Heterogeneous Dynamics of Coupled Vibrations
Cringus, Dan; Jansen, Thomas I. C.; Pshenichnikov, Maxim S.; Schoenlein, RW; Corkum, P; DeSilvestri, S; Nelson, KA; Riedle, E
2009-01-01
Frequency-dependent dynamics of coupled stretch vibrations of a water molecule are revealed by 2D IR correlation spectroscopy. These are caused by non-Gaussian fluctuations of the environment around the individual OH stretch vibrations.
Lanzani, Guglielmo; De Silvestri, Sandro
2007-01-01
Vibrational spectroscopy is a powerful investigation tool for a wide class of materials covering diverse areas in physics, chemistry and biology. The continuous development in the laser field regarding ultrashort pulse generation has led to the possibility of producing light pulses that can follow vibrational motion coupled to the electronic transitions in molecules and solids in real time. Aimed at researchers and graduate students using vibrational spectroscopy, this book provides both introductory chapters as well as more advanced contents reporting on recent progress. It also provides a good starting point for scientists seeking a sound introduction to ultrafast optics and spectroscopic techniques.
Dynamical response of vibrating ferromagnets
Gaganidze, E; Ziese, M
2000-01-01
The resonance frequency of vibrating ferromagnetic reeds in a homogeneous magnetic field can be substantially modified by intrinsic and extrinsic field-related contributions. Searching for the physical reasons of the field-induced resonance frequency change and to study the influence of the spin glass state on it, we have measured the low-temperature magnetoelastic behavior and the dynamical response of vibrating amorphous and polycrystalline ferromagnetic ribbons. We show that the magnetoelastic properties depend strongly on the direction of the applied magnetic field. The influence of the re-entrant spin glass transition on these properties is discussed. We present clear experimental evidence that for applied fields perpendicular to the main area of the samples the behavior of ferromagnetic reeds is rather independent of the material composition and magnetic state, exhibiting a large decrease of the resonance frequency. This effect can be very well explained with a model based on the dynamical response of t...
Dissimilar Dynamics of Coupled Water Vibrations
Jansen, Thomas L. C.; Cringus, Dan; Pshenichnikov, Maxim S.
2009-01-01
Dissimilar dynamics of coupled stretch vibrations of a water molecule are revealed by two-dimensional, IR correlation spectroscopy. These are caused by essentially non-Gaussian fluctuations of the electric field exerted by the environment on the individual OH stretch vibrations. Non-Gaussian
Vibrational dynamics of ice in reverse micelles
Dokter, A.M.; Petersen, C.; Woutersen, S.; Bakker, H.J.
2008-01-01
he ultrafast vibrational dynamics of HDO:D2O ice at 180 K in anionic reverse micelles is studied by midinfrared femtosecond pump-probe spectroscopy. Solutions containing reverse micelles are cooled to low temperatures by a fast-freezing procedure. The heating dynamics of the micellar solutions is
Dynamics and vibrations progress in nonlinear analysis
Kachapi, Seyed Habibollah Hashemi
2014-01-01
Dynamical and vibratory systems are basically an application of mathematics and applied sciences to the solution of real world problems. Before being able to solve real world problems, it is necessary to carefully study dynamical and vibratory systems and solve all available problems in case of linear and nonlinear equations using analytical and numerical methods. It is of great importance to study nonlinearity in dynamics and vibration; because almost all applied processes act nonlinearly, and on the other hand, nonlinear analysis of complex systems is one of the most important and complicated tasks, especially in engineering and applied sciences problems. There are probably a handful of books on nonlinear dynamics and vibrations analysis. Some of these books are written at a fundamental level that may not meet ambitious engineering program requirements. Others are specialized in certain fields of oscillatory systems, including modeling and simulations. In this book, we attempt to strike a balance between th...
Vibration dynamics of single atomic nanocontacts
International Nuclear Information System (INIS)
Khater, A; Bourahla, B; Tigrine, R
2007-01-01
The motivation for this work is to introduce a model for an atomic nanocontact, whereby its mechanical properties can be analysed via the local spectra. The model system consists of two sets of triple parallel semi-infinite atomic chains joined by a single atom in between. We calculate the vibration spectra and the local densities of vibration states, in the harmonic approximation, for the irreducible set of sites that constitute the nanocontact domain. The nanocontact observables are numerically calculated for different cases of elastic hardening and softening, to investigate how the local dynamics can respond to changes in the microscopic environment on the domain. We have also calculated the phonon scattering and coherent conductance at the nanocontact, derived in a Landauer-Buettiker matrix approach. The analysis of the spectra, of the densities of vibration states, and of the phonon conductance, identifies characteristic features and demonstrates the central role of a core subset of sites in the nanocontact domain
Improving Vibration Energy Harvesting Using Dynamic Magnifier
Directory of Open Access Journals (Sweden)
Almuatasim Alomari
2016-01-01
Full Text Available This paper reports on the design and evaluation of vibration-based piezoelectric energy-harvesting devices based on a polyvinylidene fluoride unimorph cantilever beam attached to the front of a dynamic magnifier. Experimental studies of the electromechanical frequency response functions are studied for the first three resonance frequencies. An analytical analysis is undertaken by applying the chain matrix in order to predict output voltage and output power with respect to the vibration frequency. The proposed harvester was modeled using MATLAB software and COMSOL multi- physics to study the mode shapes and electrical output parameters. The voltage and power output of the energy harvester with a dynamic magnifier was 2.62 V and 13.68 mW, respectively at the resonance frequency of the second mode. The modeling approach provides a basis to design energy harvesters exploiting dynamic magnification for improved performance and bandwidth. The potential application of such energy harvesting devices in the transport sector include autonomous structural health monitoring systems that often include embedded sensors, data acquisition, wireless communication, and energy harvesting systems.
The photodissociation and reaction dynamics of vibrationally excited molecules
Energy Technology Data Exchange (ETDEWEB)
Crim, F.F. [Univ. of Wisconsin, Madison (United States)
1993-12-01
This research determines the nature of highly vibrationally excited molecules, their unimolecular reactions, and their photodissociation dynamics. The goal is to characterize vibrationally excited molecules and to exploit that understanding to discover and control their chemical pathways. Most recently the author has used a combination of vibrational overtone excitation and laser induced fluorescence both to characterize vibrationally excited molecules and to study their photodissociation dynamics. The author has also begun laser induced grating spectroscopy experiments designed to obtain the electronic absorption spectra of highly vibrationally excited molecules.
Gas Bubble Dynamics under Mechanical Vibrations
Mohagheghian, Shahrouz; Elbing, Brian
2017-11-01
The scientific community has a limited understanding of the bubble dynamics under mechanical oscillations due to over simplification of Navier-Stockes equation by neglecting the shear stress tensor and not accounting for body forces when calculating the acoustic radiation force. The current work experimental investigates bubble dynamics under mechanical vibration and resulting acoustic field by measuring the bubble size and velocity using high-speed imaging. The experimental setup consists of a custom-designed shaker table, cast acrylic bubble column, compressed air injection manifold and an optical imaging system. The mechanical vibrations resulted in accelerations between 0.25 to 10 times gravitational acceleration corresponding to frequency and amplitude range of 8 - 22Hz and 1 - 10mm respectively. Throughout testing the void fraction was limited to <5%. The bubble size is larger than resonance size and smaller than acoustic wavelength. The amplitude of acoustic pressure wave was estimated using the definition of Bjerknes force in combination with Rayleigh-Plesset equation. Physical behavior of the system was capture and classified. Bubble size, velocity as well as size and spatial distribution will be presented.
Vibrational dynamics of hydration water in amylose
Cavatorta, F; Albanese, G; Angelini, N
2002-01-01
We present a study of the dynamical properties of hydration water associated with amylose helices, based on low-temperature vibrational spectra collected using the TOSCA inelastic spectrometer at ISIS. The structural constraints of the polysaccharidic chains favour the formation of a high-density structure for water, which has been suggested by Imberty and Perez on the basis of conformational analysis. According to this model, hydration water can only enter the pores formed by six adjacent helices and completely fills the pores at a hydration level of about 0.27-g water/g dry amylose. Our measurements show that the dynamical behaviour of hydration water is similar to that observed in high-density amorphous ice. (orig.)
DYNAMIC MODELLING OF VIBRATIONS ASSISTED DRILLING
Directory of Open Access Journals (Sweden)
Mathieu LADONNE
2015-05-01
Full Text Available The number of multi-materials staking configurations for aeronautical structures is increasing, with the evolution of composite and metallic materials. For drilling the fastening holes, the processes of Vibration Assisted Drilling (VAD expand rapidly, as it permits to improve reliability of drilling operations on multilayer structures. Among these processes of VAD, the solution with forced vibrations added to conventional feed to create a discontinuous cutting is the more developed in industry. The back and forth movement allows to improve the evacuation of chips by breaking it. This technology introduces two new operating parameters, the frequency and the amplitude of the oscillation. To optimize the process, the choice of those parameters requires first to model precisely the operation cutting and dynamics. In this paper, a kinematic modelling of the process is firstly proposed. The limits of the model are analysed through comparison between simulations and measurements. The proposed model is used to develop a cutting force model that allows foreseeing the operating conditions which ensure good chips breaking and tool life improvement.
Vibrational mechanics nonlinear dynamic effects, general approach, applications
Blekhman, Iliya I
2000-01-01
This important book deals with vibrational mechanics - the new, intensively developing section of nonlinear dynamics and the theory of nonlinear oscillations. It offers a general approach to the study of the effect of vibration on nonlinear mechanical systems.The book presents the mathematical apparatus of vibrational mechanics which is used to describe such nonlinear effects as the disappearance and appearance under vibration of stable positions of equilibrium and motions (i.e. attractors), the change of the rheological properties of the media, self-synchronization, self-balancing, the vibrat
Role of theoretical dynamics in vibration diagnostics of pipe systems
International Nuclear Information System (INIS)
Rejent, B.
1992-01-01
The importance of vibration diagnostics of pipe systems and the relevance of theoretical dynamics are shown using examples. The problems are discussed of vibration diagnostics of the primary circuit of a nuclear power plant with viscous seismic dampers installed. (M.D.) 7 figs., 5 refs
Structural dynamics and vibration 1995. PD-Volume 70
International Nuclear Information System (INIS)
Ovunc, B.A.; Esat, I.I.; Sabir, A.B.; Karadag, V.
1995-01-01
The themes of this symposium focused on: dynamic responses to temperature cycles and wind excitation; the influence of the hydraulic feedback on stability; structural reliability; vibratory stress relief; fault detection by signal processing; dynamic contact in mechanisms; vibration of thick flexible mechanisms; higher order mechanisms in flexible mechanisms; natural circular frequencies by finite element method; elastic buckling, stability, and vibration of linear and nonlinear structures; buckling of stiffened plates and rings; mixed variable optimization; vibration optimization; and optimization in a constrained space. Separate abstracts were prepared for 20 papers in this book
Universality in the dynamical properties of seismic vibrations
Chatterjee, Soumya; Barat, P.; Mukherjee, Indranil
2018-02-01
We have studied the statistical properties of the observed magnitudes of seismic vibration data in discrete time in an attempt to understand the underlying complex dynamical processes. The observed magnitude data are taken from six different geographical locations. All possible magnitudes are considered in the analysis including catastrophic vibrations, foreshocks, aftershocks and commonplace daily vibrations. The probability distribution functions of these data sets obey scaling law and display a certain universality characteristic. To investigate the universality features in the observed data generated by a complex process, we applied Random Matrix Theory (RMT) in the framework of Gaussian Orthogonal Ensemble (GOE). For all these six places the observed data show a close fit with the predictions of RMT. This reinforces the idea of universality in the dynamical processes generating seismic vibrations.
Laser-induced vibrational dynamics of ozone in solid argon
DEFF Research Database (Denmark)
Hansen, Flemming Yssing; Amstrup, B.; Henriksen, Niels Engholm
1997-01-01
We consider the vibrational dynamics, induced by an intense infrared laser pulse, in an ozone molecule with isotopic substitution, that is, (OOO)-O-16-O-16-O-18 and compare the dynamics in the gas phase and in solid ar on. not perturbed by argon on a time-scale of a few picoseconds and selective...
2018-01-01
The structural heterogeneity of water at various interfaces can be revealed by time-resolved sum-frequency generation spectroscopy. The vibrational dynamics of the O–H stretch vibration of interfacial water can reflect structural variations. Specifically, the vibrational lifetime is typically found to increase with increasing frequency of the O–H stretch vibration, which can report on the hydrogen-bonding heterogeneity of water. We compare and contrast vibrational dynamics of water in contact with various surfaces, including vapor, biomolecules, and solid interfaces. The results reveal that variations in the vibrational lifetime with vibrational frequency are very typical, and can frequently be accounted for by the bulk-like heterogeneous response of interfacial water. Specific interfaces exist, however, for which the behavior is less straightforward. These insights into the heterogeneity of interfacial water thus obtained contribute to a better understanding of complex phenomena taking place at aqueous interfaces, such as photocatalytic reactions and protein folding. PMID:29490138
Dynamic tire pressure sensor for measuring ground vibration.
Wang, Qi; McDaniel, James Gregory; Wang, Ming L
2012-11-07
This work presents a convenient and non-contact acoustic sensing approach for measuring ground vibration. This approach, which uses an instantaneous dynamic tire pressure sensor (DTPS), possesses the capability to replace the accelerometer or directional microphone currently being used for inspecting pavement conditions. By measuring dynamic pressure changes inside the tire, ground vibration can be amplified and isolated from environmental noise. In this work, verifications of the DTPS concept of sensing inside the tire have been carried out. In addition, comparisons between a DTPS, ground-mounted accelerometer, and directional microphone are made. A data analysis algorithm has been developed and optimized to reconstruct ground acceleration from DTPS data. Numerical and experimental studies of this DTPS reveal a strong potential for measuring ground vibration caused by a moving vehicle. A calibration of transfer function between dynamic tire pressure change and ground acceleration may be needed for different tire system or for more accurate application.
Vibrations of bioionic liquids by ab initio molecular dynamics and vibrational spectroscopy.
Tanzi, Luana; Benassi, Paola; Nardone, Michele; Ramondo, Fabio
2014-12-26
Density functional theory and vibrational spectroscopy are used to investigate a class of bioionic liquids consisting of a choline cation and carboxylate anions. Through quantum mechanical studies of motionless ion pairs and molecular dynamics of small portions of the liquid, we have characterized important structural features of the ionic liquid. Hydrogen bonding produces stable ion pairs in the liquid and induces vibrational features of the carboxylate groups comparable with experimental results. Infrared and Raman spectra of liquids have been measured, and main bands have been assigned on the basis of theoretical spectra.
Dynamic stiffness of suction caissons - vertical vibrations
Energy Technology Data Exchange (ETDEWEB)
Ibsen, Lars Bo; Liingaard, M.; Andersen, Lars
2006-12-15
The dynamic response of offshore wind turbines are affected by the properties of the foundation and the subsoil. The purpose of this report is to evaluate the dynamic soil-structure interaction of suction caissons for offshore wind turbines. The investigation is limited to a determination of the vertical dynamic stiffness of suction caissons. The soil surrounding the foundation is homogenous with linear viscoelastic properties. The dynamic stiffness of the suction caisson is expressed by dimensionless frequency-dependent dynamic stiffness coefficients corresponding to the vertical degree of freedom. The dynamic stiffness coefficients for the foundations are evaluated by means of a dynamic three-dimensional coupled Boundary Element/Finite Element model. Comparisons are made with known analytical and numerical solutions in order to evaluate the static and dynamic behaviour of the Boundary Element/Finite Element model. The vertical frequency dependent stiffness has been determined for different combinations of the skirt length, Poisson's ratio and the ratio between soil stiffness and skirt stiffness. Finally the dynamic behaviour at high frequencies is investigated. (au)
Dynamic Wetting Behavior of Vibrated Droplets on a Micropillared Surface
Directory of Open Access Journals (Sweden)
Zhi-hai Jia
2016-01-01
Full Text Available The dynamical wetting behavior has been observed under vertical vibration of a water droplet placed on a micropillared surface. The wetting transition takes place under the different processes. In compression process, the droplet is transited from Cassie state to Wenzel state. The droplet undergoes a Wenzel-Cassie wetting transition in restoring process and the droplet bounces off from the surface in bouncing process. Meanwhile, the wetting and dewetting models during vibration are proposed. The wetting transition is confirmed by the model calculation. This study has potential to be used to control the wetting state.
Advances in molecular vibrations and collision dynamics molecular clusters
Bacic, Zatko
1998-01-01
This volume focuses on molecular clusters, bound by van der Waals interactions and hydrogen bonds. Twelve chapters review a wide range of recent theoretical and experimental advances in the areas of cluster vibrations, spectroscopy, and reaction dynamics. The authors are leading experts, who have made significant contributions to these topics.The first chapter describes exciting results and new insights in the solvent effects on the short-time photo fragmentation dynamics of small molecules, obtained by combining heteroclusters with femtosecond laser excitation. The second is on theoretical work on effects of single solvent (argon) atom on the photodissociation dynamics of the solute H2O molecule. The next two chapters cover experimental and theoretical aspects of the energetics and vibrations of small clusters. Chapter 5 describes diffusion quantum Monte Carlo calculations and non additive three-body potential terms in molecular clusters. The next six chapters deal with hydrogen-bonded clusters, refle...
Dynamic stiffness of horizontally vibrating suction caissons
DEFF Research Database (Denmark)
Latini, Chiara; Zania, Varvara; Cisternino, Michele
2016-01-01
The promising potential for offshore wind market is on developing wind farms in deeper waters with bigger turbines. In deeper waters the design foundation configuration may consist of jacket structures supported by floating piles or by suction caissons. Taking the soil-structure interaction effects...... into consideration requires the prior estimation of the dynamic impedances of the foundation. Even though numerous studies exist for piles, only limited number of publications can be found for suction caissons subjected to dynamic loads. Therefore, the purpose of this study is to examine the dynamic response...... of this type of foundation using the finite element method (FEM) to account for the interaction with the soil. 3D numerical models for both the soil and the suction caisson are formulated in a frequency domain. The response of the soil surrounding the foundation is considered linear viscoelastic...
DYNAMICS OF VIBRATION FEEDERS WITH A NONLINEAR ELASTIC CHARACTERISTIC
Directory of Open Access Journals (Sweden)
V. I. Dyrda
2017-04-01
Full Text Available Purpose. Subject to the smooth and efficient operation of each production line, is the use of vehicles transporting high specification. It worked well in practice for transporting construction machines, which are used during the vibration. The use of vibration machines requires optimization of their operation modes. In the form of elastic link in them are increasingly using rubber-metallic elements, which are characterized by nonlinear damping properties. So it is necessary to search for new, more modern, methods of calculation of dynamic characteristics of the vibration machines on the properties of rubber as a cushioning material. Methodology. The dynamics of vibration machine that is as elastic rubber block units and buffer shock absorbers limiting the amplitude of the vibrations of the working body. The method of determining amplitude-frequency characteristics of the vibrating feeder is based on the principle of Voltaire, who in the calculations of the damping properties of the dampers will allow for elastic-hereditary properties of rubber. When adjusting the basic dynamic stiffness of the elastic ties and vibratory buffers, using the principle of heredity rubber properties, determine the dependence of the amplitude of the working body of the machine vibrations. This method is called integro-operator using the fractional-exponential kernels of relaxation. Findings. Using the derived formula for determining the amplitude of the resonance curve is constructed one-mass nonlinear system. It is established that the use of the proposed method of calculation will provide a sufficiently complete description of the damping parameters of rubber-metallic elements and at the same time be an effective means of calculating the amplitude-frequency characteristics of nonlinear vibration systems. Originality. The authors improved method of determining damping characteristics of rubber-metallic elements and the amplitude-frequency characteristics of nonlinear
Sensitivity of molecular vibrational dynamics to energy exchange rate constants
International Nuclear Information System (INIS)
Billing, G D; Coletti, C; Kurnosov, A K; Napartovich, A P
2003-01-01
The sensitivity of molecular vibrational population dynamics, governing the CO laser operated in fundamental and overtone transitions, to vibration-to-vibration rate constants is investigated. With this aim, three rate constant sets have been used, differing in their completeness (i.e. accounting for single-quantum exchange only, or for multi-quantum exchange with a limited number of rate constants obtained by semiclassical calculations, and, finally, with an exhaustive set of rate constants including asymmetric exchange processes, as well) and in the employed interaction potential. The most complete set among these three is introduced in this paper. An existing earlier kinetic model was updated to include the latter new data. Comparison of data produced by kinetic modelling with the above mentioned sets of rate constants shows that the vibrational distribution function, and, in particular, the CO overtone laser characteristics, are very sensitive to the choice of the model. The most complete model predicts slower evolution of the vibrational distribution, in qualitative agreement with experiments
Vibrational and orientational dynamics of water in aqueous hydroxide solutions.
Hunger, Johannes; Liu, Liyuan; Tielrooij, Klaas-Jan; Bonn, Mischa; Bakker, Huib
2011-09-28
We report the vibrational and orientational dynamics of water molecules in isotopically diluted NaOH and NaOD solutions using polarization-resolved femtosecond vibrational spectroscopy and terahertz time-domain dielectric relaxation measurements. We observe a speed-up of the vibrational relaxation of the O-D stretching vibration of HDO molecules outside the first hydration shell of OH(-) from 1.7 ± 0.2 ps for neat water to 1.0 ± 0.2 ps for a solution of 5 M NaOH in HDO:H(2)O. For the O-H vibration of HDO molecules outside the first hydration shell of OD(-), we observe a similar speed-up from 750 ± 50 fs to 600 ± 50 fs for a solution of 6 M NaOD in HDO:D(2)O. The acceleration of the decay is assigned to fluctuations in the energy levels of the HDO molecules due to charge transfer events and charge fluctuations. The reorientation dynamics of water molecules outside the first hydration shell are observed to show the same time constant of 2.5 ± 0.2 ps as in bulk liquid water, indicating that there is no long range effect of the hydroxide ion on the hydrogen-bond structure of liquid water. The terahertz dielectric relaxation experiments show that the transfer of the hydroxide ion through liquid water involves the simultaneous motion of ~7 surrounding water molecules, considerably less than previously reported for the proton. © 2011 American Institute of Physics
Monitoring Bridge Dynamic Deformation in Vibration by Digital Photography
Yu, Chengxin; Zhang, Guojian; Liu, Xiaodong; Fan, Li; Hai, Hua
2018-01-01
This study adopts digital photography to monitor bridge dynamic deformation in vibration. Digital photography in this study is based on PST-TBPM (photographing scale transformation-time baseline parallax method). Firstly, we monitor the bridge in static as a zero image. Then, we continuously monitor the bridge in vibration as the successive images. Based on the reference points on each image, PST-TBPM is used to calculate the images to obtain the dynamic deformation values of these deformation points. Results show that the average measurement accuracies are 0.685 pixels (0.51mm) and 0.635 pixels (0.47mm) in X and Z direction, respectively. The maximal deformations in X and Z direction of the bridge are 4.53 pixels and 5.21 pixels, respectively. PST-TBPM is valid in solving the problem that the photographing direction is not perpendicular to the bridge. Digital photography in this study can be used to assess bridge health through monitoring the dynamic deformation of a bridge in vibration. The deformation trend curves also can warn the possible dangers over time.
Dynamic Characteristics of Buildings from Signal Processing of Ambient Vibration
Dobre, Daniela; Sorin Dragomir, Claudiu
2017-10-01
The experimental technique used to determine the dynamic characteristics of buildings is based on records of low intensity oscillations of the building produced by various natural factors, such as permanent agitation type microseismic motions, city traffic, wind etc. The possibility of recording these oscillations is provided by the latest seismic stations (Geosig and Kinemetrics digital accelerographs). The permanent microseismic agitation of the soil is a complex form of stationary random oscillations. The building filters the soil excitation, selects and increases the components of disruptive vibrations corresponding to its natural vibration periods. For some selected buildings, with different instrumentation schemes for the location of sensors (in free-field, at basement, ground floor, roof level), a correlation between the dynamic characteristics resulted from signal processing of ambient vibration and from a theoretical analysis will be presented. The interpretation of recording results could highlight the behavior of the whole structure. On the other hand, these results are compared with those from strong motions, or obtained from a complex dynamic analysis, and they are quite different, but they are explicable.
Prediction of dynamic loads and induced vibrations in stall
Energy Technology Data Exchange (ETDEWEB)
Thirstrup Petersen, J.; Aagaard Madsen, H. [Risoe National Lab. (Denmark); Bjoerck, A. [Aeronautical Research Inst. of Sweden (Sweden); Enevoldsen, P. [Bonus Energy A/S (Denmark); Oeye, S. [The Technical Univ. of Denmark (Denmark); Ganander, H. [Teknikgruppen AB (Sweden); Winkelaar, D. [Netherlands Energy Research Foundation (Netherlands)
1998-05-01
Results from research in an EC Joule-III project and from national projects are presented. The objectives are improvement of design methods for stall regulated wind turbines with emphasis on stall induced vibrations and dynamic stall. The primary concern is limitation of the edgewise vibrations in the fundamental blade natural mode shape, which have caused trouble on modern wind turbines of approximate size 500 kW nominal power and 40 m rotor diameter. A theoretical study of quasi-steady aerodynamics confirms that the vibrations are driven basically by energy supplied from the aerodynamic forces during stalled operation. This energy exchange is equivalent to negative aerodynamic damping. The theoretical approach identifies the main parameters controlling the phenomenon. These parameters describe the steady and the dynamic airfoil characteristics, the overall aerodynamic layout of the blade, e.g. chord length and twist, the structural properties of the blade, e.g. structural damping and properties controlling the resulting vibration direction. Furthermore, full aeroelastic calculations and comparison with measurements show that the properties of the supporting structure, i.e. the main shaft, the nacelle and the tower, are important, as the global vibration of the rotor on its support may exchange energy with the blade vibration, when the blade natural frequency is close to one of the frequencies of the coupled rotor tilt-yaw mode shapes, usually denoted the global rotor whirl frequencies. It is confirmed that the influence of changing the primary design parameters can be determined by use of qualified aeroelastic calculations. Presented design guidelines therefore build on both the simple quasi-steady models, which can be used for the preliminary choice of the design variables mentioned above, and on full aeroelastic calculations. The aeroelastic calculations refine the design basis and should be used for choosing the final design variables and for final
Directory of Open Access Journals (Sweden)
Xu Liu
2015-01-01
Full Text Available Unsteady aerodynamic system modeling is widely used to solve the dynamic stability problems encountering aircraft design. In this paper, single degree-of-freedom (SDF vibration model and forced simple harmonic motion (SHM model for dynamic derivative prediction are developed on the basis of modified Etkin model. In the light of the characteristics of SDF time domain solution, the free vibration identification methods for dynamic stability parameters are extended and applied to the time domain numerical simulation of blunted cone calibration model examples. The dynamic stability parameters by numerical identification are no more than 0.15% deviated from those by experimental simulation, confirming the correctness of SDF vibration model. The acceleration derivatives, rotary derivatives, and combination derivatives of Army-Navy Spinner Rocket are numerically identified by using unsteady N-S equation and solving different SHV patterns. Comparison with the experimental result of Army Ballistic Research Laboratories confirmed the correctness of the SHV model and dynamic derivative identification. The calculation result of forced SHM is better than that by the slender body theory of engineering approximation. SDF vibration model and SHM model for dynamic stability parameters provide a solution to the dynamic stability problem encountering aircraft design.
Nonlinear dynamics and control of a vibrating rectangular plate
Shebalin, J. V.
1983-01-01
The von Karman equations of nonlinear elasticity are solved for the case of a vibrating rectangular plate by meams of a Fourier spectral transform method. The amplification of a particular Fourier mode by nonlinear transfer of energy is demonstrated for this conservative system. The multi-mode system is reduced to a minimal (two mode) system, retaining the qualitative features of the multi-mode system. The effect of a modal control law on the dynamics of this minimal nonlinear elastic system is examined.
On the mechanical vibrator-earth contact geometry and its dynamics
Noorlandt, R.P.; Drijkoningen, G.G.
2016-01-01
The geometry of the contact between a vibrator and the earth underneath influences the dynamics of the vibrator. Although a vibrator might appear to be well-coupled with the earth on a macroscale, perfect coupling certainly does not occur on the microscale. With the aid of contact mechanical
Flow vibrations and dynamic instability of heat exchanger tube bundles
International Nuclear Information System (INIS)
Granger, S.; Langre, E. de
1995-01-01
This paper presents a review of external-flow-induced vibration of heat exchanger tube bundles. Attention is focused on a dynamic instability, known as ''fluidelastic instability'', which can develop when flow is transverse to the tube axis. The main physical models proposed in the literature are successively reviewed in a critical way. As a consequence, some concepts are clarified, some a priori plausible misinterpretations are rejected and finally, certain basic mechanisms, induced by the flow-structure interaction and responsible for the ultimate onset of fluidelastic instability, are elucidated. Design tools and methods for predictive analysis of industrial cases are then presented. The usual design tool is the ''stability map'', i.e. an empirical correlation which must be interpreted in a conservative way. Of course, when using this approach, the designer must also consider reasonable safety margins. In the area of predictive analysis, the ''unsteady semi-analytical models'' seem to be a promising and efficient methodology. A modern implementation of these ideas mix an original experimental approach for taking fluid dynamic forces into account, together with non-classical numerical methods of mechanical vibration. (authors). 20 refs., 9 figs
Nonlinear quantum dynamics in diatomic molecules: Vibration, rotation and spin
International Nuclear Information System (INIS)
Yang, Ciann-Dong; Weng, Hung-Jen
2012-01-01
Highlights: ► This paper reveals the internal nonlinear dynamics embedded in a molecular quantum state. ► Analyze quantum molecular dynamics in a deterministic way, while preserving the consistency with probability interpretation. ► Molecular vibration–rotation interaction and spin–orbital coupling are considered simultaneously. ► Spin is just the remnant angular motion when orbital angular momentum is zero. ► Spin is the “zero dynamics” of nonlinear quantum dynamics. - Abstract: For a given molecular wavefunction Ψ, the probability density function Ψ ∗ Ψ is not the only information that can be extracted from Ψ. We point out in this paper that nonlinear quantum dynamics of a diatomic molecule, completely consistent with the probability prediction of quantum mechanics, does exist and can be derived from the quantum Hamilton equations of motion determined by Ψ. It can be said that the probability density function Ψ ∗ Ψ is an external representation of the quantum state Ψ, while the related Hamilton dynamics is an internal representation of Ψ, which reveals the internal mechanism underlying the externally observed random events. The proposed internal representation of Ψ establishes a bridge between nonlinear dynamics and quantum mechanics, which allows the methods and tools already developed by the former to be applied to the latter. Based on the quantum Hamilton equations of motion derived from Ψ, vibration, rotation and spin motions of a diatomic molecule and the interactions between them can be analyzed simultaneously. The resulting dynamic analysis of molecular motion is compared with the conventional probability analysis and the consistency between them is demonstrated.
Dynamic range of atomically thin vibrating nanomechanical resonators
International Nuclear Information System (INIS)
Wang, Zenghui; Feng, Philip X.-L.
2014-01-01
Atomically thin two-dimensional (2D) crystals offer attractive properties for making resonant nanoelectromechanical systems (NEMS) operating at high frequencies. While the fundamental limits of linear operation in such systems are important, currently there is very little quantitative knowledge of the linear dynamic range (DR) and onset of nonlinearity in these devices, which are different than in conventional 1D NEMS such as nanotubes and nanowires. Here, we present theoretical analysis and quantitative models that can be directly used to predict the DR of vibrating 2D circular drumhead NEMS resonators. We show that DR has a strong dependence ∝10log(E Y 3/2 ρ 3D -1/2 rtε 5/2 ) on device parameters, in which strain ε plays a particularly important role in these 2D systems, dominating over dimensions (radius r, thickness t). This study formulizes the effects from device physical parameters upon DR and sheds light on device design rules toward achieving high DR in 2D NEMS vibrating at radio and microwave frequencies
Vibrational dynamics of aqueous hydroxide solutions probed using broadband 2DIR spectroscopy
International Nuclear Information System (INIS)
Mandal, Aritra; Tokmakoff, Andrei
2015-01-01
We employed ultrafast transient absorption and broadband 2DIR spectroscopy to study the vibrational dynamics of aqueous hydroxide solutions by exciting the O–H stretch vibrations of the strongly hydrogen-bonded hydroxide solvation shell water and probing the continuum absorption of the solvated ion between 1500 and 3800 cm −1 . We observe rapid vibrational relaxation processes on 150–250 fs time scales across the entire probed spectral region as well as slower vibrational dynamics on 1–2 ps time scales. Furthermore, the O–H stretch excitation loses its frequency memory in 180 fs, and vibrational energy exchange between bulk-like water vibrations and hydroxide-associated water vibrations occurs in ∼200 fs. The fast dynamics in this system originate in strong nonlinear coupling between intra- and intermolecular vibrations and are explained in terms of non-adiabatic vibrational relaxation. These measurements indicate that the vibrational dynamics of the aqueous hydroxide complex are faster than the time scales reported for long-range transport of protons in aqueous hydroxide solutions
Barroso, Luciana R.; Morgan, James R.
2012-01-01
This paper describes the creation and evolution of an undergraduate dynamics and vibrations course for civil engineering students. Incorporating vibrations into the course allows students to see and study "real" civil engineering applications of the course content. This connection of academic principles to real life situations is in…
Vibration control of ultrasonic cutting via dynamic absorber
Energy Technology Data Exchange (ETDEWEB)
Amer, Y.A. [Department of Mathematics, Faculty of Science, Zagazig University, Zagazig (Egypt)]. E-mail: yasser31270@yahoo.com
2007-08-15
Ultrasonic machining (USM) is one of the most effective non-conventional techniques. Its application especially to hard-to-machine material (HTM) is growing rapidly. The main operation condition of USM is at resonance where an exciter derives a tuned blade or a tool. In this paper, the coupling of two non-linear oscillators of the main system and absorber representing ultrasonic cutting process are investigated. This leads to a two-degree-of-freedom Duffing's oscillator in which such non-linear effects can be neutralized under certain dynamic conditions. The aim of this work is the control of the system behavior at principal parametric resonance condition where the system damage is probable. An approximate solution is derived up to the second order for the coupled system. A threshold value of linear damping has been obtained, where the system vibration can be reduced dramatically. The stability of the system is investigated applying both phase-plane and frequency response techniques. The effects of the different parameters of the absorber on system behavior are studied numerically. Comparison with the available published work is reported.
International Nuclear Information System (INIS)
Li Yingli; Xu Daolin; Fu Yiming; Zhou Jiaxi
2012-01-01
In this paper, the average method is adopted to analysis dynamic characteristics of nonlinear vibration isolation floating raft system with feedback control. The analytic results show that the purposes of reducing amplitude of oscillation and complicating the motion can be achieved by adjusting properly the system parameters, exciting frequency and control gain. The conclusions can provide some available evidences for the design and improvement of both the passive and active control of the vibration isolation systems. By altering the exciting frequency and control gain, complex motion of the system can be obtained. Numerical simulations show the system exhibits period vibration, double period vibration and quasi-period motion.
Computational Fluid Dynamic Analysis of a Vibrating Turbine Blade
Directory of Open Access Journals (Sweden)
Osama N. Alshroof
2012-01-01
Full Text Available This study presents the numerical fluid-structure interaction (FSI modelling of a vibrating turbine blade using the commercial software ANSYS-12.1. The study has two major aims: (i discussion of the current state of the art of modelling FSI in gas turbine engines and (ii development of a “tuned” one-way FSI model of a vibrating turbine blade to investigate the correlation between the pressure at the turbine casing surface and the vibrating blade motion. Firstly, the feasibility of the complete FSI coupled two-way, three-dimensional modelling of a turbine blade undergoing vibration using current commercial software is discussed. Various modelling simplifications, which reduce the full coupling between the fluid and structural domains, are then presented. The one-way FSI model of the vibrating turbine blade is introduced, which has the computational efficiency of a moving boundary CFD model. This one-way FSI model includes the corrected motion of the vibrating turbine blade under given engine flow conditions. This one-way FSI model is used to interrogate the pressure around a vibrating gas turbine blade. The results obtained show that the pressure distribution at the casing surface does not differ significantly, in its general form, from the pressure at the vibrating rotor blade tip.
Some problems of control of dynamical conditions of technological vibrating machines
Kuznetsov, N. K.; Lapshin, V. L.; Eliseev, A. V.
2017-10-01
The possibility of control of dynamical condition of the shakers that are designed for vibration treatment of parts interacting with granular media is discussed. The aim of this article is to develop the methodological basis of technology of creation of mathematical models of shake tables and the development of principles of formation of vibrational fields, estimation of their parameters and control of the structure vibration fields. Approaches to build mathematical models that take into account unilateral constraints, the relationships between elements, with the vibrating surface are developed. Methods intended to construct mathematical model of linear mechanical oscillation systems are used. Small oscillations about the position of static equilibrium are performed. The original method of correction of vibration fields by introduction of the oscillating system additional ties to the structure are proposed. Additional ties are implemented in the form of a mass-inertial device for changing the inertial parameters of the working body of the vibration table by moving the mass-inertial elements. The concept of monitoring the dynamic state of the vibration table based on the original measuring devices is proposed. Estimation for possible changes in dynamic properties is produced. The article is of interest for specialists in the field of creation of vibration technology machines and equipment.
Ji, Pengfei; Zhang, Yuwen; Yang, Mo
2016-01-01
The structural, dynamic, and vibrational properties during the heat transfer process in Si/Ge superlattices, are studied by analyzing the trajectories generated by the ab initio Car-Parrinello molecular dynamics simulation. The radial distribution functions and mean square displacements are calculated and further discussions are made to explain and probe the structural changes relating to the heat transfer phenomenon. Furthermore, the vibrational density of states of the two layers (Si/Ge) ar...
Girardeau, Vadim; Goloni, Carolina; Jacquin, Olivier; Hugon, Olivier; Inglebert, Mehdi; Lacot, Eric
2016-12-01
In this article, we study the nonlinear dynamics of a laser subjected to frequency shifted optical reinjection coming back from a vibrating target. More specifically, we study the nonlinear dynamical coupling between the carrier and the vibration signal. The present work shows how the nonlinear amplification of the vibration spectrum is related to the strength of the carrier and how it must be compensated to obtain accurate (i.e., without bias) vibration measurements. The theoretical predictions, confirmed by numerical simulations, are in good agreement with the experimental data. The main motivation of this study is the understanding of the nonlinear response of a laser optical feedback imaging sensor for quantitative phase measurements of small vibrations in the case of strong optical feedback.
1980-09-01
Smallwood and D. L. Gregory, Sandia Laboratories, Albuquerque, NM A NEW METHOD OF IMPROVING SPECTRA SHAPING IN REVERBERANT CHAMBERS...DAMPING M. M. Wallace and C. W. Bert, The University of Oklahoma, Norman , OK CONTRIBUTIONS TO THE DYNAMIC ANALYSIS OF MAGLEV VEHICLES ON ELEVATED GUIDEWAYS...RANDOM VIBRATION EXTRENAL CONTROL STRATEGY D. 0. Smallwood D. L. Gregory Sandia Laboratories Albuquerque, NM This paper discusses the theoretical basis for
CHECKING OF TECHNICAL BRIDGES’ STATE BY PASSIVE VIBRATIONAL DYNAMICS METHODS
Directory of Open Access Journals (Sweden)
V. P. Redchenko
2010-03-01
Full Text Available In the article the results of studies of the passive vibration test methods and the possibilities of using them for determining and monitoring of technical condition of bridges are presented.
Qin, Yechen; He, Chenchen; Shao, Xinxin; Du, Haiping; Xiang, Changle; Dong, Mingming
2018-04-01
This paper presents a new approach for vibration mitigation based on a dynamic vibration absorbing structure (DVAS) for electric vehicles (EVs) that use in-wheel switched reluctance motors (SRMs). The proposed approach aims to alleviate the negative effects of vibration caused by the unbalanced electromagnetic force (UMEF) that arises from road excitations. The analytical model of SRMs is first formulated using Fourier series, and then a model of the coupled longitudinal-vertical dynamics is developed taking into consideration the external excitations consisting of the aerodynamic drag force and road unevenness. In addition, numerical simulations for a conventional SRM-suspension system and two novel DVASs are carried out for varying road levels specified by ISO standards and vehicle velocities. The results of the comparison reveal that a 35% improvement in ride comfort, 30% improvement of road handling, and 68% improvement in air gap between rotor and stator can be achieved by adopting the novel DVAS compared to the conventional SRM-suspension system. Finally, multi-body simulation (MBS) is performed using LMS Motion to validate the feasibility of the proposed DVAS. Analysis of the results shows that the proposed method can augment the effective application of SRMs in EVs.
Directory of Open Access Journals (Sweden)
Jingli Du
2013-01-01
Full Text Available Cable-driven parallel manipulators are one of the best solutions to achieving large workspace since flexible cables can be easily stored on reels. However, due to the negligible flexural stiffness of cables, long cables will unavoidably vibrate during operation for large workspace applications. In this paper a finite element model for cable-driven parallel manipulators is proposed to mimic small amplitude vibration of cables around their desired position. Output feedback of the cable tension variation at the end of the end-effector is utilized to design the vibration attenuation controller which aims at attenuating the vibration of cables by slightly varying the cable length, thus decreasing its effect on the end-effector. When cable vibration is attenuated, motion controller could be designed for implementing precise large motion to track given trajectories. A numerical example is presented to demonstrate the dynamic model and the control algorithm.
Experimental Studies on Dynamic Vibration Absorber using Shape Memory Alloy (NiTi) Springs
International Nuclear Information System (INIS)
Kumar, V. Raj; Kumar, M. B. Bharathi Raj; Kumar, M. Senthil
2011-01-01
Shape memory alloy (SMA) springs have been used as actuators in many applications although their use in the vibration control area is very recent. Since shape memory alloys differ from conventional alloy materials in many ways, the traditional design approach for springs is not completely suitable for designing SMA springs. Some vibration control concepts utilizing unique characteristics of SMA's will be presented in this paper.A dynamic vibration absorber (DVA) using shape memory alloy (SMA) actuator is developed for attenuation of vibration in a cantilever beam. The design procedure of the DVA is presented. The system consists of a cantilever beam which is considered to generate the real-time vibration using shaker. A SMA spring is used with a mass attached to its end. The stiffness of the SMA spring is dynamically varied in such a way to attenuate the vibration. Both simulation and experimentation are carried out using PID controller. The experiments were carried out by interfacing the experimental setup with a computer using LabVIEW software, Data acquisition and control are implemented using a PCI data acquisition card. Standard PID controllers have been used to control the vibration of the beam. Experimental results are used to demonstrate the effectiveness of the controllers designed and the usefulness of the proposed test platform by exciting the structure at resonance. In experimental setup, an accelerometer is used to measure the vibration which is fed to computer and correspondingly the SMA spring is actuated to change its stiffness to control the vibration. The results obtained illustrate that the developed DVA using SMA actuator is very effective in reducing structural response and have great potential to be an active vibration control medium.
Energy Technology Data Exchange (ETDEWEB)
Kamel, Lebchek; Outtas, T. [Laboratory of Structural Mechanics and Materials faculty of technology - University of Batna, Batha (Algeria)
2013-07-01
The aim of this work is the study of behavior of rotor dynamics of industrial turbines, using numerical simulation. Finite element model was developed by introducing a new hysteresis parameter to control more precisely the behavior of rolling bearings. The finite element model is used to extract the natural frequencies and modal deformed rotor vibration, as it identifies the constraints acting on the system and predict the dynamic behavior of the rotor transient. Results in Campbell diagram and those relating to the unbalance responses show significant amplitude differences in the parameters of hysteresis imposed . Key words: rotor dynamics, hysteresis, finite element, rotor vibration, unbalance responses, Campbell diagram.
Sumner, Isaiah; Iyengar, Srinivasan S
2007-10-18
We have introduced a computational methodology to study vibrational spectroscopy in clusters inclusive of critical nuclear quantum effects. This approach is based on the recently developed quantum wavepacket ab initio molecular dynamics method that combines quantum wavepacket dynamics with ab initio molecular dynamics. The computational efficiency of the dynamical procedure is drastically improved (by several orders of magnitude) through the utilization of wavelet-based techniques combined with the previously introduced time-dependent deterministic sampling procedure measure to achieve stable, picosecond length, quantum-classical dynamics of electrons and nuclei in clusters. The dynamical information is employed to construct a novel cumulative flux/velocity correlation function, where the wavepacket flux from the quantized particle is combined with classical nuclear velocities to obtain the vibrational density of states. The approach is demonstrated by computing the vibrational density of states of [Cl-H-Cl]-, inclusive of critical quantum nuclear effects, and our results are in good agreement with experiment. A general hierarchical procedure is also provided, based on electronic structure harmonic frequencies, classical ab initio molecular dynamics, computation of nuclear quantum-mechanical eigenstates, and employing quantum wavepacket ab initio dynamics to understand vibrational spectroscopy in hydrogen-bonded clusters that display large degrees of anharmonicities.
The vibrational dynamics of carbon monoxide in a confined space-CO in zeolites.
Nachtigallová, Dana; Bludský, Ota; Otero Areán, Carlos; Bulánek, Roman; Nachtigall, Petr
2006-11-14
Based on theoretical calculations, and a survey of infrared spectra of CO adsorbed on different cation exchanged zeolites, a model is proposed to explain the influence of the zeolite framework on the vibrational behaviour of CO confined into small void spaces (zeolite channels and cavities). The concepts developed should help to understand a number of details relevant to both, precise interpretation of IR spectra and a better understanding of the vibrational dynamics of small molecules in a confined space.
Eddy currents self-tuning dynamic vibration absorber for machine tool chatter suppression
Aguirre , Gorka; Gorostiaga , Mikel; Porchez , Thomas; Munoa , Jokin
2013-01-01
International audience; The current trend in machine tool design aims at stiffer machines with lowerinfluence of friction, leading to faster and more precise machines. However, this is atthe expense of reducing the machine damping, which is mainly produced by friction,and thus increasing the risk of suffering from a self-excited vibration named chatter,which limits the productivity of the process. Dynamic vibration absorbers (DVAs)offer a relatively simple and low cost solution to reduce chat...
Research on dynamic creep strain and settlement prediction under the subway vibration loading.
Luo, Junhui; Miao, Linchang
2016-01-01
This research aims to explore the dynamic characteristics and settlement prediction of soft soil. Accordingly, the dynamic shear modulus formula considering the vibration frequency was utilized and the dynamic triaxial test conducted to verify the validity of the formula. Subsequently, the formula was applied to the dynamic creep strain function, with the factors influencing the improved dynamic creep strain curve of soft soil being analyzed. Meanwhile, the variation law of dynamic stress with sampling depth was obtained through the finite element simulation of subway foundation. Furthermore, the improved dynamic creep strain curve of soil layer was determined based on the dynamic stress. Thereafter, it could to estimate the long-term settlement under subway vibration loading by norms. The results revealed that the dynamic shear modulus formula is straightforward and practical in terms of its application to the vibration frequency. The values predicted using the improved dynamic creep strain formula closed to the experimental values, whilst the estimating settlement closed to the measured values obtained in the field test.
Raman study of vibrational dynamics of aminopropylsilanetriol in gas phase
Volovšek, V.; Dananić, V.; Bistričić, L.; Movre Šapić, I.; Furić, K.
2014-01-01
Raman spectrum of aminopropylsilanetriol (APST) in gas phase has been recorded at room temperature in macro chamber utilizing two-mirror technique over the sample tube. Unlike predominantly trans molecular conformation in condensed phase, the spectra of vapor show that the molecules are solely in gauche conformation with intramolecular hydrogen bond N⋯Hsbnd O which reduces the molecular energy in respect to trans conformation by 0.152 eV. The assignment of the molecular spectra based on the DFT calculation is presented. The strong vibrational bands at 354 cm-1, 588 cm-1 and 3022 cm-1 are proposed for verifying the existence of the ring like, hydrogen bonded structure. Special attention was devoted to the high frequency region, where hydrogen bond vibrations are coupled to stretchings of amino and silanol groups.
Experimental dynamic characterizations and modelling of disk vibrations for HDDs.
Pang, Chee Khiang; Ong, Eng Hong; Guo, Guoxiao; Qian, Hua
2008-01-01
Currently, the rotational speed of spindle motors in HDDs (Hard-Disk Drives) are increasing to improve high data throughput and decrease rotational latency for ultra-high data transfer rates. However, the disk platters are excited to vibrate at their natural frequencies due to higher air-flow excitation as well as eccentricities and imbalances in the disk-spindle assembly. These factors contribute directly to TMR (Track Mis-Registration) which limits achievable high recording density essential for future mobile HDDs. In this paper, the natural mode shapes of an annular disk mounted on a spindle motor used in current HDDs are characterized using FEM (Finite Element Methods) analysis and verified with SLDV (Scanning Laser Doppler Vibrometer) measurements. The identified vibration frequencies and amplitudes of the disk ODS (Operating Deflection Shapes) at corresponding disk mode shapes are modelled as repeatable disturbance components for servo compensation in HDDs. Our experimental results show that the SLDV measurements are accurate in capturing static disk mode shapes without the need for intricate air-flow aero-elastic models, and the proposed disk ODS vibration model correlates well with experimental measurements from a LDV.
Depth-kymography: high-speed calibrated 3D imaging of human vocal fold vibration dynamics
International Nuclear Information System (INIS)
George, Nibu A; Mul, Frits F M de; Qiu Qingjun; Rakhorst, Gerhard; Schutte, Harm K
2008-01-01
We designed and developed a laser line-triangulation endoscope compatible with any standard high-speed camera for a complete three-dimensional profiling of human vocal fold vibration dynamics. With this novel device we are able to measure absolute values of vertical and horizontal vibration amplitudes, length and width of vocal folds as well as the opening and closing velocities from a single in vivo measurement. We have studied, for the first time, the generation and propagation of mucosal waves by locating the position of its maximum vertical position and the propagation velocity. Precise knowledge about the absolute dimensions of human vocal folds and their vibration parameters has significant importance in clinical diagnosis and treatment as well as in fundamental research in voice. The new device can be used to investigate different kinds of pathological conditions including periodic or aperiodic vibrations. Consequently, the new device has significant importance in investigating vocal fold paralysis and in phonosurgical applications
Depth-kymography: high-speed calibrated 3D imaging of human vocal fold vibration dynamics
Energy Technology Data Exchange (ETDEWEB)
George, Nibu A; Mul, Frits F M de; Qiu Qingjun; Rakhorst, Gerhard; Schutte, Harm K [Groningen Voice Research Lab, Department of Biomedical Engineering, University Medical Center Groningen and University of Groningen, 9700 AD Groningen (Netherlands)
2008-05-21
We designed and developed a laser line-triangulation endoscope compatible with any standard high-speed camera for a complete three-dimensional profiling of human vocal fold vibration dynamics. With this novel device we are able to measure absolute values of vertical and horizontal vibration amplitudes, length and width of vocal folds as well as the opening and closing velocities from a single in vivo measurement. We have studied, for the first time, the generation and propagation of mucosal waves by locating the position of its maximum vertical position and the propagation velocity. Precise knowledge about the absolute dimensions of human vocal folds and their vibration parameters has significant importance in clinical diagnosis and treatment as well as in fundamental research in voice. The new device can be used to investigate different kinds of pathological conditions including periodic or aperiodic vibrations. Consequently, the new device has significant importance in investigating vocal fold paralysis and in phonosurgical applications.
Vibrational and vibronic coherences in the dynamics of the FMO complex
Energy Technology Data Exchange (ETDEWEB)
Liu, Xiaomeng; Kühn, Oliver, E-mail: oliver.kuehn@uni-rostock.de
2016-12-20
The coupled exciton–vibrational dynamics of a seven site Frenkel exciton model of the Fenna–Matthews–Olson (FMO) complex is investigated using a Quantum Master Equation approach. Thereby, one vibrational mode per monomer is treated explicitly as being part of the relevant system. Emphasis is put on the comparison of this model with that of a purely excitonic relevant system. Further, the effects of two different approximations to the exciton–vibrational basis are investigated, namely the one- and two-particle description. Analysis of the vibronic and vibrational density matrix in the site basis points to the importance of on- and inter-site coherences for the exciton transfer. Here, one- and two-particle approximations give rise to qualitatively different results.
Simpkins, Blake S.; Fears, Kenan P.; Dressick, Walter J.; Dunkelberger, Adam D.; Spann, Bryan T.; Owrutsky, Jeffrey C.
2016-09-01
Coherent coupling between an optical transition and confined optical mode have been investigated for electronic-state transitions, however, only very recently have vibrational transitions been considered. Here, we demonstrate both static and dynamic results for vibrational bands strongly coupled to optical cavities. We experimentally and numerically describe strong coupling between a Fabry-Pérot cavity and carbonyl stretch ( 1730 cm 1) in poly-methylmethacrylate and provide evidence that the mixed-states are immune to inhomogeneous broadening. We investigate strong and weak coupling regimes through examination of cavities loaded with varying concentrations of a urethane monomer. Rabi splittings are in excellent agreement with an analytical description using no fitting parameters. Ultrafast pump-probe measurements reveal transient absorption signals over a frequency range well-separated from the vibrational band, as well as drastically modified relaxation rates. We speculate these modified kinetics are a consequence of the energy proximity between the vibration-cavity polariton modes and excited state transitions and that polaritons offer an alternative relaxation path for vibrational excitations. Varying the polariton energies by angle-tuning yields transient results consistent with this hypothesis. Furthermore, Rabi oscillations, or quantum beats, are observed at early times and we see evidence that these coherent vibration-cavity polariton excitations impact excited state population through cavity losses. Together, these results indicate that cavity coupling may be used to influence both excitation and relaxation rates of vibrations. Opening the field of polaritonic coupling to vibrational species promises to be a rich arena amenable to a wide variety of infrared-active bonds that can be studied in steady state and dynamically.
Optimal design of a beam-based dynamic vibration absorber using fixed-points theory
Hua, Yingyu; Wong, Waion; Cheng, Li
2018-05-01
The addition of a dynamic vibration absorber (DVA) to a vibrating structure could provide an economic solution for vibration suppressions if the absorber is properly designed and located onto the structure. A common design of the DVA is a sprung mass because of its simple structure and low cost. However, the vibration suppression performance of this kind of DVA is limited by the ratio between the absorber mass and the mass of the primary structure. In this paper, a beam-based DVA (beam DVA) is proposed and optimized for minimizing the resonant vibration of a general structure. The vibration suppression performance of the proposed beam DVA depends on the mass ratio, the flexural rigidity and length of the beam. In comparison with the traditional sprung mass DVA, the proposed beam DVA shows more flexibility in vibration control design because it has more design parameters. With proper design, the beam DVA's vibration suppression capability can outperform that of the traditional DVA under the same mass constraint. The general approach is illustrated using a benchmark cantilever beam as an example. The receptance theory is introduced to model the compound system consisting of the host beam and the attached beam-based DVA. The model is validated through comparisons with the results from Abaqus as well as the Transfer Matrix method (TMM) method. Fixed-points theory is then employed to derive the analytical expressions for the optimum tuning ratio and damping ratio of the proposed beam absorber. A design guideline is then presented to choose the parameters of the beam absorber. Comparisons are finally presented between the beam absorber and the traditional DVA in terms of the vibration suppression effect. It is shown that the proposed beam absorber can outperform the traditional DVA by following this proposed guideline.
Picosecond dynamics of the glutamate receptor in response to agonist-induced vibrational excitation.
Kubo, Minoru; Shiomitsu, Eiji; Odai, Kei; Sugimoto, Tohru; Suzuki, Hideo; Ito, Etsuro
2004-02-01
Conformational changes of proteins are dominated by the excitation and relaxation processes of their vibrational states. To elucidate the mechanism of receptor activation, the conformation dynamics of receptors must be analyzed in response to agonist-induced vibrational excitation. In this study, we chose the bending vibrational mode of the guanidinium group of Arg485 of the glutamate receptor subunit GluR2 based on our previous studies, and we investigated picosecond dynamics of the glutamate receptor caused by the vibrational excitation of Arg485 via molecular dynamics simulations. The vibrational excitation energy in Arg485 in the ligand-binding site initially flowed into Lys730, and then into the J-helix at the subunit interface of the ligand-binding domain. Consequently, the atomic displacement in the subunit interface around an intersubunit hydrogen bond was evoked in about 3 ps. This atomic displacement may perturb the subunit packing of the receptor, triggering receptor activation. Copyright 2003 Wiley-Liss, Inc.
The ABRAVIBE toolbox for teaching vibration analysis and structural dynamics
DEFF Research Database (Denmark)
Brandt, A.
2013-01-01
, a MATLAB toolbox (the ABRAVIBE toolbox) has been developed as an accompanying toolbox for the recent book "Noise and Vibration Analysis" by the author. This free, open software, published under GNU Public License, can be used with GNU Octave, if an entirely free software platform is wanted, with a few...... functional limitations. The toolbox includes functionality for simulation of mechanical models as well as advanced analysis such as time series analysis, spectral analysis, frequency response and correlation function estimation, modal parameter extraction, and rotating machinery analysis (order tracking...
The acute effects of stretching with vibration on dynamic flexibility in young female gymnasts.
Johnson, Aaron W; Warcup, Caisa N; Seeley, Matthew K; Eggett, Dennis; Feland, Jeffery B
2018-01-10
While stretching with vibration has been shown to improve static flexibility; the effect of stretching with vibration on dynamic flexibility is not well known. The purpose of this study was to examine the effectiveness of stretching with vibration on acute dynamic flexibility and jump height in novice and advanced competitive female gymnasts during a split jump. Female gymnast (n=27, age: 11.5 ± 1.7 years, Junior Olympic levels 5-10) participated in this cross-over study. Dynamic flexibility during gymnastic split jumps were video recorded and analyzed with Dartfish software. All participants completed both randomized stretching protocols with either the vibration platform turned on (VIB) (frequency of 30 Hz and 2 mm amplitude) or off (NoVIB) separated by 48 h. Participants performed 4 sets of three stretches on the vibration platform. Each stretch was held for 30 s with 5 s rest for a total of 7 min of stretch. Split jump flexibility decreased significantly from pre to post measurement in both VIB (-5.8°±5.9°) (p<0.001) and NoVIB (-2.6°±6.1°) (p=0.041) conditions (adjusted for gymnast level). This effect was greatest in lower skill level gymnasts (p=0.003), while the highest skill level gymnasts showed no significant decrease in the split jump (p=0.105). Jump height was not significantly different between conditions (p=0.892) or within groups (p=0.880). An acute session of static stretching with or without vibration immediately before performance does not alter jump height. Stretching with vibration immediately prior to gymnastics competition decreases split jump flexibility in lower level gymnasts more than upper level gymnasts.
DEFF Research Database (Denmark)
Pomogaev, Vladimir; Pomogaeva, Anna; Avramov, Pavel
2011-01-01
Three polycyclic organic molecules in various solvents focused on thermo-dynamical aspects were theoretically investigated using the recently developed statistical quantum mechanical/classical molecular dynamics method for simulating electronic-vibrational spectra. The absorption bands of estradiol...
Carr, J. K.; Buchanan, L. E.; Schmidt, J. R.; Zanni, M. T.; Skinner, J. L.
