WorldWideScience

Sample records for dynamic studies hydrolysis

  1. Hydrolysis-extraction of apple proto pectins in dynamic mode

    International Nuclear Information System (INIS)

    Bobodzhonova, G.N.; Gorshkova, R.M.; Makhkamov, Kh.K.

    2013-01-01

    The article describes a hydrolysis process of apple husks by using dynamics regime of hydrolysis. It's shown that application of dynamics method positively influences on the pectin yields and its main parameters. It was defined that by dynamics regime of hydrolysis-extraction of apple husks it is possible to obtain qualitative products with high yield at a mild ph value of medium of hydrolysing agent.

  2. Dynamic Simulation, Sensitivity and Uncertainty Analysis of a Demonstration Scale Lignocellulosic Enzymatic Hydrolysis Process

    DEFF Research Database (Denmark)

    Prunescu, Remus Mihail; Sin, Gürkan

    2014-01-01

    This study presents the uncertainty and sensitivity analysis of a lignocellulosic enzymatic hydrolysis model considering both model and feed parameters as sources of uncertainty. The dynamic model is parametrized for accommodating various types of biomass, and different enzymatic complexes...

  3. Dynamic modeling and validation of a lignocellulosic enzymatic hydrolysis process

    DEFF Research Database (Denmark)

    Prunescu, Remus Mihail; Sin, Gürkan

    2013-01-01

    The enzymatic hydrolysis process is one of the key steps in second generation biofuel production. After being thermally pretreated, the lignocellulosic material is liquefied by enzymes prior to fermentation. The scope of this paper is to evaluate a dynamic model of the hydrolysis process...... on a demonstration scale reactor. The following novel features are included: the application of the Convection–Diffusion–Reaction equation to a hydrolysis reactor to assess transport and mixing effects; the extension of a competitive kinetic model with enzymatic pH dependency and hemicellulose hydrolysis......; a comprehensive pH model; and viscosity estimations during the course of reaction. The model is evaluated against real data extracted from a demonstration scale biorefinery throughout several days of operation. All measurements are within predictions uncertainty and, therefore, the model constitutes a valuable...

  4. Laue diffraction as a tool in dynamic studies: Hydrolysis of a transiently stable intermediate in catalysis by trypsin

    Energy Technology Data Exchange (ETDEWEB)

    Singer, P.T.; Berman, L.E.; Cai, Z.; Mangel, W.F.; Jones, K.W.; Sweet, R.M. (Brookhaven National Lab., Upton, NY (United States)); Carty, R.P. (State Univ. of New York, Brooklyn, NY (United States). Dept. of Biochemistry); Schlichting, I. (Brandeis Univ., Waltham, MA (United States). Rosenstiel Basic Medical Science Center); Stock, A. (Center for Advanced Biotechnology and Medicine, Piscataway, NJ (Un

    1992-01-01

    A transiently stable intermediate in trypsin catalysis, guanidinobenzyol-Ser-195 trypsin, can be trapped and then released by control of the pH in crystals of the enzyme. This effect has been investigated by static and dynamic white-beam Laue crystallography. Comparison of structures determined before and immediately after a pH jump reveals the nature of concerted changes that accompany activation of the enzyme. Careful analysis of the results of several structure determinations gives information about the reliability of Laue results in general. A study of multiple exposures taken under differing conditions of beam intensity, crystal quality, and temperature revealed information about ways to control damage of specimens by the x-ray beam.

  5. Laue diffraction as a tool in dynamic studies: Hydrolysis of a transiently stable intermediate in catalysis by trypsin

    Energy Technology Data Exchange (ETDEWEB)

    Singer, P.T.; Berman, L.E.; Cai, Z.; Mangel, W.F.; Jones, K.W.; Sweet, R.M. [Brookhaven National Lab., Upton, NY (United States); Carty, R.P. [State Univ. of New York, Brooklyn, NY (United States). Dept. of Biochemistry; Schlichting, I. [Brandeis Univ., Waltham, MA (United States). Rosenstiel Basic Medical Science Center; Stock, A. [Center for Advanced Biotechnology and Medicine, Piscataway, NJ (United States); Smalas, A. [Univ. of Tromso (Norway). Inst. of Mathematics and Physical Science

    1992-11-01

    A transiently stable intermediate in trypsin catalysis, guanidinobenzyol-Ser-195 trypsin, can be trapped and then released by control of the pH in crystals of the enzyme. This effect has been investigated by static and dynamic white-beam Laue crystallography. Comparison of structures determined before and immediately after a pH jump reveals the nature of concerted changes that accompany activation of the enzyme. Careful analysis of the results of several structure determinations gives information about the reliability of Laue results in general. A study of multiple exposures taken under differing conditions of beam intensity, crystal quality, and temperature revealed information about ways to control damage of specimens by the x-ray beam.

  6. Laue diffraction as a tool in dynamic studies: Hydrolysis of a transiently stable intermediate in catalysis by trypsin

    International Nuclear Information System (INIS)

    Singer, P.T.; Berman, L.E.; Cai, Z.; Mangel, W.F.; Jones, K.W.; Sweet, R.M.; Carty, R.P.; Smalas, A.

    1992-01-01

    A transiently stable intermediate in trypsin catalysis, guanidinobenzyol-Ser-195 trypsin, can be trapped and then released by control of the pH in crystals of the enzyme. This effect has been investigated by static and dynamic white-beam Laue crystallography. Comparison of structures determined before and immediately after a pH jump reveals the nature of concerted changes that accompany activation of the enzyme. Careful analysis of the results of several structure determinations gives information about the reliability of Laue results in general. A study of multiple exposures taken under differing conditions of beam intensity, crystal quality, and temperature revealed information about ways to control damage of specimens by the x-ray beam

  7. Microtubule dynamics: Caps, catastrophes, and coupled hydrolysis

    DEFF Research Database (Denmark)

    Flyvbjerg, H.; Holy, T.E.; Leibler, S.

    1996-01-01

    An effective theory is formulated for the dynamics of the guanosine triphosphate (GTP) cap believed to stabilize growing microtubules. The theory provides a ''coarse-grained'' description of the cap's dynamics. ''Microscopic'' details, such as the microtubule lattice structure and the fate of its...

  8. Lithium hydride hydrolysis: experimental and kinetic study

    International Nuclear Information System (INIS)

    Charton, S.; Maupoix, C.; Brevet, A.; Delaunay, F.; Heintz, O.; Saviot, L.

    2006-01-01

    In this work has been studied the contribution of various analyses techniques in the framework, on the one hand of revealing the mechanisms implied in lithium hydride hydrolysis, and on the other hand of studying the kinetics of hydrogen production. Among the methods recently investigated, Raman spectroscopy, XPS and SIMS seem to be particularly attractive. (O.M.)

  9. Kinetic study of hydrolysis of coconut fiber into glucose

    Science.gov (United States)

    Muhaimin, Sudiono, Sri

    2017-03-01

    Kinetic study of hydrolysis of coconut fiber into glucose has been done. The aim of this research was to study of the effect of time and temperature to the glucose as the result of the conversion of coconut fiber. The various temperature of the hydrolysis process were 30 °C, 48 °C, 72 °C and 95 °C and the various time of the hydrolysis process were 0, 15, 30, 60, 120, 180, 240, 300 minutes. A quantitative analysis was done by measured the concentration of the glucose as the result of the conversion of coconut fiber. The result showed that the rate constant from the various temperature were 3.10-4 minute-1; 8.10-4 minutees-1; 84.10-4 minute-1, and 205.10-4 minute-1, and the energy activation was 7,69. 103 kJ/mol.

  10. Dynamic Modeling of Indole Glucosinolate Hydrolysis and Its Impact on Auxin Signaling

    Directory of Open Access Journals (Sweden)

    Daniel Vik

    2018-04-01

    Full Text Available Plants release chemicals to deter attackers. Arabidopsis thaliana relies on multiple defense compounds, including indol-3-ylmethyl glucosinolate (I3G, which upon hydrolysis initiated by myrosinase enzymes releases a multitude of bioactive compounds, among others, indole-3-acetonitrile and indole-3-acetoisothiocyanate. The highly unstable isothiocyanate rapidly reacts with other molecules. One of the products, indole-3-carbinol, was reported to inhibit auxin signaling through binding to the TIR1 auxin receptor. On the contrary, the nitrile product of I3G hydrolysis can be converted by nitrilase enzymes to form the primary auxin molecule, indole-3-acetic acid, which activates TIR1. This suggests that auxin signaling is subject to both antagonistic and protagonistic effects of I3G hydrolysis upon attack. We hypothesize that I3G hydrolysis and auxin signaling form an incoherent feedforward loop and we build a mathematical model to examine the regulatory network dynamics. We use molecular docking to investigate the possible antagonistic properties of different I3G hydrolysis products by competitive binding to the TIR1 receptor. Our simulations reveal an uncoupling of auxin concentration and signaling, and we determine that enzyme activity and antagonist binding affinity are key parameters for this uncoupling. The molecular docking predicts that several I3G hydrolysis products strongly antagonize auxin signaling. By comparing a tissue disrupting attack – e.g., by chewing insects or necrotrophic pathogens that causes rapid release of I3G hydrolysis products – to sustained cell-autonomous I3G hydrolysis, e.g., upon infection by biotrophic pathogens, we find that each scenario gives rise to distinct auxin signaling dynamics. This suggests that plants have different defense versus growth strategies depending on the nature of the attack.

  11. Study of Enzymatic Hydrolysis of Dilute Acid Pretreated Coconut Husk

    Directory of Open Access Journals (Sweden)

    Rudy Agustriyanto

    2012-12-01

    Full Text Available Coconut husk is classified as complex lignocellulosic material that contains cellulose, hemicellulose, lignin, and some other extractive compounds. Cellulose from coconut husk can be used as fermentation substrate after enzymatic hydrolysis. In contrary, lignin content from the coconut husk will act as an inhibitor in this hydrolysis process. Therefore, a pretreatment process is needed to enhance the hydrolysis of cellulose. The objective of this research is to investigate the production of the glucose through dilute acid pretreatment and to obtain its optimum operating conditions. In this study, the pretreatment was done using dilute sulfuric acid in an autoclave reactor. The pretreatment condition were varied at 80°C, 100°C, 120°C and 0.9%, 1.2%, 1.5% for temperature and acid concentration respectively. The acid pretreated coconut husk was then hydrolyzed using commercial cellulase (celluclast and β-glucosidase (Novozyme 188. The hydrolysis time was 72 hours and the operating conditions were varied at several temperature and pH. From the experimental results it can be concluded that the delignification temperature variation has greater influence than the acid concentration. The optimum operating condition was obtained at pH 4 and 50°C which was pretreated at 100°C using 1.5% acid concentration. Copyright © 2012 by BCREC UNDIP. All rights reserved. (Selected Paper from International Conference on Chemical and Material Engineering (ICCME 2012Received: 28th September 2012, Revised: 2nd October 2012, Accepted: 4th October 2012[How to Cite: R. Agustriyanto, A. Fatmawati, Y. Liasari. (2012. Study of Enzymatic Hydrolysis of Dilute Acid Pretreated Coconut Husk. Bulletin of Chemical Reaction Engineering & Catalysis, 7(2: 137-141. doi:10.9767/bcrec.7.2.4046.137-141] [How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.2.4046.137-141 ] | View in 

  12. Hydrolysis studies of thorium using solvent extraction technique

    International Nuclear Information System (INIS)

    Engkvist, I.; Albinsson, Y.

    1992-01-01

    The Swedish concept for final disposal of spent nuclear fuel is focused on a repository in crystalline rock at a depth of 500 m. In order to calculate migration rates from such a repository, chemical speciation becomes important. A method for determining complexation of actinides and lanthanides with inorganic ligands using solvent extraction has been developed. The apparatus used is called AKUFVE and the used technique can measure distribution values in a two liquid phase system in the range 10 -5 to 10 5 , pH 1 to 11. Hydrolysis of thorium has been studied in 1 M NaClO 4 in inert atmosphere. Th-234 separated from U-238 was extracted with 0.01-1 M 2,4-pentanedione (HAa) in toluene. From extraction data, calculations of hydrolysis constants have been made, regarding hydroxide complexes as competing and nonextractable. As a result we conclude that the constant for tri- and tetrahydroxide complexes are overestimated. (orig.)

  13. A Dynamic Model for Cellulosic Biomass Hydrolysis: a Comprehensive Analysis and Validation of Hydrolysis and Product Inhibition Mechanisms

    DEFF Research Database (Denmark)

    Tsai, Chien Tai; Morales Rodriguez, Ricardo; Sin, Gürkan

    2014-01-01

    product inhibitors such as glucose, cellobiose and xylose) to test the hydrolysis and product inhibition mechanisms of the model. A nonlinear least squares method was used to identify the model and estimate kinetic parameters based on the experimental data. The suitable mathematical model for industrial...... application was selected among the proposed models based on statistical information (weighted sum of square errors). The analysis showed that transglycosylation plays a key role at high glucose levels. It also showed that the values of parameters depend on the selected experimental data used for parameter....... As long as these type of models are used within the boundary of their validity (substrate type, enzyme source and substrate concentration), they can support process design and technology improvement efforts at pilot and full-scale studies....

  14. Kinetic study of sphingomyelin hydrolysis for ceramide production

    DEFF Research Database (Denmark)

    Zhang, Long; Hellgren, Lars; Xu, Xuebing

    2008-01-01

    in cosmetic and pharmaceutical industries such as in hair and skin care products. The enzymatic hydrolysis of sphingomyelin has been proved to be a feasible method to produce ceramide. The kinetic performance of sphingomyelin hydrolysis in the optimal two-phase (water:organic solvent) reaction system...

  15. Kinetic study of enzymatic hydrolysis of potato starch

    Directory of Open Access Journals (Sweden)

    Óscar Fernando Castellanos Domínguez

    2004-01-01

    Full Text Available This article describes the kinetic study of potato starch enzymatic hydrolysis using soluble enzymes (Novo Nordisk. Different assays divided into four groups were used: reaction time (with which it was possible to reduce the 48-72 hour duration reported in the literature to 16 hours with comparable productivity levels; selecting the set of enzymes to be used (different types were evaluated - BAN and Termamyl as alfa-amylases during dextrinisation stage, and AMG, Promozyme and Fungamyl for sacarification reaction- identifying those presenting the best performance during hydrolysis.Reaction conditions were optimised for the process's two stages (destrinisation and sacarification. Enzyme dose, calcium cofactor concentration, pH, temperature and agitation speed were studied for the first stage. Enzyme ratio, pH and agitation speed were studied for sacarification; the latter parameter reported values having no antecedents in the literature (60 rpm and 30 rpm for first and second reactions, respectively. Michaelis Menten kinetics were calculated once conditions had been optimised, varying substrate from 10-50% P/V, obtaining km and Vmax kinetic parameters for each reaction. A kinetic model was found according to local working conditions which was able to explain potato starch conversion to glucose syrup, achieving 96 dextrose equivalents by the end of the reaction, being well within the maximum range reported in the literature (94-98.Laboratory equipment was constructed prior to carrying out assays which was able to reproduce and improve the conditions reported in the literature, making it a useful, reliable tool for use in assays returning good results.

  16. Validation of Inhibition Effect in the Cellulose Hydrolysis: a Dynamic Modelling Approach

    DEFF Research Database (Denmark)

    Morales Rodriguez, Ricardo; Tsai, Chien-Tai; Meyer, Anne S.

    2011-01-01

    Enzymatic hydrolysis is one of the main steps in the processing of bioethanol from lignocellulosic raw materials. However, complete understanding of the underlying phenomena is still under development. Hence, this study has focused on validation of the inhibition effects in the cellulosic biomass...... for parameter estimation (calibration) and validation purposes. The model predictions using calibrated parameters have shown good agreement with the validation data sets, which provides credibility to the model structure and the parameter values....

  17. Kinetic study on the acid-catalyzed hydrolysis of cellulose to levulinic acid

    NARCIS (Netherlands)

    Girisuta, B.; Janssen, L. P. B. M.; Heeres, H. J.

    2007-01-01

    A variety of interesting bulk chemicals is accessible by the acid-catalyzed hydrolysis of cellulose. An interesting example is levulinic acid, a versatile precursor for fuel additives, polymers, and resins. A detailed kinetic study on the acid-catalyzed hydrolysis of cellulose to levulinic acid is

  18. Study on the technology of compound enzymatic hydrolysis of whole passion fruit

    Science.gov (United States)

    Yang, Yu-xia; Duan, Zhen-hua; Kang, Chao; Zhu, Xiang-hao; Li, Ding-jin

    2017-12-01

    Fresh Whole Passion Fruit was used as raw material, The enzymatic hydrolysis technology of Passion Fruit by Complex enzyme were studied, The effects of enzyme dosage, Enzyme ratio(cellulose: pectinase), pH, temperature and time on the hydrolysis were investigated by single-tests and orthogonal tests, the hydrolysis indicators of single-factor tests and orthogonal tests were juice yield. The optimal hydrolysis conditions of Passion Fruit by Complex enzyme were enzyme dosage 0.12%, Enzyme ratio 5:1, hydrolysis temperature 50°C, pH4.0 and time 3.5 h. Under such conditions, juice yield of Passion Fruit was 92.91%.

  19. Penicillin Hydrolysis: A Kinetic Study of a Multistep, Multiproduct Reaction.

    Science.gov (United States)

    McCarrick, Thomas A.; McLafferty, Fred W.

    1984-01-01

    Background, procedures used, and typical results are provided for an experiment in which students carry out the necessary measurements on the acid-catalysis of penicillin in two hours. By applying kinetic theory to the data obtained, the reaction pathways for the hydrolysis of potassium benzyl penicillin are elucidated. (JN)

  20. Hydrolysis of cisplatin—a first-principles metadynamics study

    NARCIS (Netherlands)

    Lau, J.K.C.; Ensing, B.

    2010-01-01

    Cisplatin, or cis-[Pt(NH3)2Cl2], was the first member of a new revolutionary class of anticancer drugs that is still used today for the treatment of a wide variety of cancers. The mode of action of cisplatin starts inside the cell with the hydrolysis of Pt-Cl bonds to form a Pt-aqua complex. The

  1. Lipase applications in oil hydrolysis with a case study on castor oil: a review.

    Science.gov (United States)

    Goswami, Debajyoti; Basu, Jayanta Kumar; De, Sirshendu

    2013-03-01

    Lipase (triacylglycerol acylhydrolase) is a unique enzyme which can catalyze various types of reactions such as hydrolysis, esterification, alcoholysis etc. In particular, hydrolysis of vegetable oil with lipase as a catalyst is widely studied. Free lipase, lipase immobilized on suitable support, lipase encapsulated in a reverse micelle and lipase immobilized on a suitable membrane to be used in membrane reactor are the most common ways of employing lipase in oil hydrolysis. Castor oil is a unique vegetable oil as it contains high amounts (90%) of a hydroxy monounsaturated fatty acid named ricinoleic acid. This industrially important acid can be obtained by hydrolysis of castor oil. Different conventional hydrolysis processes have certain disadvantages which can be avoided by a lipase-catalyzed process. The degree of hydrolysis varies widely for different lipases depending on the operating range of process variables such as temperature, pH and enzyme loading. Immobilization of lipase on a suitable support can enhance hydrolysis by suppressing thermal inactivation and estolide formation. The presence of metal ions also affects lipase-catalyzed hydrolysis of castor oil. Even a particular ion has different effects on the activity of different lipases. Hydrophobic organic solvents perform better than hydrophilic solvents during the reaction. Sonication considerably increases hydrolysis in case of lipolase. The effects of additives on the same lipase vary with their types. Nonionic surfactants enhance hydrolysis whereas cationic and anionic surfactants decrease it. A single variable optimization method is used to obtain optimum conditions. In order to eliminate its disadvantages, a statistical optimization method is used in recent studies. Statistical optimization shows that interactions between any two of the following pH, enzyme concentration and buffer concentration become significant in presence of a nonionic surfactant named Span 80.

  2. Acid and enzymatic hydrolysis to recover reducing sugars from cassava bagasse: an economic study

    Directory of Open Access Journals (Sweden)

    Woiciechowski Adenise Lorenci

    2002-01-01

    Full Text Available The objective of this work was to study the acid and enzymatic hydrolysis of cassava bagasse for the recovery of reducing sugars and to establish the operational costs. A statistical program "Statistica", based on the surface response was used to optimize the recovery of reducing sugars in both the processes. The process economics was determined considering the values of reducing sugars obtained at laboratory scale, and the operations costs of a cylindrical reactor of 1500 L, with flat walls at the top and bottom. The reactor was operated with 150 kg of cassava bagasse and 1350 kg of water. The yield of the acid hydrolysis was 62.4 g of reducing sugars from 100 g of cassava bagasse containing 66% starch. It represented 94.5% of reducing sugar recovery. The yield of the enzymatic hydrolysis was 77.1 g of reducing sugars from 120 g of cassava bagasse, which represented 97.3% of reducing sugars recovery. Concerning to the time, a batch of acid hydrolysis required 10 minutes, plus the time to heat and cool the reactor, and a batch of the enzymatic hydrolysis needed 25 hours and 20 minutes, plus the time to heat and to cool the reactor. Thus, the acid hydrolysis of 150 kg of cassava bagasse required US$ 34.27, and the enzymatic hydrolysis of the same amount of cassava bagasse required US$ 2470.99.

  3. The solvent effect on the enthalpy of hydrolysis of cyclic adenosine 3',5'-monophosphate : a quantum chemical study

    NARCIS (Netherlands)

    Scheffers - Sap, Miek; Buck, H.M.

    1978-01-01

    The solvent effect on the enthalpy of hydrolysis has been studied by the Extended-Hückel method for the hydrolysis reactions of cyclic adenosine 3',5'-monophosphate (cyclic 3',5'-AMP) and related cyclic phosphate diesters. The results show that the difference in enthalpy of hydrolysis between cyclic

  4. A comparative study of the hydrolysis of gamma irradiated lignocelluloses

    Directory of Open Access Journals (Sweden)

    E. Betiku

    2009-06-01

    Full Text Available The effect of high-dose irradiation as a pretreatment method on two common lignocellulosic materials; hardwood (Khaya senegalensis and softwood (Triplochiton scleroxylon were investigated by assessing the potential of cellulase enzyme derived from Aspergillus flavus Linn isolate NSPR 101 to hydrolyse the materials. The irradiation strongly affected the materials, causing the enzymatic hydrolysis to increase by more than 3 fold. Maximum digestibility occurred in softwood at 40kGy dosage of irradiation, while in hardwood it was at 90kGy dosage. The results also showed that, at the same dosage levels (p < 0.05, hardwood was hydrolysed significantly better compared to the softwood.

  5. Study on the Hydrolysis Kinetics of Xylan on Different Acid Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Na, Byeong-Il; Lee, Jae-Won [Chonnam National University, Gwangju (Korea, Republic of)

    2014-04-15

    In this study, we investigated kinetic model for the acid-catalyzed xylan hydrolysis at temperature 120-150 .deg. C. Also, we analyzed the kinetic parameters for xylose production and furfural decomposition. The hydrolysis of xylan and the degradation of xylose were promoted by high reaction temperature and acid concentration. The optimal hydrolysis condition for the highest reaction rate constants (k{sub 1}) was different depending on the acid catalysts. Among sulfuric, oxalic and maleic acid, the xylan reaction rate constants (k{sub 1}) to xylose had the highest value of 0.0241 min{sup -1} when 100 mM sulfuric acid was used at 120 .deg. C. However, sulfuric acid induced more xylose degradation compared to oxalic and maleic acid hydrolysis. The activation energy for xylan degradation was the highest when sulfuric acid was used.

  6. Kinetics of enzymatic high-solid hydrolysis of lignocellulosic biomass studied by calorimetry.

    Science.gov (United States)

    Olsen, Søren N; Lumby, Erik; McFarland, Kc; Borch, Kim; Westh, Peter

    2011-03-01

    Enzymatic hydrolysis of high-solid biomass (>10% w/w dry mass) has become increasingly important as a key step in the production of second-generation bioethanol. To this end, development of quantitative real-time assays is desirable both for empirical optimization and for detailed kinetic analysis. In the current work, we have investigated the application of isothermal calorimetry to study the kinetics of enzymatic hydrolysis of two substrates (pretreated corn stover and Avicel) at high-solid contents (up to 29% w/w). It was found that the calorimetric heat flow provided a true measure of the hydrolysis rate with a detection limit of about 500 pmol glucose s(-1). Hence, calorimetry is shown to be a highly sensitive real-time method, applicable for high solids, and independent on the complexity of the substrate. Dose-response experiments with a typical cellulase cocktail enabled a multidimensional analysis of the interrelationships of enzyme load and the rate, time, and extent of the reaction. The results suggest that the hydrolysis rate of pretreated corn stover is limited initially by available attack points on the substrate surface (conversion) but becomes proportional to enzyme dosage (excess of attack points) at later stages (>10% conversion). This kinetic profile is interpreted as an increase in polymer end concentration (substrate for CBH) as the hydrolysis progresses, probably due to EG activity in the enzyme cocktail. Finally, irreversible enzyme inactivation did not appear to be the source of reduced hydrolysis rate over time.

  7. Investigation of the complex reaction coordinate of acid catalyzed amide hydrolysis from molecular dynamics simulations

    International Nuclear Information System (INIS)

    Zahn, Dirk

    2004-01-01

    The rate-determining step of acid catalyzed peptide hydrolysis is the nucleophilic attack of a water molecule to the carbon atom of the amide group. Therein the addition of the hydroxyl group to the amide carbon atom involves the association of a water molecule transferring one of its protons to an adjacent water molecule. The protonation of the amide nitrogen atom follows as a separate reaction step. Since the nucleophilic attack involves the breaking and formation of several bonds, the underlying reaction coordinate is rather complex. We investigate this reaction step from path sampling Car-Parrinello molecular dynamics simulations. This approach does not require the predefinition of reaction coordinates and is thus particularly suited for investigating reaction mechanisms. From our simulations the most relevant components of the reaction coordinate are elaborated. Though the C···O distance of the oxygen atom of the water molecule performing the nucleophilic attack and the corresponding amide carbon atom is a descriptor of the reaction progress, a complete picture of the reaction coordinate must include all three molecules taking part in the reaction. Moreover, the proton transfer is found to depend on favorable solvent configurations. Thus, also the arrangement of non-reacting, i.e. solvent water molecules needs to be considered in the reaction coordinate

  8. Characteristic Studies of Micron Zinc Particle Hydrolysis in a Fixed Bed Reactor

    Directory of Open Access Journals (Sweden)

    Lv Ming

    2015-09-01

    Full Text Available Zinc fuel is considered as a kind of promising energy sources for marine propeller. As one of the key steps for zinc marine energy power system, zinc hydrolysis process had been studied experimentally in a fixed bed reactor. In this study, we focus on the characteristics of micron zinc particle hydrolysis. The experimental results suggested that the steam inner diffusion is the controlling step of accumulative zinc particles hydrolysis reaction at a relative lower temperature and a relative higher water partial pressure. In other conditions, the chemical reaction kinetics was the controlling step. And two kinds of chemical reaction kinetics appeared in experiments: the surface reaction and the gas-gas reaction. The latter one occurs usually for larger zinc particles and high reaction temperature. Temperature seems to be one of the most important parameters for the dividing of different reaction mechanisms. Several parameters of the hydrolysis process including heating rate, water partial pressure, the particle size and temperature were also studied in this paper. Results show that the initial reaction temperature of zinc hydrolysis in fixed bed is about 410°C. And the initial reaction temperature increases as the heating rate increases and as the water partial pressure decreases. The total hydrogen yield increases as the heating rate decreases, as the water partial pressure increases, as the zinc particle size decreases, and as the reaction temperature increases. A hydrogen yield of more than 81.5% was obtained in the fixed bed experiments.

  9. Cellulose whiskers from sisal fibers: a study about the variable of extraction by acid hydrolysis

    International Nuclear Information System (INIS)

    Teodoro, Kelcilene B.R.; Teixeira, Eliangela de Morais; Correa, Ana Carolina; Campos, Adriana de; Marconcini, Jose Manoel; Mattoso, Luiz Henrique Capparelli

    2011-01-01

    The incorporation of cellulosic nanostructures in polymeric matrices has been studied due to their properties of biodegradation, and expected higher mechanical performance than the traditional composites. In this work, cellulose nanofibers were obtained from sisal bleached with reagents without chlorine, where it was used an acid mixture, with acetic acid and nitric acid, and after the bleached fibers were submitted to acid hydrolysis. The influence of the temperature and time of hydrolysis on the morphology and dimensions, crystallinity and thermal stability were analyzed by scanning transmission electronic microscopy (TEM), x-ray diffraction (XRD) and thermogravimetric analysis (TGA), respectively. The hydrolysis condition of 60 deg C and 15 minutes showed to be the most effective condition to obtain whiskers from sisal fibers, resulting in nanostructures with higher crystallinity and thermal. (author)

  10. Lactam hydrolysis catalyzed by mononuclear metallo-beta-lactamases: A density functional study

    DEFF Research Database (Denmark)

    Hemmingsen, Lars Bo Stegeager; Olsen, L.; Antony, J.

    2003-01-01

    Two central steps in the hydrolysis of lactam antibiotics catalyzed by mononuclear metallo-beta-lactamases, formation of the tetrahedral intermediate and its breakdown by proton transfer, are studied for model systems using the density functional B3LYP method. Metallo-beta-lactamases have two metal...

  11. Mechanistic and kinetic study on the catalytic hydrolysis of COS in small clusters of sulfuric acid.

    Science.gov (United States)

    Li, Kai; Song, Xin; Zhu, Tingting; Wang, Chi; Sun, Xin; Ning, Ping; Tang, Lihong

    2018-01-01

    The catalytic hydrolysis of carbonyl sulfide (COS) and the effect of small clusters of H 2 O and H 2 SO 4 have been studied by theoretical calculations. The addition of H 2 SO 4 could increase the enthalpy change (ΔHhydrolysis reaction changed from an endothermic reaction to an exothermic reaction. Further, H 2 SO 4 decreases the energy barrier by 5.25 kcal/mol, and it enhances the catalytic hydrolysis through the hydrogen transfer effect. The (COS + H 2 SO 4 -H 2 O) reaction has the lowest energy barrier of 29.97 kcal/mol. Although an excess addition of H 2 O and H 2 SO 4 increases the energy barrier, decreases the catalytic hydrolysis, which is consistent with experimental observations. The order of the energy barriers for the three reactions from low to high are as follows: COS + H 2 SO 4 -H 2 O hydrolysis of COS both kinetically and thermodynamically. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Kinetic study of microwave-assisted alkaline hydrolysis of Jatropha curcas oil

    Science.gov (United States)

    Yusuf, Nur'aini Raman; Kamil, Ruzaimah Nik Mohamad; Yusup, Suzana

    2016-11-01

    The kinetics of hydrolysis of Jatropha curcas oil under microwave irradation in the presence of alkaline solution was studied. The temperature of 50°C, 65°C and 80°C were studied in the range of optimum condition of 1.75 M catalyst, solvent/oil ratio of (1: 68) and 15 minutes reaction time. The rate constants of oil hydrolysis are corresponding to triglyceride disappearance concentration. The rates of reaction for fatty acids production was determined by pseudo first order. The activation energy (Ea) achieved at 30.61 kJ/mol is lower using conventional method. This conclude that the rate of reaction via microwave heating is less temperature sensitive therefore reaction can be obtained at lower temperature.

  13. Study of the hydrolysis reaction of the copper-chloride hybrid thermochemical cycle using optical spectrometries

    International Nuclear Information System (INIS)

    Doizi, D.; Borgard, J.M.; Dauvois, V.; Roujou, J.L.; Zanella, Y.; Croize, L.; Cartes, Ph.; Hartmann, J.M.

    2010-01-01

    The copper-chloride hybrid thermochemical cycle is one of the best potential low temperature thermochemical cycles for the massive production of hydrogen. It could be used with nuclear reactors such as the sodium fast reactor or the supercritical water reactor. Nevertheless, this thermochemical cycle is composed of an electrochemical reaction and two thermal reactions. Its efficiency has to be compared with other hydrogen production processes like alkaline electrolysis for example. The purpose of this article is to study the viability of the copper chloride thermochemical cycle by studying the hydrolysis reaction of CuCl 2 which is not favoured thermodynamically. To better understand the occurrence of possible side reactions, together with a good control of the kinetics of the hydrolysis reaction, the use of optical absorption spectrometries, UV visible spectrometry to detect molecular chlorine which may be formed in side reactions, FTIR spectrometry to follow the concentrations of H 2 O and HCl is proposed. (authors)

  14. Effect of organic molecules on hydrolysis of peptide bond: A DFT study

    International Nuclear Information System (INIS)

    Makshakova, Olga; Ermakova, Elena

    2013-01-01

    Highlights: ► DFT study of the effects of small organic molecules on the hydrolysis reactions of peptide bonds. ► Organic molecules can activate nonenzymatic hydrolysis reaction. ► Influence of organic acids on activation energy barrier correlates with their electronegativity. - Abstract: The activation and inhibition effects of small organic molecules on peptide hydrolysis have been studied using a model compound dialanine and DFT approach. Solvent-assisted and non-assisted concerted mechanisms were analyzed. Several transition states for the systems: alanine dipeptide–water molecule in complexes with alcohol molecules, acetonitrile, dimethylsulfoxide, propionic, lactic and pyruvic acids and water molecules were localized. The formation of hydrogen bonds between dipeptide, reactive water molecule and molecules of solvents influences the activation energy barrier of the peptide bond hydrolytic reaction. Strong effect of organic acids on the activation energy barrier correlates with their electronegativity. Acetonitrile can act as an inhibitor of reaction. Mechanisms of regulation of the activation energy barrier are discussed in the terms of donor-acceptor interactions

  15. Study on the behavior of sulfur in hydrolysis process of titanyl sulfate solution

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Fanbo; Luo, Dongmei, E-mail: dmluo@scu.edu.cn; Zhang, Zhao; Liang, Bin; Yuan, Xizhi; Fu, Li

    2016-06-15

    The existing forms of sulfur in hydrolysis process of titanyl sulfate solution were studied. Also the effects of sulfur on crystal structure, crystallite size and crystal phase transition of the hydrated titanium dioxide(TiO{sub 2}·H{sub 2}O) and titanium dioxide (TiO{sub 2}) were conducted. The analysis and methods of thermogravimetric-differential scanning calorimet (TG-DSC), energy dispersive spectrometer (EDS), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), UV–Vis diffuse reflectance spectra and Raman spectroscopy were employed to characterize. The results indicated that the sulfur was present in the form of SO{sub 4}{sup 2−} ions in the hydrolysate of titanyl sulfate solution, and a portion of SO{sub 4}{sup 2−} ions were combined on the surface of hydrated titanium dioxide by chemical adsorption in the forms of inorganic chelating bidentate coordination and covalent sulfate coordination, the residual SO{sub 4}{sup 2−} ions were adsorbed on the surface of hydrated titanium dioxide by physical adsorption. The chemical adsorption of SO{sub 4}{sup 2−} ions were conducive to the formation and stabilization of anatase, which changed the crystal structure, and hindered the transformation of the anatase into rutile. The results of Raman spectroscopy showed that the sulfur was dissociated in the forms of SO{sub 4}{sup 2−} and HSO{sub 4}{sup −} ions during the hydrolysis of titanyl sulfate solution. The characteristic peak at 1004 cm{sup −1} corresponding to a new complex has been observed, which was composed of SO{sub 4}{sup 2−} and hydrated titanium complex ions through the bonding on the surface. In basis of the above experimental results, the hydrolysis process of titanyl sulfate solution was illustrated from the microstructure with 3D atlas. - Highlights: • The SO{sub 4}{sup 2−} ions exist in TiO{sub 2}·H{sub 2}O by chemical and physical adsorption. • The SO{sub 4}{sup 2−} ions are conducive to the formation and

  16. Active Site Dynamics in Substrate Hydrolysis Catalyzed by DapE Enzyme and Its Mutants from Hybrid QM/MM-Molecular Dynamics Simulation.

    Science.gov (United States)

    Dutta, Debodyuti; Mishra, Sabyashachi

    2017-07-27

    The mechanism of the catalytic hydrolysis of N-succinyl diaminopimelic acid (SDAP) by the microbial enzyme DapE in its wild-type (wt) form as well as three of its mutants (E134D, H67A, and H349A) is investigated employing a hybrid quantum mechanics/molecular mechanics (QM/MM) method coupled with molecular dynamics (MD) simulations, wherein the time evolution of the atoms of the QM and MM regions are obtained from the forces acting on the individual atoms. The free-energy profiles along the reaction coordinates of this multistep hydrolysis reaction process are explored using a combination of equilibrium and nonequilibrium (umbrella sampling) QM/MM-MD simulation techniques. In the enzyme-substrate complexes of wt-DapE and the E134D mutant, nucleophilic attack is found to be the rate-determining step involving a barrier of 15.3 and 21.5 kcal/mol, respectively, which satisfactorily explains the free energy of activation obtained from kinetic experiments in wt-DapE-SDAP (15.2 kcal/mol) and the 3 orders of magnitude decrease in the catalytic activity due to E134D mutation. The catalysis is found to be quenched in the H67A and H349A mutants of DapE due to conformational rearrangement in the active site induced by the absence of the active site His residues that prohibits activation of the catalytic water molecule.

  17. A relativistic density functional study of uranyl hydrolysis and complexation by carboxylic acids in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Rupashree Shyama

    2009-02-10

    In this work, the complexation of uranium in its most stable oxidation state VI in aqueous solution was studied computationally, within the framework of density functional (DF) theory. The thesis is divided into the following parts: Chapter 2 briefly summarizes the relevant general aspects of actinide chemistry and then focuses on actinide environmental chemistry. Experimental results on hydrolysis, actinide complexation by carboxylic acids, and humic substances are presented to establish a background for the subsequent discussion. Chapter 3 describes the computational method used in this work and the relevant features of the parallel quantum chemistry code PARAGAUSS employed. First, the most relevant basics of the applied density functional approach are presented focusing on relativistic effects. Then, the treatment of solvent effects, essential for an adequate modeling of actinide species in aqueous solution, will be introduced. At the end of this chapter, computational parameters and procedures will be summarized. Chapter 4 presents the computational results including a comparison to available experimental data. In the beginning, the mononuclear hydrolysis product of UO{sub 2}{sup 2+}, [UO{sub 2}OH]{sup +}, will be discussed. The second part deals with actinide complexation by carboxylate ligands. First of all the coordination number for uranylacetate will be discussed with respect to implications for the complexation of actinides by humic substances followed by the uranyl complexation of aromatic carboxylic acids in comparison to earlier results for aliphatic ones. In the end, the ternary uranyl-hydroxo-acetate are discussed, as models of uranyl humate complexation at ambient condition.

  18. A Factorial Analysis Study on Enzymatic Hydrolysis of Fiber Pressed Oil Palm Frond for Bioethanol Production

    Science.gov (United States)

    Hashim, F. S.; Yussof, H. W.; Zahari, M. A. K. M.; Illias, R. M.; Rahman, R. A.

    2016-03-01

    Different technologies have been developed to for the conversion of lignocellulosic biomass to suitable fermentation substrates for bioethanol production. The enzymatic conversion of cellulose seems to be the most promising technology as it is highly specific and does not produce substantial amounts of unwanted byproducts. The effects of agitation speed, enzyme loading, temperature, pH and reaction time on the conversion of glucose from fiber pressed oil palm frond (FPOPF) for bioethanol production were screened by statistical analysis using response surface methodology (RSM). A half fraction two-level factorial analysis with five factors was selected for the experimental design to determine the best enzymatic conditions that produce maximum amount of glucose. FPOPF was pre-treated with alkaline prior to enzymatic hydrolysis. The enzymatic hydrolysis was performed using a commercial enzyme Cellic CTec2. From this study, the highest yield of glucose concentration was 9.736 g/L at 72 hours reaction time at 35 °C, pH 5.6, and 1.5% (w/v) of enzyme loading. The model obtained was significant with p-value model had a maximum point which is likely to be the optimum point and possible for the optimization process.

  19. A relativistic density functional study of uranyl hydrolysis and complexation by carboxylic acids in aqueous solution

    International Nuclear Information System (INIS)

    Ray, Rupashree Shyama

    2009-01-01

    In this work, the complexation of uranium in its most stable oxidation state VI in aqueous solution was studied computationally, within the framework of density functional (DF) theory. The thesis is divided into the following parts: Chapter 2 briefly summarizes the relevant general aspects of actinide chemistry and then focuses on actinide environmental chemistry. Experimental results on hydrolysis, actinide complexation by carboxylic acids, and humic substances are presented to establish a background for the subsequent discussion. Chapter 3 describes the computational method used in this work and the relevant features of the parallel quantum chemistry code PARAGAUSS employed. First, the most relevant basics of the applied density functional approach are presented focusing on relativistic effects. Then, the treatment of solvent effects, essential for an adequate modeling of actinide species in aqueous solution, will be introduced. At the end of this chapter, computational parameters and procedures will be summarized. Chapter 4 presents the computational results including a comparison to available experimental data. In the beginning, the mononuclear hydrolysis product of UO_2"2"+, [UO_2OH]"+, will be discussed. The second part deals with actinide complexation by carboxylate ligands. First of all the coordination number for uranylacetate will be discussed with respect to implications for the complexation of actinides by humic substances followed by the uranyl complexation of aromatic carboxylic acids in comparison to earlier results for aliphatic ones. In the end, the ternary uranyl-hydroxo-acetate are discussed, as models of uranyl humate complexation at ambient condition.

  20. Thermal hydrolysis integration in the anaerobic digestion process of different solid wastes: energy and economic feasibility study.

    Science.gov (United States)

    Cano, R; Nielfa, A; Fdz-Polanco, M

    2014-09-01

    An economic assessment of thermal hydrolysis as a pretreatment to anaerobic digestion has been achieved to evaluate its implementation in full-scale plants. Six different solid wastes have been studied, among them municipal solid waste (MSW). Thermal hydrolysis has been tested with batch lab-scale tests, from which an energy and economic assessment of three scenarios is performed: with and without energy integration (recovering heat to produce steam in a cogeneration plant), finally including the digestate management costs. Thermal hydrolysis has lead to an increase of the methane productions (up to 50%) and kinetics parameters (even double). The study has determined that a proper energy integration design could lead to important economic savings (5 €/t) and thermal hydrolysis can enhance up to 40% the incomes of the digestion plant, even doubling them when digestate management costs are considered. In a full-scale MSW treatment plant (30,000 t/year), thermal hydrolysis would provide almost 0.5 M€/year net benefits. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Experimental study of the tritium distribution in the effluents resulting from the sodium hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Chassery, A. [CEA, DEN, Centre de Cadarache, Saint-Paul-lez-Durance (France); Universite de Toulouse, Laboratoire de Genie Chimique, Toulouse (France); CNRS, Laboratoire de Genie Chimique, Toulouse (France); Lorcet, H.; Godlewski, J; Liger, K.; Latge, C. [CEA, DEN, Centre de Cadarache, Saint-Paul-lez-Durance (France); Joulia, X. [Universite de Toulouse, Laboratoire de Genie Chimique, Toulouse (France); CNRS, Laboratoire de Genie Chimique, Toulouse (France)

    2015-03-15

    Within the framework of the dismantling of fast breeder reactors in France several processes are under investigation regarding sodium disposal. One of them, called ELA (radioactive sodium waste treatment process), is based on the implementation of the sodium-water reaction, in a controlled and progressive way, to remove residual sodium. This sodium contains impurities such as sodium hydride, sodium oxide and tritiated sodium hydride. The hydrolysis of these various chemical species leads to the production of a liquid effluent, mainly composed of an aqueous solution of sodium hydroxide, and a gaseous effluent, mainly composed of nitrogen (inert gas), hydrogen and steam. The tritium is distributed between these effluents, and, within the gaseous effluent, according to its forms HT and HTO (tritiated water). HTO being 10,000 times more radio-toxic than HT, a precise knowledge of the mechanisms governing the phase distribution of tritium is necessary. This paper presents the first experimental results from a parametric study on the tritium distribution between the various effluents generated during hydrolysis operations. A series of experiments have been performed in order to study the influence of water flow rate, argon flow rate, initial mass and specific activity of the hydrolyzed sodium sample. An important influence of the total tritium concentration in the hydrolyzed sample has been highlighted. As for the phenomena suspected to be responsible for the phase change of tritiated water, in the studied range of parameters, vaporization induced by the heat of reactions seems to be dominant over the evaporation induced by the inert gas flow rate.

  2. Evolution of a Rippled Membrane during Phospholipase A2 Hydrolysis Studied by Time-Resolved AFM

    DEFF Research Database (Denmark)

    Leidy, Chad; Mouritsen, Ole G.; Jørgensen, Kent

    2004-01-01

    The sensitivity of phospholipase A2 (PLA2) for lipid membrane curvature is explored by monitoring, through time-resolved atomic force microscopy, the hydrolysis of supported double bilayers in the ripple phase. The ripple phase presents a corrugated morphology. PLA2 is shown to have higher activity...... toward the ripple phase compared to the gel phase in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) membranes, indicating its preference for this highly curved membrane morphology. Hydrolysis of the stable and metastable ripple structures is monitored for equimolar DMPC/1,2-distearoyl- sn-glycero-3....... This is reflected in an increase in ripple spacing, followed by a sudden flattening of the lipid membrane during hydrolysis. Hydrolysis of the ripple phase results in anisotropic holes running parallel to the ripples, suggesting that the ripple phase has strip regions of higher sensitivity to enzymatic attack. Bulk...

  3. Experimental and kinetic modelling studies on the acid-catalysed hydrolysis of the water hyacinth plant to levulinic acid

    NARCIS (Netherlands)

    Girisuta, B.; Danon, B.; Manurung, R.; Janssen, L. P. B. M.; Heeres, H. J.

    2008-01-01

    A comprehensive experimental and modelling study on the acid-catalysed hydrolysis of the water hyacinth plant (Eichhornia crassipes) to optimise the yield of levulinic acid (LA) is reported (T = 150-175 degrees C, C-H2SO4 - 0.1-1 M, water hyacinth intake = 1-5 wt%). At high acid concentrations (>

  4. Computational study of the hydrolysis of carbonyl sulphide: Thermodynamics and kinetic constants estimation using ab initio calculations

    International Nuclear Information System (INIS)

    Vidal-Vidal, Á.; Pérez-Rodríguez, M.; Piñeiro, M.M.

    2017-01-01

    Highlights: • OCS hydrolysis equilibrium constants were calculated using QM composite methods. • CBS-QB3 was found to be the most adequate method for OCS thermodynamic calculations. • Calculated hydrolysis yields decrease when temperature increases. • The isotopic effect is less significant than temperature or initial concentration dependences. - Abstract: Carbonyl sulphide is the predominant sulphur compound in the atmosphere, contributing to the formation of aerosol particles affecting global climate. Human activity has significantly increased its total amount since the beginning of the Industrial Revolution due to its presence in petroleum and coal, reason why it is necessary to understand and control its emissions. On the other hand, carbonyl sulphide is an undesired substance for catalysis in important industrial processes. Hydrolysis is the most promising among the different strategies to reduce its presence, giving as products carbon dioxide and hydrogen sulphide. In the present work, the mechanism of reaction of carbonyl sulphide hydrolysis process in gas phase was studied from 400 K to 1500 K, equilibrium constants were obtained and reaction yields were estimated, by means of composite quantum-computational methods. Good agreement with literature experimental results confirms the suitability of the chosen methods, specially CBS-QB3, in supporting the reaction mechanism, giving accurate equilibrium constant values, and obtaining realistic yields. The effect of isotopic substitution in OCS was also studied, from 300 K to 1500 K, being much less significant than temperature dependence.

  5. The potentiometric and laser RAMAN study of the hydrolysis of uranyl chloride under physiological conditions and the effect of systematic and random errors on the hydrolysis constants

    International Nuclear Information System (INIS)

    Deschenes, L.L.; Kramer, G.H.; Monserrat, K.J.; Robinson, P.A.

    1986-12-01

    The hydrolysis of uranyl ions in 0.15 mol/L (Na)C1 solution at 37 degrees Celsius has been studied by potentiometric titration. The results were consistent with the formation of (UO 2 ) 2 (OH) 2 , (UO 2 ) 3 (OH) 4 , (UO 2 ) 3 (OH) 5 and (UO 2 ) 4 (OH) 7 . The stability constants, which were evaluated using a version of MINIQUAD, were found to be: log β 22 = -5.693 ± 0.007, log β 34 = -11.499 ± 0.024, log β 35 = -16.001 ± 0.050, log β 47 = -21.027 ± 0.051. Laser Raman spectroscopy has been used to identify the products including (UO 2 ) 4 (OH) 7 species. The difficulties in identifying the chemical species in solution and the effect of small errors on this selection has also been investigated by computer simulation. The results clearly indicate that small errors can lead to the selection of species that may not exist

  6. Experimental study of lactose hydrolysis and separation in cstr-uf membrane reactor

    Directory of Open Access Journals (Sweden)

    M. Namvar-Mahboub

    2012-09-01

    Full Text Available In this study, the effect of processing conditions on the performance of continuous stirred tank -ultrafiltration (CSTR-UF in dead - end mode was investigated. An UF membrane with a molecular weight cutoff of 3 kDa made of regenerated cellulose material was used to separate enzyme from products. The effect of operating pressure ranging between 2 and 5 bar and time on the performance of the CSTR-UF system was studied. The experiments were performed with a 0.139 molar aqueous solution of lactose as feed. According to the experimental data, the lactose concentration in the permeate decreased with time due to concentration polarization and hydrolysis. It was found that the rejection factor of lactose increases from 33 to 77% with time from 5 to 85 min. Permeation flux of the membrane was evaluated in terms of pure water flux (PWF and lactose aqueous solution. Results showed that a high operating pressure led to a high permeation flux for both mentioned cases. Also, adding lactose and enzyme to pure water caused a reduction of the permeation flux due to concentration polarization.

  7. Kinetic study of the thermal hydrolysis of Agave salmiana for mezcal production.

    Science.gov (United States)

    Garcia-Soto, M J; Jimenez-Islas, H; Navarrete-Bolanos, J L; Rico-Martinez, R; Miranda-Lopez, R; Botello-Alvarez, J E

    2011-07-13

    The kinetics of the thermal hydrolysis of the fructans of Agave salmiana were determined during the cooking step of mezcal production in a pilot autoclave. Thermal hydrolysis was achieved at different temperatures and cooking times, ranging from 96 to 116 °C and from 20 to 80 h. A simple kinetic model of the depolymerization of fructans to monomers and other reducing sugars and of the degradation of reducing sugars to furans [principally 5-(hydroxymethyl)furfural, HMF] was developed. From this model, the rate constants of the reactions were calculated, as well as the pre-exponential factors and activation energies of the Arrhenius equation. The model was found to fit the experimental data well. The tradeoff between a maximum fructan hydrolysis and a critical furan concentration in allowing for the best ethanol yield during fermentation was investigated. The results indicated that the thermal hydrolysis of agave was optimal, from the point of view of ethanol yield in the ensuing fermentation, in the temperature range of 106-116 °C and the cooking range time of 6-14 h. The optimal conditions corresponded to a fructan hydrolysis of 80%, producing syrups with furan and reducing sugar concentrations of 1 ± 0.1 and 110 ± 10 g/L, respectively.

  8. Optimization studies on acid hydrolysis of oil palm empty fruit bunch fiber for production of xylose.

    Science.gov (United States)

    Rahman, S H A; Choudhury, J P; Ahmad, A L; Kamaruddin, A H

    2007-02-01

    Oil palm empty fruit bunch fiber is a lignocellulosic waste from palm oil mills. It is a potential source of xylose which can be used as a raw material for production of xylitol, a high value product. The increasing interest on use of lignocellulosic waste for bioconversion to fuels and chemicals is justifiable as these materials are low cost, renewable and widespread sources of sugars. The objective of the present study was to determine the effect of H(2)SO(4) concentration, reaction temperature and reaction time for production of xylose. Batch reactions were carried out under various reaction temperature, reaction time and acid concentrations and Response Surface Methodology (RSM) was followed to optimize the hydrolysis process in order to obtain high xylose yield. The optimum reaction temperature, reaction time and acid concentration found were 119 degrees C, 60 min and 2%, respectively. Under these conditions xylose yield and selectivity were found to be 91.27% and 17.97 g/g, respectively.

  9. Discovery learning with hierarchy concept to improve analysis ability and study achievement hydrolysis subject

    Directory of Open Access Journals (Sweden)

    Leny Yuliatun

    2017-10-01

    Full Text Available The aim of this research is to applied Discovery Learning (DL by the support of hierarchy concept to improve analysis ability and chemistry study achievement in the Hydrolysis subject at eleventh-grade students of Science 1 of SMA N Karangpandan at the academic year of 2016/2017. This research is using Classroom Action Research which using two cycles. In each cycle has four steps of action, they are planning, implementing, observing, and reflecting. The research subject is the eleventh-grade students of science one which consists of 40 students. The data source is using teacher and students and the data were taken by interviewing, observing, documenting, testing, and using questionnaire. Data analysis technique is using descriptive qualitative analysis. Based on the research shows that the achievement of analysis cycle I am from 52,5% increase into 65% in the cycle II. Meanwhile, the rise in students’ achievement in cognitive aspect increase from 57,5% in cycle I to 75% in cycle II. Achievement in an affective aspect in cycle I am 90% become 92,5% in cycle II. Therefore, there is the increase meant of students number in this aspect although in cycle I all of the indicator has been reached.

  10. Catalytic hydrolysis of COS over CeO_2 (110) surface: A density functional theory study

    International Nuclear Information System (INIS)

    Song, Xin; Ning, Ping; Wang, Chi; Li, Kai; Tang, Lihong; Sun, Xin

    2017-01-01

    Graphical abstract: CeO_2 decreases the maximum energy barrier by 76.15 kcal/mol. H_2O plays a role as a bridge in the process of joint adsorption. Catalytic effect of CeO_2 in the hydrolysis of COS is mainly reflected on the C−O channel. - Highlights: • H_2O is easier adsorbed on the CeO_2 (110) surface than COS. • When COS and H_2O jointly adsorb on the CeO_2 (110) surface, the H_2O molecule plays a role as a bridge. • Ce−O−H bond can enhance the adsorption effect. • Catalytic effect of CeO_2 in the hydrolysis of COS is mainly reflected on the C−O channel. - Abstract: Density functional theory (DFT) calculations were performed to investigate the reaction pathways for catalytic hydrolysis of COS over CeO_2 (110) surface using Dmol"3 model. The thermodynamic stability analysis for the suggested routes of COS hydrolysis to CO_2 and H_2S was evaluated. The absolute values of adsorption energy of H_2O-CeO_2 are higher than that of COS-CeO_2. Meanwhile, the adsorption energy and geometries show that H_2O is easier adsorbed on the surface of CeO_2 (110) than COS. H_2O plays a role as a bridge in the process of joint adsorption. H_2O forms more Ce−O−H groups on the CeO_2 (110) surface. CeO_2 decreases the maximum energy barrier by 76.15 kcal/mol. The migration of H from H_2O to COS is the key for the hydrolysis reaction. C−O channel is easier to occur than C−S channel. Experimental result shows that adding of CeO_2 can increase COS removal rate and prolong the 100% COS removal rate from 180 min to 210 min. The difference between Fe_2O_3 and CeO_2 for the hydrolysis of COS is characterized in the atomic charge transfer and the formation of H−O bond and H−S bond. The transfer effect of H in H_2O to S in COS over CeO_2 decreases the energy barriers of hydrolysis reaction, and enhances the reaction activity of COS hydrolysis.

