WorldWideScience

Sample records for dynamic transmission electron

  1. Pulsed Power for a Dynamic Transmission Electron Microscope

    Energy Technology Data Exchange (ETDEWEB)

    dehope, w j; browning, n; campbell, g; cook, e; king, w; lagrange, t; reed, b; stuart, b; Shuttlesworth, R; Pyke, B

    2009-06-25

    Lawrence Livermore National Laboratory (LLNL) has converted a commercial 200kV transmission electron microscope (TEM) into an ultrafast, nanoscale diagnostic tool for material science studies. The resulting Dynamic Transmission Electron Microscope (DTEM) has provided a unique tool for the study of material phase transitions, reaction front analyses, and other studies in the fields of chemistry, materials science, and biology. The TEM's thermionic electron emission source was replaced with a fast photocathode and a laser beam path was provided for ultraviolet surface illumination. The resulting photoelectron beam gives downstream images of 2 and 20 ns exposure times at 100 and 10 nm spatial resolution. A separate laser, used as a pump pulse, is used to heat, ignite, or shock samples while the photocathode electron pulses, carefully time-synchronized with the pump, function as probe in fast transient studies. The device functions in both imaging and diffraction modes. A laser upgrade is underway to make arbitrary cathode pulse trains of variable pulse width of 10-1000 ns. Along with a fast e-beam deflection scheme, a 'movie mode' capability will be added to this unique diagnostic tool. This talk will review conventional electron microscopy and its limitations, discuss the development and capabilities of DTEM, in particularly addressing the prime and pulsed power considerations in the design and fabrication of the DTEM, and conclude with the presentation of a deflector and solid-state pulser design for Movie-Mode DTEM.

  2. Photocathode Optimization for a Dynamic Transmission Electron Microscope: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, P; Flom, Z; Heinselman, K; Nguyen, T; Tung, S; Haskell, R; Reed, B W; LaGrange, T

    2011-08-04

    The Dynamic Transmission Electron Microscope (DTEM) team at Harvey Mudd College has been sponsored by LLNL to design and build a test setup for optimizing the performance of the DTEM's electron source. Unlike a traditional TEM, the DTEM achieves much faster exposure times by using photoemission from a photocathode to produce electrons for imaging. The DTEM team's work is motivated by the need to improve the coherence and current density of the electron cloud produced by the electron gun in order to increase the image resolution and contrast achievable by DTEM. The photoemission test setup is nearly complete and the team will soon complete baseline tests of electron gun performance. The photoemission laser and high voltage power supply have been repaired; the optics path for relaying the laser to the photocathode has been finalized, assembled, and aligned; the internal setup of the vacuum chamber has been finalized and mostly implemented; and system control, synchronization, and data acquisition has been implemented in LabVIEW. Immediate future work includes determining a consistent alignment procedure to place the laser waist on the photocathode, and taking baseline performance measurements of the tantalum photocathode. Future research will examine the performance of the electron gun as a function of the photoemission laser profile, the photocathode material, and the geometry and voltages of the accelerating and focusing components in the electron gun. This report presents the team's progress and outlines the work that remains.

  3. Scanning transmission electron microscopy imaging dynamics at low accelerating voltages

    Energy Technology Data Exchange (ETDEWEB)

    Lugg, N.R. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Findlay, S.D. [Institute of Engineering Innovation, The University of Tokyo, Tokyo 116-0013 (Japan); Shibata, N. [Institute of Engineering Innovation, The University of Tokyo, Tokyo 116-0013 (Japan); PRESTO, Japan Science and Technology Agency, Saitama 332-0012 (Japan); Mizoguchi, T. [Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505 (Japan); D' Alfonso, A.J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Allen, L.J., E-mail: lja@unimelb.edu.au [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Ikuhara, Y. [Institute of Engineering Innovation, The University of Tokyo, Tokyo 116-0013 (Japan); Nanostructures Research Laboratory, Japan Fine Ceramic Center, Nagoya 456-8587 (Japan); WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2011-07-15

    Motivated by the desire to minimize specimen damage in beam sensitive specimens, there has been a recent push toward using relatively low accelerating voltages (<100kV) in scanning transmission electron microscopy. To complement experimental efforts on this front, this paper seeks to explore the variations with accelerating voltage of the imaging dynamics, both of the channelling of the fast electron and of the inelastic interactions. High-angle annular-dark field, electron energy loss spectroscopic imaging and annular bright field imaging are all considered. -- Highlights: {yields} Both elastic and inelastic scattering in STEM are acceleration voltage dependent. {yields} HAADF, EELS and ABF imaging are assessed with a view to optimum imaging. {yields} Lower accelerating voltages improve STEM EELS contrast in very thin crystals. {yields} Higher accelerating voltages give better STEM EELS contrast in thicker crystals. {yields} At fixed resolution, higher accelerating voltage aids ABF imaging of light elements.

  4. Measurement of Specimen Thickness by Using Electron Holography and Electron Dynamic Calculation with a Transmission Electron Microscope

    Institute of Scientific and Technical Information of China (English)

    王岩国; 刘红荣; 杨奇斌; 张泽

    2003-01-01

    A method of transmission-electron microscopy for accurate measurement of specimen thickness has been proposed based on off-axis electron holography along with the dynamic electron diffraction simulation. The phase shift of the exit object wave with respect to the reference wave in vacuum, resulting from the scattering within the specimen, has been simulated versus the specimen thickness by the dynamic electron diffraction formula. Offaxis electron holography in a field emission gun transmission-electron microscope has been used to determine the phase shift of the exit wave. The specimen thickness can be obtained by match of the experimental and simulated phase shift. Based on the measured phase shift of the [110] oriented copper foil, the thickness can be determined at a good level of accuracy with an error less than ~10%.

  5. Dynamic studies of catalysts for biofuel synthesis in an Environmental Transmission Electron Microscope

    DEFF Research Database (Denmark)

    Duchstein, Linus Daniel Leonhard; Wu, Qiongxiao; Christensen, Jakob Munkholt

    2011-01-01

    experimentally. Transmission electron microscopy (TEM) is used for microstructural characterization and provides feedback for both theory and synthesis. TEM is a powerful tool for characterizing of catalysts. However, conventional TEM does not provide dynamic information about catalysts in their working state....... We have recently installed an environmental transmission electron microscope (ETEM) equipped with a differential pumping system to confine a controlled flow of gas around the specimen, allowing observation in a gaseous environment (FEI Titan E-cell, monochromated, objective lens aberration corrector...... changes in the specimen. Representative TEM images of a CuSn based catalyst for synthesis of higher alcohols are shown in Figure 1. The CuSn particles are observed to sinter during the reduction leading to a decreased activity of the catalyst. Figure 2 shows the distribution of Co and Mo in a Co/MoS2...

  6. Practical Considerations for High Spatial and Temporal Resolution Dynamic Transmission Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, M; Boyden, K; Browning, N D; Campbell, G H; Colvin, J D; DeHope, B; Frank, A M; Gibson, D J; Hartemann, F; Kim, J S; King, W E; LaGrange, T B; Pyke, B J; Reed, B W; Shuttlesworth, R M; Stuart, B C; Torralva, B R

    2006-05-01

    Although recent years have seen significant advances in the spatial resolution possible in the transmission electron microscope (TEM), the temporal resolution of most microscopes is limited to video rate at best. This lack of temporal resolution means that our understanding of dynamic processes in materials is extremely limited. High temporal resolution in the TEM can be achieved, however, by replacing the normal thermionic or field emission source with a photoemission source. In this case the temporal resolution is limited only by the ability to create a short pulse of photoexcited electrons in the source, and this can be as short as a few femtoseconds. The operation of the photo-emission source and the control of the subsequent pulse of electrons (containing as many as 5 x 10{sup 7} electrons) create significant challenges for a standard microscope column that is designed to operate with a single electron in the column at any one time. In this paper, the generation and control of electron pulses in the TEM to obtain a temporal resolution <10{sup -6} s will be described and the effect of the pulse duration and current density on the spatial resolution of the instrument will be examined. The potential of these levels of temporal and spatial resolution for the study of dynamic materials processes will also be discussed.

  7. Dynamics of annular bright field imaging in scanning transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Findlay, S.D., E-mail: scott@sigma.t.u-tokyo.ac.jp [Institute of Engineering Innovation, The University of Tokyo, Tokyo 116-0013 (Japan); Shibata, N. [Institute of Engineering Innovation, The University of Tokyo, Tokyo 116-0013 (Japan); PRESTO, Japan Science and Technology Agency, Saitama 332-0012 (Japan); Sawada, H.; Okunishi, E.; Kondo, Y. [JEOL Ltd., Tokyo 196-8558 (Japan); Ikuhara, Y. [Institute of Engineering Innovation, The University of Tokyo, Tokyo 116-0013 (Japan); Nanostructures Research Laboratory, Japan Fine Ceramics Center, Nagoya 456-8587 (Japan); WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2010-06-15

    We explore the dynamics of image formation in the so-called annular bright field mode in scanning transmission electron microscopy, whereby an annular detector is used with detector collection range lying within the cone of illumination, i.e. the bright field region. We show that this imaging mode allows us to reliably image both light and heavy columns over a range of thickness and defocus values, and we explain the contrast mechanisms involved. The role of probe and detector aperture sizes is considered, as is the sensitivity of the method to intercolumn spacing and local disorder.

  8. High Dynamic Range Pixel Array Detector for Scanning Transmission Electron Microscopy.

    Science.gov (United States)

    Tate, Mark W; Purohit, Prafull; Chamberlain, Darol; Nguyen, Kayla X; Hovden, Robert; Chang, Celesta S; Deb, Pratiti; Turgut, Emrah; Heron, John T; Schlom, Darrell G; Ralph, Daniel C; Fuchs, Gregory D; Shanks, Katherine S; Philipp, Hugh T; Muller, David A; Gruner, Sol M

    2016-02-01

    We describe a hybrid pixel array detector (electron microscope pixel array detector, or EMPAD) adapted for use in electron microscope applications, especially as a universal detector for scanning transmission electron microscopy. The 128×128 pixel detector consists of a 500 µm thick silicon diode array bump-bonded pixel-by-pixel to an application-specific integrated circuit. The in-pixel circuitry provides a 1,000,000:1 dynamic range within a single frame, allowing the direct electron beam to be imaged while still maintaining single electron sensitivity. A 1.1 kHz framing rate enables rapid data collection and minimizes sample drift distortions while scanning. By capturing the entire unsaturated diffraction pattern in scanning mode, one can simultaneously capture bright field, dark field, and phase contrast information, as well as being able to analyze the full scattering distribution, allowing true center of mass imaging. The scattering is recorded on an absolute scale, so that information such as local sample thickness can be directly determined. This paper describes the detector architecture, data acquisition system, and preliminary results from experiments with 80-200 keV electron beams.

  9. Studying Dynamic Processes of Nano-sized Objects in Liquid using Scanning Transmission Electron Microscopy.

    Science.gov (United States)

    Hermannsdörfer, Justus; de Jonge, Niels

    2017-02-05

    Samples fully embedded in liquid can be studied at a nanoscale spatial resolution with Scanning Transmission Electron Microscopy (STEM) using a microfluidic chamber assembled in the specimen holder for Transmission Electron Microscopy (TEM) and STEM. The microfluidic system consists of two silicon microchips supporting thin Silicon Nitride (SiN) membrane windows. This article describes the basic steps of sample loading and data acquisition. Most important of all is to ensure that the liquid compartment is correctly assembled, thus providing a thin liquid layer and a vacuum seal. This protocol also includes a number of tests necessary to perform during sample loading in order to ensure correct assembly. Once the sample is loaded in the electron microscope, the liquid thickness needs to be measured. Incorrect assembly may result in a too-thick liquid, while a too-thin liquid may indicate the absence of liquid, such as when a bubble is formed. Finally, the protocol explains how images are taken and how dynamic processes can be studied. A sample containing AuNPs is imaged both in pure water and in saline.

  10. High Dynamic Range Pixel Array Detector for Scanning Transmission Electron Microscopy

    CERN Document Server

    Tate, Mark W; Chamberlain, Darol; Nguyen, Kayla X; Hovden, Robert M; Chang, Celesta S; Deb, Pratiti; Turgut, Emrah; Heron, John T; Schlom, Darrell G; Ralph, Daniel C; Fuchs, Gregory D; Shanks, Katherine S; Philipp, Hugh T; Muller, David A; Gruner, Sol M

    2015-01-01

    We describe a hybrid pixel array detector (EMPAD - electron microscope pixel array detector) adapted for use in electron microscope applications, especially as a universal detector for scanning transmission electron microscopy. The 128 x 128 pixel detector consists of a 500 um thick silicon diode array bump-bonded pixel-by-pixel to an application-specific integrated circuit (ASIC). The in-pixel circuitry provides a 1,000,000:1 dynamic range within a single frame, allowing the direct electron beam to be imaged while still maintaining single electron sensitivity. A 1.1 kHz framing rate enables rapid data collection and minimizes sample drift distortions while scanning. By capturing the entire unsaturated diffraction pattern in scanning mode, one can simultaneously capture bright field, dark field, and phase contrast information, as well as being able to analyze the full scattering distribution, allowing true center of mass imaging. The scattering is recorded on an absolute scale, so that information such as loc...

  11. Revealing dynamic processes of materials in liquids using liquid cell transmission electron microscopy.

    Science.gov (United States)

    Niu, Kai-Yang; Liao, Hong-Gang; Zheng, Haimei

    2012-12-20

    The recent development for in situ transmission electron microscopy, which allows imaging through liquids with high spatial resolution, has attracted significant interests across the research fields of materials science, physics, chemistry and biology. The key enabling technology is a liquid cell. We fabricate liquid cells with thin viewing windows through a sequential microfabrication process, including silicon nitride membrane deposition, photolithographic patterning, wafer etching, cell bonding, etc. A liquid cell with the dimensions of a regular TEM grid can fit in any standard TEM sample holder. About 100 nanoliters reaction solution is loaded into the reservoirs and about 30 picoliters liquid is drawn into the viewing windows by capillary force. Subsequently, the cell is sealed and loaded into a microscope for in situ imaging. Inside the TEM, the electron beam goes through the thin liquid layer sandwiched between two silicon nitride membranes. Dynamic processes of nanoparticles in liquids, such as nucleation and growth of nanocrystals, diffusion and assembly of nanoparticles, etc., have been imaged in real time with sub-nanometer resolution. We have also applied this method to other research areas, e.g., imaging proteins in water. Liquid cell TEM is poised to play a major role in revealing dynamic processes of materials in their working environments. It may also bring high impact in the study of biological processes in their native environment.

  12. Transmission electron microscopy and theoretical analysis of AuCu nanoparticles: atomic distribution and dynamic behavior.

    Science.gov (United States)

    Ascencio, J A; Liu, H B; Pal, U; Medina, A; Wang, Z L

    2006-07-01

    Though the application of bimetallic nanoparticles is becoming increasingly important, the local atomistic structure of such alloyed particles, which is critical for tailoring their properties, is not yet very clearly understood. In this work, we present detailed study on the atomistic structure of Au-Cu nanoparticles so as to determine their most stable configurations and the conditions for obtaining clusters of different structural variants. The dynamic behavior of these nanoparticles upon local heating is investigated. AuCu nanoparticles are characterized by high resolution transmission electron microscopy (HRTEM) and energy filtering elemental composition mapping (EFECM), which allowed us to study the internal structure and the elemental distribution in the particles. Quantum mechanical approaches and classic molecular dynamics methods are applied to model the structure and to determine the lowest energy configurations, the corresponding electronic structures, and understand structural transition of clusters upon heating, supported by experimental evidences. Our theoretical results demonstrate only the core/shell bimetallic structure have negative heat of formation, both for decahedra and octahedral, and energetically favoring core/shell structure is with Au covering the core of Cu, whose reverse core/shell structure is not stable and may transform back at a certain temperature. Experimental evidences corroborate these structures and their structural changes upon heating, demonstrating the possibility to manipulate the structure of such bimetallic nanoparticles using extra stimulating energy, which is in accordance with the calculated coherence energy proportions between the different configurations. Copyright (c) 2006 Wiley-Liss, Inc.

  13. Quantifying Transient States in Materials with the Dynamic Transmission Electron Microscope

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, G; LaGrange, T; Kim, J; Reed, B; Browning, N

    2009-09-21

    The Dynamic Transmission Electron Microscope (DTEM) offers a means of capturing rapid evolution in a specimen through in-situ microscopy experiments by allowing 15 ns electron micrograph exposure times. The rapid exposure time is enabled by creating a burst of electrons at the emitter by ultraviolet pulsed laser illumination. This burst arrives a specified time after a second laser initiates the specimen reaction. The timing of the two Q-switched lasers is controlled by high-speed pulse generators with a timing error much less than the pulse duration. Both diffraction and imaging experiments can be performed, just as in a conventional TEM. The brightness of the emitter and the total current control the spatial and temporal resolutions. We have demonstrated 7 nm spatial resolution in single 15 ns pulsed images. These single-pulse imaging experiments have been used to study martensitic transformations, nucleation and crystallization of an amorphous metal, and rapid chemical reactions. Measurements have been performed on these systems that are possible by no other experimental approaches currently available.

  14. High-speed nanoscale characterization of dewetting via dynamic transmission electron microscopy

    Science.gov (United States)

    Hihath, Sahar; Santala, Melissa K.; Campbell, Geoffrey; van Benthem, Klaus

    2016-08-01

    The dewetting of thin films can occur in either the solid or the liquid state for which different mass transport mechanisms are expected to control morphological changes. Traditionally, dewetting dynamics have been examined on time scales between several seconds to hours, and length scales ranging between nanometers and millimeters. The determination of mass transport mechanisms on the nanoscale, however, requires nanoscale spatial resolution and much shorter time scales. This study reports the high-speed observation of dewetting phenomena for kinetically constrained Ni thin films on crystalline SrTiO3 substrates. Movie-mode Dynamic Transmission Electron Microscopy (DTEM) was used for high-speed image acquisition during thin film dewetting at different temperatures. DTEM imaging confirmed that the initial stages of film agglomeration include edge retraction, hole formation, and growth. Finite element modeling was used to simulate temperature distributions within the DTEM samples after laser irradiation with different energies. For pulsed laser irradiation at 18 μJ, experimentally observed hole growth suggests that Marangoni flow dominates hole formation in the liquid nickel film. After irradiation with 13.8 μJ, however, the observations suggest that dewetting was initiated by nucleation of voids followed by hole growth through solid-state surface diffusion.

  15. Structural dynamics of gas-phase molybdenum nanoclusters : A transmission electron microscopy study

    NARCIS (Netherlands)

    Vystavel, T; Koch, SA; Palasantzas, G; De Hosson, JTM

    2005-01-01

    In this paper we study structural aspects of molybdenum clusters by transmission electron microscopy. The deposited clusters with sizes 4 nm or larger show a body-centered crystal (bcc) structure. The clusters are self-assembled from smaller structural units and form cuboids with a typical size of 4

  16. Micellar aggregates of saponins from Chenopodium quinoa: characterization by dynamic light scattering and transmission electron microscopy.

    Science.gov (United States)

    Verza, S G; de Resende, P E; Kaiser, S; Quirici, L; Teixeira, H F; Gosmann, G; Ferreira, F; Ortega, G G

    2012-04-01

    Entire seeds of Chenopodium quinoa Willd are a rich protein source and are also well-known for their high saponin content. Due to their amphiphily quinoa saponins are able to form intricate micellar aggregates in aqueous media. In this paper we study the aggregates formed by self-association of these compounds from two quinoa saponin fractions (FQ70 and FQ90) as well as several distinctive nanostructures obtained after their complexation with different ratios of cholesterol (CHOL) and phosphatidylcholine (PC). The FQ70 and FQ90 fractions were obtained by reversed-phase preparative chromatography. The structural features of their resulting aggregates were determined by Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM). Novel nanosized spherical vesicles formed by self-association with mean diameter about 100-200 nm were observed in FQ70 aqueous solutions whereas worm-like micelles an approximate width of 20 nm were detected in FQ90 aqueous solutions. Under experimental conditions similar to those reported for the preparation of Quillaja saponaria ISCOM matrices, tubular and ring-like micelles arose from FQ70:CHOL:PC and FQ90:CHOL:PC formulations, respectively. However, under these conditions no cage-like ISCOM matrices were observed. The saponin composition of FQ70 and FQ90 seems to determine the nanosized structures viewed by TEM. Phytolaccagenic acid, predominant in FQ70 and FQ90 fractions, is accountable for the formation of the nanosized vesicles and tubular structures observed by TEM in the aqueous solutions of both samples. Conversely, ring-like micelles observed in FQ90:CHOL:PC complexes can be attributed to the presence of less polar saponins present in FQ90, in particular those derived from oleanolic acid.

  17. Conventional transmission electron microscopy.

    Science.gov (United States)

    Winey, Mark; Meehl, Janet B; O'Toole, Eileen T; Giddings, Thomas H

    2014-02-01

    Researchers have used transmission electron microscopy (TEM) to make contributions to cell biology for well over 50 years, and TEM continues to be an important technology in our field. We briefly present for the neophyte the components of a TEM-based study, beginning with sample preparation through imaging of the samples. We point out the limitations of TEM and issues to be considered during experimental design. Advanced electron microscopy techniques are listed as well. Finally, we point potential new users of TEM to resources to help launch their project.

  18. Solving the Accelerator-Condenser Coupling Problem in a Nanosecond Dynamic Transmission Electron Microscope

    Energy Technology Data Exchange (ETDEWEB)

    Reed, B W; LaGrange, T; Shuttlesworth, R M; Gibson, D J; Campbell, G H; Browning, N D

    2009-12-29

    We describe a modification to a transmission electron microscope (TEM) that allows it to briefly (using a pulsed-laser-driven photocathode) operate at currents in excess of 10 mA while keeping the effects of condenser lens aberrations to a minimum. This modification allows real-space imaging of material microstructure with a resolution of order 10 nm over regions several {micro}m across with an exposure time of 15 ns. This is more than 6 orders of magnitude faster than typical video-rate TEM imaging. The key is the addition of a weak magnetic lens to couple the large-diameter high-current beam exiting the accelerator into the acceptance aperture of a conventional TEM condenser lens system. We show that the performance of the system is essentially consistent with models derived from ray tracing and finite element simulations. The instrument can also be operated as a conventional TEM by using the electron gun in a thermionic mode. The modification enables very high electron current densities in {micro}m-sized areas and could also be used in a non-pulsed system for high-throughput imaging and analytical TEM.

  19. Advances in cryogenic transmission electron microscopy for the characterization of dynamic self-assembling nanostructures.

    Science.gov (United States)

    Newcomb, Christina J; Moyer, Tyson J; Lee, Sungsoo S; Stupp, Samuel I

    2012-12-01

    Elucidating the structural information of nanoscale materials in their solvent-exposed state is crucial, as a result, cryogenic transmission electron microscopy (cryo-TEM) has become an increasingly popular technique in the materials science, chemistry, and biology communities. Cryo-TEM provides a method to directly visualize the specimen structure in a solution-state through a thin film of vitrified solvent. This technique complements X-ray, neutron, and light scattering methods that probe the statistical average of all species present; furthermore, cryo-TEM can be used to observe changes in structure over time. In the area of self-assembly, this tool has been particularly powerful for the characterization of natural and synthetic small molecule assemblies, as well as hybrid organic-inorganic composites. In this review, we discuss recent advances in cryogenic TEM in the context of self-assembling systems with emphasis on characterization of transitions observed in response to external stimuli.

  20. Kinetics of liquid-mediated crystallization of amorphous Ge from multi-frame dynamic transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Santala, M. K., E-mail: melissa.santala@oregonstate.edu; Campbell, G. H. [Materials Science Division, Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94551 (United States); Raoux, S. [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany)

    2015-12-21

    The kinetics of laser-induced, liquid-mediated crystallization of amorphous Ge thin films were studied using multi-frame dynamic transmission electron microscopy (DTEM), a nanosecond-scale photo-emission transmission electron microscopy technique. In these experiments, high temperature gradients are established in thin amorphous Ge films with a 12-ns laser pulse with a Gaussian spatial profile. The hottest region at the center of the laser spot crystallizes in ∼100 ns and becomes nano-crystalline. Over the next several hundred nanoseconds crystallization continues radially outward from the nano-crystalline region forming elongated grains, some many microns long. The growth rate during the formation of these radial grains is measured with time-resolved imaging experiments. Crystal growth rates exceed 10 m/s, which are consistent with crystallization mediated by a very thin, undercooled transient liquid layer, rather than a purely solid-state transformation mechanism. The kinetics of this growth mode have been studied in detail under steady-state conditions, but here we provide a detailed study of liquid-mediated growth in high temperature gradients. Unexpectedly, the propagation rate of the crystallization front was observed to remain constant during this growth mode even when passing through large local temperature gradients, in stark contrast to other similar studies that suggested the growth rate changed dramatically. The high throughput of multi-frame DTEM provides gives a more complete picture of the role of temperature and temperature gradient on laser crystallization than previous DTEM experiments.

  1. Transmission Electron Microscopy Physics of Image Formation

    CERN Document Server

    Kohl, Helmut

    2008-01-01

    Transmission Electron Microscopy: Physics of Image Formation presents the theory of image and contrast formation, and the analytical modes in transmission electron microscopy. The principles of particle and wave optics of electrons are described. Electron-specimen interactions are discussed for evaluating the theory of scattering and phase contrast. Also discussed are the kinematical and dynamical theories of electron diffraction and their applications for crystal-structure analysis and imaging of lattices and their defects. X-ray microanalysis and electron energy-loss spectroscopy are treated as analytical methods. Specimen damage and contamination by electron irradiation limits the resolution for biological and some inorganic specimens. This fifth edition includes discussion of recent progress, especially in the area of aberration correction and energy filtering; moreover, the topics introduced in the fourth edition have been updated. Transmission Electron Microscopy: Physics of Image Formation is written f...

  2. Liquid Cell Transmission Electron Microscopy

    Science.gov (United States)

    Liao, Hong-Gang; Zheng, Haimei

    2016-05-01

    Liquid cell transmission electron microscopy (TEM) has attracted significant interest in recent years. With nanofabricated liquid cells, it has been possible to image through liquids using TEM with subnanometer resolution, and many previously unseen materials dynamics have been revealed. Liquid cell TEM has been applied to many areas of research, ranging from chemistry to physics, materials science, and biology. So far, topics of study include nanoparticle growth and assembly, electrochemical deposition and lithiation for batteries, tracking and manipulation of nanoparticles, catalysis, and imaging of biological materials. In this article, we first review the development of liquid cell TEM and then highlight progress in various areas of research. In the study of nanoparticle growth, the electron beam can serve both as the illumination source for imaging and as the input energy for reactions. However, many other research topics require the control of electron beam effects to minimize electron beam damage. We discuss efforts to understand electron beam-liquid matter interactions. Finally, we provide a perspective on future challenges and opportunities in liquid cell TEM.

  3. Clocking the anisotropic lattice dynamics of multi-walled carbon nanotubes by four-dimensional ultrafast transmission electron microscopy

    Science.gov (United States)

    Cao, Gaolong; Sun, Shuaishuai; Li, Zhongwen; Tian, Huanfang; Yang, Huaixin; Li, Jianqi

    2015-02-01

    Recent advances in the four-dimensional ultrafast transmission electron microscope (4D-UTEM) with combined spatial and temporal resolutions have made it possible to directly visualize structural dynamics of materials at the atomic level. Herein, we report on our development on a 4D-UTEM which can be operated properly on either the photo-emission or the thermionic mode. We demonstrate its ability to obtain sequences of snapshots with high spatial and temporal resolutions in the study of lattice dynamics of the multi-walled carbon nanotubes (MWCNTs). This investigation provides an atomic level description of remarkable anisotropic lattice dynamics at the picosecond timescales. Moreover, our UTEM measurements clearly reveal that distinguishable lattice relaxations appear in intra-tubular sheets on an ultrafast timescale of a few picoseconds and after then an evident lattice expansion along the radial direction. These anisotropic behaviors in the MWCNTs are considered arising from the variety of chemical bonding, i.e. the weak van der Waals bonding between the tubular planes and the strong covalent sp2-hybridized bonds in the tubular sheets.

  4. Dynamic Processes in Biology, Chemistry, and Materials Science: Opportunities for UltraFast Transmission Electron Microscopy - Workshop Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Kabius, Bernd C.; Browning, Nigel D.; Thevuthasan, Suntharampillai; Diehl, Barbara L.; Stach, Eric A.

    2012-07-25

    This report summarizes a 2011 workshop that addressed the potential role of rapid, time-resolved electron microscopy measurements in accelerating the solution of important scientific and technical problems. A series of U.S. Department of Energy (DOE) and National Academy of Science workshops have highlighted the critical role advanced research tools play in addressing scientific challenges relevant to biology, sustainable energy, and technologies that will fuel economic development without degrading our environment. Among the specific capability needs for advancing science and technology are tools that extract more detailed information in realistic environments (in situ or operando) at extreme conditions (pressure and temperature) and as a function of time (dynamic and time-dependent). One of the DOE workshops, Future Science Needs and Opportunities for Electron Scattering: Next Generation Instrumentation and Beyond, specifically addressed the importance of electron-based characterization methods for a wide range of energy-relevant Grand Scientific Challenges. Boosted by the electron optical advancement in the last decade, a diversity of in situ capabilities already is available in many laboratories. The obvious remaining major capability gap in electron microscopy is in the ability to make these direct in situ observations over a broad spectrum of fast (µs) to ultrafast (picosecond [ps] and faster) temporal regimes. In an effort to address current capability gaps, EMSL, the Environmental Molecular Sciences Laboratory, organized an Ultrafast Electron Microscopy Workshop, held June 14-15, 2011, with the primary goal to identify the scientific needs that could be met by creating a facility capable of a strongly improved time resolution with integrated in situ capabilities. The workshop brought together more than 40 leading scientists involved in applying and/or advancing electron microscopy to address important scientific problems of relevance to DOE’s research

  5. High-speed multi-frame dynamic transmission electron microscope image acquisition system with arbitrary timing

    Science.gov (United States)

    Reed, Bryan W.; DeHope, William J.; Huete, Glenn; LaGrange, Thomas B.; Shuttlesworth, Richard M.

    2016-02-23

    An electron microscope is disclosed which has a laser-driven photocathode and an arbitrary waveform generator (AWG) laser system ("laser"). The laser produces a train of temporally-shaped laser pulses each being of a programmable pulse duration, and directs the laser pulses to the laser-driven photocathode to produce a train of electron pulses. An image sensor is used along with a deflector subsystem. The deflector subsystem is arranged downstream of the target but upstream of the image sensor, and has a plurality of plates. A control system having a digital sequencer controls the laser and a plurality of switching components, synchronized with the laser, to independently control excitation of each one of the deflector plates. This allows each electron pulse to be directed to a different portion of the image sensor, as well as to enable programmable pulse durations and programmable inter-pulse spacings.

  6. High-speed multiframe dynamic transmission electron microscope image acquisition system with arbitrary timing

    Science.gov (United States)

    Reed, Bryan W.; Dehope, William J; Huete, Glenn; LaGrange, Thomas B.; Shuttlesworth, Richard M

    2016-06-21

    An electron microscope is disclosed which has a laser-driven photocathode and an arbitrary waveform generator (AWG) laser system ("laser"). The laser produces a train of temporally-shaped laser pulses of a predefined pulse duration and waveform, and directs the laser pulses to the laser-driven photocathode to produce a train of electron pulses. An image sensor is used along with a deflector subsystem. The deflector subsystem is arranged downstream of the target but upstream of the image sensor, and has two pairs of plates arranged perpendicular to one another. A control system controls the laser and a plurality of switching components synchronized with the laser, to independently control excitation of each one of the deflector plates. This allows each electron pulse to be directed to a different portion of the image sensor, as well as to be provided with an independently set duration and independently set inter-pulse spacings.

  7. In-situ Study of Dynamic Phenomena at Metal Nanosolder Interfaces Using Aberration Corrected Scanning Transmission Electron Microcopy.

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Ping

    2014-10-01

    Controlling metallic nanoparticle (NP) interactions plays a vital role in the development of new joining techniques (nanosolder) that bond at lower processing temperatures but remain viable at higher temperatures. The pr imary objective of this project is t o develop a fundamental understanding of the actual reaction processes, associated atomic mechanisms, and the resulting microstructure that occur during thermally - driven bond formation concerning metal - metal nano - scale (%3C50nm) interfaces. In this LDRD pr oject, we have studied metallic NPs interaction at the elevated temperatures by combining in - situ transmission electron microscopy (TEM ) using an aberration - corrected scanning transmission electron microscope (AC - STEM) and atomic - scale modeling such as m olecular dynamic (MD) simulations. Various metallic NPs such as Ag, Cu and Au are synthesized by chemical routines. Numerous in - situ e xperiments were carried out with focus of the research on study of Ag - Cu system. For the first time, using in - situ STEM he ating experiments , we directly observed t he formation of a 3 - dimensional (3 - D) epitaxial Cu - Ag core - shell nanoparticle during the thermal interaction of Cu and Ag NPs at elevated temperatures (150 - 300 o C). The reaction takes place at temperatures as low as 150 o C and was only observed when care was taken to circumvent the effects of electron beam irradiation during STEM imaging. Atomic - scale modeling verified that the Cu - Ag core - shell structure is energetically favored, and indicated that this phenomenon is a nano - scale effect related to the large surface - to - volume ratio of the NPs. The observation potentially can be used for developing new nanosolder technology that uses Ag shell as the "glue" that stic ks the particles of Cu together. The LDRD has led to several journal publications and numerous conference presentations, and a TA. In addition, we have developed new TEM characterization techniques and phase

  8. High speed direct imaging of thin metal film ablation by movie-mode dynamic transmission electron microscopy.

    Science.gov (United States)

    Hihath, Sahar; Santala, Melissa K; Cen, Xi; Campbell, Geoffrey; van Benthem, Klaus

    2016-03-11

    Obliteration of matter by pulsed laser beams is not only prevalent in science fiction movies, but finds numerous technological applications ranging from additive manufacturing over machining of micro- and nanostructured features to health care. Pulse lengths ranging from femtoseconds to nanoseconds are utilized at varying laser beam energies and pulse lengths, and enable the removal of nanometric volumes of material. While the mechanisms for removal of material by laser irradiation, i.e., laser ablation, are well understood on the micrometer length scale, it was previously impossible to directly observe obliteration processes on smaller scales due to experimental limitations for the combination of nanometer spatial and nanosecond temporal resolution. Here, we report the direct observation of metal thin film ablation from a solid substrate through dynamic transmission electron microscopy. Quantitative analysis reveals liquid-phase dewetting of the thin-film, followed by hydrodynamic sputtering of nano- to submicron sized metal droplets. We discovered unexpected fracturing of the substrate due to evolving thermal stresses. This study confirms that hydrodynamic sputtering remains a valid mechanism for droplet expulsion on the nanoscale, while irradiation induced stress fields represent limit laser processing of nanostructured materials. Our results allow for improved safety during laser ablation in manufacturing and medical applications.

  9. High speed direct imaging of thin metal film ablation by movie-mode dynamic transmission electron microscopy

    Science.gov (United States)

    Hihath, Sahar; Santala, Melissa K.; Cen, Xi; Campbell, Geoffrey; van Benthem, Klaus

    2016-03-01

    Obliteration of matter by pulsed laser beams is not only prevalent in science fiction movies, but finds numerous technological applications ranging from additive manufacturing over machining of micro- and nanostructured features to health care. Pulse lengths ranging from femtoseconds to nanoseconds are utilized at varying laser beam energies and pulse lengths, and enable the removal of nanometric volumes of material. While the mechanisms for removal of material by laser irradiation, i.e., laser ablation, are well understood on the micrometer length scale, it was previously impossible to directly observe obliteration processes on smaller scales due to experimental limitations for the combination of nanometer spatial and nanosecond temporal resolution. Here, we report the direct observation of metal thin film ablation from a solid substrate through dynamic transmission electron microscopy. Quantitative analysis reveals liquid-phase dewetting of the thin-film, followed by hydrodynamic sputtering of nano- to submicron sized metal droplets. We discovered unexpected fracturing of the substrate due to evolving thermal stresses. This study confirms that hydrodynamic sputtering remains a valid mechanism for droplet expulsion on the nanoscale, while irradiation induced stress fields represent limit laser processing of nanostructured materials. Our results allow for improved safety during laser ablation in manufacturing and medical applications.

  10. Dislocation dynamics in Al-Mg-Zn alloys : A nuclear magnetic resonance and transmission electron microscopic study

    NARCIS (Netherlands)

    Hosson, J.Th.M. De; Kanert, O.; Schlagowski, U.; Boom, G.

    1988-01-01

    Pulsed nuclear magnetic resonance (NMR) proved to be a complementary new technique for the study of moving dislocations in Al-Mg-Zn alloys. The NMR technique, in combination with transmission electron microscopy (TEM), has been applied to study dislocation motion in Al-0.6 at. % Mg-1 at. % Zn and

  11. Application of Tuning Fork Sensors for In-situ Studies of Dynamic Force Interactions Inside Scanning and Transmission Electron Microscopes

    Directory of Open Access Journals (Sweden)

    Jana ANDZANE

    2012-06-01

    Full Text Available Mechanical properties of nanoscale contacts have been probed in-situ by specially developed force sensor based on a quartz tuning fork resonator (TF. Additional control is provided by observation of process in scanning electron microscope (SEM and transmission electron microscope (TEM. A piezoelectric manipulator allows precise positioning of atomic force microscope (AFM probe in contact with another electrode and recording of the TF oscillation amplitude and phase while simultaneously visualizing the contact area in electron microscope. Electrostatic control of interaction between the electrodes is demonstrated during observation of the experiment in SEM. In the TEM system the TF sensor operated in shear force mode: Use of TEM allowed for direct control of separation between electrodes. New opportunities for in situ studies of nanomechanical systems using these instruments are discussed.DOI: http://dx.doi.org/10.5755/j01.ms.18.2.1927

  12. Dynamically prioritized progressive transmission

    Science.gov (United States)

    Blanford, Ronald

    1992-04-01

    Retrieval of image data from a centralized database may be subject to bandwidth limitations, whether due to a low-bandwidth communications link or to contention from simultaneous accesses over a high-bandwidth link. Progressive transmission can alleviate this problem by encoding image data so that any prefix of the data stream approximates the complete image at a coarse level of resolution. The longer the prefix, the finer the resolution. In many cases, as little at 1 percent of the image data may be sufficient to decide whether to discard the image, to permit the retrieval to continue, or to restrict retrieval to a subsection of the image. Our approach treats resolution not as a fixed attribute of the image, but rather as a resource which may be allocated to portions of the image at the direction of a user-specified priority function. The default priority function minimizes error by allocating more resolution to regions of high variance. The user may also point to regions of interest requesting priority transmission. More advanced target recognition strategies may be incorporated at the user's discretion. Multispectral imagery is supported. The user engineering implications are profounded. There is immediate response to a query that might otherwise take minutes to complete. The data is transmitted in small increments so that no single user dominates the communications bandwidth. The user-directed improvement means that bandwidth is focused on interesting information. The user may continue working with the first coarse approximations while further image data is still arriving. The algorithm has been implemented in C on Sun, Silicon Graphics, and NeXT workstations, and in Lisp on a Symbolics. Transmission speeds reach as high as 60,000 baud using a Sparc or 68040 processor when storing data to memory; somewhat less if also updating a graphical display. The memory requirements are roughly five bytes per image pixel. Both computational and memory costs may be reduced

  13. Analysis of transmission efficiency of SSRF electron beam transfer lines

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this article, the main factors which influence transmission efficiency of the SSRF electron beam transfer lines are described, including physical requirements for magnet system, vacuum system, beam diagnostic system,trajectory correction system, etc. The dynamic simulation calculation and transmission efficiency analysis of the SSRF electron beam transfer lines are presented, and the studies show that the design purpose of efficient beam transmission and injection will be achieved.

  14. Experimental evidence for segregation of interstitial impurities to defects in a near α titanium alloy during dynamic strain aging using energy filtered transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Kartik, E-mail: kartik@dmrl.drdo.in [Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad 500058 (India); School of Engineering Science and Technology, University of Hyderabad, Hyderabad (India); Amrithapandian, S.; Panigrahi, B.K. [Materials Science Group, Indira Gandhi for Centre of Atomic Research, Kalpakkam 603102 (India); Kumar, Vikas [Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad 500058 (India); Bhanu Sankara Rao, K. [Mahatma Gandhi Institute of Technology, Gandipet, Hyderabad 500075 (India); Sundararaman, M. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036 (India)

    2015-06-25

    Dynamic strain aging was observed in the temperature range between 300 °C and 500 °C in a near α titanium alloy 834 without Silicon (10.38%Al–0.16%Sn–1.86%Zr–0.37%Nb–0.25%Mo–0.27%C–0.30%O–0.006%N, all in at%) tested in the temperature range from room temperature to 500 °C. Electron microscopic investigation of tensile tested samples in an energy filtered transmission electron microscopy provided direct experimental evidence for segregation of interstitial elements like carbon (C) and nitrogen (N) to lath boundaries and dislocation pile ups. On the basis of these results and the comparison of lattice strain generated by different interstitials in α-Ti, it was concluded that segregation of carbon and nitrogen and not oxygen to defects is responsible for DSA in this alloy.

  15. Transmission electron microscopy physics of image formation and microanalysis

    CERN Document Server

    Reimer, Ludwig

    1993-01-01

    "Transmission Electron Microscopy" presents the theory of image and contrastformation, and the analytical modes in transmission electron microscopy Theprinciples of particle and wave optics of electrons are described Electron-specimen interactions are discussed for evaluating the theory of scattering and phase contrast Also analysed are the kinetical and dynamical theories of electron diffraction and their applications for crystal-structure determination and imaging of lattices and their defects X-ray microanalysis and electron energy-loss spectroscopy are treated as analytical methods The third edition includes a brief discussionof Schottky emission guns, some clarification of minor details, and references to the recent literature

  16. Low voltage transmission electron microscopy of graphene.

    Science.gov (United States)

    Bachmatiuk, Alicja; Zhao, Jiong; Gorantla, Sandeep Madhukar; Martinez, Ignacio Guillermo Gonzalez; Wiedermann, Jerzy; Lee, Changgu; Eckert, Juergen; Rummeli, Mark Hermann

    2015-02-04

    The initial isolation of graphene in 2004 spawned massive interest in this two-dimensional pure sp(2) carbon structure due to its incredible electrical, optical, mechanical, and thermal effects. This in turn led to the rapid development of various characterization tools for graphene. Examples include Raman spectroscopy and scanning tunneling microscopy. However, the one tool with the greatest prowess for characterizing and studying graphene is the transmission electron microscope. State-of-the-art (scanning) transmission electron microscopes enable one to image graphene with atomic resolution, and also to conduct various other characterizations simultaneously. The advent of aberration correctors was timely in that it allowed transmission electron microscopes to operate with reduced acceleration voltages, so that damage to graphene is avoided while still providing atomic resolution. In this comprehensive review, a brief introduction is provided to the technical aspects of transmission electron microscopes relevant to graphene. The reader is then introduced to different specimen preparation techniques for graphene. The different characterization approaches in both transmission electron microscopy and scanning transmission electron microscopy are then discussed, along with the different aspects of electron diffraction and electron energy loss spectroscopy. The use of graphene for other electron microscopy approaches such as in-situ investigations is also presented. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Transmission electron microscopy physics of image formation and microanalysis

    CERN Document Server

    Reimer, Ludwig

    1997-01-01

    Transmission Electron Microscopy presents the theory of image and contrast formation, and the analytical modes in transmission electron microscopy. The principles of particle and wave optics of electrons are described. Electron-specimen interactions are discussed for evaluating the theory of scattering and phase contrast. Also discussed are the kinematical and dynamical theories of electron diffraction and their applications for crystal-structure analysis and imaging of lattices and their defects. X-ray micronanalysis and electron energy-loss spectroscopy are treated as analytical methods. Specimen damage and contamination by electron irradiation limits the resolution for biological and some inorganic specimens. This fourth edition includes discussion of recent progress, especially in the area of Schottky emission guns, convergent-beam electron diffraction, electron tomography, holography and the high resolution of crystal lattices.

  18. Transmission electron microscope CCD camera

    Science.gov (United States)

    Downing, Kenneth H.

    1999-01-01

    In order to improve the performance of a CCD camera on a high voltage electron microscope, an electron decelerator is inserted between the microscope column and the CCD. This arrangement optimizes the interaction of the electron beam with the scintillator of the CCD camera while retaining optimization of the microscope optics and of the interaction of the beam with the specimen. Changing the electron beam energy between the specimen and camera allows both to be optimized.

  19. Proximity Scanning Transmission Electron Microscopy/Spectroscopy

    CERN Document Server

    Hwang, Ing-Shouh

    2016-01-01

    Here a new microscopic method is proposed to image and characterize very thin samples like few-layer materials, organic molecules, and nanostructures with nanometer or sub-nanometer resolution using electron beams of energies lower than 20 eV. The microscopic technique achieves high resolution through the proximity (or near-field) effect, as in scanning tunneling microscopy (STM), while it also allows detection of transmitted electrons for imaging and spectroscopy, as in scanning transmission electron microscopy (STEM). This proximity transmission electron microscopy (PSTEM) does not require any lens to focus the electron beam. It also allows detailed characterization of the interaction of low-energy electron with materials. PSTEM can operate in a way very similar to scanning tunneling microscopy, which provides high-resolution imaging of geometric and electronic structures of the sample surface. In addition, it allows imaging and characterization of the interior structures of the sample based on the detected...

  20. Transmission electron microscopy physics of image formation and microanalysis

    CERN Document Server

    Reimer, Ludwig

    1989-01-01

    The aim of this book is to present the theory of image and contrast formation and the analytical modes in transmission electron microscopy The principles of particle and wave optics of electrons are described Electron-specimen interactions are discussed for evaluating the theory of scattering and phase contrast Also discussed are the kinematical and dynamical theories of electron diffraction and their applications for crystal structure determination and imaging of lattice defects X-ray microanalysis and energy-loss spectroscopy are treated as analytical methods The second edition includes discussion of recent progress, especially in the areas of energy-loss spectroscopy, crystal-lattice imaging and reflection electron microscopy

  1. Transmission electron microscopy of composites

    Science.gov (United States)

    Pirouz, P.; Farmer, S. C.; Ernst, F.; Chung, J.

    1988-01-01

    Since interphase-interfaces are often both the structurally weakest and chemically least stable regions of a composite material, they are critical determinants of such macrostructural characteristics as tensile strength and fracture toughness. Attention is presently given to the use of TEM for the study of interfaces between dissimilar materials; electron-diffraction, analytical, and high-resolution forms of TEM are employed, for the cases of both structural and semiconductor composites. The materials studied are SiC/Si, GaP/Si, and SiC fiber- and whisker-reinforced Si3N4.

  2. Sunrise over Mars - electronic transmission

    Science.gov (United States)

    1976-01-01

    Caption: 'Taken during the Viking Orbiter 1's 40th revolution of Mars, this electronically transmitted image shows sunrise over the tributary canyons of a high plateau region. The white areas are bright clouds of water ice.' As the sun rises over Noctis Labryinthus (the labyrinth of the night), bright clouds of water ice can be observed in and around the tributary canyons of this high plateau region of Mars. This color composite image, reconstructed from three individual black and white frames taken through violet, green, and orange filters, vividly shows the distribution of the clouds against the rust colored background of this Martian desert. The picture was reconstructed by JPL's Image Processing Laboratory using in-flight calibration data to correct the color balance. Scientists have puzzled why the clouds cling to the canyon areas and, only in certain areas, spill over onto the plateau surface. One possibility is that water which condensed during the previous afternoon in shaded eastern-facing slopes of the canyon floor is vaporized as the early morning sun falls on those same slopes. The area covered is about 10,000 square kilometers (4000 square miles), centered at 9 degrees South, 95 degrees West, and the large partial crater at lower right is Oudemans. The picture was taken on Viking Orbiter 1's 40th revolution of the planet. Photograph and caption published in Winds of Change, 75th Anniversary NASA publication (pages 108-109), by James Schultz.

  3. RESEARCH OF DYNAMIC CHARACTERIATIC FOR TRANSMISSION SYSTEM

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The kinetic precision of transmission chain is a key problem in the research of gear cutting machine transmission system.The traditional point of view is to consider the transmission chain as a geometrical meshing system,thus it is deemed that the kinetic precision of the transmission chain only depends on the manufacturing and assembly errors of its transmission parts.But further research reveals that the kinetic precision of transmission system is closely related with the system dynamic effects.Therefore,from the dynamic point of view,it is discerned that not only deems the transmission chain as a geometrical meshing system but also considers it as a dynamic system performing with torsional vibration.On the basis of analyses and processes of measuring data of samples from tests of cutting machine's kinetic precision of transmission chain,the results represent that the influences of dynamic characteristics of the transmission system on its kinetic precision is non-negligible.Experimental methods for discerning the transfer function of torsional vibration of gear transmission system and experimental results have been given.

  4. Transmission electron microscopy characterization of nanomaterials

    CERN Document Server

    2014-01-01

    Third volume of a 40volume series on nanoscience and nanotechnology, edited by the renowned scientist Challa S.S.R. Kumar. This handbook gives a comprehensive overview about Transmission electron microscopy characterization of nanomaterials. Modern applications and state-of-the-art techniques are covered and make this volume an essential reading for research scientists in academia and industry.

  5. Electronic Spectroscopy & Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Mark Maroncelli, Nancy Ryan Gray

    2010-06-08

    The Gordon Research Conference (GRC) on Electronic Spectroscopy and Dynamics was held at Colby College, Waterville, NH from 07/19/2009 thru 07/24/2009. The Conference was well-attended with participants (attendees list attached). The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students. The GRC on Electronic Spectroscopy & Dynamics showcases some of the most recent experimental and theoretical developments in electronic spectroscopy that probes the structure and dynamics of isolated molecules, molecules embedded in clusters and condensed phases, and bulk materials. Electronic spectroscopy is an important tool in many fields of research, and this GRC brings together experts having diverse backgrounds in physics, chemistry, biophysics, and materials science, making the meeting an excellent opportunity for the interdisciplinary exchange of ideas and techniques. Topics covered in this GRC include high-resolution spectroscopy, biological molecules in the gas phase, electronic structure theory for excited states, multi-chromophore and single-molecule spectroscopies, and excited state dynamics in chemical and biological systems.

  6. Transmission Electron Microscope Measures Lattice Parameters

    Science.gov (United States)

    Pike, William T.

    1996-01-01

    Convergent-beam microdiffraction (CBM) in thermionic-emission transmission electron microscope (TEM) is technique for measuring lattice parameters of nanometer-sized specimens of crystalline materials. Lattice parameters determined by use of CBM accurate to within few parts in thousand. Technique developed especially for use in quantifying lattice parameters, and thus strains, in epitaxial mismatched-crystal-lattice multilayer structures in multiple-quantum-well and other advanced semiconductor electronic devices. Ability to determine strains in indivdual layers contributes to understanding of novel electronic behaviors of devices.

  7. Isotope analysis in the transmission electron microscope

    CERN Document Server

    Susi, Toma; Argentero, Giacomo; Leuthner, Gregor T; Pennycook, Timothy J; Mangler, Clemens; Meyer, Jannik C; Kotakoski, Jani

    2016-01-01

    The {\\AA}ngstr\\"om-sized probe of the scanning transmission electron microscope can visualize and collect spectra from single atoms. This can unambiguously resolve the chemical structure of materials, but not their isotopic composition. Here we differentiate between two isotopes of the same element by quantifying how likely the energetic imaging electrons are to eject atoms. First, we measure the displacement probability in graphene grown from either $^{12}$C or $^{13}$C and describe the process using a quantum mechanical model of lattice vibrations coupled with density functional theory simulations. We then test our spatial resolution in a mixed sample by ejecting individual atoms from nanoscale areas spanning an interface region that is far from atomically sharp, mapping the isotope concentration with a precision better than 20%. Although we use a scanning instrument, our method should be applicable to any atomic resolution transmission electron microscope and to other low-dimensional materials.

  8. The Titan Environmental Transmission Electron Microscope

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum; Wagner, Jakob Birkedal; Jinschek, Jörg R.

    2009-01-01

    electron microscopes (TEMs) were first adapted for use with gases [1]. Such machines are known as environmental transmission electron microscopes or ETEMs and are now in widespread use [2,3]. Although these tools are unique and represent a source of invaluable information, care has to be taken when using...... them and many additional considerations are required when compared to conventional TEM. In particular the parameter space that affects the result of an experiment increases significantly, and it becomes even more important to consider the effect of both electron/solid and electron/gas interactions...... University of Denmark (DTU) provides a unique combination of techniques for studying materials of interest to the catalytic as well as the electronics and other communities [5]. DTU’s ETEM is based on the FEI Titan platform providing ultrahigh microscope stability pushing the imaging resolution into the sub...

  9. Long distance electron transmission in marine sediment

    DEFF Research Database (Denmark)

    Risgaard-Petersen, Nils; Nielsen, Lars Peter

    processes leads to formation of electrical fields, which modifies ion transport. The local proton producing and proton consuming half reactions induces pH extremes that accelerate dissolution of iron sul-phides and calcium carbonates in anoxic layers and promotes the formation of Mg-calcite and iron oxides...... in the oxic zone. Oxygen seems to be the major electron acceptor in the coupled system, and more than 40% of the oxygen consumption can be driven by long distance electron transmission. The major e-donor is sulfide, which is oxidized to sulfate, and iron sulphides are the major sources for sulfide...

  10. Transmission electron microscopy in micro-nanoelectronics

    CERN Document Server

    Claverie, Alain

    2013-01-01

    Today, the availability of bright and highly coherent electron sources and sensitive detectors has radically changed the type and quality of the information which can be obtained by transmission electron microscopy (TEM). TEMs are now present in large numbers not only in academia, but also in industrial research centers and fabs.This book presents in a simple and practical way the new quantitative techniques based on TEM which have recently been invented or developed to address most of the main challenging issues scientists and process engineers have to face to develop or optimize sem

  11. Transmission Electron Microscopy and Diffractometry of Materials

    CERN Document Server

    Fultz, Brent

    2013-01-01

    This book explains concepts of transmission electron microscopy (TEM) and x-ray diffractometry (XRD) that are important for the characterization of materials. The fourth edition adds important new techniques of TEM such as electron tomography, nanobeam diffraction, and geometric phase analysis. A new chapter on neutron scattering completes the trio of x-ray, electron and neutron diffraction. All chapters were updated and revised for clarity. The book explains the fundamentals of how waves and wavefunctions interact with atoms in solids, and the similarities and differences of using x-rays, electrons, or neutrons for diffraction measurements. Diffraction effects of crystalline order, defects, and disorder in materials are explained in detail. Both practical and theoretical issues are covered. The book can be used in an introductory-level or advanced-level course, since sections are identified by difficulty. Each chapter includes a set of problems to illustrate principles, and the extensive Appendix includes la...

  12. TEBAL: Nanosculpting devices with electrons in a transmission electron microscope

    Science.gov (United States)

    Drndic, Marija

    2008-03-01

    Manipulation of matter on the scale of atoms and molecules is an essential part of realizing the potential that nanotechnology has to offer. In this talk I will describe transmission electron beam ablation lithography (TEBAL), a method for fabricating nanostructures and fully integrated devices on silicon nitride membranes by nanosculpting evaporated metal films with electron beams. TEBAL works by controllably exposing materials to an intense and highly focused beam of 200 keV electrons inside the transmission electron microscope (TEM). The effect of electron irradiation can be used to controllably displace or ablate regions of the metal with resolution on the scale of tens of atoms per exposure. In situ TEM imaging of the ablation action with atomic resolution allows for real-time feedback control during fabrication. Specific examples presented here include the fabrication and characterization of nanogaps, nanorings, nanowires with tailored shapes and curvatures, and multi-terminal devices with nanoislands or nanopores between the terminals. These nanostructures are fabricated at precise locations on a chip and seamlessly integrated into large-scale circuitry. I will discuss how the combination of high resolution, geometrical control and yield make TEBAL attractive for many applications including nanoelectronics, superconductivity, nanofluidics and molecular (DNA) translocation studies through nanopore-based transistors. References: 1) M.D. Fischbein and M. Drndic, ``Sub-10 nm Device Fabrication in a Transmission Electron Microscope'', Nano Letters, 7 (5), 1329, 2007. 2) M. D. Fischbein and M. Drndic, ``Nanogaps by direct lithography for high-resolution imaging and electronic characterization of nanostructures'', Applied Physics Letters, 88 (6), 063116, 2006.

  13. Transmission electron microscopy of mercury metal

    KAUST Repository

    Anjum, Dalaver H.

    2016-03-28

    Summary: Transmission electron microcopy (TEM) analysis of liquid metals, especially mercury (Hg), is difficult to carry out because their specimen preparation poses a daunting task due to the unique surface properties of these metals. This paper reports a cryoTEM study on Hg using a novel specimen preparation technique. Hg metal is mixed with water using sonication and quenched in liquid ethane cryogen. This technique permits research into the morphological, phase and structural properties of Hg at nanoscale dimensions. © 2016 Royal Microscopical Society.

  14. Dynamic queuing transmission model for dynamic network loading

    DEFF Research Database (Denmark)

    Raovic, Nevena; Nielsen, Otto Anker; Prato, Carlo Giacomo

    2017-01-01

    This paper presents a new macroscopic multi-class dynamic network loading model called Dynamic Queuing Transmission Model (DQTM). The model utilizes ‘good’ properties of the Dynamic Queuing Model (DQM) and the Link Transmission Model (LTM) by offering a DQM consistent with the kinematic wave theory...... and allowing for the representation of multiple vehicle classes, queue spillbacks and shock waves. The model assumes that a link is split into a moving part plus a queuing part, and p that traffic dynamics are given by a triangular fundamental diagram. A case-study is investigated and the DQTM is compared...

  15. Characterization of nanomaterials with transmission electron microscopy

    KAUST Repository

    Anjum, Dalaver H.

    2016-08-01

    The field of nanotechnology is about research and development on materials whose at least one dimension is in the range of 1 to 100 nanometers. In recent years, the research activity for developing nano-materials has grown exponentially owing to the fact that they offer better solutions to the challenges faced by various fields such as energy, food, and environment. In this paper, the importance of transmission electron microscopy (TEM) based techniques is demonstrated for investigating the properties of nano-materials. Specifically the nano-materials that are investigated in this report include gold nano-particles (Au-NPs), silver atom-clusters (Ag-ACs), tantalum single-atoms (Ta-SAs), carbon materials functionalized with iron cobalt (Fe-Co) NPs and titania (TiO2) NPs, and platinum loaded Ceria (Pt-CeO2) Nano composite. TEM techniques that are employed to investigate nano-materials include aberration corrected bright-field TEM (BF-TEM), high-angle dark-field scanning TEM (HAADF-STEM), electron energy-loss spectroscopy (EELS), and BF-TEM electron tomography (ET). With the help presented of results in this report, it is proved herein that as many TEM techniques as available in a given instrument are essential for a comprehensive nano-scale analysis of nanomaterials.

  16. Microfluidic system for transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ring, Elisabeth A [ORNL; De Jonge, Niels [ORNL

    2010-01-01

    We present a microfluidic system that maintains liquid flow in a specimen chamber for (scanning) transmission electron microscope ((S)TEM) imaging. The specimen chamber consists of two ultra-thin silicon nitride windows supported by silicon microchips. They are placed in a specimen holder that seals the sample from the vacuum in the electron microscope, and incorporates tubing to and from the sample connected to a syringe pump outside the microscope. Using results obtained from fluorescence microscopy of microspheres flowing through the system, an equation to characterize the liquid flow through the system was calibrated. Gold nanoparticles of diameters of 30 and 100 nm moving in liquid were imaged with a 200 kV STEM. It was concluded that despite strong influences from Brownian motion, and sensitivity to small changes in the depth of the bypass channel, the electron microscopy flow data matched the calculated flow speed within an order of magnitude. The system allows for rapid (within a minute) liquid exchange, which can potentially be used, for example, to investigate the response of specimens, e.g., eukaryotic-, or bacterial cells, to certain stimuli.

  17. Dynamic Loadability of Cable Based Transmission Grids

    DEFF Research Database (Denmark)

    Olsen, Rasmus Schmidt

    This thesis is the product of three years research within the field of dynamic loadability of cable based transmission grids. The report contains a summary of the three year PhD project which has been conducted in a collaboration between the Danish Transmission System Operator (TSO), Energinet...... supervised 2 master projects, as well as 5 special courses at DTU. Furthermore I created and taught a cable course, with approximately 25 students, throughout 13 weeks during the spring of 2011. The PhD project has until now contributed with 3 journal papers and 4 conference papers. Selected papers can...

