrance form on heavy and light particle collection efficiencies has been studied. It was found that some particles would impact on the inner surface of the collection probe. The results show that the most parameters with the exception of the flow fractioning have little effect on the heavy particle collection efficiency. And vice versa the effect on collection probe losses was significant for the most of these parameters

  16. Construction of Intelligent Virtual Worlds Using a Grammatical Framework

    OpenAIRE

    López García, Gabriel; Gallego Sánchez, Antonio Javier; Molina-Carmona, Rafael; Compañ, Patricia

    2014-01-01

    The potential of integrating multiagent systems and virtual environments has not been exploited to its whole extent. This paper proposes a model based on grammars, called Minerva, to construct complex virtual environments that integrate the features of agents. A virtual world is described as a set of dynamic and static elements. The static part is represented by a sequence of primitives and transformations and the dynamic elements by a series of agents. Agent activation and communication is a...

  17. A Parametric Investigation of Nozzle Planform and Internal/External Geometry at Transonic Speeds

    Science.gov (United States)

    Cler, Daniel L.

    1995-01-01

    An experimental investigation of multidisciplinary (scarfed trailing edge) nozzle divergent flap geometry was conducted at transonic speeds in the NASA Langley 16-Foot Transonic Tunnel. The geometric parameters investigated include nozzle planform, nozzle contouring location (internal and/or external), and nozzle area ratio (area ratio 1.2 and 2.0). Data were acquired over a range of Mach Numbers from 0.6 to 1.2, angle-of-attack from 0.0 degrees to 9.6 degrees and nozzle pressure ratios from 1.0 to 20.0. Results showed that increasing the rate of change internal divergence angle across the width of the nozzle or increasing internal contouring will decrease static, aeropropulsive and thrust removed drag performance regardless of the speed regime. Also, increasing the rate of change in boattail angle across the width of the nozzle or increasing external contouring will provide the lowest thrust removed drag. Scarfing of the nozzle trailing edges reduces the aeropropulsive performance for the most part and adversely affects the nozzle plume shape at higher nozzle pressure ratios thus increasing the thrust removed drag. The effects of contouring were primary in nature and the effects of planform were secondary in nature. Larger losses occur supersonically than subsonically when scarfing of nozzle trailing edges occurs. The single sawtooth nozzle almost always provided lower thrust removed drag than the double sawtooth nozzles regardless the speed regime. If internal contouring is required, the double sawtooth nozzle planform provides better static and aeropropulsive performance than the single sawtooth nozzle and if no internal contouring is required the single sawtooth provides the highest static and aeropropulsive performance.

  18. Turbine combustor with fuel nozzles having inner and outer fuel circuits

    Science.gov (United States)

    Uhm, Jong Ho; Johnson, Thomas Edward; Kim, Kwanwoo

    2013-12-24

    A combustor cap assembly for a turbine engine includes a combustor cap and a plurality of fuel nozzles mounted on the combustor cap. One or more of the fuel nozzles would include two separate fuel circuits which are individually controllable. The combustor cap assembly would be controlled so that individual fuel circuits of the fuel nozzles are operated or deliberately shut off to provide for physical separation between the flow of fuel delivered by adjacent fuel nozzles and/or so that adjacent fuel nozzles operate at different pressure differentials. Operating a combustor cap assembly in this fashion helps to reduce or eliminate the generation of undesirable and potentially harmful noise.

  19. Integration of Flex Nozzle System and Electro Hydraulic Actuators to Solid Rocket Motors

    Science.gov (United States)

    Nayani, Kishore Nath; Bajaj, Dinesh Kumar

    2017-10-01

    A rocket motor assembly comprised of solid rocket motor and flex nozzle system. Integration of flex nozzle system and hydraulic actuators to the solid rocket motors are done after transportation to the required place where integration occurred. The flex nozzle system is integrated to the rocket motor in horizontal condition and the electro hydraulic actuators are assembled to the flex nozzle systems. The electro hydraulic actuators are connected to the hydraulic power pack to operate the actuators. The nozzle-motor critical interface are insulation diametrical compression, inhibition resin-28, insulation facial compression, shaft seal `O' ring compression and face seal `O' ring compression.

  20. System and method having multi-tube fuel nozzle with differential flow

    Science.gov (United States)

    Hughes, Michael John; Johnson, Thomas Edward; Berry, Jonathan Dwight; York, William David

    2017-01-03

    A system includes a multi-tube fuel nozzle with a fuel nozzle body and a plurality of tubes. The fuel nozzle body includes a nozzle wall surrounding a chamber. The plurality of tubes extend through the chamber, wherein each tube of the plurality of tubes includes an air intake portion, a fuel intake portion, and an air-fuel mixture outlet portion. The multi-tube fuel nozzle also includes a differential configuration of the air intake portions among the plurality of tubes.

  1. World Wind: NASA's Virtual Globe

    Science.gov (United States)

    Hogan, P.