  11. Investigation of an "alternate water supply system" in enzymatic hydrolysis in the processive endocellulase Cel7A from Rasamsonia emersonii by molecular dynamics simulation.

    Science.gov (United States)

    Sun, Xun; Qian, Meng-Dan; Guan, Shan-Shan; Shan, Ya-Ming; Dong, Ying; Zhang, Hao; Wang, Song; Han, Wei-Wei

    2017-02-01

    Cel7A from Rasamsonia emersonii is one of the processive endocellulases classified under family 7 glycoside hydrolase. Molecular dynamics simulations were carried out to obtain the optimized sliding and hydrolyzing conformations, in which the reducing ends of sugar chains are located on different sites. Hydrogen bonds are investigated to clarify the interactions between protein and substrate in either conformation. Nine hydrogen bonding interactions are identified in the sliding conformation, and six similar interactions are also found correspondingly in the hydrolyzing conformation. In addition, four strong hydrophobic interactions are also determined. The domain cross-correlation map analysis shows movement correlation of protein including autocorrelation between residues. The root mean square fluctuations analysis represents the various flexibilities of different fragment in the two conformations. Comparing the two conformations reveals the water-supply mechanism of selective hydrolysis of cellulose in Cel7A. The mechanism can be described as follow. When the reducing end of substrate slides from the unhydrolyzing site (sliding conformation) to the hydrolyzing site (hydrolyzing conformation), His225 is pushed down and rotated, the rotation leads to the movement of Glu209 with the interstrand hydrogen bonding in β-sheet. It further makes Asp211 close to the hydrolysis center and provides a water molecule bounding on its carboxyl in the previous unhydrolyzing site. After the hydrolysis takes place and the product is excluded from the enzyme, the Asp211 comes back to its initial position. In summary, Asp211 acts as an elevator to transport outer water molecules into the hydrolysis site for every other glycosidic bond. © 2016 Wiley Periodicals, Inc.

  12. ESI(+-MS and GC-MS Study of the Hydrolysis of N-Azobenzyl Derivatives of Chitosan

    Directory of Open Access Journals (Sweden)

    Fernanda S. Pereira

    2014-10-01

    Full Text Available New N-p-chloro-, N-p-bromo-, and N-p-nitrophenylazobenzylchitosan derivatives, as well as the corresponding azophenyl and azophenyl-p-sulfonic acids, were synthesized by coupling N-benzylvchitosan with aryl diazonium salts. The synthesized molecules were analyzed by UV-Vis, FT-IR, 1H-NMR and 15N-NMR spectroscopy. The capacity of copper chelation by these materials was studied by AAS. Chitosan and the derivatives were subjected to hydrolysis and the products were analyzed by ESI(+-MS and GC-MS, confirming the formation of N-benzyl chitosan. Furthermore, the MS results indicate that a nucleophilic aromatic substitution (SnAr reaction occurs under hydrolysis conditions, yielding chloroaniline from N-p-bromo-, and N-p-nitrophenylazo-benzylchitosan as well as bromoaniline from N-p-chloro-, and N-p-nitrophenylazobenzyl-chitosan.

  13. Deciphering Intrinsic Inter-subunit Couplings that Lead to Sequential Hydrolysis of F 1 -ATPase Ring

    Science.gov (United States)

    Dai, Liqiang; Flechsig, Holger; Yu, Jin

    2017-10-01

    The rotary sequential hydrolysis of metabolic machine F1-ATPase is a prominent feature to reveal high coordination among multiple chemical sites on the stator F1 ring, which also contributes to tight coupling between the chemical reaction and central {\\gamma}-shaft rotation. High-speed AFM experiments discovered that the sequential hydrolysis was maintained on the F1 ring even in the absence of the {\\gamma} rotor. To explore how the intrinsic sequential performance arises, we computationally investigated essential inter-subunit couplings on the hexameric ring of mitochondrial and bacterial F1. We first reproduced the sequential hydrolysis schemes as experimentally detected, by simulating tri-site ATP hydrolysis cycles on the F1 ring upon kinetically imposing inter-subunit couplings to substantially promote the hydrolysis products release. We found that it is key for certain ATP binding and hydrolysis events to facilitate the neighbor-site ADP and Pi release to support the sequential hydrolysis. The kinetically feasible couplings were then scrutinized through atomistic molecular dynamics simulations as well as coarse-grained simulations, in which we enforced targeted conformational changes for the ATP binding or hydrolysis. Notably, we detected the asymmetrical neighbor-site opening that would facilitate the ADP release upon the enforced ATP binding, and computationally captured the complete Pi release through charge hopping upon the enforced neighbor-site ATP hydrolysis. The ATP-hydrolysis triggered Pi release revealed in current TMD simulation confirms a recent prediction made from statistical analyses of single molecule experimental data in regard to the role ATP hydrolysis plays. Our studies, therefore, elucidate both the concerted chemical kinetics and underlying structural dynamics of the inter-subunit couplings that lead to the rotary sequential hydrolysis of the F1 ring.

  14. Kinetics of Enzymatic High-Solid Hydrolysis of Lignocellulosic Biomass Studied by Calorimetry

    DEFF Research Database (Denmark)

    Olsen, Søren Nymand; Rasmussen, Erik Lumby; McFarland, K.C.

    2011-01-01

    analysis of the interrelationships of enzyme load and the rate, time, and extent of the reaction. The results suggest that the hydrolysis rate of pretreated corn stover is limited initially by available attack points on the substrate surface (conversion) but becomes proportional to enzyme dosage......Enzymatic hydrolysis of high-solid biomass (>10% w/w dry mass) has become increasingly important as a key step in the production of second-generation bioethanol. To this end, development of quantitative real-time assays is desirable both for empirical optimization and for detailed kinetic analysis...... rate with a detection limit of about 500 pmol glucose s−1. Hence, calorimetry is shown to be a highly sensitive real-time method, applicable for high solids, and independent on the complexity of the substrate. Dose–response experiments with a typical cellulase cocktail enabled a multidimensional...

  15. Kinetic study of the hydrolysis of 1-(4-nitrophenyl)-3-methyltriazene in aqueous solution and in the presence of surfactants.

    Science.gov (United States)

    Ebert, C; Lassiani, L; Linda, P; Lovrecich, M; Nisi, C; Rubessa, F

    1984-12-01

    The hydrolysis of 1-(4-nitrophenyl)-3-methyltriazene in aqueous solution has been studied over a pH range of 3-14. The effect of the anionic and cationic surfactants (sodium lauryl sulfate and hexadecyltrimethylammonium bromide) on the rate of hydrolysis was investigated. The quaternary ammonium bromide causes a rate decrease at all pH values studied, while sodium lauryl sulfate enhances the acid-catalyzed hydrolysis and decreases the observed rate constants in the pH-independent region. The results are discussed in terms of the current theory of micellar effects.

  16. Kinetic study of enzymatic hydrolysis of acid-pretreated coconut coir

    Science.gov (United States)

    Fatmawati, Akbarningrum; Agustriyanto, Rudy

    2015-12-01

    Biomass waste utilization for biofuel production such as bioethanol, has become more prominent currently. Coconut coir is one of lignocellulosic food wastes, which is abundant in Indonesia. Bioethanol production from such materials consists of more than one step. Pretreatment and enzymatic hydrolysis is crucial steps to produce sugar which can then be fermented into bioethanol. In this research, ground coconut coir was pretreated using dilute sulfuric acid at 121°C. This pretreatment had increased the cellulose content and decreased the lignin content of coconut coir. The pretreated coconut coir was hydrolyzed using a mix of two commercial cellulase enzymes at pH of 4.8 and temperature of 50°C. The enzymatic hydrolysis was conducted at several initial coconut coir slurry concentrations (0.1-2 g/100 mL) and reaction times (2-72 hours). The reducing sugar concentration profiles had been produced and can be used to obtain reaction rates. The highest reducing sugar concentration obtained was 1,152.567 mg/L, which was produced at initial slurry concentration of 2 g/100 mL and 72 hours reaction time. In this paper, the reducing sugar concentrations were empirically modeled as a function of reaction time using power equations. Michaelis-Menten kinetic model for enzymatic hydrolysis reaction is adopted. The kinetic parameters of that model for sulfuric acid-pretreated coconut coir enzymatic hydrolysis had been obtained which are Vm of 3.587×104 mg/L.h, and KM of 130.6 mg/L.

  17. Comparative studies of cutins from lime (Citrus aurantifolia) and grapefruit (Citrus paradisi) after TFA hydrolysis.

    Science.gov (United States)

    Hernández Velasco, Brenda Liliana; Arrieta-Baez, Daniel; Cortez Sotelo, Pedro Iván; Méndez-Méndez, Juan Vicente; Berdeja Martínez, Blanca Margarita; Gómez-Patiño, Mayra Beatriz

    2017-12-01

    Grapefruit and lime cutins were analyzed and compared in order to obtain information about their cutin architecture. This was performed using a sequential hydrolysis, first with trifluoroacetic acid to remove most of the polysaccharides present in the cutins, followed by an alkaline hydrolysis in order to obtain the main aliphatic compounds. Analysis by CPMAS 13 C NMR and ATR FT-IR of the cutins after 2.0 M TFA revealed that grapefruit cutin has independent aliphatic and polysaccharide domains while in the lime cutin these components could be homogeneously distributed. These observations were in agreement with an AFM analysis of the cutins obtained in the hydrolysis reactions. The main aliphatic compounds were detected and characterized as 16-hydroxy-10-oxo-hexadecanoic acid and 10,16-dihydroxyhexadecanoic acid. These were present in grapefruit cutin at 35.80% and 21.86% and in lime cutin at 20.44% and 40.36% respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Enzymatic hydrolysis of Amaranth flour - differential scanning calorimetry and scanning electron microscopy studies

    Energy Technology Data Exchange (ETDEWEB)

    Barba de la Rosa, A.P.; Paredes-Lopez, O.; Carabez-Trejo, A.; Ordorica-Falomir, C. (Instituto Politecnico Nacional, Irapuato (Mexico). Centro de Investigacion y de Estudios Avanzados)

    1989-11-01

    High-protein amaranth flour (HPAF) and carbohydrate rich fraction (CRF) were produced from raw flour in a single-step process using a heat-stable alpha-amylase preparation. Protein content of flour increased from 15 to about 30 or 39% at liquefaction temperatures of 70 or 90{sup 0}C, respectively and 30 min hydrolysis time. CRF exhibited 14-22 DE. Enzymatic action at 70{sup 0}C increased endotherm temperature and gelatinization enthalpy of HPAF, in relation to gelatinized flour, as assessed by differential scanning calorimetry (DSC). Hydrolysis at 90{sup 0}C did not affect significantly (P > 0.05) DSC peak temperature. It is suggested that these changes in DSC performance might result from differences in amount and type of low-molecular weight carbohydrates and residual starch. Scanning electron microscopy (SEM) demonstrated that hydrolysis temperature changed substantially the structural appearance of flour particles. HPAF and CRF might find applications as dry milk extender and sweetener, respectively. (orig.).

  19. Continuous thermal hydrolysis and anaerobic digestion of sludge. Energy integration study.

    Science.gov (United States)

    Pérez-Elvira, S I; Fdz-Polanco, F

    2012-01-01

    Experimental data obtained from the operation in a pilot plant are used to perform mass and energy balances to a global process combining units of thermal hydrolysis (TH) of secondary sludge, anaerobic digestion (AD) of hydrolysed secondary sludge together with fresh primary sludge, and cogeneration from biogas by using a gas engine in which the biogas produces electricity and heat from the exhaust gases. Three scenarios were compared, corresponding to the three digesters operated: C (conventional AD, 17 days residence time), B (combined TH + AD, same time), and A (TH + AD at half residence time). The biogas production of digesters B and A was 33 and 24% better, respectively when compared with C. In the case of the combined TH + AD process (scenarios A and B), the key factors in the energy balance were the recovery of heat from hot streams, and the concentration of sludge. The results of the balances showed that for 8% DS concentration of the secondary sludge tested in the pilot plant, the process can be energetically self-sufficient, but a fraction of the biogas must by-pass the gas engine to be directly burned. From an economic point of view, scenario B is more profitable in terms of green energy and higher waste removal, while scenario A reduces the digester volume required by a half. Considering a population of 100,000 inhabitants, the economic benefit is 87,600 €/yr for scenario A and 132,373 €/yr for B. This value can be increased to 223,867 €/yr by increasing the sludge concentration of the feeding to the TH unit to a minimum value that allows use of all the biogas to produce green energy. This concentration is 13% DS, which is still possible from a practical point of view. Additional benefits gained with the combined TH + AD process are the enhancement of the digesters rheology and the possibility of getting Class A biosolids. The integration study presented here set the basis for the scale-up to a demonstration plant.

  20. OH-initiated transformation and hydrolysis of aspirin in AOPs system: DFT and experimental studies.

    Science.gov (United States)

    He, Lin; Sun, Xiaomin; Zhu, Fanping; Ren, Shaojie; Wang, Shuguang

    2017-08-15

    Advanced oxidation processes (AOPs) are widely used in wastewater treatment of pharmaceutical and personal care products (PPCPs). In this work, the OH-initiated transformation as well as the hydrolysis of a typical PPCPs, aspirin, was investigated using density functional theory (DFT) calculations and laboratory experiments. For DFT calculations, the frontier electron densities and bond dissociation energies were analyzed. Profiles of the potential energy surface were constructed, and all the possible pathways were discussed. Additionally, rate constants for each pathway were calculated with transition state theory (TST) method. UV/H 2 O 2 experiments of aspirin were performed and degradation intermediates were identified by UPLC-MS-MS analysis. Different findings from previous experimental works were reported that the H-abstraction pathways at methyl position were dominated and OH-addition pathways on benzene ring were also favored. Meantime, hydroxyl ASA was confirmed as the main stable intermediate. Moreover, it was the first time to use DFT method to investigate the hydrolysis mechanisms of organic ester compound. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Acid hydrolysis of sisal cellulose: studies aiming at nano fibers and bio ethanol preparation

    International Nuclear Information System (INIS)

    Paula, Mauricio P. de; Lacerda, Talita M.; Zambon, Marcia D.; Frollini, Elisabete

    2009-01-01

    The hydrolysis of cellulose can result in nanofibers and also is an important stage in the bioethanol production process. In order to evaluate the influence of acid (sulfuric) concentration, temperature, and native cellulose (sisal) pretreatment on cellulose hydrolysis, the acid concentration was varied between 5% and 30% (v/v) in the temperature range from 60 to 100 deg C using native and alkali-treated (mercerized) sisal cellulose. The following techniques were used to evaluate the residual (non-hydrolysed) cellulose characteristics: viscometry, average degree of polymerization (DP), X-ray diffraction, crystallinity index, and Scanning Electron Microscopy. The sugar cane liquor was analyzed in terms of sugar composition, using High Performance Liquid Chromatography (HPLC). The results showed that increasing the concentration of sulfuric acid and temperature afforded residual cellulose with lower molecular weight and, up to specific acid concentrations, higher crystallinity indexes, when compared to the original cellulose values, and increased the glucose (the bioethanol precursor ) production of the liquor, which was favored for mercerized cellulose. (author)

  2. Hydrolysis of aspartic acid phosphoramidate nucleotides: a comparative quantum chemical study.

    Science.gov (United States)

    Michielssens, Servaas; Tien Trung, Nguyen; Froeyen, Matheus; Herdewijn, Piet; Tho Nguyen, Minh; Ceulemans, Arnout

    2009-09-07

    L-Aspartic acid has recently been found to be a good leaving group during HIV reverse transcriptase catalyzed incorporation of deoxyadenosine monophosphate (dAMP) in DNA. This showed that L-Asp is a good mimic for the pyrophosphate moiety of deoxyadenosine triphosphate. The present work explores the thermochemistry and mechanism for hydrolysis of several models for L-aspartic-dAMP using B3LYP/DGDZVP, MP2/6-311++G** and G3MP2 level of theory. The effect of the new compound is gradually investigated: starting from a simple methyl amine leaving group up to the aspartic acid leaving group. The enzymatic environment was mimicked by involving two Mg(2+) ions and some important active site residues in the reaction. All reactions are compared to the corresponding O-coupled leaving group, which is methanol for methyl amine and malic acid for aspartic acid. With methyl amine as a leaving group a tautomeric associative or tautomeric dissociative mechanism is preferred and the barrier is lower than the comparable mechanism with methanol as a leaving group. The calculations on the aspartic acid in the enzymatic environment show that qualitatively the mechanism is the same as for triphosphate but the barrier for hydrolysis by the associative mechanism is higher for L-aspartic-dAMP than for L-malic-dAMP and pyrophosphate.

  3. Systematic optimization of fed-batch simultaneous saccharification and fermentation at high-solid loading based on enzymatic hydrolysis and dynamic metabolic modeling of Saccharomyces cerevisiae.

    Science.gov (United States)

    Unrean, Pornkamol; Khajeeram, Sutamat; Laoteng, Kobkul

    2016-03-01

    An integrative simultaneous saccharification and fermentation (SSF) modeling is a useful guiding tool for rapid process optimization to meet the techno-economic requirement of industrial-scale lignocellulosic ethanol production. In this work, we have developed the SSF model composing of a metabolic network of a Saccharomyces cerevisiae cell associated with fermentation kinetics and enzyme hydrolysis model to quantitatively capture dynamic responses of yeast cell growth and fermentation during SSF. By using model-based design of feeding profiles for substrate and yeast cell in the fed-batch SSF process, an efficient ethanol production with high titer of up to 65 g/L and high yield of 85 % of theoretical yield was accomplished. The ethanol titer and productivity was increased by 47 and 41 %, correspondingly, in optimized fed-batch SSF as compared to batch process. The developed integrative SSF model is, therefore, considered as a promising approach for systematic design of economical and sustainable SSF bioprocessing of lignocellulose.

  4. Study of Acid Hydrolysis on Organic Waste: Understanding The Effect of Delignification and Particle Size

    Directory of Open Access Journals (Sweden)

    Anwar Nadiem

    2018-01-01

    Full Text Available Organic wastes from Swiettenia marcophylla L, Artocarpus heterophyllus L, Mangifera indica L, and Annona muricata L were prepared by grinding into 0.1875, 0.3750, 0.7500 mm of particle size and delignified by 2% NaOH at 80°C for 90 minutes. Acid dilution hydrolysis process with H2SO4 1% was performed at 150°C for 120 minutes in a closed reactor. The effect of particle size and delignification on and reducing sugar concentration were investigated. The result showed (1 leaves that can be used as raw material to produce hydrogen should have 38–49% cellulose and hemicellulose. (2 Reducing sugar concentration increased with particle size reduction and delignification. (3 the best result with the highest reducing sugar concentration was achieved by 0.1875 mm particle size with delignification on Annona muricata L.

  5. Hydrolysis reaction of 2,4-dichlorophenoxyacetic acid. A kinetic and computational study

    Science.gov (United States)

    Romero, Jorge Marcelo; Jorge, Nelly Lidia; Grand, André; Hernández-Laguna, Alfonso

    2015-10-01

    The degradation of the 2,4-dichlorophenoxyacetic acid in aqueous solution is an hydrolysis reaction. Two products are identified: 2,4-dichlorophenol and glycolic acid. Reaction is investigated as a function of pH and temperature, and it is first-order kinetics and pH-dependent. Reaction is modeled in gas phase, where a proton catalyses the reaction. Critical points of PES are calculated at B3LYP/6-311++G(3df,2p), and aug-cc-pvqz//6-311++G(3df,2p) levels plus ZPE at 6-311++G(3df,2p) level. The activation barrier is 21.2 kcal/mol. Theoretical results agree with the experimental results. A second mechanism related with a Cl2Phsbnd Osbnd CH2sbnd COOH⋯H2O complex is found, but with a rate limiting step of 38.4 kcal/mol.

  6. Kinetic Modelling and Experimental Studies for the Effects of Fe2+ Ions on Xylan Hydrolysis with Dilute-Acid Pretreatment and Subsequent Enzymatic Hydrolysis

    Directory of Open Access Journals (Sweden)

    Hui Wei

    2018-01-01

    Full Text Available High-temperature (150–170 °C pretreatment of lignocellulosic biomass with mineral acids is well established for xylan breakdown. Fe2+ is known to be a cocatalyst of this process although kinetics of its action remains unknown. The present work addresses the effect of ferrous ion concentration on sugar yield and degradation product formation from corn stover for the entire two-step treatment, including the subsequent enzymatic cellulose hydrolysis. The feedstock was impregnated with 0.5% acid and 0.75 mM iron cocatalyst, which was found to be optimal in preliminary experiments. The detailed kinetic data of acid pretreatment, with and without iron, was satisfactorily modelled with a four-step linear sequence of first-order irreversible reactions accounting for the formation of xylooligomers, xylose and furfural as intermediates to provide the values of Arrhenius activation energy. Based on this kinetic modelling, Fe2+ turned out to accelerate all four reactions, with a significant alteration of the last two steps, that is, xylose degradation. Consistent with this model, the greatest xylan conversion occurred at the highest severity tested under 170 °C/30 min with 0.75 mM Fe2+, with a total of 8% xylan remaining in the pretreated solids, whereas the operational conditions leading to the highest xylose monomer yield, 63%, were milder, 150 °C with 0.75 mM Fe2+ for 20 min. Furthermore, the subsequent enzymatic hydrolysis with the prior addition of 0.75 mM of iron(II increased the glucose production to 56.3% from 46.3% in the control (iron-free acid. The detailed analysis indicated that conducting the process at lower temperatures yet long residence times benefits the yield of sugars. The above kinetic modelling results of Fe2+ accelerating all four reactions are in line with our previous mechanistic research showing that the pretreatment likely targets multiple chemistries in plant cell wall polymer networks, including those represented by the C

  7. A comparative study of thermal calcination and an alkaline hydrolysis method in the isolation of hydroxyapatite from Thunnus obesus bone

    International Nuclear Information System (INIS)

    Venkatesan, Jayachandran; Ryu, BoMi; Thomas, Noel Vinay; Kim, Se Kwon; Qian Zhongji

    2011-01-01

    In the present study, hydroxyapatite (HAp) was isolated from Thunnus obesus bone using alkaline hydrolysis and thermal calcination methods. The obtained ceramic has been characterized by thermal gravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), powder x-ray diffraction analysis (XRD), field-emission scanning electron microscopy, energy-dispersive x-ray analysis, transmission electron microscopy (TEM), selected area diffraction analysis, cytotoxic analysis and cell proliferation analysis. The results indicate that there are significant differences between the ceramics and T. obesus bone. FT-IR and TGA results affirmed that the collagen and organic moieties have been eliminated by both the proposed methods. XRD results were in agreement with JCPDS data. TEM and selective area diffraction images have signified that the thermal calcination method produces good crystallinity with dimensions 0.3-1.0 μm, whereas the alkaline hydrolysis method produces nanostructured HAp crystals with 17-71 nm length and 5-10 nm width. Biocompatibility of HAp crystals was evaluated by cytotoxicity and cell proliferation with human osteoblast-like cell MG-63.

  8. A comparative study of thermal calcination and an alkaline hydrolysis method in the isolation of hydroxyapatite from Thunnus obesus bone

    Energy Technology Data Exchange (ETDEWEB)

    Venkatesan, Jayachandran; Ryu, BoMi; Thomas, Noel Vinay; Kim, Se Kwon [Department of Chemistry, Pukyong National University, Busan 608-737 (Korea, Republic of); Qian Zhongji, E-mail: sknkim@pknu.ac.kr [Marine Bioprocess Research Center, Pukyong National University, Busan 608-737 (Korea, Republic of)

    2011-06-15

    In the present study, hydroxyapatite (HAp) was isolated from Thunnus obesus bone using alkaline hydrolysis and thermal calcination methods. The obtained ceramic has been characterized by thermal gravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), powder x-ray diffraction analysis (XRD), field-emission scanning electron microscopy, energy-dispersive x-ray analysis, transmission electron microscopy (TEM), selected area diffraction analysis, cytotoxic analysis and cell proliferation analysis. The results indicate that there are significant differences between the ceramics and T. obesus bone. FT-IR and TGA results affirmed that the collagen and organic moieties have been eliminated by both the proposed methods. XRD results were in agreement with JCPDS data. TEM and selective area diffraction images have signified that the thermal calcination method produces good crystallinity with dimensions 0.3-1.0 {mu}m, whereas the alkaline hydrolysis method produces nanostructured HAp crystals with 17-71 nm length and 5-10 nm width. Biocompatibility of HAp crystals was evaluated by cytotoxicity and cell proliferation with human osteoblast-like cell MG-63.

  9. Studies in Chemical Dynamics

    International Nuclear Information System (INIS)

    Rabitz, Herschel; Ho, Tak-San

    2003-01-01

    This final report draws together the research carried from February, 1986 through January, 2003 concerning a series of topics in chemical dynamics. The specific areas of study include molecular collisions, chemical kinetics, data inversion to extract potential energy surfaces, and model reduction of complex kinetic systems

  10. Hydrolysis studies on bismuth nitrate: synthesis and crystallization of four novel polynuclear basic bismuth nitrates.

    Science.gov (United States)

    Miersch, L; Rüffer, T; Schlesinger, M; Lang, H; Mehring, M

    2012-09-03

    Hydrolysis of Bi(NO(3))(3) in aqueous solution gave crystals of the novel compounds [Bi(6)O(4)(OH)(4)(NO(3))(5)(H(2)O)](NO(3)) (1) and [Bi(6)O(4)(OH)(4)(NO(3))(6)(H(2)O)(2)]·H(2)O (2) among the series of hexanuclear bismuth oxido nitrates. Compounds 1 and 2 both crystallize in the monoclinic space group P2(1)/n but show significant differences in their lattice parameters: 1, a = 9.2516(6) Å, b = 13.4298(9) Å, c = 17.8471(14) Å, β = 94.531(6)°, V = 2210.5(3) Å(3); 2, a = 9.0149(3) Å, b = 16.9298(4) Å, c = 15.6864(4) Å, β = 90.129(3)°, V = 2394.06(12) Å(3). Variation of the conditions for partial hydrolysis of Bi(NO(3))(3) gave bismuth oxido nitrates of even higher nuclearity, [{Bi(38)O(45)(NO(3))(24)(DMSO)(26)}·4DMSO][{Bi(38)O(45)(NO(3))(24)(DMSO)(24)}·4DMSO] (3) and [{Bi(38)O(45)(NO(3))(24)(DMSO)(26)}·2DMSO][{Bi(38)O(45)(NO(3))(24)(DMSO)(24)}·0.5DMSO] (5), upon crystallization from DMSO. Bismuth oxido clusters 3 and 5 crystallize in the triclinic space group P1 both with two crystallographically independent molecules in the asymmetric unit. The following lattice parameters are observed: 3, a = 20.3804(10) Å, b = 20.3871(9) Å, c = 34.9715(15) Å, α = 76.657(4)°, β = 73.479(4)°, γ = 60.228(5)°, V = 12021.7(9) Å(3); 5, a = 20.0329(4) Å, b = 20.0601(4) Å, c = 34.3532(6) Å, α = 90.196(1)°, β = 91.344(2)°, γ = 119.370(2)°, V = 12025.8(4) Å(3). Differences in the number of DMSO molecules (coordinated and noncoordinated) and ligand (nitrate, DMSO) coordination modes are observed.

  11. Comparison of three-way and four-way calibration for the real-time quantitative analysis of drug hydrolysis in complex dynamic samples by excitation-emission matrix fluorescence.

    Science.gov (United States)

    Yin, Xiao-Li; Gu, Hui-Wen; Liu, Xiao-Lu; Zhang, Shan-Hui; Wu, Hai-Long

    2018-03-05

    Multiway calibration in combination with spectroscopic technique is an attractive tool for online or real-time monitoring of target analyte(s) in complex samples. However, how to choose a suitable multiway calibration method for the resolution of spectroscopic-kinetic data is a troubling problem in practical application. In this work, for the first time, three-way and four-way fluorescence-kinetic data arrays were generated during the real-time monitoring of the hydrolysis of irinotecan (CPT-11) in human plasma by excitation-emission matrix fluorescence. Alternating normalization-weighted error (ANWE) and alternating penalty trilinear decomposition (APTLD) were used as three-way calibration for the decomposition of the three-way kinetic data array, whereas alternating weighted residual constraint quadrilinear decomposition (AWRCQLD) and alternating penalty quadrilinear decomposition (APQLD) were applied as four-way calibration to the four-way kinetic data array. The quantitative results of the two kinds of calibration models were fully compared from the perspective of predicted real-time concentrations, spiked recoveries of initial concentration, and analytical figures of merit. The comparison study demonstrated that both three-way and four-way calibration models could achieve real-time quantitative analysis of the hydrolysis of CPT-11 in human plasma under certain conditions. However, it was also found that both of them possess some critical advantages and shortcomings during the process of dynamic analysis. The conclusions obtained in this paper can provide some helpful guidance for the reasonable selection of multiway calibration models to achieve the real-time quantitative analysis of target analyte(s) in complex dynamic systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Comparison of three-way and four-way calibration for the real-time quantitative analysis of drug hydrolysis in complex dynamic samples by excitation-emission matrix fluorescence

    Science.gov (United States)

    Yin, Xiao-Li; Gu, Hui-Wen; Liu, Xiao-Lu; Zhang, Shan-Hui; Wu, Hai-Long

    2018-03-01

    Multiway calibration in combination with spectroscopic technique is an attractive tool for online or real-time monitoring of target analyte(s) in complex samples. However, how to choose a suitable multiway calibration method for the resolution of spectroscopic-kinetic data is a troubling problem in practical application. In this work, for the first time, three-way and four-way fluorescence-kinetic data arrays were generated during the real-time monitoring of the hydrolysis of irinotecan (CPT-11) in human plasma by excitation-emission matrix fluorescence. Alternating normalization-weighted error (ANWE) and alternating penalty trilinear decomposition (APTLD) were used as three-way calibration for the decomposition of the three-way kinetic data array, whereas alternating weighted residual constraint quadrilinear decomposition (AWRCQLD) and alternating penalty quadrilinear decomposition (APQLD) were applied as four-way calibration to the four-way kinetic data array. The quantitative results of the two kinds of calibration models were fully compared from the perspective of predicted real-time concentrations, spiked recoveries of initial concentration, and analytical figures of merit. The comparison study demonstrated that both three-way and four-way calibration models could achieve real-time quantitative analysis of the hydrolysis of CPT-11 in human plasma under certain conditions. However, it was also found that both of them possess some critical advantages and shortcomings during the process of dynamic analysis. The conclusions obtained in this paper can provide some helpful guidance for the reasonable selection of multiway calibration models to achieve the real-time quantitative analysis of target analyte(s) in complex dynamic systems.

  13. Spectrophotometric and potentiometric study of uranyl hydrolysis in perchlorate medium. Is derivative spectrophotometry suitable for search of the chemical model?

    International Nuclear Information System (INIS)

    Lubal, P.; Havel, J.

    1997-01-01

    Uranyl hydrolysis (I = 3.00 mol dm -3 NaClO 4 , T = 298.15 K) was studied by potentiometry and spectrophotometry. Numerical analysis of experimental data yielded the logarithmic values of hydrolytic constants for (UO 2 ) p (OH) q (2p-q) species with (p, q) indices: (2, 2) - 6.24 ± 0.02, (3, 5) - 16.80 ± 0.04, and (3, 4) - 12.8 ± 0.1 (potentiometry) and (2, 2) - 6.13 ± 0.02, (3, 5) - 16.81 ± 0.02, and (32, 4) - 12.57 ± 0.02 (average values obtained by derivative spectrophotometry from the first to the fourth order). The spectra of hydrolytic species were deconvoluted and the use of derivative spectrophotometry in equilibria studies has been discussed. (authors)

  14. Density functional theory (DFT) study on the hydrolysis behavior of degradable Mg/Mg alloys for biomedical applications

    Science.gov (United States)

    Nezafati, Marjan

    Magnesium-based (Mg and/or Mg alloys) materials possess many advantageous physicochemical/biological characteristics such as good biocompatibility and similarity of the mechanical properties to the human bone tissue, which renders this material a promising candidate for the biomedical and implant applications. One of the most attractive features of Mg-based materials is the degradability in the physiological environment. With the burst of research on the biodegradable materials for the healthcare device applications, Mg and its alloys attracted a strong attention in the bioengineering field in recent years. However, the major limitation of applying Mg-based materials to biomedical applications is the fast degradation/corrosion rate with regards to the healing process time-span. In the present thesis, an atomistic model employing the density-functional theory (DFT) has been developed to study the hydrolysis process by understanding the influences of commonly used alloying elements (zinc (Zn), calcium (Ca), aluminum (Al), and yttrium (Y)) and the crystallographic orientation of the dissolution surfaces (basal (0001), prism (1010), and pyramidal (1011) planes) on the corrosion behavior. These parameters are known to strongly impact the initial hydrolysis phenomena of Mg-based materials. To develop the atomistic computational model, we have implemented the Dmol3 software package in conjunction with PBE (Perdew, Burke and Ernzerhof) correlation energy functional in the GGA (generalized gradient approximation) scheme. Throughout the thesis, we performed three sets of calculations, i) surface energy, ii) dissolution potential, and iii) water adsorption computations, to examine the hydrolysis mechanism and the subsequent corrosion/degradation of Mg/Mg alloys. The total energy changes of various Mg-based systems in different conditions for these surface energies, dissolution behavior, and tendency of the system for adsorbing the water molecule were quantified. The results

  15. Isolation, NMR Spectral Analysis and Hydrolysis Studies of a Hepta Pyranosyl Diterpene Glycoside from Stevia rebaudiana Bertoni

    Directory of Open Access Journals (Sweden)

    Guohong Mao

    2013-09-01

    Full Text Available From the commercial extract of the leaves of Stevia rebaudiana Bertoni, a minor steviol glycoside, 13-[(2-O-β-D-glucopyranosyl-3-O-β-D-glucopyranosyl-β-D-glucopyranosyloxy] ent-kaur-16-en-19-oic acid-[(2-O-(3-O-β-D-glucopyranosyl-α-L-rhamnopyranosyl-3-O-β-D-glucopyranosyl-β-D-glucopyranosyl ester] (1; also known as rebaudioside O having seven sugar units has been isolated. Its structural characterization has been achieved by the extensive 1D (1H and 13C, and 2D NMR (COSY, HMQC, HMBC as well as mass spectral data. Further, hydrolysis studies were performed on rebaudioside O using acid and enzymatic methods to identify aglycone and sugar residues in its structure as well as their configurations.

  16. STUDY OF THE PREPARATION OF SUGAR FROM HIGH-LIGNIN LIGNOCELLULOSE APPLYING SUBCRITICAL WATER AND ENZYMATIC HYDROLYSIS: SYNTHESIS AND CONSUMABLE COST EVALUATION

    Directory of Open Access Journals (Sweden)

    HANNY F. SANGIAN

    2015-05-01

    Full Text Available This study concern sugars hydrolyzed from the high-lignin coconut coir dust using moderate subcritical water (SCW hydrolysis at pressures 20-40 bar for 1 h and to evaluate the consumable costs driver generated. The SCW method produced two products, sugar liquid and solid (SCW-treated substrate. The solid was proceeded to prepare the sugar via enzymatic hydrolysis using pure cellulase. Yield of sugar hydrolyzed from lignocellulose by SCW technique was 0.25 gram sugar/gram cellulose +hemicellulose, or 0.09-gram sugar/gram lignocellulose at 160 °C and 40 bar. While, the maximum yield of sugar liberated enzymatically from SCW-treated solid was 0.35-gram sugar/gram cellulose+hemicellulose, or 0.13-gram sugar/gram SCW-treated solid. It was found that carbon dioxide gas was the highest cost driving in SCW hydrolysis.

  17. Optimization of dynamic-microwave assisted enzymatic hydrolysis extraction of total ginsenosides from stems and leaves of panax ginseng by response surface methodology.

    Science.gov (United States)

    Wang, Xiao-Yan; Ren, Hui

    2018-03-21

    Ginseng stems and leaves (GSAL) are abundant in ginsenosides compounds. For efficient utilization of GSAL and the enhancement of total ginsenosides (TG) compound yields in GSAL, TG from GSAL were extracted, using dynamic-microwave assisted extraction coupled with enzymatic hydrolysis (DMAE-EH) method. The extraction process has been simulated and its main influencing factors such as ethanol concentration, microwave temperature, microwave time and pump flow rate have been optimized by response surface methodology coupled with a Box-Behnken design(BBD). The experimental results indicated that optimal extraction conditions of TG from GSAL were as follows: ethanol concentration of 75%, microwave temperature of 60°C, microwave time of 20 min and pump flow rate of 38 r/min. After experimental verification, the experimental yields of TG was 60.62 ± 0.85 mg g -1 , which were well agreement with the predicted by the model. In general, the present results demonstrated that DMAE-EH method was successfully used to extract total ginsenosides in GSAL.

  18. STUDIES ON THE BACTERIOPHAGE OF D'HERELLE : IX. EVIDENCE OF HYDROLYSIS OF BACTERIAL PROTEIN DURING LYSIS.

    Science.gov (United States)

    Hetler, D M; Bronfenbrenner, J

    1928-07-31

    1. During the process of lysis by bacteriophage, there is an appreciable increase in the amount of free amino acid present in the culture. 2. The increase of free amino acid is due to hydrolysis of bacterial protein.

  19. Study of the hydrolysis of acetonitrile using different brønsted acid models : zeolite-type and HCl(H2O)x clusters

    NARCIS (Netherlands)

    Barbosa, Louis; Santen, van R.A.

    2000-01-01

    The hydrolysis of acetonitrile has been studied theoretically by different ab initio methods (RHF, DFT, and MP2). Two Brønsted acid catalysts have been compared: zeolite and HCl(H2O)x=2,1 clusters. Some interesting analogies have been found for the reaction path catalyzed by these different acids,

  20. Easy Fabrication of Highly Thermal-Stable Cellulose Nanocrystals Using Cr(NO33 Catalytic Hydrolysis System: A Feasibility Study from Macro- to Nano-Dimensions

    Directory of Open Access Journals (Sweden)

    You Wei Chen

    2017-01-01

    Full Text Available This study reported on the feasibility and practicability of Cr(NO33 hydrolysis to isolate cellulose nanocrystals (CNCCr(NO33 from native cellulosic feedstock. The physicochemical properties of CNCCr(NO33 were compared with nanocellulose isolated using sulfuric acid hydrolysis (CNCH2SO4. In optimum hydrolysis conditions, 80 °C, 1.5 h, 0.8 M Cr(NO33 metal salt and solid–liquid ratio of 1:30, the CNCCr(NO33 exhibited a network-like long fibrous structure with the aspect ratio of 15.7, while the CNCH2SO4 showed rice-shape structure with an aspect ratio of 3.5. Additionally, Cr(NO33-treated CNC rendered a higher crystallinity (86.5% ± 0.3% with high yield (83.6% ± 0.6% as compared to the H2SO4-treated CNC (81.4% ± 0.1% and 54.7% ± 0.3%, respectively. Furthermore, better thermal stability of CNCCr(NO33 (344 °C compared to CNCH2SO4 (273 °C rendered a high potential for nanocomposite application. This comparable effectiveness of Cr(NO33 metal salt provides milder hydrolysis conditions for highly selective depolymerization of cellulosic fiber into value-added cellulose nanomaterial, or useful chemicals and fuels in the future.

  1. Differential Mobility-Mass Spectrometry Double Spike Isotope Dilution Study of Release of β-Methylaminoalanine and Proteinogenic Amino Acids during Biological Sample Hydrolysis.

    Science.gov (United States)

    Beach, Daniel G; Kerrin, Elliott S; Giddings, Sabrina D; Quilliam, Michael A; McCarron, Pearse

    2018-01-08

    The non-protein amino acid β-methylamino-L-alanine (BMAA) has been linked to neurodegenerative disease and reported throughout the environment. Proposed mechanisms of bioaccumulation, trophic transfer and chronic toxicity of BMAA rely on the hypothesis of protein misincorporation. Poorly selective methods for BMAA analysis have led to controversy. Here, a recently reported highly selective method for BMAA quantitation using hydrophilic interaction liquid chromatography-differential mobility spectrometry-tandem mass spectrometry (HILIC-DMS-MS/MS) is expanded to include proteinogenic amino acids from hydrolyzed biological samples. For BMAA quantitation, we present a double spiking isotope dilution approach using D 3 -BMAA and 13 C 15 N 2 -BMAA. These methods were applied to study release of BMAA during acid hydrolysis under a variety of conditions, revealing that the majority of BMAA can be extracted along with only a small proportion of protein. A time course hydrolysis of BMAA from mussel tissue was carried out to assess the recovery of BMAA during sample preparation. The majority of BMAA measured by typical methods was released before a significant proportion of protein was hydrolyzed. Little change was observed in protein hydrolysis beyond typical hydrolysis times but the concentration of BMAA increased linearly. These findings demonstrate protein misincorporation is not the predominant form of BMAA in cycad and shellfish.

  2. A BIDISPERSE MODEL TO STUDY THE HYDROLYSIS OF MALTOSE USING GLUCOAMYLASE IMMOBILIZED IN SILICA AND WRAPPED IN PECTIN GEL

    Directory of Open Access Journals (Sweden)

    L.R.B. Gonçalves

    1997-12-01

    Full Text Available In this work, a bidisperse model is built to represent the hydrolysis of maltose using immobilized glucoamylase. The experimental set is a mixed-batch reactor, maintained at 30ºC, with pectin gel spherical particles that contain enzyme immobilized in macroporous silica. The possibility of substrate adsorption on the pectin gel is also studied because this phenomenon may result in smaller values of diffusivity. Equilibrium assays are then performed for different substrates (maltose, lactose and glucose at different temperatures and pHs. These assays show that adsorption on the pectin gel is not important for the three dextrins analysed. The bidisperse model presents a good fit with the experimental data, when using previously-estimated kinetic and mass transfer parameters (Gonçalves et al., 1997. This result shows that the methodology used (wrapping the silica in pectin gel is appropriate for experimental studies with silica, since it allows a higher degree of agitation without causing shearing

  3. Direct injection of superheated steam for continuous hydrolysis reaction

    KAUST Repository

    Wang, Weicheng; Turner, Timothy L.; Roberts, William L.; Stikeleather, Larry F.

    2012-01-01

    The primary intent for previous continuous hydrolysis studies was to minimize the reaction temperature and reaction time. In this work, hydrolysis is the first step of a proprietary chemical process to convert lipids to sustainable, drop

  4. Agonist-induced PIP(2) hydrolysis inhibits cortical actin dynamics: regulation at a global but not at a micrometer scale.

    Science.gov (United States)

    van Rheenen, Jacco; Jalink, Kees

    2002-09-01

    Phosphatidylinositol 4, 5-bisphosphate (PIP(2)) at the inner leaflet of the plasma membrane has been proposed to locally regulate the actin cytoskeleton. Indeed, recent studies that use GFP-tagged pleckstrin homology domains (GFP-PH) as fluorescent PIP(2) sensors suggest that this lipid is enriched in membrane microdomains. Here we report that this concept needs revision. Using three distinct fluorescent GFP-tagged pleckstrin homology domains, we show that highly mobile GFP-PH patches colocalize perfectly with various lipophilic membrane dyes and, hence, represent increased lipid content rather than PIP(2)-enriched microdomains. We show that bright patches are caused by submicroscopical folds and ruffles in the membrane that can be directly visualized at approximately 15 nm axial resolution with a novel numerically enhanced imaging method. F-actin motility is inhibited significantly by agonist-induced PIP(2) breakdown, and it resumes as soon as PIP(2) levels are back to normal. Thus, our data support a role for PIP(2) in the regulation of cortical actin, but they challenge a model in which spatial differences in PIP(2) regulation of the cytoskeleton exist at a micrometer scale.

  5. Catalytic hydrolysis of COS over CeO{sub 2} (110) surface: A density functional theory study

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xin; Ning, Ping [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Wang, Chi [Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Li, Kai, E-mail: likaikmust@163.com [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Tang, Lihong; Sun, Xin [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500 (China)

    2017-08-31

    Graphical abstract: CeO{sub 2} decreases the maximum energy barrier by 76.15 kcal/mol. H{sub 2}O plays a role as a bridge in the process of joint adsorption. Catalytic effect of CeO{sub 2} in the hydrolysis of COS is mainly reflected on the C−O channel. - Highlights: • H{sub 2}O is easier adsorbed on the CeO{sub 2} (110) surface than COS. • When COS and H{sub 2}O jointly adsorb on the CeO{sub 2} (110) surface, the H{sub 2}O molecule plays a role as a bridge. • Ce−O−H bond can enhance the adsorption effect. • Catalytic effect of CeO{sub 2} in the hydrolysis of COS is mainly reflected on the C−O channel. - Abstract: Density functional theory (DFT) calculations were performed to investigate the reaction pathways for catalytic hydrolysis of COS over CeO{sub 2} (110) surface using Dmol{sup 3} model. The thermodynamic stability analysis for the suggested routes of COS hydrolysis to CO{sub 2} and H{sub 2}S was evaluated. The absolute values of adsorption energy of H{sub 2}O-CeO{sub 2} are higher than that of COS-CeO{sub 2}. Meanwhile, the adsorption energy and geometries show that H{sub 2}O is easier adsorbed on the surface of CeO{sub 2} (110) than COS. H{sub 2}O plays a role as a bridge in the process of joint adsorption. H{sub 2}O forms more Ce−O−H groups on the CeO{sub 2} (110) surface. CeO{sub 2} decreases the maximum energy barrier by 76.15 kcal/mol. The migration of H from H{sub 2}O to COS is the key for the hydrolysis reaction. C−O channel is easier to occur than C−S channel. Experimental result shows that adding of CeO{sub 2} can increase COS removal rate and prolong the 100% COS removal rate from 180 min to 210 min. The difference between Fe{sub 2}O{sub 3} and CeO{sub 2} for the hydrolysis of COS is characterized in the atomic charge transfer and the formation of H−O bond and H−S bond. The transfer effect of H in H{sub 2}O to S in COS over CeO{sub 2} decreases the energy barriers of hydrolysis reaction, and enhances the reaction

  6. Structural and biochemical studies on ATP binding and hydrolysis by the Escherichia coli RNA chaperone Hfq.

    Directory of Open Access Journals (Sweden)

    Hermann Hämmerle

    Full Text Available In Escherichia coli the RNA chaperone Hfq is involved in riboregulation by assisting base-pairing between small regulatory RNAs (sRNAs and mRNA targets. Several structural and biochemical studies revealed RNA binding sites on either surface of the donut shaped Hfq-hexamer. Whereas sRNAs are believed to contact preferentially the YKH motifs present on the proximal site, poly(A(15 and ADP were shown to bind to tripartite binding motifs (ARE circularly positioned on the distal site. Hfq has been reported to bind and to hydrolyze ATP. Here, we present the crystal structure of a C-terminally truncated variant of E. coli Hfq (Hfq(65 in complex with ATP, showing that it binds to the distal R-sites. In addition, we revisited the reported ATPase activity of full length Hfq purified to homogeneity. At variance with previous reports, no ATPase activity was observed for Hfq. In addition, FRET assays neither indicated an impact of ATP on annealing of two model oligoribonucleotides nor did the presence of ATP induce strand displacement. Moreover, ATP did not lead to destabilization of binary and ternary Hfq-RNA complexes, unless a vast stoichiometric excess of ATP was used. Taken together, these studies strongly suggest that ATP is dispensable for and does not interfere with Hfq-mediated RNA transactions.

  7. Progressing batch hydrolysis process

    Science.gov (United States)

    Wright, J.D.

    1985-01-10

    A progressive batch hydrolysis process is disclosed for producing sugar from a lignocellulosic feedstock. It comprises passing a stream of dilute acid serially through a plurality of percolation hydrolysis reactors charged with feed stock, at a flow rate, temperature and pressure sufficient to substantially convert all the cellulose component of the feed stock to glucose. The cooled dilute acid stream containing glucose, after exiting the last percolation hydrolysis reactor, serially fed through a plurality of pre-hydrolysis percolation reactors, charged with said feedstock, at a flow rate, temperature and pressure sufficient to substantially convert all the hemicellulose component of said feedstock to glucose. The dilute acid stream containing glucose is cooled after it exits the last prehydrolysis reactor.

  8. Pseudo-first-order alkaline hydrolysis of diethyl tartrate: a baseline study for a polymer matrix used in controlled-release delivery systems.

    Science.gov (United States)

    Kalonia, D S; Simonelli, A P

    1990-04-01

    The hydrolysis kinetics of a bifunctional group compound, diethyl tartrate, was studied as a function of temperature and pH in the alkaline region. A pH-stat was used to maintain constant pH conditions in the alkaline region. This allowed the studies to be carried out at low ionic strengths and without the use of buffers. The results indicate that the hydrolysis for both steps followed specific base catalysis. The ratio of the two rate constants was 13.31, which was attributed to a strong charge effect in the second step. The results also show that the use of an overall average rate constant may not be acceptable for multifunctional group compounds.

  9. Studying Dynamics in Business Networks

    DEFF Research Database (Denmark)

    Andersen, Poul Houman; Anderson, Helen; Havila, Virpi

    1998-01-01

    This paper develops a theory on network dynamics using the concepts of role and position from sociological theory. Moreover, the theory is further tested using case studies from Denmark and Finland......This paper develops a theory on network dynamics using the concepts of role and position from sociological theory. Moreover, the theory is further tested using case studies from Denmark and Finland...

  10. Electrospray ionization mass spectrometry for the hydrolysis complexes of cisplatin : Implications for the hydrolysis process of platinum complexes

    NARCIS (Netherlands)

    Xie, Feifan; Colin, Pieter; Van Bocxlaer, Jan

    Non-enzyme-dependent hydrolysis of the drug cisplatin is important for its mode of action and toxicity. However, up until today, the hydrolysis process of cisplatin is still not completely understood. In the present study, the hydrolysis of cisplatin in an aqueous solution was systematically

  11. Experimental study and phenomenological modeling of the hydrolysis of tritiated sodium: influence of experimental conditions on the tritium distribution in the effluents

    International Nuclear Information System (INIS)

    Chassery, Aurelien

    2014-01-01

    Within the framework of the decommissioning of fast reactors, several processes are under investigation regarding sodium disposal. One of them rests on the implementation of the sodium-water reaction (SWR), in a controlled and progressive way, to remove residual sodium containing impurities such as sodium hydrides, sodium oxides and tritiated sodium hydrides. Such a hydrolysis releases some amount of energy and produces a liquid effluent, composed of a solution of soda, and a gaseous effluent, composed of hydrogen, steam and an inert gas. The tritium, originally into the sodium as a soluble (T - ) or precipitate form (NaT), will be distributed between the liquid and gaseous effluent, and according to two chemical forms, the tritium hydride HT and the tritiated water HTO. HTO being 10,000 times more radio-toxic than HT, a precise knowledge of the mechanisms governing the distribution of tritium is necessary in order to estimate the exhaust gas releases and design the process needed to treat the off-gas before its release into the environment. An experimental study has been carried out in order to determine precisely the phenomena involved in the hydrolysis. The influence of the experimental conditions on the tritium distribution has been tested. The results of this study leaded to a phenomenological description of the tritiated sodium hydrolysis that will help to predict the composition of the effluents, regarding tritium. (author) [fr

  12. Hydrolysis of corn oil using subcritical water

    Directory of Open Access Journals (Sweden)

    Pinto Jair Sebastião S.

    2006-01-01

    Full Text Available This work presents the results of a study on the use of subcritical water as both solvent and reactant for the hydrolysis of corn oil without the use of acids or alkalis at temperatures of 150-280 degreesC. Corn oil hydrolysis leads to the formation of its respective fatty acids with the same efficiency of conventional methods. Fatty acids form an important group of products, which are used in a range of applications. The confirmation and identification of the hydrolysis products was done by HT-HRGC-FID and HRGC/MS.

  13. Cellulase hydrolysis of unsorted MSW

    DEFF Research Database (Denmark)

    Jensen, Jacob Wagner; Felby, Claus; Jørgensen, Henning

    2011-01-01

    A recent development in waste management and engineering has shown that the cellulase can be used for the liquefaction of organic fractions in household waste. The focus of this study was to optimize the enzyme hydrolysis of thermally treated municipal solid waste (MSW) by the addition of surfact......A recent development in waste management and engineering has shown that the cellulase can be used for the liquefaction of organic fractions in household waste. The focus of this study was to optimize the enzyme hydrolysis of thermally treated municipal solid waste (MSW) by the addition...... of calcium, potassium, sodium, chloride and others that may affect cellulolytic enzymes. Cellulase performance showed no effect of adding the metal ion-chelating agent EDTA to the solution. The cellulases were stable, tolerated and functioned in the presence of several contaminants....

  14. Effects of microtubule mechanics on hydrolysis and catastrophes

    International Nuclear Information System (INIS)

    Müller, N; Kierfeld, J

    2014-01-01

    We introduce a model for microtubule (MT) mechanics containing lateral bonds between dimers in neighboring protofilaments, bending rigidity of dimers, and repulsive interactions between protofilaments modeling steric constraints to investigate the influence of mechanical forces on hydrolysis and catastrophes. We use the allosteric dimer model, where tubulin dimers are characterized by an equilibrium bending angle, which changes from 0 ∘ to 22 ∘ by hydrolysis of a dimer. This also affects the lateral interaction and bending energies and, thus, the mechanical equilibrium state of the MT. As hydrolysis gives rise to conformational changes in dimers, mechanical forces also influence the hydrolysis rates by mechanical energy changes modulating the hydrolysis rate. The interaction via the MT mechanics then gives rise to correlation effects in the hydrolysis dynamics, which have not been taken into account before. Assuming a dominant influence of mechanical energies on hydrolysis rates, we investigate the most probable hydrolysis pathways both for vectorial and random hydrolysis. Investigating the stability with respect to lateral bond rupture, we identify initiation configurations for catastrophes along the hydrolysis pathways and values for a lateral bond rupture force. If we allow for rupturing of lateral bonds between dimers in neighboring protofilaments above this threshold force, our model exhibits avalanche-like catastrophe events. (papers)

  15. Enzymic lactose hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J J; Brand, J C

    1980-01-01

    Acid or enzymic hydrolysis can be used to hydrolyze lactose. Advantages of both are compared and details of enzymic hydrolysis using yeast or fungal enzymes given. The new scheme outlined involves recycling lactase. Because lactose and lactase react to ultrafiltration (UF) membranes differently separation is possible. Milk or milk products are ultrafiltered to separate a concentrate from a lactose-rich permeate which is treated with lactase in a reactor until hydrolysis reaches a required level. The lactase can be removed by UF as it does not permeate the membrane, and it is recycled back to the reactor. Permeate from the second UF stage may or may not be recombined with the concentrate from the first stage to produce a low lactose product (analysis of a typical low-lactose dried whole milk is given). Batch or continuous processes are explained and a batch process without enzyme recovery is discussed. (Refs. 4).

  16. Hydrolysis of uranium monocarbide

    International Nuclear Information System (INIS)

    Hajek, B.; Karen, P.; Brozek, V.