  18. Quantitative characterization of electron detectors for transmission electron microscopy.

    Science.gov (United States)

    Ruskin, Rachel S; Yu, Zhiheng; Grigorieff, Nikolaus

    2013-12-01

    A new generation of direct electron detectors for transmission electron microscopy (TEM) promises significant improvement over previous detectors in terms of their modulation transfer function (MTF) and detective quantum efficiency (DQE). However, the performance of these new detectors needs to be carefully monitored in order to optimize imaging conditions and check for degradation over time. We have developed an easy-to-use software tool, FindDQE, to measure MTF and DQE of electron detectors using images of a microscope's built-in beam stop. Using this software, we have determined the DQE curves of four direct electron detectors currently available: the Gatan K2 Summit, the FEI Falcon I and II, and the Direct Electron DE-12, under a variety of total dose and dose rate conditions. We have additionally measured the curves for the Gatan US4000 and TVIPS TemCam-F416 scintillator-based cameras. We compare the results from our new method with published curves. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Vibrational and optical spectroscopies integrated with environmental transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Picher, Matthieu; Mazzucco, Stefano [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899-6203 (United States); Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20740 (United States); Blankenship, Steve [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899-6203 (United States); Sharma, Renu, E-mail: renu.sharma@nist.gov [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899-6203 (United States)

    2015-03-15

    Here, we present a measurement platform for collecting multiple types of spectroscopy data during high-resolution environmental transmission electron microscopy observations of dynamic processes. Such coupled measurements are made possible by a broadband, high-efficiency, free-space optical system. The critical element of the system is a parabolic mirror, inserted using an independent hollow rod and placed below the sample holder which can focus a light on the sample and/or collect the optical response. We demonstrate the versatility of this optical setup by using it to combine in situ atomic-scale electron microscopy observations with Raman spectroscopy. The Raman data is also used to measure the local temperature of the observed sample area. Other applications include, but are not limited to: cathodo- and photoluminescence spectroscopy, and use of the laser as a local, high-rate heating source. - Highlights: • Broadband, high-efficiency design adaptable to other electron microscopes. • Raman spectroscopy integrated with environmental transmission electron microscopy. • Raman spectra peak frequency shifts enable measurement of local sample temperature. • Multiple types of optical spectroscopy enabled, e.g. cathodoluminescence.

  20. Applications of orientation mapping by scanning and transmission electron microscopy

    DEFF Research Database (Denmark)

    Juul Jensen, D.

    1997-01-01

    The potentials of orientation mapping techniques (in the following referred to as OIM) for studies of thermomechanical processes are analysed. Both transmission electron microscopy (TEM) and scanning electron microscopy (SEM) based OIM techniques are considered. Among the thermomechanical processes...

  1. Backward bifurcations in dengue transmission dynamics.

    Science.gov (United States)

    Garba, S M; Gumel, A B; Abu Bakar, M R

    2008-09-01

    A deterministic model for the transmission dynamics of a strain of dengue disease, which allows transmission by exposed humans and mosquitoes, is developed and rigorously analysed. The model, consisting of seven mutually-exclusive compartments representing the human and vector dynamics, has a locally-asymptotically stable disease-free equilibrium (DFE) whenever a certain epidemiological threshold, known as the basic reproduction number(R(0)) is less than unity. Further, the model exhibits the phenomenon of backward bifurcation, where the stable DFE coexists with a stable endemic equilibrium. The epidemiological consequence of this phenomenon is that the classical epidemiological requirement of making R(0) less than unity is no longer sufficient, although necessary, for effectively controlling the spread of dengue in a community. The model is extended to incorporate an imperfect vaccine against the strain of dengue. Using the theory of centre manifold, the extended model is also shown to undergo backward bifurcation. In both the original and the extended models, it is shown, using Lyapunov function theory and LaSalle Invariance Principle, that the backward bifurcation phenomenon can be removed by substituting the associated standard incidence function with a mass action incidence. In other words, in addition to establishing the presence of backward bifurcation in models of dengue transmission, this study shows that the use of standard incidence in modelling dengue disease causes the backward bifurcation phenomenon of dengue disease.

  2. Dynamics of a split torque helicopter transmission

    Science.gov (United States)

    Rashidi, Majid; Krantz, Timothy

    A high reduction ratio split torque gear train has been proposed as an alternative to a planetary configuration for the final stage of a helicopter transmission. A split torque design allows a high ratio of power-to-weight for the transmission. The design studied in this work includes a pivoting beam that acts to balance thrust loads produced by the helical gear meshes in each of two parallel power paths. When the thrust loads are balanced, the torque is split evenly. A mathematical model was developed to study the dynamics of the system. The effects of time varying gear mesh stiffness, static transmission errors, and flexible bearing supports are included in the model. The model was demonstrated with a test case. Results show that although the gearbox has a symmetric configuration, the simulated dynamic behavior of the first and second compound gears are not the same. Also, results show that shaft location and mesh stiffness tuning are significant design parameters that influence the motions of the system.

  3. In-situ reduction of promoted cobalt oxide supported on alumina by environmental transmission electron microscopy

    DEFF Research Database (Denmark)

    Dehghan, Roya; Hansen, Thomas Willum; Wagner, Jakob Birkedal

    2011-01-01

    Reduction of 12wt.%Co/0.5wt.%Re/α-Al2O3 Fischer–Tropsch catalyst has been studied in-situ in an environmental transmission electron microscope. Reduction of Co3O4 to metallic cobalt was observed dynamically at 360 °C under 3.4 mbar H2. Structural and morphological changes were observed by high...... resolution transmission electron microscopy and scanning transmission electron microscopy imaging. The cobalt particles were mainly face centred cubic while some hexagonal close packed particles were also found. Reoxidation of the sample upon cooling to room temperature, still under flowing H2, underlines...

  4. Electronic Transmission Properties of Two-Dimensional Quasi-Lattice

    Institute of Scientific and Technical Information of China (English)

    侯志林; 傅秀军; 刘有延

    2002-01-01

    In the framework of the tight binding model, the electronic transmission properties of two-dimensional Penrose lattices with free boundary conditions are studied using the generalized eigenfunction method (Phys. Rev. B 60(1999)13444). The electronic transmission coefficients for Penrose lattices with different sizes and widths are calculated, and the result shows strong energy dependence because of the quasiperiodic structure and quantum coherent effect. Around the Fermi level E = 0, there is an energy region with zero transmission amplitudes,which suggests that the studied systems are insulating. The spatial distributions of several typical electronic states with different transmission coefficients are plotted to display the propagation process.

  5. The Novel Heuristic for Data Transmission Dynamic Scheduling Problems

    Directory of Open Access Journals (Sweden)

    Hao Xu

    2013-01-01

    Full Text Available The data transmission dynamic scheduling is a process that allocates the ground stations and available time windows to the data transmission tasks dynamically for improving the resource utilization. A novel heuristic is proposed to solve the data transmission dynamic scheduling problem. The characteristic of this heuristic is the dynamic hybridization of simple rules. Experimental results suggest that the proposed algorithm is correct, feasible, and available. The dynamic hybridization of simple rules can largely improve the efficiency of scheduling.

  6. Transmission of electrons through Al2O3 nanocapillaries

    DEFF Research Database (Denmark)

    Milosavljević, A.R.; Jureta, J.J.; Víkor, Gy.;

    2012-01-01

    We investigate transmission of low-energy electrons (250 eV) through insulating AlO nanocapillaries (270 nm diameter and 15 μm length). Kinetic energy distribution of electrons transmitted through the nanocapillaries in the straightforward direction, time dependence of the transmission rate both...... in the straightforward direction and for tilted capillaries and angular distributions of electrons transmitted at the incident energy are presented and discussed....

  7. Deciphering the physics and chemistry of perovskites with transmission electron microscopy

    Science.gov (United States)

    Polking, Mark J.

    2016-03-01

    Perovskite oxides exhibit rich structural complexity and a broad range of functional properties, including ferroelectricity, ferromagnetism, and superconductivity. The development of aberration correction for the transmission electron microscope and concurrent progress in electron spectroscopy, electron holography, and other techniques has fueled rapid progress in the understanding of the physics and chemistry of these materials. New techniques based on the transmission electron microscope are first surveyed, and the applications of these techniques for the study of the structure, chemistry, electrostatics, and dynamics of perovskite oxides are then explored in detail, with a particular focus on ferroelectric materials.

  8. Transmission Electron Microscopy of Itokawa Regolith Grains

    Science.gov (United States)

    Keller, Lindsay P.; Berger, E. L.

    2013-01-01

    Introduction: In a remarkable engineering achievement, the JAXA space agency successfully recovered the Hayabusa space-craft in June 2010, following a non-optimal encounter and sur-face sampling mission to asteroid 25143 Itokawa. These are the first direct samples ever obtained and returned from the surface of an asteroid. The Hayabusa samples thus present a special op-portunity to directly investigate the evolution of asteroidal sur-faces, from the development of the regolith to the study of the effects of space weathering. Here we report on our preliminary TEM measurements on two Itokawa samples. Methods: We were allocated particles RA-QD02-0125 and RA-QD02-0211. Both particles were embedded in low viscosity epoxy and thin sections were prepared using ultramicrotomy. High resolution images and electron diffraction data were ob-tained using a JEOL 2500SE 200 kV field-emission scanning-transmission electron microscope. Quantitative maps and anal-yses were obtained using a Thermo thin-window energy-dispersive x-ray (EDX) spectrometer. Results: Both particles are olivine-rich (Fo70) with µm-sized inclusions of FeS and have microstructurally complex rims. Par-ticle RA-QD02-0125 is rounded and has numerous sub-µm grains attached to its surface including FeS, albite, olivine, and rare melt droplets. Solar flare tracks have not been observed, but the particle is surrounded by a continuous 50 nm thick, stuctur-ally disordered rim that is compositionally similar to the core of the grain. One of the surface adhering grains is pyrrhotite show-ing a S-depleted rim (8-10 nm thick) with nanophase Fe metal grains (<5 nm) decorating the outermost surface. The pyrrhotite displays a complex superstructure in its core that is absent in the S-depleted rim. Particle RA-QD02-0211 contains solar flare particle tracks (2x109 cm-2) and shows a structurally disordered rim 100 nm thick. The track density corresponds to a surface exposure of 103-104 years based on the track production rate

  9. Laser assisted electron dynamics

    CERN Document Server

    Bray, Alexander William

    2016-01-01

    We apply the convergent close-coupling (CCC) formalism to analyse the processes of laser assisted electron impact ionisation of He, and the attosecond time delay in the photodetachment of the H^{-} ion and the photoionisation of He. Such time dependent atomic collision processes are of considerable interest as experimental measurements on the relevant timescale (attoseconds 10^{-18} s) are now possible utilising ultrafast and intense laser pulses. These processes in particular are furthermore of interest as they are strongly influenced by many-electron correlations. In such cases their theoretical description requires a more comprehensive treatment than that offered by first order perturbation theory. We apply such a treatment through the use of the CCC formalism which involves the complete numeric solution of the integral Lippmann-Schwinger equations pertaining to a particular scattering event. For laser assisted electron impact ionisation of He such a treatment is of a considerably greater accuracy than the...

  10. Quantitative Scanning Transmission Electron Microscopy of Electronic and Nanostructured Materials

    Science.gov (United States)

    Yankovich, Andrew B.

    Electronic and nanostructured materials have been investigated using advanced scanning transmission electron microscopy (STEM) techniques. The first topic is the microstructure of Ga and Sb-doped ZnO. Ga-doped ZnO is a candidate transparent conducting oxide material. The microstructure of GZO thin films grown by MBE under different growth conditions and different substrates were examined using various electron microscopy (EM) techniques. The microstructure, prevalent defects, and polarity in these films strongly depend on the growth conditions and substrate. Sb-doped ZnO nanowires have been shown to be the first route to stable p-type ZnO. Using Z-contrast STEM, I have showed that an unusual microstructure of Sb-decorated head-to-head inversion domain boundaries and internal voids contain all the Sb in the nanowires and cause the p-type conduction. InGaN thin films and InGaN / GaN quantum wells (QW) for light emitting diodes are the second topic. Low-dose Z-contrast STEM, PACBED, and EDS on InGaN QW LED structures grown by MOCVD show no evidence for nanoscale composition variations, contradicting previous reports. In addition, a new extended defect in GaN and InGaN was discovered. The defect consists of a faceted pyramid-shaped void that produces a threading dislocation along the [0001] growth direction, and is likely caused by carbon contamination during growth. Non-rigid registration (NRR) and high-precision STEM of nanoparticles is the final topic. NRR is a new image processing technique that corrects distortions arising from the serial nature of STEM acquisition that previously limited the precision of locating atomic columns and counting the number of atoms in images. NRR was used to demonstrate sub-picometer precision in STEM images of single crystal Si and GaN, the best achieved in EM. NRR was used to measure the atomic surface structure of Pt nanoacatalysts and Au nanoparticles, which revealed new bond length variation phenomenon of surface atoms. In

  11. Ultrafast electron dynamics in gold nanoshells

    Science.gov (United States)

    Westcott, Sarah Linda

    2001-10-01

    In metallic nanostructures, the interaction of excited electrons with the nanostructure surface may result in electron relaxation dynamics that are significantly different than those predicted by electron-lattice coupling. These ultrafast electron dynamics were monitored by pump-probe measurements of the time-resolved change in transmission. Using femtosecond pulses from a cavity-dumped titanium-doped sapphire laser, two types of nanoparticles with a core-shell geometry were studied. Nanoshells are nanoparticles with a dielectric core surrounded by a continuous thin metal shell. For nanoshells, the plasmon resonance wavelength is tunable by changing the core and shell dimensions. For nanoshells with a gold sulfide core and a gold shell, two conditions were observed under which electron relaxation was different than predicted by electron-phonon coupling. First, electron relaxation occurred more rapidly for gold-gold sulfide nanoshells embedded in polymer films than for nanoshells dispersed in water, with lifetimes of 1.6 ps and 3 to 5 ps, respectively. Second, for nanoshells dispersed in water, the electron relaxation lifetime decreased with adsorption of p-aminobenzoic acid (to 1.7 ps) or aniline (to 1.9 ps) on the nanoshells. With adsorbed n-propylamine or p-mercaptobenzoic acid, electron relaxation transpired in 2.8 ps or 2.4 ps, respectively. Density functional theory calculations indicated that the molecules leading to the fastest electron relaxation possessed the largest induced dipole moments near a metal surface. Semicontinuous gold films grown around a silica nanoparticle core exhibited spectral and dynamical optical signatures of the percolation threshold. Compared to continuous shells, the electron dynamics in the semicontinuous shell layer were dramatically different as additional induced bleaching was observed in the first 500 fs. The observed dynamics are consistent with a rate equation model in which the electrons are initially excited in localized

  12. Avian Influenza spread and transmission dynamics

    Science.gov (United States)

    Bourouiba, Lydia; Gourley, Stephen A.; Liu, Rongsong; Takekawa, John Y.; Wu, Jianhong; Chen, Dongmei; Moulin, Bernard; Wu, Jianhong

    2015-01-01

    The spread of highly pathogenic avian influenza (HPAI) viruses of type A of subtype H5N1 has been a serious threat to global public health. Understanding the roles of various (migratory, wild, poultry) bird species in the transmission of these viruses is critical for designing and implementing effective control and intervention measures. Developing appropriate models and mathematical techniques to understand these roles and to evaluate the effectiveness of mitigation strategies have been a challenge. Recent development of the global health surveillance (especially satellite tracking and GIS techniques) and the mathematical theory of dynamical systems combined have gradually shown the promise of some cutting-edge methodologies and techniques in mathematical biology to meet this challenge.

  13. Image Resolution in Scanning Transmission Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pennycook, S. J.; Lupini, A.R.

    2008-06-26

    Digital images captured with electron microscopes are corrupted by two fundamental effects: shot noise resulting from electron counting statistics and blur resulting from the nonzero width of the focused electron beam. The generic problem of computationally undoing these effects is called image reconstruction and for decades has proved to be one of the most challenging and important problems in imaging science. This proposal concerned the application of the Pixon method, the highest-performance image-reconstruction algorithm yet devised, to the enhancement of images obtained from the highest-resolution electron microscopes in the world, now in operation at Oak Ridge National Laboratory.

  14. Transfer calibration of the transmission of electron-energy spectrometers

    Science.gov (United States)

    Gardner, J. L.; Samson, J. A. R.

    1975-01-01

    Relative intensities of strong peaks in the Hel photoelectron spectra of N2, CO2, CO, and O2 are tabulated. These data were measured with an electron energy analyzer whose relative transmission was calibrated to an accuracy of + or - 5%. The tables are useful for calibrating the transmission of other analyzers for electron energies below 9 eV. Correction for angular distribution effects is discussed.

  15. The dynamics of transmission and the dynamics of networks.

    Science.gov (United States)

    Farine, Damien

    2017-05-01

    A toy example depicted here highlighting the results of a study in this issue of the Journal of Animal Ecology that investigates the impact of network dynamics on potential disease outbreaks. Infections (stars) that spread by contact only (left) reduce the predicted outbreak size compared to situations where individuals can become infected by moving through areas that previously contained infected individuals (right). This is potentially important in species where individuals, or in this case groups, have overlapping ranges (as depicted on the top right). Incorporating network dynamics that maintain information about the ordering of contacts (central blocks; including the ordering of spatial overlap as noted by the arrows that highlight the blue group arriving after the red group in top-right of the figure) is important for capturing how a disease might not have the opportunity to spread to all individuals. By contrast, a static or 'average' network (lower blocks) does not capture any of these dynamics. Interestingly, although static networks generally predict larger outbreak sizes, the authors find that in cases when transmission probability is low, this prediction can switch as a result of changes in the estimated intensity of contacts among individuals. [Colour figure can be viewed at wileyonlinelibrary.com]. Springer, A., Kappeler, P.M. & Nunn, C.L. (2017) Dynamic vs. static social networks in models of parasite transmission: Predicting Cryptosporidium spread in wild lemurs. Journal of Animal Ecology, 86, 419-433. The spread of disease or information through networks can be affected by several factors. Whether and how these factors are accounted for can fundamentally change the predicted impact of a spreading epidemic. Springer, Kappeler & Nunn () investigate the role of different modes of transmission and network dynamics on the predicted size of a disease outbreak across several groups of Verreaux's sifakas, a group-living species of lemur. While some factors

  16. Electron transmission through a class of anthracene aldehyde molecules

    Science.gov (United States)

    Petreska, Irina; Ohanesjan, Vladimir; Pejov, Ljupco; Kocarev, Ljupco

    2016-03-01

    Transmission of electrons via metal-molecule-metal junctions, involving rotor-stator anthracene aldehyde molecules is investigated. Two model barriers having input parameters evaluated from accurate ab initio calculations are proposed and the transmission coefficients are obtained by using the quasiclassical approximation. Transmission coefficients further enter in the integral for the net current, utilizing Simmons' method. Conformational dependence of the tunneling processes is evident and the presence of the side groups enhances the functionality of the future single-molecule based electronic devices.

  17. Transmission Dynamics of a Driven Two-Level System Dissipated by Leads

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ping; FAN Wen-Bin; ZHAO Xian-Geng

    2001-01-01

    We study the transmission dynamics of a driven two-level system dissipated by the two leads. Using the nonequilibrium Green function, we derive an analytical transmission formula for an electron incident from the left lead,through the double quantum dots, to the right lead. The Landauer-type conductance and current are also given.A discussion of the internal tunnelling dynamics reveals crucial effects of the localization and delocalization on the transport of the system.

  18. Real-Time Dynamics of Galvanic Replacement Reactions of Silver Nanocubes and Au Studied by Liquid-Cell Transmission Electron Microscopy.

    Science.gov (United States)

    Tan, Shu Fen; Lin, Guanhua; Bosman, Michel; Mirsaidov, Utkur; Nijhuis, Christian A

    2016-08-23

    We study the galvanic replacement reaction of silver nanocubes in dilute, aqueous ethylenediaminetetraacetic acid disodium salt (EDTA)-capped gold aurate solutions using in situ liquid-cell electron microscopy. Au/Ag etched nanostructures with concave faces are formed via (1) etching that starts from the faces of the nanocubes, followed by (2) the deposition of an Au layer as a result of galvanic replacement, and (3) Au deposition via particle coalescence and monomer attachment where small nanoparticles are formed during the reaction as a result of radiolysis. Analysis of the Ag removal rate and Au deposition rate provides a quantitative picture of the growth process and shows that the morphology and composition of the final product are dependent on the stoichiometric ratio between Au and Ag.

  19. Environmental Transmission Electron Microscopy in an Aberration-Corrected Environment

    DEFF Research Database (Denmark)

    Hansen, Thomas W.; Wagner, Jakob B.

    2012-01-01

    The increasing use of environmental transmission electron microscopy (ETEM) in materials science provides exciting new possibilities for investigating chemical reactions and understanding both the interaction of fast electrons with gas molecules and the effect of the presence of gas on high-resol...

  20. Exploring the environmental transmission electron microscope

    DEFF Research Database (Denmark)

    Wagner, Jakob B.; Cavalca, Filippo; Damsgaard, Christian D.

    2012-01-01

    of the opportunities that the environmental TEM (ETEM) offers when combined with other in situ techniques will be explored, directly in the microscope, by combining electron-based and photon-based techniques and phenomena. In addition, application of adjacent setups using sophisticated transfer methods...

  1. Electron dynamics in Hall thruster

    Science.gov (United States)

    Marini, Samuel; Pakter, Renato

    2015-11-01

    Hall thrusters are plasma engines those use an electromagnetic fields combination to confine electrons, generate and accelerate ions. Widely used by aerospace industries those thrusters stand out for its simple geometry, high specific impulse and low demand for electric power. Propulsion generated by those systems is due to acceleration of ions produced in an acceleration channel. The ions are generated by collision of electrons with propellant gas atoms. In this context, we can realize how important is characterizing the electronic dynamics. Using Hamiltonian formalism, we derive the electron motion equation in a simplified electromagnetic fields configuration observed in hall thrusters. We found conditions those must be satisfied by electromagnetic fields to have electronic confinement in acceleration channel. We present configurations of electromagnetic fields those maximize propellant gas ionization and thus make propulsion more efficient. This work was supported by CNPq.

  2. Electron transmission efficiency of gating-GEM foil for TPC

    Institute of Scientific and Technical Information of China (English)

    XIE Wen-Qing; HUANG Meng; LI Ting; TIAN Yang; LI Yu-Lan; LI Yuan-Jing

    2012-01-01

    In a TPC,ion feedback from the readout detector can cause a space-charge effect and distort the electrical field in the drift region.Gating is one of the effective methods to solve this problem,which can block ions at the expense of losing a certain amount of primary electrons.Compared with the traditional design with a wire structure,gating based on GEM foil is more attractive because of its simplicity.In this paper,the factors influencing the electron transmission efficiency are studied with simulations and experiments.After optimizing all these parameters,an electron transmission efficiency over 80% is obtained.

  3. Nonlinear system guidance in the presence of transmission zero dynamics

    Science.gov (United States)

    Meyer, G.; Hunt, L. R.; Su, R.

    1995-01-01

    An iterative procedure is proposed for computing the commanded state trajectories and controls that guide a possibly multiaxis, time-varying, nonlinear system with transmission zero dynamics through a given arbitrary sequence of control points. The procedure is initialized by the system inverse with the transmission zero effects nulled out. Then the 'steady state' solution of the perturbation model with the transmission zero dynamics intact is computed and used to correct the initial zero-free solution. Both time domain and frequency domain methods are presented for computing the steady state solutions of the possibly nonminimum phase transmission zero dynamics. The procedure is illustrated by means of linear and nonlinear examples.

  4. Dynamics of a split torque helicopter transmission

    Science.gov (United States)

    Krantz, Timothy L.

    1994-06-01

    Split torque designs, proposed as alternatives to traditional planetary designs for helicopter main rotor transmissions, can save weight and be more reliable than traditional designs. This report presents the results of an analytical study of the system dynamics and performance of a split torque gearbox that uses a balance beam mechanism for load sharing. The Lagrange method was applied to develop a system of equations of motion. The mathematical model includes time-varying gear mesh stiffness, friction, and manufacturing errors. Cornell's method for calculating the stiffness of spur gear teeth was extended and applied to helical gears. The phenomenon of sidebands spaced at shaft frequencies about gear mesh fundamental frequencies was simulated by modeling total composite gear errors as sinusoid functions. Although the gearbox has symmetric geometry, the loads and motions of the two power paths differ. Friction must be considered to properly evaluate the balance beam mechanism. For the design studied, the balance beam is not an effective device for load sharing unless the coefficient of friction is less than 0.003. The complete system stiffness as represented by the stiffness matrix used in this analysis must be considered to precisely determine the optimal tooth indexing position.

  5. Structural Dynamics of Electronic Systems

    Science.gov (United States)

    Suhir, E.

    2013-03-01

    The published work on analytical ("mathematical") and computer-aided, primarily finite-element-analysis (FEA) based, predictive modeling of the dynamic response of electronic systems to shocks and vibrations is reviewed. While understanding the physics of and the ability to predict the response of an electronic structure to dynamic loading has been always of significant importance in military, avionic, aeronautic, automotive and maritime electronics, during the last decade this problem has become especially important also in commercial, and, particularly, in portable electronics in connection with accelerated testing of various surface mount technology (SMT) systems on the board level. The emphasis of the review is on the nonlinear shock-excited vibrations of flexible printed circuit boards (PCBs) experiencing shock loading applied to their support contours during drop tests. At the end of the review we provide, as a suitable and useful illustration, the exact solution to a highly nonlinear problem of the dynamic response of a "flexible-and-heavy" PCB to an impact load applied to its support contour during drop testing.

  6. Transmission electron microscopy and diffractometry of materials

    CERN Document Server

    Fultz, Brent

    2001-01-01

    This book teaches graduate students the concepts of trans- mission electron microscopy (TEM) and x-ray diffractometry (XRD) that are important for the characterization of materi- als. It emphasizes themes common to both techniques, such as scattering from atoms and the formation and analysis of dif- fraction patterns. It also describes unique aspects of each technique, especially imaging and spectroscopy in the TEM. The textbook thoroughly develops both introductory and ad- vanced-level material, using over 400 accompanying illustra- tions. Problems are provided at the end of each chapter to reinforce key concepts. Simple citatioins of rules are avoi- ded as much as possible, and both practical and theoretical issues are explained in detail. The book can be used as both an introductory and advanced-level graduate text since sec- tions/chapters are sorted according to difficulty and grou- ped for use in quarter and semester courses on TEM and XRD.

  7. Transmission dynamics and resistance in staphylococci

    NARCIS (Netherlands)

    Hetem, D.J.

    2015-01-01

    This thesis will focus on nosocomial transmission and resistance of S. aureus and CoNS. After the general introduction on S. aureus and coagulase-negative staphylococci, part II focuses on the nosocomial transmission capacity of different MRSA clones in the hospital setting. In chapter 2 the nosocom

  8. Transmission dynamics and resistance in staphylococci

    NARCIS (Netherlands)

    Hetem, D.J.

    2015-01-01

    This thesis will focus on nosocomial transmission and resistance of S. aureus and CoNS. After the general introduction on S. aureus and coagulase-negative staphylococci, part II focuses on the nosocomial transmission capacity of different MRSA clones in the hospital setting. In chapter 2 the

  9. Transmission Electron Microscopy Characterization of Helium Bubbles in Aged Plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, A J; Wall, M A; Zocco, T G; Blobaum, K M

    2004-11-02

    The self-irradiation damage generated by alpha decay of plutonium results in the formation of lattice defects, helium, and uranium atoms. Over time, microstructural evolution resulting from the self-irradiation may influence the physical and mechanical properties of the material. In order to assess microstructural changes, we have developed and applied procedures for the specimen preparation, handling, and transmission electron microscopy characterization of Pu alloys. These transmission electron microscopy investigations of Pu-Ga alloys ranging in age up to 42-years old reveal the presence of nanometer-sized helium bubbles. The number density of bubbles and the average size have been determined for eight different aged materials.

  10. Image simulations of kinked vortices for transmission electron microscopy

    DEFF Research Database (Denmark)

    Beleggia, Marco; Pozzi, G.; Tonomura, A.

    2010-01-01

    We present an improved model of kinked vortices in high-Tc superconductors suitable for the interpretation of Fresnel or holographic observations carried out with a transmission electron microscope. A kinked vortex is composed of two displaced half-vortices, perpendicular to the film plane...... observations of high-Tc superconducting films, where the Fresnel contrast associated with some vortices showed a dumbbell like appearance. Here, we show that under suitable conditions the JV segment may reveal itself in Fresnel imaging or holographic phase mapping in a transmission electron microscope....

  11. Dynamics of Femtosecond Electron Bunches

    OpenAIRE

    Khachatryan, A. G.; Irman, A.; van Goor, F. A.; Boller, K. -J.

    2007-01-01

    In the laser wakefield accelerator (LWFA) a short intense laser pulse, with a duration of the order of a plasma wave period, excites an unusually strong plasma wake wave (laser wakefield). Recent experiments on laser wakefield acceleration [Nature (London) 431, p.535, p.538, p.541 (2004)] demonstrated generation of ultra-short (with a duration of a few femtoseconds) relativistic electron bunches with relatively low energy spread of the order of a few percent. We have studied the dynamics of s...

  12. Application of transmission electron tomography for modeling the renal corpuscle.

    Science.gov (United States)

    Cheng, Delfine; Shen, Sylvie; Chen, Xin-Ming; Pollock, Carol; Braet, Filip

    2013-11-01

    Structural alteration to the microanatomical organization of the glomerular filtration barrier results in proteinuria. Conventional transmission electron microscopy is an important diagnostic tool to assess the degree of ultrastructural damage of the corpusclar filtration unit. However, this approach lacks the ability to collect accurate stereological insights in a relative large tissue volume. Transmission electron tomography offers the ability to gather three-dimensional information with relative ease. Therefore, this contribution aims to highlight what electron tomography can bring to the pathologist in this challenging area of diagnostic practice. Kidney tissue was prepared for routine ultrastructural transmission electron microscopy investigation. Three-dimensional data stacks were automatically acquired by tilting semi-thin sections of 270 nm in an angular range of typically -60° to +60° with 1° increment. Subsequently, models of the filtration unit were produced by computer-assisted tracking of structures of interest. This short report illustrates the capability that transmission electron tomography can offer in the fine structure-function assessment of the porous fenestrated glomerular capillary endothelium, the underlying basement membrane and the podocyte filtration slits. Furthermore, this approach allows the generation of morphometric data about size, shape and volume alterations of the kidney's filtration barrier at the nanoscale.

  13. Dynamic Model for the Z Accelerator Vacuum Section Based on Transmission Line Code%Dynamic Model for the Z Accelerator Vacuum Section Based on Transmission Line Code

    Institute of Scientific and Technical Information of China (English)

    呼义翔; 雷天时; 吴撼宇; 郭宁; 韩娟娟; 邱爱慈; 王亮平; 黄涛; 丛培天; 张信军; 李岩; 曾正中; 孙铁平

    2011-01-01

    The transmission-line-circuit model of the Z accelerator, developed originally by W. A. STYGAR, P. A. CORCORAN, et al., is revised. The revised model uses different calculations for the electron loss and flow impedance in the magnetically insulated transmission line system of the Z accelerator before and after magnetic insulation is established. By including electron pressure and zero electric field at the cathode, a closed set of equations is obtained at each time step, and dynamic shunt resistance (used to represent any electron loss to the anode) and flow impedance are solved, which have been incorporated into the transmission line code for simulations of the vacuum section in the Z accelerator. Finally, the results are discussed in comparison with earlier findings to show the effectiveness and limitations of the model.

  14. In situ transmission electron microscopy for magnetic nanostructures

    DEFF Research Database (Denmark)

    Ngo, Duc-The; Kuhn, Luise Theil

    2016-01-01

    Nanomagnetism is a subject of great interest because of both application and fundamental aspects in which understanding of the physical and electromagnetic structure of magnetic nanostructures is essential to explore the magnetic properties. Transmission electron microscopy (TEM) is a powerful tool......-structure correlation. This paper aims at reviewing and discussing in situ TEM magnetic imaging studies, including Lorentz microscopy and electron holography in TEM, applied to the research of magnetic nanostructures....

  15. Nanomaterial datasets to advance tomography in scanning transmission electron microscopy

    OpenAIRE

    Levin, Barnaby D.A.; Padgett, Elliot; Chen, Chien-Chun; Scott, M C; Xu, Rui; Theis, Wolfgang; Jiang, Yi; Yang, Yongsoo; Ophus, Colin; Zhang, Haitao; Ha, Don-Hyung; Wang, Deli; Yu, Yingchao; Abruña, Hector D.; Robinson, Richard D.

    2016-01-01

    Electron tomography in materials science has flourished with the demand to characterize nanoscale materials in three dimensions (3D). Access to experimental data is vital for developing and validating reconstruction methods that improve resolution and reduce radiation dose requirements. This work presents five high-quality scanning transmission electron microscope (STEM) tomography datasets in order to address the critical need for open access data in this field. The datasets represent the cu...

  16. Dynamic Efficiency of a Container Crane’s Hoisting Transmission System under Hoisting Dynamic Load

    Directory of Open Access Journals (Sweden)

    Yuanyuan Liu

    2016-01-01

    Full Text Available The dynamic efficiency of hoisting transmission system on a container crane is fundamental for accurate efficiency prediction, while the dynamic efficiency of hoisting transmission system has not been investigated sufficiently. This paper will focus on dynamic efficiency of hoisting transmission system under hoisting dynamic load. A power loss model of gearbox was built. Then the dynamic model of gear transmission was developed including time-varying mesh stiffness and hoisting dynamic load was studied. Power loss, dynamic efficiency, and equivalent static efficiency were conducted in hoisting and lowering working conditions. The result shows that dynamic efficiency which consists of the significant lower frequency component coincided with hoisting load torque of the higher frequency component which is directly related to dynamic mesh and bearing force. And in two processes, the equivalent static efficiency in constant speed stage is min, whereas maximum value occurs in different stage. The research results lay a foundation for hoisting gear transmission dynamic efficiency analysis.

  17. Transmission electron microscopy characterization of photocatalysts for water splitting

    DEFF Research Database (Denmark)

    Cavalca, Filippo; Laursen, Anders Bo; Dahl, Søren

    , it is necessary to understand the fundamentals of their reaction mechanisms, chemical behavior, structure and morphology before, during and after reaction using in situ investigations. Here, we focus on the in situ characterization of photocatalysts [1] in an environmental transmission electron microscope (ETEM...

  18. Microfluidic chip for high resolution transmission electron microscopy

    DEFF Research Database (Denmark)

    2013-01-01

    A Microfluidic chip (100) for transmission electron microscopy has a monolithic body (101) with a front side (102) and a back side (103). The monolithic body (101) comprises an opening (104) on the back side (103) extending in a vertical direction from the back side (103) to a membrane (107...

  19. In situ nanoindentation in a transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Minor, Andrew M. [Univ. of California, Berkeley, CA (United States)

    2002-01-01

    This dissertation presents the development of the novel mechanical testing technique of in situ nanoindentation in a transmission electron microscope (TEM). This technique makes it possible to simultaneously observe and quantify the mechanical behavior of nano-scale volumes of solids.

  20. Highlighting material structure with transmission electron diffraction correlation coefficient maps.

    Science.gov (United States)

    Kiss, Ákos K; Rauch, Edgar F; Lábár, János L

    2016-04-01

    Correlation coefficient maps are constructed by computing the differences between neighboring diffraction patterns collected in a transmission electron microscope in scanning mode. The maps are shown to highlight material structural features like grain boundaries, second phase particles or dislocations. The inclination of the inner crystal interfaces are directly deduced from the resulting contrast.

  1. Structure Identification in High-Resolution Transmission Electron Microscopic Images

    DEFF Research Database (Denmark)

    Vestergaard, Jacob Schack; Kling, Jens; Dahl, Anders Bjorholm

    2014-01-01

    A connection between microscopic structure and macroscopic properties is expected for almost all material systems. High-resolution transmission electron microscopy is a technique offering insight into the atomic structure, but the analysis of large image series can be time consuming. The present ...

  2. Metals on BN Studied by High Resolution Transmission Electron Microscopy

    Science.gov (United States)

    Bangert, U.; Zan, R.; Ramasse, Q.; Jalil, Rashid; Riaz, Ibstam; Novoselov, K. S.

    2012-07-01

    Metal impurities, gold and nickel, have been deliberately introduced into boron-nitride (BN) sheets. The structural and topographic properties of doped BN have been studied by aberration corrected scanning transmission electron microscopy (STEM). Analysis revealed that metal atoms cluster preferentially in/on contaminated areas. The metal coverage on BN is almost the same for the same evaporated amount of 1 Å.

  3. Transmission electron microscopy investigation of Bi-2223/Ag tapes

    DEFF Research Database (Denmark)

    Andersen, L.G.; Bals, S.; Tendeloo, G. Van

    2001-01-01

    The microstructure of (Bi,Pb)(2)Sr2Ca2CuOx (Bi-2223) tapes has been investigated by means of transmission electron microscopy (TEM) and high-resolution TEM. The emphasis has been placed on: (1) an examination of the grain morphology and size, (2) grain and colony boundary angles, which are formed...

  4. Electron transmission and quantum current distribution of C70 molecule

    Institute of Scientific and Technical Information of China (English)

    KATSUNORI; Tagami3; MASARU; Tsukada

    2008-01-01

    The characteristics of electron transmission through C70 molecule bridge in which two atomic chain leads are connected to long-axis carbon atoms are investigated theoretically by using tight-binding approach based on the Green’s function with only one π orbital electron per carbon atom. Electron transmission through C70 molecule from the input to the output terminal is obtained. From the spectrum, the switching feature of the electron transmission through C70 is found, and the oscil-lation property based on the quantized level is explained. The quantum current distributions inside C70 molecule bridge are calculated and simulated by the quan-tum current density theory based on Fisher-Lee formula at the energy point E = -0.2 eV, where the transmission spectrum shows a peak. The maximum and the mini-mum bond quantum currents are presented, and the reason why the currents are distributed nonuniformly is explained by the phase difference of the atomic orbits. The result shows that the currents at each atomic site agree with Kirchhoff quan-tum current conservation law.

  5. Statistiscal Experimental Design for Quantitative Atomic Resolution Transmission Electron Microscopy

    NARCIS (Netherlands)

    Van Aert, S.

    2003-01-01

    Statistical experimental design is applied to set up quantitative atomic resolution transmission electron microscopy experiments. In such experiments, observations of the atomic structure of the object under study are always subject to spontaneous fluctuations. As a result of these fluctuations, the

  6. Determination of Mean Inner Potential by Electron Holography Along with Electron Dynamic Simulation

    Institute of Scientific and Technical Information of China (English)

    王岩国; 刘红荣; 杨奇斌; 张泽

    2003-01-01

    Off-axis electron holography in a field-emission-gun transmission electron microscope and electron dynamic simulation is used to determine the mean inner potential of copper. The phase shift of object wave versus specimen thickness is calculated up to 30 nm using electron dynamic formula, and the sample thickness is decided by match of the experimental and calculated phase shift. Based on the measured phase shift, the calculated mean inner potential of Cu is 21.2 V, which agrees with the reported values within the experimental error.

  7. Writing silica structures in liquid with scanning transmission electron microscopy.

    Science.gov (United States)

    van de Put, Marcel W P; Carcouët, Camille C M C; Bomans, Paul H H; Friedrich, Heiner; de Jonge, Niels; Sommerdijk, Nico A J M

    2015-02-04

    Silica nanoparticles are imaged in solution with scanning transmission electron microscopy (STEM) using a liquid cell with silicon nitride (SiN) membrane windows. The STEM images reveal that silica structures are deposited in well-defined patches on the upper SiN membranes upon electron beam irradiation. The thickness of the deposits is linear with the applied electron dose. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) demonstrate that the deposited patches are a result of the merging of the original 20 nm-diameter nanoparticles, and that the related surface roughness depends on the electron dose rate used. Using this approach, sub-micrometer scale structures are written on the SiN in liquid by controlling the electron exposure as function of the lateral position.

  8. Foucault imaging by using non-dedicated transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Yoshifumi [Science and Medical Systems Business Group, Hitachi High-Technologies Corp., Ichige, Hitachinaka, Ibaraki 312-8504 (Japan); Matsumoto, Hiroaki [Corporate Manufacturing Strategy Group, Hitachi High-Technologies Corp., Ishikawa-cho, Hitachinaka, Ibaraki 312-1991 (Japan); Harada, Ken [Central Research Laboratory, Hitachi Ltd., Hatoyama, Saitama 350-0395 (Japan)

    2012-08-27

    An electron optical system for observing Foucault images was constructed using a conventional transmission electron microscope without any special equipment for Lorentz microscopy. The objective lens was switched off and an electron beam was converged by a condenser optical system to the crossover on the selected area aperture plane. The selected area aperture was used as an objective aperture to select the deflected beam for Foucault mode, and the successive image-forming lenses were controlled for observation of the specimen images. The irradiation area on the specimen was controlled by selecting the appropriate diameter of the condenser aperture.

  9. Foucault imaging by using non-dedicated transmission electron microscope

    Science.gov (United States)

    Taniguchi, Yoshifumi; Matsumoto, Hiroaki; Harada, Ken

    2012-08-01

    An electron optical system for observing Foucault images was constructed using a conventional transmission electron microscope without any special equipment for Lorentz microscopy. The objective lens was switched off and an electron beam was converged by a condenser optical system to the crossover on the selected area aperture plane. The selected area aperture was used as an objective aperture to select the deflected beam for Foucault mode, and the successive image-forming lenses were controlled for observation of the specimen images. The irradiation area on the specimen was controlled by selecting the appropriate diameter of the condenser aperture.

  10. In situ Transmission Electron Microscopy of catalyst sintering

    DEFF Research Database (Denmark)

    DeLaRiva, Andrew T.; Hansen, Thomas Willum; Challa, Sivakumar R.

    2013-01-01

    Recent advancements in the field of electron microscopy, such as aberration correctors, have now been integrated into Environmental Transmission Electron Microscopes (TEMs), making it possible to study the behavior of supported metal catalysts under operating conditions at atomic resolution. Here......, we focus on in situ electron microscopy studies of catalysts that shed light on the mechanistic aspects of catalyst sintering. Catalyst sintering is an important mechanism for activity loss, especially for catalysts that operate at elevated temperatures. Literature from the past decade is reviewed...

  11. High-resolution low-dose scanning transmission electron microscopy.

    Science.gov (United States)

    Buban, James P; Ramasse, Quentin; Gipson, Bryant; Browning, Nigel D; Stahlberg, Henning

    2010-01-01

    During the past two decades instrumentation in scanning transmission electron microscopy (STEM) has pushed toward higher intensity electron probes to increase the signal-to-noise ratio of recorded images. While this is suitable for robust specimens, biological specimens require a much reduced electron dose for high-resolution imaging. We describe here protocols for low-dose STEM image recording with a conventional field-emission gun STEM, while maintaining the high-resolution capability of the instrument. Our findings show that a combination of reduced pixel dwell time and reduced gun current can achieve radiation doses comparable to low-dose TEM.

  12. Transmission and Trapping of Cold Electrons in Water Ice

    DEFF Research Database (Denmark)

    Balog, Richard; Cicman, Peter; Field, David

    2011-01-01

    Experiments are reported that show currents of low energy (“cold”) electrons pass unattenuated through crystalline ice at 135 K for energies between zero and 650 meV, up to the maximum studied film thickness of 430 bilayers, showing negligible apparent trapping. By contrast, both porous amorphous...... ice and compact crystalline ice at 40 K show efficient electron trapping. Ice at intermediate temperatures reveals metastable trapping that decays within a few hundred seconds at 110 K. Our results are the first to demonstrate full transmission of cold electrons in high temperature water ice...

  13. Transmission of electrons inside the cryogenic pumps of ITER injector

    Energy Technology Data Exchange (ETDEWEB)

    Veltri, P., E-mail: pierluigi.veltri@igi.cnr.it; Sartori, E. [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy)

    2016-02-15

    Large cryogenic pumps are installed in the vessel of large neutral beam injectors (NBIs) used to heat the plasma in nuclear fusion experiments. The operation of such pumps can be compromised by the presence of stray secondary electrons that are generated along the beam path. In this paper, we present a numerical model to analyze the propagation of the electrons inside the pump. The aim of the study is to quantify the power load on the active pump elements, via evaluation of the transmission probabilities across the domain of the pump. These are obtained starting from large datasets of particle trajectories, obtained by numerical means. The transmission probability of the electrons across the domain is calculated for the NBI of the ITER and for its prototype Megavolt ITer Injector and Concept Advancement (MITICA) and the results are discussed.

  14. Transmission of electrons inside the cryogenic pumps of ITER injector.

    Science.gov (United States)

    Veltri, P; Sartori, E

    2016-02-01

    Large cryogenic pumps are installed in the vessel of large neutral beam injectors (NBIs) used to heat the plasma in nuclear fusion experiments. The operation of such pumps can be compromised by the presence of stray secondary electrons that are generated along the beam path. In this paper, we present a numerical model to analyze the propagation of the electrons inside the pump. The aim of the study is to quantify the power load on the active pump elements, via evaluation of the transmission probabilities across the domain of the pump. These are obtained starting from large datasets of particle trajectories, obtained by numerical means. The transmission probability of the electrons across the domain is calculated for the NBI of the ITER and for its prototype Megavolt ITer Injector and Concept Advancement (MITICA) and the results are discussed.

  15. Electronic transmission of three-terminal pyrene molecular bridge

    Institute of Scientific and Technical Information of China (English)

    Wang Li-Guang; Zhang Xiu-Mei; Terence Kin Shun Wong; Katsunori Tagami; Masaru Tsukada

    2009-01-01

    This paper investigates theoretically the electronic transmission spectra of the three terminal pyrene molecular bridge and the quantum current distribution on each bond by the tight-binding model based on nonequilibrium Green's function and the quantum current density approach, in which one π molecular orbital is taken into account per carbon atom when the energy levels and HOMO-LUMO gap are obtained. The transmission spectra show that the electronic transmission of the three terminal pyrene molecular bridge depends obviously on the incident electronic energy and the pyrene eigenencrgy. The symmetrical and oscillation properties of the transmission spectra are illustrated. A novel plus-minus energy switching function is found. The quantum current distribution shows that the loop currents inside the pyrene are induced, and some bond currents are much larger than the input and the output currents. The reasons why the loop currents and the larger bond currents are induced are the phase difference of the atomic orbits and the degeneracy of the molecular orbits. The calculations illustrate that the quantum current distributions are in good agreement with Kirchhoff quantum current conservation law.

  16. Scanning electron microscopy and transmission electron microscopy study of hot-deformed gamma-TiAl-based alloy microstructure.

    Science.gov (United States)

    Chrapoński, J; Rodak, K

    2006-09-01

    The aim of this work was to assess the changes in the microstructure of hot-deformed specimens made of alloys containing 46-50 at.% Al, 2 at.% Cr and 2 at.% Nb (and alloying additions such as carbon and boron) with the aid of scanning electron microscopy and transmission electron microscopy techniques. After homogenization and heat treatment performed in order to make diverse lamellae thickness, the specimens were compressed at 1000 degrees C. Transmission electron microscopy examinations of specimens after the compression test revealed the presence of heavily deformed areas with a high density of dislocation. Deformation twins were also observed. Dynamically recrystallized grains were revealed. For alloys no. 2 and no. 3, the recovery and recrystallization processes were more extensive than for alloy no. 1.

  17. Ultrafast dynamics of correlated electrons

    Energy Technology Data Exchange (ETDEWEB)

    Rettig, Laurenz

    2012-07-09

    This work investigates the ultrafast electron dynamics in correlated, low-dimensional model systems using femtosecond time- and angle-resolved photoemission spectroscopy (trARPES) directly in the time domain. In such materials, the strong electron-electron (e-e) correlations or coupling to other degrees of freedom such as phonons within the complex many-body quantum system lead to new, emergent properties that are characterized by phase transitions into broken-symmetry ground states such as magnetic, superconducting or charge density wave (CDW) phases. The dynamical processes related to order like transient phase changes, collective excitations or the energy relaxation within the system allow deeper insight into the complex physics governing the emergence of the broken-symmetry state. In this work, several model systems for broken-symmetry ground states and for the dynamical charge balance at interfaces have been studied. In the quantum well state (QWS) model system Pb/Si(111), the charge transfer across the Pb/Si interface leads to an ultrafast energetic stabilization of occupied QWSs, which is the result of an increase of the electronic confinement to the metal film. In addition, a coherently excited surface phonon mode is observed. In antiferromagnetic (AFM) Fe pnictide compounds, a strong momentum-dependent asymmetry of electron and hole relaxation rates allows to separate the recovery dynamics of the AFM phase from electron-phonon (e-ph) relaxation. The strong modulation of the chemical potential by coherent phonon modes demonstrates the importance of e-ph coupling in these materials. However, the average e-ph coupling constant is found to be small. The investigation of the excited quasiparticle (QP) relaxation dynamics in the high-T{sub c}4 superconductor Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+δ} reveals a striking momentum and fluence independence of the QP life times. In combination with the momentum-dependent density of excited QPs, this demonstrates the

  18. Secondary electron imaging of monolayer materials inside a transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Cretu, Ovidiu, E-mail: cretu.ovidiu@nims.go.jp; Lin, Yung-Chang; Suenaga, Kazutomo [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565 (Japan)

    2015-08-10

    A scanning transmission electron microscope equipped with a backscattered and secondary electron detector is shown capable to image graphene and hexagonal boron nitride monolayers. Secondary electron contrasts of the two lightest monolayer materials are clearly distinguished from the vacuum level. A signal difference between these two materials is attributed to electronic structure differences, which will influence the escape probabilities of the secondary electrons. Our results show that the secondary electron signal can be used to distinguish between the electronic structures of materials with atomic layer sensitivity, enhancing its applicability as a complementary signal in the analytical microscope.

  19. Interaction of electrons with light metal hydrides in the transmission electron microscope.

    Science.gov (United States)

    Wang, Yongming; Wakasugi, Takenobu; Isobe, Shigehito; Hashimoto, Naoyuki; Ohnuki, Somei

    2014-12-01

    Transmission electron microscope (TEM) observation of light metal hydrides is complicated by the instability of these materials under electron irradiation. In this study, the electron kinetic energy dependences of the interactions of incident electrons with lithium, sodium and magnesium hydrides, as well as the constituting element effect on the interactions, were theoretically discussed, and electron irradiation damage to these hydrides was examined using in situ TEM. The results indicate that high incident electron kinetic energy helps alleviate the irradiation damage resulting from inelastic or elastic scattering of the incident electrons in the TEM. Therefore, observations and characterizations of these materials would benefit from increased, instead decreased, TEM operating voltage.

  20. Dynamical effects in electron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jianqiang Sky, E-mail: jianqiang.zhou@polytechnique.edu; Reshetnyak, Igor; Giorgetti, Christine; Sottile, Francesco; Reining, Lucia [Laboratoire des Solides Irradiés, École Polytechnique, CNRS, CEA-DSM-IRAMIS, Université Paris-Saclay, F-91128 Palaiseau (France); Kas, J. J.; Rehr, J. J. [Department of Physics, University of Washington, Seattle, Washington 98195-1560 (United States); Sponza, Lorenzo [Department of Physics, King’s College London, London WC2R 2LS (United Kingdom); Guzzo, Matteo [Institut für Physik und IRIS Adlershof, Humboldt-Universität zu Berlin, D-12489 Berlin (Germany); Gatti, Matteo [Laboratoire des Solides Irradiés, École Polytechnique, CNRS, CEA-DSM-IRAMIS, Université Paris-Saclay, F-91128 Palaiseau (France); Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette (France)

    2015-11-14

    One of the big challenges of theoretical condensed-matter physics is the description, understanding, and prediction of the effects of the Coulomb interaction on materials properties. In electronic spectra, the Coulomb interaction causes a renormalization of energies and change of spectral weight. Most importantly, it can lead to new structures, often called satellites. These can be linked to the coupling of excitations, also termed dynamical effects. State-of-the-art methods in the framework of many-body perturbation theory, in particular, the widely used GW approximation, often fail to describe satellite spectra. Instead, approaches based on a picture of electron-boson coupling such as the cumulant expansion are promising for the description of plasmon satellites. In this work, we give a unified derivation of the GW approximation and the cumulant expansion for the one-body Green’s function. Using the example of bulk sodium, we compare the resulting spectral functions both in the valence and in the core region, and we discuss the dispersion of quasi-particles and satellites. We show that self-consistency is crucial to obtain meaningful results, in particular, at large binding energies. Very good agreement with experiment is obtained when the intrinsic spectral function is corrected for extrinsic and interference effects. Finally, we sketch how one can approach the problem in the case of the two-body Green’s function, and we discuss the cancellation of various dynamical effects that occur in that case.

  1. In situ formation of bismuth nanoparticles through electron-beam irradiation in a transmission electron microscope

    Science.gov (United States)

    Sepulveda-Guzman, S.; Elizondo-Villarreal, N.; Ferrer, D.; Torres-Castro, A.; Gao, X.; Zhou, J. P.; Jose-Yacaman, M.

    2007-08-01

    In this work, bismuth nanoparticles were synthesized when a precursor, sodium bismuthate, was exposed to an electron beam at room temperature in a transmission electron microscope (TEM). The irradiation effects were investigated in situ using selected-area electron diffraction, high-resolution transmission electron microscopy and x-ray energy dispersive spectroscopy. After the electron irradiation, bismuth nanoparticles with a rhombohedral structure and diameter of 6 nm were observed. The average particle size increased with the irradiation time. The electron-induced reduction is attributed to the desorption of oxygen ions. This method offers a one-step route to synthesize bismuth nanoparticles using electron irradiation, and the particle size can be controlled by the irradiation time.

  2. In situ formation of bismuth nanoparticles through electron-beam irradiation in a transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Sepulveda-Guzman, S; Elizondo-Villarreal, N; Ferrer, D; Torres-Castro, A; Gao, X; Zhou, J P; Jose-Yacaman, M [Chemical Engineering Department and Texas Materials Institute, University of Texas at Austin, Austin, TX 78712 (United States)

    2007-08-22

    In this work, bismuth nanoparticles were synthesized when a precursor, sodium bismuthate, was exposed to an electron beam at room temperature in a transmission electron microscope (TEM). The irradiation effects were investigated in situ using selected-area electron diffraction, high-resolution transmission electron microscopy and x-ray energy dispersive spectroscopy. After the electron irradiation, bismuth nanoparticles with a rhombohedral structure and diameter of 6 nm were observed. The average particle size increased with the irradiation time. The electron-induced reduction is attributed to the desorption of oxygen ions. This method offers a one-step route to synthesize bismuth nanoparticles using electron irradiation, and the particle size can be controlled by the irradiation time.

  3. Practical aspects of monochromators developed for transmission electron microscopy

    Science.gov (United States)

    Kimoto, Koji

    2014-01-01

    A few practical aspects of monochromators recently developed for transmission electron microscopy are briefly reviewed. The basic structures and properties of four monochromators, a single Wien filter monochromator, a double Wien filter monochromator, an omega-shaped electrostatic monochromator and an alpha-shaped magnetic monochromator, are outlined. The advantages and side effects of these monochromators in spectroscopy and imaging are pointed out. A few properties of the monochromators in imaging, such as spatial or angular chromaticity, are also discussed. PMID:25125333

  4. Transmission of High-Power Electron Beams Through Small Apertures

    CERN Document Server

    Tschalär, C; Balascuta, S.; Benson, S.V.; Bertozzi, W.; Boyce, J.R.; Cowan, R.; Douglas, D.; Evtushenko, P.; Fisher, P.; Ihloff, E.; Kalantarians, N.; Kelleher, A.; Legg, R.; Milner, R.G.; Neil, G.R.; Ou, L.; Schmookler, B.; Tennant, C.; Williams, G.P.; Zhang, S.

    2013-01-01

    Tests were performed to pass a 100 MeV, 430 kWatt c.w. electron beam from the energy-recovery linac at the Jefferson Laboratory's FEL facility through a set of small apertures in a 127 mm long aluminum block. Beam transmission losses of 3 p.p.m. through a 2 mm diameter aperture were maintained during a 7 hour continuous run.

  5. Sub-10 nm device fabrication in a transmission electron microscope.

    Science.gov (United States)

    Fischbein, Michael D; Drndić, Marija

    2007-05-01

    We show that a high-resolution transmission electron microscope can be used to fabricate metal nanostructures and devices on insulating membranes by nanosculpting metal films. Fabricated devices include nanogaps, nanodiscs, nanorings, nanochannels, and nanowires with tailored curvatures and multi-terminal nanogap devices with nanoislands or nanoholes between the terminals. The high resolution, geometrical flexibility, and yield make this fabrication method attractive for many applications including nanoelectronics and nanofluidics.

  6. Electron transmission through a periodically driven graphene magnetic barrier

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, R., E-mail: rbiswas.pkc@gmail.com [Department of Physics, P. K. College, Contai, Purba Medinipur, West Bengal – 721401 (India); Maiti, S. [Ajodhya Hills G.S.A.T High School, Ajodhya, Purulia, West Bengal – 723152 (India); Mukhopadhyay, S. [Purulia Zilla School, Dulmi Nadiha, Purulia, West Bengal – 723102 (India); Sinha, C. [Department of Physics, P. K. College, Contai, Purba Medinipur, West Bengal – 721401 (India); Department of Theoretical Physics, Indian Association for the Cultivation of Science, Jadavpur – 700032 (India)

    2017-05-10

    Electronic transport through graphene magnetic barriers is studied theoretically in presence of an external time harmonic scalar potential in the framework of non-perturbative Landau–Floquet Formalism. The oscillating field mostly suppresses the transmission for rectangular magnetic barrier structure and exhibits the Fano resonance for multiphoton processes due to the presence of bound state inside the barrier. While, for a pair of delta function barriers of larger separation, the oscillating potential suppresses the usual Fabry–Perot oscillations in the transmission and a new type of asymmetric Fano resonance is noted for smaller separation, occurring due to extended states between the barriers. - Highlights: • Tunnelling of the Dirac Fermions through oscillating pure magnetic barriers is reported for the first time. • The high energy transmission through a graphene magnetic barrier is suppressed by the application of time periodic modulation. • Suppression of the Fabry Perot transmission is noted due to the application of an external time harmonic potential. • Two kinds of the Fano resonances are noted in transmission through a pair of modulated δ-function magnetic barriers.

  7. Scanning transmission electron microscopy: Albert Crewe's vision and beyond.

    Science.gov (United States)

    Krivanek, Ondrej L; Chisholm, Matthew F; Murfitt, Matthew F; Dellby, Niklas

    2012-12-01

    Some four decades were needed to catch up with the vision that Albert Crewe and his group had for the scanning transmission electron microscope (STEM) in the nineteen sixties and seventies: attaining 0.5Å resolution, and identifying single atoms spectroscopically. With these goals now attained, STEM developments are turning toward new directions, such as rapid atomic resolution imaging and exploring atomic bonding and electronic properties of samples at atomic resolution. The accomplishments and the future challenges are reviewed and illustrated with practical examples.

  8. Transmission electron microscopy of the preclinical phase of experimental phytophotodermatitis

    Directory of Open Access Journals (Sweden)

    Hiram Larangeira de Almeida Jr

    2008-01-01

    Full Text Available OBJECTIVE: To examine the epidermis in induced phytophotodermatitis using transmission electron microscopy in order to detect histologic changes even before lesions are visible by light microscopy. INTRODUCTION: In the first six hours after the experimental induction of phytophotodermatitis, no changes are detectable by light microscopy. Only after 24 hours can keratinocyte necrosis and epidermal vacuolization be detected histologically, and blisters form by 48 hours. METHODS: The dorsum of four adult rats (Rattus norvegicus was manually epilated. After painting the right half of the rat with the peel juice of Tahiti lemon, they were exposed to sunlight for eight minutes under general anesthesia. The left side was used as the control and exposed to sunlight only. Biopsies were performed immediately after photoinduction and one and two hours later, and the tissue was analyzed by transmission electron microscopy. RESULTS: No histological changes were seen on the control side. Immediately after induction, vacuolization in keratinocytes was observed. After one hour, desmosomal changes were also observed in addition to vacuolization. Keratin filaments were not attached to the desmosomal plaque. Free desmosomes and membrane ruptures were also seen. At two hours after induction, similar changes were found, and granular degeneration of keratin was also observed. DISCUSSION: The interaction of sunlight and psoralens generates a photoproduct that damages keratinocyte proteins, leading to keratinocyte necrosis and blister formation. CONCLUSIONS: Transmission electron microscopy can detect vacuolization, lesions of the membrane, and desmosomes in the first two hours after experimental induction of phytophotodermatitis.

  9. Determination of Inelastic Mean Free Path by Electron Holography Along with Electron Dynamic Calculation

    Institute of Scientific and Technical Information of China (English)

    王岩国; 刘红荣; 杨奇斌; 张泽

    2003-01-01

    Off-axis electron holography in a field emission gun transmission-electron microscope and electron dynamic calculation are used to determine the absorption coefficient and inelastic mean free path (IMFP) of copper.Dependence of the phase shift of the exit electron wave on the specimen thickness is established by electron dynamic simulation. The established relationship makes it possible to determine the specimen thickness with the calculated phase shift by match of the phase shift measured in the reconstructed phase image. Based on the measured amplitudes in reconstructed exit electron wave and reference wave in the vacuum, the examined IMFP of electron with energy of 200kV in Cu is obtained to be 96nm.