2013-01-01
Urea/water is an archetypical “biological” mixture, and is especially well known for its relevance to protein thermodynamics, as urea acts as a protein denaturant at high concentration. This behavior has given rise to an extended debate concerning urea’s influence on water structure. Based on a variety of methods and of definitions of water structure, urea has been variously described as a structure-breaker, a structure-maker, or as remarkably neutral towards water. Because of its sensitivity to microscopic structure and dynamics, vibrational spectroscopy can help resolve these debates. We report experimental and theoretical spectroscopic results for the OD stretch of HOD/H2O/urea mixtures (linear IR, 2DIR, and pump-probe anisotropy decay) and for the CO stretch of urea-D4/D2O mixtures (linear IR only). Theoretical results are obtained using existing approaches for water, and a modification of a frequency map developed for acetamide. All absorption spectra are remarkably insensitive to urea concentration, consistent with the idea that urea only very weakly perturbs water structure. Both this work and experiments by Rezus and Bakker, however, show that water’s rotational dynamics are slowed down by urea. Analysis of the simulations casts doubt on the suggestion that urea immobilizes particular doubly hydrogen bonded water molecules. PMID:23841646
A broadband frequency-tunable dynamic absorber for the vibration control of structures
International Nuclear Information System (INIS)
Komatsuzaki, T; Inoue, T; Terashima, O
2016-01-01
A passive-type dynamic vibration absorber (DVA) is basically a mass-spring system that suppresses the vibration of a structure at a particular frequency. Since the natural frequency of the DVA is usually tuned to a frequency of particular excitation, the DVA is especially effective when the excitation frequency is close to the natural frequency of the structure. Fixing the physical properties of the DVA limits the application to a narrowband, harmonically excited vibration problem. A frequency-tunable DVA that can modulate its stiffness provides adaptability to the vibration control device against non-stationary disturbances. In this paper, we suggest a broadband frequency-tunable DVA whose natural frequency can be extended by 300% to the nominal value using the magnetorheological elastomers (MREs). The frequency adjustability of the proposed absorber is first shown. The real-time vibration control performance of the frequency-tunable absorber for an acoustically excited plate having multiple resonant peaks is then evaluated. Investigations show that the vibration of the structure can be effectively reduced with an improved performance by the DVA in comparison to the conventional passive- type absorber. (paper)
Baharudin, M. E.; Nor, A. M.; Saad, A. R. M.; Yusof, A. M.
2018-03-01
The motion of vibration-driven robots is based on an internal oscillating mass which can move without legs or wheels. The oscillation of the unbalanced mass by a motor is translated into vibration which in turn produces vertical and horizontal forces. Both vertical and horizontal oscillations are of the same frequency but the phases are shifted. The vertical forces will deflect the bristles which cause the robot to move forward. In this paper, the horizontal motion direction caused by the vertically vibrated bristle is numerically simulated by tuning the frequency of their oscillatory actuation. As a preliminary work, basic equations for a simple off-centered vibration location on the robot platform and simulation model for vibration excitement are introduced. It involves both static and dynamic vibration analysis of robots and analysis of different type of parameters. In addition, the orientation of the bristles and oscillators are also analysed. Results from the numerical integration seem to be in good agreement with those achieved from the literature. The presented numerical integration modeling can be used for designing the bristles and controlling the speed and direction of the robot.
The role of ro-vibrational coupling in the revival dynamics of diatomic molecular wave packets
International Nuclear Information System (INIS)
Banerji, J; Ghosh, Suranjana
2006-01-01
We study the revival and fractional revivals of a diatomic molecular wave packet of circular states whose weighing coefficients are peaked about a vibrational quantum number ν-bar and a rotational quantum number j-bar. Furthermore, we show that the interplay between the rotational and vibrational motion is determined by a parameter γ =√D/C, where D is the dissociation energy and C is inversely proportional to the reduced mass of the two nuclei. Using I 2 and H 2 as examples, we show, both analytically and visually (through animations), that for γ>>ν-bar, j-bar, the rotational and vibrational time scales are so far apart that the ro-vibrational motion gets decoupled and the revival dynamics depends essentially on one time scale. For γ∼ν-bar, j-bar, on the other hand, the evolution of the wave packet depends crucially on both the rotational and vibrational time scales of revival. In the latter case, an interesting rotational-vibrational fractional revival is predicted and explained
The vibrational dynamics of carbon monoxide in a confined space-CO in zeolites
Czech Academy of Sciences Publication Activity Database
Nachtigallová, Dana; Bludský, Ota; Areán, C. O.; Bulánek, R.; Nachtigall, Petr
2006-01-01
Roč. 8, č. 42 (2006), s. 4849-4852 ISSN 1463-9076 R&D Projects: GA MŠk(CZ) LC512; GA ČR(CZ) GA203/06/0324 Institutional research plan: CEZ:AV0Z40550506 Keywords : vibrational dynamics * IR spectroscopy * modeling Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.892, year: 2006
Energy Technology Data Exchange (ETDEWEB)
Ji, Pengfei; Zhang, Yuwen, E-mail: zhangyu@missouri.edu [Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri 65211 (United States); Yang, Mo [College of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093 (China)
2013-12-21
The structural, dynamic, and vibrational properties during heat transfer process in Si/Ge superlattices are studied by analyzing the trajectories generated by the ab initio Car-Parrinello molecular dynamics simulation. The radial distribution functions and mean square displacements are calculated and further discussions are made to explain and probe the structural changes relating to the heat transfer phenomenon. Furthermore, the vibrational density of states of the two layers (Si/Ge) are computed and plotted to analyze the contributions of phonons with different frequencies to the heat conduction. Coherent heat conduction of the low frequency phonons is found and their contributions to facilitate heat transfer are confirmed. The Car-Parrinello molecular dynamics simulation outputs in the work show reasonable thermophysical results of the thermal energy transport process and shed light on the potential applications of treating the heat transfer in the superlattices of semiconductor materials from a quantum mechanical molecular dynamics simulation perspective.
International Nuclear Information System (INIS)
Ji, Pengfei; Zhang, Yuwen; Yang, Mo
2013-01-01
The structural, dynamic, and vibrational properties during heat transfer process in Si/Ge superlattices are studied by analyzing the trajectories generated by the ab initio Car-Parrinello molecular dynamics simulation. The radial distribution functions and mean square displacements are calculated and further discussions are made to explain and probe the structural changes relating to the heat transfer phenomenon. Furthermore, the vibrational density of states of the two layers (Si/Ge) are computed and plotted to analyze the contributions of phonons with different frequencies to the heat conduction. Coherent heat conduction of the low frequency phonons is found and their contributions to facilitate heat transfer are confirmed. The Car-Parrinello molecular dynamics simulation outputs in the work show reasonable thermophysical results of the thermal energy transport process and shed light on the potential applications of treating the heat transfer in the superlattices of semiconductor materials from a quantum mechanical molecular dynamics simulation perspective
Ji, Pengfei; Zhang, Yuwen; Yang, Mo
2013-12-01
The structural, dynamic, and vibrational properties during heat transfer process in Si/Ge superlattices are studied by analyzing the trajectories generated by the ab initio Car-Parrinello molecular dynamics simulation. The radial distribution functions and mean square displacements are calculated and further discussions are made to explain and probe the structural changes relating to the heat transfer phenomenon. Furthermore, the vibrational density of states of the two layers (Si/Ge) are computed and plotted to analyze the contributions of phonons with different frequencies to the heat conduction. Coherent heat conduction of the low frequency phonons is found and their contributions to facilitate heat transfer are confirmed. The Car-Parrinello molecular dynamics simulation outputs in the work show reasonable thermophysical results of the thermal energy transport process and shed light on the potential applications of treating the heat transfer in the superlattices of semiconductor materials from a quantum mechanical molecular dynamics simulation perspective.
International Nuclear Information System (INIS)
Monti, G.; Quaranta, G.; Fumagalli, F.; Marano, G.C.; Rea, R.; Nazzaro, B.
2015-01-01
Growing awareness of the negative effects due to ambient vibrations caused by transportations infrastructures in Historical centres is attributable to the high vulnerability of heritage buildings as a consequence of deterioration phenomena and damages that reduced the structural capacity of such valuable constructions over the past centuries. As the mobility demand increases, several cities hosting heritage buildings are subjected to raising traffic loadings, so that constructions of new infrastructures is often required. Hence, assessing the effects of short-term vibrations due to construction activities or the consequences of the long-term vibrations caused by traffic is very important for the preservation of cultural heritage. An operative approach for evaluating the effects of ambient vibrations based on experimental measurements is a useful tool when a new infrastructure is being built, and can support strategic decisions for the elaboration of transportation plans at the urban level. Therefore, an overview is here presented of existing studies, guidelines and codes that provide pertinent information on this topic. Of special importance is the analysis of existing proposed thresholds, i.e. limit values that, if compiled with, damage due to ambient vibrations is not likely to occur. On the basis of such overview, the selection of threshold values for the Flavian Amphitheater is discussed, along with current efforts towards a wireless dynamic monitoring of its dynamic response.
International Nuclear Information System (INIS)
Fan Kang-Qi; Ming Zheng-Feng; Xu Chun-Hui; Chao Feng-Bo
2013-01-01
As an alternative power solution for low-power devices, harvesting energy from the ambient mechanical vibration has received increasing research interest in recent years. In this paper we study the transient dynamic characteristics of a piezoelectric energy harvesting system including a piezoelectric energy harvester, a bridge rectifier, and a storage capacitor. To accomplish this, this energy harvesting system is modeled, and the charging process of the storage capacitor is investigated by employing the in-phase assumption. The results indicate that the charging voltage across the storage capacitor and the gathered power increase gradually as the charging process proceeds, whereas the charging rate slows down over time as the charging voltage approaches to the peak value of the piezoelectric voltage across the piezoelectric materials. In addition, due to the added electrical damping and the change of the system natural frequency when the charging process is initiated, a sudden drop in the vibration amplitude is observed, which in turn affects the charging rate. However, the vibration amplitude begins to increase as the charging process continues, which is caused by the decrease in the electrical damping (i.e., the decrease in the energy removed from the mechanical vibration). This electromechanical coupling characteristic is also revealed by the variation of the vibration amplitude with the charging voltage. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Dynamical Behavior of a Pseudoelastic Vibration Absorber Using Shape Memory Alloys
Directory of Open Access Journals (Sweden)
Hugo De S. Oliveira
2017-01-01
Full Text Available The tuned vibration absorber (TVA provides vibration reduction of a primary system subjected to external excitation. The idea is to increase the number of system degrees of freedom connecting a secondary system to the primary system. This procedure promotes vibration reduction at its design forcing frequency but two new resonance peaks appear introducing critical behaviors that must be avoided. The use of shape memory alloys (SMAs can improve the performance of the classical TVA establishing an adaptive TVA (ATVA. This paper deals with the nonlinear dynamics of a passive pseudoelastic tuned vibration absorber with an SMA element. In this regard, a single degree of freedom elastic oscillator is used to represent the primary system, while an extra oscillator with an SMA element represents the secondary system. Temperature dependent behavior of the system allows one to change the system response avoiding undesirable responses. Nevertheless, hysteretic behavior introduces complex characteristics to the system dynamics. The influence of the hysteretic behavior due to stress-induced phase transformation is investigated. The ATVA performance is evaluated by analyzing primary system maximum vibration amplitudes for different forcing amplitudes and frequencies. Numerical simulations establish comparisons of the ATVA results with those obtained from the classical TVA. A parametric study is developed showing the best performance conditions and this information can be useful for design purposes.
Dynamic modeling and adaptive vibration suppression of a high-speed macro-micro manipulator
Yang, Yi-ling; Wei, Yan-ding; Lou, Jun-qiang; Fu, Lei; Fang, Sheng; Chen, Te-huan
2018-05-01
This paper presents a dynamic modeling and microscopic vibration suppression for a flexible macro-micro manipulator dedicated to high-speed operation. The manipulator system mainly consists of a macro motion stage and a flexible micromanipulator bonded with one macro-fiber-composite actuator. Based on Hamilton's principle and the Bouc-Wen hysteresis equation, the nonlinear dynamic model is obtained. Then, a hybrid control scheme is proposed to simultaneously suppress the elastic vibration during and after the motor motion. In particular, the hybrid control strategy is composed of a trajectory planning approach and an adaptive variable structure control. Moreover, two optimization indices regarding the comprehensive torques and synthesized vibrations are designed, and the optimal trajectories are acquired using a genetic algorithm. Furthermore, a nonlinear fuzzy regulator is used to adjust the switching gain in the variable structure control. Thus, a fuzzy variable structure control with nonlinear adaptive control law is achieved. A series of experiments are performed to verify the effectiveness and feasibility of the established system model and hybrid control strategy. The excited vibration during the motor motion and the residual vibration after the motor motion are decreased. Meanwhile, the settling time is shortened. Both the manipulation stability and operation efficiency of the manipulator are improved by the proposed hybrid strategy.
Dynamic analysis to establish normal shock and vibration of radioactive material shipping packages
International Nuclear Information System (INIS)
Fields, S.R.
1980-01-01
A computer model, CARDS (Cask-Railcar Dynamic Simulator) was developed to provide input data for a broad range of radioactive material package-tiedown structural assessments. CARDS simulates the dynamic behavior of shipping packages and their transporters during normal transport conditions. The model will be used to identify parameters which significantly affect the normal shock and vibration environments which, in turn, provide the basis for determining the forces transmitted to the packages
Dynamic vibrations in wind energy systems: Application to vertical axis wind turbine
Mabrouk, Imen Bel; El Hami, Abdelkhalak; Walha, Lassâad; Zghal, Bacem; Haddar, Mohamed
2017-02-01
Dynamic analysis of Darrieus turbine bevel spur gear subjected to transient aerodynamic loads is carried out in the present study. The aerodynamic torque is obtained by solving the two dimensional unsteady incompressible Navies Stocks equation with the k-ω shear stress transport turbulence model. The results are presented for several values of tip speed ratio. The two-dimensional Computational Fluid Dynamics model is validated with experimental results. The optimum tip speed ratio is achieved, giving the best overall performance. In this study, we developed a lamped mass dynamic model with 14 degrees of freedom. This model is excited by external and internal issues sources. The main factors of these excitations are the periodic fluctuations of the gear meshes' stiffness and the unsteady aerodynamic torque oscillations. The vibration responses are obtained in time and frequency domains. The originality of our work is the correlation between the complexity of the aerodynamic phenomenon and the non-stationary dynamics vibration of the mechanical gearing system. The effect of the rotational speed on the dynamic behavior of the Darrieus turbine is also discussed. The present study shows that the variation of rotor rotational speed directly affects the torque production. However, there is a small change in the dynamic vibration of the studied gearing system.
Relaxation Dynamics of a Granular Pile on a Vertically Vibrating Plate
Tsuji, Daisuke; Otsuki, Michio; Katsuragi, Hiroaki
2018-03-01
Nonlinear relaxation dynamics of a vertically vibrated granular pile is experimentally studied. In the experiment, the flux and slope on the relaxing pile are measured by using a high-speed laser profiler. The relation of these quantities can be modeled by the nonlinear transport law assuming the uniform vibrofluidization of an entire pile. The fitting parameter in this model is only the relaxation efficiency, which characterizes the energy conversion rate from vertical vibration into horizontal transport. We demonstrate that this value is a constant independent of experimental conditions. The actual relaxation is successfully reproduced by the continuity equation with the proposed model. Finally, its specific applicability toward an astrophysical phenomenon is shown.
Exploring of PST-TBPM in Monitoring Bridge Dynamic Deflection in Vibration
Zhang, Guojian; Liu, Shengzhen; Zhao, Tonglong; Yu, Chengxin
2018-01-01
This study adopts digital photography to monitor bridge dynamic deflection in vibration. Digital photography used in this study is based on PST-TBPM (photographing scale transformation-time baseline parallax method). Firstly, a digital camera is used to monitor the bridge in static as a zero image. Then, the digital camera is used to monitor the bridge in vibration every three seconds as the successive images. Based on the reference system, PST-TBPM is used to calculate the images to obtain the bridge dynamic deflection in vibration. Results show that the average measurement accuracies are 0.615 pixels and 0.79 pixels in X and Z direction. The maximal deflection of the bridge is 7.14 pixels. PST-TBPM is valid in solving the problem-the photographing direction not perpendicular to the bridge. Digital photography used in this study can assess the bridge health through monitoring the bridge dynamic deflection in vibration. The deformation trend curves depicted over time also can warn the possible dangers.
Random Vibration and Dynamic Analysis of a Planetary Gear Train in a Wind Turbine
Directory of Open Access Journals (Sweden)
Jianming Yang
2016-01-01
Full Text Available Premature failure of gearboxes is a big challenge facing the wind power industry. It highly depends on fully understanding the embedded dynamics to solve this problem. To this end, this paper investigates the random vibration and dynamics of planetary gear trains (PGTs in wind turbines under the excitation of wind turbulence. The turbulence is represented by the Von Karmon spectrum and implemented by passing white noise through a 2nd-order shaping filter. Then, extra equations are formed and added to the original governing equations of motion. With this augmented equation set, a recursive numerical algorithm based on stochastic Newmark scheme is applied to solve for the statistics of the responses starting from initial conditions. After simulation, the variances of the vibration responses and the dynamic meshing forces at gear meshes are obtained.
Molecular rotation-vibration dynamics of low-symmetric hydrate crystal in the terahertz region.
Fu, Xiaojian; Wu, Hongya; Xi, Xiaoqing; Zhou, Ji
2014-01-16
The rotational and vibrational dynamics of molecules in copper sulfate pentahydrate crystal are investigated with terahertz dielectric spectra. It is shown that the relaxation-like dielectric dispersion in the low frequency region is related to the reorientation of water molecules under the driving of terahertz electric field, whereas the resonant dispersion can be ascribed to lattice vibration. It is also found that, due to the hydrogen-bond effect, the vibrational mode at about 1.83 THz along [-111] direction softens with decreasing temperature, that is, the crystal expands in this direction when cooled. On the contrary, the mode hardens in the direction perpendicular to [-111] during the cooling process. This contributes to the further understanding of the molecular structure and bonding features of hydrate crystals.
International Nuclear Information System (INIS)
Schröter, M.; Ivanov, S.D.; Schulze, J.; Polyutov, S.P.; Yan, Y.; Pullerits, T.; Kühn, O.
2015-01-01
The influence of exciton–vibrational coupling on the optical and transport properties of molecular aggregates is an old problem that gained renewed interest in recent years. On the experimental side, various nonlinear spectroscopic techniques gave insight into the dynamics of systems as complex as photosynthetic antennae. Striking evidence was gathered that in these protein–pigment complexes quantum coherence is operative even at room temperature conditions. Investigations were triggered to understand the role of vibrational degrees of freedom, beyond that of a heat bath characterized by thermal fluctuations. This development was paralleled by theory, where efficient methods emerged, which could provide the proper frame to perform non-Markovian and non-perturbative simulations of exciton–vibrational dynamics and spectroscopy. This review summarizes the state of affairs of the theory of exciton–vibrational interaction in molecular aggregates and photosynthetic antenna complexes. The focus is put on the discussion of basic effects of exciton–vibrational interaction from the stationary and dynamics points of view. Here, the molecular dimer plays a prominent role as it permits a systematic investigation of absorption and emission spectra by numerical diagonalization of the exciton–vibrational Hamiltonian in a truncated Hilbert space. An extension to larger aggregates, having many coupled nuclear degrees of freedom, becomes possible with the Multi-Layer Multi-Configuration Time-Dependent Hartree (ML-MCTDH) method for wave packet propagation. In fact it will be shown that this method allows one to approach the limit of almost continuous spectral densities, which is usually the realm of density matrix theory. Real system–bath situations are introduced for two models, which differ in the way strongly coupled nuclear coordinates are treated, as a part of the relevant system or the bath. A rather detailed exposition of the Hierarchy Equations Of Motion (HEOM
Effect of Space Vehicle Structure Vibration on Control Moment Gyroscope Dynamics
Dobrinskaya, Tatiana
2008-01-01
Control Moment Gyroscopes (CMGs) are used for non-propulsive attitude control of satellites and space stations, including the International Space Station (ISS). CMGs could be essential for future long duration space missions due to the fact that they help to save propellant. CMGs were successfully tested on the ground for many years, and have been successfully used on satellites. However, operations have shown that the CMG service life on the ISS is significantly shorter than predicted. Since the dynamic environment of the ISS differs greatly from the nominal environment of satellites, it was important to analyze how operations specific to the station (dockings and undockings, huge solar array motion, crew exercising, robotic operations, etc) can affect the CMG performance. This task became even more important since the first CMG failure onboard the ISS. The CMG failure resulted in the limitation of the attitude control capabilities, more propellant consumption, and additional operational issues. Therefore, the goal of this work was to find out how the vibrations of a space vehicle structure, caused by a variety of onboard operations, can affect the CMG dynamics and performance. The equations of CMG motion were derived and analyzed for the case when the gyro foundation can vibrate in any direction. The analysis was performed for unbalanced CMG gimbals to match the CMG configuration on ISS. The analysis showed that vehicle structure vibrations can amplify and significantly change the CMG motion if the gyro gimbals are unbalanced in flight. The resonance frequencies were found. It was shown that the resonance effect depends on the magnitude of gimbal imbalance, on the direction of a structure vibration, and on gimbal bearing friction. Computer modeling results of CMG dynamics affected by the external vibration are presented. The results can explain some of the CMG vibration telemetry observed on ISS. This work shows that balancing the CMG gimbals decreases the effect
Cheng Guan; Houjiang Zhang; Lujing Zhou; Xiping Wang
2015-01-01
A vibration testing method based on free vibration theory in a ââfreeâfreeâ support condition was investigated for evaluating the modulus of elasticity (MOE) of full-size wood composite panels (WCPs). Vibration experiments were conducted on three types of WCPs (medium density fibreboard, particleboard, and plywood) to determine the dynamic MOE of the panels. Static...
Peters, William K.; Tiwari, Vivek; Jonas, David M.
2017-11-01
The nonadiabatic states and dynamics are investigated for a linear vibronic coupling Hamiltonian with a static electronic splitting and weak off-diagonal Jahn-Teller coupling through a single vibration with a vibrational-electronic resonance. With a transformation of the electronic basis, this Hamiltonian is also applicable to the anti-correlated vibration in a symmetric homodimer with marginally strong constant off-diagonal coupling, where the non-adiabatic states and dynamics model electronic excitation energy transfer or self-exchange electron transfer. For parameters modeling a free-base naphthalocyanine, the nonadiabatic couplings are deeply quantum mechanical and depend on wavepacket width; scalar couplings are as important as the derivative couplings that are usually interpreted to depend on vibrational velocity in semiclassical curve crossing or surface hopping theories. A colored visualization scheme that fully characterizes the non-adiabatic states using the exact factorization is developed. The nonadiabatic states in this nested funnel have nodeless vibrational factors with strongly avoided zeroes in their vibrational probability densities. Vibronic dynamics are visualized through the vibrational coordinate dependent density of the time-dependent dipole moment in free induction decay. Vibrational motion is amplified by the nonadiabatic couplings, with asymmetric and anisotropic motions that depend upon the excitation polarization in the molecular frame and can be reversed by a change in polarization. This generates a vibrational quantum beat anisotropy in excess of 2/5. The amplitude of vibrational motion can be larger than that on the uncoupled potentials, and the electronic population transfer is maximized within one vibrational period. Most of these dynamics are missed by the adiabatic approximation, and some electronic and vibrational motions are completely suppressed by the Condon approximation of a coordinate-independent transition dipole between
Long-Range Vibrational Dynamics Are Directed by Watson-Crick Base Pairing in Duplex DNA.
Hithell, Gordon; Shaw, Daniel J; Donaldson, Paul M; Greetham, Gregory M; Towrie, Michael; Burley, Glenn A; Parker, Anthony W; Hunt, Neil T
2016-05-05
Ultrafast two-dimensional infrared (2D-IR) spectroscopy of a 15-mer A-T DNA duplex in solution has revealed structure-dependent vibrational coupling and energy transfer processes linking bases with the sugar-phosphate backbone. Duplex melting induces significant changes in the positions of off-diagonal peaks linking carbonyl and ring-stretching vibrational modes of the adenine and thymine bases with vibrations of the phosphate group and phosphodiester linkage. These indicate that Watson-Crick hydrogen bonding and helix formation lead to a unique vibrational coupling arrangement of base vibrational modes with those of the phosphate unit. On the basis of observations from time-resolved 2D-IR data, we conclude that rapid energy transfer processes occur between base and backbone, mediated by additional modes located on the deoxyribose moiety within the same nucleotide. These relaxation dynamics are insensitive to duplex melting, showing that efficient intramolecular energy relaxation to the solvent via the phosphate groups is the key to excess energy dissipation in both single- and double-stranded DNA.
Meer, David W.; Lewandowski, Edward J.
2010-01-01
The U.S. Department of Energy (DOE), Lockheed Martin Corporation (LM), and NASA Glenn Research Center (GRC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. As part of the extended operation testing of this power system, the Advanced Stirling Convertors (ASC) at NASA GRC undergo a vibration test sequence intended to simulate the vibration history that an ASC would experience when used in an ASRG for a space mission. During these tests, a data system collects several performance-related parameters from the convertor under test for health monitoring and analysis. Recently, an additional sensor recorded the slip table position during vibration testing to qualification level. The System Dynamic Model (SDM) integrates Stirling cycle thermodynamics, heat flow, mechanical mass, spring, damper systems, and electrical characteristics of the linear alternator and controller. This Paper presents a comparison of the performance of the ASC when exposed to vibration to that predicted by the SDM when exposed to the same vibration.
Directory of Open Access Journals (Sweden)
Zhongsheng Chen
2016-01-01
Full Text Available Nonlinear magnetic forces are always used to enlarge resonant bandwidth of vibration energy harvesting systems with piezoelectric cantilever beams. However, how to determine properly the distance between two magnets is one of the key engineering problems. In this paper, the Melnikov theory is introduced to overcome it. Firstly, the Melnikov state-space model of the nonlinear piezoelectric vibration energy harvesting (PVEH system is built. Based on it, chaotic dynamics mechanisms of achieving broadband PVEH by nonlinearity are exposed by potential function of the unperturbed nonlinear PVEH system. Then the corresponding Melnikov function of the nonlinear PVEH system is defined, based on which two Melnikov necessary conditions of determining the distance are obtained. Finally, numerical simulations are done to testify the theoretic results. The results demonstrate that the distance is closely related to the excitation amplitude and frequency once geometric and material parameters are fixed. Under a single-frequency excitation, the nonlinear PVEH system can generate a periodic vibration around a stable point, a large-amplitude vibration around two stable points, or a chaotic vibration. The proposed method is very valuable for optimally designing and utilizing nonlinear broadband PVEH devices in engineering applications.
Dynamic characteristics of heterogeneous media in vibrational and wave processes
International Nuclear Information System (INIS)
Fedotovskij, V.S.; Sinyavskij, V.F.; Terenik, L.V.; Spirov, V.S.; Kokorev, B.V.
1986-01-01
The complex mechanic systems involving a great quantity of the same type elements, in particular, the rod systems flowed around by the one- or two-phase flow are considered as the two- or three-phase heterogeneous media with certain effective properties. Some recommendations for calculating effective properties and determining those on a base of the dynamic characteristics of various heterogeneous systems are given. (author)
Application of ESPI techniques for the study of dynamic vibrations
Krupka, Rene
2004-06-01
Full field optical measurement techniques have already entered into various fields of industrial applications covering static as well as dynamic phenomena. The electronic speckle pattern interferometry (ESPI) allows the non contact, sensitive and three dimensional measurement of displacements in the sub micron range of objects with dimensions from mm2 to m2. For dynamic and transient phenomena, the use of pulsed laser have already been reported for various applications and successfully proven for the determination of the structural response of different components. In this paper we would like to present recent developments in the field of pulsed ESPI applications where emphasis is put onto the full field measurement result. The use of a completely computer controlled system allows easy access to mode shape characterization, deformation measurements and the characterization of transient events like shock wave propagation. Recent developments of the 3D-PulseESPI technique led to a very compact and complete system with improved characteristics regarding robustness and operation. The integrated design of the illumination laser and sensors for image acquisition allows easy aiming and adjustments with respect to the object of inspection. The laser is completely computer controlled which is advantageously used in a completely automatic brake squeal inspection system, which captures the squealing signal, automatically fires the laser and provides the complete deformation map of the component under test. Examples of recent applications in the field of dynamic structure response, with an emphasis in the field of automotive applications are given.
Meng, Deshan; Wang, Xueqian; Xu, Wenfu; Liang, Bin
2017-05-01
For a space robot with flexible appendages, vibrations of flexible structure can be easily excited during both orbit and/or attitude maneuvers of the base and the operation of the manipulators. Hence, the pose (position and attitude) of the manipulator's end-effector will greatly deviate from the desired values, and furthermore, the motion of the manipulator will trigger and exacerbate vibrations of flexible appendages. Given lack of the atmospheric damping in orbit, the vibrations will last for quite a while and cause the on-orbital tasks to fail. We derived the rigid-flexible coupling dynamics of a space robot system with flexible appendages and established a coupling model between the flexible base and the space manipulator. A specific index was defined to measure the coupling degree between the flexible motion of the appendages and the rigid motion of the end-effector. Then, we analyzed the dynamic coupling for different conditions, such as modal displacements, joint angles (manipulator configuration), and mass properties. Moreover, the coupling map was adopted and drawn to represent the coupling motion. Based on this map, a trajectory planning method was addressed to suppress structure vibration. Finally, simulation studies of typical cases were performed, which verified the proposed models and method. This work provides a theoretic basis for the system design, performance evaluation, trajectory planning, and control of such space robots.
Measurement of dynamic interaction between a vibrating fuel element and its support
Energy Technology Data Exchange (ETDEWEB)
Fisher, N.J.; Tromp, J.H.; Smith, B.A.W. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada). Chalk River Labs.
1996-12-01
Flow-induced vibration of CANDU{reg_sign} fuel can result in fretting damage of the fuel and its support. A WOrk-Rate Measuring Station (WORMS) was developed to measure the relative motion and contact forces between a vibrating fuel element and its support. The fixture consists of a small piece of support structure mounted on a micrometer stage. This arrangement permits position of the support relative to the fuel element to be controlled to within {+-} {micro}m. A piezoelectric triaxial load washer is positioned between the support and micrometer stage to measure contact forces, and a pair of miniature eddy-current displacement probes are mounted on the stage to measure fuel element-to-support relative motion. WORMS has been utilized to measure dynamic contact forces, relative displacements and work-rates between a vibrating fuel element and its support. For these tests, the fuel element was excited with broadband random force excitation to simulate flow-induced vibration due to axial flow. The relationship between fuel element-to-support gap or preload (i.e., interference or negative gap) and dynamic interaction (i.e., relative motion, contact forces and work-rates) was derived. These measurements confirmed numerical simulations of in-reactor interaction predicted earlier using the VIBIC code.
Hu, Zhan; Zheng, Gangtie
2016-08-01
A combined analysis method is developed in the present paper for studying the dynamic properties of a type of geometrically nonlinear vibration isolator, which is composed of push-pull configuration rings. This method combines the geometrically nonlinear theory of curved beams and the Harmonic Balance Method to overcome the difficulty in calculating the vibration and vibration transmissibility under large deformations of the ring structure. Using the proposed method, nonlinear dynamic behaviors of this isolator, such as the lock situation due to the coulomb damping and the usual jump resulting from the nonlinear stiffness, can be investigated. Numerical solutions based on the primary harmonic balance are first verified by direct integration results. Then, the whole procedure of this combined analysis method is demonstrated and validated by slowly sinusoidal sweeping experiments with different amplitudes of the base excitation. Both numerical and experimental results indicate that this type of isolator behaves as a hardening spring with increasing amplitude of the base excitation, which makes it suitable for isolating both steady-state vibrations and transient shocks.
Free vibration of functionally graded beams and frameworks using the dynamic stiffness method
Banerjee, J. R.; Ananthapuvirajah, A.
2018-05-01
The free vibration analysis of functionally graded beams (FGBs) and frameworks containing FGBs is carried out by applying the dynamic stiffness method and deriving the elements of the dynamic stiffness matrix in explicit algebraic form. The usually adopted rule that the material properties of the FGB vary continuously through the thickness according to a power law forms the fundamental basis of the governing differential equations of motion in free vibration. The differential equations are solved in closed analytical form when the free vibratory motion is harmonic. The dynamic stiffness matrix is then formulated by relating the amplitudes of forces to those of the displacements at the two ends of the beam. Next, the explicit algebraic expressions for the dynamic stiffness elements are derived with the help of symbolic computation. Finally the Wittrick-Williams algorithm is applied as solution technique to solve the free vibration problems of FGBs with uniform cross-section, stepped FGBs and frameworks consisting of FGBs. Some numerical results are validated against published results, but in the absence of published results for frameworks containing FGBs, consistency checks on the reliability of results are performed. The paper closes with discussion of results and conclusions.
Effects of quadriceps strength after static and dynamic whole-body vibration exercise.
Bush, Jill A; Blog, Gabriel L; Kang, Jie; Faigenbaum, Avery D; Ratamess, Nicholas A
2015-05-01
Numerous studies have shown performance benefits including whole-body vibration (WBV) as a training modality or an acute exercise protocol when used as a component of the resistance training program. Some studies have indicated that performing dynamic exercises as compared with static position exercises while exposed to WBV might be beneficial; however, evidence is lacking. Thus, the purpose of this study was to determine if an acute bout of dynamic versus static squats performed during WBV results in increase in quadriceps force production by means of dynamic isokinetic knee extension and flexion exercise. Nonresistance-trained healthy young men and women (N = 21) of 18-25 years participated in 4 protocols with 2-week rest in-between. Protocol 1 consisted of 5 sets of 10 dynamic squats without vibration; Protocol 2: 5 sets of 30-second static squats without vibration; Protocol 3: 5 sets of 10 dynamic squats with 30-Hz WBV for a total of 2.5 minutes; and Protocol 4: 5 sets of 30-second static squats with 30-Hz WBV for a total of 2.5 minutes. Prestrength tests (1 set of 4 repetitions at 100° · s(-1) for the knee extension exercise) was performed within 5 minutes of starting each protocol, and poststrength testing was performed within 1 minute of completing each protocol. Strength outcomes were analyzed by repeated measures analysis of variance with a significance level set at p ≤ 0.05. A significant decrease in strength was observed after dynamic and static squats without WBV (p = 0.002); an increase in strength after dynamic squats with WBV (p = 0.003); and a decrease in strength after static squats with WBV (p = 0.003). The inclusion of WBV to dynamic resistance exercise can be an added modality to increase strength. Whole-body vibration can have varied effects in altering muscle strength in untrained individuals according to the type of resistance training performed. As a dynamic squat with WBV seems to immediately potentiate neuromuscular functioning, the
Nonlinear normal vibration modes in the dynamics of nonlinear elastic systems
International Nuclear Information System (INIS)
Mikhlin, Yu V; Perepelkin, N V; Klimenko, A A; Harutyunyan, E
2012-01-01
Nonlinear normal modes (NNMs) are a generalization of the linear normal vibrations. By the Kauderer-Rosenberg concept in the regime of the NNM all position coordinates are single-values functions of some selected position coordinate. By the Shaw-Pierre concept, the NNM is such a regime when all generalized coordinates and velocities are univalent functions of a couple of dominant (active) phase variables. The NNMs approach is used in some applied problems. In particular, the Kauderer-Rosenberg NNMs are analyzed in the dynamics of some pendulum systems. The NNMs of forced vibrations are investigated in a rotor system with an isotropic-elastic shaft. A combination of the Shaw-Pierre NNMs and the Rauscher method is used to construct the forced NNMs and the frequency responses in the rotor dynamics.
Torsional vibration of crankshaft in an engine propeller nonlinear dynamical system
Zhang, X.; Yu, S. D.
2009-01-01
Theoretical and experimental studies on torsional vibration of an aircraft engine-propeller system are presented in this paper. Two system models—a rigid body model and a flexible body model, are developed for predicting torsional vibrations of the crankshaft under different engine powers and propeller pitch settings. In the flexible body model, the distributed torsional flexibility and mass moment of inertia of the crankshaft are considered using the finite element method. The nonlinear autonomous equations of motion for the engine-propeller dynamical system are established using the augmented Lagrange equations, and solved using the Runge-Kutta method after a degrees of freedom reduction scheme is applied. Experiments are carried out on a three-cylinder four-stroke engine. Both theoretical and experimental studies reveal that the crankshaft flexibility has significant influence on the system dynamical behavior.
Bonding and vibrational dynamics of a large π-conjugated molecule on a metal surface
International Nuclear Information System (INIS)
Temirov, R; Soubatch, S; Lassise, A; Tautz, F S
2008-01-01
The interplay between the substrate bonding of a large π-conjugated semiconductor molecule and the dynamical properties of the metal-organic interface is studied, employing the prototypical PTCDA/Ag(111) monolayer as an example. Both the coupling of molecular vibrations to the electron-hole-pair continuum of the metal surface and the inelastic scattering of tunnelling electrons by the molecular vibrations on their passage through the molecule are considered. The results of both types of experiment are consistent with the findings of measurements which probe the geometric and electronic structure of the adsorbate-substrate complex directly; generally speaking, they can be understood in the framework of standard theories for the electron-vibron coupling. While the experiments reported here in fact provide additional qualitative insights into the substrate bonding of our π-conjugated model molecule, their detailed quantitative understanding would require a full calculation of the dynamical interface properties, which is currently not available
International Nuclear Information System (INIS)
Kim, Sang-Myeong; Kim, Heungseob; Boo, Kwangsuck; Brennan, Michael J
2013-01-01
This paper describes an experimental study into the vibration control of a servo system comprising a servo motor and a flexible manipulator. Two modes of the system are controlled by using the servo motor and an accelerometer attached to the tip of the flexible manipulator. The control system is thus non-collocated. It consists of two electrical dynamic absorbers, each of which consists of a modal filter and, in case of an out-of-phase mode, a phase inverter. The experimental results show that each absorber acts as a mechanical dynamic vibration absorber attached to each mode and significantly reduces the settling time for the system response to a step input. (technical note)
Magnetic suspension motorized spindle-cutting system dynamics analysis and vibration control review
Directory of Open Access Journals (Sweden)
Xiaoli QIAO
2016-10-01
Full Text Available The performance of high-speed spindle directly determines the development of high-end machine tools. The cutting system's dynamic characteristics and vibration control effect are inseparable with the performance of the spindle,which influence each other, synergistic effect together the cutting efficiency, the surface quality of the workpiece and tool life in machining process. So, the review status on magnetic suspension motorized spindle, magnetic suspension bearing-flexible rotor system dynamics modeling theory and status of active control technology of flexible magnetic suspension motorized spindle rotor vibration are studied, and the problems which present in the magnetic suspension flexible motorized spindle rotor systems are refined, and the development trend of magnetic levitation motorized spindle and the application prospect is forecasted.
Vibration detection with 100 Hz GPS PVAT during a dynamic flight
Bischof, Christian; Schön, Steffen
2017-06-01
This investigation gives insights into real 100 Hz GPS velocity and acceleration estimates from a position, velocity, acceleration and time (PVAT) extended Kalman filter (EKF) during a highly dynamic flight trial with a Dornier Do 128-6 aircraft. We investigated the accelerations during take-off, landing and wing shaking manoeuvres in order to compare the vibration behaviour of the given aircraft determined by means of GPS against an onboard IMU. We found that 100 Hz GPS acceleration is useful for characterising vibrations and giving valuable insights during highly dynamic flights. Potential latency of 0.12 s and amplitude misestimation of up to 80% w.r.t. the reference amplitude occur that should be determined beforehand in order to correctly interpret the results.
OH vibrational activation and decay dynamics of CH4-OH entrance channel complexes
International Nuclear Information System (INIS)
Wheeler, Martyn D.; Tsiouris, Maria; Lester, Marsha I.; Lendvay, Gyoergy
2000-01-01
Infrared spectroscopy has been utilized to examine the structure and vibrational decay dynamics of CH 4 -OH complexes that have been stabilized in the entrance channel to the CH 4 +OH hydrogen abstraction reaction. Rotationally resolved infrared spectra of the CH 4 -OH complexes have been obtained in the OH fundamental and overtone regions using an IR-UV (infrared-ultraviolet) double-resonance technique. Pure OH stretching bands have been identified at 3563.45(5) and 6961.98(4) cm-1 (origins), along with combination bands involving the simultaneous excitation of OH stretching and intermolecular bending motions. The infrared spectra exhibit extensive homogeneous broadening arising from the rapid decay of vibrationally activated CH 4 -OH complexes due to vibrational relaxation and/or reaction. Lifetimes of 38(5) and 25(3) ps for CH 4 -OH prepared with one and two quanta of OH excitation, respectively, have been extracted from the infrared spectra. The nascent distribution of the OH products from vibrational predissociation has been evaluated by ultraviolet probe laser-induced fluorescence measurements. The dominant inelastic decay channel involves the transfer of one quantum of OH stretch to the pentad of CH 4 vibrational states with energies near 3000 cm-1. The experimental findings are compared with full collision studies of vibrationally excited OH with CH 4 . In addition, ab initio electronic structure calculations have been carried out to elucidate the minimum energy configuration of the CH 4 -OH complex. The calculations predict a C 3v geometry with the hydrogen of OH pointing toward one of four equivalent faces of the CH 4 tetrahedron, consistent with the analysis of the experimental infrared spectra. (c) 2000 American Institute of Physics
Vibrational dynamics and heat capacity of polyglycine I.
Porwal, Vikas; Misra, Radha Mohan; Tandon, Poonam; Gupta, Vishwambhar Dayal
2004-02-01
Earlier works on polyglycine I suffer from several infirmities, such as the dynamic methylene group being replaced by a mass unit and the use of poorly resolved inelastic neutron spectra, which have resulted in wrong assignments and imprecise profile of dispersion curves. In addition, the density-of-states and heat capacity variation as a function of temperature are being reported for the first time. The heat capacity is in good agreement with the measurements reported earlier by Roles and Wunderlich within a certain range (230-350 K). Deviations set in beyond this could be due to the presence of two crystalline states (I and II) in the sample used for the heat capacity measurements.
Static and dynamic stability of pneumatic vibration isolators and systems of isolators
Ryaboy, Vyacheslav M.
2014-01-01
Pneumatic vibration isolation is the most widespread effective method for creating vibration-free environments that are vital for precise experiments and manufacturing operations in optoelectronics, life sciences, microelectronics, nanotechnology and other areas. The modeling and design principles of a dual-chamber pneumatic vibration isolator, basically established a few decades ago, continue to attract attention of researchers. On the other hand, behavior of systems of such isolators was never explained in the literature in sufficient detail. This paper covers a range of questions essential for understanding the mechanics of pneumatic isolation systems from both design and application perspectives. The theory and a model of a single standalone isolator are presented in concise form necessary for subsequent analysis. Then the dynamics of a system of isolators supporting a payload is considered with main attention directed to two aspects of their behavior: first, the static stability of payloads with high positions of the center of gravity; second, dynamic stability of the feedback system formed by mechanical leveling valves. The direct method of calculating the maximum stable position of the center of gravity is presented and illustrated by three-dimensional stability domains; analytic formulas are given that delineate these domains. A numerical method for feedback stability analysis of self-leveling valve systems is given, and the results are compared with the analytical estimates for a single isolator. The relation between the static and dynamic phenomena is discussed.
Dynamics Analysis and Experiment of Vibrating Screen for Asphalt Mixing Equipment
Directory of Open Access Journals (Sweden)
He ZHAO-XIA
2014-04-01
Full Text Available A dynamics model of vibration screen for asphalt mixing equipment is established in order to investigate the working performance of the system, which combines the lumped parameter method and substructure method in this paper. In order to acquire accurate results, the spring support stiffness, bearing stiffness and torsional stiffness of connecting link are considered in this model. The mass and stiffness matrixes of link are transformed to the master nodes according to the substructure method. Then the part is combined with the whole dynamics model by support points. Furthermore, the differential equations of motion are given by the Newton Second Law, and it is solved by Newmark time integration method. The centroid trajectory of vibrating screen is computed. At the same time, the reaction force of support springs and bearings are also acquired. And the strength of the product can meet the requirements of design by simulations. A vibration experiment is executed in factory, and the dynamics model is validated by comparing the results.
Zhou, Shihua; Song, Guiqiu; Sun, Maojun; Ren, Zhaohui; Wen, Bangchun
2018-01-01
In order to analyze the nonlinear dynamics and stability of a novel design for the monowheel inclined vehicle-vibration platform coupled system (MIV-VPCS) with intermediate nonlinearity support subjected to a harmonic excitation, a multi-degree of freedom lumped parameter dynamic model taking into account the dynamic interaction of the MIV-VPCS with quadratic and cubic nonlinearities is presented. The dynamical equations of the coupled system are derived by applying the displacement relationship, interaction force relationship at the contact position and Lagrange's equation, which are further discretized into a set of nonlinear ordinary differential equations with coupled terms by Galerkin's truncation. Based on the mathematical model, the coupled multi-body nonlinear dynamics of the vibration system is investigated by numerical method, and the parameters influences of excitation amplitude, mass ratio and inclined angle on the dynamic characteristics are precisely analyzed and discussed by bifurcation diagram, Largest Lyapunov exponent and 3-D frequency spectrum. Depending on different ranges of system parameters, the results show that the different motions and jump discontinuity appear, and the coupled system enters into chaotic behavior through different routes (period-doubling bifurcation, inverse period-doubling bifurcation, saddle-node bifurcation and Hopf bifurcation), which are strongly attributed to the dynamic interaction of the MIV-VPCS. The decreasing excitation amplitude and inclined angle could reduce the higher order bifurcations, and effectively control the complicated nonlinear dynamic behaviors under the perturbation of low rotational speed. The first bifurcation and chaotic motion occur at lower value of inclined angle, and the chaotic behavior lasts for larger intervals with higher rotational speed. The investigation results could provide a better understanding of the nonlinear dynamic behaviors for the dynamic interaction of the MIV-VPCS.
Directory of Open Access Journals (Sweden)
Khomenko Andrei P.
2018-01-01
Full Text Available The article deals with the development of mathematical models and evaluation criteria of the vibration field in the dynamic interactions of the elements of the vibrational technological machines for the processes of vibrational strengthening of long-length parts with help of a steel balls working medium. The study forms a theoretical understanding of the modes of motions of material particles in interaction with a vibrating surface of the working body of the vibration machine. The generalized approach to the assessment of the dynamic quality of the work of vibrating machines in multiple modes of tossing, when the period of free flight of particles is a multiple of the period of the surface oscillations of the working body, is developed in the article. For the correction of vibration field of the working body, the characteristics of dynamic interactions of granular elements of the medium are taken into account using original sensors. The sensors that can detect different particularities of interaction of the granular medium elements at different points of the working body are proposed to evaluate the deviation from a homogeneous and one-dimensional mode of vibration field. Specially developed sensors are able to register interactions between a single granule, a system of granules in filamentous structures, and multipoint interactions of the elements in a close-spaced cylindrical structure. The system of regularization of the structure of vibration fields based on the introduction of motion translation devices is proposed using the multi-point sensor locations on the working body. The article refers to analytical approaches of the theory of vibration displacements. For the experimental data assessment, the methods of statistical analysis are applied. It is shown that the peculiar features of the motion of granular medium registered by the sensors can be used to build active control systems of field vibration.
The dance of molecules: new dynamical perspectives on highly excited molecular vibrations.
Kellman, Michael E; Tyng, Vivian
2007-04-01
At low energies, molecular vibrational motion is described by the normal modes model. This model breaks down at higher energy, with strong coupling between normal modes and onset of chaotic dynamics. New anharmonic modes are born in bifurcations, or branchings of the normal modes. Knowledge of these new modes is obtained through the window of frequency-domain spectroscopy, using techniques of nonlinear classical dynamics. It may soon be possible to "watch" molecular rearrangement reactions spectroscopically. Connections are being made with reaction rate theories, condensed phase systems, and motions of electrons in quantum dots.
International Nuclear Information System (INIS)
Chun-Yu, Zhao; Yi-Min, Zhang; Bang-Chun, Wen
2010-01-01
We derive the non-dimensional coupling equation of two exciters, including inertia coupling, stiffness coupling and load coupling. The concept of general dynamic symmetry is proposed to physically explain the synchronisation of the two exciters, which stems from the load coupling that produces the torque of general dynamic symmetry to force the phase difference between the two exciters close to the angle of general dynamic symmetry. The condition of implementing synchronisation is that the torque of general dynamic symmetry is greater than the asymmetric torque of the two motors. A general Lyapunov function is constructed to derive the stability condition of synchronisation that the non-dimensional inertia coupling matrix is positive definite and all its elements are positive. Numeric results show that the structure of the vibrating system can guarantee the stability of synchronisation of the two exciters, and that the greater the distances between the installation positions of the two exciters and the mass centre of the vibrating system are, the stronger the ability of general dynamic symmetry is
Xu, Tengfei; Castel, Arnaud
2016-04-01
In this paper, a model, initially developed to calculate the stiffness of cracked reinforced concrete beams under static loading, is used to assess the dynamic stiffness. The model allows calculating the average inertia of cracked beams by taking into account the effect of bending cracks (primary cracks) and steel-concrete bond damage (i.e. interfacial microcracks). Free and forced vibration experiments are used to assess the performance of the model. The respective influence of bending cracks and steel-concrete bond damage on both static and dynamic responses is analyzed. The comparison between experimental and simulated deflections confirms that the effects of both bending cracks and steel-concrete bond loss should be taken into account to assess reinforced concrete stiffness under service static loading. On the contrary, comparison of experimental and calculated dynamic responses reveals that localized steel-concrete bond damages do not influence significantly the dynamic stiffness and the fundamental frequency.
International Nuclear Information System (INIS)
Fedotovskii, V.S.
1988-02-01
The vibration of tanks with liquid and non deformed cylindrical or spherical inclusions are considered. It is shown that for calculating dynamic characteristics of such systems it is advisable to use continual approach i.e. consider-heterogeneous media formed by liquid and weighted inclusions in it as homogeneous media with effective or vibroreological properties. On the base of the problem on vibrations of the tank, containing liquid and localized inclusions, rod assemblies vibrations are considered and relationships for the added mass and resistance coefficient determining dynamic characteristics of such systems are obtained. Considered are also liquid tank vibrations containing spherical inclusions. The results obtained are used for calculating dynamic characteristics of two-phase flow pipelines at bubble and annular flow mode. The theoretical relationships are compared with available experimental data [fr
Ribonuclease S dynamics measured using a nitrile label with 2D IR vibrational echo spectroscopy.
Bagchi, Sayan; Boxer, Steven G; Fayer, Michael D
2012-04-05
A nitrile-labeled amino acid, p-cyanophenylalanine, is introduced near the active site of the semisynthetic enzyme ribonuclease S to serve as a probe of protein dynamics and fluctuations. Ribonuclease S is the limited proteolysis product of subtilisin acting on ribonuclease A, and consists of a small fragment including amino acids 1-20, the S-peptide, and a larger fragment including residues 21-124, the S-protein. A series of two-dimensional vibrational echo experiments performed on the nitrile-labeled S-peptide and the RNase S are described. The time-dependent changes in the two-dimensional infrared vibrational echo line shapes are analyzed using the center line slope method to obtain the frequency-frequency correlation function (FFCF). The observations show that the nitrile probe in the S-peptide has dynamics that are similar to, but faster than, those of the single amino acid p-cyanophenylalanine in water. In contrast, the dynamics of the nitrile label when the peptide is bound to form ribonuclease S are dominated by homogeneous dephasing (motionally narrowed) contributions with only a small contribution from very fast inhomogeneous structural dynamics. The results provide insights into the nature of the structural dynamics of the ribonuclease S complex. The equilibrium dynamics of the nitrile labeled S-peptide and the ribonuclease S complex are also investigated by molecular dynamics simulations. The experimentally determined FFCFs are compared to the FFCFs obtained from the molecular dynamics simulations, thereby testing the capacity of simulations to determine the amplitudes and time scales of protein structural fluctuations on fast time scales under thermal equilibrium conditions.
INTRODUCTION: Surface Dynamics, Phonons, Adsorbate Vibrations and Diffusion
Bruch, L. W.
2004-07-01
well infrared photodetectors (QWIPs) and resonant cavity-enhanced photodiodes (RCEPDs) based on dilute nitrides need to be investigated extensively. To date, most theoretical attention has been focused on understanding the band structure of the GaInAsN/GaAs system and on evaluating gain spectra and threshold conditions for 1.3 µm lasers. However, as our understanding of band structure and the effects of strain, defects, etc in dilute nitrides improves we can calculate the electrical and optical properties, including radiative and non-radiative recombination for the materials and structures of interest. The spontaneous and stimulated emission rates have already been calculated for GaInNAs at 1.3 µm by many authors, but extension to other dilute nitrides and other wavelength ranges still represents a major challenge. Many-body effects, including exchange-correlation effects, are essential for accurate models of gain spectra in lasers and optical amplifiers. The differential gain is a key parameter for laser modulation and remains an important subject of study as new materials and structures are explored. Similarly the differential refractive index and linewidth enhancement factor have strong influences on laser spectrum (chirp, linewidth), dynamics and noise, and these must also be studied theoretically. As regards to non-radiative recombination, in addition to recombination through defects, the Auger effect is of especial significance for wavelengths beyond 1 µm and is a worthy subject for theoretical study. The converse effect, impact ionization, is of key importance for avalanche photodiodes (APDs) and has yet to be evaluated for the dilute nitride materials. Inter-valence band absorption (IVBA) is of significance, as a possible cause of temperature sensitivity in lasers and this must be investigated theoretically in the dilute nitrides. Third-order non-linear optical coefficients should be calculated in order to assess the scope for all-optical signal processing
Influence of intra-pigment vibrations on dynamics of photosynthetic exciton.
Sato, Yoshihiro; Doolittle, Brian
2014-11-14
We have numerically investigated the effect of an underdamped intra-pigment vibrational mode on an exciton's quantum coherence and energy transfer efficiency. Our model describes a bacteriochlorophyll a pigment-protein dimer under the conditions at which photosynthetic energy transfer occurs. The dimer is modeled using a theoretical treatment of a vibronic exciton, and its dynamics are numerically analyzed using a non-Markovian and non-perturbative method. We examined the system's response to various values of the Huang-Rhys factor, site energy difference, reorganization energy, and reorganization energy difference. We found that the inclusion of the intra-pigment vibronic mode allows for long-lived oscillatory quantum coherences to occur. This excitonic coherence is robust against static site-energy disorder. The vibrational mode also promotes exciton transfer along the site-energy landscape thus improving the overall energy transfer efficiency.
Influence of intra-pigment vibrations on dynamics of photosynthetic exciton
International Nuclear Information System (INIS)
Sato, Yoshihiro; Doolittle, Brian
2014-01-01
We have numerically investigated the effect of an underdamped intra-pigment vibrational mode on an exciton's quantum coherence and energy transfer efficiency. Our model describes a bacteriochlorophyll a pigment-protein dimer under the conditions at which photosynthetic energy transfer occurs. The dimer is modeled using a theoretical treatment of a vibronic exciton, and its dynamics are numerically analyzed using a non-Markovian and non-perturbative method. We examined the system's response to various values of the Huang-Rhys factor, site energy difference, reorganization energy, and reorganization energy difference. We found that the inclusion of the intra-pigment vibronic mode allows for long-lived oscillatory quantum coherences to occur. This excitonic coherence is robust against static site-energy disorder. The vibrational mode also promotes exciton transfer along the site-energy landscape thus improving the overall energy transfer efficiency
Influence of intra-pigment vibrations on dynamics of photosynthetic exciton
Energy Technology Data Exchange (ETDEWEB)
Sato, Yoshihiro, E-mail: sato.yoshihiro77@nihon-u.ac.jp, E-mail: ysato.colby@gmail.com; Doolittle, Brian [Department of Physics and Astronomy, Colby College, Waterville, Maine 04901 (United States)
2014-11-14
We have numerically investigated the effect of an underdamped intra-pigment vibrational mode on an exciton's quantum coherence and energy transfer efficiency. Our model describes a bacteriochlorophyll a pigment-protein dimer under the conditions at which photosynthetic energy transfer occurs. The dimer is modeled using a theoretical treatment of a vibronic exciton, and its dynamics are numerically analyzed using a non-Markovian and non-perturbative method. We examined the system's response to various values of the Huang-Rhys factor, site energy difference, reorganization energy, and reorganization energy difference. We found that the inclusion of the intra-pigment vibronic mode allows for long-lived oscillatory quantum coherences to occur. This excitonic coherence is robust against static site-energy disorder. The vibrational mode also promotes exciton transfer along the site-energy landscape thus improving the overall energy transfer efficiency.
Energy Technology Data Exchange (ETDEWEB)
Mehralian, Fahimeh [Mechanical Engineering Department, Shahrekord University, Shahrekord (Iran, Islamic Republic of); Tadi Beni, Yaghoub, E-mail: tadi@eng.sku.ac.ir [Faculty of Engineering, Shahrekord University, Shahrekord (Iran, Islamic Republic of); Karimi Zeverdejani, Mehran [Mechanical Engineering Department, Shahrekord University, Shahrekord (Iran, Islamic Republic of)
2017-06-01
Featured by two small length scale parameters, nonlocal strain gradient theory is utilized to investigate the free vibration of nanotubes. A new size-dependent shell model formulation is developed by using the first order shear deformation theory. The governing equations and boundary conditions are obtained using Hamilton's principle and solved for simply supported boundary condition. As main purpose of this study, since the values of two small length scale parameters are still unknown, they are calibrated by the means of molecular dynamics simulations (MDs). Then, the influences of different parameters such as nonlocal parameter, scale factor, length and thickness on vibration characteristics of nanotubes are studied. It is also shown that increase in thickness and decrease in length parameters intensify the effect of nonlocal parameter and scale factor.
International Nuclear Information System (INIS)
Ajori, S.; Ansari, R.
2015-01-01
Functionalization of carbon nanotubes (CNTs) can be viewed as an important process by which the dispersion and solubility of CNTs in the matrices of nanocomposites are improved. Covalent functionalization can affect the mechanical behavior of CNTs. In this paper, the vibrational behavior of diethyltoluenediamines (DETDA) functionalized CNTs is investigated utilizing molecular dynamics simulations in canonical ensemble at room temperature. The models of simulations are divided into two categories of functionalized CNTs with regular and random distributions of DETDA polymers. The results demonstrate that natural frequency of functionalized CNTs is lower than that of pristine ones. Also, it is observed that buckling phenomenon occurs during vibration for functionalized CNTs with regular distribution of polymers. It is further observed that polymer mass and van der Waals (vdW) forces are responsible for frequency changes in functionalized CNTs with random and regular distribution patterns of CNTs, respectively
Dynamics and stability of transverse vibrations of nonlocal nanobeams with a variable axial load
International Nuclear Information System (INIS)
Li, C; Yu, J L; Lim, C W
2011-01-01
This paper investigates the natural frequency, steady-state resonance and stability for the transverse vibrations of a nanobeam subjected to a variable initial axial force, including axial tension and axial compression, based on nonlocal elasticity theory. It is reported that the nonlocal nanoscale has significant effects on vibration behavior, which results in a new effective nonlocal bending moment different to but dependent on the corresponding nonlocal bending moment. The effects of nonlocal nanoscale and the variation of initial axial force on the natural frequency as well as the instability regions are analyzed by the perturbation method. It concludes that both the nonlocal nanoscale and the initial tension, including static and dynamic tensions, cause an increase in natural frequency, while an initial compression causes the natural frequency to decrease. Instability regions are also greatly influenced by the nonlocal nanoscale and initial tension and they become smaller with stronger nonlocal effects or larger initial tension
Free vibration analysis of multi-span pipe conveying fluid with dynamic stiffness method
International Nuclear Information System (INIS)
Li Baohui; Gao Hangshan; Zhai Hongbo; Liu Yongshou; Yue Zhufeng
2011-01-01
Research highlights: → The dynamic stiffness method was proposed to analysis the free vibration of multi-span pipe conveying fluid. → The main advantage of the proposed method is that it can hold a high precision even though the element size is large. → The flowing fluid can weaken the pipe stiffness, when the fluid velocity increases, the natural frequencies of pipe are decreasing. - Abstract: By taking a pipe as Timoshenko beam, in this paper the original 4-equation model of pipe conveying fluid was modified by taking the dynamic effects of fluid into account. The shape function that always used in the finite element method was replaced by the exact wave solution of the modified four equations. And then the dynamic stiffness was deduced for the free vibration of pipe conveying fluid. The proposed method was validated by comparing the results of critical velocity with analytical solution for a simply supported pipe at both ends. In the example, the proposed method was applied to calculate the first three natural frequencies of a three span pipe with twelve meters long in three different cases. The results of natural frequency for the pipe conveying stationary fluid fitted well with that calculated by finite element software Abaqus. It was shown that the dynamic stiffness method can still hold high precision even though the element's size was quite large. And this is the predominant advantage of the proposed method comparing with conventional finite element method.