    1984-01-01

    The substoichiometric uranium monocarbide UCsub(0.95) was hydrolyzed in acid medium at 80 degC. The composition of the products of hydrolysis corresponds to published data but it correlates better with the stoichiometric composition of the hydrolyzable carbide. The mechanisms of the hydrolytic reaction are discussed and a modified radical mechanism is suggested based on the concept of initiation of the radical process by Hsup(.) radicals formed owing to the nonstoichiometry of the substance. A relation is proposed for calculating the content of free hydrogen in the hydrolysis products of carbides of metallic nature for which a radical mechanism of their reaction with water can be assumed. Some effects occurring during the hydrolysis of uranium carbide, as described in literature, are explained in terms of the concept suggested. The results obtained by the authors for carbides of manganese (Mn 7 C 3 ) and for rare earth elements are discussed. (author)

  17. Studies in chemical dynamics

    International Nuclear Information System (INIS)

    Kuppermann, A.

    1978-01-01

    Progress made in the following studies is reported: low-energy electron scattering; variable-angle photoelectron spectroscopy; laser photochemistry and spectroscopy; and collisions in crossed molecular beams

  18. Study of estuarine dynamics

    International Nuclear Information System (INIS)

    Genders, S.

    1979-01-01

    A case study of a shallow, well mixed fjord illustrates the use of radioactive and an activable tracer. An instantaneous injection of the rare earth lanthanum was used as an activable tracer to determine residence-time and internal recirculation in the fjord system. An instantaneous injection of bromine-82 was used to investigate tae bypass of water from a harbour area through a power plant cooling water system to a partly enclosed basin of the fjord. Instantaneous releases of bromine-82 were further used for short time studies of the primary spread and transport of river water discharged to the inner section of the fjord system. (Author) [pt

  19. Effects of different durations of acid hydrolysis on the properties of starch-based wood adhesive.

    Science.gov (United States)

    Wang, Yajie; Xiong, Hanguo; Wang, Zhenjiong; Zia-Ud-Din; Chen, Lei

    2017-10-01

    In this study, the effect of different durations of acid hydrolysis on the improvement of the properties of starch-based wood adhesive was investigated through a variety of determination methods The improved properties were analyzed using the pasting properties, viscosity, shear performance in dry and wet states, fourier infrared spectrometer, dynamic time sweep, and low filed nuclear magnetic resonance spectroscopy. Starch hydrolysis improved the viscosity stability, bonding performance, and water resistance of the starch-based wood adhesive. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Dynamic Model-Based Evaluation of Process Configurations for Integrated Operation of Hydrolysis and Co-Fermentation for Bioethanol Production from Lignocellulose

    DEFF Research Database (Denmark)

    Morales Rodriguez, Ricardo; Meyer, Anne S.; Gernaey, Krist

    2011-01-01

    In this study a number of different process flowsheets were generated and their feasibility evaluated using simulations of dynamic models. A dynamic modeling framework was used for the assessment of operational scenarios such as, fed-batch, continuous and continuous with recycle configurations. E......) operating in continuous mode with a recycle of the SSCF reactor effluent, results in the best productivity of bioethanol among the proposed process configurations, with a yield of 0.18 kg ethanol/kg dry-biomass........ Each configuration was evaluated against the following benchmark criteria, yield (kg ethanol/kg dry-biomass), final product concentration and number of unit operations required in the different process configurations. The results show that simultaneous saccharification and co-fermentation (SSCF...

  1. A quantum mechanics/molecular mechanics study on the hydrolysis mechanism of New Delhi metallo-β-lactamase-1.

    Science.gov (United States)

    Zhu, Kongkai; Lu, Junyan; Liang, Zhongjie; Kong, Xiangqian; Ye, Fei; Jin, Lu; Geng, Heji; Chen, Yong; Zheng, Mingyue; Jiang, Hualiang; Li, Jun-Qian; Luo, Cheng

    2013-03-01

    New Delhi metallo-β-lactamase-1 (NDM-1) has emerged as a major global threat to human health for its rapid rate of dissemination and ability to make pathogenic microbes resistant to almost all known β-lactam antibiotics. In addition, effective NDM-1 inhibitors have not been identified to date. In spite of the plethora of structural and kinetic data available, the accurate molecular characteristics of and details on the enzymatic reaction of NDM-1 hydrolyzing β-lactam antibiotics remain incompletely understood. In this study, a combined computational approach including molecular docking, molecular dynamics simulations and quantum mechanics/molecular mechanics calculations was performed to characterize the catalytic mechanism of meropenem catalyzed by NDM-1. The quantum mechanics/molecular mechanics results indicate that the ionized D124 is beneficial to the cleavage of the C-N bond within the β-lactam ring. Meanwhile, it is energetically favorable to form an intermediate if no water molecule coordinates to Zn2. Moreover, according to the molecular dynamics results, the conserved residue K211 plays a pivotal role in substrate binding and catalysis, which is quite consistent with previous mutagenesis data. Our study provides detailed insights into the catalytic mechanism of NDM-1 hydrolyzing meropenem β-lactam antibiotics and offers clues for the discovery of new antibiotics against NDM-1 positive strains in clinical studies.

  2. Study of processes of adsorption, hydrolysis and metabolism of the substrate in sequential reactors for shifts and their mathematical modeling

    International Nuclear Information System (INIS)

    Arango P, C.

    1993-01-01

    In this article the results of the investigation on the processes of adsorption, hydrolysis and consumption of COD (chemical oxygen demand) in both aerobic and anaerobic reactors to laboratory scale, their relationship with the conditions of illumination, half of support and concentration of oxygen, and their possible application in aerobic post-treatment of anaerobic leachates are presented. The investigation consists of an experimental assembly and a theoretical development of search of descriptor equations of the global process, and rates of occurrence of the particular processes. The experimental assembly was carried out with four reactors to laboratory scale subjected to different conditions of light, half of support and concentration of oxygen; it had two phases: one of evaluation of the effect of the different conditions in the efficiency of the reactors, and another of evaluation of the kinetic constants in the reactor of better acting and their application in aerobic treatment of anaerobic leachates

  3. Kinetics of catalyzed hydrolysis of 4-methylumbelliferyl caprylate (MUCAP) salmonella reagent

    Science.gov (United States)

    Al-Kady, Ahmed S.; Ahmed, El-Sadat I.; Gaber, M.; Hussein, Mohamed M.; Ebeid, El-Zeiny M.

    2011-09-01

    The kinetics of chemical hydrolysis including neutral, acid- and base-catalyzed hydrolysis of 4-methylumbelliferyl caprylate (MUCAP) salmonella reagent were studied at different temperatures. The rate constants and activation parameters were determined by following the build-up of fluorescence peak of the hydrolysis product 4-methylumbelliferone (4-MU). The time scale of esterase enzyme hydrolysis caused by salmonella was compared with chemical hydrolysis as a background process.

  4. Theoretical studies of combustion dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, J.M. [Emory Univ., Atlanta, GA (United States)

    1993-12-01

    The basic objectives of this research program are to develop and apply theoretical techniques to fundamental dynamical processes of importance in gas-phase combustion. There are two major areas currently supported by this grant. One is reactive scattering of diatom-diatom systems, and the other is the dynamics of complex formation and decay based on L{sup 2} methods. In all of these studies, the authors focus on systems that are of interest experimentally, and for which potential energy surfaces based, at least in part, on ab initio calculations are available.

  5. Research and determination of process parameters of milk lactose hydrolysis

    OpenAIRE

    Калинина, Елена Дмитриевна; Коваленко, Александр Владимирович

    2014-01-01

    The researches of enzymatic milk lactose hydrolysis by using the β - galactosidase enzyme are given in the paper. For carrying out a lactose hydrolysis, two β-galactosidase enzyme preparations GODO-YNL2 and Neolactase are offered. For setting lactose hydrolysis parameters, the influence of a pH medium, temperature, enzyme preparation doses, the duration of hydrolyzing the milk lactose affected by the β- galactosidase enzyme preparations, was studied. In terms of effectiveness, adaptability an...

  6. Enzymatic hydrolysis of biomimetic bacterial cellulose-hemicellulose composites.

    Science.gov (United States)

    Penttilä, Paavo A; Imai, Tomoya; Hemming, Jarl; Willför, Stefan; Sugiyama, Junji

    2018-06-15

    The production of biofuels and other chemicals from lignocellulosic biomass is limited by the inefficiency of enzymatic hydrolysis. Here a biomimetic composite material consisting of bacterial cellulose and wood-based hemicelluloses was used to study the effects of hemicelluloses on the enzymatic hydrolysis with a commercial cellulase mixture. Bacterial cellulose synthesized in the presence of hemicelluloses, especially xylan, was found to be more susceptible to enzymatic hydrolysis than hemicellulose-free bacterial cellulose. The reason for the easier hydrolysis could be related to the nanoscale structure of the substrate, particularly the packing of cellulose microfibrils into ribbons or bundles. In addition, small-angle X-ray scattering was used to show that the average nanoscale morphology of bacterial cellulose remained unchanged during the enzymatic hydrolysis. The reported easier enzymatic hydrolysis of bacterial cellulose produced in the presence of wood-based xylan offers new insights to overcome biomass recalcitrance through genetic engineering. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Studies on hydrolysis and radiolysis of tetra(2-ethylhexyl)diglycolamide (TEHDGA)/isodecyl alcohol/n-dodecane solvent system

    International Nuclear Information System (INIS)

    Sharma, J.N.; Ruhela, R.; Suri, A.K.; Singh, K.K.; Kumar, M.; Janardhanan, C.; Achutan, P.V.; Manohar, S.; Wattal, P.K.

    2010-01-01

    To establish the use of TEHDGA/isodecylalcohol/n-dodecane solvent system for actinide partitioning from HLW, the hydrolytic and radiolytic stability of the solvent was investigated. Hydrolysis of TEHDGA with nitric acid at room temperature was not observed. Radiolytic degradation was observed and found to increase with increase in absorbed dose. It was found that the presence of n-dodecane enhances the degradation of TEHDGA whereas isodecyl alcohol, the phase modifier, has no such effect. At gamma-radiation dose as high as 0.2 MGy, no significant loss of TEHDGA was observed. The degradation products were identified by GC-MS, the main products were formed by cleavage of ether and amide bonds of TEHDGA molecule. The extraction behavior of Am(III) at 4.0 M HNO 3 does not vary much with increase in absorbed dose, however stripping behavior is affected by the presence of acidic degradation products formed during radiolysis. The findings indicate that the solvent retains its expected extraction and stripping properties up to a high gamma-radiation dose of 0.2 MGy. Irradiated solvent was purified and made suitable for reuse by treating it with 5% w/v Na 2 CO 3 solution, basic alumina and finally by distillation at reduced pressure. (orig.)

  8. Studies on hydrolysis and radiolysis of tetra(2-ethylhexyl)diglycolamide (TEHDGA)/isodecyl alcohol/n-dodecane solvent system

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, J.N.; Ruhela, R.; Suri, A.K. [Bhabha Atomic Research Centre, Mumbai (India). Hydrometallurgy Section, Materials Group; Singh, K.K.; Kumar, M. [Bhabha Atomic Research Centre, Mumbai (India). Chemistry Group; Janardhanan, C.; Achutan, P.V.; Manohar, S.; Wattal, P.K. [Bhabha Atomic Research Centre, Mumbai (India). Nuclear Recycle Group

    2010-07-01

    To establish the use of TEHDGA/isodecylalcohol/n-dodecane solvent system for actinide partitioning from HLW, the hydrolytic and radiolytic stability of the solvent was investigated. Hydrolysis of TEHDGA with nitric acid at room temperature was not observed. Radiolytic degradation was observed and found to increase with increase in absorbed dose. It was found that the presence of n-dodecane enhances the degradation of TEHDGA whereas isodecyl alcohol, the phase modifier, has no such effect. At gamma-radiation dose as high as 0.2 MGy, no significant loss of TEHDGA was observed. The degradation products were identified by GC-MS, the main products were formed by cleavage of ether and amide bonds of TEHDGA molecule. The extraction behavior of Am(III) at 4.0 M HNO{sub 3} does not vary much with increase in absorbed dose, however stripping behavior is affected by the presence of acidic degradation products formed during radiolysis. The findings indicate that the solvent retains its expected extraction and stripping properties up to a high gamma-radiation dose of 0.2 MGy. Irradiated solvent was purified and made suitable for reuse by treating it with 5% w/v Na{sub 2}CO{sub 3} solution, basic alumina and finally by distillation at reduced pressure. (orig.)

  9. Studies On Optimization Of Protease Production Using Bacterial Isolate Clri Strain 5468 And Its Application In Dehairing And Hydrolysis Of Tannery Fleshings Solid Waste Management

    Directory of Open Access Journals (Sweden)

    Vimala Devi Seenivasagham

    2015-08-01

    Full Text Available The strain which produces protease was originally isolated characterized in Biotechnology laboratory at CLRI and was maintained. The microorganism was growned on several proteolytic media and the maximum activity was observed. The characterization of enzyme was analysed for different pH temperature size of inoculum inhibitors age of the culture. Then the enzyme was observed for the unhairing of skin and the disadvantage in chemical treatment was studied. The conformation of unhairing was studied using histology studies. The tannery waste solid fleshings as it is cannot be directly disposed off to the environment. It was treated with the microbial proteases. The hydrolysis of waste was done using proteases. The solid waste was converted to protien fat and the salt matter. Future work is to optimize the cheap media for the production of the enzyme for large scale applications in various industries.

  10. Hydrolysis of biomass material

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Andrew J.; Orth, Rick J.; Franz, James A.; Alnajjar, Mikhail

    2004-02-17

    A method for selective hydrolysis of the hemicellulose component of a biomass material. The selective hydrolysis produces water-soluble small molecules, particularly monosaccharides. One embodiment includes solubilizing at least a portion of the hemicellulose and subsequently hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A second embodiment includes solubilizing at least a portion of the hemicellulose and subsequently enzymatically hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A third embodiment includes solubilizing at least a portion of the hemicellulose by heating the biomass material to greater than 110.degree. C. resulting in an aqueous portion that includes the solubilized hemicellulose and a water insoluble solids portion and subsequently separating the aqueous portion from the water insoluble solids portion. A fourth embodiment is a method for making a composition that includes cellulose, at least one protein and less than about 30 weight % hemicellulose, the method including solubilizing at least a portion of hemicellulose present in a biomass material that also includes cellulose and at least one protein and subsequently separating the solubilized hemicellulose from the cellulose and at least one protein.

  11. The hydrolysis and precipitation of Pd(II) in 0.6 mol kg-1 NaCl: A potentiometric, spectrophotometric, and EXAFS study

    International Nuclear Information System (INIS)

    Boily, Jean-Francois F.; Seward, Terry M.; Charnock, John M.

    2007-01-01

    The hydrolysis of palladium was investigated in 0.6 mol kg -1 NaCl at 298.2 K. Potentiometric titrations of solutions at various total concentrations of palladium(II) revealed that dilute (millimolar) conditions can be used to monitor the proton release due to hydrolysis reactions up to 2 protons per palladium(II) as long as the equilibration time is kept small. Spectrophotometric titrations were used to corroborate the homogeneous changes in speciation for the PdCl 3 OH 2- species and to extract its correlative molar absorption coefficients in the 210-320 nm range. The molar absorption coefficients are similar to those of PdCl42- but exhibit a broader distribution of excitation energies resulting from the blue shift of the dominant charge transfer bands due to the presence of OH-. The longer-term potentiometric titrations systematically yielded, on the other hand, precipitates which matured over a period of 6 weeks and resulted in a more extensive release of protons to the solution. Precipitation experiments at six different total palladium(II) concentrations in the 3-11 pH range showed the dominant precipitating phase as Pd(OH)1.72Cl0.28. The coordination environment of Pd in this solid was investigated by extended X-ray absorption fine structure spectroscopy (EXAFS) and yielded an average 1.75 O and 0.25 Cl per Pd atoms with a Pd-O distance of 2.0 (angstrom) and Pd-Cl of 2.1 (angstrom). Finally, the precipitation experiments showed the final products to be of larger solubility than a literature Pd(OH)2 solubility study in which the KCl media induced a solid phase transformation to Pd(OH)1.72Cl0.28. Polynuclear complexes Pdq(OH)r2q-r with q=r=[3,9] explain the combined precipitation and hydrolysis data and may represent subsets of [Pd(OH)2]n and/or [Pd(OH)1.72Cl0.28]n chains coiled into nanometer-sized spheroids previously described in the literature

  12. Radiation degradation and the subsequent enzymatic hydrolysis of waste paper

    International Nuclear Information System (INIS)

    Kamakura, M.; Kaetsu, I.

    1982-01-01

    Various studies have been carried out to find methods for the pretreatment of waste cellulosic materials to make them more susceptible to enzymatic hydrolysis. In the work reported here, the effects of preirradiating waste papers on subsequent enzymatic hydrolysis have been studied

  13. Differential effects of pertussis toxin on insulin-stimulated phosphatidylcholine hydrolysis and glycerolipid synthesis de novo. Studies in BC3H-1 myocytes and rat adipocytes

    International Nuclear Information System (INIS)

    Hoffman, J.M.; Standaert, M.L.; Nair, G.P.; Farese, R.V.

    1991-01-01

    Insulin-induced increases in diacylglycerol (DAG) have been suggested to result from stimulation of de novo phosphatidic acid (PA) synthesis and phosphatidylcholine (PC) hydrolysis. Presently, the authors found that insulin decreased PC levels of BC3H-1 myocytes and rat adipocytes by approximately 10-25% within 30 s. These decreases were rapidly reversed in both cell types, apparently because of increased PC synthesis de novo. In BC3H-1 myocytes, pertussis toxin inhibited PC resynthesis and insulin effects on the pathway of de novo PA-DAG-PC synthesis, as evidenced by changes in [ 3 H]glycerol incorporation, but did not inhibit insulin-stimulated PC hydrolysis. Pertussis toxin also blocked the later, but not the initial, increase in DAG production in the myocytes. Phorbol esters activated PC hydrolysis in both myocytes and adipocytes, but insulin-induced stimulation of PC hydrolysis was not dependent upon activation of PKC, since this hydrolysis was not inhibited by 500 μM sangivamycin, an effective PKC inhibitor. The results indicate that insulin increases DAG by pertussis toxin sensitive and insensitive (PC hydrolysis) mechanisms, which are mechanistically separate, but functionally interdependent and integrated. PC hydrolysis may contribute importantly to initial increases in DAG, but later sustained increases are apparently largely dependent on insulin-induced stimulation of the pathway of de novo phospholipid synthesis

  14. Differential effects of pertussis toxin on insulin-stimulated phosphatidylcholine hydrolysis and glycerolipid synthesis de novo. Studies in BC3H-1 myocytes and rat adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, J.M.; Standaert, M.L.; Nair, G.P.; Farese, R.V. (Univ. of South Florida, Tampa (USA))

    1991-04-02

    Insulin-induced increases in diacylglycerol (DAG) have been suggested to result from stimulation of de novo phosphatidic acid (PA) synthesis and phosphatidylcholine (PC) hydrolysis. Presently, the authors found that insulin decreased PC levels of BC3H-1 myocytes and rat adipocytes by approximately 10-25% within 30 s. These decreases were rapidly reversed in both cell types, apparently because of increased PC synthesis de novo. In BC3H-1 myocytes, pertussis toxin inhibited PC resynthesis and insulin effects on the pathway of de novo PA-DAG-PC synthesis, as evidenced by changes in ({sup 3}H)glycerol incorporation, but did not inhibit insulin-stimulated PC hydrolysis. Pertussis toxin also blocked the later, but not the initial, increase in DAG production in the myocytes. Phorbol esters activated PC hydrolysis in both myocytes and adipocytes, but insulin-induced stimulation of PC hydrolysis was not dependent upon activation of PKC, since this hydrolysis was not inhibited by 500 {mu}M sangivamycin, an effective PKC inhibitor. The results indicate that insulin increases DAG by pertussis toxin sensitive and insensitive (PC hydrolysis) mechanisms, which are mechanistically separate, but functionally interdependent and integrated. PC hydrolysis may contribute importantly to initial increases in DAG, but later sustained increases are apparently largely dependent on insulin-induced stimulation of the pathway of de novo phospholipid synthesis.

  15. Molecular dynamics study of silver

    International Nuclear Information System (INIS)

    Akhter, J.I.; Yaldram, K.; Ahmad, W.; Khan, M.K.; Rehman, T.S.

    1995-03-01

    We present results of molecular dynamics study using the embedded atom potential to examine the equilibrium bulk properties of Ag. We calculate the total energy and the lattice parameters as a function of temperature. From these we determine the specific heat and linear coefficient of thermal expansion. The comparison with experimental results of these two quantities is found to be excellent. We have also calculated the mean square displacement of the atoms in the three directions. As expected because of symmetry the displacements in the three directions are comparable and increase with increasing temperature. (author) 5 figs

  16. Chemical analysis and base-promoted hydrolysis of locally ...

    African Journals Online (AJOL)

    Abstract. The study was on the chemical analysis and base- promoted hydrolysis of extracted shea nut fat. The local method of extraction of the shea nut oil was employed in comparison with literature report. A simple cold-process alkali hydrolysis of the shea nut oil was used in producing the soap. The chemical analysis of ...

  17. Starch facilitates enzymatic wheat gluten hydrolysis

    NARCIS (Netherlands)

    Hardt, N.A.; Boom, R.M.; Goot, van der A.J.

    2015-01-01

    Wheat gluten can be hydrolyzed by either using (vital) wheat gluten or directly from wheat flour. This study investigates the influence of the presence of starch, the main component of wheat, on enzymatic wheat gluten hydrolysis. Wheat gluten present in wheat flour (WFG) and vital wheat gluten (VWG)

  18. Are mixed explicit/implicit solvation models reliable for studying phosphate hydrolysis? A comparative study of continuum, explicit and mixed solvation models.

    Energy Technology Data Exchange (ETDEWEB)

    Kamerlin, Shina C. L.; Haranczyk, Maciej; Warshel, Arieh

    2009-05-01

    Phosphate hydrolysis is ubiquitous in biology. However, despite intensive research on this class of reactions, the precise nature of the reaction mechanism remains controversial. In this work, we have examined the hydrolysis of three homologous phosphate diesters. The solvation free energy was simulated by means of either an implicit solvation model (COSMO), hybrid quantum mechanical / molecular mechanical free energy perturbation (QM/MM-FEP) or a mixed solvation model in which N water molecules were explicitly included in the ab initio description of the reacting system (where N=1-3), with the remainder of the solvent being implicitly modelled as a continuum. Here, both COSMO and QM/MM-FEP reproduce Delta Gobs within an error of about 2kcal/mol. However, we demonstrate that in order to obtain any form of reliable results from a mixed model, it is essential to carefully select the explicit water molecules from short QM/MM runs that act as a model for the true infinite system. Additionally, the mixed models tend to be increasingly inaccurate the more explicit water molecules are placed into the system. Thus, our analysis indicates that this approach provides an unreliable way for modelling phosphate hydrolysis in solution.

  19. Hydrolysis of solid ammonia borane

    Energy Technology Data Exchange (ETDEWEB)

    Demirci, Umit B.; Miele, Philippe [Universite Lyon 1, CNRS, UMR 5615, Laboratoire des Multimateriaux et Interfaces, 43 boulevard du 11 Novembre 1918, F-69622 Villeurbanne (France)

    2010-07-01

    Ammonia borane NH{sub 3}BH{sub 3} is a promising hydrogen storage material by virtue of a theoretical gravimetric hydrogen storage capacity (GHSC) of 19.5 wt%. However, stored hydrogen has to be effectively released, one way of recovering this hydrogen being the metal-catalyzed hydrolysis. The present study focuses on CoCl{sub 2}-catalyzed hydrolysis of NH{sub 3}BH{sub 3} with the concern of improving the effective GHSC of the system NH{sub 3}BH{sub 3}-H{sub 2}O. For that, NH{sub 3}BH{sub 3} is stored as a solid and H{sub 2}O is provided in stoichiometric amount. By this way, an effective GHSC of 7.8 wt% has been reached at 25 C. To our knowledge, it is the highest value ever reported. Besides, one of the highest hydrogen generation rates (HGRs, 21 ml(H{sub 2}) min{sup -1}) has been found. In parallel, the increases of the water amount and temperature have been studied and the reaction kinetics has been determined. Finally, it has been observed that some NH{sub 3} release, what is detrimental for a fuel cell. To summarize, high performances in terms of GHSCs and HGRs can be reached with NH{sub 3}BH{sub 3} and since research devoted to this boron hydride is at the beginning we may be confident in making it viable in a near future. (author)

  20. A conductance study of guanidinium chloride, thiocyanate, sulfate, and carbonate in dilute aqueous solutions: ion-association and carbonate hydrolysis effects.

    Science.gov (United States)

    Hunger, Johannes; Neueder, Roland; Buchner, Richard; Apelblat, Alexander

    2013-01-17

    We study the conductance of dilute aqueous solutions for a series of guandinium salts at 298.15 K. The experimental molar conductivities were analyzed within the framework of the Quint-Viallard theory in combination with Debye-Hückel activity coefficients. From this analysis, we find no evidence for significant ion association in aqueous solutions of guanidinium chloride (GdmCl) and guanidinium thiocyanate (GdmSCN), and the molar conductivity of these electrolytes can be modeled assuming a complete dissociation. The limiting ionic conductivity of the guanidinium ion (Gdm(+)) is accurately determined to λ(Gdm(+)) = 51.45 ± 0.10 S cm(2) mol(-1). For the bivalent salts guanidinium sulfate (Gdm(2)SO(4)) and guanidinium carbonate (Gdm(2)CO(3)), the molar conductivities show small deviations from ideal (fully dissociated electrolyte) behavior, which are related to weak ion association in solution. Furthermore, for solutions of Gdm(2)CO(3), the hydrolysis of the carbonate anion leads to distinctively increased molar conductivities at high dilutions. The observed ion association is rather weak for all studied electrolytes and cannot explain the different protein denaturing activities of the studied guanidinium salts, as has been proposed previously.

  1. Coordination of substrate binding and ATP hydrolysis in Vps4-mediated ESCRT-III disassembly.

    Science.gov (United States)

    Davies, Brian A; Azmi, Ishara F; Payne, Johanna; Shestakova, Anna; Horazdovsky, Bruce F; Babst, Markus; Katzmann, David J

    2010-10-01

    ESCRT-III undergoes dynamic assembly and disassembly to facilitate membrane exvagination processes including multivesicular body (MVB) formation, enveloped virus budding, and membrane abscission during cytokinesis. The AAA-ATPase Vps4 is required for ESCRT-III disassembly, however the coordination of Vps4 ATP hydrolysis with ESCRT-III binding and disassembly is not understood. Vps4 ATP hydrolysis has been proposed to execute ESCRT-III disassembly as either a stable oligomer or an unstable oligomer whose dissociation drives ESCRT-III disassembly. An in vitro ESCRT-III disassembly assay was developed to analyze Vps4 function during this process. The studies presented here support a model in which Vps4 acts as a stable oligomer during ATP hydrolysis and ESCRT-III disassembly. Moreover, Vps4 oligomer binding to ESCRT-III induces coordination of ATP hydrolysis at the level of individual Vps4 subunits. These results suggest that Vps4 functions as a stable oligomer that acts upon individual ESCRT-III subunits to facilitate ESCRT-III disassembly.

  2. Etude préliminaire de la stabilité à l'hydrolyse des polyimides 6F Preliminary Study of the Hydrolysis Stability of 6f Polyimides

    Directory of Open Access Journals (Sweden)

    Mileo J. C.

    2006-11-01

    Full Text Available L'évaluation comparative du comportement en solution des polylmides 6F fait ressortir que ces nouveaux polymères, doués d'une stabilité thermique élevée par référence à l'analyse thermogravimétrique, ont, par contraste, une résistance beaucoup plus limitée aux influences ioniques et que l'hydrolyse, qui entraîne une réduction substantielle de leur masse moléculaire, est, dans leur cas, un processus de dégradation d'importance majeure. Despite its importance, particularly during the phase-inversion creation of asymmetrical gaseous-permeation membranes, the behavior in solution of polyImides derived from 4,4'-hexafluoroisopropylidenediphthalic anhydride has not, to our knowledge, been the subject of any published report. The present project was thus undertaken to assess the hydrolysis resistance of such polymers. This article describes and interprets some results highlighting the influence of structural factors. The products, which differ in the nature of both the initial diamine and dianhydride, were prepared by thermal polyheterocyclization in a single stage in different solvents at 200°C, and their stability was determined by the variations in their intrinsic viscosity after aging in a sealed tube at 90°C. Hydrolysis does not affect all 6F polyImides in a uniform way but seems to be governed by differences in the chemical affinity and in the morphology of the chains. Polymers having an increasing number of alkyl groups on the aminated remainder show a less and less marked susceptibility. A more specific fragility, however, affects polyImides having a carboxylic acid group. Other polar substituents have a stabilizing influence. A comparison with other polyImides is undeniably unfavorable to 6F derivatives. Degradation is very marked in dipolar aprotic solvents, whereas it appears quite limited in m-cresol. It apparantly cannot be blamed on the possible presence of uncyclized acid-amide units. The influence of the amount of

  3. Evaluation of physical structural features on influencing enzymatic hydrolysis efficiency of micronized wood

    Science.gov (United States)

    Jinxue Jiang; Jinwu Wang; Xiao Zhang; Michael Wolcott

    2016-01-01

    Enzymatic hydrolysis of lignocellulosic biomass is highly dependent on the changes in structural features after pretreatment. Mechanical milling pretreatment is an effective approach to alter the physical structure of biomass and thus improve enzymatic hydrolysis. This study examined the influence of structural characteristics on the enzymatic hydrolysis of micronized...

  4. Relationship between sol-gel conditions and enzyme stability: a case study with β-galactosidase/silica biocatalyst for whey hydrolysis.

    Science.gov (United States)

    Escobar, Sindy; Bernal, Claudia; Mesa, Monica

    2015-01-01

    The sol-gel process has been very useful for preparing active and stable biocatalysts, with the possibility of being reused. Especially those based on silica are well known. However, the study of the enzyme behavior during this process is not well understood until now and more, if the surfactant is involved in the synthesis mixture. This work is devoted to the encapsulation of β-galactosidase from Bacillus circulans in silica by sol-gel process, assisted by non-ionic Triton X-100 surfactant. The correlation between enzyme activity results for the β-galactosidase in three different environments (soluble in buffered aqueous reference solution, in the silica sol, and entrapment on the silica matrix) explains the enzyme behavior under stress conditions offered by the silica sol composition and gelation conditions. A stable β-galactosidase/silica biocatalyst is obtained using sodium silicate, which is a cheap source of silica, in the presence of non-ionic Triton X-100, which avoids the enzyme deactivation, even at 40 °C. The obtained biocatalyst is used in the whey hydrolysis for obtaining high value products from this waste. The preservation of the enzyme stability, which is one of the most important challenges on the enzyme immobilization through the silica sol-gel, is achieved in this study.

  5. Determination of the main impurities formed after acid hydrolysis of soybean extracts and the in vitro mutagenicity and genotoxicity studies of 5-ethoxymethyl-2-furfural.

    Science.gov (United States)

    Nemitz, Marina C; Picada, Jaqueline N; da Silva, Juliana; Garcia, Ana Letícia H; Papke, Débora K M; Grivicich, Ivana; Steppe, Martin; von Poser, Gilsane L; Teixeira, Helder F

    2016-09-10

    Soybean acid hydrolyzed extracts are raw-materials widely used for manufacturing of pharmaceuticals and cosmetics products due to their high content of isoflavone aglycones. In the present study, the main sugar degradation products 5-hydroxymethyl-2-furfural (HMF) and 5-ethoxymethyl-2-furfural (EMF) were quantitatively determined after acid hydrolysis of extracts from different soybean cultivars by a validated liquid chromatography method. The furanic compounds determined in samples cover the range of 0.16-0.21mg/mL and 0.22-0.33mg/mL for HMF and EMF, respectively. Complementarily, due to the scarce literature regarding the EMF toxicology, this study also assessed the EMF mutagenicity by the Salmonella/microsome test and genotoxicity by the comet assay. The results revealed that EMF did not show mutagenicity at the range of 50-5000μg/plate in S. typhimurium strains TA98, TA97a, TA100, TA102 and TA1535, but induced DNA damage in HepG2 cells at non-cytotoxic doses of 0.1-1.3mg/mL, mainly by oxidative stress mechanisms. Based on literature of HMF genotoxicity, and considering the EMF genotoxicity results herein shown, purification procedures to remove these impurities from extracts are recommended during healthcare products development to ensure the security of the products. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Study of a specific lignin model: γ-oxidation and how it influences the hydrolysis efficiency of alcohol-aldehyde dehydrogenation copolymers.

    Science.gov (United States)

    Bouxin, Florent; Baumberger, Stéphanie; Renault, Jean-Hugues; Dole, Patrice

    2011-05-01

    Six coniferyl alcohol-coniferaldehyde dehydrogenation copolymers (DHcoPs) were synthesized in order to determine the influence of an increased number of aldehyde functions on hydrolysis. After heterogeneous hydrolysis using acidic Montmorillonite K10 clay, the DHcoPs were thioacidolyzed and analyzed by gel permeation chromatography (GPC). Comparison of the thioacidolyzed products, with and without the hydrolysis step, showed that there was a greater proportion of condensation reaction in the absence of aldehyde. When the coniferaldehyde content in the initial synthetic mixture was more than 30% (w/w), only a low fraction of condensed products was generated during the K10 clay hydrolysis step. This suggests that condensation pathways are mainly due to the alcohol present in the γ-position in the DHcoPs. Investigation of the reactivity and the potential condensation of aldehyde and alcohol monomers under hydrolysis conditions showed the important conversion of coniferyl alcohol and conversely the stability of coniferaldehyde. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Hydrolysis reactor for hydrogen production

    Science.gov (United States)

    Davis, Thomas A.; Matthews, Michael A.

    2012-12-04

    In accordance with certain embodiments of the present disclosure, a method for hydrolysis of a chemical hydride is provided. The method includes adding a chemical hydride to a reaction chamber and exposing the chemical hydride in the reaction chamber to a temperature of at least about 100.degree. C. in the presence of water and in the absence of an acid or a heterogeneous catalyst, wherein the chemical hydride undergoes hydrolysis to form hydrogen gas and a byproduct material.

  8. Studies in Chaotic adiabatic dynamics

    International Nuclear Information System (INIS)

    Jarzynski, C.

    1994-01-01

    Chaotic adiabatic dynamics refers to the study of systems exhibiting chaotic evolution under slowly time-dependent equations of motion. In this dissertation the author restricts his attention to Hamiltonian chaotic adiabatic systems. The results presented are organized around a central theme, namely, that the energies of such systems evolve diffusively. He begins with a general analysis, in which he motivates and derives a Fokker-Planck equation governing this process of energy diffusion. He applies this equation to study the open-quotes goodnessclose quotes of an adiabatic invariant associated with chaotic motion. This formalism is then applied to two specific examples. The first is that of a gas of noninteracting point particles inside a hard container that deforms slowly with time. Both the two- and three-dimensional cases are considered. The results are discussed in the context of the Wall Formula for one-body dissipation in nuclear physics, and it is shown that such a gas approaches, asymptotically with time, an exponential velocity distribution. The second example involves the Fermi mechanism for the acceleration of cosmic rays. Explicit evolution equations are obtained for the distribution of cosmic ray energies within this model, and the steady-state energy distribution that arises when this equation is modified to account for the injection and removal of cosmic rays is discussed. Finally, the author re-examines the multiple-time-scale approach as applied to the study of phase space evolution under a chaotic adiabatic Hamiltonian. This leads to a more rigorous derivation of the above-mentioned Fokker-Planck equation, and also to a new term which has relevance to the problem of chaotic adiabatic reaction forces (the forces acting on slow, heavy degrees of freedom due to their coupling to light, fast chaotic degrees)

  9. Mechanistic Study of the sPLA2 Mediated Hydrolysis of a Thio-ester Pro Anticancer Ether Lipid

    DEFF Research Database (Denmark)

    Linderoth, Lars; Fristrup, Peter; Hansen, Martin

    2009-01-01

    Secretory phospholipase A2 (sPLA2) is an interesting enzyme for triggered liposomal drug delivery to tumor tissue due the overexpression of sPLA2 in cancerous tissue. A drug delivery system based on the triggered release of therapeutics from sPLA2-sensitive liposomes constituted of pro anticancer...... ether lipids, which become cytotoxic upon sPLA2-catalyzed hydrolysis has previously been established. To optimize the hydrolysis rate of the lipids and thereby optimizing the release profile of the drugs from the liposomes, we have synthesized a thio-ester pro anticancer ether lipid. Liposomes...... constituted of this lipid showed an altered rate of hydrolysis by sPLA2. We have tested the cytotoxicity of the thio-ester pro anticancer ether lipids toward cancer cells, and the results showed that the cytotoxicity is indeed maintained upon sPLA2 exposure. To further understand the origin for the observed...

  10. Applications of fluorescence techniques to the study of uranium in homogeneous and heterogeneous environments: hydrolysis and photo-reduction reactions on titanium dioxide

    International Nuclear Information System (INIS)

    Eliet, Veronique

    1996-01-01

    This thesis describes the use of Time-Resolved Fluorescence to characterise the spectroscopy of hydroxo-complexes of hexavalent Uranium, and to study photochemical reactions involving these species at mineral/water interfaces. The instrumentation used comprised of either an excimer laser coupled to an optical multichannel analyser OMA or a Nd-YAG laser coupled to a stroboscopic photomultiplier. The hydrolysis of Uranium at a constant temperature of 25 deg. C, has been studied in the pH ranges 0-5 and 9-12. Deconvolution of spectra and fluorescence decay curves for Uranium yielded individual fluorescence spectra and decay times for uranyl UO 2 2+ and its hydroxo-complexes UO 2 OH + , (UO 2 )2(OH) 2 2+ , (UO 2 ) 3 (OH) 5 + et UO 2 (OH) 3 - . The comparison of fluorescence efficiencies for the various species showed that the complex (UO 2 )2(OH) 2 2+ is up to 85 times more fluorescent than uranyl, depending on the emission wavelength. Further, investigations of fluorescence decays as a function of temperature in the pH range 0-6, yielded activation energies for the various Uranium hydroxo species. The knowledge gained in homogeneous media served in the study of the photochemical behaviour of Uranium in suspensions of the semi-conductor mineral, TiO 2 . After UV-light absorption, charge carriers formed at the mineral surface were found to reduce hexavalent Uranium to the tetravalent oxidation state. Time-Resolved Fluorescence Spectroscopy has been used to monitor the kinetics of the oxidation state change. A reaction mechanism is proposed on the basis of results obtained by studying the kinetics of the process at different values of pH The role of humic substances on the heterogeneous redox reaction has also been examined. (author) [fr

  11. Dynamical study of liquid aluminium

    International Nuclear Information System (INIS)

    Dubey, G.S.; Chaturvedi, D.K.

    1979-09-01

    Recent molecular dynamics data of Ebbsjoe et al. in liquid aluminium have been analysed through the memory function formalism. Two forms of the memory functions which have correct asymptotic limit at large wavenumbers but accounts for interatomic correlations in a different manner are considered. The results for ω 2 s(q, ω) obtained from both models are compared with experimental data. (author)

  12. Electrospray ionization mass spectrometry for the hydrolysis complexes of cisplatin: implications for the hydrolysis process of platinum complexes.

    Science.gov (United States)

    Feifan, Xie; Pieter, Colin; Jan, Van Bocxlaer

    2017-07-01

    Non-enzyme-dependent hydrolysis of the drug cisplatin is important for its mode of action and toxicity. However, up until today, the hydrolysis process of cisplatin is still not completely understood. In the present study, the hydrolysis of cisplatin in an aqueous solution was systematically investigated by using electrospray ionization mass spectrometry coupled to liquid chromatography. A variety of previously unreported hydrolysis complexes corresponding to monomeric, dimeric and trimeric species were detected and identified. The characteristics of the Pt-containing complexes were investigated by using collision-induced dissociation (CID). The hydrolysis complexes demonstrate distinctive and correlative CID characteristics, which provides tools for an informative identification. The most frequently observed dissociation mechanism was sequential loss of NH 3 , H 2 O and HCl. Loss of the Pt atom was observed as the final step during the CID process. The formation mechanisms of the observed complexes were explored and experimentally examined. The strongly bound dimeric species, which existed in solution, are assumed to be formed from the clustering of the parent compound and its monohydrated or dihydrated complexes. The role of the electrospray process in the formation of some of the observed ions was also evaluated, and the electrospray ionization-related cold clusters were identified. The previously reported hydrolysis equilibria were tested and subsequently refined via a hydrolysis study resulting in a renewed mechanistic equilibrium system of cisplatin as proposed from our results. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Radiation degration and the subsequent enzymatic hydrolysis of waste papers

    International Nuclear Information System (INIS)

    Kamakura, M.; Kaetsu, I.

    1982-01-01

    In recent years, many methods have been proposed for the hydrolysis of waste cellulose to utilize it as a new source of alcohol. Because it is difficult to hydrolyze waste cellulosic materials effectivley with an enzyme, the effects of preirradiating waste papers on subsequent enzymatic hydrolysis was studied. Preirradiation (x rays from 60 Co) accelerated the hydrolysis rate of newspaper by cellulase and the reducing-sugar yield increased with increasing irradiation dose. It is thought that preirradiation probably contributes to loosening and releasing the compactly entangled structure of cellulose and lignin in the materials by radiation degradation

  14. Enzyme loading dependence of cellulose hydrolysis of sugarcane bagasse

    Directory of Open Access Journals (Sweden)

    Carlos Martín

    2012-01-01

    Full Text Available The enzymatic hydrolysis of steam-pretreated sugarcane bagasse, either delignified or non-delignified, was studied as a function of enzyme loading. Hydrolysis experiments were carried out using five enzyme loadings (2.5 to 20 FPU/g cellulose and the concentration of solids was 2% for both materials. Alkaline delignification improved cellulose hydrolysis by increasing surface area. For both materials, glucose concentrations increased with enzyme loading. On the other hand, enzyme loadings higher than 15 FPU/g did not result in any increase in the initial rate, since the excess of enzyme adsorbed onto the substrate restricted the diffusion process through the structure.

  15. A DFT-based comparative equilibrium study of thermal dehydration and hydrolysis of CaCl2 hydrates and MgCl2 hydrates for seasonal heat storage

    NARCIS (Netherlands)

    Pathak, A.D.; Gaastra-Nedea, S.V.; Zondag, H.A.; Rindt, C.C.M.; Smeulders, D.M.J.

    2016-01-01

    Salt hydrates store solar energy in chemical form via a reversible dehydration–hydration reaction. However, as a side reaction to dehydration, hydrolysis (HCl formation) may occur in chloride based salt hydrates (specially in MgCl2 hydrates), affecting the durability of the storage system. The

  16. Experimental investigation on lithium hydride hydrolysis

    International Nuclear Information System (INIS)

    S Charton; F Delaunay; L Saviot; F Bernard; C Maupoix

    2006-01-01

    In order to have a better understanding of LiH reaction with water, several experimental techniques were investigated and tested to determine whether they were suitable or not in a kinetic purpose. Among them, Raman spectroscopy and X-Ray photoelectrons spectroscopy (XPS) gave particularly interesting results and are extensively used in the field of our kinetic and phenomenological study of H 2 production by LiH hydrolysis. (authors)

  17. PLA recycling by hydrolysis at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Cristina, Annesini Maria; Rosaria, Augelletti; Sara, Frattari, E-mail: sara.frattari@uniroma1.it; Fausto, Gironi [Department of Chemical Engineering Materials Environment, University of Rome “La Sapienza”, Via Eudossiana 18– 00184 Roma (Italy)

    2016-05-18

    In this work the process of PLA hydrolysis at high temperature was studied, in order to evaluate the possibility of chemical recycling of this polymer bio-based. In particular, the possibility to obtain the monomer of lactic acid from PLA degradation was investigated. The results of some preliminary tests, performed in a laboratory batch reactor at high temperature, are presented: the experimental results show that the complete degradation of PLA can be obtained in relatively low reaction times.

  18. Modelling and Simulation of the Batch Hydrolysis of Acetic ...

    African Journals Online (AJOL)

    The kinetic modelling of the batch synthesis of acetic acid from acetic anhydride was investigated. The kinetic data of the reaction was obtained by conducting the hydrolysis reaction in a batch reactor. A dynamic model was formulated for this process and simulation was carried out using gPROMS® an advanced process ...

  19. Enzymatic hydrolysis of multi-use forage energy crops, year 2 report: Studies on the improvement of reaction conditions, differences between forages. SRC technical report No. 141, and SRC publication No. C-711-6-B-83

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, L.J.; Coxworth, E.C.

    1983-12-31

    The main objective of the work described in this report is to optimize the conversion of forages and crop residues to simple sugars, and to determine the quantity of protein that can be readily recovered after enzymatic hydrolysis of those materials. The simple sugars would be used as substrates for fermentation to fuels and chemicals, and the protein is a potentially valuable byproduct for use as fertilizer or feed. The plant materials studied were kochia, Jerusalem artichoke, pea stem and chaff, oilseed radish, alfalfa, and slender wheat grass. The enzymes used in the hydrolysis were Onozuka R-10, Celluclast 200L Type N, and cellobiase 250L. Results reported include comparisons of enzymatic reactivity of the materials studied, the quantity of protein remaining after treatment, and the dry matter solubility of the materials achieved using the different enzymes.

  20. Dynamic Modeling and Validation of a Biomass Hydrothermal Pretreatment Process - A Demonstration Scale Study

    DEFF Research Database (Denmark)

    Prunescu, Remus Mihail; Blanke, Mogens; Jakobsen, Jon Geest

    2015-01-01

    for the enzymatic hydrolysis process. Several by-products are also formed, which disturb and act as inhibitors downstream. The objective of this study is to formulate and validate a large scale hydrothermal pretreatment dynamic model based on mass and energy balances, together with a complex conversion mechanism......Hydrothermal pretreatment of lignocellulosic biomass is a cost effective technology for second generation biorefineries. The process occurs in large horizontal and pressurized thermal reactors where the biomatrix is opened under the action of steam pressure and temperature to expose cellulose...... and kinetics. The study includes a comprehensive sensitivity and uncertainty analysis, with parameter estimation from real-data in the 178-185° range. To highlight the application utility of the model, a state estimator for biomass composition is developed. The predictions capture well the dynamic trends...

  1. Conversion of rice straw to sugars by dilute-acid hydrolysis

    International Nuclear Information System (INIS)

    Karimi, Keikhosro; Kheradmandinia, Shauker; Taherzadeh, Mohammad J.

    2006-01-01

    Hydrolysis of rice straw by dilute sulfuric acid at high temperature and pressure was investigated in one and two stages. The hydrolyses were carried out in a 10-l reactor, where the hydrolysis retention time (3-10 min), pressure (10-35 bar) and acid concentration (0-1%) were examined. Optimization of first stage hydrolysis is desirable to achieve the highest yield of the sugars from hemicellulose and also as a pretreatment for enzymatic hydrolysis. The results show the ability of first stage hydrolysis to depolymerize xylan to xylose with a maximum yield of 80.8% at hydrolysis pressure of 15 bar, 10 min retention time and 0.5% acid concentration. However, the yield of glucose from glucan was relatively low in first stage hydrolysis at a maximum of 25.8%. The solid residuals were subjected to further dilute-acid hydrolysis in this study. This second-stage hydrolysis without addition of the acid could not increase the yield of glucose from glucan beyond 26.6%. On the other hand, the best results of the hydrolysis were achieved, when 0.5% sulfuric acid was added prior to each stage in two-stage hydrolysis. The best results of the second stage of the hydrolysis were achieved at the hydrolysis pressure and the retention time of 30 bar and 3 min in the second stage hydrolysis, where a total of 78.9% of xylan and 46.6% of glucan were converted to xylose and glucose, respectively in the two stages. Formation of furfural and HMF were functions of the hydrolysis pressure, acid concentration, and retention time, whereas the concentration of acetic acid was almost constant at pressure of higher than 10 bar and a total retention time of 10 min

  2. Impact of α-amylase combined with hydrochloric acid hydrolysis on structure and digestion of waxy rice starch.

    Science.gov (United States)

    Li, Hongyan; Zhu, Yanqiao; Jiao, Aiquan; Zhao, Jianwei; Chen, Xiaoming; Wei, Benxi; Hu, Xiuting; Wu, Chunsen; Jin, Zhengyu; Tian, Yaoqi

    2013-04-01

    The structure and in vitro digestibility of native waxy rice starch by the combined hydrolysis of α-amylase and hydrochloric acid were investigated in this study. The combined hydrolysis technique generated higher hydrolysis rate and extent than the enzymatic hydrolysis. The granular appearance and chromatograph profile demonstrated that α-amylase and hydrochloric acid exhibited different patterns of hydrolysis. The rise in the ratio of absorbance 1047/1022cm(-1), the melting temperature range (Tc-To), and the melting enthalpy (ΔH) were observed during the combined hydrolysis. These results suggest that α-amylase simultaneously cleaves the amorphous and crystalline regions, whereas the amorphous regions of starch granules are preferentially hydrolyzed during the acid hydrolysis. Furthermore, the combined hydrolysis increased rapidly digestible starch (RDS) while decreased slowly digestible starch (SDS) and resistant starch (RS), indicating that the hydrolysis mode affected the digestion property of native waxy rice starch. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Theoretical studies of combustion dynamics

    International Nuclear Information System (INIS)

    Bowman, J.M.

    1986-01-01

    The reactions of O( 3 P)+H 2 , D 2 , and HD are the focus of this research. Their approximate three-dimensional quantum calculations of the rate constant for both the ground and first excited vibrational states of the above reactions were completed last year. Comparisons of the calculated rate constants, isotope effects and branching ratios have been made with available experimental work and also with the variational transition state theory calculations. The main conclusion of that paper is that tunneling plays a major role in the reaction dynamics at room temperature and below

  4. Optimization of Enzymatic Hydrolysis of Waste Bread before Fermentation

    OpenAIRE

    Hudečková, Helena; Šupinová, Petra; Ing. Mgr. Libor Babák, Ph.D., MBA

    2017-01-01

    Finding of optimal hydrolysis conditions is important for increasing the yield of saccharides. The higher yield of saccharides is usable for increase of the following fermentation effectivity. In this study optimal conditions (pH and temperature) for amylolytic enzymes were searched. As raw material was used waste bread. Two analytical methods for analysis were used. Efficiency and process of hydrolysis was analysed spectrophotometrically by Somogyi-Nelson method. Final yields of glucose were...

  5. Enzymatic Hydrolysis of Alkaline Pretreated Coconut Coir

    Directory of Open Access Journals (Sweden)

    Akbarningrum Fatmawati

    2013-06-01

    Full Text Available The purpose of this research is to study the effect of concentration and temperature on the cellulose and lignin content, and the reducing sugars produced in the enzymatic hydrolysis of coconut coir. In this research, the coconut coir is pretreated using 3%, 7%, and 11% NaOH solution at 60oC, 80oC, and 100oC. The pretreated coir were assayed by measuring the amount of cellulose and lignin and then hydrolysed using Celluclast and Novozyme 188 under various temperature (30oC, 40oC, 50oC and pH (3, 4, 5. The hydrolysis results were assayed for the reducing sugar content. The results showed that the alkaline delignification was effective to reduce lignin and to increase the cellulose content of the coir. The best delignification condition was observed at 11% NaOH solution and 100oC which removed 14,53% of lignin and increased the cellulose content up to 50,23%. The best condition of the enzymatic hydrolysis was obtained at 50oC and pH 4 which produced 7,57 gr/L reducing sugar. © 2013 BCREC UNDIP. All rights reservedReceived: 2nd October 2012; Revised: 31st January 2013; Accepted: 6th February 2013[How to Cite: Fatmawati, A., Agustriyanto, R., Liasari, Y. (2013. Enzymatic Hydrolysis of Alkaline Pre-treated Coconut Coir. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (1: 34-39 (doi:10.9767/bcrec.8.1.4048.34-39[Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.1.4048.34-39] | View in  |

  6. CFD simulation of transient stage of continuous countercurrent hydrolysis of canola oil

    KAUST Repository

    Wang, Weicheng

    2012-08-01

    Computational Fluid Dynamic (CFD) modeling of a continuous countercurrent hydrolysis process was performed using ANSYS-CFX. The liquid properties and flow behavior such as density, specific heats, dynamic viscosity, thermal conductivity, and thermal expansivity as well as water solubility of the hydrolysis components triglyceride, diglyceride, monoglyceride, free fatty acid, and glycerol were calculated. Chemical kinetics for the hydrolysis reactions were simulated in this model by applying Arrhenius parameters. The simulation was based on actual experimental reaction conditions including temperature and water-to-oil ratio. The results not only have good agreement with experimental data but also show instantaneous distributions of concentrations of every component in hydrolysis reaction. This model provided visible insight into the continuous countercurrent hydrolysis process. © 2012 Elsevier Ltd.

  7. CFD simulation of transient stage of continuous countercurrent hydrolysis of canola oil

    KAUST Repository

    Wang, Weicheng; Natelson, Robert H.; Stikeleather, Larry F.; Roberts, William L.

    2012-01-01

    Computational Fluid Dynamic (CFD) modeling of a continuous countercurrent hydrolysis process was performed using ANSYS-CFX. The liquid properties and flow behavior such as density, specific heats, dynamic viscosity, thermal conductivity, and thermal expansivity as well as water solubility of the hydrolysis components triglyceride, diglyceride, monoglyceride, free fatty acid, and glycerol were calculated. Chemical kinetics for the hydrolysis reactions were simulated in this model by applying Arrhenius parameters. The simulation was based on actual experimental reaction conditions including temperature and water-to-oil ratio. The results not only have good agreement with experimental data but also show instantaneous distributions of concentrations of every component in hydrolysis reaction. This model provided visible insight into the continuous countercurrent hydrolysis process. © 2012 Elsevier Ltd.

  8. Hydrolysis of the amorphous cellulose in cotton-based paper.

    Science.gov (United States)

    Stephens, Catherine H; Whitmore, Paul M; Morris, Hannah R; Bier, Mark E

    2008-04-01

    Hydrolysis of cellulose in Whatman no. 42 cotton-based paper was studied using gel permeation chromatography (GPC), electrospray ionization-mass spectrometry (ESI-MS), and uniaxial tensile testing to understand the course and kinetics of the reaction. GPC results suggested that scission reactions passed through three stages. Additionally, the evolution of soluble oligomers in the ESI-MS data and the steady course of strength loss showed that the hydrolysis reaction occurred at a constant rate. These findings are explained with a more detailed description of the cellulose hydrolysis, which includes multiple chain scissions on amorphous segments. The breaks occur with increasing frequency near the ends of amorphous segments, where chains protrude from crystalline domains. Oligomers unattached to crystalline domains are eventually created. Late-stage reactions near the ends of amorphous segments produce a kinetic behavior that falsely suggests that hydrolysis had ceased. Monte Carlo simulations of cellulose degradation corroborated the experimental findings.

  9. Thermopressure hydrolysis. Paper; Thermodruckhydrolyse. Paper

    Energy Technology Data Exchange (ETDEWEB)

    Stahl, R. [Scheuchl GmbH, Ortenburg (Germany); Prechtl, S. [Applikations- und Technikzentrum fuer Energieverfahrens-, Umwelt- und Stroemungstechnik (ATZ-EVUS), Sulzbach-Rosenberg (Germany)

    2000-12-01

    This paper presents a processing method which consists in thermal hydrolysis and subsequent anaerobic fermentation and is especially well suited for wet, low-structure organic wastes. [German] Das vorgestellte Verwertungsverfahren bestehend aus thermischer Hydrolyse und anschliessender anaerober Vergaerung eignet sich besonders fuer nasse, strukturarme organische Abfaelle. (orig.)