  10. Tailoring of electron flow current in magnetically insulated transmission lines

    Directory of Open Access Journals (Sweden)

    J. P. Martin

    2009-03-01

    Full Text Available It is desirable to optimize (minimizing both the inductance and electron flow the magnetically insulated vacuum sections of low impedance pulsed-power drivers. The goal of low inductance is understandable from basic efficiency arguments. The goal of low electron flow results from two observations: (1 flowing electrons generally do not deliver energy to (or even reach most loads, and thus constitute a loss mechanism; (2 energetic electrons deposited in a small area can cause anode damage and anode plasma formation. Low inductance and low electron flow are competing goals; an optimized system requires a balance of the two. While magnetically insulated systems are generally forgiving, there are times when optimization is crucial. For example, in large pulsed-power drivers used to energize high energy density physics loads, the electron flow as a fraction of total current is small, but that flow often reaches the anode in relatively small regions. If the anode temperature becomes high enough to desorb gas, the resulting plasma initiates a gap closure process that can impact system performance. Magnetic-pressure driven (z pinches and material equation of state loads behave like a fixed inductor for much of the drive pulse. It is clear that neither fixed gap nor constant-impedance transmission lines are optimal for driving inductive loads. This work shows a technique for developing the optimal impedance profile for the magnetically insulated section of a high-current driver. Particle-in-cell calculations are used to validate the impedance profiles developed in a radial disk magnetically insulated transmission line geometry. The input parameters are the spacing and location of the minimum gap, the effective load inductance, and the desired electron flow profile. The radial electron flow profiles from these simulations are in good agreement with theoretical predictions when driven at relatively high voltage (i.e., V≥2  MV.

  11. Precision electron flow measurements in a disk transmission line.

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Waylon T.; Pelock, Michael D.; Martin, Jeremy Paul; Jackson, Daniel Peter Jr.; Savage, Mark Edward; Stoltzfus, Brian Scott; Mendel, Clifford Will, Jr.; Pointon, Timothy David

    2008-01-01

    An analytic model for electron flow in a system driving a fixed inductive load is described and evaluated with particle in cell simulations. The simple model allows determining the impedance profile for a magnetically insulated transmission line given the minimum gap desired, and the lumped inductance inside the transition to the minimum gap. The model allows specifying the relative electron flow along the power flow direction, including cases where the fractional electron flow decreases in the power flow direction. The electrons are able to return to the cathode because they gain energy from the temporally rising magnetic field. The simulations were done with small cell size to reduce numerical heating. An experiment to compare electron flow to the simulations was done. The measured electron flow is {approx}33% of the value from the simulations. The discrepancy is assumed to be due to a reversed electric field at the cathode because of the inductive load and falling electron drift velocity in the power flow direction. The simulations constrain the cathode electric field to zero, which gives the highest possible electron flow.

  12. Transmission electron microscopy physics of image formation and microanalysis

    CERN Document Server

    Reimer, Ludwig

    1984-01-01

    The aim of this book is to outline the physics of image formation, electron­ specimen interactions and image interpretation in transmission electron mic­ roscopy. The book evolved from lectures delivered at the University of Munster and is a revised version of the first part of my earlier book Elek­ tronenmikroskopische Untersuchungs- und Priiparationsmethoden, omitting the part which describes specimen-preparation methods. In the introductory chapter, the different types of electron microscope are compared, the various electron-specimen interactions and their applications are summarized and the most important aspects of high-resolution, analytical and high-voltage electron microscopy are discussed. The optics of electron lenses is discussed in Chapter 2 in order to bring out electron-lens properties that are important for an understanding of the function of an electron microscope. In Chapter 3, the wave optics of elec­ trons and the phase shifts by electrostatic and magnetic fields are introduced; Fresne...

  13. Precession electron diffraction and its utility for structural fingerprinting in the transmission electron microscope

    Science.gov (United States)

    Moeck, Peter; Rouvimov, Sergei; Nicolopoulos, Stavros

    2009-09-01

    Precession electron diffraction (PED) in a transmission electron microscope (TEM) is discussed in order to illustrate its utility for structural fingerprinting of nanocrystals. While individual nanocrystals may be fingerprinted structurally from PED spot patterns, ensembles of nanocrystals may be fingerprinted from powder PED ring patterns.

  14. Imaging domains in transmission electron microscopy (invited) (abstract)

    Science.gov (United States)

    Mishra, R. K.

    1987-04-01

    Magnetic domain walls and domains inside thin electron transparent specimens of ferromagnetic materials can be imaged using the Fresnel and Focault techniques in a transmission electron microscope. Combined with the diffraction, microstructural and microchemical capabilities of modern microscopes, Lorentz microscopy offers one of the most powerful tools to study structure-property relationships in magnetic materials. In addition, using this technique, it is possible to deduce the local magnetization distribution around inhomogeneities and complex Bloch and Néel walls. Lorentz images can be used to quantitatively measure domain wall thickness and estimate domain wall energy. With modified sample holders and pole pieces, one can study in situ domain wall motion and the interaction of domains with microstructural features such as second phases, grain boundaries, structural defects, etc. All these will be illustrated with examples of Lorentz images from soft and hard magnets with special emphasis on the Nd-Fe-B hard magnets. Finally, the limitations of the Lorentz imaging technique utilizing the deflected electron intensities will be outlined and a new technique which utilizes the phase changes in the electron beam as it passes through the material in a scanning transmission microscope will be reviewed.

  15. Transmission electron microscope characterisation of molar-incisor-hypomineralisation.

    Science.gov (United States)

    Xie, Zonghan; Kilpatrick, Nicky M; Swain, Michael V; Munroe, Paul R; Hoffman, Mark

    2008-10-01

    Molar-incisor-hypomineralisation (MIH), one of the major developmental defects in dental enamel, is presenting challenge to clinicians due, in part, to the limited understanding of microstructural changes in affected teeth. Difficulties in the preparation of site-specific transmission electron microscope (TEM) specimens are partly responsible for this deficit. In this study, a dual-beam field emission scanning electron microscope (FESEM)/focused ion beam (FIB) milling instrument was used to prepare electron transparent specimens of sound and hypomineralised enamel. Microstructural analysis revealed that the hypomineralised areas in enamel were associated with marked changes in microstructure; loosely packed apatite crystals within prisms and wider sheath regions were identified. Microstructural changes appear to occur during enamel maturation and may be responsible for the dramatic reduction in mechanical properties of the affected regions. An enhanced knowledge of the degradation of structural integrity in hypomineralised enamel could shed light on more appropriate management strategies for these developmental defects.

  16. Transmission electron microscopic examination of phosphoric acid fuel cell components

    Science.gov (United States)

    Pebler, A.

    1986-01-01

    Transmission electron microscopy (TEM) was used to physically characterize tested and untested phosphoric acid fuel cell (PAFC) components. Those examined included carbon-supported platinum catalysts, carbon backing paper, and Teflon-bonded catalyst layers at various stages of fabrication and after testing in pressurized PAFC's. Applicability of electron diffraction and electron energy loss spectroscopy for identifying the various phases was explored. The discussion focuses on the morphology and size distribution of platinum, the morphology and structural aspects of Teflon in catalyst layers, and the structural evidence of carbon corrosion. Reference is made to other physical characterization techniques where appropriate. A qualitative model of the catalyst layer that emerged from the TEM studies is presented.

  17. On dynamic loads in parallel shaft transmissions. 2: Parameter study

    Science.gov (United States)

    Lin, Edward Hsiang-Hsi; Huston, Ronald L.; Coy, John J.

    1987-01-01

    Solutions to the governing equations of a spur gear transmission model, developed in NASA TM-100180 (AVSCOM TM-87-C-2), are presented. Factors affecting the dynamic load are identified. It is found that the dynamic load increases with operating speed up to a system natural frequency. At operating speeds beyond the natural frequency the dynamic load decreases dramatically. Also. it is found that the applied load and shaft inertia have little effect on the dynamic load. Damping and friction decrease the dynamic load. Finally, tooth stiffness has a significant effect on dynamic loading; the higher the stiffness, the lower the dynamic loading. Also, the higher the stiffness the higher the rotating speed required for dynamic response.

  18. Quantifying the growth of individual graphene layers by in situ environmental transmission electron microscopy

    DEFF Research Database (Denmark)

    Kling, Jens; Hansen, Thomas Willum; Wagner, Jakob Birkedal

    2016-01-01

    The growth dynamics of layered carbon is studied by means of in situ transmission electron microscopy in order to obtain a deeper insight into the growth by chemical vapor deposition, which at present is the technique of choice for growing layered carbon. In situ growth of layered carbon structures...... on nickel using acetylene as carbon precursor gas is studied in the electron microscope at various gas pressures. By following the growth of individual graphene layers on the Ni surface, local growth rates are determined as a function of precursor pressure. Two growth regimes are identified, an initial...

  19. Transmission dynamics of cholera: Mathematical modeling and control strategies

    Science.gov (United States)

    Sun, Gui-Quan; Xie, Jun-Hui; Huang, Sheng-He; Jin, Zhen; Li, Ming-Tao; Liu, Liqun

    2017-04-01

    Cholera, as an endemic disease around the world, has generated great threat to human society and caused enormous morbidity and mortality with weak surveillance system. In this paper, we propose a mathematical model to describe the transmission of Cholera. Moreover, basic reproduction number and the global dynamics of the dynamical model are obtained. Then we apply our model to characterize the transmission process of Cholera in China. It was found that, in order to avoid its outbreak in China, it may be better to increase immunization coverage rate and make effort to improve environmental management especially for drinking water. Our results may provide some new insights for elimination of Cholera.

  20. Three-Dimensional scanning transmission electron microscopy of biological specimens

    KAUST Repository

    De Jonge, Niels

    2010-01-18

    A three-dimensional (3D) reconstruction of the cytoskeleton and a clathrin-coated pit in mammalian cells has been achieved from a focal-series of images recorded in an aberration-corrected scanning transmission electron microscope (STEM). The specimen was a metallic replica of the biological structure comprising Pt nanoparticles 2-3 nm in diameter, with a high stability under electron beam radiation. The 3D dataset was processed by an automated deconvolution procedure. The lateral resolution was 1.1 nm, set by pixel size. Particles differing by only 10 nm in vertical position were identified as separate objects with greater than 20% dip in contrast between them. We refer to this value as the axial resolution of the deconvolution or reconstruction, the ability to recognize two objects, which were unresolved in the original dataset. The resolution of the reconstruction is comparable to that achieved by tilt-series transmission electron microscopy. However, the focal-series method does not require mechanical tilting and is therefore much faster. 3D STEM images were also recorded of the Golgi ribbon in conventional thin sections containing 3T3 cells with a comparable axial resolution in the deconvolved dataset. © 2010 Microscopy Society of America.

  1. Structural Fingerprinting of Nanocrystals in the Transmission Electron Microscope

    Science.gov (United States)

    Rouvimov, Sergei; Plachinda, Pavel; Moeck, Peter

    2010-03-01

    Three novel strategies for the structurally identification of nanocrystals in a transmission electron microscope are presented. Either a single high-resolution transmission electron microscopy image [1] or a single precession electron diffractogram (PED) [2] may be employed. PEDs from fine-grained crystal powders may also be utilized. Automation of the former two strategies is in progress and shall lead to statistically significant results on ensembles of nanocrystals. Open-access databases such as the Crystallography Open Database which provides more than 81,500 crystal structure data sets [3] or its mainly inorganic and educational subsets [4] may be utilized. [1] http://www.scientificjournals.org/journals 2007/j/of/dissertation.htm [2] P. Moeck and S. Rouvimov, in: {Drugs and the Pharmaceutical Sciences}, Vol. 191, 2009, 270-313 [3] http://cod.ibt.lt, http://www.crystallography.net, http://cod.ensicaen.fr, http://nanocrystallography.org, http://nanocrystallography.net, http://journals.iucr.org/j/issues/2009/04/00/kk5039/kk5039.pdf [4] http://nanocrystallography.research.pdx.edu/CIF-searchable

  2. 4D scanning transmission ultrafast electron microscopy: Single-particle imaging and spectroscopy.

    Science.gov (United States)

    Ortalan, Volkan; Zewail, Ahmed H

    2011-07-20

    We report the development of 4D scanning transmission ultrafast electron microscopy (ST-UEM). The method was demonstrated in the imaging of silver nanowires and gold nanoparticles. For the wire, the mechanical motion and shape morphological dynamics were imaged, and from the images we obtained the resonance frequency and the dephasing time of the motion. Moreover, we demonstrate here the simultaneous acquisition of dark-field images and electron energy loss spectra from a single gold nanoparticle, which is not possible with conventional methods. The local probing capabilities of ST-UEM open new avenues for probing dynamic processes, from single isolated to embedded nanostructures, without being affected by the heterogeneous processes of ensemble-averaged dynamics. Such methodology promises to have wide-ranging applications in materials science and in single-particle biological imaging.

  3. Improving transmission rates of electronic discharge summaries to GPs.

    Science.gov (United States)

    Barr, Rory; Chin, Kuen Yeow; Yeong, Keefai

    2013-01-01

    Discharge summaries are a vital tool to communicate information from Hospital to Primary Care teams; updating GPs about what happened during an admission, and handing over care detailing any follow up care required. Historically, Discharge Summaries have been posted to hospitals, increasing costs for hospitals, creating administrative work for GP practices receiving the letters, and resulting in some letters being lost or delayed in reaching the GP, with implications for patient safety if follow up requests are not received and acted upon. In an effort to improve patient care, the Clinical Commissioning Group in Surrey drew up a contract with Ashford and St Peter's Foundation Trust, aiming to increase the percentage of discharge summaries sent electronically from the rate of 9% sent within 24 hours, to over 75%. This contract set targets of 50% in May, 65% in June, and 80% in July. Financial penalties would be imposed if targets were not achieved, starting in June 2013. The Trust set up a working group comprising of doctors, IT personnel and ward PAs to devise a multi-pronged solution to achieve this target. The electronic discharge summary system was reviewed and improvements were designed and developed to make the process of signing off letters easier, and transmission of signed off letters became automated rather than requiring manual transmission by ward PAs. Presentations and leaflets to explain the importance of prompt completion and transmission of discharge summaries were given to Doctors to improve compliance using the revised IT system. Figures on transmission rates were automatically emailed to key stakeholders every day (Ward PAs, Divisional Leads) showing performance on each ward. This helped identify areas requiring more intervention. Areas (e.g. Day Surgery) that had not used electronic discharge summaries were engaged with, and persuaded to take part. As a result, transmission rates of Discharge Summaries within 24 hours of patient discharge

  4. MgH2 → Mg phase transformation driven by a high-energy electron beam: An in situ transmission electron microscopy study

    Science.gov (United States)

    Paik, B.; Jones, I. P.; Walton, A.; Mann, V.; Book, D.; Harris, I. R.

    2010-01-01

    The dynamics of a phase change have been studied using the electron beam in a transmission electron microscope to transform MgH2 into Mg. The study involved selected-area diffraction and electron-energy-loss spectroscopy (EELS). The orientation relation ( ? and ? ), obtained from the electron diffraction study, has been used to propose a model for the movements of magnesium atoms during the phase change. The in situ EELS results have been compared with the existing H-desorption model. The study aims to describe the sorption dynamics of hydrogen in MgH2, which is a base material for a number of promising hydrogen storage systems.

  5. Electron MHD: dynamics and turbulence

    CERN Document Server

    Lyutikov, Maxim

    2013-01-01

    (Abridged) We consider dynamics and turbulent interaction of whistler modes within the framework of inertialess electron MHD (EMHD). We argue there is no energy principle in EMHD: any stationary closed configuration is neutrally stable. We consider the turbulent cascade of whistler modes. We show that (i) harmonic whistlers are exact non-linear solutions; (ii) co-linear whistlers do not interact (including counter-propagating); (iii) waves with the same value of the wave vector, $k_1=k_2$, do not interact; (iv) whistler modes have a dispersion that allows a three-wave decay, including into a zero frequency mode; (v) the three-wave interaction effectively couples modes with highly different wave numbers and propagation angles. In addition, linear interaction of a whistler with a single zero-mode can lead to spatially divergent structures via parametric instability. All these properties are drastically different from MHD, so that the qualitative properties of the Alfven turbulence cannot be transferred to the E...

  6. In situ and operando transmission electron microscopy of catalytic materials

    DEFF Research Database (Denmark)

    Crozier, Peter A.; Hansen, Thomas Willum

    2015-01-01

    Catalytic nanomaterials play a major role in chemical conversions and energy transformations. Understanding how materials control and regulate surface reactions is a major objective for fundamental research on heterogeneous catalysts. In situ environmental transmission electron microscopy (ETEM......) is a powerful technique for revealing the atomic structures of materials at elevated temperatures in the presence of reactive gases. This approach can allow the structure-reactivity relations underlying catalyst functionality to be investigated. Thus far, ETEM has been limited by the absence of in situ...

  7. Simultaneous orientation and thickness mapping in transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tyutyunnikov, Dmitry, E-mail: dmitry.tyutyunnikov@uni-ulm.de [Institute for Experimental Physics, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm (Germany); Burak Özdöl, V. [National Center for Electron Microscopy, MS 72-150 Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Koch, Christoph T. [Institute for Experimental Physics, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm (Germany)

    2015-03-15

    In this paper we introduce an approach for simultaneous thickness and orientation mapping of crystalline samples by means of transmission electron microscopy. We show that local thickness and orientation values can be extracted from experimental dark-field (DF) image data acquired at different specimen tilts. The method has been implemented to automatically acquire the necessary data and then map thickness and crystal orientation for a given region of interest. We have applied this technique to a specimen prepared from a commercial semiconductor device, containing multiple 22 nm technology transistor structures. The performance and limitations of our method are discussed and compared to those of other techniques available.

  8. Metallocarbohedrenes: Transmission Electron Microscopy of Mass Gated Deposits

    Science.gov (United States)

    Castleman, M. E. Lyn, Jr.

    2002-03-01

    Titanium and zirconium Met-Car cluster ions have been detected from the direct laser vaporization of metal-graphite mixtures using time-of-flight mass spectrometry. Optimization of the production conditions enabled sufficient intensities to mass select and deposit Met-Cars on surfaces. High-resolution transmission electron microscopy images of mass gated Met-Car species reveals deposited nanocrystals 2 nm in diameter. Diffraction patterns indicate the presence of multiple species and shows that the deposits have spatial orientation. Lattice parameters have been extracted. The implication of the findings will be discussed. Support for the work has been from the AFOSR F49620-01-1-0122.

  9. Correction of bubble size distributions from transmission electron microscopy observations

    Energy Technology Data Exchange (ETDEWEB)

    Kirkegaard, P.; Eldrup, M.; Horsewell, A.; Skov Pedersen, J.

    1996-01-01

    Observations by transmission electron microscopy of a high density of gas bubbles in a metal matrix yield a distorted size distribution due to bubble overlap and bubble escape from the surface. A model is described that reconstructs 3-dimensional bubble size distributions from 2-dimensional projections on taking these effects into account. Mathematically, the reconstruction is an ill-posed inverse problem, which is solved by regularization technique. Extensive Monte Carlo simulations support the validity of our model. (au) 1 tab., 32 ills., 32 refs.

  10. Three-Dimensional Orientation Mapping in the Transmission Electron Microscope

    DEFF Research Database (Denmark)

    Liu, Haihua; Schmidt, Søren; Poulsen, Henning Friis

    2011-01-01

    Over the past decade, efforts have been made to develop nondestructive techniques for three-dimensional (3D) grain-orientation mapping in crystalline materials. 3D x-ray diffraction microscopy and differential-aperture x-ray microscopy can now be used to generate 3D orientation maps with a spatial...... resolution of 200 nanometers (nm). We describe here a nondestructive technique that enables 3D orientation mapping in the transmission electron microscope of mono- and multiphase nanocrystalline materials with a spatial resolution reaching 1 nm. We demonstrate the technique by an experimental study...... of a nanocrystalline aluminum sample and use simulations to validate the principles involved...

  11. Simulation of scanning transmission electron microscope images on desktop computers

    Energy Technology Data Exchange (ETDEWEB)

    Dwyer, C., E-mail: christian.dwyer@mcem.monash.edu.au [Monash Centre for Electron Microscopy, Department of Materials Engineering, Monash University, Victoria 3800 (Australia)

    2010-02-15

    Two independent strategies are presented for reducing the computation time of multislice simulations of scanning transmission electron microscope (STEM) images: (1) optimal probe sampling, and (2) the use of desktop graphics processing units. The first strategy is applicable to STEM images generated by elastic and/or inelastic scattering, and requires minimal effort for its implementation. Used together, these two strategies can reduce typical computation times from days to hours, allowing practical simulation of STEM images of general atomic structures on a desktop computer.

  12. Global Transmission Dynamics of Measles in the Measles Elimination Era.

    Science.gov (United States)

    Furuse, Yuki; Oshitani, Hitoshi

    2017-04-16

    Although there have been many epidemiological reports of the inter-country transmission of measles, systematic analysis of the global transmission dynamics of the measles virus (MV) is limited. In this study, we applied phylogeographic analysis to characterize the global transmission dynamics of the MV using large-scale genetic sequence data (obtained for 7456 sequences) from 115 countries between 1954 and 2015. These analyses reveal the spatial and temporal characteristics of global transmission of the virus, especially in Australia, China, India, Japan, the UK, and the USA in the period since 1990. The transmission is frequently observed, not only within the same region but also among distant and frequently visited areas. Frequencies of export from measles-endemic countries, such as China, India, and Japan are high but decreasing, while the frequencies from countries where measles is no longer endemic, such as Australia, the UK, and the USA, are low but slightly increasing. The world is heading toward measles eradication, but the disease is still transmitted regionally and globally. Our analysis reveals that countries wherein measles is endemic and those having eliminated the disease (apart from occasional outbreaks) both remain a source of global transmission in this measles elimination era. It is therefore crucial to maintain vigilance in efforts to monitor and eradicate measles globally.

  13. Carriage and transmission dynamics of multidrug-resistant Enterobacteriaceae

    NARCIS (Netherlands)

    Haverkate, M.R.

    2015-01-01

    Antimicrobial-resistant bacteria cause big problems in health care. Infections with these bacteria are hard to treat and lead to high morbidity, mortality, and costs. In this PhD thesis, carriage and transmission dynamics of multidrug-resistant Enterobacteriaceae have been investigated in various se

  14. Nanomaterial datasets to advance tomography in scanning transmission electron microscopy

    CERN Document Server

    Levin, Barnaby D A; Chen, Chien-Chun; Scott, M C; Xu, Rui; Theis, Wolfgang; Jiang, Yi; Yang, Yongsoo; Ophus, Colin; Zhang, Haitao; Ha, Don-Hyung; Wang, Deli; Yu, Yingchao; Abruna, Hector D; Robinson, Richard D; Ercius, Peter; Kourkoutis, Lena F; Miao, Jianwei; Muller, David A; Hovden, Robert

    2016-01-01

    Electron tomography in materials science has flourished with the demand to characterize nanoscale materials in three dimensions (3D). Access to experimental data is vital for developing and validating reconstruction methods that improve resolution and reduce radiation dose requirements. This work presents five high-quality scanning transmission electron microscope (STEM) tomography datasets in order to address the critical need for open access data in this field. The datasets represent the current limits of experimental technique, are of high quality, and contain materials with structural complexity. Included are tomographic series of a hyperbranched Co2P nanocrystal, platinum nanoparticles on a carbon nanofibre imaged over the complete 180{\\deg} tilt range, a platinum nanoparticle and a tungsten needle both imaged at atomic resolution by equal slope tomography, and a through-focal tilt series of PtCu nanoparticles. A volumetric reconstruction from every dataset is provided for comparison and development of p...

  15. Advances in imaging and electron physics the scanning transmission electron microscope

    CERN Document Server

    Hawkes, Peter W

    2009-01-01

    Advances in Imaging and Electron Physics merges two long-running serials--Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. This series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.  This particular volume presents several timely articles on the scanning transmission electron microscope. Updated with contributions from leading international scholars and industry experts Discusses hot topic areas and presents current and future research trends Provides an invaluable reference and guide for physicists, engineers and mathematicians.

  16. Dynamical simulations of strongly correlated electron materials

    Science.gov (United States)

    Kress, Joel; Barros, Kipton; Batista, Cristian; Chern, Gia-Wei; Kotliar, Gabriel

    We present a formulation of quantum molecular dynamics that includes electron correlation effects via the Gutzwiller method. Our new scheme enables the study of the dynamical behavior of atoms and molecules with strong electron interactions. The Gutzwiller approach goes beyond the conventional mean-field treatment of the intra-atomic electron repulsion and captures crucial correlation effects such as band narrowing and electron localization. We use Gutzwiller quantum molecular dynamics to investigate the Mott transition in the liquid phase of a single-band metal and uncover intriguing structural and transport properties of the atoms.

  17. Electron magnetohydrodynamics: dynamics and turbulence.

    Science.gov (United States)

    Lyutikov, Maxim

    2013-11-01

    We consider dynamics and turbulent interaction of whistler modes within the framework of inertialess electron magnetohydrodynamics (EMHD). We argue that there is no energy principle in EMHD: any stationary closed configuration is neutrally stable. On the other hand, the relaxation principle, the long term evolution of a weakly dissipative system towards Taylor-Beltrami state, remains valid in EMHD. We consider the turbulent cascade of whistler modes. We show that (i) harmonic whistlers are exact nonlinear solutions; (ii) collinear whistlers do not interact (including counterpropagating); (iii) waves with the same value of the wave vector k(1)=k(2) do not interact; (iv) whistler modes have a dispersion that allows a three-wave decay, including into a zero frequency mode; (v) the three-wave interaction effectively couples modes with highly different wave numbers and propagation angles. In addition, linear interaction of a whistler with a single zero mode can lead to spatially divergent structures via parametric instability. All these properties are drastically different from MHD, so that the qualitative properties of the Alfvén turbulence can not be transferred to the EMHD turbulence. We derive the Hamiltonian formulation of EMHD, and using Bogoliubov transformation reduce it to the canonical form; we calculate the matrix elements for the three-wave interaction of whistlers. We solve numerically the kinetic equation and show that, generally, the EMHD cascade develops within a broad range of angles, while transiently it may show anisotropic, nearly two-dimensional structures. Development of a cascade depends on the forcing (nonuniversal) and often fails to reach a steady state. Analytical estimates predict the spectrum of magnetic fluctuations for the quasi-isotropic cascade [proportionality]k(-2). The cascade remains weak (not critically balanced). The cascade is UV local, while the infrared locality is weakly (logarithmically) violated.

  18. Reconstruction and visualization of nanoparticle composites by transmission electron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.Y. [National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton, Canada T6H 2M9 (Canada); Department of Physics, University of Alberta, Edmonton, Canada T6G 2G7 (Canada); Lockwood, R. [National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton, Canada T6H 2M9 (Canada); Malac, M., E-mail: marek.malac@nrc-cnrc.gc.ca [National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton, Canada T6H 2M9 (Canada); Department of Physics, University of Alberta, Edmonton, Canada T6G 2G7 (Canada); Furukawa, H. [SYSTEM IN FRONTIER INC., 2-8-3, Shinsuzuharu bldg. 4F, Akebono-cho, Tachikawa-shi, Tokyo 190-0012 (Japan); Li, P.; Meldrum, A. [National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton, Canada T6H 2M9 (Canada)

    2012-02-15

    This paper examines the limits of transmission electron tomography reconstruction methods for a nanocomposite object composed of many closely packed nanoparticles. Two commonly used reconstruction methods in TEM tomography were examined and compared, and the sources of various artefacts were explored. Common visualization methods were investigated, and the resulting 'interpretation artefacts' ( i.e., deviations from 'actual' particle sizes and shapes arising from the visualization) were determined. Setting a known or estimated nanoparticle volume fraction as a criterion for thresholding does not in fact give a good visualization. Unexpected effects associated with common built-in image filtering methods were also found. Ultimately, this work set out to establish the common problems and pitfalls associated with electron beam tomographic reconstruction and visualization of samples consisting of closely spaced nanoparticles. -- Highlights: Black-Right-Pointing-Pointer Electron tomography limits were explored by both experiment and simulation. Black-Right-Pointing-Pointer Reliable quantitative volumetry using electron tomography is not presently feasible. Black-Right-Pointing-Pointer Volume rendering appears to be better choice for visualization of composite samples.

  19. Transmission zero in a quantum dot with strong electron-electron interaction: Perturbative conductance calculations

    Science.gov (United States)

    Kim, Sejoong; Lee, Hyun-Woo

    2006-05-01

    A pioneering experiment [E. Schuster, E. Buks, M. Heiblum, D. Mahalu, V. Umansky, and Hadas Shtrikman, Nature 385, 417 (1997)] reported the measurement of the transmission phase of an electron traversing a quantum dot and found the intriguing feature of a sudden phase drop in the conductance valleys. Based on the Friedel sum rule for a spinless effective one-dimensional system, it has been previously argued [H.-W. Lee, Phys. Rev. Lett. 82, 2358 (1999)] that the sudden phase drop should be accompanied by the vanishing of the transmission amplitude, or transmission zero. Here we address roles of strong electron-electron interactions on the electron transport through a two-level quantum dot where one level couples with the leads much more strongly than the other level does [P. G. Silvestrov and Y. Imry, Phys. Rev. Lett. 85, 2565 (2000)]. We perform a perturbative conductance calculation with an explicit account of large charging energy and verify that the resulting conductance exhibits transmission zero, in agreement with the analysis based on the Friedel sum rule.

  20. Characterization of strained semiconductor structures using transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Oezdoel, Vasfi Burak

    2011-08-15

    Today's state-of-the-art semiconductor electronic devices utilize the charge transport within very small volumes of the active device regions. The structural, chemical and optical material properties in these small dimensions can critically affect the performance of these devices. The present thesis is focused on the nanometer scale characterization of the strain state in semiconductor structures using transmission electron microscopy (TEM). Although high-resolution TEM has shown to provide the required accuracy at the nanometer scale, optimization of imaging conditions is necessary for accurate strain measurements. An alternative HRTEM method based on strain mapping on complex-valued exit face wave functions is developed to reduce the artifacts arising from objective lens aberrations. However, a much larger field of view is crucial for mapping strain in the active regions of complex structures like latest generation metal-oxide-semiconductor field-effect transistors (MOSFETs). To overcome this, a complementary approach based on electron holography is proposed. The technique relies on the reconstruction of the phase shifts in the diffracted electron beams from a focal series of dark-field images using recently developed exit-face wave function reconstruction algorithm. Combining high spatial resolution, better than 1 nm, with a field of view of about 1 {mu}m in each dimension, simultaneous strain measurements on the array of MOSFETs are possible. Owing to the much lower electron doses used in holography experiments when compared to conventional quantitative methods, the proposed approach allows to map compositional distribution in electron beam sensitive materials such as InGaN heterostructures without alteration of the original morphology and chemical composition. Moreover, dark-field holography experiments can be performed on thicker specimens than the ones required for high-resolution TEM, which in turn reduces the thin foil relaxation. (orig.)

  1. Dynamic security risk assessment and optimization of power transmission system

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The paper presents a practical dynamic security region (PDSR) based dynamic security risk assessment and optimization model for power transmission system. The cost of comprehensive security control and the influence of uncertainties of power injections are considered in the model of dynamic security risk assessment. The transient stability constraints and uncertainties of power injections can be considered easily by PDSR in form of hyper-box. A method to define and classify contingency set is presented, and a risk control optimization model is given which takes total dynamic insecurity risk as the objective function for a dominant con-tingency set. An optimal solution of dynamic insecurity risk is obtained by opti-mizing preventive and emergency control cost and contingency set decomposition. The effectiveness of this model has been proved by test results on the New Eng-land 10-genarator 39-bus system.

  2. Iterative reconstruction of magnetic induction using Lorentz transmission electron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Phatak, C., E-mail: cd@anl.gov [Materials Science Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Gürsoy, D. [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2015-03-15

    Intense ongoing research on complex nanomagnetic structures requires a fundamental understanding of the 3D magnetization and the stray fields around the nano-objects. 3D visualization of such fields offers the best way to achieve this. Lorentz transmission electron microscopy provides a suitable combination of high resolution and ability to quantitatively visualize the magnetization vectors using phase retrieval methods. In this paper, we present a formalism to represent the magnetic phase shift of electrons as a Radon transform of the magnetic induction of the sample. Using this formalism, we then present the application of common tomographic methods particularly the iterative methods, to reconstruct the 3D components of the vector field. We present an analysis of the effect of missing wedge and the limited angular sampling as well as reconstruction of complex 3D magnetization in a nanowire using simulations. - Highlights: • We present a formalism to represent electron-optical magnetic phase shift as a Radon transform of the 3D magnetic induction of the nano-object. • We have analyzed four different tomographic reconstruction methods for vectorial data reconstruction. • Reconstruction methods were tested for varying experimental limitations such as limited tilt range and limited angular sampling. • The analysis showed that Gridrec and SIRT methods performed better with lower errors than other reconstruction methods.

  3. Improved Zernike-type phase contrast for transmission electron microscopy.

    Science.gov (United States)

    Koeck, P J B

    2015-07-01

    Zernike phase contrast has been recognized as a means of recording high-resolution images with high contrast using a transmission electron microscope. This imaging mode can be used to image typical phase objects such as unstained biological molecules or cryosections of biological tissue. According to the original proposal discussed in Danev and Nagayama (2001) and references therein, the Zernike phase plate applies a phase shift of π/2 to all scattered electron beams outside a given scattering angle and an image is recorded at Gaussian focus or slight underfocus (below Scherzer defocus). Alternatively, a phase shift of -π/2 is applied to the central beam using the Boersch phase plate. The resulting image will have an almost perfect contrast transfer function (close to 1) from a given lowest spatial frequency up to a maximum resolution determined by the wave length, the amount of defocus and the spherical aberration of the microscope. In this paper, I present theory and simulations showing that this maximum spatial frequency can be increased considerably without loss of contrast by using a Zernike or Boersch phase plate that leads to a phase shift between scattered and unscattered electrons of only π /4, and recording images at Scherzer defocus. The maximum resolution can be improved even more by imaging at extended Scherzer defocus, though at the cost of contrast loss at lower spatial frequencies. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  4. Transmission electron microscopy in molecular structural biology: A historical survey.

    Science.gov (United States)

    Harris, J Robin

    2015-09-01

    In this personal, historic account of macromolecular transmission electron microscopy (TEM), published data from the 1940s through to recent times is surveyed, within the context of the remarkable progress that has been achieved during this time period. The evolution of present day molecular structural biology is described in relation to the associated biological disciplines. The contribution of numerous electron microscope pioneers to the development of the subject is discussed. The principal techniques for TEM specimen preparation, thin sectioning, metal shadowing, negative staining and plunge-freezing (vitrification) of thin aqueous samples are described, with a selection of published images to emphasise the virtues of each method. The development of digital image analysis and 3D reconstruction is described in detail as applied to electron crystallography and reconstructions from helical structures, 2D membrane crystals as well as single particle 3D reconstruction of icosahedral viruses and macromolecules. The on-going development of new software, algorithms and approaches is highlighted before specific examples of the historical progress of the structural biology of proteins and viruses are presented.

  5. A transmission electron microscopy study of presolar hibonite

    CERN Document Server

    Zega, Thomas J; Nittler, Larry R; Stroud, Rhonda M

    2011-01-01

    We report isotopic and microstructural data on five presolar hibonite grains identified in an acid residue of the Krymka LL3.1 ordinary chondrite. Isotopic measurements by secondary ion mass spectrometry (SIMS) verified a presolar circumstellar origin for the grains. Transmission electron microscopy (TEM) examination of the crystal structure and chemistry of the grains was enabled by in situ sectioning and lift-out with a focused-ion-beam scanning-electron microscope. Comparisons of isotopic compositions with models indicate that four of the five grains formed in low-mass stars that evolved through the red-giant/asymptotic-giant branches, whereas one grain formed in the ejecta of a Type II supernova. Selected-area electron-diffraction patterns show that all grains are single crystals of hibonite. Some grains contain stacking faults and small spreads in orientation that can be attributed to a combination of growth defects and mechanical processing by grain-grain collisions. The similar structure of the superno...

  6. Secondary Electron Emission Materials for Transmission Dynodes in Novel Photomultipliers: A Review

    Directory of Open Access Journals (Sweden)

    Shu Xia Tao

    2016-12-01

    Full Text Available Secondary electron emission materials are reviewed with the aim of providing guidelines for the future development of novel transmission dynodes. Materials with reflection secondary electron yield higher than three and transmission secondary electron yield higher than one are tabulated for easy reference. Generations of transmission dynodes are listed in the order of the invention time with a special focus on the most recent atomic-layer-deposition synthesized transmission dynodes. Based on the knowledge gained from the survey of secondary election emission materials with high secondary electron yield, an outlook of possible improvements upon the state-of-the-art transmission dynodes is provided.

  7. Analysis for the Dynamic Characteristic of the Automobile Transmission Gearbox

    Directory of Open Access Journals (Sweden)

    Fujin Yu

    2013-02-01

    Full Text Available Automobile transmission gearbox, as one of the major components, which will inevitably bring about the vibration and noise of automobile vehicle. The objective of this study to reduce the noise and vibration of automobile transmission by structural optimization of the gearbox in order to better control its functional operation and improve its performance. For this purpose, based on the working characteristics of the gearbox, modal analysis of automobile transmission gearbox is formulated using 3D graphics software Pro/E together with Finite Element Method. In addition, the modal test of gearbox is conducted also. Through comparing model analysis results to test results, test results verify the correctness of the finite element analysis results, thus provide the theoretic basis to analyze its dynamic characteristics of the gearbox structure as well as its improvement to reduce vibration and noise.

  8. Transmission Probability for Interacting Electrons Connected to Reservoirs

    Science.gov (United States)

    Oguri, Akira

    2001-09-01

    Transport through small interacting systems connected to noninteracting leads is studied based on the Kubo formalism using a Éliashberg theory of the analytic properties of the vertex part. The transmission probability, by which the conductance is expressed as g = (2e2/h) \\int dɛ (- \\partial f / \\partial ɛ) \\mathcal{T}(ɛ), is introduced for interacting electrons. Here f(ɛ) is the Fermi function, and the transmission probability T(ɛ) is defined in terms of a current vertex or a three-point correlation function. We apply this formulation to a series of Anderson impurities of size N (=1, 2, 3, 4), and calculate T(ɛ) using the order U2 self-energy and current vertex which satisfy a generalized Ward identity. The results show that T(ɛ) has much information about the excitation spectrum: T(ɛ) has two broad peaks of the upper and lower Hubbard bands in addition to N resonant peaks which have direct correspondence with the noninteracting spectrum. The peak structures disappear at high temperatures.

  9. Transmission electron microscope sample holder with optical features

    Science.gov (United States)

    Milas, Mirko [Port Jefferson, NY; Zhu, Yimei [Stony Brook, NY; Rameau, Jonathan David [Coram, NY

    2012-03-27

    A sample holder for holding a sample to be observed for research purposes, particularly in a transmission electron microscope (TEM), generally includes an external alignment part for directing a light beam in a predetermined beam direction, a sample holder body in optical communication with the external alignment part and a sample support member disposed at a distal end of the sample holder body opposite the external alignment part for holding a sample to be analyzed. The sample holder body defines an internal conduit for the light beam and the sample support member includes a light beam positioner for directing the light beam between the sample holder body and the sample held by the sample support member.

  10. Kinematics of gold nanoparticles manipulation in situ transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Alducin, Diego; Casillas, Gilberto; Mendoza-Santoyo, Fernando; Ponce, Arturo; José-Yacamán, Miguel, E-mail: miguel.yacaman@utsa.edu [University of Texas at San Antonio, Department of Physics and Astronomy (United States)

    2015-05-15

    Nanostructured materials such as nanoparticles, nanotubes, and nanowires are subject to different forces regimes compared with their macroscopic counterparts. In this work, we report the experimental manipulation of an individual gold nanoparticle (96 nm) capped with PVP considering forces surrounding the nanoparticle such as adhesion, friction, and the external load in real time, and how the differences between these forces produce distinct motions. Combining a scanning probe tool within a transmission electron microscope, we manipulated a gold nanoparticle and recorded the sliding and rolling kinematic motions. Our observations show quantitatively the adhesion force, maximum rolling resistance, and friction coefficients of the probe and the surface of the capped particle as well as particle and substrate surface.

  11. Transmission electron microscope cells for use with liquid samples

    Energy Technology Data Exchange (ETDEWEB)

    Khalid, Waqas; Alivisatos, Paul A.; Zettl, Alexander K.

    2016-08-09

    This disclosure provides systems, methods, and devices related to transmission electron microscopy cells for use with liquids. In one aspect a device includes a substrate, a first graphene layer, and a second graphene layer. The substrate has a first surface and a second surface. The first surface defines a first channel, a second channel, and an outlet channel. The first channel and the second channel are joined to the outlet channel. The outlet channel defines a viewport region forming a though hole in the substrate. The first graphene layer overlays the first surface of the substrate, including an interior area of the first channel, the second channel, and the outlet channel. The second graphene layer overlays the first surface of the substrate, including open regions defined by the first channel, the second channel, and the outlet channel.

  12. [Multiple transmission electron microscopic image stitching based on sift features].

    Science.gov (United States)

    Li, Mu; Lu, Yanmeng; Han, Shuaihu; Wu, Zhuobin; Chen, Jiajing; Liu, Zhexing; Cao, Lei

    2015-08-01

    We proposed a new stitching method based on sift features to obtain an enlarged view of transmission electron microscopic (TEM) images with a high resolution. The sift features were extracted from the images, which were then combined with fitted polynomial correction field to correct the images, followed by image alignment based on the sift features. The image seams at the junction were finally removed by Poisson image editing to achieve seamless stitching, which was validated on 60 local glomerular TEM images with an image alignment error of 62.5 to 187.5 nm. Compared with 3 other stitching methods, the proposed method could effectively reduce image deformation and avoid artifacts to facilitate renal biopsy pathological diagnosis.

  13. Transmission Electron Microscopy (TEM) investigations of ancient Egyptian cosmetic powders

    Science.gov (United States)

    Deeb, C.; Walter, P.; Castaing, J.; Penhoud, P.; Veyssière, P.

    The processing technologies available during the time of ancient Egypt are of present concern to the field of Archaeology and Egyptology. Materials characterization is the best tool for establishing the processing history of archaeological objects. In this study, transmission electron microscopy (TEM) is used, in addition to other techniques, for phase identification and study of the microstructure and characteristic defect structures in ancient Egyptian cosmetic powders. These powders generally consist of a mix of Pb-containing mineral phases: galena (PbS), cerussite (PbCO3), and phosgenite (Pb2Cl2CO3), among others. Modern materials are fabricated according to recipes found in ancient texts to mimic the processing of ancient times and to compare with the archaeological specimens. In particular, a comparison between the dislocation structures of PbS crystals deformed in the laboratory and PbS from archaeological specimens from the collections of the Louvre Museum is presented .

  14. Optically oriented electron spin transmission across ferromagnet/semiconductor interfaces

    Science.gov (United States)

    Taniyama, T.; Suzuki, I.; Wada, E.; Shirahata, Y.; Naito, T.; Itoh, M.; Yamaguchi, M.

    2011-10-01

    Electron spin transmission across ferromagnetic metal/semiconductor interfaces with different ferromagnetic contacts, i.e., Fe and FeGa, is studied using optical spin orientation method. The bias dependence of spin dependent photocurrent, which is the difference between the photocurrents excited with left- and right- handed circularly polarized lights, is found to show a dip-like feature at -0.058 and 0.021 V for Fe and FeGa contacts, respectively. The origin of the bias dependence of the spin dependent photocurrent is discussed on the basis of the Breit-Wigner type resonant tunneling process via interface resonant states, comparing the results for the both contacts. The results also indicate that the control of interface states is crucial to achieve efficient spin filtering effect at the ferromagnet/semiconductor interfaces.

  15. Microstructural studies of dental amalgams using analytical transmission electron microscopy

    Science.gov (United States)

    Hooghan, Tejpal Kaur

    Dental amalgams have been used for centuries as major restorative materials for decaying teeth. Amalgams are prepared by mixing alloy particles which contain Ag, Sn, and Cu as the major constituent elements with liquid Hg. The study of microstructure is essential in understanding the setting reactions and improving the properties of amalgams. Until the work reported in this dissertation, optical microscopy (OM), scanning electron microscopy (SEM), and x-ray diffractometry (XRD) were used commonly to analyze amalgam microstructures. No previous systematic transmission electron microscopy (TEM) study has been performed due to sample preparation difficulties and composite structure of dental amalgams. The goal of this research was to carry out detailed microstructural and compositional studies of dental amalgams. This was accomplished using the enhanced spatial resolution of the TEM and its associated microanalytical techniques, namely, scanning transmission electron microscopy (STEM), x-ray energy dispersive spectroscopy (XEDS) and micro-microdiffraction (mumuD). A new method was developed for thinning amalgam samples to electron transparency using the "wedge technique." Velvalloy, a low-Cu amalgam, and Tytin, a high-Cu amalgam, were the two amalgams characterized. Velvalloy is composed of a Agsb2Hgsb3\\ (gammasb1)/HgSnsb{7-9}\\ (gammasb2) matrix surrounding unreacted Agsb3Sn (gamma) particles. In addition, hitherto uncharacterized reaction layers between Agsb3Sn(gamma)/Agsb2Hgsb3\\ (gammasb2)\\ and\\ Agsb2Hgsb3\\ (gammasb1)/HgSnsb{7-9}\\ (gammasb2) were observed and analyzed. An Ag-Hg-Sn (betasb1) phase was clearly identified for the first time. In Tytin, the matrix consists of Agsb2Hgsb3\\ (gammasb1) grains. Fine precipitates of Cusb6Snsb5\\ (etasp') are embedded inside the gammasb1 and at the grain boundaries. These precipitates are responsible for the improved creep resistance of Tytin compared to Velvalloy. The additional Cu has completely eliminated the gammasb

  16. Simultaneous investigation of ultrafast structural dynamics and transient electric field by sub-picosecond electron pulses

    Energy Technology Data Exchange (ETDEWEB)

    Li, Run-Ze; Zhu, Pengfei; Chen, Long; Chen, Jie, E-mail: jiec@sjtu.edu.cn, E-mail: jzhang1@sjtu.edu.cn; Sheng, Zheng-Ming; Zhang, Jie, E-mail: jiec@sjtu.edu.cn, E-mail: jzhang1@sjtu.edu.cn [Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Cao, Jianming [Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Physics Department and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310 (United States)

    2014-05-14

    The ultrafast structure dynamics and surface transient electric field, which are concurrently induced by laser excited electrons of an aluminum nanofilm, have been investigated simultaneously by the same transmission electron diffraction patterns. These two processes are found to be significantly different and distinguishable by tracing the time dependent changes of electron diffraction and deflection angles, respectively. This study also provides a practical means to evaluate simultaneously the effect of transient electric field during the study of structural dynamics under low pump fluence by transmission ultrafast electron diffraction.

  17. Approaches to modelling irradiation-induced processes in transmission electron microscopy.

    Science.gov (United States)

    Skowron, Stephen T; Lebedeva, Irina V; Popov, Andrey M; Bichoutskaia, Elena

    2013-08-07

    The recent progress in high-resolution transmission electron microscopy (HRTEM) has given rise to the possibility of in situ observations of nanostructure transformations and chemical reactions induced by electron irradiation. In this article we briefly summarise experimental observations and discuss in detail atomistic modelling of irradiation-induced processes in HRTEM, as well as mechanisms of such processes recognised due to modelling. Accurate molecular dynamics (MD) techniques based on first principles or tight-binding models are employed in the analysis of single irradiation-induced events, and classical MD simulations are combined with a kinetic Monte Carlo algorithm to simulate continuous irradiation of nanomaterials. It has been shown that sulphur-terminated graphene nanoribbons are formed inside carbon nanotubes as a result of an irradiation-selective chemical reaction. The process of fullerene formation in HRTEM during continuous electron irradiation of a small graphene flake has been simulated, and mechanisms driving this transformation analysed.

  18. A review of malaria transmission dynamics in forest ecosystems

    Science.gov (United States)

    2014-01-01

    Malaria continues to be a major health problem in more than 100 endemic countries located primarily in tropical and sub-tropical regions around the world. Malaria transmission is a dynamic process and involves many interlinked factors, from uncontrollable natural environmental conditions to man-made disturbances to nature. Almost half of the population at risk of malaria lives in forest areas. Forests are hot beds of malaria transmission as they provide conditions such as vegetation cover, temperature, rainfall and humidity conditions that are conducive to distribution and survival of malaria vectors. Forests often lack infrastructure and harbor tribes with distinct genetic traits, socio-cultural beliefs and practices that greatly influence malaria transmission dynamics. Here we summarize the various topographical, entomological, parasitological, human ecological and socio-economic factors, which are crucial and shape malaria transmission in forested areas. An in-depth understanding and synthesis of the intricate relationship of these parameters in achieving better malaria control in various types of forest ecosystems is emphasized. PMID:24912923

  19. Biology as population dynamics: heuristics for transmission risk.

    Science.gov (United States)

    Keebler, Daniel; Walwyn, David; Welte, Alex

    2013-02-01

    Population-type models, accounting for phenomena such as population lifetimes, mixing patterns, recruitment patterns, genetic evolution and environmental conditions, can be usefully applied to the biology of HIV infection and viral replication. A simple dynamic model can explore the effect of a vaccine-like stimulus on the mortality and infectiousness, which formally looks like fertility, of invading virions; the mortality of freshly infected cells; and the availability of target cells, all of which impact on the probability of infection. Variations on this model could capture the importance of the timing and duration of different key events in viral transmission, and hence be applied to questions of mucosal immunology. The dynamical insights and assumptions of such models are compatible with the continuum of between- and within-individual risks in sexual violence and may be helpful in making sense of the sparse data available on the association between HIV transmission and sexual violence. © 2012 John Wiley & Sons A/S.

  20. Fiber-Optic Transmission Networks Efficient Design and Dynamic Operation

    CERN Document Server

    Pachnicke, Stephan

    2012-01-01

    Next generation optical communication systems will have to transport a significantly increased data volume at a reduced cost per transmitted bit. To achieve these ambitious goals optimum design is crucial in combination with dynamic adaptation to actual traffic demands and improved energy efficiency. In the first part of the book the author elaborates on the design of optical transmission systems. Several methods for efficient numerical simulation are presented ranging from meta-model based optimization to parallelization techniques for solving the nonlinear Schrödinger equation. Furthermore, fast analytical and semi-analytical models are described to estimate the various degradation effects occurring on the transmission line. In the second part of the book operational aspects of optical networks are investigated. Physical layer impairment-aware routing and regenerator placement are studied. Finally, it is analyzed how the energy efficiency of a multi-layer optical core network can be increased by dynamic ad...

  1. Transport composite fuselage technology: Impact dynamics and acoustic transmission

    Science.gov (United States)

    Jackson, A. C.; Balena, F. J.; Labarge, W. L.; Pei, G.; Pitman, W. A.; Wittlin, G.

    1986-01-01

    A program was performed to develop and demonstrate the impact dynamics and acoustic transmission technology for a composite fuselage which meets the design requirements of a 1990 large transport aircraft without substantial weight and cost penalties. The program developed the analytical methodology for the prediction of acoustic transmission behavior of advanced composite stiffened shell structures. The methodology predicted that the interior noise level in a composite fuselage due to turbulent boundary layer will be less than in a comparable aluminum fuselage. The verification of these analyses will be performed by NASA Langley Research Center using a composite fuselage shell fabricated by filament winding. The program also developed analytical methodology for the prediction of the impact dynamics behavior of lower fuselage structure constructed with composite materials. Development tests were performed to demonstrate that the composite structure designed to the same operating load requirement can have at least the same energy absorption capability as aluminum structure.

  2. Development of wavelength-dispersive soft X-ray emission spectrometers for transmission electron microscopes--an introduction of valence electron spectroscopy for transmission electron microscopy.

    Science.gov (United States)

    Terauchi, Masami; Koike, Masato; Fukushima, Kurio; Kimura, Atsushi

    2010-01-01

    Two types of wavelength-dispersive soft X-ray spectrometers, a high-dispersion type and a conventional one, for transmission electron microscopes were constructed. Those spectrometers were used to study the electronic states of valence electrons (bonding electrons). Both spectrometers extended the acceptable energy regions to higher than 2000 eV. The best energy resolution of 0.08 eV was obtained for an Al L-emission spectrum by using the high-dispersion type spectrometer. By using the spectrometer, C K-emission of carbon allotropes, Cu L-emission of Cu(1-x)Zn(x) alloys and Pt M-emission spectra were presented. The FWHM value of 12 eV was obtained for the Pt Malpha-emission peak. The performance of the conventional one was also presented for ZnS and a section specimen of a multilayer device. W-M and Si-K emissions were clearly resolved. Soft X-ray emission spectroscopy based on transmission electron microscopy (TEM) has an advantage for obtaining spectra from a single crystalline specimen with a defined crystal setting. As an example of anisotropic soft X-ray emission, C K-emission spectra of single crystalline graphite with different crystal settings were presented. From the spectra, density of states of pi- and sigma-bondings were separately derived. These results demonstrated a method to analyse the electronic states of valence electrons of materials in the nanometre scale based on TEM.

  3. Transmission electron microscopy a textbook for materials science

    CERN Document Server

    Williams, David B

    1996-01-01

    Electron microscopy has revolutionized our understanding the extraordinary intellectual demands required of the mi­ of materials by completing the processing-structure-prop­ croscopist in order to do the job properly: crystallography, erties links down to atomistic levels. It now is even possible diffraction, image contrast, inelastic scattering events, and to tailor the microstructure (and meso structure ) of materials spectroscopy. Remember, these used to be fields in them­ to achieve specific sets of properties; the extraordinary abili­ selves. Today, one has to understand the fundamentals ties of modem transmission electron microscopy-TEM­ of all of these areas before one can hope to tackle signifi­ instruments to provide almost all of the structural, phase, cant problems in materials science. TEM is a technique of and crystallographic data allow us to accomplish this feat. characterizing materials down to the atomic limits. It must Therefore, it is obvious that any curriculum in modem mate­ be use...

  4. Amyloid Structure and Assembly: Insights from Scanning Transmission Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Goldsbury, C.; Wall, J.; Baxa, U.; Simon, M. N.; Steven, A. C.; Engel, A.; Aebi, U.; Muller, S. A.

    2011-01-01

    Amyloid fibrils are filamentous protein aggregates implicated in several common diseases such as Alzheimer's disease and type II diabetes. Similar structures are also the molecular principle of the infectious spongiform encephalopathies such as Creutzfeldt-Jakob disease in humans, scrapie in sheep, and of the so-called yeast prions, inherited non-chromosomal elements found in yeast and fungi. Scanning transmission electron microscopy (STEM) is often used to delineate the assembly mechanism and structural properties of amyloid aggregates. In this review we consider specifically contributions and limitations of STEM for the investigation of amyloid assembly pathways, fibril polymorphisms and structural models of amyloid fibrils. This type of microscopy provides the only method to directly measure the mass-per-length (MPL) of individual filaments. Made on both in vitro assembled and ex vivo samples, STEM mass measurements have illuminated the hierarchical relationships between amyloid fibrils and revealed that polymorphic fibrils and various globular oligomers can assemble simultaneously from a single polypeptide. The MPLs also impose strong constraints on possible packing schemes, assisting in molecular model building when combined with high-resolution methods like solid-state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR).

  5. Materials characterisation by angle-resolved scanning transmission electron microscopy

    Science.gov (United States)

    Müller-Caspary, Knut; Oppermann, Oliver; Grieb, Tim; Krause, Florian F.; Rosenauer, Andreas; Schowalter, Marco; Mehrtens, Thorsten; Beyer, Andreas; Volz, Kerstin; Potapov, Pavel

    2016-11-01

    Solid-state properties such as strain or chemical composition often leave characteristic fingerprints in the angular dependence of electron scattering. Scanning transmission electron microscopy (STEM) is dedicated to probe scattered intensity with atomic resolution, but it drastically lacks angular resolution. Here we report both a setup to exploit the explicit angular dependence of scattered intensity and applications of angle-resolved STEM to semiconductor nanostructures. Our method is applied to measure nitrogen content and specimen thickness in a GaNxAs1‑x layer independently at atomic resolution by evaluating two dedicated angular intervals. We demonstrate contrast formation due to strain and composition in a Si- based metal-oxide semiconductor field effect transistor (MOSFET) with GexSi1‑x stressors as a function of the angles used for imaging. To shed light on the validity of current theoretical approaches this data is compared with theory, namely the Rutherford approach and contemporary multislice simulations. Inconsistency is found for the Rutherford model in the whole angular range of 16–255 mrad. Contrary, the multislice simulations are applicable for angles larger than 35 mrad whereas a significant mismatch is observed at lower angles. This limitation of established simulations is discussed particularly on the basis of inelastic scattering.

  6. Nanomaterial datasets to advance tomography in scanning transmission electron microscopy.

    Science.gov (United States)

    Levin, Barnaby D A; Padgett, Elliot; Chen, Chien-Chun; Scott, M C; Xu, Rui; Theis, Wolfgang; Jiang, Yi; Yang, Yongsoo; Ophus, Colin; Zhang, Haitao; Ha, Don-Hyung; Wang, Deli; Yu, Yingchao; Abruña, Hector D; Robinson, Richard D; Ercius, Peter; Kourkoutis, Lena F; Miao, Jianwei; Muller, David A; Hovden, Robert

    2016-06-07

    Electron tomography in materials science has flourished with the demand to characterize nanoscale materials in three dimensions (3D). Access to experimental data is vital for developing and validating reconstruction methods that improve resolution and reduce radiation dose requirements. This work presents five high-quality scanning transmission electron microscope (STEM) tomography datasets in order to address the critical need for open access data in this field. The datasets represent the current limits of experimental technique, are of high quality, and contain materials with structural complexity. Included are tomographic series of a hyperbranched Co2P nanocrystal, platinum nanoparticles on a carbon nanofibre imaged over the complete 180° tilt range, a platinum nanoparticle and a tungsten needle both imaged at atomic resolution by equal slope tomography, and a through-focal tilt series of PtCu nanoparticles. A volumetric reconstruction from every dataset is provided for comparison and development of post-processing and visualization techniques. Researchers interested in creating novel data processing and reconstruction algorithms will now have access to state of the art experimental test data.

  7. Transmission Electron Diffraction Studies of Xenon Adsorbed on Graphite.

    Science.gov (United States)

    Faisal, A. Q. D.

    1987-09-01

    Available from UMI in association with The British Library. Adsorption studies of xenon on graphite were performed using the Hitachi HU-11B Transmission Electron Microscope (TEM). It has been used as a Transmission High Energy Electron Diffraction (THEED) camera. This has been modified to include an Ultra High Vacuum (UHV) environmental chamber. This chamber was isolated from the microscope vacuum by two 400 μm diameter differentially pumped apertures. Pressures of {~}10 ^{-6} torr and {~ }10^{-9} torr were achieved inside the microscope column and the environmental chamber respectively. The chamber was fitted with a new sample holder designed with double "O" rings. The sample was cooled with liquid helium. Previous THEED experiments by Venables et al and Schabes-Retchkiman and Venables revealed the presence of a 2D-solid incommensurate (I)-commensurate (C) phase transition as the temperature is lowered. These results were confirmed and extended in the present work. Hong et al have recently interpreted their X-ray diffraction experiments as showing an incommensurate-striped domain phase transition at {~}65rm K. No evidence was found for the existence of a striped domain structure on any part of the xenon phase diagram studied. Experiments of xenon adsorbed on the basal plane (0001) of graphite were carried out at pressures from {~}1.5 times 10^{-5} torr to {~}1.8 times 10^{-8} torr over a temperature range from 55K^.90K. A set of lattice parameter (misfit) measurements were made as a function of temperature at constant pressure with an accuracy of +/-0.1% rather than +/-0.3% previously obtained. The misfit data was fitted to a power law formula, i.e. misfit m = B_{rm o} (rm T - rm T_{rm o})^{rm A} , where A is a constant and equal to 0.8. It was found that B_{rm o} and T_{rm o} are functions of log(P). The data fell into two groups corresponding to two phase transitions. The same power law was used for both sets of data. Two transitions were found, one is I-C and

  8. Simulating Entanglement Dynamics of Singlet-Triplet Qubits Coupled to a Classical Transmission Line Resonator

    Science.gov (United States)

    Wolfe, Michael; Kestner, Jason

    Electrons confined in lateral quantum dots are promising candidates for scalable quantum bits. Particularly, singlet-triplet qubits can entangle electrostatically and offer long coherence times due to their weak interactions with the environment. However, fast two-qubit operations are challenging. We examine the dynamics of singlet triplet qubits capacitively coupled to a classical transmission line resonator driven near resonance. We numerically simulate the dynamics of the von Neumann entanglement entropy and investigate parameters of the coupling element that optimizes the operation time for the qubit.