Vibrational dynamics of thiocyanate and selenocyanate bound to horse heart myoglobin
Energy Technology Data Exchange (ETDEWEB)
Maj, Michał; Oh, Younjun; Park, Kwanghee; Lee, Jooyong; Cho, Minhaeng, E-mail: mcho@korea.ac.kr [Department of Chemistry, Korea University, Seoul 136-713 (Korea, Republic of); Kwak, Kyung-Won [Department of Chemistry, Chung-Ang University, Seoul 156-756, SouthKorea (Korea, Republic of)
2014-06-21
The structure and vibrational dynamics of SCN- and SeCN-bound myoglobin have been investigated using polarization-controlled IR pump-probe measurements and quantum chemistry calculations. The complexes are found to be in low and high spin states, with the dominant contribution from the latter. In addition, the Mb:SCN high spin complex exhibits a doublet feature in the thiocyanate stretch IR absorption spectra, indicating two distinct molecular conformations around the heme pocket. The binding mode of the high spin complexes was assigned to occur through the nitrogen atom, contrary to the binding through the sulfur atom that was observed in myoglobin derived from Aplysia Limacina. The vibrational energy relaxation process has been found to occur substantially faster than those of free SCN{sup −} and SeCN{sup −} ions and neutral SCN- and SeCN-derivatized molecules reported previously. This supports the N-bound configurations of MbNCS and MbNCSe, because S- and Se-bound configurations are expected to have significantly long lifetimes due to the insulation effect by heavy bridge atom like S and Se in such IR probes. Nonetheless, even though their lifetimes are much shorter than those of corresponding free ions in water, the vibrational lifetimes determined for MbNCS and MbNCSe are still fairly long compared to those of azide and cyanide myoglobin systems studied before. Thus, thiocyanate and selenocyanate can be good local probes of local electrostatic environment in the heme pocket. The globin dependence on binding mode and vibrational dynamics is also discussed.
Li, Shuai; Long, Jinyou; Ling, Fengzi; Wang, Yanmei; Song, Xinli; Zhang, Song; Zhang, Bing
2017-07-01
The vibrational wavepacket dynamics at the very early stages of the S1-T1 intersystem crossing in photoexcited pyrimidine is visualized in real time by femtosecond time-resolved photoelectron imaging and time-resolved mass spectroscopy. A coherent superposition of the vibrational states is prepared by the femtosecond pump pulse at 315.3 nm, resulting in a vibrational wavepacket. The composition of the prepared wavepacket is directly identified by a sustained quantum beat superimposed on the parent-ion transient, possessing a frequency in accord with the energy separation between the 6a1 and 6b2 states. The dephasing time of the vibrational wavepacket is determined to be 82 ps. More importantly, the variable Franck-Condon factors between the wavepacket components and the dispersed cation vibrational levels are experimentally illustrated to identify the dark state and follow the energy-flow dynamics on the femtosecond time scale. The time-dependent intensities of the photoelectron peaks originated from the 6a1 vibrational state exhibit a clear quantum beating pattern with similar periodicity but a phase shift of π rad with respect to those from the 6b2 state, offering an unambiguous picture of the restricted intramolecular vibrational energy redistribution dynamics in the 6a1/6b2 Fermi resonance.
Vibrational dynamics and band structure of methyl-terminated Ge(111)
International Nuclear Information System (INIS)
th Street, Chicago, Illinois 60637 (United States))" data-affiliation=" (The James Franck Institute and Department of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637 (United States))" >Hund, Zachary M.; th Street, Chicago, Illinois 60637 (United States))" data-affiliation=" (The James Franck Institute and Department of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637 (United States))" >Nihill, Kevin J.; th Street, Chicago, Illinois 60637 (United States))" data-affiliation=" (The James Franck Institute and Department of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637 (United States))" >Sibener, S. J.; Campi, Davide; Bernasconi, M.; Wong, Keith T.; Lewis, Nathan S.; Benedek, G.
2015-01-01
A combined synthesis, experiment, and theory approach, using elastic and inelastic helium atom scattering along with ab initio density functional perturbation theory, has been used to investigate the vibrational dynamics and band structure of a recently synthesized organic-functionalized semiconductor interface. Specifically, the thermal properties and lattice dynamics of the underlying Ge(111) semiconductor crystal in the presence of a commensurate (1 × 1) methyl adlayer were defined for atomically flat methylated Ge(111) surfaces. The mean-square atomic displacements were evaluated by analysis of the thermal attenuation of the elastic He diffraction intensities using the Debye-Waller model, revealing an interface with hybrid characteristics. The methyl adlayer vibrational modes are coupled with the Ge(111) substrate, resulting in significantly softer in-plane motion relative to rigid motion in the surface normal. Inelastic helium time-of-flight measurements revealed the excitations of the Rayleigh wave across the surface Brillouin zone, and such measurements were in agreement with the dispersion curves that were produced using density functional perturbation theory. The dispersion relations for H-Ge(111) indicated that a deviation in energy and lineshape for the Rayleigh wave was present along the nearest-neighbor direction. The effects of mass loading, as determined by calculations for CD 3 -Ge(111), as well as by force constants, were less significant than the hybridization between the Rayleigh wave and methyl adlayer librations. The presence of mutually similar hybridization effects for CH 3 -Ge(111) and CH 3 -Si(111) surfaces extends the understanding of the relationship between the vibrational dynamics and the band structure of various semiconductor surfaces that have been functionalized with organic overlayers
Vibrational dynamics and band structure of methyl-terminated Ge(111)
Energy Technology Data Exchange (ETDEWEB)
Hund, Zachary M.; Nihill, Kevin J.; Sibener, S. J., E-mail: s-sibener@uchicago.edu [The James Franck Institute and Department of Chemistry, The University of Chicago, 929 E. 57" t" h Street, Chicago, Illinois 60637 (United States); Campi, Davide; Bernasconi, M. [Dipartimento di Scienza dei Materiali, Universita di Milano-Bicocca, Via Cozzi 53, 20125 Milano (Italy); Wong, Keith T.; Lewis, Nathan S. [Division of Chemistry and Chemical Engineering, Beckman Institute and Kavli Nanoscience Institute, California Institute of Technology, 210 Noyes Laboratory, 127-72, Pasadena, California 91125 (United States); Benedek, G. [Dipartimento di Scienza dei Materiali, Universita di Milano-Bicocca, Via Cozzi 53, 20125 Milano (Italy); Donostia International Physics Center (DIPC), Universidad del País Vasco (EHU), 20018 Donostia/San Sebastian (Spain)
2015-09-28
A combined synthesis, experiment, and theory approach, using elastic and inelastic helium atom scattering along with ab initio density functional perturbation theory, has been used to investigate the vibrational dynamics and band structure of a recently synthesized organic-functionalized semiconductor interface. Specifically, the thermal properties and lattice dynamics of the underlying Ge(111) semiconductor crystal in the presence of a commensurate (1 × 1) methyl adlayer were defined for atomically flat methylated Ge(111) surfaces. The mean-square atomic displacements were evaluated by analysis of the thermal attenuation of the elastic He diffraction intensities using the Debye-Waller model, revealing an interface with hybrid characteristics. The methyl adlayer vibrational modes are coupled with the Ge(111) substrate, resulting in significantly softer in-plane motion relative to rigid motion in the surface normal. Inelastic helium time-of-flight measurements revealed the excitations of the Rayleigh wave across the surface Brillouin zone, and such measurements were in agreement with the dispersion curves that were produced using density functional perturbation theory. The dispersion relations for H-Ge(111) indicated that a deviation in energy and lineshape for the Rayleigh wave was present along the nearest-neighbor direction. The effects of mass loading, as determined by calculations for CD{sub 3}-Ge(111), as well as by force constants, were less significant than the hybridization between the Rayleigh wave and methyl adlayer librations. The presence of mutually similar hybridization effects for CH{sub 3}-Ge(111) and CH{sub 3}-Si(111) surfaces extends the understanding of the relationship between the vibrational dynamics and the band structure of various semiconductor surfaces that have been functionalized with organic overlayers.
Vibrational dynamics of adsorbed CO2: Separability of the CO2 asymmetric stretching mode
Czech Academy of Sciences Publication Activity Database
Bludský, Ota; Nachtigall, Petr; Špirko, Vladimír
2011-01-01
Roč. 76, č. 6 (2011), s. 669-682 ISSN 0010-0765 R&D Projects: GA MŠk LC512; GA ČR GAP208/11/0436; GA MŠk(CZ) ME10032 Grant - others:GA MŠk(CZ) KONTAKT-II(LH)-CH022 Institutional research plan: CEZ:AV0Z40550506 Keywords : adsorption of CO2 * vibrational dynamics * DFT calculations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.283, year: 2011
Effect of vibrational excitation on the dynamics of ion-molecule reactions
International Nuclear Information System (INIS)
Anderson, S.L.
1981-11-01
A new experimental technique for the study of vibrational effects on ion-molecule reaction cross sections is described. Vibrational and collision energy dependent cross sections are presented for proton and H atom transfer, charge transfer and collision induced dissociation reactions in various isotopic H 2 + + H 2 systems. Charge and proton transfer cross sections are presented for the reactions of H 2 + and D 2 + with Ar, N 2 , CO, and O 2 . All the reactions are shown to be highly influenced by avoided crossings between the ground and first excited potential energy surfaces. Because of the nature of the crossings, vibrational motion of the systems can cause both adiabatic and non-adiabatic behavior of the system. This makes the vibrational dependences of the various cross sections a very sensitive probe of the dynamics of the collisions particularly, their behavior in the region of the crossings. Evidence is seen for charge transfer between reagents as they approach each other, transition to and in some cases reactions on excited potential energy surfaces, competition between different channels, and strong coupling of proton and charge transfer channels which occurs only for two of the systems studied (H 2 + + Ar, N 2 ). Oscillatory structure is observed in the collision energy dependence of the endoergic H 2 + (v = 0) + Ar charge transfer reaction for the first time, and a simple model which is commonly used for atom-atom charge transfer is used to fit the peaks. Finally a simple model is used to assess the importance of energy resonance and Franck-Condon effects on molecular charge transfer
Nuclear quantum many-body dynamics: from collective vibrations to heavy-ion collisions
International Nuclear Information System (INIS)
Simenel, Cedric
2012-01-01
This report gives a summary of my research on nuclear dynamics during the past ten years. The choice of this field has been motivated by the desire to understand the physics of complex systems obeying quantum mechanics. In particular, the interplay between collective motion and single-particle degrees of freedom is a source of complex and fascinating behaviours. For instance, giant resonances are characterised by a collective vibration of many nucleons, but their decay may occur by the emission of a single nucleon. Another example could be taken from the collision of nuclei where the transfer of few nucleons may have a strong impact on the formation of a compound system is non trivial. To describe these complex systems, one needs to solve the quantum many-body problem. The description of the dynamics of composite systems can be very challenging, especially when two such systems interact. An important goal of nuclear physics is to find a unified way to describe the dynamics of nuclear systems. Ultimately, the same theoretical model should be able to describe vibrations, rotations, fission, all the possible outcomes of heavy-ion collisions (elastic and inelastic scattering, particle transfer, fusion, and multifragmentation), and even the dynamics of neutron star crust. This desire for a global approach to nuclear dynamics has strongly influenced my research activities. In particular, all the numerical applications presented in this report have been obtained from few numerical codes solving equations derived from the same variational principle. Beside the quest for a unified model of nuclear dynamics, possible applications of heavy-ion collisions such as the formation of new nuclei is also a strong motivation for the experimental and theoretical studies of reaction mechanisms. This report is not a review article, but should be considered as a reading guide of the main papers my collaborators and myself have published. It also gives the opportunity to detail some
International Nuclear Information System (INIS)
Plattner, Nuria; Meuwly, Markus
2014-01-01
Vibrational frequency shifts of H 2 in clathrate hydrates are important to understand the properties and elucidate details of the clathrate structure. Experimental spectra of H 2 in clathrate hydrates have been measured for different clathrate compositions, temperatures, and pressures. In order to establish reliable relationships between the clathrate structure, dynamics, and observed frequencies, calculations of vibrational frequency shifts in different clathrate environments are required. In this study, a combination of classical molecular dynamics simulations, electronic structure calculations, and quantum dynamical simulation is used to calculate relative vibrational frequencies of H 2 in clathrate hydrates. This approach allows us to assess dynamical effects and simulate the change of vibrational frequencies with temperature and pressure. The frequency distributions of the H 2 vibrations in the different clathrate cage types agree favorably with experiment. Also, the simulations demonstrate that H 2 in the 5 12 cage is more sensitive to the details of the environment and to quantum dynamical effects, in particular when the cage is doubly occupied. We show that for the 5 12 cage quantum effects lead to frequency increases and double occupation is unlikely. This is different for the 5 12 6 4 cages for which higher occupation numbers than one H 2 per cage are likely
Energy Technology Data Exchange (ETDEWEB)
Arjmand, F. [Aligarh Muslim Univ., Aligarh (India). Dept. of Chemistry; Sharma, S. [Aligarh Muslim Univ., Aligarh (India). Dept. of Chemistry; Usman, M. [Aligarh Muslim Univ., Aligarh (India). Dept. of Chemistry; Leu, B. M. [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS); Hu, M. Y. [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS); Toupet, L. [Univ. de Rennes, Rennes (France). Inst. de Physique de Rennes; Gosztola, David J. [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials; Tabassum, S. [Aligarh Muslim Univ., Aligarh (India). Dept. of Chemistry
2016-06-21
The vibrational dynamics of a newly synthesized tetrastannoxane was characterized with a combination of experimental (Raman, IR and tin-based nuclear resonance vibrational spectroscopy) and computational (DFT/B3LYP) methods, with an emphasis on the vibrations of the tin sites. The cytotoxic activity revealed a significant regression selectively against the human pancreatic cell lines.
Energy Technology Data Exchange (ETDEWEB)
Saalfrank, Peter [Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam (Germany); Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián (Spain); Juaristi, J. I. [Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián (Spain); Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián (Spain); Departamento de Física de Materiales, Facultad de Químicas UPV/EHU, Apartado 1072, 20018 Donostia-San Sebastián (Spain); Alducin, M.; Muiño, R. Díez [Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián (Spain); Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián (Spain); Blanco-Rey, M. [Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián (Spain); Departamento de Física de Materiales, Facultad de Químicas UPV/EHU, Apartado 1072, 20018 Donostia-San Sebastián (Spain)
2014-12-21
Using density functional theory and Ab Initio Molecular Dynamics with Electronic Friction (AIMDEF), we study the adsorption and dissipative vibrational dynamics of hydrogen atoms chemisorbed on free-standing lead films of increasing thickness. Lead films are known for their oscillatory behaviour of certain properties with increasing thickness, e.g., energy and electron spillout change in discontinuous manner, due to quantum size effects [G. Materzanini, P. Saalfrank, and P. J. D. Lindan, Phys. Rev. B 63, 235405 (2001)]. Here, we demonstrate that oscillatory features arise also for hydrogen when chemisorbed on lead films. Besides stationary properties of the adsorbate, we concentrate on finite vibrational lifetimes of H-surface vibrations. As shown by AIMDEF, the damping via vibration-electron hole pair coupling dominates clearly over the vibration-phonon channel, in particular for high-frequency modes. Vibrational relaxation times are a characteristic function of layer thickness due to the oscillating behaviour of the embedding surface electronic density. Implications derived from AIMDEF for frictional many-atom dynamics, and physisorbed species will also be given.
Energy Technology Data Exchange (ETDEWEB)
Uranga-Piña, L. [Facultad de Física, Universidad de la Habana, San Lázaro y L, Vedado, 10400 Havana (Cuba); Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, D-14195 Berlin (Germany); Tremblay, J. C., E-mail: jean.c.tremblay@gmail.com [Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, D-14195 Berlin (Germany)
2014-08-21
We investigate the effect of inter-mode coupling on the vibrational relaxation dynamics of molecules in weak dissipative environments. The simulations are performed within the reduced density matrix formalism in the Markovian regime, assuming a Lindblad form for the system-bath interaction. The prototypical two-dimensional model system representing two CO molecules approaching a Cu(100) surface is adapted from an ab initio potential, while the diatom-diatom vibrational coupling strength is systematically varied. In the weak system-bath coupling limit and at low temperatures, only first order non-adiabatic uni-modal coupling terms contribute to surface-mediated vibrational relaxation. Since dissipative dynamics is non-unitary, the choice of representation will affect the evolution of the reduced density matrix. Two alternative representations for computing the relaxation rates and the associated operators are thus compared: the fully coupled spectral basis, and a factorizable ansatz. The former is well-established and serves as a benchmark for the solution of Liouville-von Neumann equation. In the latter, a contracted grid basis of potential-optimized discrete variable representation is tailored to incorporate most of the inter-mode coupling, while the Lindblad operators are represented as tensor products of one-dimensional operators, for consistency. This procedure results in a marked reduction of the grid size and in a much more advantageous scaling of the computational cost with respect to the increase of the dimensionality of the system. The factorizable method is found to provide an accurate description of the dissipative quantum dynamics of the model system, specifically of the time evolution of the state populations and of the probability density distribution of the molecular wave packet. The influence of intra-molecular vibrational energy redistribution appears to be properly taken into account by the new model on the whole range of coupling strengths. It
Isotopic effects in vibrational relaxation dynamics of H on a Si(100) surface
Bouakline, F.; Lorenz, U.; Melani, G.; Paramonov, G. K.; Saalfrank, P.
2017-10-01
a net exponential decay of the time-dependent survival probability for the H-Si initial vibrational state, allowing an easy extraction of the bending mode "lifetime." This is in contrast with the D-Si system, whose survival probability exhibits a non-monotonic decay, making it difficult to define such a lifetime. This different behavior of the vibrational decay is rationalized in terms of the power spectrum of the adsorbate-surface system. In the case of D-Si, it consists of several, non-uniformly distributed peaks around the bending mode frequency, whereas the H-Si spectrum exhibits a single Lorentzian lineshape, whose width corresponds to the calculated lifetime. The present work gives some insight into mechanisms of vibration-phonon coupling at surfaces. It also serves as a benchmark for multidimensional system-bath quantum dynamics, for comparison with approximate schemes such as reduced, open-system density matrix theory (where the bath is traced out and a Liouville-von Neumann equation is solved) or approximate wavefunction methods to solve the combined system-bath Schrödinger equation.
Free Vibration Analysis for Shells of Revolution Using an Exact Dynamic Stiffness Method
Directory of Open Access Journals (Sweden)
Xudong Chen
2016-01-01
Full Text Available An exact generalised formulation for the free vibration of shells of revolution with general shaped meridians and arbitrary boundary conditions is introduced. Starting from the basic shell theories, the vibration governing equations are obtained in the Hamilton form, from which dynamic stiffness is computed using the ordinary differential equations solver COLSYS. Natural frequencies and modes are determined by employing the Wittrick-Williams (W-W algorithm in conjunction with the recursive Newton’s method, thus expanding the applications of the abovementioned techniques from one-dimensional skeletal structures to two-dimensional shells of revolution. A solution for solving the number of clamped-end frequencies J0 in the W-W algorithm is presented for both uniform and nonuniform shell segment members. Based on these theories, a FORTRAN program is written. Numerical examples on circular cylindrical shells, hyperboloidal cooling tower shells, and spherical shells are given, and error analysis is performed. The convergence of the proposed method on J0 is verified, and comparisons with frequencies from existing literature show that the dynamic stiffness method is robust, reliable, and accurate.
Study of V-OTDR stability for dynamic strain measurement in piezoelectric vibration
Ren, Meiqi; Lu, Ping; Chen, Liang; Bao, Xiaoyi
2016-09-01
In a phase-sensitive optical-time domain reflectometry (Φ-OTDR) system, the challenge for dynamic strain measurement lies in large intensity fluctuations from trace to trace. The intensity fluctuation caused by stochastic characteristics of Rayleigh backscattering sets detection limit for the minimum strength of vibration measurement and causes the large measurement uncertainty. Thus, a trace-to-trace correlation coefficient is introduced to quantify intensity fluctuation of Φ-OTDR traces and stability of the sensor system theoretically and experimentally. A novel approach of measuring dynamic strain induced by various driving voltages of lead zirconate titanate (PZT) in Φ-OTDR is also demonstrated. Piezoelectric vibration signals are evaluated through analyzing peak values of fast Fourier transform spectra at the fundamental frequency and high-order harmonics based on Bessel functions. High trace-to-trace correlation coefficients varying from 0.824 to 0.967 among 100 measurements are obtained in experimental results, showing the good stability of our sensor system, as well as small uncertainty of measured peak values.
Exploring the vibrational fingerprint of the electronic excitation energy via molecular dynamics
International Nuclear Information System (INIS)
Deyne, Andy Van Yperen-De; Pauwels, Ewald; Ghysels, An; Waroquier, Michel; Van Speybroeck, Veronique; Hemelsoet, Karen; De Meyer, Thierry; De Clerck, Karen
2014-01-01
A Fourier-based method is presented to relate changes of the molecular structure during a molecular dynamics simulation with fluctuations in the electronic excitation energy. The method implies sampling of the ground state potential energy surface. Subsequently, the power spectrum of the velocities is compared with the power spectrum of the excitation energy computed using time-dependent density functional theory. Peaks in both spectra are compared, and motions exhibiting a linear or quadratic behavior can be distinguished. The quadratically active motions are mainly responsible for the changes in the excitation energy and hence cause shifts between the dynamic and static values of the spectral property. Moreover, information about the potential energy surface of various excited states can be obtained. The procedure is illustrated with three case studies. The first electronic excitation is explored in detail and dominant vibrational motions responsible for changes in the excitation energy are identified for ethylene, biphenyl, and hexamethylbenzene. The proposed method is also extended to other low-energy excitations. Finally, the vibrational fingerprint of the excitation energy of a more complex molecule, in particular the azo dye ethyl orange in a water environment, is analyzed
Experimental Investigations on the Dynamic Behaviour of O-Type Wire-Cable Vibration Isolators
Directory of Open Access Journals (Sweden)
Hong-Xia Wang
2015-01-01
Full Text Available A series of periodic loading experiments were carried out on the O-type wire-cable vibration isolators. The isolators were loaded under shear, roll, and tension-compression loadings. When subjected to shear and roll loads, the restoring force-deformation curves generated by the isolators formed symmetric hysteresis loops. However, when the isolators were loaded with tension-compression loads, the isolator produced asymmetric hysteresis loops. It is found through the experiment that the dynamic characteristics of the isolator are determined by the loading amplitude as well as the geometric parameters of the isolator while they are almost independent of loading frequency within the testing frequency range. Based on the experimental data, the dynamic response of the isolator was modeled by a modified normalized Bouc-Wen model. The parameters of this model were identified through an identification procedure that does not involve any nonlinear iterative algorithms. Comparison between the identification results and the experimental data suggests that the identification method is effective. With the model and the identified parameters, the frequency response of an O-type wire-cable vibration isolator-mass system was evaluated. Typical nonlinear response behaviors were found when the isolator was used in tension-compression mode while the response appears to be similar to that of a linear system when the isolator was used in shear and roll mode.
International Nuclear Information System (INIS)
Nishimura, Tamio; Gianturco, Franco A.
2002-01-01
We report the quantum dynamical close-coupling equations relevant for vibrationally inelastic processes in low-energy collisions between a beam of positrons and the CH 4 molecule in the gas phase. The interaction potential is described in detail and we report also our numerical technique for solving the scattering equations. The cross sections are obtained for the excitations of all the modes of the title molecule and are compared both with simpler computational approximations and with the recent experiments for the two distinct energy regions that correspond to the combined symmetric and antisymmetric stretching modes and to twisting and scissoring modes, respectively. Our calculations reproduce well the shape and the values of the experimental findings and give useful insights into the microscopic dynamics for molecular excitation processes activated by low-energy positron scattering
Directory of Open Access Journals (Sweden)
Bo Zhu
2016-03-01
Full Text Available It has always been a critical issue to understand the material removal behavior of Vibration-Assisted Machining (VAM, especially on atomic level. To find out the effects of vibration frequency on material removal response, a three-dimensional molecular dynamics (MD model has been established in this research to investigate the effects of scratched groove, crystal defects on the surface quality, comparing with the Von Mises shear strain and tangential force in simulations during nano-scratching process. Comparisons are made among the results of simulations from different vibration frequency with the same scratching feed, depth, amplitude and crystal orientation. Copper potential in this simulation is Embedded-Atom Method (EAM potential. Interaction between copper and carbon atoms is Morse potential. Simulational results show that higher frequency can make groove smoother. Simulation with high frequency creates more dislocations to improve the machinability of copper specimen. The changing frequency does not have evident effects on Von Mises shear strain. Higher frequency can decrease the tangential force to reduce the consumption of cutting energy and tool wear. In conclusion, higher vibration frequency in VAM on mono-crystalline copper has positive effects on surface finish, machinablility and tool wear reduction.
Energy Technology Data Exchange (ETDEWEB)
Zhu, Bo; Zhao, Hongwei, E-mail: hwzhao@jlu.edu.cn, E-mail: khl69@163.com; Zhao, Dan; Zhang, Peng; Yang, Yihan; Han, Lei [School of Mechanical Science and Engineering, Jilin University, 5988 Renmin Street, Changchun, Jilin 130025 (China); Kui, Hailin, E-mail: hwzhao@jlu.edu.cn, E-mail: khl69@163.com [School of Transportation, Jilin University, 5988 Renmin Street, Changchun, Jilin 130025 (China)
2016-03-15
It has always been a critical issue to understand the material removal behavior of Vibration-Assisted Machining (VAM), especially on atomic level. To find out the effects of vibration frequency on material removal response, a three-dimensional molecular dynamics (MD) model has been established in this research to investigate the effects of scratched groove, crystal defects on the surface quality, comparing with the Von Mises shear strain and tangential force in simulations during nano-scratching process. Comparisons are made among the results of simulations from different vibration frequency with the same scratching feed, depth, amplitude and crystal orientation. Copper potential in this simulation is Embedded-Atom Method (EAM) potential. Interaction between copper and carbon atoms is Morse potential. Simulational results show that higher frequency can make groove smoother. Simulation with high frequency creates more dislocations to improve the machinability of copper specimen. The changing frequency does not have evident effects on Von Mises shear strain. Higher frequency can decrease the tangential force to reduce the consumption of cutting energy and tool wear. In conclusion, higher vibration frequency in VAM on mono-crystalline copper has positive effects on surface finish, machinablility and tool wear reduction.
International Nuclear Information System (INIS)
Rong Bao; Rui Xiaoting; Tao Ling
2012-01-01
In this paper, a dynamic modeling method and an active vibration control scheme for a smart flexible four-bar linkage mechanism featuring piezoelectric actuators and strain gauge sensors are presented. The dynamics of this smart mechanism is described by the Discrete Time Transfer Matrix Method of Multibody System (MS-DTTMM). Then a nonlinear fuzzy neural network control is employed to suppress the vibration of this smart mechanism. For improving the dynamic performance of the fuzzy neural network, a genetic algorithm based on the MS-DTTMM is designed offline to tune the initial parameters of the fuzzy neural network. The MS-DTTMM avoids the global dynamics equations of the system, which results in the matrices involved are always very small, so the computational efficiency of the dynamic analysis and control system optimization can be greatly improved. Formulations of the method as well as a numerical simulation are given to demonstrate the proposed dynamic method and control scheme.
Rong, Bao; Rui, Xiaoting; Lu, Kun; Tao, Ling; Wang, Guoping; Ni, Xiaojun
2018-05-01
In this paper, an efficient method of dynamics modeling and vibration control design of a linear hybrid multibody system (MS) is studied based on the transfer matrix method. The natural vibration characteristics of a linear hybrid MS are solved by using low-order transfer equations. Then, by constructing the brand-new body dynamics equation, augmented operator and augmented eigenvector, the orthogonality of augmented eigenvector of a linear hybrid MS is satisfied, and its state space model expressed in each independent model space is obtained easily. According to this dynamics model, a robust independent modal space-fuzzy controller is designed for vibration control of a general MS, and the genetic optimization of some critical control parameters of fuzzy tuners is also presented. Two illustrative examples are performed, which results show that this method is computationally efficient and with perfect control performance.
Parker, Robert G.; Guo, Yi; Eritenel, Tugan; Ericson, Tristan M.
2012-01-01
Vibration and noise caused by gear dynamics at the meshing teeth propagate through power transmission components to the surrounding environment. This study is devoted to developing computational tools to investigate the vibro-acoustic propagation of gear dynamics through a gearbox using different bearings. Detailed finite element/contact mechanics and boundary element models of the gear/bearing/housing system are established to compute the system vibration and noise propagation. Both vibration and acoustic models are validated by experiments including the vibration modal testing and sound field measurements. The effectiveness of each bearing type to disrupt vibration propagation is speed-dependent. Housing plays an important role in noise radiation .It, however, has limited effects on gear dynamics. Bearings are critical components in drivetrains. Accurate modeling of rolling element bearings is essential to assess vibration and noise of drivetrain systems. This study also seeks to fully describe the vibro-acoustic propagation of gear dynamics through a power-transmission system using rolling element and fluid film wave bearings. Fluid film wave bearings, which have higher damping than rolling element bearings, could offer an energy dissipation mechanism that reduces the gearbox noise. The effectiveness of each bearing type to disrupt vibration propagation in explored using multi-body computational models. These models include gears, shafts, rolling element and fluid film wave bearings, and the housing. Radiated noise is mapped from the gearbox surface to surrounding environment. The effectiveness of rolling element and fluid film wave bearings in breaking the vibro-acoustic propagation path from the gear to the housing is investigated.
Hazell, Tom J; Kenno, Kenji A; Jakobi, Jennifer M
2010-07-01
The purpose of this investigation was to examine if the addition of a light external load would enhance whole-body vibration (WBV)-induced increases in muscle activity during dynamic squatting in 4 leg muscles. Thirteen recreationally active male university students performed a series of dynamic squats (unloaded with no WBV, unloaded with WBV, loaded with no WBV, and loaded with WBV). The load was set to 30% of body mass and WBV included 25-, 35-, and 45-Hz frequencies with 4-mm amplitude. Muscle activity was recorded with surface electromyography (EMG) on the vastus lateralis (VL), biceps femoris (BF), tibialis anterior (TA), and gastrocnemius (GC) and is reported as EMGrms (root mean square) normalized to %maximal voluntary exertion. During unloaded dynamic squats, exposure to WBV (45 Hz) significantly (p squat exercise in all muscles but decreased the TA. This loaded level of muscle activity was further increased with WBV (45 Hz) in all muscles. The WBV-induced increases in muscle activity in the loaded condition (approximately 3.5%) were of a similar magnitude to the WBV-induced increases during the unloaded condition (approximately 2.5%) demonstrating the addition of WBV to unloaded or loaded dynamic squatting results in an increase in muscle activity. These results demonstrate the potential effectiveness of using external loads with exposure to WBV.
Li, Yingmin; Wang, Jiaxi; Clark, Melissa L.; Kubiak, Clifford P.; Xiong, Wei
2016-04-01
We report the first fourth-order 3D SFG spectroscopy of a monolayer of the catalyst Re(diCN-bpy)(CO)3Cl on a gold surface. Besides measuring the vibrational coherences of single vibrational modes, the fourth-order 3D SFG spectrum also measures the dynamics of interstate coherences and vibrational coherences states between two vibrational modes. By comparing the 3D SFG to the corresponding 2D and third-order 3D IR spectroscopy of the same molecules in solution, we found that the interstate coherences exist in both liquid and surface systems, suggesting that the interstate coherence is not disrupted by surface interactions. However, by analyzing the 3D spectral lineshape, we found that the interstate coherences also experience non-negligible homogenous dephasing dynamics that originate from surface interactions. This unique ability of determining interstate vibrational coherence dynamics of the molecular monolayer can help in understanding of how energy flows within surface catalysts and other molecular monolayers.
Dynamics of Transition Regime in Bi-stable Vibration Energy Harvesters
Ibrahim, Alwathiqbellah
2017-04-20
Vibration energy harvesting can be an effective method for scavenging wasted mechanical energy for use by wireless sensors that have limited battery life. Two major goals in designing energy harvesters are enhancing the power scavenged at low frequency and improving efficiency by increasing the frequency bandwidth. To achieve these goals, we derived a magneto-elastic beam operated at the transition between mono- and bi-stable regions. By improving the mathematical model of the interaction of magnetic force and beam dynamics, we obtained a precise prediction of natural frequencies as the distance of magnets varies. Using the shooting technique for the improved model, we present a fundamental understanding of interesting combined softening and hardening responses that happen at the transition between the two regimes. The transition regime is proposed as the optimal region for energy conversion in terms of frequency bandwidth and output voltage. Using this technique, low frequency vibration energy harvesting at around 17 Hz was possible. The theoretical results were in good agreement with the experimental results. The target application is to power wildlife bio-logging devices from bird flights that have consistent high power density around 16 Hz [1].
On the Free Vibration Modeling of Spindle Systems: A Calibrated Dynamic Stiffness Matrix
Directory of Open Access Journals (Sweden)
Omar Gaber
2014-01-01
Full Text Available The effect of bearings on the vibrational behavior of machine tool spindles is investigated. This is done through the development of a calibrated dynamic stiffness matrix (CDSM method, where the bearings flexibility is represented by massless linear spring elements with tuneable stiffness. A dedicated MATLAB code is written to develop and to assemble the element stiffness matrices for the system’s multiple components and to apply the boundary conditions. The developed method is applied to an illustrative example of spindle system. When the spindle bearings are modeled as simply supported boundary conditions, the DSM model results in a fundamental frequency much higher than the system’s nominal value. The simply supported boundary conditions are then replaced by linear spring elements, and the spring constants are adjusted such that the resulting calibrated CDSM model leads to the nominal fundamental frequency of the spindle system. The spindle frequency results are also validated against the experimental data. The proposed method can be effectively applied to predict the vibration characteristics of spindle systems supported by bearings.
Directory of Open Access Journals (Sweden)
Jeffrey D. Poston
2017-11-01
Full Text Available Counting the number of occupants in building areas over time—occupancy tracking—provides valuable information for responding to emergencies, optimizing thermal conditions or managing personnel. This capability is distinct from tracking individual building occupants as they move within a building, has lower complexity than conventional tracking algorithms require, and avoids privacy concerns that tracking individuals may pose. The approach proposed here is a novel combination of data analytics applied to measurements from a building’s structural dynamics sensors (e.g., accelerometers or geophones. Specifically, measurements of footstep-generated structural waves provide evidence of occupancy in a building area. These footstep vibrations can be distinguished from other vibrations, and, once identified, the footsteps can be located. These locations, in turn, form the starting point of estimating occupancy in an area. In order to provide a meaningful occupancy count, however, it is first necessary to associate discrete footsteps with individuals. The proposed framework incorporates a tractable algorithm for this association task. The proposed algorithms operate online, updating occupancy count over time as new footsteps are detected. Experiments with measurements from a public building illustrate the operation of the proposed framework. This approach offers an advantage over others based on conventional technologies by avoiding the cost of a separate sensor system devoted to occupancy tracking.
Dynamics of Transition Regime in Bi-stable Vibration Energy Harvesters
Ibrahim, Alwathiqbellah; Towfighian, Shahrzad; Younis, Mohammad I.
2017-01-01
Vibration energy harvesting can be an effective method for scavenging wasted mechanical energy for use by wireless sensors that have limited battery life. Two major goals in designing energy harvesters are enhancing the power scavenged at low frequency and improving efficiency by increasing the frequency bandwidth. To achieve these goals, we derived a magneto-elastic beam operated at the transition between mono- and bi-stable regions. By improving the mathematical model of the interaction of magnetic force and beam dynamics, we obtained a precise prediction of natural frequencies as the distance of magnets varies. Using the shooting technique for the improved model, we present a fundamental understanding of interesting combined softening and hardening responses that happen at the transition between the two regimes. The transition regime is proposed as the optimal region for energy conversion in terms of frequency bandwidth and output voltage. Using this technique, low frequency vibration energy harvesting at around 17 Hz was possible. The theoretical results were in good agreement with the experimental results. The target application is to power wildlife bio-logging devices from bird flights that have consistent high power density around 16 Hz [1].
International Nuclear Information System (INIS)
Morini, Filippo; Deleuze, Michael S.; Watanabe, Noboru; Takahashi, Masahiko
2015-01-01
The influence of thermally induced nuclear dynamics (molecular vibrations) in the initial electronic ground state on the valence orbital momentum profiles of furan has been theoretically investigated using two different approaches. The first of these approaches employs the principles of Born-Oppenheimer molecular dynamics, whereas the so-called harmonic analytical quantum mechanical approach resorts to an analytical decomposition of contributions arising from quantized harmonic vibrational eigenstates. In spite of their intrinsic differences, the two approaches enable consistent insights into the electron momentum distributions inferred from new measurements employing electron momentum spectroscopy and an electron impact energy of 1.2 keV. Both approaches point out in particular an appreciable influence of a few specific molecular vibrations of A 1 symmetry on the 9a 1 momentum profile, which can be unravelled from considerations on the symmetry characteristics of orbitals and their energy spacing
Yang, HongJiang; Wang, Enliang; Dong, WenXiu; Gong, Maomao; Shen, Zhenjie; Tang, Yaguo; Shan, Xu; Chen, Xiangjun
2018-05-01
The a b i n i t i o molecular dynamics (MD) simulations using an atom-centered density matrix propagation method have been carried out to investigate the fragmentation of the ground-state triply charged carbon dioxide, CO23 +→C+ + Oa+ + Ob+ . Ten thousands of trajectories have been simulated. By analyzing the momentum correlation of the final fragments, it is demonstrated that the sequential fragmentation dominates in the three-body dissociation, consistent with our experimental observations which were performed by electron collision at impact energy of 1500 eV. Furthermore, the MD simulations allow us to have detailed insight into the ultrafast evolution of the molecular bond breakage at a very early stage, within several tens of femtoseconds, and the result shows that the initial nuclear vibrational mode plays a decisive role in switching the dissociation pathways.
Dynamic Properties of the Painter Street Overpass at Different Levels of Vibration
DEFF Research Database (Denmark)
Ventura, C. E.; Brincker, Rune; Andersen, P.
2005-01-01
This paper describes the results from a series of ambient vibration studies conducted on the Painter Street Overpass in Rio Dell, California. Painter Street is a two-span, skewed reinforced concrete bridge with two single piers near the middle and monolithic abutments, typical of bridge overpasses...... from analyses of selected strong motion records. The magnitude of the events investigated ranges from ML=4.4 to ML=6.9, which produced accelerations of up to 0.54g at the free field site, 1.3g at the abutments, and 0.86g on the deck. The results of this study indicate that the overall dynamic...... properties of the bridge are very sensitive to the level of ground shaking and that soil-structure interaction is very important for this type structural system. Although the superstructure exhibited a nearly elastic response, the motions at the abutments and base of piers were significantly different...
Directory of Open Access Journals (Sweden)
Lianchao Sheng
2017-01-01
Full Text Available Due to the complexity of the dynamic model of a planar 3-RRR flexible parallel manipulator (FPM, it is often difficult to achieve active vibration control algorithm based on the system dynamic model. To establish a simple and efficient dynamic model of the planar 3-RRR FPM to study its dynamic characteristics and build a controller conveniently, firstly, considering the effect of rigid-flexible coupling and the moment of inertia at the end of the flexible intermediate link, the modal function is determined with the pinned-free boundary condition. Then, considering the main vibration modes of the system, a high-efficiency coupling dynamic model is established on the basis of guaranteeing the model control accuracy. According to the model, the modal characteristics of the flexible intermediate link are analyzed and compared with the modal test results. The results show that the model can effectively reflect the main vibration modes of the planar 3-RRR FPM; in addition the model can be used to analyze the effects of inertial and coupling forces on the dynamics model and the drive torque of the drive motor. Because this model is of the less dynamic parameters, it is convenient to carry out the control program.
Liang, Feng; Yang, Xiao-Dong; Zhang, Wei; Qian, Ying-Jing
2018-03-01
In this paper, a dynamical model of simply-supported spinning pipes conveying fluid with axial deployment is proposed and the transverse free vibration and stability for such a doubly gyroscopic system involving time-dependent parameters are investigated. The partial differential equations of motion are derived by the extended Hamilton principle and then truncated by the Galerkin technique. The time-variant frequencies, mode shapes and responses to initial conditions are comprehensively investigated to reveal the dynamical essence of the system. It is indicated that the qualitative stability evolution of the system mainly depends on the effect of fluid-structure interaction (FSI), while the spinning motion will enhance the pipe rigidity and eliminate the buckling instability. The dynamical evolution of a retracting pipe is almost inverse to that of the deploying one. The pipe possesses different mode configurations of spatial curves as the pipe length increases and some modal and response characteristics of the present system are found rather distinct from those of deploying cantilevered structures.
International Nuclear Information System (INIS)
Paulo, A S; GarcIa-Sanchez, D; Perez-Murano, F; Bachtold, A; Black, J; Bokor, J; Esplandiu, M J; Aguasca, A
2008-01-01
We describe a method based on the use of higher order bending modes of the cantilever of a dynamic force microscope to characterize vibrations of micro and nanomechanical resonators at arbitrarily large resonance frequencies. Our method consists on using a particular cantilever eigenmode for standard feedback control in amplitude modulation operation while another mode is used for detecting and imaging the resonator vibration. In addition, the resonating sample device is driven at or near its resonance frequency with a signal modulated in amplitude at a frequency that matches the resonance of the cantilever eigenmode used for vibration detection. In consequence, this cantilever mode is excited with an amplitude proportional to the resonator vibration, which is detected with an external lock-in amplifier. We show two different application examples of this method. In the first one, acoustic wave vibrations of a film bulk acoustic resonator around 1.6 GHz are imaged. In the second example, bending modes of carbon nanotube resonators up to 3.1 GHz are characterized. In both cases, the method provides subnanometer-scale sensitivity and the capability of providing otherwise inaccessible information about mechanical resonance frequencies, vibration amplitude values and mode shapes
Ohto, Tatsuhiko; Hunger, Johannes; Backus, Ellen H G; Mizukami, Wataru; Bonn, Mischa; Nagata, Yuki
2017-03-08
The osmolyte molecule trimethylamine-N-oxide (TMAO) stabilizes the structure of proteins. As functional proteins are generally found in aqueous solutions, an important aspect of this stabilization is the interaction of TMAO with water. Here, we review, using vibrational spectroscopy and molecular dynamics simulations, recent studies on the structure and dynamics of TMAO with its surrounding water molecules. This article ends with an outlook on the open questions on TMAO-protein and TMAO-urea interactions in aqueous environments.
Dynamic Analysis of an Office Building due to Vibration from Road Construction Activities
Chik, T. N. T.; Kamil, M. R. H.; Yusoff, N. A.; Ibrahim, M. H. W.
2018-04-01
Construction activities are widely known as one of the predominant sources of man-made vibrations that able to create nuisance towards any adjacent building, and this includes the road construction operations. Few studies conclude the construction-induced vibration may be harmful directly and indirectly towards the neighbouring building. This lead to the awareness of study the building vibration response of concrete masonry load bearing system and its vibrational performance towards the road construction activities. This study will simulate multi-storey office building of Sekolah Menengah Kebangsaan (SMK) Bandar Enstek at Negeri Sembilan by using finite element vibration analyses. The excitation of transient loads from ground borne vibrations which triggered by the road construction activities are modelled into the building. The vibration response was recorded during in-situ ambient vibration test by using Laser Doppler Vibrometer (LDV), which specifically performed on four different locations. The finite element simulation process was developed in the commercial FEA software ABAQUS. Then, the experimental data was processed and evaluated in MATLAB ModalV to assess the vibration criteria of the floor in building. As a result, the vibration level of floor in building is fall under VC-E curve which was under the maximum permissible level for office building (VC-ISO). The vibration level on floor is acceptable within the limit that have been referred.
Shen, Tonghao; Su, Neil Qiang; Wu, Anan; Xu, Xin
2014-03-05
In this work, we first review the perturbative treatment of an oscillator with cubic anharmonicity. It is shown that there is a quantum-classical correspondence in terms of mean displacement, mean-squared displacement, and the corresponding variance in the first-order perturbation theory, provided that the amplitude of the classical oscillator is fixed at the zeroth-order energy of quantum mechanics EQM (0). This correspondence condition is realized by proposing the extended Langevin dynamics (XLD), where the key is to construct a proper driving force. It is assumed that the driving force adopts a simple harmonic form with its amplitude chosen according to EQM (0), while the driving frequency chosen as the harmonic frequency. The latter can be improved by using the natural frequency of the system in response to the potential if its anharmonicity is strong. By comparing to the accurate numeric results from discrete variable representation calculations for a set of diatomic species, it is shown that the present method is able to capture the large part of anharmonicity, being competitive with the wave function-based vibrational second-order perturbation theory, for the whole frequency range from ∼4400 cm(-1) (H2 ) to ∼160 cm(-1) (Na2 ). XLD shows a substantial improvement over the classical molecular dynamics which ceases to work for hard mode when zero-point energy effects are significant. Copyright © 2013 Wiley Periodicals, Inc.
Vibrational properties of the amide group in acetanilide: A molecular-dynamics study
Campa, Alessandro; Giansanti, Andrea; Tenenbaum, Alexander
1987-09-01
A simplified classical model of acetanilide crystal is built in order to study the mechanisms of vibrational energy transduction in a hydrogen-bonded solid. The intermolecular hydrogen bond is modeled by an electrostatic interaction between neighboring excess charges on hydrogen and oxygen atoms. The intramolecular interaction in the peptide group is provided by a dipole-charge interaction. Forces are calculated up to second-order terms in the atomic displacements from equilibrium positions; the model is thus a chain of nonlinear coupled oscillators. Numerical molecular-dynamics experiments are performed on chain segments of five molecules. The dynamics is ordered, at all temperatures. Energy is widely exchanged between the stretching and the bending of the N-H bond, with characteristic times of the order of 0.2 ps. Energy transduction through the H bond is somewhat slower and of smaller amplitude, and is strongly reduced when the energies of the two bound molecules are very different: This could reduce the dissipation of localized energy fluctuations.
Application of Time-Delay Absorber to Suppress Vibration of a Dynamical System to Tuned Excitation.
El-Ganaini, W A A; El-Gohary, H A
2014-08-01
In this work, we present a comprehensive investigation of the time delay absorber effects on the control of a dynamical system represented by a cantilever beam subjected to tuned excitation forces. Cantilever beam is one of the most widely used system in too many engineering applications, such as mechanical and civil engineering. The main aim of this work is to control the vibration of the beam at simultaneous internal and combined resonance condition, as it is the worst resonance case. Control is conducted via time delay absorber to suppress chaotic vibrations. Time delays often appear in many control systems in the state, in the control input, or in the measurements. Time delay commonly exists in various engineering, biological, and economical systems because of the finite speed of the information processing. It is a source of performance degradation and instability. Multiple time scale perturbation method is applied to obtain a first order approximation for the nonlinear differential equations describing the system behavior. The different resonance cases are reported and studied numerically. The stability of the steady-state solution at the selected worst resonance case is investigated applying Runge-Kutta fourth order method and frequency response equations via Matlab 7.0 and Maple11. Time delay absorber is effective, but within a specified range of time delay. It is the critical factor in selecting such absorber. Time delay absorber is better than the ordinary one as from the effectiveness point of view. The effects of the different absorber parameters on the system behavior and stability are studied numerically. A comparison with the available published work showed a close agreement with some previously published work.
International Nuclear Information System (INIS)
Fry-Petit, A. M.; Sheckelton, J. P.; McQueen, T. M.; Rebola, A. F.; Fennie, C. J.; Mourigal, M.; Valentine, M.; Drichko, N.
2015-01-01
For over a century, vibrational spectroscopy has enhanced the study of materials. Yet, assignment of particular molecular motions to vibrational excitations has relied on indirect methods. Here, we demonstrate that applying group theoretical methods to the dynamic pair distribution function analysis of neutron scattering data provides direct access to the individual atomic displacements responsible for these excitations. Applied to the molecule-based frustrated magnet with a potential magnetic valence-bond state, LiZn 2 Mo 3 O 8 , this approach allows direct assignment of the constrained rotational mode of Mo 3 O 13 clusters and internal modes of MoO 6 polyhedra. We anticipate that coupling this well known data analysis technique with dynamic pair distribution function analysis will have broad application in connecting structural dynamics to physical properties in a wide range of molecular and solid state systems
Padula, Daniele; Lee, Myeong H; Claridge, Kirsten; Troisi, Alessandro
2017-11-02
In this paper, we adopt an approach suitable for monitoring the time evolution of the intramolecular contribution to the spectral density of a set of identical chromophores embedded in their respective environments. We apply the proposed method to the Fenna-Matthews-Olson (FMO) complex, with the objective to quantify the differences among site-dependent spectral densities and the impact of such differences on the exciton dynamics of the system. Our approach takes advantage of the vertical gradient approximation to reduce the computational demands of the normal modes analysis. We show that the region of the spectral density that is believed to strongly influence the exciton dynamics changes significantly in the timescale of tens of nanoseconds. We then studied the impact of the intramolecular vibrations on the exciton dynamics by considering a model of FMO in a vibronic basis and neglecting the interaction with the environment to isolate the role of the intramolecular exciton-vibration coupling. In agreement with the assumptions in the literature, we demonstrate that high frequency modes at energy much larger than the excitonic energy splitting have negligible influence on exciton dynamics despite the large exciton-vibration coupling. We also find that the impact of including the site-dependent spectral densities on exciton dynamics is not very significant, indicating that it may be acceptable to apply the same spectral density on all sites. However, care needs to be taken for the description of the exciton-vibrational coupling in the low frequency part of intramolecular modes because exciton dynamics is more susceptible to low frequency modes despite their small Huang-Rhys factors.
Theory of vibration protection
Karnovsky, Igor A
2016-01-01
This text is an advancement of the theory of vibration protection of mechanical systems with lumped and distributed parameters. The book offers various concepts and methods of solving vibration protection problems, discusses the advantages and disadvantages of different methods, and the fields of their effective applications. Fundamental approaches of vibration protection, which are considered in this book, are the passive, parametric and optimal active vibration protection. The passive vibration protection is based on vibration isolation, vibration damping and dynamic absorbers. Parametric vibration protection theory is based on the Shchipanov-Luzin invariance principle. Optimal active vibration protection theory is based on the Pontryagin principle and the Krein moment method. The book also contains special topics such as suppression of vibrations at the source of their occurrence and the harmful influence of vibrations on humans. Numerous examples, which illustrate the theoretical ideas of each chapter, ar...
Carrier dynamics and surface vibration-assisted Auger recombination in porous silicon
Zakar, Ammar; Wu, Rihan; Chekulaev, Dimitri; Zerova, Vera; He, Wei; Canham, Leigh; Kaplan, Andrey
2018-04-01
Excitation and recombination dynamics of the photoexcited charge carriers in porous silicon membranes were studied using a femtosecond pump-probe technique. Near-infrared pulses (800 nm, 60 fs) were used for the pump while, for the probe, we employed different wavelengths in the range between 3.4 and 5 μ m covering the medium wavelength infrared range. The data acquired in these experiments consist of simultaneous measurements of the transmittance and reflectance as a function of the delay time between the pump and probe for different pump fluences and probe wavelengths. To evaluate the results, we developed an optical model based on the two-dimensional Maxwell-Garnett formula, incorporating the free-carrier Drude contribution and nonuniformity of the excitation by the Wentzel-Kramers-Brillouin model. This model allowed the retrieval of information about the carrier density as a function of the pump fluence, time, and wavelength. The carrier density data were analyzed to reveal that the recombination dynamics is governed by Shockley-Read-Hall and Auger processes, whereas the diffusion has an insignificant contribution. We show that, in porous silicon samples, the Auger recombination process is greatly enhanced at the wavelength corresponding to the infrared-active vibrational modes of the molecular impurities on the surface of the pores. This observation of surface-vibration-assisted Auger recombination is not only for porous silicon in particular, but for low-dimension and bulk semiconductors in general. We estimate the time constants of Shockley-Read-Hall and Auger processes, and demonstrate their wavelength dependence for the excited carrier density in the range of 1018-10191 /cm3 . We demonstrate that both processes are enhanced by up to three orders of magnitude with respect to the bulk counterpart. In addition, we provide a plethora of the physical parameters evaluated from the experimental data, such as the dielectric function and its dependence on the
Dynamic analysis and vibration testing of CFRP drive-line system used in heavy-duty machine tool
Directory of Open Access Journals (Sweden)
Mo Yang
2018-03-01
Full Text Available Low critical rotary speed and large vibration in the metal drive-line system of heavy-duty machine tool affect the machining precision seriously. Replacing metal drive-line with the CFRP drive-line can effectively solve this problem. Based on the composite laminated theory and the transfer matrix method (TMM, this paper puts forward a modified TMM to analyze dynamic characteristics of CFRP drive-line system. With this modified TMM, the CFRP drive-line of a heavy vertical miller is analyzed. And the finite element modal analysis model of the shafting is established. The results of the modified TMM and finite element analysis (FEA show that the modified TMM can effectively predict the critical rotary speed of CFRP drive-line. And the critical rotary speed of CFRP drive-line is 20% higher than that of the original metal drive-line. Then, the vibration of the CFRP and the metal drive-line were tested. The test results show that application of the CFRP drive shaft in the drive-line can effectively reduce the vibration of the heavy-duty machine tool. Keywords: CFRP drive-line system, Dynamic behavior, Transfer matrix, Vibration measurement
Directory of Open Access Journals (Sweden)
Xijun Liu
2013-01-01
Full Text Available The nonlinear dynamic behavior of rain-wind-induced vibration of inclined cable is investigated with the consideration of the equilibrium position of the moving rivulet. The partial differential governing equations of three-degree-of-freedom on the model of rain-wind-induced cable vibration are established, which are proposed for describing the nonlinear interactions among the in-plane, out-of-plane vibration of the cable and the oscillation of the moving rivulet. The Galerkin method is applied to discretize the partial differential governing equations. The approximately analytic solution is obtained by using the method of averaging. The unique correspondence between the wind and the equilibrium position of the rivulet is ascertained. The presence of rivulet at certain positions on the surface of cable is then proved to be one of the trigger for wind-rain-induced cable vibration. The nonlinear dynamic phenomena of the inclined cable subjected to wind and rain turbulence are then studied by varying the parameters including mean wind velocity, Coulomb damping force, damping ratio, the span length, and the initial tension of the inclined cable on the model. The jump phenomenon is also observed which occurs when there are multiple solutions in the system.
Designing a hand rest tremor dynamic vibration absorber using H{sub 2} optimization method
Energy Technology Data Exchange (ETDEWEB)
Rahnavard, Mostafa; Dizaji, Ahmad F. [Tehran University, Tehran (Iran, Islamic Republic of); Hashemi, Mojtaba [Amirkabir University, Tehran (Iran, Islamic Republic of); Faramand, Farzam [Sharif University, Tehran (Iran, Islamic Republic of)
2014-05-15
An optimal single DOF dynamic absorber is presented. A tremor has a random nature and then the system is subjected to a random excitation instead of a sinusoidal one; so the H{sub 2} optimization criterion is probably more desirable than the popular H{sub ∞} optimization method and was implemented in this research. The objective of H{sub 2} optimization criterion is to reduce the total vibration energy of the system for overall frequencies. An objective function, considering the elbow joint angle, θ {sub 2}, tremor suppression as the main goal, was selected. The optimization was done by minimization of this objective function. The optimal system, including the absorber, performance was analyzed in both time and frequency domains. Implementing the optimal absorber, the frequency response amplitude of θ{sub 2} was reduced by more than 98% and 80% at the first and second natural frequencies of the primary system, respectively. A reduction of more than 94% and 78%, was observed for the shoulder joint angle, θ{sub 1}. The objective function also decreased by more than 46%. Then, two types of random inputs were considered. For the first type, θ{sub 1} and θ {sub 2} revealed 60% and 39% reduction in their rms values, whereas for the second type, 33% and 50% decrease was observed.
Designing a hand rest tremor dynamic vibration absorber using H2 optimization method
International Nuclear Information System (INIS)
Rahnavard, Mostafa; Dizaji, Ahmad F.; Hashemi, Mojtaba; Faramand, Farzam
2014-01-01
An optimal single DOF dynamic absorber is presented. A tremor has a random nature and then the system is subjected to a random excitation instead of a sinusoidal one; so the H 2 optimization criterion is probably more desirable than the popular H ∞ optimization method and was implemented in this research. The objective of H 2 optimization criterion is to reduce the total vibration energy of the system for overall frequencies. An objective function, considering the elbow joint angle, θ 2 , tremor suppression as the main goal, was selected. The optimization was done by minimization of this objective function. The optimal system, including the absorber, performance was analyzed in both time and frequency domains. Implementing the optimal absorber, the frequency response amplitude of θ 2 was reduced by more than 98% and 80% at the first and second natural frequencies of the primary system, respectively. A reduction of more than 94% and 78%, was observed for the shoulder joint angle, θ 1 . The objective function also decreased by more than 46%. Then, two types of random inputs were considered. For the first type, θ 1 and θ 2 revealed 60% and 39% reduction in their rms values, whereas for the second type, 33% and 50% decrease was observed.
Yang, Zheng; Bahar, Ivet; Widom, Michael
2009-06-03
Coarse-grained elastic network models elucidate the fluctuation dynamics of proteins around their native conformations. Low-frequency collective motions derived by simplified normal mode analysis are usually involved in biological function, and these motions often possess noteworthy symmetries related to the overall shape of the molecule. Here, insights into these motions and their frequencies are sought by considering continuum models with appropriate symmetry and boundary conditions to approximately represent the true atomistic molecular structure. We solve the elastic wave equations analytically for the case of spherical symmetry, yielding a symmetry-based classification of molecular motions together with explicit predictions for their vibrational frequencies. We address the case of icosahedral symmetry as a perturbation to the spherical case. Applications to lumazine synthase, satellite tobacco mosaic virus, and brome mosaic virus show that the spherical elastic model efficiently provides insights on collective motions that are otherwise obtained by detailed elastic network models. A major utility of the continuum models is the possibility of estimating macroscopic material properties such as the Young's modulus or Poisson's ratio for different types of viruses.
Dynamic Characteristics of Flow Induced Vibration in a Rotor-Seal System
Directory of Open Access Journals (Sweden)
Nan Zhang
2011-01-01
Full Text Available Flow induced vibration is an important factor affecting the performance of the rotor-seal system. From the point of view of flow induced vibration, the nonlinear models of the rotor-seal system are presented for the analysis of the fluid force, which is induced by the interaction between the unstable fluid flow in the seal and the vibrating rotor. The nonlinear characteristics of flow induced vibration in the rotor-seal system are analyzed, and the nonlinear phenomena in the unbalanced rotor-seal system are investigated using the nonlinear models. Various nonlinear phenomena of flow induced vibration in the rotor-seal system, such as synchronization phenomenon and amplitude mutation, are reproduced.
Vibrational relaxation dynamics of SD molecules in As2S3: Observation of an anomalous isotope effect
International Nuclear Information System (INIS)
Engholm, J.R.; Happek, U.; Rella, C.W.