  10. Decay correction methods in dynamic PET studies

    International Nuclear Information System (INIS)

    Chen, K.; Reiman, E.; Lawson, M.

    1995-01-01

    In order to reconstruct positron emission tomography (PET) images in quantitative dynamic studies, the data must be corrected for radioactive decay. One of the two commonly used methods ignores physiological processes including blood flow that occur at the same time as radioactive decay; the other makes incorrect use of time-accumulated PET counts. In simulated dynamic PET studies using 11 C-acetate and 18 F-fluorodeoxyglucose (FDG), these methods are shown to result in biased estimates of the time-activity curve (TAC) and model parameters. New methods described in this article provide significantly improved parameter estimates in dynamic PET studies

  11. Hydrolysis of CuCl{sub 2} in the Cu-Cl thermochemical cycle for hydrogen production: Experimental studies using a spray reactor with an ultrasonic atomizer

    Energy Technology Data Exchange (ETDEWEB)

    Ferrandon, Magali S.; Lewis, Michele A. [Argonne National Laboratory, Chemical Sciences and Engineering Division, 9700 S. Cass Ave., Argonne, IL 60439 (United States); Alvarez, Francisco; Shafirovich, Evgeny [The University of Texas at El Paso, Mechanical Engineering Department, 500 W. University Ave., El Paso, TX 79968 (United States)

    2010-03-15

    The Cu-Cl thermochemical cycle is being developed as a hydrogen production method. Prior proof-of-concept experimental work has shown that the chemistry is viable while preliminary modeling has shown that the efficiency and cost of hydrogen production have the potential to meet DOE's targets. However, the mechanisms of CuCl{sub 2} hydrolysis, an important step in the Cu-Cl cycle, are not fully understood. Although the stoichiometry of the hydrolysis reaction, 2CuCl{sub 2} + H{sub 2}O <-> Cu{sub 2}OCl{sub 2} + 2HCl, indicates a necessary steam-to-CuCl{sub 2} molar ratio of 0.5, a ratio as high as 23 has been typically required to obtain near 100% conversion of the CuCl{sub 2} to the desired products at atmospheric pressure. It is highly desirable to conduct this reaction with less excess steam to improve the process efficiency. Per Le Chatelier's Principle and according to the available equilibrium-based model, the needed amount of steam can be decreased by conducting the hydrolysis reaction at a reduced pressure. In the present work, the experimental setup was modified to allow CuCl{sub 2} hydrolysis in the pressure range of 0.4-1 atm. Chemical and XRD analyses of the product compositions revealed the optimal steam-to-CuCl{sub 2} molar ratio to be 20-23 at 1 atm pressure. The experiments at 0.4 atm and 0.7 atm showed that it is possible to lower the steam-to-CuCl{sub 2} molar ratio to 15, while still obtaining good yields of the desired products. An important effect of running the reaction at reduced pressure is the significant decrease of CuCl concentration in the solid products, which was not predicted by prior modeling. Possible explanations based on kinetics and residence times are suggested. (author)

  12. Electron transfer precedes ATP hydrolysis during nitrogenase catalysis

    Science.gov (United States)

    Duval, Simon; Danyal, Karamatullah; Shaw, Sudipta; Lytle, Anna K.; Dean, Dennis R.; Hoffman, Brian M.; Antony, Edwin; Seefeldt, Lance C.

    2013-01-01

    The biological reduction of N2 to NH3 catalyzed by Mo-dependent nitrogenase requires at least eight rounds of a complex cycle of events associated with ATP-driven electron transfer (ET) from the Fe protein to the catalytic MoFe protein, with each ET coupled to the hydrolysis of two ATP molecules. Although steps within this cycle have been studied for decades, the nature of the coupling between ATP hydrolysis and ET, in particular the order of ET and ATP hydrolysis, has been elusive. Here, we have measured first-order rate constants for each key step in the reaction sequence, including direct measurement of the ATP hydrolysis rate constant: kATP = 70 s−1, 25 °C. Comparison of the rate constants establishes that the reaction sequence involves four sequential steps: (i) conformationally gated ET (kET = 140 s−1, 25 °C), (ii) ATP hydrolysis (kATP = 70 s−1, 25 °C), (iii) Phosphate release (kPi = 16 s−1, 25 °C), and (iv) Fe protein dissociation from the MoFe protein (kdiss = 6 s−1, 25 °C). These findings allow completion of the thermodynamic cycle undergone by the Fe protein, showing that the energy of ATP binding and protein–protein association drive ET, with subsequent ATP hydrolysis and Pi release causing dissociation of the complex between the Feox(ADP)2 protein and the reduced MoFe protein. PMID:24062462

  13. Direct injection of superheated steam for continuous hydrolysis reaction

    KAUST Repository

    Wang, Weicheng

    2012-09-01

    The primary intent for previous continuous hydrolysis studies was to minimize the reaction temperature and reaction time. In this work, hydrolysis is the first step of a proprietary chemical process to convert lipids to sustainable, drop-in replacements for petroleum based fuels. To improve the economics of the process, attention is now focused on optimizing the energy efficiency of the process, maximizing the reaction rate, and improving the recovery of the glycerol by-product. A laboratory-scale reactor system has been designed and built with this goal in mind.Sweet water (water with glycerol from the hydrolysis reaction) is routed to a distillation column and heated above the boiling point of water at the reaction pressure. The steam pressure allows the steam to return to the reactor without pumping. Direct injection of steam into the hydrolysis reactor is shown to provide favorable equilibrium conditions resulting in a high quality of FFA product and rapid reaction rate, even without preheating the inlet water and oil and with lower reactor temperatures and lower fresh water demand. The high enthalpy of the steam provides energy for the hydrolysis reaction. Steam injection offers enhanced conditions for continuous hydrolysis of triglycerides to high-purity streams of FFA and glycerol. © 2012 Elsevier B.V.

  14. Electron transfer precedes ATP hydrolysis during nitrogenase catalysis.

    Science.gov (United States)

    Duval, Simon; Danyal, Karamatullah; Shaw, Sudipta; Lytle, Anna K; Dean, Dennis R; Hoffman, Brian M; Antony, Edwin; Seefeldt, Lance C

    2013-10-08

    The biological reduction of N2 to NH3 catalyzed by Mo-dependent nitrogenase requires at least eight rounds of a complex cycle of events associated with ATP-driven electron transfer (ET) from the Fe protein to the catalytic MoFe protein, with each ET coupled to the hydrolysis of two ATP molecules. Although steps within this cycle have been studied for decades, the nature of the coupling between ATP hydrolysis and ET, in particular the order of ET and ATP hydrolysis, has been elusive. Here, we have measured first-order rate constants for each key step in the reaction sequence, including direct measurement of the ATP hydrolysis rate constant: kATP = 70 s(-1), 25 °C. Comparison of the rate constants establishes that the reaction sequence involves four sequential steps: (i) conformationally gated ET (kET = 140 s(-1), 25 °C), (ii) ATP hydrolysis (kATP = 70 s(-1), 25 °C), (iii) Phosphate release (kPi = 16 s(-1), 25 °C), and (iv) Fe protein dissociation from the MoFe protein (kdiss = 6 s(-1), 25 °C). These findings allow completion of the thermodynamic cycle undergone by the Fe protein, showing that the energy of ATP binding and protein-protein association drive ET, with subsequent ATP hydrolysis and Pi release causing dissociation of the complex between the Fe(ox)(ADP)2 protein and the reduced MoFe protein.

  15. Structures in dynamics finite dimensional deterministic studies

    CERN Document Server

    Broer, HW; van Strien, SJ; Takens, F

    1991-01-01

    The study of non-linear dynamical systems nowadays is an intricate mixture of analysis, geometry, algebra and measure theory and this book takes all aspects into account. Presenting the contents of its authors' graduate courses in non-linear dynamical systems, this volume aims at researchers who wish to be acquainted with the more theoretical and fundamental subjects in non-linear dynamics and is designed to link the popular literature with research papers and monographs. All of the subjects covered in this book are extensively dealt with and presented in a pedagogic

  16. Proteomics Insights into the Biomass Hydrolysis Potentials of a Hypercellulolytic Fungus Penicillium funiculosum.

    Science.gov (United States)

    Ogunmolu, Funso Emmanuel; Kaur, Inderjeet; Gupta, Mayank; Bashir, Zeenat; Pasari, Nandita; Yazdani, Syed Shams

    2015-10-02

    The quest for cheaper and better enzymes needed for the efficient hydrolysis of lignocellulosic biomass has placed filamentous fungi in the limelight for bioprospecting research. In our search for efficient biomass degraders, we identified a strain of Penicillium funiculosum whose secretome demonstrates high saccharification capabilities. Our probe into the secretome of the fungus through qualitative and label-free quantitative mass spectrometry based proteomics studies revealed a high abundance of inducible CAZymes and several nonhydrolytic accessory proteins. The preferential association of these proteins and the attending differential biomass hydrolysis gives an insight into their interactions and clues about possible roles of novel hydrolytic and nonhydrolytic proteins in the synergistic deconstruction of lignocellulosic biomass. Our study thus provides the first comprehensive insight into the repertoire of proteins present in a high-performing secretome of a hypercellulolytic Penicillium funiculosum, their relative abundance in the secretome, and the interaction dynamics of the various protein groups in the secretome. The gleanings from the stoichiometry of these interactions hold a prospect as templates in the design of cost-effective synthetic cocktails for the optimal hydrolysis of biomass.

  17. Hydrolysis of phosphatidylcholine by hepatic lipase in discoidal and spheroidal recombinant high-density lipoprotein.

    Science.gov (United States)

    Tansey, J T; Thuren, T Y; Jerome, W G; Hantgan, R R; Grant, K; Waite, M

    1997-10-07

    Hepatic lipase (HL) hydrolysis of phosphatidylcholine (PC) was studied in recombinant high-density lipoprotein particles (r-HDL). r-HDL were made from cholate mixed micelles that contained PC, apo AI, and, in some cases, unesterified cholesterol. r-HDL were characterized using chemical composition, nondenaturing gradient gel electrophoresis, transmission electron microscopy, and dynamic light scattering. The r-HDL were found to be discoidal and in the size range of native HDL. Upon treatment of cholesterol-containing r-HDL with lecithin-cholesterol acyltransferase (LCAT), to form cholesteryl ester, the discoidal r-HDL became spheroidal. The effects of r-HDL morphology and size on HL activity were studied on r-HDL made of palmitoyloleoyl-PC, unesterified cholesterol, cholesteryl ester, and apolipoprotein AI. Spheroidal r-HDL were hydrolyzed at a faster rate than discoidal r-HDL. Protein-poor r-HDL were hydrolyzed by HL at a faster rate than protein rich r-HDL. Unesterified cholesterol had no apparent effect on particle PC hydrolysis. The hydrolysis of different species of PC [dipalmitoyl (DPPC), dioleoyl(DOPC), palmitoylarachidonoyl (PAPC), and palmitoyloleoyl (POPC)] in r-HDL was also investigated. In discoidal r-HDL, we found that POPC >/= DOPC = PAPC/DPPC. However, in LCAT-treated spheroidal r-HDL, POPC = DOPC > PAPC/DPPC. In both discoidal and spheroidal rHDL, DPPC containing r-HDL were not hydrolyzed to a significant extent. Collectively, these studies demonstrate that the physico-chemical properties of particles (such as phospholipid packing and phospholipid acyl composition) play a significant role in hydrolysis of HDL phospholipid by HL and, therefore, in reverse cholesterol transport.

  18. Contribution to the study of the hydrolysis of uranium carbides (1963); Contribution a l'etude de l'hydrolyse des carbures d'uranium (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Spitz, J [Commisariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1963-06-15

    The hydrolysis of uranium monocarbide in neutral or acid medium leads to the formation of a complex mixture of hydrogen and hydrocarbons mostly saturated. When UC-U alloys are dissolved in hydrochloric-phosphoric medium, the free uranium contents can be determined with good accuracy from the composition of the gaseous phase. The hydrolysis of mixtures of uranium mono - and dicarbide in neutral or acid medium, leads to the formation of a complex mixture of hydrogen and gaseous and condensed hydrocarbons, the composition of which is principally dependent upon the UC{sub 2} content. The reaction mechanisms which are presented in this paper for the hydrolysis of UC and UC{sub 2} provide account for all experimental observations. (author) [French] L'hydrolyse en milieu neutre ou acide du monocarbure d'uranium conduit a la formation d'un melange complexe d'hydrogene et d'hydrocarbures, satures en grande majorite. L'attaque en milieu chlorhydrique-phosphorique des alliages UC-U permet la determination avec une bonne precision, des teneurs en uranium libre a partir de la composition des gaz degages. L'hydrolyse en milieu neutre ou acide des melanges de mono - et dicarbure d'uranium conduit a la formation d'un melange complexe d'hydrogene et d'hydrocarbures gazeux et condenses, dont la composition est essentiellement fonction de la teneur en UC{sub 2}. Les mecanismes reactionnels proposes pour l'hydrolyse de UC et UC{sub 2} rendent compte de tous les faits experimentaux observes. (auteur)

  19. Synthesis, ex Vivo and in Vitro Hydrolysis Study of an Indoline Derivative Designed as an Anti-Inflammatory with Reduced Gastric Ulceration Properties

    Directory of Open Access Journals (Sweden)

    Man Chin Chung

    2009-08-01

    Full Text Available The compound 1-(2,6-dichlorophenylindolin-2-one (1, planned as a pro-drug of diclofenac (2, was easily synthesized in 94% yield by an intramolecular reaction in the presence of coupling agent (i.e., EDC. Compound 1 showed anti-inflammatory and analgesic activity without gastro-ulcerogenic effects. The chemical and enzymatic hydrolysis profile of the lactam derivative 1 does not indicate conversion to diclofenac (2. This compound is a new non-ulcerogenic prototype for treatment of chronic inflammatory diseases.

  20. Multimegawatt dynamic NEP PMAD study

    International Nuclear Information System (INIS)

    Metcalf, K.J.

    1993-01-01

    The National Aeronautics and Space Administration Lewis Research Center (NASA LeRC) is developing a Fortran--based model of a complete nuclear electric propulsion (NEP) vehicle to be used for piloted or cargo missions to the Moon or Mars. The proposed vehicle will use either a Brayton or K-Rankine power conversion cycle, and either ion or magnetoplasmadynamic (MPD) thrusters. In support of this effort, Rocketdyne evaluated various power management and distribution (PMAD) approaches and selected a low-frequency design that is based on the direct use of the alternator voltage and frequency for power transmission. This approach was compared with dc and high-frequency ac designs, and selected on the basis of mass, efficiency, and qualitative assessments of power quality, reliability and development costs. This low-frequency architecture will be used as the reference in future NEP PMAD studies and for the subsequent Fortran model development

  1. A study on the phase transformation of the nanosized hydroxyapatite synthesized by hydrolysis using in situ high temperature X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Shih, W.-J. [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan, 70101, Taiwan (China); Wang, J.-W. [Department of Enviromental and Safety Engineering, Chung Hwa College of Medical Technology, 89 Wen-Hua 1st St., Rende Shiang, Tainan, 71703, Taiwan (China); Wang, M.-C. [Department of Materials Science and Engineering, National United University, 1 Lien-Da, Kung-Ching Li, Miao Li 360, Taiwan (China)]. E-mail: mcwang@nuu.edu.tw; Hon, M.-H. [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan, 70101, Taiwan (China); Dayeh University, 112 Shan-Jiau Road, Da-Tsuen, Changhua 515, Taiwan (China)

    2006-09-15

    The biodegradable hydroxyapatite (HA) was synthesized by hydrolysis and characterized using high temperature X-ray diffraction (HT-XRD), differential thermal analysis and thermogravimetry (DTA/TG), and scanning electron microscopy (SEM). The in situ phase transformation of the HA synthesized from CaHPO{sub 4}.2H{sub 2}O (DCPD) and CaCO{sub 3} with a Ca / P = 1.5 in 2.5 M NaOH{sub (aq)} at 75 deg. C for 1 h was investigated by HT-XRD between 25 and 1500 deg. C. The HA was crystallized at 600 deg. C and maintained as the major phase until 1400 deg. C. The HA steadily transformed to the {alpha}-tricalcium phosphate ({alpha}-TCP) which became the major phosphate phase at 1500 deg. C. At 700 deg. C, the minor CaO phase appeared and vanished at 1300 deg. C. The Na{sup +} impurity from the hydrolysis process was responsible for the formation of the NaCaPO{sub 4} phase, which appeared above 800 deg. C and disappeared at 1200 deg. C.

  2. Validation of GC-IRMS techniques for δ13C and δ2H CSIA of organophosphorus compounds and their potential for studying the mode of hydrolysis in the environment.

    Science.gov (United States)

    Wu, Langping; Kümmel, Steffen; Richnow, Hans H

    2017-04-01

    Compound-specific stable isotope analysis (CSIA) is among the most promising tools for studying the fate of organic pollutants in the environment. However, the feasibility of multidimensional CSIA was limited by the availability of a robust method for precise isotope analysis of heteroatom-bearing organic compounds. We developed a method for δ 13 C and δ 2 H analysis of eight organophosphorus compounds (OPs) with different chemical properties. In particular, we aimed to compare high-temperature conversion (HTC) and chromium-based HTC (Cr/HTC) units to explore the limitations of hydrogen isotope analysis of heteroatom-bearing compounds. Analysis of the amount dependency of the isotope values (linearity analysis) of OPs indicated that the formation of HCl was a significant isotope fractionation process leading to inaccurate δ 2 H analysis in HTC. In the case of nonchlorinated OPs, by-product formation of HCN, H 2 S, or PH 3 in HTC was observed but did not affect the dynamic range of reproducible isotope values above the limit of detection. No hydrogen-containing by-products were found in the Cr/HTC process by use of ion trap mass spectrometry analysis. The accuracy of gas chromatography - isotope ratio mass spectrometry was validated in comparison with elemental analyzer - isotope ratio mass spectrometry. Dual-isotope fractionation yielded Λ values of 0 ± 0 at pH 7, 7 ± 1 at pH 9, and 30 ± 6 at pH 12, indicating the potential of 2D CSIA to characterize the hydrolysis mechanisms of OPs. This is the first report on the combination of δ 2 H and δ 13 C isotope analysis of OPs, and this is the first study providing a systematic evaluation of HTC and Cr/HTC for hydrogen isotope analysis using OPs as target compounds. Graphical Abstract Comparison of δ 2 H measurement of non-chlorinated and chlorinated OPs via GC-Cr/HTC-IRMS and GC-HTC-IRMS system.

  3. Pretreatment and enzymatic hydrolysis of lignocellulosic biomass

    Science.gov (United States)

    Corredor, Deisy Y.

    The performance of soybean hulls and forage sorghum as feedstocks for ethanol production was studied. The main goal of this research was to increase fermentable sugars' yield through high-efficiency pretreatment technology. Soybean hulls are a potential feedstock for production of bio-ethanol due to their high carbohydrate content (≈50%) of nearly 37% cellulose. Soybean hulls could be the ideal feedstock for fuel ethanol production, because they are abundant and require no special harvesting and additional transportation costs as they are already in the plant. Dilute acid and modified steam-explosion were used as pretreatment technologies to increase fermentable sugars yields. Effects of reaction time, temperature, acid concentration and type of acid on hydrolysis of hemicellulose in soybean hulls and total sugar yields were studied. Optimum pretreatment parameters and enzymatic hydrolysis conditions for converting soybean hulls into fermentable sugars were identified. The combination of acid (H2SO4, 2% w/v) and steam (140°C, 30 min) efficiently solubilized the hemicellulose, giving a pentose yield of 96%. Sorghum is a tropical grass grown primarily in semiarid and dry parts of the world, especially in areas too dry for corn. The production of sorghum results in about 30 million tons of byproducts mainly composed of cellulose, hemicellulose, and lignin. Forage sorghum such as brown midrib (BMR) sorghum for ethanol production has generated much interest since this trait is characterized genetically by lower lignin concentrations in the plant compared with conventional types. Three varieties of forage sorghum and one variety of regular sorghum were characterized and evaluated as feedstock for fermentable sugar production. Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and X-Ray diffraction were used to determine changes in structure and chemical composition of forage sorghum before and after pretreatment and enzymatic hydrolysis

  4. Enzymatic activity of the cellulolytic complex produced by trichoderma reesei. Enzymatic hydrolysis of cellulose

    International Nuclear Information System (INIS)

    Alfonsel Jaen, M.; Negro, M.J.; Saez, R.; Martin Moreno, C.

    1986-01-01

    The enzymatic activity characterization of the cellulolytic complex obtained from Trichoderma reese QM 9414 and the influence of the enzymatic hydrolysis conditions on the hydrolysis yield are studied. Pure cellulose and native or alkali pretreated biomass from Onopordum nervosum have been used as substrates. The values of pH, temperature, substrate concentration and enzyme-substrate ratio for the optimum activity of that complex, evaluated as glucose and reducing sugars productions, have been selected. Previous studies on enzymatic hydrolysis of O. nervosum have shown a remarkable effect of the alkaline pretreatments on the final hydrolysis yield. (author). 10 figs.; 10 refs

  5. Linking Hydrolysis Performance to Trichoderma reesei Cellulolytic Enzyme Profile

    DEFF Research Database (Denmark)

    Lehmann, Linda Olkjær; Petersen, Nanna; I. Jørgensen, Christian

    2016-01-01

    Trichoderma reesei expresses a large number of enzymes involved in lignocellulose hydrolysis and the mechanism of how these enzymes work together is too complex to study by traditional methods, e.g. by spiking with single enzymes and monitoring hydrolysis performance. In this study a multivariate...... approach, partial least squares regression, was used to see if it could help explain the correlation between enzyme profile and hydrolysis performance. Diverse enzyme mixtures were produced by Trichoderma reesei Rut-C30 by exploiting various fermentation conditions and used for hydrolysis of washed...

  6. Assessing Reliability of Cellulose Hydrolysis Models to Support Biofuel Process Design – Identifiability and Uncertainty Analysis

    DEFF Research Database (Denmark)

    Sin, Gürkan; Meyer, Anne S.; Gernaey, Krist

    2010-01-01

    The reliability of cellulose hydrolysis models is studied using the NREL model. An identifiability analysis revealed that only 6 out of 26 parameters are identifiable from the available data (typical hydrolysis experiments). Attempting to identify a higher number of parameters (as done in the ori......The reliability of cellulose hydrolysis models is studied using the NREL model. An identifiability analysis revealed that only 6 out of 26 parameters are identifiable from the available data (typical hydrolysis experiments). Attempting to identify a higher number of parameters (as done...

  7. Enzymatic activity of the cellulolytic complex produced by Trichoderma reesei. Enzymatic hydrolysis of cellulose

    International Nuclear Information System (INIS)

    Alfonsel J, M.; Negro A, M. J.; Saez A, R.; Martin M, C.

    1986-01-01

    The enzymatic activity characterization of the cellulolytic complex obtained from Trichoderma reesei QM 9414 and the influence of the enzymatic hydrolysis conditions on the hydrolysis yield are studied. Pure cellulose and native or alkali pretreated biomass Onopordum nervosum have been used as substrates. The values of pH, temperature, substrate concentration and enzyme-substrate ratio for the optimum activity of that complex, evaluated as glucose and reducing sugars production, have been selected. Previous studies on enzymatic hydrolysis of 0. nervosum have shown a remarkable effect of the alkaline pretreatments on the final hydrolysis yield. (Author) 10 refs

  8. Enhancing saccharification of cassava stems by starch hydrolysis prior to pretreatment

    OpenAIRE

    Martín, Carlos; Wei, Maogui; Xiong, Shaojun; Jönsson, Leif J.

    2017-01-01

    Chemical characterization of cassava stems from different origin revealed that glucans accounted for 54-63% of the dry weight, whereas 35-67% of these glucans consisted of starch. The cassava stems were subjected to a saccharification study including starch hydrolysis, pretreatment with either sulfuric acid or 1-ethyl-3-methylimidazolium acetate ([Emim]OAc), and enzymatic hydrolysis of cellulose. Starch hydrolysis prior to pretreatment decreased sugar degradation, improved enzymatic convertib...

  9. Molecular dynamics studies of superionic conductors

    International Nuclear Information System (INIS)

    Rahman, A.; Vashishta, P.

    1983-01-01

    Structural and dynamical properties of superionic conductors AgI and CuI are studied using molecular dynamics (MD) techniques. The model of these superionic conductors is based on the use of effective pair potentials. To determine the constants in these potentials, cohesive energy and bulk modulus are used as input: in addition one uses notions of ionic size based on the known crystal structure. Salient features of the MD technique are outlined. Methods of treating long range Coulomb forces are discussed in detail. This includes the manner of doing Ewald sum for MD cells of arbitrary shape. Features that can be incorporated to expedite the MD calculations are also discussed. A novel MD technique which allows for a dynamically controlled variation of the shape and size of the MD cell is described briefly. The development of this novel technique has made it possible to study structural phase transitions in superionic conductors. 68 references, 17 figures, 2 tables

  10. Computer processing of dynamic scintigraphic studies

    International Nuclear Information System (INIS)

    Ullmann, V.

    1985-01-01

    The methods are discussed of the computer processing of dynamic scintigraphic studies which were developed, studied or implemented by the authors within research task no. 30-02-03 in nuclear medicine within the five year plan 1981 to 85. This was mainly the method of computer processing radionuclide angiography, phase radioventriculography, regional lung ventilation, dynamic sequential scintigraphy of kidneys and radionuclide uroflowmetry. The problems are discussed of the automatic definition of fields of interest, the methodology of absolute volumes of the heart chamber in radionuclide cardiology, the design and uses are described of the multipurpose dynamic phantom of heart activity for radionuclide angiocardiography and ventriculography developed within the said research task. All methods are documented with many figures showing typical clinical (normal and pathological) and phantom measurements. (V.U.)

  11. Contributions to the Study of Dynamic Absorbers, a Case Study

    Directory of Open Access Journals (Sweden)

    Monica Balcau

    2012-01-01

    Full Text Available Dynamic absorbers are used to reduce torsional vibrations. This paper studies the effect of a dynamic absorber attached to a mechanical system formed of three reduced masses which are acted on by one, two or three order x harmonics of a disruptive force.

  12. The study of the influence of surfactant charge on alkaline hydrolysis reactions of acetylsalicylic acid (ASA) and triflusal (TFL) using spectrophotometric methods.

    Science.gov (United States)

    Ferrit, Mónica; del Valle, Carmen; Martínez, Fernando

    2007-07-01

    In this research, the effects of micellar systems on alkaline hydrolysis reactions of acetylsalicylic acid (ASA) and triflusal (TFL) were found to be dependant upon the surfactant charge within the micelle. In cationic micelles, there is a catalytic effect at low concentrations of surfactant. However, this reaction is inhibited at higher surfactant concentrations. In anionic micelles, a catalytic effect occurs, while in zwitterionic and non-ionic micelles there is an inhibitory effect. Such reactions are attributable to changes in reactants on the micellar surface, or to the fact that both reactants are found in different microenvironments. The pseudophase (PS) and ion-exchange (PPIE) models were found to be consistent with the experimental result. Furthermore, the association constants for both drugs could be determined together with micellar rate constants in heterogeneous media.

  13. A study of the HEB longitudinal dynamics

    International Nuclear Information System (INIS)

    Larson, D.J.

    1993-12-01

    A study of the High Energy Booster (HEB) longitudinal dynamics is presented. Full derivations of ramp dependent longitudinal variables are given. The formulas assume that the input magnetic field and beam longitudinal emittance are known as a function of time, and that either the rf voltage or the rf bucket area are known as a function of time. Once these three inputs are specified, the formulas can be used to calculate values for all other longitudinal dynamics variables. The formulas have been incorporated into a single computer code named ELVIRA: Evaluation of Longitudinal Variables in Relativistic Accelerators. The ELVIRA code is documented here in detail. The ELVIRA code is used under two initial longitudinal emittance assumptions to plot ramp functions for the longitudinal dynamics design of the HEB as of May 5, 1992

  14. Study on dynamic performance of SOFC

    Science.gov (United States)

    Zhan, Haiyang; Liang, Qianchao; Wen, Qiang; Zhu, Runkai

    2017-05-01

    In order to solve the problem of real-time matching of load and fuel cell power, it is urgent to study the dynamic response process of SOFC in the case of load mutation. The mathematical model of SOFC is constructed, and its performance is simulated. The model consider the influence factors such as polarization effect, ohmic loss. It also takes the diffusion effect, thermal effect, energy exchange, mass conservation, momentum conservation. One dimensional dynamic mathematical model of SOFC is constructed by using distributed lumped parameter method. The simulation results show that the I-V characteristic curves are in good agreement with the experimental data, and the accuracy of the model is verified. The voltage response curve, power response curve and the efficiency curve are obtained by this way. It lays a solid foundation for the research of dynamic performance and optimal control in power generation system of high power fuel cell stack.

  15. Secondary deuterium isotope effects in the hydrolysis of some acetals

    International Nuclear Information System (INIS)

    Paterson, R.V.

    Secondary α-deuterium kinetic isotope effects have been determined in the hydrolyses of some acetals. Benzaldehyde dimethyl acetal and 2-phenyl-1,3-dioxolan show isotope effects in agreement with an A1 mechanism. 2-Phenyl-4,4,5,5-tetramethyl-1,3-dioxolan, which has been shown to undergo hydrolysis by an A2 type mechanism, has an isotope effect in agreement with participation by water in the transition state. Hydrolysis of benzylidene norbornanediols, although complicated by isomerisation, has an isotope effect in agreement with an A2 mechanism. Kinetic isotope effects in acetals which have a neighbouring carboxyl group have also been determined. Hydrolysis of 2-carboxybenzaldehyde dimethyl acetal in aqueous and 82% w/w dioxan-water buffers has isotope effects in agreement with a large degree of carbonium ion character in the transition state. Anderson and Capon proposed nucleophilic participation in the hydrolysis of this acetal in 82% dioxan-water. The isotope effect determined in this study is not in agreement with this finding. Hydrolysis of 2-(2'-carboxyphenyl)-4,4,5,5-tetramethyl-1,3-dioxolan shows an isotope effect larger than the corresponding dioxolan without the carboxyl group in agreement with some carbonium ion character in the transition state. A new synthesis of a deuterated aldehyde is described which might be general for aldehydes which will not form benzoins readily. (author)

  16. Enzymatic hydrolysis of plant extracts containing inulin

    Energy Technology Data Exchange (ETDEWEB)

    Guiraud, J.P.; Galzy, P.

    1981-10-01

    Inulin-rich extracts of chicory and Jerusalem artichoke are a good potential source of fructose. Total enzymatic hydrolysis of these extracts can be effected by yeast inulinases (EC 3.2.1.7). Chemical prehydrolysis is unfavourable. Enzymatic hydrolysis has advantages over chemical hydrolysis: it does not produce a dark-coloured fraction or secondary substances. It is possible to envisage the preparation of high fructose syrups using this process. (Refs. 42).

  17. Kinetics of enzymatic hydrolysis of methyl ricinoleate

    OpenAIRE

    Neeharika, T. S.V.R.; Lokesh, P.; Prasanna Rani, K. N.; Prathap Kumar, T.; Prasad, R. B.N.

    2015-01-01

    Ricinoleic acid is an unsaturated hydroxy fatty acid that naturally occurs in castor oil in proportions of up to 85–90%. Ricinoleic acid is a potential raw material and finds several applications in coatings, lubricant formulations and pharmaceutical areas. Enzymatic hydrolysis of castor oil is preferred over conventional hydrolysis for the preparation of ricinoleic acid to avoid estolide formation. A kinetics analysis of the enzymatic hydrolysis of Methyl Ricinoleate in the presence of Candi...

  18. Analysis of myo-inositol hexakisphosphate hydrolysis by Bacillus phytase

    DEFF Research Database (Denmark)

    Kerovuo, J.; Rouvinen, J.; Hatzack, Frank-Andreas

    2000-01-01

    Phytic acid (myo-inositol hexakisphosphate, InsP(6)) hydrolysis by Bacillus phytase (PhyC) was studied. The enzyme hydrolyses only three phosphates from phytic acid. Moreover, the enzyme seems to prefer the hydrolysis of every second phosphate over that of adjacent ones. Furthermore, it is very...... a reaction mechanism different from that of other phytases. By combining the data presented in this study with (1) structural information obtained from the crystal structure of Bacillus amyloliquefaciens phytase [Ha, Oh, Shin, Kim, Oh, Kim, Choi and Oh (2000) Nat. Struct. Biol. 7, 147-153], and (2) computer...

  19. Enzymatic hydrolysis of lactose of whey permeate

    Directory of Open Access Journals (Sweden)

    Karina Nascimento de Almeida

    2015-09-01

    Full Text Available The whey permeate is the residual of the concentration process of the whey proteins by ultrafiltration method. It contains important nutrients such as lactose, minerals and some proteins and lipids. It is without an ending industrial waste that causes serious damage to the environment. For its full use the lactose must be hydrolyzed to enable its consumption by intolerant people. The enzymatic hydrolysis by lactase (β-galactosidase of Kluyveromyces lactis yeast is a safe method that does not compromise the integrity of other nutrients, enabling further use of the permeate as a raw material. This study aimed to perform tests of enzymatic hydrolysis of lactose in whey permeate formulations in a concentration of 0.2%, 0.7% and 1% at 30, 60 and 90 minutes with pH 6.3 medium and 37 °C. The reactions were monitored by high performance liquid chromatography which showed that the enzyme concentration of 0.7% at time 30 minutes formulations became safe for consumption by lactose intolerant people, according to minimum levels established by law.

  20. [Prediction of common buffer catalysis in hydrolysis of fenchlorazole-ethyl].

    Science.gov (United States)

    Lin, Jing; Chen, Jing-wen; Zhang, Si-yu; Cai, Xi-yun; Qiao, Xian-liang

    2008-09-01

    The purpose of this study was to elucidate the effects of temperatures, pH levels and buffer catalysis on the hydrolysis of FCE. The hydrolysis of FCE follows first-order kinetics at different pH levels and temperatures. FCE hydrolysis rates are greatly increased at elevated pH levels and temperatures. The maximum contribution of buffer catalysis to the hydrolysis of FCE was assessed based on application of the Bronsted equations for general acid-base catalysis. The results suggest that the buffer solutions play an obvious catalysis role in hydrolysis of FCE and the hydrolysis rates of FCE are quickened by the buffer solutions. Besides, the buffer catalysis capacity of different buffer solutions is diverse, and the buffer catalysis capacity at different pH levels with the same buffer solutions is different, too. The phosphate buffer at pH = 7 shows the maximal buffer catalysis capacity. The hydrolysis rate constants of FCE as a function of temperature and pH, which were remedied by the buffer catalysis factor, were mathematically combined to predict the hydrolytic dissipation of FCE. The equation suggests that the hydrolysis half-lives of FCE ranged from 7 d to 790 d. Hydrolysis metabolites of FCE were identified by liquid chromatography-mass spectrometry. In basic conditions (pH 8-10), fenchlorazole was formed via breakdown of the ester bond of the safener.

  1. Formation, Evaporation, and Hydrolysis of Organic Nitrates from Nitrate Radical Oxidation of Monoterpenes

    Science.gov (United States)

    Ng, N. L.; Takeuchi, M.; Eris, G.; Berkemeier, T.; Boyd, C.; Nah, T.; Xu, L.

    2017-12-01

    Organic nitrates play an important role in the cycling of NOx and secondary organic aerosol (SOA) formation, yet their formation mechanisms and fates remain highly uncertain. The interactions of biogenic VOCs with NO3 radicals represent a direct way for positively linking anthropogenic and biogenic emissions. Results from ambient studies suggest that organic nitrates have a relatively short lifetime, though corresponding laboratory data are limited. SOA and organic nitrates produced at night may evaporate the following morning due to increasing temperatures or dilution of semi-volatile compounds. Once formed, organic nitrates can also undergo hydrolysis in the presence of particle water. In this work, we investigate the formation, evaporation, and hydrolysis of organic nitrates generated from the nitrate radical oxidation of a-pinene, b-pinene, and limonene. Experiments are conducted in the Georgia Environmental Chamber facility (GTEC) under dry and humid conditions and different temperatures. Experiments are also designed to probe different peroxy radical pathways (RO2+HO2 vs RO2+NO3). Speciated gas-phase and particle-phase organic nitrates are continuously monitored by a Filter Inlet for Gases and AEROsols High Resolution Time-of-Flight Chemical Ionization Mass Spectrometer (FIGAERO-HR-ToF-CIMS). Bulk aerosol composition is measured by a High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). A large suite of highly oxygenated gas- and particle-phase organic nitrates are formed rapidly. We find a resistance to aerosol evaporation when it is heated. The extent of organic nitrate hydrolysis in the humid experiments is evaluated. The dynamics of the speciated organic nitrates over the course of the experiments will also be discussed. Results from this chamber study provide fundamental data for understanding the dynamics of organic nitrate aerosols over its atmospheric lifetime.

  2. Kinetics of Strong Acid Hydrolysis of a Bleached Kraft Pulp for Producing Cellulose Nanocrystals (CNCs)

    Science.gov (United States)

    Qianqian Wang; Xuebing Zhao; J.Y. Zhu

    2014-01-01

    Cellulose nanocrytals (CNCs) are predominantly produced using the traditional strong acid hydrolysis process. In most reported studies, the typical CNC yield is low (approximately 30%) despite process optimization. This study investigated the hydrolysis of a bleached kraft eucalyptus pulp using sulfuric acid between 50 and 64 wt % at temperatures of 35−80 °C...

  3. Determining the hydrolysis of cations: A short overview

    International Nuclear Information System (INIS)

    Ekberg, Christian; Brown, Paul L.

    2006-01-01

    Full text: The hydrolysis of metal ions is the most fundamental aqueous chemistry. As soon as the metal is introduced to water, dissolution may take place and if the water is pure only hydrolysis reactions will take place. There are several methods used in the literature to determine the stability constants of these reactions, e.g. solvent extraction, potentiometric titrations, ion exchange and solubility measurements. Which one to select is not straight forward. All of them have pros and cons and different regions of applicability with respect to whether they are good for determining the initial hydrolysis or the later stages. Once the constants are determined it is important to assess the uncertainty in the determination. We point out tools to make this straight forward and traceable which is most important in scientific studies. (authors)

  4. EFFECT OF LIGNIN CONTENT ON ENZYMATIC HYDROLYSIS OF FURFURAL RESIDUES

    Directory of Open Access Journals (Sweden)

    Jianxin Jiang

    2011-02-01

    Full Text Available The enzymatic saccharification of pretreated furfural residues with different lignin content was studied to verify the effect of lignin removal in the hydrolysis process. The results showed that the glucose yield was improved by increasing the lignin removal. A maximum glucose yield of 96.8% was obtained when the residue with a lignin removal of 51.4% was hydrolyzed for 108 h at an enzyme loading of 25 FPU/g cellulose. However, further lignin removal did not increase the hydrolysis. The effect of enzyme loading on the enzymatic hydrolysis was also explored in this work. It was concluded that a high glucose yield of 90% was achieved when the enzyme dosage was reduced from 25 to 15 FPU/g cellulose, which was cost-effective for the sugar and ethanol production. The structures of raw material and delignified samples were further characterized by XRD and scanning electron microscopy (SEM.

  5. Acid hydrolysis of Biomass lignocellulose Onopordum nervosum Boiss

    International Nuclear Information System (INIS)

    Suarez Contreras, C.; Diaz Palma, A.; Paz, M. D.

    1985-01-01

    Hydrolysis of resistant cellulose of Onopordum nervosum Boiss (thistle) to reducing sugars in dilute sulfuric acid in glass ampoules and long residence times has been studied and kinetic parameters determined. The rate of hydrolysis is similar to that of the cellulose of Douglas fir, but comparatively the effect of the acid is more pronounced than temperature. From kinetic data it can be pre ducted the yield and since it can be obtained at least 45% of the potential glucose (48% as reducing sugars) at 190 degree centigree, 1,6% acid and 6,1 min. residence time, it indicates that the continuous acid hydrolysis of thistle may be a process of commercial interest. (Author) 18 refs

  6. The optimization of soybean oil hydrolysis reaction research

    International Nuclear Information System (INIS)

    Hasnisa Hashim; Jumat Salimon

    2008-01-01

    The hydrolysis reaction of soybean oil was optimized. The concentration effect of ethanolic alkaline solution (KOH and NaOH) to the oil acidity was studied. The alkaline concentrations, reaction time and temperature factors was investigated during the optimization of the hydrolysis or saponification reaction. KOH solution of 1 M showed a good saponification activity which resulted oil acid value of 226.8 mg/ g compared to NaOH solution with acid value of 225.4 mg/ g for the same reaction. The optimum saponification reaction of soybean oil occurred at 60 degree Celsius in 30 minutes by using ethanolic KOH 1 M with acid value of 229.6 mg/ g. Composition of free fatty acid before and after hydrolysis were determined by using gas chromatography. (author)

  7. Preparation of water soluble chitosan by hydrolysis using hydrogen peroxide.

    Science.gov (United States)

    Xia, Zhenqiang; Wu, Shengjun; Chen, Jinhua

    2013-08-01

    Chitosan is not soluble in water, which limits its wide application particularly in the medicine and food industry. In the present study, water soluble chitosan (WSC) was prepared by hydrolyzing chitosan using hydrogen peroxide under the catalysis of phosphotungstic acid in homogeneous phase. Factors affecting hydrolysis were investigated and the optimal hydrolysis conditions were determined. The WSC structure was characterized by Fourier transform infrared spectroscopy. The resulting products were composed of chitooligosaccharides of DP 2-9. The WSC content of the product and the yield were 94.7% and 92.3% (w/w), respectively. The results indicate that WSC can be effectively prepared by hydrolysis of chitosan using hydrogen peroxide under the catalysis of phosphotungstic acid. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. A Molecular Dynamics Study of Lunasin | Singh | South African ...

    African Journals Online (AJOL)

    A Molecular Dynamics Study of Lunasin. ... profile of lunasin,using classical molecular dynamics (MD) simulations at the time scale of 300 ns. ... Keywords: Lunasin, molecular dynamics, amber, CLASICO, α-helix, β-turn, PTRAJ, RGD, RMSD ...

  9. Molecular Dynamics Studies of Nanofluidic Devices

    DEFF Research Database (Denmark)

    Zambrano Rodriguez, Harvey Alexander

    of such devices. Computational nanofluidics complements experimental studies by providing detailed spatial and temporal information of the nanosystem. In this thesis, we conduct molecular dynamics simulations to study basic nanoscale devices. We focus our studies on the understanding of transport mechanism...... to drive fluids and solids at the nanoscale. Specifically, we present the results of three different research projects. Throughout the first part of this thesis, we include a comprenhensive introduction to computational nanofluidics and to molecular simulations, and describe the molecular dynamics...... in opposite direction to the imposed thermal gradient also we measure higher velocities as higher thermal gradients are imposed. Secondly, we present an atomistic analysis of a molecular linear motor fabricated of coaxial carbon nanotubes and powered by thermal gradients. The MD simulation results indicate...

  10. Kinetics and mechanism of hydrolysis of scandium sulfate

    International Nuclear Information System (INIS)

    Koshchej, E.V.; Stryapkov, A.V.; Podosenov, D.E.; Makarov, G.V.; Razdobreev, D.A.

    1998-01-01

    The Sc 2 (SO 4 ) 3 -H 2 SO 4 -H 2 O system is studied through the methods of pH-potentiometry, conductometry and turbidimetry at 298 and 318 K and ion force 0.01, 0.1 and 1.0. The hydrolysis mechanism including the processes in the system homogenous and heterogeneous constituents. The hydrolysis rates of scandium salts and their dependences on OH-ions concentration, solution ions force and temperature are found; the constants of the processes rate with participation of OH - and SO 4 2- ions and constants of the solid phase formation rate are calculated [ru

  11. Kinetics of the methylparathion hydrolysis in aqueous medium

    International Nuclear Information System (INIS)

    Manzanilla, J.; Barcelo, M.; Reyes, O.

    1997-01-01

    The kinetics of alkaline hydrolysis of methylparathion was studied at different temperatures (0-50 Centigrade) in the p H range of 8-12 by ultraviolet-visible absorption spectroscopy. Optimum p H and wavelength conditions were defined to carry out the simultaneous determination of methylparathion and one of its hydrolysis product, paranitrophenol, in buffered aqueous medium. Based on the experimental data and the mathematical equation of the kinetics, a rate constant (k) of first-order and an activation energy (Ea) of 9.2 Kcal/mol, were estimated. (Author) activation energy (Ea) of 9.2 Kcal/mol, were estimated. (Author)

  12. Pretreatment of sawdust and its hydrolysis with immobilised enzymes

    International Nuclear Information System (INIS)

    Kumakura, M.; Kaetsu, I.

    1988-01-01

    The pretreatment of sawdust by radiation and its hydrolysis with immobilised cellulase were studied. The sawdust was irradiated with a number of different irradiation doses and crushed with two kinds of crusher; pulveriser and ball mill. In ball-mill crushing, the crushing time to get a fine powder was reduced by radiation treatment and the conversion yield of cellulose to glucose in the enzyme hydrolysis was increased. It was found that sawdust pretreated by radiation and subsequent crushing was efficiently hydrolysed by immobilised cellulase which itself was obtained by a radiation polymerisation technique. (author)

  13. A review on the kinetics of microbially induced calcium carbonate precipitation by urea hydrolysis

    Science.gov (United States)

    van Paassen, L. A.

    2017-12-01

    In this study the kinetics of calcium carbonate precipitation induced by the ureolytic bacteria are reviewed based on experiments and mathematical modelling. The study shows how urea hydrolysis rate depends on the amount of bacteria and the conditions during growth, storage, hydrolysis and precipitation. The dynamics of Microbially Induced Carbonate Precipitation has been monitored in non-seeded liquid batch experiments. Results show that particulary for a fast hydrolysis of urea (>1 M-urea day-1) in a highly concentrated equimolar solution with calcium chloride (>0.25 M) the solubility product of CaCO3 is exceeded within a short period (less than 30 minutes), the supersaturation remains high for an exended period, resulting in prolonged periods of nucleation and crystal growth and extended growth of metastable precursor mineral phases. The pH, being a result of the speciation, quickly rises until critical supersaturation is reached and precipitation is initiated. Then pH drops (sometimes showing oscillating behaviour) to about neutral where it stays until all substrates are depleted. Higher hydrolysis rates lead to higher supersaturation and pH and relatively many small crystals, whereas higher concentrations of urea and calcium chloride mainly lead to lower pH values. The conversion can be reasonably monitored by electrical conductivity and reasonably predicted, using a simplified model based on a single reaction as long as the urea hydrolysis rate is known. Complex geochemical models, which include chemical speciciation through acid-base equilibria and kinetic equations to describe mineral precipitation, do not show significant difference from the simplified model regarding the bulk chemistry and the total amount of precipitates. However, experiments show that ureolytic MICP can result in a highly variable crystal morphologies with large variation in the affected hydraulic properties when applied in a porous medium. In order to calculate the number, size and

  14. Optimisation of Dilute Sulphuric Acid Hydrolysis of Waste ...

    African Journals Online (AJOL)

    Dilute sulphuric acid hydrolysis of waste paper was investigated in this study. The effects of acid concentration, time, temperature and liquid to solid ratio on the total reducing sugar concentration were studied over three levels using a four variable Box-Behnken design (BBD). A statistical model was developed for the ...

  15. Dynamic MRI study for breast tumors

    International Nuclear Information System (INIS)

    Seki, Tsuneaki

    1990-01-01

    Application of MRI for diagnosis of breast tumors was retrospectively examined in 103 consecutive cases. Contrast enhancement, mostly by dynamic study, was performed in 83 cases using Gd-DTPA and 0.5 T superconductive apparatus. Results were compared to those of mammography and sonography. On dynamic study, carcinoma showed abrupt rise of signal intensity with clear-cut peak formation in early phase, while benign fibroadenoma showed slow rise of signal intensity and prolonged enhancement without peak formation. In 12 of 33 carcinomas (33%), peripheral ring enhancement was noted reflecting vascular stroma of histologic sections. All fibroadenomas showed homogenous enhancement without peripheral ring. In MRI, sensitivity, specificity, and accuracy were 86%, 96%, 91%. In mammography 82%, 95%, 87% and in ultrasonography 91%, 95%, 93%. Although MRI should not be regarded as routine diagnostic procedure because of expense and limited availability, it may afford useful additional information when standard mammographic findings are not conclusive. (author)

  16. Experimental studies of nonlinear beam dynamics

    International Nuclear Information System (INIS)

    Caussyn, D.D.; Ball, M.; Brabson, B.; Collins, J.; Curtis, S.A.; Derenchuck, V.; DuPlantis, D.; East, G.; Ellison, M.; Ellison, T.; Friesel, D.; Hamilton, B.; Jones, W.P.; Lamble, W.; Lee, S.Y.; Li, D.; Minty, M.G.; Sloan, T.; Xu, G.; Chao, A.W.; Ng, K.Y.; Tepikian, S.

    1992-01-01

    The nonlinear beam dynamics of transverse betatron oscillations were studied experimentally at the Indiana University Cyclotron Facility cooler ring. Motion in one dimension was measured for betatron tunes near the third, fourth, fifth, and seventh integer resonances. This motion is described by coupling between the transverse modes of motion and nonlinear field errors. The Hamiltonian for nonlinear particle motion near the third- and fourth-integer-resonance conditions has been deduced

  17. Nonlinear longitudinal dynamics studies at the ALS

    International Nuclear Information System (INIS)

    Byrd, J.M.; Cheng, W.-H.; De Santis, S.; Li, D.; Stupakov, G.; Zimmermann, F.

    1999-01-01

    We present a summary of results for a variety of studies of nonlinear longitudinal dynamics in the Advanced Light Source, an electron storage ring. These include observation of decoherence at injection, decay of an injected beam, forced synchrotron oscillations and diffusion from one bunch to the next. All of the measurements were made using a dual-scan streak camera which allowed the real-time observation of the longitudinal distribution of the electron beam

  18. Mechanistic kinetic models of enzymatic cellulose hydrolysis-A review.

    Science.gov (United States)

    Jeoh, Tina; Cardona, Maria J; Karuna, Nardrapee; Mudinoor, Akshata R; Nill, Jennifer

    2017-07-01

    Bioconversion of lignocellulose forms the basis for renewable, advanced biofuels, and bioproducts. Mechanisms of hydrolysis of cellulose by cellulases have been actively studied for nearly 70 years with significant gains in understanding of the cellulolytic enzymes. Yet, a full mechanistic understanding of the hydrolysis reaction has been elusive. We present a review to highlight new insights gained since the most recent comprehensive review of cellulose hydrolysis kinetic models by Bansal et al. (2009) Biotechnol Adv 27:833-848. Recent models have taken a two-pronged approach to tackle the challenge of modeling the complex heterogeneous reaction-an enzyme-centric modeling approach centered on the molecularity of the cellulase-cellulose interactions to examine rate limiting elementary steps and a substrate-centric modeling approach aimed at capturing the limiting property of the insoluble cellulose substrate. Collectively, modeling results suggest that at the molecular-scale, how rapidly cellulases can bind productively (complexation) and release from cellulose (decomplexation) is limiting, while the overall hydrolysis rate is largely insensitive to the catalytic rate constant. The surface area of the insoluble substrate and the degrees of polymerization of the cellulose molecules in the reaction both limit initial hydrolysis rates only. Neither enzyme-centric models nor substrate-centric models can consistently capture hydrolysis time course at extended reaction times. Thus, questions of the true reaction limiting factors at extended reaction times and the role of complexation and decomplexation in rate limitation remain unresolved. Biotechnol. Bioeng. 2017;114: 1369-1385. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Theoretical studies of chemical reaction dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Schatz, G.C. [Argonne National Laboratory, IL (United States)

    1993-12-01

    This collaborative program with the Theoretical Chemistry Group at Argonne involves theoretical studies of gas phase chemical reactions and related energy transfer and photodissociation processes. Many of the reactions studied are of direct relevance to combustion; others are selected they provide important examples of special dynamical processes, or are of relevance to experimental measurements. Both classical trajectory and quantum reactive scattering methods are used for these studies, and the types of information determined range from thermal rate constants to state to state differential cross sections.

  20. Kinetic modelling of enzymatic starch hydrolysis

    NARCIS (Netherlands)

    Bednarska, K.A.

    2015-01-01

    Kinetic modelling of enzymatic starch hydrolysis – a summary

    K.A. Bednarska

    The dissertation entitled ‘Kinetic modelling of enzymatic starch hydrolysis’ describes the enzymatic hydrolysis and kinetic modelling of liquefaction and saccharification of wheat starch.

  1. Role of supramolecular cellulose structures in enzymatic hydrolysis of plant cell walls

    DEFF Research Database (Denmark)

    Thygesen, Lisbeth Garbrecht; Hidayat, Budi Juliman; Johansen, Katja Salomon

    2011-01-01

    The study of biomass deconstruction by enzymatic hydrolysis has hitherto not focussed on the importance of supramolecular structures of cellulose. In lignocellulose fibres, regions with a different organisation of the microfibrils are present. These regions are called dislocations or slip planes ...... the initial part of enzymatic hydrolysis of cellulose. The implications of this phenomenon have not yet been recognized or explored within cellulosic biofuels....

  2. HYDROLYSIS OF HALOACETONITRILES: LINEAR FREE ENERGY RELATIONSHIP, KINETICS AND PRODUCTS. (R825362)

    Science.gov (United States)

    AbstractThe hydrolysis rates of mono-, di- and trihaloacetonitriles were studied in aqueous buffer solutions at different pH. The stability of haloacetonitriles decreases and the hydrolysis rate increases with increasing pH and number of halogen atoms in the molecule:...

  3. Simultaneous hydrolysis and hydrogenation of cellobiose to sorbitol in molten salt hydrate media

    NARCIS (Netherlands)

    Li, J.; Soares, H.S.M.P.; Moulijn, J.A.; Makkee, M.

    2013-01-01

    The hydrolysis and hydrogenation of cellobiose (4-O-b-D-glucopyranosyl-D-glucose) in ZnCl2_4H2O solvent was studied to optimize the conditions for conversion of lignocellulose (the most abundant renewable resource) into sorbitol (D-glucitol). Water at neutral pH does not allow hydrolysis of

  4. Phospholipase C-catalyzed sphingomyelin hydrolysis in a membrane reactor for ceramide production

    DEFF Research Database (Denmark)

    Zhang, Long; Liang, Shanshan; Hellgren, Lars

    2008-01-01

    A membrane reactor for the production of ceramide through sphingomyelin hydrolysis with phospholipase C from Clostridium perfringens was studied for the first time. Ceramide has raised a large interest as an active component in both pharmaceutical and cosmetic industry. The enzymatic hydrolysis...

  5. Effects of Toasting Time on Digestive Hydrolysis of Soluble and Insoluble 00-Rapeseed Meal Proteins

    NARCIS (Netherlands)

    Salazar-Villanea, Sergio; Bruininx, Erik M.A.M.; Gruppen, Harry; Carré, Patrick; Quinsac, Alain; Poel, van der Thomas

    2017-01-01

    Thermal damage to proteins can reduce their nutritional value. The effects of toasting time on the kinetics of hydrolysis, the resulting molecular weight distribution of 00-rapeseed meal (RSM) and the soluble and insoluble protein fractions separated from the RSM were studied. Hydrolysis was

  6. Solar dynamic power system definition study

    Science.gov (United States)

    Wallin, Wayne E.; Friefeld, Jerry M.