  9. Electronic-structural dynamics in graphene

    Directory of Open Access Journals (Sweden)

    Isabella Gierz

    2016-09-01

    meV, a transient enhancement of the electron-phonon coupling constant is observed, providing interesting perspective for experiments that report light-enhanced superconductivity in doped fullerites in which a similar lattice mode was excited. All the studies reviewed here have important implications for applications of graphene in optoelectronic devices and for the dynamical engineering of electronic properties with light.

  10. Dynamics of a photoexcited hydrated electron

    NARCIS (Netherlands)

    Pshenichnikov, M.S.; Baltuška, A.; Wiersma, D.A.; Kärtner, F.X.

    2004-01-01

    Combining photon-echo and frequency-resolved pump-probe techniques with extremely short laser pulses that consist of only few optical cycles, we investigate the dynamics of the equilibrated hydrated electron. The pure dephasing time of the hydrated electron deduced from the photon-echo measurements

  11. Beam Dynamics With Electron Cooling

    CERN Document Server

    Uesugi, T; Noda, K; Shibuya, S; Syresin, E M

    2004-01-01

    Electron cooling experiments have been carried out at HIMAC in order to develop new technologies in heavy-ion therapy and related researches. The cool-stacking method, in particular, has been studied to increase the intensity of heavy-ions. The maximum stack intensity was 2 mA, above which a fast ion losses occurred simulatneously with the vertical coherent oscillations. The instability depends on the working point, the stacked ion-density and the electron-beam density. The instability was suppressed by reducing the peak ion-density with RF-knockout heating.

  12. Transmission Electron Microscopy of Magnetite Plaquettes in Orgueil

    Science.gov (United States)

    Chan, Q. H. S.; Han, J.; Zolensky, M.

    2016-01-01

    Magnetite sometimes takes the form of a plaquette - barrel-shaped stack of magnetite disks - in carbonaceous chondrites (CC) that show evidence of aqueous alteration. The asymmetric nature of the plaquettes caused Pizzarello and Groy to propose magnetite plaquettes as a naturally asymmetric mineral that can indroduce symmetry-breaking in organic molecules. Our previous synchrotron X-ray computed microtomography (SXRCT) and electron backscatter diffraction (EBSD) analyses of the magnetite plaquettes in fifteen CCs indicate that magnetite plaquettes are composed of nearly parallel discs, and the crystallographic orientations of the discs change around a rotational axis normal to the discs surfaces. In order to further investigate the nanostructures of magnetite plaquettes, we made two focused ion beam (FIB) sections of nine magnetite plaquettes from a thin section of CI Orgueil for transmission electron microscope (TEM) analysis. The X-ray spectrum imaging shows that the magnetite discs are purely iron oxide Fe3O4 (42.9 at% Fe and 57.1 at% O), which suggest that the plaquettes are of aqueous origin as it is difficult to form pure magnetite as a nebular condensate. The selected area electron diffraction (SAED) patterns acquired across the plaquettes show that the magnetite discs are single crystals. SEM and EBSD analyses suggest that the planar surfaces of the magnetite discs belong to the {100} planes of the cubic inverse spinel structure, which are supported by our TEM observations. Kerridge et al. suggested that the epitaxial relationship between magnetite plaquette and carbonate determines the magnetite face. However, according to our TEM observation, the association of magnetite with porous networks of phyllosilicate indicates that the epitaxial relationship with carbonate is not essential to the formation of magnetite plaquettes. It was difficult to determine the preferred rotational orientation of the plaquettes due to the symmetry of the cubic structure

  13. Electronic emulator of linear dynamic systems

    OpenAIRE

    Garan, Maryna; Kovalenko, Iaroslav; Moučka, Michal; Vagaská, Alena

    2015-01-01

    The aim of this article is development and realization of electronic emulator of dynamic systems with setting of parameters from PC. This emulator is the first prototype, which is meant to prove the possibility of emulating the behavior of dynamic systems by microprocessor. The main goal of research is creating of equipment, which can emulate a behavior of pneumatic muscle with sufficient accuracy. Dynamic of pneumatic muscles is significantly non-linear and changeable in the dependence on...

  14. Plasmodium vivax Population Structure and Transmission Dynamics in Sabah Malaysia

    Science.gov (United States)

    Abdullah, Noor Rain; Barber, Bridget E.; William, Timothy; Norahmad, Nor Azrina; Satsu, Umi Rubiah; Muniandy, Prem Kumar; Ismail, Zakiah; Grigg, Matthew J.; Jelip, Jenarun; Piera, Kim; von Seidlein, Lorenz; Yeo, Tsin W.; Anstey, Nicholas M.; Price, Ric N.; Auburn, Sarah

    2013-01-01

    Despite significant progress in the control of malaria in Malaysia, the complex transmission dynamics of P. vivax continue to challenge national efforts to achieve elimination. To assess the impact of ongoing interventions on P. vivax transmission dynamics in Sabah, we genotyped 9 short tandem repeat markers in a total of 97 isolates (8 recurrences) from across Sabah, with a focus on two districts, Kota Marudu (KM, n = 24) and Kota Kinabalu (KK, n = 21), over a 2 year period. STRUCTURE analysis on the Sabah-wide dataset demonstrated multiple sub-populations. Significant differentiation (FST  = 0.243) was observed between KM and KK, located just 130 Km apart. Consistent with low endemic transmission, infection complexity was modest in both KM (mean MOI  = 1.38) and KK (mean MOI  = 1.19). However, population diversity remained moderate (HE  = 0.583 in KM and HE  = 0.667 in KK). Temporal trends revealed clonal expansions reflecting epidemic transmission dynamics. The haplotypes of these isolates declined in frequency over time, but persisted at low frequency throughout the study duration. A diverse array of low frequency isolates were detected in both KM and KK, some likely reflecting remnants of previous expansions. In accordance with clonal expansions, high levels of Linkage Disequilibrium (IAS >0.5 [Pdiversity. In summary, Sabah's shrinking P. vivax population appears to have rendered this low endemic setting vulnerable to epidemic expansions. Migration may play an important role in the introduction of new parasite strains leading to epidemic expansions, with important implications for malaria elimination. PMID:24358203

  15. Spatial Resolution in Scanning Electron Microscopy and Scanning Transmission Electron Microscopy Without a Specimen Vacuum Chamber.

    Science.gov (United States)

    Nguyen, Kayla X; Holtz, Megan E; Richmond-Decker, Justin; Muller, David A

    2016-08-01

    A long-standing goal of electron microscopy has been the high-resolution characterization of specimens in their native environment. However, electron optics require high vacuum to maintain an unscattered and focused probe, a challenge for specimens requiring atmospheric or liquid environments. Here, we use an electron-transparent window at the base of a scanning electron microscope's objective lens to separate column vacuum from the specimen, enabling imaging under ambient conditions, without a specimen vacuum chamber. We demonstrate in-air imaging of specimens at nanoscale resolution using backscattered scanning electron microscopy (airSEM) and scanning transmission electron microscopy. We explore resolution and contrast using Monte Carlo simulations and analytical models. We find that nanometer-scale resolution can be obtained at gas path lengths up to 400 μm, although contrast drops with increasing gas path length. As the electron-transparent window scatters considerably more than gas at our operating conditions, we observe that the densities and thicknesses of the electron-transparent window are the dominant limiting factors for image contrast at lower operating voltages. By enabling a variety of detector configurations, the airSEM is applicable to a wide range of environmental experiments including the imaging of hydrated biological specimens and in situ chemical and electrochemical processes.

  16. Dynamic aspects of electronic predissociation

    DEFF Research Database (Denmark)

    Grønager, Michael; Henriksen, Niels Engholm

    1996-01-01

    We consider electronic excitation induced with a continuous wave laser to an excited bound state which can predissociate due to a radiationless transition to a dissociative state. The conditions for a separation of the process into the preparation of a vibrational eigenstate which subsequently...

  17. Transmission electron microscopy and time resolved optical spectroscopy study of the electronic and structural interactions of ZnO nanorods with bovine serum albumin.

    Science.gov (United States)

    Klaumünzer, M; Weichsel, U; Mačković, M; Spiecker, E; Peukert, W; Kryschi, C

    2013-08-22

    The adsorption behavior and electronic interactions of bovine serum albumin (BSA) with ZnO nanorod surfaces were investigated using high-resolution transmission electron microscopy as well as stationary and time-resolved optical spectroscopy techniques. Transmission electron microscopy shows that ZnO nanorod surfaces are surrounded by a homogeneous amorphous BSA film with thicknesses between ~2.5 and 5.0 nm. The electronic structure and adsorption geometry of BSA were examined using high-angle annular dark field scanning transmission electron microscopy combined with electron energy loss spectroscopy. The adsorption process was observed to result into an unfolded conformation of BSA becoming predominantly bound in the side-on orientation at the ZnO surface. This adsorption mode of the BSA molecules allows for a strong interaction with surface states of the ZnO nanorods. This is obvious from its efficient quenching of the defect-center photoluminescence of ZnO. Complementary information of electronic interactions across the ZnO nanorod interface was obtained from femtosecond transient absorption spectroscopy experiments. The rise dynamics of the measured transients revealed altered hole trapping dynamics and, thus, indicated to heterogeneous charge transfer as emerging from adsorbed BSA molecules to defect centers of the ZnO interface.

  18. Analysis of Real-Time Monitoring Technology andDynamic Rating method of Transmission Lines

    Institute of Scientific and Technical Information of China (English)

    徐峰; 刘聪

    2015-01-01

    Transmission line dynamic rating method as an important part of the inteligent transmission technical system can effectively solve the problem of insufficient power supply capacity of transmission lines. In this paper,the overal scheme of the dynamic rating method is briefly ilustrated. Next,transmission lines real-time monitoring technology and transmission line dynamic rating method are described respectively. Finaly,the influence of external factors on carrying capacity of transmission lines is analysed. Numerical results show that the proposed dynamic rating method is very effective.

  19. Electron dynamics controlled via self-interaction

    CERN Document Server

    Tamburini, Matteo; Di Piazza, Antonino

    2013-01-01

    The dynamics of an electron in a strong laser field can be significantly altered by radiation reaction. This usually results in a strongly damped motion, with the electron losing a large fraction of its initial energy. Here we show that the electron dynamics in a bichromatic laser pulse can be indirectly controlled by a comparatively small radiation reaction force through its interplay with the Lorentz force. By changing the relative phase between the two frequency components of the bichromatic laser field, an ultrarelativistic electron bunch colliding head-on with the laser pulse can be deflected in a controlled way, with the deflection angle being independent of the initial electron energy. The effect is predicted to be observable with intensities available at upcoming laser facilities.

  20. Dynamics of Multistage Gear Transmission with Effects of Gearbox Vibrations

    Science.gov (United States)

    Choy, F. K.; Tu, Y. K.; Zakrajsek, J. J.; Townsend, Dennis P.

    1990-01-01

    A comprehensive approach is presented in analyzing the dynamic behavior of multistage gear transmission systems with the effects of gearbox induced vibrations and mass imbalances of the rotor. The modal method, with undamped frequencies and planar mode shapes, is used to reduce the degrees of freedom of the gear system for time-transient dynamic analysis. Both the lateral and torsional vibration modes of each rotor-bearing-gear stage as well as the interstage vibrational characteristics are coupled together through localized gear mesh tooth interactions. In addition, gearbox vibrations are also coupled to the rotor-bearing-gear system dynamics through bearing support forces between the rotor and the gearbox. Transient and steady state dynamics of lateral and torsional vibrations of the geared system are examined in both time and frequency domains to develop interpretations of the overall modal dynamic characteristics under various operating conditions. A typical three-stage geared system is used as an example. Effects of mass imbalance and gearbox vibrations on the system dynamic behavior are presented in terms of modal excitation functions for both lateral and torsional vibrations. Operational characteristics and conclusions are drawn from the results presented.

  1. Improved Hilbert phase contrast for transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Koeck, Philip J.B.

    2015-07-15

    Hilbert phase contrast has been recognized as a means of recording high resolution images with high contrast using a transmission electron microscope. This imaging mode could be used to image typical phase objects such as unstained biological molecules or cryo sections of biological tissue. According to the original proposal by (Danev et al., 2002) the Hilbert phase plate applies a phase shift of π to approximately half the focal plane (for example the right half excluding the central beam) and an image is recorded at Gaussian focus. After correction for the inbuilt asymmetry of differential phase contrast this image will have an almost perfect contrast transfer function (close to 1) from the lowest spatial frequency up to a maximum resolution determined by the wave length and spherical aberration of the microscope. In this paper I present theory and simulations showing that this maximum spatial frequency can be increased considerably almost without loss of contrast by using a Hilbert phase plate of half the thickness, leading to a phase shift of π/2, and recording images at Scherzer defocus. The maximum resolution can be improved even more by imaging at extended Scherzer defocus, though at the cost of contrast loss at lower spatial frequencies. - Highlights: • In this paper I present theory and simulations for a Hilbert phase plate that phase shifts the electron wave by π/2 instead of π while images are recorded close to Scherzer defocus instead of Gaussian focus. • I show that the point resolution for this new imaging mode is considerably higher without loss of contrast. • An additional advantage lies in the reduced thickness of the phase plate which leads to reduced inelastic scattering in the phase plate and less noise.

  2. In situ transmission electron microscopy experimentation of nanostructured materials

    Science.gov (United States)

    Alducin, Diego

    Due to the remarkable mechanical and electrical properties some nanostructured materials possess, it is important to be able to quantitatively characterize how these materials react under different types of stimulus. In situ transmission electron microscopy is a unique technique that allows the user to fully observe and record the crystallographic behavior of such materials undergoing a variety of tests. The crystallographic orientations silver nanowires were mapped in order to understand the structure and facets due to its geometry. Measuring the toughness and yield of the material led us to understand the anisotropic behavior of AgNWs. Depending on whether a load is applied to either a boundary between facets or on a facet will change the mechanical strength of the nanowire. By measuring the resistivity of the this material during deformation has also led us to understand that the intrinsic defects in the crystal structure of nanowires will change the way the material reacts to an electric potential. We have been also able to completely map the crystallographic orientations of very complex geometries of gold nanoparticles and characterize the weak forces involved in the manipulation if these nanoparticles. Finally, the elasticity of MoS2 was tested and found to be exponentially dependent upon the thickness of the nanosheets. However, the resistivity of this material does not seem to be affected by any type of deformation it is subjected to. The complete categorization of how materials interact with external stimulus while comparing the changes observed in its crystal structure is essential to understanding the underlying properties of nanostructured materials, which would not be possible without in situ transmisison electron microscopy experimentation.

  3. The transmission dynamics of BSE and vCJD.

    Science.gov (United States)

    Ghani, Azra C; Donnelly, Christl A; Ferguson, Neil M; Anderson, Roy M

    2002-01-01

    The bovine spongiform encephalopathy (BSE) epidemic in cattle has had a huge economic impact on the agricultural industries across Europe. Furthermore, scientific evidence now strongly supporting a link between a new variant of Creutzfeldt-Jakob disease (vCJD) and consumption of BSE-infected animals has further heightened the need both to understand the transmission of these new diseases and to improve control measures to protect public health. In this paper we review work undertaken by our group using epidemiological models to understand the transmission dynamics of BSE and vCJD. We present new estimates of the future number of cases of BSE and the number of infected animals slaughtered for consumption for Great Britain, and summarise similar analyses undertaken for Northern Ireland, Ireland, Portugal and France. We also consider the epidemiological determinants of the future course of the vCJD epidemic, including the age and genetic characteristics of the confirmed cases, and present predictions of future case numbers.

  4. Hot electron dynamics in graphene

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Meng-Chieh [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    Graphene, a two-dimensional (2D) honeycomb structure allotrope of carbon atoms, has a long history since the invention of the pencil [Petroski (1989)] and the linear dispersion band structure proposed by Wallace [Wal]; however, only after Novoselov et al. successively isolated graphene from graphite [Novoselov et al. (2004)], it has been studied intensively during the recent years. It draws so much attentions not only because of its potential application in future electronic devices but also because of its fundamental properties: its quasiparticles are governed by the two-dimensional Dirac equation, and exhibit a variety of phenomena such as the anomalous integer quantum Hall effect (IQHE) [Novoselov et al. (2005)] measured experimentally, a minimal conductivity at vanishing carrier concentration [Neto et al. (2009)], Kondo effect with magnetic element doping [Hentschel and Guinea (2007)], Klein tunneling in p-n junctions [Cheianov and Fal’ko (2006), Beenakker (2008)], Zitterbewegung [Katsnelson (2006)], and Schwinger pair production [Schwinger (1951); Dora and Moessner (2010)]. Although both electron-phonon coupling and photoconductivity in graphene also draws great attention [Yan et al. (2007); Satou et al. (2008); Hwang and Sarma (2008); Vasko and Ryzhii (2008); Mishchenko (2009)], the nonequilibrium behavior based on the combination of electronphonon coupling and Schwinger pair production is an intrinsic graphene property that has not been investigated. Our motivation for studying clean graphene at low temperature is based on the following effect: for a fixed electric field, below a sufficiently low temperature linear eletric transport breaks down and nonlinear transport dominates. The criteria of the strength of this field [Fritz et al. (2008)] is eE = T2/~vF (1.1) For T >√eE~vF the system is in linear transport regime while for T <√eE~vF the system is in nonlinear transport regime. From the scaling’s point of view, at the nonlinear transport regime

  5. Investigating the use of in situ liquid cell scanning transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nguy, Amanda [Iowa State Univ., Ames, IA (United States)

    2016-02-19

    Engineering nanoparticles with desired shape-dependent properties is the key to many applications in nanotechnology. Although many synthetic procedures exist to produce anisotropic gold nanoparticles, the dynamics of growth are typically unknown or hypothetical. In the case of seed-mediated growth in the presence of DNA into anisotropic nanoparticles, it is not known exactly how DNA directs growth into specific morphologies. A series of preliminary experiments were carried out to contribute to the investigation of the possible mechanism of DNA-mediated growth of gold nanoprisms into gold nanostars using liquid cell scanning transmission electron microscopy (STEM). Imaging in the liquid phase was achieved through the use of a liquid cell platform and liquid cell holder that allow the sample to be contained within a “chip sandwich” between two electron transparent windows. Ex situ growth experiments were performed using Au-T30 NPrisms (30-base thymine oligonucleotide-coated gold nanoprisms) that are expected to grow into gold nanostars. Growth to form these nanostars were imaged using TEM (transmission electron microscopy) and liquid cell STEM (scanning transmission electron microscopy). An attempt to perform in situ growth experiments with the same Au-T30 nanoprisms revealed challenges in obtaining desired morphology results due to the environmental differences within the liquid cell compared to the ex situ environment. Different parameters in the experimental method were explored including fluid line set up, simultaneous and alternating reagent addition, and the effect of different liquid cell volumes to ensure adequate flow of reagents into the liquid cell. Lastly, the binding affinities were compared for T30 and A30 DNA incubated with gold nanoparticles using zeta potential measurements, absorption spectroscopy, and isothermal titration calorimetry (ITC). It was previously reported thymine bases have a lower binding affinity to gold surfaces than adenine

  6. Visualizing aquatic bacteria by light and transmission electron microscopy.

    Science.gov (United States)

    Silva, Thiago P; Noyma, Natália P; Duque, Thabata L A; Gamalier, Juliana P; Vidal, Luciana O; Lobão, Lúcia M; Chiarini-Garcia, Hélio; Roland, Fábio; Melo, Rossana C N

    2014-01-01

    The understanding of the functional role of aquatic bacteria in microbial food webs is largely dependent on methods applied to the direct visualization and enumeration of these organisms. While the ultrastructure of aquatic bacteria is still poorly known, routine observation of aquatic bacteria by light microscopy requires staining with fluorochromes, followed by filtration and direct counting on filter surfaces. Here, we used a new strategy to visualize and enumerate aquatic bacteria by light microscopy. By spinning water samples from varied tropical ecosystems in a cytocentrifuge, we found that bacteria firmly adhere to regular slides, can be stained by fluorochoromes with no background formation and fast enumerated. Significant correlations were found between the cytocentrifugation and filter-based methods. Moreover, preparations through cytocentrifugation were more adequate for bacterial viability evaluation than filter-based preparations. Transmission electron microscopic analyses revealed a morphological diversity of bacteria with different internal and external structures, such as large variation in the cell envelope and capsule thickness, and presence or not of thylakoid membranes. Our results demonstrate that aquatic bacteria represent an ultrastructurally diverse population and open avenues for easy handling/quantification and better visualization of bacteria by light microscopy without the need of filter membranes.

  7. Transmission electron microscopy (TEM) study of minerals in coal

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Kuang-Chien

    1982-01-01

    Minerals in eight coals from different mines were characterized in the micron-size range by using analytical transmission electron microscopy. Specimens were thinned by ion-milling wafers cut from these coals; a cold stage cooled by liquid nitrogen was used to reduce thermal degradation of the minerals by the ion-beam. Different mineral compounds were observed in different coals. The major minerals are clays, sulfides, oxides, carbonates and some minor-element-bearing phosphates. Clays (kaolinite, illite and others) have been most commonly found as either flat sheets or round globules. Iron sulfide was mostly found in the No. 5 and No. 6 coals from Illinois, distributed as massive polycrystals, as clusters of single crystals (framboids) or as isolated single crystals with size range down to some 0.25 microns. Other sulfides and some oxides were found in other coals with particle size as small as some 200 angstroms. Quartz, titanium oxides and many other carbonates and phosphate compounds were also characterized. Brief TEM work in the organic mass of coal was also introduced to study the nature of the coal macerals.

  8. TRANSMISSION ELECTRON MICROSCOPY STUDY OF HELIUM BEARING FUSION WELDS

    Energy Technology Data Exchange (ETDEWEB)

    Tosten, M; Michael Morgan, M

    2008-12-12

    A transmission electron microscopy (TEM) study was conducted to characterize the helium bubble distributions in tritium-charged-and-aged 304L and 21Cr-6Ni-9Mn stainless steel fusion welds containing approximately 150 appm helium-3. TEM foils were prepared from C-shaped fracture toughness test specimens containing {delta} ferrite levels ranging from 4 to 33 volume percent. The weld microstructures in the low ferrite welds consisted mostly of austenite and discontinuous, skeletal {delta} ferrite. In welds with higher levels of {delta} ferrite, the ferrite was more continuous and, in some areas of the 33 volume percent sample, was the matrix/majority phase. The helium bubble microstructures observed were similar in all samples. Bubbles were found in the austenite but not in the {delta} ferrite. In the austenite, bubbles had nucleated homogeneously in the grain interiors and heterogeneously on dislocations. Bubbles were not found on any austenite/austenite grain boundaries or at the austenite/{delta} ferrite interphase interfaces. Bubbles were not observed in the {delta} ferrite because of the combined effects of the low solubility and rapid diffusion of tritium through the {delta} ferrite which limited the amount of helium present to form visible bubbles.

  9. Probing electron beam effects with chemoresistive nanosensors during in situ environmental transmission electron microscopy

    Science.gov (United States)

    Steinhauer, S.; Wang, Z.; Zhou, Z.; Krainer, J.; Köck, A.; Nordlund, K.; Djurabekova, F.; Grammatikopoulos, P.; Sowwan, M.

    2017-02-01

    We report in situ and ex situ fabrication approaches to construct p-type (CuO) and n-type (SnO2) metal oxide nanowire devices for operation inside an environmental transmission electron microscope (TEM). By taking advantage of their chemoresistive properties, the nanowire devices were employed as sensitive probes for detecting reactive species induced by the interactions of high-energy electrons with surrounding gas molecules, in particular, for the case of O2 gas pressures up to 20 mbar. In order to rationalize our experimental findings, a computational model based on the particle-in-cell method was implemented to calculate the spatial distributions of scattered electrons and ionized oxygen species in the environmental TEM. Our approach enables the a priori identification and qualitative measurement of undesirable beam effects, paving the way for future developments related to their mitigation.

  10. Development of a nanoindenter for in-situ transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stach, Eric A.; Freeman, Tony; Minor, Andrew M.; Owen, Doug K.; Cumings, John; Wall, Mark A.; Chraska, Tomas; Hull, Robert; Morris Jr., J.W.; Zettl, A.; Dahmen, Ulrich

    2001-01-30

    In-situ transmission electron microscopy is an established experimental technique that permits direct observation of the dynamics and mechanisms of dislocation motion and deformation behavior. In this paper, we detail the development of a novel specimen goniometer that allows real time observations of the mechanical response of materials to indentation loads. The technology of the scanning tunneling microscope is adopted to allow nanometer scale positioning of a sharp, conductive diamond tip onto the edge of an electron transparent sample. This allows application of loads to nanometer-scale material volumes couple with simultaneous imaging of the material response. The emphasis in this paper is experimental and descriptive, with particular attention given to sample geometry and other technical requirements. Examples of the deformation of aluminum and titanium carbide as well as the fracture of silicon will be presented.

  11. Robotized semiautomatic motorcycle transmission development. Electronic and software design

    Directory of Open Access Journals (Sweden)

    Neghină Mihai

    2017-01-01

    Full Text Available In this paper, we propose an electrical design (implemented on a PCB board and an accompanying software design for controlling the automatic gear change. The designs complement the mechanical solutions developed in Part 1. The paper also analyses the issues encountered during the intermediate steps of the development of the electronic module, which is expected to be small and adaptable enough to be installed on a motorcycle without changing its ergonomics. The control software runs on the Arduino Nano board and is built as a state machine with one idle state, five active states that cover different stages of the gear change and one error state for preventing malfunctions in case of an unexpected event. The sketch uses 5,760 bytes (or 18% of program storage space and 706 bytes (or 34% of the dynamic memory.

  12. The generalized transmission matrix for electron-wave-optics through biased heterostructures: Quantum device applications

    Science.gov (United States)

    Kan'an, A. M.; Puri, A.

    1994-01-01

    The transmission matrix approach is generalized to calculate the transmission probability of obliquely incident electrons through arbitrary shape potential profiles. Transmission probability is obtained as a function of the electron energy, the angle of incidence, and the applied voltage across the structure. Applications to electron waveguide and quantum resonant tunneling are outlined. Numerical results are presented for angle dependent resonant tunneling through biased multibarrier GaAs-AlxGa1-xAs heterostructures. As a consequence, various novel quantum devices, i.e., high speed switch, tunable electron wave filter, and electron wave beam splitter are proposed.

  13. Carbon contamination in scanning transmission electron microscopy and its impact on phase-plate applications.

    Science.gov (United States)

    Hettler, Simon; Dries, Manuel; Hermann, Peter; Obermair, Martin; Gerthsen, Dagmar; Malac, Marek

    2017-05-01

    We analyze electron-beam induced carbon contamination in a transmission electron microscope. The study is performed on thin films potentially suitable as phase plates for phase-contrast transmission electron microscopy. Electron energy-loss spectroscopy and phase-plate imaging is utilized to analyze the contamination. The deposited contamination layer is identified as a graphitic carbon layer which is not prone to electrostatic charging whereas a non-conductive underlying substrate charges. Several methods that inhibit contamination are evaluated and the impact of carbon contamination on phase-plate imaging is discussed. The findings are in general interesting for scanning transmission electron microscopy applications.

  14. Transmission dynamics of two dengue serotypes with vaccination scenarios.

    Science.gov (United States)

    González Morales, N L; Núñez-López, M; Ramos-Castañeda, J; Velasco-Hernández, J X

    2017-05-01

    In this work we present a mathematical model that incorporates two Dengue serotypes. The model has been constructed to study both the epidemiological trends of the disease and conditions that allow coexistence in competing strains under vaccination. We consider two viral strains and temporary cross-immunity with one vector mosquito population. Results suggest that vaccination scenarios will not only reduce disease incidence but will also modify the transmission dynamics. Indeed, vaccination and cross immunity period are seen to decrease the frequency and magnitude of outbreaks but in a differentiated manner with specific effects depending upon the interaction vaccine and strain type. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Scanning Transmission X-Ray, Laser Scanning, and Transmission Electron Microscopy Mapping of the Exopolymeric Matrix of Microbial Biofilms

    OpenAIRE

    Lawrence, J. R.; Swerhone, G. D. W.; Leppard, G. G.; T. Araki; Zhang, X.; West, M. M.; A. P. Hitchcock

    2003-01-01

    Confocal laser scanning microscopy (CLSM), transmission electron microscopy (TEM), and soft X-ray scanning transmission X-ray microscopy (STXM) were used to map the distribution of macromolecular subcomponents (e.g., polysaccharides, proteins, lipids, and nucleic acids) of biofilm cells and matrix. The biofilms were developed from river water supplemented with methanol, and although they comprised a complex microbial community, the biofilms were dominated by heterotrophic bacteria. TEM provid...

  16. Dynamics of electron in intense laser field

    Institute of Scientific and Technical Information of China (English)

    曾贵华; 宋向阳; 徐至展

    1997-01-01

    The induced magnetic field produced by a circular polarization laser pulse propagating in a cold plasma,and the dynamics of injected electron in the combination field of the laser field and the induced magnetic field are investigated.As a circular polarization laser propagates in a plasma,a quasistatic magnetic field in the direction of the wave propagation is rising.An evolution equation for the induced magnetic field is derived.Based on the derived equation,the properties of the induced magnetic field are discussed.The injected electron which satisfies the cyclotron resonance condition can be accelerated by the combination field.The energy equation for the injected electron is obtained.Finally,the classical dynamics of the injected electron in the combination field is analyzed.

  17. The Dynamic Behaviour of Gears with High Transmission Ratio

    Directory of Open Access Journals (Sweden)

    Ivana Atanasovska

    2012-06-01

    Full Text Available This paper describes the dynamic behaviour of helical gears with new standpoint for calculation of influence variables: mesh teeth stiffness, contact lines lengths and load distribution during mesh period. Nonlinear contact Finite Element Analysis and the new iteration procedure are used for calculation of meshed teeth deformations, stiffness and contact loads. The normal load distribution calculated with this procedure is used for evaluation of nonlinear dynamic analytical model of helical gears motion. Described investigation is especially important for gear pairs with high value of transmission ratio, often used in large transport machines. The presented models and results can be used for helical gears modeling when standard procedures don’t cover the requirements.

  18. Untangling the Interplay between Epidemic Spread and Transmission Network Dynamics.

    Directory of Open Access Journals (Sweden)

    Christel Kamp

    Full Text Available The epidemic spread of infectious diseases is ubiquitous and often has a considerable impact on public health and economic wealth. The large variability in the spatio-temporal patterns of epidemics prohibits simple interventions and requires a detailed analysis of each epidemic with respect to its infectious agent and the corresponding routes of transmission. To facilitate this analysis, we introduce a mathematical framework which links epidemic patterns to the topology and dynamics of the underlying transmission network. The evolution, both in disease prevalence and transmission network topology, is derived from a closed set of partial differential equations for infections without allowing for recovery. The predictions are in excellent agreement with complementarily conducted agent-based simulations. The capacity of this new method is demonstrated in several case studies on HIV epidemics in synthetic populations: it allows us to monitor the evolution of contact behavior among healthy and infected individuals and the contributions of different disease stages to the spreading of the epidemic. This gives both direction to and a test bed for targeted intervention strategies for epidemic control. In conclusion, this mathematical framework provides a capable toolbox for the analysis of epidemics from first principles. This allows for fast, in silico modeling--and manipulation--of epidemics and is especially powerful if complemented with adequate empirical data for parameterization.

  19. Transmission dynamics of methicillin-resistant Staphylococcus aureus in pigs

    Directory of Open Access Journals (Sweden)

    Florence eCrombé

    2013-03-01

    Full Text Available From the mid-2000s on, numerous studies have shown that methicillin-resistant Staphylococcus aureus (MRSA, renowned as human pathogen, has a reservoir in pigs and other livestock. In Europe and North America, clonal complex (CC 398 appears to be the predominant lineage involved. Especially worrisome is its capacity to contaminate humans in close contact with affected animals. Indeed, the typical multi-resistant phenotype of MRSA CC398 and its observed ability of easily acquiring genetic material suggests that MRSA CC398 strains with an increased virulence potential may emerge, for which few therapeutic options would remain. This questions the need to implement interventions to control the presence and spread of MRSA CC398 among pigs. MRSA CC398 shows a high but not fully understood transmission potential in the pig population and is able to persist within that population. Although direct contact is probably the main route for MRSA transmission between pigs, also environmental contamination, the presence of other livestock, the herd size and farm management are factors that may be involved in the dissemination of MRSA CC398. The current review aims at summarizing the research that has so far been done on the transmission dynamics and risk factors for introduction and persistence of MRSA CC398 in farms.

  20. Novel method for measurement of transistor gate length using energy-filtered transmission electron microscopy

    Science.gov (United States)

    Lee, Sungho; Kim, Tae-Hoon; Kang, Jonghyuk; Yang, Cheol-Woong

    2016-12-01

    As the feature size of devices continues to decrease, transmission electron microscopy (TEM) is becoming indispensable for measuring the critical dimension (CD) of structures. Semiconductors consist primarily of silicon-based materials such as silicon, silicon dioxide, and silicon nitride, and the electrons transmitted through a plan-view TEM sample provide diverse information about various overlapped silicon-based materials. This information is exceedingly complex, which makes it difficult to clarify the boundary to be measured. Therefore, we propose a simple measurement method using energy-filtered TEM (EF-TEM). A precise and effective measurement condition was obtained by determining the maximum value of the integrated area ratio of the electron energy loss spectrum at the boundary to be measured. This method employs an adjustable slit allowing only electrons with a certain energy range to pass. EF-TEM imaging showed a sharp transition at the boundary when the energy-filter’s passband centre was set at 90 eV, with a slit width of 40 eV. This was the optimum condition for the CD measurement of silicon-based materials involving silicon nitride. Electron energy loss spectroscopy (EELS) and EF-TEM images were used to verify this method, which makes it possible to measure the transistor gate length in a dynamic random access memory manufactured using 35 nm process technology. This method can be adapted to measure the CD of other non-silicon-based materials using the EELS area ratio of the boundary materials.

  1. Observation of dislocation dynamics in the electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Lagow, B W; Robertson, I M; Jouiad, M; Lassila, D H; Lee, T C; Birnbaum, H K

    2001-01-17

    Deformation experiments performed in-situ in the transmission electron microscope have led to an increased understanding of dislocation dynamics. To illustrate the capability of this technique two examples will be presented. In the first example, the processes of work hardening in Mo at room temperature will be presented. These studies have improved our understanding of dislocation mobility, dislocation generation, and dislocation-obstacle interactions. In the second example, the interaction of matrix dislocations with grain boundaries will be described. From such studies predictive criteria for slip transfer through grain boundaries have been developed.

  2. Observation of Dislocation Dynamics in the Electron Microscope

    Energy Technology Data Exchange (ETDEWEB)

    Lagow, B W; Robertson, I M; Jouiad, M; Lassila, D H; Lee, T C; Birnbaum, H K

    2001-08-21

    Deformation experiments performed in-situ in the transmission electron microscope have led to an increased understanding of dislocation dynamics. To illustrate the capability of this technique two examples will be presented. In the first example, the processes of work hardening in Mo at room temperature will be presented. These studies have improved our understanding of dislocation mobility, dislocation generation, and dislocation-obstacle interactions. In the second example, the interaction of matrix dislocations with grain boundaries will be described. From such studies predictive criteria for slip transfer through grain boundaries have been developed.

  3. Transmission Electron Microscopy of Iron Metal in Almahata Sitta Ureilite

    Science.gov (United States)

    Mikouchi, T.; Yubuta, K.; Sugiyama, K.; Aoyagi, Y.; Yasuhara, A.; Mihira, T.; Zolensky, M. E.; Goodrich, C. A.

    2013-01-01

    Almahata Sitta (AS) is a polymict breccia mainly composed of variable ureilite lithologies with small amounts of chondritic lithologies [1]. Fe metal is a common accessory phase in ureilites, but our earlier study on Fe metals in one of AS fragments (#44) revealed a unique mineralogy never seen in other ureilites [2,3]. In this abstract we report detailed transmission electron microscopy (TEM) on these metal grains to better understand the thermal history of ureilites. We prepared FIB sections of AS#44 by JEOL JIB-4000 from the PTS that was well characterized by SEM-EBSD in our earlier study [2]. The sections were then observed by STEM (JEOL JEM- 2100F). One of the FIB sections shows a submicron-sized symplectic intergrown texture composed of Fe metal (kamacite), Fe carbide (cohenite), Fe phosphide (schreibersite), and Fe sulfide (troilite). Each phase has an identical SAED pattern in spite of its complex texture, suggesting co-crystallization of all phases. This is probably caused by shock re-melting of pre-existing metal + graphite to form a eutectic-looking texture. The other FIB section is mostly composed of homogeneous Fe metal (93 wt% Fe, 5 wt% Ni, and 2 wt% Si), but BF-STEM images exhibited the presence of elongated lathy grains (approx. 2 microns long) embedded in the interstitial matrix. The SAED patterns from these lath grains could be indexed by alpha-Fe (bcc) while interstitial areas are gamma-Fe (fcc). The elongated alpha-Fe grains show tweed-like structures suggesting martensite transformation. Such a texture can be formed by rapid cooling from high temperature where gamma-Fe was stable. Subsequently alpha-Fe crystallized, but gamma-Fe remained in the interstitial matrix due to quenching from high temperature. This scenario is consistent with very rapid cooling history of ureilites suggested by silicate mineralogy.

  4. Transmission electron microscopy of subsolidus oxidation and weathering of olivine

    Science.gov (United States)

    Banfield, J.F.; Veblen, D.R.; Jones, B.F.

    1990-01-01

    Olivine crystals in basaltic andesites which crop out in the Abert Rim, south-central Oregon have been studied by high-resolution and analytical transmission electron microscopy. The observations reveal three distinct assemblages of alteration products that seem to correspond to three episodes of olivine oxidation. The olivine crystals contain rare, dense arrays of coherently intergrown Ti-free magnetite and inclusions of a phase inferred to be amorphous silica. We interpret this first assemblage to be the product of an early subsolidus oxidation event in the lava. The second olivine alteration assemblage contains complex ordered intergrowths on (001) of forsterite-rich olivine and laihunite (distorted olivine structure with Fe3+ charge balanced by vacancies). Based on experimental results for laihunite synthesis (Kondoh et al. 1985), these intergrowths probably formed by olivine oxidation between 400 and 800??C. The third episode of alteration involves the destruction of olivine by low-temperature hydrothermal alteration and weathering. Elongate etch-pits and channels in the margins of fresh olivine crystals contain semi-oriented bands of smectite. Olivine weathers to smectite and hematite, and subsequently to arrays of oriented hematite crystals. The textures resemble those reported by Eggleton (1984) and Smith et al. (1987). We find no evidence for a metastable phase intermediate between olivine and smectite ("M" - Eggleton 1984). The presence of laihunite exerts a strong control on the geometry of olivine weathering. Single laihunite layers and laihunite-forsteritic olivine intergrowths increase the resistance of crystals to weathering. Preferential development of channels between laihunite layers occurs where growth of laihunite produced compositional variations in olivine, rather than where coherency-strain is associated with laihunite-olivine interfaces. ?? 1990 Springer-Verlag.

  5. Bright-field scanning confocal electron microscopy using a double aberration-corrected transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng; Behan, Gavin; Kirkland, Angus I. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Nellist, Peter D., E-mail: peter.nellist@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Cosgriff, Eireann C.; D' Alfonso, Adrian J.; Morgan, Andrew J.; Allen, Leslie J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Hashimoto, Ayako [Advanced Nano-characterization Center, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba 305-0003 (Japan); Takeguchi, Masaki [Advanced Nano-characterization Center, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba 305-0003 (Japan); High Voltage Electron Microscopy Station, NIMS, 3-13 Sakura, Tsukuba 305-0003 (Japan); Mitsuishi, Kazutaka [Advanced Nano-characterization Center, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba 305-0003 (Japan); Quantum Dot Research Center, NIMS, 3-13 Sakura, Tsukuba 305-0003 (Japan); Shimojo, Masayuki [High Voltage Electron Microscopy Station, NIMS, 3-13 Sakura, Tsukuba 305-0003 (Japan); Advanced Science Research Laboratory, Saitama Institute of Technology, 1690 Fusaiji, Fukaya 369-0293 (Japan)

    2011-06-15

    Scanning confocal electron microscopy (SCEM) offers a mechanism for three-dimensional imaging of materials, which makes use of the reduced depth of field in an aberration-corrected transmission electron microscope. The simplest configuration of SCEM is the bright-field mode. In this paper we present experimental data and simulations showing the form of bright-field SCEM images. We show that the depth dependence of the three-dimensional image can be explained in terms of two-dimensional images formed in the detector plane. For a crystalline sample, this so-called probe image is shown to be similar to a conventional diffraction pattern. Experimental results and simulations show how the diffracted probes in this image are elongated in thicker crystals and the use of this elongation to estimate sample thickness is explored. -- Research Highlights: {yields} The confocal probe image in a scanning confocal electron microscopy image reveals information about the thickness and height of the crystalline layer. {yields} The form of the contrast in a three-dimensional bright-field scanning confocal electron microscopy image can be explained in terms of the confocal probe image. {yields} Despite the complicated form of the contrast in bright-field scanning confocal electron microscopy, we see that depth information is transferred on a 10 nm scale.

  6. On the Identifiability of Transmission Dynamic Models for Infectious Diseases.

    Science.gov (United States)

    Lintusaari, Jarno; Gutmann, Michael U; Kaski, Samuel; Corander, Jukka

    2016-03-01

    Understanding the transmission dynamics of infectious diseases is important for both biological research and public health applications. It has been widely demonstrated that statistical modeling provides a firm basis for inferring relevant epidemiological quantities from incidence and molecular data. However, the complexity of transmission dynamic models presents two challenges: (1) the likelihood function of the models is generally not computable, and computationally intensive simulation-based inference methods need to be employed, and (2) the model may not be fully identifiable from the available data. While the first difficulty can be tackled by computational and algorithmic advances, the second obstacle is more fundamental. Identifiability issues may lead to inferences that are driven more by prior assumptions than by the data themselves. We consider a popular and relatively simple yet analytically intractable model for the spread of tuberculosis based on classical IS6110 fingerprinting data. We report on the identifiability of the model, also presenting some methodological advances regarding the inference. Using likelihood approximations, we show that the reproductive value cannot be identified from the data available and that the posterior distributions obtained in previous work have likely been substantially dominated by the assumed prior distribution. Further, we show that the inferences are influenced by the assumed infectious population size, which generally has been kept fixed in previous work. We demonstrate that the infectious population size can be inferred if the remaining epidemiological parameters are already known with sufficient precision.

  7. Dynamic analysis of multimesh-gear helicopter transmissions

    Science.gov (United States)

    Choy, Fred K.; Townsend, Dennis P.; Oswald, Fred B.

    1988-01-01

    A dynamic analysis of multimesh-gear helicopter transmission systems was performed by correlating analytical simulations with experimental investigations. The two computer programs used in this study, GRDYNMLT and PGT, were developed under NASA/Army sponsorship. Parametric studies of the numerical model with variations on mesh damping ratios, operating speeds, tip-relief tooth modifications, and tooth-spacing errors were performed to investigate the accuracy, application, and limitations of the two computer programs. Although similar levels of dynamic loading were predicted by both programs, the computer code GRDYNMLT was found to be superior and broader in scope. Results from analytical work were also compared with experimental data obtained from the U.S. Army's UH-60A Black Hawk 2240-kW (3000-hp) class, twin-engine helicopter transmission tested at the NASA Lewis Research Center. Good correlation in gear stresses was obtained between the analytical model simulated by GRDYNMLT and the experimental measurements. More realistic mesh damping can be predicted through experimental data correlation.

  8. Electron Beam Dynamics in 4GLS

    CERN Document Server

    Williams, P H; Muratori, B D; Owen, H L; Smith, S L

    2007-01-01

    Studies of the electron beam dynamics for the 4GLS design are presented. 4GLS will provide three different electron bunch trains to a variety of user synchrotron sources. The 1 kHz XUV-FEL and 100 mA High Average Current branches share a common 540 MeV linac, whilst the 13 MHz IR-FEL must be well-synchronised to them. An overview of the injector designs, electron transport, and energy recovery is given, including ongoing studies of coherent synchrotron radiation, beam break-up and wakefields. This work is being pursued for the forthcoming Technical Design Report due in 2008.

  9. Bright-field scanning confocal electron microscopy using a double aberration-corrected transmission electron microscope.

    Science.gov (United States)

    Wang, Peng; Behan, Gavin; Kirkland, Angus I; Nellist, Peter D; Cosgriff, Eireann C; D'Alfonso, Adrian J; Morgan, Andrew J; Allen, Leslie J; Hashimoto, Ayako; Takeguchi, Masaki; Mitsuishi, Kazutaka; Shimojo, Masayuki

    2011-06-01

    Scanning confocal electron microscopy (SCEM) offers a mechanism for three-dimensional imaging of materials, which makes use of the reduced depth of field in an aberration-corrected transmission electron microscope. The simplest configuration of SCEM is the bright-field mode. In this paper we present experimental data and simulations showing the form of bright-field SCEM images. We show that the depth dependence of the three-dimensional image can be explained in terms of two-dimensional images formed in the detector plane. For a crystalline sample, this so-called probe image is shown to be similar to a conventional diffraction pattern. Experimental results and simulations show how the diffracted probes in this image are elongated in thicker crystals and the use of this elongation to estimate sample thickness is explored.

  10. Electron cyclotron waves transmission: new approach for the characterization of electron distribution functions in Tokamak hot plasmas; La transmission d`ondes cyclotroniques electroniques: une approche nouvelle pour caracteriser les fonctions de distribution electronique des plasmas chauds de Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Michelot, Y.

    1995-10-01

    Fast electrons are one of the basic ingredients of plasma operations in many existing thermonuclear fusion research devices. However, the understanding of fast electrons dynamics during creation and sustainment of the superthermal electrons tail is far for being satisfactory. For this reason, the Electron Cyclotron Transmission (ECT) diagnostic was implemented on Tore Supra tokamak. It consists on a microwave transmission system installed on a vertical chord crossing the plasma center and working in the frequency range 77-109 GHz. Variations of the wave amplitude during the propagation across the plasma may be due to refraction and resonant absorption. For the ECT, the most common manifestation of refraction is a reduction of the received power density with respect to the signal detected in vacuum, due to the spreading and deflection of the wave beam. Wave absorption is observed in the vicinity of the electron cyclotron harmonics and may be due both to thermal plasma and to superthermal electron tails. It has a characteristic frequency dependence due to the relativistic mass variation in the wave-electron resonance condition. This thesis presents the first measurements of: the extraordinary mode optical depth at the third harmonics, the electron temperature from the width of a cyclotron absorption line and the relaxation times of the electron distribution during lower hybrid current drive from the ordinary mode spectral superthermal absorption line at the first harmonic. (J.S.). 175 refs., 110 figs., 9 tabs., 3 annexes.

  11. Low-energy electron transmission through high aspect ratio Al O nanocapillaries

    DEFF Research Database (Denmark)

    Milosavljević, A.R.; Jureta, J.; Víkor, G.;

    2009-01-01

    Electron transmission through insulating AlO nanocapillaries of different diameters (40 and 270 nm) and 15 μm length has been investigated for low-energy electrons (2-120 V). The total intensity of transmitted current weakly depends on the incident electron energy and tilt angle defined with resp......Electron transmission through insulating AlO nanocapillaries of different diameters (40 and 270 nm) and 15 μm length has been investigated for low-energy electrons (2-120 V). The total intensity of transmitted current weakly depends on the incident electron energy and tilt angle defined...

  12. A Quantitative Nanodiffraction System for Ultrahigh Vacuum Scanning Transmission Electron Microscopy

    Science.gov (United States)

    Hembree, Gary G.; Koch, Christoph; Spence, John C. H.

    2003-10-01

    Of all the long-lived particles available as probes of condensed matter, and of all the signals available on a modern electron microscope, electron nanodiffraction patterns provide the strongest signal from the smallest volume. The technique is therefore perfectly suited to nanostructural investigations in inorganic chemistry and materials science. The Vacuum Generators HB501S, an ultrahigh vacuum (UHV) variant of the HB501 scanning transmission electron microscope (STEM), with side-entry double-tilt stage, specimen preparation and analysis chamber, three postspecimen lenses, and cold field-emission tip with integral magnetic gun lens, has therefore been modified to optimize nanodiffraction and quantitative convergent beam electron diffraction (QCBED) performance. A one-micrometer grain-size phosphor screen lying on a fiber-optic faceplate atop the instrument is fiber-optically coupled to a 2048 × 2048 charge-coupled device (CCD), 16-bit camera. This arrangement promises to provide much greater sensitivity, larger dynamic range, and a better modulation transfer function (MTF) than conventional single crystal scintillator (YAG) CCD systems, with noticeable absence of cross talk between pixels. The design of the nanodiffraction detector system is discussed, the gain of the detector is measured, the spherical aberration constant of the objective lens is measured by the Ronchigram method, and preliminary results from the modified instrument are shown.

  13. In situ nanoindentation in a transmission electron microscope

    Science.gov (United States)

    Minor, Andrew Murphy

    This dissertation presents the development of the novel mechanical testing technique of in situ nanoindentation in a transmission electron microscope (TEM). This technique makes it possible to simultaneously observe and quantify the mechanical behavior of nano-scale volumes of solids. Chapter 2 details the unique specimen preparation techniques employed to meet the geometrical constraints of the in situ experiments. These techniques include bulk silicon micromachining and the use of a focused ion beam. In section 2.4 a method of voltage-controlled mechanical testing is derived theoretically and proven experimentally. This method enables the quantification of the mechanical behavior during in situ nanoindentation experiments. Three classes of material systems were studied with this new technique: (1) bulk single crystal, (2) a soft thin film on a harder substrate and (3) a hard thin film on a softer substrate. Section 3.2 provides the first direct evidence of dislocation nucleation in single crystal silicon at room temperature. In contrast to the observation of phase transformations during conventional indentation experiments, the unique geometry employed for the in situ experiments resulted in dislocation plasticity. In section 3.3 results from in situ nanoindentation of Al films on Si substrates are presented. These results include the correlation of the microstructural deformation behavior with load vs. displacement data. It is shown that a sharp change in the force-displacement response at the elastic-to-plastic transition signifies the nucleation of dislocations. Additionally, the softening of sub-micron grains with size is observed. Section 3.4 discussed the influence of the substrate on the indentation response of two thin film/substrate systems where the films were harder than the substrate. Amorphous diamond on Si and epitaxial TiN on MgO (001) systems were studied. It was found that the deformation in the harder films was controlled by the deformation in

  14. Forming the Calculated Dynamic Transmission Systems of Wheeled Vehicles

    Directory of Open Access Journals (Sweden)

    A. B. Fominykh

    2017-01-01

    Full Text Available To calculate dynamic loading of transmission parts of wheeled vehicles, it is necessary to build up the appropriate calculated dynamic systems and determine their inertial, elastic, and damping parameters.The initial point of this process is to form an initial dynamic system. Hereafter, to cut the time of computations there is a need to reduce the number of masses of this system, and sometimes simplify its structure. The main requirement to be fulfilled in this case is that the calculated dynamical system is to be equivalent to the initial one (in terms of similarity of the vibrational process characteristics in these systems, i.e., the frequencies and modes of oscillations of both systems, their amplitude-frequency characteristics. This is possible when the energy characteristics of the corresponding systems are equal, i.e. their kinetic and potential energies, dissipative functions, and external force energies.Usually, when forming the initial and calculated dynamic systems, all types of friction are reduced to a linearly viscous one. However, it disables us to investigate the motion of these systems if there is an arbitrary, in particular, poly-harmonic action (for example, on the side of the internal combustion engine, since in this case the linear friction coefficients given will depend on the frequency and amplitude of the oscillations.The paper is aimed at determining the equivalent parameters of calculated dynamic systems of wheeled vehicles, including the dissipative parameters for the general case of friction.On the basis of energy principles, the expressions are obtained to determine the equivalent inertial, elastic, and damping parameters of the calculated dynamical systems of wheeled vehicles when the structure is changed and the number of masses of the system is decreased. The presented technique enables us to investigate the motion of these systems under arbitrary, including poly-harmonic, action on the system, using the

  15. Electron dynamics and its control in molecules

    Science.gov (United States)

    de Vivie-Riedle, Regina

    2014-03-01

    The accessibility of few femtosecond or even attoseconds pulses opens the door to direct observation of electron dynamics. The idea to steer chemical reactions by localization of electronic wavepackets is intriguing, since electrons are directly involved in bond breaking and formation. The formation of a localized electronic wavepacket requires the superposition of two or more appropriate electronic states. Its guidance is only possible within the coherence time of the system and has to be synchronized with the vibrational molecular motions. In theoretical studies we elucidate the role of electron wavepacket motion for the control of molecular processes. We give three examples with direct connection to experiments. From our analysis, we extract the systems requirements defining the time window for intramolecular electronic coherence, the basis for efficient control. Based on these findings we map out a photoreaction that allows direct control by guiding electronic wavepackets. The carrier envelope of a femtosecond few cycle IR pulse is the control parameter that steers the photoreaction through a conical intersection.

  16. Transmission dynamics and prospects for the elimination of canine rabies.

    Directory of Open Access Journals (Sweden)

    Katie Hampson

    2009-03-01

    Full Text Available Rabies has been eliminated from domestic dog populations in Western Europe and North America, but continues to kill many thousands of people throughout Africa and Asia every year. A quantitative understanding of transmission dynamics in domestic dog populations provides critical information to assess whether global elimination of canine rabies is possible. We report extensive observations of individual rabid animals in Tanzania and generate a uniquely detailed analysis of transmission biology, which explains important epidemiological features, including the level of variation in epidemic trajectories. We found that the basic reproductive number for rabies, R0, is very low in our study area in rural Africa (approximately 1.2 and throughout its historic global range (<2. This finding provides strong support for the feasibility of controlling endemic canine rabies by vaccination, even near wildlife areas with large wild carnivore populations. However, we show that rapid turnover of domestic dog populations has been a major obstacle to successful control in developing countries, thus regular pulse vaccinations will be required to maintain population-level immunity between campaigns. Nonetheless our analyses suggest that with sustained, international commitment, global elimination of rabies from domestic dog populations, the most dangerous vector to humans, is a realistic goal.

  17. Improved microchip design and application for in situ transmission electron microscopy of macromolecules.

    Science.gov (United States)

    Dukes, Madeline J; Thomas, Rebecca; Damiano, John; Klein, Kate L; Balasubramaniam, Sharavanan; Kayandan, Sanem; Riffle, Judy S; Davis, Richey M; McDonald, Sarah M; Kelly, Deborah F

    2014-04-01

    Understanding the fundamental properties of macromolecules has enhanced the development of emerging technologies used to improve biomedical research. Currently, there is a critical need for innovative platforms that can illuminate the function of biomedical reagents in a native environment. To address this need, we have developed an in situ approach to visualize the dynamic behavior of biomedically relevant macromolecules at the nanoscale. Newly designed silicon nitride devices containing integrated "microwells" were used to enclose active macromolecular specimens in liquid for transmission electron microscopy imaging purposes.We were able to successfully examine novel magnetic resonance imaging contrast reagents, micelle suspensions, liposome carrier vehicles, and transcribing viral assemblies. With each specimen tested, the integrated microwells adequately maintained macromolecules in discrete local environments while enabling thin liquid layers to be produced.

  18. Microtubules in Plant Cells: Strategies and Methods for Immunofluorescence, Transmission Electron Microscopy and Live Cell Imaging

    Science.gov (United States)

    Celler, Katherine; Fujita, Miki; Kawamura, Eiko; Ambrose, Chris; Herburger, Klaus; Wasteneys, Geoffrey O.

    2016-01-01

    Microtubules are required throughout plant development for a wide variety of processes, and different strategies have evolved to visualize and analyze them. This chapter provides specific methods that can be used to analyze microtubule organization and dynamic properties in plant systems and summarizes the advantages and limitations for each technique. We outline basic methods for preparing samples for immunofluorescence labelling, including an enzyme-based permeabilization method, and a freeze-shattering method, which generates microfractures in the cell wall to provide antibodies access to cells in cuticle-laden aerial organs such as leaves. We discuss current options for live cell imaging of MTs with fluorescently tagged proteins (FPs), and provide chemical fixation, high pressure freezing/freeze substitution, and post-fixation staining protocols for preserving MTs for transmission electron microscopy and tomography. PMID:26498784

  19. Picoliter Drop-On-Demand Dispensing for Multiplex Liquid Cell Transmission Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, Joseph P.; Parent, Lucas R.; Cantlon, Joshua; Eickhoff, Holger; Bared, Guido; Evans, James E.; Gianneschi, Nathan C.

    2016-05-03

    Abstract

    Liquid cell transmission electron microscopy (LCTEM) provides a unique insight into the dynamics of nanomaterials in solution. Controlling the addition of multiple solutions to the liquid cell remains a key hurdle in our ability to increase throughput and to study processes dependent on solution mixing including chemical reactions. Here, we report that a piezo dispensing technique allows for mixing of multiple solutions directly within the viewing area. This technique permits deposition of 50 pL droplets of various aqueous solutions onto the liquid cell window, before assembly of the cell in a fully controlled manner. This proof-of-concept study highlights the great potential of picoliter dispensing in combination with LCTEM for observing nanoparticle mixing in the solution phase and the creation of chemical gradients.

  20. Oxidation mechanism of nickel particles studied in an environmental transmission electron microscope

    DEFF Research Database (Denmark)

    Jeangros, Q.; Hansen, Thomas Willum; Wagner, Jakob Birkedal

    2014-01-01

    The oxidation of nickel particles was studied in situ in an environmental transmission electron microscope in 3.2 mbar of O2 between ambient temperature and 600°C. Several different transmission electron microscopy imaging techniques, electron diffraction and electron energy-loss spectroscopy were...... diffusion of Ni2+ along NiO grain boundaries, self-diffusion of Ni2+ ions and vacancies, growth of NiO grains and nucleation of voids at Ni/NiO interfaces. We also observed the formation of transverse cracks in a growing NiO film in situ in the electron microscope....

  1. Practical spatial resolution of electron energy loss spectroscopy in aberration corrected scanning transmission electron microscopy.

    Science.gov (United States)

    Shah, A B; Ramasse, Q M; Wen, J G; Bhattacharya, A; Zuo, J M

    2011-08-01

    The resolution of electron energy loss spectroscopy (EELS) is limited by delocalization of inelastic electron scattering rather than probe size in an aberration corrected scanning transmission electron microscope (STEM). In this study, we present an experimental quantification of EELS spatial resolution using chemically modulated 2×(LaMnO(3))/2×(SrTiO(3)) and 2×(SrVO(3))/2×(SrTiO(3)) superlattices by measuring the full width at half maxima (FWHM) of integrated Ti M(2,3), Ti L(2,3), V L(2,3), Mn L(2,3), La N(4,5), La N(2,3) La M(4,5) and Sr L(3) edges over the superlattices. The EELS signals recorded using large collection angles are peaked at atomic columns. The FWHM of the EELS profile, obtained by curve-fitting, reveals a systematic trend with the energy loss for the Ti, V, and Mn edges. However, the experimental FWHM of the Sr and La edges deviates significantly from the observed experimental tendency.

  2. Resolution enhancement in transmission electron microscopy with 60-kV monochromated electron source

    Energy Technology Data Exchange (ETDEWEB)

    Morishita, Shigeyuki; Mukai, Masaki; Sawada, Hidetaka [JEOL Ltd., 3-1-2 Musashino, Akishima, Tokyo 196-8558 (Japan); Suenaga, Kazutomo [National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 (Japan)

    2016-01-04

    Transmission electron microscopy (TEM) at low accelerating voltages is useful to obtain images with low irradiation damage. For a low accelerating voltage, linear information transfer, which determines the resolution for observation of single-layered materials, is largely limited by defocus spread, which improves when a narrow energy spread is used in the electron source. In this study, we have evaluated the resolution of images obtained at 60 kV by TEM performed with a monochromated electron source. The defocus spread has been evaluated by comparing diffractogram tableaux from TEM images obtained under nonmonochromated and monochromated illumination. The information limits for different energy spreads were precisely measured by using diffractograms with a large beam tilt. The result shows that the information limit reaches 0.1 nm with an energy width of 0.10 eV. With this monochromated source and a higher-order aberration corrector, we have obtained images of single carbon atoms in a graphene sheet by TEM at 60 kV.

  3. Accurate virus quantitation using a Scanning Transmission Electron Microscopy (STEM) detector in a scanning electron microscope.