1995-01-01
It is generally assumed that the vibrational relaxation of molecular impurities in crystals and glasses mainly depends on the order of the decay process, with lower order processes leading to more rapid relaxation (a behavior that is known under the term open-quotes gap-lawclose quotes). Here we present measurements that contradict this assumption. Using high intensity psec pulses of the Stanford FEL we measured the relaxation rate of the SD vibrational stretch mode (at a frequency of 1800 cm) by applying a pump-probe technique. We find relaxation rates on the order of 2x10 9 sec -1 , which are a factor of 2 lower than those found for the isotope molecule SH (at a frequency of about 2500 cm - 1 ) in the same host 1 . We recall that the relaxation of the SD vibrational stretch mode is controlled by a lower order process as compared to the SH molecule, which is due to the smaller number of host vibrational quanta to match the energy of the stretch mode; a fact we have confirmed experimentally by temperature dependent relaxation measurements. Thus our remits are in marked contrast to the so-called open-quotes Gap-Lawclose quotes and emphasize the importance of the molecule - host coupling in the relaxation dynamics
Directory of Open Access Journals (Sweden)
Francesco Castellani
2017-11-01
Full Text Available A wind turbine is a very well-known archetype of energy conversion system working at non-stationary regimes. Despite this, a deep mechanical comprehension of wind turbines operating in complicated conditions is still challenging, especially as regards the analysis of experimental data. In particular, wind turbines in complex terrain represent a very valuable testing ground because of the possible combination of wake effects among nearby turbines and flow accelerations caused by the terrain morphology. For these reasons, in this work, a cluster of four full-scale wind turbines from a very complex site is studied. The object of investigation is vibrations, at the level of the structure (tower and drive-train. Data collected by the on-board condition monitoring system are analyzed and interpreted in light of the knowledge of wind conditions and operating parameters collected by the Supervisory Control And Data Acquisition (SCADA. A free flow Computational Fluid Dynamics (CFD simulation is also performed, and it allows one to better interpret the vibration analysis. The main outcome is the interpretation of how wakes and flow turbulences appear in the vibration signals, both at the structural level and at the drive-train level. Therefore, this wind to gear approach builds a connection between flow phenomena and mechanical phenomena in the form of vibrations, representing a precious tool for assessing loads in different working conditions.
Tachikawa, Hiroto
2017-06-30
Reactions of water dimer cation (H2O)2+ following ionization have been investigated by means of a direct ab initio molecular dynamics method. In particular, the effects of zero point vibration and zero point energy (ZPE) on the reaction mechanism were considered in this work. Trajectories were run on two electronic potential energy surfaces (PESs) of (H2O)2+: ground state ( 2 A″-like state) and the first excited state ( 2 A'-like state). All trajectories on the ground-state PES lead to the proton-transferred product: H 2 O + (Wd)-H 2 O(Wa) → OH(Wd)-H 3 O + (Wa), where Wd and Wa refer to the proton donor and acceptor water molecules, respectively. Time of proton transfer (PT) varied widely from 15 to 40 fs (average time of PT = 30.9 fs). The trajectories on the excited-state PES gave two products: an intermediate complex with a face-to-face structure (H 2 O-OH 2 ) + and a PT product. However, the proton was transferred to the opposite direction, and the reverse PT was found on the excited-state PES: H 2 O(Wd)-H 2 O + (Wa) → H 3 O + (Wd)-OH(Wa). This difference occurred because the ionizing water molecule in the dimer switched between the ground and excited states. The reaction mechanism of (H2O)2+ and the effects of ZPE are discussed on the basis of the results. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Yu, Pingchao; Zhang, Dayi; Ma, Yanhong; Hong, Jie
2018-06-01
Fan Blade Out (FBO) from a running rotor of the turbofan engine will not only introduce the sudden unbalance and inertia asymmetry into the rotor, but also apply large impact load and induce rotor-to-stator rubbing on the rotor, which makes the mass, gyroscopic and stiffness matrixes of the dynamic equation become time-varying and highly nonlinear, consequently leads to the system's complicated vibration. The dynamic analysis of the aero-engine rotor system is one essential requirement of the authorities and is vital to the aero-engine's safety. The paper aims at studying the dynamic responses of the complicated dual-rotor systems at instantaneous and windmilling statuses when FBO event occurs. The physical process and mechanical characteristics of the FBO event are described qualitatively, based on which the dynamic modeling for an aero-engine dual-rotor system is carried out considering several excitations caused by FBO. Meanwhile the transient response during the instantaneous status and steady-state response at the windmilling status are obtained. The results reveal that the sudden unbalance can induce impact load to the rotor, and lead to the sharp increase of the vibration amplitude and reaction force. The rub-impact will apply constraint effects on the rotor and restrict the transient vibration amplitude, while the inertia asymmetry has little influence on the transient response. When the rotor with huge unbalance operates at windmilling status, the rub-impact turns to be the main factor determining the rotor's dynamic behavior, and several potential motion states, such as instable dry whip, intermittent rubbing and synchronous full annular rubbing would happen on certain conditions.
Thermal and vibration dynamic analysis of an induction motor using optical fiber Bragg gratings
Sousa, Kleiton d. M.; Dreyer, Uilian J.; Martelli, Cicero; Cardozo da Silva, Jean Carlos
2015-09-01
In this paper it is presented the results of temperature and vibration measurements in a Three-phase Induction Motor (TIM) running at no-load condition. Vibration and temperature analysis are the most successful techniques used for condition monitoring of induction motors. The vibration is measured using two FBGs installed inside of the motor between two subsequent stator teeth. The motor spectrum of vibration when power is at 60 Hz presents the frequencies 60 Hz, 120 Hz, 180 Hz, and 240 Hz as theoretically expected. For the temperature measurement two FBGs are encapsulated in an alumina tube fixed along the stator. The results show 0.9°C difference between the two FBG caused by the motor ventilation nearer of one FBG. These measurements can be used to determine TIM parameters and still be predictive maintenance tool.
Directory of Open Access Journals (Sweden)
Dashan Zhang
2016-04-01
Full Text Available The development of image sensor and optics enables the application of vision-based techniques to the non-contact dynamic vibration analysis of large-scale structures. As an emerging technology, a vision-based approach allows for remote measuring and does not bring any additional mass to the measuring object compared with traditional contact measurements. In this study, a high-speed vision-based sensor system is developed to extract structure vibration signals in real time. A fast motion extraction algorithm is required for this system because the maximum sampling frequency of the charge-coupled device (CCD sensor can reach up to 1000 Hz. Two efficient subpixel level motion extraction algorithms, namely the modified Taylor approximation refinement algorithm and the localization refinement algorithm, are integrated into the proposed vision sensor. Quantitative analysis shows that both of the two modified algorithms are at least five times faster than conventional upsampled cross-correlation approaches and achieve satisfactory error performance. The practicability of the developed sensor is evaluated by an experiment in a laboratory environment and a field test. Experimental results indicate that the developed high-speed vision-based sensor system can extract accurate dynamic structure vibration signals by tracking either artificial targets or natural features.
Halász, Gábor J; Csehi, András; Vibók, Ágnes; Cederbaum, Lorenz S
2014-12-26
Previous works have shown that dressing of diatomic molecules by standing or by running laser waves gives rise to the appearance of so-called light-induced conical intersections (LICIs). Because of the strong nonadiabatic couplings, the existence of such LICIs may significantly change the dynamical properties of a molecular system. In our former paper (J. Phys. Chem. A 2013, 117, 8528), the photodissociation dynamics of the D(2)(+) molecule were studied in the LICI framework starting the initial vibrational nuclear wave packet from the superposition of all the vibrational states initially produced by ionizing D(2). The present work complements our previous investigation by letting the initial nuclear wave packets start from different individual vibrational levels of D(2)(+), in particular, above the energy of the LICI. The kinetic energy release spectra, the total dissociation probabilities, and the angular distributions of the photofragments are calculated and discussed. An interesting phenomenon has been found in the spectra of the photofragments. Applying the light-induced adiabatic picture supported by LICI, explanations are given for the unexpected structure of the spectra.
Barashkov, M. V.; Komyak, A. I.; Shashkov, S. N.
2000-03-01
The IR spectra and polarized Raman spectra of crystals of hexahydrates of zinc potassium and ammonium sulfates have been obtained experimentally at 93 K and at room temperature. The frequencies and modes of normal vibrations of the octahedral complex [Zn(H2O)6]2+ have been calculated. The assignment of the observed lines of the internal and external vibrations of the crystal cell has been made by calculations and by factor-group analysis.
Dynamic analysis of ITER tokamak. Based on results of vibration test using scaled model
International Nuclear Information System (INIS)
Takeda, Nobukazu; Kakudate, Satoshi; Nakahira, Masataka
2005-01-01
The vibration experiments of the support structures with flexible plates for the ITER major components such as toroidal field coil (TF coil) and vacuum vessel (VV) were performed using small-sized flexible plates aiming to obtain its basic mechanical characteristics such as dependence of the stiffness on the loading angle. The experimental results were compared with the analytical ones in order to estimate an adequate analytical model for ITER support structure with flexible plates. As a result, the bolt connection of the flexible plates on the base plate strongly affected on the stiffness of the flexible plates. After studies of modeling the connection of the bolts, it is found that the analytical results modeling the bolts with finite stiffness only in the axial direction and infinite stiffness in the other directions agree well with the experimental ones. Based on this, numerical analysis regarding the actual support structure of the ITER VV and TF coil was performed. The support structure composed of flexible plates and connection bolts was modeled as a spring composed of only two spring elements simulating the in-plane and out-of-plane stiffness of the support structure with flexible plates including the effect of connection bolts. The stiffness of both spring models for VV and TF coil agree well with that of shell models, simulating actual structures such as flexible plates and connection bolts based on the experimental results. It is therefore found that the spring model with the only two values of stiffness enables to simplify the complicated support structure with flexible plates for the dynamic analysis of the VV and TF coil. Using the proposed spring model, the dynamic analysis of the VV and TF coil for the ITER were performed to estimate the integrity under the design earthquake. As a result, it is found that the maximum relative displacement of 8.6 mm between VV and TF coil is much less than 100 mm, so that the integrity of the VV and TF coil of the
Maj, Michał; Ahn, Changwoo; Kossowska, Dorota; Park, Kwanghee; Kwak, Kyungwon; Han, Hogyu; Cho, Minhaeng
2015-05-07
An infrared (IR) probe based on isonitrile (NC)-derivatized alanine 1 was synthesized and the vibrational properties of its NC stretching mode were investigated using FTIR and femtosecond IR pump-probe spectroscopy. It is found that the NC stretching mode is very sensitive to the hydrogen-bonding ability of solvent molecules. Moreover, its transition dipole strength is larger than that of nitrile (CN) in nitrile-derivatized IR probe 2. The vibrational lifetime of the NC stretching mode is found to be 5.5 ± 0.2 ps in both D2O and DMF solvents, which is several times longer than that of the azido (N3) stretching mode in azido-derivatized IR probe 3. Altogether these properties suggest that the NC group can be a very promising sensing moiety of IR probes for studying the solvation structure and dynamics of biomolecules.
Energy Technology Data Exchange (ETDEWEB)
Sanson, A., E-mail: andrea.sanson@unipd.it [Dipartimento di Fisica e Astronomia - Università di Padova, Padova (Italy); Mathon, O.; Pascarelli, S. [ESRF - European Synchrotron Radiation Facility, Grenoble (France)
2014-06-14
The local vibrational dynamics of hematite (α-Fe{sub 2}O{sub 3}) has been investigated by temperature-dependent extended x-ray absorption fine structure spectroscopy and molecular dynamics simulations. The local dynamics of both the short and long nearest-neighbor Fe–O distances has been singled out, i.e., their local thermal expansion and the parallel and perpendicular mean-square relative atomic displacements have been determined, obtaining a partial agreement with molecular dynamics. No evidence of the Morin transition has been observed. More importantly, the strong anisotropy of relative thermal vibrations found for the short Fe–O distance has been related to its negative thermal expansion. The differences between the local dynamics of short and long Fe–O distances are discussed in terms of projection and correlation of atomic motion. As a result, we can conclude that the short Fe–O bond is stiffer to stretching and softer to bending than the long Fe–O bond.
Energy Technology Data Exchange (ETDEWEB)
Schulze, Jan; Kühn, Oliver, E-mail: oliver.kuehn@uni-rostock.de [Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock (Germany); Shibl, Mohamed F., E-mail: mfshibl@qu.edu.qa; Al-Marri, Mohammed J. [Gas Processing Center, College of Engineering, Qatar University, P.O. Box 2713, Doha (Qatar)
2016-05-14
The coupled quantum dynamics of excitonic and vibrational degrees of freedom is investigated for high-dimensional models of the Fenna-Matthews-Olson complex. This includes a seven- and an eight-site model with 518 and 592 harmonic vibrational modes, respectively. The coupling between local electronic transitions and vibrations is described within the Huang-Rhys model using parameters that are obtained by discretization of an experimental spectral density. Different pathways of excitation energy flow are analyzed in terms of the reduced one-exciton density matrix, focussing on the role of vibrational and vibronic excitations. Distinct features due to both competing time scales of vibrational and exciton motion and vibronically assisted transfer are observed. The question of the effect of initial state preparation is addressed by comparing the case of an instantaneous Franck-Condon excitation at a single site with that of a laser field excitation.
Directory of Open Access Journals (Sweden)
Sang-Wook Kang
2016-03-01
Full Text Available A new formulation for the non-dimensional dynamic influence function method, which was developed by the authors, is proposed to efficiently extract eigenvalues and mode shapes of clamped plates with arbitrary shapes. Compared with the finite element and boundary element methods, the non-dimensional dynamic influence function method yields highly accurate solutions in eigenvalue analysis problems of plates and membranes including acoustic cavities. However, the non-dimensional dynamic influence function method requires the uneconomic procedure of calculating the singularity of a system matrix in the frequency range of interest for extracting eigenvalues because it produces a non-algebraic eigenvalue problem. This article describes a new approach that reduces the problem of free vibrations of clamped plates to an algebraic eigenvalue problem, the solution of which is straightforward. The validity and efficiency of the proposed method are illustrated through several numerical examples.
Lu, Cheng; Liu, Guodong; Liu, Bingguo; Chen, Fengdong; Zhuang, Zhitao; Xu, Xinke; Gan, Yu
2015-10-01
Absolute distance measurement systems are of significant interest in the field of metrology, which could improve the manufacturing efficiency and accuracy of large assemblies in fields such as aircraft construction, automotive engineering, and the production of modern windmill blades. Frequency scanning interferometry demonstrates noticeable advantages as an absolute distance measurement system which has a high precision and doesn't depend on a cooperative target. In this paper , the influence of inevitable vibration in the frequency scanning interferometry based absolute distance measurement system is analyzed. The distance spectrum is broadened as the existence of Doppler effect caused by vibration, which will bring in a measurement error more than 103 times bigger than the changes of optical path difference. In order to decrease the influence of vibration, the changes of the optical path difference are monitored by a frequency stabilized laser, which runs parallel to the frequency scanning interferometry. The experiment has verified the effectiveness of this method.
Dynamic analysis and vibration testing of CFRP drive-line system used in heavy-duty machine tool
Yang, Mo; Gui, Lin; Hu, Yefa; Ding, Guoping; Song, Chunsheng
2018-03-01
Low critical rotary speed and large vibration in the metal drive-line system of heavy-duty machine tool affect the machining precision seriously. Replacing metal drive-line with the CFRP drive-line can effectively solve this problem. Based on the composite laminated theory and the transfer matrix method (TMM), this paper puts forward a modified TMM to analyze dynamic characteristics of CFRP drive-line system. With this modified TMM, the CFRP drive-line of a heavy vertical miller is analyzed. And the finite element modal analysis model of the shafting is established. The results of the modified TMM and finite element analysis (FEA) show that the modified TMM can effectively predict the critical rotary speed of CFRP drive-line. And the critical rotary speed of CFRP drive-line is 20% higher than that of the original metal drive-line. Then, the vibration of the CFRP and the metal drive-line were tested. The test results show that application of the CFRP drive shaft in the drive-line can effectively reduce the vibration of the heavy-duty machine tool.
International Nuclear Information System (INIS)
Hasse, R.W.; Ghosh, G.
1982-01-01
The long-mean-free-path nuclear fluid dynamics is extended to include damping. First the damping stress is derived from the solution of the Boltzmann equation for a breathing spherical container filled with a Fermi gas. Then the corresponding damping force is incorporated into Euler equations of motion and energies and widths of low lying collective resonances are computed as eigenfrequencies of a vibrating nucleus under surface tension and Coulomb potential as well as the high lying isoscalar giant resonances as eigenfrequencies of an elastic nucleus. Maximum damping is obtained if the particle frequency approximately resonates with the wall frequency. Theoretical results are compared with experimental data and future improvements are indicated
Dynamic analysis and vibration testing of CFRP drive-line system used in heavy-duty machine tool
Mo Yang; Lin Gui; Yefa Hu; Guoping Ding; Chunsheng Song
2018-01-01
Low critical rotary speed and large vibration in the metal drive-line system of heavy-duty machine tool affect the machining precision seriously. Replacing metal drive-line with the CFRP drive-line can effectively solve this problem. Based on the composite laminated theory and the transfer matrix method (TMM), this paper puts forward a modified TMM to analyze dynamic characteristics of CFRP drive-line system. With this modified TMM, the CFRP drive-line of a heavy vertical miller is analyzed. ...
CSIR Research Space (South Africa)
Shatalov, M
2009-05-01
Full Text Available stream_source_info Shatalov2_2009.pdf.txt stream_content_type text/plain stream_size 22572 Content-Encoding UTF-8 stream_name Shatalov2_2009.pdf.txt Content-Type text/plain; charset=UTF-8 1 DYNAMICS OF ROTATING... AND VIBRATING THIN HEMISPHERICAL SHELL WITH MASS AND DAMPING IMPERFECTIONS AND PARAMETRICALLY DRIVEN BY DISCRETE ELECTRODES Michael Shatalov1,2 and Charlotta Coetzee2 1Sensor Science and Technology (SST) of CSIR Material Science and Manufacturing (MSM...
Coherent dynamics of the localized vibrational modes of hydrogen in CaF2
Wells, J. P. R.; Rella, C. W.; Bradley, I. V.; Galbraith, I.; Pidgeon, C. R.
2000-01-01
We report the observation of giant quantum coherence effects in the localized modes of ionized hydrogen in synthetic fluorite. Infrared free induction decay experiments on the substitutional H+ center thew dramatic modulations at negative delay times due to interference between multiple vibrational
Effects of reagent translational and vibrational energy on the dynamics of endothermic reactions
International Nuclear Information System (INIS)
Krajnovich, D.; Zhang, Z.; Huisken, F.; Shen, Y.R.; Lee, Y.T.
1981-07-01
The endothermic reactions Br + CH 3 I → CH 3 + IBr (ΔH 0 0 = 13 kcal/mole) and Br + CF 3 I → CF 3 + IBr (ΔH 0 0 = 11 kcal/mole) have been studied by the crossed molecular beams method. Detailed center-of-mass contour maps of the IBr product flux as a function of recoil velocity and scattering angle are derived. For both systems it is found that the IBr product is sharply backward scattered with respect to the incident Br dirction, and that most of the available energy goes into product translation. Vibrational enhancement of the Br + CF 3 I reaction was investigated by using the infrared multiphoton absorption process to prepare highly vibrationally excited CF 3 I. At a collision energy of 31 kcal/mole (several times the barrier height), reagent vibrational energy appears to be less effective than an equivalent amount of (additional) translational energy in promoting reaction. More forward scattered IBr is produced in reactions of Br with vibrationally hot CF 3 I
International Nuclear Information System (INIS)
Chu, P.M.Y.
1991-10-01
The vibrational to translational (V→T) energy transfer in collisions between large highly vibrationally excited polyatomics and rare gases was investigated by time-of-flight techniques. Two different methods, UV excitation followed by intemal conversion and infrared multiphoton excitation (IRMPE), were used to form vibrationally excited molecular beams of hexafluorobenzene and sulfur hexafluoride, respectively. The product translational energy was found to be independent of the vibrational excitation. These results indicate that the probability distribution function for V→T energy transfer is peaked at zero. The collisional relaxation of large polyatomic molecules with rare gases most likely occurs through a rotationally mediated process. Photodissociation of nitrobenzene in a molecular beam was studied at 266 nm. Two primary dissociation channels were identified including simple bond rupture to produce nitrogen dioxide and phenyl radical and isomerization to form nitric oxide and phenoxy radical. The time-of-flight spectra indicate that simple bond rupture and isomerization occurs via two different mechanisms. Secondary dissociation of the phenoxy radicals to carbon monoxide and cyclopentadienyl radicals was observed as well as secondary photodissociation of phenyl radical to give H atom and benzyne. A supersonic methyl radical beam source is developed. The beam source configuration and conditions were optimized for CH 3 production from the thermal decomposition of azomethane. Elastic scattering of methyl radical and neon was used to differentiate between the methyl radicals and the residual azomethane in the molecular beam
Effects of reagent translational and vibrational energy on the dynamics of endothermic reactions
Energy Technology Data Exchange (ETDEWEB)
Krajnovich, D.; Zhang, Z.; Huisken, F.; Shen, Y.R.; Lee, Y.T.
1981-07-01
The endothermic reactions Br + CH/sub 3/I ..-->.. CH/sub 3/ + IBr (..delta..H/sub 0//sup 0/ = 13 kcal/mole) and Br + CF/sub 3/I ..-->.. CF/sub 3/ + IBr (..delta..H/sub 0//sup 0/ = 11 kcal/mole) have been studied by the crossed molecular beams method. Detailed center-of-mass contour maps of the IBr product flux as a function of recoil velocity and scattering angle are derived. For both systems it is found that the IBr product is sharply backward scattered with respect to the incident Br dirction, and that most of the available energy goes into product translation. Vibrational enhancement of the Br + CF/sub 3/I reaction was investigated by using the infrared multiphoton absorption process to prepare highly vibrationally excited CF/sub 3/I. At a collision energy of 31 kcal/mole (several times the barrier height), reagent vibrational energy appears to be less effective than an equivalent amount of (additional) translational energy in promoting reaction. More forward scattered IBr is produced in reactions of Br with vibrationally hot CF/sub 3/I.
The Shock and Vibration Bulletin. Part 4. Damping and Machinery Dynamics
1983-05-01
VIBRATION CHALLENGES IN J^.CROELECTRONICS MANUFACTURING Dr. Eric Ungar, Bolt Beranek and Newman, Inc., Cambridge, MA and Colin G. Gordon, Bolt...Modes)," Shock and Vibra- tion Bulletin No. 48, Sept. 1978. B.K. Wada, R. Bamford , and J.A. Garba, "Equivalent Spring-Mass Sys- tems: A Physical
First principles study of vibrational dynamics of ceria-titania hybrid clusters
Energy Technology Data Exchange (ETDEWEB)
Majid, Abdul, E-mail: abdulmajid40@yahoo.com; Bibi, Maryam [University of Gujrat, Department of Physics (Pakistan)
2017-04-15
Density functional theory based calculations were performed to study vibrational properties of ceria, titania, and ceria-titania hybrid clusters. The findings revealed the dominance of vibrations related to oxygen when compared to those of metallic atoms in the clusters. In case of hybrid cluster, the softening of normal modes related to exterior oxygen atoms in ceria and softening/hardening of high/low frequency modes related to titania dimmers are observed. The results calculated for monomers conform to symmetry predictions according to which three IR and three Raman active modes were detected for TiO{sub 2}, whereas two IR active and one Raman active modes were observed for CeO{sub 2}. The comparative analysis indicates that the hybrid cluster CeTiO{sub 4} contains simultaneous vibrational fingerprints of the component dimmers. The symmetry, nature of vibrations, IR and Raman activity, intensities, and atomic involvement in different modes of the clusters are described in detail. The study points to engineering of CeTiO{sub 4} to tailor its properties for technological visible region applications in photocatalytic and electrochemical devices.
Vibration of hydraulic machinery
Wu, Yulin; Liu, Shuhong; Dou, Hua-Shu; Qian, Zhongdong
2013-01-01
Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration pr...
International Nuclear Information System (INIS)
Bauchy, M.; Kachmar, A.; Micoulaut, M.
2014-01-01
The structural, vibrational, electronic, and dynamic properties of amorphous and liquid As x Se 1-x (0.10
Energy Technology Data Exchange (ETDEWEB)
Bauchy, M. [Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095-1593 (United States); Kachmar, A. [Laboratoire de Physique Théorique de la Matière Condensée, Université Pierre et Marie Curie, 4 Place Jussieu, F-75252 Paris Cedex 05 (France); Qatar Environment and Energy Research Institute, Qatar Foundation, P.O. Box 5825, Doha (Qatar); Micoulaut, M., E-mail: mmi@lptl.jussieu.fr [Laboratoire de Physique Théorique de la Matière Condensée, Université Pierre et Marie Curie, 4 Place Jussieu, F-75252 Paris Cedex 05 (France)
2014-11-21
The structural, vibrational, electronic, and dynamic properties of amorphous and liquid As{sub x}Se{sub 1-x} (0.10
Vibrational dynamics of amorphous metals by inelastic neutron and raman scattering
International Nuclear Information System (INIS)
Lustig, N.E.
1986-01-01
Time-of-flight inelastic neutron scattering and Raman measurements were performed on amorphous (a-) metals. The neutron-weighted vibrational density of states, G(E), obtained for a-Fe 78 P 22 , a-Ni 82 B 18 and a-Ni 67 B 33 transition metal metalloid alloys (TM-m), indicated two major vibrational bands: a low frequency acoustic-like band and a high frequency optic-like band, derived from TM-TM and TM-m interactions, respectively. Similar neutron measurements were performed on the corresponding polycrystalline (c-) alloys, c-Fe 3 P and c-Ni 2 B. A comparison of the amorphous and crystalline densities of states indicates the elimination of sharp features and the addition of vibrational states at low and high frequencies upon amorphization. The experimental G(E) results for a-Fe 78 P 22 are in good agreement with the theoretically predicted spectrum. A comparison between the a-Ni 67 B 33 and the phenomenologically broadened c-Ni 2 B spectrum indicates a change in the short-range order. This finding is consistent with structural measurements on this alloy. Raman measurements were carried out using interference enhanced Raman spectroscopy (IERS) on thin film Ni-B alloys. The measured spectra provide information about the weighted phonon density of states, and is in good agreement with the neutron results
McCaffery, Anthony J.
2018-03-01
This study of near-resonant, vibration-vibration (V-V) gas-phase energy transfer in diatomic molecules uses the theoretical/computational method, of Marsh & McCaffery (Marsh & McCaffery 2002 J. Chem. Phys. 117, 503 (doi:10.1063/1.1489998)) The method uses the angular momentum (AM) theoretical formalism to compute quantum-state populations within the component molecules of large, non-equilibrium, gas mixtures as the component species proceed to equilibration. Computed quantum-state populations are displayed in a number of formats that reveal the detailed mechanism of the near-resonant V-V process. Further, the evolution of quantum-state populations, for each species present, may be followed as the number of collision cycles increases, displaying the kinetics of evolution for each quantum state of the ensemble's molecules. These features are illustrated for ensembles containing vibrationally excited N2 in H2, O2 and N2 initially in their ground states. This article is part of the theme issue `Modern theoretical chemistry'.
International Nuclear Information System (INIS)
Mizuno, Takeshi; Takasaki, Masaya; Ishino, Yuji
2016-01-01
Switching stiffness control is applied to attenuate vibration in the lateral directions in an active magnetic suspension system with electromagnets operated in differential mode. The magnetic suspension system using the attractive force between magnetized bodies is inherently unstable in the normal direction so that feedback control is necessary to achieve stable suspension. In contrast, it can be stable in the lateral directions due to the edge effects in the magnetic circuits. In several applications, such passive suspension is used in combination with the active one to reduce cost and space. However, damping in the lateral directions is generally small. As a result, induced vibrations in these directions are hardly attenuated. To suppress such vibration without any additional actuator (electromagnet), switching stiffness control is applied to an magnetic suspension system operated in the differential mode. The stiffness in the lateral direction is adjusted by varying the bias currents of an opposed pair of electromagnets located in the normal direction simultaneously according to the motion of the suspended object. When the varied bias currents are adjusted for the additive normal forces cancel each other, such control does not affect the suspension in the normal direction. The effectiveness of the proposed control methods is confirmed experimentally. (paper)
Xian, Guangming
2018-03-01
A method for predicting the optimal vibration field parameters by least square support vector machine (LS-SVM) is presented in this paper. One convenient and commonly used technique for characterizing the the vibration flow field of polymer melts films is small angle light scattering (SALS) in a visualized slit die of the electromagnetism dynamic extruder. The optimal value of vibration vibration frequency, vibration amplitude, and the maximum light intensity projection area can be obtained by using LS-SVM for prediction. For illustrating this method and show its validity, the flowing material is used with polypropylene (PP) and fifteen samples are tested at the rotation speed of screw at 36rpm. This paper first describes the apparatus of SALS to perform the experiments, then gives the theoretical basis of this new method, and detail the experimental results for parameter prediction of vibration flow field. It is demonstrated that it is possible to use the method of SALS and obtain detailed information on optimal parameter of vibration flow field of PP melts by LS-SVM.
Directory of Open Access Journals (Sweden)
Malika Boumaiza
2018-01-01
Full Text Available The present study concerns the analysis of the dynamic response of earth dam, in free and forced vibration (under the effect of earthquake using the finite element method. The analysis is carried out at the end of dam construction without filling. The behavior of the dam materials and the foundation is linear elastic. In free vibration, to better understand the effect of the dam foundation interaction, we will take into account different site conditions and see their influence on the free vibration characteristics of the dam. In forced vibration, to study the seismic response of the dam, the system is subjected to the acceleration of the Boumerdes earthquake of May 21, 2003 recorded at the station n ° 2 of the dam of Kaddara in the base, with a parametric study taking into account the influence of the main parameters such as the mechanical properties of the soil: rigidity, density.
Jha, Santosh Kumar; Ji, Minbiao; Gaffney, Kelly J.; Boxer, Steven G.
2012-01-01
Little is known about the reorganization capacity of water molecules at the active sites of enzymes and how this couples to the catalytic reaction. Here, we study the dynamics of water molecules at the active site of a highly proficient enzyme, Δ5-3-ketosteroid isomerase (KSI), during a light-activated mimic of its catalytic cycle. Photo-excitation of a nitrile containing photo-acid, coumarin183 (C183), mimics the change in charge density that occurs at the active site of KSI during the first step of the catalytic reaction. The nitrile of C183 is exposed to water when bound to the KSI active site, and we used time-resolved vibrational spectroscopy as a site-specific probe to study the solvation dynamics of water molecules in the vicinity of the nitrile. We observed that water molecules at the active site of KSI are highly rigid, during the light-activated catalytic cycle, compared to the solvation dynamics observed in bulk water. Based upon this result we hypothesize that rigid water dipoles at the active site might help in the maintenance of the pre-organized electrostatic environment required for efficient catalysis. The results also demonstrate the utility of nitrile probes in measuring the dynamics of local (H-bonded) water molecules in contrast to the commonly used fluorescence methods which measure the average behavior of primary and subsequent spheres of solvation. PMID:22931297
Czech Academy of Sciences Publication Activity Database
Andrushchenko, Valery; Benda, Ladislav; Páv, Ondřej; Dračínský, Martin; Bouř, Petr
2015-01-01
Roč. 119, č. 33 (2015), s. 10682-10692 ISSN 1520-6106 R&D Projects: GA ČR GA13-26526S; GA ČR GAP208/11/0105; GA ČR GA13-03978S; GA ČR GA15-09072S Grant - others:GA AV ČR(CZ) M200550902; GA MŠk(CZ) LM2010005; GA MŠk(CZ) ED3.2.00/08.0144 Institutional support: RVO:61388963 Keywords : DNA phosphate group * vibrational spectroscopy * spectra simulations * MD/DFT Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.187, year: 2015
Vibrations versus collisions and the iterative structure of two-body dynamics
International Nuclear Information System (INIS)
Pfitzner, A.; Cassing, W.; Peter, A.
1993-11-01
The two-body correlation function is decomposed into two channel correlation functions for the pp- and the ph-channel. The associated coupled equations describe the evolution in the respective channels as well as their mixing. Integration of the ph-channel in terms of vibrational RPA-states yields a closed equation for the correlations in the pp-channel comprising phonon-particle coupling and a memory term. In the stationary limit the equation for a generalised effective interaction is derived which iterates both the G-matrix (ladders) and the polarisation matrix (loops), thus accounting nonperturbatively for the mixing of ladders and loops. (orig.)
Mondal, Anirban; Balasubramanian, Sundaram
2015-02-05
Hydrogen bonding in alkylammonium based protic ionic liquids was studied using density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations. Normal-mode analysis within the harmonic approximation and power spectra of velocity autocorrelation functions were used as tools to obtain the vibrational spectra in both the gas phase and the crystalline phases of these protic ionic liquids. The hydrogen bond vibrational modes were identified in the 150-240 cm(-1) region of the far-infrared (far-IR) spectra. A blue shift in the far-IR mode was observed with an increasing number of hydrogen-bonding sites on the cation; the exact peak position is modulated by the cation-anion hydrogen bond strength. Sub-100 cm(-1) bands in the far-IR spectrum are assigned to the rattling motion of the anions. Calculated NMR chemical shifts of the acidic protons in the crystalline phase of these salts also exhibit the signature of cation-anion hydrogen bonding.
Morishita, Tetsuya
2009-05-21
We report a first-principles study of the structural, electronic, and dynamical properties of high-density amorphous (HDA) silicon, which was found to be formed by pressurizing low-density amorphous (LDA) silicon (a normal amorphous Si) [T. Morishita, Phys. Rev. Lett. 93, 055503 (2004); P. F. McMillan, M. Wilson, D. Daisenberger, and D. Machon, Nature Mater. 4, 680 (2005)]. Striking structural differences between HDA and LDA are revealed. The LDA structure holds a tetrahedral network, while the HDA structure contains a highly distorted tetrahedral network. The fifth neighboring atom in HDA tends to be located at an interstitial position of a distorted tetrahedron composed of the first four neighboring atoms. Consequently, the coordination number of HDA is calculated to be approximately 5 unlike that of LDA. The electronic density of state (EDOS) shows that HDA is metallic, which is consistent with a recent experimental measurement of the electronic resistance of HDA Si. We find from local EDOS that highly distorted tetrahedral configurations enhance the metallic nature of HDA. The vibrational density of state (VDOS) also reflects the structural differences between HDA and LDA. Some of the characteristic vibrational modes of LDA are dematerialized in HDA, indicating the degradation of covalent bonds. The overall profile of the VDOS for HDA is found to be an intermediate between that for LDA and liquid Si under pressure (high-density liquid Si).
Giri, Ashutosh; Hopkins, Patrick E.
2017-12-01
Fullerene condensed-matter solids can possess thermal conductivities below their minimum glassy limit while theorized to be stiffer than diamond when crystallized under pressure. These seemingly disparate extremes in thermal and mechanical properties raise questions into the pressure dependence on the thermal conductivity of C60 fullerite crystals, and how the spectral contributions to vibrational thermal conductivity changes under applied pressure. To answer these questions, we investigate the effect of strain on the thermal conductivity of C60 fullerite crystals via pressure-dependent molecular dynamics simulations under the Green-Kubo formalism. We show that the thermal conductivity increases rapidly with compressive strain, which demonstrates a power-law relationship similar to their stress-strain relationship for the C60 crystals. Calculations of the density of states for the crystals under compressive strains reveal that the librational modes characteristic in the unstrained case are diminished due to densification of the molecular crystal. Over a large compression range (0-20 GPa), the Leibfried-Schlömann equation is shown to adequately describe the pressure dependence of thermal conductivity, suggesting that low-frequency intermolecular vibrations dictate heat flow in the C60 crystals. A spectral decomposition of the thermal conductivity supports this hypothesis.
Energy Technology Data Exchange (ETDEWEB)
Inazaki, T [Public Works Research Institute, Tsukuba (Japan)
1997-05-27
With an objective to measure a behavior of the surface ground during a strong earthquake directly on the actual ground and make evaluation thereon, a proposal was made on an original location measuring and analyzing method using an S-wave vibrator and seismic cones. This system consists of an S-wave vibrator and a static cone penetrating machine, and different types of measuring cones. A large number of measuring cones are inserted initially in the object bed of the ground, and variation in the vibration generated by the vibrator is measured. This method can derive decrease in rigidity rate of the actual ground according to dynamic strain levels, or in other words, the dynamic nonlinearity. The strain levels can be controlled with a range from 10 {sup -5} to 10 {sup -3} by varying the distance from the S-wave vibrator. Furthermore, the decrease in the rigidity rate can be derived by measuring variations in the S-wave velocity by using the plank hammering method during the vibration. Field measurement is as easy as it can be completed in about half a day including preparatory works, and the data analysis is also simple. The method is superior in mobility and workability. 9 figs.
Rossi, Mariana; Liu, Hanchao; Paesani, Francesco; Bowman, Joel; Ceriotti, Michele
2014-11-14
Including quantum mechanical effects on the dynamics of nuclei in the condensed phase is challenging, because the complexity of exact methods grows exponentially with the number of quantum degrees of freedom. Efforts to circumvent these limitations can be traced down to two approaches: methods that treat a small subset of the degrees of freedom with rigorous quantum mechanics, considering the rest of the system as a static or classical environment, and methods that treat the whole system quantum mechanically, but using approximate dynamics. Here, we perform a systematic comparison between these two philosophies for the description of quantum effects in vibrational spectroscopy, taking the Embedded Local Monomer model and a mixed quantum-classical model as representatives of the first family of methods, and centroid molecular dynamics and thermostatted ring polymer molecular dynamics as examples of the latter. We use as benchmarks D2O doped with HOD and pure H2O at three distinct thermodynamic state points (ice Ih at 150 K, and the liquid at 300 K and 600 K), modeled with the simple q-TIP4P/F potential energy and dipole moment surfaces. With few exceptions the different techniques yield IR absorption frequencies that are consistent with one another within a few tens of cm(-1). Comparison with classical molecular dynamics demonstrates the importance of nuclear quantum effects up to the highest temperature, and a detailed discussion of the discrepancies between the various methods let us draw some (circumstantial) conclusions about the impact of the very different approximations that underlie them. Such cross validation between radically different approaches could indicate a way forward to further improve the state of the art in simulations of condensed-phase quantum dynamics.
Energy Technology Data Exchange (ETDEWEB)
Dimitrievska, Mirjana; White, James L.; Zhou, Wei; Stavila, Vitalie; Klebanoff, Leonard E.; Udovic, Terrence J.
2016-01-01
The structure-dependent vibrational properties of different Mg(BH4)2 polymorphs (..alpha.., ..beta.., ..gamma.., and ..delta.. phases) were investigated with a combination of neutron vibrational spectroscopy (NVS) measurements and density functional theory (DFT) calculations, with emphasis placed on the effects of the local structure and orientation of the BH4- anions. DFT simulations closely match the neutron vibrational spectra. The main bands in the low-energy region (20-80 meV) are associated with the BH4- librational modes. The features in the intermediate energy region (80-120 meV) are attributed to overtones and combination bands arising from the lower-energy modes. The features in the high-energy region (120-200 meV) correspond to the BH4- symmetric and asymmetric bending vibrations, of which four peaks located at 140, 142, 160, and 172 meV are especially intense. There are noticeable intensity distribution variations in the vibrational bands for different polymorphs. This is explained by the differences in the spatial distribution of BH4- anions within various structures. An example of the possible identification of products after the hydrogenation of MgB2, using NVS measurements, is presented. These results provide fundamental insights of benefit to researchers currently studying these promising hydrogen-storage materials.
García-Vela, A; Janda, K C
2006-01-21
Wave-packet simulations of the Ne-Br2(B,upsilon') vibrational predissociation dynamics in the range upsilon' = 16-29 are reported. The aim is to interpret recent time-dependent pump-probe experiments [Cabrera et al., J. Chem. Phys. 123, 054311 (2005)]. Good agreement is found between the calculated and the experimental lifetimes corresponding to decay of the Ne-Br2(B,upsilon') initial state and to appearance of Br2(B,upsilonBr2(B,upsilonBr2(B,upsilonBr2 distances greater than 15 angstroms. In the light of the results, a structure of the spectrum of continuum resonances is suggested and discussed.
Fayer, M D
2009-01-01
A wide variety of molecular systems undergo fast structural changes under thermal equilibrium conditions. Such transformations are involved in a vast array of chemical problems. Experimentally measuring equilibrium dynamics is a challenging problem that is at the forefront of chemical research. This review describes ultrafast 2D IR vibrational echo chemical exchange experiments and applies them to several types of molecular systems. The formation and dissociation of organic solute-solvent complexes are directly observed. The dissociation times of 13 complexes, ranging from 4 ps to 140 ps, are shown to obey a relationship that depends on the complex's formation enthalpy. The rate of rotational gauche-trans isomerization around a carbon-carbon single bond is determined for a substituted ethane at room temperature in a low viscosity solvent. The results are used to obtain an approximate isomerization rate for ethane. Finally, the time dependence of a well-defined single structural transformation of a protein is measured.
Fournier, Frédéric; Zheng, Wanquan; Carrez, Serge; Dubost, Henri; Bourguignon, Bernard
2004-09-01
Interaction of CO adsorbed on Pt(111) with electrons and phonons is studied experimentally by means of a pump-probe experiment where CO is probed by IR+visible sum frequency generation under a pump laser intensity that allows photodesorption. Vibrational spectra of CO internal stretch are obtained as a function of pump-probe delay. A two-temperature and anharmonic coupling model is used to extract from the spectra the real time variations of CO peak frequency and dephasing time. The main conclusions are the following: (i) The CO stretch is perturbed by two low-frequency modes, assigned to frustrated rotation and frustrated translation. (ii) The frustrated rotation is directly coupled to electrons photoexcited in Pt(111) by the pump laser. (iii) There is no evidence of Pt-CO stretch excitation in the spectra. The implications for the photodesorption dynamics are discussed.
Energy Technology Data Exchange (ETDEWEB)
Ahn, Chang Kee; Shim, Joo Sup [Shinwa Technology Information, Seoul (Korea)
2001-04-01
The objective of this study is to deduce the dynamic correlation between the fuel assembly and the reactor structure. Dynamic characteristics analyses for reactor structure related with vibration of HANARO fuel assembly have been performed For the dynamic characteristic analysis, the in-air models of the round and hexagonal flow tubes, 18-element and 36-element fuel assemblies, and reactor structure were developed. By calculating the hydrodynamic mass and distributing it on the in-air models, the in-water models of the flow tubes, the fuel assemblies, and the reactor structure were developed. Then, modal analyses for developed in-air and in-water models have been performed. Especially, two 18-element fuel assemblies and three 36-element fuel assemblies were included in the in-water reactor models. For the verification of the modal analysis results, the natural frequencies and the mode shapes of the fuel assembly were compared with those obtained from the experiment. Finally the analysis results of the reactor structure were compared with them performed by AECL Based on the reactor model without PCS piping, the in-water reactor model including the fuel assemblies was developed, and its modal analysis was performed. The analysis results demonstrate that there are no resonance between the fuel assembly and the reactor structures. 26 refs., 419 figs., 85 tabs. (Author)
Energy Technology Data Exchange (ETDEWEB)
Xie, Changjian [Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210093 (China); Zhu, Xiaolei; Yarkony, David R., E-mail: jianyi.m@gmail.com, E-mail: yarkony@jhu.edu, E-mail: dqxie@nju.edu.cn, E-mail: hguo@unm.edu [Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Ma, Jianyi, E-mail: jianyi.m@gmail.com, E-mail: yarkony@jhu.edu, E-mail: dqxie@nju.edu.cn, E-mail: hguo@unm.edu [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, Sichuan 610065 (China); Xie, Daiqian, E-mail: jianyi.m@gmail.com, E-mail: yarkony@jhu.edu, E-mail: dqxie@nju.edu.cn, E-mail: hguo@unm.edu [Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210093 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Guo, Hua, E-mail: jianyi.m@gmail.com, E-mail: yarkony@jhu.edu, E-mail: dqxie@nju.edu.cn, E-mail: hguo@unm.edu [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States)
2015-03-07
Non-adiabatic processes play an important role in photochemistry, but the mechanism for conversion of electronic energy to chemical energy is still poorly understood. To explore the possibility of vibrational control of non-adiabatic dynamics in a prototypical photoreaction, namely, the A-band photodissociation of NH{sub 3}(X{sup ~1}A{sub 1}), full-dimensional state-to-state quantum dynamics of symmetric or antisymmetric stretch excited NH{sub 3}(X{sup ~1}A{sub 1}) is investigated on recently developed coupled diabatic potential energy surfaces. The experimentally observed H atom kinetic energy distributions are reproduced. However, contrary to previous inferences, the NH{sub 2}(A{sup ~2}A{sub 1})/NH{sub 2}(X{sup ~2}B{sub 1}) branching ratio is found to be small regardless of the initial preparation of NH{sub 3}(X{sup ~1}A{sub 1}), while the internal state distribution of the preeminent fragment, NH{sub 2}(X{sup ~2}B{sub 1}), is found to depend strongly on the initial vibrational excitation of NH{sub 3}(X{sup ~1}A{sub 1}). The slow H atoms in photodissociation mediated by the antisymmetric stretch fundamental state are due to energy sequestered in the internally excited NH{sub 2}(X{sup ~2}B{sub 1}) fragment, rather than in NH{sub 2}(A{sup ~2}A{sub 1}) as previously proposed. The high internal excitation of the NH{sub 2}(X{sup ~2}B{sub 1}) fragment is attributed to the torques exerted on the molecule as it passes through the conical intersection seam to the ground electronic state of NH{sub 3}. Thus in this system, contrary to previous assertions, the control of electronic state branching by selective excitation of ground state vibrational modes is concluded to be ineffective. The juxtaposition of precise quantum mechanical results with complementary results based on quasi-classical surface hopping trajectories provides significant insights into the non-adiabatic process.
Czech Academy of Sciences Publication Activity Database
Uruba, Václav
2015-01-01
Roč. 55, May (2015), s. 372-383 ISSN 0889-9746 R&D Projects: GA ČR GAP101/10/1230 Institutional support: RVO:61388998 Keywords : airfoil * vibrations * boundary layer separation * oscillation pattern decomposition Subject RIV: BK - Fluid Dynamics Impact factor: 1.709, year: 2015
International Nuclear Information System (INIS)
Morini, F; Deleuze, M S; Watanabe, N; Takahashi, M
2015-01-01
The role of molecular vibrations has been theoretically investigated in the electronic ground state on the (e, 2e) valence orbital momentum profiles of furan by means of two complementary approaches. The first one relies upon the principles of Born-Oppenheimer Molecular Dynamics (BOMD), whereas the second one, referred as Harmonic Analytical Quantum Mechanical (HAQM) approach, includes on quantum-mechanical (paper)
Dynamics of vibration isolation system with rubber-cord-pneumatic spring with damping throttle
Burian, Yu A.; Silkov, M. V.
2017-06-01
The study refers to the important area of applied mechanics; it is the theory of vibration isolation of vibroactive facilities. The design and the issues of mathematical modeling of pneumatic spring perspective design made on the basis of rubber-cord shell with additional volume connected with its primary volume by means of throttle passageway are considered in the text. Damping at the overflow of air through the hole limits the amplitude of oscillation at resonance. But in contrast to conventional systems with viscous damping it does not increase transmission ratio at high frequencies. The mathematical model of suspension allowing selecting options to reduce the power transmission ratio on the foundation, especially in the high frequency range is obtained
Energy Technology Data Exchange (ETDEWEB)
Yamaguchi, H. [Saitama University, Saitama (Japan). Faculty of Engineering; Takano, H.; Ogasawara, M.; Shimosato, T. [Metropolitan Expressway Public Corp., Tokyo (Japan); Kato, M.; Okada, J. [NKK Corp., Tokyo (Japan)
1996-07-21
Field vibration test of the Tsurumi Tsubasa Bridge, a long span cable stayed bridge, has been conducted. Focusing on its dynamic characteristics, an identification method from test results and its validity were investigated. The natural frequency identified using mode circle and resonance curve from steady vibration test agreed with that identified by the peak method from free damping test. Accordingly, there was no difference due to identification methods, and both methods provided appropriate accuracy. The natural vibration mode obtained from the steady vibration test agreed with that obtained by the eigenvalue analysis. The dispersion of experimental values, which indicates the adaptation to mode circle method, became a scale indicating reliability of identified values. When the damping obtained by the half power method for the microtremors test is compared with that identified from the steady vibration test and free damping test, it is required to compare them at lower amplitude level region, considering that the amplitude level of microtremors test is very low. For the dynamic characteristics of the Tsurumi Tsubasa Bridge, it was found that it has lower natural frequency and higher modal damping compared with other cable stayed bridges with similar scale of span. 18 refs., 13 figs., 4 tabs.
Surface vibrational spectroscopy
International Nuclear Information System (INIS)
Erskine, J.L.
1984-01-01
A brief review of recent studies which combine measurements of surface vibrational energies with lattice dynamical calculations is presented. These results suggest that surface vibrational spectroscopy offers interesting prospects for use as a molecular-level probe of surface geometry, adsorbate bond distances and molecular orientations
Dynamic Error Analysis Method for Vibration Shape Reconstruction of Smart FBG Plate Structure
Directory of Open Access Journals (Sweden)
Hesheng Zhang
2016-01-01
Full Text Available Shape reconstruction of aerospace plate structure is an important issue for safe operation of aerospace vehicles. One way to achieve such reconstruction is by constructing smart fiber Bragg grating (FBG plate structure with discrete distributed FBG sensor arrays using reconstruction algorithms in which error analysis of reconstruction algorithm is a key link. Considering that traditional error analysis methods can only deal with static data, a new dynamic data error analysis method are proposed based on LMS algorithm for shape reconstruction of smart FBG plate structure. Firstly, smart FBG structure and orthogonal curved network based reconstruction method is introduced. Then, a dynamic error analysis model is proposed for dynamic reconstruction error analysis. Thirdly, the parameter identification is done for the proposed dynamic error analysis model based on least mean square (LMS algorithm. Finally, an experimental verification platform is constructed and experimental dynamic reconstruction analysis is done. Experimental results show that the dynamic characteristics of the reconstruction performance for plate structure can be obtained accurately based on the proposed dynamic error analysis method. The proposed method can also be used for other data acquisition systems and data processing systems as a general error analysis method.
Directory of Open Access Journals (Sweden)
Yufei Liu
2015-01-01
Full Text Available This paper investigates the dynamic of a flexible robotic manipulator (FRM which consists of rigid driving base, flexible links, and flexible joints. With considering the motion fluctuations caused by the coupling effect, such as the motor parameters and mechanism inertias, as harmonic disturbances, the system investigated in this paper remains a parametrically excited system. An elastic restraint model of the FRM with elastic joints (FRMEJ is proposed, which considers the elastic properties of the connecting joints between the flexible arm and the driving base, as well as the harmonic disturbances aroused by the electromechanical coupling effect. As a consequence, the FRMEJ accordingly remains a flexible multibody system which conveys the effects of rigid-flexible couple and electromechanical couple. The Lagrangian function and Hamilton’s principle are used to establish the dynamic model of the FRMEJ. Based on the dynamic model proposed, the vibration power flow is introduced to show the vibration energy distribution. Numerical simulations are conducted to investigate the effect of the joint elasticities and the disturbance excitations, and the influences of the structure parameters and motion parameters on the vibration power flow are studied. The results obtained in this paper contribute to the structure design, motion optimization, and vibration control of FRMs.
International Nuclear Information System (INIS)
Zhang, Xiaofei; Ye, Xuan; Li, Xide
2016-01-01
In this paper, we present a cantilever-probe system excited by a piezoelectric actuator, and use it to measure the dynamic mechanical properties of a micro- and nanoscale fiber. Coupling the fiber to the free end of the cantilever probe, we found the dynamic stiffness and damping coefficient of the fiber from the resonance frequency and the quality factor of the fiber-cantilever-probe system. The properties of Bacillus subtilis fibers measured using our proposed system agreed with tensile measurements, validating our method. Our measurements show that the piezoelectric actuator coupled to cantilever probe can be made equivalent to a clamped cantilever with an effective length, and calculated results show that the errors of measured natural frequency of the system can be ignored if the coupled fiber has an inclination angle of alignment of less than 10°. A sensitivity analysis indicates that the first or second resonant mode is the sensitive mode to test the sample’s dynamic stiffness, while the damping property has different sensitivities for the first four modes. Our theoretical analysis demonstrates that the double-cantilever probe is also an effective sensitive structure that can be used to perform dynamic loading and characterize dynamic response. Our method has the advantage of using amplitude-frequency curves to obtain the dynamic mechanical properties without directly measuring displacements and forces as in tensile tests, and it also avoids the effects of the complex surface structure and deformation presenting in contact resonance method. Our method is effective for measuring the dynamic mechanical properties of fiber-like one-dimensional (1D) materials. (paper)
Zhang, Xiaofei; Ye, Xuan; Li, Xide
2016-08-01
In this paper, we present a cantilever-probe system excited by a piezoelectric actuator, and use it to measure the dynamic mechanical properties of a micro- and nanoscale fiber. Coupling the fiber to the free end of the cantilever probe, we found the dynamic stiffness and damping coefficient of the fiber from the resonance frequency and the quality factor of the fiber-cantilever-probe system. The properties of Bacillus subtilis fibers measured using our proposed system agreed with tensile measurements, validating our method. Our measurements show that the piezoelectric actuator coupled to cantilever probe can be made equivalent to a clamped cantilever with an effective length, and calculated results show that the errors of measured natural frequency of the system can be ignored if the coupled fiber has an inclination angle of alignment of less than 10°. A sensitivity analysis indicates that the first or second resonant mode is the sensitive mode to test the sample’s dynamic stiffness, while the damping property has different sensitivities for the first four modes. Our theoretical analysis demonstrates that the double-cantilever probe is also an effective sensitive structure that can be used to perform dynamic loading and characterize dynamic response. Our method has the advantage of using amplitude-frequency curves to obtain the dynamic mechanical properties without directly measuring displacements and forces as in tensile tests, and it also avoids the effects of the complex surface structure and deformation presenting in contact resonance method. Our method is effective for measuring the dynamic mechanical properties of fiber-like one-dimensional (1D) materials.
Energy Technology Data Exchange (ETDEWEB)
Scherrer, Arne [Martin-Luther-Universität Halle-Wittenberg, Institut für Chemie, von-Danckelmann-Platz 4, 06120 Halle (Germany); Département de Chimie, École Normale supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, PASTEUR, 24 rue Lhomond, 75005 Paris (France); Sorbonne Universités, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, 75005 Paris (France); Vuilleumier, Rodolphe, E-mail: rodolphe.vuilleumier@ens.fr [Département de Chimie, École Normale supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, PASTEUR, 24 rue Lhomond, 75005 Paris (France); Sorbonne Universités, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, 75005 Paris (France); Sebastiani, Daniel, E-mail: daniel.sebastiani@chemie.uni-halle.de [Martin-Luther-Universität Halle-Wittenberg, Institut für Chemie, von-Danckelmann-Platz 4, 06120 Halle (Germany)
2016-08-28
We report the first fully ab initio calculation of dynamical vibrational circular dichroism spectra in the liquid phase using nuclear velocity perturbation theory (NVPT) derived electronic currents. Our approach is rigorous and general and thus capable of treating weak interactions of chiral molecules as, e.g., chirality transfer from a chiral molecule to an achiral solvent. We use an implementation of the NVPT that is projected along the dynamics to obtain the current and magnetic dipole moments required for accurate intensities. The gauge problem in the liquid phase is resolved in a twofold approach. The electronic expectation values are evaluated in a distributed origin gauge, employing maximally localized Wannier orbitals. In a second step, the gauge invariant spectrum is obtained in terms of a scaled molecular moments, which allows to systematically include solvent effects while keeping a significant signal-to-noise ratio. We give a thorough analysis and discussion of this choice of gauge for the liquid phase. At low temperatures, we recover the established double harmonic approximation. The methodology is applied to chiral molecules ((S)-d{sub 2}-oxirane and (R)-propylene-oxide) in the gas phase and in solution. We find an excellent agreement with the theoretical and experimental references, including the emergence of signals due to chirality transfer from the solute to the (achiral) solvent.
The nonlinear dynamics of a spacecraft coupled to the vibration of a contained fluid
Peterson, Lee D.; Crawley, Edward F.; Hansman, R. John
1988-01-01
The dynamics of a linear spacecraft mode coupled to a nonlinear low gravity slosh of a fluid in a cylindrical tank is investigated. Coupled, nonlinear equations of motion for the fluid-spacecraft dynamics are derived through an assumed mode Lagrangian method. Unlike linear fluid slosh models, this nonlinear slosh model retains two fundamental slosh modes and three secondary modes. An approximate perturbation solution of the equations of motion indicates that the nonlinear coupled system response involves fluid-spacecraft modal resonances not predicted by either a linear, or a nonlinear, uncoupled slosh analysis. Experimental results substantiate the analytical predictions.
A Nonlinear Dynamic Model and Free Vibration Analysis of Deployable Mesh Reflectors
Shi, H.; Yang, B.; Thomson, M.; Fang, H.
2011-01-01
This paper presents a dynamic model of deployable mesh reflectors, in which geometric and material nonlinearities of such a space structure are fully described. Then, by linearization around an equilibrium configuration of the reflector structure, a linearized model is obtained. With this linearized model, the natural frequencies and mode shapes of a reflector can be computed. The nonlinear dynamic model of deployable mesh reflectors is verified by using commercial finite element software in numerical simulation. As shall be seen, the proposed nonlinear model is useful for shape (surface) control of deployable mesh reflectors under thermal loads.
Spiekermann, Georg; Steele-MacInnis, Matthew; Schmidt, Christian; Jahn, Sandro
2012-04-21
Vibrational spectroscopy techniques are commonly used to probe the atomic-scale structure of silica species in aqueous solution and hydrous silica glasses. However, unequivocal assignment of individual spectroscopic features to specific vibrational modes is challenging. In this contribution, we establish a connection between experimentally observed vibrational bands and ab initio molecular dynamics (MD) of silica species in solution and in hydrous silica glass. Using the mode-projection approach, we decompose the vibrations of silica species into subspectra resulting from several fundamental structural subunits: The SiO(4) tetrahedron of symmetry T(d), the bridging oxygen (BO) Si-O-Si of symmetry C(2v), the geminal oxygen O-Si-O of symmetry C(2v), the individual Si-OH stretching, and the specific ethane-like symmetric stretching contribution of the H(6)Si(2)O(7) dimer. This allows us to study relevant vibrations of these subunits in any degree of polymerization, from the Q(0) monomer up to the fully polymerized Q(4) tetrahedra. Demonstrating the potential of this approach for supplementing the interpretation of experimental spectra, we compare the calculated frequencies to those extracted from experimental Raman spectra of hydrous silica glasses and silica species in aqueous solution. We discuss observed features such as the double-peaked contribution of the Q(2) tetrahedral symmetric stretch, the individual Si-OH stretching vibrations, the origin of the experimentally observed band at 970 cm(-1) and the ethane-like vibrational contribution of the H(6)Si(2)O(7) dimer at 870 cm(-1).
Tubino, Federica
2018-03-01
The effect of human-structure interaction in the vertical direction for footbridges is studied based on a probabilistic approach. The bridge is modeled as a continuous dynamic system, while pedestrians are schematized as moving single-degree-of-freedom systems with random dynamic properties. The non-dimensional form of the equations of motion allows us to obtain results that can be applied in a very wide set of cases. An extensive Monte Carlo simulation campaign is performed, varying the main non-dimensional parameters identified, and the mean values and coefficients of variation of the damping ratio and of the non-dimensional natural frequency of the coupled system are reported. The results obtained can be interpreted from two different points of view. If the characterization of pedestrians' equivalent dynamic parameters is assumed as uncertain, as revealed from a current literature review, then the paper provides a range of possible variations of the coupled system damping ratio and natural frequency as a function of pedestrians' parameters. Assuming that a reliable characterization of pedestrians' dynamic parameters is available (which is not the case at present, but could be in the future), the results presented can be adopted to estimate the damping ratio and natural frequency of the coupled footbridge-pedestrian system for a very wide range of real structures.