    2007-12-01

    Virtual globes have set the standard for information exchange. Once you've experienced the visually rich and highly compelling nature of data delivered via virtual globes with their highly engaging context of 3D, it's hard to go back to a flat 2D world. Just as the sawbones of not-too-long-ago have given way to sophisticated surgical operating theater, today's medium for information exchange is just beginning to leap from the staid chalkboards and remote libraries to fingertip navigable 3D worlds. How we harness this technology to serve a world inundated with information will describe the quality of our future. Our instincts for discovery and entertainment urge us on. There's so much we could know if the world's knowledge was presented to us in its natural context. Virtual globes are almost magical in their ability to reveal natural wonders. Anyone flying along a chain of volcanoes, a mid-ocean ridge or deep ocean trench, while simultaneously seeing the different depths to the history of earthquakes in those areas, will be delighted to sense Earth's dynamic nature in a way that would otherwise take several paragraphs of "boring" text. The sophisticated concepts related to global climate change would be far more comprehensible when experienced via a virtual globe. There is a large universe of public and private geospatial data sets that virtual globes can bring to light. The benefit derived from access to this data within virtual globes represents a significant return on investment for government, industry, the general public, and especially in the realm of education. Data access remains a key issue. Just as the highway infrastructure allows unimpeded access from point A to point B, an open standards-based infrastructure for data access allows virtual globes to exchange data in the most efficient manner possible. This data can be either free or proprietary. The Open Geospatial Consortium is providing the leadership necessary for this open standards-based data access

  2. The proton therapy nozzles at Samsung Medical Center: A Monte Carlo simulation study using TOPAS

    Science.gov (United States)

    Chung, Kwangzoo; Kim, Jinsung; Kim, Dae-Hyun; Ahn, Sunghwan; Han, Youngyih

    2015-07-01

    To expedite the commissioning process of the proton therapy system at Samsung Medical Center (SMC), we have developed a Monte Carlo simulation model of the proton therapy nozzles by using TOol for PArticle Simulation (TOPAS). At SMC proton therapy center, we have two gantry rooms with different types of nozzles: a multi-purpose nozzle and a dedicated scanning nozzle. Each nozzle has been modeled in detail following the geometry information provided by the manufacturer, Sumitomo Heavy Industries, Ltd. For this purpose, the novel features of TOPAS, such as the time feature or the ridge filter class, have been used, and the appropriate physics models for proton nozzle simulation have been defined. Dosimetric properties, like percent depth dose curve, spreadout Bragg peak (SOBP), and beam spot size, have been simulated and verified against measured beam data. Beyond the Monte Carlo nozzle modeling, we have developed an interface between TOPAS and the treatment planning system (TPS), RayStation. An exported radiotherapy (RT) plan from the TPS is interpreted by using an interface and is then translated into the TOPAS input text. The developed Monte Carlo nozzle model can be used to estimate the non-beam performance, such as the neutron background, of the nozzles. Furthermore, the nozzle model can be used to study the mechanical optimization of the design of the nozzle.

  3. Evaluation of the effects of break nozzle configuration in the Semiscale Mod-1 system

    International Nuclear Information System (INIS)

    Hanson, R.G.

    1977-08-01

    The Semiscale Mod-1 Program has utilized two different break nozzle configurations in the test system. An evaluation has been made to determine the effect these break nozzle configurations have on system thermal-hydraulic response during a 200 percent double-ended cold leg break loss-of-coolant accident simulation. The first nozzle was a convergent-divergent nozzle (Henry nozzle) and the second, an elongated constant area throat nozzle. Analysis is confined primarily to system response phenomena observed to be affected by the nozzle configuration and concentrates on the fluid response at the break and the resulting core behavior during subcooled and saturated blowdown. The evaluation shows that considerable difference in system response occurs as a result of the difference in break nozzle configuration. The elongated throat nozzle was scaled from the Loss-of-Fluid Test (LOFT) nozzle geometry and since the LOFT counterpart tests were designed to provide results for the LOFT Program, the elongated throat nozzle was used in the subsequent LOFT counterpart tests

  4. A static investigation of yaw vectoring concepts on two-dimensional convergent-divergent nozzles

    Science.gov (United States)

    Berrier, B. L.; Mason, M. L.

    1983-01-01

    The flow-turning capability and nozzle internal performance of yaw-vectoring nozzle geometries were tested in the NASA Langley 16-ft Transonic wind tunnel. The concept was investigated as a means of enhancing fighter jet performance. Five two-dimensional convergent-divergent nozzles were equipped for yaw-vectoring and examined. The configurations included a translating left sidewall, left and right sidewall flaps downstream of the nozzle throat, left sidewall flaps or port located upstream of the nozzle throat, and a powered rudder. Trials were also run with 20 deg of pitch thrust vectoring added. The feasibility of providing yaw-thrust vectoring was demonstrated, with the largest yaw vector angles being obtained with sidewall flaps downstream of the nozzle primary throat. It was concluded that yaw vector designs that scoop or capture internal nozzle flow provide the largest yaw-vector capability, but decrease the thrust the most.

  5. Virtual Trackballs Revisited

    DEFF Research Database (Denmark)

    Henriksen, Knud; Sporring, Jon; Hornbæk, Kasper

    2004-01-01

    reviews and provides a mathematical foundation for virtual trackballs. The first, but still popular, virtual trackball was described by Chen et al. [CHECK END OF SENTENCE]. We show that the virtual trackball by Chen et al. does not rotate the object along the intended great circular arc on the virtual...... trackball and we give a correction. Another popular virtual trackball is Shoemake's quaternion implementation [CHECK END OF SENTENCE], which we show to be a special case of the virtual trackball by Chen et al.. Shoemake extends the scope of the virtual trackball to the full screen. Unfortunately, Shoemake......'s virtual trackball is inhomogeneous and discontinuous with consequences for usability. Finally, we review Bell's virtual trackball [CHECK END OF SENTENCE] and discuss studies of the usability of virtual trackballs....

  6. Virtual cystoscopy.

    Science.gov (United States)

    Mohammed, Aza; Simpson, Adam; Zamora, Ignacio; Gilliland, Leslie

    2008-07-01

    Bladder cancer is a common problem facing urologists worldwide. The gold standard for its diagnosis and follow-up is the direct visualization of the tumor using conventional cystoscopy. Despite having high sensitivity and specificity for detecting bladder cancer, conventional cystoscopy is regarded as an invasive procedure which is associated with several complications. In addition, regular follow-up of patients with bladder cancer is a financial burden on the health system. With the progressive development in diagnostic imaging and medical computer software technologies, it was possible to generate virtual reality images to aid the clinician to inspect the interior of the bladder in real time. This technology is considered as a safe test for bladder cancer diagnosis and follow-up, and it is associated with cancer detection rates comparable with conventional cystoscopy. However, it is associated with some drawbacks that limit its use in routine clinical practice at the current time. In this paper, we review the development and clinical applications of this technology.