    1988-01-01

    The solar dynamic power system design and analysis study compared Brayton, alkali-metal Rankine, and free-piston Stirling cycles with silicon planar and GaAs concentrator photovoltaic power systems for application to missions beyond the Phase 2 Space Station level of technology for all power systems. Conceptual designs for Brayton and Stirling power systems were developed for 35 kWe and 7 kWe power levels. All power systems were designed for 7-year end-of-life conditions in low Earth orbit. LiF was selected for thermal energy storage for the solar dynamic systems. Results indicate that the Stirling cycle systems have the highest performance (lowest weight and area) followed by the Brayton cycle, with photovoltaic systems considerably lower in performance. For example, based on the performance assumptions used, the planar silicon power system weight was 55 to 75 percent higher than for the Stirling system. A technology program was developed to address areas wherein significant performance improvements could be realized relative to the current state-of-the-art as represented by Space Station. In addition, a preliminary evaluation of hardenability potential found that solar dynamic systems can be hardened beyond the hardness inherent in the conceptual designs of this study.

  7. Dynamic isotope studies in liver disease

    Energy Technology Data Exchange (ETDEWEB)

    Weits, J

    1978-01-01

    Much information in the field of liver research has been gained by dynamic isotope studies. Clinically, these studies can help to settle selection criteria for different types of surgical shunt, which relieve the complications of portal hypertension. By performing splenoportoscintigraphy, splenic and portal vein thrombosis can be easily and safely excluded. So-called hypoxaemia of cirrhosis can most easily be diagnosed. Suprahepatic caval vein obstruction in a patient with cryptogenic liver disease is easily excluded by a radionuclide cavogram after injection of pertechnetate into a foot vein.

  8. The trypsin-catalyzed hydrolysis of monomolecular films of lysylphosphatidylglycerol

    NARCIS (Netherlands)

    Gould, R.M.; Dawson, R.M.C.

    1972-01-01

    The hydrolysis by trypsin of the bacterial phospholipid, lysylphosphatidyl-glycerol has been studied at the air-water interface. High specific activity [14C]-lysylphosphatidylglycerol was prepared biosynthetically and the trypsin action followed by measuring the loss of surface radioactivity from a

  9. Visualizing phosphodiester-bond hydrolysis by an endonuclease

    DEFF Research Database (Denmark)

    Molina, Rafael; Stella, Stefano; Redondo, Pilar

    2015-01-01

    The enzymatic hydrolysis of DNA phosphodiester bonds has been widely studied, but the chemical reaction has not yet been observed. Here we follow the generation of a DNA double-strand break (DSB) by the Desulfurococcus mobilis homing endonuclease I-DmoI, trapping sequential stages of a two-metal-...

  10. Lactam hydrolysis catalyzed by mononuclear metallo-ß-bactamases

    DEFF Research Database (Denmark)

    Olsen, Lars; Antony, J; Ryde, U

    2003-01-01

    Two central steps in the hydrolysis of lactam antibiotics catalyzed by mononuclear metallo-beta-lactamases, formation of the tetrahedral intermediate and its breakdown by proton transfer, are studied for model systems using the density functional B3LYP method. Metallo-beta-lactamases have two metal...

  11. The Mechanisms of Plant Cell Wall Deconstruction during Enzymatic Hydrolysis

    DEFF Research Database (Denmark)

    Thygesen, Lisbeth Garbrecht; E. Thybring, Emil; Johansen, Katja Salomon

    2014-01-01

    . Here we put forward a simple model based on mechanical principles capable of capturing the result of the interaction between mechanical forces and cell wall weakening via hydrolysis of glucosidic bonds. This study illustrates that basic material science insights are relevant also within biochemistry...

  12. Eggshells – assisted hydrolysis of banana pulp for biogas production

    African Journals Online (AJOL)

    KARAKANA

    In this study, pretreatment of banana pulp using eggshells in both calcined and un-calcined forms to examine the ... Key words: Anaerobic digestion, banana pulp hydrolysis biogas, eggshells. .... obtain fine powder. ..... using pig waste and cassava peels. ... from bioethanol waste: the effect of pH and urea addition to biogas.

  13. PRETREATMENT OF LIGNOCELLULOSIC BIOMASS FOR ENZYMATIC HYDROLYSIS

    Directory of Open Access Journals (Sweden)

    Doan Thai Hoa

    2017-11-01

    Full Text Available The cost of raw materials continues to be a limiting factor in the production of bio-ethanol from traditional raw materials, such as sugar and starch. At the same time, there are large amount of agricultural residues as well as industrial wastes that are of low or negative value (due to costs of current effluent disposal methods. Dilute sulfuric acid pretreatment of elephant grass and wood residues for the enzymatic hydrolysis of cellulose has been investigated in this study.    Elephant grass (agricultural residue and sawdust (Pulp and Paper Industry waste with a small particulate size were treated using different dilute sulfuric acid concentrations at a temperature  of 140-170°C within 0.5-3 hours. The appropriate pretreatment conditions give the highest yield of soluble saccharides and total reducing sugars.

  14. Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis.

    Science.gov (United States)

    Camarero Espinosa, Sandra; Kuhnt, Tobias; Foster, E Johan; Weder, Christoph

    2013-04-08

    On account of their intriguing mechanical properties, low cost, and renewable nature, high-aspect-ratio cellulose nanocrystals (CNCs) are an attractive component for many nanomaterials. Due to hydrogen bonding between their surface hydroxyl groups, unmodified CNCs (H-CNCs) aggregate easily and are often difficult to disperse. It is shown here that on account of ionic repulsion between charged surface groups, slightly phosphorylated CNCs (P-CNCs, average dimensions 31 ± 14 × 316 ± 127 nm, surface charge density = 10.8 ± 2.7 mmol/kg cellulose), prepared by controlled hydrolysis of cotton with phosphoric acid, are readily dispersible and form stable dispersions in polar solvents such as water, dimethyl sulfoxide, and dimethylformamide. Thermogravimetric analyses reveal that these P-CNCs exhibit a much higher thermal stability than partially sulfated CNCs (S-CNCs), which are frequently employed, but suffer from limited thermal stability. Nanocomposites of an ethylene oxide-epichlorohydrin copolymer and H-CNCs, S-CNCs, and P-CNCs were prepared, and their mechanical properties were studied by dynamic mechanical thermal analysis. The results show that P-CNCs offer a reinforcing capability that is comparable to that of H-CNCs or S-CNCs.

  15. Electron beam processing of sugar cane bagasse to cellulose hydrolysis

    International Nuclear Information System (INIS)

    Ribeiro, Marcia A.; Cardoso, Vanessa M.; Mori, Manoel N.; Duarte, Celina L.

    2009-01-01

    Sugarcane bagasse has been considered as a substrate for single cell protein, animal feed, and renewable energy production. Sugarcane bagasse generally contain up to 45% glucose polymer cellulose, 40% hemicelluloses, and 20% lignin. Pure cellulose is readily depolymerised by radiation, but in biomass, the cellulose is intimately bonded with lignin, that protect it from radiation effects. The objective of this study is the evaluation of the electron beam irradiation as a pre-treatment to enzymatic hydrolysis of cellulose in order to facilitate its fermentation and improves the production of ethanol biofuel. Samples of sugarcane bagasse were obtained in sugar/ethanol Iracema Mill sited in Piracicaba, Brazil, and were irradiated using Radiation Dynamics Electron Beam Accelerator with 1.5 MeV energy and 37kW, in batch systems. The applied absorbed doses of the fist sampling, Bagasse A, were 20 kGy, 50 kGy, 100 kGy and 200 kGy. After the evaluation the preliminary obtained results, it was applied lower absorbed doses in the second assay: 5 kGy, 10 kGy, 20 kGy, 30 kGy, 50 kGy, 70 kGy, 100 kGy and 150 kGy. The electron beam processing took to changes in the sugarcane bagasse structure and composition, lignin and cellulose cleavage. The yield of enzymatic hydrolyzes of cellulose increase about 40 % with 30 kGy of absorbed dose. (author)

  16. Molecular dynamics studies of actinide nitrides

    International Nuclear Information System (INIS)

    Kurosaki, Ken; Uno, Masayoshi; Yamanaka, Shinsuke; Minato, Kazuo

    2004-01-01

    The molecular dynamics (MD) calculation was performed for actinide nitrides (UN, NpN, and PuN) in the temperature range from 300 to 2800 K to evaluate the physical properties viz., the lattice parameter, thermal expansion coefficient, compressibility, and heat capacity. The Morse-type potential function added to the Busing-Ida type potential was employed for the ionic interactions. The interatomic potential parameters were determined by fitting to the experimental data of the lattice parameter. The usefulness and applicability of the MD method to evaluate the physical properties of actinide nitrides were studied. (author)

  17. Validation of lignocellulosic biomass carbohydrates determination via acid hydrolysis.

    Science.gov (United States)

    Zhou, Shengfei; Runge, Troy M

    2014-11-04

    This work studied the two-step acid hydrolysis for determining carbohydrates in lignocellulosic biomass. Estimation of sugar loss based on acid hydrolyzed sugar standards or analysis of sugar derivatives was investigated. Four model substrates (starch, holocellulose, filter paper and cotton) and three levels of acid/material ratios (7.8, 10.3 and 15.4, v/w) were studied to demonstrate the range of test artifacts. The method for carbohydrates estimation based on acid hydrolyzed sugar standards having the most satisfactory carbohydrate recovery and relative standard deviation. Raw material and the acid/material ratio both had significant effect on carbohydrate hydrolysis, suggesting the acid to have impacts beyond a catalyst in the hydrolysis. Following optimal procedures, we were able to reach a carbohydrate recovery of 96% with a relative standard deviation less than 3%. The carbohydrates recovery lower than 100% was likely due to the incomplete hydrolysis of substrates, which was supported by scanning electron microscope (SEM) images. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. A process for producing lignin and volatile compounds from hydrolysis liquor.

    Science.gov (United States)

    Khazraie, Tooran; Zhang, Yiqian; Tarasov, Dmitry; Gao, Weijue; Price, Jacquelyn; DeMartini, Nikolai; Hupa, Leena; Fatehi, Pedram

    2017-01-01

    Hot water hydrolysis process is commercially applied for treating wood chips prior to pulping or wood pellet production, while it produces hydrolysis liquor as a by-product. Since the hydrolysis liquor is dilute, the production of value-added materials from it would be challenging. In this study, acidification was proposed as a viable method to extract (1) furfural and acetic acid from hot water hydrolysis liquor and (2) lignin compounds from the liquor. The thermal properties of the precipitates made from the acidification of hydrolysis liquor confirmed the volatile characteristics of precipitates. Membrane dialysis was effective in removing inorganic salts associated with lignin compounds. The purified lignin compounds had a glass transition temperature (Tg) of 180-190 °C, and were thermally stable. The results confirmed that lignin compounds present in hot water hydrolysis liquor had different characteristics. The acidification of hydrolysis liquor primarily removed the volatile compounds from hydrolysis liquor. Based on these results, a process for producing purified lignin and precipitates of volatile compounds was proposed.

  19. Optimization of enzymatic hydrolysis and fermentation conditions for improved bioethanol production from potato peel residues.

    Science.gov (United States)

    Ben Taher, Imen; Fickers, Patrick; Chniti, Sofien; Hassouna, Mnasser

    2017-03-01

    The aim of this work was the optimization of the enzyme hydrolysis of potato peel residues (PPR) for bioethanol production. The process included a pretreatment step followed by an enzyme hydrolysis using crude enzyme system composed of cellulase, amylase and hemicellulase, produced by a mixed culture of Aspergillus niger and Trichoderma reesei. Hydrothermal, alkali and acid pretreatments were considered with regards to the enhancement of enzyme hydrolysis of potato peel residues. The obtained results showed that hydrothermal pretreatment lead to a higher enzyme hydrolysis yield compared to both acid and alkali pretreatments. Enzyme hydrolysis was also optimized for parameters such as temperature, pH, substrate loading and surfactant loading using a response surface methodology. Under optimized conditions, 77 g L -1 of reducing sugars were obtained. Yeast fermentation of the released reducing sugars led to an ethanol titer of 30 g L -1 after supplementation of the culture medium with ammonium sulfate. Moreover, a comparative study between acid and enzyme hydrolysis of potato peel residues was investigated. Results showed that enzyme hydrolysis offers higher yield of bioethanol production than acid hydrolysis. These results highlight the potential of second generation bioethanol production from potato peel residues treated with onsite produced hydrolytic enzymes. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:397-406, 2017. © 2017 American Institute of Chemical Engineers.

  20. Loading dynamics of a sliding DNA clamp.

    KAUST Repository

    Cho, Won-Ki; Jergic, Slobodan; Kim, Daehyung; Dixon, Nicholas E; Lee, Jong-Bong

    2014-01-01

    8° during clamp closure. The single-molecule polarization and FRET studies thus revealed the real-time dynamics of the ATP-hydrolysis-dependent 3D conformational change of the β clamp during loading at a ss/dsDNA junction.

  1. Product sampling during transient continuous countercurrent hydrolysis of canola oil and development of a kinetic model

    KAUST Repository

    Wang, Weicheng

    2013-11-01

    A chemical kinetic model has been developed for the transient stage of the continuous countercurrent hydrolysis of triglycerides to free fatty acids and glycerol. Departure functions and group contribution methods were applied to determine the equilibrium constants of the four reversible reactions in the kinetic model. Continuous countercurrent hydrolysis of canola oil in subcritical water was conducted experimentally in a lab-scale reactor over a range of temperatures and the concentrations of all neutral components were quantified. Several of the rate constants in the model were obtained by modeling this experimental data, with the remaining determined from calculated equilibrium constants. Some reactions not included in the present, or previous, hydrolysis modeling efforts were identified from glycerolysis kinetic studies and may explain the slight discrepancy between model and experiment. The rate constants determined in this paper indicate that diglycerides in the feedstock accelerate the transition from "emulsive hydrolysis" to "rapid hydrolysis". © 2013 Elsevier Ltd.

  2. Process development of starch hydrolysis using mixing characteristics of Taylor vortices.

    Science.gov (United States)

    Masuda, Hayato; Horie, Takafumi; Hubacz, Robert; Ohmura, Naoto; Shimoyamada, Makoto

    2017-04-01

    In food industries, enzymatic starch hydrolysis is an important process that consists of two steps: gelatinization and saccharification. One of the major difficulties in designing the starch hydrolysis process is the sharp change in its rheological properties. In this study, Taylor-Couette flow reactor was applied to continuous starch hydrolysis process. The concentration of reducing sugar produced via enzymatic hydrolysis was evaluated by varying operational variables: rotational speed of the inner cylinder, axial velocity (reaction time), amount of enzyme, and initial starch content in the slurry. When Taylor vortices were formed in the annular space, efficient hydrolysis occurred because Taylor vortices improved the mixing of gelatinized starch with enzyme. Furthermore, a modified inner cylinder was proposed, and its mixing performance was numerically investigated. The modified inner cylinder showed higher potential for enhanced mixing of gelatinized starch and the enzyme than the conventional cylinder.

  3. Hydrolysis of dilute acid-pretreated cellulose under mild hydrothermal conditions.

    Science.gov (United States)

    Chimentão, R J; Lorente, E; Gispert-Guirado, F; Medina, F; López, F

    2014-10-13

    The hydrolysis of dilute acid-pretreated cellulose was investigated in a conventional oven and under microwave heating. Two acids--sulfuric and oxalic--were studied. For both hydrothermal conditions (oven and microwave) the resultant total organic carbon (TOC) values obtained by the hydrolysis of the cellulose pretreated with sulfuric acid were higher than those obtained by the hydrolysis of the cellulose pretreated with oxalic acid. However, the dicarboxylic acid exhibited higher hydrolytic efficiency towards glucose. The hydrolysis of cellulose was greatly promoted by microwave heating. The Rietveld method was applied to fit the X-ray patterns of the resultant cellulose after hydrolysis. Oxalic acid preferentially removed the amorphous region of the cellulose and left the crystalline region untouched. On the other hand, sulfuric acid treatment decreased the ordering of the cellulose by partially disrupting its crystalline structure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Gastric protein hydrolysis of raw and roasted almonds in the growing pig.

    Science.gov (United States)

    Bornhorst, Gail M; Drechsler, Krista C; Montoya, Carlos A; Rutherfurd, Shane M; Moughan, Paul J; Singh, R Paul

    2016-11-15

    Gastric protein hydrolysis may influence gastric emptying rate and subsequent protein digestibility in the small intestine. This study examined the gastric hydrolysis of dietary protein from raw and roasted almonds in the growing pig as a model for the adult human. The gastric hydrolysis of almond proteins was quantified by performing tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis and subsequent image analysis. There was an interaction between digestion time, stomach region, and almond type for gastric protein hydrolysis (palmonds (compared to roasted almonds), hypothesized to be related to structural changes in almond proteins during roasting. Greater gastric protein hydrolysis was observed in the distal stomach (compared to the proximal stomach), likely related to the lower pH in the distal stomach. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Low frequency ultrasonic-assisted hydrolysis of starch in the presence of α-amylase.

    Science.gov (United States)

    Gaquere-Parker, Anne; Taylor, Tamera; Hutson, Raihannah; Rizzo, Ashley; Folds, Aubrey; Crittenden, Shastina; Zahoor, Neelam; Hussein, Bilal; Arruda, Aaron

    2018-03-01

    Hydrolysis of starch is an important process in the food industry and in the production of bioethanol or smaller carbohydrate molecules that can be used as starting blocks for chemical synthesis. Such hydrolysis can be enhanced by lowering the pH, heating the reaction mixture or catalyzing the reaction with enzymes. This study reports the effect of sonication on the reaction rate of starch hydrolysis at different temperatures, in the presence or absence of alpha-amylase. Starch Azure, a commercially available potato starch covalently linked with Remazol Brilliant Blue, has been chosen since its hydrolysis releases a blue dye, which concentration can be monitored by UV Vis spectroscopy. Ultrasounds, regardless of experimental conditions, provide the highest reaction rate for such hydrolysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Hydrolysis of lactose with -D-galactosidase

    Directory of Open Access Journals (Sweden)

    Vesna Stehlik-Tomas

    2001-06-01

    Full Text Available The conditions of lactose hydrolysis with enzyme preparation of D-galactosidase were investigated. The aim of this work was to considered the use of whey in fermentative processes with yeast Saccharomyces cerevisiae. Enzymatic hydrolysis was conducted at different temperatures, with different lactose concentrations in medium and different concentrations of added enzyme. The results show that optimal temperature for hydrolysis was 40°C. The optimal amount of enzyme preparation was 2 gL-1 in lactose medium with 5-10 % lactose.

  7. Synthesis, Bioevaluation and Molecular Dynamic Simulation Studies of Dexibuprofen–Antioxidant Mutual Prodrugs

    Directory of Open Access Journals (Sweden)

    Zaman Ashraf

    2016-12-01

    Full Text Available Dexibuprofen–antioxidant conjugates were synthesized with the aim to reduce its gastrointestinal effects. The esters analogs of dexibuprofen 5a–c were obtained by reacting its –COOH group with chloroacetyl derivatives 3a–c. The in vitro hydrolysis data confirmed that synthesized prodrugs 5a–c were stable in stomach while undergo significant hydrolysis in 80% human plasma and thus release free dexibuprofen. The minimum reversion was observed at pH 1.2 suggesting that prodrugs are less irritating to stomach than dexibuprofen. The anti-inflammatory activity of 5c (p < 0.001 is more significant than the parent dexibuprofen. The prodrug 5c produced maximum inhibition (42.06% of paw-edema against egg-albumin induced inflammation in mice. Anti-pyretic effects in mice indicated that prodrugs 5a and 5b showed significant inhibition of pyrexia (p < 0.001. The analgesic activity of 5a is more pronounced compared to other synthesized prodrugs. The mean percent inhibition indicated that the prodrug 5a was more active in decreasing the number of writhes induced by acetic acid than standard dexibuprofen. The ulcerogenic activity results assured that synthesized prodrugs produce less gastrointestinal adverse effects than dexibuprofen. The ex vivo antiplatelet aggregation activity results also confirmed that synthesized prodrugs are less irritant to gastrointestinal mucosa than the parent dexibuprofen. Molecular docking analysis showed that the prodrugs 5a–c interacts with the residues present in active binding sites of target protein. The stability of drug–target complexes is verified by molecular dynamic simulation study. It exhibited that synthesized prodrugs formed stable complexes with the COX-2 protein thus support our wet lab results. It is therefore concluded that the synthesized prodrugs have promising pharmacological activities with reduced gastrointestinal adverse effects than the parent drug.

  8. A dynamic approach to dependability studies

    International Nuclear Information System (INIS)

    Labeau, P.E.

    2008-01-01

    Dependability studies have now become an important part of the performance management of industrial plants. These last decades, several methods have been proposed and widely used for the analysis of systems of components subject to degradation and failure. These methods are based either on Boolean representations (for example, event trees/fault trees), or on discrete-state models (Markovian reliability, Petri nets, Bayesian networks...). However, the underlying, inherently continuous, physical processes have scarcely been accounted for, at least in an integrated fashion, in dependability studies. This paper first describes, through simple cases, the limitations of discrete approaches and the need of hybrid, discrete-continuous methods. It then summarizes the main concepts of dynamic reliability. Finally, some possible application domains are presented, as well as challenges that still need to be tackled to favour the diffusion of this approach among industrial circles. (author)

  9. Contribution to the study of dynamic recrystallization

    International Nuclear Information System (INIS)

    Guillope, Michel

    1981-01-01

    An experimental and theoretical work on dynamic recrystallization is presented. The experimental study, sustained by creep deformation of NaCl single crystals, has shown that the structural evolution can occur in two distinct ways: rotation recrystallization, which consists in a progressive sub-boundary misorientation increase; migration recrystallization, which consists in the 'catastrophic' growth of some grains. Although rotation recrystallization is to be observed for all experimental used conditions, migration recrystallization occurs only in a well defined domain of the temperature-applied stress-impurity concentration space. The proposed interpretation emphasizes the generality of the observed behaviours: the sharp boundary of the migration recrystallization domain expresses the existence of a 'catastrophic' transition from a low velocity regime (boundaries migrate charged with segregate impurities) to a high velocity regime (boundaries migrate free from impurities). Owing to the importance of grain boundary migration in dynamic recrystallization, a detailed analysis of possible migration mechanisms is presented: we show how migration induced by applied stress or recrystallization force can be explained. Finally, an original kinetic model of grain growth is developed which throws a new insight in the abnormal grain growth process and, by analogy, in the migration recrystallization phenomenon. (author) [fr

  10. Molecular beam studies of reaction dynamics

    International Nuclear Information System (INIS)

    Lee, Yuan T.

    1991-03-01

    The major thrust of this research project is to elucidate detailed dynamics of simple elementary reactions that are theoretically important and to unravel the mechanism of complex chemical reactions or photochemical processes that play important roles in many macroscopic processes. Molecular beams of reactants are used to study individual reactive encounters between molecules or to monitor photodissociation events in a collision-free environment. Most of the information is derived from measurement of the product fragment energy, angular, and state distributions. Recent activities are centered on the mechanisms of elementary chemical reactions involving oxygen atoms with unsaturated hydrocarbons, the dynamics of endothermic substitution reactions, the dependence of the chemical reactivity of electronically excited atoms on the alignment of excited orbitals, the primary photochemical processes of polyatomic molecules, intramolecular energy transfer of chemically activated and locally excited molecules, the energetics of free radicals that are important to combustion processes, the infrared-absorption spectra of carbonium ions and hydrated hydronium ions, and bond-selective photodissociation through electric excitation

  11. Ultrasonic Study of Dislocation Dynamics in Lithium -

    Science.gov (United States)

    Han, Myeong-Deok

    1987-09-01

    Experimental studies of dislocation dynamics in LiF single crystals, using ultrasonic techniques combined with dynamic loading, were performed to investigate the time evolution of the plastic deformation process under a short stress pulse at room temperature, and the temperature dependence of the dislocation damping mechanism in the temperature range 25 - 300(DEGREES)K. From the former, the time dependence of the ultrasonic attenuation was understood as resulting from dislocation multiplication followed by the evolution of mobile dislocations to immobile ones under large stress. From the latter, the temperature dependence of the ultrasonic attenuation was interpreted as due to the motion of the dislocation loops overcoming the periodic Peierls potential barrier in a manner analogous to the motion of a thermalized sine-Gordon chain under a small stress. The Peierls stress obtained from the experimental results by application of Seeger's relaxation model with exponential dislocation length distribution was 4.26MPa, which is consistent with the lowest stress for the linear relation between the dislocation velocity and stress observed by Flinn and Tinder.

  12. Experimental study of vapor bubble dynamics

    International Nuclear Information System (INIS)

    Pasquini, Maria-Elena

    2015-01-01

    The object of this thesis is an experimental study of vapor bubble dynamics in sub-cooled nucleate boiling. The test section is locally heated by focusing a laser beam: heat fluxes from 1 e4 to 1.5 e6 W/m 2 and water temperature between 100 and 88 C have been considered. Three boiling regimes have been observed. Under saturated conditions and with low heat fluxes a developed nucleate boiling regime has been observed. Under higher sub-cooling and still with low heat fluxes an equilibrium regime has been observed in which the liquid flowrate evaporating at the bubble base is compensated by the vapor condensing flowrate at bubble top. A third regime have been observed at high heat fluxes for all water conditions: it is characterized by the formation of a large dry spot on the heated surface that keeps the nucleation site dry after bubble detachment. The condensation phase starts after bubble detachment. Bubble equivalent radius at detachment varies between 1 and 2.5 mm. Bubble properties have been measured and non-dimensional groups have been used to characterize bubble dynamics. Capillary waves have been observed on the bubble surface thanks to high-speed images acquisition. Two main phenomena have been proposed to explain capillary waves effects on bubble condensation: increasing of the phases interface area and decreasing of vapor bubble translation velocity, because of the increased drag force on the deformed bubble. (author) [fr

  13. Molecular beam studies of reaction dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.T. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    The major thrust of this research project is to elucidate detailed dynamics of simple elementary reactions that are theoretically important and to unravel the mechanism of complex chemical reactions or photochemical processes that play important roles in many macroscopic processes. Molecular beams of reactants are used to study individual reactive encounters between molecules or to monitor photodissociation events in a collision-free environment. Most of the information is derived from measurement of the product fragment energy, angular, and state distributions. Recent activities are centered on the mechanisms of elementary chemical reactions involving oxygen atoms with unsaturated hydrocarbons, the dynamics of endothermic substitution reactions, the dependence of the chemical reactivity of electronically excited atoms on the alignment of excited orbitals, the primary photochemical processes of polyatomic molecules, intramolecular energy transfer of chemically activated and locally excited molecules, the energetics of free radicals that are important to combustion processes, the infrared-absorption spectra of carbonium ions and hydrated hydronium ions, and bond-selective photodissociation through electric excitation.

  14. Hemicellulose hydrolysis catalysed by solid acids

    NARCIS (Netherlands)

    Carà, P.D.; Pagliaro, M.; Elmekawy, A.; Brown, D.R.; Verschuren, P.; Shiju, N.R.; Rothenberg, G.

    2013-01-01

    Depolymerising hemicellulose into platform sugar molecules is a key step in developing the concept of an integrated biorefinery. This reaction is traditionally catalysed by either enzymes or homogeneous mineral acids. We compared various solid catalysts for hemicellulose hydrolysis, running

  15. Process for teating whey by enzymic hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Nocquet, J L

    1980-01-01

    In the process lactose is converted into glucose and galactose, with demineralization to a level of at least 50%, before the hydrolysis. A bacteriologically stable hydrolysed whey is obtained and may be used in foods for human consumption.

  16. Hydrolysis of alkaline pretreated banana peel

    Science.gov (United States)

    Fatmawati, A.; Gunawan, K. Y.; Hadiwijaya, F. A.

    2017-11-01

    Banana peel is one of food wastes that are rich in carbohydrate. This shows its potential as fermentation substrate including bio-ethanol. This paper presented banana peel alkaline pretreatment and enzymatic hydrolysis. The pretreatment was intended to prepare banana peel in order to increase hydrolysis performance. The alkaline pretreatment used 10, 20, and 30% w/v NaOH solution and was done at 60, 70 and 80°C for 1 hour. The hydrolysis reaction was conducted using two commercial cellulose enzymes. The reaction time was varied for 3, 5, and 7 days. The best condition for pretreatment process was one conducted using 30% NaOH solution and at 80°C. This condition resulted in cellulose content of 90.27% and acid insoluble lignin content of 2.88%. Seven-day hydrolysis time had exhibited the highest reducing sugar concentration, which was7.2869 g/L.

  17. Calcium-dependent hydrolysis of supported planar lipids was triggered by honey bee venom phospholipase A2 with the right orientation at the interface.

    Science.gov (United States)

    Kai, Siqi; Li, Xu; Li, Bolin; Han, Xiaofeng; Lu, Xiaolin

    2017-12-20

    Hydrolysis of planar phospholipids catalyzed by honey bee venom phospholipase A 2 (bvPLA 2 ) was studied. Experiments demonstrated that Ca 2+ ions mediated between the lipids and bvPLA 2 , induced reorientation of bvPLA 2 , and activated hydrolysis. One of the hydrolysis products, fatty acids, was desorbed, and the other one, lysophospholipids, self-organized at the interface.

  18. Hydrolysis of isocyanic acid on SCR catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Elsener, M; Kleemann, M; Koebel, M [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Standard SCR catalysts possess high activity for the hydrolysis of HNCO and thus explain the suitability of urea as a selective reducing agent for NO{sub x}. At high space velocities HNCO-slip can get perceptible over the entire temperature range. This can be attributed to the fact that the temperature dependence is strong for the SCR reaction, but weak for the hydrolysis reaction. (author) 3 figs., 5 refs.

  19. Using elevation gradients to study climate controls on soil carbon dynamics

    Science.gov (United States)

    Trumbore, S.; Marzaioli, F.; Castanha, C.; Amundson, R.

    2009-04-01

    Elevation gradients provide the opportunity to study vegetation and climate gradients in a setting where other soil forming factors such as parent material and soil age are held constant. We use the observed changes in radiocarbon content of organic matter fractionated by density and other methods to infer the dynamics of soil carbon and how it varies with elevation along transects in the Sierra Nevada mountains in California, USA. In surface litter layers, changes in the radiocarbon content from 1992 to 2006 in litter layers show that these layers are more dynamic than originally inferred from a comparison based on changes between the 1950s and the 1990s. In mineral soils, fractions often considered to be the most slowly cycling (hydrolysis residue) showed large changes in 14C in the last decade. We use incubations to determine the mean age of carbon respired by microbes along the same gradients; these data are compared to incubations from other sites and show that climate and vegetation are a major controls of the mean age of fast-cycling carbon in litter and soils.

  20. Molecular dynamic simulation study of molten cesium

    Directory of Open Access Journals (Sweden)

    Yeganegi Saeid

    2017-01-01

    Full Text Available Molecular dynamics simulations were performed to study thermodynamics and structural properties of expanded caesium fluid. Internal pressure, radial distribution functions (RDFs, coordination numbers and diffusion coefficients have been calculated at temperature range 700–1600 K and pressure range 100–800 bar. We used the internal pressure to predict the metal–non-metal transition occurrence region. RDFs were calculated at wide ranges of temperature and pressure. The coordination numbers decrease and positions of the first peak of RDFs slightly increase as the temperature increases and pressure decreases. The calculated self-diffusion coefficients at various temperatures and pressures show no distinct boundary between Cs metallic fluid and its expanded fluid where it continuously increases with temperature.

  1. Non Linear Beam Dynamics Studies at SPEAR

    International Nuclear Information System (INIS)

    Terebilo, A.; Pellegrini, C.; Cornacchia, M.; Corbett, J.; Martin, D.

    2011-01-01

    The frequency map analysis of a Hamiltonian system recently introduced to accelerators physics in combination with turn-by-turn phase space measurements opens new experimental opportunities for studying non linear dynamic in storage rings. In this paper we report on the experimental program at SPEAR having the goal of measuring the frequency map of the machine. In this paper we discuss the accuracy of the instantaneous tune extraction from experimental data and demonstrate the possibility of the frequency map measurement. The instantaneous tune extraction technique can be applied to experimental tracking data with reasonable accuracy. Frequency map can be experimentally determined using the existing turn-by-turn phase space measurement techniques and NAFF instantaneous tune extraction.

  2. Theoretical study of fission dynamics with muons

    International Nuclear Information System (INIS)

    Oberacker, V.E.; Umar, A.S.; Bottcher, C.; Strayer, M.R.; Maruhn, J.A.; Frankfurt Univ.

    1992-01-01

    Following muon capture by actinide atoms, some of the inner shell muonic transitions proceed by inverse internal conversion, i.e. the excitation energy of the muonic atom is transferred to the nucleus. In particular, the muonic E2:(3d→1s) transition energy is close to the peak of the isoscalar giant quadrupole resonance in actinide nuclei which exhibits a large fission width. Prompt fission in the presence of a bound muon allows us to study the dynamics of large-amplitude collective motion. We solve the time-dependent Dirac equation for the muonic spinor wave function in the Coulomb field of the fissioning nucleus on a 3-dimensional lattice and demonstrate that the muon attachment probability to the light fission fragment is a measure of the nuclear energy dissipation between the outer fission barrier and the scission point

  3. Radionuclide renal dynamic and function study

    International Nuclear Information System (INIS)

    Guan Liang

    1991-01-01

    The radionuclide dynamic and function study, glomerular filtration rate (GFR) and effective renal plasma flow (ERPF) were reported in 14 cases of renal and ureteral calculi patients before and after extracorporeal shock wave lithotripsy (ESWL). In 12 cases with normal renal blood flow, within 3 months after ESWL, the GFR of shock and non-shock side decreased with different extent, while the individual ERPF had little change. In 5 cases followed up 1 year after ESWL, the individual GFR and ERPF were normal. In 2 cases of severe renal function insufficiency, there was no improvement in renal function in shock side, after 5 months and 1 year, the renal function was still at low level. Thereby it is considered that ESWL is not suitable for the renal calculi patients with severe renal function insufficiency

  4. Hydrolytic gain during hydrolysis reactions : implications and correction procedures

    NARCIS (Netherlands)

    Marchal, L.M.; Tramper, J.

    1999-01-01

    Some of the structural parameters of starch (e.g. % beta- or gluco-hydrolysis) were influenced by the increase in mass during the hydrolysis reactions (hydrolytic gain). Procedures were derived to correct this apparent % of hydrolysis to actual % of hydrolysis. These analytically derived equations

  5. Quantitative aspects and dynamic modelling of glucosinolate metabolism

    DEFF Research Database (Denmark)

    Vik, Daniel

    . This enables comparison of transcript and protein levels across mutants and upon induction. I find that unchallenged plants show good correspondence between protein and transcript, but that treatment with methyljasmonate results in significant differences (chapter 1). Functional genomics are used to study......). The construction a dynamic quantitative model of GLS hydrolysis is described. Simulations reveal potential effects on auxin signalling that could reflect defensive strategies (chapter 4). The results presented grant insights into, not only the dynamics of GLS biosynthesis and hydrolysis, but also the relationship...

  6. Molecular beam studies of adsorption dynamics

    International Nuclear Information System (INIS)

    Arumainayagam, C.R.; McMaster, M.C.; Madix, R.J.

    1991-01-01

    We have investigated the trapping dynamics of C 1 -C 3 alkanes and Xe on Pt(111) using supersonic molecular beams and a direct technique to measure trapping probabilities. We have extended a one-dimensional model based on classical mechanics to include trapping and have found semiquantitative agreement with experimental results for the dependence of the initial trapping probability on incident translational energy at normal incidence. Our measurements of the initial trapping probability as a function of incident translational energy at normal incidence are in agreement with previous mean translational energy measurements for Xe and CH 4 desorbing near the surface normal, in accordance with detailed balance. However, the angular dependence of the initial trapping probability shows deviations from normal energy scaling, demonstrating the importance of parallel momentum in the trapping process and the inadequacy of one-dimensional models. The dependence of the initial trapping probability of Xe on incident translational energy and angle is quite well fit by three-dimensional stochastic classical trajectory calculations utilizing a Morse potential. Angular distributions of the scattered molecules indicate that the trapping probability is not a sensitive function of surface temperature. The trapping probability increases with surface coverage in quantitative agreement with a modified Kisliuk model which incorporates enhanced trapping onto the monolayer. We have also used the direct technique to study trapping onto a saturated monolayer state to investigate the dynamics of extrinsic precursor adsorption and find that the initial trapping probability onto the monolayer is higher than on the clean surface. The initial trapping probability onto the monolayer scales with total energy, indicating a highly corrugated interaction potential

  7. Variation of structures of ingredients of desiccated coconut during hydrolysis by hydrochloric acid at low temperature

    Directory of Open Access Journals (Sweden)

    Jian XIONG

    2017-10-01

    Full Text Available Abstract Owing to the high content of lignocellulose, desiccated coconut become a healthy material for dietary fiber supplementation. In this study, the changes in solubility of the fibers of desiccated coconut were evaluated. The changes of the pHs and weight losses were studied. Furthermore, variations of the ingredient structures of desiccated coconut by hydrolysis by hydrochloric acid were characterized by Fourier transform infrared spectroscopy (FTIR, X-ray diffraction (XRD and scanning electron microscopy (SEM. After hydrolysis 30 s, the pHs of all systems increased, while six hours later, the pH of only system with initial pH = 1.00 decreased. The decline of pH only existed in hydrolysis systems with initial pH = 1.00, there is no relevant with the quantities of desiccated coconut. The lower initial pH of hydrolysis system was, the less the intrinsic viscosity of the desiccated coconut after hydrolysis was, the small the crystallinity was. After hydrolysis, the microstructure of the desiccated coconut become looser, and the secondary structure of the coconut protein became more stable and ordered. The results suggest that the hydrolysis of desiccated coconut mainly occurred in the branched chain and the non-crystalline region of lignocellulose, which transforms some insoluble dietary fiber into soluble dietary fiber. This improves the nutritional value of desiccated coconut.

  8. Phase behaviour and in vitro hydrolysis of wheat starch in mixture with whey protein.

    Science.gov (United States)

    Yang, Natasha; Liu, Yingting; Ashton, John; Gorczyca, Elisabeth; Kasapis, Stefan

    2013-04-15

    Network formation of whey protein isolate (WPI) with increasing concentrations of native wheat starch (WS) has been examined. Small deformation dynamic oscillation in shear and modulated temperature differential scanning calorimetry enabled analysis of binary mixtures at the macro- and micromolecular level. Following heat induced gelation, textural hardness was measured by undertaking compression tests. Environmental scanning electron microscopy provided tangible information on network morphology of polymeric constituents. Experiments involving in vitro starch digestion also allowed for indirect assessment of phase topology in the binary mixture. The biochemical component of this work constitutes an attempt to utilise whey protein as a retardant to the enzymatic hydrolysis of starch in a model system with α-amylase enzyme. During heating, rheological profiles of binary mixtures exhibited dramatic increases in G' at temperatures more closely related to those observed for single whey protein rather than pure starch. Results from this multidisciplinary approach of analysis, utilising rheology, calorimetry and microscopy, argue for the occurrence of phase separation phenomena in the gelled systems. There is also evidence of whey protein forming the continuous phase with wheat starch being the discontinuous filler, an outcome that is explored in the in vitro study of the enzymatic hydrolysis of starch. Copyright © 2012. Published by Elsevier Ltd.

  9. Systems-Dynamic Analysis for Neighborhood Study

    Science.gov (United States)

    Systems-dynamic analysis (or system dynamics (SD)) helps planners identify interrelated impacts of transportation and land-use policies on neighborhood-scale economic outcomes for households and businesses, among other applications. This form of analysis can show benefits and tr...

  10. [Response surface method optimize of nano-silica solid dispersion technology assistant enzymatic hydrolysis preparation genistein].

    Science.gov (United States)

    Jin, Xin; Zhang, Zhen-Hai; Zhu, Jing; Sun, E; Yu, Dan-Hong; Chen, Xiao-Yun; Liu, Qi-Yuan; Ning, Qing; Jia, Xiao-Bin

    2012-04-01

    This article reports that nano-silica solid dispersion technology was used to raise genistein efficiency through increasing the enzymatic hydrolysis rate. Firstly, genistin-nano-silica solid dispersion was prepared by solvent method. And differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) were used to verify the formation of solid dispersion, then enzymatic hydrolysis of solid dispersion was done by snailase to get genistein. With the conversion of genistein as criteria, single factor experiments were used to study the different factors affecting enzymatic hydrolysis of genistin and its solid dispersion. And then, response surface method was used to optimize of nano-silica solid dispersion technology assistant enzymatic hydrolysis. The optimum condition to get genistein through enzymatic hydrolysis of genistin-nano-silica solid dispersion was pH 7.1, temperature 52.2 degrees C, enzyme concentration 5.0 mg x mL(-1) and reaction time 7 h. Under this condition, the conversion of genistein was (93.47 +/- 2.40)%. Comparing with that without forming the genistin-nano-silica solid dispersion, the conversion increased 2.62 fold. At the same time, the product of hydrolysis was purified to get pure genistein. The method of enzymatic hydrolysis of genistin-nano-silica solid dispersion by snailase to obtain genistein is simple, efficiency and suitable for the modern scale production.

  11. Recycling cellulases during the hydrolysis of steam exploded and ethanol pretreated Lodgepole pine.

    Science.gov (United States)

    Tu, Maobing; Chandra, Richard P; Saddler, Jack N

    2007-01-01

    Recycling of cellulases is one way of reducing the high cost of enzymes during the bioconversion process. The effects of surfactant addition on enzymatic hydrolysis and the potential recycling of cellulases were studied during the hydrolysis of steam exploded Lodgepole pine (SELP) and ethanol pretreated Lodgepole pine (EPLP). Three cellulase preparations (Celluclast, Spezyme CP, and MSUBC) were evaluated to determine their hydrolysis efficiencies over multiple rounds of recycling. The surfactant, Tween 80, significantly increased the yield from 63% to 86% during the hydrolysis of the SELP substrate. The addition of surfactant to the hydrolysis of the EPLP substrate increased the free enzymes in the supernatant from 71% of the initial protein to 96%. Based on the Langmuir adsorption constants, cellulases (Celluclast and Spezyme CP) from Trichoderma reesei showed a higher affinity (3.48 mL/mg and 3.17 mL/mg) for the EPLP substrate than did the Penicillium enzyme (0.62 mg/mg). The Trichoderma reesei enzyme was used in four successive rounds of enzyme recycling using surfactant addition and readsorption onto fresh substrates during the hydrolysis of EPLP. In contrast, the Penicillium-derived enzyme preparation (MSUBC) could only be recycled once. When the same recycling strategy was carried out using the SELP substrate, the hydrolysis yield declined during each enzyme recycling round. These results suggested that the higher lignin content of the SELP substrate, and the low affinity of cellulases for the SELP substrate limited enzyme recycling by readsorption onto fresh substrates.

  12. Kinetics of the hydrolysis of polysaccharide galacturonic acid and neutral sugars chains from flaxseed mucilage

    Directory of Open Access Journals (Sweden)

    Happi Emaga, T.

    2012-01-01

    Full Text Available Different hydrolysis procedures of flaxseed polysaccharides (chemical and enzymatic were carried out with H2SO4, HCl and TFA at different acid concentrations (0.2, 1 and 2 M and temperatures (80 and 100°C. Enzymatic and combined chemical and enzymatic hydrolyses of polysaccharide from flaxseed mucilage were also studied. Acid hydrolysis conditions (2 M H2SO4, 4 h, 100°C are required to quantify total monosaccharide content of flaxseed mucilage. The enzymatic pathway (Pectinex™ Ultra SP limits sugar destruction during hydrolysis, but it is also insufficient for complete depolymerization. The combination of the two treatments, i.e. moderate chemical hydrolysis (0.2 M H2SO4, 80°C, 48 h combined with enzymatic hydrolysis is not more effective compared to chemical hydrolysis in drastic conditions (2 M H2SO4 at 100°C. The strong interaction between the neutral and acid fractions of flaxseed mucilage may hinder total release of sugar residues. Physical treatment prior to the hydrolysis could be necessary to achieve complete depolymerisation of flaxseed mucilage.

  13. Investigation of uranyl-ion hydrolysis in uranyl pertechnetate and uranyl perchlorates solutions by two-phases potentiometric titration method

    International Nuclear Information System (INIS)

    Volk, V.I.; Belikov, A.D.

    1977-01-01

    The applicability of the method of two-phase potentiometric titration for studying hydrolysis of multi-charge ions has been shown. Hydrolysis of uranyl-ion has been investigated and hydrolysis constants in the solutions of uranyl pertechnetate and perchlorate have been calculated equal to (6.2+-0.15)x10 -5 and (9.25+-0.5)10 -5 , respectively. Infrared spectra of the initial crystallohydrates of uranyl pertechnetate and perchlorate has been analyzed. The data on hydrolysis of an uranyl-ion and IR spectra of crystallohydrates of the investigated salts have revealed the ability of pertechnetate ion to complexing with an uranyl group

  14. Kinetics of enzymatic hydrolysis of methyl ricinoleate

    Directory of Open Access Journals (Sweden)

    Neeharika, T. S.V.R.

    2015-12-01

    Full Text Available Ricinoleic acid is an unsaturated hydroxy fatty acid that naturally occurs in castor oil in proportions of up to 85–90%. Ricinoleic acid is a potential raw material and finds several applications in coatings, lubricant formulations and pharmaceutical areas. Enzymatic hydrolysis of castor oil is preferred over conventional hydrolysis for the preparation of ricinoleic acid to avoid estolide formation. A kinetics analysis of the enzymatic hydrolysis of Methyl Ricinoleate in the presence of Candida antarctica Lipase B was carried out in this study by varying reaction temperature (40–60 °C and enzyme concentration (2–5%. The optimal conditions were found to be 6 h reaction time, temperature 60°C, buffer to methyl ricinoleate ratio 2:1(v/w and 4% enzyme concentration to achieve a maximum conversion of 98.5%. A first order reversible reaction kinetic model was proposed to describe this reaction and a good agreement was observed between the experimental data and the model values. The effect of temperature on the forward reaction rate constant was determined by fitting data to the Arrhenius equation. The activation energy for forward reaction was found to be 14.69 KJ·mol−1.El ácido ricinoleico es un hidroxiácido insaturado que se produce naturalmente en el aceite de ricino en proporciones de hasta el 85–90%. El ácido ricinoleico es una materia prima con gran potencial y tiene aplicaciones en revestimientos, formulaciones lubricantes y en áreas farmacéuticas. Para la preparación del ácido ricinoleico se prefiere la hidrólisis enzimática del aceite de ricino a la hidrólisis convencional, para evitar la formación de estólidos. En este estudio se llevó a cabo la cinética de la hidrólisis enzimática del ricinoleato de metilo en presencia de lipasa de Candida antarctica B mediante la variación de la temperatura de reacción (40–60 °C y la concentración de la enzima (2–5%. Las condiciones óptimas de la reacción para

  15. Hydrolysis of fish protein by Bacillus megaterium cells immobilized in radiation induced polymerized wood

    International Nuclear Information System (INIS)

    Ghosh, S.; Alur, M.D.; Nerkar, D.P.

    1992-01-01

    The immobilization of Bacillus megaterium cells in radiation-induced polymerized wood was studied for hydrolysis of trash fish protein. The optimum conditions and reaction kinetics for hydrolysis of protein by free and immobilized cells were found to be similar. Maximum hydrolysis occurred at 50 o C and at pH 7.5 with 15-20% (w/v) of immobilized matrix. The soluble content of the resultant hydrolysate about 2.4% (w/v). (author). 10 refs., 4 figs

  16. Pretreatment by radiation and acids of chaff and its effect on enzymatic hydrolysis of cellulose

    International Nuclear Information System (INIS)

    Kumakura, M.; Kaetsu, I.

    1984-01-01

    The effect of pretreatment by radiation and acids—sulfuric, hydrochloric and acetic—on the enzymatic hydrolysis of chaff was studied. The combination of radiation and acids accelerates subsequent crushing and enzymatic hydrolysis. The percentage of fine powder below 115 mesh, after the crushing and the glucose yield on subsequent enzymatic hydrolysis, increased with increasing acid concentration, treatment time and irradiation dose. Radiation and hydrochloric acid pretreatment was the most effective in giving a high glucose conversion yield (about 90%). Irradiation dose, acid concentration, treatment temperature and treatment time were 20 Mrad, 0·5%, 70°C, and 5 h, respectively

  17. Effects of copper source and concentration on in vitro phytate phosphorus hydrolysis by phytase.

    Science.gov (United States)

    Pang, Yanfang; Applegate, Todd J

    2006-03-08

    Five copper (Cu) sources were studied at pH 2.5, 5.5, and 6.5 to determine how Cu affects phytate phosphorus (PP) hydrolysis by phytase at concentrations up to 500 mg/kg diet (60 min, 40-41 degrees C). Subsequently, Cu solubility with and without sodium phytate was measured. Adding Cu inhibited PP hydrolysis at pH 5.5 and pH 6.5 (P copper chloride and copper lysinate inhibited PP hydrolysis much less than copper sulfate pentahydrate, copper chloride, and copper citrate (P copper-phytin complexes.

  18. Catalytic hydrolysis of Metil Teret Botil Eter in under ground contaminated water

    International Nuclear Information System (INIS)

    Nikpey, A.; Mortazavi, B.; Asilian, H.; Khavanin, A.; Rezaee, A.; Soleimanian, A.; Kazemian, H.

    2005-01-01

    The behavior of ZSM-5 and Mordenite catalyst in the hydrolysis at room temperature of methyl tert-butyl ether was studied with reference to the possibility of its conversion to more biodegradable products in underground water contaminated by methyl tert-butyl ether. Hydrolysis products were determined using a gas chromatograph equipped with a flame ionization detector. The results indicate that acid ZSM-5 catalyst are effective in both adsorption and hydrolysis of methyl tert-butyl ether and may be applied for both in situ underground water remediation and as protection barrier for wells or leaking tanks. However, acid mordenite catalyst completely inactive

  19. The europium and praseodymium hydrolysis in a 2M NaCl environment

    International Nuclear Information System (INIS)

    Jimenez R, M.; Lopez G, H.; Solache R, M.; Rojas H, A.

    1998-01-01

    It was studied the europium and praseodymium hydrolysis in a 2M NaCl ion force environment at 303 K, through two methods: this one extraction with dissolvents (lanthanide-water-NaCl-dibenzoylmethane) in presence of a competitive ligand (diglycolic acid) and that one direct potentiometric titration, of soluble species, followed by a computer refining. The values of one or another techniques of the first hydrolysis constants obtained were similar, which demonstrates that the results are reliable. The set of data obtained on the stability constants of hydrolysis products allowed to draw up the distribution diagrams of chemical species, as europium as praseodymium in aqueous environment. (Author)

  20. Acid hydrolysis of the biomass of resistant cellulose of thistle ''Onopordum nervosum boiss''

    International Nuclear Information System (INIS)

    Suarez, C.; Diaz Palma, A.; Paz Saa, M.D.

    1985-01-01

    Hydrolysis of resistant cellulose of ''Onopordum nervosum boiss'' (thistle) to reduce sugar in diluted sulfuric acid in glass ampoules and long residence times have been studied and kinetic parameters determined. The rate of hydrolysis is similar to that of the cellulose of Douglas fir, but comparatively the effect of the acid is more pronounced than temperature. From kinetic data the yield can be predicted and since it can be obtained at least 45% of the potential glucose (48% as reducing sugars) at 190 deg C, 1.6% acid and 6.1 min. residence time, it indicates that the continuous acid hydrolysis of thistle may be a process of commercial interest. (author)

  1. Effect of Hydrolysis Products of Different Proteins of Wheat on Antioxidant Enzymes

    Directory of Open Access Journals (Sweden)

    Hasan Hasanov

    2011-05-01

    Full Text Available This paper presents a study of the effect of products of enzymatic hydrolysis of various proteins of wheat with a neutral proteinase (neutrase “Novozymes”, Denmark on the activity of peroxidase from horseradish. It is shown that the hydrolysis products of albumin activate peroxidase activity, the constant of activation being 2.3 micromoles. At the same time with increasing the depth of hydrolysis of albumin the activating effect of peptides disappears. Peptides derived from the salt-soluble, alcohol-soluble alkali-soluble proteins had no effect on the activity of peroxidase.

  2. Enzymatic hydrolysis of pretreated soybean straw

    International Nuclear Information System (INIS)

    Xu Zhong; Wang Qunhui; Jiang Zhaohua; Yang Xuexin; Ji Yongzhen

    2007-01-01

    In order to produce lactic acid, from agricultural residues such as soybean straw, which is a raw material for biodegradable plastic production, it is necessary to decompose the soybean straw into soluble sugars. Enzymatic hydrolysis is one of the methods in common use, while pretreatment is the effective way to increase the hydrolysis rate. The optimal conditions of pretreatment using ammonia and enzymatic hydrolysis of soybean straw were determined. Compared with the untreated straw, cellulose in straw pretreated by ammonia liquor (10%) soaking for 24 h at room temperature increased 70.27%, whereas hemicellulose and lignin in pretreated straw decreased to 41.45% and 30.16%, respectively. The results of infrared spectra (IR), scanning electron microscope (SEM) and X-ray diffraction (XRD) analysis also showed that the structure and the surface of the straw were changed through pretreatment that is in favor of the following enzymatic hydrolysis. maximum enzymatic hydrolysis rate of 51.22% was achieved at a substrate concentration of 5% (w/v) at 50 deg. C and pH 4.8 using cellulase (50 fpu/g of substrate) for 36 h

  3. Hydrolysis of solubilized hemicellulose derived from wet-oxidized wheat straw by a mixture of commercial fungal enzyme preparations

    Energy Technology Data Exchange (ETDEWEB)

    Skammelsen Schmidt, Anette; Thomsen, Alle Belinda; Woidemann, Anders [Risoe National Lab. (Denmark); Tenkanen, Maija [VTT Biotechnology and Food Research (Finland)

    1998-04-01

    The enzymatic hydrolysis of the solubilized hemicellulose fraction from wet-oxidized wheat straw was investigated for quantification purposes. An optimal hydrolysis depends on factors such as composition of the applied enzyme mixture and the hydrolysis conditions (enzyme loading, hydrolysis time, pH-value, and temperature). A concentrated enzyme mixture was used in this study prepared at VTT Biotechnology and Food Research, Finland, by mixing four commercial enzyme preparations. No distinctive pH-value and temperature optima were identified after a prolonged incubation of 24 hours. By reducing the hydrolysis time to 2 hours a temperature optimum was found at 50 deg. C, where a pH-value higher than 5.2 resulted in reduced activity. An enzyme-substrate-volume-ratio of 0.042, a pH-value of 5.0, and a temperature of 50 deg. C were chosen as the best hydrolysis conditions due to an improved monosaccharide yield. The hydrolysis time was chosen to be 24 hours to ensure equilibrium and total quantification. Even under the best hydrolysis conditions, the overall sugar yield from the enzymatic hydrolysis was only 85% of that of the optimal acid hydrolysis. The glucose yield were approximately the same for the two types of hydrolyses, probably due to the high cellulase activity in the VTT-enzyme mixture. For xylose and arabinose the enzymatic hydrolysis yielded only 80% of that of the acid hydrolysis. As the pentoses existed mainly as complex polymers their degradation required many different enzymes, some of which might be missing from the VTT-enzyme mixture. Furthermore, the removal of side-choins from the xylan backbone during the wet-oxidation pretreatment process might enable the hemicellulosic polymers to interact and precipitate, hence, reducing the enzymatic digestibility of the hemicellulose. (au) 8 tabs., 10 ills., 65 refs.