Directory of Open Access Journals (Sweden)
Sergiu Bejan
2016-12-01
Full Text Available The natural soil used in filling the embankment of the road communications is characterized by the following factors: humidity, porosity, toughness. For certain factor values that describe the soil state is distinguished a certain soil behavior under the influence of the external forces applied through static or dynamic mechanical means.
Vertical vibration dynamics of acoustically levitated drop containing two immiscible liquids
Zang, Duyang; Zhai, Zhicong; Li, Lin; Lin, Kejun; Li, Xiaoguang; Geng, Xingguo
2016-09-01
We have studied the levitation and oscillation dynamics of complex drops containing two immiscible liquids. Two types of drops, core-shell drop and abnormal-shaped drop, have been obtained depending on the levitation procedures. The oscillation dynamics of the drops have been studied using a high speed camera. It has been found that the oscillation of the abnormal-shaped drop has a longer oscillation period and decays much faster than that of the core-shell drop, which cannot be accounted for by the air resistance itself. The acoustic streaming induced by ultrasound may bring an additional force against the motion of the drop due to the Bernoulli effect. This is responsible for the enhanced damping during the oscillation in acoustic levitation.
1985-06-01
purposes. 55 15 525 + 2 225L L53 + L3 ) + 2G3(L 2 + L35L4 + L45)" For the present system identification + 2G(L45 2 + L45L5 + L5 "L 1 technique, the...orbital model is comprised of 257 nodes and 819 dynamic:"DOF’s. k; were compared to ITD results for a wide variety of TD input parameters. Overall, the
Lee, Hyoseong; Rhee, Huinam; Oh, Jae Hong; Park, Jin Ho
2016-01-01
This paper deals with an improved methodology to measure three-dimensional dynamic displacements of a structure by digital close-range photogrammetry. A series of stereo images of a vibrating structure installed with targets are taken at specified intervals by using two daily-use cameras. A new methodology is proposed to accurately trace the spatial displacement of each target in three-dimensional space. This method combines the correlation and the least-square image matching so that the sub-pixel targeting can be obtained to increase the measurement accuracy. Collinearity and space resection theory are used to determine the interior and exterior orientation parameters. To verify the proposed method, experiments have been performed to measure displacements of a cantilevered beam excited by an electrodynamic shaker, which is vibrating in a complex configuration with mixed bending and torsional motions simultaneously with multiple frequencies. The results by the present method showed good agreement with the measurement by two laser displacement sensors. The proposed methodology only requires inexpensive daily-use cameras, and can remotely detect the dynamic displacement of a structure vibrating in a complex three-dimensional defection shape up to sub-pixel accuracy. It has abundant potential applications to various fields, e.g., remote vibration monitoring of an inaccessible or dangerous facility. PMID:26978366
Takayanagi, Toshiyuki; Suzuki, Kento; Yoshida, Takahiko; Kita, Yukiumi; Tachikawa, Masanori
2017-05-01
We present computational results of vibrationally enhanced positron annihilation in the e+ + HCN/DCN collisions within a local complex potential model. Vibrationally elastic and inelastic cross sections and effective annihilation rates were calculated by solving a time-dependent complex-potential Schrödinger equation under the ab initio potential energy surface for the positron attached HCN molecule, [HCN; e+], with multi-component configuration interaction level (Kita and Tachikawa, 2014). We discuss the effect of vibrational excitation on the positron affinities from the obtained vibrational resonance features.
Li, Xintao; Zhang, Weiwei; Gao, Chuanqiang
2018-03-01
Wake-induced vibration (WIV) contains rich and complex phenomena due to the flow interference between cylinders. The aim of the present study is to gain physical insight into the intrinsic dynamics of WIV via linear stability analysis (LSA) of the fluid-structure interaction (FSI) system. A reduced-order-model-based linear dynamic model, combined with the direct computational fluid dynamics/computational structural dynamics simulation method, is adopted to investigate WIV in two identical tandem cylinders at low Re. The spacing ratio L/D, with L as the center-to-center distance and D as the diameter of cylinders, is selected as 2.0 to consider the effect of proximity flow interference. Results show that extensive WIV along with the vortex shedding could occur at subcritical Re conditions due to the instability of one coupled mode (i.e., coupled mode I, CM-I) of the FSI system. The eigenfrequency of CM-I transfers smoothly from close to the reduced natural frequency of structure to the eigenfrequency of uncoupled wake mode as the reduced velocity U* increases. Thus, CM-I characterizes as the structure mode (SM) at low U*, while it characterizes as the wake mode (WM) at large U*. Mode conversion of CM-I is the primary cause of the "frequency transition" phenomenon observed in WIV responses. Furthermore, LSA indicates that there exists a critical mass ratio mcr*, below which no upper instability boundary of CM-I exists (Uup p e r *→∞ ). The unbounded instability of CM-I ultimately leads to the "infinite WIV" phenomenon. The neutral stability boundaries for WIV in the (Re, U*) plane are determined through LSA. It is shown that the lowest Re possible for WIV regarding the present configuration is R el o w e s t≈34 . LSA accurately captures the dynamics of WIV at subcritical Re and reveals that it is essentially a fluid-elastic instability problem. This work lays a good foundation for the investigation of WIV at supercritical high Re and gives enlightenment to the
Directory of Open Access Journals (Sweden)
Zhu Dapeng
2015-01-01
Full Text Available Presently, foundation pit support structures are generally regarded as the temporary structures and the impact of vibration loads is often overlooked. As opposed to static and seismic loads, the vibration loads of subway trains are a type of cyclic load with a relatively long duration of action and a definite cycle; it is of great importance for the design of foundation pit support structures to correctly evaluate the impact of subway train vibrations on deep foundation pit and support works. In this paper, a dynamic three-dimensional numerical model is built that considers the vibration load of subway trains on the basis of the static numerical model for deep foundation pit support structures and simplified train loads to study the impact of train vibrations on deep foundation pit and permanent support structures. Studies have shown that the dynamic response of surface displacement mainly occurs in the early period of dynamic load, the vibration load of subway trains has little impact on ground subsidence, the support pile structure is in an elastic state during dynamic response under the action of subway train vibrations, and the action of train vibration loads is inimical to the safety of foundation pit support structures and should be closely studied.
The Shock and Vibration Bulletin. Part 3. Analytical Methods, Dynamic Analysis, Vehicle Systems
1981-05-01
1 Strnge Spcingramtr Fig 3% aito fma qaedslcmn ihsrne pcn 654 12 100 0 0 0 4 0 s 0 2 Distance along peal edge in - - Fig. 4 - Variation of...7 ~ ! v’j 4 pq -1 iijiL - -bp(C) I bpp ’ (24) L V* ki k2K 2 + (1 (ZT~~ - !I + !- 2) Y(IJ) and the value of bpp ’ can be tabulated as in 101 L .’blel1I...mI Table It. Values of bpp in Equation (24) The assembling of equations for a gun dynamics problem is more involved. The basic r1 procedures
Momentum distribution, vibrational dynamics, and the potential of mean force in ice
Lin, Lin; Morrone, Joseph A.; Car, Roberto; Parrinello, Michele
2011-06-01
By analyzing the momentum distribution obtained from path integral and phonon calculations we find that the protons in hexagonal ice experience an anisotropic quasiharmonic effective potential with three distinct principal frequencies that reflect molecular orientation. Due to the importance of anisotropy, anharmonic features of the environment cannot be extracted from existing experimental distributions that involve the spherical average. The full directional distribution is required, and we give a theoretical prediction for this quantity that could be verified in future experiments. Within the quasiharmonic context, anharmonicity in the ground-state dynamics of the proton is substantial and has quantal origin, a finding that impacts the interpretation of several spectroscopies.
The Generalized Coherent State ansatz: Application to quantum electron-vibrational dynamics
Energy Technology Data Exchange (ETDEWEB)
Borrelli, Raffaele, E-mail: raffaele.borrelli@unito.it [DISAFA, Università di Torino, I-10095 Grugliasco (Italy); Gelin, Maxim F. [Departement of Chemistry, Technische Universität München, D-85747 Garching (Germany)
2016-12-20
A new ansatz for molecular vibronic wave functions based on a superposition of time-dependent Generalized Coherent States is developed and analysed. The methodology is specifically tailored to describe the time evolution of the wave function of a system in which several interacting electronic states are coupled to a bath of harmonic oscillators. The equations of motion for the wave packet parameters are obtained by using the Dirac–Frenkel time-dependent variational principle. The methodology is used to describe the quantum dynamical behavior of a model polaron system and its scaling and convergence properties are discussed and compared with numerically exact results.
El-Hafidi, Ali; Birame Gning, Papa; Piezel, Benoit; Fontaine, Stéphane
2017-10-01
Experimental and numerical methods to identify the linear viscoelastic properties of flax fibre reinforced epoxy (FFRE) composite are presented in this study. The method relies on the evolution of storage modulus and loss factor as observed through the frequency response. Free-free symmetrically guided beams were excited on the dynamic range of 10 Hz to 4 kHz with a swept sine excitation focused around their first modes. A fractional derivative Zener model has been identified to predict the complex moduli. A modified ply constitutive law has been then implemented in a classical laminates theory calculation (CLT) routine.
1977-09-01
FUNDAMENTAL FREQUENCIES OF ORTHOTROPIC PLATES WITH VARIOUS PLANFORMS AND EDGE CONDITIONS C.W. Bert, The University of Oklahoma, Norman , OK DYNAMIC RESPONSE OF...OF AN ADAPTIVE FILTER AS A DIGITAL TRACKING FILTER D.O. Smallwood and D.L. Gregory, Sandia Laboratories, Albuquerque, NM TOTAL MISSION ENVIRONMENTAL...Engineering, July 1962 . , 6. John D. Favour, MaClom C. Mitchell and 18. S.R. Ibrahim and E.C. Mikulcik, "A Time Norman L. Olson, "Transient Test Tech
Energy Technology Data Exchange (ETDEWEB)
Choi, Myung Soo; Yang, Kyong Uk [Chonnam National University, Yeosu (Korea, Republic of); Kondou, Takahiro [Kyushu University, Fukuoka (Japan); Bonkobara, Yasuhiro [University of Miyazaki, Miyazaki (Japan)
2016-03-15
We developed a method for analyzing the free vibration of a structure regarded as a distributed system, by combining the Wittrick-Williams algorithm and the transfer dynamic stiffness coefficient method. A computational algorithm was formulated for analyzing the free vibration of a straight-line beam regarded as a distributed system, to explain the concept of the developed method. To verify the effectiveness of the developed method, the natural frequencies of straight-line beams were computed using the finite element method, transfer matrix method, transfer dynamic stiffness coefficient method, the exact solution, and the developed method. By comparing the computational results of the developed method with those of the other methods, we confirmed that the developed method exhibited superior performance over the other methods in terms of computational accuracy, cost and user convenience.
International Nuclear Information System (INIS)
Kim, Du Gi
2005-08-01
This book introduces summary of structural dynamics, the reason of learning of structural dynamics, single-degree of freedom system, simple harmonic vibration and application, numerical analysis method, such as time domain and frequency domain and nonlinear system, multi-degree of freedom system random vibration over discrete distribution, continuous distribution and extreme value distribution, circumstance vibration, earth quake vibration, including input earthquake, and earthquake-resistant design and capacity spectrum method, wind oscillation wave vibration, vibration control and maintenance control.
International Nuclear Information System (INIS)
Fokin, B.S.; Gol'dberg, E.N.
1979-01-01
Analytical results of statistical nature of forces exciting vibrations of tubular elements, which are flown around with two-phase flows, are given. Relationships for the calculation of a mean-square amplitude and vibration frequency of a tubular element flown around with a two-phase mixture have been obtained. The relationships are confirmed experimentally
Energy Technology Data Exchange (ETDEWEB)
Deininger, Klaus [KTW Umweltschutztechnik GmbH, Mellingen (Germany)
2013-06-01
The author of the contribution under consideration reports on dynamic vibration measurements at the foundations of wind power plants. Typical damages at these foundations as well as various options of sealing are described. The author recommends the installation of condition monitoring systems which punctually display critical states of wind power plants using the global positioning system or direct involvement in the entire data of the wind power plant.
Peter W. Tse; Dong Wang
2017-01-01
Bearings are widely used in various industries to support rotating shafts. Their failures accelerate failures of other adjacent components and may cause unexpected machine breakdowns. In recent years, nonlinear vibration responses collected from a dynamic rotor-bearing system have been widely analyzed for bearing diagnostics. Numerous methods have been proposed to identify different bearing faults. However, these methods are unable to predict the future health conditions of bearings. To exten...
Analysis of dynamic enhancement of natural convection cooling by a discrete vibrating plate
Energy Technology Data Exchange (ETDEWEB)
Florio, L.A.; Harnoy, A. [New Jersey Institute of Technology, Department of Mechanical Engineering, Newark, NJ (United States)
2006-12-15
A dynamic means of locally enhancing laminar natural convection cooling in a vertical channel through the localized application of fluid oscillations is numerically investigated. The two-dimensional system considered for these purposes is a vertical channel with a small transversely oscillating plate placed near a constant heat flux channel wall. The flow and heat transfer in the system resulting from the combined effects of the natural convection and the oscillating plate were determined. The results indicate that for displacement amplitudes of at least one-third of the mean spacing and with dimensionless frequencies (Re/{radical}(Gr)) of at least 2{pi}, the local heat transfer coefficient can be enhanced by as much as 41%. (orig.)
Directory of Open Access Journals (Sweden)
Suxian Cai
2013-01-01
detected with the fixed threshold in the time domain. To perform a better classification over the data set of 89 VAG signals, we applied a novel classifier fusion system based on the dynamic weighted fusion (DWF method to ameliorate the classification performance. For comparison, a single leastsquares support vector machine (LS-SVM and the Bagging ensemble were used for the classification task as well. The results in terms of overall accuracy in percentage and area under the receiver operating characteristic curve obtained with the DWF-based classifier fusion method reached 88.76% and 0.9515, respectively, which demonstrated the effectiveness and superiority of the DWF method with two distinct features for the VAG signal analysis.
Wang, Guangqing; Liao, Wei-Hsin; Yang, Binqiang; Wang, Xuebao; Xu, Wentan; Li, Xiuling
2018-05-01
Bistable piezoelectric energy harvesters are being increasingly seen as an alternative to batteries in low-power devices. However, their energy harvesting characteristics are limited. To enhance these, we use a configuration including an elastic magnifier to amplify base excitation and provide sufficient kinetic energy to overcome potential well barriers, thus leading to large-amplitude bistable motion. We derive the distributed parameter mathematical model of this configuration by using Hamilton's principle. We then investigate the nonlinear dynamic behaviors and energetic characteristics and analyze the bifurcation for the equilibrium solution of the model. The simulations and experiments show high electromechanical responses and energy generation characteristics of the proposed system over a broad frequency band. The results suggest that, compared with a typical bistable piezoelectric energy harvester, the proposed energy harvester system with an elastic magnifier can provide higher output over a broader frequency band at lower excitation levels by adjusting the system's mass and stiffness ratios.
Simon, Aude; Rapacioli, Mathias; Mascetti, Joëlle; Spiegelman, Fernand
2012-05-21
This paper reports structures, energetics, dynamics and spectroscopy of H2O and (H2O)2 systems adsorbed on coronene (C24H12), a compact polycyclic aromatic hydrocarbon (PAH). On-the-fly Born-Oppenheimer molecular dynamics simulations are performed for temperatures T varying from 10 to 300 K, on a potential energy surface obtained within the self-consistent-charge density-functional based tight-binding (SCC-DFTB) approach. Anharmonic infrared (IR) spectra are extracted from these simulations. We first benchmark the SCC-DFTB semi-empirical hamiltonian vs. DFT (Density Functional Theory) calculations that include dispersion, on (C6H6)(H2O)1,2 small complexes. We find that charge corrections and inclusion of dispersion contributions in DFTB are necessary to obtain consistent structures, energetics and IR spectra. Using this Hamiltonian, the structures, energetics and IR features of the low-energy isomers of (C24H12)(H2O)1,2 are found to be similar to the DFT ones, with evidence for a stabilizing edge-coordination. The temperature dependence of the motions of H2O and (H2O)2 on the surface of C24H12 is analysed, revealing ultra-fast periodic motion. The water dimer starts diffusing at a higher temperature than the water monomer (150 K vs. 10 K respectively), which appears to be consistent with the binding energies. Qualitative and quantitative analyses of the effects of T on the IR spectra are performed. Anharmonic factors in particular are derived and it is shown that they can be used as signatures for the presence of PAH-water complexes. Finally, this paper lays the foundations for the studies of larger (PAH)m(H2O)n clusters, that can be treated with the efficient computational approach benchmarked in this paper.
Trachsel, Maria A.; Lobsiger, Simon; Schär, Tobias; Blancafort, Lluís; Leutwyler, Samuel
2017-06-01
We measure the S0 → S1 spectrum and time-resolved S1 state nonradiative dynamics of the "clamped" cytosine derivative 5,6-trimethylenecytosine (TMCyt) in a supersonic jet, using two-color resonant two-photon ionization (R2PI), UV/UV holeburning, and ns time-resolved pump/delayed ionization. The experiments are complemented with spin-component scaled second-order approximate coupled cluster (SCS-CC2), time-dependent density functional theory, and multi-state second-order perturbation-theory (MS-CASPT2) ab initio calculations. While the R2PI spectrum of cytosine breaks off ˜500 cm-1 above its 000 band, that of TMCyt extends up to +4400 cm-1 higher, with over a hundred resolved vibronic bands. Thus, clamping the cytosine C5-C6 bond allows us to explore the S1 state vibrations and S0 → S1 geometry changes in detail. The TMCyt S1 state out-of-plane vibrations ν1', ν3', and ν5' lie below 420 cm-1, and the in-plane ν11', ν12', and ν23' vibrational fundamentals appear at 450, 470, and 944 cm-1. S0 → S1 vibronic simulations based on SCS-CC2 calculations agree well with experiment if the calculated ν1', ν3', and ν5' frequencies are reduced by a factor of 2-3. MS-CASPT2 calculations predict that the ethylene-type S1 ⇝ S0 conical intersection (CI) increases from +366 cm-1 in cytosine to >6000 cm-1 in TMCyt, explaining the long lifetime and extended S0 → S1 spectrum. The lowest-energy S1 ⇝ S0 CI of TMCyt is the "amino out-of-plane" (OPX) intersection, calculated at +4190 cm-1. The experimental S1 ⇝ S0 internal conversion rate constant at the S1(v'=0 ) level is kI C=0.98 -2.2 ṡ1 08 s-1, which is ˜10 times smaller than in 1-methylcytosine and cytosine. The S1(v'=0 ) level relaxes into the T1(3π π *) state by intersystem crossing with kI S C=0.41 -1.6 ṡ1 08 s-1. The T1 state energy is measured to lie 24 580 ±560 cm-1 above the S0 state. The S1(v'=0 ) lifetime is τ =2.9 ns, resulting in an estimated fluorescence quantum yield of Φf l=24 %. Intense
Energy Technology Data Exchange (ETDEWEB)
Ravi Kumar, Venkatraman; Umapathy, Siva, E-mail: umapathy@ipc.iisc.ernet.in, E-mail: chandra@bii.a-star.edu.sg [Inorganic and Physical Chemistry Department, Indian Institute of Science, Bangalore 560012 (India); Verma, Chandra, E-mail: umapathy@ipc.iisc.ernet.in, E-mail: chandra@bii.a-star.edu.sg [Bioinformatics Institute - A*STAR, 30 Biopolis Street, # 07-01 Matrix, Singapore 138671 (Singapore); School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore); Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543 (Singapore)
2016-02-14
Solvent plays a key role in diverse physico-chemical and biological processes. Therefore, understanding solute-solvent interactions at the molecular level of detail is of utmost importance. A comprehensive solvatochromic analysis of benzophenone (Bzp) was carried out in various solvents using Raman and electronic spectroscopy, in conjunction with Density Functional Theory (DFT) calculations of supramolecular solute-solvent clusters generated using classical Molecular Dynamics Simulations (c-MDSs). The >C=O stretching frequency undergoes a bathochromic shift with solvent polarity. Interestingly, in protic solvents this peak appears as a doublet: c-MDS and ad hoc explicit solvent ab initio calculations suggest that the lower and higher frequency peaks are associated with the hydrogen bonded and dangling carbonyl group of Bzp, respectively. Additionally, the dangling carbonyl in methanol (MeOH) solvent is 4 cm{sup −1} blue-shifted relative to acetonitrile solvent, despite their similar dipolarity/polarizability. This suggests that the cybotactic region of the dangling carbonyl group in MeOH is very different from its bulk solvent structure. Therefore, we propose that this blue-shift of the dangling carbonyl originates in the hydrophobic solvation shell around it resulting from extended hydrogen bonding network of the protic solvents. Furthermore, the 1{sup 1}nπ{sup ∗} (band I) and 1{sup 1}ππ{sup ∗} (band II) electronic transitions show a hypsochromic and bathochromic shift, respectively. In particular, these shifts in protic solvents are due to differences in their excited state-hydrogen bonding mechanisms. Additionally, a linear relationship is obtained for band I and the >C=O stretching frequency (cm{sup −1}), which suggests that the different excitation wavelengths in band I correspond to different solvation states. Therefore, we hypothesize that the variation in excitation wavelengths in band I could arise from different solvation states leading to
Exploring of PST-TBPM in Monitoring Dynamic Deformation of Steel Structure in Vibration
Chen, Mingzhi; Zhao, Yongqian; Hai, Hua; Yu, Chengxin; Zhang, Guojian
2018-01-01
In order to monitor the dynamic deformation of steel structure in the real-time, digital photography is used in this paper. Firstly, the grid method is used correct the distortion of digital camera. Then the digital cameras are used to capture the initial and experimental images of steel structure to obtain its relative deformation. PST-TBPM (photographing scale transformation-time baseline parallax method) is used to eliminate the parallax error and convert the pixel change value of deformation points into the actual displacement value. In order to visualize the deformation trend of steel structure, the deformation curves are drawn based on the deformation value of deformation points. Results show that the average absolute accuracy and relative accuracy of PST-TBPM are 0.28mm and 1.1‰, respectively. Digital photography used in this study can meet accuracy requirements of steel structure deformation monitoring. It also can warn the safety of steel structure and provide data support for managers’ safety decisions based on the deformation curves on site.
A spectral dynamic stiffness method for free vibration analysis of plane elastodynamic problems
Liu, X.; Banerjee, J. R.
2017-03-01
A highly efficient and accurate analytical spectral dynamic stiffness (SDS) method for modal analysis of plane elastodynamic problems based on both plane stress and plane strain assumptions is presented in this paper. First, the general solution satisfying the governing differential equation exactly is derived by applying two types of one-dimensional modified Fourier series. Then the SDS matrix for an element is formulated symbolically using the general solution. The SDS matrices are assembled directly in a similar way to that of the finite element method, demonstrating the method's capability to model complex structures. Any arbitrary boundary conditions are represented accurately in the form of the modified Fourier series. The Wittrick-Williams algorithm is then used as the solution technique where the mode count problem (J0) of a fully-clamped element is resolved. The proposed method gives highly accurate solutions with remarkable computational efficiency, covering low, medium and high frequency ranges. The method is applied to both plane stress and plane strain problems with simple as well as complex geometries. All results from the theory in this paper are accurate up to the last figures quoted to serve as benchmarks.
Chouvion, B.; McWilliam, S.; Popov, A. A.
2018-06-01
This paper investigates the dynamic behaviour of capacitive ring-based Coriolis Vibrating Gyroscopes (CVGs) under severe shock conditions. A general analytical model is developed for a multi-supported ring resonator by describing the in-plane ring response as a finite sum of modes of a perfect ring and the electrostatic force as a Taylor series expansion. It is shown that the supports can induce mode coupling and that mode coupling occurs when the shock is severe and the electrostatic forces are nonlinear. The influence of electrostatic nonlinearity is investigated by numerically simulating the governing equations of motion. For the severe shock cases investigated, when the electrode gap reduces by ∼ 60 % , it is found that three ring modes of vibration (1 θ, 2 θ and 3 θ) and a 9th order force expansion are needed to obtain converged results for the global shock behaviour. Numerical results when the 2 θ mode is driven at resonance indicate that electrostatic nonlinearity introduces mode coupling which has potential to reduce sensor performance under operating conditions. Under some circumstances it is also found that severe shocks can cause the vibrating response to jump to another stable state with much lower vibration amplitude. This behaviour is mainly a function of shock amplitude and rigid-body motion damping.
Velarde, Luis; Wang, Hong-fei
2013-08-01
While in principle the frequency-domain and time-domain spectroscopic measurements should generate identical information for a given molecular system, the inhomogeneous character of surface vibrations in sum-frequency generation vibrational spectroscopy (SFG-VS) studies has only been studied with time-domain SFG-VS by mapping the decay of the vibrational polarization using ultrafast lasers, this due to the lack of SFG vibrational spectra with high enough spectral resolution and accurate enough lineshape. Here, with the recently developed high-resolution broadband SFG-VS (HR-BB-SFG-VS) technique, we show that the inhomogeneous lineshape can be obtained in the frequency-domain for the anchoring CN stretch of the 4-n-octyl-4'-cyanobiphenyl (8CB) Langmuir monolayer at the air-water interface, and that an excellent agreement with the time-domain SFG free-induction-decay can be established. We found that the 8CB CN stretch spectrum consists of a single peak centered at 2234.00 ± 0.01 cm-1 with a total linewidth of 10.9 ± 0.3 cm-1 at half maximum. The Lorentzian contribution accounts only for 4.7 ± 0.4 cm-1 to this width and the Gaussian (inhomogeneous) broadening for as much as 8.1 ± 0.2 cm-1. Polarization analysis of the -CN spectra showed that the -CN group is tilted 57° ± 2° from the surface normal. The large heterogeneity in the -CN spectrum is tentatively attributed to the -CN group interactions with the interfacial water molecules penetrated/accommodated into the 8CB monolayer, a unique phenomenon for the nCB Langmuir monolayers reported previously.
Drobyshev, V A; Efremov, A V; Loseva, M I; Sukharevskaia, T M; Michurin, A I
2002-01-01
Low-frequency magnetic fields and EHF-therapy have been used in correction of autonomic homeostasis in workers exposed to vibration for different periods of time. The workers suffered from early arterial hypertension. Vegetative status and central hemodynamics improved best in workers exposed to vibration for less than 5 years. If the exposure was 6-15 years, a positive trend occurred in the tension of regulatory mechanisms. Workers with long exposure to vibration suffering from vagotonia showed an inadequate response of the autonomic parameters to treatment. This necessitates enhancement of therapeutic measures with medicines.
Goodman, Lawrence E
2001-01-01
Beginning text presents complete theoretical treatment of mechanical model systems and deals with technological applications. Topics include introduction to calculus of vectors, particle motion, dynamics of particle systems and plane rigid bodies, technical applications in plane motions, theory of mechanical vibrations, and more. Exercises and answers appear in each chapter.
Structural Stability and Vibration
DEFF Research Database (Denmark)
Wiggers, Sine Leergaard; Pedersen, Pauli
This book offers an integrated introduction to the topic of stability and vibration. Strikingly, it describes stability as a function of boundary conditions and eigenfrequency as a function of both boundary conditions and column force. Based on a post graduate course held by the author at the Uni...... and their derivation, thus stimulating them to write interactive and dynamic programs to analyze instability and vibrational modes....
Energy Technology Data Exchange (ETDEWEB)
Philip J. Reid
2009-09-21
The conference focuses on using vibrational spectroscopy to probe structure and dynamics of molecules in gases, liquids, and interfaces. The goal is to bring together a collection of researchers who share common interests and who will gain from discussing work at the forefront of several connected areas. The intent is to emphasize the insights and understanding that studies of vibrations provide about a variety of systems.
Tse, Peter W; Wang, Dong
2017-02-14
Bearings are widely used in various industries to support rotating shafts. Their failures accelerate failures of other adjacent components and may cause unexpected machine breakdowns. In recent years, nonlinear vibration responses collected from a dynamic rotor-bearing system have been widely analyzed for bearing diagnostics. Numerous methods have been proposed to identify different bearing faults. However, these methods are unable to predict the future health conditions of bearings. To extend bearing diagnostics to bearing prognostics, this paper reports the design of a state space formulation of nonlinear vibration responses collected from a dynamic rotor-bearing system in order to intelligently predict bearing remaining useful life (RUL). Firstly, analyses of nonlinear vibration responses were conducted to construct a bearing health indicator (BHI) so as to assess the current bearing health condition. Secondly, a state space model of the BHI was developed to mathematically track the health evolution of the BHI. Thirdly, unscented particle filtering was used to predict bearing RUL. Lastly, a new bearing acceleration life testing setup was designed to collect natural bearing degradation data, which were used to validate the effectiveness of the proposed bearing prognostic method. Results show that the prediction accuracy of the proposed bearing prognostic method is promising and the proposed bearing prognostic method is able to reflect future bearing health conditions.
Directory of Open Access Journals (Sweden)
Peter W. Tse
2017-02-01
Full Text Available Bearings are widely used in various industries to support rotating shafts. Their failures accelerate failures of other adjacent components and may cause unexpected machine breakdowns. In recent years, nonlinear vibration responses collected from a dynamic rotor-bearing system have been widely analyzed for bearing diagnostics. Numerous methods have been proposed to identify different bearing faults. However, these methods are unable to predict the future health conditions of bearings. To extend bearing diagnostics to bearing prognostics, this paper reports the design of a state space formulation of nonlinear vibration responses collected from a dynamic rotor-bearing system in order to intelligently predict bearing remaining useful life (RUL. Firstly, analyses of nonlinear vibration responses were conducted to construct a bearing health indicator (BHI so as to assess the current bearing health condition. Secondly, a state space model of the BHI was developed to mathematically track the health evolution of the BHI. Thirdly, unscented particle filtering was used to predict bearing RUL. Lastly, a new bearing acceleration life testing setup was designed to collect natural bearing degradation data, which were used to validate the effectiveness of the proposed bearing prognostic method. Results show that the prediction accuracy of the proposed bearing prognostic method is promising and the proposed bearing prognostic method is able to reflect future bearing health conditions.
Directory of Open Access Journals (Sweden)
de Pontes B. R.
2012-07-01
Full Text Available In this paper, we deal with the research of a vibrating model of an energy harvester device, including the nonlinearities in the model of the piezoelectric coupling and the non-ideal excitation. We show, using numerical simulations, in the analysis of the dynamic responses, that the harvested power is influenced by non-linear vibrations of the structure. Chaotic behavior was also observed, causing of the loss of energy throughout the simulation time. Using a perturbation technique, we find an approximate analytical solution for the non-ideal system. Then, we apply both two control techniques, to keep the considered system, into a stable condition. Both the State Dependent Ricatti Equation (SDRE control as the feedback control by changing the energy of the oscillator, were efficient in controlling of the considered non-ideal system.
Liu, Jianbo; Song, Kihyung; Hase, William L; Anderson, Scott L
2005-12-22
Quasiclassical, direct dynamics trajectories have been used to study the reaction of formaldehyde cation with molecular hydrogen, simulating the conditions in an experimental study of H2CO+ vibrational effects on this reaction. Effects of five different H2CO+ modes were probed, and we also examined different approaches to treating zero-point energy in quasiclassical trajectories. The calculated absolute cross-sections are in excellent agreement with experiments, and the results provide insight into the reaction mechanism, product scattering behavior, and energy disposal, and how they vary with impact parameter and reactant state. The reaction is sharply orientation-dependent, even at high collision energies, and both trajectories and experiment find that H2CO+ vibration inhibits reaction. On the other hand, the trajectories do not reproduce the anomalously strong effect of nu2(+) (the CO stretch). The origin of the discrepancy and approaches for minimizing such problems in quasiclassical trajectories are discussed.
DEFF Research Database (Denmark)
Kumpf, C.; Müller, A.; Weigand, W.
2003-01-01
The atomic structure and lattice dynamics of epitaxial BeTe(001) thin films are derived from surface x-ray diffraction and Raman spectroscopy. On the Te-rich BeTe(001) surface [1 (1) over bar0]-oriented Te dimers are identified. They cause a (2 X 1) superstructure and induce a pronounced buckling...... in the underlying Te layer. The Be-rich surface exhibits a (4 X 1) periodicity with alternating Te dimers and Te-Be-Te trimers. A vibration eigenfrequency of 165 cm(-1) is observed for the Te-rich surface, while eigenmodes at 157 and 188 cm(-1) are found for the Be-rich surface. The experimentally derived atomic...... geometry and the vibration modes are in very good agreement with the results of density functional theory calculations....
International Nuclear Information System (INIS)
Campetella, M.; Caminiti, R.; Bencivenni, L.; Gontrani, L.; Bovi, D.; Guidoni, L.
2016-01-01
In this work we report an analysis of the bulk phase of 2-methoxyethylammonium nitrate based on ab initio molecular dynamics. The structural and dynamical features of the ionic liquid have been characterized and the computational findings have been compared with the experimental X-ray diffraction patterns, with infrared spectroscopy data, and with the results obtained from molecular dynamics simulations. The experimental infrared spectrum was interpreted with the support of calculated vibrational density of states as well as harmonic frequency calculations of selected gas phase clusters. Particular attention was addressed to the high frequency region of the cation (ω > 2000 cm −1 ), where the vibrational motions involve the NH 3 + group responsible for hydrogen bond formation, and to the frequency range 1200-1400 cm −1 where the antisymmetric stretching mode (ν 3 ) of nitrate is found. Its multiple absorption lines in the liquid arise from the removal of the degeneracy present in the D 3h symmetry of the isolated ion. Our ab initio molecular dynamics leads to a rationalization of the frequency shifts and splittings, which are inextricably related to the structural modifications induced by a hydrogen bonding environment. The DFT calculations lead to an inhomogeneous environment.
Zeng, Zhihui; Liu, Menglong; Xu, Hao; Liu, Weijian; Liao, Yaozhong; Jin, Hao; Zhou, Limin; Zhang, Zhong; Su, Zhongqing
2016-06-01
Inspired by an innovative sensing philosophy, a light-weight nanocomposite sensor made of a hybrid of carbon black (CB)/polyvinylidene fluoride (PVDF) has been developed. The nanoscalar architecture and percolation characteristics of the hybrid were optimized in order to fulfil the in situ acquisition of dynamic elastic disturbance from low-frequency vibration to high-frequency ultrasonic waves. Dynamic particulate motion induced by elastic disturbance modulates the infrastructure of the CB conductive network in the sensor, with the introduction of the tunneling effect, leading to dynamic alteration in the piezoresistivity measured by the sensor. Electrical analysis, morphological characterization, and static/dynamic electromechanical response interrogation were implemented to advance our insight into the sensing mechanism of the sensor, and meanwhile facilitate understanding of the optimal percolation threshold. At the optimal threshold (˜6.5 wt%), the sensor exhibits high fidelity, a fast response, and high sensitivity to ultrafast elastic disturbance (in an ultrasonic regime up to 400 kHz), yet with an ultralow magnitude (on the order of micrometers). The performance of the sensor was evaluated against a conventional strain gauge and piezoelectric transducer, showing excellent coincidence, yet a much greater gauge factor and frequency-independent piezoresistive behavior. Coatable on a structure and deployable in a large quantity to form a dense sensor network, this nanocomposite sensor has blazed a trail for implementing in situ sensing for vibration- or ultrasonic-wave-based structural health monitoring, by striking a compromise between ‘sensing cost’ and ‘sensing effectiveness’.
Energy Technology Data Exchange (ETDEWEB)
Campetella, M.; Caminiti, R.; Bencivenni, L.; Gontrani, L., E-mail: lorenzo.gontrani@uniroma1.it [Dipartimento di Chimica, Università di Roma, “La Sapienza,” P. le Aldo Moro 5, I-00185 Roma (Italy); Bovi, D. [Dipartimento di Fisica, Università di Roma, “La Sapienza,” P. le Aldo Moro 5, I-00185 Roma (Italy); Guidoni, L. [Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio, Coppito, I-67100 L’Aquila (Italy)
2016-07-14
In this work we report an analysis of the bulk phase of 2-methoxyethylammonium nitrate based on ab initio molecular dynamics. The structural and dynamical features of the ionic liquid have been characterized and the computational findings have been compared with the experimental X-ray diffraction patterns, with infrared spectroscopy data, and with the results obtained from molecular dynamics simulations. The experimental infrared spectrum was interpreted with the support of calculated vibrational density of states as well as harmonic frequency calculations of selected gas phase clusters. Particular attention was addressed to the high frequency region of the cation (ω > 2000 cm{sup −1}), where the vibrational motions involve the NH{sub 3}+ group responsible for hydrogen bond formation, and to the frequency range 1200-1400 cm{sup −1} where the antisymmetric stretching mode (ν{sub 3}) of nitrate is found. Its multiple absorption lines in the liquid arise from the removal of the degeneracy present in the D{sub 3h} symmetry of the isolated ion. Our ab initio molecular dynamics leads to a rationalization of the frequency shifts and splittings, which are inextricably related to the structural modifications induced by a hydrogen bonding environment. The DFT calculations lead to an inhomogeneous environment.
Directory of Open Access Journals (Sweden)
Wahyu Rachma Efendy
2017-03-01
Full Text Available Getaran banyak terjadi pada mesin-mesin di industri. Salah satu solusi untuk mereduksi getaran berlebih adalah dengan menambahkan Dynamic Vibration Absorber (DVA. Prinsip kerja dari Dynamic Vibration Absorber adalah penambahan massa absorber dan pegas pada sistem utama. DVA akan mereduksi getaran sistem utama dengan menghasilkan getaran yang arahnya berlawanan dengan arah getar dari sistem utama. Berdasarkan penelitian yang dilakukan oleh Pachpute [1], penggunaan DVA telah terbukti dapat mereduksi getaran dari sistem utama yang dioperasikan di frekuensi natural secara signifikan. Dalam penelitian Tugas Akhir ini telah dirancang sebuah mekanisme alat vibration absorber dan energy harvesting metode Cantilever Piezoelectric Vibration Absorber (CPVA. Sistem utama yang digunakan dalam penelitian ini adalah plat datar yang ditopang oleh empat pegas. Plat tersebut akan menerima gaya eksitasi dari pegas dibawahnya yang dihubungkan dengan massa eksentris pada motor DC. Koefisien pegas yang digunakan untuk menumpu plat datar memiliki nilai yang sama, yaitu sebesar 300 N/m. Sehingga eksitasi yang terjadi pada plat datar hanya ke arah translasi. Pada penelitian ini, dilakukan analisa dengan variasi amplitudo massa eksentris sebesar 0.025 m, 0.030 m, dan 0.035 m. Kecepatan putaran motor sebesar 20.61 rad/s (frekuensi natural, 22.05 rad/s (frekuensi panen, dan 25 rad/s (frekuensi lembah. Sedangkan variasi jumlah cantilever piezoelectric yang digunakan adalah 2600, 2800, dan 3000 buah. Dari simulasi yang telah dilakukan, daya bangkitan dan nilai persentase reduksi terbesar dari CPVA terjadi ketika sistem dioperasikan di frekuensi naturalnya, yaitu sebesar 3.52E-7 watt dan 20.36%. Selain itu, dari simulasi juga didapatkan karakteristik CPVA dengan memvariasikan jumlah piezoelectric, didapatkan rentang jumlah piezoelectric optimum adalah 1400 hingga 2400 buah. Pada rentang tersebut, daya bangkitan dan persentase reduksi perpindahan massa utama terbesar yang
Directory of Open Access Journals (Sweden)
Zili Zhang
2014-11-01
Full Text Available Lateral tower vibrations of offshore wind turbines are normally lightly damped, and large amplitude vibrations induced by wind and wave loads in this direction may significantly shorten the fatigue life of the tower. This paper proposes the modeling and control of lateral tower vibrations in offshore wind turbines using active generator torque. To implement the active control algorithm, both the mechanical and power electronic aspects have been taken into consideration. A 13-degrees-of-freedom aeroelastic wind turbine model with generator and pitch controllers is derived using the Euler–Lagrangian approach. The model displays important features of wind turbines, such as mixed moving frame and fixed frame-defined degrees-of-freedom, couplings of the tower-blade-drivetrain vibrations, as well as aerodynamic damping present in different modes of motions. The load transfer mechanisms from the drivetrain and the generator to the nacelle are derived, and the interaction between the generator torque and the lateral tower vibration are presented in a generalized manner. A three-dimensional rotational sampled turbulence field is generated and applied to the rotor, and the tower is excited by a first order wave load in the lateral direction. Next, a simple active control algorithm is proposed based on active generator torques with feedback from the measured lateral tower vibrations. A full-scale power converter configuration with a cascaded loop control structure is also introduced to produce the feedback control torque in real time. Numerical simulations have been carried out using data calibrated to the referential 5-MW NREL (National Renewable Energy Laboratory offshore wind turbine. Cases of drivetrains with a gearbox and direct drive to the generator are considered using the same time series for the wave and turbulence loadings. Results show that by using active generator torque control, lateral tower vibrations can be significantly mitigated for
Energy Technology Data Exchange (ETDEWEB)
Alekhin, S.A.; Chernov, V.S.; Denisenko, V.V.; Gorodnyanskiy, I.F.; Prokopov, L.I.; Tikhonov, Yu.P.
1983-01-01
The vibration mixer is proposed which contains a housing, vibration drive with rod installed in the upper part of the mixing mechanism made in the form of a hollow shaft with blades. In order to improve intensity of mixing and dispersion of the mud, the shaft with the blades is arranged on the rod of the vibrator and is equipped with a cam coupling whose drive disc is attached to the vibration rod. The rod is made helical, while the drive disc of the cam coupling is attached to the helical surface of the rod. In addition, the vibration mixer is equipped with perforated discs installed on the ends of the rods.
International Nuclear Information System (INIS)
2016-01-01
This volume contains the papers presented at the Thirteenth International Conference on Motion and Vibration Control (MoViC), together with the Twelfth International Conference on Recent Advances in Structural Dynamics (RASD). MoViC is an event that started in Yokohama, Japan in 1992 and has been organised every two years alternating between Japan, USA and Europe. The eleven previous RASD conferences have been held every three years or so since 1980 primarily in Southampton, UK. The idea of joining the two conferences came quite naturally because of the common ground of the two conferences and the chances of cross-pollination between two otherwise separate research groups. This joint conference is devoted to theoretical, numerical and experimental developments in motion/vibration/structural dynamics, their control and application to all types of structures and dynamical systems. The conference reflects the state-of-the- art in these topics, and is an excellent opportunity to exchange scientific, technical and experimental ideas. The Conference Proceedings include over 250 papers by authors from over 20 countries, forty technical sessions and five plenary presentations. The five invited speakers are Professor Roger Goodall (Loughborough University, UK) presenting “Motion and vibration control for railway vehicles”, Professor Takeshi Mizuno (Saitama University, Japan) presenting “Recent advances in magnetic suspension technology”, Professor Kevin Murphy (University of Louisville, USA) presenting “Dynamics of Passive Balancing Rings for Rotating Systems”, Professor David Wagg (University of Sheffield, UK) presenting “Reducing vibrations in structures using structural control”, and Professor Kon-Well Wang (University of Michigan, USA) presenting “From Muscles to Plants - Nature-Inspired Adaptive Metastructures for Structural Dynamics Enhancement”. I would like to thank members of the Organising Committee for their help, over the last year or so, in
International Nuclear Information System (INIS)
Burgin, Julien
2007-01-01
In this Ph.D. work we have investigated the electronic and vibrational properties of metallic nano objects as a function of their size, shape and composition, and studied the vibrational modes in glasses, using femtosecond time-resolved spectroscopy. In mono-metallic copper clusters, acceleration of the electron-lattice energy exchanges for sizes smaller than 10 nm has been demonstrated, confirming previous results in gold and silver clusters. The small size regime, i.e., nanoparticles smaller than 2 nm, has been addressed. The results show the limit of the classical confined material approach. In bi-metallic clusters, electron-lattice interaction has been shown to reflect their composition for gold-silver materials, but exhibits a more complex behavior in the case of segregated nickel-silver particles. The impact of shape, structure and environment on the acoustic vibrations of metallic nano-objects has also been studied. Measurements performed in ensemble or pairs of prisms yielded evidence for local fluctuations of their coupling with the substrate. Nano-structuration effects have been demonstrated in nano-columns and segregated components. The vibrational modes associated to local order in glasses have been investigated using a high sensitivity impulsive stimulated Raman scattering technique. The 'defect modes' of normal and densified silica, associated to vibrations of ring structures, have been observed and characterized, yielding information on the evolution of the ring density. Performing similar measurements in germania, we have demonstrated the existence of a vibrational mode due to a similar ring structure and determined its characteristics [fr
Chiariello, Maria Gabriella; Rega, Nadia
2018-03-22
Advances in time-resolved vibrational spectroscopy techniques provided a new stimulus for understanding the transient molecular dynamics triggered by the electronic excitation. The detailed interpretation of such time-dependent spectroscopic signals is a challenging task from both experimental and theoretical points of view. We simulated and analyzed the transient photorelaxation of the pyranine photoacid in aqueous solution, with special focus on structural parameters and low frequency skeleton modes that are possibly preparatory for the photoreaction occurring at later time, as suggested by experimental spectroscopic studies. To this aim, we adopted an accurate computational protocol that combines excited state ab initio molecular dynamics within an hybrid quantum mechanical/molecular mechanics framework and a time-resolved vibrational analysis based on the Wavelet transform. According to our results, the main nuclear relaxation on the excited potential energy surface is completed in about 500 fs, in agreement with experimental data. The rearrangement of C-C bonds occurs according to a complex vibrational dynamics, showing oscillatory patterns that are out of phase and modulated by modes below 200 cm -1 . We also analyzed in both the ground and the excited state the evolution of some structural parameters involved in excited state proton transfer reaction, namely, those involving the pyranine and the water molecule hydrogen bonded to the phenolic O-H group. Both the hydrogen bond distance and the intermolecular orientation are optimized in the excited state, resulting in a tighter proton donor-acceptor couple. Indeed, we found evidence that collective low frequency skeleton modes, such as the out of plane wagging at 108 cm -1 and the deformation at 280 cm -1 , are photoactivated by the ultrafast part of the relaxation and modulate the pyranine-water molecule rearrangement, favoring the preparatory step for the photoreactivity.
Análisis vibrodinámico de motores eléctricos // Vibrational and dynamic analysis of electric motors
Directory of Open Access Journals (Sweden)
Orestes González-Quintero
2010-01-01
Full Text Available ResumenEl artículo aborda el estudio vibrodinámico ejecutado en motores eléctricos de la fábrica de azúcar“Cristino Naranjo” durante la implementación del mantenimiento predictivo. En el mismo seexponen los trabajos realizados en las diferentes etapas de implementación del mantenimiento y eldiagnóstico de defectos mediante la utilización del análisis espectral de vibraciones. Se muestranespectros de motor con problemas y en funcionamiento normal.Palabras claves: Ingeniería de Mantenimiento, Mantenimiento Predictivo, análisis, vibraciones.__________________________________________________________________________________AbstractThis work is concerned with the vibrational and dynamic study of electrical motors located inCristino Naranjo sugar mill. It is done during the predictive maintenance implementation. At thesome time some works are shown during this process as well the failures diagnostic by means ofthe use of spectrum analysis of vibration. The spectrums shown are related to motors withdifficulties or well working.Key words: Maintenance Engineering, Predictive Maintenance, vibration, análisis.
International Nuclear Information System (INIS)
Pique, J.P.; Chen, Y.; Field, R.W.; Kinsey, J.L.
1987-01-01
A recently proposed technique based on the Fourier transform of the spectrum is applied to the stimulated-emission pumping spectrum of acetylene at --26 500 cm/sup -1/ above the vibrational ground state. Correlations on two different time scales (--3 and --45 ps) were found from analysis of low-resolution (0.3 cm/sup -1/) and high-resolution (0.05 cm/sup -1/) spectra, respectively. Additional structure produced dynamic information on a wider (0.5--300 ps) time scale. The results show that acetylene at 26 500 cm/sup -1/ is in the transition from the regular to the chaotic regime
International Nuclear Information System (INIS)
Prosmiti, Rita; Valdés, Álvaro; Delgado-Barrio, Gerardo
2014-01-01
The recent increased interest on research studies of the H + 5 cation, and its isotopologues, is due to the postulation for their presence, although still not detected, in the interstellar medium. There is no doubt, particularly in the light of the recent laboratory observations, that the spectroscopy of these systems is also a great challenge for the theorists. Thus, we report the first fully converged coupled anharmonic quantum study on vibrational dynamics of these highly fluxional cations, providing important information on their spectroscopy in a rigorous manner, and open perspectives for further investigations
Kortyna, A.; Lesko, D. M. B.; Nesbitt, D. J.
2018-05-01
The combination of a pulsed supersonic slit-discharge source and single-mode difference frequency direct absorption infrared spectroscopy permit first high resolution infrared study of the iodomethyl (CH2I) radical, with the CH2I radical species generated in a slit jet Ne/He discharge and cooled to 16 K in the supersonic expansion. Dual laser beam detection and collisional collimation in the slit expansion yield sub-Doppler linewidths (60 MHz), an absolute frequency calibration of 13 MHz, and absorbance sensitivities within a factor of two of the shot-noise limit. Fully rovibrationally resolved direct absorption spectra of the CH2 symmetric stretch mode (ν2) are obtained and fitted to a Watson asymmetric top Hamiltonian with electron spin-rotation coupling, providing precision rotational constants and spin-rotation tensor elements for the vibrationally excited state. Analysis of the asymmetric top rotational constants confirms a vibrationally averaged planar geometry in both the ground- and first-excited vibrational levels. Sub-Doppler resolution permits additional nuclear spin hyperfine structures to be observed, with splittings in excellent agreement with microwave measurements on the ground state. Spectroscopic data on CH2I facilitate systematic comparison with previous studies of halogen-substituted methyl radicals, with the periodic trends strongly correlated with the electronegativity of the halogen atom. Interestingly, we do not observe any asymmetric CH2 stretch transitions, despite S/N ≈ 25:1 on strongest lines in the corresponding symmetric CH2 stretch manifold. This dramatic reversal of the more typical 3:1 antisymmetric/symmetric CH2 stretch intensity ratio signals a vibrational transition moment poorly described by simple "bond-dipole" models. Instead, the data suggest that this anomalous intensity ratio arises from "charge sloshing" dynamics in the highly polar carbon-iodine bond, as supported by ab initio electron differential density plots and
Xu, L.; Cardinale, M.; Rabotti, C.; Beju, B.; Mischi, M.
2016-01-01
Vibration exercise (VE) has been suggested as an effective method to improve strength and power capabilities. However, the underlying mechanisms in response to VE are still unclear. A pulley-like VE system, characterized by sinusoidal force applications has been developed and tested for proof of
Directory of Open Access Journals (Sweden)
Jianfeng Wang
2015-01-01
Full Text Available The contact mechanics for a rigid wheel and deformable terrain are complicated owing to the rigid flexible coupling characteristics. Bekker’s equations are used as the basis to establish the equations of the sinking rolling wheel, to vertical load pressure relationship. Since vehicle movement on the Moon is a complex and on-going problem, the researcher is poised to simplify this problem of vertical loading of the wheel. In this paper, the quarter kinetic models of a manned lunar rover, which are both based on the rigid road and deformable lunar terrain, are used as the simulation models. With these kinetic models, the vibration simulations were conducted. The simulation results indicate that the quarter kinetic model based on the deformable lunar terrain accurately reflects the deformable terrain’s influence on the vibration characteristics of a manned lunar rover. Additionally, with the quarter kinetic model of the deformable terrain, the vibration simulations of a manned lunar rover were conducted, which include a parametric analysis of the wheel parameters, vehicle speed, and suspension parameters. The results show that a manned lunar rover requires a lower damping value and stiffness to achieve better vibration performance.
Ziemkiewicz, Michael P; Pluetzer, Christian; Nesbitt, David J; Scribano, Yohann; Faure, Alexandre; van der Avoird, Ad
2012-08-28
First results are reported on overtone (v(OH) = 2 ← 0) spectroscopy of weakly bound H(2)-H(2)O complexes in a slit supersonic jet, based on a novel combination of (i) vibrationally mediated predissociation of H(2)-H(2)O, followed by (ii) UV photodissociation of the resulting H(2)O, and (iii) UV laser induced fluorescence on the nascent OH radical. In addition, intermolecular dynamical calculations are performed in full 5D on the recent ab initio intermolecular potential of Valiron et al. [J. Chem. Phys. 129, 134306 (2008)] in order to further elucidate the identity of the infrared transitions detected. Excellent agreement is achieved between experimental and theoretical spectral predictions for the most strongly bound van der Waals complex consisting of ortho (I = 1) H(2) and ortho (I = 1) H(2)O (oH(2)-oH(2)O). Specifically, two distinct bands are seen in the oH(2)-oH(2)O spectrum, corresponding to internal rotor states in the upper vibrational manifold of Σ and Π rotational character. However, none of the three other possible nuclear spin modifications (pH(2)-oH(2)O, pH(2)-pH(2)O, or oH(2)-pH(2)O) are observed above current signal to noise level, which for the pH(2) complexes is argued to arise from displacement by oH(2) in the expansion mixture to preferentially form the more strongly bound species. Direct measurement of oH(2)-oH(2)O vibrational predissociation in the time domain reveals lifetimes of 15(2) ns and <5(2) ns for the Σ and Π states, respectively. Theoretical calculations permit the results to be interpreted in terms of near resonant energy levels and intermolecular alignment of the H(2) and H(2)O wavefunctions, providing insight into predissociation dynamical pathways from these metastable levels.
Energy Technology Data Exchange (ETDEWEB)
Inoue, Ken-ichi; Singh, Prashant C. [Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Nihonyanagi, Satoshi; Tahara, Tahei, E-mail: tahei@riken.jp [Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Yamaguchi, Shoichi [Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Department of Applied Chemistry, Saitama University, 255 Shimo-Okubo, Saitama 338-8570 (Japan)
2015-06-07
Two-dimensional heterodyne-detected vibrational sum-frequency generation (2D HD-VSFG) spectroscopy is applied to study the ultrafast vibrational dynamics of water at positively charged aqueous interfaces, and 2D HD-VSFG spectra of cetyltrimethylammonium bromide (CTAB)/water interfaces in the whole hydrogen-bonded OH stretch region (3000 cm{sup −1} ≤ ω{sub pump} ≤ 3600 cm{sup −1}) are measured. 2D HD-VSFG spectrum of the CTAB/isotopically diluted water (HOD-D{sub 2}O) interface exhibits a diagonally elongated bleaching lobe immediately after excitation, which becomes round with a time constant of ∼0.3 ps due to spectral diffusion. In contrast, 2D HD-VSFG spectrum of the CTAB/H{sub 2}O interface at 0.0 ps clearly shows two diagonal peaks and their cross peaks in the bleaching region, corresponding to the double peaks observed at 3230 cm{sup −1} and 3420 cm{sup −1} in the steady-state HD-VSFG spectrum. Horizontal slices of the 2D spectrum show that the relative intensity of the two peaks of the bleaching at the CTAB/H{sub 2}O interface gradually change with the change of the pump frequency. We simulate the pump-frequency dependence of the bleaching feature using a model that takes account of the Fermi resonance and inhomogeneity of the OH stretch vibration, and the simulated spectra reproduce the essential features of the 2D HD-VSFG spectra of the CTAB/H{sub 2}O interface. The present study demonstrates that heterodyne detection of the time-resolved VSFG is critically important for studying the ultrafast dynamics of water interfaces and for unveiling the underlying mechanism.
Structural Stability and Vibration
DEFF Research Database (Denmark)
Wiggers, Sine Leergaard; Pedersen, Pauli
at the University of Southern Denmark, it reports on fundamental formulas and makes uses of graphical representation to promote understanding. Thanks to the emphasis put on analytical methods and numerical results, the book is meant to make students and engineers familiar with all fundamental equations...... and their derivation, thus stimulating them to write interactive and dynamic programs to analyze instability and vibrational modes....
Derro, Erika L.
The hydrogen trioxy (HOOO) radical has been implicated as an important intermediate in key processes in the atmosphere. In the present studies, HOOO is produced by the combination of O2 and photolytically generated OH radicals in the collisional region of a pulsed supersonic expansion. Rotationally cooled HOOO is probed in the effectively collision-free region of the expansion using infrared action spectroscopy, an infrared-pump, ultraviolet-probe technique, in which HOOO is vibrationally excited and the nascent OH products of vibrational predissociation are probed via laser-induced fluorescence. High resolution infrared spectra of HOOO and DOOO were observed in the fundamental and overtone OH/D stretching regions (nui and 2nu 1), which comprise a rotationally structured band attributed to the trans conformer, and an unstructured component assigned to the cis conformer. Infrared spectra of HOOO and DOOO combination bands composed of the OH stretch and a low frequency mode (nu1 + nun) were also observed. This allowed identification of vibrational frequencies for five of the six modes for trans-H/DOOO and four of the six modes for cis-HOOO and DOOO. Identification of low frequency modes provides critical information on the vibrational dynamics and thermochemical properties of the HOOO radical, and furthermore, provides a potential means for detecting HOOO in situ in the atmosphere. In addition, the nascent OH X2pi products following vibrational predissociation of HOOO have been investigated. The product state distributions reveal a distinct preference for population of pi(A ') Λ-doublets in OH that is indicative of a planar dissociation of trans-HOOO in which the symmetry of the bonding orbital is maintained. The highest observed OH quantum state allows determination of the stability of HOOO relative to the OH + O 2 asymptote using a conservation of energy approach. In conjunction with a similar investigation of DOOO, the binding energy is determined to be ≤ 5
Arefi, Mohammad; Zenkour, Ashraf M.
2017-09-01
In this paper, size-dependent free vibration analysis of a sandwich nanoplate is presented. The sandwich nanoplate is including an elastic nano core and two piezo-electro-magnetic face-sheets as sensor and actuator actuated by electric and magnetic potentials. The sandwich nanoplate is resting on visco-Pasternak's foundation. Hamilton's principle is employed to derive the governing equations of motion based on Kirchhoff plate and nonlocal elasticity theory. The numerical results are presented to study the influence of important parameters of the problem such as applied electric and magnetic potentials, nonlocal parameter and visco-Pasternak's parameters. Furthermore, the influence of various boundary conditions is discussed on the vibration characteristics of the sandwich nanoplate.
Mikheev, A A; Volchkova, O A; Voronitskiĭ, N E
2010-01-01
The objective of this study was to evaluate effects of a combined treatment including vibrostimulation and magnetotherapy on the working capacity of athletes. Participants of the study were 8 male judo wrestlers. It was shown that implementation of a specialized training program comprising seances of vibration loading and general magnetotherapy 40 and 60 min in duration respectively during 3 consecutive days produced marked beneficial effect on the hormonal status of the athletes. Specifically, the three-day long treatment resulted in a significant increase of blood cortisol and testosterone levels considered to be an objective sign of improved performance parameters in athletes engaged in strength and speed sports. The optimal length of vibration training during 3 days of specialized training is estimated at 20 to 40 minutes supplemented by general magnetotherapy for 60 minutes.
DEFF Research Database (Denmark)
Sørensen, Herman
1997-01-01
Methods for calculating natural frequencies for ship hulls and for plates and panels.Evaluation of the risk for inconvenient vibrations on board......Methods for calculating natural frequencies for ship hulls and for plates and panels.Evaluation of the risk for inconvenient vibrations on board...
International Nuclear Information System (INIS)
Zhuang, Z.-H.; Liu, G. K.; Beitz, J. V.