  7. Virtual Web Services

    OpenAIRE

    Rykowski, Jarogniew

    2007-01-01

    In this paper we propose an application of software agents to provide Virtual Web Services. A Virtual Web Service is a linked collection of several real and/or virtual Web Services, and public and private agents, accessed by the user in the same way as a single real Web Service. A Virtual Web Service allows unrestricted comparison, information merging, pipelining, etc., of data coming from different sources and in different forms. Detailed architecture and functionality of a single Virtual We...

  8. Virtual button interface

    Science.gov (United States)

    Jones, J.S.

    1999-01-12

    An apparatus and method of issuing commands to a computer by a user interfacing with a virtual reality environment are disclosed. To issue a command, the user directs gaze at a virtual button within the virtual reality environment, causing a perceptible change in the virtual button, which then sends a command corresponding to the virtual button to the computer, optionally after a confirming action is performed by the user, such as depressing a thumb switch. 4 figs.

  9. Virtual reality in education

    OpenAIRE

    Minocha, Shailey; Tudor, Ana-Despina

    2017-01-01

    In this workshop-presentation, we described the evolution of virtual reality technologies and our research from 3D virtual worlds, 3D virtual environments built in gaming environments such as Unity 3D, 360-degree videos, and mobile virtual reality via Google Expeditions. For each of these four technologies, we discussed the affordances of the technologies and how they contribute towards learning and teaching. We outlined the significance of students being aware of the different virtual realit...

  10. Virtual reality - aesthetic consequences

    OpenAIRE

    Benda, Lubor

    2014-01-01

    In the present work we study aesthetic consequences of virtual reality. Exploring the fringe between fictional and virtual is one of the key goals, that will be achieved through etymologic and technologic definition of both fiction and virtual reality, fictional and virtual worlds. Both fiction and virtual reality will be then studied from aesthetic distance and aesthetic pleasure point of view. At the end, we will see the main difference as well as an common grounds between fiction and virtu...

  11. Design and performance of atomizing nozzles for spray calcination of high-level wastes

    International Nuclear Information System (INIS)

    Miller, F.A.; Stout, L.A.

    1981-05-01

    A key aspect of high-level liquid-waste spray calcination is waste-feed atomization by using air atomizing nozzles. Atomization substantially increases the heat transfer area of the waste solution, which enhances rapid drying. Experience from the spray-calciner operations has demonstrated that nozzle flow conditions that produce 70-μ median-volume-diameter or smaller spray droplets are required for small-scale spray calciners (drying capacity less than 80 L/h). For large-scale calciners (drying capacity greater than 300 L/h), nozzle flow conditions that produce 100-μ median-volume-diameter or smaller spray droplets are required. Mass flow ratios of 0.2 to 0.4, depending on nozzle size, are required for proper operation of internal-mix atomizing nozzles. Both internal-mix and external-mix nozzles have been tested at PNL. Due to the lower airflow requirements and fewer large droplets produced, the internal-mix nozzle has been chosen for primary development in the spray calciner program at PNL. Several nozzle air-cap materials for internal-mix nozzles have been tested for wear resistance. Results show that nozzle air caps of stainless steel and Cer-vit (a machineable glass ceramic) are suceptible to rapid wear by abrasive slurries, whereas air caps of alumina and reaction-bonded silicon nitride show only slow wear. Longer-term testing is necessary to determine more accurately the actual frequency of nozzle replacement. Atomizing nozzle air caps of alumina are subject to fracture from thermal shock, whereas air caps of silicon nitride and Cer-vit are not. Fractured nozzles are held in place by the air-cap retaining ring and continue to atomize satisfactorily. Therefore, fractures caused by thermal shocking do not necessarily result in nozzle failure

  12. Virtual goods recommendations in virtual worlds.

    Science.gov (United States)

    Chen, Kuan-Yu; Liao, Hsiu-Yu; Chen, Jyun-Hung; Liu, Duen-Ren

    2015-01-01

    Virtual worlds (VWs) are computer-simulated environments which allow users to create their own virtual character as an avatar. With the rapidly growing user volume in VWs, platform providers launch virtual goods in haste and stampede users to increase sales revenue. However, the rapidity of development incurs virtual unrelated items which will be difficult to remarket. It not only wastes virtual global companies' intelligence resources, but also makes it difficult for users to find suitable virtual goods fit for their virtual home in daily virtual life. In the VWs, users decorate their houses, visit others' homes, create families, host parties, and so forth. Users establish their social life circles through these activities. This research proposes a novel virtual goods recommendation method based on these social interactions. The contact strength and contact influence result from interactions with social neighbors and influence users' buying intention. Our research highlights the importance of social interactions in virtual goods recommendation. The experiment's data were retrieved from an online VW platform, and the results show that the proposed method, considering social interactions and social life circle, has better performance than existing recommendation methods.