    Science.gov (United States)

    Blancett, Candace D; Fetterer, David P; Koistinen, Keith A; Morazzani, Elaine M; Monninger, Mitchell K; Piper, Ashley E; Kuehl, Kathleen A; Kearney, Brian J; Norris, Sarah L; Rossi, Cynthia A; Glass, Pamela J; Sun, Mei G

    2017-10-01

    A method for accurate quantitation of virus particles has long been sought, but a perfect method still eludes the scientific community. Electron Microscopy (EM) quantitation is a valuable technique because it provides direct morphology information and counts of all viral particles, whether or not they are infectious. In the past, EM negative stain quantitation methods have been cited as inaccurate, non-reproducible, and with detection limits that were too high to be useful. To improve accuracy and reproducibility, we have developed a method termed Scanning Transmission Electron Microscopy - Virus Quantitation (STEM-VQ), which simplifies sample preparation and uses a high throughput STEM detector in a Scanning Electron Microscope (SEM) coupled with commercially available software. In this paper, we demonstrate STEM-VQ with an alphavirus stock preparation to present the method's accuracy and reproducibility, including a comparison of STEM-VQ to viral plaque assay and the ViroCyt Virus Counter. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Nicotiana Occidentalis Chloroplast Ultrastructure imaged with Transmission Electron Microscopes Working at Different Accelerating Voltages

    OpenAIRE

    SVIDENSKÁ, Silvie

    2010-01-01

    The main goal of this thesis is to study and compare electron microscopy images of Nicotiana Occidentalis chloroplasts, obtained from two types of transmission electron microscopes,which work with different accelerating voltage of 80kV and 5kV. The two instruments, TEM JEOL 1010 and low voltage electron microscope LVEM5 are employed for experiments. In the first theoretical part, principle of electron microscopy and chloroplast morphology is described. In experimental part, electron microscop...

  5. Ultrafast Electron Dynamics in Solar Energy Conversion.

    Science.gov (United States)

    Ponseca, Carlito S; Chábera, Pavel; Uhlig, Jens; Persson, Petter; Sundström, Villy

    2017-08-23

    Electrons are the workhorses of solar energy conversion. Conversion of the energy of light to electricity in photovoltaics, or to energy-rich molecules (solar fuel) through photocatalytic processes, invariably starts with photoinduced generation of energy-rich electrons. The harvesting of these electrons in practical devices rests on a series of electron transfer processes whose dynamics and efficiencies determine the function of materials and devices. To capture the energy of a photogenerated electron-hole pair in a solar cell material, charges of opposite sign have to be separated against electrostatic attractions, prevented from recombining and being transported through the active material to electrodes where they can be extracted. In photocatalytic solar fuel production, these electron processes are coupled to chemical reactions leading to storage of the energy of light in chemical bonds. With the focus on the ultrafast time scale, we here discuss the light-induced electron processes underlying the function of several molecular and hybrid materials currently under development for solar energy applications in dye or quantum dot-sensitized solar cells, polymer-fullerene polymer solar cells, organometal halide perovskite solar cells, and finally some photocatalytic systems.

  6. Structural dynamics of electronic and photonic systems

    CERN Document Server

    Suhir, Ephraim; Steinberg, David S

    2011-01-01

    The proposed book will offer comprehensive and versatile methodologies and recommendations on how to determine dynamic characteristics of typical micro- and opto-electronic structural elements (printed circuit boards, solder joints, heavy devices, etc.) and how to design a viable and reliable structure that would be able to withstand high-level dynamic loading. Particular attention will be given to portable devices and systems designed for operation in harsh environments (such as automotive, aerospace, military, etc.)  In-depth discussion from a mechanical engineer's viewpoint will be conducte

  7. Electron spin coherence and effect of spin polarization on electron relaxation dynamics in GaAs

    Science.gov (United States)

    Teng, Lihua; Wang, Xia; Ge, Weikun; Lai, Tianshu

    2011-09-01

    Time-resolved circularly and linearly polarized pump-probe spectroscopy is used to study the evolution of the electron spin coherence and electron relaxation dynamics in bulk GaAs at 9.6 K. In particular, their dependence on photon energy (or electron excess energy) is carefully investigated. The absorption quantum beats which are observed in circularly polarized pump-probe spectroscopy are obtained, reflecting the dephasing of the electron spin coherence. A circularly dichromatic pump-probe model is developed with both the spin-polarization-dependent band-filling and band-gap renormalization effects being taken into account. The model is used to simulate the differential transmission spectra for the collinearly polarized, co-helicity circularly polarized and cross-helicity circularly polarized pump-probe configurations, respectively. It is found that the model simulates well the features of the absorption quantum beats for a spin-dependent thermalized distribution of the photocreated carriers by a circularly polarized pump pulse, such as the variation of the oscillatory amplitude and phase reversal of the absorption quantum beats with photon energy increase. The simulation is in good agreement with our experimental results and reveals the effect of spin polarization on electron relaxation dynamics.

  8. 21 CFR 1311.05 - Standards for technologies for electronic transmission of orders.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Standards for technologies for electronic... JUSTICE REQUIREMENTS FOR ELECTRONIC ORDERS AND PRESCRIPTIONS (Eff. 6-1-10) General § 1311.05 Standards for technologies for electronic transmission of orders. (a) A registrant or a person with power of attorney to...

  9. The Simulation of the Influenza Transmission Dynamics in Tropical Area and Subtropical Area in East Asia

    Institute of Scientific and Technical Information of China (English)

    YANG Gong-li

    2014-01-01

    The underlying theory of the summer influenza transmission peaks in tropical area and subtropical area in East Asia is still unclear. We built an agent-based model (ABM) to simulate the influenza transmission dynamics. We modeled two main routes of influenza transmission in the model: the aerosol route and the fomite-mediated route. Our results show that the absolute humidity (AH) is strikingly associated with the influenza transmission in different season; Fomite-mediated route particularly plays an important role in influenza transmission, the two-route transmission model can be better used for explaining the summer transmission peaks.

  10. Electronic transmission and switch effect in kappa-component Fibonacci nanowires.

    Science.gov (United States)

    Li, Jia; Zhang, Ruili; Li, De; Peng, Ruwen; Wang, Mu

    2010-11-01

    We present the electronic transport in the k-component Fibonacci (KCF) nanowires, in which kappa different incommensurate intervals are arranged according to a substitution rule. For the KCF nanowires with an identical kappa, by increasing the length of the nanowire, the minima in transmission extend gradually into the band gap over which the transmission is blocked. Meanwhile more transmission peaks appear. For finite KCF nanowire, by increasing the number of different incommensurate intervals kappa, the width of electronic band gap is enlarged. Moreover, when the value of kappa is sufficiently large, the transmission is shut off, except at a few resonant energies. These properties make it possible to use the KCF nanowires as switching devices. Furthermore, a dimensional spectrum of singularities associated with the transmission spectrum demonstrates that the electronic propagation in the KCF nanowire shows multifractality. These investigations open a unique way to control quantum transport in nanodevices.

  11. Imaging protein structure in water at 2.7 nm resolution by transmission electron microscopy.

    Science.gov (United States)

    Mirsaidov, Utkur M; Zheng, Haimei; Casana, Yosune; Matsudaira, Paul

    2012-02-22

    We demonstrate an in situ transmission electron microscopy technique for imaging proteins in liquid water at room temperature. Liquid samples are loaded into a microfabricated environmental cell that isolates the sample from the vacuum with thin silicon nitride windows. We show that electron micrographs of acrosomal bundles in water are similar to bundles imaged in ice, and we determined the resolution to be at least 2.7 nm at doses of ∼35 e/Å(2). The resolution was limited by the thickness of the window and radiation damage. Surprisingly, we observed a smaller fall-off in the intensity of reflections in room-temperature water than in 98 K ice. Thus, our technique extends imaging of unstained and unlabeled macromolecular assemblies in water from the resolution of the light microscope to the nanometer resolution of the electron microscope. Our results suggest that real-time imaging of protein dynamics is conceptually feasible. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. In situ transmission electron microscopy of light-induced photocatalytic reactions

    DEFF Research Database (Denmark)

    Cavalca, Filippo; Laursen, Anders Bo; Kardynal, Beata

    2012-01-01

    Transmission electron microscopy (TEM) makes it possible to obtain insight into the structure, composition and reactivity of photocatalysts, which are of fundamental interest for sustainable energy research. Such insight can be used for further material optimization. Here, we combine conventional...

  13. TISSUE INTERACTIONS WITH DERMAL SHEEP COLLAGEN IMPLANTS - A TRANSMISSION ELECTRON-MICROSCOPIC EVALUATION

    NARCIS (Netherlands)

    VANWACHEM, PB; VANLUYN, MJA; DAMINK, LO; FEIJEN, J; NIEUWENHUIS, P

    1991-01-01

    Tissue interactions with discs of dermal sheep collagen (DSC), subcutaneously implanted in rats, were evaluated using transmission electron microscopy. DSC cross-linked with hexamethylenediisocyanate (HDSC) had already been tested previously. In the present study, we compared tissue interactions of

  14. Transmission electron microscopy of unstained hybrid Au nanoparticles capped with PPAA (plasma-poly-allylamine)

    DEFF Research Database (Denmark)

    Gontard, Lionel C.; Fernández, Asunción; Dunin-Borkowski, Rafal E.;

    2014-01-01

    Hybrid (organic shell-inorganic core) nanoparticles have important applications in nanomedicine. Although the inorganic components of hybrid nanoparticles can be characterized readily using conventional transmission electron microscopy (TEM) techniques, the structural and chemical arrangement of ...

  15. Automated magnification calibration in transmission electron microscopy using Fourier analysis of replica images.

    NARCIS (Netherlands)

    Laak, J.A.W.M. van der; Dijkman, H.B.P.M.; Pahlplatz, M.M.M.

    2006-01-01

    The magnification factor in transmission electron microscopy is not very precise, hampering for instance quantitative analysis of specimens. Calibration of the magnification is usually performed interactively using replica specimens, containing line or grating patterns with known spacing. In the pre

  16. Catalysts under Controlled Atmospheres in the Transmission Electron Microscope

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum; Wagner, Jakob Birkedal

    2014-01-01

    microscope, and since its invention by Ernst Ruska, the idea of imaging samples under gaseous atmospheres was envisioned. However, microscopes have traditionally been operated in high vacuum due to sensitive electron sources, sample contamination, and electron scattering off gas molecules resulting in loss...

  17. Structural studies of glasses by transmission electron microscopy and electron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Kashchieva, E.P. [University of Chemical Technology and Metallurgy, Sofia (Bulgaria)

    1997-07-01

    The purpose of this work is to present information about the applications of transmission electron microscopy (TEM) and electron diffraction (ED) for structural investigations of glasses. TEM investigations have been carried out on some binary and on a large number of ternary borate-telluride systems where glass-forming oxides, oxides of transitional elements and modified oxides of elements from I, II and III groups in the periodic table, are used as third component. The large experimental data given by TEM method allows the fine classification of the micro-heterogeneities. A special case of micro-heterogeneous structure with technological origin occurs near the boundary between the 2 immiscible liquids obtained at macro-phase separation. TEM was also used for the direct observation of the glass structure and we have studied the nano-scale structure of borate glasses obtained at slow and fast cooling of the melts. The ED possesses advantages for analysis of amorphous thin films or micro-pastilles and it is a very useful technique for study in materials containing simultaneously light and heavy elements. A comparison between the possibilities of the 3 diffraction techniques (X-ray diffraction, neutron diffraction and ED) is presented.

  18. Transmission Dynamics and Optimal Control of Malaria in Kenya

    Directory of Open Access Journals (Sweden)

    Gabriel Otieno

    2016-01-01

    Full Text Available This paper proposes and analyses a mathematical model for the transmission dynamics of malaria with four-time dependent control measures in Kenya: insecticide treated bed nets (ITNs, treatment, indoor residual spray (IRS, and intermittent preventive treatment of malaria in pregnancy (IPTp. We first considered constant control parameters and calculate the basic reproduction number and investigate existence and stability of equilibria as well as stability analysis. We proved that if R0≤1, the disease-free equilibrium is globally asymptotically stable in D. If R0>1, the unique endemic equilibrium exists and is globally asymptotically stable. The model also exhibits backward bifurcation at R0=1. If R0>1, the model admits a unique endemic equilibrium which is globally asymptotically stable in the interior of feasible region D. The sensitivity results showed that the most sensitive parameters are mosquito death rate and mosquito biting rates. We then consider the time-dependent control case and use Pontryagin’s Maximum Principle to derive the necessary conditions for the optimal control of the disease using the proposed model. The existence of optimal control problem is proved. Numerical simulations of the optimal control problem using a set of reasonable parameter values suggest that the optimal control strategy for malaria control in endemic areas is the combined use of treatment and IRS; for epidemic prone areas is the use of treatment and IRS; for seasonal areas is the use of treatment; and for low risk areas is the use of ITNs and treatment. Control programs that follow these strategies can effectively reduce the spread of malaria disease in different malaria transmission settings in Kenya.

  19. Aberration corrected and monochromated environmental transmission electron microscopy: challenges and prospects for materials science

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum; Wagner, Jakob Birkedal; Dunin-Borkowski, Rafal E.

    2010-01-01

    The latest generation of environmental transmission electron microscopes incorporates aberration correctors and monochromators, allowing studies of chemical reactions and growth processes with improved spatial resolution and spectral sensitivity. Here, we describe the performance of such an instr......The latest generation of environmental transmission electron microscopes incorporates aberration correctors and monochromators, allowing studies of chemical reactions and growth processes with improved spatial resolution and spectral sensitivity. Here, we describe the performance...

  20. THz-field-induced electronic transmission step-structure for a quantum wire

    Institute of Scientific and Technical Information of China (English)

    Xiao Xian-Bo; Zhou Guang-Hui; Yang Mou; Li Yuan; Xu Zhi-Feng

    2004-01-01

    We study theoretically the low-temperature electronic transport property of a straight quantum wire under the irradiation of a finite-range transversely polarized external terahertz (THz) electromagnetic (EM) field. Using the freeelectron model and the scattering matrix approach, we show an unusual behaviour of the electronic transmission of this system. A sharp step-structure appears in the electronic transmission probability as the EM field strength increases to a threshold value when a coherent EM field is applied. We demonstrate that this effect physically comes from the inelastic scattering of electrons with lateral photons through intersubband transitions.

  1. Modeling the transmission dynamics and control of rabies in China.

    Science.gov (United States)

    Ruan, Shigui

    2017-04-01

    Human rabies was first recorded in ancient China in about 556 BC and is still one of the major public-health problems in China. From 1950 to 2015, 130,494 human rabies cases were reported in Mainland China with an average of 1977 cases per year. It is estimated that 95% of these human rabies cases are due to dog bites. The purpose of this article is to provide a review about the models, results, and simulations that we have obtained recently on studying the transmission of rabies in China. We first construct a basic susceptible, exposed, infectious, and recovered (SEIR) type model for the spread of rabies virus among dogs and from dogs to humans and use the model to simulate the human rabies data in China from 1996 to 2010. Then we modify the basic model by including both domestic and stray dogs and apply the model to simulate the human rabies data from Guangdong Province, China. To study the seasonality of rabies, in Section 4 we further propose a SEIR model with periodic transmission rates and employ the model to simulate the monthly data of human rabies cases reported by the Chinese Ministry of Health from January 2004 to December 2010. To understand the spatial spread of rabies, in Section 5 we add diffusion to the dog population in the basic SEIR model to obtain a reaction-diffusion equation model and determine the minimum wave speed connecting the disease-free equilibrium to the endemic equilibrium. Finally, in order to investigate how the movement of dogs affects the geographically inter-provincial spread of rabies in Mainland China, in Section 6 we propose a multi-patch model to describe the transmission dynamics of rabies between dogs and humans and use the two-patch submodel to investigate the rabies virus clades lineages and to simulate the human rabies data from Guizhou and Guangxi, Hebei and Fujian, and Sichuan and Shaanxi, respectively. Some discussions are provided in Section 7. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Electron tomography of HEK293T cells using scanning electron microscope-based scanning transmission electron microscopy.

    Science.gov (United States)

    You, Yun-Wen; Chang, Hsun-Yun; Liao, Hua-Yang; Kao, Wei-Lun; Yen, Guo-Ji; Chang, Chi-Jen; Tsai, Meng-Hung; Shyue, Jing-Jong

    2012-10-01

    Based on a scanning electron microscope operated at 30 kV with a homemade specimen holder and a multiangle solid-state detector behind the sample, low-kV scanning transmission electron microscopy (STEM) is presented with subsequent electron tomography for three-dimensional (3D) volume structure. Because of the low acceleration voltage, the stronger electron-atom scattering leads to a stronger contrast in the resulting image than standard TEM, especially for light elements. Furthermore, the low-kV STEM yields less radiation damage to the specimen, hence the structure can be preserved. In this work, two-dimensional STEM images of a 1-μm-thick cell section with projection angles between ±50° were collected, and the 3D volume structure was reconstructed using the simultaneous iterative reconstructive technique algorithm with the TomoJ plugin for ImageJ, which are both public domain software. Furthermore, the cross-sectional structure was obtained with the Volume Viewer plugin in ImageJ. Although the tilting angle is constrained and limits the resulting structural resolution, slicing the reconstructed volume generated the depth profile of the thick specimen with sufficient resolution to examine cellular uptake of Au nanoparticles, and the final position of these nanoparticles inside the cell was imaged.

  3. Measurement of vibrational spectrum of liquid using monochromated scanning transmission electron microscopy-electron energy loss spectroscopy.

    Science.gov (United States)

    Miyata, Tomohiro; Fukuyama, Mao; Hibara, Akihide; Okunishi, Eiji; Mukai, Masaki; Mizoguchi, Teruyasu

    2014-10-01

    Investigations on the dynamic behavior of molecules in liquids at high spatial resolution are greatly desired because localized regions, such as solid-liquid interfaces or sites of reacting molecules, have assumed increasing importance with respect to improving material performance. In application to liquids, electron energy loss spectroscopy (EELS) observed with transmission electron microscopy (TEM) is a promising analytical technique with the appropriate resolutions. In this study, we obtained EELS spectra from an ionic liquid, 1-ethyl-3-methylimidazolium bis (trifluoromethyl-sulfonyl) imide (C2mim-TFSI), chosen as the sampled liquid, using monochromated scanning TEM (STEM). The molecular vibrational spectrum and the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap of the liquid were investigated. The HOMO-LUMO gap measurement coincided with that obtained from the ultraviolet-visible spectrum. A shoulder in the spectrum observed ∼0.4 eV is believed to originate from the molecular vibration. From a separately performed infrared observation and first-principles calculations, we found that this shoulder coincided with the vibrational peak attributed to the C-H stretching vibration of the [C2mim(+)] cation. This study demonstrates that a vibrational peak for a liquid can be observed using monochromated STEM-EELS, and leads one to expect observations of chemical reactions or aids in the analysis of the dynamic behavior of molecules in liquid. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. The effect of different electrodes on the electronic transmission of benzene junctions: Analytical approach

    Energy Technology Data Exchange (ETDEWEB)

    Mohebbi, Razie; Seyed-Yazdi, Jamileh, E-mail: j.seyedyazdi@vru.ac.ir

    2016-06-01

    In this paper we have investigated the electronic transmission of systems electrode–benzene–electrode using the Landauer approach. The effect of different electrodes made of metal (Au) and semiconductors (Si, TiO{sub 2}) is investigated. These three electrodes are compared between them and the results show that the electronic transmission of benzene junctions, when using semiconductor electrodes, is associated to a gap in transmission which is due to the electrodes band gap. As a consequence, a threshold voltage is necessary to obtain conducting channels.

  5. Transmission Dynamics of Hepatitis C with Control Strategies

    Directory of Open Access Journals (Sweden)

    Adnan Khan

    2014-01-01

    Full Text Available We present a rigorous mathematical analysis of a deterministic model, for the transmission dynamics of hepatitis C, using a standard incidence function. The infected population is divided into three distinct compartments featuring two distinct infection stages (acute and chronic along with an isolation compartment. It is shown that for basic reproduction number R0≤1, the disease-free equilibrium is locally and globally asymptotically stable. The model also has an endemic equilibrium for R0>1. Uncertainty and sensitivity analyses are carried out to identify and study the impact of critical parameters on R0. In addition, we have presented the numerical simulations to investigate the influence of different important parameters on R0. Since we have a locally stable endemic equilibrium, optimal control is applied to the deterministic model to reduce the total infected population. Two different optimal control strategies (vaccination and isolation are designed to control the disease and reduce the infected population. Pontryagin’s Maximum Principle is used to characterize the optimal controls in terms of an optimality system which is solved numerically. Numerical results for the optimal controls are compared against the constant controls and their effectiveness is discussed.

  6. Analyzing transmission dynamics of cholera with public health interventions.

    Science.gov (United States)

    Posny, Drew; Wang, Jin; Mukandavire, Zindoga; Modnak, Chairat

    2015-06-01

    Cholera continues to be a serious public health concern in developing countries and the global increase in the number of reported outbreaks suggests that activities to control the diseases and surveillance programs to identify or predict the occurrence of the next outbreaks are not adequate. These outbreaks have increased in frequency, severity, duration and endemicity in recent years. Mathematical models for infectious diseases play a critical role in predicting and understanding disease mechanisms, and have long provided basic insights in the possible ways to control infectious diseases. In this paper, we present a new deterministic cholera epidemiological model with three types of control measures incorporated into a cholera epidemic setting: treatment, vaccination and sanitation. Essential dynamical properties of the model with constant intervention controls which include local and global stabilities for the equilibria are carefully analyzed. Further, using optimal control techniques, we perform a study to investigate cost-effective solutions for time-dependent public health interventions in order to curb disease transmission in epidemic settings. Our results show that the basic reproductive number (R0) remains the model's epidemic threshold despite the inclusion of a package of cholera interventions. For time-dependent controls, the results suggest that these interventions closely interplay with each other, and the costs of controls directly affect the length and strength of each control in an optimal strategy. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. In SITU Transmission Electron Microscopy on Operating Electrochemical CELLS

    DEFF Research Database (Denmark)

    Gualandris, Fabrizio; Simonsen, Søren Bredmose; Mogensen, Mogens Bjerg

    2016-01-01

    Solid oxide cells (SOC) have the potential of playing a significant role in the future efficient energy system scenario. In order to become widely commercially available, an improved performance and durability of the cells has to be achieved [1]. Conventional scanning and transmission SEM and TEM...... have been often used for ex-situ post mortem characterization of SOFCs and SOECs [2,3]. However, in order to get fundamental insight of the microstructural development of SOFC/SOEC during operation conditions in situ studies are necessary [4]....

  8. In SITU Transmission Electron Microscopy on Operating Electrochemical CELLS

    DEFF Research Database (Denmark)

    Gualandris, Fabrizio; Simonsen, Søren Bredmose; Mogensen, Mogens Bjerg

    2016-01-01

    Solid oxide cells (SOC) have the potential of playing a significant role in the future efficient energy system scenario. In order to become widely commercially available, an improved performance and durability of the cells has to be achieved [1]. Conventional scanning and transmission SEM and TEM...... have been often used for ex-situ post mortem characterization of SOFCs and SOECs [2,3]. However, in order to get fundamental insight of the microstructural development of SOFC/SOEC during operation conditions in situ studies are necessary [4]....

  9. Transmission of Megawatt Relativistic Electron Beams Through Millimeter Apertures

    CERN Document Server

    Alarcon, R; Benson, S V; Bertozzi, W; Boyce, J R; Cowan, R; Douglas, D; Evtushenko, P; Fisher, P; Ihloff, E; Kalantarians, N; Kelleher, A; Legg, R; Milner, R G; Neil, G R; Ou, L; Schmookler, B; Tennant, C; Tschalaer, C; Williams, G P; Zhang, S

    2013-01-01

    High power, relativistic electron beams from energy recovery linacs have great potential to realize new experimental paradigms for pioneering innovation in fundamental and applied research. A major design consideration for this new generation of experimental capabilities is the understanding of the halo associated with these bright, intense beams. In this Letter, we report on measurements performed using the 100 MeV, 430 kWatt CW electron beam from the energy recovery linac at the Jefferson Laboratory's Free Electron Laser facility as it traversed a set of small apertures in a 127 mm long aluminum block. Thermal measurements of the block together with neutron measurements near the beam-target interaction point yielded a consistent understanding of the beam losses. These were determined to be 3 ppm through a 2 mm diameter aperture and were maintained during a 7 hour continuous run.

  10. Elastic Dynamic Stability of Big-Span Power Transmission Tower Subjected to Seismic Excitations

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hang; LI Li; FANG Qin-han; YE Kun

    2009-01-01

    By combining the time-history response analysis and the eigenvalue buckling analysis,this paper developed a computational procedure to study the elastic dynamic stability of a transmission tower by APDL language in ANSYS.The influences of different input directions of seismic excitations and damping ratio on the elastic dynamic stability of tower were discussed.The following conclusions were obtained:(1) Longitudinal direction of the transmission lines is the worst input direction of seismic excitation for the transmission tower.(2) Dead load has no significant effect on the critical load and the occurrence time of buckling.(3) Vertical input of seismic excitations has no great effect on the dynamic stability of the transmission tower.(4) Damping effect has an influence on the dynamic stability of the transmission tower; however,the inherent characteristics of dynamic buckling is not changed.

  11. Nonlinear dynamics of electron-positron clusters

    CERN Document Server

    Manfredi, Giovanni; Haas, Fernando; 10.1088/1367-2630/14/7/075012

    2012-01-01

    Electron-positron clusters are studied using a quantum hydrodynamic model that includes Coulomb and exchange interactions. A variational Lagrangian method is used to determine their stationary and dynamical properties. The cluster static features are validated against existing Hartree-Fock calculations. In the linear response regime, we investigate both dipole and monopole (breathing) modes. The dipole mode is reminiscent of the surface plasmon mode usually observed in metal clusters. The nonlinear regime is explored by means of numerical simulations. We show that, by exciting the cluster with a chirped laser pulse with slowly varying frequency (autoresonance), it is possible to efficiently separate the electron and positron populations on a timescale of a few tens of femtoseconds.

  12. Origin of the spin-asymmetry of hot-electron transmission in Fe

    NARCIS (Netherlands)

    Banerjee, T.; Lodder, J.C.; Jansen, R.

    2007-01-01

    Using the technique of ballistic electron magnetic microscopy, we have studied the spin-asymmetry of transmission of hot electrons in Fe, for which a recent ab initio calculation has shown that the inelastic lifetime is similar for majority and minority spin. Nevertheless, using a spin-valve structu

  13. Anisotropic Shape Changes of Silica Nanoparticles Induced in Liquid with Scanning Transmission Electron Microscopy

    NARCIS (Netherlands)

    Zecevic, J.; Hermannsdorfer, Justus; Schuh, Tobias; de Jong, Krijn P.; de Jonge, Niels

    2017-01-01

    Liquid-phase transmission electron microscopy (TEM) is used for in-situ imaging of nanoscale processes taking place in liquid, such as the evolution of nanoparticles during synthesis or structural changes of nanomaterials in liquid environment. Here, it is shown that the focused electron beam of

  14. Direct observations of the MOF (UiO-66) structure by transmission electron microscopy

    KAUST Repository

    Zhu, Liangkui

    2013-01-01

    As a demonstration of ab initio structure characterizations of nano metal organic framework (MOF) crystals by high resolution transmission electron microscopy (HRTEM) and electron diffraction tomography methods, a Zr-MOF (UiO-66) structure was determined and further confirmed by Rietveld refinements of powder X-ray diffraction. HRTEM gave direct imaging of the channels. © 2013 The Royal Society of Chemistry.

  15. The Design and Construction of a Simple Transmission Electron Microscope for Educational Purposes.

    Science.gov (United States)

    Hearsey, Paul K.

    This document presents a model for a simple transmission electron microscope for educational purposes. This microscope could demonstrate thermonic emission, particle acceleration, electron deflection, and flourescence. It is designed to be used in high school science courses, particularly physics, taking into account the size, weight, complexity…

  16. Removal of Vesicle Structures from Transmission Electron Microscope Images

    DEFF Research Database (Denmark)

    Jensen, Katrine Hommelhoff; Sigworth, Fred; Brandt, Sami Sebastian

    2015-01-01

    In this paper, we address the problem of imaging membrane proteins for single-particle cryo-electron microscopy reconstruction of the isolated protein structure. More precisely, we propose a method for learning and removing the interfering vesicle signals from the micrograph, prior to reconstruct...

  17. Asymmetric Wave Transmission During Electron-Cyclotron Resonant Heating

    NARCIS (Netherlands)

    Peeters, A.G.; Smits, F. M. A.; Giruzzi, G.; Oomens, A. A. M.; Westerhof, E.

    1995-01-01

    In low density plasmas in the RTP tokamak the single-pass absorption of O-mode waves at the fundamental electron cyclotron resonance is observed to be toroidally asymmetric. The absorption is highest for waves travelling in the direction opposite to the toroidal plasma current. Fokker-Planck

  18. Free electron lasers for transmission of energy in space

    Science.gov (United States)

    Segall, S. B.; Hiddleston, H. R.; Catella, G. C.

    1981-01-01

    A one-dimensional resonant-particle model of a free electron laser (FEL) is used to calculate laser gain and conversion efficiency of electron energy to photon energy. The optical beam profile for a resonant optical cavity is included in the model as an axial variation of laser intensity. The electron beam profile is matched to the optical beam profile and modeled as an axial variation of current density. Effective energy spread due to beam emittance is included. Accelerators appropriate for a space-based FEL oscillator are reviewed. Constraints on the concentric optical resonator and on systems required for space operation are described. An example is given of a space-based FEL that would produce 1.7 MW of average output power at 0.5 micrometer wavelength with over 50% conversion efficiency of electrical energy to laser energy. It would utilize a 10 m-long amplifier centered in a 200 m-long optical cavity. A 3-amp, 65 meV electrostatic accelerator would provide the electron beam and recover the beam after it passes through the amplifier. Three to five shuttle flights would be needed to place the laser in orbit.

  19. Transmission and Trapping of Cold Electrons in Water Ice

    DEFF Research Database (Denmark)

    Balog, Richard; Cicman, Peter; Field, David;

    2011-01-01

    Experiments are reported that show currents of low energy (“cold”) electrons pass unattenuated through crystalline ice at 135 K for energies between zero and 650 meV, up to the maximum studied film thickness of 430 bilayers, showing negligible apparent trapping. By contrast, both porous amorphous...

  20. Low impact to fixed cell processing aiming transmission electron microscopy

    Science.gov (United States)

    Barth, Ortrud Monika; da Silva, Marcos Alexandre Nunes; Barreto-Vieira, Debora Ferreira

    2016-01-01

    In cell culture, cell structures suffer strong impact due to centrifugation during processing for electron microscope observation. In order to minimise this effect, a new protocol was successfully developed. Using conventional reagents and equipments, it took over one week, but cell compression was reduced to none or the lowest deformation possible. PMID:27276186

  1. Synthesis and Activation of Catalysts for Biofuel Synthesis in an Environmental Transmission Electron Microscope

    DEFF Research Database (Denmark)

    Duchstein, Linus Daniel Leonhard; Wu, Qiongxiao; Elkjær, Christian Fink

    promising candidates experimentally. Transmission electron microscopy (TEM) is used for microstructural characterization and provides feedback for both theory and synthesis. We have studied the catalysts close to their working conditions in an environmental transmission electron microscope (ETEM) equipped...... of CuNi and NiGa catalysts for alcohol synthesis using High-Resolution TEM (HRTEM), energy electron-loss spectroscopy (EELS), Energy-Dispersive X-ray Spectroscopy (EDX). Complementary observations have been done using in-situ X-Ray Diffraction (XRD). We focus on structural changes during the catalysts...

  2. A menu of electron probes for optimising information from scanning transmission electron microscopy.

    Science.gov (United States)

    Nguyen, D T; Findlay, S D; Etheridge, J

    2017-09-07

    We assess a selection of electron probes in terms of the spatial resolution with which information can be derived about the structure of a specimen, as opposed to the nominal image resolution. Using Ge [001] as a study case, we investigate the scattering dynamics of these probes and determine their relative merits in terms of two qualitative criteria: interaction volume and interpretability. This analysis provides a 'menu of probes' from which an optimum probe for tackling a given materials science question can be selected. Hollow cone, vortex and spherical wave fronts are considered, from unit cell to Ångstrom size, and for different defocus and specimen orientations. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. A transmission electron microscopy and X-ray photoelectron spectroscopy study of annealing induced γ-phase nucleation, clustering, and interfacial dynamics in reactively sputtered amorphous alumina thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A. K. Nanda, E-mail: aknk27@yahoo.com; Subramanian, B. [ECMS Division, Central Electro Chemical Research Institute, Karaikudi (India); Prasanna, S. [Department of Physics, PSG College of Technology, Coimbatore (India); Jayakumar, S. [Department of Physics, PSG Institute of Technology and Applied Research, Coimbatore (India); Rao, G. Mohan [Department of Instrumentation, Indian Institute of Science, Bangalore (India)

    2015-03-28

    Pure α-Al{sub 2}O{sub 3} exhibits a very high degree of thermodynamical stability among all metal oxides and forms an inert oxide scale in a range of structural alloys at high temperatures. We report that amorphous Al{sub 2}O{sub 3} thin films sputter deposited over crystalline Si instead show a surprisingly active interface. On annealing, crystallization begins with nuclei of a phase closely resembling γ-Alumina forming almost randomly in an amorphous matrix, and with increasing frequency near the substrate/film interface. This nucleation is marked by the signature appearance of sharp (400) and (440) reflections and the formation of a diffuse diffraction halo with an outer maximal radius of ≈0.23 nm enveloping the direct beam. The microstructure then evolves by a cluster-coalescence growth mechanism suggestive of swift nucleation and sluggish diffusional kinetics, while locally the Al ions redistribute slowly from chemisorbed and tetrahedral sites to higher anion coordinated sites. Chemical state plots constructed from XPS data and simple calculations of the diffraction patterns from hypothetically distorted lattices suggest that the true origins of the diffuse diffraction halo are probably related to a complex change in the electronic structure spurred by the a-γ transformation rather than pure structural disorder. Concurrent to crystallization within the film, a substantially thick interfacial reaction zone also builds up at the film/substrate interface with the excess Al acting as a cationic source.

  4. Simulations of the electron cloud buildup and its influence on the microwave transmission measurement

    Science.gov (United States)

    Haas, Oliver Sebastian; Boine-Frankenheim, Oliver; Petrov, Fedor

    2013-11-01

    An electron cloud density in an accelerator can be measured using the Microwave Transmission (MWT) method. The aim of our study is to evaluate the influence of a realistic, nonuniform electron cloud on the MWT. We conduct electron cloud buildup simulations for beam pipe geometries and bunch parameters resembling roughly the conditions in the CERN SPS. For different microwave waveguide modes the phase shift induced by a known electron cloud density is obtained from three different approaches: 3D Particle-In-Cell (PIC) simulation of the electron response, a 2D eigenvalue solver for waveguide modes assuming a dielectric response function for cold electrons, a perturbative method assuming a sufficiently smooth density profile. While several electron cloud parameters, such as temperature, result in minor errors in the determined density, the transversely inhomogeneous density can introduce a large error in the measured electron density. We show that the perturbative approach is sufficient to describe the phase shift under realistic electron cloud conditions. Depending on the geometry of the beam pipe, the external magnetic field configuration and the used waveguide mode, the electron cloud density can be concentrated at the beam pipe or near the beam pipe center, leading to a severe over- or underestimation of the electron density. Electron cloud distributions are very inhomogeneous, especially in dipoles. These inhomogeneities affect the microwave transmission measurement results. Electron density might be over- or underestimated, depending on setup. This can be quantified with several models, e.g. a perturbative approach.

  5. Robust image alignment for cryogenic transmission electron microscopy.

    Science.gov (United States)

    McLeod, Robert A; Kowal, Julia; Ringler, Philippe; Stahlberg, Henning

    2017-03-01

    Cryo-electron microscopy recently experienced great improvements in structure resolution due to direct electron detectors with improved contrast and fast read-out leading to single electron counting. High frames rates enabled dose fractionation, where a long exposure is broken into a movie, permitting specimen drift to be registered and corrected. The typical approach for image registration, with high shot noise and low contrast, is multi-reference (MR) cross-correlation. Here we present the software package Zorro, which provides robust drift correction for dose fractionation by use of an intensity-normalized cross-correlation and logistic noise model to weight each cross-correlation in the MR model and filter each cross-correlation optimally. Frames are reliably registered by Zorro with low dose and defocus. Methods to evaluate performance are presented, by use of independently-evaluated even- and odd-frame stacks by trajectory comparison and Fourier ring correlation. Alignment of tiled sub-frames is also introduced, and demonstrated on an example dataset. Zorro source code is available at github.com/CINA/zorro. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Environmental Transmission Electron Microscopy of catalysts for the methanol synthesis

    DEFF Research Database (Denmark)

    Duchstein, Linus Daniel Leonhard

    Everywhere around the world, natural resources like crude oil are becoming less and harder to extract. It is therefore necessary to find alternatives to secure our future transportation in a sustainable way. This can be done e.g. through chemical conversion of lignocelluloses into bio-alcohol thr......Everywhere around the world, natural resources like crude oil are becoming less and harder to extract. It is therefore necessary to find alternatives to secure our future transportation in a sustainable way. This can be done e.g. through chemical conversion of lignocelluloses into bio...... atmosphere and temperature was investigated. CuNi was exposed to the electron beam for 3 different intensities and 3 different temperatures while the oxidation state of the Cu2+ was measured by energy electron loss spectroscopy. It turns out that the electron beam does have an influence but it does not seem...... to scale with the beam current density but foremost with the exposure time. The ETEM shows phase and chemical changes during the reaction....

  7. Electron transmission in normal/heavy-fermion superconductor junctions

    OpenAIRE

    Araujo, M. A. N; Sacramento, P. D.

    2008-01-01

    The Andreev reflection between a normal metal (N) and a heavy-fermion superconductor (HFS) is studied and the boundary conditions for the electron's wave function in the two systems are established in the framework of a two band model for the HFS. Hence we show in a simple and explicit way that the mass enhancement factors in the heavy-fermion (HF) metal do not cause impedance at the N/HFS interface, in accordance with arguments previously presented. We also present an extension of the theory...

  8. Big Data Analytics for Scanning Transmission Electron Microscopy Ptychography

    Science.gov (United States)

    Jesse, S.; Chi, M.; Belianinov, A.; Beekman, C.; Kalinin, S. V.; Borisevich, A. Y.; Lupini, A. R.

    2016-05-01

    Electron microscopy is undergoing a transition; from the model of producing only a few micrographs, through the current state where many images and spectra can be digitally recorded, to a new mode where very large volumes of data (movies, ptychographic and multi-dimensional series) can be rapidly obtained. Here, we discuss the application of so-called “big-data” methods to high dimensional microscopy data, using unsupervised multivariate statistical techniques, in order to explore salient image features in a specific example of BiFeO3 domains. Remarkably, k-means clustering reveals domain differentiation despite the fact that the algorithm is purely statistical in nature and does not require any prior information regarding the material, any coexisting phases, or any differentiating structures. While this is a somewhat trivial case, this example signifies the extraction of useful physical and structural information without any prior bias regarding the sample or the instrumental modality. Further interpretation of these types of results may still require human intervention. However, the open nature of this algorithm and its wide availability, enable broad collaborations and exploratory work necessary to enable efficient data analysis in electron microscopy.

  9. Big Data Analytics for Scanning Transmission Electron Microscopy Ptychography.

    Science.gov (United States)

    Jesse, S; Chi, M; Belianinov, A; Beekman, C; Kalinin, S V; Borisevich, A Y; Lupini, A R

    2016-05-23

    Electron microscopy is undergoing a transition; from the model of producing only a few micrographs, through the current state where many images and spectra can be digitally recorded, to a new mode where very large volumes of data (movies, ptychographic and multi-dimensional series) can be rapidly obtained. Here, we discuss the application of so-called "big-data" methods to high dimensional microscopy data, using unsupervised multivariate statistical techniques, in order to explore salient image features in a specific example of BiFeO3 domains. Remarkably, k-means clustering reveals domain differentiation despite the fact that the algorithm is purely statistical in nature and does not require any prior information regarding the material, any coexisting phases, or any differentiating structures. While this is a somewhat trivial case, this example signifies the extraction of useful physical and structural information without any prior bias regarding the sample or the instrumental modality. Further interpretation of these types of results may still require human intervention. However, the open nature of this algorithm and its wide availability, enable broad collaborations and exploratory work necessary to enable efficient data analysis in electron microscopy.

  10. In situ transmission electron microscopy of ionic conductivity and reaction mechanisms in ultrathin solid oxide fuel cells.

    Science.gov (United States)

    Tavabi, Amir H; Arai, Shigeo; Muto, Shunsuke; Tanji, Takayoshi; Dunin-Borkowski, Rafal E

    2014-12-01

    Solid oxide fuel cells (SOFCs) are promising candidates for use in alternative energy technologies. A full understanding of the reaction mechanisms in these dynamic material systems is required to optimize device performance and overcome present limitations. Here, we show that in situ transmission electron microscopy (TEM) can be used to study redox reactions and ionic conductivity in SOFCs in a gas environment at elevated temperature. We examine model ultrathin half and complete cells in two environmental TEMs using off-axis electron holography and electron energy-loss spectroscopy. Our results from the model cells provide insight into the essential phenomena that are important for the operation of commercial devices. Changes in the activities of dopant cations in the solid electrolyte are detected during oxygen anion conduction, demonstrating the key role of dopants in electrolyte architecture in SOFCs.

  11. Imaging Protein Structure in Water at 2.7 nm Resolution by Transmission Electron Microscopy

    Science.gov (United States)

    Mirsaidov, Utkur M.; Zheng, Haimei; Casana, Yosune; Matsudaira, Paul

    2012-01-01

    We demonstrate an in situ transmission electron microscopy technique for imaging proteins in liquid water at room temperature. Liquid samples are loaded into a microfabricated environmental cell that isolates the sample from the vacuum with thin silicon nitride windows. We show that electron micrographs of acrosomal bundles in water are similar to bundles imaged in ice, and we determined the resolution to be at least 2.7 nm at doses of ∼35 e/Å2. The resolution was limited by the thickness of the window and radiation damage. Surprisingly, we observed a smaller fall-off in the intensity of reflections in room-temperature water than in 98 K ice. Thus, our technique extends imaging of unstained and unlabeled macromolecular assemblies in water from the resolution of the light microscope to the nanometer resolution of the electron microscope. Our results suggest that real-time imaging of protein dynamics is conceptually feasible. PMID:22385868

  12. Lorentz microscopy observation of vortices in high-Tc superconductors using a 1-MV field emission transmission electron microscope.

    Science.gov (United States)

    Harada, Ken

    2013-06-01

    Lorentz microscopy has opened the door to observing a single quantized magnetic flux line (i.e. a vortex) and its dynamic behavior inside a superconductor in real time. It resulted from the efforts of Dr Akira Tonomura and his collaborators, who developed a field emission electron microscope and advanced the technologies used for visualizing vortices (e.g. a low-temperature specimen stage and a magnetic-field application system). They used a 1-MV field emission transmission electron microscope with an electron beam that can penetrate thick specimens of high-temperature superconductors (Bi2Sr2CaCu2O8+δ and YB2C3O7-δ) to reveal the flux-line features inside materials and their interactions with defects. This memorial paper reviews the results of research in the area of vortex matter physics.

  13. Effects of Topography in Nano-Structured Thin Films : A Lorentz Transmission Electron Microscopy and Electron Holography Study

    NARCIS (Netherlands)

    Hosson, Jeff Th.M. De; Raedt, Hans A. De

    2003-01-01

    This paper aims at applying advanced transmission electron microscopy (TEM) to functional materials, such as ultra-soft magnetic films for high-frequency inductors, to reveal the structure-property relationship. The ultimate goal is to delineate a more quantitative way to obtain information of the

  14. In Situ Transmission Electron Microscopy of Cadmium Selenide Nanorod Sublimation.

    Science.gov (United States)

    Hellebusch, Daniel J; Manthiram, Karthish; Beberwyck, Brandon J; Alivisatos, A Paul

    2015-02-19

    In situ electron microscopy is used to observe the morphological evolution of cadmium selenide nanorods as they sublime under vacuum at a series of elevated temperatures. Mass loss occurs anisotropically along the nanorod's long axis. At temperatures close to the sublimation threshold, the phase change occurs from both tips of the nanorods and proceeds unevenly with periods of rapid mass loss punctuated by periods of relative stability. At higher temperatures, the nanorods sublime at a faster, more uniform rate, but mass loss occurs from only a single end of the rod. We propose a mechanism that accounts for the observed sublimation behavior based on the terrace-ledge-kink (TLK) model and how the nanorod surface chemical environment influences the kinetic barrier of sublimation.

  15. Measurements of electron cloud density in the CERN Super Proton Synchrotron with the microwave transmission method

    Directory of Open Access Journals (Sweden)

    S. Federmann

    2011-01-01

    Full Text Available The electron cloud effect can pose severe performance limitations in high-energy particle accelerators as the CERN Super Proton Synchrotron (SPS. Mitigation techniques such as vacuum chamber thin film coatings with low secondary electron yields (SEY<1.3 aim to reduce or even suppress this effect. The microwave transmission method, developed and first applied in 2003 at the SPS, measures the integrated electron cloud density over a long section of an accelerator. This paper summarizes the theory and measurement principle and describes the new SPS microwave transmission setup used to study the electron cloud mitigation of amorphous carbon coated SPS dipole vacuum chambers. Comparative results of carbon coated and bare stainless steel dipole vacuum chambers are given for the beam with nominal LHC 25 ns bunch-to-bunch spacing in the SPS and the electron cloud density is derived.

  16. First-principles dynamics of electrons and phonons

    OpenAIRE

    Bernardi, Marco

    2016-01-01

    First-principles calculations combining density functional theory and many-body perturbation theory can provide microscopic insight into the dynamics of electrons and phonons in materials. We review this theoretical and computational framework, focusing on perturbative treatments of scattering, dynamics and transport of coupled electrons and phonons. We discuss application of these first-principles calculations to electronics, lighting, spectroscopy and renewable energy.

  17. Proton Transmitting Energy Spectra and Transmission Electron Microscope Examinations of Biological Samples

    Science.gov (United States)

    Tan, Chun-yu; Xia, Yue-yuan; Zhang, Jian-hua; Mu, Yu-guang; Wang, Rui-jin; Liu, Ji-tian; Liu, Xiang-dong; Yu, Zeng-liang

    1999-02-01

    Transmission energy spectra of 530 keV H+ ion penetrating 140 μm thick seed coat of maize and fruit peel of grape with thickness of 100 μm were measured. The result indicates that these thick biological targets, as seen by the penetrating ions, are inhomogeneous, and there are open "channel like" paths along which the incident ions can transmit the targets easily. While most of the incident ions are stopped in the targets, some of the transmitting ions only lose a small fraction of their initial incident energy. The transmission energy spectra show a pure electronic stopping feature. Transmission electron microscope (TEM) micrographes taken from the samples of seed coat of maize and fruit peel of tomato with thickness of 60 μm indicate that 150 keV electron beam from the TEM can penetrate the thick samples to give very good images with clear contrasts.

  18. Advanced transmission electron microscopy studies in low-energy ion implanted Si Semiconductors; Junctions; Silicon

    CERN Document Server

    Wang, T S

    2002-01-01

    As the dimensions of semiconductor devices shrink down to 0.1 mu m and beyond, low energy ion implantation is required to introduce shallower junctions to match such small devices. In this work, transmission electron microscopy (TEM) is employed to analyse low energy implanted junctions with both structural and chemical analyses. High resolution transmission electron microscopy (HRTEM) has been employed to observe Si crystal damage and amorphization due to low energy B sup + /As sup + ion implantations, and also, defect formation/annihilation during rapid thermal annealing (RTA). The damage effects due to different implant temperatures between 300 deg C and -150 deg C are also discussed. Since knowledge of the distribution of low energy ion implanted dopants in Si is extremely important for semiconductor device processing, energy filtered transmission electron microscopy (EFTEM) has been employed to determine implanted B distributions in Si while Z-contrast imaging and X-ray analytical mapping techniques are ...

  19. A novel exact solution to transmission problem of electron wave in a nonlinear Kronig-Penney superlattice

    Science.gov (United States)

    Kong, Chao; Hai, Kuo; Tan, Jintao; Chen, Hao; Hai, Wenhua

    2016-03-01

    Nonlinear Kronig-Penney model has been frequently employed to study transmission problem of electron wave in a doped semiconductor superlattice or in a nonlinear electrified chain. Here from an integral equation we derive a novel exact solution of the problem, which contains a simple nonlinear map connecting transmission coefficient with system parameters. Consequently, we propose a scheme to manipulate electronic distribution and transmission by adjusting the system parameters. A new quantum coherence effect is evidenced by the strict expression of transmission coefficient, which results in the aperiodic electronic distributions and different transmission coefficients including the approximate zero transmission and total transmission, and the multiple transmissions. The method based on the concise exact solution can be applied directly to some nonlinear cold atomic systems and a lot of linear Kronig-Penney systems, and also can be extended to investigate electronic transport in different discrete nonlinear systems.

  20. Visualization of newt aragonitic otoconial matrices using transmission electron microscopy

    Science.gov (United States)

    Steyger, P. S.; Wiederhold, M. L.

    1995-01-01

    Otoconia are calcified protein matrices within the gravity-sensing organs of the vertebrate vestibular system. These protein matrices are thought to originate from the supporting or hair cells in the macula during development. Previous studies of mammalian calcitic, barrel-shaped otoconia revealed an organized protein matrix consisting of a thin peripheral layer, a well-defined organic core and a flocculent matrix inbetween. No studies have reported the microscopic organization of the aragonitic otoconial matrix, despite its protein characterization. Pote et al. (1993b) used densitometric methods and inferred that prismatic (aragonitic) otoconia have a peripheral protein distribution, compared to that described for the barrel-shaped, calcitic otoconia of birds, mammals, and the amphibian utricle. By using tannic acid as a negative stain, we observed three kinds of organic matrices in preparations of fixed, decalcified saccular otoconia from the adult newt: (1) fusiform shapes with a homogenous electron-dense matrix; (2) singular and multiple strands of matrix; and (3) more significantly, prismatic shapes outlined by a peripheral organic matrix. These prismatic shapes remain following removal of the gelatinous matrix, revealing an internal array of organic matter. We conclude that prismatic otoconia have a largely peripheral otoconial matrix, as inferred by densitometry.

  1. Cryogenic transmission electron microscopy nanostructural study of shed microparticles.

    Directory of Open Access Journals (Sweden)

    Liron Issman

    Full Text Available Microparticles (MPs are sub-micron membrane vesicles (100-1000 nm shed from normal and pathologic cells due to stimulation or apoptosis. MPs can be found in the peripheral blood circulation of healthy individuals, whereas elevated concentrations are found in pregnancy and in a variety of diseases. Also, MPs participate in physiological processes, e.g., coagulation, inflammation, and angiogenesis. Since their clinical properties are important, we have developed a new methodology based on nano-imaging that provides significant new data on MPs nanostructure, their composition and function. We are among the first to characterize by direct-imaging cryogenic transmitting electron microscopy (cryo-TEM the near-to-native nanostructure of MP systems isolated from different cell types and stimulation procedures. We found that there are no major differences between the MP systems we have studied, as most particles were spherical, with diameters from 200 to 400 nm. However, each MP population is very heterogeneous, showing diverse morphologies. We investigated by cryo-TEM the effects of standard techniques used to isolate and store MPs, and found that either high-g centrifugation of MPs for isolation purposes, or slow freezing to -80 °C for storage introduce morphological artifacts, which can influence MP nanostructure, and thus affect the efficiency of these particles as future diagnostic tools.

  2. Scanning and Transmission Electron Microscopy of High Temperature Materials

    Science.gov (United States)

    1994-01-01

    Software and hardware updates to further extend the capability of the electron microscope were carried out. A range of materials such as intermetallics, metal-matrix composites, ceramic-matrix composites, ceramics and intermetallic compounds, based on refractory elements were examined under this research. Crystal structure, size, shape and volume fraction distribution of various phases which constitute the microstructures were examined. Deformed materials were studied to understand the effect of interfacial microstructure on the deformation and fracture behavior of these materials. Specimens tested for a range of mechanical property requirements, such as stress rupture, creep, low cycle fatigue, high cycle fatigue, thermomechanical fatigue, etc. were examined. Microstructural and microchemical stability of these materials exposed to simulated operating environments were investigated. The EOIM Shuttle post-flight samples were also examined to understand the influence of low gravity processing on microstructure. In addition, fractographic analyses of Nb-Zr-W, titanium aluminide, molybdenum silicide and silicon carbide samples were carried out. Extensive characterization of sapphire fibers in the fiber-reinforced composites made by powder cloth processing was made. Finally, pressure infiltration casting of metal-matrix composites was carried out.

  3. Transmission properties of Dirac electrons through Cantor monolayer graphene superlattices

    Directory of Open Access Journals (Sweden)

    R. Rodríguez-González

    2014-01-01

    Full Text Available En este trabajo usamos el método de la matriz de transferencia para estudiar el tunelamiento de los electrones de Dirac a través de superredes aperiodicas en grafeno. Consideramos una hoja de grafeno depositada encima de bloques de sustratos de Óxido de Silicio (SiO2 y Carburo de Silicio (SiC, en los cuales aplicamos la serie de Cantor. Calculamos la transmitancia para diferentes parámetros fundamentales tales como: ancho de partida, energía de incidencia, ángulo de incidencia y número de generación de la serie de Cantor. En este caso, la transmitancia como función de la energía presenta rasgos autosimilares al variar el número de generación. También computamos la distribución angular de la transmitancia para energías fijas econtrando un patrón autosimilar entre generaciones. Por último, calculamos los factores de escala para algunos espectros de la transmitancia, los cuales efectivamente muestran escalabilidad.

  4. Macroporous silicon membranes as electron and x-ray transmissive windows

    OpenAIRE

    Schilling, J.; Scherer, A; Gösele, U; Kolbe, M.

    2004-01-01

    Macroporous silicon membranes are fabricated whose pores are terminated with 60 nm thin silicon dioxide shells. The transmission of electrons with energies of 5 kV-25 kV through these membranes was investigated reaching a maximum of 22% for 25 kV. Furthermore, the transmission of electromagnetic radiation ranging from the far-infrared to the x-ray region was determined. The results suggest the application of the membrane as window material for electron optics and energy dispersive x-ray detec...

  5. 40 CFR Appendix A to Subpart E of... - Interim Transmission Electron Microscopy Analytical Methods-Mandatory and Nonmandatory-and...

    Science.gov (United States)

    2010-07-01

    ..., Subpt. E, App. A Appendix A to Subpart E of Part 763—Interim Transmission Electron Microscopy Analytical... completion of response actions. This unit is mandatory. II. Mandatory Transmission Electron Microscopy Method... sample. 17. PCM—Phase contrast microscopy. 18. SAED—Selected area electron diffraction. 19....

  6. eV-TEM: Transmission electron microscopy in a low energy cathode lens instrument

    Energy Technology Data Exchange (ETDEWEB)

    Geelen, Daniël, E-mail: geelen@physics.leidenuniv.nl [Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics, Leiden University, P.O. Box 9504, 2300 RA Leiden (Netherlands); Thete, Aniket [Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics, Leiden University, P.O. Box 9504, 2300 RA Leiden (Netherlands); Schaff, Oliver; Kaiser, Alexander [SPECS GmbH, Voltastrasse 5, D-13355 Berlin (Germany); Molen, Sense Jan van der [Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics, Leiden University, P.O. Box 9504, 2300 RA Leiden (Netherlands); Tromp, Rudolf [IBM T.J. Watson Research Center, 1101 Kitchawan Road, P.O. Box 218, Yorktown Heights, NY 10598 (United States)

    2015-12-15

    We are developing a transmission electron microscope that operates at extremely low electron energies, 0–40 eV. We call this technique eV-TEM. Its feasibility is based on the fact that at very low electron energies the number of energy loss pathways decreases. Hence, the electron inelastic mean free path increases dramatically. eV-TEM will enable us to study elastic and inelastic interactions of electrons with thin samples. With the recent development of aberration correction in cathode lens instruments, a spatial resolution of a few nm appears within range, even for these very low electron energies. Such resolution will be highly relevant to study biological samples such as proteins and cell membranes. The low electron energies minimize adverse effects due to radiation damage. - Highlights: • We present a new way of performing low energy transmission electron microscopy in an aberration corrected LEEM/PEEM instrument. • We show a proof of principle where we measure transmitted electrons through a suspended graphene monolayer with a preliminary setup. • We present an improved setup design that provides better control of the incident electron beam.

  7. In-Situ High-Resolution Transmission Electron Microscopy Investigation of Overheating of Cu Nanoparticles

    Science.gov (United States)

    Chen, Chunlin; Hu, Ziyu; Li, Yanfen; Liu, Limin; Mori, Hirotaro; Wang, Zhangchang

    2016-01-01

    Synthesizing and functionalizing metal nanoparticles supported on substrates is currently the subject of intensive study owing to their outstanding catalytic performances for heterogeneous catalysis. Revealing the fundamental effect of the substrates on metal nanoparticles represents a key step in clarifying mechanisms of stability and catalytic properties of these heterogeneous systems. However, direct identification of these effects still poses a significant challenge due to the complicacy of interactions between substrates and nanoparticles and also for the technical difficulty, restraining our understanding of these heterogeneous systems. Here, we combine in situ high-resolution transmission electron microscopy with molecular dynamics simulations to investigate Cu nanoparticles supported on graphite and Cu2O substrates, and demonstrate that melting behavior and thermal stability of Cu nanoparticles can be markedly influenced by substrates. The graphite-supported Cu nanoparticles do not melt during annealing at 1073 K until they vanish completely, i.e. only the sublimation occurs, while the Cu2O-supported Cu nanoparticles suffer melting during annealing at 973 K. Such selective superheating of the Cu nanoparticles can be attributed to the adsorption of a thin carbon layer on the surface of the Cu nanoparticles, which helps guide further stability enhancement of functional nanoparticles for realistic applications.

  8. Real-time studies of battery electrochemical reactions inside a transmission electron microscope.

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Kevin; Hudak, Nicholas S.; Liu, Yang; Liu, Xiaohua H.; Fan, Hongyou; Subramanian, Arunkumar; Shaw, Michael J.; Sullivan, John Patrick; Huang, Jian Yu

    2012-01-01

    We report the development of new experimental capabilities and ab initio modeling for real-time studies of Li-ion battery electrochemical reactions. We developed three capabilities for in-situ transmission electron microscopy (TEM) studies: a capability that uses a nanomanipulator inside the TEM to assemble electrochemical cells with ionic liquid or solid state electrolytes, a capability that uses on-chip assembly of battery components on to TEM-compatible multi-electrode arrays, and a capability that uses a TEM-compatible sealed electrochemical cell that we developed for performing in-situ TEM using volatile battery electrolytes. These capabilities were used to understand lithiation mechanisms in nanoscale battery materials, including SnO{sub 2}, Si, Ge, Al, ZnO, and MnO{sub 2}. The modeling approaches used ab initio molecular dynamics to understand early stages of ethylene carbonate reduction on lithiated-graphite and lithium surfaces and constrained density functional theory to understand ethylene carbonate reduction on passivated electrode surfaces.

  9. Evidence against proteoglycan mediated collagen fibril load transmission and dynamic viscoelasticity in tendon.

    Science.gov (United States)

    Fessel, Gion; Snedeker, Jess G

    2009-10-01

    The glycosaminoglycan (GAG) dermatan sulfate and chondroitin sulfate side-chains of small leucine-rich proteoglycans have been increasingly posited to act as molecular cross links between adjacent collagen fibrils and to directly contribute to tendon elasticity. GAGs have also been implicated in tendon viscoelasticity, supposedly affecting frictional loss during elongation or fluid flow through the extra cellular matrix. The current study sought to systematically test these theories of tendon structure-function by investigating the mechanical repercussions of enzymatic depletion of GAG complexes by chondroitinase ABC in a reproducible tendon structure-function model (rat tail tendon fascicles). The extent of GAG removal (at least 93%) was verified by relevant spectrophotometric assays and transmission electron microscopy. Dynamic viscoelastic tensile tests on GAG depleted rat tail tendon fascicle were not mechanically different from controls in storage modulus (elastic behavior) over a wide range of strain-rates (0.05, 0.5, and 5% change in length per second) in either the linear or nonlinear regions of the material curve. Loss modulus (viscoelastic behavior) was only affected in the nonlinear region at the highest strain-rate, and even this effect was marginal (19% increased loss modulus, p=0.035). Thus glycosaminoglycan chains of small leucine-rich proteoglycans do not appear to mediate dynamic elastic behavior nor do they appear to regulate the dynamic viscoelastic properties in rat tail tendon fascicles.

  10. Choice of operating voltage for a transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Egerton, R.F., E-mail: regerton@ualberta.ca

    2014-10-15

    An accelerating voltage of 100–300 kV remains a good choice for the majority of TEM or STEM specimens, avoiding the expense of high-voltage microscopy but providing the possibility of atomic resolution even in the absence of lens-aberration correction. For specimens thicker than a few tens of nm, the image intensity and scattering contrast are likely to be higher than at lower voltage, as is the visibility of ionization edges below 1000 eV (as required for EELS elemental analysis). In thick (>100 nm) specimens, higher voltage ensures less beam broadening and better spatial resolution for STEM imaging and EDX spectroscopy. Low-voltage (e.g. 30 kV) TEM or STEM is attractive for a very thin (e.g. 10 nm) specimen, as it provides higher scattering contrast and fewer problems for valence-excitation EELS. Specimens that are immune to radiolysis suffer knock-on damage at high current densities, and this form of radiation damage can be reduced or avoided by choosing a low accelerating voltage. Low-voltage STEM with an aberration-corrected objective lens (together with a high-angle dark-field detector and/or EELS) offers atomic resolution and elemental identification from very thin specimens. Conventional TEM can provide atomic resolution in low-voltage phase-contrast images but requires correction of chromatic aberration and preferably an electron-beam monochromator. Many non-conducting (e.g. organic) specimens damage easily by radiolysis and radiation damage then determines the TEM image resolution. For bright-field scattering contrast, low kV can provide slightly better dose-limited resolution if the specimen is very thin (a few nm) but considerably better resolution is possible from a thicker specimen, for which higher kV is required. Use of a phase plate in a conventional TEM offers the most dose-efficient way of achieving atomic resolution from beam-sensitive specimens. - Highlights: • 100–300 kV accelerating voltage is suitable for TEM specimens of typical

  11. On cluster ions, ion transmission, and linear dynamic range limitations in electrospray (ionspray) mass spectrometry

    NARCIS (Netherlands)

    Zook, D.R; Bruins, A.P.