2000-01-01
Laser spectroscopic and extended X-ray absorption fine structure (EXAFS) spectra have shown that uranium in B 2 O 3 glass matrix forms uranyl in the electronic configuration of (UO 2 ) 2+ ,but its surrounding structure is not well known. Understanding of uranyl local structure, ion-ligand interaction, and chemical stability on the nanometer scale in glasses is essential in management of long-term performance of high-level nuclear wastes after disposal in a geologic repository. In the present work, the structure, phonon density of states, and vibrational spectrum of vitreous B 2 O 3 and the surrounding environment that contains a uranyl ion have been studied using a molecular dynamics (MD) simulation method that utilizes the Born-Mayer-Huggins and Coulomb pair potentials and the Stillinger-Weber three-body potential. A system of 406 ions was considered in our calculation. Simulation of a thermal quenching from 3000 K to 300 K was performed to generate a uniform and equilibrium model glass matrix before structure configuration and vibrational frequencies were obtained from the system. The structure of the simulated glass is in agreement with that reported by Krogh-Moe and Mozzi et al. The characteristic network of planar boroxol (B 3 O 6 ) rings is evident in the simulated system. A configuration of a U 6+ cation in the vitreous B 2 O 3 matrix is shown in Fig. 1. It is shown that a nearly linear (UO 2 ) 2+ uranyl ion is coordinated by four equatorial oxygen anions in an approximately planar arrangement. The U-O bond length is approximately 0.178 nm for the axial oxygen and 0.254 nm for the equatorial oxygen, which is in good agreement with the U-O distances obtained from fitting EXAFS spectra. Based on the simulated model structure, the uranyl vibrational spectrum is simulated and compared with experimental results obtained using site-selective fluorescence line narrowing (FLN) techniques
PREFACE: Vibrations at surfaces Vibrations at surfaces
Rahman, Talat S.
2011-12-01
This special issue is dedicated to the phenomenon of vibrations at surfaces—a topic that was indispensible a couple of decades ago, since it was one of the few phenomena capable of revealing the nature of binding at solid surfaces. For clean surfaces, the frequencies of modes with characteristic displacement patterns revealed how surface geometry, as well as the nature of binding between atoms in the surface layers, could be different from that in the bulk solid. Dispersion of the surface phonons provided further measures of interatomic interactions. For chemisorbed molecules on surfaces, frequencies and dispersion of the vibrational modes were also critical for determining adsorption sites. In other words, vibrations at surfaces served as a reliable means of extracting information about surface structure, chemisorption and overlayer formation. Experimental techniques, such as electron energy loss spectroscopy and helium-atom-surface scattering, coupled with infra-red spectroscopy, were continually refined and their resolutions enhanced to capture subtleties in the dynamics of atoms and molecules at surfaces. Theoretical methods, whether based on empirical and semi-empirical interatomic potential or on ab initio electronic structure calculations, helped decipher experimental observations and provide deeper insights into the nature of the bond between atoms and molecules in regions of reduced symmetry, as encountered on solid surfaces. Vibrations at surfaces were thus an integral part of the set of phenomena that characterized surface science. Dedicated workshops and conferences were held to explore the variety of interesting and puzzling features revealed in experimental and theoretical investigations of surface vibrational modes and their dispersion. One such conference, Vibrations at Surfaces, first organized by Harald Ibach in Juelich in 1980, continues to this day. The 13th International Conference on Vibrations at Surfaces was held at the University of
Sebastianelli, Francesco; Xu, Minzhong; Bačić, Zlatko
2008-12-01
We report diffusion Monte Carlo (DMC) calculations of the quantum translation-rotation (T-R) dynamics of one to five para-H2 (p-H2) and ortho-D2 (o-D2) molecules inside the large hexakaidecahedral (51264) cage of the structure II clathrate hydrate, which was taken to be rigid. These calculations provide a quantitative description of the size evolution of the ground-state properties, energetics, and the vibrationally averaged geometries, of small (p-H2)n and (o-D2)n clusters, n=1-5, in nanoconfinement. The zero-point energy (ZPE) of the T-R motions rises steeply with the cluster size, reaching 74% of the potential well depth for the caged (p-H2)4. At low temperatures, the rapid increase of the cluster ZPE as a function of n is the main factor that limits the occupancy of the large cage to at most four H2 or D2 molecules, in agreement with experiments. Our DMC results concerning the vibrationally averaged spatial distribution of four D2 molecules, their mean distance from the cage center, the D2-D2 separation, and the specific orientation and localization of the tetrahedral (D2)4 cluster relative to the framework of the large cage, agree very well with the low-temperature neutron diffraction experiments involving the large cage with the quadruple D2 occupancy.
Boulesbaa, Abdelaziz; Borguet, Eric
2014-02-06
The dephasing dynamics of a vibrational coherence may reveal the interactions of chemical functional groups with their environment. To investigate this process at a surface, we employ free induction decay sum frequency generation (FID-SFG) to measure the time that it takes for free OH stretch oscillators at the charged (pH ≈ 13, KOH) interface of alumina/water (Al2O3/H2O) to lose their collective coherence. By employing noncollinear optical parametric amplification (NOPA) technology and nonlinear vibrational spectroscopy, we showed that the single free OH peak actually corresponds to two distinct oscillators oriented opposite to each other and measured the total dephasing time, T2, of the free OH stretch modes at the Al2O3/H2O interface with a sub-40 fs temporal resolution. Our results suggested that the free OH oscillators associated with interfacial water dephase on the time scale of 89.4 ± 6.9 fs, whereas the homogeneous dephasing of interfacial alumina hydroxyls is an order of magnitude slower.
DEFF Research Database (Denmark)
Morrison, Ann; Knudsen, L.; Andersen, Hans Jørgen
2012-01-01
In this paper we describe a field study conducted with a wearable vibration belt where we test to determine the vibration intensity sensitivity ranges on a large diverse group of participants with evenly distributed ages and...
Ajori, S; Ansari, R; Darvizeh, M
2016-03-01
The adsorption of biomolecules on the walls of carbon nanotubes (CNTs) in an aqueous environment is of great importance in the field of nanobiotechnology. In this study, molecular dynamics (MD) simulations were performed to understand the mechanical vibrational behavior of single- and double-walled carbon nanotubes (SWCNTs and DWCNTs) under the physical adsorption of four important biomolecules (L-alanine, guanine, thymine, and uracil) in vacuum and an aqueous environment. It was observed that the natural frequencies of these CNTs in vacuum reduce under the physical adsorption of biomolecules. In the aqueous environment, the natural frequency of each pure CNT decreased as compared to its natural frequency in vacuum. It was also found that the frequency shift for functionalized CNTs as compared to pure CNTs in the aqueous environment was dependent on the radius and the number of walls of the CNT, and could be positive or negative.
Ishiyama, Tatsuya; Shirai, Shinnosuke; Okumura, Tomoaki; Morita, Akihiro
2018-06-01
Molecular dynamics (MD) simulations of KCl, NaCl, and CaCl2 solution/dipalmytoylphosphatidylcholine lipid interfaces were performed to analyze heterodyne-detected vibrational sum frequency generation (HD-VSFG) spectra in relation to the interfacial water structure. The present MD simulation well reproduces the experimental spectra and elucidates a specific cation effect on the interfacial structure. The K+, Na+, and Ca2+ cation species penetrate in the lipid layer more than the anions in this order, due to the electrostatic interaction with negative polar groups of lipid, and the electric double layer between the cations and anions cancels the intrinsic orientation of water at the water/lipid interface. These mechanisms explain the HD-VSFG spectrum of the water/lipid interface and its spectral perturbation by adding the ions. The lipid monolayer reverses the order of surface preference of the cations at the solution/lipid interface from that at the solution/air interface.
DEFF Research Database (Denmark)
Chodos, Steven L.; Berg, Rolf W.
1979-01-01
This paper deals with the observation and identification of phonon frequencies resulting from the low temperature phase transitions in K2XY6 crystals. By means of a simple lattice dynamical model, the vibrational Raman and IR data available in the literature and obtained here have been analyzed. ...
Gu, Fengshou; Ball, Andrew; Rao, K K
1996-01-01
Part 2 of this paper presents the experimental and analytical procedures used in the estimation of injection parameters from monitored vibration. The mechanical and flow‐induced sources of vibration in a fuel injector are detailed and the features of the resulting vibration response of the injector body are discussed. Experimental engine test and data acquisition procedures are described, and the use of an out‐of‐the‐engine test facility to confirm injection dependent vibration response is ou...
Marble, Erik; Morton, Christopher; Yarusevych, Serhiy
2018-05-01
Vortex-induced vibrations of a pivoted cylinder are investigated experimentally at a fixed Reynolds number of 3100, a mass ratio of 10.8, and a range of reduced velocities, 4.42 ≤ U^* ≤ 9.05. For these conditions, the cylinder traces elliptic trajectories, with the experimental conditions producing three out of four possible combinations of orbiting direction and primary axis alignment relative to the incoming flow. The study focuses on the quantitative analysis of wake topology and its relation to this type of structural response. Velocity fields were measured using time-resolved, two-component particle image velocimetry (TR-PIV). These results show that phase-averaged wake topology generally agrees with the Morse and Williamson (J Fluids Struct 25(4):697-712, 2009) shedding map for one-degree-of-freedom vortex-induced vibrations, with 2S, 2{P}o, and 2P shedding patterns observed within the range of reduced velocities studied here. Vortex tracking and vortex strength quantification are used to analyze the vortex shedding process and how it relates to cylinder response. In the case of 2S vortex shedding, vortices are shed when the cylinder is approaching the maximum transverse displacement and reaches the streamwise equilibrium. 2P vortices are shed approximately half a period earlier in the cylinder's elliptic trajectory. Leading vortices shed immediately after the peak in transverse oscillation and trailing vortices shed near the equilibrium of transverse oscillation. The orientation and direction of the cylinder's elliptic trajectory are shown to influence the timing of vortex shedding, inducing changes in the 2P wake topology.
Vibrational excitation from heterogeneous catalysis
International Nuclear Information System (INIS)
Purvis, G.D. III; Redmon, M.J.; Woken, G. Jr.
1979-01-01
Classical trajectories have been used by numerous researchers to investigate the dynamics of exothermic chemical reactions (atom + diatom) with a view toward understanding what leads to vibrational excitation of the product molecule. Unlike these studies, the case where the reaction is catalyzed by a solid surface is considered. The trajectory studies indicate that there should be conditions under which considerable vibrational energy appears in the product molecules without being lost to the solid during the course of the reaction. 2 figures, 3 tables
Adhikari, Aniruddha
2016-10-10
Lipid/water interaction is essential for many biological processes. The water structure at the nonionic lipid interface remains little known, and there is no scope of a priori prediction of water orientation at nonionic interfaces, either. Here, we report our study combining advanced nonlinear spectroscopy and molecular dynamics simulation on the water orientation at the ceramide/water interface. We measured χ spectrum in the OH stretch region of ceramide/isotopically diluted water interface using heterodyne-detected vibrational sum-frequency generation spectroscopy and found that the interfacial water prefers an overall hydrogen-up orientation. Molecular dynamics simulation indicates that this preferred hydrogen-up orientation of water is determined by a delicate balance between hydrogen-up and hydrogen-down orientation induced by lipid-water and intralipid hydrogen bonds. This mechanism also suggests that water orientation at neutral lipid interfaces depends highly on the chemical structure of the lipid headgroup, in contrast to the charged lipid interfaces where the net water orientation is determined solely by the charge of the lipid headgroup.
Ekrami, Yasamin; Cook, Joseph S.
2011-01-01
In order to mitigate catastrophic failures on future generation space vehicles, engineers at the National Aeronautics and Space Administration have begun to integrate a novel crew abort systems that could pull a crew module away in case of an emergency at the launch pad or during ascent. The Max Launch Abort System (MLAS) is a recent test vehicle that was designed as an alternative to the baseline Orion Launch Abort System (LAS) to demonstrate the performance of a "tower-less" LAS configuration under abort conditions. The MLAS II test vehicle will execute a propulsive coast stabilization maneuver during abort to control the vehicles trajectory and thrust. To accomplish this, the spacecraft will integrate an Attitude Control System (ACS) with eight hypergolic monomethyl hydrazine liquid propulsion engines that are capable of operating in a quick pulsing mode. Two main elements of the ACS include a propellant distribution subsystem and a pressurization subsystem to regulate the flow of pressurized gas to the propellant tanks and the engines. The CAD assembly of the Attitude Control System (ACS) was configured and integrated into the Launch Abort Vehicle (LAV) design. A dynamic random vibration analysis was conducted on the Main Propulsion System (MPS) helium pressurization panels to assess the response of the panel and its components under increased gravitational acceleration loads during flight. The results indicated that the panels fundamental and natural frequencies were farther from the maximum Acceleration Spectral Density (ASD) vibrations which were in the range of 150-300 Hz. These values will direct how the components will be packaged in the vehicle to reduce the effects high gravitational loads.
Shrestha, Rebika; Cardenas, Alfredo E; Elber, Ron; Webb, Lauren J
2015-02-19
The magnitude of the membrane dipole field was measured using vibrational Stark effect (VSE) shifts of nitrile oscillators placed on the unnatural amino acid p-cyanophenylalanine (p-CN-Phe) added to a peptide sequence at four unique positions. These peptides, which were based on a repeating alanine-leucine motif, intercalated into small unilamellar DMPC vesicles which formed an α-helix as confirmed by circular dichroic (CD) spectroscopy. Molecular dynamics simulations of the membrane-intercalated helix containing two of the nitrile probes, one near the headgroup region of the lipid (αLAX(25)) and one buried in the interior of the bilayer (αLAX(16)), were used to examine the structure of the nitrile with respect to the membrane normal, the assumed direction of the dipole field, by quantifying both a small tilt of the helix in the bilayer and conformational rotation of the p-CN-Phe side chain at steady state. Vibrational absorption energies of the nitrile oscillator at each position showed a systematic blue shift as the nitrile was stepped toward the membrane interior; for several different concentrations of peptide, the absorption energy of the nitrile located in the middle of the bilayer was ∼3 cm(-1) greater than that of the nitrile closest to the surface of the membrane. Taken together, the measured VSE shifts and nitrile orientations within the membrane resulted in an absolute magnitude of 8-11 MV/cm for the dipole field, at the high end of the range of possible values that have been accumulated from a variety of indirect measurements. Implications for this are discussed.
Energy Technology Data Exchange (ETDEWEB)
Tsukada, Raphael I.; Morooka, Celso K. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Mecanica; Franciss, Ricardo; Matt, Cyntia G.C. [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)
2009-07-01
Hydrocarbon discoveries in ultra deep waters and the recent pre-salt deep carbonate reservoirs along the Brazilian coast demand further technological development in order to exploit these resources. These developments usually require new concepts for offshore sea surface structures and subsea systems for the petroleum and gas production, which means cost effective solutions that provides higher operational safety on drilling and production operations. In this scenario, the effect of the natural phenomenon of Vortex-Induced Vibration (VIV) on risers is one of the concerns for its design due to the tendency of VIV to increase levels of stresses in the riser structure. Therefore the correct prediction of stresses and displacements due to VIV is of great importance for designing riser systems. The present work presents new developments based on previous results for VIV in vertical risers extended to curved risers such as steel catenary risers (SCR). Numerical simulations have been performed in time domain, and experimental results from model tests with a scaled SCR in a towing tank have been used to evaluate the proposed developments. Finally, the conclusions from the analysis of the results bring very promising results. (author)
Directory of Open Access Journals (Sweden)
SW Kang
2015-02-01
Full Text Available This article introduces an improved non-dimensional dynamic influence function method using a sub-domain method for efficiently extracting the eigenvalues and mode shapes of concave membranes with arbitrary shapes. The non-dimensional dynamic influence function method (non-dimensional dynamic influence function method, which was developed by the authors in 1999, gives highly accurate eigenvalues for membranes, plates, and acoustic cavities, compared with the finite element method. However, it needs the inefficient procedure of calculating the singularity of a system matrix in the frequency range of interest for extracting eigenvalues and mode shapes. To overcome the inefficient procedure, this article proposes a practical approach to make the system matrix equation of the concave membrane of interest into a form of algebraic eigenvalue problem. It is shown by several case studies that the proposed method has a good convergence characteristics and yields very accurate eigenvalues, compared with an exact method and finite element method (ANSYS.
2009-01-01
Ed Witten is one of the leading scientists in the field of string theory, the theory that describes elementary particles as vibrating strings. This week he leaves CERN after having spent a few months here on sabbatical. His wish is that the LHC will unveil supersymmetry.
Umesh P. Agarwal; Rajai Atalla
2010-01-01
Vibrational spectroscopy is an important tool in modern chemistry. In the past two decades, thanks to significant improvements in instrumentation and the development of new interpretive tools, it has become increasingly important for studies of lignin. This chapter presents the three important instrumental methods-Raman spectroscopy, infrared (IR) spectroscopy, and...
Zentel, Tobias; Overbeck, Viviane; Michalik, Dirk; Kühn, Oliver; Ludwig, Ralf
2018-02-01
The properties of the hydrogen bonds in ethylammonium nitrate (EAN) are analyzed by using molecular dynamics simulations and infrared as well as nuclear magnetic resonance experiments. EAN features a flexible three-dimensional network of hydrogen bonds with moderate strengths, which makes it distinct from related triethylammonium-based ionic liquids. First, the network’s flexibility is manifested in a not very pronounced correlation of the hydrogen bond geometries, which is caused by rapid interchanges of bonding partners. The large flexibility of the network also leads to a substantial broadening of the mid-IR absorption band, with the contributions due to N-H stretching motions ranging from 2800 to 3250 cm-1. Finally, the different dynamics are also seen in the rotational correlation of the N-H bond vector, where a correlation time as short as 16.1 ps is observed.
2012-02-28
dimethylsulfoxide ( DMSO ). When chloroform is dissolved in a mixed solvent consisting of acetone and DMSO , both types of hydrogen bonded complexes exist. The...transition (negative) in the 2D IR spectrum. Also, line shape distortions caused by solvent background absorption and finite pulse durations do not affect...conditions as = 7 1 ps. This is the first direct measurement of hydrogen bond exchange. b. Solute- Solvent Complex Switching Dynamics3 Hydrogen
2012-02-28
dimethylsulfoxide ( DMSO ). When chloroform is dissolved in a mixed solvent consisting of acetone and DMSO , both types of hydrogen bonded complexes exist. The...transition (negative) in the 2D IR spectrum. Also, line shape distortions caused by solvent background absorption and finite pulse durations do not affect...conditions as = 7 1 ps. This is the first direct measurement of hydrogen bond exchange. b. Solute- Solvent Complex Switching Dynamics3 Hydrogen
Federal Laboratory Consortium — The Dynamics Lab replicates vibration environments for every Navy platform. Testing performed includes: Flight Clearance, Component Improvement, Qualification, Life...
Czech Academy of Sciences Publication Activity Database
Kessler, Jiří; Kiederling, T. A.; Bouř, Petr
2014-01-01
Roč. 118, č. 24 (2014), s. 6937-6945 ISSN 1520-6106 R&D Projects: GA ČR GAP208/11/0105; GA MŠk(CZ) LH11033 Grant - others:MŠMT(CZ) LM2010005; AV ČR(CZ) M200550902; MŠMT(CZ) ED3.2.00/08.0144 Institutional support: RVO:61388963 Keywords : insulin amyloid superstructures * DFT * VCD * molecular dynamics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.302, year: 2014
Adaptive Piezoelectric Absorber for Active Vibration Control
Directory of Open Access Journals (Sweden)
Sven Herold
2016-02-01
Full Text Available Passive vibration control solutions are often limited to working reliably at one design point. Especially applied to lightweight structures, which tend to have unwanted vibration, active vibration control approaches can outperform passive solutions. To generate dynamic forces in a narrow frequency band, passive single-degree-of-freedom oscillators are frequently used as vibration absorbers and neutralizers. In order to respond to changes in system properties and/or the frequency of excitation forces, in this work, adaptive vibration compensation by a tunable piezoelectric vibration absorber is investigated. A special design containing piezoelectric stack actuators is used to cover a large tuning range for the natural frequency of the adaptive vibration absorber, while also the utilization as an active dynamic inertial mass actuator for active control concepts is possible, which can help to implement a broadband vibration control system. An analytical model is set up to derive general design rules for the system. An absorber prototype is set up and validated experimentally for both use cases of an adaptive vibration absorber and inertial mass actuator. Finally, the adaptive vibration control system is installed and tested with a basic truss structure in the laboratory, using both the possibility to adjust the properties of the absorber and active control.
Institute of Scientific and Technical Information of China (English)
Kohji Tashiro
2007-01-01
The crystalline phase transition of aliphatic nylon 10/10 has been investigated on the basis of the simultaneous measurement of wide-angle and small-angle X-ray scatterings, the infrared spectral measurement and the molecular dynamics calculation. An interpretation of infrared spectra taken for a series of nylon samples and the corresponding model compounds was successfully made, allowing us to assign the infrared bands of the planar-zigzag methylene segments reasonably. As a result the methylene segmental parts of molecular chains were found to experience an order-to-disorder transition in the Brill transition region, where the intermolecular hydrogen bonds are kept alive although the bond strength becomes weaker at higher temperature. The small-angle X-ray scattering data revealed a slight change in lamellar stacking mode in the transition region. The crystal structure has been found to change more remarkably in the temperature region immediately below the melting point, where the conformationally disordered chains experienced drastic rotational and translational motions without any constraints by hydrogen bonds, and the lamellar thickness increased largely along the chain axis. These experimental results were reasonably reproduced by the molecular dynamics calculation performed at the various temperatures.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Gaigong [Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Lin, Lin, E-mail: linlin@math.berkeley.edu [Department of Mathematics, University of California, Berkeley, Berkeley, CA 94720 (United States); Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Hu, Wei, E-mail: whu@lbl.gov [Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Yang, Chao, E-mail: cyang@lbl.gov [Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Pask, John E., E-mail: pask1@llnl.gov [Physics Division, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)
2017-04-15
Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynman forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Since the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H{sub 2} and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.
Lattice dynamics and vibration modes frequencies for substitutional impurities in InP, GaP and ZnS
International Nuclear Information System (INIS)
Vandevyver, Michel; Plumelle, Pierre.
1977-01-01
The model used is a rigid-ion model with an effective ionic charge including general interactions for nearest and next nearest neighbours and long range Coulomb interactions. It provides a good fit with available neutron data and with infrared absorption results for InP. In this model, no hypothesis is made a priori on the interatomic forces and the eleven parameters given by the model are used. A mathematical model which employs a Green's function technique in the mass defect and the nearest neighbour force constant defect approximation is used to calculate the lattice dynamics of the imperfect crystal. The frequencies of the local modes, the gap modes and the band modes, are given for isolated substitutional impurities. The same calculation is achieved for GaP and ZnS and the results are compared with infrared data [fr
Callahan, Karen M; Casillas-Ituarte, Nadia N; Roeselová, Martina; Allen, Heather C; Tobias, Douglas J
2010-04-22
Magnesium dication plays many significant roles in biochemistry. While it is available to the environment from both ocean waters and mineral salts on land, its roles in environmental and atmospheric chemistry are still relatively unknown. Several pieces of experimental evidence suggest that contact ion pairing may not exist at ambient conditions in solutions of magnesium chloride up to saturation concentrations. This is not typical of most ions. There has been disagreement in the molecular dynamics literature concerning the existence of ion pairing in magnesium chloride solutions. Using a force field developed during this study, we show that contact ion pairing is not energetically favorable. Additionally, we present a concentration-dependent Raman spectroscopic study of the Mg-O(water) hexaaquo stretch that clearly supports the absence of ion pairing in MgCl(2) solutions, although a transition occurring in the spectrum between 0.06x and 0.09x suggests a change in solution structure. Finally, we compare experimental and calculated observables to validate our force field as well as two other commonly used magnesium force fields, and in the process show that ion pairing of magnesium clearly is not observed at higher concentrations in aqueous solutions of magnesium chloride, independent of the choice of magnesium force field, although some force fields give better agreement to experimental results than others.
Aircraft gas turbine engine vibration diagnostics
Directory of Open Access Journals (Sweden)
Stanislav Fábry
2017-11-01
Full Text Available In the Czech and Slovak aviation are in service elderly aircrafts, usually produced in former Soviet Union. Their power units can be operated in more efficient way, in case of using additional diagnostic methods that allow evaluating their health. Vibration diagnostics is one of the methods indicating changes of rotational machine dynamics. Ground tests of aircraft gas turbine engines allow vibration recording and analysis. Results contribute to airworthiness evaluation and making corrections, if needed. Vibration sensors distribution, signal recording and processing are introduced in a paper. Recorded and re-calculated vibration parameters are used in role of health indicators.
Vibrational properties of amorphous semiconductors
International Nuclear Information System (INIS)
Schulz, P.A.B.
1985-01-01
A model for the lattice dynamics of a-Si 1-X N X is introduced. This model is based on a Born hamiltonian, solved in the Bethe lattice approximation. Starting from the local density of vibrational states, we analize the infrared absoption spectra of this material. (author) [pt
National Aeronautics and Space Administration — Ground vibration tests or modal surveys are routinely conducted to support flutter analysis for subsonic and supersonic vehicles. However, vibration testing...
Spindle vibration and sound field measurement using optical vibrometry
Tatar, Kourosh
2008-01-01
Mechanical systems often produce a considerable amount of vibration and noise. To be able to obtain a complete picture of the dynamic behaviour of these systems, vibration and sound measurements are of significant importance. Optical metrology is well-suited for non-intrusive measurements on complex objects. The development and the use of remote non-contact vibration measurement methods for spindles are described and vibration measurements on thin- walled structures and sound field measuremen...
Investigation of vibration characteristics of electric motors
Bakshis, A. K.; Tamoshyunas, Y. K.
1973-01-01
The vibration characteristics of electric motors were analyzed using mathematical statistics methods. The equipment used and the method of conducting the test are described. Curves are developed to show the visualization of the electric motor vibrations in the vertical direction. Additional curves are included to show the amplitude-phase frequency characteristic of dynamic rotor-housing vibrations at the first lug and the same data for the second lug of the electric motor. Mathematical models were created to show the transmission function of the dynamic rotor housing system.
Proceedings of second international conference on vibration engineering and technology of machinery
International Nuclear Information System (INIS)
2002-12-01
This volume of proceedings of the conference on vibration engineering cover a wide range of fields spanning diagnostics and condition monitoring, dynamics of rotors, dynamics of structures, computational methods, vehicle dynamics, vibration control, fluid-structure interaction, random and non-linear vibration. Many of these topics are also important to nuclear industry. The papers relevant to INIS are indexed separately
Evaluation of vibration and vibration fatigue life for small bore pipe in nuclear power plants
International Nuclear Information System (INIS)
Wang Zhaoxi; Xue Fei; Gong Mingxiang; Ti Wenxin; Lin Lei; Liu Peng
2011-01-01
The assessment method of the steady state vibration and vibration fatigue life of the small bore pipe in the supporting system of the nuclear power plants is proposed according to the ASME-OM3 and EDF evaluation methods. The GGR supporting pipe system vibration is evaluated with this method. The evaluation process includes the filtration of inborn sensitivity, visual inspection, vibration tests, allowable vibration effective velocity calculation and vibration stress calculation. With the allowable vibration effective velocity calculated and the vibration velocity calculated according to the acceleration data tested, the filtrations are performed. The vibration stress at the welding coat is calculated with the spectrum method and compared with the allowable value. The response of the stress is calculated with the transient dynamic method, with which the fatigue life is evaluated with the Miners linear accumulation model. The vibration stress calculated with the spectrum method exceeds the allowable value, while the fatigue life calculated from the transient dynamic method is larger than the designed life with a big safety margin. (authors)
Optical fiber grating vibration sensor for vibration monitoring of hydraulic pump
Zhang, Zhengyi; Liu, Chuntong; Li, Hongcai; He, Zhenxin; Zhao, Xiaofeng
2017-06-01
In view of the existing electrical vibration monitoring traditional hydraulic pump vibration sensor, the high false alarm rate is susceptible to electromagnetic interference and is not easy to achieve long-term reliable monitoring, based on the design of a beam of the uniform strength structure of the fiber Bragg grating (FBG) vibration sensor. In this paper, based on the analysis of the vibration theory of the equal strength beam, the principle of FBG vibration tuning based on the equal intensity beam is derived. According to the practical application of the project, the structural dimensions of the equal strength beam are determined, and the optimization design of the vibrator is carried out. The finite element analysis of the sensor is carried out by ANSYS, and the first order resonant frequency is 94.739 Hz. The vibration test of the sensor is carried out by using the vibration frequency of 35 Hz and the vibration source of 50 Hz. The time domain and frequency domain analysis results of test data show that the sensor has good dynamic response characteristics, which can realize the accurate monitoring of the vibration frequency and meet the special requirements of vibration monitoring of hydraulic pump under specific environment.
Vibrational entropies in metallic alloys
Ozolins, Vidvuds; Asta, Mark; Wolverton, Christopher
2000-03-01
Recently, it has been recognized that vibrational entropy can have significant effects on the phase stability of metallic alloys. Using density functional linear response calculations and molecular dynamics simulations we study three representative cases: (i) phase diagram of Al-rich Al-Sc alloys, (ii) stability of precipitate phases in CuAl_2, and (iii) phonon dynamics in bcc Zr. We find large vibrational entropy effects in all cases. In the Al-Sc system, vibrations increase the solid solubility of Sc in Al by decreasing the stability of the L12 (Al_3Sc) phase. This leads to a nearly ten-fold increase in the solid solubility of Sc in Al at T=800 K. In the Cu-Al system, our calculations predict that the tetragonal Laves phase of CuAl2 has 0.35 kB/atom higher vibrational entropy than the cubic CaF_2-type phase (the latter is predicted to be the T=0 K ground state of CuAl_2). This entropy difference causes a structural transformation in CuAl2 precipitates from the fluorite to the tetragonal Laves phase around T=500 K. Finally, we analyze the highly unusual dynamics of anharmonically stabilized bcc Zr, finding large diffuse-scattering intensity streaks between the bcc Bragg peaks.
Benefits of Spacecraft Level Vibration Testing
Gordon, Scott; Kern, Dennis L.
2015-01-01
NASA-HDBK-7008 Spacecraft Level Dynamic Environments Testing discusses the approaches, benefits, dangers, and recommended practices for spacecraft level dynamic environments testing, including vibration testing. This paper discusses in additional detail the benefits and actual experiences of vibration testing spacecraft for NASA Goddard Space Flight Center (GSFC) and Jet Propulsion Laboratory (JPL) flight projects. JPL and GSFC have both similarities and differences in their spacecraft level vibration test approach: JPL uses a random vibration input and a frequency range usually starting at 5 Hz and extending to as high as 250 Hz. GSFC uses a sine sweep vibration input and a frequency range usually starting at 5 Hz and extending only to the limits of the coupled loads analysis (typically 50 to 60 Hz). However, both JPL and GSFC use force limiting to realistically notch spacecraft resonances and response (acceleration) limiting as necessary to protect spacecraft structure and hardware from exceeding design strength capabilities. Despite GSFC and JPL differences in spacecraft level vibration test approaches, both have uncovered a significant number of spacecraft design and workmanship anomalies in vibration tests. This paper will give an overview of JPL and GSFC spacecraft vibration testing approaches and provide a detailed description of spacecraft anomalies revealed.
On generalized fractional vibration equation
International Nuclear Information System (INIS)
Dai, Hongzhe; Zheng, Zhibao; Wang, Wei
2017-01-01
Highlights: • The paper presents a generalized fractional vibration equation for arbitrary viscoelastically damped system. • Some classical vibration equations can be derived from the developed equation. • The analytic solution of developed equation is derived under some special cases. • The generalized equation is particularly useful for developing new fractional equivalent linearization method. - Abstract: In this paper, a generalized fractional vibration equation with multi-terms of fractional dissipation is developed to describe the dynamical response of an arbitrary viscoelastically damped system. It is shown that many classical equations of motion, e.g., the Bagley–Torvik equation, can be derived from the developed equation. The Laplace transform is utilized to solve the generalized equation and the analytic solution under some special cases is derived. Example demonstrates the generalized transfer function of an arbitrary viscoelastic system.
International Nuclear Information System (INIS)
Kwak, Mun Gyu; Na, Sung Su; Baek, Gwang Hyeon; Song, Chul Gi; Han, Sang Bo
2001-09-01
This book deals with vibration of machine which gives descriptions of free vibration using SDOF system, forced vibration using SDOF system, vibration of multi-degree of freedom system like introduction and normal form, distribution system such as introduction, free vibration of bar and practice problem, approximate solution like lumped approximations and Raleigh's quotient, engineering by intuition and experience, real problem and experimental method such as technology of signal, fourier transform analysis, frequency analysis and sensor and actuator.
Vibration analysis and vibration damage assessment in nuclear and process equipment
International Nuclear Information System (INIS)
Pettigrew, M.J.; Taylor, C.E.; Fisher, N.J.; Yetisir, M.; Smith, B.A.W.
1997-01-01
Component failures due to excessive flow-induced vibration are still affecting the performance and reliability of process and nuclear components. The purpose of this paper is to discuss flow-induced vibration analysis and vibration damage prediction. Vibration excitation mechanisms are described with particular emphasis on fluid elastic instability. The dynamic characteristics of process and power equipment are explained. The statistical nature of some parameters, in particular support conditions, is discussed. The prediction of fretting-wear damage is approached from several points-of-view. An energy approach to formulate fretting-wear damage is proposed. (author)
Enhanced vibration diagnostics using vibration signature analysis
International Nuclear Information System (INIS)
Ahmed, S.; Shehzad, K.; Zahoor, Y.; Mahmood, A.; Bibi, A.
2001-01-01
Symptoms will appear in equipment, as well as in human beings. when 'suffering from sickness. Symptoms of abnormality in equipment are vibration, noise, deformation, temperature, pressure, electric current, crack, wearing, leakage etc. these are called modes of failure. If the mode of failure is vibration then the vibration signature analysis can be effectively used in order to diagnose the machinery problems. Much valuable information is contained within these vibration 'Spectra' or 'Signatures' but is only of use if the analyst can unlock its 'Secrets'. This paper documents a vibration problem in the motor of a centrifugal pump (Type ETA). It focuses mainly on the roll of modern vibration monitoring system in problem analysis. The problem experienced was the motor unstability and noise due to high vibration. Using enhanced vibration signature data, the problem was analyzed. which suggested that the rotor eccentricity was the cause of excessive noise and vibration in the motor. In conclusion, advanced electronic monitoring and diagnostic systems provide powerful information for machine's condition assessment and problem analysis. Appropriate interpretation and use of this information is important for accurate and effective vibration analysis. (author)
selective excitation of vibrational modes of polyatomic molecule
Indian Academy of Sciences (India)
Abstract. Mode-selective dynamics of triatomic molecule in the electronic ground state under continuous wave laser pulse is investigated for the discrete vibrational bound states. A non-perturbative approach has been used to analyse the vibrational couplings and dynamics of the molecule. Keywords. Polyatomic molecule ...
Response of APS storage ring basemat to ambient vibration
International Nuclear Information System (INIS)
Jendrzejczyk, J.A.; Wambsganss, M.W.; Smith, R.K.
1992-08-01
The storage ring of the Advanced Photon Source (APS) facility at Argonne is very sensitive to vibration. Large vibration amplitudes would result in degraded machine performance. Because the storage ring assembly is supported on the storage ring basemat, the dynamics of the basemat are critical to successful operation. Before construction began, a survey of site ground vibration indicated that the site was acceptable from a vibration standpoint. When construction of the linear accelerator (Linac) floor slab and shielding walls was completed, dynamic-response measurements were conducted. The slab/wall system showed attenuation of soilborne vibrations in the horizontal directions, but an amplification (approximately a factor of 1.5) of vertical vibration at a frequency of 7.7 Hz. Vibration response of the slab/wall system at all other frequencies showed attenuation of soilborne vibrations. Dynamic-response measurements were also conducted on an incomplete section of the storage ring basemat. Although this section was not prototypical, results were similar to those of the Linac floor in the horizontal direction, showing large damping and attenuation of horizontal soilborne vibrations. While the basemat followed the soil vibration in the vertical direction, no large amplification was observed. However, measured vertical amplitudes on the basemat were a function of location, indicating a modal response. A series of vibration response measurements was conducted on a completed section of the storage ring basemat/tunnel adjacent and to the west of the Early Assembly Area (EAA) on May 21, 1992, and is the subject of this report
Phosphate vibrations as reporters of DNA hydration
Corcelli, Steven
The asymmetric phosphate stretch vibrational frequency is extraordinarily sensitive to its local solvent environment. Using density functional theory calculations on the model compound dimethyl phosphate, the asymmetric phosphate stretch vibrational frequency was found to shift linearly with the magnitude of an electric field along the symmetry axis of the PO2 moiety (i.e. the asymmetric phosphate stretch is an excellent linear vibrational Stark effect probe). With this linear relationship established, asymmetric phosphate stretch vibrational frequencies were computed during the course of a molecular dynamics simulation of fully hydrated DNA. Moreover, contributions to shifts in the frequencies from subpopulations of water molecules (e.g. backbone, minor groove, major groove, etc.) were calculated to reveal how phosphate vibrations report the onset of DNA hydration in experiments that vary the relative humidity of non-condensing (dry) DNA samples.
International Nuclear Information System (INIS)
Compton, Ryan; Gerardi, Helen K.; Weidinger, Daniel; Brown, Douglas J.; Dressick, Walter J.; Heilweil, Edwin J.; Owrutsky, Jeffrey C.
2013-01-01
Highlights: ► Static and transient infrared spectroscopy of pseudohalide bipyridine ruthenium complexes. ► Vibrational energy relaxes faster for the azide than the thiocyanate and cyanide analogs. ► Intramolecular vibrational relaxation is prevalent in cis-Ru(bpy) 2 (N 3 ) 2 . - Abstract: Static and transient infrared spectroscopy were used to investigate cis-Ru(bpy) 2 (N 3 ) 2 (bpy = 2,2′-bipyridine), cis-Ru(bpy) 2 (NCS) 2 , and cis-Ru(bpy) 2 (CN) 2 in solution. The NC stretching IR band for cis-Ru(bpy) 2 (NCS) 2 appears at higher frequency (∼2106 cm −1 in DMSO) than for the free NCS − anion while the IR bands for the azide and cyanide complexes are closer to those of the respective free anions. The vibrational energy relaxation (VER) lifetime for the azide complex is found to be much shorter (∼5 ps) than for either the NCS or CN species (both ∼70 ps in DMSO) and the lifetimes resemble those for each corresponding free anion in solution. However, for cis-Ru(bpy) 2 (N 3 ) 2 , it is determined that the transition frequency depends more on the solvent than the VER lifetime implying that intramolecular vibrational relaxation is predominant over solvent energy-extracting interactions. These results are compared to the behavior of other related metal complexes in solution
[Occupational standing vibration rate and vibrational diseases].
Karnaukh, N G; Vyshchipan, V F; Haumenko, B S
2003-12-01
Occupational standing vibration rate is proposed in evaluating a degree of impairment of an organism activity. It will allow more widely to introduce specification of quality and quantity in assessment of the development of vibrational disease. According out-patient and inpatient obtained data we have established criterial values of functional changes in accordance with accumulated occupational standing vibration rate. The nomogram was worked out for defining a risk of the development of vibrational disease in mine workers. This nomogram more objectively can help in diagnostics of the disease.
Vibrational lifetimes of protein amide modes
International Nuclear Information System (INIS)
Peterson, K.A.; Rella, C.A.
1995-01-01
Measurement of the lifetimes of vibrational modes in proteins has been achieved with a single frequency infrared pump-probe technique using the Stanford Picosecond Free-electron Laser, These are the first direct measurements of vibrational dynamics in the polyamide structure of proteins. In this study, modes associated with the protein backbone are investigated. Results for the amide I band, which consists mainly of the stretching motion of the carbonyl unit of the amide linkage, show that relaxation from the first vibrational excited level (v=1) to the vibrational ground state (v=0) occurs within 1.5 picoseconds with apparent first order kinetics. Comparison of lifetimes for myoglobin and azurin, which have differing secondary structures, show a small but significant difference. The lifetime for the amide I band of myoglobin is 300 femtoseconds shorter than for azurin. Further measurements are in progress on other backbone vibrational modes and on the temperature dependence of the lifetimes. Comparison of vibrational dynamics for proteins with differing secondary structure and for different vibrational modes within a protein will lead to a greater understanding of energy transfer and dissipation in biological systems. In addition, these results have relevance to tissue ablation studies which have been conducted with pulsed infrared lasers. Vibrational lifetimes are necessary for calculating the rate at which the energy from absorbed infrared photons is converted to equilibrium thermal energy within the irradiated volume. The very fast vibrational lifetimes measured here indicate that mechanisms which involve direct vibrational up-pumping of the amide modes with consecutive laser pulses, leading to bond breakage or weakening, are not valid
Vibration behavior optimization of planetary gear sets
Directory of Open Access Journals (Sweden)
Farshad Shakeri Aski
2014-12-01
Full Text Available This paper presents a global optimization method focused on planetary gear vibration reduction by means of tip relief profile modifications. A nonlinear dynamic model is used to study the vibration behavior. In order to investigate the optimal radius and amplitude, Brute Force method optimization is used. One approach in optimization is straightforward and requires considerable computation power: brute force methods try to calculate all possible solutions and decide afterwards which one is the best. Results show the influence of optimal profile on planetary gear vibrations.
RESEARCH OF BRIDGE STRUCTURE VIBRATION CHARACTERISTICS
Directory of Open Access Journals (Sweden)
V.P. Babak
2005-02-01
Full Text Available Bridge structure test results with using different types of dynamic force have been considered. It has been shown, that the developed technique of registering and processing vibration signals allows obtaining thin spectrum structure. The analysis of its change that is defined by the type of structure loading applied has been carried out. Key parameters of the vibration signals registered have been defined.
Aircraft gas turbine engine vibration diagnostics
Stanislav Fábry; Marek Češkovič
2017-01-01
In the Czech and Slovak aviation are in service elderly aircrafts, usually produced in former Soviet Union. Their power units can be operated in more efficient way, in case of using additional diagnostic methods that allow evaluating their health. Vibration diagnostics is one of the methods indicating changes of rotational machine dynamics. Ground tests of aircraft gas turbine engines allow vibration recording and analysis. Results contribute to airworthiness evaluation and making corrections...
Beecher, L. C.; Williams, F. T.
1970-01-01
Gas-driven vibration exciter produces a sinusoidal excitation function controllable in frequency and in amplitude. It allows direct vibration testing of components under normal loads, removing the possibility of component damage due to high static pressure.
Vibration Analysis of Beam and Block Precast Slab System due to Human Vibrations
Chik, T. N. T.; Kamil, M. R. H.; Yusoff, N. A.
2018-04-01
Beam and block precast slabs system are very efficient which generally give maximum structural performance where their voids based on the design of the unit soffit block allow a significant reduction of the whole slab self-weight. Initially for some combinations of components or the joint connection of the structural slab, this structural system may be susceptible to excessive vibrations that could effects the performance and also serviceability. Dynamic forces are excited from people walking and jumping which produced vibrations to the slab system in the buildings. Few studies concluded that human induced vibration on precast slabs system may be harmful to structural performance and mitigate the human comfort level. This study will investigate the vibration analysis of beam and block precast slab by using finite element method at the school building. Human activities which are excited from jumping and walking will induce the vibrations signal to the building. Laser Doppler Vibrometer (LDV) was used to measure the dynamic responses of slab towards the vibration sources. Five different points were assigned specifically where each of location will determine the behaviour of the entire slabs. The finite element analyses were developed in ABAQUS software and the data was further processed in MATLAB ModalV to assess the vibration criteria. The results indicated that the beam and block precast systems adequate enough to the vibration serviceability and human comfort criteria. The overall vibration level obtained was fell under VC-E curve which it is generally under the maximum permissible level of vibrations. The vibration level on the slab is acceptable within the limit that have been used by Gordon.
Indian Academy of Sciences (India)
We make music by causing strings, membranes, or air columns to vibrate. Engineers design safe structures by control- ling vibrations. I will describe to you a very simple vibrating system and the mathematics needed to analyse it. The ideas were born in the work of Joseph-Louis Lagrange (1736–1813), and I begin by quot-.
Hewitt, Sue; Dong, Ren G; Welcome, Daniel E; McDowell, Thomas W
2015-03-01
For exposure to hand-transmitted vibration (HTV), personal protective equipment is sold in the form of anti-vibration (AV) gloves, but it remains unclear how much these gloves actually reduce vibration exposure or prevent the development of hand-arm vibration syndrome in the workplace. This commentary describes some of the issues that surround the classification of AV gloves, the assessment of their effectiveness and their applicability in the workplace. The available information shows that AV gloves are unreliable as devices for controlling HTV exposures. Other means of vibration control, such as using alternative production techniques, low-vibration machinery, routine preventative maintenance regimes, and controlling exposure durations are far more likely to deliver effective vibration reductions and should be implemented. Furthermore, AV gloves may introduce some adverse effects such as increasing grip force and reducing manual dexterity. Therefore, one should balance the benefits of AV gloves and their potential adverse effects if their use is considered. © Crown copyright 2014.
Energy Technology Data Exchange (ETDEWEB)
Fukada, S.; Kajikawa, Y. [Kanazawa Univ. (Japan)] Tsunomoto, M. [Oriental Construction Co. Ltd., Tokyo (Japan)
1998-10-21
In this study, experiments on and simulation analyses of the travels of vehicles on a 2 span continuous PC cable-stayed bridge were conducted, and the propriety of the analysis method, vibration characteristics of traveling vehicles, and characteristics of the effective amplitude and dynamic increment factor concerning various traveling states were discussed. The results show that actually measured value of strain to a dynamic load substantially agreed with the value of strain obtained in the case of analysis in which the end fulcrums were movable. The actually measured value of natural frequency was between the value of natural frequency in the case of analysis in which the end fulcrums were movable and the value in the case of analysis in which the end fulcrums were in a pin state. The actually measured value of mode damping constant agreed exactly with the value of mode damping constant calculated on the assumption that the damping constant of the main beam is 1.0%, those of the main tower and bridge pier 5.0%, and that of the cables 0.1%. Therefore, the damping matrix in the dynamic response analysis was determined on the basis of the damping constants of these members. The characteristics of the effective amplitude and dynamic increment factor in various traveling states of the results of the simulation analysis are in comparatively good agreement with those of experiments. 20 refs., 17 figs., 5 tabs.
Czech Academy of Sciences Publication Activity Database
Menšík, Miroslav; Král, Karel
2009-01-01
Roč. 27, č. 3 (2009), s. 671-684 ISSN 0137-1339. [International Conference on Electrical and Related Properties of Organic Solids /11./. Piechowice, 13.07.2008-17.07.2008] R&D Projects: GA AV ČR KAN401770651; GA ČR GA202/07/0643 Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z10100520 Keywords : electron-vibrational interaction * non-adiabatic coupling * resonant energy transfer Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.384, year: 2009
Cases of coupled vibrations and prametric instability in rotating machines
Luneno, Jean-Claude
2012-01-01
The principal task in this research project was to analyse the causes and consequences of coupled vibrations and parametric instability in hydropower rotors; where both horizontal and vertical machines are involved. Vibration is a well-known undesirable behavior of dynamical systems characterised by persistent periodic, quasi-periodic or chaotic motions. Vibrations generate noise and cause fatigue, which initiates cracks in mechanical structures. Motions coupling can in some cases augment the...
Forced vibrations of rotating circular cylindrical shells
International Nuclear Information System (INIS)
Igawa, Hirotaka; Maruyama, Yoshiyuki; Endo, Mitsuru
1995-01-01
Forced vibrations of rotating circular cylindrical shells are investigated. Basic equations, including the effect of initial stress due to rotation, are formulated by the finite-element method. The characteristic relations for finite elements are derived from the energy principle by considering the finite strain. The equations of motion can be separated into quasi-static and dynamic ones, i.e., the equations in the steady rotating state and those in the vibration state. Radial concentrated impulses are considered as the external dynamic force. The transient responses of circular cylindrical shells are numerically calculated under various boundary conditions and rotating speeds. (author)
Structural Dynamics Laboratory (SDL)
Federal Laboratory Consortium — Structural dynamic testing is performed to verify the survivability of a component or assembly when exposed to vibration stress screening, or a controlled simulation...
Vibration of imperfect rotating disk
Directory of Open Access Journals (Sweden)
Půst L.
2011-12-01
Full Text Available This study is concerned with the theoretical and numerical calculations of the flexural vibrations of a bladed disk. The main focus of this study is to elaborate the basic background for diagnostic and identification methods for ascertaining the main properties of the real structure or an experimental model of turbine disks. The reduction of undesirable vibrations of blades is proposed by using damping heads, which on the experimental model of turbine disk are applied only on a limited number of blades. This partial setting of damping heads introduces imperfection in mass, stiffness and damping distribution on the periphery and leads to more complicated dynamic properties than those of a perfect disk. Calculation of FEM model and analytic—numerical solution of disk behaviour in the limited (two modes frequency range shows the splitting of resonance with an increasing speed of disk rotation. The spectrum of resonance is twice denser than that of a perfect disk.
Vibrations and stability of complex beam systems
Stojanović, Vladimir
2015-01-01
This book reports on solved problems concerning vibrations and stability of complex beam systems. The complexity of a system is considered from two points of view: the complexity originating from the nature of the structure, in the case of two or more elastically connected beams; and the complexity derived from the dynamic behavior of the system, in the case of a damaged single beam, resulting from the harm done to its simple structure. Furthermore, the book describes the analytical derivation of equations of two or more elastically connected beams, using four different theories (Euler, Rayleigh, Timoshenko and Reddy-Bickford). It also reports on a new, improved p-version of the finite element method for geometrically nonlinear vibrations. The new method provides more accurate approximations of solutions, while also allowing us to analyze geometrically nonlinear vibrations. The book describes the appearance of longitudinal vibrations of damaged clamped-clamped beams as a result of discontinuity (damage). It...
Vibrational and Rotational Energy Relaxation in Liquids
DEFF Research Database (Denmark)
Petersen, Jakob
Vibrational and rotational energy relaxation in liquids are studied by means of computer simulations. As a precursor for studying vibrational energy relaxation of a solute molecule subsequent to the formation of a chemical bond, the validity of the classical Bersohn-Zewail model for describing......, the vibrational energy relaxation of I2 subsequent to photodissociation and recombination in CCl4 is studied using classical Molecular Dynamics simulations. The vibrational relaxation times and the time-dependent I-I pair distribution function are compared to new experimental results, and a qualitative agreement...... is found in both cases. Furthermore, the rotational energy relaxation of H2O in liquid water is studied via simulations and a power-and-work analysis. The mechanism of the energy transfer from the rotationally excited H2O molecule to its water neighbors is elucidated, i.e. the energy-accepting degrees...
Interfacial instabilities in vibrated fluids
Porter, Jeff; Laverón-Simavilla, Ana; Tinao Perez-Miravete, Ignacio; Fernandez Fraile, Jose Javier
2016-07-01
Vibrations induce a range of different interfacial phenomena in fluid systems depending on the frequency and orientation of the forcing. With gravity, (large) interfaces are approximately flat and there is a qualitative difference between vertical and horizontal forcing. Sufficient vertical forcing produces subharmonic standing waves (Faraday waves) that extend over the whole interface. Horizontal forcing can excite both localized and extended interfacial phenomena. The vibrating solid boundaries act as wavemakers to excite traveling waves (or sloshing modes at low frequencies) but they also drive evanescent bulk modes whose oscillatory pressure gradient can parametrically excite subharmonic surface waves like cross-waves. Depending on the magnitude of the damping and the aspect ratio of the container, these locally generated surfaces waves may interact in the interior resulting in temporal modulation and other complex dynamics. In the case where the interface separates two fluids of different density in, for example, a rectangular container, the mass transfer due to vertical motion near the endwalls requires a counterflow in the interior region that can lead to a Kelvin-Helmholtz type instability and a ``frozen wave" pattern. In microgravity, the dominance of surface forces favors non-flat equilibrium configurations and the distinction between vertical and horizontal applied forcing can be lost. Hysteresis and multiplicity of solutions are more common, especially in non-wetting systems where disconnected (partial) volumes of fluid can be established. Furthermore, the vibrational field contributes a dynamic pressure term that competes with surface tension to select the (time averaged) shape of the surface. These new (quasi-static) surface configurations, known as vibroequilibria, can differ substantially from the hydrostatic state. There is a tendency for the interface to orient perpendicular to the vibrational axis and, in some cases, a bulge or cavity is induced
10th International Conference on Vibration Problems
Horáček, Jaromír; Okrouhlík, Miloslav; Marvalová, Bohdana; Verhulst, Ferdinand; Sawicki, Jerzy; Vibration Problems ICOVP 2011
2011-01-01
This volume presents the Proceedings of the 10th International Conference on Vibration Problems, September 5-8, 2011, Prague, Czech Republic. Since they started in 1990 the ICOVP conferences have matured into a reference platform reflecting the state-of-the-art of dynamics in the broadest sense, bringing together scientists from different backgrounds who are actively working on vibration-related problems in theoretical, experimental and applied dynamics, thus facilitating a lively exchange of ideas, methods and results. Dynamics as a scientific discipline draws inspiration from a large variety of engineering areas, such as Mechanical and Civil Engineering, Aero and Space Technology, Wind and Earthquake Engineering and Transport and Building Machinery. Moreover, the basic research in dynamics nowadays includes many fields of theoretical physics and various interdisciplinary subject areas. ICOVP 2011 covers all branches of dynamics and offers the most up-to-date results and developments in a high-quality select...
Vendrell, Oriol; Brill, Michael; Gatti, Fabien; Lauvergnat, David; Meyer, Hans-Dieter
2009-06-21
Quantum dynamical calculations are reported for the zero point energy, several low-lying vibrational states, and the infrared spectrum of the H(5)O(2)(+) cation. The calculations are performed by the multiconfiguration time-dependent Hartree (MCTDH) method. A new vector parametrization based on a mixed Jacobi-valence description of the system is presented. With this parametrization the potential energy surface coupling is reduced with respect to a full Jacobi description, providing a better convergence of the n-mode representation of the potential. However, new coupling terms appear in the kinetic energy operator. These terms are derived and discussed. A mode-combination scheme based on six combined coordinates is used, and the representation of the 15-dimensional potential in terms of a six-combined mode cluster expansion including up to some 7-dimensional grids is discussed. A statistical analysis of the accuracy of the n-mode representation of the potential at all orders is performed. Benchmark, fully converged results are reported for the zero point energy, which lie within the statistical uncertainty of the reference diffusion Monte Carlo result for this system. Some low-lying vibrationally excited eigenstates are computed by block improved relaxation, illustrating the applicability of the approach to large systems. Benchmark calculations of the linear infrared spectrum are provided, and convergence with increasing size of the time-dependent basis and as a function of the order of the n-mode representation is studied. The calculations presented here make use of recent developments in the parallel version of the MCTDH code, which are briefly discussed. We also show that the infrared spectrum can be computed, to a very good approximation, within D(2d) symmetry, instead of the G(16) symmetry used before, in which the complete rotation of one water molecule with respect to the other is allowed, thus simplifying the dynamical problem.
Structural Design Optimization On Thermally Induced Vibration
International Nuclear Information System (INIS)
Gu, Yuanxian; Chen, Biaosong; Zhang, Hongwu; Zhao, Guozhong
2002-01-01
The numerical method of design optimization for structural thermally induced vibration is originally studied in this paper and implemented in application software JIFEX. The direct and adjoint methods of sensitivity analysis for thermal induced vibration coupled with both linear and nonlinear transient heat conduction is firstly proposed. Based on the finite element method, the structural linear dynamics is treated simultaneously with coupled linear and nonlinear transient heat structural linear dynamics is treated simultaneously with coupled linear and nonlinear transient heat conduction. In the thermal analysis model, the nonlinear heat conduction considered is result from the radiation and temperature-dependent materials. The sensitivity analysis of transient linear and nonlinear heat conduction is performed with the precise time integration method. And then, the sensitivity analysis of structural transient dynamics is performed by the Newmark method. Both the direct method and the adjoint method are employed to derive the sensitivity equations of thermal vibration, and there are two adjoint vectors of structure and heat conduction respectively. The coupling effect of heat conduction on thermal vibration in the sensitivity analysis is particularly investigated. With coupling sensitivity analysis, the optimization model is constructed and solved by the sequential linear programming or sequential quadratic programming algorithm. The methods proposed have been implemented in the application software JIFEX of structural design optimization, and numerical examples are given to illustrate the methods and usage of structural design optimization on thermally induced vibration
Bandshapes in vibrational spectroscopy
International Nuclear Information System (INIS)
Dijkman, F.G.
1978-01-01
A detailed account is given of the development of modern bandshape theories since 1965. An investigation into the relative contributions of statistical irreversible relaxation processes is described, for a series of molecules in which gradually the length of one molecular axis is increased. An investigation into the theoretical and experimental investigation of the broadening brought about by the effect of fluctuating intermolecular potentials on the vibrational frequency is also described. The effect of an intermolecular perturbative potential on anharmonic and Morse oscillators is discussed and the results are presented of a computation on the broadening of the vibrational band of some diatomic molecules in a rigid lattice type solvent. The broadening of the OH-stretching vibration in a number of aliphatic alcohols, the vibrational bandshapes of the acetylenic C-H stretching vibration and of the symmetric methyl stretching vibration are investigated. (Auth./ C.F.)
Energy Technology Data Exchange (ETDEWEB)
Reddy, Sandeep K.; Straight, Shelby C.; Bajaj, Pushp; Huy Pham, C.; Riera, Marc; Moberg, Daniel R.; Morales, Miguel A.; Knight, Chris; Götz, Andreas W.; Paesani, Francesco
2016-11-21
The MB-pol many-body potential has recently emerged as an accurate molecular model for water simulations from the gas to the condensed phase. In this study, the accuracy of MB-pol is systematically assessed across the three phases of water through extensive comparisons with experimental data and high-level ab initio calculations. Individual many-body contributions to the interaction energies as well as vibrational spectra of water clusters calculated with MB-pol are in excellent agreement with reference data obtained at the coupled cluster level. Several structural, thermodynamic, and dynamical properties of the liquid phase at atmospheric pressure are investigated through classical molecular dynamics simulations as a function of temperature. The structural properties of the liquid phase are in nearly quantitative agreement with X-ray diffraction data available over the temperature range from 268 to 368 K. The analysis of other thermodynamic and dynamical quantities emphasizes the importance of explicitly including nuclear quantum effects in the simulations, especially at low temperature, for a physically correct description of the properties of liquid water. Furthermore, both densities and lattice energies of several ice phases are also correctly reproduced by MB-pol. Following a recent study of DFT models for water, a score is assigned to each computed property, which demonstrates the high and, in many respects, unprecedented accuracy of MB-pol in representing all three phases of water. Published by AIP Publishing.
Floor Vibrations - as Induced and Reduced by Humans
DEFF Research Database (Denmark)
Pedersen, Lars
. As for dynamic loads focus is placed on heel impact excitation and actions of jumping people causing floor vibrations. As for interaction between stationary humans and the vibrating floor focus is on modelling humans as oscillating spring-mass-damper systems attached to the floor rather than as simple added mass...
Large amplitude forced vibration analysis of cross-beam system ...
African Journals Online (AJOL)
Large amplitude forced vibration behaviour of cross-beam system under harmonic excitation is studied, incorporating the effect of geometric non-linearity. The forced vibration analysis is carried out in an indirect way, in which the dynamic system is assumed to satisfy the force equilibrium condition at peak load value, thus ...
Transfer vibration through spine
Benyovszky, Adam
2012-01-01
Transfer Vibration through Spine Abstract In the bachelor project we deal with the topic of Transfer Vibration through Spine. The problem of TVS is trying to be solved by the critical review method. We analyse some diagnostic methods and methods of treatment based on this principle. Close attention is paid to the method of Transfer Vibration through Spine that is being currently solved by The Research Institute of Thermomechanics in The Czech Academy of Sciences in cooperation with Faculty of...
Sarau Devi, A.; Aswathy, V. V.; Sheena Mary, Y.; Yohannan Panicker, C.; Armaković, Stevan; Armaković, Sanja J.; Ravindran, Reena; Van Alsenoy, C.