  13. Tangible interfaces in virtual environments, case study: Instituto de Engenharia Nuclear Virtual

    International Nuclear Information System (INIS)

    Santo, Andre Cotelli do E.; Mol, Antonio Carlos A.; Pinto, Emanuele Oliveira; Melo, Joao Victor da C.; Paula, Vanessa Marcia de; Freitas, Victor Goncalves Gloria; Machado, Daniel Mol

    2015-01-01

    Virtual Reality (VR) techniques allow the creation of realistic representations of an individual. These technologies are being applied in several fields such as training, simulations, virtual experiments and new applications are constantly being found. This work aims to present an interactive system in virtual environments without the use of peripherals typically found in computers such as mouse and keyboard. Through the movement of head and hands it is possible to control and navigate the virtual character (avatar) in a virtual environment, an improvement in the man-machine integration. The head movements are recognized using a virtual helmet with a tracking system. An infrared camera detects the position of infrared LEDs located in the operator's head and places the vision of the virtual character in accordance with the operator's vision. The avatar control is performed by a system that detects the movement of the hands, using infrared sensors, allowing the user to move it in the virtual environment. This interaction system was implemented in the virtual model of the Instituto de Engenharia Nuclear (IEN), which is located on the Ilha do Fundao - Rio de Janeiro - Brazil. This three-dimensional environment, in which avatars can move and interact according to the user movements, gives a feeling of realism to the operator. The results show an interface that allows a higher degree of immersion of the operator in the virtual environment, promoting a more engaging and dynamic way of working. (author)

  14. Tangible interfaces in virtual environments, case study: Instituto de Engenharia Nuclear Virtual

    Energy Technology Data Exchange (ETDEWEB)

    Santo, Andre Cotelli do E.; Mol, Antonio Carlos A.; Pinto, Emanuele Oliveira; Melo, Joao Victor da C.; Paula, Vanessa Marcia de; Freitas, Victor Goncalves Gloria [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Machado, Daniel Mol [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Instituto Alberto Luiz Coimbra

    2015-07-01

    Virtual Reality (VR) techniques allow the creation of realistic representations of an individual. These technologies are being applied in several fields such as training, simulations, virtual experiments and new applications are constantly being found. This work aims to present an interactive system in virtual environments without the use of peripherals typically found in computers such as mouse and keyboard. Through the movement of head and hands it is possible to control and navigate the virtual character (avatar) in a virtual environment, an improvement in the man-machine integration. The head movements are recognized using a virtual helmet with a tracking system. An infrared camera detects the position of infrared LEDs located in the operator's head and places the vision of the virtual character in accordance with the operator's vision. The avatar control is performed by a system that detects the movement of the hands, using infrared sensors, allowing the user to move it in the virtual environment. This interaction system was implemented in the virtual model of the Instituto de Engenharia Nuclear (IEN), which is located on the Ilha do Fundao - Rio de Janeiro - Brazil. This three-dimensional environment, in which avatars can move and interact according to the user movements, gives a feeling of realism to the operator. The results show an interface that allows a higher degree of immersion of the operator in the virtual environment, promoting a more engaging and dynamic way of working. (author)

  15. Being in a Virtual World

    DEFF Research Database (Denmark)

    Walther-Hansen, Mads; Grimshaw, Mark

    2016-01-01

    We present a theoretical framework by which virtual world sound designers may work towards the attainment of presence. Drawing on the study of cognitive metaphors and the view that sound is an emergent perception we offer an account of the environment as a salient and dynamic construct that funct......We present a theoretical framework by which virtual world sound designers may work towards the attainment of presence. Drawing on the study of cognitive metaphors and the view that sound is an emergent perception we offer an account of the environment as a salient and dynamic construct...... that functions as a synecdoche for the nonself. Separating environment from world, we discuss the role of sound in the forming of the environment and argue that it is this environment that establishes the means for presence because it is the process behind the construction of the environment that individuates...

  16. Transition of cavitating flow to supercavitation within Venturi nozzle - hysteresis investigation

    Science.gov (United States)

    Jiří, Kozák; Pavel, Rudolf; Rostislav, Huzlík; Martin, Hudec; Radomír, Chovanec; Ondřej, Urban; Blahoslav, Maršálek; Eliška, Maršálková; František, Pochylý; David, Štefan

    Cavitation is usually considered as undesirable phenomena. On the other hand, it can be utilized in many applications. One of the technical applications is using cavitation in water treatment, where hydrodynamic cavitation seems to be effective way how to reduce cyanobacteria within large bulks of water. The main scope of this paper is investigation of the cavitation within Venturi nozzle during the transition from fully developed cavitation to supercavitation regime and vice versa. Dynamics of cavitation was investigated using experimental data of pressure pulsations and analysis of high speed videos, where FFT of the pixel intensity and Proper Orthogonal Decomposition (POD) of the records were done to identify dominant frequencies connected with the presence of cavitation. The methodology of the high speed (HS) records semiautomated analysis using the FFT was described. Obtained results were correlated and above that the possible presence of hysteresis was discussed.

  17. Numerical Simulation of Non-Equilibrium Two-Phase Wet Steam Flow through an Asymmetric Nozzle

    Directory of Open Access Journals (Sweden)

    Miah Md Ashraful Alam

    2017-11-01

    Full Text Available The present study reported of the numerical investigation of a high-speed wet steam flow through an asymmetric nozzle. The spontaneous non-equilibrium homogeneous condensation of wet steam was numerically modeled based on the classical nucleation theory and droplet growth rate equation combined with the field conservations within the computational fluid dynamics (CFD code of ANSYS Fluent 13.0. The equations describing droplet formations and interphase change were solved sequentially after solving the main flow conservation equations. The calculations were carried out assuming the flow two-dimensional, compressible, turbulent, and viscous. The SST k-ω model was used for modeling the turbulence within an unstructured mesh solver. The validation of numerical model was accomplished, and the results showed a good agreement between the numerical simulation and experimental data. The effect of spontaneous non-equilibrium condensation on the jet and shock structures was revealed, and the condensation shown a great influence on the jet structure.