  4. 1H NMR and SPME-GC/MS study of hydrolysis, oxidation and other reactions occurring during in vitro digestion of non-oxidized and oxidized sunflower oil. Formation of hydroxy-octadecadienoates.

    Science.gov (United States)

    Nieva-Echevarría, Bárbara; Goicoechea, Encarnación; Manzanos, María J; Guillén, María D

    2017-01-01

    Both fresh and slightly oxidized sunflower oils, as models of omega-6 rich lipids, were submitted to in vitro gastrointestinal digestion and studied by 1 H NMR and SPME-GC/MS. Changes in lipolysis degree, lipid composition and oxidative level were studied by 1 H NMR. Three quantitative approaches were used and several equations were newly developed. In oxidized oil digestates slightly lower hydrolysis and a higher advance of oxidation took place during digestion. This latter was evidenced by a greater decrease of lipid unsaturation degree and enhanced generation of oxidation products (cis,trans-hydroperoxy-octadecadienoates, cis,trans- and trans,trans-hydroxy-octadecadienoates). For the first time, the generation of hydroxy-octadecadienoates during in vitro digestion is reported. Furthermore, SPME-GC/MS study of non-digested and digested samples headspaces confirmed that lipid oxidation occurred: abundances of volatile markers increased (including potentially toxic alpha,beta-unsaturated aldehydes), especially in oxidized oils digestates. Markers of Maillard-type and esterification reactions were also detected in the digestates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Intermolecular dynamics studied by paramagnetic tagging

    Energy Technology Data Exchange (ETDEWEB)

    Xu Xingfu; Keizers, Peter H. J. [Leiden University, Institute of Chemistry (Netherlands); Reinle, Wolfgang; Hannemann, Frank; Bernhardt, Rita [Universitaet des Saarlandes, Naturwissenschaftlich-Technische Fakultaet III, Institut fuer Biochemie (Germany); Ubbink, Marcellus [Leiden University, Institute of Chemistry (Netherlands)], E-mail: m.ubbink@chem.leidenuniv.nl

    2009-04-15

    Yeast cytochrome c and bovine adrenodoxin form a dynamic electron transfer complex, which is a pure encounter complex. It is demonstrated that the dynamic nature of the interaction can readily be probed by using a rigid lanthanide tag attached to cytochrome c. The tag, Caged Lanthanide NMR Probe 5, induces pseudocontact shifts and residual dipolar couplings and does not perturb the binding interface. Due to the dynamics in the complex, residual dipolar couplings in adrenodoxin are very small. Simulation shows that cytochrome c needs to sample a large part of the surface of adrenodoxin to explain the small degree of alignment observed for adrenodoxin. The applied method provides a simple and straightforward way to observe dynamics in protein complexes or domain-domain mobility without the need for external alignment media.

  6. Intermolecular dynamics studied by paramagnetic tagging

    International Nuclear Information System (INIS)

    Xu Xingfu; Keizers, Peter H. J.; Reinle, Wolfgang; Hannemann, Frank; Bernhardt, Rita; Ubbink, Marcellus

    2009-01-01

    Yeast cytochrome c and bovine adrenodoxin form a dynamic electron transfer complex, which is a pure encounter complex. It is demonstrated that the dynamic nature of the interaction can readily be probed by using a rigid lanthanide tag attached to cytochrome c. The tag, Caged Lanthanide NMR Probe 5, induces pseudocontact shifts and residual dipolar couplings and does not perturb the binding interface. Due to the dynamics in the complex, residual dipolar couplings in adrenodoxin are very small. Simulation shows that cytochrome c needs to sample a large part of the surface of adrenodoxin to explain the small degree of alignment observed for adrenodoxin. The applied method provides a simple and straightforward way to observe dynamics in protein complexes or domain-domain mobility without the need for external alignment media

  7. Molecular dynamics studies of superionic conductors

    International Nuclear Information System (INIS)

    Rahman, A.

    1979-01-01

    Over the last fifteen years computer modeling of liquids and solids has become a useful method of understanding the structural and dynamical correlations in these systems. Some characteristics of the method are presented with an example from work on homogeneous nucleation in monoatomic liquids; the interaction potential determines the structure: a Lennard--Jones system nucleates a close packed structure while an alkali metal potential nucleates a bcc packing. In the study of ionic systems like CaF 2 the Coulomb interaction together with the short range repulsion is enough to produce a satisfactory model for the motion of F - ions in CaF 2 at approx. 1600 0 K. Analysis of this motion shows that F - ions reside at their fluorite sites for about 6 x 10 -12 s and that the diffusion is mainly due to F - jumps in the 100 direction. The motion can be analyzed in terms of the generation and annihilation of anti-Frenkel pairs. The temperature dependence of the F - diffusion constant at two different densities has also been calculated. The computer model does not correspond with experiment in this regard

  8. Prolactin secretion: the impact of dynamic studies

    International Nuclear Information System (INIS)

    L'Hermite, M.; Degueldre, M.; Caufriez, A.; Delvoye, P.; Robyn, C.

    1975-01-01

    Human prolactin blood levels were determined by radioimmunoassay in basal condition and in response to various inhibiting and/or stimulating agents (levodopa, water overload, insulinic hypoglycaemia, synthetic TRH, sulpiride) in cases of disturbed hypothalamo-pituitary axis (failure to lactate, prolactin-secreting pituitary adenomas, acromegaly, other pituitary tumours, clinical panhypopituitarism). A blunted prolactin response to suckling was evidenced in 2 post-partum women who were unable to breast feed. Hyperprolactinaemia, whether related to the existence of a prolactin-producing adenoma or not was associated with the disappearance of the normal circadian pattern of prolactin secretion and with a blunted relative response to TRH; the latter phenomenon occurred also in acromegaly regardless of the basal prolactinaemia, and during the last trimester of pregnancy. Water overload was unsuccessful to suppress prolactin during the last trimester of pregnancy while the acute administration of levodopa was quite effective in about half of the patients with pituitary tumour. Therefore none of the dynamic tests presently studied allowed to attribute a hyperprolactinaemia to a pituitary tumour rather than to a functional disturbance. On the contrary, stimulation tests can help to locate the level of a defect in cases of hypopituitarism [fr

  9. Reaction kinetics of cellulose hydrolysis in subcritical and supercritical water

    Science.gov (United States)

    Olanrewaju, Kazeem Bode

    The uncertainties in the continuous supply of fossil fuels from the crisis-ridden oil-rich region of the world is fast shifting focus on the need to utilize cellulosic biomass and develop more efficient technologies for its conversion to fuels and chemicals. One such technology is the rapid degradation of cellulose in supercritical water without the need for an enzyme or inorganic catalyst such as acid. This project focused on the study of reaction kinetics of cellulose hydrolysis in subcritical and supercritical water. Cellulose reactions at hydrothermal conditions can proceed via the homogeneous route involving dissolution and hydrolysis or the heterogeneous path of surface hydrolysis. The work is divided into three main parts. First, the detailed kinetic analysis of cellulose reactions in micro- and tubular reactors was conducted. Reaction kinetics models were applied, and kinetics parameters at both subcritical and supercritical conditions were evaluated. The second major task was the evaluation of yields of water soluble hydrolysates obtained from the hydrolysis of cellulose and starch in hydrothermal reactors. Lastly, changes in molecular weight distribution due to hydrothermolytic degradation of cellulose were investigated. These changes were also simulated based on different modes of scission, and the pattern generated from simulation was compared with the distribution pattern from experiments. For a better understanding of the reaction kinetics of cellulose in subcritical and supercritical water, a series of reactions was conducted in the microreactor. Hydrolysis of cellulose was performed at subcritical temperatures ranging from 270 to 340 °C (tau = 0.40--0.88 s). For the dissolution of cellulose, the reaction was conducted at supercritical temperatures ranging from 375 to 395 °C (tau = 0.27--0.44 s). The operating pressure for the reactions at both subcritical and supercritical conditions was 5000 psig. The results show that the rate-limiting step in

  10. Production of Fish Hydrolysates Protein From Waste of Fish Carp (Cyprinus Carpio) by Enzymatic Hydrolysis

    OpenAIRE

    Saputra, Dede; Nurhayati, Tati

    2016-01-01

    Fish Protein Hydrolysates (FPH) is the mixed products of polypeptide, dipeptides, and amino acid. It can be produced from materials that contained of protein by acid reaction, base reaction or enzymatic hydrolysis. The objectives of this study were to study the production of FPH from fish carp meat at post rigor phase and viscera by enzymatic hydrolysis, to determine the specific activity of papain enzyme, and to determine the solubility of FPH. Capacity of fish hydrolyzing can be identified ...

  11. Modeling Evolution of Hydrogen Bonding and Stabilization of Transition States in the Process of Cocaine Hydrolysis Catalyzed by Human Butyrylcholinesterase

    OpenAIRE

    Gao, Daquan; Zhan, Chang-Guo

    2006-01-01

    Molecular dynamics (MD) simulations and quantum mechanical/molecular mechanical (QM/MM) calculations were performed on the prereactive enzyme-substrate complex, transition states, intermediates, and product involved in the process of human butyrylcholinesterase (BChE)-catalyzed hydrolysis of (−)-cocaine. The computational results consistently reveal a unique role of the oxyanion hole (consisting of G116, G117, and A199) in BChE-catalyzed hydrolysis of cocaine, as compared to acetylcholinester...

  12. Thermal transpiration: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    T, Joe Francis [Computational Nanotechnology Laboratory, School of Nano Science and Technology, National Institute of Technology Calicut, Kozhikode (India); Sathian, Sarith P. [Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai (India)

    2014-12-09

    Thermal transpiration is a phenomenon where fluid molecules move from the cold end towards the hot end of a channel under the influence of longitudinal temperature gradient alone. Although the phenomenon of thermal transpiration is observed at rarefied gas conditions in macro systems, the phenomenon can occur at atmospheric pressure if the characteristic dimensions of the channel is less than 100 nm. The flow through these nanosized channels is characterized by the free molecular flow regimes and continuum theory is inadequate to describe the flow. Thus a non-continuum method like molecular dynamics (MD) is necessary to study such phenomenon. In the present work, MD simulations were carried out to investigate the occurance of thermal transpiration in copper and platinum nanochannels at atmospheric pressure conditions. The mean pressure of argon gas confined inside the nano channels was maintained around 1 bar. The channel height is maintained at 2nm. The argon atoms interact with each other and with the wall atoms through the Lennard-Jones potential. The wall atoms are modelled using an EAM potential. Further, separate simulations were carried out where a Harmonic potential is used for the atom-atom interaction in the platinum channel. A thermally insulating wall was introduced between the low and high temperature regions and those wall atoms interact with fluid atoms through a repulsive potential. A reduced cut off radius were used to achieve this. Thermal creep is induced by applying a temperature gradient along the channel wall. It was found that flow developed in the direction of the increasing temperature gradient of the wall. An increase in the volumetric flux was observed as the length of the cold and the hot regions of the wall were increased. The effect of temperature gradient and the wall-fluid interaction strength on the flow parameters have been studied to understand the phenomenon better.

  13. Hydrolysis of lactose: a literature review

    Energy Technology Data Exchange (ETDEWEB)

    Gekas, V; Lopez-Leiva, M

    1985-02-01

    Lactose is the sugar found in milk and whey. Its hydrolysis to glucose and galactose in milk would solve the problem of milk-intolerant people and in whey it would avoid environmental pollution and offer an interesting possibility of by-product utilization. The prepared sweet syrup has many potential applications in the food industry. Hydrolysis of lactose can be carried out by heating at low pH (acid hydrolysis) or by enzymatic catalysis with the enzyme (lactase or ..beta..-D-galactosidase) either free in solution or immobilized by one of the several enzyme immobilization methods which are abundant in the literature. Selection of the proper method depends on many factors: the nature of substrate, use of the final product, need for sanitary conditions, and, of course, capital and processing costs. 157 references.

  14. Cholinesterase catalyzed hydrolysis of O-acyl derivatives of serotonin

    International Nuclear Information System (INIS)

    Makhaeva, G.F.; Suvorov, N.N.; Ginodman, L.N.; Antonov, V.K.; AN SSSR, Moscow. Inst. Bioorganicheskoj Khimii)

    1977-01-01

    Hydrolysis of O acyl serotonin derivatives containing the residues of monocarbon dicarbon and amino acids under the effect of horse serum butyryl cholinesterase and bull erythrocytic acetylcholinesterase has been studied. It has been established, that acetylcholinesterase hydrolizes O acetylserotonin only; butyrylcholinesterase hydrolizes all the compounds investigated, except for 5,5'-terephthaloildioxytriptamine. The kinetic parameters of hydrolysis were determined. O acyl serotonin derivatives turned out good substrates of butylrylcholinesterase; serotonin and 5.5'-terephtaloildioxytriptamine are effective competitine inhibitors of the enzyme. Estimating of resistance of O acyl serotonin derivatines to blood cholinesterase effect under physiological conditions shows that the compounds investigated with the exception of 5,5'-terephthaloildioxytriptamine must be quickly hydrolyzed under butyrylcholinesterase action. 5,5'-terephthaloildioxytriptamine is suggested as a radioprotective preparation with the prolonged effect, which agrees with the biological test results

  15. Modeling the mechanisms of biological GTP hydrolysis

    DEFF Research Database (Denmark)

    Carvalho, Alexandra T.P.; Szeler, Klaudia; Vavitsas, Konstantinos

    2015-01-01

    Enzymes that hydrolyze GTP are currently in the spotlight, due to their molecular switch mechanism that controls many cellular processes. One of the best-known classes of these enzymes are small GTPases such as members of the Ras superfamily, which catalyze the hydrolysis of the γ-phosphate bond...... in GTP. In addition, the availability of an increasing number of crystal structures of translational GTPases such as EF-Tu and EF-G have made it possible to probe the molecular details of GTP hydrolysis on the ribosome. However, despite a wealth of biochemical, structural and computational data, the way...

  16. Switchgrass storage effects on the recovery of carbohydrates after liquid hot water pretreatment and enzymatic hydrolysis

    Directory of Open Access Journals (Sweden)

    Danielle Julie Carrier

    2016-08-01

    Full Text Available Perennial grasses that would be used for bioenergy and bioproducts production will need to be stored for various periods of time to ensure a continual feedstock supply to a bioprocessing facility. The effects of storage practices on grass composition and the response of grasses to subsequent bioprocesses such as pretreatment and enzymatic hydrolysis needs to be understood to develop the most efficient storage protocols. This study examined the effect of outdoor storage of round switchgrass bales on composition before and after liquid hot water pretreatment (LHW and enzymatic hydrolysis. This study also examined the effect of washing LHW pretreated biomass prior to enzymatic hydrolysis. It was determined that switchgrass composition after baling was stable. As expected, glucan and lignin contents increased after LHW due to decreases in xylan and galactan. Washing biomass prior to enzymatic hydrolysis reduced saccharification, especially in samples from the interior of the bale, by at least 5%.

  17. Hydrolysis of TBF and TiAP in presence of zirconium

    International Nuclear Information System (INIS)

    Vladimirova, M.V.; Kulikov, I.A.; Kuprij, A.A.

    1992-01-01

    Acid hydrolysis of organic solutions of tributyl phosphate (TBP) and tri-iso-amylphosphate (TiAP) in n-paraffin diluent in the presence of zirconium (0.025-0.1 mole/l) at nitric acid concentration of 0.3-1 mole/l is studied. Hydrolysis of extractants in a two-phase system, modelling conditions of spent fuel reprocessing and consisting of 1.1 mole/l TAP, 3 mole/l nitric acid at zirconium concentration in water phase 0.05-0.11 mole/l, at water-organic phase ratio 10:1 and at 60 deg C is also studied. Constants of TAP hydrolysis in organic and water phases are determined. Mechanism of increasing the TAP hydrolysis rate in zirconium presence is discussed. 5 refs., 2 figs., 5 tabs

  18. Final report for NIF chamber dynamics studies

    International Nuclear Information System (INIS)

    Burnham, A; Peterson, P F; Scott, J M

    1998-01-01

    The National Ignition Facility (NIF), a 1.8 MJ, 192 laser beam facility, will have anticipated fusion yields of up to 20 MJ from D-T pellets encased in a gold hohlraum target. The energy emitted from the target in the form of x rays, neutrons, target debris kinetic energy, and target shrapnel will be contained in a 5 m. radius spherical target chamber. various diagnostics will be stationed around the target at varying distances from the target. During each shot, the target will emit x rays that will vaporize nearby target facing surfaces including those of the diagnostics, the target positioner, and other chamber structures. This ablated vapor will be transported throughout the chamber, and will eventually condense and deposit on surfaces in the chamber, including the final optics debris shields. The research at the University of California at Berkeley relates primarily to the NIF chamber dynamics. The key design issues are the ablation of the chamber structures, transport of the vapor through the chamber and the condensation or deposition processes of those vaporized materials. An understanding of these processes is essential in developing a concept for protecting the fina optics debris shields from an excessive coating (> 10 A) of target debris and ablated material, thereby prolonging their lifetime between change-outs. At Berkeley, we have studied the physical issues of the ablation process and the effects of varying materials, the condensation process of the vaporized material, and design schemes that can lower the threat posed to the debris shields by these processes. The work or portions of the work completed this year have been published in several papers and a dissertation [l-5

  19. Raman spectroscopic study of reaction dynamics

    Science.gov (United States)

    MacPhail, R. A.

    1990-12-01

    The Raman spectra of reacting molecules in liquids can yield information about various aspects of the reaction dynamics. The author discusses the analysis of Raman spectra for three prototypical unimolecular reactions, the rotational isomerization of n-butane and 1,2-difluoroethane, and the barrierless exchange of axial and equatorial hydrogens in cyclopentane via pseudorotation. In the first two cases the spectra are sensitive to torsional oscillations of the gauche conformer, and yield estimates of the torsional solvent friction. In the case of cyclopentane, the spectra can be used to discriminate between different stochastic models of the pseudorotation dynamics, and to determine the relevant friction coefficients.

  20. The influence of the medium on the hydrolysis and polymerization of actinides

    International Nuclear Information System (INIS)

    Milic, N.B.

    1977-08-01

    The hydrolysis of thorium(IV) ions in ionic medium (aqueous solutions containing chlorides or nitrates) is studied. A linear free energy relationship (formula given) between changes in the ionic medium (e.g. in chloride concentration) and the hydrolysis reaction is established. To check the applicability of the formula, experiments with thorium(IV) ions in chloride solution media were carried out using potentiometric and calorimetric methods. The experimental results were in agreement with the linear free energy relationship

  1. Kinetics of glycoalkaloid hydrolysis and solanidine extraction in liquid-liquid systems

    Directory of Open Access Journals (Sweden)

    Stanković Mihajlo Z.

    2002-01-01

    Full Text Available The kinetics of glycoalkaloid hydrolysis and solanidine extraction in Analyzed in this study. obtained from dried and milled potato haulm to to which hydrochlotic acid was added is the first liquid phase, while chloroform trichloroethylene or carbon tetrachlondeisthe second organic, liquid phase. The purpose of this paper was to combine the processes of glycoalkaloid hydrolysis to solanidine and solanidine extraction into one step, and to find the optimal liquid-liquid system for such a process.

  2. Dynamic Aperture Studies for SPEAR 3

    International Nuclear Information System (INIS)

    Nosochkov, Yuri

    1999-01-01

    The SSRL is investigating an accelerator upgrade project to replace the present 130 nm.rad FODO lattice with an 18 nm.rad double bend achromat lattice: SPEAR 3. In this paper, we review the methods used to maximize the SPEAR 3 dynamic aperture including optimization of linear optics, betatron tune, chromaticity and coupling correction, and effects of machine errors and insertion devices

  3. Excess water dynamics in hydrotalcite: QENS study

    Indian Academy of Sciences (India)

    dynamics of excess water in hydrotalcite sample with varied content of excess water are reported. Translational motion of excess water can be best described by random transla- tional jump diffusion model. The observed increase in translational diffusivity with increase in the amount of excess water is attributed to the ...

  4. In situ observation of lithium hydride hydrolysis by DRIFT spectroscopy

    International Nuclear Information System (INIS)

    Awbery, Roy P.; Broughton, Duncan A.; Tsang, S.C.

    2008-01-01

    Polycrystalline LiH was studied in situ using diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy to investigate the effect water vapour has on the rate of production of the corrosion products, particularly LiOH. The reaction rate of the formation of surface LiOH was monitored by measurement of the hydroxyl (OH) band at 3676 cm -1 . The initial hydrolysis rate of LiH exposed to water vapour at 50% relative humidity was found to be almost two times faster than LiH exposed to water vapour at 2% relative humidity. The hydrolysis rate was shown to be initially very rapid followed by a much slower, almost linear rate. The change in hydrolysis rate was attributed to the formation of a coherent layer of LiOH on the LiH surface. Exposure to lower levels of water vapour appeared to result in the formation of a more coherent corrosion product, resulting in effective passivation of the surface to further attack from water

  5. Aqueous-gas phase partitioning and hydrolysis of organic iodides

    International Nuclear Information System (INIS)

    Glowa, G.A.; Wren, J.C.

    2003-01-01

    The volatility and decomposition of organic iodides in a reactor containment building are important parameters to consider when assessing the potential consequences of a nuclear reactor accident. However, there are few experimental data available for the volatilities (often reported as partition coefficients) or few rate constants regarding the decomposition (via hydrolysis) of organic iodides. The partition coefficients and hydrolysis rate constants of eight organic iodides, having a range of molecular structures, have been measured in the current studies. This data, and data accumulated in the literature, have been reviewed and discussed to provide guidelines for appropriate organization of organic iodides for the purpose of modelling iodine behaviour under postulated nuclear reactor accident conditions. After assessment of the partition coefficients and their temperature dependences of many classes of organic compounds, it was found that organic iodides could be divided into two categories based upon their volatility relative to molecular iodine. Similarly, hydrolysis rates and their temperature dependences are assigned to the two categories of organic iodides. (author)

  6. Lactose hydrolysis and milk powder production: technological aspects

    Directory of Open Access Journals (Sweden)

    Jansen Kelis Ferreira Torres

    2017-06-01

    Full Text Available The food industry has the challenge and the opportunity to develop new products with reduced or low lactose content in order to meet the needs of a growing mass of people with lactose intolerance. The manufacture of spray dried products with hydrolyzed lactose is extremely challenging. These products are highly hygroscopic, which influence the productivity and conservation of the powders, not to mention the undesirable and inevitable technological problem of constant clogging of drying chambers. The aim of this study was to evaluate the effect of different levels (0%, 25%, 50%, 75% and > 99% of enzymatic lactose hydrolysis on the production and storage of whole milk powder. The samples were processed in a pilot plant and characterized in relation to their composition analysis; to their degree of hydrolysis of lactose; and to their sorption isotherms. The results indicated the hydrolysis of lactose may affect the milk powder production due to a higher extent of powder adhesion within the spray dryer chambers and due to a higher tendency to absorb water during storage.

  7. Optimization of Enzymatic Hydrolysis of Waste Bread before Fermentation

    Directory of Open Access Journals (Sweden)

    Helena Hudečková

    2017-01-01

    Full Text Available Finding of optimal hydrolysis conditions is important for increasing the yield of saccharides. The higher yield of saccharides is usable for increase of the following fermentation effectivity. In this study optimal conditions (pH and temperature for amylolytic enzymes were searched. As raw material was used waste bread. Two analytical methods for analysis were used. Efficiency and process of hydrolysis was analysed spectrophotometrically by Somogyi-Nelson method. Final yields of glucose were analysed by HPLC. As raw material was used waste bread from local cafe. Waste bread was pretreated by grinding into small particles. Hydrolysis was performed in 100 mL of 15 % (w/v waste bread particles in the form of water suspension. Waste bread was hydrolysed by two commercial enzymes. For the liquefaction was used α‑amylase (BAN 240 L. The saccharification was performed by glucoamylase (AMG 300 L. Optimal conditions for α‑amylase (pH 6; 80 °C were found. The yield of total sugars was 67.08 g∙L-1 (calculated to maltose. As optimal conditions for glucoamylase (pH 4.2; 60 °C were found. Amount of glucose was 70.28 g∙L1. The time of waste bread liquefaction was 180 minutes. The time of saccharification was 90 minutes. The results were presented at the conference CECE Junior 2014.

  8. Luminescent lanthanide coordination polymers synthesized via in-situ hydrolysis of dimethyl-3,4-furandicarboxylate

    International Nuclear Information System (INIS)

    Greig, Natalie E.; Einkauf, Jeffrey D.; Clark, Jessica M.; Corcoran, Eric J.; Karram, Joseph P.; Kent, Charles A.; Eugene, Vadine E.; Chan, Benny C.; Lill, Daniel T. de

    2015-01-01

    Dimethyl-3,4-furandicarboxylate undergoes hydrolysis under hydrothermal conditions with lanthanide (Ln) ions to form two-dimensional coordination polymers, [Ln(C 6 H 2 O 5 )(C 6 H 3 O 5 )(H 2 O)] n (Ln=Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu). The resulting materials exhibit luminescent properties with quantum yields and lifetimes for the Eu(III) and Tb(III) compounds of 1.1±0.3% and 0.387±0.0001 ms, and 3.3±0.8% and 0.769±0.006 ms, respectively. Energy values for the singlet and triplet states were determined for dimethyl-3,4-furandicarboxylate and 3,4-furandicarboxylic acid. Excited state dynamics and structural features are examined to explicate the reported quantum yields. A series of other FDC structures is briefly presented. - Graphical abstract: A new two-dimensional coordination polymer derived from the in-situ hydrolysis of a furan dimethyl ester with lanthanide(III) ions was obtained in order to study its photophysical behavior when constructed from trivalent Eu and Tb. Quantum yields, lifetime measurements, and singlet/triplet state energies values were obtained. The nature of the material's excited state dynamics is examined and correlated to its structure in order to explain the overall luminescent efficiency of the system. - Highlights: • A new lanthanide–furandicarboxylate coordination polymer is presented. • Eu and Tb compounds display luminescent properties, albeit with low quantum yields. • Photophysical behavior explained through the compound's triplet state and structure. • Nonradiative deactivation of luminescence through high-energy oscillators was noted. • Molecular modeling of the organic moiety was conducted

  9. Luminescent lanthanide coordination polymers synthesized via in-situ hydrolysis of dimethyl-3,4-furandicarboxylate

    Energy Technology Data Exchange (ETDEWEB)

    Greig, Natalie E.; Einkauf, Jeffrey D.; Clark, Jessica M.; Corcoran, Eric J.; Karram, Joseph P.; Kent, Charles A.; Eugene, Vadine E. [Department of Chemistry & Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431 (United States); Chan, Benny C. [Department of Chemistry, The College of New Jersey, 2000 Pennington Road, Ewing, NJ 08628 (United States); Lill, Daniel T. de, E-mail: ddelill@fau.edu [Department of Chemistry & Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431 (United States)

    2015-05-15

    Dimethyl-3,4-furandicarboxylate undergoes hydrolysis under hydrothermal conditions with lanthanide (Ln) ions to form two-dimensional coordination polymers, [Ln(C{sub 6}H{sub 2}O{sub 5})(C{sub 6}H{sub 3}O{sub 5})(H{sub 2}O)]{sub n} (Ln=Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu). The resulting materials exhibit luminescent properties with quantum yields and lifetimes for the Eu(III) and Tb(III) compounds of 1.1±0.3% and 0.387±0.0001 ms, and 3.3±0.8% and 0.769±0.006 ms, respectively. Energy values for the singlet and triplet states were determined for dimethyl-3,4-furandicarboxylate and 3,4-furandicarboxylic acid. Excited state dynamics and structural features are examined to explicate the reported quantum yields. A series of other FDC structures is briefly presented. - Graphical abstract: A new two-dimensional coordination polymer derived from the in-situ hydrolysis of a furan dimethyl ester with lanthanide(III) ions was obtained in order to study its photophysical behavior when constructed from trivalent Eu and Tb. Quantum yields, lifetime measurements, and singlet/triplet state energies values were obtained. The nature of the material's excited state dynamics is examined and correlated to its structure in order to explain the overall luminescent efficiency of the system. - Highlights: • A new lanthanide–furandicarboxylate coordination polymer is presented. • Eu and Tb compounds display luminescent properties, albeit with low quantum yields. • Photophysical behavior explained through the compound's triplet state and structure. • Nonradiative deactivation of luminescence through high-energy oscillators was noted. • Molecular modeling of the organic moiety was conducted.

  10. Biological strategies for enhanced hydrolysis of lignocellulosic biomass during anaerobic digestion: Current status and future perspectives.

    Science.gov (United States)

    Shrestha, Shilva; Fonoll, Xavier; Khanal, Samir Kumar; Raskin, Lutgarde

    2017-12-01

    Lignocellulosic biomass is the most abundant renewable bioresource on earth. In lignocellulosic biomass, the cellulose and hemicellulose are bound with lignin and other molecules to form a complex structure not easily accessible to microbial degradation. Anaerobic digestion (AD) of lignocellulosic biomass with a focus on improving hydrolysis, the rate limiting step in AD of lignocellulosic feedstocks, has received considerable attention. This review highlights challenges with AD of lignocellulosic biomass, factors contributing to its recalcitrance, and natural microbial ecosystems, such as the gastrointestinal tracts of herbivorous animals, capable of performing hydrolysis efficiently. Biological strategies that have been evaluated to enhance hydrolysis of lignocellulosic biomass include biological pretreatment, co-digestion, and inoculum selection. Strategies to further improve these approaches along with future research directions are outlined with a focus on linking studies of microbial communities involved in hydrolysis of lignocellulosics to process engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Numerical prediction of kinetic model for enzymatic hydrolysis of cellulose using DAE-QMOM approach

    Science.gov (United States)

    Jamil, N. M.; Wang, Q.

    2016-06-01

    Bioethanol production from lignocellulosic biomass consists of three fundamental processes; pre-treatment, enzymatic hydrolysis, and fermentation. In enzymatic hydrolysis phase, the enzymes break the cellulose chains into sugar in the form of cellobiose or glucose. A currently proposed kinetic model for enzymatic hydrolysis of cellulose that uses population balance equation (PBE) mechanism was studied. The complexity of the model due to integrodifferential equations makes it difficult to find the analytical solution. Therefore, we solved the full model of PBE numerically by using DAE-QMOM approach. The computation was carried out using MATLAB software. The numerical results were compared to the asymptotic solution developed in the author's previous paper and the results of Griggs et al. Besides confirming the findings were consistent with those references, some significant characteristics were also captured. The PBE model for enzymatic hydrolysis process can be solved using DAE-QMOM method. Also, an improved understanding of the physical insights of the model was achieved.

  12. Influence of homogenization treatment on physicochemical properties and enzymatic hydrolysis rate of pure cellulose fibers.

    Science.gov (United States)

    Jacquet, N; Vanderghem, C; Danthine, S; Blecker, C; Paquot, M

    2013-02-01

    The aim of this study is to compare the effect of different homogenization treatments on the physicochemical properties and the hydrolysis rate of a pure bleached cellulose. Results obtained show that homogenization treatments improve the enzymatic hydrolysis rate of the cellulose fibers by 25 to 100 %, depending of the homogenization treatment applied. Characterization of the samples showed also that homogenization had an impact on some physicochemical properties of the cellulose. For moderate treatment intensities (pressure below 500 b and degree of homogenization below 25), an increase of water retention values (WRV) that correlated to the increase of the hydrolysis rate was highlighted. Result also showed that the overall crystallinity of the cellulose properties appeared not to be impacted by the homogenization treatment. For higher treatment intensities, homogenized cellulose samples developed a stable tridimentional network that contributes to decrease cellulase mobility and slowdown the hydrolysis process.

  13. Combined enzymatic hydrolysis and fermentation of aspenwood using enzymes derived from Trichoderma harzianum E58

    Energy Technology Data Exchange (ETDEWEB)

    1990-05-01

    Energy, Mines and Resources Canada supported a project with Forintek Canada Corp. directed toward the conversion of aspenwood to ethanol. This conversion is carried out through three sequential steps, steam explosion/extraction, hydrolysis and fermentation. This investigation involved study of the factors which governed the rate and extent of cellulose hydrolysis. The physical and chemical state of the material to be hydrolysed, enzyme concentation and adsorption onto residue, end-product characterization and inhibition, recycling of enzymes and cellulose, and growth media for the fungus were among the variables examined. The research demonstrated the interdependency between pretreatment, cellulose hydrolysis, hemicellulose fermentation and enzyme production. It was also determined that because of the amount of cellulose required for enzyme production and the difficulties encountered in recovering/recycling the celluloses, further work is required in order to commercialize an enzymatic hydrolysis process based on Trichoderma harzianum E58.

  14. Effect of γ-irradiation on the acidic hydrolysis of free-hemicellulose thistle

    International Nuclear Information System (INIS)

    Suarez, C.; Paz Saa, D.; Diaz Palma, A.

    1983-01-01

    The effect of gamma-irradiation on the subsequent acidic hydrolysis of free-hemicellulose ''Onopordum Nervosum Boiss'' thistle is determined. It is shown the influence of gamma-irradiation on the yield or sugar obtained from the batchwise hydrolysis of the cellulose (1% H 2 SO 4 and 180 0 C) at increasing doses. At all irradiation levels studied, the rate of hydrolysis of thistle samples was higher than the rate of hydrolysis of the cellulose from paper treated similarly. The maximum overall yield of sugar in the irradiated lignocellulosic material was about 66 0 at 100 MRad, less than two times the yield obtainable from the control. The corresponding yield from paper was 53%, 2'3 times that of the control. Irradiation under 1% H 2 SO 4 does not enhance the yield anyway. (author)

  15. Development of Volatile Compounds during Hydrolysis of Porcine Hemoglobin with Papain

    Directory of Open Access Journals (Sweden)

    Kathrine Holmgaard Bak

    2018-02-01

    Full Text Available There is a growing market for the use of hydrolysates from animal side-streams for production of high-protein supplements. However, there can be issues with development of off-flavors, either due to the raw material in question or due to the hydrolysis process itself. This study examined the development of volatile compounds during hydrolysis of hemoglobin. Briefly, porcine hemoglobin was hydrolyzed by 0.5% papain for up to 5 h, and the development of volatile compounds was analyzed via gas chromatography-mass spectrometry. The results showed that there was significant development of a number of volatile compounds with time, e.g., certain Maillard reaction and lipid oxidation products, which are likely candidates for the aroma development during hydrolysis. Furthermore, it was shown that development of a number of the volatiles was due to the hydrolysis process, as these compounds were not found in a control without enzyme.

  16. HYDROLYSIS OF CHEESEWHEY PROTEINSWITH TRYPSIN, CHYMOTRYPSINAND CARBOXYPEPTIDASEA

    Directory of Open Access Journals (Sweden)

    M. F. CUSTÓDIO

    2009-01-01

    Full Text Available

    This work presents a method for adding value to cheese whey residues by whey proteins hydrolysis, using trypsin, chymotrypsin and carboxypeptidase A as catalysts. Sweet cheese whey was dialyzed and filtered in kaolin. Lactose and protein contents were analyzed after each step. The activities of bovine pancreas trypsin and chymotrypsin were measured at different pHs and temperatures. The optimal pH for the hydrolysis of whey proteins was 9.0 for both enzymes. Optima temperatures were 60ºC for trypsin, and 50ºC for chymotrypsin. Trypsin exhibited typical Michaelis-Menten behavior, but chymotrypsin did not. Electrophoretic analysis showed that neither trypsin nor chymotrypsin alone hydrolyzed whey proteins in less than three hours. Hydrolysis rates of -lactalbumin by trypsin, and of bovine serum albumin by chymotrypsin were low. When these enzymes were combined, however, all protein fractions were attacked and rates of hydrolysis were enhanced by one order of magnitude. The addition of carboxypeptidase A to the others enzymes did not improve the process yield.

  17. Hydrocarbon formation mechanism during uranium monocarbide hydrolysis

    International Nuclear Information System (INIS)

    Ermolaev, M.I.; Tishchenko, G.V.

    1979-01-01

    The hydrolysis of uranium monocarbide in oxidative media and in the presence of excessive hydrogen in statu nascendi has been investigated. It was found that oxydants promote the formation of elementary carbon, while in the presence of hydrogen the yield of light C-C hydrocarbons increases. EPR data confirm the radical mechanism of hydrocarbons formation during the decomposition of uranium monocarbide

  18. Optimization of dilute acid hydrolysis of Enteromorpha

    Science.gov (United States)

    Feng, Dawei; Liu, Haiyan; Li, Fuchao; Jiang, Peng; Qin, Song

    2011-11-01

    Acid hydrolysis is a simple and direct way to hydrolyze polysaccharides in biomass into fermentable sugars. To produce fermentable sugars effectively and economically for fuel ethanol, we have investigated the hydrolysis of Enteromorpha using acids that are typically used to hydrolyze biomass: H2SO4, HCl, H3PO4 and C4H4O4 (maleic acid). 5%(w/w) Enteromorpha biomass was treated for different times (30, 60, and 90 min) and with different acid concentrations (0.6, 1.0, 1.4, 1.8, and 2.2%, w/w) at 121°C. H2SO4 was the most effective acid in this experiment. We then analyzed the hydrolysis process in H2SO4 in detail using high performance liquid chromatography. At a sulfuric acid concentration of 1.8% and treatment time of 60 min, the yield of ethanol fermentable sugars (glucose and xylose) was high, (230.5 mg/g dry biomass, comprising 175.2 mg/g glucose and 55.3 mg/g xylose), with 48.6% of total reducing sugars being ethanol fermentable. Therefore, Enteromorpha could be a good candidate for production of fuel ethanol. In future work, the effects of temperature and biomass concentration on hydrolysis, and also the fermentation of the hydrolysates to ethanol fuel should be focused on.

  19. Dynamic Aperture Studies for SPEAR 3

    International Nuclear Information System (INIS)

    Corbett, William

    1998-01-01

    The Stanford Synchrotron Radiation Laboratory is investigating an accelerator upgrade project that would replace the present 130 nm rad FODO lattice with an 18 nm rad double bend achromat (DBA) lattice: SPEAR 3. The low emittance design yields a high brightness beam, but the stronger focusing in the DBA lattice increases chromaticity and beam sensitivity to machine errors. To ensure efficient injection and long Touschek lifetime, an optimization of the design lattice and dynamic aperture has been performed. In this paper, we review the methods used to maximize the SPEAR 3 dynamic aperture including necessary optics modifications, choice of tune and phase advance, optimization of sextupole and coupling correction, and modeling effects of machine errors, wigglers and lattice periodicity

  20. Dynamic aperture studies for SPEAR 3

    International Nuclear Information System (INIS)

    Nosochkov, Y.; Corbett, J.

    1999-01-01

    The Stanford Synchrotron Radiation Laboratory is investigating an accelerator upgrade project that would replace the present 130 nm·rad FODO lattice with an 18 nm·rad double bend achromat (DBA) lattice: SPEAR 3. The low emittance design yields a high brightness beam, but the stronger focusing in the DBA lattice increases chromaticity and beam sensitivity to machine errors. To ensure efficient injection and long Touschek lifetime, an optimization of the design lattice and dynamic aperture has been performed. In this paper, we review the methods used to maximize the SPEAR 3 dynamic aperture including necessary optics modifications, choice of tune and phase advance, optimization of sextupole and coupling correction, and modeling effects of machine errors, wigglers and lattice periodicity

  1. Sensitivity case study in dynamic reliability

    International Nuclear Information System (INIS)

    Kopustinskas, V.

    2001-01-01

    Recent trends in the risk assessments of the complex industrial plants show increased interest in dynamical models arising from the coupling of the probabilistic and deterministic approaches. Conventionally used static system models, represented by the fault/event trees can not reflect dynamic behaviour of the system and complex interaction between the process variables, components and human actions. The nature of the most complex industrial systems, like nuclear power plants (NPP) suggests that Markov type stochastic differential equations (SDEs) consisting of jump and drift components can be successfully used to represent and analyze the phenomena. This paper discuss possible applications of the SDEs in reliability problems. In particular, Accident Localization System (ALS) of the Ignalina NPP was analyzed as a benchmark for further investigations in this area. (author)

  2. Application of iterative reconstruction in dynamic studies

    International Nuclear Information System (INIS)

    Meikle, S.R.

    1998-01-01

    Full text: The conventional approach to analysing dynamic tomographic data (SPECT or PET) is to reconstruct projections corresponding to each time interval separately and then fit a suitable tracer kinetic model to the dynamic sequence (method 1 ) . This approach assumes that the tracer distribution remains static during any given time interval and, for practical reasons, filtered back-projection (FBP) is the preferred reconstruction algorithm. However, alternative approaches exist which lend themselves to iterative algorithms, such as EM. One approach is to fit the model directly to the projection data, followed by EM reconstruction of the parameter estimates (method 2). This requires that the tracer model can be expressed as a linear function of the unknown model parameters. A third alternative is to incorporate the tracer model into the reconstruction algorithm (method 3). Such an extension was described during the early development of the EM algorithm, referred to as the EM parametric image reconstruction algorithm (EM-PIRA). We have investigated these various strategies for analysing dynamic data and their relative pros and cons. Tracer modelling was performed using a general model, referred to as spectral analysis, which makes no restriction on the number of physiological compartments and satisfies the linearity requirement of method 2. A kinetic software phantom was created and used to test the convergence and noise properties of the different approaches. In summary, method 2 is the most practical as it reduces the number of reconstructions by at least an order of magnitude and provides improved signal-to-noise ratios compared with method 1. EM-PIRA allows greater flexibility in the choice of parametric images and appears to have a regularising effect on convergence. Methods 2 and 3 are also better suited to dynamic scanning with a rotating camera, as they can potentially account for changes in tracer distribution between projections

  3. Effect of defatting on acid hydrolysis rate of maize starch with different amylose contents.

    Science.gov (United States)

    Wei, Benxi; Hu, Xiuting; Zhang, Bao; Li, Hongyan; Xu, Xueming; Jin, Zhengyu; Tian, Yaoqi

    2013-11-01

    The effect of defatting on the physiochemical properties and the acid hydrolysis rate of maize starch with different amylose contents was evaluated in this study. The increase in the number of pores and the stripping of starch surface layers were observed after defatting by scanning electron microscopy. X-ray diffraction spectrum showed that the peaks attributing to the amylose-lipid complex disappeared. The relative crystallinity increased by 19% for high-amylose maize starch (HMS) on defatting, while the other tested starches virtually unchanged. Differential scanning calorimetry study indicated an increase in the thermal stability for the defatted starches. Compared with native waxy maize starch, the acid hydrolysis rate of the defatted one increased by 6% after 10 days. For normal maize starch (NMS) and HMS, the higher rate of hydrolysis was observed during the first 5 days. Thereafter, the hydrolysis rate was lower than that of their native counterpart. The increase in susceptibility to acid hydrolysis (in the first 5 days) was mainly attributed to the defective and porous structures formed during defatting process, while the decrease of hydrolysis rate for NMS and HMS samples (after the first 5 days) probably resulted from the increase in the relative crystallinity. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  4. Efficient Hydrolysis of Rice Straw into Xylose and Glucose by a Two-step Process

    Directory of Open Access Journals (Sweden)

    YAN Lu-lu

    2016-07-01

    Full Text Available The hydrolysis of rice straw into xylose and glucose in dilute sulfuric acid aqueous solution was studied with a two-step process in batch autoclave reactor. The results showed that compared with the traditional one-step acid hydrolysis, both xylose and glucose could be produced in high yields from rice straw by using the two-step acid hydrolysis process. The effects of reaction temperature, reaction time, the amount of rice straw and acid concentration on the hydrolysis of rice straw were systematically studied, and showed that except initial rice straw loading amount, the other parameters had remarkable influence on the products distribution and yields. In the first-step of the hydrolysis process, a high xylose yield of 162.6 g·kg-1 was obtained at 140℃ after 120 min reaction time. When the solid residues from the first step were subjected to a second-step hydrolysis, a glucose yield as high as 216.5 g·kg-1 could be achieved at 180℃ after 120 min. This work provides a promising strategy for the efficient and value-added utilization of agricultural wastes such as rice straw.

  5. Enzymatic hydrolysis of biomass at high-solids loadings – A review

    International Nuclear Information System (INIS)

    Modenbach, Alicia A.; Nokes, Sue E.

    2013-01-01

    Enzymatic hydrolysis is the unit operation in the lignocellulose conversion process that utilizes enzymes to depolymerize lignocellulosic biomass. The saccharide components released are the feedstock for fermentation. When performed at high-solids loadings (≥15% solids, w/w), enzymatic hydrolysis potentially offers many advantages over conversions performed at low- or moderate-solids loadings, including increased sugar and ethanol concentrations and decreased capital and operating costs. The goal of this review is to provide a consolidated source of information on studies using high-solids loadings in enzymatic hydrolysis. Included in this review is a brief discussion of the limitations, such as a lack of available water, difficulty with mixing and handling, insufficient mass and heat transfer, and increased concentration of inhibitors, associated with the use of high solids, as well as descriptions and findings of studies that performed enzymatic hydrolysis at high-solids loadings. Reactors designed and/or equipped for improved handling of high-solids slurries are also discussed. Lastly, this review includes a brief discussion of some of the operations that have successfully scaled-up and implemented high-solids enzymatic hydrolysis at pilot- and demonstration-scale facilities. -- Highlights: •High solids enzymatic hydrolysis needed for conversion process to be cost-effective. •Limitations must be addressed before benefits of high-solid loadings fully realized. •Some success with high-solids loadings at pilot and demonstration scale

  6. Microwave-assisted Weak Acid Hydrolysis of Proteins

    Directory of Open Access Journals (Sweden)

    Miyeong Seo

    2012-06-01

    Full Text Available Myoglobin was hydrolyzed by microwave-assisted weak acid hydrolysis with 2% formic acid at 37 oC, 50 oC, and100 oC for 1 h. The most effective hydrolysis was observed at 100 oC. Hydrolysis products were investigated using matrixassistedlaser desorption/ionization time-of-flight mass spectrometry. Most cleavages predominantly occurred at the C-termini ofaspartyl residues. For comparison, weak acid hydrolysis was also performed in boiling water for 20, 40, 60, and 120 min. A 60-min weak acid hydrolysis in boiling water yielded similar results as a 60-min microwave-assisted weak acid hydrolysis at100 oC. These results strongly suggest that microwave irradiation has no notable enhancement effect on acid hydrolysis of proteinsand that temperature is the major factor that determines the effectiveness of weak acid hydrolysis.

  7. Recycle of enzymes and substrate following enzymatic hydrolysis of steam-pretreated aspenwood

    Energy Technology Data Exchange (ETDEWEB)

    Mes-Hartree, M.; Hogan, C.M.; Saddler, J.N.

    1987-09-01

    The commercial production of chemicals and fuels from lignocellulosic residues by enzymatic means still requires considerable research on both the technical and economic aspects. Two technical problems that have been identified as requiring further research are the recycle of the enzymes used in hydrolysis and the reuse of the recalcitrant cellulose remaining after incomplete hydrolysis. Enzyme recycle is required to lower the cost of the enzymes, while the reuse of the spent cellulose will lower the feedstock cost. The conversion process studied was a combined enzymatic hydrolysis and fermentation (CHF) procedure that utilized the cellulolytic enzymes derived from the fungus Trichoderma harzianum E58 and the yeast Saccharomyces cerevisiae. The rate and extent of hydrolysis and ethanol production was monitored as was the activity and hydrolytic potential of the enzymes remaining in the filtrate after the hydrolysis period. When a commercial cellulose was used as the substrate for a routine 2-day CHF process, 60% of the original filter paper activity could be recovered. When steam-treated, water-extracted aspenwood was used as the substrate, only 13% of the original filter paper activity was detected after a similar procedure. The combination of 60% spent enzymes with 40% fresh enzymes resulted in the production of 30% less reducing sugars than the original enzyme mixture. Since 100% hydrolysis of the cellulose portion is seldom accomplished in an enzymatic hydrolysis process, the residual cellulose was used as a substrate for the growth of T. harzianum E58 and production of cellulolytic enzymes. The residue remaining after the CHF process was used as a substrate for the production of the cellulolytic enzymes. The production of enzymes from the residue of the Solka Floc hydrolysis was greater than the production of enzymes from the original Solka Floc. (Refs. 14).

  8. Integrating atomistic molecular dynamics simulations, experiments and network analysis to study protein dynamics: strength in unity

    Directory of Open Access Journals (Sweden)

    Elena ePapaleo

    2015-05-01

    Full Text Available In the last years, we have been observing remarkable improvements in the field of protein dynamics. Indeed, we can now study protein dynamics in atomistic details over several timescales with a rich portfolio of experimental and computational techniques. On one side, this provides us with the possibility to validate simulation methods and physical models against a broad range of experimental observables. On the other side, it also allows a complementary and comprehensive view on protein structure and dynamics. What is needed now is a better understanding of the link between the dynamic properties that we observe and the functional properties of these important cellular machines. To make progresses in this direction, we need to improve the physical models used to describe proteins and solvent in molecular dynamics, as well as to strengthen the integration of experiments and simulations to overcome their own limitations. Moreover, now that we have the means to study protein dynamics in great details, we need new tools to understand the information embedded in the protein ensembles and in their dynamic signature. With this aim in mind, we should enrich the current tools for analysis of biomolecular simulations with attention to the effects that can be propagated over long distances and are often associated to important biological functions. In this context, approaches inspired by network analysis can make an important contribution to the analysis of molecular dynamics simulations.

  9. Adsorption of monocomponent enzymes in enzyme mixture analyzed quantitatively during hydrolysis of lignocellulose substrates.

    Science.gov (United States)

    Várnai, Anikó; Viikari, Liisa; Marjamaa, Kaisa; Siika-aho, Matti

    2011-01-01

    The adsorption of purified Trichoderma reesei cellulases (TrCel7A, TrCel6A and TrCel5A) and xylanase TrXyn11 and Aspergillus niger β-glucosidase AnCel3A was studied in enzyme mixture during hydrolysis of two pretreated lignocellulosic materials, steam pretreated and catalytically delignified spruce, along with microcrystalline cellulose (Avicel). The enzyme mixture was compiled to resemble the composition of commercial cellulase preparations. The hydrolysis was carried out at 35 °C to mimic the temperature of the simultaneous saccharification and fermentation (SSF). Enzyme adsorption was followed by analyzing the activity and the protein amount of the individual free enzymes in the hydrolysis supernatant. Most enzymes adsorbed quickly at early stages of the hydrolysis and remained bound throughout the hydrolysis, although the conversion reached was fairly high. Only with the catalytically oxidized spruce samples, the bound enzymes started to be released as the hydrolysis degree reached 80%. The results based on enzyme activities and protein assay were in good accordance. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Xylan hydrolysis in Populus trichocarpa × P. deltoides and model substrates during hydrothermal pretreatment.

    Science.gov (United States)

    Trajano, Heather L; Pattathil, Sivakumar; Tomkins, Bruce A; Tschaplinski, Timothy J; Hahn, Michael G; Van Berkel, Gary J; Wyman, Charles E

    2015-03-01

    Previous studies defined easy and difficult to hydrolyze fractions of hemicellulose that may result from bonds among cellulose, hemicellulose, and lignin. To understand how such bonds affect hydrolysis, Populus trichocarpa × Populus deltoides, holocellulose isolated from P. trichocarpa × P. deltoides and birchwood xylan were subjected to hydrothermal flow-through pretreatment. Samples were characterized by glycome profiling, HPLC, and UPLC-MS. Glycome profiling revealed steady fragmentation and removal of glycans from solids during hydrolysis. The extent of polysaccharide fragmentation, hydrolysis rate, and total xylose yield were lowest for P. trichocarpa × P. deltoides and greatest for birchwood xylan. Comparison of results from P. trichocarpa × P. deltoides and holocellulose suggested that lignin-carbohydrate complexes reduce hydrolysis rates and limit release of large xylooligomers. Smaller differences between results with holocellulose and birchwood xylan suggest xylan-cellulose hydrogen bonds limited hydrolysis, but to a lesser extent. These findings imply cell wall structure strongly influences hydrolysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Optimization of cellulose nanocrystal length and surface charge density through phosphoric acid hydrolysis

    Science.gov (United States)

    Vanderfleet, Oriana M.; Osorio, Daniel A.; Cranston, Emily D.

    2017-12-01

    Cellulose nanocrystals (CNCs) are emerging nanomaterials with a large range of potential applications. CNCs are typically produced through acid hydrolysis with sulfuric acid; however, phosphoric acid has the advantage of generating CNCs with higher thermal stability. This paper presents a design of experiments approach to optimize the hydrolysis of CNCs from cotton with phosphoric acid. Hydrolysis time, temperature and acid concentration were varied across nine experiments and a linear least-squares regression analysis was applied to understand the effects of these parameters on CNC properties. In all but one case, rod-shaped nanoparticles with a high degree of crystallinity and thermal stability were produced. A statistical model was generated to predict CNC length, and trends in phosphate content and zeta potential were elucidated. The CNC length could be tuned over a relatively large range (238-475 nm) and the polydispersity could be narrowed most effectively by increasing the hydrolysis temperature and acid concentration. The CNC phosphate content was most affected by hydrolysis temperature and time; however, the charge density and colloidal stability were considered low compared with sulfuric acid hydrolysed CNCs. This study provides insight into weak acid hydrolysis and proposes `design rules' for CNCs with improved size uniformity and charge density. This article is part of a discussion meeting issue `New horizons for cellulose nanotechnology'.

  12. Radiation pretreatments of cellulose materials for the enhancement of enzymatic hydrolysis

    International Nuclear Information System (INIS)

    Ait Si Mamar, S.; Hadjadj, A.

    1990-01-01

    The conversion of wheat straw agricultural cellulosic wastes to reducing sugars and glucose has been studied by pretreatments by acid hydrolysis and gamma radiolysis over the dose 0-2 MGy. The pretreatment of cellulosic wastes by gamma radiolysis in the presence of sulfuric acid solution shows that the reducing sugars yield increases with the irradiation dose. The effect of radiation degradation on cellulosic wastes between 0.1 MGy and 2 MGy shows the glucose and reducing sugars yields after enzymatic hydrolysis by cellulase vary with the dose. In the relatively low dose range, up to about 0.5 MGy, the reducing sugars yields vary slightly. For an acid hydrolysis followed by radiation at dose range below 0.5 MGy the reducing sugars yields are practically insensitive to radiation. On the other hand, the pretreatment by radiation in higher dose range from 0.5 to 2 MGy followed by enzymatic hydrolysis is effective for the conversion of cellulosic wastes into glucose. The radiation induced degradation of cellulose into glucose depends on the type of acid hydrolysis and on the enzymatic hydrolysis time by cellulase. Pre-irradiation in air is more effective than in acid solution. (author)

  13. Radiation pretreatments of cellulose materials for the enhancement of enzymatic hydrolysis

    Science.gov (United States)

    Mamar, S. Ait Si; Hadjadj, A.