2017-11-01
The vibrational spectra and corresponding vibrational assignments of 2-(3-methoxy-4-hydroxyphenyl)benzothiazole is reported. Single crystal XRD data of the title compound is reported and the orientation of methoxy group is cis to nitrogen atom of the thiazole ring. The phenyl ring breathing modes of the title compound are assigned at 1042 and 731 cm-1 theoretically. The charge transfer within the molecule is studied using frontier molecular orbital analysis. The chemical reactivity descriptors are calculated theoretically. The NMR spectral data predicted theoretically are in good agreement with the experimental data. The strong negative region spread over the phenyl rings, nitrogen atom and oxygen atom of the hydroxyl group in the MEP plot is due to the immense conjugative and hyper conjugative resonance charge delocalization of π-electrons. Molecule sites prone to electrophilic attacks have been determined by analysis of ALIE surfaces, while Fukui functions provided further insight into the local reactivity properties of title molecule. Autoxidation properties have been investigated by calculation of bond dissociation energies (BDEs) of hydrogen abstraction, while BDEs of the rest of the single acyclic bonds were valuable for the further investigation of degradation properties. Calculation of radial distribution functions was performed in order to determine which atoms of the title molecule have pronounced interactions with water molecules. The title compound forms a stable complex with aryl hydrocarbon receptor and can be a lead compound for developing new anti-tumor drug. Antimicrobial properties of the title compound was screened against one bacterial culture Escherchia coli and four fungal cultures viz., Aspergillus niger, Pencillum chrysogenum, Saccharomyces cerevisiae and Rhyzopus stolonifer.
International Nuclear Information System (INIS)
Perotin, L.; Granger, S.
1997-01-01
In order to improve the prediction of wear problems due to flow-induced vibration in PWR components, an inverse method for identifying a distributed random excitation acting on a dynamical system has been developed at EDF. This method, whose applications go far beyond the flow-induced vibration field, has been implemented into the MEIDEE software. This method is presented. (author)
Vibration problems in nuclear power plants - challenges and opportunities
International Nuclear Information System (INIS)
Kakodkar, A.; Moorthy, R.I.K.
1993-01-01
Through specific examples like the Dhruva fuel vibration problems, it is shown that in different stages of a plant construction and operation that the vibration problems provide many challenging opportunities for innovative solutions to be applied. These examples also show that in-depth understanding of the dynamics of structures and equipment and general engineering skill could be used profitably to solve the different vibration problems and also to use the vibration signals effectively to monitor the health of the equipment and structures. Considering the safety and economic implications it can be concluded that the scope for application of these techniques is rather limitless. (author). 7 refs., 10 figs
Vibration diagnostics instrumentation for ILC
Energy Technology Data Exchange (ETDEWEB)
Bertolini, A.
2007-06-15
The future e{sup -}e{sup +} 500 GeV International Linear Collider will rely on unprecedented nanometer scale particle beam size at the interaction point, in order to achieve the design luminosity. Tight tolerances on static and dynamic alignment of the accelerator cavities and optical components are demanded to transport and focus the high energy electron and positron beams with reasonable position jitter and low emittance. A brief review of techniques and devices evaluated and developed so far for the vibration diagnostics of the machine is presented in this paper. (orig.)
Vibration diagnostics instrumentation for ILC
International Nuclear Information System (INIS)
Bertolini, A.
2007-06-01
The future e - e + 500 GeV International Linear Collider will rely on unprecedented nanometer scale particle beam size at the interaction point, in order to achieve the design luminosity. Tight tolerances on static and dynamic alignment of the accelerator cavities and optical components are demanded to transport and focus the high energy electron and positron beams with reasonable position jitter and low emittance. A brief review of techniques and devices evaluated and developed so far for the vibration diagnostics of the machine is presented in this paper. (orig.)
Measuring vibrations in fuel channels CNE
International Nuclear Information System (INIS)
Martín Ghiselli, A.; Fiori, J.; Sacchi, M.; Villabrille, G.
2013-01-01
This paper present a description of implementation and execution of vibration measurements made at the request of NUCLEOELECTRICA ARGENTINA S.A. on the ends of the reactor fuel channels of Embalse Nuclear Power Plant to explore possible differences between the dynamic behavior of empty fuel channel and with full charge of fuel elements inside. (author)
Damage Detection by Laser Vibration Measurement
Directory of Open Access Journals (Sweden)
Elena Daniela Birdeanu
2008-10-01
Full Text Available The technique based on the vibration analysis by scanning laser Doppler vibrometer is one of the most promising, allowing to extract also small defect and to directly correlate it to local dynamic stiffness and structural integrity. In fact, the measurement capabilities of vibrometers, such as sensitivity, accuracy and reduced intrusively, allow having a very powerful instrument in diagnostic.
Mechanical vibration and shock analysis, sinusoidal vibration
Lalanne, Christian
2014-01-01
Everything engineers need to know about mechanical vibration and shock...in one authoritative reference work! This fully updated and revised 3rd edition addresses the entire field of mechanical vibration and shock as one of the most important types of load and stress applied to structures, machines and components in the real world. Examples include everything from the regular and predictable loads applied to turbines, motors or helicopters by the spinning of their constituent parts to the ability of buildings to withstand damage from wind loads or explosions, and the need for cars to m
Hydrodynamics induced vibration to trash-racks
International Nuclear Information System (INIS)
Sadrnejad, A.
2002-01-01
In conventional power plants trash-racks are provided at the intakes to protect the turbines. In pumped storage plants, the draft tube or tailrace must also have trash-racks to protect the units while pumping. Because the loads believed to cause many failures of trash-racks are dynamic in nature, it is important to understand the dynamic characteristics of trash-racks structures in general and a single rack in particular. The classical added-mass solution structure-fluid dynamic interaction is known as an approximate solution procedure. An accurate added-mass approach mixed with implementation in finite element framework is proposed. In this proposal, experimental conclusions, supported by theory, led to presentation of more accurate results in vibration of trash-racks. This numerical solution as a powerful method to solve such a complex problem can be employed to carry out dynamic characteristics of these structures while vibrating in water
Hydroelastic Vibrations of Ships
DEFF Research Database (Denmark)
Jensen, Jørgen Juncher; Folsø, Rasmus
2002-01-01
A formula for the necessary hull girder bending stiffness required to avoid serious springing vibrations is derived. The expression takes into account the zero crossing period of the waves, the ship speed and main dimensions. For whipping vibrations the probability of exceedance for the combined...
Gearbox vibration diagnostic analyzer
1992-01-01
This report describes the Gearbox Vibration Diagnostic Analyzer installed in the NASA Lewis Research Center's 500 HP Helicopter Transmission Test Stand to monitor gearbox testing. The vibration of the gearbox is analyzed using diagnostic algorithms to calculate a parameter indicating damaged components.
Handbook Of Noise And Vibration
International Nuclear Information System (INIS)
1995-12-01
This book is about noise and vibration. The first chapter has explanations of noise such as basic of sound, influence of noise, assessment of noise, measurement of prevention of noise and technology, case of noise measurement and soundproof. The second chapter describes vibration with outline, theory of vibration, interpretation of vibration, measurement for reduction of vibration, case of design of protection against vibration. It deals with related regulation and method of measurement.
Structural Characteristics of Rotate Vector Reducer Free Vibration
Directory of Open Access Journals (Sweden)
Chuan Chen
2017-01-01
Full Text Available For RV reducer widely used in robots, vibration significantly affects its performance. A lumped parameter model is developed to investigate free vibration characteristics without and with gyroscopic effects. The dynamic model considers key factors affecting vibration such as involute and cycloid gear mesh stiffness, crankshaft bending stiffness, and bearing stiffness. For both nongyroscopic and gyroscopic systems, free vibrations are examined and compared with each other. Results reveal the specific structure of vibration modes for both systems, which results from symmetry structure of RV reducer. According to vibration of the central components, vibration modes of two systems can be classified into three types, rotational, translational, and planetary component modes. Different from nongyroscopic system, the eigenvalues with gyroscopic effects are complex-valued and speed-dependent. The eigenvalue for a range of carrier speeds is obtained by numerical simulation. Divergence and flutter instability is observed at speeds adjacent to critical speeds. Furthermore, the work studies effects of key factors, which include crankshaft eccentricity and the number of pins, on eigenvalues. Finally, experiment is performed to verify the effectiveness of the dynamic model. The research of this paper is helpful for the analysis on free vibration and dynamic design of RV reducer.
Vibration insensitive interferometry
Millerd, James; Brock, Neal; Hayes, John; Kimbrough, Brad; North-Morris, Michael; Wyant, James C.
2017-11-01
The largest limitation of phase-shifting interferometry for optical testing is the sensitivity to the environment, both vibration and air turbulence. An interferometer using temporal phase-shifting is very sensitive to vibration because the various phase shifted frames of interferometric data are taken at different times and vibration causes the phase shifts between the data frames to be different from what is desired. Vibration effects can be reduced by taking all the phase shifted frames simultaneously and turbulence effects can be reduced by averaging many measurements. There are several techniques for simultaneously obtaining several phase-shifted interferograms and this paper will discuss two such techniques: 1) Simultaneous phase-shifting interferometry on a single detector array (PhaseCam) and 2) Micropolarizer phase-shifting array. The application of these techniques for the testing of large optical components, measurement of vibrational modes, the phasing of segmented optical components, and the measurement of deformations of large diffuse structures is described.
Vibrations of rotating machinery
Matsushita, Osami; Kanki, Hiroshi; Kobayashi, Masao; Keogh, Patrick
2017-01-01
This book opens with an explanation of the vibrations of a single degree-of-freedom (dof) system for all beginners. Subsequently, vibration analysis of multi-dof systems is explained by modal analysis. Mode synthesis modeling is then introduced for system reduction, which aids understanding in a simplified manner of how complicated rotors behave. Rotor balancing techniques are offered for rigid and flexible rotors through several examples. Consideration of gyroscopic influences on the rotordynamics is then provided and vibration evaluation of a rotor-bearing system is emphasized in terms of forward and backward whirl rotor motions through eigenvalue (natural frequency and damping ratio) analysis. In addition to these rotordynamics concerning rotating shaft vibration measured in a stationary reference frame, blade vibrations are analyzed with Coriolis forces expressed in a rotating reference frame. Other phenomena that may be assessed in stationary and rotating reference frames include stability characteristic...
A Study on the Vibration Measurement and Analysis of Rotating Machine Foundations
Energy Technology Data Exchange (ETDEWEB)
Lee, Jong Rim; Jeon, Kyu Sik; Suh, Young Pyo; Cho, Chul Hwan; Kim, Sung Taeg; Lee, Myung Kyu [Korea Electric Power Research Institute, Taejon (Korea, Republic of)
1996-12-31
To search for the cause of vibration problem of rotating machine in the power plant, first the rotating machine is classified according to their type and each vibration characteristic is reviewed. The criteria for the evaluation of mechanical vibration effect on the structure and human being during the design of machine foundation is described below. The foundation of rotating machine is classified according to its shape and some factors are described which should be considered during dynamic modeling analysis for its correct result. Also the methods of incorporating foundation vibration into mechanical vibration analysis are reviewed. Type of vibration measurement and analysis which is used to find out the dynamic characteristic of structure is described in accordance with its signal processing and measuring method. Measurement of vibration and its analysis when there occurs real vibration troubles in power plant are compared with the results of numerical modeling as case studies. (author). 16 refs., 23 figs.
Peculiarities of Vibration Characteristics of Amorphous Ices
Gets, Kirill V.; Subbotin, Oleg S.; Belosludov, Vladimir R.
2012-03-01
Dynamic properties of low (LDA), high (HDA) and very high (VHDA) density amorphous ices were investigated within the approach based on Lattice Dynamics simulations. In this approach, we assume that the short-range molecular order mainly determines the dynamic and thermodynamic properties of amorphous ices. Simulation cell of 512 water molecules with periodical boundary conditions and disordering allows us to study dynamical properties and dispersion curves in the Brillouin zone of pseudo-crystal. Existence of collective phenomena in amorphous ices which is usual for crystals but anomalous for disordered phase was confirmed in our simulations. Molecule amplitudes of delocalized (collective) as well as localized vibrations have been considered.
Physical model study of neutron noise induced by vibration of reactor internals
International Nuclear Information System (INIS)
Liu Jinhui; Gu Fangyu
1999-01-01
The author presents a physical model of neutron noise induced by reactor internals vibration in frequency domain. Based on system control theory, the reactor dynamic equations are coupled with random vibration equation, and non-linear terms are also taken into accounted while treating the random vibration. Experiments carried out on a zero-power reactor show that the model can be used to describe dynamic character of neutron noise induced by internals' vibration. The model establishes a method to help to determine internals'vibration features, and to diagnosis anomalies through neutron noise
Vibration control for precision manufacturing at Sandia National Laboratories
Energy Technology Data Exchange (ETDEWEB)
Hinnerichs, T.; Martinez, D. [Sandia National Labs., Albuquerque, NM (United States). Structural Dynamics and Vibration Control Dept.
1995-04-01
Sandia National Laboratories performs R and D in structural dynamics and vibration suppression for precision applications in weapon systems, space, underwater, transportation and civil structures. Over the last decade these efforts have expanded into the areas of active vibration control and ``smart`` structures and material systems. In addition, Sandia has focused major resources towards technology to support weapon product development and agile manufacturing capability for defense and industrial applications. This paper will briefly describe the structural dynamics modeling and verification process currently in place at Sandia that supports vibration control and some specific applications of these techniques to manufacturing in the areas of lithography, machine tools and flexible robotics.
Vibration control for precision manufacturing at Sandia National Laboratories
International Nuclear Information System (INIS)
Hinnerichs, T.; Martinez, D.
1995-01-01
Sandia National Laboratories performs R and D in structural dynamics and vibration suppression for precision applications in weapon systems, space, underwater, transportation and civil structures. Over the last decade these efforts have expanded into the areas of active vibration control and ''smart'' structures and material systems. In addition, Sandia has focused major resources towards technology to support weapon product development and agile manufacturing capability for defense and industrial applications. This paper will briefly describe the structural dynamics modeling and verification process currently in place at Sandia that supports vibration control and some specific applications of these techniques to manufacturing in the areas of lithography, machine tools and flexible robotics
Rotor Vibration Reduction via Active Hybrid Bearings
DEFF Research Database (Denmark)
Nicoletti, Rodrigo; Santos, Ilmar
2002-01-01
The use of fluid power to reduce and control rotor vibration in rotating machines is investigated. An active hybrid bearing is studied, whose main objective is to reduce wear and vibration between rotating and stationary machinery parts. By injecting pressurised oil into the oil film, through...... orifices machined in the bearing pads, one can alter the machine dynamic characteristics, thus enhancing its operational range. A mathematical model of the rotor-bearing system, as well as of the hydraulic system, is presented. Numerical results of the system frequency response show good agreement...
Destructive vibration test of a concrete structure
International Nuclear Information System (INIS)
Chen, C.K.; Czarnecki, R.M.; Scholl, R.E.
1977-01-01
Two identical full-scale 4-story reinforced concrete structures were built in 1965-1966 at the Nevada Test Site to investigate their dynamic response behavior to underground nuclear explosions. For eight years following their construction, the structures were the subject of a continuing program of vibration testing, and substantial data has been collected on the elastic response of these structures. In 1974 it was decided to conduct a high-amplitude vibration test that would cause the south structure (free of partitions) to deform beyond its elastic limit and cause major structural damage. Results of the 1974 testing program are summarized
Optical Measurement of Cable and String Vibration
Directory of Open Access Journals (Sweden)
Y. Achkire
1998-01-01
Full Text Available This paper describes a non contacting measurement technique for the transverse vibration of small cables and strings using an analog position sensing detector. On the one hand, the sensor is used to monitor the cable vibrations of a small scale mock-up of a cable structure in order to validate the nonlinear cable dynamics model. On the other hand, the optical sensor is used to evaluate the performance of an active tendon control algorithm with guaranteed stability properties. It is demonstrated experimentally, that a force feedback control law based on a collocated force sensor measuring the tension in the cable is feasible and provides active damping in the cable.
Czech Academy of Sciences Publication Activity Database
Buixaderas, Elena; Nuzhnyy, Dmitry; Petzelt, Jan; Jin, L.; Damjanović, D.
2011-01-01
Roč. 84, č. 18 (2011), 184302/1-184302/12 ISSN 1098-0121 R&D Projects: GA ČR GAP204/10/0616 Institutional research plan: CEZ:AV0Z10100520 Keywords : phonons * lattice dynamics * PZT * IR spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.691, year: 2011
Time-resolved vibrational spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Tokmakoff, Andrei [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Champion, Paul [Northeastern Univ., Boston, MA (United States); Heilweil, Edwin J. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Nelson, Keith A. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ziegler, Larry [Boston Univ., MA (United States)
2009-05-14
This document contains the Proceedings from the 14th International Conference on Time-Resolved Vibrational Spectroscopy, which was held in Meredith, NH from May 9-14, 2009. The study of molecular dynamics in chemical reaction and biological processes using time-resolved spectroscopy plays an important role in our understanding of energy conversion, storage, and utilization problems. Fundamental studies of chemical reactivity, molecular rearrangements, and charge transport are broadly supported by the DOE's Office of Science because of their role in the development of alternative energy sources, the understanding of biological energy conversion processes, the efficient utilization of existing energy resources, and the mitigation of reactive intermediates in radiation chemistry. In addition, time-resolved spectroscopy is central to all fiveof DOE's grand challenges for fundamental energy science. The Time-Resolved Vibrational Spectroscopy conference is organized biennially to bring the leaders in this field from around the globe together with young scientists to discuss the most recent scientific and technological advances. The latest technology in ultrafast infrared, Raman, and terahertz spectroscopy and the scientific advances that these methods enable were covered. Particular emphasis was placed on new experimental methods used to probe molecular dynamics in liquids, solids, interfaces, nanostructured materials, and biomolecules.
Silicon micromachined vibrating gyroscopes
Voss, Ralf
1997-09-01
This work gives an overview of silicon micromachined vibrating gyroscopes. Market perspectives and fields of application are pointed out. The advantage of using silicon micromachining is discussed and estimations of the desired performance, especially for automobiles are given. The general principle of vibrating gyroscopes is explained. Vibrating silicon gyroscopes can be divided into seven classes. for each class the characteristic principle is presented and examples are given. Finally a specific sensor, based on a tuning fork for automotive applications with a sensitivity of 250(mu) V/degrees is described in detail.
System Detects Vibrational Instabilities
Bozeman, Richard J., Jr.
1990-01-01
Sustained vibrations at two critical frequencies trigger diagnostic response or shutdown. Vibration-analyzing electronic system detects instabilities of combustion in rocket engine. Controls pulse-mode firing of engine and identifies vibrations above threshold amplitude at 5.9 and/or 12kHz. Adapted to other detection and/or control schemes involving simultaneous real-time detection of signals above or below preset amplitudes at two or more specified frequencies. Potential applications include rotating machinery and encoders and decoders in security systems.
Quantum dynamics of vibrational excitations and vibrational charge ...
Indian Academy of Sciences (India)
Administrator
Dedicated to the memory of the late Professor S K Rangarajan ... Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036. # ... likely ways to improve the results are discussed in terms of the inclusion of higher excited ...
Vibration Based Sun Gear Damage Detection
Hood, Adrian; LaBerge, Kelsen; Lewicki, David; Pines, Darryll
2013-01-01
Seeded fault experiments were conducted on the planetary stage of an OH-58C helicopter transmission. Two vibration based methods are discussed that isolate the dynamics of the sun gear from that of the planet gears, bearings, input spiral bevel stage, and other components in and around the gearbox. Three damaged sun gears: two spalled and one cracked, serve as the focus of this current work. A non-sequential vibration separation algorithm was developed and the resulting signals analyzed. The second method uses only the time synchronously averaged data but takes advantage of the signal/source mapping required for vibration separation. Both algorithms were successful in identifying the spall damage. Sun gear damage was confirmed by the presence of sun mesh groups. The sun tooth crack condition was inconclusive.
DEFF Research Database (Denmark)
Nielsen, Søren R. K.
The present textbook has been written based on previous lecture notes for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M. Sc. students in structural engineering. The present 4th edition of this textbook on linear stochastic vibration th...... theory is unchanged in comparison to the 3rd edition. Only a few errors have been corrected.......The present textbook has been written based on previous lecture notes for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M. Sc. students in structural engineering. The present 4th edition of this textbook on linear stochastic vibration...
Improved Laser Vibration Radar
National Research Council Canada - National Science Library
Hilaire, Pierre
1998-01-01
.... This thesis reconfigured an existing CO2 laboratory laser radar system that is capable of measuring the frequencies of vibration of a simulated target into a more compact and rugged form for field testing...
NIF Ambient Vibration Measurements
International Nuclear Information System (INIS)
Noble, C.R.; Hoehler, M.S.; S.C. Sommer
1999-01-01
LLNL has an ongoing research and development project that includes developing data acquisition systems with remote wireless communication for monitoring the vibrations of large civil engineering structures. In order to establish the capability of performing remote sensing over an extended period of time, the researchers needed to apply this technology to a real structure. The construction of the National Ignition Facility provided an opportunity to test the data acquisition system on a large structure to monitor whether the facility is remaining within the strict ambient vibration guidelines. This document will briefly discuss the NIF ambient vibration requirements and summarize the vibration measurements performed during the Spring and Summer of 1999. In addition, a brief description of the sensors and the data acquisition systems will be provided in Appendix B
Energy Technology Data Exchange (ETDEWEB)
Alekhin, S.A.; Denisenko, V.V.; Dzhalalov, M.G.; Kirichek, F.P.; Pitatel, Yu.A.; Prokopov, L.I.; Tikhonov, Yu.P.
1982-01-01
A vibration sieve is proposed which includes a vibration drive, a body and a screen installed on shock absorbers, a device for washing out the screen, and a subassembly for loading the material. To increase the operational reliability and effectiveness of the vibration sieve by improving the cleaning of the screen, the loading subassembly is equipped with a baffle with a lever which is hinged to it. The device for washing out the screen is made in the form of an electromagnet with a connecting rod, a switch and an eccentric, a friction ratchet mechanism and sprinkling systems. Here, the latter are interconnected, using a connecting rod, while the sprinkling system is installed on rollers under the screen. The electromagnetic switch is installed under the lever. The body is made with grooves for installing the sprinkling system. The vibration sieve is equipped with a switch which interacts with the connecting rod. The friction ratchet mechanism is equipped with a lug.
Mechanisms of Coupled Vibrational Relaxation and Dissociation in Carbon Dioxide.
Armenise, Iole; Kustova, Elena
2018-05-21
A complete vibrational state-specific kinetic scheme describing dissociating carbon dioxide mixtures is proposed. CO 2 symmetric, bending and asymmetric vibrations and dissociation-recombination are strongly coupled through inter-mode vibrational energy transfers. Comparative study of state-resolved rate coefficients is carried out; the effect of different transitions may vary considerably with temperature. A non-equilibrium 1-D boundary layer flow typical to hypersonic planetary entry is studied in the state-to-state approach. To assess the sensitivity of fluid-dynamic variables and heat transfer to various vibrational transitions and chemical reactions, corresponding processes are successively included to the kinetic scheme. It is shown that vibrational-translational (VT) transitions in the symmetric and asymmetric modes do not alter the flow and can be neglected whereas the VT 2 exchange in the bending mode is the main channel of vibrational relaxation. Inter-mode vibrational exchanges affect the flow implicitly, through energy redistribution enhancing VT relaxation; the dominating role belongs to near-resonant transitions between symmetric and bending modes as well as between CO molecules and CO 2 asymmetric mode. Strong coupling between VT 2 relaxation and chemical reactions is emphasized. While vibrational distributions and average vibrational energy show strong dependence on the kinetic scheme, the heat flux is more sensitive to chemical reactions.
Vibration study of the APS magnet support assemblies
International Nuclear Information System (INIS)
Wambsganss, M.W.; Jendrzejczyk, J.A.; Chen, S.S.
1990-11-01
Stability of the positron closed orbit is a requirement for successful operation of the Advanced Photon Source. The fact that vibration of the storage ring quadrupole magnets can lead to distortion of the positron closed orbit and to potentially unacceptable beam emittance growth provides the motivation for the subject studies. Low frequency vibrations can be controlled with steering magnets using feedback systems, provided the vibration amplitudes are within the dynamic range of the controllers. High frequency vibration amplitudes, on the other hand, are out of the range of the controller and, therefore must be limited to ensure the emittance growth will not exceed a prescribed value. Vibration criteria were developed based on the requirement that emittance growth be limited to 10 percent. Recognizing that the quadrupole magnets have the most significant effect, three different scenarios were considered: vibration of a single quadrupole within the storage ring, random vibration of all the quadrupoles in the ring, and the hypothetical case of a plane wave sweeping across the site and the quadrupoles following the motion of the plane wave. The maximum allowable peak vibration amplitudes corresponding to these three vibration scenarios are given. The criteria associated with the passage of a plane wave is dependent on wavelength, or, alternatively, on frequency given the wave speed. The wave speed used is that measured as a part of the geotechnical investigation at the APS site
Two-dimensional vibrational-electronic spectroscopy
Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira
2015-10-01
Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (νCN) and either a ligand-to-metal charge transfer transition ([FeIII(CN)6]3- dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN)5FeIICNRuIII(NH3)5]- dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific νCN modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a wide range of complex molecular, material, and biological systems.
Two-dimensional vibrational-electronic spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira, E-mail: mkhalil@uw.edu [Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195 (United States)
2015-10-21
Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (ν{sub CN}) and either a ligand-to-metal charge transfer transition ([Fe{sup III}(CN){sub 6}]{sup 3−} dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN){sub 5}Fe{sup II}CNRu{sup III}(NH{sub 3}){sub 5}]{sup −} dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific ν{sub CN} modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a
Directory of Open Access Journals (Sweden)
Li Ma
2016-01-01
Full Text Available The impact energy produced by blast casting is able to break and cast rocks, yet the strong vibration effects caused at the same time would threaten the safety of mines. Based on the theory of Janbu’s Limit Equilibrium Method (LEM, pseudo-static method has been incorporated to analyze the influence of dynamic loads of blasting on slope stability. The horizontal loads produced by blast vibrations cause an increase in sliding forces, and this leads to a lower slope stability coefficient. When the tensile stresses of the two adjacent blast holes are greater than the tensile strength of rock mass, the radical oriented cracks are formed, which is the precondition for the formation of presplit face. Thus, the formula for calculating the blast hole spacing of presplit blasting can be obtained. Based on the analysis of the principles of vibration tester and vibration pick-up in detecting blast vibrations, a detection scheme of blast vibration is worked out by taking the blast area with precrack rear and non-precrack side of the detection object. The detection and research results of blast vibration show that presplit blasting can reduce the attenuation coefficient of stress wave by half, and the vibration absorption ratio could reach 50.2%; the impact of dynamic loads on the end-wall slope stability coefficient is 1.98%, which proves that presplit blasting plays an important role in shock absorption of blast casting.
Experimental investigation of torsional vibration isolation using Magneto Rheological Elastomer
Directory of Open Access Journals (Sweden)
Praveen Shenoy K
2018-01-01
Full Text Available Rotating systems suffer from lateral and torsional vibrations which have detrimental effect on the roto-dynamic performance. Many available technologies such as vibration isolators and vibration absorbers deal with the torsional vibrations to a certain extent, however passive isolators and absorbers find less application when the input conditions are dynamic. The present work discusses use of a smart material called as Magneto Rheological Elastomer (MRE, whose properties can be changed based on magnetic field input, as a potential isolator for torsional vibrations under dynamic loading conditions. Carbonyl Iron Particles (CIP of average size 5 μm were mixed with RTV Silicone rubber to form the MRE. The effect of magnetic field on the system parameters was comprehended under impulse loading conditions using a custom built in-house system. Series arrangement of accelerometers were used to differentiate between the torsional and the bending modes of vibration of the system. Impact hammer tests were carried out on the torsional system to study its response, in the presence and absence of magnetic field. The tests revealed a shift in torsional frequency in the presence of magnetic field which elucidates the ability of MRE to work as a potential vibration isolator for torsional systems.
Nanoscale piezoelectric vibration energy harvester design
Foruzande, Hamid Reza; Hajnayeb, Ali; Yaghootian, Amin
2017-09-01
Development of new nanoscale devices has increased the demand for new types of small-scale energy resources such as ambient vibrations energy harvesters. Among the vibration energy harvesters, piezoelectric energy harvesters (PEHs) can be easily miniaturized and fabricated in micro and nano scales. This change in the dimensions of a PEH leads to a change in its governing equations of motion, and consequently, the predicted harvested energy comparing to a macroscale PEH. In this research, effects of small scale dimensions on the nonlinear vibration and harvested voltage of a nanoscale PEH is studied. The PEH is modeled as a cantilever piezoelectric bimorph nanobeam with a tip mass, using the Euler-Bernoulli beam theory in conjunction with Hamilton's principle. A harmonic base excitation is applied as a model of the ambient vibrations. The nonlocal elasticity theory is used to consider the size effects in the developed model. The derived equations of motion are discretized using the assumed-modes method and solved using the method of multiple scales. Sensitivity analysis for the effect of different parameters of the system in addition to size effects is conducted. The results show the significance of nonlocal elasticity theory in the prediction of system dynamic nonlinear behavior. It is also observed that neglecting the size effects results in lower estimates of the PEH vibration amplitudes. The results pave the way for designing new nanoscale sensors in addition to PEHs.
Multi-mode vibration control of piping system
International Nuclear Information System (INIS)
Minowa, Takeshi; Seto, Kazuto; Iiyama, Fumiya; Sodeyama, Hiroshi
1999-01-01
In this paper, dual dynamic absorbers are applied to the piping system in order to control the multiple vibration modes. ANSYS, which is one of the software based on FEM(finite element method), is used for the design of dual dynamic absorbers as well as for the determination of their optimum installing positions. The dual dynamic absorbers designed optimally for controlling the first three vibration modes perform just like a houde damper in higher frequency and have an effect on controlling higher modes. To use this advantage, three dual dynamic absorbers are installed in positions where they influence higher modes, and not only the first three modes of the piping system but also the extensive modes are controlled. Practical experimental study has also been carried out and it is shown that a dual dynamic absorber is suitable for controlling the vibration of the piping system. (author)
Flow-Induced Vibration of Circular Cylindrical Structures
Energy Technology Data Exchange (ETDEWEB)
Chen, Shoei-Sheng [Argonne National Lab. (ANL), Argonne, IL (United States). Components Technology Division
1985-06-01
Flow-induced vibration is a term to denote those phenomena associated with the response of structures placed in or conveying fluid flow. More specifically, the terra covers those cases in which an interaction develops between fluid-dynamic forces and the inertia, damping or elastic forces in the structures. The study of these phenomena draws on three disciplines: (1) structural mechanics, (2) mechanical vibration, and (3) fluid dynamics. The vibration of circular cylinders subject to flow has been known to man since ancient times; the vibration of a wire at its natural frequency in response to vortex shedding was known in ancient Greece as aeolian tones. But systematic studies of the problem were not made until a century ago when Strouhal established the relationship between vortex shedding frequency and flow velocity for a given cylinder diameter. The early research in this area has beer summarized by Zdravkovich (1985) and Goldstein (1965). Flow-induced structural vibration has been experienced in numerous fields, including the aerospace industry, power generation/transmission (turbine blades, heat exchanger tubes, nuclear reactor components), civil engineering (bridges, building, smoke stacks), and undersea technology. The problems have usually been encountered or created accidentally through improper design. In most cases, a structural or mechanical component, designed to meet specific objectives, develops problems when the undesired effects of flow field have not been accounted for in the design. When a flow-induced vibration problem is noted in the design stage, the engineer has different options to eliminate the detrimental vibration. Unfortunately, in many situations, the problems occur after the components are already in operation; the "fix" usually is very costly. Flow-induced vibration comprises complex and diverse phenomena; subcritical vibration of nuclear fuel assemblies, galloping of transmission lines, flutter of pipes conveying fluid, and whirling
Experimental study of acoustic vibration in BWRs
International Nuclear Information System (INIS)
Kumagai, Kosuke; Someya, Satoshi; Okamoto, Koji
2009-01-01
In recent years, the power uprate of Boiling Water Reactors have been conducted at several existing power plants as a way to improve plant economy. In one of the power uprated plants (117.8% uprates) in the United States, the steam dryer breakages due to fatigue fracture occurred. It is conceivable that the increased steam flow passing through the branches caused a self-induced vibration with the propagation of sound wave into the steam-dome. The resonance among the structure, flow and the pressure fluctuation resulted in the breakages. To understand the basic mechanism of the resonance, previous researches were done by a point measurement of the pressure and by a phase averaged measurement of the flow, while it was difficult to detect the interaction among them by the conventional method. In this study, Dynamic Particle Image Velocimetry (PIV) System was applied to investigate the effect of sound on natural convection and forced convection. Dynamic PIV system is the newest entrant to the field of fluid flow measurement. Its paramount advantage is the instantaneous global evaluation of conditions over plane extended across the whole velocity field. Also, to evaluate the coupling between the acoustic wave and structure (simulated as tuning fork vibrator in this experiment), in the resonance frequency of tuning fork vibrator, fluid behavior and the motion of tuning fork vibrator are measured simultaneously. (author)
Vibration analysis of the piping system using the modal analysis method, 1
International Nuclear Information System (INIS)
Fujikawa, Takeshi; Kurohashi, Michiya; Inoue, Yoshio
1975-01-01
Modal analysis method was developed for the vibration analysis of piping system in nuclear or chemical plants, with finite element theory, and verified by sinusoidal vibration method. The natural vibration equation for pipings was derived with stiffness, attenuation and mass matrices, and eigenvalues are obtained with usual method, then the forced vibration equation for pipings was derived with the same manner, and the special solutions are given by modal method from the eigenvalues of the natural vibration equation. Three simple piping models (one, two and three dimensional) were made, and the natural vibration frequency was measured with forced input from an electrical dynamic shaker and a sound speaker. The experimental values of natural vibration frequency showed good agreement with the results by the analytical method. Therefore the theoretical approach for piping system vibration was proved to be valid. (Iwase, T.)
Energy Technology Data Exchange (ETDEWEB)
Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.; Fleming, Graham R., E-mail: grfleming@lbl.gov [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, Californial 94720 (United States); Kavli Energy NanoSciences Institute at Berkeley, Berkeley, California 94720 (United States)
2015-05-07
Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this paper, we present a theoretical formalism to demonstrate the slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. We also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions.
Nonlinear convergence active vibration absorber for single and multiple frequency vibration control
Wang, Xi; Yang, Bintang; Guo, Shufeng; Zhao, Wenqiang
2017-12-01
This paper presents a nonlinear convergence algorithm for active dynamic undamped vibration absorber (ADUVA). The damping of absorber is ignored in this algorithm to strengthen the vibration suppressing effect and simplify the algorithm at the same time. The simulation and experimental results indicate that this nonlinear convergence ADUVA can help significantly suppress vibration caused by excitation of both single and multiple frequency. The proposed nonlinear algorithm is composed of equivalent dynamic modeling equations and frequency estimator. Both the single and multiple frequency ADUVA are mathematically imitated by the same mechanical structure with a mass body and a voice coil motor (VCM). The nonlinear convergence estimator is applied to simultaneously satisfy the requirements of fast convergence rate and small steady state frequency error, which are incompatible for linear convergence estimator. The convergence of the nonlinear algorithm is mathematically proofed, and its non-divergent characteristic is theoretically guaranteed. The vibration suppressing experiments demonstrate that the nonlinear ADUVA can accelerate the convergence rate of vibration suppressing and achieve more decrement of oscillation attenuation than the linear ADUVA.
Dynamic characteristics of rocks and method of their determine
Radoslav Schügerl
2009-01-01
This paper presents selected problems of the research of the influence of technical vibrations on rocks. The vibrations are the products of the technological procedure, such as mining blasting, ramming of the piles, using of the drilling-equipment or vibration machines. The vibrations could be also evocated by road or train traffic. The most important dynamic characteristics of rocks are dynamic modulus of elasticity Edyn; dynamic modulus of deformation Edef, dyn; dynamic shear-modulus Gdyn; ...
Design of a nonlinear torsional vibration absorber
Tahir, Ammaar Bin
Tuned mass dampers (TMD) utilizing linear spring mechanisms to mitigate destructive vibrations are commonly used in practice. A TMD is usually tuned for a specific resonant frequency or an operating frequency of a system. Recently, nonlinear vibration absorbers attracted attention of researchers due to some potential advantages they possess over the TMDs. The nonlinear vibration absorber, or the nonlinear energy sink (NES), has an advantage of being effective over a broad range of excitation frequencies, which makes it more suitable for systems with several resonant frequencies, or for a system with varying excitation frequency. Vibration dissipation mechanism in an NES is passive and ensures that there is no energy backflow to the primary system. In this study, an experimental setup of a rotational system has been designed for validation of the concept of nonlinear torsional vibration absorber with geometrically induced cubic stiffness nonlinearity. Dimensions of the primary system have been optimized so as to get the first natural frequency of the system to be fairly low. This was done in order to excite the dynamic system for torsional vibration response by the available motor. Experiments have been performed to obtain the modal parameters of the system. Based on the obtained modal parameters, the design optimization of the nonlinear torsional vibration absorber was carried out using an equivalent 2-DOF modal model. The optimality criterion was chosen to be maximization of energy dissipation in the nonlinear absorber attached to the equivalent 2-DOF system. The optimized design parameters of the nonlinear absorber were tested on the original 5-DOF system numerically. A comparison was made between the performance of linear and nonlinear absorbers using the numerical models. The comparison showed the superiority of the nonlinear absorber over its linear counterpart for the given set of primary system parameters as the vibration energy dissipation in the former is
Vibration transducer calibration techniques
Brinkley, D. J.
1980-09-01
Techniques for the calibration of vibration transducers used in the Aeronautical Quality Assurance Directorate of the British Ministry of Defence are presented. Following a review of the types of measurements necessary in the calibration of vibration transducers, the performance requirements of vibration transducers, which can be used to measure acceleration, velocity or vibration amplitude, are discussed, with particular attention given to the piezoelectric accelerometer. Techniques for the accurate measurement of sinusoidal vibration amplitude in reference-grade transducers are then considered, including the use of a position sensitive photocell and the use of a Michelson laser interferometer. Means of comparing the output of working-grade accelerometers with that of previously calibrated reference-grade devices are then outlined, with attention given to a method employing a capacitance bridge technique and a method to be used at temperatures between -50 and 200 C. Automatic calibration procedures developed to speed up the calibration process are outlined, and future possible extensions of system software are indicated.
Karthikeyan, S; Singh, Jiten N; Park, Mina; Kumar, Rajesh; Kim, Kwang S
2008-06-28
Important structural isomers of NH(4) (+)(H(2)O)(n=4,6) have been studied by using density functional theory, Moller-Plesset second order perturbation theory, and coupled-cluster theory with single, double, and perturbative triple excitations [CCSD(T)]. The zero-point energy (ZPE) correction to the complete basis set limit of the CCSD(T) binding energies and free energies is necessary to identify the low energy structures for NH(4) (+)(H(2)O)(n=4,6) because otherwise wrong structures could be assigned for the most probable structures. For NH(4) (+)(H(2)O)(6), the cage-type structure, which is more stable than the previously reported open structure before the ZPE correction, turns out to be less stable after the ZPE correction. In first principles Car-Parrinello molecular dynamics simulations around 100 K, the combined power spectrum of three lowest energy isomers of NH(4) (+)(H(2)O)(4) and two lowest energy isomers of NH(4) (+)(H(2)O)(6) explains each experimental IR spectrum.
Energy Technology Data Exchange (ETDEWEB)
Schubert, Alexander, E-mail: schubert@irsamc.ups-tlse.fr; Meier, Christoph [Laboratoire Collisions Agrégats et Réactivité, IRSAMC, UMR CNRS 5589, Université Paul Sabatier, 31062 Toulouse (France); Falvo, Cyril [Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay (France)
2016-08-07
We present mixed quantum-classical simulations on relaxation and dephasing of vibrationally excited carbon monoxide within a protein environment. The methodology is based on a vibrational surface hopping approach treating the vibrational states of CO quantum mechanically, while all remaining degrees of freedom are described by means of classical molecular dynamics. The CO vibrational states form the “surfaces” for the classical trajectories of protein and solvent atoms. In return, environmentally induced non-adiabatic couplings between these states cause transitions describing the vibrational relaxation from first principles. The molecular dynamics simulation yields a detailed atomistic picture of the energy relaxation pathways, taking the molecular structure and dynamics of the protein and its solvent fully into account. Using the ultrafast photolysis of CO in the hemoprotein FixL as an example, we study the relaxation of vibrationally excited CO and evaluate the role of each of the FixL residues forming the heme pocket.
Active vibration control based on piezoelectric smart composite
International Nuclear Information System (INIS)
Gao, Le; Lu, Qingqing; Fei, Fan; Leng, Jinsong; Liu, Liwu; Liu, Yanju
2013-01-01
An aircraft’s vertical fin may experience dramatic buffet loads in high angle of attack flight conditions, and these buffet loads would cause huge vibration and dynamic stress on the vertical fin structure. To reduce the dynamic vibration of the vertical fin structure, macro fiber composite (MFC) actuators were used in this paper. The drive moment equations and sensing voltage equations of the MFC actuators were developed. Finite element analysis models based on three kinds of models of simplified vertical fin structures with surface-bonded MFC actuators were established in ABAQUS. The equivalent damping ratio of the structure was employed in finite element analysis, in order to measure the effectiveness of vibration control. Further, an open-loop test for the active vibration control system of the vertical fin with MFC actuators was designed and developed. The experimental results validated the effectiveness of the MFC actuators as well as the developed methodology. (paper)
Energy evaluation of protection effectiveness of anti-vibration gloves.
Hermann, Tomasz; Dobry, Marian Witalis
2017-09-01
This article describes an energy method of assessing protection effectiveness of anti-vibration gloves on the human dynamic structure. The study uses dynamic models of the human and the glove specified in Standard No. ISO 10068:2012. The physical models of human-tool systems were developed by combining human physical models with a power tool model. The combined human-tool models were then transformed into mathematical models from which energy models were finally derived. Comparative energy analysis was conducted in the domain of rms powers. The energy models of the human-tool systems were solved using numerical simulation implemented in the MATLAB/Simulink environment. The simulation procedure demonstrated the effectiveness of the anti-vibration glove as a method of protecting human operators of hand-held power tools against vibration. The desirable effect is achieved by lowering the flow of energy in the human-tool system when the anti-vibration glove is employed.
Recovering Intrinsic Fragmental Vibrations Using the Generalized Subsystem Vibrational Analysis.
Tao, Yunwen; Tian, Chuan; Verma, Niraj; Zou, Wenli; Wang, Chao; Cremer, Dieter; Kraka, Elfi
2018-05-08
Normal vibrational modes are generally delocalized over the molecular system, which makes it difficult to assign certain vibrations to specific fragments or functional groups. We introduce a new approach, the Generalized Subsystem Vibrational Analysis (GSVA), to extract the intrinsic fragmental vibrations of any fragment/subsystem from the whole system via the evaluation of the corresponding effective Hessian matrix. The retention of the curvature information with regard to the potential energy surface for the effective Hessian matrix endows our approach with a concrete physical basis and enables the normal vibrational modes of different molecular systems to be legitimately comparable. Furthermore, the intrinsic fragmental vibrations act as a new link between the Konkoli-Cremer local vibrational modes and the normal vibrational modes.
Nokes, L D; Thorne, G C
1988-01-01
Measurements of various mechanical properties of skeletal material using vibration techniques have been reported. The purposes of such investigations include the monitoring of pathogenic disorders such as osteoporosis, the rate and extent of fracture healing, and the status of internal fixations. Early investigations pioneered the application of conventional vibration measurement equipment to biological systems. The more recent advent of the microcomputer has made available to research groups more sophisticated techniques for data acquisition and analysis. The economical advantages of such equipment has led to the development of portable research instrumentation which lends itself to use in a clinical environment. This review article reports on the developments and progression of the various vibrational techniques and theories as applied to musculoskeletal systems.
International Nuclear Information System (INIS)
Inada, Fumio; Yoneda, Kimitoshi; Yasuo, Akira; Nishihara, Takashi
2000-01-01
In the circular tube bundle immersed in the crossflow, the exciting force induced by the turbulence and periodically discharged vortices becomes large, and it is necessary to confirm a long-term integrity to the flow induced vibration. In this report, the local fluid exciting force and the correlation length in the direction of tube axis were measured. The exciting force acting on the first row was smaller than that inside the tube bundle, and the exciting force was almost saturated at the third row. As for vortex induced vibration, there could be an influence when a dimensionless frequency was 0.4 or less. When vortex induced vibration did not affect the vibration, a correlation composed of a correlation length and power spectrum density of the local fluid exciting force were proposed, with which we could estimate the amplitude of the vibration. A computer program to estimate the vibration amplitude and maximum stress was made using the flow velocity distribution and the mode of vibration. (author)
Two-phase flow induced parametric vibrations in structural systems
International Nuclear Information System (INIS)
Hara, Fumio
1980-01-01
This paper is divided into two parts concerning piping systems and a nuclear fuel pin system. The significant experimental results concerning the random vibration induced in an L-shaped pipe by air-water two-phase flow and the theoretical analysis of the vibration are described in the first part. It was clarified for the first time that the parametric excitation due to the periodic changes of system mass, centrifugal force and Coriolis force was the mechanism of exciting the vibration. Moreover, the experimental and theoretical analyses of the mechanism of exciting vibration by air-water two-phase flow in a straight, horizontal pipe were carried out, and the first natural frequency of the piping system was strongly related to the dominant frequency of void signals. The experimental results on the vibration of a nuclear fuel pin model in parallel air-water two-phase flow are reported in the latter part. The relations between vibrational strain variance and two-phase flow velocity or pressure fluctuation, and the frequency characteristics of vibrational strain variance were obtained. The theoretical analysis of the dynamic interaction between air-water two-phase flow and a fuel pin structure, and the vibrational instability of fuel pins in alternate air and water slugs or in large bubble flow are also reported. (Kako, I.)
Granular metamaterials for vibration mitigation
Gantzounis, G.; Serra-Garcia, M.; Homma, K.; Mendoza, J. M.; Daraio, C.
2013-09-01
Acoustic metamaterials that allow low-frequency band gaps are interesting for many practical engineering applications, where vibration control and sound insulation are necessary. In most prior studies, the mechanical response of these structures has been described using linear continuum approximations. In this work, we experimentally and theoretically address the formation of low-frequency band gaps in locally resonant granular crystals, where the dynamics of the system is governed by discrete equations. We investigate the quasi-linear behavior of such structures. The analysis shows that a stopband can be introduced at about one octave lower frequency than in materials without local resonances. Broadband and multi-frequency stopband characteristics can also be achieved by strategically tailoring the non-uniform local resonance parameters.
Sheena Mary, Y.; Al-Shehri, Mona M.; Jalaja, K.; Al-Omary, Fatmah A. M.; El-Emam, Ali A.; Yohannan Panicker, C.; Armaković, Stevan; Armaković, Sanja J.; Temiz-Arpaci, Ozlem; Van Alsenoy, C.
2017-04-01
Antimicrobial active 5-[(4-nitrophenyl)acetamido]-2-(4-tert-butylphenyl)benzoxazole (NATPB) was synthesized and observed IR, Raman bands are compared with the theoretically predicted wave numbers. In the IR spectrum the NH stretching wave number splits into a doublet with a noted difference and is red shifted from the computed value, which indicates the weakening of NH bond resulting in proton transfer to the neighbouring oxygen atom. The HOMO-LUMO plots reveal the charge transfer in the molecular system through the conjugated paths. The electrophilic and nucleophilic reactive sites are identified from the MEP plot. Mapping of average local ionization energy (ALIE) values to the electron density surface served us as a tool for prediction of molecule sites possibly prone to electrophilic attacks. Other important reactive centres of the title molecule were detected by calculations of Fukui functions. Calculations of bond dissociation energies (BDE) for hydrogen abstraction were used in order to assess whether the NATPB molecules is prone to autoxidation mechanism or not, while BDE of the remaining single acyclic bonds were used in order to determine the weakest bond. Interaction properties with water were investigated by molecular dynamics (MD) simulations and calculations of radial distribution functions (RDFs). The compound possessed broad spectrum activity against all of the tested Gram-positive and Gram-negative bacteria and yeasts, their minimum inhibitory concentrations (MICs) ranging between 32 and 128 μg/ml. The compound exhibited significant antibacterial activity (32 μg/ml) against an antibiotic resistant E. faecalis isolate, at same potency with the compared standard drugs vancomycin and gentamycin sulfate. The molecular docking studies show that the compound might exhibit inhibitory activity against CDK inhibitors.
Flow induced vibration in shell and tube heat exchangers
International Nuclear Information System (INIS)
Soper, B.M.H.
1981-01-01
Assessing heat exchanger designs, from the standpoint of flow induced vibration, is becoming increasingly important as shell side flow velocities are increased in a quest for better thermal performance. This paper reviews the state of the art concerning the main sources of vibration excitation, i.e. vortex shedding resonance, turbulent buffeting, fluidelastic instability and acoustic resonance, as well as the structural dynamics of the tubes. It is concluded that there are many areas which require further investigation but there are sufficient data available at present to design, with reasonable confidence, units that will be free from flow induced vibration. Topics which are considered to be key areas for further work are listed
Equilibrium structure and atomic vibrations of Nin clusters
Borisova, Svetlana D.; Rusina, Galina G.
2017-12-01
The equilibrium bond lengths and binding energy, second differences in energy and vibrational frequencies of free clusters Nin (2 ≤ n ≤ 20) were calculated with the use of the interaction potential obtained in the tight-binding approximation (TBA). The results show that the minimum vibration frequency plays a significant role in the evaluation of the dynamic stability of the clusters. A nonmonotonic dependence of the minimum vibration frequency of clusters on their size and the extreme values for the number of atoms in a cluster n = 4, 6, 13, and 19 are demonstrated. This result agrees with the theoretical and experimental data on stable structures of small metallic clusters.
Structural-Vibration-Response Data Analysis
Smith, W. R.; Hechenlaible, R. N.; Perez, R. C.
1983-01-01
Computer program developed as structural-vibration-response data analysis tool for use in dynamic testing of Space Shuttle. Program provides fast and efficient time-domain least-squares curve-fitting procedure for reducing transient response data to obtain structural model frequencies and dampings from free-decay records. Procedure simultaneously identifies frequencies, damping values, and participation factors for noisy multiple-response records.
Horizontal vibrations of piles in a centrifuge
International Nuclear Information System (INIS)
Bourdin, B.
1987-01-01
The aim of the thesis is the study of soil dynamics for important structures like nuclear power plants, offshore platforms, dams etc. Experimental results of horizontal vibrations on a pile partially anchored in a soil scale model put into a centrifuge are presented. Mechanical similitude conditions from equilibrium equations or rheologic laws are described. After a description of testing equipment (centrifuge, electrodynamic excitator) experimental results are interpreted with a model. Non-linearities on frequency response curves are characterized [fr
Vibrational spectra of aminoacetonitrile
International Nuclear Information System (INIS)
Bak, B.; Hansen, E.L.; Nicolaisen, F.M.; Nielsen, O.F.
1975-01-01
The preparation of pure, stable aminoacetonitrile(1-amino, 1'-cyanomethane)CH 2 NH 2 CN (1) is described. The Raman spectrum, now complete, and a novel infrared spectrum extending over the 50-3600 cm -1 region are reported. A tentative normal vibration analysis is presented and supported by Raman and infrared data from the spectra of CH 2 NHDCN (2) and CH 2 ND 2 CN (3). The predominance of the trans rotamer may be attributed to intramolecular hydrogen bonding but this is too unimportant to influence the vibrational frequencies of gaseous 1, 2, and 3. However, large gas/liquid frequency shifts occur. (author)
Kaliski, S
2013-01-01
This book gives a comprehensive overview of wave phenomena in different media with interacting mechanical, electromagnetic and other fields. Equations describing wave propagation in linear and non-linear elastic media are followed by equations of rheological models, models with internal rotational degrees of freedom and non-local interactions. Equations for coupled fields: thermal, elastic, electromagnetic, piezoelectric, and magneto-spin with adequate boundary conditions are also included. Together with its companion volume Vibrations and Waves. Part A: Vibrations this work provides a wealth
DEFF Research Database (Denmark)
Nielsen, Søren R. K.
The present textbook has been written based on previous lecture notes for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M. Sc. students in structural engineering. The present 2nd edition of this textbook on linear stochastic vibration th...... theory is basically unchanged in comparison to the 1st edition. Only section 4.2 on single input - single output systems and chapter 6 on offshore structures have been modified in order to enhance the clearness....
Friction interface mechanics and self-induced vibrations
Wernitz, Boris Alexander
2013-01-01
Vibrations in braking systems have been studied since the beginning of the last century and despite several insights, still many phenomena, particularly in the area of friction induced vibrations, are not fully understood. The objective of the actual study was the identification of the complex dynamics in the friction interface of a dry friction brake system. In this context, particular consideration was given to the generation of instabilities and brake squeal. In work presently being ...
The Shock and Vibration Digest. Volume 12, Number 2,
1980-02-01
Structural Analysis lowest few frequencies are required and are more economical than frequency search methods if band- widths of the matrices are large...1973). Inst. Math. Applic., 22, pp 401.410 (1978). 77. Gupta, K.K., "Numerical Analysis of Free Vibrations of Damped Rotating Structures," 66. Pestel ...the program ,.J.G.S. ¢F1 EDITORS RATTLE SPACE DYNAMIC ANALYSIS AND DESIGN At the 50th Shock and Vibration Symposium in October, Robert Hager presented
Hansson, J E; Eklund, L; Kihlberg, S; Ostergren, C E
1987-03-01
The main objective of the study was to find efficient hand tools which caused only minor vibration loading. Vibration measurements were carried out under standardised working conditions. The time during which car body repairers in seven companies were exposed to vibration was determined. Chisel hammers, impact wrenches, sanders and saws were the types of tools which generated the highest vibration accelerations. The average daily exposure at the different garages ranged from 22 to 70 min. The risk of vibration injury is currently rated as high. The difference between the highest and lowest levels of vibration was considerable in most tool categories. Therefore the choice of tool has a major impact on the magnitude of vibration exposure. The importance of choosing the right tools and working methods is discussed and a counselling service on vibration is proposed.
Studies on the substrate mediated vibrational excitation of CO/Si(100) by means of SFG spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Han, Xu; Lass, Kristian; Balgar, Thorsten; Hasselbrink, Eckart [Universitaet Duisburg-Essen, Fachbereich Chemie, 45117 Essen (Germany)
2009-07-01
Vibrational excitations of adsorbates play an important role in chemical reaction dynamics. In the past decade CO on solid surfaces was chosen as adequate model system for studying vibrational relaxation dynamics. Our work is focused on the energy dissipation of vibrationally excited CO adsorbed on a silicon surface by means of IR/Vis sum frequency generation (SFG) spectroscopy. Here we present studies on substrate mediated excitation of vibrational modes of CO on Si(100) induced by UV radiation. We suppose the observation of highly excited internal stretch vibrations of CO caused by hot electrons generated within the silicon substrate.
Vibrational Spectroscopy and Astrobiology
Chaban, Galina M.; Kwak, D. (Technical Monitor)
2001-01-01
Role of vibrational spectroscopy in solving problems related to astrobiology will be discussed. Vibrational (infrared) spectroscopy is a very sensitive tool for identifying molecules. Theoretical approach used in this work is based on direct computation of anharmonic vibrational frequencies and intensities from electronic structure codes. One of the applications of this computational technique is possible identification of biological building blocks (amino acids, small peptides, DNA bases) in the interstellar medium (ISM). Identifying small biological molecules in the ISM is very important from the point of view of origin of life. Hybrid (quantum mechanics/molecular mechanics) theoretical techniques will be discussed that may allow to obtain accurate vibrational spectra of biomolecular building blocks and to create a database of spectroscopic signatures that can assist observations of these molecules in space. Another application of the direct computational spectroscopy technique is to help to design and analyze experimental observations of ice surfaces of one of the Jupiter's moons, Europa, that possibly contains hydrated salts. The presence of hydrated salts on the surface can be an indication of a subsurface ocean and the possible existence of life forms inhabiting such an ocean.
Indian Academy of Sciences (India)
The vibrating string problem is the source of much mathe- matics and physics. ... ing this science [mechanics],and the art of solving the problems pertaining to it, to .... used tools for finding maxima and minima of functions of several variables.
International Nuclear Information System (INIS)
Richards, D.J.W.
1977-01-01
The heat exchangers of various types are common items of plant in the generation and transmission of electricity. The amount of attention given to the flow-induced vibrations of heat exchangers by designers is usually related to the operational history of similar items of plant. Consequently, if a particular design procedure yields items of plant which behave in a satisfactory manner during their operational life, there is little incentive to improve or refine the design procedure. On the other hand, failures of heat exchangers clearly indicate deficiencies in the design procedures or in the data available to the designer. When such failures are attributable to flow-induced vibrations, the identification of the mechanisms involved is a prime importance. Ideally, basic research work provides the background understanding and the techniques necessary to be able to identify the important mechanisms. In practice, the investigation of a flow-induced vibration problem may identify the presence of mechanisms but may not be able to quantify their effects adequately. In these circumstances the need for additional work is established and the objectives of the research programme emerge. The purpose of this paper is to outline the background to the current research programme at C.E.R.L. on heat exchanger vibration
DEFF Research Database (Denmark)
Jönsson, Jeppe; Hansen, Lars Pilegaard
1994-01-01
work has been done on the measurement of the exact load functions and related reponse analysis. A recent work using a spectral description has been performed by Per-Erik Erikson and includes a good literature survey. Bachmann and Ammann give a good overview of vibrations caused by human activity. Other...
Energy Technology Data Exchange (ETDEWEB)
Richards, D J.W. [CERL, CEGB, Leatherhead, Surrey (United Kingdom)
1977-12-01
The heat exchangers of various types are common items of plant in the generation and transmission of electricity. The amount of attention given to the flow-induced vibrations of heat exchangers by designers is usually related to the operational history of similar items of plant. Consequently, if a particular design procedure yields items of plant which behave in a satisfactory manner during their operational life, there is little incentive to improve or refine the design procedure. On the other hand, failures of heat exchangers clearly indicate deficiencies in the design procedures or in the data available to the designer. When such failures are attributable to flow-induced vibrations, the identification of the mechanisms involved is a prime importance. Ideally, basic research work provides the background understanding and the techniques necessary to be able to identify the important mechanisms. In practice, the investigation of a flow-induced vibration problem may identify the presence of mechanisms but may not be able to quantify their effects adequately. In these circumstances the need for additional work is established and the objectives of the research programme emerge. The purpose of this paper is to outline the background to the current research programme at C.E.R.L. on heat exchanger vibration.
General principles of vibrational spectroscopies
Weckhuysen, B.M.; Schoonheydt, R.A.
2000-01-01
Atoms in molecules and solids do not remain in fixed relative positions, but vibrate about some mean position. This vibrational motion is quantized and at room temperature, most of the molecules in a given sample are in their lowest vibrational state. Absorption of electromagnetic radiation with
High-Temperature Vibration Damper
Clarke, Alan; Litwin, Joel; Krauss, Harold
1987-01-01
Device for damping vibrations functions at temperatures up to 400 degrees F. Dampens vibrational torque loads as high as 1,000 lb-in. but compact enough to be part of helicopter rotor hub. Rotary damper absorbs energy from vibrating rod, dissipating it in turbulent motion of viscous hydraulic fluid forced by moving vanes through small orifices.
International Nuclear Information System (INIS)
Egorov, Yu. V.; Afanasiev, A. V.; Makarov, V. V.; Matvienko, I. V.