  18. Hydrogen extraction from liquid lithium-lead alloy by bubbling with rotational jet nozzle

    International Nuclear Information System (INIS)

    Xie Bo; Yang Tongzai; Guan Rui; Weng Kuiping

    2010-01-01

    The technology of tritium extraction from lithium-lead alloy has been simulated, hydrogen extraction from lithium-lead alloy by bubbling with rotational jet nozzle being used to simulate tritium in the study based on the introduction of fluid dynamics to establish algebraic model. The results show that the higher than lithium-lead melting temperature, the higher cumulative hydrogen extraction efficiency, and gas holdup of bubble column is little affected by the impeller diameter. Gas holdup when using small aperture is slightly higher when using large aperture only at a high helium flow rate, but the smaller the aperture, the greater the bubble surface area, and a marked increase in intensity of flow circulation for liquid lithium-lead with the increase of helium flow rate, hydrogen extraction rate increases too. Moreover, influence of the jet rotational velocity on hydrogen extraction is limited. (authors)

  19. Transition of cavitating flow to supercavitation within Venturi nozzle – hysteresis investigation

    Directory of Open Access Journals (Sweden)

    Jiří Kozák

    2017-01-01

    Full Text Available Cavitation is usually considered as undesirable phenomena. On the other hand, it can be utilized in many applications. One of the technical applications is using cavitation in water treatment, where hydrodynamic cavitation seems to be effective way how to reduce cyanobacteria within large bulks of water. The main scope of this paper is investigation of the cavitation within Venturi nozzle during the transition from fully developed cavitation to supercavitation regime and vice versa. Dynamics of cavitation was investigated using experimental data of pressure pulsations and analysis of high speed videos, where FFT of the pixel intensity and Proper Orthogonal Decomposition (POD of the records were done to identify dominant frequencies connected with the presence of cavitation. The methodology of the high speed (HS records semiautomated analysis using the FFT was described. Obtained results were correlated and above that the possible presence of hysteresis was discussed.

  20. Apparatus and method for a gas turbine nozzle

    Science.gov (United States)

    Zuo, Baifang; Ziminsky, Willy Steve; Johnson, Thomas Edward; Intile, John Charles; Lacy, Benjamin Paul

    2013-02-05

    A nozzle includes an inlet, an outlet, and an axial centerline. A shroud surrounding the axial centerline extends from the inlet to the outlet and defines a circumference. The circumference proximate the inlet is greater than the circumference at a first point downstream of the inlet, and the circumference at the first point downstream of the inlet is less than the circumference at a second point downstream of the first point. A method for supplying a fuel through a nozzle directs a first airflow along a first path and a second airflow along a second path separate from the first path. The method further includes injecting the fuel into at least one of the first path or the second path and accelerating at least one of the first airflow or the second airflow.

  1. Analysis of cracked pressure vessel nozzles by finite elements

    International Nuclear Information System (INIS)

    Reynen, J.

    1975-01-01

    In order to assess the safety of pressure vessel nozzles, the analysis should take into account cracks. The paper describes various algorithms, their computer implementations and relative merits to define in an effective way strain energy release rates along the tip front of arbitrary 3 D cracks under arbitary load including thermal strains. These techniques are basically equivalent to substructuring techniques and consequently they can be implemented to only FEM program able to deal with the data handling problems of the substructuring technique. Examples are given carried out with a substructure version of the BERSAFE system. These examples include a corner crack in a pressure vessel nozzle loaded by internal pressure and by thermal stresses. (Auth.)

  2. Hypersonic nozzle/afterbody CFD code validation. I - Experimental measurements

    Science.gov (United States)

    Spaid, Frank W.; Keener, Earl R.

    1993-01-01

    This study was conducted to obtain a detailed experimental description of the flow field created by the interaction of a single-expansion-ramp-nozzle flow with a hypersonic external stream. Data were obtained from a generic nozzle/afterbody model in the 3.5-Foot Hypersonic Wind Tunnel of the NASA Ames Research Center in a cooperative experimental program involving Ames and the McDonnell Douglas Research Laboratories. This paper presents experimental results consisting primarily of surveys obtained with a five-hole total-pressure/flow-direction probe and a total-temperature probe. These surveys were obtained in the flow field created by the interaction between the underexpanded jet plume and the external flow.

  3. Bundled multi-tube nozzle for a turbomachine

    Science.gov (United States)

    Lacy, Benjamin Paul; Ziminsky, Willy Steve; Johnson, Thomas Edward; Zuo, Baifang; York, William David; Uhm, Jong Ho

    2015-09-22

    A turbomachine includes a compressor, a combustor operatively connected to the compressor, an end cover mounted to the combustor, and an injection nozzle assembly operatively connected to the combustor. The injection nozzle assembly includes a cap member having a first surface that extends to a second surface. The cap member further includes a plurality of openings. A plurality of bundled mini-tube assemblies are detachably mounted in the plurality of openings in the cap member. Each of the plurality of bundled mini-tube assemblies includes a main body section having a first end section and a second end section. A fluid plenum is arranged within the main body section. A plurality of tubes extend between the first and second end sections. Each of the plurality of tubes is fluidly connected to the fluid plenum.

  4. Investigation of nozzle contours in the CSIR supersonic wind tunnel

    CSIR Research Space (South Africa)

    Vallabh, Bhavya

    2017-09-01

    Full Text Available Contours in the CSIR Supersonic Wind Tunnel B Vallabha,b and BW Skewsa Received 17 February 2017, in revised form 23 June 2017 and accepted 25 June 2017 R & D Journal of the South African Institution of Mechanical Engineering 2017, 33, 32-41 http... with the Sivells’ nozzle design method and the method of characteristics technique to design the nozzle profiles for the full supersonic Mach number range 𝟏𝟏 ≀ 𝑎𝑎 ≀ 𝟒𝟒.5 of the facility. Automatic computation was used for the profile...