    1997-01-01

    The ion transmission in Electrospray (Ionspray) Mass Spectrometry (ESMS) was studied in order to examine the instrumental factors potentially contributing to observed ESMS linear dynamic range (LDR) limitations. A variety of means used for the investigation of ion transmission demonstrated that a su

  12. Design and implementation of a fs-resolved transmission electron microscope based on thermionic gun technology

    Science.gov (United States)

    Piazza, L.; Masiel, D. J.; LaGrange, T.; Reed, B. W.; Barwick, B.; Carbone, Fabrizio

    2013-09-01

    In this paper, the design and implementation of a femtosecond-resolved ultrafast transmission electron microscope is presented, based on a thermionic gun geometry. Utilizing an additional magnetic lens between the electron acceleration and the nominal condenser lens system, a larger percentage of the electrons created at the cathode are delivered to the specimen without degrading temporal, spatial and energy resolution significantly, while at the same time maintaining the femtosecond temporal resolution. Using the photon-induced near field electron microscopy effect (PINEM) on silver nanowires the cross-correlation between the light and electron pulses was measured, showing the impact of the gun settings and initiating laser pulse duration on the electron bunch properties. Tuneable electron pulses between 300 fs and several ps can be obtained, and an overall energy resolution around 1 eV was achieved.

  13. The origin, dynamics, and molecular evolution of transmissible cancers

    Directory of Open Access Journals (Sweden)

    Jones EA

    2015-09-01

    Full Text Available Elizabeth A Jones, Yuanyuan Cheng, Katherine BelovFaculty of Veterinary Science, University of Sydney, NSW, AustraliaAbstract: Three transmissible cancers are known to have emerged naturally in the wild: canine transmissible venereal tumor (CTVT; Tasmanian devil facial tumor disease (DFTD; and a recently discovered leukemia-like cancer in soft-shell clams (Mya arenaria. These cancers have all acquired the ability to pass between individuals. DFTD emerged approximately 20 years ago and has decimated the Tasmanian devil population. CTVT arose over 10,000 years ago in an ancient breed of dog. The clam cancer is believed to have evolved at least 40 years ago. In this manuscript, we review CTVT and DFTD, the two transmissible mammalian cancers, and provide an overview of the leukemia-like cancer of clams. We showcase how genetics and genomics have enhanced our understanding of the unique biology, origins, and evolutionary histories of these rare cancers.Keywords: transmissible cancer, devil facial tumor disease, DFTD, canine transmissible venereal tumor, origin, evolution

  14. Resonant Transmission of Electron Spin States through Multiple Aharonov-Bohm Rings

    Science.gov (United States)

    Cutright, Jim; Hedin, Eric; Joe, Yong

    2011-10-01

    An Aharonov-Bohm (AB) ring with embedded quantum dots (QD) in each arm and one -dimensional nanowires attached as leads acts as a primitive cell in this analysis. When a tunable, external magnetic field is parallel to the surface area of the ring it causes Zeeman splitting in the energy levels of the QDs. An electron that traverses these energy levels has the potential to interfere with other electrons and to produce spin polarized output. It is already known that upon output the transmission of the electrons through this system will have a resonant peak at each Zeeman split energy level. A system where multiple AB rings are connected in series is studied, to see how having the electrons pass through multiple, identical rings effects the resonant peaks in the transmission and the degree of spin polarization.

  15. Multifractal scaling of electronic transmission resonances in perfect and imperfect Fibonacci δ-function potentials

    Science.gov (United States)

    Thakur, PrabhatK.; Biswas, Parthapratim

    We present here a detailed multifractal scaling study for the electronic transmission resonances with the system size for an infinitely large one-dimensional perfect and imperfect quasiperiodic system represented by a sequence of δ-function potentials. The electronic transmission resonances in the energy minibands manifest more and more fragmented nature of the transmittance with the change of system size. We claim that when a small perturbation is randomly present at a few number of sites or layers, the nature of electronic states will change and this can be understood by studying the electronic transmittance with the change of system size. We report the different critical states manifested in the size variation of the transmittance corresponding to the resonant energies for both perfect and imperfect cases through multifractal scaling study for few of these resonances.

  16. A Simple Transmission Electron Microscopy Method for Fast Thickness Characterization of Suspended Graphene and Graphite Flakes.

    Science.gov (United States)

    Rubino, Stefano; Akhtar, Sultan; Leifer, Klaus

    2016-02-01

    We present a simple, fast method for thickness characterization of suspended graphene/graphite flakes that is based on transmission electron microscopy (TEM). We derive an analytical expression for the intensity of the transmitted electron beam I 0(t), as a function of the specimen thickness t (tgraphene/graphite, the method we propose has the advantage of being simple and fast, requiring only the acquisition of bright-field images.

  17. Joint denoising and distortion correction of atomic scale scanning transmission electron microscopy images

    OpenAIRE

    Berkels, Benjamin; Wirth, Benedikt

    2016-01-01

    Nowadays, modern electron microscopes deliver images at atomic scale. The precise atomic structure encodes information about material properties. Thus, an important ingredient in the image analysis is to locate the centers of the atoms shown in micrographs as precisely as possible. Here, we consider scanning transmission electron microscopy (STEM), which acquires data in a rastering pattern, pixel by pixel. Due to this rastering combined with the magnification to atomic scale, movements of th...

  18. Transmission electron microscope interfaced with ion accelerators and its application to materials science

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Hiroaki; Naramoto, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Hojou, Kiichi; Furuno, Shigemi; Tsukamoto, Tetsuo

    1997-03-01

    We have developed the transmission/analytical electron microscope interfaced with two sets of ion accelerators (TEM-Accelerators Facility) at JAERI-Takasaki. The facility is expected to provide quantitative insights into radiation effects, such as damage evolution, irradiation-induced phase transformation and their stability, through in-situ observation and analysis under ion and/or electron irradiation. The TEM-Accelerators Facility and its application to materials research are reviewed. (author)

  19. Fundamental microstructural issues associated with severe plastic deformation: Applications of transmission electron microscopy

    Science.gov (United States)

    Esquivel, Erika Vanessa

    This study deals with the microstructural response of several metals and alloys to severe plastic deformation (SPD) in the form of shock wave loading, impact cratering, explosive welding, and ballistic penetration. Microstructural issues that will be addressed include dynamic recrystallization, adiabatic shear bands, and microbands and microtwins. Other relevant issues are stacking fault free energy (SFE), shock wave geometry and grain boundary contributions to the deformation response. The study focuses mainly on the deformation behavior correlated from the microstructural response of nickel and 304 stainless steel, but the behavior of other metals and alloys such as aluminum, copper, brass, tungsten-tantalum and steel are also discussed. These metals cover a wide range of SFE in the face centered cubic systems (FCC) as well as body centered cubic (BCC) structures. There is an emphasis on the microstructure as seen through the transmission electron microscope (TEM) but this is complemented by light microscopy to provide a more global microscopic context. Observations revealed that microtwins will form in planar shock wave treatment of FCC metals and alloys above a critical shock twinning pressure, which is itself a function of SFE. In hypervelocity impact craters, microbands will form for higher SFE materials such as Al, Ni, and Cu, whereas microtwins form exclusively in lower SFE material such as brass, and a combination of both microbands and microtwins will form in materials of intermediate SFE. Both SFE and shock wave geometry influence the material behavior in response to such dynamic processes such that SFE dictates the feasibility of cross-slip and the shock wave geometry, being planar promotes slip along primary slip planes while a spherical shock wave encourages cross-slip. In ballistic penetration it has been observed that overlapping shear bands, associated with dynamic recovery and recrystallization structures allow the penetrator to 'flow.' In all

  20. Transmission Electron Microscopy of a CMSX-4 Ni-Base Superalloy Produced by Selective Electron Beam Melting

    Directory of Open Access Journals (Sweden)

    Alireza B. Parsa

    2016-10-01

    Full Text Available In this work, the microstructures of superalloy specimens produced using selective electron beam melting additive manufacturing were characterized. The materials were produced using a CMSX-4 powder. Two selective electron beam melting processing strategies, which result in higher and lower effective cooling rates, are described. Orientation imaging microscopy, scanning transmission electron microscopy and conventional high resolution transmission electron microscopy are used to investigate the microstructures. Our results suggest that selective electron beam melting processing results in near equilibrium microstructures, as far as γ′ volume fractions, the formation of small amounts of TCP phases and the partitioning behavior of the alloy elements are concerned. As expected, higher cooling rates result in smaller dendrite spacings, which are two orders of magnitude smaller than observed during conventional single crystal casting. During processing, columnar grains grow in <100> directions, which are rotated with respect to each other. There are coarse γ/γ′ microstructures in high angle boundary regions. Dislocation networks form low angle boundaries. A striking feature of the as processed selective electron beam melting specimens is their high dislocation density. From a fundamental point of view, this opens new possibilities for the investigation of elementary dislocation processes which accompany solidification.

  1. Cryogenic transmission electron microscopy (cryo-TEM) for studying the morphology of colloidal drug delivery systems

    DEFF Research Database (Denmark)

    Kuntsche, Judith; Horst, Jennifer C; Bunjes, Heike

    2011-01-01

    Cryogenic transmission electron microscopy (cryo-TEM) has evolved into an indispensable tool for the characterization of colloidal drug delivery systems. It can be applied to study the size, shape and internal structure of nanoparticulate carrier systems as well as the overall colloidal composition...

  2. Magnetic imaging with a Zernike-type phase plate in a transmission electron microscope

    DEFF Research Database (Denmark)

    Pollard, Shawn; Malac, Marek; Beleggia, Marco

    2013-01-01

    We demonstrate the use of a hole-free phase plate (HFPP) for magnetic imaging in transmission electron microscopy by mapping the domain structure in PrDyFeB samples. The HFPP, a Zernike-like imaging method, allows for detecting magnetic signals in-focus to correlate the sample crystal structure a...

  3. Advances in Transmission Electron Microscopy : In Situ Straining and In Situ Compression Experiments on Metallic Glasses

    NARCIS (Netherlands)

    De Hosson, Jeff Th. M.

    In the field of transmission electron microscopy (TEM), fundamental and practical reasons still remain that hamper a straightforward correlation between microscopic structural information and deformation mechanisms in materials. In this article, it is argued that one should focus in particular on in

  4. Transmission Electron Microscopy Specimen Preparation Method for Multiphase Porous Functional Ceramics

    DEFF Research Database (Denmark)

    Zhang, Wei; Kuhn, Luise Theil; Jørgensen, Peter Stanley

    2013-01-01

    An optimum method is proposed to prepare thin foil transmission electron microscopy (TEM) lamellae of multiphase porous functional ceramics: prefilling the pore space of these materials with an epoxy resin prior to focused ion beam milling. Several advantages of epoxy impregnation are demonstrate...

  5. SPINEL METAL INTERFACES IN LASER COATED STEELS - A TRANSMISSION ELECTRON-MICROSCOPY STUDY

    NARCIS (Netherlands)

    ZHOU, XB; DEHOSSON, JTM

    1991-01-01

    This paper reports on coating a Duplex steel SAF 2205 and stainless steel 304 by bringing a mixture of Cr2O3 and Fe powder into a laser beam. Transmission electron microscopy reveals that in the case of proper bonding between substrate and coating a spinel structure around the composition FeCr2O4 co

  6. Spinel/Metal Interfaces in Laser Coated Steels : A Transmission Electron Microscopy Study

    NARCIS (Netherlands)

    Zhou, X.B.; Hosson, J.Th.M. De

    1991-01-01

    This paper reports on coating a Duplex steel SAF 2205 and stainless steel 304 by bringing a mixture of Cr2O3 and Fe powder into a laser beam. Transmission electron microscopy reveals that in the case of proper bonding between substrate and coating a spinel structure around the composition FeCr2O4 co

  7. Theories and technologies of electronic-electrical-mechanical integrated(EEMI)transmission system

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ EEMI is one of the hot spots in cross-disciplinary research. The research in this topic was to discard the traditional mechanical gear reducer, integrate electrical motor with mechanical load, control the electrical motor by electrical power generated by microelectronics and electrical electronics; namely, form a EEMI transmission system in the mechanical equipments with low rotation rate and large rotation torque.

  8. Observation of microporous cesium salts of 12-tungstosilicic acid using scanning transmission electron microscopy.

    Science.gov (United States)

    Hiyoshi, Norihito; Kamiya, Yuichi

    2015-06-21

    Heteropolyanions and their arrays in microporous cesium salts of 12-tungstosilicic acid, Cs2.5H1.5[SiW12O40] and Cs4.0[SiW12O40], were observed by aberration-corrected scanning transmission electron microscopy. Microstructures that form micropores in the polyoxometalates were visualized.

  9. Advances in Transmission Electron Microscopy : Self Healing or is Prevention better than Cure?

    NARCIS (Netherlands)

    Hosson, Jeff Th.M. De; Yasuda, Hiroyuki Y.; Zwaag, S. van der

    2007-01-01

    In the field of transmission electron microscopy fundamental and practical reasons still remain that hamper a straightforward correlation between microscopic structural information and self healing mechanisms in materials. We argue that one should focus in particular on in situ rather than on postmo

  10. Thermal stability of catalytically grown multi-walled carbon nanotubes observed in transmission electron microscopy

    DEFF Research Database (Denmark)

    Wang, Cheng-Yu; Liu, Chuan-Pu; Boothroyd, Chris

    2009-01-01

    The thermal stability of multi-walled carbon nanotubes (MWCNTs) was assessed in situ by transmission electron microscopy. Upon heating, Ni catalysts in MWC-NTs containing bamboo structures shrank from the tail due to evaporation, leading to additional bamboo formation and tube elongation at 800...

  11. 77 FR 50932 - Electronic Transmission of Customs Data-Outbound International Letter-Post Items

    Science.gov (United States)

    2012-08-23

    ... 20 Electronic Transmission of Customs Data--Outbound International Letter-Post Items AGENCY: Postal... Standards of the United States Postal Service, International Mail Manual (IMM ) to require that customs data... Service and other federal agencies to ensure mailers' compliance with federal export...

  12. Current status and future directions for in situ transmission electron microscopy

    DEFF Research Database (Denmark)

    Taheri, Mitra L.; Stach, Eric A.; Arslan, Ilke

    2016-01-01

    This review article discusses the current and future possibilities for the application of in situ transmission electron microscopy to reveal synthesis pathways and functional mechanisms in complex and nanoscale materials. The findings of a group of scientists, representing academia, government labs...

  13. Transmission Electron Microscopy Study of Individual Carbon Nanotube Breakdown Caused by Joule Heating in Air

    DEFF Research Database (Denmark)

    Mølhave, Kristian; Gudnason, S.B.; Pedersen, Anders Tegtmeier

    2006-01-01

    We present repeated structural and electrical measurements on individual multiwalled carbon nanotubes, alternating between electrical measurements under ambient conditions and transmission electron microscopy (TEM). The multiwalled carbon nanotubes made by chemical vapor deposition were manipulated...... conductors with remarkably predictable electrical properties despite extensive structural damage....

  14. Light-Induced Reduction of Cuprous Oxide in an Environmental Transmission Electron Microscope

    DEFF Research Database (Denmark)

    Cavalca, Filippo Carlo; Laursen, Anders Bo; Wagner, Jakob Birkedal

    2013-01-01

    . Environmental transmission electron microscopy (ETEM) makes it possible to obtain insight into the local structure, composition and reactivity of catalysts in their working environment, which is of fundamental interest for sustainable energy research and is essential for further material optimization. Herein...

  15. Observing the Growth of Metal-Organic Frameworks by In-Situ Liquid Cell Transmission Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, Joseph P.; Abellan Baeza, Patricia; Denny, Michael S.; Park, Chiwoo; Browning, Nigel D.; Cohen, Seth M.; Evans, James E.; Gianneschi, Nathan C.

    2015-06-17

    Liquid Cell Transmission Electron Microscopy (LCTEM) can provide direct observations of solution phase nanoscale materials, and holds great promise as a tool for monitoring dynamic self assembly processes. Control over particle behavior within the liquid cell, and under electron beam irradiation, is of paramount importance for this technique to contribute to our understanding of chemistry and materials science at the nanoscale. However, this type of control has not been demonstrated for complex, organic macromolecular materials, which form the basis for all biological systems, all of polymer science, and encompass important classes of advanced porous materials. Here we show that by controlling the liquid cell surface chemistry and electron beam effects, the dynamics and self-assembly of metal-organic frameworks (MOFs) can be observed. Our results demonstrate that hybrid organic/inorganic beam sensitive materials can be analyzed with LCTEM and at least in the case of Zif-8 dynamics, the results correlate with observations from bulk growth or other standard synthetic conditions. We anticipate that direct, nanoscale imaging by LCTEM of MOF nucleation and growth mechanisms, may provide insight into controlled MOF crystal morphology, domain composition, and processes influencing defect formation.

  16. Simulations of the electron cloud buildup and its influence on the microwave transmission measurement

    Energy Technology Data Exchange (ETDEWEB)

    Haas, Oliver Sebastian, E-mail: o.haas@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); Boine-Frankenheim, Oliver [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); Technische Universität Darmstadt, Institut für Theorie Elektromagnetischer Felder, Schlossgartenstraße 8, 64289 Darmstadt (Germany); Petrov, Fedor [Technische Universität Darmstadt, Institut für Theorie Elektromagnetischer Felder, Schlossgartenstraße 8, 64289 Darmstadt (Germany)

    2013-11-21

    An electron cloud density in an accelerator can be measured using the Microwave Transmission (MWT) method. The aim of our study is to evaluate the influence of a realistic, nonuniform electron cloud on the MWT. We conduct electron cloud buildup simulations for beam pipe geometries and bunch parameters resembling roughly the conditions in the CERN SPS. For different microwave waveguide modes the phase shift induced by a known electron cloud density is obtained from three different approaches: 3D Particle-In-Cell (PIC) simulation of the electron response, a 2D eigenvalue solver for waveguide modes assuming a dielectric response function for cold electrons, a perturbative method assuming a sufficiently smooth density profile. While several electron cloud parameters, such as temperature, result in minor errors in the determined density, the transversely inhomogeneous density can introduce a large error in the measured electron density. We show that the perturbative approach is sufficient to describe the phase shift under realistic electron cloud conditions. Depending on the geometry of the beam pipe, the external magnetic field configuration and the used waveguide mode, the electron cloud density can be concentrated at the beam pipe or near the beam pipe center, leading to a severe over- or underestimation of the electron density. -- Author-Highlights: •Electron cloud distributions are very inhomogeneous, especially in dipoles. •These inhomogeneities affect the microwave transmission measurement results. •Electron density might be over- or underestimated, depending on setup. •This can be quantified with several models, e.g. a perturbative approach.

  17. Transmission dynamics of lumpy skin disease in Ethiopia

    NARCIS (Netherlands)

    Molla, W.; Frankena, Klaas; Jong, de Mart

    2017-01-01

    Lumpy skin disease (LSD) is a severe disease of cattle caused by a Capripoxvirus and often caused epidemics in Ethiopia and many other countries. This study was undertaken to quantify the transmission between animals and to estimate the infection reproduction ratio in a predominantly mixed crop–live

  18. Dynamic modeling of fluid power transmissions for wind turbines

    NARCIS (Netherlands)

    Diepeveen, N.F.B.; Jarquin Laguna, A.

    2011-01-01

    Fluid power transmission for wind turbines is quietly gaining more ground/interest. The principle of the various concepts presented so far is to convert aerodynamic torque of the rotor blades into a pressurized fluid flow by means of a positive displacement pump. At the other end of the fluid power

  19. Inflation Dynamics and the Cost Channel of Monetary Transmission

    NARCIS (Netherlands)

    Chowdhury, I.; Hoffmann, M.; Schabert, A.

    2006-01-01

    Evidence from vector autoregressions indicates that the impact of interest rate shocks on macroeconomic aggregates can substantially be affected by the so-called cost channel of monetary transmission. In this paper, we apply a structural approach to examine the relevance of the cost channel for

  20. Transmission dynamics of lumpy skin disease in Ethiopia

    NARCIS (Netherlands)

    Molla, W.; Frankena, Klaas; Jong, de Mart

    2017-01-01

    Lumpy skin disease (LSD) is a severe disease of cattle caused by a Capripoxvirus and often caused epidemics in Ethiopia and many other countries. This study was undertaken to quantify the transmission between animals and to estimate the infection reproduction ratio in a predominantly mixed

  1. Dynamic modeling of fluid power transmissions for wind turbines

    NARCIS (Netherlands)

    Diepeveen, N.F.B.; Jarquin Laguna, A.

    2011-01-01

    Fluid power transmission for wind turbines is quietly gaining more ground/interest. The principle of the various concepts presented so far is to convert aerodynamic torque of the rotor blades into a pressurized fluid flow by means of a positive displacement pump. At the other end of the fluid power

  2. Method and apparatus for a high-resolution three dimensional confocal scanning transmission electron microscope

    Science.gov (United States)

    de Jonge, Niels [Oak Ridge, TN

    2010-08-17

    A confocal scanning transmission electron microscope which includes an electron illumination device providing an incident electron beam propagating in a direction defining a propagation axis, and a precision specimen scanning stage positioned along the propagation axis and movable in at least one direction transverse to the propagation axis. The precision specimen scanning stage is configured for positioning a specimen relative to the incident electron beam. A projector lens receives a transmitted electron beam transmitted through at least part of the specimen and focuses this transmitted beam onto an image plane, where the transmitted beam results from the specimen being illuminated by the incident electron beam. A detection system is placed approximately in the image plane.

  3. Direct visualization of solid electrolyte interphase formation in lithium-ion batteries with in situ electrochemical transmission electron microscopy.

    Science.gov (United States)

    Unocic, Raymond R; Sun, Xiao-Guang; Sacci, Robert L; Adamczyk, Leslie A; Alsem, Daan Hein; Dai, Sheng; Dudney, Nancy J; More, Karren L

    2014-08-01

    Complex, electrochemically driven transport processes form the basis of electrochemical energy storage devices. The direct imaging of electrochemical processes at high spatial resolution and within their native liquid electrolyte would significantly enhance our understanding of device functionality, but has remained elusive. In this work we use a recently developed liquid cell for in situ electrochemical transmission electron microscopy to obtain insight into the electrolyte decomposition mechanisms and kinetics in lithium-ion (Li-ion) batteries by characterizing the dynamics of solid electrolyte interphase (SEI) formation and evolution. Here we are able to visualize the detailed structure of the SEI that forms locally at the electrode/electrolyte interface during lithium intercalation into natural graphite from an organic Li-ion battery electrolyte. We quantify the SEI growth kinetics and observe the dynamic self-healing nature of the SEI with changes in cell potential.

  4. Direct detection in Transmission Electron Microscopy with a 5{mu}m pitch CMOS pixel sensor

    Energy Technology Data Exchange (ETDEWEB)

    Contarato, Devis, E-mail: DContarato@lbl.go [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Denes, Peter; Doering, Dionisio; Joseph, John; Krieger, Brad [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States)

    2011-04-11

    This paper presents the characterization of a CMOS monolithic pixel sensor prototype optimized for direct detection in Transmission Electron Microscopy (TEM). The sensor was manufactured in a deep-submicron commercial CMOS process and features pixels of 5{mu}m pitch. Different pixel architectures have been implemented in the test chip, and the best performing architecture has been selected from a series of tests performed with 300 keV electrons. Irradiation tests to high electron doses have also been performed in order to estimate device lifetime.

  5. Nanostructured PLD-grown gadolinia doped ceria: Chemical and structural characterization by transmission electron microscopy techniques

    DEFF Research Database (Denmark)

    Rodrigo, Katarzyna Agnieszka; Wang, Hsiang-Jen; Heiroth, Sebastian

    2011-01-01

    The morphology as well as the spatially resolved elemental and chemical characterization of 10 mol% gadolinia doped ceria (CGO10) structures prepared by pulsed laser deposition (PLD) technique are investigated by scanning transmission electron microscopy accompanied with electron energy loss...... spectroscopy and energy dispersive X-ray spectroscopy. A dense, columnar and structurally inhomogeneous CGO10 film, i.e. exhibiting grain size refinement across the film thickness, is obtained in the deposition process. The cerium M4,5 edges, used to monitor the local electronic structure of the grains...

  6. Development of a novel straining holder for transmission electron microscopy compatible with single tilt-axis electron tomography.

    Science.gov (United States)

    Sato, K; Miyazaki, H; Gondo, T; Miyazaki, S; Murayama, M; Hata, S

    2015-10-01

    We have developed a newly designed straining specimen holder for in situ transmission electron microscopy (TEM) compatible with high-angle single tilt-axis electron tomography. The holder can deform a TEM specimen under tensile stress with the strain rate between 1.5 × 10(-6) and 5.2 × 10(-3) s(-1). We have also confirmed that the maximum tilt angle of the specimen holder reaches ±60° with a rectangular shape aluminum specimen. The new specimen holder, termed as 'straining and tomography holder', will have wide range potential applications in materials science.

  7. Ultrafast transmission electron microscopy using a laser-driven field emitter: femtosecond resolution with a high coherence electron beam

    CERN Document Server

    Feist, Armin; da Silva, Nara Rubiano; Danz, Thomas; Möller, Marcel; Priebe, Katharina E; Domröse, Till; Gatzmann, J Gregor; Rost, Stefan; Schauss, Jakob; Strauch, Stefanie; Bormann, Reiner; Sivis, Murat; Schäfer, Sascha; Ropers, Claus

    2016-01-01

    We present the development of the first ultrafast transmission electron microscope (UTEM) driven by localized photoemission from a field emitter cathode. We describe the implementation of the instrument, the photoemitter concept and the quantitative electron beam parameters achieved. Establishing a new source for ultrafast TEM, the G\\"ottingen UTEM employs nano-localized linear photoemission from a Schottky emitter, which enables operation with freely tunable temporal structure, from continuous wave to femtosecond pulsed mode. Using this emission mechanism, we achieve record pulse properties in ultrafast electron microscopy of 9 {\\AA} focused beam diameter, 200 fs pulse duration and 0.6 eV energy width. We illustrate the possibility to conduct ultrafast imaging, diffraction, holography and spectroscopy with this instrument and also discuss opportunities to harness quantum coherent interactions between intense laser fields and free electron beams.

  8. The importance of transmission electron microscopy analysis of spermatozoa: Diagnostic applications and basic research.

    Science.gov (United States)

    Moretti, Elena; Sutera, Gaetano; Collodel, Giulia

    2016-06-01

    This review is aimed at discussing the role of ultrastructural studies on human spermatozoa and evaluating transmission electron microscopy as a diagnostic tool that can complete andrology protocols. It is clear that morphological sperm defects may explain decreased fertilizing potential and acquire particular value in the field of male infertility. Electron microscopy is the best method to identify systematic or monomorphic and non-systematic or polymorphic sperm defects. The systematic defects are characterized by a particular anomaly that affects the vast majority of spermatozoa in a semen sample, whereas a heterogeneous combination of head and tail defects found in variable percentages are typically non-systematic or polymorphic sperm defects. A correct diagnosis of these specific sperm alterations is important for choosing the male infertility's therapy and for deciding to turn to assisted reproduction techniques. Transmission electron microscopy (TEM) also represents a valuable method to explore the in vitro effects of different compounds (for example drugs with potential spermicidal activity) on the morphology of human spermatozoa. Finally, TEM used in combination with immunohistochemical techniques, integrates structural and functional aspects that provide a wide horizon in the understanding of sperm physiology and pathology. transmission electron microscopy: TEM; World Health Organization: WHO; light microscopy: LM; motile sperm organelle morphology examination: MSOME; intracytoplasmic morphologically selected sperm injection: IMSI; intracytoplasmic sperm injection: ICSI; dysplasia of fibrous sheath: DFS; primary ciliary dyskinesia: PCD; outer dense fibers: ODF; assisted reproduction technologies: ART; scanning electron microscopy: SEM; polyvinylpirrolidone: PVP; tert-butylhydroperoxide: TBHP.

  9. Zinc deficiency in the 11 day rat embryo: a scanning and transmission electron microscope study

    Energy Technology Data Exchange (ETDEWEB)

    Harding, A.J.; Dreosti, I.E.; Tulsi, R.S.

    1988-01-01

    Zinc deficient rat embryos were obtained on the 11th day of pregnancy and examined by scanning and transmission electron microscopy. Scanning electron microscopy revealed an increase in the number of deformed embryos, as well as embryonic growth retardation. In addition, the epithelium of zinc deficient embryos displayed a marked increase in surface microvilli, as well as the presence of blebbing. Transmission electron microscopy indicated extensive cell death in the neural epithelium which was apparently more severely damaged by zinc deficiency than were mesenchymal cells. Mitochondrial cristae were affected to a greater degree than any other membrane of the cell and cristael disintegration appeared to represent the principal cellular lesion preceding necrosis of neural cells and neural tube teratology. 29 references, 4 figures, 1 table.

  10. Three-dimensional optical transfer functions in the aberration-corrected scanning transmission electron microscope.

    Science.gov (United States)

    Jones, L; Nellist, P D

    2014-05-01

    In the scanning transmission electron microscope, hardware aberration correctors can now correct for the positive spherical aberration of round electron lenses. These correctors make use of nonround optics such as hexapoles or octupoles, leading to the limiting aberrations often being of a nonround type. Here we explore the effect of a number of potential limiting aberrations on the imaging performance of the scanning transmission electron microscope through their resulting optical transfer functions. In particular, the response of the optical transfer function to changes in defocus are examined, given that this is the final aberration to be tuned just before image acquisition. The resulting three-dimensional optical transfer functions also allow an assessment of the performance of a system for focal-series experiments or optical sectioning applications. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  11. Heterosexual HIV transmission dynamics: implications for prevention and control.

    Science.gov (United States)

    Chin, James; Bennett, Anthony

    2007-08-01

    Understanding the epidemiologic definition of epidemic versus non-epidemic spread of an infectious disease agent and the different patterns of heterosexual HIV transmission are needed to fully understand the low potential for heterosexual HIV epidemics in most heterosexual populations. Epidemic sexual HIV transmission can occur only in populations where there are large numbers of persons who have unprotected sex with multiple and concurrent sex partners. How high HIV prevalence may reach in these populations depends on the size and overlap of sex networks, and the prevalence of facilitating and protective factors that can greatly increase or limit the amount of infected blood and sexual fluids exchanged during intercourse. The wide difference in potentials for heterosexual HIV epidemics that exists within and between countries must be recognized, accepted and monitored in order to design and focus prevention strategies where they are most needed and most effective.

  12. XXIII International Conference on Nonlinear Dynamics of Electronic Systems

    CERN Document Server

    Stoop, Ruedi; Stramaglia, Sebastiano

    2017-01-01

    This book collects contributions to the XXIII international conference “Nonlinear dynamics of electronic systems”. Topics range from non-linearity in electronic circuits to synchronisation effects in complex networks to biological systems, neural dynamics and the complex organisation of the brain. Resting on a solid mathematical basis, these investigations address highly interdisciplinary problems in physics, engineering, biology and biochemistry.

  13. Dynamic pricing models for electronic business

    Indian Academy of Sciences (India)

    Y Narahari; C V L Raju; K Ravikumar; Sourabh Shah

    2005-04-01

    Dynamic pricing is the dynamic adjustment of prices to consumers depending upon the value these customers attribute to a product or service. Today’s digital economy is ready for dynamic pricing; however recent research has shown that the prices will have to be adjusted in fairly sophisticated ways, based on sound mathematical models, to derive the benefits of dynamic pricing. This article attempts to survey different models that have been used in dynamic pricing. We first motivate dynamic pricing and present underlying concepts, with several examples, and explain conditions under which dynamic pricing is likely to succeed. We then bring out the role of models in computing dynamic prices. The models surveyed include inventory-based models, data-driven models, auctions, and machine learning. We present a detailed example of an e-business market to show the use of reinforcement learning in dynamic pricing.

  14. Electronic structure and dynamics of nitrosyl porphyrins.

    Science.gov (United States)

    Scheidt, W Robert; Barabanschikov, Alexander; Pavlik, Jeffrey W; Silvernail, Nathan J; Sage, J Timothy

    2010-07-19

    functionals are not fully successful at capturing the trans interaction between the axial NO and imidazole ligands. This supports previous conclusions that heme-NO complexes exhibit an unusual degree of variability with respect to the computational method, and we speculate that this variability hints at a genuine electronic instability that a protein can exploit to tune its reactivity. We anticipate that ongoing characterization of heme-NO complexes will deepen our understanding of their structure, dynamics, and reactivity.

  15. Global dynamics behaviors for new delay SEIR epidemic disease model with vertical transmission and pulse vaccination

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A robust SEIR epidemic disease model with a profitless delay and vertical transmission is formulated, and the dynamics behaviors of the model under pulse vaccination are analyzed.By use of the discrete dynamical system determined by the the model are under appropriate conditions.Using the theory on delay functional and impulsive differential equation, the sufficient condition with time delay for the permanence of the system is obtained, and it is proved that time delays, pulse vaccination and vertical transmission can bring obvious effects on the dynamics behaviors of the model.

  16. 31 CFR 363.18 - Is Public Debt liable if the electronic transmission of my data is intercepted?

    Science.gov (United States)

    2010-07-01

    ... Securities Held in TreasuryDirect § 363.18 Is Public Debt liable if the electronic transmission of my data is... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false Is Public Debt liable if the electronic transmission of my data is intercepted? 363.18 Section 363.18 Money and Finance:...

  17. Single-shot MeV transmission electron microscopy with picosecond temporal resolution

    CERN Document Server

    Li, R K

    2014-01-01

    Pushing the limits in temporal resolution for transmission electron microscopy (TEM) requires a revolutionary change in the electron source technology. In this paper we study the possibility of employing a radiofrequency photoinjector as the electron source for a time-resolved TEM. By raising the beam energy to the relativistic regime we minimize the space charge effects which otherwise limit the spatio-temporal resolution of the instrument. Analysis and optimization of the system taking into account the achievable beam brightness, electron flux on the sample, chromatic and spherical aberration of the electron optic system, and space charge effects in image formation are presented and supported by detailed numerical modeling. The results demonstrate the feasibility of 10 nanometer - 10 picosecond spatio-temporal resolution single-shot MeV TEM.

  18. Magnetic dynamics studied by high-resolution electron spectroscopy and time-resolved electron microscopy

    Science.gov (United States)

    Jayaraman, Rajeswari

    Future information technology requires an increased magnetically encoded data density and novel electromagnetic modes of data transfer. While to date magnetic properties are observed and characterized mostly statically, the need emerges to monitor and capture their fast dynamics. In this talk, I will focus on the spin dynamics i.e. spin wave excitations and the dynamics of a new topological distribution of spins termed ``skyrmions''. Wave packets of spin waves offer the unique capability to transport a quantum bit, the spin, without the transport of charge or mass. Here, large wave-vector spin waves are of particular interest as they admit spin localization within a few nanometers. By using our recently developed electron energy loss spectrometer, we could study such spin waves in ultrathin films with an unprecedented energy resolution of 4 meV. By virtue of the finite penetration depth of low energy electrons, spin waves localized at interfaces between a substrate and a thin capping layer can be been studied yielding information about the exchange coupling between atoms at the interface. The quantization of spin waves with wave vectors perpendicular to the film gives rise to standing modes to which EELS has likewise access. Such studies when carried out as function of the film thickness again yield information on the layer dependence of the exchange coupling. Magnetic skyrmions are promising candidates as information carriers in logic or storage devices. Currently, little is known about the influence of disorder, defects, or external stimuli on the spatial distribution and temporal evolution of the skyrmion lattice. In this talk, I will describe the dynamical role of disorder in a large and flat thin film of Cu2OSeO3, exhibiting a skyrmion phase in an insulating material. We image up to 70,000 skyrmions by means of cryo-Lorentz Transmission Electron Microscopy as a function of the applied magnetic field. In the skyrmion phase, dislocations are shown to cause the

  19. Recasting the theory of mosquito-borne pathogen transmission dynamics and control.

    Science.gov (United States)

    Smith, David L; Perkins, T Alex; Reiner, Robert C; Barker, Christopher M; Niu, Tianchan; Chaves, Luis Fernando; Ellis, Alicia M; George, Dylan B; Le Menach, Arnaud; Pulliam, Juliet R C; Bisanzio, Donal; Buckee, Caroline; Chiyaka, Christinah; Cummings, Derek A T; Garcia, Andres J; Gatton, Michelle L; Gething, Peter W; Hartley, David M; Johnston, Geoffrey; Klein, Eili Y; Michael, Edwin; Lloyd, Alun L; Pigott, David M; Reisen, William K; Ruktanonchai, Nick; Singh, Brajendra K; Stoller, Jeremy; Tatem, Andrew J; Kitron, Uriel; Godfray, H Charles J; Cohen, Justin M; Hay, Simon I; Scott, Thomas W

    2014-04-01

    Mosquito-borne diseases pose some of the greatest challenges in public health, especially in tropical and sub-tropical regions of the world. Efforts to control these diseases have been underpinned by a theoretical framework developed for malaria by Ross and Macdonald, including models, metrics for measuring transmission, and theory of control that identifies key vulnerabilities in the transmission cycle. That framework, especially Macdonald's formula for R0 and its entomological derivative, vectorial capacity, are now used to study dynamics and design interventions for many mosquito-borne diseases. A systematic review of 388 models published between 1970 and 2010 found that the vast majority adopted the Ross-Macdonald assumption of homogeneous transmission in a well-mixed population. Studies comparing models and data question these assumptions and point to the capacity to model heterogeneous, focal transmission as the most important but relatively unexplored component in current theory. Fine-scale heterogeneity causes transmission dynamics to be nonlinear, and poses problems for modeling, epidemiology and measurement. Novel mathematical approaches show how heterogeneity arises from the biology and the landscape on which the processes of mosquito biting and pathogen transmission unfold. Emerging theory focuses attention on the ecological and social context for mosquito blood feeding, the movement of both hosts and mosquitoes, and the relevant spatial scales for measuring transmission and for modeling dynamics and control.

  20. Ultrafast electronic dynamics in laser-excited crystalline bismuth

    Directory of Open Access Journals (Sweden)

    Chekalin S.

    2013-03-01

    Full Text Available Femtosecond spectroscopy was applied to capture complex dynamics of non equilibrium electrons in bismuth. Data analysis reveals significant wavevector dependence of electron-hole and electron-phonon coupling strength along the Γ-T direction of the Brillouin zone

  1. Dynamic vs. static social networks in models of parasite transmission: predicting Cryptosporidium spread in wild lemurs.

    Science.gov (United States)

    Springer, Andrea; Kappeler, Peter M; Nunn, Charles L

    2016-12-14

    Social networks provide an established tool to implement heterogeneous contact structures in epidemiological models. Dynamic temporal changes in contact structure and ranging behaviour of wildlife may impact disease dynamics. A consensus has yet to emerge, however, concerning the conditions in which network dynamics impact model outcomes, as compared to static approximations that average contact rates over longer time periods. Furthermore, as many pathogens can be transmitted both environmentally and via close contact, it is important to investigate the relative influence of both transmission routes in real-world populations. Here, we use empirically derived networks from a population of wild primates, Verreaux's sifakas (Propithecus verreauxi), and simulated networks to investigate pathogen spread in dynamic vs. static social networks. First, we constructed a susceptible-exposed-infected-recovered model of Cryptosporidium spread in wild Verreaux's sifakas. We incorporated social and environmental transmission routes and parameterized the model for two different climatic seasons. Second, we used simulated networks and greater variation in epidemiological parameters to investigate the conditions in which dynamic networks produce larger outbreak sizes than static networks. We found that average outbreak size of Cryptosporidium infections in sifakas was larger when the disease was introduced in the dry season than in the wet season, driven by an increase in home range overlap towards the end of the dry season. Regardless of season, dynamic networks always produced larger average outbreak sizes than static networks. Larger outbreaks in dynamic models based on simulated networks occurred especially when the probability of transmission and recovery were low. Variation in tie strength in the dynamic networks also had a major impact on outbreak size, while network modularity had a weaker influence than epidemiological parameters that determine transmission and recovery

  2. Modelling of Rabies Transmission Dynamics Using Optimal Control Analysis

    Directory of Open Access Journals (Sweden)

    Joshua Kiddy K. Asamoah

    2017-01-01

    Full Text Available We examine an optimal way of eradicating rabies transmission from dogs into the human population, using preexposure prophylaxis (vaccination and postexposure prophylaxis (treatment due to public education. We obtain the disease-free equilibrium, the endemic equilibrium, the stability, and the sensitivity analysis of the optimal control model. Using the Latin hypercube sampling (LHS, the forward-backward sweep scheme and the fourth-order Range-Kutta numerical method predict that the global alliance for rabies control’s aim of working to eliminate deaths from canine rabies by 2030 is attainable through mass vaccination of susceptible dogs and continuous use of pre- and postexposure prophylaxis in humans.

  3. Core size determination and structural characterization of intravenous iron complexes by cryogenic transmission electron microscopy.

    Science.gov (United States)

    Wu, Yong; Petrochenko, Peter; Chen, Lynn; Wong, Sook Yee; Absar, Mohammad; Choi, Stephanie; Zheng, Jiwen

    2016-05-30

    Understanding physicochemical properties of intravenous (IV) iron drug products is essential to ensure the manufacturing process is consistent and streamlined. The history of physicochemical characterization of IV iron complex formulations stretches over several decades, with disparities in iron core size and particle morphology as the major source of debate. One of the main reasons for this controversy is room temperature sample preparation artifacts, which affect accurate determination of size, shape and agglomeration/aggregation of nanoscale iron particles. The present study is first to report the ultra-fine iron core structures of four IV iron complex formulations, sodium ferric gluconate, iron sucrose, low molecular weight iron dextran and ferumoxytol, using a cryogenic transmission electron microscopy (cryo-TEM) preservation technique, as opposed to the conventional room temperature (RT-TEM) technique. Our results show that room temperature preparation causes nanoparticle aggregation and deformation, while cryo-TEM preserves IV iron colloidal suspension in their native frozen-hydrated and undiluted state. In contrast to the current consensus in literature, all four IV iron colloids exhibit a similar morphology of their iron oxide cores with a spherical shape, narrow size distribution and an average size of 2nm. Moreover, out of the four tested formulations, ferumoxytol exhibits a cluster-like community of several iron carbohydrate particles which likely accounts for its large hydrodynamic size of 25nm, measured with dynamic light scattering. Our findings outline a suitable method for identifying colloidal nanoparticle core size in the native state, which is increasingly important for manufacturing and design control of complex drug formulations, such as IV iron drug products.

  4. Cosmological Constraints on a Dynamical Electron Mass

    CERN Document Server

    Barrow, J D; Barrow, John D; Magueijo, Joao

    2005-01-01

    Motivated by recent astrophysical observations of quasar absorption systems, we formulate a simple theory where the electron to proton mass ratio $\\mu =m_{e}/m_{p}$ is allowed to vary in space-time. In such a minimal theory only the electron mass varies, with $\\alpha $ and $m_{p}$ kept constant. We find that changes will be driven by any asymmetry in the electron-positron number density after the electron mass threshold is crossed. Particle production in this scenario is negligible. The constraints imposed by recent observations are very weak, due to the low mass density in electrons.

  5. In situ transmission electron microscopy investigation of the structural changes in carbon nanotubes during electron emission at high currents

    Energy Technology Data Exchange (ETDEWEB)

    Doytcheva, Maya [Philips Research, Professor Holstlaan 4, 5656 AA Eindhovene (Netherlands); Kaiser, Monja [Philips Research, Professor Holstlaan 4, 5656 AA Eindhoven (Netherlands); Jonge, Niels de [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831-6030 (United States)

    2006-07-14

    The structural changes in carbon nanotubes under electron emission conditions were investigated in situ in a transmission electron microscope (TEM). The measurements were performed on individually mounted free-standing multi-walled carbon nanotubes (CNTs). It was found that the structure of the carbon nanotubes did not change gradually, as is the case with field emission electron sources made of sharp metal tips. Instead, changes occurred only above a current level of a few microamperes, which was different for each nanotube. Above the threshold current, carbon nanotubes underwent either structural damage, such as shortening and splitting of the apex of the nanotube, or closing of their open cap. The results are discussed on the basis of several models for degradation mechanisms.

  6. In situ Transmission Electron Microscopy Investigation of the Structural Changes in Carbon Nanotubes During Electron Emission at High Currents

    Energy Technology Data Exchange (ETDEWEB)

    Doytcheva, Maya [Philips Research, The Netherlands; Kaiser, Monja [Philips Research, The Netherlands; De Jonge, Niels [ORNL

    2006-01-01

    The structural changes in carbon nanotubes under electron emission conditions were investigated in situ in a transmission electron microscope (TEM). The measurements were performed on individually mounted free-standing multi-walled carbon nanotubes (CNTs). It was found that the structure of the carbon nanotubes did not change gradually, as is the case with field emission electron sources made of sharp metal tips. Instead, changes occurred only above a current level of a few microamperes, which was different for each nanotube. Above the threshold current, carbon nanotubes underwent either structural damage, such as shortening and splitting of the apex of the nanotube, or closing of their open cap. The results are discussed on the basis of several models for degradation mechanisms.

  7. Characterisation of nano-structured titanium and aluminium nitride coatings by indentation, transmission electron microscopy and electron energy loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Girleanu, M., E-mail: maria.girleanu@uha.fr [Mecanique, Materiaux et Procedes de Fabrication, LPMT (EA CNRS 4365), Universite de Haute Alsace, 61 rue Albert Camus, F-68093 Mulhouse (France); Pac, M.-J.; Louis, P. [Mecanique, Materiaux et Procedes de Fabrication, LPMT (EA CNRS 4365), Universite de Haute Alsace, 61 rue Albert Camus, F-68093 Mulhouse (France); Ersen, O.; Werckmann, J. [Departement Structures et Interfaces, IPCMS (UMR CNRS 7504), Universite de Strasbourg, 23 rue du Loess, F-67087 Strasbourg (France); Rousselot, C. [Departement Micro Nano Sciences et Systemes, FEMTO-ST (UMR CNRS 6174), Universite de Franche-Comte, BP 71427, F-25211 Montbeliard (France); Tuilier, M.-H. [Mecanique, Materiaux et Procedes de Fabrication, LPMT (EA CNRS 4365), Universite de Haute Alsace, 61 rue Albert Camus, F-68093 Mulhouse (France)

    2011-07-01

    Titanium and aluminium nitride Ti{sub 1-x}Al{sub x}N films deposited by radiofrequency magnetron reactive sputtering onto steel substrate are examined by transmission electron microscopy over all the range of composition (x = 0, 0.5, 0.68, 0.86, 1). The deposition parameters are optimised in order to grow nitride films with low stress over all the composition range. Transmission electron microscopy cross-section images of Vickers indentation prints performed on that set of coatings show the evolution of their damage behaviour as increasing x Al content. Cubic Ti-rich nitrides consist of small grains clustered in rather large columns sliding along each other during indentation. Hexagonal Al-rich films grow in thinner columns which can be bent under the Vickers tip. Indentation tests carried out on TiN and AlN films are simulated using finite element modelling. Particular aspects of shear stresses and displacements in the coating/substrate are investigated. The growth mode and the nanostructure of two typical films, TiN and Ti{sub 0.14}Al{sub 0.86}N, are studied in detail by combining transmission electron microscopy cross-sections and plan views. Electron energy loss spectrum taken across Ti{sub 0.14}Al{sub 0.86}N film suggests that a part of nitrogen atoms is in cubic-like local environment though the lattice symmetry of Al-rich coatings is hexagonal. The poorly crystallised domains containing Ti and N atoms in cubic-like environment are obviously located in grain boundaries and afford protection of the coating against cracking.

  8. Effects of Electron Flow Current Density on Flow Impedance of Magnetically Insulated Transmission Lines

    Institute of Scientific and Technical Information of China (English)

    HE Yong; ZOU Wen-Kang; SONG Sheng-Yi

    2011-01-01

    @@ In modern pulsed power systems, magnetically insulated transmission lines (MITLs) are used to couple power between the driver and the load.The circuit parameters of MITLs are well understood by employing the concept of Sow impedance derived from Maxwell's equations and pressure balance across the flow.However, the electron density in an MITL is always taken as constant in the application of flow impedance.Thus effects of electron flow current density (product of electron density and drift velocity) in an MITL are neglected.We calculate the flow impedances of an MITL and compare them under three classical MITL theories, in which the electron density profile and electron flow current density are different from each other.It is found that the assumption of constant electron density profile in the calculation of the Sow impedance is not always valid.The electron density profile and the electron flow current density have significant effects on flow impedance of the MITL.The details of the electron flow current density and its effects on the operation impedance of the MITL should be addressed more explicitly experiments and theories in the future.

  9. Energy-independent total quantum transmission of electrons through nanodevices with correlated disorder

    Science.gov (United States)

    Novotny, M. A.

    2014-10-01

    In nanostructures with no appreciable scattering, electrons propagate ballistically, and hence have energy-independent total quantum transmission. For an incoming electron of energy E, the probability T (E) of transmission is obtained from the solution of the time-independent Schrödinger equation. Ballistic transport hence corresponds to T (E)=1. We show that there is a wide class of nanostructures with correlated disorder that have T (E)=1 for all propagating modes, even though they can have strong scattering. We call these nanostructures quantum dragons. An exact mathematical mapping for quantum transmission valid for a large class of atomic arrangements is presented within the single-band tight-binding model. Quantum transmission through a nanostructure is exactly mapped onto quantum transmission through a one-dimensional chain. The mapping is applied to carbon nanotubes in the armchair and zigzag configurations, Bethe lattices, conjoined Bethe lattices, Bethe lattices with hopping within each ring, and tubes formed from rectangular and orthorhombic lattices. The mapping shows that tuning tight-binding parameters to particular correlated values gives T (E)=1 for all the systems studied. A quantum dragon has the same electrical conductivity as a ballistic nanodevice, namely, in a four-terminal measurement the electrical resistance is zero, while in a two-terminal measurement for the single-channel case, the electrical conductivity is equal to the conductance quantum G0=2e2/h, where h is Planck's constant and e the electron charge. We find T (E)=1 is ubiquitous but occurs only on particular surfaces in the tight-binding parameter space.

  10. Dynamic control of asymmetric electromagnetic wave transmission by active chiral metamaterial

    Science.gov (United States)

    Chen, Ke; Feng, Yijun; Cui, Li; Zhao, Junming; Jiang, Tian; Zhu, Bo

    2017-02-01

    The asymmetric transmission of electromagnetic (EM) wave can be fully manipulated by chiral metamaterials, but little can achieve real-time and high efficient tunability due to challenges in practically deployable solutions. Here, we proposed a new scheme for flexibly and dynamically controlling the asymmetric EM wave transmission at microwave frequencies using planar metamaterial of deep subwavelength thickness incorporated with active components of PIN diodes. The asymmetric transmission of linearly polarized EM wave exhibits a high efficiency and a pronounced real-time continuous tunability controlled by the external stimulation of voltage biasing. In addition, the asymmetric transmission effect can be well preserved at large oblique incident angle up to ±70°. The design principle and EM performance are validated by both full wave simulations and experimental measurements. Such dynamically controllable chiral metamaterial may provide robust and flexible approach to manipulate EM wave propagation, as well as to facilitate EM device integration to create diverse functionalities.

  11. Dynamic control of asymmetric electromagnetic wave transmission by active chiral metamaterial

    Science.gov (United States)

    Chen, Ke; Feng, Yijun; Cui, Li; Zhao, Junming; Jiang, Tian; Zhu, Bo

    2017-01-01

    The asymmetric transmission of electromagnetic (EM) wave can be fully manipulated by chiral metamaterials, but little can achieve real-time and high efficient tunability due to challenges in practically deployable solutions. Here, we proposed a new scheme for flexibly and dynamically controlling the asymmetric EM wave transmission at microwave frequencies using planar metamaterial of deep subwavelength thickness incorporated with active components of PIN diodes. The asymmetric transmission of linearly polarized EM wave exhibits a high efficiency and a pronounced real-time continuous tunability controlled by the external stimulation of voltage biasing. In addition, the asymmetric transmission effect can be well preserved at large oblique incident angle up to ±70°. The design principle and EM performance are validated by both full wave simulations and experimental measurements. Such dynamically controllable chiral metamaterial may provide robust and flexible approach to manipulate EM wave propagation, as well as to facilitate EM device integration to create diverse functionalities. PMID:28202903

  12. Dynamic control of asymmetric electromagnetic wave transmission by active chiral metamaterial.

    Science.gov (United States)

    Chen, Ke; Feng, Yijun; Cui, Li; Zhao, Junming; Jiang, Tian; Zhu, Bo

    2017-02-16

    The asymmetric transmission of electromagnetic (EM) wave can be fully manipulated by chiral metamaterials, but little can achieve real-time and high efficient tunability due to challenges in practically deployable solutions. Here, we proposed a new scheme for flexibly and dynamically controlling the asymmetric EM wave transmission at microwave frequencies using planar metamaterial of deep subwavelength thickness incorporated with active components of PIN diodes. The asymmetric transmission of linearly polarized EM wave exhibits a high efficiency and a pronounced real-time continuous tunability controlled by the external stimulation of voltage biasing. In addition, the asymmetric transmission effect can be well preserved at large oblique incident angle up to ±70°. The design principle and EM performance are validated by both full wave simulations and experimental measurements. Such dynamically controllable chiral metamaterial may provide robust and flexible approach to manipulate EM wave propagation, as well as to facilitate EM device integration to create diverse functionalities.

  13. Nanocrystal Phase Identification by Lattice Fringe Fingerprinting from High Resolution Transmission Electron Microscope Images

    Science.gov (United States)

    Bjorge, Ruben; Seipel, Bjoern; Moeck, Peter; Fraundorf, Philip

    2006-05-01

    Lattice fringe fingerprinting is a novel and powerful method of identifying and characterizing nanocrystalline structures or materials based on images from direct space high-resolution transmission electron microscopy (HRTEM). We examine Fourier transformed HRTEM images of nanocrystals in certain orientations (i.e. lattice fringes and cross fringes) in order to obtain a lattice fringe fingerprint plot. Such plots are used to identify a crystalline nanoparticle by comparing the experimental data with data that are derived from a comprehensive database. A lattice fringe fingerprint plot is similar to a classical X-ray powder diffractogram, but an important advantage is that the intersection angles of lattice fringes give us additional information. When transmission electron microscope image acquisition and data interpretation are automated and connected to a comprehensive database (such as our Nano-Crystallography Database, http://nanocrystallography.research.pdx.edu/), fringe fingerprinting will be able to compete with powder X-ray diffraction in identifying unknown nanocrystals on a routine basis.

  14. Dynamic Model on the Transmission of Malicious Codes in Network

    Directory of Open Access Journals (Sweden)

    Bimal Kumar Mishra

    2013-08-01

    Full Text Available This paper introduces differential susceptible e-epidemic model S_i IR (susceptible class-1 for virus (S1 - susceptible class-2 for worms (S2 -susceptible class-3 for Trojan horse (S3 – infectious (I – recovered (R for the transmission of malicious codes in a computer network. We derive the formula for reproduction number (R0 to study the spread of malicious codes in computer network. We show that the Infectious free equilibrium is globally asymptotically stable and endemic equilibrium is locally asymptotically sable when reproduction number is less than one. Also an analysis has been made on the effect of antivirus software in the infectious nodes. Numerical methods are employed to solve and simulate the system of equations developed.

  15. Environmental transmission electron microscopy for catalyst materials using a spherical aberration corrector

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Seiji, E-mail: takeda@sanken.osaka-u.ac.jp; Kuwauchi, Yasufumi; Yoshida, Hideto

    2015-04-15

    Atomic resolution has been obtained using environmental transmission electron microscopy (ETEM) by installing a spherical aberration corrector (Cs-corrector) on the objective lens. Simultaneously, the technology for controlling the environment around a specimen in ETEM has advanced significantly in the past decade. Quantification methodology has recently been established for deriving relevant experimental data in catalyst materials from substantial and systematic ETEM observation at the atomic scale. With this background, this paper summarizes aspects of the evolutional microscopy technique: necessary conditions for atomic resolution in ETEM; reduction of the scattering of electrons by the medium surrounding a specimen; and an environmental cell for structural imaging of a crystalline specimen. The high spatial resolution of a Cs-corrected ETEM is demonstrated for different observation conditions. After statistical analysis combined with numerical image analysis of ETEM data is briefly described, the recent applications of the Cs-corrected ETEM to catalyst materials are reviewed. For gold nanoparticulate catalysts, the structural information on the reaction sites and adsorption sites are deduced. For Pt nanoparticulate catalysts, ETEM studies elucidate the correlation between the catalytic activity and the morphology of the nanoparticles. These studies also reveal oxidation and reduction on the topmost Pt surface layer at the atomic scale. Finally, current issues and the future perspectives of Cs-corrected ETEM are summarized, including the reproducibility of ETEM observation data, the control of environments, the critical evaluation of electron irradiation effects, the full implementation of transmission electron microscopy technology in ETEM, and the safety issues for an ETEM laboratory. - Highlights: • Advancement of Cs corrected environmental transmission electron microscopy. • Structural determination of catalyst materials in reaction environments.

  16. Transmission dynamics and elimination potential of zoonotic tuberculosis in morocco

    Science.gov (United States)

    Justus Bless, Philipp; Crump, Lisa; Lohmann, Petra; Laager, Mirjam; Chitnis, Nakul; Zinsstag, Jakob

    2017-01-01

    Bovine tuberculosis (BTB) is an endemic zoonosis in Morocco caused by Mycobacterium bovis, which infects many domestic animals and is transmitted to humans through consumption of raw milk or from contact with infected animals. The prevalence of BTB in Moroccan cattle is estimated at 18%, and 33% at the individual and the herd level respectively, but the human M. bovis burden needs further clarification. The current control strategy based on test and slaughter should be improved through local context adaptation taking into account a suitable compensation in order to reduce BTB prevalence in Morocco and decrease the disease burden in humans and animals. We established a simple compartmental deterministic mathematical model for BTB transmission in cattle and humans to provide a general understanding of BTB, in particular regarding transmission to humans. Differential equations were used to model the different pathways between the compartments for cattle and humans. Scenarios of test and slaughter were simulated to determine the effects of varying the proportion of tested animals (p) on the time to elimination of BTB (individual animal prevalence of less than one in a thousand) in cattle and humans. The time to freedom from disease ranged from 75 years for p = 20% to 12 years for p = 100%. For p > 60% the time to elimination was less than 20 years. The cumulated cost was largely stable: for p values higher than 40%, cost ranged from 1.47 to 1.60 billion euros with a time frame of 12 to 32 years to reach freedom from disease. The model simulations also suggest that using a 2mm cut off instead of a 4mm cut off in the Single Intradermal Comparative Cervical Tuberculin skin test (SICCT) would result in cheaper and quicker elimination programs. This analysis informs Moroccan bovine tuberculosis control policy regarding time frame, range of cost and levels of intervention. However, further research is needed to clarify the national human-bovine tuberculosis ratio in Morocco

  17. Linear versus non-linear structural information limit in high-resolution transmission electron microscopy.

    Science.gov (United States)

    Van Aert, S; Chen, J H; Van Dyck, D

    2010-10-01

    A widely used performance criterion in high-resolution transmission electron microscopy (HRTEM) is the information limit. It corresponds to the inverse of the maximum spatial object frequency that is linearly transmitted with sufficient intensity from the exit plane of the object to the image plane and is limited due to partial temporal coherence. In practice, the information limit is often measured from a diffractogram or from Young's fringes assuming a weak phase object scattering beyond the inverse of the information limit. However, for an aberration corrected electron microscope, with an information limit in the sub-angstrom range, weak phase objects are no longer applicable since they do not scatter sufficiently in this range. Therefore, one relies on more strongly scattering objects such as crystals of heavy atoms observed along a low index zone axis. In that case, dynamical scattering becomes important such that the non-linear and linear interaction may be equally important. The non-linear interaction may then set the experimental cut-off frequency observed in a diffractogram. The goal of this paper is to quantify both the linear and the non-linear information transfer in terms of closed form analytical expressions. Whereas the cut-off frequency set by the linear transfer can be directly related with the attainable resolution, information from the non-linear transfer can only be extracted using quantitative, model-based methods. In contrast to the historic definition of the information limit depending on microscope parameters only, the expressions derived in this paper explicitly incorporate their dependence on the structure parameters as well. In order to emphasize this dependence and to distinguish from the usual information limit, the expressions derived for the inverse cut-off frequencies will be referred to as the linear and non-linear structural information limit. The present findings confirm the well-known result that partial temporal coherence has

  18. On dynamic loads in parallel shaft transmissions. 1: Modelling and analysis

    Science.gov (United States)

    Lin, Edward Hsiang-Hsi; Huston, Ronald L.; Coy, John J.