2013-01-01
For substantiation of vibration stability it is necessary to determine the ultimate permissible vibration levels which do not cause fretting, to compare them with the level of fuel rod vibration caused by coolant flow. Another approach is feasible if there is experience of successful operation of FA-prototypes. In this case in order to justify vibration stability it may be sufficient to demonstrate that the new element does not cause increased vibration of the fuel rod. It can be done by comparing the levels of hydro-dynamic fuel rod vibration and FA new designs. Program of vibration tests of TVS-2M model included studies of forced oscillations of 12 fuel rods in the coolant flow in the spans containing intensifiers, in the reference span without intensifiers, in the lower spans with assembled ADF and after its disassembly. The experimental results for TVS-2M show that in the spans with intensifier «Sector run» the level of movements is 6% higher on the average than in the span without intensifiers, in the spans with intensifier «Eddy» it is 2% higher. The level of fuel rod vibration movements in the spans with set ADF is 2 % higher on the average than without ADF. During the studies of TVS-KVADRAT fuel rod vibration, the following tasks were solved: determination of acceleration of the middle of fuel rod spans at vibration excited due to hydrodynamics; determination of influence of coolant thermal- hydraulic parameters (temperature, flowrate, dynamic pressure) on fuel rod vibration response; determination of influence of span lengths on the vibration level. Conclusions: 1) The vibration tests of the full-scale model of TVS-2M in the coolant flow showed that the new elements of TVS-2M design (intensifiers of heat exchange and ADF) are not the source of fuel rod increased vibration. Considering successful operation of similar fuel rod spans in the existing TVS-2M design, vibration stability of TVS-2M fuel rods with new elements is ensured on the mechanism of
Fluid elastic vibration of nuclear fuel assemblies
International Nuclear Information System (INIS)
Kim, S. N.; Jung, S. Y.
1998-01-01
Since utilities and fuel venders have adopted the fuel design of high burn-up and improved thermal margin flow mixing vane, several PWR nuclear power plants have in recent years experienced fretting wear fuel rod failure due to flow induced vibration. Flow induced vibration can be resulted from fluidelastic instability, periodic shedding, turbulence-induced excitation, and acoustic resonance (1). Among these mechanisms found in the core of nuclear power plant, the governing mechanism that is fluidelastic instability, could be inferred from the analysis of fuel failure patterns. Therefore, to simulate the fuel failure in nuclear power plants, Tanaka's model (2) was chosen as most suitable one, which is well explaining the damage pattern, in particular it's second row damage characteristics. In the model, unsteady fluid dynamic forces acting on the vibrating cyclinders were included which consists of the inertia forces due to the added mass of fluid, damping forces of fluid in phase to the cylinder vibrating velocity, and stiffness forces proportional to cylinder displacements. However, the model did not account for radiation effect-spring forces deflection. So, the model was modified to account for the spring force relaxation due to radiation exposure. The stiffness of spring was fitted with experimental data. Finally the critical velocities were calculated with the modified spring force at beginning and end of cycle
Controlling coupled bending-twisting vibrations of anisotropic composite wing
Ryabov, Victor; Yartsev, Boris
2018-05-01
The paper discusses the possibility to control coupled bending-twisting vibrations of anisotropic composite wing by means of the monoclinic structures in the reinforcement of the plating. Decomposing the potential straining energy and kinetic energy of natural vibration modes into interacting and non-interacting parts, it became possible to introduce the two coefficients that integrally consider the effect of geometry and reinforcement structure upon the dynamic response parameters of the wing. The first of these coefficients describes the elastic coupling of the natural vibration modes, the second coefficient describes the inertial one. The paper describes the numerical studies showing how the orientation of considerably anisotropic CRP layers in the plating affects natural frequencies, loss factors, coefficients of elastic and inertial coupling for several lower tones of natural bending-twisting vibrations of the wing. Besides, for each vibration mode, partial values of the above mentioned dynamic response parameters were determined by means of the relationships for orthotropic structures where instead of "free" shearing modulus in the reinforcement plant, "pure" shearing modulus is used. Joint analysis of the obtained results has shown that each pair of bending-twisting vibration modes has its orientation angle ranges of the reinforcing layers where the inertial coupling caused by asymmetry of the cross-section profile with respect to the main axes of inertia decreases, down to the complete extinction, due to the generation of the elastic coupling in the plating material. These ranges are characterized by the two main features: 1) the difference in the natural frequencies of the investigated pair of bending-twisting vibration modes is the minimum and 2) natural frequencies of bending-twisting vibrations belong to a stretch restricted by corresponding partial natural frequencies of the investigated pair of vibration modes. This result is of practical importance
Vibration-free stirling cryocooler for high definition microscopy
Riabzev, S. V.; Veprik, A. M.; Vilenchik, H. S.; Pundak, N.; Castiel, E.
2009-12-01
The normal operation of high definition Scanning Electronic and Helium Ion microscope tools often relies on maintaining particular components at cryogenic temperatures. This has traditionally been accomplished by using liquid coolants such as liquid Nitrogen. This inherently limits the useful temperature range to above 77 K, produces various operational hazards and typically involves elevated ownership costs, inconvenient logistics and maintenance. Mechanical coolers, over-performing the above traditional method and capable of delivering required (even below 77 K) cooling to the above cooled components, have been well-known elsewhere for many years, but their typical drawbacks, such as high purchasing cost, cooler size, low reliability and high power consumption have so far prevented their wide-spreading. Additional critical drawback is inevitable degradation of imagery performance originated from the wideband vibration export as typical for the operation of the mechanical cooler incorporating numerous movable components. Recent advances in the development of reliable, compact, reasonably priced and dynamically quiet linear cryogenic coolers gave rise to so-called "dry cooling" technologies aimed at eventually replacing the traditional use of outdated liquid Nitrogen cooling facilities. Although much improved these newer cryogenic coolers still produce relatively high vibration export which makes them incompatible with modern high definition microscopy tools. This has motivated further research activity towards developing a vibration free closed-cycle mechanical cryocooler. The authors have successfully adapted the standard low vibration Stirling cryogenic refrigerator (Ricor model K535-LV) delivering 5 W@40 K heat lift for use in vibration-sensitive high definition microscopy. This has been achieved by using passive mechanical counterbalancing of the main portion of the low frequency vibration export in combination with an active feed-forward multi
Natural vibration experimental analysis of Novovoronezhskaya NPP main building
International Nuclear Information System (INIS)
Zoubkov, D.; Isaikin, A.; Shablinsky, G.; Lopanchuk, A.; Nefedov, S.
2005-01-01
1. Natural vibration frequencies are main characteristics of buildings and structures which allow to give integral estimation of their in-service state. Even relatively small changes of these frequencies as compared to the initially registered values point to serious defects of building structures. In this paper we analyzed natural vibration frequencies and natural modes of the main building (MB) of Novovoronezhskaya NPP operating nuclear unit with WWER-440 type reactor. The MB consists of a reactor compartment (RC), a machine room (MR) and an electric device (ED) unit positioned in between. 2. Natural vibration frequencies and natural modes of the MB were determined experimentally by analyzing its microvibrations caused by operation of basic equipment (turbines, pumps, etc.). Microvibrations of the main building were measured at 12 points. At each point measurements were carried out along two or three mutually perpendicular vibration directions. Spectral analysis of vibration records has been conducted. Identification of natural vibration frequencies was carried out on the basis of the spectral peaks and plotted vibration modes (taking into account operating frequencies of the basic equipment of the power generating unit). On the basis of the measurement results three transverse modes and corresponding natural vibration frequencies of the MB, one longitudinal mode and corresponding natural vibration frequency of the MB and two natural frequencies of vertical vibrations of RC and MR floor trusses (1st and 2nd symmetric forms) were determined. Dynamic characteristics of the main building of NV NPP resulting from full scale researches are supposed to be used as one of building structure stability criteria. (authors)
The effects of vibration-reducing gloves on finger vibration
Welcome, Daniel E.; Dong, Ren G.; Xu, Xueyan S.; Warren, Christopher; McDowell, Thomas W.
2015-01-01
Vibration-reducing (VR) gloves have been used to reduce the hand-transmitted vibration exposures from machines and powered hand tools but their effectiveness remains unclear, especially for finger protection. The objectives of this study are to determine whether VR gloves can attenuate the vibration transmitted to the fingers and to enhance the understanding of the mechanisms of how these gloves work. Seven adult male subjects participated in the experiment. The fixed factors evaluated include hand force (four levels), glove condition (gel-filled, air bladder, no gloves), and location of the finger vibration measurement. A 3-D laser vibrometer was used to measure the vibrations on the fingers with and without wearing a glove on a 3-D hand-arm vibration test system. This study finds that the effect of VR gloves on the finger vibration depends on not only the gloves but also their influence on the distribution of the finger contact stiffness and the grip effort. As a result, the gloves increase the vibration in the fingertip area but marginally reduce the vibration in the proximal area at some frequencies below 100 Hz. On average, the gloves reduce the vibration of the entire fingers by less than 3% at frequencies below 80 Hz but increase at frequencies from 80 to 400 Hz. At higher frequencies, the gel-filled glove is more effective at reducing the finger vibration than the air bladder-filled glove. The implications of these findings are discussed. Relevance to industry Prolonged, intensive exposure to hand-transmitted vibration can cause hand-arm vibration syndrome. Vibration-reducing gloves have been used as an alternative approach to reduce the vibration exposure. However, their effectiveness for reducing finger-transmitted vibrations remains unclear. This study enhanced the understanding of the glove effects on finger vibration and provided useful information on the effectiveness of typical VR gloves at reducing the vibration transmitted to the fingers. The new
Vibrational nonadiabaticity and tunneling effects in transition state theory
International Nuclear Information System (INIS)
Marcus, R.A.
1979-01-01
The usual quantum mechanical derivation of transition state theory is a statistical one (a quasi-equilibrium is assumed) or dynamical. The typical dynamical one defines a set of internal states and assumes vibrational adiabaticity. Effects of nonadiabaticity before and after the transition state are included in the present derivation, assuming a classical treatment of the reaction coordinate. The relation to a dynamical derivation of classical mechanical transition state theory is described, and tunneling effects are considered
Super-multiplex vibrational imaging
Wei, Lu; Chen, Zhixing; Shi, Lixue; Long, Rong; Anzalone, Andrew V.; Zhang, Luyuan; Hu, Fanghao; Yuste, Rafael; Cornish, Virginia W.; Min, Wei
2017-04-01
The ability to visualize directly a large number of distinct molecular species inside cells is increasingly essential for understanding complex systems and processes. Even though existing methods have successfully been used to explore structure-function relationships in nervous systems, to profile RNA in situ, to reveal the heterogeneity of tumour microenvironments and to study dynamic macromolecular assembly, it remains challenging to image many species with high selectivity and sensitivity under biological conditions. For instance, fluorescence microscopy faces a ‘colour barrier’, owing to the intrinsically broad (about 1,500 inverse centimetres) and featureless nature of fluorescence spectra that limits the number of resolvable colours to two to five (or seven to nine if using complicated instrumentation and analysis). Spontaneous Raman microscopy probes vibrational transitions with much narrower resonances (peak width of about 10 inverse centimetres) and so does not suffer from this problem, but weak signals make many bio-imaging applications impossible. Although surface-enhanced Raman scattering offers high sensitivity and multiplicity, it cannot be readily used to image specific molecular targets quantitatively inside live cells. Here we use stimulated Raman scattering under electronic pre-resonance conditions to image target molecules inside living cells with very high vibrational selectivity and sensitivity (down to 250 nanomolar with a time constant of 1 millisecond). We create a palette of triple-bond-conjugated near-infrared dyes that each displays a single peak in the cell-silent Raman spectral window; when combined with available fluorescent probes, this palette provides 24 resolvable colours, with the potential for further expansion. Proof-of-principle experiments on neuronal co-cultures and brain tissues reveal cell-type-dependent heterogeneities in DNA and protein metabolism under physiological and pathological conditions, underscoring the
Wireless Inductive Power Device Suppresses Blade Vibrations
Morrison, Carlos R.; Provenza, Andrew J.; Choi, Benjamin B.; Bakhle, Milind A.; Min, James B.; Stefko, George L.; Duffy, Kirsten P.; Fougers, Alan J.
2011-01-01
Vibration in turbomachinery can cause blade failures and leads to the use of heavier, thicker blades that result in lower aerodynamic efficiency and increased noise. Metal and/or composite fatigue in the blades of jet engines has resulted in blade destruction and loss of lives. Techniques for suppressing low-frequency blade vibration, such as gtuned circuit resistive dissipation of vibratory energy, h or simply "passive damping," can require electronics incorporating coils of unwieldy dimensions and adding unwanted weight to the rotor. Other approaches, using vibration-dampening devices or damping material, could add undesirable weight to the blades or hub, making them less efficient. A wireless inductive power device (WIPD) was designed, fabricated, and developed for use in the NASA Glenn's "Dynamic Spin Rig" (DSR) facility. The DSR is used to simulate the functionality of turbomachinery. The relatively small and lightweight device [10 lb (approx.=4.5 kg)] replaces the existing venerable and bulky slip-ring. The goal is the eventual integration of this technology into actual turbomachinery such as jet engines or electric power generators, wherein the device will facilitate the suppression of potentially destructive vibrations in fan blades. This technology obviates slip rings, which require cooling and can prove unreliable or be problematic over time. The WIPD consists of two parts: a remote element, which is positioned on the rotor and provides up to 100 W of electrical power to thin, lightweight piezoelectric patches strategically placed on/in fan blades; and a stationary base unit that wirelessly communicates with the remote unit. The base unit supplies inductive power, and also acts as an input and output corridor for wireless measurement, and active control command to the remote unit. Efficient engine operation necessitates minimal disturbance to the gas flow across the turbine blades in any effort to moderate blade vibration. This innovation makes it
International Nuclear Information System (INIS)
Chen, S.S.
1975-06-01
Several mathematical models have been proposed for calculating fuel rod responses in axial flows based on a single rod consideration. The spacing between fuel rods in liquid metal fast breeder reactors is small; hence fuel rods will interact with one another due to fluid coupling. The objective of this paper is to study the coupled vibration of fuel bundles. To account for the fluid coupling, a computer code, AMASS, is developed to calculate added mass coefficients for a group of circular cylinders based on the potential flow theory. The equations of motion for rod bundles are then derived including hydrodynamic forces, drag forces, fluid pressure, gravity effect, axial tension, and damping. Based on the equations, a method of analysis is presented to study the free and forced vibrations of rod bundles. Finally, the method is applied to a typical LMFBR fuel bundle consisting of seven rods
Evaluation of blast-induced vibration effects on structures 1
Energy Technology Data Exchange (ETDEWEB)
Lee, Jong Rim; Jeon, Gyu Shick; Lee, Dae Soo; Joo, Kwang Ho; Lee, Woong Keon [Korea Electrotechnology Research Inst., Changwon (Korea, Republic of); Ryu, Chang Ha; Chung, So Keul; Lee, Kyung Won; Shin, Hee Soon; Chun, Sun Woo; Park, Yeon Jun; Synn, Joong Ho; Choi, Byung Hee [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)
1995-12-31
Due to the difficulties of obtaining construction site for new plants, following ones are inevitably being built in the site adjacent to existing power plants. Therefore considerable thought has been recently given to the dynamic loading generated by blasting works near the plants to maintain the safety of structures and facilities in power plants. Our own standard for safety level of blast vibration is not prepared yet, and foreign standards have been generally employed without theoretical and experimental verification. Safety-related structures of power plants and facilities have to be protected against the effects of possible hazards due to blast vibration. Earthquakes have been considered a major dynamic design loading as a requirement of plant design, but the effects of blast-induced vibration are not. In order to ensure the safety, rational safe criterion should be established and blast design should be satisfy it, which requires the development of a model for prediction of vibration level through more systematic measurement and analysis. The main objectives of the study are : to provide background data for establishing the rational safe vibration limits, to develop models for prediction of blast vibration level, to establish safe blast design criterion, and to accumulate techniques for field measurements, data acquisition and analysis (author). 80 refs., 347 figs.
State resolved vibrational relaxation modeling for strongly nonequilibrium flows
Boyd, Iain D.; Josyula, Eswar
2011-05-01
Vibrational relaxation is an important physical process in hypersonic flows. Activation of the vibrational mode affects the fundamental thermodynamic properties and finite rate relaxation can reduce the degree of dissociation of a gas. Low fidelity models of vibrational activation employ a relaxation time to capture the process at a macroscopic level. High fidelity, state-resolved models have been developed for use in continuum gas dynamics simulations based on computational fluid dynamics (CFD). By comparison, such models are not as common for use with the direct simulation Monte Carlo (DSMC) method. In this study, a high fidelity, state-resolved vibrational relaxation model is developed for the DSMC technique. The model is based on the forced harmonic oscillator approach in which multi-quantum transitions may become dominant at high temperature. Results obtained for integrated rate coefficients from the DSMC model are consistent with the corresponding CFD model. Comparison of relaxation results obtained with the high-fidelity DSMC model shows significantly less excitation of upper vibrational levels in comparison to the standard, lower fidelity DSMC vibrational relaxation model. Application of the new DSMC model to a Mach 7 normal shock wave in carbon monoxide provides better agreement with experimental measurements than the standard DSMC relaxation model.
Bubble Size Distribution in a Vibrating Bubble Column
Mohagheghian, Shahrouz; Wilson, Trevor; Valenzuela, Bret; Hinds, Tyler; Moseni, Kevin; Elbing, Brian
2016-11-01
While vibrating bubble columns have increased the mass transfer between phases, a universal scaling law remains elusive. Attempts to predict mass transfer rates in large industrial scale applications by extrapolating laboratory scale models have failed. In a stationary bubble column, mass transfer is a function of phase interfacial area (PIA), while PIA is determined based on the bubble size distribution (BSD). On the other hand, BSD is influenced by the injection characteristics and liquid phase dynamics and properties. Vibration modifies the BSD by impacting the gas and gas-liquid dynamics. This work uses a vibrating cylindrical bubble column to investigate the effect of gas injection and vibration characteristics on the BSD. The bubble column has a 10 cm diameter and was filled with water to a depth of 90 cm above the tip of the orifice tube injector. BSD was measured using high-speed imaging to determine the projected area of individual bubbles, which the nominal bubble diameter was then calculated assuming spherical bubbles. The BSD dependence on the distance from the injector, injector design (1.6 and 0.8 mm ID), air flow rates (0.5 to 5 lit/min), and vibration conditions (stationary and vibration conditions varying amplitude and frequency) will be presented. In addition to mean data, higher order statistics will also be provided.
Vibrational Dynamics of the Diterpene-Neoandrographolide
Directory of Open Access Journals (Sweden)
P. K. Singh
2009-01-01
Full Text Available A complete normal coordinate analysis was performed for neoandrographolide in terms of the calculation by using Wilson’s G-F matrix method and Urey Bradley force field. Andrographis paniculata has been reported for its potent hepatoprotective. Andrographis paniculata has been reported to have antisecretory (antidiarrhoeal, immunostimulant, antimalarial, antifilarial activity. It is also reported to have anticancer, anti HIV, anti-inflammatory, hypotensive action. In addition, it has found to be effective in myocardial infraction.
Katarina Anthony
2015-01-01
In preparation for the civil engineering work on the HL-LHC, vibration measurements were carried out at the LHC’s Point 1 last month. These measurements will help evaluate how civil engineering work could impact the beam, and will provide crucial details about the site’s geological make-up before construction begins. A seismic truck at Point 1 generated wave-like vibrations measured by EN/MME. From carrying out R&D to produce state-of-the-art magnets to developing innovative, robust materials capable of withstanding beam impact, the HL-LHC is a multi-faceted project involving many groups and teams across CERN’s departments. It was in this framework that the project management mandated CERN's Mechanical and Materials Engineering (EN/MME) group to measure the propagation of vibrations around Point 1. Their question: can civil engineering work for the HL-LHC – the bulk of which is scheduled for LS2 – begin while the LHC is running? Alth...
Vibrational stability of graphene
Directory of Open Access Journals (Sweden)
Yangfan Hu
2013-05-01
Full Text Available The mechanical stability of graphene as temperature rises is analyzed based on three different self-consistent phonon (SCP models. Compared with three-dimensional (3-D materials, the critical temperature Ti at which instability occurs for graphene is much closer to its melting temperature Tm obtained from Monte Carlo simulation (Ti ≃ 2Tm, K. V. Zakharchenko, A. Fasolino, J. H. Los, and M. I. Katsnelson, J. Phys. Condens. Matter 23, 202202. This suggests that thermal vibration plays a significant role in melting of graphene while melting for 3-D materials is often dominated by topologic defects. This peculiar property of graphene derives from its high structural anisotropy, which is characterized by the vibrational anisotropic coefficient (VAC, defined upon its Lindermann ratios in different directions. For any carbon based material with a graphene-like structure, the VAC value must be smaller than 5.4 to maintain its stability. It is also found that the high VAC value of graphene is responsible for its negative thermal expansion coefficient at low temperature range. We believe that the VAC can be regarded as a new criterion concerning the vibrational stability of any low-dimensional (low-D materials.
Directory of Open Access Journals (Sweden)
Shuai Wang
2017-04-01
Full Text Available Vibration isolators with quasi-zero stiffness (QZS perform well for low- or ultra-low-frequency vibration isolation. This paper proposes a novel dual-parallelogram passive rocking vibration isolator with QZS that could effectively attenuate in-plane disturbances with low-frequency vibration. First, a kinematic model of the proposed vibration isolator was established and four linear spring configuration schemes were developed to implement the QZS. Next, an optimal scheme with good high-static-low-dynamic stiffness (HSLDS performance was obtained through comparison and analysis, and used as a focus for the QZS model. Subsequently, a dynamic model-based Lagrangian equation that considered the spring stiffness and damping and the influence of the payload gravity center on the vibration isolation system was developed, and an average approach was used to analyze the vibration transmissibility. Finally, the prototype and test system were constructed. A comparison of the simulation and experimental results showed that this novel passive rocking vibration isolator could bolster a heavy payload. Experimentally, the vibration amplitude decreased by 53% and 86% under harmonic disturbances of 0.08 Hz and 0.35 Hz, respectively, suggesting the great practical applicability of this presented vibration isolator.
Identification of Damping from Structural Vibrations
DEFF Research Database (Denmark)
Bajric, Anela
Reliable predictions of the dynamic loads and the lifetime of structures are inﬂuenced by the limited accuracy concerning the level of structural damping. The mechanisms of damping cannot be derived analytically from ﬁrst principles, and in the design of structures the damping is therefore based...... on experience or estimated from measurements. This thesis consists of an extended summary and three papers which focus on enhanced methods for identiﬁcation of damping from random struc-tural vibrations. The developed methods are validated by stochastic simulations, experimental data and full-scale measurements...... which are representative of the vibrations in small and large-scale structures. The ﬁrst part of the thesis presents an automated procedure which is suitable for estimation of the natural frequencies and the modal damping ratios from random response of structures. The method can be incorporated within...
Active vibration suppression of helicopter horizontal stabilizers
Cinquemani, Simone; Cazzulani, Gabriele; Resta, Ferruccio
2017-04-01
Helicopters are among the most complex machines ever made. While ensuring high performance from the aeronautical point of view, they are not very comfortable due to vibration mainly created by the main rotor and by the interaction with the surrounding air. One of the most solicited structural elements of the vehicle are the horizontal stabilizers. These elements are particularly stressed because of their composite structure which, while guaranteeing lightness and strength, is characterized by a low damping. This work makes a preliminary analysis on the dynamics of the structure and proposes different solutions to actively suppress vibrations. Among them, the best in terms of the relationship between performance and weight / complexity of the system is that based on inertial actuators mounted on the inside of the horizontal stabilizers. The work addresses the issue of the design of the device and its use in the stabilizer from both the numerical and the experimental points of view.
Acoustic monitoring of a ball sinking in vibrated granular sediments
van den Wildenberg, Siet; Léopoldès, Julien; Tourin, Arnaud; Jia, Xiaoping
2017-06-01
We develop an ultrasound probing to investigate the dynamics of a high density ball sinking in 3D opaque dense granular suspensions under horizontal weak vibrations. We show that the motion of the ball in these horizontally vibrated glass bead packings saturated by water is consistent with the frictional rheology. The extracted stress-strain relation evidences an evolution of flow behaviour from frictional creep to inertial regimes. Our main finding is that weak external vibration primarily affects the yield stress and controls the depth of sinking via vibration-induced sliding at the grain contact. Also, we observe that the extracted rheological parameters depend on the size of the probing ball, suggesting thus a non-local rheology.
High-speed digital holographic interferometry for vibration measurement
International Nuclear Information System (INIS)
Pedrini, Giancarlo; Osten, Wolfgang; Gusev, Mikhail E.
2006-01-01
A system based on digital holographic interferometry for the measurement of vibrations is presented. A high-power continuous laser(10 W) and a high-speed CCD camera are used. Hundreds of holograms of an object that has been subjected to dynamic deformation are recorded. The acquisition speed and the time of exposure of the detector are determined by the vibration frequency. Two methods are presented for triggering the camera in order to acquire at a given phase of the vibration. The phase of the wavefront is calculated from the recorded holograms by use of a two-dimensional digital Fourier-transform method. The deformation of the object is obtained from the phase. By combination of the deformations recorded at different times it is possible to reconstruct the vibration of the object
Vibration suppression of composite laminated beams using distributed piezoelectric patches
International Nuclear Information System (INIS)
Foda, M A; Almajed, A A; ElMadany, M M
2010-01-01
The focus of this paper is to develop an analytical and straightforward approach to suppress the steady state transverse vibration of a symmetric cross-ply laminated composite beam that is excited by an external harmonic force. This is achieved by bonding patches of piezoelectric material at selected locations along the beam. The governing equations for the system are formulated and the dynamic Green's functions are used to obtain an exact solution for the problem. A scheme is proposed for determining the values of the driving voltages, the dimensions of the PZT patches and their locations along the beam, in order to confine the vibration in a certain chosen region where the vibration is not harmful and leave the other chosen region stationary or vibrating with very small amplitudes. Beams with different boundary conditions are considered. Numerical case studies are presented to verify the utility of the proposed scheme
Rotor-to-stator rub vibration in centrifugal compressor
Gao, J. J.; Qi, Q. M.
1985-01-01
One example of excessive vibration encountered during loading of a centrifugal compressor train (H type compressor with HP casing) is discussed. An investigation was made of the effects of the dynamic load on the bearing stiffness and the rotor-bearing system critical speed. The high vibration occurred at a "threshold load," but the machine didn't run smoothly due to rubs even when it had passed through the threshold load. The acquisition and discussion of the data taken in the field as well as a description of the case history which utilizes background information to identify the malfunction conditions is presented. The analysis shows that the failures, including full reverse precession rub and exact one half subharmonic vibration, were caused by the oversize bearings and displacement of the rotor center due to foundation deformation and misalignment between gear shafts, etc. The corrective actions taken to alleviate excessive vibration and the problems which remain to be solved are also presented.
Monitoring machining conditions by analyzing cutting force vibration
Energy Technology Data Exchange (ETDEWEB)
Piao, Chun Guang; Kim, Ju Wan; Kim, Jin Oh; Shin, Yoan [Soongsl University, Seoul (Korea, Republic of)
2015-09-15
This paper deals with an experimental technique for monitoring machining conditions by analyzing cutting-force vibration measured at a milling machine. This technique is based on the relationship of the cutting-force vibrations with the feed rate and cutting depth as reported earlier. The measurement system consists of dynamic force transducers and a signal amplifier. The analysis system includes an oscilloscope and a computer with a LabVIEW program. Experiments were carried out at various feed rates and cutting depths, while the rotating speed was kept constant. The magnitude of the cutting force vibration component corresponding to the number of cutting edges multiplied by the frequency of rotation was linearly correlated with the machining conditions. When one condition of machining is known, another condition can be identified by analyzing the cutting-force vibration.
Breakup of free liquid jets influenced by external mechanical vibrations
Energy Technology Data Exchange (ETDEWEB)
Lad, V N; Murthy, Z V P, E-mail: vnl@ched.svnit.ac.in, E-mail: zvpm@ched.svnit.ac.in, E-mail: zvpm2000@yahoo.com [Chemical Engineering Department, Sardar Vallabhbhai National Institute of Technology—Surat, Surat—395007, Gujarat (India)
2017-02-15
The breakup of liquid jets has been studied with various test liquids using externally imposed mechanical vibrations. Images of the jets were captured by a high speed camera up to the speed of 1000 frames per second, and analyzed to obtain the profile of the jet and breakup length. The dynamics of the jets have also been studied to understand the effects of additives—a surfactant and polymer—incorporating externally imposed mechanical vibrations. Different types of breakup modes have been explored with respect to the Weber number and Ohnesorge number. The introduction of mechanical vibrations have caused jet breakup with separated droplets at a comparatively lower Weber number. The region of jet breakup by neck formation at constant jet velocities also contracted due to mechanical vibrations. (paper)
Monitoring machining conditions by analyzing cutting force vibration
International Nuclear Information System (INIS)
Piao, Chun Guang; Kim, Ju Wan; Kim, Jin Oh; Shin, Yoan
2015-01-01
This paper deals with an experimental technique for monitoring machining conditions by analyzing cutting-force vibration measured at a milling machine. This technique is based on the relationship of the cutting-force vibrations with the feed rate and cutting depth as reported earlier. The measurement system consists of dynamic force transducers and a signal amplifier. The analysis system includes an oscilloscope and a computer with a LabVIEW program. Experiments were carried out at various feed rates and cutting depths, while the rotating speed was kept constant. The magnitude of the cutting force vibration component corresponding to the number of cutting edges multiplied by the frequency of rotation was linearly correlated with the machining conditions. When one condition of machining is known, another condition can be identified by analyzing the cutting-force vibration
Optimal Vibration Control for Tracked Vehicle Suspension Systems
Directory of Open Access Journals (Sweden)
Yan-Jun Liang
2013-01-01
Full Text Available Technique of optimal vibration control with exponential decay rate and simulation for vehicle active suspension systems is developed. Mechanical model and dynamic system for a class of tracked vehicle suspension vibration control is established and the corresponding system of state space form is described. In order to prolong the working life of suspension system and improve ride comfort, based on the active suspension vibration control devices and using optimal control approach, an optimal vibration controller with exponential decay rate is designed. Numerical simulations are carried out, and the control effects of the ordinary optimal controller and the proposed controller are compared. Numerical simulation results illustrate the effectiveness of the proposed technique.
Free Vibration Analysis of Rectangular Orthotropic Membranes in Large Deflection
Directory of Open Access Journals (Sweden)
Zheng Zhou-Lian
2009-01-01
Full Text Available This paper reviewed the research on the vibration of orthotropic membrane, which commonly applied in the membrane structural engineering. We applied the large deflection theory of membrane to derive the governing vibration equations of orthotropic membrane, solved it, and obtained the power series formula of nonlinear vibration frequency of rectangular membrane with four edges fixed. The paper gave the computational example and compared the two results from the large deflection theory and the small one, respectively. Results obtained from this paper provide some theoretical foundation for the measurement of pretension by frequency method; meanwhile, the results provide some theoretical foundation for the research of nonlinear vibration of membrane structures and the response solving of membrane structures under dynamic loads.
Vibration and Operational Characteristics of a Composite-Steel (Hybrid) Gear
Handschuh, Robert F.; LaBerge, Kelsen E.; DeLuca, Samuel; Pelagalli, Ryan
2014-01-01
Hybrid gears have been tested consisting of metallic gear teeth and shafting connected by composite web. Both free vibration and dynamic operation tests were completed at the NASA Glenn Spur Gear Fatigue Test Facility, comparing these hybrid gears to their steel counterparts. The free vibration tests indicated that the natural frequency of the hybrid gear was approximately 800 Hz lower than the steel test gear. The dynamic vibration tests were conducted at five different rotational speeds and three levels of torque in a four square test configuration. The hybrid gears were tested both as fabricated (machined, composite layup, then composite cure) and after regrinding the gear teeth to the required aerospace tolerance. The dynamic vibration tests indicated that the level of vibration for either type of gearing was sensitive to the level of load and rotational speed.
Energy Technology Data Exchange (ETDEWEB)
Moecks, L
1981-01-01
The 'Stockbridge'-type vibration damper is presented and its dynamic characteristics are analytically described. In consideration of standard line data a dynamic model of the overhead line is designed. The vibration impulse by the wind and self-damping of the cable are explained with relations being deduced. The entire mathematical model 'overhead line with and without damper' is finally forming the basis for performing numerous parameter studies, with the importance of the damper characteristics and the damper installation site to the value of the dynamic load of the cable being shown very clearly. The presented technique is also convenient for checking the vibration intensity of overhead lines to be newly planned.
Random vibrations theory and practice
Wirsching, Paul H; Ortiz, Keith
1995-01-01
Random Vibrations: Theory and Practice covers the theory and analysis of mechanical and structural systems undergoing random oscillations due to any number of phenomena— from engine noise, turbulent flow, and acoustic noise to wind, ocean waves, earthquakes, and rough pavement. For systems operating in such environments, a random vibration analysis is essential to the safety and reliability of the system. By far the most comprehensive text available on random vibrations, Random Vibrations: Theory and Practice is designed for readers who are new to the subject as well as those who are familiar with the fundamentals and wish to study a particular topic or use the text as an authoritative reference. It is divided into three major sections: fundamental background, random vibration development and applications to design, and random signal analysis. Introductory chapters cover topics in probability, statistics, and random processes that prepare the reader for the development of the theory of random vibrations a...
VIBRATION ISOLATION SYSTEM PROBABILITY ANALYSIS
Directory of Open Access Journals (Sweden)
Smirnov Vladimir Alexandrovich
2012-10-01
Full Text Available The article deals with the probability analysis for a vibration isolation system of high-precision equipment, which is extremely sensitive to low-frequency oscillations even of submicron amplitude. The external sources of low-frequency vibrations may include the natural city background or internal low-frequency sources inside buildings (pedestrian activity, HVAC. Taking Gauss distribution into account, the author estimates the probability of the relative displacement of the isolated mass being still lower than the vibration criteria. This problem is being solved in the three dimensional space, evolved by the system parameters, including damping and natural frequency. According to this probability distribution, the chance of exceeding the vibration criteria for a vibration isolation system is evaluated. Optimal system parameters - damping and natural frequency - are being developed, thus the possibility of exceeding vibration criteria VC-E and VC-D is assumed to be less than 0.04.
Vibration analysis of the synchronous motor of a propane compressor
Energy Technology Data Exchange (ETDEWEB)
Nogueira, D.; Rangel Junior, J. de S. [Petroleo Brasileiro S.A. - PETROBRAS, Rio de Janeiro, RJ (Brazil)], Emails: diananogueira@petrobras.com.br, joilson_jr@petrobras.com.br; Moreira, R.G. [Petroleo Brasileiro S.A. - PETROBRAS, Cabiunas, RJ (Brazil)], E-mail: ricgmoreira@petrobras.com.br
2010-07-01
This paper aims at describing the Analysis of a synchronous electric motor which presented high vibration levels (shaft displacement and bearing housing vibration) during the commissioning process, as well as propose the best practices for the solution of vibration problems in similar situations. This motor belongs to the propane centrifugal compressor installed at a Gas Compression Station. The methodology used in this study conducted an investigation of the problems presented in the motor through the execution of many types of tests and the analysis of the results. The main evaluations were performed, such as the vibration analysis and the rotor dynamic analysis. The electric motor was shipped back to the manufacturer's shop, where the manufacturer made certain modifications to the motor structure so as to improve the structure stiffness, such as the improvement of the support and the increase of the thickness of the structural plates. In addition to that, the dynamic balancing of the rotating set was checked. Finally, the excitation at a critical speed close to the rated speed was found after Rotor Dynamics Analysis was performed again, because of the increase in bearing clearances. The bearing shells were replaced so as to increase the separation margin between these frequencies. In order to verify the final condition of the motor, the manufacturer repeated the standard tests - FAT (Factory Acceptance Tests) - according to internal procedure and international standards. As a result of this work, it was possible to conclude that there was a significant increase in the vibration levels due to unbalance conditions. It was also possible to conclude that there are close relationships between high vibration levels and unbalance conditions, as well as between high vibration levels and the stiffness of the system and its support. Certain points of attention related to the manufacturing process of the motor compressor are described at the end of this paper, based
Vibration control of a cluster of buildings through the Vibrating Barrier
Tombari, A.; Garcia Espinosa, M.; Alexander, N. A.; Cacciola, P.
2018-02-01
A novel device, called Vibrating Barrier (ViBa), that aims to reduce the vibrations of adjacent structures subjected to ground motion waves has been recently proposed. The ViBa is a structure buried in the soil and detached from surrounding buildings that is able to absorb a significant portion of the dynamic energy arising from the ground motion. The working principle exploits the dynamic interaction among vibrating structures due to the propagation of waves through the soil, namely the structure-soil-structure interaction. In this paper the efficiency of the ViBa is investigated to control the vibrations of a cluster of buildings. To this aim, a discrete model of structures-site interaction involving multiple buildings and the ViBa is developed where the effects of the soil on the structures, i.e. the soil-structure interaction (SSI), the structure-soil-structure interaction (SSSI) as well as the ViBa-soil-structures interaction are taken into account by means of linear elastic springs. Closed-form solutions are derived to design the ViBa in the case of harmonic excitation from the analysis of the discrete model. Advanced finite element numerical simulations are performed in order to assess the efficiency of the ViBa for protecting more than a single building. Parametric studies are also conducted to identify beneficial/adverse effects in the use of the proposed vibration control strategy to protect cluster of buildings. Finally, experimental shake table tests are performed to a prototype of a cluster of two buildings protected by the ViBa device for validating the proposed numerical models.
The vibrational properties of Chinese fir wood during moisture sorption process
Jiali Jiang; Jianxiong Lu; Zhiyong Cai
2012-01-01
The vibrational properties of Chinese fir (Cunninghamia lanceolata) wood were investigated in this study as a function of changes in moisture content (MC) and grain direction. The dynamic modulus of elasticity (DMOE) and logarithmic decrement σ were examined using a cantilever beam vibration testing apparatus. It was observed that DMOE and 6 of wood vaned...
Active Vibration Suppression of a 3-DOF Flexible Parallel Manipulator Using Efficient Modal Control
Directory of Open Access Journals (Sweden)
Quan Zhang
2014-01-01
Full Text Available This paper addresses the dynamic modeling and efficient modal control of a planar parallel manipulator (PPM with three flexible linkages actuated by linear ultrasonic motors (LUSM. To achieve active vibration control, multiple lead zirconate titanate (PZT transducers are mounted on the flexible links as vibration sensors and actuators. Based on Lagrange’s equations, the dynamic model of the flexible links is derived with the dynamics of PZT actuators incorporated. Using the assumed mode method (AMM, the elastic motion of the flexible links are discretized under the assumptions of pinned-free boundary conditions, and the assumed mode shapes are validated through experimental modal test. Efficient modal control (EMC, in which the feedback forces in different modes are determined according to the vibration amplitude or energy of their own, is employed to control the PZT actuators to realize active vibration suppression. Modal filters are developed to extract the modal displacements and velocities from the vibration sensors. Numerical simulation and vibration control experiments are conducted to verify the proposed dynamic model and controller. The results show that the EMC method has the capability of suppressing multimode vibration simultaneously, and both the structural and residual vibrations of the flexible links are effectively suppressed using EMC approach.
Cahill, Paul; Hazra, Budhaditya; Karoumi, Raid; Mathewson, Alan; Pakrashi, Vikram
2018-06-01
The application of energy harvesting technology for monitoring civil infrastructure is a bourgeoning topic of interest. The ability of kinetic energy harvesters to scavenge ambient vibration energy can be useful for large civil infrastructure under operational conditions, particularly for bridge structures. The experimental integration of such harvesters with full scale structures and the subsequent use of the harvested energy directly for the purposes of structural health monitoring shows promise. This paper presents the first experimental deployment of piezoelectric vibration energy harvesting devices for monitoring a full-scale bridge undergoing forced dynamic vibrations under operational conditions using energy harvesting signatures against time. The calibration of the harvesters is presented, along with details of the host bridge structure and the dynamic assessment procedures. The measured responses of the harvesters from the tests are presented and the use the harvesters for the purposes of structural health monitoring (SHM) is investigated using empirical mode decomposition analysis, following a bespoke data cleaning approach. Finally, the use of sequential Karhunen Loeve transforms to detect train passages during the dynamic assessment is presented. This study is expected to further develop interest in energy-harvesting based monitoring of large infrastructure for both research and commercial purposes.
Vibration damping method and apparatus
Redmond, James M.; Barney, Patrick S.; Parker, Gordon G.; Smith, David A.
1999-01-01
The present invention provides vibration damping method and apparatus that can damp vibration in more than one direction without requiring disassembly, that can accommodate varying tool dimensions without requiring re-tuning, and that does not interfere with tool tip operations and cooling. The present invention provides active dampening by generating bending moments internal to a structure such as a boring bar to dampen vibration thereof.
Atomic beams probe surface vibrations
International Nuclear Information System (INIS)
Robinson, A.L.
1982-01-01
In the last two years, surface scientist have begun trying to obtain the vibrational frequencies of surface atoms in both insulating and metallic crystals from beams of helium atoms. It is the inelastic scattering that researchers use to probe surface vibrations. Inelastic atomic beam scattering has only been used to obtain vibrational frequency spectra from clean surfaces. Several experiments using helium beams are cited. (SC)
Fundamentals of structural dynamics
Craig, Roy R
2006-01-01
From theory and fundamentals to the latest advances in computational and experimental modal analysis, this is the definitive, updated reference on structural dynamics.This edition updates Professor Craig's classic introduction to structural dynamics, which has been an invaluable resource for practicing engineers and a textbook for undergraduate and graduate courses in vibrations and/or structural dynamics. Along with comprehensive coverage of structural dynamics fundamentals, finite-element-based computational methods, and dynamic testing methods, this Second Edition includes new and e
Energy harvesting from vibration using a piezoelectric membrane
Energy Technology Data Exchange (ETDEWEB)
Ericka, M.; Vasic, D.; Costa, F.; Tliba, S. [Ecole Normale Superieure de Cachan, Systemes et Applications des Technologies de l' Information et de l' Energie (SATIE, UMR 8029), 94 - Cachan (France); Poulin, G. [Ecole Nationale Superieure d' Ingenieurs Electriciens de Grenoble, Laboratoire d' Automatique de Grenoble, 38 (France)
2005-09-01
In this paper we investigate the capability of harvesting the electric energy from mechanical vibrations in a dynamic environment through a piezoelectric membrane transducer. This transducer consists of 2 layers lead zirconate titanate (PZT)/brass, the brass layer is embedded over the whole circumference by epoxy adhesive. A very small vibration gives a consequent deformation of the membrane which generates electric energy. Due to the impedance matrices connecting the efforts and flows of the membrane, we have established the dynamic electric equivalent circuit of the transducer. In a first study and in order to validate theoretical results, we performed experiments with a vibrating machine moving a macroscopic 25 mm diameter piezoelectric membrane. A power of 1.8 mW was generated at the resonance frequency (2.58 kHz) across a 56 k{omega} optimal resistor and for a 2 g acceleration. (authors)
Emergency Gate Vibration of the Pipe-Turbine Model
Directory of Open Access Journals (Sweden)
Andrej Predin
2000-01-01
Full Text Available The vibration behavior of an emergency gate situated on a horizontal-shaft Kaplan turbine is studied. The analysis and transfer of the dynamic movements of the gate are quite complex. In particular the behavior is examined of the emergency gate for the case when the power unit is disconnected from the system or there is a breakdown of the guide vane system at the moment when the maximal head and capacity are achieved. Experimental-numerical methods both in the time domain and in the frequency domain are employed. Natural vibrations characterize a first zone, corresponding to relatively small gate openings. As the gate opening increases, the vibration behavior of the gate becomes increasingly dependent on the swirl pulsations in the draft tube of the turbine. Finally, the data transfer from the model to the prototype by use of the dynamic similitude law is discussed.
Digital analysis of vibrations
International Nuclear Information System (INIS)
Bohnstedt, H.J.; Walter, G.
1982-01-01
Vibrational measurements, e.g. on turbomachinery, can be evaluated rapidly and economically with the aid of a combination of the following instruments: a desk-top computer, a two-channel vector filter and a FFT spectral analyzer. This equipment combination is available within the Allianz Centre for Technology and has also been used for mobile, on-site investigations during the last year. It enables calculation and display of time functions, kinetic shaft orbits, displacement diagrams. Bode plots, polar-coordinate plots, cascade diagrams and histograms. (orig.) [de
Turbine blade vibration dampening
Cornelius, C.C.; Pytanowski, G.P.; Vendituoli, J.S.
1997-07-08
The present turbine wheel assembly increases component life and turbine engine longevity. The combination of the strap and the opening combined with the preestablished area of the outer surface of the opening and the preestablished area of the outer circumferential surface of the strap and the friction between the strap and the opening increases the life and longevity of the turbine wheel assembly. Furthermore, the mass ``M`` or combined mass ``CM`` of the strap or straps and the centrifugal force assist in controlling vibrations and damping characteristics. 5 figs.
Lattice Vibrations in Chlorobenzenes:
DEFF Research Database (Denmark)
Reynolds, P. A.; Kjems, Jørgen; White, J. W.
1974-01-01
Lattice vibrational dispersion curves for the ``intermolecular'' modes in the triclinic, one molecule per unit cell β phase of p‐C6D4Cl2 and p‐C6H4Cl2 have been obtained by inelastic neutron scattering. The deuterated sample was investigated at 295 and at 90°K and a linear extrapolation to 0°K...... was applied in order to correct for anharmonic effects. Calculations based on the atom‐atom model for van der Waals' interaction and on general potential parameters for the aromatic compounds agree reasonably well with the experimental observations. There is no substantial improvement in fit obtained either...
Vibration control, machine diagnostics
International Nuclear Information System (INIS)
1990-01-01
Changing vibrations announce damage in the form of wear or cracks on components of, e.g., engine rotors, pumps, power plant turbo sets, rounding-up tools, or marine diesel engines. Therefore, machine diagnostics use frequency analyses, system tests, trend analyses as well as expert systems to localize or estimate the causes of these damages and malfunctions. Data acquisistion, including not only sensors, but also reliable and redundant data processing systems and analyzing systems, play an important role. The lectures pertaining to the data base are covered in detail. (DG) [de
Vibration of high-voltage electric machines with rotors on rolling bearings
Shekyan, H. G.; Gevorgyan, A. V.
2018-04-01
The paper presents an investigation of vibrational activity of electric machines due to high-harmonic vibrational loadings. It is shown that the vibrational loadings experienced by bearings may result in the interruption of their normal operation and even take them out of action. Therefore, the values of the vibrational speed-up leading to high harmonics are factors determining the admissible dynamic loading on the bearings. In the paper, an attempt is made to consider the factors which result in origination of high harmonics and to illustrate methods for their smoothing.
Off-axis Modal Active Vibration Control Of Rotational Vibrations
Babakhani, B.; de Vries, Theodorus J.A.; van Amerongen, J.
Collocated active vibration control is an effective and robustly stable way of adding damping to the performance limiting vibrations of a plant. Besides the physical parameters of the Active Damping Unit (ADU) containing the collocated actuator and sensor, its location with respect to the
The High Level Vibration Test Program
International Nuclear Information System (INIS)
Hofmayer, C.H.; Curreri, J.R.; Park, Y.J.; Kato, W.Y.; Kawakami, S.
1989-01-01
As part of cooperative agreements between the United States and Japan, tests have been performed on the seismic vibration table at the Tadotsu Engineering Laboratory of Nuclear Power Engineering Test Center (NUPEC) in Japan. The objective of the test program was to use the NUPEC vibration table to drive large diameter nuclear power piping to substantial plastic strain with an earthquake excitation and to compare the results with state-of-the-art analysis of the problem. The test model was designed by modifying the 1/2.5 scale model of the PWR primary coolant loop. Elastic and inelastic seismic response behavior of the test model was measured in a number of test runs with an increasing excitation input level up to the limit of the vibration table. In the maximum input condition, large dynamic plastic strains were obtained in the piping. Crack initiation was detected following the second maximum excitation run. The test model was subjected to a maximum acceleration well beyond what nuclear power plants are designed to withstand. This paper describes the overall plan, input motion development, test procedure, test results and comparisons with pre-test analysis. 4 refs., 16 figs., 2 tabs
The High Level Vibration Test program
International Nuclear Information System (INIS)
Hofmayer, C.H.; Curreri, J.R.; Park, Y.J.; Kato, W.Y.; Kawakami, S.
1990-01-01
As part of cooperative agreements between the United States and Japan, tests have been performed on the seismic vibration table at the Tadotsu Engineering Laboratory of Nuclear Power Engineering Test Center (NUPEC) in Japan. The objective of the test program was to use the NUPEC vibration table to drive large diameter nuclear power piping to substantial plastic strain with an earthquake excitation and to compare the results with state-of-the-art analysis of the problem. The test model was designed by modifying the 1/2.5 scale model of the pressurized water reactor primary coolant loop. Elastic and inelastic seismic response behavior of the test model was measured in a number of test runs with an increasing excitation input level up to the limit of the vibration table. In the maximum input condition, large dynamic plastic strains were obtained in the piping. Crack initiation was detected following the second maximum excitation run. The test model was subjected to a maximum acceleration well beyond what nuclear power plants are designed to withstand. This paper describes the overall plan, input motion development, test procedure, test results and comparisons with pre-test analysis
Transient vibration of thin viscoelastic orthotropic plates
Czech Academy of Sciences Publication Activity Database
Soukup, J.; Valeš, František; Volek, J.; Skočilas, J.
2011-01-01
Roč. 27, č. 1 (2011), s. 98-107 ISSN 0567-7718. [International Conference on Dynamical Systems - Theory and Applications /10./. Lodz, 07.12.2009-10.12.2009] R&D Projects: GA ČR GA101/07/0946 Institutional research plan: CEZ:AV0Z20760514 Keywords : transient vibration thin plate * orthotropic * general viscoelastic standard solid Subject RIV: BI - Acoustics Impact factor: 0.860, year: 2011 http://www.springerlink.com/content/hn67324178846n4r/
Supervision of the vibration of rotating components
International Nuclear Information System (INIS)
1982-06-01
The aim of the investifation was to plead for the systematization and uniformity of surveillance and to form a source of information to the makers of instruments, suppliers of engines, consultants and others. Two essential topics are treated, namely rotor dynamics and measuring methods for vibration control. An inventory of damages and problems of rotating machinery is presented. Recommendations concerning various supervision programs of reactor safety, the importance of components, risk of missiles and erroreous operations are given along with instructions how to get hold of suitable instruments. Experience from nuclear power plants is said to be essential. Experimental activity at Ringhals and/or Forsmark power plant is proposed. (G.B.)
The Effects of Local Vibration on Balance, Power, and Self-Reported Pain After Exercise.
Custer, Lisa; Peer, Kimberly S; Miller, Lauren
2017-05-01
Muscle fatigue and acute muscle soreness occur after exercise. Application of a local vibration intervention may reduce the consequences of fatigue and soreness. To examine the effects of a local vibration intervention after a bout of exercise on balance, power, and self-reported pain. Single-blind crossover study. Laboratory. 19 healthy, moderately active subjects. After a 30-min bout of full-body exercise, subjects received either an active or a sham vibration intervention. The active vibration intervention was performed bilaterally over the muscle bellies of the triceps surae, quadriceps, hamstrings, and gluteals. At least 1 wk later, subjects repeated the bout, receiving the other vibration intervention. Static balance, dynamic balance, power, and self-reported pain were measured at baseline, after the vibration intervention, and 24 h postexercise. After the bout of exercise, subjects had reduced static and dynamic balance and increased self-reported pain regardless of vibration intervention. There were no differences between outcome measures between the active and sham vibration conditions. The local vibration intervention did not affect balance, power, or self-reported pain.
Analysis of micro vibration in gas film of aerostatic guide way based on molecule collision theory
Directory of Open Access Journals (Sweden)
Yang Shao Hua
2016-01-01
Full Text Available Micro vibration of the aerostatic guide way has a significant impact on its dynamic characteristics and stability, which limits the development of pneumatic component. High pressure gas molecules have been collided with the supporting surface and the internal surface of the throttle during the flow process. Variable impulse of the surfaces aside for the gas film are affected by the changes of impulse which formed irregular impact force in horizontal and vertical direction. Micro-vibration takes place based on the natural frequency of the system and its frequency doubling. In this paper, the vibration model was established to describe the dynamic characteristics of the gas film, and the formation mechanism of micro vibration in the film is defined. Through the simulation analysis and experimental comparison, formation mechanism of the micro vibration in the gas film is confirmed. It was proposed that the micro vibration of gas film can be produced no matter whether there is a gas chamber or not in the throttle. Under the same conditions, the micro vibration of the guide way with air chamber is greater than that without any chamber. The frequency points of the vibration peaks are almost the same, as well as the vibration pattern in the frequency domain.
Research on the nonintrusive measurement of the turbine blade vibration
Zhang, Shi hai; Li, Lu-ping; Rao, Hong-de
2008-11-01
It's one of the important ways to monitor the change of dynamic characteristic of turbine blades for ensuring safety operation of turbine unit. Traditional measurement systems for monitoring blade vibration generally use strain gauges attached to the surface of turbine blades, each strain gauge gives out an analogue signal related to blade deformation, it's maximal defect is only a few blades could be monitored which are attached by strain gauge. But the noncontact vibration measurement will be discussed would solve this problem. This paper deals with noncontact vibration measurement on the rotor blades of turbine through experiments. In this paper, the noncontact vibration measurement - Tip Timing Measurement will be presented, and will be improved. The statistics and DFT will be used in the improved measurement. The main advantage of the improved measurement is that only two sensors over the top of blades and one synchronous sensor of the rotor are used to get the exact vibration characteristics of the each blade in a row. In our experiment, we adopt NI Company's DAQ equipment: SCXI1001 and PCI 6221, three optical sensors, base on the graphics program soft LabVIEW to develop the turbine blade monitor system. At the different rotational speed of the rotor (1000r/m and 1200r/m) we do several experiments on the bench of the Turbine characteristic. Its results indicated that the vibration of turbine blade could be real-time monitored and accurately measured by the improved Tip Timing Measurement.
A vibration correction method for free-fall absolute gravimeters
Qian, J.; Wang, G.; Wu, K.; Wang, L. J.
2018-02-01
An accurate determination of gravitational acceleration, usually approximated as 9.8 m s-2, has been playing an important role in the areas of metrology, geophysics, and geodetics. Absolute gravimetry has been experiencing rapid developments in recent years. Most absolute gravimeters today employ a free-fall method to measure gravitational acceleration. Noise from ground vibration has become one of the most serious factors limiting measurement precision. Compared to vibration isolators, the vibration correction method is a simple and feasible way to reduce the influence of ground vibrations. A modified vibration correction method is proposed and demonstrated. A two-dimensional golden section search algorithm is used to search for the best parameters of the hypothetical transfer function. Experiments using a T-1 absolute gravimeter are performed. It is verified that for an identical group of drop data, the modified method proposed in this paper can achieve better correction effects with much less computation than previous methods. Compared to vibration isolators, the correction method applies to more hostile environments and even dynamic platforms, and is expected to be used in a wider range of applications.
Piezoelectric Vibration Damping Study for Rotating Composite Fan Blades
Min, James B.; Duffy, Kirsten P.; Choi, Benjamin B.; Provenza, Andrew J.; Kray, Nicholas
2012-01-01
Resonant vibrations of aircraft engine blades cause blade fatigue problems in engines, which can lead to thicker and aerodynamically lower performing blade designs, increasing engine weight, fuel burn, and maintenance costs. In order to mitigate undesirable blade vibration levels, active piezoelectric vibration control has been investigated, potentially enabling thinner blade designs for higher performing blades and minimizing blade fatigue problems. While the piezoelectric damping idea has been investigated by other researchers over the years, very little study has been done including rotational effects. The present study attempts to fill this void. The particular objectives of this study were: (a) to develop and analyze a multiphysics piezoelectric finite element composite blade model for harmonic forced vibration response analysis coupled with a tuned RLC circuit for rotating engine blade conditions, (b) to validate a numerical model with experimental test data, and (c) to achieve a cost-effective numerical modeling capability which enables simulation of rotating blades within the NASA Glenn Research Center (GRC) Dynamic Spin Rig Facility. A numerical and experimental study for rotating piezoelectric composite subscale fan blades was performed. It was also proved that the proposed numerical method is feasible and effective when applied to the rotating blade base excitation model. The experimental test and multiphysics finite element modeling technique described in this paper show that piezoelectric vibration damping can significantly reduce vibrations of aircraft engine composite fan blades.
Hand-arm vibration in tropical rain forestry workers.
Futatsuka, M; Inaoka, T; Ohtsuka, R; Sakurai, T; Moji, K; Igarashi, T
1995-01-01
Working conditions and health hazards including vibration syndrome related to forestry work using chain-saws were studied in Papua New Guinea and Indonesia. The subjects comprised 291 workers including 97 chain-saw operators. The health examination consisted of peripheral circulatory and sensory tests in the upper extremities. The vibration spectrum measured at the handle of the chain-saw indicated that these acceleration levels would lead to a moderately high risk of hand-arm vibration syndrome (HAVS). The peripheral circulatory function tests revealed dysfunction after more than five years vibration exposure. However, in general, the results of the function tests and subjective complaints showed fewer health problems compared to those of Japanese forestry workers. The reason of such differences of vibration effects seem to be the following: (1) warmer climate (more than 25 degrees C throughout the year), (2) young workers and short work experience. (3) short time vibration exposures on working days in the natural forests, (4) seasonal changes in logging work (5) healthy workers effects. Thus, we found no clear evidence that the workers of our study suffered from HAVS. A principal component analysis was applied. The factor score of the components of the reactive dynamics of peripheral circulation differed significantly after more than five years' exposure. On the other hand, we cannot deny the possibility that subclinical dysfunction of peripheral circulation may be caused by chain-saw operation in the tropics in future. Further investigations on the HAVS among forestry workers in the tropic environment are needed.
Fast Fourier transformation in vibration analysis of physically active systems
International Nuclear Information System (INIS)
Hafeez, T.; Amir, M.; Farooq, U.; Day, P.
2003-01-01
Vibration of all physical systems may be expressed as the summation of an infinite number of sine and cosine terms known as Fourier series. The basic vibration analysis tool used is the frequency 'spectrum' (a graph of vibration where the amplitude of vibration is plotted against frequency). When a particular rotating component begins to fail, its vibration tends to increase. Spectra graphs are powerful diagnostic tool for detecting components' degradation. Spectra obtained with accelerometers located at the various locations on the components and their analysis in practice from rotating machines enable early detecting of incipient failure. Consequence of unexpected failure can be catastrophic and costly. This study provides basis to relate defective component by its constituent frequencies and then to the known discrete frequency of its 'signature' or 'thumbprint' to predict and verify the sustained dynamic behavior of machine designs harmful effects of forced vibration. The spectra for gearbox of a vane with teeth damaged fault are presented here which signified the importance of FFT analysis as diagnostic tool. This may be helpful to predictive maintenance of the machinery. (author)
Whole-body vibration exercise improves functional parameters in ...
African Journals Online (AJOL)
Background: Patients with osteogenesis imperfecta (OI) have abnormal bone modelling and resorption. The bone tissue adaptation and responsivity to dynamic and mechanical loading may be of therapeutic use under controlled circumstances. Improvements due to the wholebody vibration (WBV) exercises have been ...
Vibration elements in wind power systems; Schwingungselemente fuer Windkraftanlagen
Energy Technology Data Exchange (ETDEWEB)
Mitsch, F. [ESM GmbH, Rimbach Mitlechtern (Germany)
2005-07-01
Bearings in wind power systems are subject to high static and dynamic loads. These components should have low stiffness and damping in order to ensure maximum insulation of structure-borne sound. Higher damping has a positive effect on low-frequency vibrations. Bearing elements must also be stiff in order to take up high loads. (orig.)
Generalized qubits of the vibrational motion of a trapped ion
International Nuclear Information System (INIS)
Arevalo Aguilar, L.M.; Moya-Cessa, H.
2002-01-01
We present a method to generate qubits of the vibrational motion of an ion. The method is developed in the non-rotating-wave-approximation regime, therefore we consider regimes where the dynamics has not been studied. Because the solutions are valid for a more extended range of parameters we call them generalized qubits