  5. Predictive Modeling of Fast-Curing Thermosets in Nozzle-Based Extrusion

    Science.gov (United States)

    Xie, Jingjin; Randolph, Robert; Simmons, Gary; Hull, Patrick V.; Mazzeo, Aaron D.

    2017-01-01

    This work presents an approach to modeling the dynamic spreading and curing behavior of thermosets in nozzle-based extrusions. Thermosets cover a wide range of materials, some of which permit low-temperature processing with subsequent high-temperature and high-strength working properties. Extruding thermosets may overcome the limited working temperatures and strengths of conventional thermoplastic materials used in additive manufacturing. This project aims to produce technology for the fabrication of thermoset-based structures leveraging advances made in nozzle-based extrusion, such as fused deposition modeling (FDM), material jetting, and direct writing. Understanding the synergistic interactions between spreading and fast curing of extruded thermosetting materials will provide essential insights for applications that require accurate dimensional controls, such as additive manufacturing [1], [2] and centrifugal coating/forming [3]. Two types of thermally curing thermosets -- one being a soft silicone (Ecoflex 0050) and the other being a toughened epoxy (G/Flex) -- served as the test materials in this work to obtain models for cure kinetics and viscosity. The developed models align with extensive measurements made with differential scanning calorimetry (DSC) and rheology. DSC monitors the change in the heat of reaction, which reflects the rate and degree of cure at different crosslinking stages. Rheology measures the change in complex viscosity, shear moduli, yield stress, and other properties dictated by chemical composition. By combining DSC and rheological measurements, it is possible to establish a set of models profiling the cure kinetics and chemorheology without prior knowledge of chemical composition, which is usually necessary for sophisticated mechanistic modeling. In this work, we conducted both isothermal and dynamic measurements with both DSC and rheology. With the developed models, numerical simulations yielded predictions of diameter and height of

  6. Scalable Fabrication of Supercapacitors by Nozzle-free Electrospinning

    OpenAIRE

    Shi, Kaiyuan; Giapis, Konstantinos P.

    2018-01-01

    Nozzle-free electrospinning was investigated as a facile technique for producing nanoscale materials for supercapacitors. MnO2 nanofibers and their composites with multiwalled carbon nanotubes (MWCNTs) were synthesized in a single step, using polyvinylpyrrolidone (PVP) and Mn(CH_3COO)_2·4H_2O as starting materials, followed up by heat treatment in ambient air. Nanofibers of relatively uniform diameter were produced at high rates. The nanofibers exhibited good electrical contact between MnO_2 ...

  7. Ambipolar ion acceleration in an expanding magnetic nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Longmier, Benjamin W; Carter, Mark D; Cassady, Leonard D; Chancery, William J; Diaz, Franklin R Chang; Glover, Tim W; Ilin, Andrew V; McCaskill, Greg E; Olsen, Chris S; Squire, Jared P [Ad Astra Rocket Company, 141 W. Bay Area Blvd, Webster, TX (United States); Bering, Edgar A III [Department of Physics and Department of Electrical and Computer Engineering, University of Houston, 617 Science and Research Building 1, Houston, TX (United States); Hershkowitz, Noah [Department of Engineering Physics, University of Wisconsin, 1500 Engineering Dr., Madison, WI (United States)

    2011-02-15

    The helicon plasma stage in the Variable Specific Impulse Magnetoplasma Rocket (VASIMR (registered)) VX-200i device was used to characterize an axial plasma potential profile within an expanding magnetic nozzle region of the laboratory based device. The ion acceleration mechanism is identified as an ambipolar electric field produced by an electron pressure gradient, resulting in a local axial ion speed of Mach 4 downstream of the magnetic nozzle. A 20 eV argon ion kinetic energy was measured in the helicon source, which had a peak magnetic field strength of 0.17 T. The helicon plasma source was operated with 25 mg s{sup -1} argon propellant and 30 kW of RF power. The maximum measured values of plasma density and electron temperature within the exhaust plume were 1 x 10{sup 20} m{sup -3} and 9 eV, respectively. The measured plasma density is nearly an order of magnitude larger than previously reported steady-state helicon plasma sources. The exhaust plume also exhibits a 95% to 100% ionization fraction. The size scale and spatial location of the plasma potential structure in the expanding magnetic nozzle region appear to follow the size scale and spatial location of the expanding magnetic field. The thickness of the potential structure was found to be 10{sup 4} to 10{sup 5} {lambda}{sub De} depending on the local electron temperature in the magnetic nozzle, many orders of magnitude larger than typical laboratory double layer structures. The background plasma density and neutral argon pressure were 10{sup 15} m{sup -3} and 2 x 10{sup -5} Torr, respectively, in a 150 m{sup 3} vacuum chamber during operation of the helicon plasma source. The agreement between the measured plasma potential and plasma potential that was calculated from an ambipolar ion acceleration analysis over the bulk of the axial distance where the potential drop was located is a strong confirmation of the ambipolar acceleration process.

  8. Characterization of Rotating Detonation Engine Exhaust Through Nozzle Guide Vanes

    Science.gov (United States)

    2013-03-21

    ENY/13-M09 Abstract A Rotating Detonation Engine ( RDE ) has higher thermal efficiencies in comparison to its traditional gas turbine counterparts. Thus...as budgets decrease and fuel costs increase, RDEs have become a research focus for the United States Air Force. An integration assembly for attaching...the first Nozzle Guide Vane (NGV) section from a T63 gas turbine engine to a 6 inch diameter RDE was designed and built for this study. Pressure

  9. Magnetic Nozzles for Plasma Thrusters: Acceleration, Thrust, and Detachment Mechanisms

    Science.gov (United States)

    2011-10-01

    neutral double layer. A very detailed study of this surface discontinuity has been culminated [4]. It had been claimed that the presence of this DL could...field assures that electrons are strongly-magnetized whereas ions are partially-magnetized. The use of the method of characteristic surfaces (i.e...z = const disk. (d) Ambipolar electric field and equipotential lines for plasmas with a 0.2 fraction of 9-times hotter electrons at the nozzle

  10. Device to enrich uranium using the separation nozzle method

    International Nuclear Information System (INIS)

    Wenzel, W.