    1987-01-01

    A model of a simple parallel-shaft, spur-gear transmission is presented. The model is developed to simulate dynamic loads in power transmissions. Factors affecting these loads are identified. Included are shaft stiffness, local compliance due to contact stress, load sharing, and friction. Governing differential equations are developed and a solution procedure is outlined. A parameter study of the solutions is presented in NASA TM-100181 (AVSCOM TM-87-C-3).

  19. A Monte Carlo investigation of contaminant electrons due to a novel in vivo transmission detector.

    Science.gov (United States)

    Asuni, G; Jensen, J M; McCurdy, B M C

    2011-02-21

    A novel transmission detector (IBA Dosimetry, Germany) developed as an IMRT quality assurance tool, intended for in vivo patient dose measurements, is studied here. The goal of this investigation is to use Monte Carlo techniques to characterize treatment beam parameters in the presence of the detector and to compare to those of a plastic block tray (a frequently used clinical device). Particular attention is paid to the impact of the detector on electron contamination model parameters of two commercial dose calculation algorithms. The linac head together with the COMPASS transmission detector (TRD) was modeled using BEAMnrc code. To understand the effect of the TRD on treatment beams, the contaminant electron fluence, energy spectra, and angular distributions at different SSDs were analyzed for open and non-open (i.e. TRD and block tray) fields. Contaminant electrons in the BEAMnrc simulations were separated according to where they were created. Calculation of surface dose and the evaluation of contributions from contaminant electrons were performed using the DOSXYZnrc user code. The effect of the TRD on contaminant electrons model parameters in Eclipse AAA and Pinnacle(3) dose calculation algorithms was investigated. Comparisons of the fluence of contaminant electrons produced in the non-open fields versus open field show that electrons created in the non-open fields increase at shorter SSD, but most of the electrons at shorter SSD are of low energy with large angular spread. These electrons are out-scattered or absorbed in air and contribute less to surface dose at larger SSD. Calculated surface doses with the block tray are higher than those with the TRD. Contribution of contaminant electrons to dose in the buildup region increases with increasing field size. The additional contribution of electrons to surface dose increases with field size for TRD and block tray. The introduction of the TRD results in a 12% and 15% increase in the Gaussian widths used in the

  20. Characterising the Transmission Dynamics of Acinetobacter baumannii in Intensive Care Units Using Hidden Markov Models.

    Directory of Open Access Journals (Sweden)

    Tan N Doan

    Full Text Available Little is known about the transmission dynamics of Acinetobacter baumannii in hospitals, despite such information being critical for designing effective infection control measures. In the absence of comprehensive epidemiological data, mathematical modelling is an attractive approach to understanding transmission process. The statistical challenge in estimating transmission parameters from infection data arises from the fact that most patients are colonised asymptomatically and therefore the transmission process is not fully observed. Hidden Markov models (HMMs can overcome this problem. We developed a continuous-time structured HMM to characterise the transmission dynamics, and to quantify the relative importance of different acquisition sources of A. baumannii in intensive care units (ICUs in three hospitals in Melbourne, Australia. The hidden states were the total number of patients colonised with A. baumannii (both detected and undetected. The model input was monthly incidence data of the number of detected colonised patients (observations. A Bayesian framework with Markov chain Monte Carlo algorithm was used for parameter estimations. We estimated that 96-98% of acquisition in Hospital 1 and 3 was due to cross-transmission between patients; whereas most colonisation in Hospital 2 was due to other sources (sporadic acquisition. On average, it takes 20 and 31 days for each susceptible individual in Hospital 1 and Hospital 3 to become colonised as a result of cross-transmission, respectively; whereas it takes 17 days to observe one new colonisation from sporadic acquisition in Hospital 2. The basic reproduction ratio (R0 for Hospital 1, 2 and 3 was 1.5, 0.02 and 1.6, respectively. Our study is the first to characterise the transmission dynamics of A. baumannii using mathematical modelling. We showed that HMMs can be applied to sparse hospital infection data to estimate transmission parameters despite unobserved events and imperfect detection of

  1. Barrier layers against oxygen transmission on the basis of electron beam cured methacrylated gelatin

    Science.gov (United States)

    Scherzer, Tom

    1997-08-01

    The development of barrier layers against oxygen transmission on the basis of radiation-curable methacrylated gelatin will be reported. The electron beam cured gelatin coatings show an extremely low oxygen permeability and a high resistance against boiling water. Moreover, the methacrylated gelatins possess good adhesion characteristics. Therefore, they are suited as barrier adhesives in laminates for food packaging applications. If substrate foils from biodegradable polymers are used, the development of completely biodegradable packaging materials seems to be possible.

  2. A Transmission Electron Microscope Investigation of Space Weathering Effects in Hayabusa Samples

    Science.gov (United States)

    Keller, Lindsay P.; Berger, Eve L.

    2014-01-01

    The Hayabusa mission to asteroid 25143 Itokawa successfully returned the first direct samples of the regolith from the surface of an asteroid. The Hayabusa samples thus present a special opportunity to directly investigate the evolution of asteroidal surfaces, from the development of the regolith to the study of the more complex effects of space weathering. Here we describe the mineralogy, microstructure and composition of three Hayabusa mission particles using transmission electron microscope (TEM) techniques

  3. Characterization nanoparticles-based vaccines and vaccine candidates: a Transmission Electron Microscopy study

    Directory of Open Access Journals (Sweden)

    I. Menéndez I

    2016-05-01

    Full Text Available Transmission Electron Microscopy (TEM is a valuable tool for the biotech industry. This paper summarizes some of the contributions of MET in the characterization of the recombinant antigens are part of vaccines or vaccine candidates obtained in the CIGB. It mentions the use of complementary techniques MET (Negative staining, and immunoelectron that enhance visualization and ultrastructural characterization of the recombinant proteins obtained by Genetic Engineering.

  4. Studying the Kinetics of Crystalline Silicon Nanoparticle Lithiation with In Situ Transmission Electron Microscopy

    KAUST Repository

    McDowell, Matthew T.

    2012-09-04

    In situ transmission electron microscopy (TEM) is used to study the electrochemical lithiation of high-capacity crystalline Si nanoparticles for use in Li-ion battery anodes. The lithiation reaction slows down as it progresses into the particle interior, and analysis suggests that this behavior is due not to diffusion limitation but instead to the influence of mechanical stress on the driving force for reaction. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Transmission electron microscopy study on silicon nitride/stainless steel bonded interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Poza, P. [Departamento de Ciencia e Ingenieria de los Materiales, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid (Spain); Miranzo, P. [Institute of Ceramics and Glass, CSIC, Campus de Cantoblanco, 28049 Madrid (Spain); Osendi, M.I. [Institute of Ceramics and Glass, CSIC, Campus de Cantoblanco, 28049 Madrid (Spain)], E-mail: miosendi@icv.csic.es

    2008-11-28

    The reaction zone of a diffusion bonded Si{sub 3}N{sub 4}/stainlees steel (ss) interface formed at 1100 deg. C was analyzed by transmission electron microscopy and X-ray diffraction (XRD). Besides the formation of various iron silicides, iron nitride and chromium nitride phases detected by XRD, Cr{sub 3}Ni{sub 5}Si{sub 2} crystals were identified at the interface by TEM.

  6. Low-temperature transmission electron microscopy study of superconducting Nb{sub 3}Sn

    Energy Technology Data Exchange (ETDEWEB)

    Schierning, G.; Theissmann, R. [Faculty of Engineering and CeNIDE, University of Duisburg-Essen, Bismarckstr. 81, 47057 Duisburg (Germany); Acet, M. [Experimentalphysik and CeNIDE, University of Duisburg-Essen, Lotharstr. 1, 47057 Duisburg (Germany); Hoelzel, M. [Fachbereich Materialwissenschaften, Technical University of Darmstadt, Petersenstr. 23, 64287 Darmstadt (Germany); FRM-II, Technical University of Munich, 85747 Garching (Germany); Gruendmayer, J.; Zweck, J. [Physics Faculty, University of Regensburg, 93047 Regensburg (Germany)

    2010-08-15

    By low-temperature transmission electron microscopy we have found nanodomains in a polycrystalline Nb{sub 3}Sn sample. We interpret that these nanodomains form due to a tetragonal distortion. Because twinning seems to be a prominent feature of the real structure of many high T{sub c} superconductors, possible interactions between a twinned structure and superconductivity are briefly discussed. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  7. TRANSMISSION ELECTRON MICROSCOPY OF SEGMENTED POLYURETHANES WITH RUTHENIUM TETROXIDE AS A STAINING AGENT

    Institute of Scientific and Technical Information of China (English)

    XIAO Fengfei; CHEN Shouxi; JIN Yongze; SHI Lianghe; XU Mao

    1991-01-01

    Microphase separation and lamellar structure of segmented polyether- and polyester-polyurethanes have been investigated by means of transmission electron microscopy with the ruthenium tetroxide staining technique. The results show that the RuO4 staining technique is simpler and may give better image contrast than other staining methods for this polymer. Microphase separation and lamellar structure of segmented polyether- and polyester-polyurethanes were directly observed and discussed.

  8. Electronic and Ionic Transport Dynamics in Organolead Halide Perovskites.

    Science.gov (United States)

    Li, Dehui; Wu, Hao; Cheng, Hung-Chieh; Wang, Gongming; Huang, Yu; Duan, Xiangfeng

    2016-07-26

    Ion migration has been postulated as the underlying mechanism responsible for the hysteresis in organolead halide perovskite devices. However, the electronic and ionic transport dynamics and how they impact each other in organolead halide perovskites remain elusive to date. Here we report a systematic investigation of the electronic and ionic transport dynamics in organolead halide perovskite microplate crystals and thin films using temperature-dependent transient response measurements. Our study reveals that thermally activated ionic and electronic conduction coexist in perovskite devices. The extracted activation energies suggest that the electronic transport is easier, but ions migrate harder in microplates than in thin films, demonstrating that the crystalline quality and grain boundaries can fundamentally modify electronic and ionic transport in perovskites. These findings offer valuable insight on the electronic and ionic transport dynamics in organolead halide perovskites, which is critical for optimizing perovskite devices with reduced hysteresis and improved stability and efficiency.

  9. Electronic transmission through p-n and n-p-n junctions of graphene

    Energy Technology Data Exchange (ETDEWEB)

    Setare, M R [Department of Science of Bijar, University of Kurdistan, Bijar (Iran, Islamic Republic of); Jahani, D, E-mail: rezakord@ipm.co, E-mail: Dariush110@gmail.co [Department of Physics, Razi University, Kermanshah (Iran, Islamic Republic of)

    2010-06-23

    In this paper, we first evaluate the electronic transmission of Dirac fermions into a p-n junction of gapped graphene and show that the final result depends on the sign of the refractive index, n. We also, by considering the appropriate wavefunctions in the region of the electrostatic potential, show that both transmission and the reflection probability turn out to be positive and less than unity instead of the negative transmission and higher than unity reflection coefficient commonly referred to as the Klein paradox. We then obtain the transmission probability corresponding to a special p-n junction for which there exists a region in which the low energy excitations of graphene acquire a finite mass and, interestingly, find that in this case the transmission is independent of the index of refraction, in contrast with the corresponding result for gapped graphene. We then discuss the validity of the solutions reported in some of the papers cited in this work which, considering the Buettiker formula, turn out to lead to the wrong results for conductivity.

  10. Transmission Electron Microscopy Analysis of Skin Lesions from Sporotrichosis Epidemic in Rio de Janeiro, Brazil

    Science.gov (United States)

    Porto Ferreira, Cassio; Oliveira de Almeida, Ana Cristina; Corte-Real, Suzana

    2015-01-01

    Transmission electron microscopy can yield useful information in a range of scientific fields; it is capable of imaging at a significantly higher resolution than light microscopes and has been a very useful tool in the identification of morphological changes of the dermis as well as assessment of changes in the extracellular matrix. Our aim is to characterize by electron microscopy the cellular profile of lesions caused by Sporothrix schenckii from the sporotrichosis epidemic in its zoonotic form that occurs in Rio de Janeiro, Brazil. PMID:25653392

  11. Magnification variations due to illumination curvature and object defocus in transmission electron microscopy

    Science.gov (United States)

    van Duinen, Gijs; van Heel, Marin; Patwardhan, Ardan

    2005-10-01

    It has previously been shown that - in theory - magnification variations can occur in an imaging system as a function of defocus, depending on the field curvature of the illuminating system. We here present the results of practical experiments to verify this effect in the transmission electron microscope. We find that with illumination settings typically used in the electron microscopy of biological macromolecules, systematic variations in magnification of ~ 0.5% per μm defocus can easily occur. This work highlights the need for a magnification-invariant imaging mode to eliminate or to compensate for this effect.

  12. Development of a fast electromagnetic shutter for compressive sensing imaging in scanning transmission electron microscopy

    CERN Document Server

    Béché, Armand; Freitag, Bert; Verbeeck, Jo

    2015-01-01

    The concept of compressive sensing was recently proposed to significantly reduce the electron dose in scanning transmission electron microscopy (STEM) while still maintaining the main features in the image. Here, an experimental setup based on an electromagnetic shutter placed in the condenser plane of a STEM is proposed. The shutter blanks the beam following a random pattern while the scanning coils are moving the beam in the usual scan pattern. Experimental images at both medium scale and high resolution are acquired and then reconstructed based on a discrete cosine algorithm. The obtained results confirm the predicted usefulness of compressive sensing in experimental STEM even though some remaining artifacts need to be resolved.

  13. Reliable strain measurement in transistor arrays by robust scanning transmission electron microscopy

    Directory of Open Access Journals (Sweden)

    Suhyun Kim

    2013-09-01

    Full Text Available Accurate measurement of the strain field in the channels of transistor arrays is critical for strain engineering in modern electronic devices. We applied atomic-resolution high-angle annular dark-field scanning transmission electron microscopy to quantitative measurement of the strain field in transistor arrays. The quantitative strain profile over 20 transistors was obtained with high reliability and a precision of 0.1%. The strain field was found to form homogeneously in the channels of the transistor arrays. Furthermore, strain relaxation due to the thin foil effect was quantitatively investigated for thicknesses of 35 to 275 nm.

  14. Defects in paramagnetic Co-doped ZnO films studied by transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kovacs, Andras; Ney, A.; Duchamp, Martial; Ney, V.; Boothroyd, Chris; Galindo, Pedro L.; Kaspar, Tiffany C.; Chambers, Scott A.; Dunin-Borkowski, Rafal

    2013-12-23

    We have studied planar defects in epitaxial Co:ZnO dilute magnetic semiconductor thin films deposited on c-plane sapphire (Al2O3) and the Co:ZnO/Al2O3 interface structure at atomic resolution using aberration-corrected transmission electron microscopy (TEM) and electron energy-loss spectroscopy (EELS). Comparing Co:ZnO samples deposited by pulsed laser deposition and reactive magnetron sputtering, both exhibit extrinsic stacking faults, incoherent interface structures, and compositional variations within the first 3-4 Co:ZnO layers at the interface.. In addition, we have measured the local strain which reveals the lattice distortion around the stacking faults.

  15. Employing NMR Spectroscopy To Evaluate Transmission of Electronic Effects in 4-Substituted Chalcones

    Science.gov (United States)

    Wachter-Jurcsak, Nanette; Zamani, Hossein

    1999-05-01

    Described is an organic synthesis experiment that demonstrates the electronic transmission by substituents. The effect of substitution at the para-position of the styryl ring of 1,3-diphenyl-2-propenones (chalcones) by typical electron-donating or -accepting groups can be observed by proton and carbon-13 NMR spectroscopy. A linear correlation is observed when the differences in chemical shift measurements for H are plotted against the corresponding Hammett substituent constant values. Good correlation between carbon-13 chemical shifts of the alpha carbon are also observed. The syntheses of the 4-substituted chalcones is presented as well as a brief discussion of the theory.

  16. Transmission dosimetry with a liquid-filled electronic portal imaging device

    Energy Technology Data Exchange (ETDEWEB)

    Boellaard, R.; Van Herk, M.; Mijnheer, B.J. [Nederlands Kanker Inst. `Antoni van Leeuwenhoekhuis`, Amsterdam (Netherlands)

    1995-12-01

    The aim of transmission dosimetry is to correlate transmission dose values with patient dose values. A liquid-filled electronic portal imaging device (EPID) has been developed. After determination of the dose response relationship, i.e. the relation between pixel value and dose rate, for clinical situations it was found that the EPID is applicable for two-dimensional dosimetry with an accuracy of about 1%. The aim of this study was to investigate transmission dose distributions at different phantom-detector distances to predict exit dose distributions from transmission dose images. An extensive set of transmission dose measurements below homogeneous phantoms were performed with the EPID. The influence of several parameters such as field size, phantom thickness, phantom-detector distance and phantom-source distance on the transmission dose and its distribution were investigated. The two-dimensional transmission dose images were separated into two components: a primary dose and a scattered dose distribution. It was found that the scattered dose is maximal at a phantom thickness of about 10 cm. The scattered dose distribution below a homogeneous phantom has a Gaussian shape. The width of the Gaussian is small at small phantom-detector distances and increases for larger phantom-detector distances. The dependence of the scattered dose distribution on the field size at various phantom-detector distances has been used to estimate the dose distribution at the exit site of the phantom. More work is underway to determine the exit dose distributions for clinical situations, including the presence of inhomogeneities.

  17. Extension of Pierce model to multiple transmission lines interacting with an electron beam

    CERN Document Server

    Tamma, Venkata Ananth

    2013-01-01

    A possible route towards achieving high power microwave devices is through the use of novel slow-wave structures employing multiple coupled transmission lines (MTLs) whose behavior when coupled to electron beams have not been sufficiently explored. We present the extension of the one-dimensional linearized Pierce theory to MTLs coupled to a single electron beam. We develop multiple formalisms to calculate the k-{\\omega} dispersion relation of the system and find that the existence of a growing wave solution is always guaranteed if the electron propagation constant is larger than or equal to the largest propagation constant of the MTL system. We verify our findings with illustrative examples which bring to light unique properties of the system in which growing waves were found to exist within finite bands of the electron propagation constant and discuss possible approach to improve the gain. By treating the beam-MTL interaction as distributed dependent current generators in the MTL, we derive relations charact...

  18. The application of Graphene as a sample support in Transmission Electron Microscopy

    CERN Document Server

    Pantelic, R S; Kaiser, U; Stahlberg, H

    2012-01-01

    Transmission electron microscopy has witnessed rampant development and surging point resolution over the past few years. The improved imaging performance of modern electron microscopes shifts the bottleneck for image contrast and resolution to sample preparation. Hence, it is increasingly being realized that the full potential of electron microscopy will only be realized with the optimization of current sample preparation techniques. Perhaps the most recognized issues are background signal and noise contributed by sample supports, sample charging and instability. Graphene provides supports of single atom thickness, extreme physical stability, periodic structure, and ballistic electrical conductivity. As an increasing number of applications adapting graphene to their benefit emerge, we discuss the unique capabilities afforded by the use of graphene as a sample support for electron microscopy.

  19. Fine structure of the endolymphatic duct in the rat. A scanning and transmission electron microscopy study

    DEFF Research Database (Denmark)

    Qvortrup, K; Rostgaard, Jørgen; Bretlau, P

    1995-01-01

    To investigate the surface morphology of the endolymphatic duct epithelium, 8 rats were vascularly perfused with glutaraldehyde in a buffered and oxygenated blood substitute. Optimal preservation of the epithelium for scanning electron microscopy was attained by coating of the specimens with OsO4...... and thiocarbohydrazide followed by a continuous dehydration procedure. Three types of cells were identified with the scanning electron microscope: A polygonal and oblong epithelial cell was observed in the largest number throughout the duct, whereas in the juxta-saccular half of the duct two additional types...... of epithelial cells were observed. The scanning electron microscopical observations are compared and discussed with reference to transmission electron microscopical observations of the endolymphatic duct....

  20. Possibilities and limitations of advanced transmission electron microscopy for carbon-based nanomaterials

    Directory of Open Access Journals (Sweden)

    Xiaoxing Ke

    2015-07-01

    Full Text Available A major revolution for electron microscopy in the past decade is the introduction of aberration correction, which enables one to increase both the spatial resolution and the energy resolution to the optical limit. Aberration correction has contributed significantly to the imaging at low operating voltages. This is crucial for carbon-based nanomaterials which are sensitive to electron irradiation. The research of carbon nanomaterials and nanohybrids, in particular the fundamental understanding of defects and interfaces, can now be carried out in unprecedented detail by aberration-corrected transmission electron microscopy (AC-TEM. This review discusses new possibilities and limits of AC-TEM at low voltage, including the structural imaging at atomic resolution, in three dimensions and spectroscopic investigation of chemistry and bonding. In situ TEM of carbon-based nanomaterials is discussed and illustrated through recent reports with particular emphasis on the underlying physics of interactions between electrons and carbon atoms.

  1. Possibilities and limitations of advanced transmission electron microscopy for carbon-based nanomaterials.

    Science.gov (United States)

    Ke, Xiaoxing; Bittencourt, Carla; Van Tendeloo, Gustaaf

    2015-01-01

    A major revolution for electron microscopy in the past decade is the introduction of aberration correction, which enables one to increase both the spatial resolution and the energy resolution to the optical limit. Aberration correction has contributed significantly to the imaging at low operating voltages. This is crucial for carbon-based nanomaterials which are sensitive to electron irradiation. The research of carbon nanomaterials and nanohybrids, in particular the fundamental understanding of defects and interfaces, can now be carried out in unprecedented detail by aberration-corrected transmission electron microscopy (AC-TEM). This review discusses new possibilities and limits of AC-TEM at low voltage, including the structural imaging at atomic resolution, in three dimensions and spectroscopic investigation of chemistry and bonding. In situ TEM of carbon-based nanomaterials is discussed and illustrated through recent reports with particular emphasis on the underlying physics of interactions between electrons and carbon atoms.

  2. A correlative light microscopic, transmission and scanning electron microscopic study of the dorsum of human tongue.

    Science.gov (United States)

    Boshell, J L; Wilborn, W H; Singh, B B

    1980-01-01

    The dorsum of the human tongue has three types of papillae, filiform, fungiform and circumvallate. Some investigators have studied these by light and transmission electron microscopy. Since knowledge of the morphology through studies by scanning of the morphology through studies by scanning electron microscopy (SEM) is scant, this investigation was started with the purpose of studying human tongues at different ages. One fetal tongue and portions of three tongues from newborns were removed. Additional specimens were biopsied from the anterior region of three adult tongues. Samples were processed routinely for light microscopy, transmission electron microscoy (TEM) and scanning electron microscopy (SEM). Two distinct features were evident on the fetal tongue. The first was that the surface epithelial layer of the tongue appeared to be periderm. The second was that fungiform papillae began their development earlier than filiform. At birth, the putative periderm had disappeared and a few filiform papillae were observed. On the adult tongue, filiform papillae were numerous and were comprised of two cell populations. One cell population contained numerous keratohyalin granules (KHG). The KHG were two types, eosinophilic and basophilic. Ultrastructurally, the eosinophilic granules were less electron dense and larger in size than the basophilic KHG.

  3. Atomic-Scale Study Of Complex Cobalt Oxide Using Scanning Transmission Electron Microscope

    Science.gov (United States)

    Gulec, Ahmet

    Cobalt oxides offer a rich ?eld for the formation of novel phases, including superconductors and exotic magnetic phases, involving a mixed valence state for cobalt and/or the presence of oxygen vacancies. Having spin states, such as, low spin (LS), high spin (HS), and intermediate spin (IS), cobalt oxides differ from other 3d metal oxides The presence of such spin states make the physics of the cobalt oxides so complicated that it has not yet been completely understood. In order to improve our understanding of the various phase transitions observed in Cobalt oxides and to comprehend the relationship between crystal and electronic structure, both high energy resolution and high spatial resolution are essential. Fortunately, transmission electron microscopy (TEM) is a technique which is capable of ful?lling both of these requirements. In this thesis, I have utilized unique techniques in a scanning transmission electron microscope (STEM) to analyze the atomic-scale structure-property relationship, both at room temperature and through insitu cooling to liquid nitrogen (LN2) temperature. In particular, by using correlated Z-contrast imaging, electron energy loss spectrum (EELS) and electron energy loss magnetic circular dichroism (EMCD), the structure, composition, bonding and magnetic behavior are characterized directly on the atomic scale.

  4. Study of Electron Polarization Dynamics in the JLEIC at Jlab

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Fanglei [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Derbenev, Yaroslav [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Morozov, Vasiliy [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Zhang, Yuhong [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Barber, Desmond P. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2017-05-01

    The design of an electron polarization scheme in the Jefferson Lab Electron-Ion Collider (JLEIC) aims to attain a high longitudinal electron polarization (over 70%) at collision points as required by the nuclear physics program. Comprehensive strategies for achieving this goal have been considered and developed including injection of highly polarized electrons from CEBAF, mechanisms for manipulation and preservation of the polarization in the JLEIC collider ring and measurement of the electron polarization. In particular, maintaining a sufficiently long polarization lifetime is crucial for accumulation of adequate experimental statistics. The chosen electron polarization configuration, based on the unique figure-8 geometry of the ring, removes the electron spin-tune energy dependence. This significantly simplifies the control of the electron polarization and suppresses the synchrotron sideband resonances. This paper reports recent studies and simulations of the electron polarization dynamics in the JLEIC electron collider ring.

  5. Steering Dynamic Performance of an Electric Transmission Tracked Vehicle Based on Rotating Speed Control

    Institute of Scientific and Technical Information of China (English)

    SUN Feng-chun; CHEN Shu-yong; ZHANG Cheng-ning

    2006-01-01

    In order to analyze steering dynamic performance of an electric transmission tracked vehicle exactly, modern design theory and methodology-collaborative simulation and virtual prototype are applied. The 3-D multi-body dynamic model of full vehicle running gears and control system model are built based on the simulation platform on dynamic analysis software known as RecurDyn/Track-HM and control system analysis software known as Matlab/Simulink. Theory analysis and collaborative simulation of turning kinematic/dynamic performance in different velocity and turning radius are made. Comparing the test result with theory computation validates the correctness of the model. The method has instructional significance of solving the existent modeling problem, comprehension of turning performance and test debugging strategy,and also forms a new idea of research on dynamic characteristics for the electric transmission tracked vehicle's electric propulsion system.

  6. Computationally exact methods for stochastic periodic dynamics: Spatiotemporal dispersal and temporally forced transmission.

    Science.gov (United States)

    Ross, J V

    2010-01-07

    The dynamics of many diseases and populations possess distinct recurring phases. For example, many species breed only during a subset of the year and the infection dynamics of many pathogens have transmission rates that vary with season. Here I investigate computational methods for studying transient and long-term behaviour of stochastic models which have periodic phases-several different potential techniques for studying long-term behaviour will be contrasted. I illustrate the results with two studies: The first is of a spatially realistic metapopulation model of malleefowl (Leipoa ocellata), a species which disperses only during a quarter of the year; this model is used to highlight the advantages and disadvantages of the particular methods presented. The second study is of a model for disease dynamics which incorporates seasonality in both the rate of within-population transmission and also in the rate of transmission effected via aerosol importation. This model has applications to studying disease invasion and persistence in captive-breeding populations. We demonstrate, via comparison to appropriately matched models with constant transmission rates and also no aerosol transmission, that seasonality and aerosol importation may alter control choices, with possibly an increase in the threshold population size for local control surveillance, transfer of importance to limiting aerosol transmission, and the use of temporally targetted surveillance. The methodology presented is the gold-standard for dealing with many phased processes in ecology and epidemiology, but its application is limited to systems of small size.

  7. On transmission errors and profile modifications minimising dynamic tooth loads in multi-mesh gears

    Science.gov (United States)

    Velex, Ph.; Chapron, M.; Fakhfakh, H.; Bruyère, J.; Becquerelle, S.

    2016-09-01

    A modular three-dimensional model of multi-mesh gears is used to analyse theoretically the link between dynamic mesh excitations and transmission errors. It is demonstrated that dynamic mesh forces are mostly controlled by the local transmission errors associated with each individual mesh. A design criterion is derived which can be used to define the tooth shape modifications minimising dynamic tooth loads. The results from two examples of application on idler and planetary systems prove that the proposed theory is sound and can be applied to a variety of gear geometries. Finally, the interest and limits of using transmission errors from a single pinion-gear pair in the context of multi-mesh gears are discussed.

  8. Network Parameters Impact on Dynamic Transmission Power Control in Vehicular Ad hoc Networks

    Directory of Open Access Journals (Sweden)

    Khan Muhammad Imran

    2013-09-01

    Full Text Available In vehicular ad hoc networks, the dynamic change in transmission power is very effective to increase the throughput of the wireless vehicular network and decrease the delay of the message communicationbetween vehicular nodes on the highway. Whenever an event occurs on the highway, the reliability of the communication in the vehicular network becomes so vital so that event created messages shouldreach to all the moving network nodes. It becomes necessary that there should be no interference fromoutside of the network and all the neighbor nodes should lie in the transmission range of thereference vehicular node. Transmission range is directly proportional to the transmission power the moving node. If the transmission power will be high, the interference increases that can cause higherdelay in message reception at receiver end, hence the performance of the network decreased. In this paper, it is analyzed that how transmission power can be controlled by considering other differentparameter of the network such as; density, distance between moving nodes, different types of messages dissemination with their priority, selection of an antenna also affects on the transmission power. Thedynamic control of transmission power in VANET serves also for the optimization of the resources where it needs, can be decreased and increased depending on the circumstances of the network.Different applications and events of different types also cause changes in transmission power to enhance the reachability. The analysis in this paper is comprised of density, distance with single hop and multihop message broadcasting based dynamic transmission power control as well as antenna selection and applications based. Some summarized tables are produced according to the respective parameters of the vehicular network. At the end some valuable observations are made and discussed in detail. This paper concludes with a grand summary of all the protocols discussed in it.

  9. Social Dynamics within Electronic Networks of Practice

    Science.gov (United States)

    Mattson, Thomas A., Jr.

    2013-01-01

    Electronic networks of practice (eNoP) are special types of electronic social structures focused on discussing domain-specific problems related to a skill-based craft or profession in question and answer style forums. eNoP have implemented peer-to-peer feedback systems in order to motivate future contributions and to distinguish contribution…

  10. Transmission stability and Raman-induced amplitude dynamics in multichannel soliton-based optical waveguide systems

    Science.gov (United States)

    Peleg, Avner; Nguyen, Quan M.; Tran, Thinh P.

    2016-12-01

    We study transmission stability and dynamics of pulse amplitudes in N-channel soliton-based optical waveguide systems, taking into account second-order dispersion, Kerr nonlinearity, delayed Raman response, and frequency dependent linear gain-loss. We carry out numerical simulations with systems of N coupled nonlinear Schrödinger (NLS) equations and compare the results with the predictions of a simplified predator-prey model for Raman-induced amplitude dynamics. Coupled-NLS simulations for single-fiber transmission with 2 ≤ N ≤ 4 frequency channels show stable oscillatory dynamics of soliton amplitudes at short-to-intermediate distances, in excellent agreement with the predator-prey model's predictions. However, at larger distances, we observe transmission destabilization due to resonant formation of radiative sidebands, which is caused by Kerr nonlinearity. The presence of linear gain-loss in a single fiber leads to a limited increase in transmission stability. Significantly stronger enhancement of transmission stability is achieved in a nonlinear N-waveguide coupler due to efficient suppression of radiative sideband generation by the linear gain-loss. As a result, the distances along which stable Raman-induced dynamics of soliton amplitudes is observed are significantly larger in the waveguide coupler system compared with the single-fiber system.

  11. Probing electron correlation and nuclear dynamics in Momentum Space

    Energy Technology Data Exchange (ETDEWEB)

    Deleuze, M S; Hajgato, B; Morini, F; Knippenberg, S, E-mail: michael.deleuze@uhasselt.b [Research Group of Theoretical Chemistry, Department SBG, Hasselt University, Agoralaan, Gebouw D, B3590 Diepenbeek (Belgium)

    2010-02-01

    Orbital imaging experiments employing Electron Momentum Spectroscopy are subject to many complications, such as distorted wave effects, conformational mobility in the electronic ground state, ultra-fast nuclear dynamics in the final state, or a dispersion of the ionization intensity over electronically excited (shake-up) configurations of the cation. The purpose of the present contribution is to illustrate how a proper treatment of these complications enables us to probe in momentum space the consequences of electron correlation and nuclear dynamics in neutral and cationic states.

  12. Runaway electron dynamics in tokamak plasmas with high impurity content

    Science.gov (United States)

    Martín-Solís, J. R.; Loarte, A.; Lehnen, M.

    2015-09-01

    The dynamics of high energy runaway electrons is analyzed for plasmas with high impurity content. It is shown that modified collision terms are required in order to account for the collisions of the relativistic runaway electrons with partially stripped impurity ions, including the effect of the collisions with free and bound electrons, as well as the scattering by the full nuclear and the electron-shielded ion charge. The effect of the impurities on the avalanche runaway growth rate is discussed. The results are applied, for illustration, to the interpretation of the runaway electron behavior during disruptions, where large amounts of impurities are expected, particularly during disruption mitigation by massive gas injection. The consequences for the electron synchrotron radiation losses and the resulting runaway electron dynamics are also analyzed.

  13. Dynamics of climate-based malaria transmission model with age-structured human population

    Science.gov (United States)

    Addawe, Joel; Pajimola, Aprimelle Kris

    2016-10-01

    In this paper, we proposed to study the dynamics of malaria transmission with periodic birth rate of the vector and an age-structure for the human population. The human population is divided into two compartments: pre-school (0-5 years) and the rest of the human population. We showed the existence of a disease-free equilibrium point. Using published epidemiological parameters, we use numerical simulations to show potential effect of climate change in the dynamics of age-structured malaria transmission. Numerical simulations suggest that there exists an asymptotically attractive solution that is positive and periodic.

  14. A Review of Dynamic Models Used in Simulation of Gear Transmissions

    Directory of Open Access Journals (Sweden)

    Zoltan-Iosif Korka

    2014-07-01

    Full Text Available The investigation of relevant scientific literature regarding gear modeling enabled us to discover a significant number of papers dating back several decades and continuing to the present. The purpose of the dynamic models was quite diverse, but all modeling efforts share the goal of replicating the complex physics of power transmission through gear interaction. This paper investigates the relevant aspects regarding the dynamic modeling of gear transmissions, starting with the simplest model (1DOF, then developing it into a model with three degrees of freedom (3DOF and finishing with six degrees of freedom model (6DOF.

  15. Control dynamics of severe acute respiratory syndrome transmission

    Institute of Scientific and Technical Information of China (English)

    WANG Haiying; RONG Feng; KE Fujiu; BAI Yilong

    2003-01-01

    Severe acute respiratory syndrome (SARS) is a serious disease with many puzzling features. We present a simple, dynamic model to assess the epidemic potential of SARS and the effectiveness of control measures. With this model, we analysed the SARS epidemic data in Beijing. The data fitting gives the basic case reproduction number of 2.16 leading to the outbreak, and the variation of the effective reproduction number reflecting the control effect. Noticeably, our study shows that the response time and the strength of control measures have significant effects on the scale of the outbreak and the lasting time of the epidemic.

  16. Real-time electron dynamics simulation of two-electron transfer reactions induced by nuclear motion

    Science.gov (United States)

    Suzuki, Yasumitsu; Yamashita, Koichi

    2012-04-01

    Real-time electron dynamics of two-electron transfer reactions induced by nuclear motion is calculated by three methods: the numerically exact propagation method, the time-dependent Hartree (TDH) method and the Ehrenfest method. We find that, as long as the nuclei move as localized wave packets, the TDH and Ehrenfest methods can reproduce the exact electron dynamics of a simple charge transfer reaction model containing two electrons qualitatively well, even when nonadiabatic transitions between adiabatic states occur. In particular, both methods can reproduce the cases where a complete two-electron transfer reaction occurs and those where it does not occur.

  17. Dynamic screening and electron electron scattering in low-dimensional metallic systems

    Science.gov (United States)

    Silkin, V. M.; Quijada, M.; Muiño, R. Díez; Chulkov, E. V.; Echenique, P. M.

    2007-09-01

    The modification of dynamic screening in the electron-electron interaction in systems with reduced dimensionality and tunable one-particle electronic structure is studied. Two examples of such systems are considered, namely, the adsorbate-induced quantum well states at the Na adlayer covered Cu(1 1 1) surface, and metal clusters of sizes up to few nanometers. The dependence of the electron-electron decay rates on the Na coverage in the former case and on the cluster size in the latter is investigated. The role played by the dynamical screened interaction in such processes is addressed as well.

  18. Development of electron optical system using annular pupils for scanning transmission electron microscope by focused ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Matsutani, Takaomi, E-mail: matutani@ele.kindai.ac.jp [Kinki University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502 (Japan); Yasumoto, Tsuchika; Tanaka, Takeo [Osaka Sangyo University, 3-1-1 Nakagaito, Daito, Osaka 574-8530 (Japan); Kawasaki, Tadahiro; Ichihashi, Mikio [Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Ikuta, Takashi [Osaka Electro-Communication University, 18-8 Hatsu-cho, Neyagawa, Osaka 572-8530 (Japan)

    2012-02-01

    Annular pupils for electron optics were produced using a focused ion beam (FIB), enabling an increase in the depth of focus and allowing for aberration-free imaging and separation of the amplitude and phase images in a scanning transmission electron microscope (STEM). Simulations demonstrate that an increased focal depth is advantageous for three-dimensional tomography in the STEM. For a 200 kV electron beam, the focal depth is increased to approximately 100 nm by using an annular pupil with inner and outer semi-angles of 29 and 30 mrad, respectively. Annular pupils were designed with various outer diameters of 40-120 {mu}m and the inner diameter was designed at 80% of the outer diameter. A taper angle varying from 1 Degree-Sign to 20 Degree-Sign was applied to the slits of the annular pupils to suppress the influence of high-energy electron scattering. The fabricated annular pupils were inspected by scanning ion beam microscopy and scanning electron microscopy. These annular pupils were loaded into a STEM and no charge-up effects were observed in the scintillator projection images recorded by a CCD camera.

  19. Transmission dynamics of Simulium damnosum in rural communities of Akwa Ibom State, Nigeria

    Directory of Open Access Journals (Sweden)

    K.N. Opara

    2008-08-01

    Full Text Available Background & objectives: Onchocerciasis is endemic in some parts of Akwa Ibom State, Nigeria. This study describes the entomological parameters of transmission in three rural communities of Akwa Ibom State, prior to ivermectin intervention in 2004. Methods: Blackflies were caught using human bait and 90% of the flies were dissected for parity. All parous flies were further dissected for the presence of filaria larvae. Monthly and annual biting rate, and transmission potential were calculated using standard methods.Results: A total of 4296 adult Simulium damnosum were caught on human bait, 4119 were dissected of which 208 (5.1% were infected with Onchocerca volvulus larvae. Transmission parameters varied significantly (p < 0.05 in the three villages. Annual biting rates, ranged from 9490 to 11,218 bites per person per year. The annual transmission potential ranged from 131 to 189 infective larvae per person per year, monthly biting rate and monthly transmission potential varied significantly (p < 0.05 in the three villages. Transmission was highly seasonal occurring during the peak of rainy season from August to October. There was no transmission during the dry periods — November to March, and the early rainy periods — April to May. The diurnal biting activity of the fly exhibited a bimodal pattern with a morning peak (0900–1000 hrs and a more marked evening peak (1600–1700 hrs. Interpretation & conclusion: The results indicate that there is a temporal and spatial variation in the transmission dynamics of S. damnosum in the study area.

  20. Visualization and quantitative analysis of nanoparticles in the respiratory tract by transmission electron microscopy

    Directory of Open Access Journals (Sweden)

    Gehr Peter

    2007-11-01

    Full Text Available Abstract Nanotechnology in its widest sense seeks to exploit the special biophysical and chemical properties of materials at the nanoscale. While the potential technological, diagnostic or therapeutic applications are promising there is a growing body of evidence that the special technological features of nanoparticulate material are associated with biological effects formerly not attributed to the same materials at a larger particle scale. Therefore, studies that address the potential hazards of nanoparticles on biological systems including human health are required. Due to its large surface area the lung is one of the major sites of interaction with inhaled nanoparticles. One of the great challenges of studying particle-lung interactions is the microscopic visualization of nanoparticles within tissues or single cells both in vivo and in vitro. Once a certain type of nanoparticle can be identified unambiguously using microscopic methods it is desirable to quantify the particle distribution within a cell, an organ or the whole organism. Transmission electron microscopy provides an ideal tool to perform qualitative and quantitative analyses of particle-related structural changes of the respiratory tract, to reveal the localization of nanoparticles within tissues and cells and to investigate the 3D nature of nanoparticle-lung interactions. This article provides information on the applicability, advantages and disadvantages of electron microscopic preparation techniques and several advanced transmission electron microscopic methods including conventional, immuno and energy-filtered electron microscopy as well as electron tomography for the visualization of both model nanoparticles (e.g. polystyrene and technologically relevant nanoparticles (e.g. titanium dioxide. Furthermore, we highlight possibilities to combine light and electron microscopic techniques in a correlative approach. Finally, we demonstrate a formal quantitative, i.e. stereological

  1. A study of the dynamic range electron-thermomagnetic recording

    Directory of Open Access Journals (Sweden)

    I. A. Andrakovskaya

    1987-12-01

    Full Text Available The dynamic range of electron-beam thermal magnetic recording medium moving hromdioksidnom. The main conditions ensuring the maximum effect modulation domain structure of the magneto-optical transducer.

  2. Transmission intensity and drug resistance in malaria population dynamics: implications for climate change.

    Science.gov (United States)

    Artzy-Randrup, Yael; Alonso, David; Pascual, Mercedes

    2010-10-26

    Although the spread of drug resistance and the influence of climate change on malaria are most often considered separately, these factors have the potential to interact through altered levels of transmission intensity. The influence of transmission intensity on the evolution of drug resistance has been addressed in theoretical studies from a population genetics' perspective; less is known however on how epidemiological dynamics at the population level modulates this influence. We ask from a theoretical perspective, whether population dynamics can explain non-trivial, non-monotonic, patterns of treatment failure with transmission intensity, and, if so, under what conditions. We then address the implications of warmer temperatures in an East African highland, where, as in other similar regions at the altitudinal edge of malaria's distribution, there has been a pronounced increase of cases from the 1970s to the 1990s. Our theoretical analyses, with a transmission model that includes different levels of immunity, demonstrate that an increase in transmission beyond a threshold can lead to a decrease in drug resistance, as previously shown, but that a second threshold may occur and lead to the re-establishment of drug resistance. Estimates of the increase in transmission intensity from the 1970s to the 1990s for the Kenyan time series, obtained by fitting the two-stage version of the model with an explicit representation of vector dynamics, suggest that warmer temperatures are likely to have moved the system towards the first threshold, and in so doing, to have promoted the faster spread of drug resistance. Climate change and drug resistance can interact and need not be considered as alternative explanations for trends in disease incidence in this region. Non-monotonic patterns of treatment failure with transmission intensity similar to those described as the 'valley phenomenon' for Uganda can result from epidemiological dynamics but under poorly understood assumptions.

  3. Telomere dynamics and homeostasis in a transmissible cancer.

    Directory of Open Access Journals (Sweden)

    Beata Ujvari

    Full Text Available BACKGROUND: Devil Facial Tumour Disease (DFTD is a unique clonal cancer that threatens the world's largest carnivorous marsupial, the Tasmanian devil (Sarcophilus harrisii with extinction. This transmissible cancer is passed between individual devils by cell implantation during social interactions. The tumour arose in a Schwann cell of a single devil over 15 years ago and since then has expanded clonally, without showing signs of replicative senescence; in stark contrast to a somatic cell that displays a finite capacity for replication, known as the "Hayflick limit". METHODOLOGY/PRINCIPAL FINDINGS: In the present study we investigate the role of telomere length, measured as Telomere Copy Number (TCN, and telomerase and shelterin gene expression, as well as telomerase activity in maintaining hyperproliferation of Devil Facial Tumour (DFT cells. Our results show that DFT cells have short telomeres. DFTD TCN does not differ between geographic regions or between strains. However, TCN has increased over time. Unlimited cell proliferation is likely to have been achieved through the observed up-regulation of the catalytic subunit of telomerase (TERT and concomitant activation of telomerase. Up-regulation of the central component of shelterin, the TRF1-intercating nuclear factor 2 (TINF2 provides DFT a mechanism for telomere length homeostasis. The higher expression of both TERT and TINF2 may also protect DFT cells from genomic instability and enhance tumour proliferation. CONCLUSIONS/SIGNIFICANCE: DFT cells appear to monitor and regulate the length of individual telomeres: i.e. shorter telomeres are elongated by up-regulation of telomerase-related genes; longer telomeres are protected from further elongation by members of the shelterin complex, which may explain the lack of spatial and strain variation in DFT telomere copy number. The observed longitudinal increase in gene expression in DFT tissue samples and telomerase activity in DFT cell lines might

  4. NiO/YSZ Reduction for SOFC/SOEC Studied In Situ by Environmental Transmission Electron Microscopy

    DEFF Research Database (Denmark)

    Simonsen, Søren Bredmose; Agersted, Karsten; Hansen, Karin Vels;

    2014-01-01

    A typical anode for solid oxide fuel cells (SOFC) or cathode for solid oxide electrolysis cells (SOEC) is a complex porous structure of Ni and yttria-stabilized zirconia (YSZ). The porous Ni/YSZ is usually prepared from powder mixtures of NiO and YSZ, tape casted and sintered into a dense structure....... The study focusses on the temperature dependent dynamical morphology of the NiO/YSZ and on the possible influence of YSZ on the NiO reduction....... and finally reduced during start-up of the SOFC/SOEC in H2 at the operating temperature of the cell (ca. 800 °C). This contribution presents environmental transmission electron microscopy (ETEM) nanoscale observations of the reduction process of a NiO/YSZ powder in H2 at temperatures up to almost 1000 °C...

  5. Transmission and scanning electron microscopy confirm that bone microstructure is similar in osteopenic and osteoporotic patients.

    Science.gov (United States)

    Gül, Orkun; Atik, O Sahap; Erdoğan, Deniz; Göktaş, Güleser; Elmas, Ciğdem

    2013-01-01

    The objective was to confirm the finding of "Bone microstructure is similar in osteopenic and osteoporotic patients with femoral neck fracture." obtained in previous "light microscopy study", which was new and important data. Fourteen patients (5 males, 9 females) who were admitted with proximal femoral fracture following low energy trauma (patients who participated in the light microscopy study) were included. The patients were divided into two groups based on the bone mineral density (BMD) measurement, including osteopenic group (n=7, mean age 69 years; range 63 to 74 years) and osteoporotic group (n=7, mean age 74.1 years; range 67 to 78 years). Cortical and trabecular bone samples were taken from the patients who underwent endoprosthesis during partial hip arthroplasty and these samples were analyzed using transmission electron microscopy and scanning electron microscopy evaluations which are more sophisticated higher resolution techniques. The mean cortical bone thickness was 3622.14 mm in osteopenic group and 2323.14 mm in osteoporotic group (pelectron microscopy and scanning electron microscopy evaluations revealed similar findings for both groups. Although a significant difference in cortical thickness was found between the groups, transmission and scanning electron microscopy confirmed that bone microstructure shared similar characteristics in osteopenic and osteoporotic patients with low-energy femoral neck fracture, as it was in previous light microscopy study.

  6. Multiscale phase mapping of LiFePO4-based electrodes by transmission electron microscopy and electron forward scattering diffraction.

    Science.gov (United States)

    Robert, Donatien; Douillard, Thierry; Boulineau, Adrien; Brunetti, Guillaume; Nowakowski, Pawel; Venet, Denis; Bayle-Guillemaud, Pascale; Cayron, Cyril

    2013-12-23

    LiFePO4 and FePO4 phase distributions of entire cross-sectioned electrodes with various Li content are investigated from nanoscale to mesoscale, by transmission electron microscopy and by the new electron forward scattering diffraction technique. The distributions of the fully delithiated (FePO4) or lithiated particles (LiFePO4) are mapped on large fields of view (>100 × 100 μm(2)). Heterogeneities in thin and thick electrodes are highlighted at different scales. At the nanoscale, the statistical analysis of 64 000 particles unambiguously shows that the small particles delithiate first. At the mesoscale, the phase maps reveal a core-shell mechanism at the scale of the agglomerates with a preferential pathway along the electrode porosities. At larger scale, lithiation occurs in thick electrodes "stratum by stratum" from the surface in contact with electrolyte toward the current collector.

  7. CMOS pixel sensor response to low energy electrons in transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, Marco [Department of Physics, University of California at Berkeley, CA 94720 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)], E-mail: MBattaglia@lbl.gov; Contarato, Devis; Denes, Peter; Doering, Dionisio; Radmilovic, Velimir [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2009-07-01

    This letter presents the results of a study of the response of a test CMOS sensor with a radiation tolerant pixel cell design to 80 and 100 keV electrons. The point spread function is measured to be (13.0{+-}1.7){mu}m at 100 keV and (12.1{+-}1.6){mu}m at 80 keV, for 20{mu}m pixels. Results agree well with values predicted by a Geant-4 and dedicated charge collection simulation.

  8. Below band-gap laser ablation of diamond for transmission electron microscopy

    Science.gov (United States)

    George, T.; Foote, M. C.; Vasquez, R. P.; Fortier, E. P.; Posthill, J. B.

    1993-01-01

    A 248 nm excimer laser was used to thin naturally occurring type 1a diamond substrates at normal and glancing (22 deg) incidence. Perforation of a 250-micron-thick substrate was achieved in about 15 min at normal incidence. While the substrate thinned at glancing incidence was found to have large electron-transparent areas, that thinned at normal incidence required additional argon-ion milling to achieve electron transparency. X-ray photoelectron spectroscopy of the back surface of the diamond failed to detect any graphite or glassy carbon, confirming that damage due to laser ablation occurs only at the incident surface. Samples prepared using this technique imaged in the transmission electron microscope were observed to have retained the nitrogen platelets characteristic of such type 1a diamonds.

  9. Transmission electron microscopy of bulk specimens over 10µm in thickness.

    Science.gov (United States)

    Sadamatsu, Sunao; Tanaka, Masaki; Higashida, Kenji; Matsumura, Syo

    2016-03-01

    We succeeded the observation of microstructures in bulk-sized specimens of over 10µm in thickness by employing a technique that combines transmission electron microscopy (TEM) with energy-filtered imaging based on electron energy-loss spectroscopy (EELS). This method is unique in that it incorporates the inelastically scattered electrons into the imaging process. Using this technique, bright and sharp images of dislocations in crystalline silicon specimens as thick as 10µm were obtained. A calibration curve to determine foil thickness of such a thick specimen was also derived. This method simply extends the observable thickness range in TEM. If combined with tilt series of observation over a significant range of angle, it will disclose three dimensional nanostructures in a µm-order block of a specimen, promoting our understanding of the controlling mechanisms behind various bulky material properties. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  10. In situ transmission electron microscopy observations of individually selected freestanding carbon nanotubes during field emission

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, Monja [Philips Research Laboratories, High Tech Campus 11, 5656 AE Eindhoven (Netherlands)]. E-mail: m.kaiser@philips.com; Doytcheva, Maya [Philips Research Laboratories, High Tech Campus 11, 5656 AE Eindhoven (Netherlands); Verheijen, Marcel [Philips Research Laboratories, High Tech Campus 11, 5656 AE Eindhoven (Netherlands); Jonge, Niels de [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6030 (United States)

    2006-08-15

    For the successful application of carbon nanotubes (CNTs) as electron sources in various applications it is important to understand the relation between the morphology of the CNT and its emission properties. A method was developed to study individual, freestanding and pre-selected CNTs with high-resolution transmission electron microscopy (TEM). The technique provided important parameters of the CNT, such as the number of carbon walls and the nature of its apex. The resolution with which the freestanding apices were imaged depended linearly on the ratio of the length and the radius. CNTs were also imaged in situ in the TEM while emitting electrons. It was found that the structure of a CNT was highly stable below a certain threshold emission current of typically 2 {mu}A, while various structural changes occurred above the threshold, leading to either damaging or repair of the structure at the apex of the CNT.

  11. Below band-gap laser ablation of diamond for transmission electron microscopy

    Science.gov (United States)

    George, T.; Foote, M. C.; Vasquez, R. P.; Fortier, E. P.; Posthill, J. B.

    1993-01-01

    A 248 nm excimer laser was used to thin naturally occurring type 1a diamond substrates at normal and glancing (22 deg) incidence. Perforation of a 250-micron-thick substrate was achieved in about 15 min at normal incidence. While the substrate thinned at glancing incidence was found to have large electron-transparent areas, that thinned at normal incidence required additional argon-ion milling to achieve electron transparency. X-ray photoelectron spectroscopy of the back surface of the diamond failed to detect any graphite or glassy carbon, confirming that damage due to laser ablation occurs only at the incident surface. Samples prepared using this technique imaged in the transmission electron microscope were observed to have retained the nitrogen platelets characteristic of such type 1a diamonds.

  12. Tip alignment system in a sextupole-corrected scanning transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Ruan, S. (The Enrico Fermi Institute, The University of Chicago, Chicago, Illinois 60637 (United States)); Kapp, O.H. (The Department of Radiology and The Enrico Fermi Institute, The University of Chicago, Chicago, Illinois 60637 (United States))

    1993-03-01

    Tip alignment and replacement in ultrahigh vacuum field-emission electron microscopes is traditionally a time-consuming endeavor. A convenient autodrive system for the 200 kV scanning transmission electron microscope was developed to facilitate the alignment of field-emission tips, thus saving a great deal of experimenter time. Under computer control, a series of automatic electrical and mechanical processes are initiated to systematically adjust various parameters to effect passage of the electron beam through the various apertures of the microscope column. The task of finding the beam'' is thus performed automatically. In this process the tip holder is moved in a raster parallel to the first anode. Feedback from various detectors placed throughout the column direct the positioning of the tip for optimal alignment. This process is routinely performed in about 45 min.

  13. Scanning and transmission electron microscopic study of equine infectious anemia virus.

    Science.gov (United States)

    Gonda, M A; Charman, H P; Walker, J L; Coggins, L

    1978-05-01

    Scanning and transmission electron microscopy were used to study in detail the morphogenesis and replication of equine infectious anemia virus (EIAV) in cultured, persistently infected equine fetal kidney fibroblasts. The EIAV was shown by thin-section electron microscopy to resemble morphologically more closely the members of the genus Lenti-virus in the family Retroviridae than other genera. Scanning electron microscopy demonstrated budding virus on only about 5% of the equine fetal kidney fibroblasts; however, the entire surface of these cells was involved in viral replication. Except where virus budding was observed, EIAV-infected cells were smooth and free of the topographic surface alterations characteristic of cells transformed by type C retroviruses. The morphologic relationship of EIAV and pathologic manifestations of EIAV infection to those of other Retroviridae are discussed.

  14. Atomistic observations and analyses of lattice defects in transmission electron microscopes

    CERN Document Server

    Abe, H

    2003-01-01

    The transmission electron microscope (TEM) -accelerators was developed. TEM-Accelerator made possible to observe in situ experiments of ion irradiation and implantation. The main results are the experimental proof of new lattice defects by irradiation, the formation process and synthesized conditions of carbon onion by ion implantation, the microstructure and phase transformation conditions of graphite by ion irradiated phase transformation, the irradiation damage formation process by simultaneous irradiation of electron and ion and behavior of fullerene whisker under irradiation. The microstructural evolution of defect clusters in copper irradiated with 240-keV Cu sup + ions and a high resolution electron micrograph of carbon onions synthesized by ion implantation are explained as the examples of recent researches. (S.Y.)

  15. Energy-filtered transmission electron microscopy of biological samples on highly transparent carbon nanomembranes

    CERN Document Server

    Rhinow, Daniel; Weber, Nils-Eike; Beyer, André; Gölzhäuser, Armin; Kühlbrandt, Werner; Hampp, Norbert; Turchanin, Andrey; 10.1016/j.ultramic.2011.01.028

    2011-01-01

    Ultrathin carbon nanomembranes (CNM) comprising crosslinked biphenyl precursors have been tested as support films for energy-filtered transmission electron microscopy (EFTEM) of biological specimens. Due to their high transparency CNM are ideal substrates for electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI) of stained and unstained biological samples. Virtually background-free elemental maps of tobacco mosaic virus (TMV) and ferritin have been obtained from samples supported by ~ 1 nm thin CNM. Furthermore, we have tested conductive carbon nanomembranes (cCNM) comprising nanocrystalline graphene, obtained by thermal treatment of CNM, as supports for cryoEM of ice-embedded biological samples. We imaged ice-embedded TMV on cCNM and compared the results with images of ice-embedded TMV on conventional carbon film (CC), thus analyzing the gain in contrast for TMV on cCNM in a quantitative manner. In addition we have developed a method for the preparation of vitrified specimens, sus...

  16. Transmission dynamics of oral polio vaccine viruses and vaccine-derived polioviruses on networks.

    Science.gov (United States)

    Kim, Jong-Hoon; Rho, Seong-Hwan

    2015-01-07

    One drawback of oral polio vaccine (OPV) is the potential reversion to more transmissible, virulent circulating vaccine-derived polioviruses (cVDPVs), which may cause outbreaks of paralytic poliomyelitis. Previous modeling studies of the transmission of cVDPVs assume an unrealistic homogeneous mixing of the population and/or ignore that OPV viruses and cVDPVs compete for susceptibles, which we show is a key to understanding the dynamics of the transmission of cVDPVs. We examined the transmission of OPV viruses and cVDPVs on heterogeneous, dynamic contact networks using differential equation-based and individual-based models. Despite the lower transmissibility, OPV viruses may outcompete more transmissible cVDPVs in the short run by spreading extensively before cVDPVs emerge. If viruses become endemic, however, cVDPVs eventually dominate and force OPV viruses to extinction. This study improves our understanding of the emergence of cVDPVs and helps develop more detailed models to plan a policy to control paralytic polio associated with the continued use of OPV in many countries.

  17. Dynamic Research of the Flexible Wheel of a Double Harmonic Gear Transmission

    Directory of Open Access Journals (Sweden)

    Draghita Ianici

    2015-07-01

    Full Text Available The paper presents the results of a dynamic research of the flexible wheel of the double harmonic gear transmission, by determining the state of strain and stress of its wall, in cases the wheel is deformed by a mechanical waves generator with: two rolls, two eccentric discs and cam. The dynamic research involves modelling and the numerical simulation of flexible wheel, by using the finite element method, with the help of SolidWorks Simulation program in elastic range.

  18. Spatiotemporal dynamics of the epidemic transmission in a predator-prey system.

    Science.gov (United States)

    Su, Min; Hui, Cang; Zhang, Yanyu; Li, Zizhen

    2008-11-01

    Epidemic transmission is one of the critical density-dependent mechanisms that affect species viability and dynamics. In a predator-prey system, epidemic transmission can strongly affect the success probability of hunting, especially for social animals. Predators, therefore, will suffer from the positive density-dependence, i.e., Allee effect, due to epidemic transmission in the population. The rate of species contacting the epidemic, especially for those endangered or invasive, has largely increased due to the habitat destruction caused by anthropogenic disturbance. Using ordinary differential equations and cellular automata, we here explored the epidemic transmission in a predator-prey system. Results show that a moderate Allee effect will destabilize the dynamics, but it is not true for the extreme Allee effect (weak or strong). The predator-prey dynamics amazingly stabilize by the extreme Allee effect. Predators suffer the most from the epidemic disease at moderate transmission probability. Counter-intuitively, habitat destruction will benefit the control of the epidemic disease. The demographic stochasticity dramatically influences the spatial distribution of the system. The spatial distribution changes from oil-bubble-like (due to local interaction) to aggregated spatially scattered points (due to local interaction and demographic stochasticity). It indicates the possibility of using human disturbance in habitat as a potential epidemic-control method in conservation.

  19. Particle dynamics during electronic sputtering of solid krypton

    DEFF Research Database (Denmark)

    Dutkiewicz, L.; Pedrys, R.; Schou, Jørgen

    1995-01-01

    We have modeled electronic sputtering of solid krypton by excimer production with molecular dynamics. Both excimer evolution in the solid and deexcitation processes have been incorporated in the simulation. The excimer dynamics in the lattice has been analyzed: the excimers formed near the surface...

  20. Ultrafast Non-Thermal Electron Dynamics in Single Layer Graphene

    Directory of Open Access Journals (Sweden)

    Novoselov K.S.