    The conversion of wheat straw agricultural cellulosic wastes to reduning sugars and glucose has been studied by pretreatments by acid hydrolysis and gamma radiolysis over the dose 0-2 MGy. The pretreatment of cellulosic wastes by gamma radiolysis in the presence of sulfuric acid solution shows that the reducing sugars yield increases with the irradiation dose. The effect of radiation degradation on cellulosic wastes between 0.1 MGy and 2 MGy shows the glucose and reducing sugars yields after enzymatic hydrolysis by cellulase vary with the dose. In the relatively low dose range, up to about 0.5 MGy, the reducing sugars yields vary slightly. For an acid hydrolysis followed by radiation at dose range below 0.5 MGy the reducing sugars yields are practically insensitive to radiation. On the other hand, the pretreatment by radiation in higher dose range from 0.5 to 2 MGy followed by enzymatic hydrolysis is effective for the conversion of cellulosic wastes into glucose. The radiation induced degradation of cellulose into glucose depends on the type of acid hydrolysis and on the enzymatic hydrolysis time by cellulase. Pre-irradiation in air is more effective than in acid solution.

  14. Evaluation of abalone β-glucuronidase substitution in current urine hydrolysis procedures.

    Science.gov (United States)

    Malik-Wolf, Brittany; Vorce, Shawn; Holler, Justin; Bosy, Thomas

    2014-04-01

    This study examined the potential of abalone β-glucuronidase as a viable and cost effective alternative to current hydrolysis procedures using acid, Helix pomatia β-glucuronidase and Escherichia coli β-glucuronidase. Abalone β-glucuronidase successfully hydrolyzed oxazepam-glucuronide and lorazepam-glucuronide within 5% of the spiked control concentration. Benzodiazepines present in authentic urine specimens were within 20% of the concentrations obtained with the current hydrolysis procedure using H. pomatia β-glucuronidase. JWH 018 N-(5-hydroxypentyl) β-d-glucuronide was hydrolyzed within 10% of the control concentration. Authentic urine specimens showed improved glucuronide cleavage using abalone β-glucuronidase with up to an 85% increase of drug concentration, compared with the results obtained using E. coli β-glucuronidase. The JWH 018 and JWH 073 carboxylic acid metabolites also showed increased drug concentrations of up to 24%. Abalone β-glucuronidase was able to completely hydrolyze a morphine-3-glucuronide control, but only 82% of total morphine was hydrolyzed in authentic urine specimens compared with acid hydrolysis results. Hydrolysis of codeine and hydromorphone varied between specimens, suggesting that abalone β-glucuronidase may not be as efficient in hydrolyzing the glucuronide linkages in opioid compounds compared with acid hydrolysis. Abalone β-glucuronidase demonstrates effectiveness as a low cost option for enzyme hydrolysis of benzodiazepines and synthetic cannabinoids.

  15. A dynamical study on extrasolar comets

    Science.gov (United States)

    Loibnegger, B.; Dvorak, R.

    2017-09-01

    Since the detection of absorption features in spectra of beta Pictoris varying on short time scales it is known that comets exist in other stellar systems. We investigate the dynamics of comets in two differently build systems (HD 10180 and HIP 14810). The outcomes of the scattering process, as there are collisions with the planets, captures and ejections from the systems are analysed statistically. Collisions and close encounters with the planets are investigated in more detail in order to conclude about transport of water and organic material. We will also investigate the possibility of detection of comets in other planetary systems.

  16. Short-time ultrasonication treatment in enzymatic hydrolysis of biomass

    Science.gov (United States)

    Zengqian Shi; Zhiyong Cai; Siqun Wang; Qixin Zhong; Joseph J. Bozell

    2013-01-01

    To improve the conversion of enzymatic hydrolysis of biomass in an energy-efficient manner, two shorttime ultrasonication strategies were applied on six types of biomass with different structures and components. The strategies include pre-sonication before the hydrolysis and intermittent sonication during the ongoing hydrolysis. The microstructures of each type of...

  17. Structure and dynamics of photosynthetic proteins studied by neutron scattering and molecular dynamic simulation

    International Nuclear Information System (INIS)

    Dellerue, Serge

    2000-01-01

    Understand the structure-dynamics-function relation in the case of proteins is essential. But few experimental techniques allow to have access to knowledge of fast internal movements of biological macromolecules. With the neutron scattering method, it has been possible to study the reorientation dynamics of side chains and of polypeptide skeleton for two proteins in terms of water or detergent and of temperature. With the use of the molecular dynamics method, essential for completing and interpreting the experimental data, it has been possible to assess the different contributions of the whole structure of proteins to the overall dynamics. It has been shown that the polypeptide skeleton presents an energy relaxation comparable to those of the side chains. Moreover, it has been explained that the protein dynamics can only be understood in terms of relaxation time distribution. (author) [fr

  18. A molecular dynamics simulation study of chloroform

    Science.gov (United States)

    Tironi, Ilario G.; van Gunsteren, Wilfred F.

    Three different chloroform models have been investigated using molecular dynamics computer simulation. The thermodynamic, structural and dynamic properties of the various models were investigated in detail. In particular, the potential energies, diffusion coefficients and rotational correlation times obtained for each model are compared with experiment. It is found that the theory of rotational Brownian motion fails in describing the rotational diffusion of chloroform. The force field of Dietz and Heinzinger was found to give good overall agreement with experiment. An extended investigation of this chloroform model has been performed. Values are reported for the isothermal compressibility, the thermal expansion coefficient and the constant volume heat capacity. The values agree well with experiment. The static and frequency dependent dielectric permittivity were computed from a 1·2 ns simulation conducted under reaction field boundary conditions. Considering the fact that the model is rigid with fixed partial charges, the static dielectric constant and Debye relaxation time compare well with experiment. From the same simulation the shear viscosity was computed using the off-diagonal elements of the pressure tensor, both via an Einstein type relation and via a Green-Kubo equation. The calculated viscosities show good agreement with experimental values. The excess Helmholtz energy is calculated using the thermodynamic integration technique and simulations of 50 and 80 ps. The value obtained for the excess Helmholtz energy matches the theoretical value within a few per cent.

  19. [Structural characterization of Astragalus polysaccharides using partial acid hydrolysis-hydrophilic interaction liquid chromatography-mass spectrometry].

    Science.gov (United States)

    Liang, Tu; Fu, Qing; Xin, Huaxia; Li, Fangbing; Jin, Yu; Liang, Xinmiao

    2014-12-01

    Water-soluble polysaccharides from traditional Chinese medicine (TCM) have properties of broad-spectrum treatment and low toxicity, making them as important components in natural medicines and health products. In order to solve the problem of polysaccharides characterization caused by their complex structures, a "bottom-up" approach was developed to complete the characterization of polysaccharides from Astragalus. Firstly, Astragalus pieces were extracted with hot water and then were precipitated by ethanol to obtain Astragalus polysaccharides. Secondly, a partial acid hydrolysis method was carried out and the effects of time, acid concentration and temperature on hydrolysis were investigated. The degree of hydrolysis increased along with the increase of hydrolysis time and acid concentration. The temperature played a great role in the hydrolysis process. No hydrolysis of the polysaccharides occurred at low temperature, while the polysaccharides were almost hydrolyzed to monosaccharide at high temperature. Under the optimum hydrolysis conditions (4 h, 1.5 mol/L trifluoroacetic acid, and 80 °C), Astragalus polysaccharides were hydrolyzed to characteristic oligosaccharide fragments. At last, a hydrophilic liquid chromatography-mass spectrometry method was used for the separation and structural characterization of the polysaccharide hydrolysates. The results showed that the resulting polysaccharides were mainly 1--> 4 linear glucan, and gluco-oligosaccharides with the degrees of polymerization (DP) of 4 - 11 were obtained after partial acid hydrolysis. The significance of this study is that it is the guidance for the characterization of other TCM polysaccharides.

  20. Dimensionless study on dynamics of pressure controlled mechanical ventilation system

    International Nuclear Information System (INIS)

    Shi, Yan; Niu, Jinglong; Cai, Maolin; Xu, Weiqing

    2015-01-01

    Dynamics of mechanical ventilation system can be referred in pulmonary diagnostics and treatments. In this paper, to conveniently grasp the essential characteristics of mechanical ventilation system, a dimensionless model of mechanical ventilation system is presented. For the validation of the mathematical model, a prototype mechanical ventilation system of a lung simulator is proposed. Through the simulation and experimental studies on the dimensionless dynamics of the mechanical ventilation system, firstly, the mathematical model is proved to be authentic and reliable. Secondly, the dimensionless dynamics of the mechanical ventilation system are obtained. Last, the influences of key parameters on the dimensionless dynamics of the mechanical ventilation system are illustrated. The study provides a novel method to study the dynamic of mechanical ventilation system, which can be referred in the respiratory diagnostics and treatment.

  1. Dimensionless study on dynamics of pressure controlled mechanical ventilation system

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yan; Niu, Jinglong; Cai, Maolin; Xu, Weiqing [Beihang University, Beijing (Korea, Republic of)

    2015-02-15

    Dynamics of mechanical ventilation system can be referred in pulmonary diagnostics and treatments. In this paper, to conveniently grasp the essential characteristics of mechanical ventilation system, a dimensionless model of mechanical ventilation system is presented. For the validation of the mathematical model, a prototype mechanical ventilation system of a lung simulator is proposed. Through the simulation and experimental studies on the dimensionless dynamics of the mechanical ventilation system, firstly, the mathematical model is proved to be authentic and reliable. Secondly, the dimensionless dynamics of the mechanical ventilation system are obtained. Last, the influences of key parameters on the dimensionless dynamics of the mechanical ventilation system are illustrated. The study provides a novel method to study the dynamic of mechanical ventilation system, which can be referred in the respiratory diagnostics and treatment.

  2. Effect of protonation on the mechanism of phosphate monoester hydrolysis and comparison with the hydrolysis of nucleoside triphosphate in biomolecular motors.

    Science.gov (United States)

    Hassan, Hammad Ali; Rani, Sadaf; Fatima, Tabeer; Kiani, Farooq Ahmad; Fischer, Stefan

    2017-11-01

    Hydrolysis of phosphate groups is a crucial reaction in living cells. It involves the breaking of two strong bonds, i.e. the O a H bond of the attacking water molecule, and the PO l bond of the substrate (O a and O l stand for attacking and leaving oxygen atoms). Mechanism of the hydrolysis reaction can proceed either by a concurrent or a sequential mechanism. In the concurrent mechanism, the breaking of O a H and PO l bonds occurs simultaneously, whereas in the sequential mechanism, the O a H and PO l bonds break at different stages of the reaction. To understand how protonation affects the mechanism of hydrolysis of phosphate monoester, we have studied the mechanism of hydrolysis of protonated and deprotonated phosphate monoester at M06-2X/6-311+G**//M06-2X/6-31+G*+ZPE level of theory (where ZPE stands for zero point energy). Our calculations show that in both protonated and deprotonated cases, the breaking of the water O a H bond occurs before the breaking of the PO l bond. Because the two events are not separated by a stable intermediate, the mechanism can be categorized as semi-concurrent. The overall energy barrier is 41kcalmol -1 in the unprotonated case. Most (5/6th) of this is due to the initial breaking of the water O a H bond. This component is lowered from 34 to 25kcalmol -1 by adding one proton to the phosphate. The rest of the overall energy barrier comes from the subsequent breaking of the PO l bond and is not sensitive to protonation. This is consistent with previous findings about the effect of triphosphate protonation on the hydrolysis, where the equivalent protonation (on the γ-phosphate) was seen to lower the barrier of breaking the water O a H bond and to have little effect on the PO l bond breaking. Hydrolysis pathways of phosphate monoester with initial breaking of the PO l bond could not be found here. This is because the leaving group in phosphate monoester cannot be protonated, unlike in triphosphate hydrolysis, where protonation of the

  3. Model for the dynamic study of AC contactors

    Energy Technology Data Exchange (ETDEWEB)

    Corcoles, F.; Pedra, J.; Garrido, J.P.; Baza, R. [Dep. d' Eng. Electrica ETSEIB. UPC, Barcelona (Spain)

    2000-08-01

    This paper proposes a model for the dynamic analysis of AC contactors. The calculation algorithm and implementation are discussed. The proposed model can be used to study the influence of the design parameters and the supply in their dynamic behaviour. The high calculation speed of the implemented algorithm allows extensive ranges of parameter variations to be analysed. (orig.)

  4. Effect of alkali lignins with different molecular weights from alkali pretreated rice straw hydrolyzate on enzymatic hydrolysis.

    Science.gov (United States)

    Li, Yun; Qi, Benkun; Luo, Jianquan; Wan, Yinhua

    2016-01-01

    This study investigated the effect of alkali lignins with different molecular weights on enzymatic hydrolysis of lignocellulose. Different alkali lignins fractions, which were obtained from cascade ultrafiltration, were added into the dilute acid pretreated (DAP) and alkali pretreated (AP) rice straws respectively during enzymatic hydrolysis. The results showed that the addition of alkali lignins enhanced the hydrolysis and the enhancement for hydrolysis increased with increasing molecular weights of alkali lignins, with maximum enhancement being 28.69% for DAP and 20.05% for AP, respectively. The enhancement was partly attributed to the improved cellulase activity, and filter paper activity increased by 18.03% when adding lignin with highest molecular weight. It was found that the enhancement of enzymatic hydrolysis was correlated with the adsorption affinity of cellulase on alkali lignins, and the difference in surface charge and hydrophobicity of alkali lignins were responsible for the difference in affinity between cellulase and lignins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Study of the hydrolysis of protactinium (V), at tracer scale, by solvent extraction method with thenoyl-tri-fluoro-acetone (TTA) as chelating agent. Characterization of the partition of TTA in the system TTA / H2O / toluene / Na+ / H+ / ClO4-

    International Nuclear Information System (INIS)

    Jaussaud, Ch.

    2003-01-01

    Hydrolysis of protactinium (V) according to the reactions: PaO(OH) 2+ +H 2 O ↔ PaO(OH) 2 + + H + (K 2 ] PaO(OH) 2+ +2H 2 O ↔ PaO(OH) 5 + H + (K 3 ) has been studied, at tracer scale, by solvent extraction method, with thenoyl-tri-fluoro-acetone (TTA) as chelating agent. A previous study concerning the partition of TTA between two immiscible phases (corresponding to TTA/toluene/Na + /H + /ClO 4 - system) has allowed a complete characterization of this system (partition constants, standard thermodynamic values, TTA hydration degree in toluene). Owing to specific properties of protactinium (V) (sorption onto various materials, formation of colloids), an extremely rigorous protocol has been established, protocol which could be used for other hydrolysable elements. Hydrolysis constants were deduced from a systematic study of partition of Pa(V) as a function TTA and proton concentration, ionic strength and temperature. Extrapolations to zero ionic strength were performed using SIT model and the specific interaction coefficients ε (i,j) as well as the Pitzer parameters β (0) and β (1) were determined. Standard thermodynamic data relative to hydrolysis equilibriums of Pa(V) were also estimated. (author)

  6. Dynamical study of symmetries: breaking and restauration

    International Nuclear Information System (INIS)

    Schuck, P.

    1986-09-01

    First symmetry breaking (spontaneous) is explained and the physical implication discussed for infinite systems. The relation with phase transitions is indicated. Then the specific aspects of symmetry breaking in finite systems is treated and illustrated in detail for the case of translational invariance with the help of an oversimplified but exactly solvable model. The method of projection (restauration of symmetry) is explained for the static case and also applied to the model. Symmetry breaking in the dynamical case and for instance the notion of a soft mode responsible for the symmetry breaking is discussed in the case of superfluidity and another exactly solvable model is introduced. The Goldstone mode is treated in detail. Some remarks on analogies with the breaking of chiral symmetry are made. Some recent developments in the theory of symmetry restauration are briefly outlined [fr

  7. Systems approaches to study root architecture dynamics

    Directory of Open Access Journals (Sweden)

    Candela eCuesta

    2013-12-01

    Full Text Available The plant root system is essential for providing anchorage to the soil, supplying minerals and water, and synthesizing metabolites. It is a dynamic organ modulated by external cues such as environmental signals, water and nutrients availability, salinity and others. Lateral roots are initiated from the primary root post-embryonically, after which they progress through discrete developmental stages which can be independently controlled, providing a high level of plasticity during root system formation.Within this review, main contributions are presented, from the classical forward genetic screens to the more recent high-throughput approaches, combined with computer model predictions, dissecting how lateral roots and thereby root system architecture is established and developed.

  8. Effect of gelatinization and hydrolysis conditions on the selectivity of starch hydrolysis with alpha-amylase from Bacillus licheniformis

    NARCIS (Netherlands)

    Baks, T.; Bruins, M.E.; Matser, A.M.; Janssen, A.E.M.; Boom, R.M.

    2008-01-01

    Enzymatic hydrolysis of starch can be used to obtain various valuable hydrolyzates with different compositions. The effects of starch pretreatment, enzyme addition point, and hydrolysis conditions on the hydrolyzate composition and reaction rate during wheat starch hydrolysis with ¿-amylase from

  9. Reaction rate of hydrolysis of iodine

    International Nuclear Information System (INIS)

    Miyake, Yoshikazu; Eguchi, Wataru; Adachi, Motonari

    1979-01-01

    Absorption rates of dilute iodine vapor contained in air by aqueous mixtures of sodium hydroxide and boric acid were measured using a laminar liquid jet column absorber at 298 K. Absorption rates in this system are controlled by a series of complex reactions taking place in the liquid phase. The reaction rate constant of iodine hydrolysis in the aqueous phase was determined from the absorption rates observed under the conditions that the base-catalytic hydrolysis reaction of iodine can be considered to be irreversible and that other reactions can be neglected. The absorption rates calculated theoretically with the rate constant value obtained above were in good accordance with the whole experimental data observed for a wide range of experimental conditions. (author)

  10. Study of a spur gear dynamic behavior in transient regime

    Science.gov (United States)

    Khabou, M. T.; Bouchaala, N.; Chaari, F.; Fakhfakh, T.; Haddar, M.

    2011-11-01

    In this paper the dynamic behavior of a single stage spur gear reducer in transient regime is studied. Dynamic response of the single stage spur gear reducer is investigated at different rotating velocities. First, gear excitation is induced by the motor torque and load variation in addition to the fluctuation of meshing stiffness due to the variation of input rotational speed. Then, the dynamic response is computed using the Newmark method. After that, a parameter study is made on spur gear powered in the first place by an electric motor and in the second place by four strokes four cylinders diesel engine. Dynamic responses come to confirm a significant influence of the transient regime on the dynamic behavior of a gear set, particularly in the case of engine acyclism condition.

  11. Gas-Phase Molecular Dynamics: Theoretical Studies In Spectroscopy and Chemical Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Yu H. G.; Muckerman, J.T.

    2012-05-29

    The main goal of this program is the development and application of computational methods for studying chemical reaction dynamics and molecular spectroscopy in the gas phase. We are interested in developing rigorous quantum dynamics algorithms for small polyatomic systems and in implementing approximate approaches for complex ones. Particular focus is on the dynamics and kinetics of chemical reactions and on the rovibrational spectra of species involved in combustion processes. This research also explores the potential energy surfaces of these systems of interest using state-of-the-art quantum chemistry methods, and extends them to understand some important properties of materials in condensed phases and interstellar medium as well as in combustion environments.

  12. Gas-Phase Molecular Dynamics: Theoretical Studies in Spectroscopy and Chemical Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Yu, H.G.; Muckerman, J.T.

    2010-06-01

    The goal of this program is the development and application of computational methods for studying chemical reaction dynamics and molecular spectroscopy in the gas phase. We are interested in developing rigorous quantum dynamics algorithms for small polyatomic systems and in implementing approximate approaches for complex ones. Particular focus is on the dynamics and kinetics of chemical reactions and on the rovibrational spectra of species involved in combustion processes. This research also explores the potential energy surfaces of these systems of interest using state-of-the-art quantum chemistry methods.

  13. Hydrolysis Batteries: Generating Electrical Energy during Hydrogen Absorption.

    Science.gov (United States)

    Xiao, Rui; Chen, Jun; Fu, Kai; Zheng, Xinyao; Wang, Teng; Zheng, Jie; Li, Xingguo

    2018-02-19

    The hydrolysis reaction of aluminum can be decoupled into a battery by pairing an Al foil with a Pd-capped yttrium dihydride (YH 2 -Pd) electrode. This hydrolysis battery generates a voltage around 0.45 V and leads to hydrogen absorption into the YH 2 layer. This represents a new hydrogen absorption mechanism featuring electrical energy generation during hydrogen absorption. The hydrolysis battery converts 8-15 % of the thermal energy of the hydrolysis reaction into usable electrical energy, leading to much higher energy efficiency compared to that of direct hydrolysis. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Enzyme hydrolysis of waste cellulose. [Aspergillus awamori

    Energy Technology Data Exchange (ETDEWEB)

    Mustranta, A; Nybergh, P; Hatakka, A

    1976-01-01

    Hydrolysis of brewers' spent grain and of wastes from the furfural process was investigated with culture filtrates from Trichoderma viride and Aspergillus awamori. The furfural process is evidently a good pretreatment for cellulose, and no further pretreatment is needed. Syrups containing 5% reducing sugars and 3-4% glucose were obtained from furfural process wastes and hydrolyzates containing 1.5% reducing sugars and 0.7% glucose were obtained from brewers' spent grains.

  15. Rapid hydrolysis of celluloses in homogeneous solution

    Energy Technology Data Exchange (ETDEWEB)

    Garves, K

    1979-01-01

    Dissolution of cellulose (I), cotton, and cotton linters in a mixture of Ac0H, Ac/sub 2/O, H/sub 2/SO/sub 4/, and DMF at 120 to 160 degrees resulted in rapid and complete hydrolysis of I with decomposition of the cellulose acetatesulfate formed by gradual addition of aqueous acid. Highly crystalline I is quickly decomposed to glucose with minimum byproduct formation. Carbohydrate products containing sugar units other than glucose are hydrolyzed with destruction of monosaccharides.

  16. Hydrolysis of ferric chloride in solution

    International Nuclear Information System (INIS)

    Lussiez, G.; Beckstead, L.

    1996-11-01

    The Detox trademark process uses concentrated ferric chloride and small amounts of catalysts to oxidize organic compounds. It is under consideration for oxidizing transuranic organic wastes. Although the solution is reused extensively, at some point it will reach the acceptable limit of radioactivity or maximum solubility of the radioisotopes. This solution could be cemented, but the volume would be increased substantially because of the poor compatibility of chlorides and cement. A process has been developed that recovers the chloride ions as HCl and either minimizes the volume of radioactive waste or permits recycling of the radioactive chlorides. The process involves a two-step hydrolysis at atmospheric pressure, or preferably under a slight vacuum, and relatively low temperature, about 200 degrees C. During the first step of the process, hydrolysis occurs according to the reaction below: FeCl 3 liquid + H 2 O → FeOCl solid + 2 HCl gas During the second step, the hot, solid, iron oxychloride is sprayed with water or placed in contact with steam, and hydrolysis proceeds to the iron oxide according to the following reaction: 2 FeOCl solid + H 2 O → Fe 2 O 3 solid + 2 HCl gas . The iron oxide, which contains radioisotopes, can then be disposed of by cementation or encapsulation. Alternately, these chlorides can be washed off of the solids and can then either be recycled or disposed of in some other way

  17. Hydrolysis of diacylglycerols by lipoprotein lipase.

    Science.gov (United States)

    Morley, N H; Kuksis, A; Buchnea, D; Myher, J J

    1975-05-10

    Enantiomeric diacylglycerols were emulsified, mole for mole, with lyso(1-acyl) lecithin and were hydrolyzed with lipoprotein lipase in NH4Cl-beef serum albumin buffer at pH 8.6 after a brief incubation with delipidated rat serum. The enzyme was prepared from lyophilized and dialyzed bovine skim milk in a 4 percent solution. The course of hydrolysis for each set of enantiomers was determined by gas-liquid chromatography of the masses of the diacylglycerols remaining or monoacylglycerols released in the medium between 0 and 15 min. The majority of sets of sn-1,2- and 2,3-diacylglycerols, including an isotope-labeled true enantiomeric set which was assessed by mass spectrometry, demonstrated preference by the enzyme for lipolysis at position 1 but with less specificity than previously was shown in sn-triacylglycerol hydrolysis. The results preclude the possibility that the predominance of sn-2,3-diacylglycerol intermediates during triacylglycerol hydrolysis is due solely to a preferential breakdown of the 1,2-isomers and reinforce the conclusion that lipoprotein lipase is specific for position 1.

  18. Molecular dynamics studies of displacement cascades

    International Nuclear Information System (INIS)

    Averback, R.S.; Hsieh, Horngming; Diaz de la Rubia, T.

    1990-02-01

    Molecular-dynamics simulations of cascades in Cu and Ni with primary-knock-on energies up to 5 keV and lattice temperatures in the range 0 K--700 K are described. Interatomic forces were represented by either the Gibson II (Cu) or Johnson-Erginsoy (Ni) potentials in most of this work, although some simulations using ''Embedded Atom Method'' potentials, e.g., for threshold events in Ni 3 Al, are also presented. The results indicate that the primary state of damage produced by displacement cascades is controlled by two phenomena, replacement collision sequences during the collisional phase of the cascade and local melting during the thermal spike. As expected, the collisional phase is rather similar in Cu and Ni, however, the thermal spike is of longer duration and has a more pronounced influence in Cu than Ni. When the ambient temperature of the lattice is increased, the melt zones are observed to both increase in size and cool more slowly. This has the effect of reducing defect production and enhancing atomic mixing and disordering. The implications of these results for defect production, cascade collapse, atomic disordering will be discussed. 34 refs., 7 figs., 2 tabs

  19. Effects of cocaine on norepinephrine stimulated phosphoinositide hydrolysis and locomotor activity in rat

    International Nuclear Information System (INIS)

    Mosaddeghi, M.

    1989-01-01

    The function of α 1 -adrenoceptors was determined by stimulating cortical tissue slices, which were pre-labeled with [ 3 H]inositol, with norepinephrine (NE) in the presence of 8 mM LiCl. Results of in vitro studies showed that cocaine 10 μM potentiated maximal NE-stimulated PI hydrolysis by 30%. In addition, the EC 50 was decreased from 3.93 ± 0.42 to 1.91 ± 0.31 μM NE. Concentrations of 0.1-100 μM and 0.1-10 μM cocaine enhanced PI hydrolysis stimulated by 0.3 and 3 μM NE, respectively. The concentration-effect curves for NE-stimulated PI hydrolysis were shifted to the right 100-fold in the presence of 0.1 μM prazosin. Cocaine (10 μM) did not potentiate NE-stimulated PI hydrolysis in the presence of 0.1 μM prazosin. [ 3 H]Prazosin saturation and NE [ 3 H]prazosin competition binding studies using crude membrane preparations showed that 10 μM cocaine did not alter binding parameters B max , K d , Hill slope, and IC 50 . Together, these results implied that cocaine in vitro potentiated NE-stimulated PI hydrolysis by blocking NE reuptake. For in vivo studies, the locomotor activity was determined after an acute or chronic injections of either cocaine or saline. Cocaine or saline-treated rats were killed after measurement of the locomotor activity, and NE-stimulated PI hydrolysis was measured. Acute administration of cocaine 3.2-42 mg/kg (i.p.) produced an inverted U shaped dose-response curve on locomotor activity. The peak increase in locomotor activity was at 32 mg/kg cocaine. A dose of 42 mg/kg cocaine produced a significant depression of maximal NE-stimulated PI hydrolysis

  20. Hydrolysis of nitriles by soil bacteria: variation with soil origin.

    Science.gov (United States)

    Rapheeha, O K L; Roux-van der Merwe, M P; Badenhorst, J; Chhiba, V; Bode, M L; Mathiba, K; Brady, D

    2017-03-01

    The aim of this study was to explore bacterial soil diversity for nitrile biocatalysts, in particular, those for hydrolysis of β-substituted nitriles, to the corresponding carboxamides and acids that may be incorporated into peptidomimetics. To achieve this, we needed to compare the efficiency of isolation methods and determine the influence of land use and geographical origin of the soil sample. Nitrile-utilizing bacteria were isolated from various soil environments across a 1000 km long transect of South Africa, including agricultural soil, a gold mine tailing dam and uncultivated soil. The substrate profile of these isolates was determined through element-limited growth studies on seven different aliphatic or aromatic nitriles. A subset of these organisms expressing broad substrate ranges was evaluated for their ability to hydrolyse β-substituted nitriles (3-amino-3-phenylpropionitrile and 3-hydroxy-4-phenoxybutyronitrile) and the active organisms were found to be Rhodococcus erythropolis from uncultivated soil and Rhodococcus rhodochrous from agricultural soils. The capacity for hydrolysis of β-substituted nitriles appears to reside almost exclusively in Rhodococci. Land use has a much greater effect on the biocatalysis substrate profile than geographical location. Enzymes are typically substrate specific in their catalytic reactions, and this means that a wide diversity of enzymes is required to provide a comprehensive biocatalysis toolbox. This paper shows that the microbial diversity of nitrile hydrolysis activity can be targeted according to land utilization. Nitrile biocatalysis is a green chemical method for the enzymatic production of amides and carboxylic acids that has industrial applications, such as in the synthesis of acrylamide and nicotinamide. The biocatalysts discovered in this study may be applied to the synthesis of peptidomimetics which are an important class of therapeutic compounds. © 2016 The Society for Applied Microbiology.

  1. Dynamical study of a polydisperse hard-sphere system

    KAUST Repository

    Nogawa, Tomoaki; Ito, Nobuyasu; Watanabe, Hiroshi

    2010-01-01

    We study the interplay between the fluid-crystal transition and the glass transition of elastic sphere system with polydispersity using nonequilibrium molecular dynamics simulations. It is found that the end point of the crystal-fluid transition

  2. Concentration dynamics in lakes and reservoirs. Studies using radioactive tracers

    International Nuclear Information System (INIS)

    Gilath, Ch.

    1983-01-01

    The use of radioactive tracers for the investigation of concentration dynamics of inert soluble matter in lakes and reservoirs is reviewed. Shallow and deep stratified lakes are considered. The mechanism of mixing in lakes, flow pattern and input - output response are discussed. The methodology of the use of radioactive tracers for concentration dynamic studies is described. Examples of various investigations are reviewed. The dynamics of shallow lakes can be found and expressed in terms of transfer functions, axial dispersion models, residence time distributions and sometimes only semiquantitative information about the flow pattern. The dynamics of deep, stratified lakes is more complex and difficult to investigate with tracers. Flow pattern, horizontal and vertical eddy diffusivities, mass transfer between the hypolimnion and epilimnion are tools used for describing this dynamics. (author)

  3. Study on dynamic lifting characteristics of control rod drive mechanism

    International Nuclear Information System (INIS)

    Shen Xiaoyao

    2012-01-01

    Based on the equations of the electric circuit and the magnetic circuit and analysis of the dynamic lifting process for the control rod drive mechanism (CRDM), coupled magnetic-electric-mechanical equations both for the static status and the dynamic status are derived. The analytical method is utilized to obtain the current and the time when the lift starts. The numerical simulation method of dynamic analysis recommended by ASME Code is utilized to simulate the dynamic lifting process of CRDM, and the dynamic features of the system with different design gaps are studied. Conclusions are drawn as: (1) the lifting-start time increases with the design gap, and the time for the lifting process is longer with larger gaps; (2) the lifting velocity increases with time; (3) the lifting acceleration increases with time, and with smaller gaps, the impact acceleration is larger. (author)

  4. Investigating the Hydrolysis Reactions of a Chemical Warfare Agent Surrogate. A Systematic Study using 1H, 13C, 17O, 19F, 31P, and 35Cl NMR Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Todd M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wilson, Brendan W. [West Virginia Univ., Morgantown, WV (United States)

    2015-07-24

    During the summer of 2015, I participated in the DHS HS-STEM fellowship at Sandia National Laboratories (SNL, NM) under the supervision of Dr. Todd M. Alam in his Nuclear Magnetic Resonance (NMR) Spectroscopy research group. While with the group, my main project involved pursing various hydrolysis reactions with Diethyl Chlorophosphate (DECP), a surrogate for the agent Sarin (GB). Specifically, I performed different hydrolysis reactions, monitored and tracked the different phosphorous containing species using phosphorous (31P) NMR spectroscopy. With the data collected, I performed kinetics studies mapping the rates of DECP hydrolysis. I also used the NMR of different nuclei such as 1H, 13C, 17O, and 35Cl to help understand the complexity of the reactions that take place. Finally, my last task at SNL was to work with Insensitive Nuclei Enhanced by Polarization Transfer (INEPT) NMR Spectroscopy optimizing conditions for 19F- 31P filtering NMR experiments.

  5. Nanocrystalline hydroxyapatite ceramics prepared by hydrolysis in polyol medium

    Science.gov (United States)

    Mechay, Abderrahmen; Feki, Hafed E. L.; Schoenstein, Fréderic; Jouini, Noureddine

    2012-07-01

    This Letter describes a new approach for the synthesis of hydroxyapatite nanoparticles, which involves precipitation and hydrolysis reactions conducted in polyol medium. In fact, ammonium-hydrogen phosphate and calcium nitrate were dissolved in polyol, and then heated at the boiling point of the polyol (ethane1, 2diol or propane1, 2diol). Besides, the phase and composition of the polycrystalline were studied by TGA/DTA, FT-IR, TEM and XRD techniques. The nanoparticles thus obtained present interesting morphological characters varying from needle to very thin platelet. Moreover, the hydroxyapatite prepared in ployol shows higher cristallinity in comparison with that obtained by other 'chimie douce' methods.

  6. Spectrophotometric determination of the first hydrolysis constant of praseodymium (III)

    International Nuclear Information System (INIS)

    Gonzalez M, R.; Lopez G, H.; Rojas H, A.

    2010-01-01

    The behavior of the trivalent ion praseodymium in 2 M of NaCl at 303 K and in CO 2 free conditions, was studied. Spectrophotometric titrations of the soluble species were used, in order to obtain the value of the first hydrolysis constant of Pr(III). The data obtained were treated with both the program Squad and by a graphic method, respectively. The result obtained using Squad was log*β 1 = -8.94 ± 0.03, while it was log*β 1 = -8.77 ± 0.03, when calculated graphically. These results are similar to the value obtained previously with the potentiometric method. (Author)

  7. Acid hydrolysis of kallar grass (leptochloa fusca) for the production

    International Nuclear Information System (INIS)

    Chughtai, F.A.; Shah, M.H.

    1993-01-01

    Acid hydrolysis of kallar grass (leptochloa fusca) was carried of with various concentrations of sulphuric acid, ortho phosphoric acid and hydrochloric acid to produce furfural. The study revealed that activity of various hydrolysing acids to produce furfural from kallar grass was of the following order H/sub 2/SO/sub 4/ > H/sub 3/PO/sub 4/ > HCl. Optimum yield (4.78%) of the produce was obtained when the material was digested with 19% H/sub 2/SO/sub 4/ for a period of 20 minutes. (author)

  8. Optimization of the enzyme system for hydrolysis of pretreated lignocellulose substrates; Optimering av enzymsystemet foer hydrolys av foerbehandlade lignocellulosa substrat

    Energy Technology Data Exchange (ETDEWEB)

    Tjerneld, Folke [Lund univ., (Sweden). Dept. of Biochemistry

    2000-06-01

    This project aims to clarify the reasons for the slow and incomplete enzymatic hydrolysis of certain lignocellulose substrates, particularly softwood e.g. spruce. Based on this knowledge we will optimize the enzyme system so that the yield of fermentable sugars is increased as well as the rate of hydrolysis. We will also study methods for recycling of the enzymes in the process by adsorption on fresh substrate. Progress in these areas will lead to improved process economy in an ethanol process. We collaborate with Chemical Engineering on hydrolysis of pretreated lignocellulose substrates and with Analytical Chemistry and Applied Microbiology on analysis of potential inhibitors. Within this main research direction the work at Biochemistry during this project period (since 970701) has been focused on the following areas: (1) Studies of the role of substrate properties in the enzymatic hydrolysis to clarify the reasons for the decrease in the rate of hydrolysis; (2) enzyme adsorption on lignin; (3) studies of recently identified low molecular weight endo glucanases which may be used for more effective penetration of small pores in pretreated substrates (this part is financed by the Nordic Energy Research Program). Central results during the period: In order to study the role of substrate properties for hydrolysis we have initiated investigations on steam pretreated substrates with several techniques. Measurements of pore sizes have been done with probe molecules of known molecular weights. Results show that probe molecules with diameters larger than 50 Aangstroem can more easily penetrate pretreated willow compared with spruce, which can be a part of the explanation for the better hydrolysability of hardwood substrates compared with softwood. We have started studies with electron microscopy of pretreated substrates at different degrees of enzymatic hydrolysis. With scanning electron microscopy (SEM) we can see significant differences in substrate structure in

  9. Effect of Varying Acid Hydrolysis Condition in Gracilaria Sp. Fermentation Using Sasad

    Science.gov (United States)

    Mansuit, H.; Samsuri, M. D. C.; Sipaut, C. S.; Yee, C. F.; Yasir, S. M.; Mansa, R.

    2015-04-01

    Macroalgae or seaweed is being considered as promising feedstock for bioalcohol production due to high polysaccharides content. Polysaccharides can be converted into fermentable sugar through acid hydrolysis pre-treatment. In this study, the potential of using carbohydrate-rich macroalgae, Gracilaria sp. as feedstock for bioalcohol production via various acid hydrolysis conditions prior to the fermentation process was investigated and evaluated. The seaweed used in this research was from the red algae group, using species of Gracilaria sp. which was collected from Sg. Petani Kedah, Malaysia. Pre-treatment of substrate was done using H2SO4 and HCl with molarity ranging from 0.2M to 0.8M. The pretreatment time were varied in the range of 15 to 30 minutes. Fermentation was conducted using Sasad, a local Sabahan fermentation agent as a starter culture. Alcohol extraction was done using a distillation unit. Reducing sugar analysis was done by Benedict test method. Alcohol content analysis was done using specific gravity test. After hydrolysis, it was found out that acid hydrolysis at 0.2M H2SO4 and pre-treated for 20 minutes at 121°C has shown the highest reducing sugar content which has yield (10.06 mg/g) of reducing sugar. It was followed by other samples hydrolysis using 0.4M HCl with 30 minutes pre-treatment and 0.2M H2SO4, 15 minutes pre-treatment with yield of 8.06 mg/g and 5.75 mg/g reducing sugar content respectively. In conclusion, acid hydrolysis of Gracilaria sp. can produce higher reducing sugar yield and thus it can further enhance the bioalcohol production yield. Hence, acid hydrolysis of Gracilaria sp. should be studied more as it is an important step in the bioalcohol production and upscaling process.

  10. An Analytical Study of Prostate-Specific Antigen Dynamics.

    Science.gov (United States)

    Esteban, Ernesto P; Deliz, Giovanni; Rivera-Rodriguez, Jaileen; Laureano, Stephanie M

    2016-01-01

    The purpose of this research is to carry out a quantitative study of prostate-specific antigen dynamics for patients with prostatic diseases, such as benign prostatic hyperplasia (BPH) and localized prostate cancer (LPC). The proposed PSA mathematical model was implemented using clinical data of 218 Japanese patients with histological proven BPH and 147 Japanese patients with LPC (stages T2a and T2b). For prostatic diseases (BPH and LPC) a nonlinear equation was obtained and solved in a close form to predict PSA progression with patients' age. The general solution describes PSA dynamics for patients with both diseases LPC and BPH. Particular solutions allow studying PSA dynamics for patients with BPH or LPC. Analytical solutions have been obtained and solved in a close form to develop nomograms for a better understanding of PSA dynamics in patients with BPH and LPC. This study may be useful to improve the diagnostic and prognosis of prostatic diseases.

  11. Acid Hydrolysis of Wheat Gluten Induces Formation of New Epitopes but Does Not Enhance Sensitizing Capacity by the Oral Route: A Study in “Gluten Free” Brown Norway Rats

    Science.gov (United States)

    Kroghsbo, Stine; Andersen, Nanna B.; Rasmussen, Tina F.; Madsen, Charlotte B.

    2014-01-01

    Background Acid hydrolyzed wheat proteins (HWPs) are used in the food and cosmetic industry as emulsifiers. Cases of severe food allergic reactions caused by HWPs have been reported. Recent data suggest that these reactions are caused by HWPs produced by acid hydrolysis. Objectives To examine the sensitizing capacity of gluten proteins per se when altered by acid or enzymatic hydrolysis relative to unmodified gluten in rats naïve to gluten. Methods High IgE-responder Brown Norway (BN) rats bred on a gluten-free diet were sensitized without the use of adjuvant to three different gluten products (unmodified, acid hydrolyzed and enzymatic hydrolyzed). Rats were sensitized by intraperitoneal (i.p.) immunization three times with 200 µg gluten protein/rat or by oral dosing for 35 days with 0.2, 2 or 20 mg gluten protein/rat/day. Sera were analyzed for specific IgG and IgE and IgG-binding capacity by ELISA. IgE functionality was measured by rat basophilic leukemia (RBL) assay. Results Regardless of the route of dosing, all products had sensitizing capacity. When sensitized i.p., all three gluten products induced a strong IgG1 response in all animals. Acid hydrolyzed gluten induced the highest level of specific IgE but with a low functionality. Orally all three gluten products induced specific IgG1 and IgE but with different dose-response relations. Sensitizing rats i.p. or orally with unmodified or enzymatic hydrolyzed gluten induced specific IgG1 responses with similar binding capacity which was different from that of acid hydrolyzed gluten indicating that acid hydrolysis of gluten proteins induces formation of ‘new’ epitopes. Conclusions In rats not tolerant to gluten acid hydrolysis of gluten enhances the sensitizing capacity by the i.p. but not by the oral route. In addition, acid hydrolysis induces formation of new epitopes. This is in contrast to the enzymatic hydrolyzed gluten having an epitope pattern similar to unmodified gluten. PMID:25207551

  12. Microwave-assisted acid and base hydrolysis of intact proteins containing disulfide bonds for protein sequence analysis by mass spectrometry.

    Science.gov (United States)

    Reiz, Bela; Li, Liang

    2010-09-01

    Controlled hydrolysis of proteins to generate peptide ladders combined with mass spectrometric analysis of the resultant peptides can be used for protein sequencing. In this paper, two methods of improving the microwave-assisted protein hydrolysis process are described to enable rapid sequencing of proteins containing disulfide bonds and increase sequence coverage, respectively. It was demonstrated that proteins containing disulfide bonds could be sequenced by MS analysis by first performing hydrolysis for less than 2 min, followed by 1 h of reduction to release the peptides originally linked by disulfide bonds. It was shown that a strong base could be used as a catalyst for microwave-assisted protein hydrolysis, producing complementary sequence information to that generated by microwave-assisted acid hydrolysis. However, using either acid or base hydrolysis, amide bond breakages in small regions of the polypeptide chains of the model proteins (e.g., cytochrome c and lysozyme) were not detected. Dynamic light scattering measurement of the proteins solubilized in an acid or base indicated that protein-protein interaction or aggregation was not the cause of the failure to hydrolyze certain amide bonds. It was speculated that there were some unknown local structures that might play a role in preventing an acid or base from reacting with the peptide bonds therein. 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.

  13. Paraoxonase 1 (PON1) status and substrate hydrolysis

    International Nuclear Information System (INIS)

    Richter, Rebecca J.; Jarvik, Gail P.; Furlong, Clement E.

    2009-01-01

    Paraoxonase 1 (PON1) hydrolyzes a number of organophosphorus (OP) compounds including insecticides and nerve agents. The in vivo efficacy of PON1 to protect against a specific OP exposure depends on the catalytic efficiency of hydrolysis. The Q192R polymorphism affects the catalytic efficiency of hydrolysis of some substrates and not others. While PON1 R192 hydrolyzes paraoxon approximately 9-times as efficiently as PON1 Q192 , the efficiency is insufficient to provide in vivo protection against paraoxon/parathion exposure. The two PON1 192 alloforms have nearly equivalent but higher catalytic efficiencies for hydrolyzing diazoxon (DZO) and provide equivalent in vivo protection against DZO exposures. On the other hand, PON1 R192 is significantly more efficient in hydrolyzing chlorpyrifos oxon (CPO) than PON1 Q192 and provides better protection against CPO exposure. Thus, for some exposures it is only the level of plasma PON1 that is important, whereas for others it is both plasma level and the PON1 192 alloform(s) present in plasma that are important. In no case is the plasma level of PON1 unimportant, provided that the catalytic efficiency is sufficient to protect against the exposure. Two-substrate enzyme assay/analysis protocols that reveal both PON1 plasma levels and PON1 192 phenotype (QQ; QR; RR) are designed to optimize the separation of PON1 192 phenotypes; however, they have not been optimized for evaluating in vivo rates of OP detoxication. This study describes the adaptation of a non-OP, two-substrate determination of PON1 status to the conversion of the PON1 status data to physiologically relevant rates of DZO and CPO detoxication. Conversion factors were generated for rates of hydrolysis of different substrates

  14. Enzymatic hydrolysis of organic phosphorus in swine manure and soil.

    Science.gov (United States)

    He, Zhongqi; Griffin, Timothy S; Honeycutt, C Wayne

    2004-01-01

    Organic phosphorus (Po) exists in many chemical forms that differ in their susceptibility to hydrolysis and, therefore, bioavailability to plants and microorganisms. Identification and quantification of these forms may significantly contribute to effective agricultural P management. Phosphatases catalyze reactions that release orthophosphate (Pi) from Po compounds. Alkaline phosphatase in tris-HCl buffer (pH 9.0), wheat (Triticum aestivum L.) phytase in potassium acetate buffer (pH 5.0), and nuclease P1 in potassium acetate buffer (pH 5.0) can be used to classify and quantify Po in animal manure. Background error associated with different pH and buffer systems is observed. In this study, we improved the enzymatic hydrolysis approach and tested its applicability for investigating Po in soils, recognizing that soil and manure differ in numerous physicochemical properties. We applied (i) acid phosphatase from potato (Solanum tuberosum L.), (ii) acid phosphatases from both potato and wheat germ, and (iii) both enzymes plus nuclease P1 to identify and quantify simple labile monoester P, phytate (myo-inositol hexakis phosphate)-like P, and DNA-like P, respectively, in a single pH/buffer system (100 mM sodium acetate, pH 5.0). This hydrolysis procedure released Po in sequentially extracted H2O, NaHCO3, and NaOH fractions of swine (Sus scrofa) manure, and of three sandy loam soils. Further refinement of the approach may provide a universal tool for evaluating hydrolyzable Po from a wide range of sources.

  15. Backtracing neutron analysis in the fusion-fission dynamics study

    International Nuclear Information System (INIS)

    Brennand, E. de Goes; Hanappe, F.; Stuttge, L.

    2001-01-01

    A new method for the analysis of multi parametric experimental data is used in the study of the dynamics of the fission process for the compound system 126 Ba. We apply this method to obtain the correlation between thermal energy related to the neutron total multiplicity and the correlation between pre-scission neutron and pos-scission neutron multiplicities. The results obtained are interpreted into the framework of a dynamical model. From this interpretation we have access to the following information: the friction intensity which drives the dynamical evolution of the system; the initial deformation of the compound system; the barrier evolution with temperature and angular momentum, and fission times. (author)

  16. Enzymatic activity of the cellulolytic complex produced by Trichoderma reesei. Enzymatic hydrolysis of cellulose; Actividad enzimatica del complejo celulolitico producido por Trichoderma reesei. Hidrolisis enzimatica de la celulosa

    Energy Technology Data Exchange (ETDEWEB)

    Alfonsel, M; Negro, M J; Saez, R; Martin, C

    1986-07-01

    The enzymatic activity characterization of the cellulolytic complex obtained from Trichoderma reesei QM 9414 and the influence of the enzymatic hydrolysis conditions on the hydrolysis yield are studied. Pure cellulose and native or alkali pretreated biomass Onopordum nervosum have been used as substrates. The values of pH, temperature, substrate concentration and enzyme-substrate ratio for the optimum activity of that complex, evaluated as glucose and reducing sugars production, have been selected. Previous studies on enzymatic hydrolysis of 0. nervosum have shown a remarkable effect of the alkaline pretreatments on the final hydrolysis yield. (Author) 10 refs.

  17. Antioxidative activities of hydrolysates from edible birds nest using enzymatic hydrolysis

    Science.gov (United States)

    Muhammad, Nurul Nadia; Babji, Abdul Salam; Ayub, Mohd Khan

    2015-09-01

    Edible bird's nest protein hydrolysates (EBN) were prepared via enzymatic hydrolysis to investigate its antioxidant activity. Two types of enzyme (alcalase and papain) were used in this study and EBN had been hydrolysed with different hydrolysis time (30, 60, 90 and 120 min). Antioxidant activities in EBN protein hydrolysate were measured using DPPH, ABTS+ and Reducing Power Assay. From this study, increased hydrolysis time from 30 min to 120 min contributed to higher DH, as shown by alcalase (40.59%) and papain (24.94%). For antioxidant assay, EBN hydrolysed with papain showed higher scavenging activity and reducing power ability compared to alcalase. The highest antioxidant activity for papain was at 120 min hydrolysis time with ABTS (54.245%), DPPH (49.78%) and Reducing Power (0.0680). Meanwhile for alcalase, the highest antioxidant activity was at 30 min hydrolysis time. Even though scavenging activity for EBN protein hydrolysates were high, the reducing power ability was quite low as compared to BHT and ascorbic Acid. This study showed that EBN protein hydrolysate with alcalase and papain treatments potentially exhibit high antioxidant activity which have not been reported before.

  18. Temperature dependent dynamics of DegP-trimer: A molecular dynamics study

    Directory of Open Access Journals (Sweden)

    Nivedita Rai

    2015-01-01

    Full Text Available DegP is a heat shock protein from high temperature requirement protease A family, which reacts to the environmental stress conditions in an ATP independent way. The objective of the present analysis emerged from the temperature dependent functional diversity of DegP between chaperonic and protease activities at temperatures below and above 28 °C, respectively. DegP is a multimeric protein and the minimal functional unit, DegP-trimer, is of great importance in understanding the DegP pathway. The structural aspects of DegP-trimer with respect to temperature variation have been studied using molecular dynamics simulations (for 100 ns and principal component analysis to highlight the temperature dependent dynamics facilitating its functional diversity. The DegP-trimer revealed a pronounced dynamics at both 280 and 320 K, when compared to the dynamics observed at 300 K. The LA loop is identified as the highly flexible region during dynamics and at extreme temperatures, the residues 46–80 of LA loop express a flip towards right (at 280 and left ( at 320 K with respect to the fixed β-sheet connecting the LA loop of protease for which Phe46 acts as one of the key residues. Such dynamics of LA loop facilitates inter-monomeric interaction with the PDZ1 domain of the neighbouring monomer and explains its active participation when DegP exists as trimer. Hence, the LA loop mediated dynamics of DegP-trimer is expected to provide further insight into the temperature dependent dynamics of DegP towards the understanding of its assembly and functional diversity in the presence of substrate.

  19. Pretreatments and enzymatic hydrolysis of sugarcane bagasse aiming at the enhancement of the yield of glucose and xylose

    Directory of Open Access Journals (Sweden)

    A. de A. Guilherme

    Full Text Available ABSTRACT This work studied the enzymatic hydrolysis of sugarcane bagasse aiming at the production of glucose and xylose. The bagasse was subjected to two different pretreatments: combined acid and alkalinepretreatment and hydrogen peroxidepretreatment. The enzymatic hydrolysis was optimized and a kinetic study was carried out in a stirred tank reactor (STR in batch mode. Optimal conditions were obtained by subjecting the bagasse to the hydrogen peroxide pretreatment followed by enzymatic hydrolysis. The addition of xylanases to the enzymatic mixture improved the production of fermentable sugars by 48%.

  20. NASA plan for international crustal dynamics studies

    Science.gov (United States)

    1979-01-01

    The international activities being planned as part of the NASA geodynamics program are described. Methods of studying the Earth's crustal movements and deformation characteristics are discussed. The significance of the eventual formalations of earthquake predictions methods is also discussed.

  1. Study on Human-structure Dynamic Interaction in Civil Engineering

    Science.gov (United States)

    Gao, Feng; Cao, Li Lin; Li, Xing Hua

    2018-06-01

    The research of human-structure dynamic interaction are reviewed. Firstly, the influence of the crowd load on structural dynamic characteristics is introduced and the advantages and disadvantages of different crowd load models are analyzed. Then, discussing the influence of structural vibration on the human-induced load, especially the influence of different stiffness structures on the crowd load. Finally, questions about human-structure interaction that require further study are presented.

  2. Dynamic scintigraphic studies after oesophageal reconstruction

    International Nuclear Information System (INIS)

    Maliska, C.M.; Maliska, C.; Pinto, E.; Castro, L.; Fonseca, L.B.E; Miranda, M.

    1997-01-01

    Full text: We have studied the oesophageal transit and gastric emptying in the monitoring of the effect of oesophageal reconstruction surgery. Oncologic patients were evaluated after oesophageal reconstruction surgery with gastric (14 patients) or colonic (5 patients) tube and they were compared with 15 healthy volunteers, using scintigraphic method with liquid food (S-colloid-Tc99m). In the oesophageal transit studies there were no significant statistical differences among the three groups, when we have just considered to two superior (of the three) segments, as oesophagus, showing that the distal neo-tube works just like the stomach of normal volunteers

  3. Hydrolysis of Cellulose Using Mono-Component Enzymes Shows Synergy during Hydrolysis of Phosphoric Acid Swollen Cellulose (PASC), but Competition on Avicel

    DEFF Research Database (Denmark)

    Andersen, Natalija; Johansen, Katja S.; Michelsen, Michael Locht

    2008-01-01

    ). In contrast to previous studies, where P-glucosidase was either not added or added in excess, we here focus on engineering binary, as well as, ternary cellulase mixtures (including a range of different mol% of Cel3A) for maximal total sugar production. Precise hydrolysis pattern based on the concentration...

  4. A coupled CFD and two-phase substrate kinetic model for enzymatic hydrolysis of lignocellulose

    Science.gov (United States)

    Danes, Nicholas; Sitaraman, Hariswaran; Stickel, Jonathan; Sprague, Michael

    2017-11-01

    Cost-effective production of fuels from lignocellulosic biomass is an important subject of research in order to meet the world's current and future energy demands. Enzymatic hydrolysis is one of the several steps in the biochemical conversion of biomass into fuels. This process involves the interplay of non-Newtonian fluid dynamics that happen over tens of seconds coupled with chemical reactions that happen over several hours. In this work, we present a coupled CFD-reaction model for conversion of cellulose to sugars in a benchtop mixer reactor. A subcycling approach is used to circumvent the large time scale disparity between fluid dynamics and reactions. We will present a validation study of our simulations with experiments for well-mixed and stratified reactor scenarios along with predictions for conversion rates and product concentrations at varying impeller speeds and in scaled-up reactors. This work is funded by the Bioenergy Technology Office of DOE and the NSF's Enriched Doctoral Training program (DMS-1551229).

  5. Impact of electrical conductivity on acid hydrolysis of guar gum under induced electric field.

    Science.gov (United States)

    Li, Dandan; Zhang, Yao; Yang, Na; Jin, Zhengyu; Xu, Xueming

    2018-09-01

    This study aimed to improve induced electric field (IEF)-assisted hydrolysis of polysaccharide by controlling electrical conductivity. As the conductivity of reaction medium was increased, the energy efficiency of IEF was increased because of deceased impedance, as well as enhanced output voltage and temperature, thus the hydrolysis of guar gum (GG) was accelerated under IEF. Changes in weight-average molecular weight (Mw) suggested that IEF-assisted hydrolysis of GG could be described by the first-order kinetics 1/Mw ∝ kt, with the rate constant (k), varying directly with the medium conductivity. Although IEF-assisted hydrolysis largely disrupted the morphological structure of GG, it had no impact on the chemical structure. In comparison to native GG, the steady shear viscosity of hydrolyzed GG dramatically declined while the thermal stability slightly decreased. This study extended the knowledge of electrical conductivity upon IEF-assisted acid hydrolysis of GG and might contribute to a better utilization of IEF for polysaccharide modification. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Optimization of enzymatic hydrolysis of guar gum using response surface methodology.