    1984-01-01

    Separation nozzle units, coolers and the radial-flow compressor are integrated in such manner that the volume of the device is reduced and the efficiency is increased. The radial-flow compressor that is placed in a central and axial position in the cylindrical casing of the tank is concentrically surrounded by the other elements, which are arranged in a way that regular maintenance becomes possible without difficulties. The detailed description is supplemented by drawings. (ori./PW)

  11. Three Dimensional Steady Subsonic Euler Flows in Bounded Nozzles

    OpenAIRE

    Chen, Chao; Xie, Chunjing

    2013-01-01

    In this paper, we study the existence and uniqueness of three dimensional steady Euler flows in rectangular nozzles when prescribing normal component of momentum at both the entrance and exit. If, in addition, the normal component of the voriticity and the variation of Bernoulli's function at the exit are both zero, then there exists a unique subsonic potential flow when the magnitude of the normal component of the momentum is less than a critical number. As the magnitude of the normal compon...

  12. A Benchmark for Virtual Camera Control

    DEFF Research Database (Denmark)

    Burelli, Paolo; Yannakakis, Georgios N.

    2015-01-01

    Automatically animating and placing the virtual camera in a dynamic environment is a challenging task. The camera is expected to maximise and maintain a set of properties — i.e. visual composition — while smoothly moving through the environment and avoiding obstacles. A large number of different....... For this reason, in this paper, we propose a benchmark for the problem of virtual camera control and we analyse a number of different problems in different virtual environments. Each of these scenarios is described through a set of complexity measures and, as a result of this analysis, a subset of scenarios...

  13. Indoor spray measurement of spray drift potential using a spray drift test bench : effect of drift-reducing nozzle types, spray boom height, nozzle spacing and forward speed

    NARCIS (Netherlands)

    Moreno Ruiz, J.R.

    2014-01-01

    In a series of indoor experiments spray drift potential was assessed when spraying over a spray drift testbench with two different driving speeds, 2m/s and 4m/s, two different spray boom heights, 30 cm and 50 cm, and two different nozzle spacing, 25 cm and 50 cm, for six different nozzle types. The

  14. Chemical processes in the turbine and exhaust nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Lukachko, S P; Waitz, I A [Massachusetts Inst. of Tech., Cambridge, MA (United States). Aero-Environmental Lab.; Miake-Lye, R C; Brown, R C; Anderson, M R [Aerodyne Research, Inc., Billerica, MA (United States); Dawes, W N [University Engineering Dept., Cambridge (United Kingdom). Whittle Lab.

    1998-12-31

    The objective is to establish an understanding of primary pollutant, trace species, and aerosol chemical evolution as engine exhaust travels through the nonuniform, unsteady flow fields of the turbine and exhaust nozzle. An understanding of such processes is necessary to provide accurate inputs for plume-wake modeling efforts and is therefore a critical element in an assessment of the atmospheric effects of both current and future aircraft. To perform these studies, a numerical tool was developed combining the calculation of chemical kinetics and one-, two-, or three-dimensional (1-D, 2-D, 3-D) Reynolds-averaged flow equations. Using a chemistry model that includes HO{sub x}, NO{sub y}, SO{sub x}, and CO{sub x} reactions, several 1-D parametric analyses were conducted for the entire turbine and exhaust nozzle flow path of a typical advanced subsonic engine to understand the effects of various flow and chemistry uncertainties on a baseline 1-D result. These calculations were also used to determine parametric criteria for judging 1-D, 2-D, and 3-D modeling requirements as well as to provide information about chemical speciation at the nozzle exit plane. (author) 9 refs.

  15. Nozzle Flow with Vibrational Nonequilibrium. Ph.D. Thesis

    Science.gov (United States)

    Landry, John Gary

    1995-01-01

    Flow of nitrogen gas through a converging-diverging nozzle is simulated. The flow is modeled using the Navier-Stokes equations that have been modified for vibrational nonequilibrium. The energy equation is replaced by two equations. One equation accounts for energy effects due to the translational and rotational degrees of freedom, and the other accounts for the affects due to the vibrational degree of freedom. The energy equations are coupled by a relaxation time which measures the time required for the vibrational energy component to equilibrate with the translational and rotational energy components. An improved relaxation time is used in this thesis. The equations are solved numerically using the Steger-Warming flux vector splitting method and the Implicit MacCormack method. The results show that uniform flow is produced outside of the boundary layer. Nonequilibrium exists in both the converging and diverging nozzle sections. The boundary layer region is characterized by a marked increase in translational-rotational temperature. The vibrational temperature remains frozen downstream of the nozzle, except in the boundary layer.

  16. Inspections of CRDM Nozzle Penetrations in Paks NPP

    International Nuclear Information System (INIS)

    Doszpod, B.; Doczi, M.