    2013-03-01

    Full Text Available We study the ultrafast dynamics of non-thermal electron relaxation in graphene upon impulsive excitation. The 10-fs resolution two color pump-probe allows us to unveil the non-equilibrium electron gas decay at early times.

  1. Entanglement Dynamics of Electrons and Photons

    Science.gov (United States)

    Wu, Xiang-Yao; Liu, Xiao-Jing; Lu, Jing-Bin; Li, Tian-Shun; Zhang, Si-Qi; Liang, Yu; Ma, Ji; Li, Hong

    2016-12-01

    Entanglement is a fundamental feature of quantum theory as well as a key resource for quantum computing and quantum communication, but the entanglement mechanism has not been found at present. We think when the two subsystems exist interaction directly or indirectly, they can be in entanglement state. such as, in the Jaynes-Cummings model, the entanglement between the atom and the light field comes from their interaction. In this paper, we have studied the entanglement mechanism of electron-electron and photon-photon, which are from the spin-spin interaction. We found their total entanglement states are relevant both space state and spin state. When two electrons or two photons are far away, their entanglement states should be disappeared even if their spin state is entangled.

  2. Entanglement Dynamics of Electrons and Photons

    Science.gov (United States)

    Wu, Xiang-Yao; Liu, Xiao-Jing; Lu, Jing-Bin; Li, Tian-Shun; Zhang, Si-Qi; Liang, Yu; Ma, Ji; Li, Hong

    2016-08-01

    Entanglement is a fundamental feature of quantum theory as well as a key resource for quantum computing and quantum communication, but the entanglement mechanism has not been found at present. We think when the two subsystems exist interaction directly or indirectly, they can be in entanglement state. such as, in the Jaynes-Cummings model, the entanglement between the atom and the light field comes from their interaction. In this paper, we have studied the entanglement mechanism of electron-electron and photon-photon, which are from the spin-spin interaction. We found their total entanglement states are relevant both space state and spin state. When two electrons or two photons are far away, their entanglement states should be disappeared even if their spin state is entangled.

  3. Dynamically tunable graphene/dielectric photonic crystal transmission lines

    Science.gov (United States)

    Williamson, Ian; Mousavi, S. Hossein; Wang, Zheng

    2015-03-01

    It is well known that graphene supports plasmonic modes with high field confinement and lower losses when compared to conventional metals. Additionally, graphene features a highly tunable conductivity through which the plasmon dispersion can be modulated. Over the years these qualities have inspired a wide range of applications for graphene in the THz and infrared regimes. In this presentation we theoretically demonstrate a graphene parallel plate waveguide (PPWG) that sandwiches a 2D photonic crystal slab. The marriage of these two geometries offers a large two dimensional band gap that can be dynamically tuned over a very broad bandwidth. Our device operates in the low-THz band where the graphene PPWG supports a quasi-TEM mode with a relatively flat attenuation. Unlike conventional photonic crystal slabs, the quasi-TEM nature of the graphene PPWG mode allows the slab thickness to be less than 1/10 of the photonic crystal lattice constant. These features offer up a wealth of opportunities, including tunable metamaterials with a possible platform for large band gaps in 3D structures through tiling and stacking. Additionally, the geometry provides a platform for tunable defect cavities without needing three dimensional periodicity.

  4. Microwave Transmission Measurement of the Electron Cloud Density in the Positron Ring of PEP-II

    CERN Document Server

    Pivi, M T F; Byrd, J; De Santis, S; Sonnad, K G; Caspers, Friedhelm; Kroyer, T; Roncarolo, F

    2008-01-01

    Clouds of electrons in the vacuum chambers of accelerators of positively charged particle beams present a serious limitation for operation of these machines at high currents. Because of the size of these accelerators, it is difficult to probe the low energy electron clouds over substantial lengths of the beam pipe. We applied a novel technique to directly measure the electron cloud density via the phase shift induced in a TE wave which is independently excited and transmitted over a straight section of the accelerator. The modulation in the wave transmission which appear to increase in depth when the clearing solenoids are switched off, seem to be directly correlated to the electron cloud density in the section. Furthermore, we expect a larger phase shift of a wave transmitted through magnetic dipole field regions if the transmitted wave couples with the gyration motion of the electrons. We have used this technique to measure the average electron cloud density (ECD) specifically for the first time in magnetic...

  5. A Tandem Communication Network with Dynamic Bandwidth Allocation and Modified Phase Type Transmission having Bulk Arrivals

    Directory of Open Access Journals (Sweden)

    Kuda Nageswara Rao

    2010-07-01

    Full Text Available This paper deals with the performance evaluation of a two node communication network with dynamic bandwidth allocation and modified phase type transmission having bulk arrivals. The performance of the statistical multiplexing is measured by approximating with the compound Poisson process and the transmission completions with Poisson processes. It is further assumed that the transmission rate at each node are adjusted depending upon the content of the buffer which is connected to it. The packets transmitted through the first node may be forwarded to the buffer connected to the second node or get terminated with certain probabilities. The performance measures of the network like, mean content of the buffers, mean delays, throughput, transmitter utilization etc. are derived explicitly under transient conditions. Sensitivity analysis with respect to the parameters is also carried through numerical illustration. It is observed that the dynamic bandwidth allocation and batch size distribution of arrivals has a tremendous influence on the performance measures.

  6. Preventing mother to child transmission of HIV in Vietnam and Indonesia: diverging care dynamics

    NARCIS (Netherlands)

    A.P. Hardon; P. Oosterhoff; J.D. Imelda; N.T. Anh; I. Hidayana

    2009-01-01

    How do women and frontline health workers engage in preventing mother-to-child HIV transmission (PMTCT) in urban areas of Vietnam and Indonesia, where HIV is highly stigmatized and is associated with injecting drug use and sex work? This qualitative study explores local dynamics of care, using a mix

  7. Variation in malaria transmission dynamics in three different sites in Western Kenya

    NARCIS (Netherlands)

    Imbahale, S.S.; Mukabana, W.R.; Orindi, B.; Githeko, A.K.; Takken, W.

    2012-01-01

    The main objective was to investigate malaria transmission dynamics in three different sites, two highland villages (Fort Ternan and Lunyerere) and a lowland peri-urban area (Nyalenda) of Kisumu city. Adult mosquitoes were collected using PSC and CDC light trap while malaria parasite incidence data

  8. Transmission and Demographic Dynamics of Coxsackievirus B1.

    Directory of Open Access Journals (Sweden)

    Pei-Yu Chu

    Full Text Available The infectious activity of coxsackievirus B1 (CV-B1 in Taiwan was high from 2008 to 2010, following an alarming increase in severe neonate disease in the United States (US. To examine the relationship between CV-B1 strains isolated in Taiwan and those from other parts of the world, we performed a phylodynamic study using VP1 and partial 3Dpol (414 nt sequences from 22 strains of CV-B1 isolated in Taiwan (1989-2010 and compared them to sequences from strains isolated worldwide. Phylogenetic trees were constructed by neighbor-joining, maximum likelihood, and Bayesian Monte Carlo Markov Chain methods. Four genotypes (GI-IV in the VP1 region of CV-B1 and three genotypes (GA-C in the 3Dpol region of enterovirus B were identified and had high support values. The phylogenetic analysis indicates that the GI and GIII strains in VP1 were geographically distributed in Taiwan (1993-1994 and in India (2007-2009. On the other hand, the GII and GIV strains appear to have a wider spatiotemporal distribution and ladder-like topology A stair-like phylogeny was observed in the VP1 region indicating that the phylogeny of the virus may be affected by different selection pressures in the specified regions. Further, most of the GI and GII strains in the VP1 tree were clustered together in GA in the 3D tree, while the GIV strains diverged into GB and GC. Taken together, these data provide important insights into the population dynamics of CV-B1 and indicate that incongruencies in specific gene regions may contribute to spatiotemporal patterns of epidemicity for this virus.

  9. Electron Correlation Microscopy: A New Technique for Studying Local Atom Dynamics Applied to a Supercooled Liquid.

    Science.gov (United States)

    He, Li; Zhang, Pei; Besser, Matthew F; Kramer, Matthew Joseph; Voyles, Paul M

    2015-08-01

    Electron correlation microscopy (ECM) is a new technique that utilizes time-resolved coherent electron nanodiffraction to study dynamic atomic rearrangements in materials. It is the electron scattering equivalent of photon correlation spectroscopy with the added advantage of nanometer-scale spatial resolution. We have applied ECM to a Pd40Ni40P20 metallic glass, heated inside a scanning transmission electron microscope into a supercooled liquid to measure the structural relaxation time τ between the glass transition temperature T g and the crystallization temperature, T x . τ determined from the mean diffraction intensity autocorrelation function g 2(t) decreases with temperature following an Arrhenius relationship between T g and T g +25 K, and then increases as temperature approaches T x . The distribution of τ determined from the g 2(t) of single speckles is broad and changes significantly with temperature.

  10. Stability of graphene edges under electron beam: equilibrium energetics versus dynamic effects.

    Science.gov (United States)

    Kotakoski, Jani; Santos-Cottin, David; Krasheninnikov, Arkady V

    2012-01-24

    Electron beam of a transmission electron microscope can be used to alter the morphology of graphene nanoribbons and create atomically sharp edges required for applications of graphene in nanoelectronics. Using density-functional-theory-based simulations, we study the radiation hardness of graphene edges and show that the response of the ribbons to irradiation is not determined by the equilibrium energetics as assumed in previous experiments, but by kinetic effects associated with the dynamics of the edge atoms after impacts of energetic electrons. We report an unexpectedly high stability of armchair edges, comparable to that of pristine graphene, and demonstrate that the electron energy should be below ~50 keV to minimize the knock-on damage.

  11. Radiation Belt Electron Dynamics: Modeling Atmospheric Losses

    Science.gov (United States)

    Selesnick, R. S.

    2003-01-01

    The first year of work on this project has been completed. This report provides a summary of the progress made and the plan for the coming year. Also included with this report is a preprint of an article that was accepted for publication in Journal of Geophysical Research and describes in detail most of the results from the first year of effort. The goal for the first year was to develop a radiation belt electron model for fitting to data from the SAMPEX and Polar satellites that would provide an empirical description of the electron losses into the upper atmosphere. This was largely accomplished according to the original plan (with one exception being that, for reasons described below, the inclusion of the loss cone electrons in the model was deferred). The main concerns at the start were to accurately represent the balance between pitch angle diffusion and eastward drift that determines the dominant features of the low altitude data, and then to accurately convert the model into simulated data based on the characteristics of the particular electron detectors. Considerable effort was devoted to achieving these ends. Once the model was providing accurate results it was applied to data sets selected from appropriate periods in 1997, 1998, and 1999. For each interval of -30 to 60 days, the model parameters were calculated daily, thus providing good short and long term temporal resolution, and for a range of radial locations from L = 2.7 to 3.9. .

  12. Measurement of the transmission phase of an electron in a quantum two-path interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Takada, S., E-mail: shintaro.takada@neel.cnrs.fr; Watanabe, K. [Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-8656 (Japan); Yamamoto, M. [Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-8656 (Japan); PRESTO, JST, Kawaguchi-shi, Saitama 331-0012 (Japan); Bäuerle, C. [Université Grenoble Alpes, Institut NEEL, F-38042 Grenoble (France); CNRS, Institut NEEL, F-38042 Grenoble (France); Ludwig, A.; Wieck, A. D. [Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum (Germany); Tarucha, S. [Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-8656 (Japan); Center for Emergent Matter Science (CEMS), RIKEN, Wako, Saitama 351-0198 (Japan)

    2015-08-10

    A quantum two-path interferometer allows for direct measurement of the transmission phase shift of an electron, providing useful information on coherent scattering problems. In mesoscopic systems, however, the two-path interference is easily smeared by contributions from other paths, and this makes it difficult to observe the true transmission phase shift. To eliminate this problem, multi-terminal Aharonov-Bohm (AB) interferometers have been used to derive the phase shift by assuming that the relative phase shift of the electrons between the two paths is simply obtained when a smooth shift of the AB oscillations is observed. Nevertheless, the phase shifts using such a criterion have sometimes been inconsistent with theory. On the other hand, we have used an AB ring contacted to tunnel-coupled wires and acquired the phase shift consistent with theory when the two output currents through the coupled wires oscillate with well-defined anti-phase. Here, we investigate thoroughly these two criteria used to ensure a reliable phase measurement, the anti-phase relation of the two output currents, and the smooth phase shift in the AB oscillation. We confirm that the well-defined anti-phase relation ensures a correct phase measurement with a quantum two-path interference. In contrast, we find that even in a situation where the anti-phase relation is less well-defined, the smooth phase shift in the AB oscillation can still occur but does not give the correct transmission phase due to contributions from multiple paths. This indicates that the phase relation of the two output currents in our interferometer gives a good criterion for the measurement of the true transmission phase, while the smooth phase shift in the AB oscillation itself does not.

  13. Structural deteriorations of the human peritoneum during laparoscopic cholecystectomy. A transmission electron microscopic study.

    Science.gov (United States)

    Tarhan, Omer Ridvan; Barut, Ibrahim; Ozogul, Candan; Bozkurt, Serkan; Baykara, Basak; Bulbul, Mahmut

    2013-08-01

    In previous studies, changes in the surface of the peritoneum during laparoscopic surgery are well defined. Nevertheless, almost all of these studies were performed on rodents via scanning electron microscopy. In the present study, structural alterations of the mesothelial cells of peritoneum were examined during laparoscopic cholecystectomy using transmission electron microscopy. Twenty patients with symptomatic cholelithiasis were included in the study. Peritoneal biopsy was performed immediately after CO2 pneumoperitoneum creation and at the end of surgery just before gallbladder removal. Biopsies were taken from the right upper quadrant, i.e., apart from operative manipulation. Peritoneal sample cross-sections were compared using transmission electron microscopy. The carbon dioxide pneumoperitoneum during laparoscopic cholecystectomy caused deteriorations of the peritoneal mesothelium. Apoptosis were developed in mesothelial cells. Bulging of mesothelial cells, irregular cell junctions, focal intercellular clefts, apical cell membrane degeneration, deep nuclear invaginations, and lipid droplets in the cytoplasm of the mesothelial cells were other remarkable findings. Mesothelial edema also was determined. As seen in previous studies, basement membrane nudity appeared after carbon dioxide pneumoperitoneum could be attributable to mesothelial cell apoptosis, deterioration of the cell structure, and cell organelles.

  14. 3D simulation of electron and ion transmission of GEM-based detectors

    Science.gov (United States)

    Bhattacharya, Purba; Mohanty, Bedangadas; Mukhopadhyay, Supratik; Majumdar, Nayana; da Luz, Hugo Natal

    2017-10-01

    Time Projection Chamber (TPC) has been chosen as the main tracking system in several high-flux and high repetition rate experiments. These include on-going experiments such as ALICE and future experiments such as PANDA at FAIR and ILC. Different R&D activities were carried out on the adoption of Gas Electron Multiplier (GEM) as the gas amplification stage of the ALICE-TPC upgrade version. The requirement of low ion feedback has been established through these activities. Low ion feedback minimizes distortions due to space charge and maintains the necessary values of detector gain and energy resolution. In the present work, Garfield simulation framework has been used to study the related physical processes occurring within single, triple and quadruple GEM detectors. Ion backflow and electron transmission of quadruple GEMs, made up of foils with different hole pitch under different electromagnetic field configurations (the projected solutions for the ALICE TPC) have been studied. Finally a new triple GEM detector configuration with low ion backflow fraction and good electron transmission properties has been proposed as a simpler GEM-based alternative suitable for TPCs for future collider experiments.

  15. On the role of inelastic scattering in phase-plate transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hettler, Simon, E-mail: simon.hettler@kit.edu [Laboratorium für Elektronenmikroskopie, Karlsruher Institut für Technologie (KIT), Engesserstr. 7, 76131 Karlsruhe (Germany); Wagner, Jochen; Dries, Manuel [Laboratorium für Elektronenmikroskopie, Karlsruher Institut für Technologie (KIT), Engesserstr. 7, 76131 Karlsruhe (Germany); Oster, Marco; Wacker, Christian; Schröder, Rasmus R. [CellNetworks, BioQuant, Universität Heidelberg, Im Neuenheimer Feld 267, 69120 Heidelberg (Germany); Gerthsen, Dagmar [Laboratorium für Elektronenmikroskopie, Karlsruher Institut für Technologie (KIT), Engesserstr. 7, 76131 Karlsruhe (Germany)

    2015-08-15

    The phase contrast of Au nanoparticles on amorphous-carbon films with different thicknesses is analyzed using an electrostatic Zach phase plate in a Zeiss 912 Ω transmission electron microscope with in-column energy filter. Specifically, unfiltered and plasmon-filtered phase-plate transmission electron microscopy (PP TEM) images are compared to gain insight in the role of coherence after inelastic scattering processes. A considerable phase-contrast contribution resulting from a combined elastic–inelastic scattering process is found in plasmon-filtered PP TEM images. The contrast reduction compared to unfiltered images mainly originates from zero-order beam broadening caused by the inelastic scattering process. The effect of the sequence of the elastic and inelastic scattering processes is studied by varying the position of the nanoparticles, which can be either located on top or at the bottom of the amorphous-carbon film with respect to the incident electron beam direction. - Highlights: • Combined application of electrostatic Zach phase plate and energy filter in a TEM. • Contrast analysis of Au nanoparticles on amorphous carbon films. • Phase contrast inversion in unfiltered images by Zach phase plate. • Phase contrast in plasmon-filtered images by inelastic–elastic scattering process. • Analysis of different effects on nanoparticle contrast.

  16. Interaction of Metals with Suspended Graphene Observed by Transmission Electron Microscopy.

    Science.gov (United States)

    Zan, Recep; Bangert, Ursel; Ramasse, Quentin; Novoselov, Konstantin S

    2012-04-05

    In this Perspective, we present an overview of how different metals interface with suspended graphene, providing a closer look into the metal-graphene interaction by employing high-resolution transmission electron microscopy, especially using high-angle dark field imaging. All studied metals favor sites on the omnipresent hydrocarbon surface contamination rather than on the clean graphene surface and present nonuniform distributions, which never result in continuous films but instead in clusters or nanocrystals, indicating a weak interaction between the metal and graphene. This behavior can be altered to some degree by surface pretreatment (hydrogenation) and high-temperature vacuum annealing. Graphene etching is observed in a scanning transmission electron microscope (STEM) under high vacuum and 60 kV electron beam acceleration voltage conditions for all metals, except for Au. This unusual metal-mediated etching sheds new light on the metal-graphene interaction; it might explain the observed higher frequency of cluster nucleation for certain transition metals and might have implications regarding controlled nanomanipulation, that is, for self-assembly and sculpturing of future graphene-based devices.

  17. In situ environmental transmission electron microscope investigation of NiGa nanoparticle synthesis

    DEFF Research Database (Denmark)

    Damsgaard, Christian Danvad; Duchstein, Linus Daniel Leonhard; Elkjær, Christian Fink

    2011-01-01

    detailed Environmental Transmission Electron Microscope (ETEM) investigations of synthesis of NiGa nanoparticles on a thin film support. Samples were prepared by dissolving Ni(NO3)2 and Ga(NO3)3 in a Ni:Ga ratio of 5:3 in millipore water. The solution was subsequently dispersed on transmission electron...... microscope (TEM) sample grids. The sample grid was then mounted in a TEM heating holder and inserted in a FEI Titan ETEM with imaging Cs corrector as well as facilities for in situ gas reactions [3]. The ETEM was operated at 300 kV. The synthesis was performed in situ in a H2 flow of 2 Nml/min at a pressure...... of 130 Pa. The reaction was investigated from room temperature (RT) to 660°C by subsequently obtaining bright field TEM images, diffraction patterns (DP), High Resolution TEM (HRTEM) images, and Electron Energy Loss Spectroscopy (EELS) data. Figure 1 shows bright field images of the sample during...

  18. The High Resolution Transmission Electron Microscopy: A Powerful Tool for Studying the Organization of Terrestrial and Extra-Terrestrial Carbons

    Science.gov (United States)

    Rouzaud, J.-N.; Skrzypczak, A.; Bonal, L.; Derenne, S.; Quirico, E.; Robert, F.

    2005-03-01

    High Resolution Transmission Electron Microscopy (HRTEM) makes possible the imaging of the profile of the polyaromatic layers, allowing a knowledge of carbons, such as disordered natural carbons from meteorites and from Precambrian metasediments

  19. Exploring migratory dynamics on HIV transmission: the case of Mexicans in New York City and Puebla, Mexico.

    Science.gov (United States)

    Ruiz, Yumary; Guilamo-Ramos, Vincent; McCarthy, Katharine; Muñoz-Laboy, Miguel A; de Lourdes Rosas López, Maria

    2014-06-01

    Migration and population movement are increasingly viewed as important factors associated with HIV transmission risk. With growing awareness of the potential impact of migration on HIV transmission, several perspectives have emerged that posit differing dynamics of risk. We considered available data on the role of migration on HIV transmission among Mexican migrants in New York City and Puebla, Mexico. Specifically, we examined 3 distinct models of migratory dynamics of HIV transmission-namely, the structural model, the local contextual model, and the interplay model. In doing so, we reframed current public health perspectives on the role of migration on HIV transmission.

  20. Ultrafast dynamics of electrons at interfaces

    Energy Technology Data Exchange (ETDEWEB)

    McNeill, Jason Douglas [Univ. of California, Berkeley, CA (United States)

    1999-05-03

    Electronic states of a thin layer of material on a surface possess unique physical and chemical properties. Some of these properties arise from the reduced dimensionality of the thin layer with respect to the bulk or the properties of the electric field where two materials of differing dielectric constants meet at an interface. Other properties are related to the nature of the surface chemical bond. Here, the properties of excess electrons in thin layers of Xenon, Krypton, and alkali metals are investigated, and the bound state energies and effective masses of the excess electrons are determined using two-photon photoemission. For Xenon, the dependence of bound state energy, effective mass, and lifetime on layer thickness from one to nine layers is examined. Not all quantities were measured at each coverage. The two photon photoemission spectra of thin layers of Xenon on a Ag(111) substrate exhibit a number of sharp, well-defined peaks. The binding energy of the excess electronic states of Xenon layers exhibited a pronounced dependence on coverage. A discrete energy shift was observed for each additional atomic layer. At low coverage, a series of states resembling a Rydberg series is observed. This series is similar to the image state series observed on clean metal surfaces. Deviations from image state energies can be described in terms of the dielectric constant of the overlayer material and its effect on the image potential. For thicker layers of Xe (beyond the first few atomic layers), the coverage dependence of the features begins to resemble that of quantum well states. Quantum well states are related to bulk band states. However, the finite thickness of the layer restricts the perpendicular wavevector to a discrete set of values. Therefore, the spectrum of quantum well states contains a series of peaks which correspond to the various allowed values of the perpendicular wavevector. Analysis of the quantum well spectrum yields electronic band structure

  1. Dynamical backaction cooling with free electrons.

    Science.gov (United States)

    Niguès, A; Siria, A; Verlot, P

    2015-09-18

    The ability to cool single ions, atomic ensembles, and more recently macroscopic degrees of freedom down to the quantum ground state has generated considerable progress and perspectives in fundamental and technological science. These major advances have been essentially obtained by coupling mechanical motion to a resonant electromagnetic degree of freedom in what is generally known as laser cooling. Here, we experimentally demonstrate the first self-induced coherent cooling mechanism that is not mediated by an electromagnetic resonance. Using a focused electron beam, we report a 50-fold reduction of the motional temperature of a nanowire. Our result primarily relies on the sub-nanometre confinement of the electron beam and generalizes to any delayed and spatially confined interaction, with important consequences for near-field microscopy and fundamental nanoscale dissipation mechanisms.

  2. Electron dynamics with radiation and nonlinear wigglers

    Energy Technology Data Exchange (ETDEWEB)

    Jowett, J.M.

    1986-06-01

    The physics of electron motion in storage rings is described by supplementing the Hamiltonian equations of motion with fluctuating radiation reaction forces to describe the effects of synchrotron radiation. This leads to a description of radiation damping and quantum diffusion in single-particle phase-space by means of Fokker-Planck equations. For practical purposes, most storage rings remain in the regime of linear damping and diffusion; this is discussed in some detail with examples, concentrating on longitudinal phase space. However special devices such as nonlinear wigglers may permit the new generation of very large rings to go beyond this into regimes of nonlinear damping. It is shown how a special combined-function wiggler can be used to modify the energy distribution and current profile of electron bunches.

  3. Simulation calculation for the energy deposition profile and the transmission fraction of intense pulsed electron beam at various incident angles

    CERN Document Server

    Yang Hai Liang; Zhang Jia Sheng; Huang Jian Jun; Sun Jian Feng

    2002-01-01

    The incident angles have a heavy effect on the intense pulsed electron beam energy deposition profile, energy deposition fraction and beam current transmission fraction in material. The author presents electron beam energy deposition profile and energy deposition fraction versus electron energy (0.5-2.0 MeV), at various incident angles for three aluminum targets of various thickness via theoretical calculation. The intense pulsed electron beam current transmission fractions versus electron energy (0.4-1.4 MeV) at various incident angles for three thickness of carbon targets were also theoretically calculated. The calculation results indicate that the deposition energy in unit mass of material surface layer increase with the rise of electron beam incident angle, and electron beam with low incident angle (closer to normal incident angle) penetrates deeper into the target material. The electron beams deposit more energy in unit mass of material surface layer at 60 degree-70 degree incident angle

  4. LogAmp electronics and optical transmission for the new SPS beam position measurement system

    Science.gov (United States)

    Bogey, T.; Deplano, C.; Gonzalez, J. L.; Savioz, J. J.

    2013-12-01

    A new front-end board is under development for the CERN SPS Multi ORbit Position System (MOPOS). Based on logarithmic amplifiers, it measures the beam position over a large dynamic range of beam intensities and resolves the multi-batch structure of the SPS beams. Analogue data are digitized at 10 MS/s, packed in frames by an FPGA and on every turn sent to the readout board, via a 2.4 Gb/s optical transmission link. A first prototype has been successfully tested with several SPS beams. This paper presents an overall description of the system and its capabilities highlighted by the first beam measurements.

  5. LogAmp electronics and Optical Transmission for the new SPS Beam Position Measurement System

    CERN Document Server

    Deplano, C; Gonzalez, J L; Savioz, J J

    2013-01-01

    A new front-end board is under development for the CERN SPS Multi ORbit Position System (MOPOS). Based on logarithmic amplifiers, it measures the beam position over a large dynamic range of beam intensities and resolves the multi-batch structure of the SPS beams. Analogue data are digitized at 10 MS/s, packed in frames by an FPGA and on every turn sent to the readout board, via a 2.4 Gb/s optical transmission link. A first prototype has been successfully tested with several SPS beams. This paper presents an overall description of the system and its capabilities highlighted by the first beam measurements.

  6. Carbon Nanostructure Examined by Lattice Fringe Analysis of High Resolution Transmission Electron Microscopy Images

    Science.gov (United States)

    VanderWal, Randy L.; Tomasek, Aaron J.; Street, Kenneth; Thompson, William K.; Hull, David R.

    2003-01-01

    The dimensions of graphitic layer planes directly affect the reactivity of soot towards oxidation and growth. Quantification of graphitic structure could be used to develop and test correlations between the soot nanostructure and its reactivity. Based upon transmission electron microscopy images, this paper provides a demonstration of the robustness of a fringe image analysis code for determining the level of graphitic structure within nanoscale carbon, i.e., soot. Results, in the form of histograms of graphitic layer plane lengths, are compared to their determination through Raman analysis.

  7. In situ investigation of the mechanical properties of nanomaterials by transmission electron microscopy

    Institute of Scientific and Technical Information of China (English)

    Jun Sun; Feng Xu; Li-Tao Sun

    2012-01-01

    With the progress of modern transmission electron microscopy (TEM) and development of dedicated functional TEM specimen holders,people can now manipulate a nano-object with nanometer-range precision and simultaneously acquire mechanical data together with atomic-scale structural information.This advanced methodology is playing an increasingly important role in nanomechanics.The present review summarizes relevant studies on the in situ investigation of mechanical properties of various nanomaterials over the past decades.These works enrich our knowledge not only on nanomaterials (such as carbon nanotubes,carbon onions,boron nitride nanotubes,silicon nanowires and graphene,etc.) but also on mechanics at the nanoscale.

  8. High-resolution transmission electron microscopy and energetics of flattened carbon nonoshells

    Energy Technology Data Exchange (ETDEWEB)

    Bourgeois, L.N.; Bursill, L.A

    1998-09-01

    When examined under a high-resolution transmission electron microscope, carbon soot produced alongside buckytubes in an arc-discharge is found to contain a small percentage of flattened carbon shells. These objects are shown to be small graphite flakes which eliminated their dangling bonds by terminating their edges with highly curved junctions. Ideal models for these structures are presented, and their energy estimated. The calculations show that the establishment of highly curved junctions is energetically favourable for a graphite flake in an inert atmosphere. Flattened shells also appear more stable than their `inflated` counterparts (fullerene `onions` and buckytubes) when the shell dimensions obey specific criteria.(authors) 29 refs., 4 figs.

  9. Nanocrystal Diffusion in a Liquid Thin Film Observed by in situ Transmission Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Haimei; Claridge, Shelley A.; Minor, Andrew M.; Alivisatos, A. Paul; Dahmen, Ulrich

    2009-04-17

    We have directly observed motion of inorganic nanoparticles during fluid evaporation using a Transmission Electron Microscope. Tracking real-time diffusion of both spherical (5-15 nm) and rod-shaped (5x10 nm) gold nanocrystals in a thin-film of water-15percentglycerol reveals complex movements, such as rolling motions coupled to large-step movements and macroscopic violations of the Stokes-Einstein relation for diffusion. As drying patches form during the final stages of evaporation, particle motion is dominated by the nearby retracting liquid front.

  10. Advanced Transmission Electron Microscopy Applications in Nano-Materials and Nano-Technology Developments

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Nano-technology development is nowadays a very hot topics in many research fields. Nano-materials are the foundations for developing this new technology. In order to fully understand the basic material science problems behind this topics, transmission electron microscopy (TEM) becomes the must and one of the most important technique to analyze the nano-size structure and composition using the most advanced high resolution TEM technique with nano-beam EDS and energy filter EELS to study the fine structures, crystallography, chemical composition, and optical properties of many different nano-materials in different industries applications.

  11. Nanoscale experimental study of the morphology of a microcrack in silicon by transmission electron microscopy

    Indian Academy of Sciences (India)

    D S Liu; C W Zhao; X H Hou

    2013-05-01

    A microcrack in a silicon single crystal was experimentally investigated using highresolution transmission electron microscopy (HRTEM). In particular, the numerical Moiré (NM) method was used to visualize the deformations and defects. The lattice structure of the microcrack was carefully observed at the nanoscale. HRTEM images of the microcrack demonstrated that the lattice structure of most of the microcrack regions is regular with good periodicity. In addition, the microcrack cleavage expands alternately along different crystal planes, where the principal cleavage plane is the (1 1 1) crystal plane. The NM maps showed no sharp plastic deformation around the microcrack, but discrete edge dislocations can be found only near the crack tip.

  12. Soot Nanostructure: Using Fringe Analysis Software on High Resolution Transmission Electron Microscopy of Carbon Soot

    Science.gov (United States)

    King, James D.

    2004-01-01

    Using high resolution transmission electron images of carbon nanotubes and carbon particles, we are able to use image analysis program to determine several carbon fringe properties, including length, separation, curvature and orientation. Results are shown in the form of histograms for each of those quantities. The combination of those measurements can give a better indication of the graphic structure within nanotubes and particles of carbon and can distinguish carbons based upon fringe properties. Carbon with longer, straighter and closer spaced fringes are considered graphite, while amorphous carbon contain shorter, less structured fringes.

  13. Long distance electron transmission couples sulphur, iron, calcium and oxygen cycling in marine sediment

    DEFF Research Database (Denmark)

    Risgaard-Petersen, Nils; Nielsen, Lars Peter

    sulfide oxidation leads to electric field formation, sulfide depletion and acidification of the upper centimeters of the sediment. This promoted ion migration and dissolution of carbonates and iron sulfides. Sulfide released from iron sulfides was the major e-donor in the system. Ferrous iron released...... from iron sulfides was to a large extend deposited in the oxic zone as iron oxides and Ca2+ eventually precipitates at the surface as due to high pH caused by cathodic oxygen reduction. The result show how long distance electron transmission allows oxygen to drive the allocation of important minerals...

  14. Scanning transmission electron microscopy analysis of grain structure in perpendicular magnetic recording media.

    Science.gov (United States)

    Hossein-Babaei, Faraz; Sinclair, Robert; Sinclair, Robert A; Srinivasan, Kumar; Bertero, Gerardo A

    2011-09-14

    The key component of a hard disk medium is a Co-based magnetic layer (ML) grown on a Ru seed layer. The ML nanostructure, composed of less than 10 nm grains, is believed to be controlled by this seed layer. We successfully used scanning transmission electron microscopy energy dispersive spectrometry simultaneous composition-based imaging and Moiré pattern analysis for determining the mutual structural and orientation relationship between the two layers revealing a grain-to-grain agreement. The method presented here can be utilized for observing structural correlations between consecutive polycrystalline thin film layers in general.

  15. Transmission electron microscopy study of vertical quantum dots molecules grown by droplet epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Maldonado, D., E-mail: david.hernandez@uca.es [Departamento de Ciencia de los Materiales e I.M. y Q.I., Facultad de Ciencias, Universidad de Cadiz, Campus Rio San Pedro, s/n, 11510 Puerto Real, Cadiz (Spain); Herrera, M.; Sales, D.L. [Departamento de Ciencia de los Materiales e I.M. y Q.I., Facultad de Ciencias, Universidad de Cadiz, Campus Rio San Pedro, s/n, 11510 Puerto Real, Cadiz (Spain); Alonso-Gonzalez, P.; Gonzalez, Y.; Gonzalez, L. [Instituto de Microelectronica de Madrid (CNM-CSIC), Isaac Newton 8 (PTM), 28760 Tres Cantos, Madrid (Spain); Pizarro, J.; Galindo, P.L. [Departamento de Lenguajes y Sistemas Informaticos, CASEM, Universidad de Cadiz, Campus Rio San Pedro, s/n, 11510 Puerto Real, Cadiz (Spain); Molina, S.I. [Departamento de Ciencia de los Materiales e I.M. y Q.I., Facultad de Ciencias, Universidad de Cadiz, Campus Rio San Pedro, s/n, 11510 Puerto Real, Cadiz (Spain)

    2010-07-01

    The compositional distribution of InAs quantum dots grown by molecular beam epitaxy on GaAs capped InAs quantum dots has been studied in this work. Upper quantum dots are nucleated preferentially on top of the quantum dots underneath, which have been nucleated by droplet epitaxy. The growth process of these nanostructures, which are usually called as quantum dots molecules, has been explained. In order to understand this growth process, the analysis of the strain has been carried out from a 3D model of the nanostructure built from transmission electron microscopy images sensitive to the composition.

  16. Transmission electron microscopy characterization of microstructural features of Al-Li-Cu alloys

    Science.gov (United States)

    Avalos-Borja, M.; Pizzo, P. P.; Larson, L. A.

    1983-01-01

    A transmission electron microscopy (TEM) examination of aluminum-lithium-copper alloys was conducted. The principal purpose is to characterize the nature, size, and distribution of stringer particles which result from the powder metallurgy (P/M) processing of these alloys. Microstructural features associated with the stringer particles are reported that help explain the stress corrosion susceptibility of the powder metallurgy-processed Al-Li-Cu alloys. In addition, matrix precipitation events are documented for a variety of heat treatments and process variations. Hot rolling is observed to significant alter the nature of matrix precipitation, and the observations are correlated with concomitant mechanical property variations.

  17. Advanced Transmission Electron Microscopy Applications in Nano-Materials and Nano-Technology Developments

    Institute of Scientific and Technical Information of China (English)

    KAI; J.J.

    2001-01-01

    Nano-technology development is nowadays a very hot topics in many research fields. Nano-materials are the foundations for developing this new technology. In order to fully understand the basic material science problems behind this topics, transmission electron microscopy (TEM) becomes the must and one of the most important technique to analyze the nano-size structure and composition using the most advanced high resolution TEM technique with nano-beam EDS and energy filter EELS to study the fine structures, crystallography, chemical composition, and optical properties of many different nano-materials in different industries applications.  ……

  18. Compositional analysis of GaAs/AlGaAs heterostructures using quantitative scanning transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kauko, H.; Helvoort, A. T. J. van [Department of Physics, Norwegian University of Science and Technology (NTNU), Trondheim (Norway); Zheng, C. L.; Glanvill, S. [Monash Centre for Electron Microscopy, Monash University, VIC 3800 (Australia); Zhu, Y.; Etheridge, J., E-mail: joanne.etheridge@monash.edu [Monash Centre for Electron Microscopy, Monash University, VIC 3800 (Australia); Department of Materials Engineering, Monash University, VIC 3800 (Australia); Dwyer, C. [Monash Centre for Electron Microscopy, Monash University, VIC 3800 (Australia); Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, and Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); Munshi, A. M.; Fimland, B. O. [Department of Electronics and Telecommunications, Norwegian University of Science and Technology (NTNU), Trondheim (Norway)

    2013-12-02

    We demonstrate a method for compositional mapping of Al{sub x}Ga{sub 1–x}As heterostructures with high accuracy and unit cell spatial resolution using quantitative high angle annular dark field scanning transmission electron microscopy. The method is low dose relative to spectroscopic methods and insensitive to the effective source size and higher order lens aberrations. We apply the method to study the spatial variation in Al concentration in cross-sectioned GaAs/AlGaAs core-shell nanowires and quantify the concentration in the Al-rich radial band and the AlGaAs shell segments.

  19. New Technique for Successful Thermal Barrier Coating Specimen Preparation for Transmission Electron Microscopy.

    Science.gov (United States)

    Brickey; Lee

    2000-05-01

    Reliability of thermal barrier coatings (TBC) hinges on the adhesion of a thermally grown oxide scale to an insulative ceramic topcoat and an underlying metallic bondcoat. The width of the scale and its interfaces makes transmission electron microscopy (TEM) an appropriate tool for its analysis. However, specimen preparation has proven to be a challenging obstacle leading to a dearth of TEM research on TBCs. A new approach to cross-section TBC TEM specimen preparation is described. The principal advantages of this technique are reproducibility, reduced specimen damage, and time savings resulting from decreased ion milling. This technique has been successfully applied to numerous TBC specimens with various thermal histories.

  20. Tunable photon transmission through a waveguide cavity coupled to an electron spin ensemble

    Science.gov (United States)

    Feng, Zhi-Bo; Yan, Run-Ying; Yan, Lei-Lei; Zhou, Yun-Qing

    2017-02-01

    We propose an effective scheme for implementing tunable photon transmission through a coplanar waveguide cavity. An electron spin ensemble of nitrogen-vacancy centers, behaving as a spin-boson mode, is coupled to the cavity mode. It is found that the transmittance of an incident photon depends on the coupling strength between the two modes, both with dissipative effects. In particular, the photon transmittance can be controlled at will by adjusting the external driving-induced detunings. This proposal could offer a promising avenue to coherently control photon propagation and is highly preferable for the experimental manipulations.

  1. Crack tip shielding observed with high-resolution transmission electron microscopy.

    Science.gov (United States)

    Adhika, Damar Rastri; Tanaka, Masaki; Daio, Takeshi; Higashida, Kenji

    2015-10-01

    The dislocation shielding field at a crack tip was experimentally proven at the atomic scale by measuring the local strain in front of the crack tip using high-resolution transmission electron microscopy (HRTEM) and geometric phase analysis (GPA). Single crystalline (110) silicon wafers were employed. Cracks were introduced using a Vickers indenter at room temperature. The crack tip region was observed using HRTEM followed by strain measurements using GPA. The measured strain field at the crack tip was compressive owing to dislocation shielding, which is in good agreement with the strain field calculated from elastic theory.

  2. In situ transmission electron microscopy of individual carbon nanotetrahedron/ribbon structures in bending

    Energy Technology Data Exchange (ETDEWEB)

    Kohno, Hideo, E-mail: kohno.hideo@kochi-tech.ac.jp [School of Environmental Science and Engineering, Kochi University of Technology, Kami, Kochi 782-8502 (Japan); Masuda, Yusuke [Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan)

    2015-05-11

    When the direction of flattening of a carbon nanotube changes during growth mediated by a metal nanoparticle, a carbon nanotetrahedron is formed in the middle of the carbon nanoribbon. We report the bending properties of the carbon nanotetrahedron/nanoribbon structure using a micro-manipulator system in a transmission electron microscope. In many cases, bending occurs at an edge of the carbon nanotetrahedron. No significant change is observed in the tetrahedron's shape during bending, and the bending is reversible and repeatable. Our results show that the carbon nanotetrahedron/nanoribbon structure has good durability against mechanical bending.

  3. A platform for in-situ multi-probe electronic measurements and modification of nanodevices inside a transmission electron microscope

    Science.gov (United States)

    Xu, T. T.; Ning, Z. Y.; Shi, T. W.; Fu, M. Q.; Wang, J. Y.; Chen, Q.

    2014-06-01

    We developed a new platform that enables in-situ four-probe electronic measurements, in-situ three-probe field-effect measurements, nanomanipulation, and in-situ modification of nanodevices inside a transmission electron microscope (TEM). The platform includes a specially designed chip-holder and a silicon (Si) chip with suspended metal electrodes. The chip-holder can hold one Si chip with a size up to 3 mm × 3 mm and provides four electrical connections that can be connected to the micrometer-sized electrodes on the Si chip by wire-bonding. The other side of the electrical connections on the chip-holder is connected to the electronic instruments outside the TEM through a commercial Nanofactory SPM-TEM holder. The Si chip with suspended metal electrodes on one of its edges was fabricated by lithography and wet etching. Carbon nanotubes (CNTs), InAs nanowires, and tungsten disulfide nanowires were placed to stride over and connect to the suspended electrodes on the Si chip by nanomanipulations inside a scanning electron microscope (SEM). By using the platform, I-V curves of an individual single-walled CNT connecting to four electrodes were in-situ measured between any two of the four suspended electrodes, and a high-resolution TEM image of the same CNT was obtained. Furthermore, four-terminal I-V measurement on an InAs nanowire was achieved on this platform, and with a movable probe used as a gate electrode, field-effect measurement on the same InAs nanowire device was accomplished in SEM. In addition, by using the movable probe on the SPM-TEM holder, we could further in-situ modify nanomaterial and nanodevices. The present work demonstrates a method that allows a direct correlation between the atomic-level structure and the electronic property of nanomaterials or nanodevices whose structure can be further modified in-situ.

  4. In Situ Transmission Electron Microscopy Study of Electron Beam-Induced Transformations in Colloidal Cesium Lead Halide Perovskite Nanocrystals

    Science.gov (United States)

    2017-01-01

    An increasing number of studies have recently reported the rapid degradation of hybrid and all-inorganic lead halide perovskite nanocrystals under electron beam irradiation in the transmission electron microscope, with the formation of nanometer size, high contrast particles. The nature of these nanoparticles and the involved transformations in the perovskite nanocrystals are still a matter of debate. Herein, we have studied the effects of high energy (80/200 keV) electron irradiation on colloidal cesium lead bromide (CsPbBr3) nanocrystals with different shapes and sizes, especially 3 nm thick nanosheets, a morphology that facilitated the analysis of the various ongoing processes. Our results show that the CsPbBr3 nanocrystals undergo a radiolysis process, with electron stimulated desorption of a fraction of bromine atoms and the reduction of a fraction of Pb2+ ions to Pb0. Subsequently Pb0 atoms diffuse and aggregate, giving rise to the high contrast particles, as previously reported by various groups. The diffusion is facilitated by both high temperature and electron beam irradiation. The early stage Pb nanoparticles are epitaxially bound to the parent CsPbBr3 lattice, and evolve into nonepitaxially bound Pb crystals upon further irradiation, leading to local amorphization and consequent dismantling of the CsPbBr3 lattice. The comparison among CsPbBr3 nanocrystals with various shapes and sizes evidences that the damage is particularly pronounced at the corners and edges of the surface, due to a lower diffusion barrier for Pb0 on the surface than inside the crystal and the presence of a larger fraction of under-coordinated atoms. PMID:28122188

  5. Sensitivity analysis and dynamic modification of modal parameter in mechanical transmission system

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Sensitivity analysis is one of the effective methods in the dynamic modification. The sensitivity of the modal parameters such as the natural frequencies and mode shapes in undamped free vibration of mechanical transmission system is analyzed in this paper.In particular,the sensitivities of the modal parameters to physical parameters of shaft system such as the inertia and stiffness are given.A calculation formula for dynamic modification is presented based on the analysis of modal parameter.With a mechanical transmission system as an example, the sensitivities of natural frequencies and modes shape are calculated and analyzed. Furthermore, the dynamic modification is also carried out and a good result is obtained.

  6. Mixed quantum-classical dynamics using collective electronic variables: A better alternative to electronic friction theories

    CERN Document Server

    Ryabinkin, Ilya G

    2016-01-01

    An accurate description of nonadiabatic dynamics of molecular species on metallic surfaces poses a serious computational challenge associated with a multitude of closely-spaced electronic states. We propose a mixed quantum-classical scheme that addresses this challenge by introducing collective electronic variables. These variables are defined through analytic block-diagonalization applied to the time-dependent Hamiltonian matrix governing the electronic dynamics. We compare our scheme with the Ehrenfest approach and with a full-memory electronic friction model on a one-dimensional "adatom + atomic chain" model. Our simulations demonstrate that collective-mode dynamics with only few (2-3) electronic variables is robust and can describe a variety of situations: from a chemisorbed atom on an insulator to an atom on a metallic surface. Our molecular model also reveals that the friction approach is prone to unpredictable and catastrophic failures.

  7. Strain mapping at the nanoscale using precession electron diffraction in transmission electron microscope with off axis camera

    Energy Technology Data Exchange (ETDEWEB)

    Vigouroux, M. P.; Delaye, V.; Bernier, N.; Lafond, D.; Audoit, G.; Bertin, F. [Université Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, 17 rue des martyrs, 38054 GRENOBLE Cedex 9 (France); Cipro, R.; Baron, T.; Martin, M. [Université Grenoble Alpes, F-38000 Grenoble (France); CNRS, LTM, F-38000 Grenoble (France); Rouvière, J. L. [Université Grenoble Alpes, F-38000 Grenoble (France); CEA, INAC, MINATEC Campus, 17 rue des martyrs, 38054 GRENOBLE Cedex 9 (France); Chenevier, B. [Université Grenoble Alpes, F-38000 Grenoble (France); LMGP, CNRS, 3 parvis Louis Néel, 38016 GRENOBLE Cedex 1 (France)

    2014-11-10

    Precession electron diffraction is an efficient technique to measure strain in nanostructures by precessing the electron beam, while maintaining a few nanometre probe size. Here, we show that an advanced diffraction pattern treatment allows reproducible and precise strain measurements to be obtained using a default 512 × 512 DigiSTAR off-axis camera both in advanced or non-corrected transmission electron microscopes. This treatment consists in both projective geometry correction of diffraction pattern distortions and strain Delaunay triangulation based analysis. Precision in the strain measurement is improved and reached 2.7 × 10{sup −4} with a probe size approaching 4.2 nm in diameter. This method is applied to the study of the strain state in InGaAs quantum-well (QW) devices elaborated on Si substrate. Results show that the GaAs/Si mismatch does not induce in-plane strain fluctuations in the InGaAs QW region.

  8. In situ analysis of gas composition by electron energy-loss spectroscopy for environmental transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Crozier, Peter A., E-mail: crozier@asu.edu [School for Engineering of Matter, Transport and Energy, Arizona State University Tempe, AZ 85287-6106 (United States); Chenna, Santhosh [School for Engineering of Matter, Transport and Energy, Arizona State University Tempe, AZ 85287-6106 (United States)

    2011-02-15

    We have developed methods for using in situ electron energy-loss spectroscopy (EELS) to perform quantitative analysis of gas in an environmental transmission electron microscope. Inner-shell EELS was able to successfully determine the composition of gas mixtures with an accuracy of about 15% or better provided that some precautions are taken during the acquisition to account for the extended gas path lengths associated with the reaction cell. The unique valence-loss spectrum associated with many gases allowed simple methodologies to be developed to determine gas composition from the low-loss region of the spectrum from a gas mixture. The advantage of the valence loss approach is that it allows hydrogen to be detected and quantified. EELS allows real-time analysis of the volume of gas inside the reaction cell and can be performed rapidly with typical acquisition times of a few seconds or less. This in situ gas analysis can also be useful for revealing mass transport issues associated with the differential gas diffusion through the system. -- Research Highlights: {yields} In situ electron energy-loss spectroscopy for gas analysis in ETEM. {yields} Compositional accuracy of about 15% or better. {yields} Can use core-loss or valence loss spectroscopy. {yields} Can detect mass transport property of gas handling system.

  9. Transmission electron microscopy of unstained hybrid Au nanoparticles capped with PPAA (plasma-poly-allylamine): structure and electron irradiation effects.

    Science.gov (United States)

    Gontard, Lionel C; Fernández, Asunción; Dunin-Borkowski, Rafal E; Kasama, Takeshi; Lozano-Pérez, Sergio; Lucas, Stéphane

    2014-12-01

    Hybrid (organic shell-inorganic core) nanoparticles have important applications in nanomedicine. Although the inorganic components of hybrid nanoparticles can be characterized readily using conventional transmission electron microscopy (TEM) techniques, the structural and chemical arrangement of the organic molecular components remains largely unknown. Here, we apply TEM to the physico-chemical characterization of Au nanoparticles that are coated with plasma-polymerized-allylamine, an organic compound with the formula C3H5NH2. We discuss the use of energy-filtered TEM in the low-energy-loss range as a contrast enhancement mechanism for imaging the organic shells of such particles. We also study electron-beam-induced crystallization and amorphization of the shells and the formation of graphitic-like layers that contain both C and N. The resistance of the samples to irradiation by high-energy electrons, which is relevant for optical tuning and for understanding the degree to which such hybrid nanostructures are stable in the presence of biomedical radiation, is also discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Electron Dynamics in Nanostructures in Strong Laser Fields

    Energy Technology Data Exchange (ETDEWEB)

    Kling, Matthias

    2014-09-11

    The goal of our research was to gain deeper insight into the collective electron dynamics in nanosystems in strong, ultrashort laser fields. The laser field strengths will be strong enough to extract and accelerate electrons from the nanoparticles and to transiently modify the materials electronic properties. We aimed to observe, with sub-cycle resolution reaching the attosecond time domain, how collective electronic excitations in nanoparticles are formed, how the strong field influences the optical and electrical properties of the nanomaterial, and how the excitations in the presence of strong fields decay.

  11. Scanning transmission electron microscopic tomography of cortical bone using Z-contrast imaging.

    Science.gov (United States)

    McNally, Elizabeth; Nan, Feihong; Botton, Gianluigi A; Schwarcz, Henry P

    2013-06-01

    Previously we presented (McNally et al., 2012) a model for the ultrastructure of bone showing that the mineral resides principally outside collagen fibrils in the form of 5 nm thick mineral structures hundreds of nanometers long oriented parallel to the fibrils. Here we use high-angle annular dark-field electron tomography in the scanning transmission electron microscope to confirm this model and further elucidate the composite structure. Views of a section cut parallel to the fibril axes show bundles of mineral structures extending parallel to the fibrils and encircling them. The mineral density inside the fibrils is too low to be visualized in these tomographic images. A section cut perpendicular to the fibril axes, shows quasi-circular walls composed of mineral structures, wrapping around apparently empty holes marking the sites of fibrils. These images confirm our original model that the majority of mineral in bone resides outside the collagen fibrils.

  12. Switching behaviour of individual Ag-TCNQ nanowires: an in situ transmission electron microscopy study

    Science.gov (United States)

    Ran, Ke; Rösner, Benedikt; Butz, Benjamin; Fink, Rainer H.; Spiecker, Erdmann

    2016-10-01

    The organic semiconductor silver-tetracyanoquinodimethane (Ag-TCNQ) exhibits electrical switching and memory characteristics. Employing a scanning tunnelling microscopy setup inside a transmission electron microscope, the switching behaviour of individual Ag-TCNQ nanowires (NWs) is investigated in detail. For a large number of NWs, the switching between a high (OFF) and a low (ON) resistance state was successfully stimulated by negative bias sweeps. Fitting the experimental I-V curves with a Schottky emission function makes the switching features prominent and thus enables a direct evaluation of the switching process. A memory cycle including writing, reading and erasing features is demonstrated at an individual NW. Moreover, electronic failure mechanisms due to Joule heating are discussed. These findings have a significant impact on our understanding of the switching behaviour of Ag-TCNQ.

  13. In situ transmission electron microscopy of solid-liquid phase transition of silica encapsulated bismuth nanoparticles

    Science.gov (United States)

    Hu, Jianjun; Hong, Yan; Muratore, Chris; Su, Ming; Voevodin, Andrey A.

    2011-09-01

    The solid-liquid phase transition of silica encapsulated bismuth nanoparticles was studied by in situ transmission electron microscopy (TEM). The nanoparticles were prepared by a two-step chemical synthesis process involving thermal decomposition of organometallic precursors for nucleating bismuth and a sol-gel process for growing silica. The microstructural and chemical analyses of the nanoparticles were performed using high-resolution TEM, Z-contrast imaging, focused ion beam milling, and X-ray energy dispersive spectroscopy. Solid-liquid-solid phase transitions of the nanoparticles were directly recorded by electron diffractions and TEM images. The silica encapsulation of the nanoparticles prevented agglomeration and allowed particles to preserve their original volume upon melting, which is desirable for applications of phase change nanoparticles with consistently repeatable thermal properties.

  14. Atomic Resolution Imaging at an Ultralow Accelerating Voltage by a Monochromatic Transmission Electron Microscope

    Science.gov (United States)

    Morishita, Shigeyuki; Mukai, Masaki; Suenaga, Kazu; Sawada, Hidetaka

    2016-10-01

    Transmission electron microscopy using low-energy electrons would be very useful for atomic resolution imaging of specimens that would be damaged at higher energies. However, the resolution at low voltages is degraded because of geometrical and chromatic aberrations. In the present study, we diminish the effect of these aberrations by using a delta-type corrector and a monochromator. The dominant residual aberration in a delta-type corrector, which is the sixth-order three-lobe aberration, is counterbalanced by other threefold aberrations. Defocus spread caused by chromatic aberration is reduced by using a monochromated beam with an energy spread of 0.05 eV. We obtain images of graphene and demonstrate atomic resolution at an ultralow accelerating voltage of 15 kV.

  15. Cellulose Nanocrystals as Chiral Inducers: Enantioselective Catalysis and Transmission Electron Microscopy 3D Characterization.

    Science.gov (United States)

    Kaushik, Madhu; Basu, Kaustuv; Benoit, Charles; Cirtiu, Ciprian M; Vali, Hojatollah; Moores, Audrey

    2015-05-20

    Cellulose nanocrystals (CNCs), derived from cellulose, provide us with an opportunity to devise more sustainable solutions to current technological challenges. Enantioselective catalysis, especially heterogeneous, is the preferred method for the synthesis of pure chiral molecules in the fine chemical industries. Cellulose has been long sought as a chiral inducer in enantioselective catalysis. We report herein an unprecedentedly high enantiomeric excess (ee) for Pd patches deposited onto CNCs used as catalysts for the hydrogenation of prochiral ketones in water at room temperature and 4 bar H2. Our system, where CNCs acted as support and sole chiral source, achieved an ee of 65% with 100% conversions. Cryo-electron microscopy, high-resolution transmission electron microscopy, and tomography were used for the first time to study the 3D structure of a metal functionalized CNC hybrid. It established the presence of sub-nanometer-thick Pd patches at the surface of CNCs and provided insight into the chiral induction mechanism.

  16. Characterization of ionic permeability and water vapor transmission rate of polymers used for implantable electronics.

    Science.gov (United States)

    Kirsten, Sabine; Schubert, Martin; Uhlemann, Jürgen; Wolter, Klaus-Jurgen

    2014-01-01

    Biocompatible polymers used as encapsulation and packaging materials for implantable electronic devices have to comply with numerous requirements. Especially their barrier properties against water molecules and ions are of particular interest regarding the reliability of the encapsulation as well as functional integrity of the electronic components since water and ions on the circuit board may evoke corrosion, leakage current and finally the failure of the device. This paper describes a measurement setup to investigate the ionic permeability under in vitro conditions of polymeric membranes manufactured from various biocompatible polymers. Ionic permeability and water vapor transmission rate representing the barrier properties of these membranes were investigated. First results were obtained for polyimide, silicone, polyether ether ketone and polyamide, whereas polyimide evinced the best properties.

  17. Dendritic gold nanowire growth observed in liquid with transmission electron microscopy.

    Science.gov (United States)

    Kraus, Tobias; de Jonge, Niels

    2013-07-02

    The growth of nanoscale gold dendrites was studied in situ in a thin liquid film with transmission electron microscopy (TEM) using a liquid cell with silicon nitride (SiN) windows. Gold nanoparticle seeds were covered by a thin liquid layer containing precursor solution. Dendrite nucleation was induced by the electron beam leading to an initial burst of growth. The growth then settled at tip velocities between 0.1 and 2.0 nm/s for different dendrites. Tip velocities fluctuated as different dendrite geometries grew from the tips. Those dendrites showing granularities in their structure experienced the largest growth speed. Comparison of the observed velocities with diffusion-limited growth rates suggests that dendrite growth in thin films at this scale is limited by diffusion. The described method may find application in research on the mechanisms behind dendrite growth and also to study other types of anisotropic growth of nanomaterials driven by crystal and twin geometries.

  18. Balamuthia mandrillaris: Further morphological observations of trophozoites by light, scanning and transmission electron microscopy.

    Science.gov (United States)

    González-Robles, Arturo; Lares-Villa, Fernando; Lares-Jiménez, Luis Fernando; Omaña-Molina, Maritza; Salazar-Villatoro, Lizbeth; Martínez-Palomo, Adolfo

    2015-10-01

    Additional morphological features of Balamuthia mandrillaris observed by light and electron microscopy are reported. Trophozoites were extremely pleomorphic: their cell shapes ranged from rounded to elongated and sometimes they appeared exceptionally stretched out and branched. By transmission electron microscopy it was possible to observe two different cytoplasmic areas, the ectoplasm and the endoplasm and often sections of rough endoplasmic reticulum were found in the transition zone. The cytoplasm was very fibrogranular and most of the organelles typically found in eukaryotic cells were observed. A particular finding was the presence of numerous mitochondria with a different structure from those of other free-living amoebae. The observations reported here may reinforce the morphological knowledge of this amoeba and provide a background for further analyses.

  19. Prospects for lithium imaging using annular bright field scanning transmission electron microscopy: A theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Findlay, S.D., E-mail: scott@sigma.t.u-tokyo.ac.jp [Institute of Engineering Innovation, The University of Tokyo, Tokyo 116-0013 (Japan); Lugg, N.R. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Shibata, N. [Institute of Engineering Innovation, The University of Tokyo, Tokyo 116-0013 (Japan); PRESTO, Japan Science and Technology Agency, Saitama 332-0012 (Japan); Allen, L.J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Ikuhara, Y. [Institute of Engineering Innovation, The University of Tokyo, Tokyo 116-0013 (Japan); Nanostructures Research Laboratory, Japan Fine Ceramic Center, Nagoya 456-8587 (Japan); WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2011-07-15

    There is strong interest in lithium imaging, particularly because of its significance in battery materials. However, light atoms only scatter electrons weakly and atomic resolution direct imaging of lithium has proven difficult. This paper explores theoretically the conditions under which lithium columns can be expected to be directly visible using annular bright field scanning transmission electron microscopy. A detailed discussion is given of the controllable parameters and the conditions most favourable for lithium imaging. -- Highlights: {yields} Optimum conditions to image Li columns in Li-bearing materials with ABF are explored. {yields} Higher accelerating voltages give better contrast at a given resolution. {yields} Aperture size must compromise between resolution and good coupling to the column. {yields} Samples with small along-column interatomic spacing between Li atoms are best. {yields} The trends observed are consistent with prediction based on the s-state model.

  20. In situ transmission electron microscopy observations of sublimation in silver nanoparticles.

    Science.gov (United States)

    Asoro, Michael A; Kovar, Desiderio; Ferreira, Paulo J

    2013-09-24

    In situ heating experiments were performed in a transmission electron microscope (TEM) to monitor the thermal stability of silver nanoparticles. The sublimation kinetics from isothermal experiments on individual nanoparticles was used to assess the actual temperatures of the nanoparticles by considering the localized heating from the electron beam. For isolated nanoparticles, beam heating under normal TEM operating conditions was found to increase the temperature by tens of degrees. For nominally isothermal experiments, the observed sublimation temperatures generally decreased with decreasing particle size, in agreement with the predictions from the Kelvin equation. However, sublimation of smaller nanoparticles was often observed to occur in discrete steps, which led to faceting of the nanoparticles. This discrete behavior differs from that predicted by conventional theory as well as from experimental observations in larger nanoparticles where sublimation was continuous. A hypothesis that explains the mechanism for this size-dependent behavior is proposed.