    2008-01-01

    During the maintenance outage of Unit 2 of Paks Nuclear Power Plant in 2002, performing the regular drop-test of Control Rod Driving Mechanisms (CRDM) reduced drop-speed was observed in case of one CRDM. In spite of the measured value of speed was inside the acceptance limit, so it was still satisfactory, decision was made to disassemble the CRDM to clarify the cause of the speed-anomaly. After removal of the CRDM, by means of visual inspection deformation (bulge) was observed on the inside surface of the heat protection tube of the CRDM nozzle penetration. Deformation was big enough to obstruct the free movement of CRDM. After the deformed heat protection tube was removed, significant bulge was observed also on the corrosion protection tube, at the same elevation. As the root cause of these deformations, presence of water in the space between the CRDM nozzle and the corrosion protection tube was assumed. Non destructive inspection procedures were worked out and utilized to detect the presence of water in the space in question and to find the possible way of water inlet. Performed inspections successfully localized the place of water inlet. Developed inspection program of CRDM nozzles has to be performed during each outage on each unit. Paper deals with introduction of the phenomenon, the cause of damage, inspection the procedures which were worked out and applied, summarize the results of inspections performed.(author)

  17. Measuring Spray Droplet Size from Agricultural Nozzles Using Laser Diffraction

    Science.gov (United States)

    Fritz, Bradley K.; Hoffmann, W. Clint

    2016-01-01

    When making an application of any crop protection material such as an herbicide or pesticide, the applicator uses a variety of skills and information to make an application so that the material reaches the target site (i.e., plant). Information critical in this process is the droplet size that a particular spray nozzle, spray pressure, and spray solution combination generates, as droplet size greatly influences product efficacy and how the spray moves through the environment. Researchers and product manufacturers commonly use laser diffraction equipment to measure the spray droplet size in laboratory wind tunnels. The work presented here describes methods used in making spray droplet size measurements with laser diffraction equipment for both ground and aerial application scenarios that can be used to ensure inter- and intra-laboratory precision while minimizing sampling bias associated with laser diffraction systems. Maintaining critical measurement distances and concurrent airflow throughout the testing process is key to this precision. Real time data quality analysis is also critical to preventing excess variation in the data or extraneous inclusion of erroneous data. Some limitations of this method include atypical spray nozzles, spray solutions or application conditions that result in spray streams that do not fully atomize within the measurement distances discussed. Successful adaption of this method can provide a highly efficient method for evaluation of the performance of agrochemical spray application nozzles under a variety of operational settings. Also discussed are potential experimental design considerations that can be included to enhance functionality of the data collected. PMID:27684589

  18. Cracking at nozzle corners in the nuclear pressure vessel industry

    International Nuclear Information System (INIS)

    Smith, C.W.

    1986-01-01

    Cracks in nozzle corners at the pressure boundary of nuclear reactors have been frequently observed in service. These cracks tend to form with radial orientations with respect to the nozzle central axis and are believed to be initiated by thermal shock. However, their growth is believed to be primarily due to a steady plus a fluctuating internal pressure. Due to the impracticality of fracture testing of full-scale models, the Oak Ridge National Laboratory instituted the use of an intermediate test vessel (ITV) for use in fracture testing which had the same wall thickness and nozzle size as the prototype but significantly reduced overall length and diameter. In order to determine whether or not these ITVs could provide realistic data for full-scale reactor vessels, laboratory models of full-scale boiling water reactors and ITVs were constructed and tested. After briefly reviewing the laboratory testing and correlating results with service experience, results obtained will be used to draw some general conclusions regarding the stable growth of nonplanar cracks with curved crack fronts which are the most common precursors to fracture of pressure vessel components near junctures. Use of linear elastic fracture mechanics is made in determining stress-intensity distribution along the crack fronts

  19. Chemical processes in the turbine and exhaust nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Lukachko, S.P.; Waitz, I.A. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Aero-Environmental Lab.; Miake-Lye, R.C.; Brown, R.C.; Anderson, M.R. [Aerodyne Research, Inc., Billerica, MA (United States); Dawes, W.N. [University Engineering Dept., Cambridge (United Kingdom). Whittle Lab.

    1997-12-31

    The objective is to establish an understanding of primary pollutant, trace species, and aerosol chemical evolution as engine exhaust travels through the nonuniform, unsteady flow fields of the turbine and exhaust nozzle. An understanding of such processes is necessary to provide accurate inputs for plume-wake modeling efforts and is therefore a critical element in an assessment of the atmospheric effects of both current and future aircraft. To perform these studies, a numerical tool was developed combining the calculation of chemical kinetics and one-, two-, or three-dimensional (1-D, 2-D, 3-D) Reynolds-averaged flow equations. Using a chemistry model that includes HO{sub x}, NO{sub y}, SO{sub x}, and CO{sub x} reactions, several 1-D parametric analyses were conducted for the entire turbine and exhaust nozzle flow path of a typical advanced subsonic engine to understand the effects of various flow and chemistry uncertainties on a baseline 1-D result. These calculations were also used to determine parametric criteria for judging 1-D, 2-D, and 3-D modeling requirements as well as to provide information about chemical speciation at the nozzle exit plane. (author) 9 refs.

  20. Thermal Analysis of the Fastrac Chamber/Nozzle

    Science.gov (United States)

    Davis, Darrell

    2001-01-01

    This paper will describe the thermal analysis techniques used to predict temperatures in the film-cooled ablative rocket nozzle used on the Fastrac 60K rocket engine. A model was developed that predicts char and pyrolysis depths, liner thermal gradients, and temperatures of the bondline between the overwrap and liner. Correlation of the model was accomplished by thermal analog tests performed at Southern Research, and specially instrumented hot fire tests at the Marshall Space Flight Center. Infrared thermography was instrumental in defining nozzle hot wall surface temperatures. In-depth and outboard thermocouple data was used to correlate the kinetic decomposition routine used to predict char and pyrolysis depths. These depths were anchored with measured char and pyrolysis depths from cross-sectioned hot-fire nozzles. For the X-34 flight analysis, the model includes the ablative Thermal Protection System (TPS) material that protects the overwrap from the recirculating plume. Results from model correlation, hot-fire testing, and flight predictions will be discussed.