    Science.gov (United States)

    Mudgil, Deepak; Barak, Sheweta; Khatkar, B S

    2014-08-01

    Guar gum is a polysaccharide obtained from guar seed endosperm portion. Enzymatically hydrolyzed guar gum is low in viscosity and has several health benefits as dietary fiber. In this study, response surface methodology was used to determine the optimum conditions for hydrolysis that give minimum viscosity of guar gum. Central composite was employed to investigate the effects of pH (3-7), temperature (20-60 °C), reaction time (1-5 h) and cellulase concentration (0.25-1.25 mg/g) on viscosity during enzymatic hydrolysis of guar (Cyamopsis tetragonolobus) gum. A second order polynomial model was developed for viscosity using regression analysis. Results revealed statistical significance of model as evidenced from high value of coefficient of determination (R(2) = 0.9472) and P < 0.05. Viscosity was primarily affected by cellulase concentration, pH and hydrolysis time. Maximum viscosity reduction was obtained when pH, temperature, hydrolysis time and cellulase concentration were 6, 50 °C, 4 h and 1.00 mg/g, respectively. The study is important in optimizing the enzymatic process for hydrolysis of guar gum as potential source of soluble dietary fiber for human health benefits.

  7. Combined subcritical water and enzymatic hydrolysis for reducing sugar production from coconut husk

    Science.gov (United States)

    Muharja, Maktum; Junianti, Fitri; Nurtono, Tantular; Widjaja, Arief

    2017-05-01

    Coconut husk wastes are abundantly available in Indonesia. It has a potential to be used into alternative renewable energy sources such as hydrogen using enzymatic hydrolysis followed by a fermentation process. Unfortunately, enzymatic hydrolysis is hampered by the complex structure of lignocellulose, so the cellulose component is hard to degrade. In this study, Combined Subcritical Water (SCW) and enzymatic hydrolysis are applied to enhance fermentable, thereby reducing production of sugar from coconut husk. There were two steps in this study, the first step was coconut husk pretreated by SCW in batch reactor at 80 bar and 150-200°C for 60 minutes reaction time. Secondly, solid fraction from the results of SCW was hydrolyzed using the mixture of pure cellulose and xylanase enzymes. Analysis was conducted on untreated and SCW-treated by gravimetric assay, liquid fraction after SCW and solid fraction after enzymatic hydrolysis using DNS assay. The maximum yield of reducing sugar (including xylose, arabinose glucose, galactose, mannose) was 1.254 gr per 6 gr raw material, representing 53.95% of total sugar in coconut husk biomass which was obtained at 150°C 80 bar for 60 minutes reaction time of SCW-treated and 6 hour of enzymatic hydrolysis using mixture of pure cellulose and xylanase enzymes (18.6 U /gram of coconut husk).

  8. Monitoring of soluble starch hydrolysis induced by α-amylase from Aspergillus oryzae using ultrasonic spectroscopy

    Science.gov (United States)

    Sierra, Carlos; Resa, Pablo; Buckin, Vitaly; Elvira, Luis

    2012-05-01

    The online monitoring of enzymatic starch hydrolysis is an important issue for several industrial sectors, mainly in the alimentary industry. Ultrasonic non-invasive methods based on the detection of wave velocity and amplitude changes can be used to study this enzymatic reaction. These wave propagating changes are result of physicalchemical modifications produced in the media by the starch hydrolysis. In this work the starch hydrolysis induced by the enzyme α-amylase from Aspergillus oryzae is studied. This biochemical reaction has been monitored using a high-resolution ultrasonic spectroscopy (HR-US) which is non-invasive and nondestructive. The measured time profiles o of ultrasonic velocity are explained in terms of the starch hydrolysis and the subsequent production of oligosaccharides as a consequence of the enzymatic action. The obtained results have been compared to a conventional off-line technique used in biochemistry, the iodine-starch reaction, a spectrophotometric method to quantify the amount of starch remaining in the medium. The combination of these two types of measurement provides more complete information about the biochemical processes occurred during hydrolysis.

  9. Modeling enzymatic hydrolysis of lignocellulosic substrates using confocal fluorescence microscopy I: filter paper cellulose.

    Science.gov (United States)

    Luterbacher, Jeremy S; Moran-Mirabal, Jose M; Burkholder, Eric W; Walker, Larry P

    2015-01-01

    Enzymatic hydrolysis is one of the critical steps in depolymerizing lignocellulosic biomass into fermentable sugars for further upgrading into fuels and/or chemicals. However, many studies still rely on empirical trends to optimize enzymatic reactions. An improved understanding of enzymatic hydrolysis could allow research efforts to follow a rational design guided by an appropriate theoretical framework. In this study, we present a method to image cellulosic substrates with complex three-dimensional structure, such as filter paper, undergoing hydrolysis under conditions relevant to industrial saccharification processes (i.e., temperature of 50°C, using commercial cellulolytic cocktails). Fluorescence intensities resulting from confocal images were used to estimate parameters for a diffusion and reaction model. Furthermore, the observation of a relatively constant bound enzyme fluorescence signal throughout hydrolysis supported our modeling assumption regarding the structure of biomass during hydrolysis. The observed behavior suggests that pore evolution can be modeled as widening of infinitely long slits. The resulting model accurately predicts the concentrations of soluble carbohydrates obtained from independent saccharification experiments conducted in bulk, demonstrating its relevance to biomass conversion work. © 2014 Wiley Periodicals, Inc.

  10. Fundamental study of dynamic ECT by dual detector gammacamera system

    International Nuclear Information System (INIS)

    Kakegawa, M.; Matsui, S.; Maeda, H.; Takeda, K.; Nakagawa, T.

    1982-01-01

    The improvement of image quality of reconstructed image by the simple pre-processing of projections is studied. Using the improved algorithm and dual detector gammacamera system, the possibility of dynamic ECT is studied. As shown in clinical examples, renal flow study using Tc-99m-DTPA, dynamic ECT imaging is possible with measuring time of 1 or 2 minutes. By this method cortex and medulla are separately imaged and each function can be analyzed more precisely. Using high sensitive collimator it will be possible to take ECT images every 30 sec. with little resolution loss quantitative three dimensional time activity analysis is under study

  11. Clinical application of cerebral dynamic perfusion studies

    International Nuclear Information System (INIS)

    DeLand, F.H.

    1975-01-01

    Radionuclide cerebral perfusion studies are assuming a far greater importance in the detection and differential diagnosis of cerebral lesions. Perfusion studies not only contribute to the differential diagnosis of lesions but in certain cases are the preferred methods by which more accurate clinical interpretations can be made. The characteristic blood flow of arterio-venous malformations readily differentiates this lesion from neoplasms. The decreased perfusion or absent perfusion observed in cerebral infarctions is diagnostic without concurrent evidence from static images. Changes in rates and direction of blood flow contribute fundamental information to the status of stenosis and vascular occlusion and, in addition, offer valuable information on the competency and routes of collateral circulation. The degree of cerebral perfusion after cerebral vascular accidents appears to be directly related to patient recovery, particularly muscular function. Cerebral perfusion adds a new parameter in the diagnosis of subdural haematomas and concussion and in the differentiation of obscuring radioactivity from superficial trauma. Although pictorial displays of perfusion blood flow will offer information in most cerebral vascular problems, the addition of computer analysis better defines temporal relationships of regional blood flow, quantitative changes in flow and the detection of the more subtle increases or decreases in cerebral blood flow. The status of radionuclide cerebral perfusion studies has taken on an importance making it the primary modality for the diagnosis of cerebral lesions. (author)

  12. Lignin-based polyoxyethylene ether enhanced enzymatic hydrolysis of lignocelluloses by dispersing cellulase aggregates.

    Science.gov (United States)

    Lin, Xuliang; Qiu, Xueqing; Yuan, Long; Li, Zihao; Lou, Hongming; Zhou, Mingsong; Yang, Dongjie

    2015-06-01

    Water-soluble lignin-based polyoxyethylene ether (EHL-PEG), prepared from enzymatic hydrolysis lignin (EHL) and polyethylene glycol (PEG1000), was used to improve enzymatic hydrolysis efficiency of corn stover. The glucose yield of corn stover at 72h was increased from 16.7% to 70.1% by EHL-PEG, while increase in yield with PEG4600 alone was 52.3%. With the increase of lignin content, EHL-PEG improved enzymatic hydrolysis of microcrystalline cellulose more obvious than PEG4600. EHL-PEG could reduce at least 88% of the adsorption of cellulase on the lignin film measured by quartz crystal microbalance with dissipation monitoring (QCM-D), while reduction with PEG4600 was 43%. Cellulase aggregated at 1220nm in acetate buffer analyzed by dynamic light scattering. EHL-PEG dispersed cellulase aggregates and formed smaller aggregates with cellulase, thereby, reduced significantly nonproductive adsorption of cellulase on lignin and enhanced enzymatic hydrolysis of lignocelluloses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Intelligent hydrophilic nanoparticles fabricated via alkaline hydrolysis of crosslinked polyacrylonitrile nanoparticles

    International Nuclear Information System (INIS)

    Zhang, Y.; Wu, Q.; Zhang, H.; Zhao, J.

    2013-01-01

    Crosslinked polyacrylonitrile (PAN) nanolatex, with an average hydrodynamic diameter of 84 nm and a polydispersity index of 0.06, was successfully synthesized at a high monomer concentration and low surfactant content via a modified emulsion polymerization. Three measurements were adopted to control the nucleation and growth processes. Taking advantage of the chemical activity of nitrile groups, intelligent hydrophilic polymeric nanoparticles were fabricated via simple alkaline hydrolysis treatment of the crosslinked PAN nanolatex. Dynamic light scattering, electrophoretic light scattering, FT-IR spectroscopy, elemental analysis, and TEM observations were used to monitor the changes in the composition, structure, and morphology of the nanoparticles during the hydrolysis process. The sizes, chemical composition, morphology, and pH-responsive behavior of the intelligent hydrophilic nanoparticles could be adjusted by simply changing the hydrolysis time. As the hydrolysis was prolonged, the following nanoparticles could be obtained, crosslinked PAN nanoparticles with hydrophilic surfaces, amphiphilic nanoparticles with a hydrophobic PAN core and a hydrophilic polymeric shell composed of acrylamide and acrylic acid units, or carboxylic polyacrylamide nanoparticles. These modified nanoparticles all display good hydrophilicity, good biocompatibility, pH-sensitivity, as well as carboxyl functional groups, and thus are ideal candidates for various biomedical applications

  14. Intelligent hydrophilic nanoparticles fabricated via alkaline hydrolysis of crosslinked polyacrylonitrile nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y., E-mail: zhyw@dhu.edu.cn; Wu, Q.; Zhang, H.; Zhao, J. [Donghua University, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Chemical Fibers Research Institute (China)

    2013-07-15

    Crosslinked polyacrylonitrile (PAN) nanolatex, with an average hydrodynamic diameter of 84 nm and a polydispersity index of 0.06, was successfully synthesized at a high monomer concentration and low surfactant content via a modified emulsion polymerization. Three measurements were adopted to control the nucleation and growth processes. Taking advantage of the chemical activity of nitrile groups, intelligent hydrophilic polymeric nanoparticles were fabricated via simple alkaline hydrolysis treatment of the crosslinked PAN nanolatex. Dynamic light scattering, electrophoretic light scattering, FT-IR spectroscopy, elemental analysis, and TEM observations were used to monitor the changes in the composition, structure, and morphology of the nanoparticles during the hydrolysis process. The sizes, chemical composition, morphology, and pH-responsive behavior of the intelligent hydrophilic nanoparticles could be adjusted by simply changing the hydrolysis time. As the hydrolysis was prolonged, the following nanoparticles could be obtained, crosslinked PAN nanoparticles with hydrophilic surfaces, amphiphilic nanoparticles with a hydrophobic PAN core and a hydrophilic polymeric shell composed of acrylamide and acrylic acid units, or carboxylic polyacrylamide nanoparticles. These modified nanoparticles all display good hydrophilicity, good biocompatibility, pH-sensitivity, as well as carboxyl functional groups, and thus are ideal candidates for various biomedical applications.

  15. Hydrolysis of Acetic Anhydride in a CSTR

    Directory of Open Access Journals (Sweden)

    Veronica N. Coraci

    2016-05-01

    Full Text Available To find the optimal reactor volume and temperature for the hydrolysis of acetic anhydride at the lowest possible cost with a 90% conversion of acetic anhydride, a formula for the total cost of the reaction was created. Then, the first derivative was taken to find a value for the temperature. This value was then inputted into the second derivative of the equation to find the sign of the value which would indicate whether that point was a minima or maxima value. The minima value would then be the lowest total cost for the optimum reaction to take place.

  16. Kinetics and mechanism of hydrolysis of benzimidazolylcarbamates

    OpenAIRE

    Norberto, F. P.; Santos, S. P.; Iley, J.; Silva, D. B.; Corte Real, M.

    2007-01-01

    Synthesis of new 2-aminobenzimidazole-1-carbamates was accomplished by carbamoylation of 2-aminobenzimidazole using different substituted phenyl chloroformates. The aqueous hydrolysis of the new compounds was examined in the pH range 1-13 at 25 ºC. The evaluated kinetic parameters led to the conclusion that up to pH 4 reaction proceeds by a bimolecular attack of water to the N-protonated substrate. This is the first time this behavior is described for carbamates, and can be ascribed to the hi...

  17. Effect of acid hydrolysis on morphology, structure and digestion property of starch from Cynanchum auriculatum Royle ex Wight.

    Science.gov (United States)

    Wang, Xingchi; Wen, Fanting; Zhang, Shurong; Shen, Ruru; Jiang, Wei; Liu, Jun

    2017-03-01

    Effect of acid hydrolysis on the morphology, structure and digestion property of starch from Cynanchum auriculatum Royle ex Wight was investigated in this study. The hydrolysis degree of C. auriculatum starch rapidly increased to 63.69% after 4days and reached 78.67% at the end of 9days. Morphology observation showed that the starch granules remained intact during the first 4days of hydrolysis. However, serious erosion phenomenon was observed after 5days and starch granules completely fell into pieces after 7days. During acid hydrolysis process, the crystal type of hydrolyzed starch changed from original C B -type to final A-type. Small-angle X-ray scattering patterns showed the semi-crystalline growth rings started to be hydrolyzed after 4days. The proportions of single helix and amorphous components as well as amylose content in starch gradually decreased, whereas the proportion of double helix components continuously increased during acid hydrolysis. However, the contents of rapidly digestible starch, slowly digestible starch and resistant starch were almost constant during acid hydrolysis process, indicating the in vitro digestion property of C. auriculatum starch was not affected by acid hydrolysis. Our results provided novel information on the inner structure of C. auriculatum starch granules. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Lactose hydrolysis in aqueous two-phase system by whole-cell {beta}-galactosidase of Kluyveromyces marxianus. Semicontinuous and continuous processes

    Energy Technology Data Exchange (ETDEWEB)

    Tomaska, M [Slovak Technical Univ., Bratislava (Slovakia). Dept. of Biochemical Technology; Stredansky, M [Slovak Technical Univ., Bratislava (Slovakia). Dept. of Biochemical Technology; Tomaskova, A [Slovak Technical Univ., Bratislava (Slovakia). Dept. of Biochemical Technology; Sturdik, E [Slovak Technical Univ., Bratislava (Slovakia). Dept. of Biochemical Technology

    1995-01-01

    Semicontinuous and continuous hydrolysis of lactose in aqueous two-phase systems (polyethylene glycol 20000/ dextran 40) with whole-cell {beta}-galactosidase of K. marxianus were studied. Both phase polymers had no effect on {beta}-galactosidase activity confined in cells. Good operational stability of the biocatalyst during 55 cycles of semicontinuous process was observed without appreciable decrease in product concentration. Continuous hydrolysis of lactose was performed in the stirred bioreactor, connected with the phase separator. The satisfactory degree of hydrolysis (between 82-88%) and volumetric productivity (21.6 g/l/h) were reached during 72 hours of continuous hydrolysis of 5% (w/w) lactose. (orig.)

  19. NATO Advanced Study Institute on Advances in Chemical Reaction Dynamics

    CERN Document Server

    Capellos, Christos

    1986-01-01

    This book contains the formal lectures and contributed papers presented at the NATO Advanced Study Institute on. the Advances in Chemical Reaction Dynamics. The meeting convened at the city of Iraklion, Crete, Greece on 25 August 1985 and continued to 7 September 1985. The material presented describes the fundamental and recent advances in experimental and theoretical aspects of, reaction dynamics. A large section is devoted to electronically excited states, ionic species, and free radicals, relevant to chemical sys­ tems. In addition recent advances in gas phase polymerization, formation of clusters, and energy release processes in energetic materials were presented. Selected papers deal with topics such as the dynamics of electric field effects in low polar solutions, high electric field perturbations and relaxation of dipole equilibria, correlation in picosecond/laser pulse scattering, and applications to fast reaction dynamics. Picosecond transient Raman spectroscopy which has been used for the elucidati...

  20. FERMENTABLE SUGARS FROM Lupinus rotundiflorus BIOMASS BY HYDROCHLORIC ACID HYDROLYSIS

    Directory of Open Access Journals (Sweden)

    Mario A. Ruiz-López

    2011-02-01

    Full Text Available It is of general interest to produce fermentable carbohydrates from plant biomass. However, obtaining monosaccharides requires some effort, due to the intricate structure of the cell wall lignocellulosic complex. The aim of this study was to apply a simple two-stage hydrolysis process, using only concentrated hydrochloric acid, to generate fermentable carbohydrates from L. rotundiflorus biomass. First and second stage acid concentrations were 32% and 42.6%. Total monosaccharide yields with respect to dry matter after the first stage, second stage, and the overall process, were 27.5%, 21.0% and 48.4%, respectively. Xylose was the main first stage carbohydrate in the hydrolysate, followed by glucose, arabinose, and galactose. After the second stage only glucose and a small amount of xylose were detected. The polysaccharide hydrolysis was eased by overall low lignin content. Some advantages of this method were the use of a single hydrolyzing agent and that most of the polysaccharides were hydrolyzed in reasonably high yields. The acceptable yield, relative simplicity, the use of most of the biomass along with the wide availability, low cost of the chemicals, and the ample supply of lupines, would facilitate the scaling of these laboratory studies to pilot and industrial levels.

  1. Microscopic study on dynamic barrier in fusion reactions

    International Nuclear Information System (INIS)

    Wu Xizhen; Tian Junlong; Zhao Kai; Li Zhuxia; Wang Ning

    2004-01-01

    The authors briefly review the fusion process of very heavy nuclear systems and some theoretical models. The authors propose a microscopic transport dynamic model, i.e. the Improved Quantum Molecular Dynamic model, for describing fusion reactions of heavy systems, in which the dynamical behavior of the fusion barrier in heavy fusion systems has been studied firstly. The authors find that with the incident energy decreasing the lowest dynamic barrier is obtained which approaches to the adiabatic static barrier and with increase of the incident energy the dynamic barrier goes up to the diabatic static barrier. The authors also indicate that how the dynamical fusion barrier is correlated with the development of the configuration of fusion partners along the fusion path. Associating the single-particle potentials obtained at different stages of fusion with the Two Center Shell Model, authors can study the time evolution of the single particle states of fusion system in configuration space of single particle orbits along the fusion path. (author)

  2. Studies of Beam Dynamics in Cooler Rings

    International Nuclear Information System (INIS)

    Dietrich, J.; Stein, J.; Meshkov, I.; Sidorin, A.; Smirnov, A.

    2006-01-01

    This report describes the numerical simulation of the crystalline proton beam formation in COSY using BETACOOL code. The study includes the description of experimental results at NAP-M storage ring where the large reduction of the momentum spread was observed for first time. The present simulation shows that this behavior of proton beam can not be explained as ordered state of protons. The numerical simulation of crystalline proton beams was done for COSY parameters. The number of protons when the ordering state can be observed is limited by value 106 particles and momentum spread less then 10-6. Experimental results for the attempt to achieve of ordered state of proton beam for COSY is presented. This work is supported by RFBR grant no. 05-02-16320 and INTAS grant no. 03-54-5584

  3. RF quadrupole beam dynamics design studies

    International Nuclear Information System (INIS)

    Crandall, K.R.; Stokes, R.H.; Wangler, T.P.

    1979-01-01

    The radio-frequency quadrupole (RFQ) linear accelerator structure is expected to permit considerable flexibility in achieving linac design objectives at low velocities. Calculational studies show that the RFQ can accept a high-current, low-velocity, dc beam, bunch it with high efficiency, and accelerate it to a velocity suitable for injection into a drift-tube linac. Although it is relatively easy to generate a satisfactory design for an RFQ linac for low beam currents, the space-charge effects produced by high currents dominate the design criteria. Methods have been developed to generate solutions that make suitable compromises between the effects of emittance growth, transmission efficiency, and overall structure length. Results are given for a test RFQ linac operating at 425 MHz

  4. Effects of acid hydrolysis intensity on the properties of starch/xanthan mixtures.

    Science.gov (United States)

    Jiang, Min; Hong, Yan; Gu, Zhengbiao; Cheng, Li; Li, Zhaofeng; Li, Caiming

    2018-01-01

    The effects of acid hydrolysis intensity on the physicochemical properties of starch/xanthan gum (XG) system were studied. Waxy corn starch (WCS) was subjected to different concentrations of hydrochloric acid, and crystallization and relative molecular weight analysis were performed. The results revealed that the starch granules became smaller during acid hydrolysis. X-ray diffraction pattern analysis showed that the crystal structure did not change with acid hydrolysis. Evaluation of the properties and digestibility of different acid-thinned starch/XG systems indicated that the viscosity of acid-thinned starch/XG decreased with increased acid hydrolysis intensity. Rheological property measurements indicated that the compound systems were a pseudo-plastic fluid, which is a typical weak gel structure. Finally, we show that the WCS1.0M/XG has the highest stability of the tested mixtures. We conclude that adjusting the conditions of acid hydrolysis improves the stability and food quality-enhancing properties of starch. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. High-solids loading enzymatic hydrolysis of waste papers for biofuel production

    International Nuclear Information System (INIS)

    Wang, Lei; Templer, Richard; Murphy, Richard J.

    2012-01-01

    Highlights: ► Waste papers have great potential as a feedstock for bioethanol production. ► A wet blending step would significantly enhance enzymatic hydrolysis efficiency. ► High-solids loading saccharification was performed successfully on waste papers. ► Saccharification data were from four types of paper and two enzyme alternatives. ► Enzymatic hydrolysis kinetic models were validated by experimental data. -- Abstract: Waste papers (newspaper, office paper, magazines and cardboard in this study) with 50–73% (w/w oven dry weight) carbohydrate contents have considerable potential as raw materials for bioethanol production. A particle size reduction step of wet blending prior to enzymatic hydrolysis of newspaper was found to increase the glucan conversion efficiency by up to 10%. High-solids loading hydrolysis at 15% (w/w) of four types of paper using two enzyme alternatives, Celluclast 1.5L supplemented with Novozyme 188 and Cellic Ctec 1 (Novozymes A/S, Demark), at various enzyme concentrations were successfully performed in a lab-scale overhead-stirred reactor. This work has identified the relative saccharification performance for the four types of paper and shows office paper and cardboard to be more suitable for producing bioethanol than newspaper or magazine paper. The experimental data were also very well described by a modified, simple three parameter glucan and xylan hydrolysis model. These findings provide the possibility for incorporating this validated kinetic model into process designs required for commercial scale bioethanol production from waste paper resources.

  6. Response surface optimization of enzymatic hydrolysis of narrow-leaf cattail for bioethanol production

    International Nuclear Information System (INIS)

    Ruangmee, Arrisa; Sangwichien, Chayanoot

    2013-01-01

    Highlights: • The cellulose of pretreated sample was higher than untreated sample. • Lower hemicellulose and lignin were enhanced of hydrolyzed cellulose to sugar. • The predicted result of enzymatic hydrolysis process was fitted by quadratic model. • Predicted data was good agreement with the experimental data; with 95% confidence. - Abstract: Narrow-leaf cattail was employed as lignocellulosic biomass substrate for the investigation of the hydrolysis process of lignocellulosic ethanol. Cellulose saccharification into a high yield of fermentable sugar is an important step in ethanol production. Response surface methodology was utilized in the study of variables affecting enzymatic hydrolysis on the released glucose and xylose. Five levels (−2, −1, 0, +1, +2) of independent variable factors; cellulase (5–25 FPU/g substrate), β-glucosidase (0–20 U/g substrate), hydrolysis temperature (30–50 °C), and hydrolysis time (24–96 h), were randomly setup by using the Design of Experiment program. The significance of the regression model was high; with 95% confidence interval (less than 5% error). The predicted result after optimization was also in good agreement with the experimental data. An optimal condition; 13.50 FPU/g substrate, 16.50 U/g substrate, 50 °C and 24 h, was obtained, yielding a released glucose of 552.9 mg/g substrate (75.6% saccharification) and a released xylose of 74.0 mg/g substrate (45.6% saccharification)

  7. Production and characterization of cowpea protein hydrolysate with optimum nitrogen solubility by enzymatic hydrolysis using pepsin.

    Science.gov (United States)

    Mune Mune, Martin Alain; Minka, Samuel René

    2017-06-01

    Cowpea is a source of low-cost and good nutritional quality protein for utilization in food formulations in replacement of animal proteins. Therefore it is necessary that cowpea protein exhibits good functionality, particularly protein solubility which affects the other functional properties. The objective of this study was to produce cowpea protein hydrolysate exhibiting optimum solubility by the adequate combination of hydrolysis parameters, namely time, solid/liquid ratio (SLR) and enzyme/substrate ratio (ESR), and to determine its functional properties and molecular characteristics. A Box-Behnken experimental design was used for the experiments, and a second-order polynomial to model the effects of hydrolysis time, SLR and ESR on the degree of hydrolysis and nitrogen solubility index. The optimum hydrolysis conditions of time 208.61 min, SLR 1/15 (w/w) and ESR 2.25% (w/w) yielded a nitrogen solubility of 75.71%. Protein breakdown and the peptide profile following enzymatic hydrolysis were evaluated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and size exclusion chromatography. Cowpea protein hydrolysate showed higher oil absorption capacity, emulsifying activity and foaming ability compared with the concentrate. The solubility of cowpea protein hydrolysate was adequately optimized by response surface methodology, and the hydrolysate showed adequate functionality for use in food. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  8. Lactose hydrolysis by free and fibre-entrapped β-galactosidase from Streptococcus thermophilus

    Directory of Open Access Journals (Sweden)

    Zhennai Yang

    1993-09-01

    Full Text Available To study lactose hydrolysis by β-galactosidase, this enzyme was produced from Streptococcus thermophilus strain 11F and partially purified by acetone and ammonium sulphate fractionation, and ion exchange chromatography on a Q Sepharose FF column. Lactose hydrolysis by the enzyme was affected by lactose concentrations, sugars and milk proteins. The maximum extent of lactose hydrolysis in buffer was obtained with a 15% lactose concentration. Addition of 2% of lactose, glucose, galactose or sucrose in milk inhibited the enzymatic hydrolysis. The enzyme was activated by bovine serum albumin and a combination of αs-casein and β-casein. Of the casein fractions, the principal fraction, αs-casein, was less effective than β-casein and κ-casein. The fibre entrapped enzyme had a temperature optimum of 57°C, and a pH optimum from 7.5 to at least 9.0 with O-nitrophenyl-β-D-galactopyranoside as substrate. By recycling with whey and skim milk through a jacketed glass column (1.6 cm x 30 cm loaded with fibre-entrapped enzyme at 55°C, a lactose hydrolysis of 49.5% and 47.9% was achieved in 11 h and 7 h respectively.

  9. Lactose Hydrolysis in Milk and Dairy Whey Using Microbial β-Galactosidases

    Directory of Open Access Journals (Sweden)

    Michele Dutra Rosolen

    2015-01-01

    Full Text Available This work aimed at evaluating the influence of enzyme concentration, temperature, and reaction time in the lactose hydrolysis process in milk, cheese whey, and whey permeate, using two commercial β-galactosidases of microbial origins. We used Aspergillus oryzae (at temperatures of 10 and 55°C and Kluyveromyces lactis (at temperatures of 10 and 37°C β-galactosidases, both in 3, 6, and 9 U/mL concentrations. In the temperature of 10°C, the K. lactis β-galactosidase enzyme is more efficient in the milk, cheese whey, and whey permeate lactose hydrolysis when compared to A. oryzae. However, in the enzyme reaction time and concentration conditions evaluated, 100% lactose hydrolysis was not reached using the K. lactis β-galactosidase. The total lactose hydrolysis in whey and permeate was obtained with the A. oryzae enzyme, when using its optimum temperature (55°C, at the end of a 12 h reaction, regardless of the enzyme concentration used. For the lactose present in milk, this result occurred in the concentrations of 6 and 9 U/mL, with the same time and temperature conditions. The studied parameters in the lactose enzymatic hydrolysis are critical for enabling the application of β-galactosidases in the food industry.

  10. Comparison of sulfuric and hydrochloric acids as catalysts in hydrolysis of Kappaphycus alvarezii (cottonii).

    Science.gov (United States)

    Meinita, Maria Dyah Nur; Hong, Yong-Ki; Jeong, Gwi-Taek

    2012-01-01

    In this study, hydrolysis of marine algal biomass Kappaphhycus alvarezii using two different acid catalysts was examined with the goal of identifying optimal reaction conditions for the formation of sugars and by-products. K. alvarezii were hydrolyzed by autoclave using sulfuric acid or hydrochloric acid as catalyst with different acid concentrations (0.1-1.0 M), substrate concentrations (1.0-13.5%), hydrolysis time (10-90 min) and hydrolysis temperatures (100-130 (°)C). A difference in galactose, glucose, reducing sugar and total sugar content was observed under the different hydrolysis conditions. Different by-product compounds such as 5-hydroxymethylfurfural and levulinic acid were also observed under the different reaction conditions. The optimal conditions for hydrolysis were achieved at a sulfuric acid concentration, temperature and reaction time of 0.2 M, 130 °C and 15 min, respectively. These results may provide useful information for the development of more efficient systems for biofuel production from marine biomass.

  11. Mechanisms of the stimulatory effects of rhamnolipid biosurfactant on rice straw hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qiuzhuo; He, Guofu; Xu, Yatong [Department of Environmental Science, East China Normal University, 3663 North Zhongshan Road, Putuo District, Shanghai 200062 (China); Wang, Juan [Department of Environmental Science and Engineering, Harbin Institute of Technology, Harbin 150090 (China); Cai, Weimin [Department of Environmental Science and Engineering, Harbin Institute of Technology, Harbin 150090 (China); School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2009-11-15

    Rhamnolipid biosurfactant, as an addition to rice straw hydrolysis bioprocess, could not only stimulate the hydrolysis rate, but also reduce the requirement for large amount of cellulases and promote its recycling process. In this article, through the observation of the changes of cellulases, microorganism, substrate and their mutual functions, the mechanisms of the stimulatory effect of rhamnolipid on rice straw hydrolysis were investigated. The study found that the addition of rhamnolipid increases the activity of {beta}-glucosidase but stabilizes Cel7A activity. The observed results might be the main mechanisms triggering the stimulatory effect of adding biosurfactants on rice straw hydrolysis. Meanwhile, zeta potential of the substrate increased, which could make the resistance of the cell attached to the substrate weaker. This in turn could facilitate easy adhesion and better retention of the microbial cell in the media. Moreover, we discovered that lignin content played an important role in the stimulatory effect of adding rhamnolipid. The adsorption of rhamnolipid biosurfactant prevented unproductive binding of enzymes to lignin. This could be another important mechanism responsible for the stimulatory effects of adding rhamnolipid on rice straw hydrolysis. (author)

  12. Enzymatic hydrolysis of Grass Carp fish skin hydrolysates able to promote the proliferation of Streptococcus thermophilus.

    Science.gov (United States)

    Wang, Xiao-Nan; Qin, Mei; Feng, Yu-Ying; Chen, Jian-Kang; Song, Yi-Shan

    2017-09-01

    The promotion effect on proliferation of Streptococcus thermophilus by enzymatic hydrolysates of aquatic products was firstly studied. The effect of influencing factors of the hydrolysis on the growth of S. thermophilus was investigated. Grass Carp fish skin was hydrolysed to peptides by enzymatic hydrolysis using protease ProteAX, and for the S. thermophilus growth, the optimal enzymatic hydrolysis conditions were temperature of 60 °C, initial pH of 9.0, enzyme concentration of 10 g kg -1 , hydrolysis time of 80 min, and ratio of material to liquid of 1:2. The Grass Carp fish skin hydrolysate (GCFSH) prepared under the optimum conditions was fractionated to five fragments (GCFSH 1, GCFSH 2, GCFSH 3, GCFSH 4, GCFSH 5) according to molecular weight sizes, in which the fragments GCFSH 4 and GCFSH 5, with molecular weights of less than 1000 Da, significantly promoted the growth of S. thermophilus. The hydrolysis process of Grass Carp fish skin can be simplified, and the peptides with molecular weights below 1000 Da in the hydrolysates are the best nitrogen source for proliferation of S. thermophilus. This work can provide a fundamental theoretical basis for the production of multi-component functional foods, especially in milk drinks or yogurt. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. Assessment of methods to determine minimal cellulase concentrations for efficient hydrolysis of cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, C.M.; Mes-Hartree, M.; Saddler, J.N. (Forintek Canada Corp., Ottawa, ON (Canada). Biotechnology and Chemistry Dept.); Kushner, D.J. (Toronto Univ., Ontario (Canada). Dept. of Microbiology)

    1990-02-01

    The enzyme loading needed to achieve substrate saturation appeared to be the most economical enzyme concentration to use for hydrolysis, based on percentage hydrolysis. Saturation was reached at 25 filter paper units per gram substrate on Solka Floc BW300, as determined by studying (a) initial adsorption of the cellulase preparation onto the substrate, (b) an actual hydrolysis or (c) a combined hydrolysis and fermentation (CHF) process. Initial adsorption of the cellulases onto the substrate can be used to determine the minimal cellulase requirements for efficient hydrolysis since enzymes initially adsorbed to the substrate have a strong role in governing the overall reaction. Trichoderma harzianum E58 produces high levels of {beta}-glucosidase and is able to cause high conversion of Solka Floc BW300 to glucose without the need for exogenous {beta}-glucosidase. End-product inhibition of the cellulase and {beta}-glucosidase can be more effectively reduced by employing a CHF process than by supplemental {beta}-glucosidase. (orig.).

  14. Preparations and mechanism of hydrolysis of ([8]annulene)actinide compounds

    International Nuclear Information System (INIS)

    Moore, R.M. Jr.

    1985-07-01

    The mechanism of hydrolysis for bis[8]annulene actinide and lanthanide complexes has been studied in detail. The uranium complex, uranocene, decomposes with good pseudo-first order kinetics (in uranocene) in 1 M degassed solutions of H 2 O in THF. Decomposition of a series of aryl-substituted uranocenes demonstrates that the hydrolysis rate is dependent on the electronic nature of the substituent (Hammett rho value = 2.1, r 2 = 0.999), with electron-withdrawing groups increasing the rate. When D 2 O is substituted for H 2 O, kinetic isotope effects of 8 to 14 are found for a variety of substituted uranocenes. These results suggest a pre-equilibrium involving approach of a water molecule to the central metal, followed by rate determining proton transfer to the eight membered ring and rapid decomposition to products. Each of the four protonations of the complex has a significant isotope effect. The product ratio of cyclooctatriene isomers formed in the hydrolysis varies, depending on the central metal of the complex. However, the general mechanism of hydrolysis, established for uranocene, can be extended to the hydrolysis and alcoholysis of all the [8]annulene complexes of the lanthanides and actinides

  15. Thermal conductivity characteristics of dewatered sewage sludge by thermal hydrolysis reaction.

    Science.gov (United States)

    Song, Hyoung Woon; Park, Keum Joo; Han, Seong Kuk; Jung, Hee Suk

    2014-12-01

    The purpose of this study is to quantify the thermal conductivity of sewage sludge related to reaction temperature for the optimal design of a thermal hydrolysis reactor. We continuously quantified the thermal conductivity of dewatered sludge related to the reaction temperature. As the reaction temperature increased, the dewatered sludge is thermally liquefied under high temperature and pressure by the thermal hydrolysis reaction. Therefore, the bound water in the sludge cells comes out as free water, which changes the dewatered sludge from a solid phase to slurry in a liquid phase. As a result, the thermal conductivity of the sludge was more than 2.64 times lower than that of the water at 20. However, above 200, it became 0.704 W/m* degrees C, which is about 4% higher than that of water. As a result, the change in physical properties due to thermal hydrolysis appears to be an important factor for heat transfer efficiency. Implications: The thermal conductivity of dewatered sludge is an important factor the optimal design of a thermal hydrolysis reactor. The dewatered sludge is thermally liquefied under high temperature and pressure by the thermal hydrolysis reaction. The liquid phase slurry has a higher thermal conductivity than pure water.

  16. Effect of Enzymatic Hydrolysis on the Antioxidant Properties of Alcoholic Extracts of Oilseed Cakes

    Directory of Open Access Journals (Sweden)

    Jacek Arct

    2013-01-01

    Full Text Available The aim of the present study is to compare changes in the total phenolic, flavonoid and reducing sugar content and antioxidant activity of alcoholic extracts of Oenothera biennis, Borago officinalis and Nigella sativa oilseed cakes before and after enzymatic hydrolysis. Extraction with ethanol and hydrolysis with different commercially available glycosidases: α-amylase, β-glucosidase, β-glucanase and their combinations in a ratio of 1:1:1 were investigated. Total phenolic, flavonoid and reducing sugar content, iron-chelating activity and antioxidant activity according to DPPH and ABTS tests were measured in non-hydrolysed extracts and compared with the results obtained for the extracts after the application of immobilised enzymes. As a result, the hydrolysed extracts had a higher phenolic and reducing sugar content as well as higher iron-chelating and antioxidant activities. Total phenolic content of Oenothera biennis, Borago officinalis and Nigella sativa oilseed cake extracts after enzymatic hydrolysis was higher in comparison with non-hydrolysed extracts, i.e. 2 times (for the enzyme combination, and 1.5 and 2 times (for β-glucanase (p<0.05, respectively. The best results in increasing the flavonoid and sugar content as well as in iron-chelating activity were obtained after enzymatic hydrolysis of oilseed cake extracts by β-glucanase. Oilseed cake extracts after hydrolysis with an enzyme combination in a ratio of 1:1:1 had the highest increase in antioxidant activity.

  17. Effects of Limited Hydrolysis and High-Pressure Homogenization on Functional Properties of Oyster Protein Isolates.

    Science.gov (United States)

    Yu, Cuiping; Cha, Yue; Wu, Fan; Xu, Xianbing; Du, Ming

    2018-03-22

    In this study, the effects of limited hydrolysis and/or high-pressure homogenization (HPH) treatment in acid conditions on the functional properties of oyster protein isolates (OPI) were studied. Protein solubility, surface hydrophobicity, particle size distribution, zeta potential, foaming, and emulsifying properties were evaluated. The results showed that acid treatment led to the dissociation and unfolding of OPI. Subsequent treatment such as limited proteolysis, HPH, and their combination remarkably improved the functional properties of OPI. Acid treatment produced flexible aggregates, as well as reduced particle size and solubility. On the contrary, limited hydrolysis increased the solubility of OPI. Furthermore, HPH enhanced the effectiveness of the above treatments. The emulsifying and foaming properties of acid- or hydrolysis-treated OPI significantly improved. In conclusion, a combination of acid treatment, limited proteolysis, and HPH improved the functional properties of OPI. The improvements in the functional properties of OPI could potentiate the use of oyster protein and its hydrolysates in the food industry.

  18. Immobilization of cellulase mixtures on magnetic particles for hydrolysis of lignocellulose and ease of recycling

    DEFF Research Database (Denmark)

    Alftrén, Johan; Hobley, Timothy John

    2014-01-01

    In the present study whole cellulase mixtures were covalently immobilized on non-porous magnetic particles to enable enzyme reuse. It was shown that CellicCTec2 immobilized on magnetic particles activated with cyanuric chloride gave the highest bead activity measured by mass of reducing sugar...... serum albumin (BSA)) on hydrolysis yield was studied for free and immobilized CellicCTec2. It was observed that for both free and immobilized CellicCTec2 the hydrolysis yield was increased when Tween 80, PEG 6000 or BSA was included. Interaction between magnetic particles (containing immobilized Cellic......CTec2) and lignin was examined and it was demonstrated that addition of BSA completely inhibited interaction while Tween 80 and PEG 6000 had no effect on decreasing magnetic particle-lignin interaction. Hydrolysis of pretreated wheat straw biomass was performed in two consecutive cycles using...

  19. Extraterrestrial material analysis: loss of amino acids during liquid-phase acid hydrolysis

    Science.gov (United States)

    Buch, Arnaud; Brault, Amaury; Szopa, Cyril; Freissinet, Caroline

    2015-04-01

    of the total quantity of amino acids after acid hydrolysis, due to the formation/release of amino acids during the whole water extraction / liquid-phase acid hydrolysis, could have hidden a loss of amino acids. Thus, in extraterrestrial material studies involving liquid-phase acid hydrolysis, the quantities of total amino acids may have been underestimated.

  20. Structural, dynamical, and electronic properties of amorphous silicon: An ab initio molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Car, R.; Parrinello, M.

    1988-01-18

    An amorphous silicon structure is obtained with a computer simulation based on a new molecular-dynamics technique in which the interatomic potential is derived from a parameter-free quantum mechanical method. Our results for the atomic structure, the phonon spectrum, and the electronic properties are in excellent agreement with experiment. In addition we study details of the microscopic dynamics which are not directly accessible to experiment. We find in particular that structural defects are associated with weak bonds. These may give rise to low-frequency vibrational modes.

  1. Molecular dynamics studies of the dynamics of supercooled Lennard-Jones liquids

    International Nuclear Information System (INIS)

    De Leeuw, S.W.; Brakkee, M.J.D.

    1990-01-01

    Results are presented of molecular dynamics experiments, in which the Lennard-Jones liquid is cooled isobarically into the metastable temperature region below the freezing temperature. The variation of the density-density and transverse current correlation functions with temperature is studied. We observed a power-law behaviour for the temperature dependence of dynamical properties (viscosity and coefficienty of self-diffusion) with an exponent in good agreement with prediction of mode coupling theories and recent experimental results. (author). 23 refs, 5 figs

  2. Protein Dynamics in Organic Media at Varying Water Activity Studied by Molecular Dynamics Simulation

    DEFF Research Database (Denmark)

    Wedberg, Nils Hejle Rasmus Ingemar; Abildskov, Jens; Peters, Günther H.J.

    2012-01-01

    In nonaqueous enzymology, control of enzyme hydration is commonly approached by fixing the thermodynamic water activity of the medium. In this work, we present a strategy for evaluating the water activity in molecular dynamics simulations of proteins in water/organic solvent mixtures. The method...... relies on determining the water content of the bulk phase and uses a combination of Kirkwood−Buff theory and free energy calculations to determine corresponding activity coefficients. We apply the method in a molecular dynamics study of Candida antarctica lipase B in pure water and the organic solvents...

  3. STUDY ON HEAT DYNAMIC LOADING OF RUBBER

    Directory of Open Access Journals (Sweden)

    T. I. Igumenova

    2015-01-01

    Full Text Available A number of studies on heat buildup in tire rubber surface scan method samples using a thermal imaging camera. Investigated the exothermic chemical reaction mechanical destruction rubber when loading designs permanent cyclic stretching with deformation of the working zone 50%. Percentage of deformation of the working zone was chosen on the basis of the actual data on the stretch-compression zone "Rusk" tires, which is the maximum level difference of deformation during run-in. Experiment plan provided for periodic relaxation samples of at least 72 hours for more accurate simulation of operation process of structural products. Created and processed data on temperature changes in samples for bar and line profile for rubber compounds with the introduction of nanomodifiers (fulleren technical carbon in comparison with the control sample without him. The data obtained reflect the nature of heat depending on the composition of the compound. Identified common patterns of thermal nature of physico-chemical process mechanical destruction rubbers. For rubber with nanomodifikatorom there has been an increase in the temperature interval reaction from a minimum to a maximum 2 degrees that is also linked to the rise in the average temperature of the reaction on the histogram also at 2-3 degrees of deformation under the same conditions and the level of cyclic loading. However, the temperature in the control sample that is associated with the beginning of the formation of hardened rubber structures, economies of Mallinz-Petrikeev, occurs with delay twice compared with modified Fullerenes. Measurement of physic-mechanical indicators selected in the course of testing of samples showed the beginning of formation of structure with increased strength of samples in the sample temperature zone that corresponds to the thermal effect of èndotermičeskomu recombination reactions of macromolecules.

  4. Studies of Fundamental Particle Dynamics in Microgravity

    Science.gov (United States)

    Rangel, Roger; Trolinger, James D.; Coimbra, Carlos F. M.; Witherow, William; Rogers, Jan; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    This work summarizes theoretical and experimental concepts used to design the flight experiment mission for SHIVA - Spaceflight Holography Investigation in a Virtual Apparatus. SHIVA is a NASA project that exploits a unique, holography-based, diagnostics tool to understand the behavior of small particles subjected to transient accelerations. The flight experiments are designed for testing model equations, measuring g, g-jitter, and other microgravity phenomena. Data collection will also include experiments lying outside of the realm of existing theory. The regime under scrutiny is the low Reynolds number, Stokes regime or creeping flow, which covers particles and bubbles moving at very low velocity. The equations describing this important regime have been under development and investigation for over 100 years and yet a complete analytical solution of the general equation had remained elusive yielding only approximations and numerical solutions. In the course of the ongoing NASA NRA, the first analytical solution of the general equation was produced by members of the investigator team using the mathematics of fractional derivatives. This opened the way to an even more insightful and important investigation of the phenomena in microgravity. Recent results include interacting particles, particle-wall interactions, bubbles, and Reynolds numbers larger than unity. The Space Station provides an ideal environment for SHIVA. Limited ground experiments have already confirmed some aspects of the theory. In general the space environment is required for the overall experiment, especially for cases containing very heavy particles, very light particles, bubbles, collections of particles and for characterization of the space environment and its effect on particle experiments. Lightweight particles and bubbles typically rise too fast in a gravitational field and heavy particles sink too fast. In a microgravity environment, heavy and light particles can be studied side-by-side for

  5. Granular starch hydrolysis for fuel ethanol production

    Science.gov (United States)

    Wang, Ping

    addition were evaluated in the dry grind process using GSHE (GSH process). Addition of proteases resulted in higher ethanol concentrations (15.2 to 18.0% v/v) and lower (DDGS) yields (32.9 to 45.8% db) compared to the control (no protease addition). As level of proteases and GSHE increased, ethanol concentrations increased and DDGS yields decreased. Proteases addition reduced required GSHE dose. Ethanol concentrations with protease addition alone were higher than with urea or with addition of both protease and urea. Corn endosperm consists of soft and hard endosperm. More exposed starch granules and rough surfaces produced from soft endosperm compared to hard endosperm will create more surface area which will benefit the solid phase hydrolysis as used in GSH process. In this study, the effects of protease, urea, endosperm hardness and GSHE levels on the GSH process were evaluated. Soft and hard endosperm materials were obtained by grinding and sifting flaking grits from dry milling pilot plant. Soft endosperm resulted in higher ethanol concentrations (at 72 hr) compared to ground corn or hard endosperm. Addition of urea increased ethanol concentrations (at 72 hr) for soft and hard endosperm. The effect of protease addition on increasing ethanol concentrations and fermentation rates was more predominant for soft endosperm, less for hard endosperm and least for ground corn. The GSH process with protease resulted in higher ethanol concentration than that with urea. For fermentation of soft endosperm, GSHE dose can be reduced. Ground corn fermented faster at the beginning than hard and soft endosperm due to the presence of inherent nutrients which enhanced yeast growth.

  6. Kunitz trypsin inhibitor in addition to Bowman-Birk inhibitor influence stability of lunasin against pepsin-pancreatin hydrolysis.

    Science.gov (United States)

    Price, Samuel J; Pangloli, Philipus; Krishnan, Hari B; Dia, Vermont P

    2016-12-01

    Soybean contains several biologically active components and one of this belongs to the bioactive peptide group. The objectives of this study were to produce different lunasin-enriched preparations (LEP) and determine the effect of Bowman-Birk inhibitor (BBI) and Kunitz trypsin inhibitor (KTI) concentrations on the stability of lunasin against pepsin-pancreatin hydrolysis (PPH). In addition, the effect of KTI mutation on lunasin stability against PPH was determined. LEP were produced by calcium and pH precipitation methods of 30% aqueous ethanol extract from defatted soybean flour. LEP, lunasin-enriched commercially available products and KTI control and mutant flours underwent PPH and samples were taken after pepsin and pepsin-pancreatin hydrolysis. The concentrations of BBI, KTI, and lunasin all decreased after hydrolysis, but they had varying results. BBI concentration ranged from 167.5 to 655.8μg/g pre-hydrolysis and 171.5 to 250.1μg/g after hydrolysis. KTI concentrations ranged from 0.3 to 122.3μg/g pre-hydrolysis and 9.0 to 18.7μg/g after hydrolysis. Lunasin concentrations ranged from 8.5 to 71.0μg/g pre-hydrolysis and 4.0 to 13.2μg/g after hydrolysis. In all products tested, lunasin concentration after PPH significantly correlated with BBI and KTI concentrations. Mutation in two KTI isoforms led to a lower concentration of lunasin after PPH. This is the first report on the potential role of KTI in lunasin stability against PPH and must be considered in designing lunasin-enriched products that could potentially survive digestion after oral ingestion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Lactose hydrolysis in an enzymatic membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mertens, B; Huyghebaert, A

    1987-10-01

    The enzymatic hydrolysis of lactose in whey permeate with subsequent recuperation of Saccharomyces lactis lactase by means of ultrafiltration was investigated. In whey permeate, S. lactis lactase shows maximal activity at pH 6.5; the optimal temperature was found to be 45/sup 0/C and is limited by strong thermal inactivation beyond this temperature. High activity combined with acceptable thermal inactivation (< 10% after 5 h incubation) was established at 30/sup 0/C. S. lactis lactase also displays considerable activity at low temperature (5/sup 0/C). Enzyme stability is reduced drastically by demineralisation: addition of low concentrations of manganese ions (10/sup -3/ M) considerably enhances stability. Using a DDS Lab-Unit 35 fitted with GR61PP polysulphon membranes (cut-off: 20.000), pilot scale experiments were carried out (pH 6.5; 30/sup 0/C) in which whey permeate was hydrolyzed to a degree of hydrolysis of 82% minimum. Enzyme recuperation amounted to 96.5% per batch, all enzyme activity loss being due to thermal inactivation. Microbiological examination of the enzymatic membrane reactor showed that growth of mcicroorganisms can largely be suppressed by working at lower temperature (5/sup 0/C). Eventually, 50 ppm H/sub 2/O/sub 2/ or sterile filtration will adequately solve microbiological problems without affecting enzyme activity.

  8. Influence of relativistic effects on hydrolysis of Ra2+

    International Nuclear Information System (INIS)

    Zielinska, B.; Bilewicz, A.

    2005-01-01

    Using 224 Ra radiotracer the first hydrolysis constant (pK 1h ) of Ra 2+ cations has been determined. The pK 1h value of Ra 2+ was compared with the pK 1h values of other Group 2 cations. It has been shown that the electrostatic hydrolysis model based on assumption that pK 1h is a linear function of reciprocal ionic radii (1/r i ) does not describe well the hydrolysis of Group 2 metal cations. The reason of higher Ra 2+ hydrolysis as expected is the influence of relativistic effects on bonding 7s and 7p 1/2 orbitals. (author)

  9. Enhancement of hydrolysis of Chlorella vulgaris by hydrochloric acid.

    Science.gov (United States)

    Park, Charnho; Lee, Ja Hyun; Yang, Xiaoguang; Yoo, Hah Young; Lee, Ju Hun; Lee, Soo Kweon; Kim, Seung Wook

    2016-06-01

    Chlorella vulgaris is considered as one of the potential sources of biomass for bio-based products because it consists of large amounts of carbohydrates. In this study, hydrothermal acid hydrolysis with five different acids (hydrochloric acid, nitric acid, peracetic acid, phosphoric acid, and sulfuric acid) was carried out to produce fermentable sugars (glucose, galactose). The hydrothermal acid hydrolysis by hydrochloric acid showed the highest sugar production. C. vulgaris was hydrolyzed with various concentrations of hydrochloric acid [0.5-10 % (w/w)] and microalgal biomass [20-140 g/L (w/v)] at 121 °C for 20 min. Among the concentrations examined, 2 % hydrochloric acid with 100 g/L biomass yielded the highest conversion of carbohydrates (92.5 %) into reducing sugars. The hydrolysate thus produced from C. vulgaris was fermented using the yeast Brettanomyces custersii H1-603 and obtained bioethanol yield of 0.37 g/g of algal sugars.

  10. Application of single photon ECT for dynamic study

    International Nuclear Information System (INIS)

    Mukai, T.; Ishii, Y.; Tamaki, N.

    1982-01-01

    Feasibility of dynamic study in a form of ECT using a rotating gamma camera was evaluated. Since it takes longer one around time sampling, application for the dynamic study is limited under following conditions; 1) physiological gated process, 2) slow clearance process, 3) physiological steady state process. The gated study was applicated for heart pumping action synchronized with ECG. The ECG gated heart ECT either of blood pool or myocardium was useful to reveal a subtle wall motion abnormalities in a tomographic plane, even when a planar imaging failed to reveal it. As for slow dynamic process of tracer, an excretion process of hepatobiliary agent, was subjected to be analyzed in order to calculate clearance rate at each pixel. As for steady state process, an ECT of regional celebral blood flow (rCBF) was investigated during continuous infusion into intracarotid artery. All of these technique were proved to have a clinical feasibility and to potentiate usefulness of the single photon ECT (SPECT)

  11. Effect of gelatinization and hydrolysis conditions on the selectivity of starch hydrolysis with alpha-amylase from Bacillus licheniformis.

    Science.gov (United States)

    Baks, Tim; Bruins, Marieke E; Matser, Ariette M; Janssen, Anja E M; Boom, Remko M

    2008-01-23

    Enzymatic hydrolysis of starch can be used to obtain various valuable hydrolyzates with different compositions. The effects of starch pretreatment, enzyme addition point, and hydrolysis conditions on the hydrolyzate composition and reaction rate during wheat starch hydrolysis with alpha-amylase from Bacillus licheniformis were compared. Suspensions of native starch or starch gelatinized at different conditions either with or without enzyme were hydrolyzed. During hydrolysis, the oligosaccharide concentration, the dextrose equivalent, and the enzyme activity were determined. We found that the hydrolyzate composition was affected by the type of starch pretreatment and the enzyme addition point but that it was just minimally affected by the pressure applied during hydrolysis, as long as gelatinization was complete. The differences between hydrolysis of thermally gelatinized, high-pressure gelatinized, and native starch were explained by considering the granule structure and the specific surface area of the granules. These results show that the hydrolyzate composition can be influenced by choosing different process sequences and conditions.

  12. Study of beam dynamics at cooler synchrotron TARN-II

    International Nuclear Information System (INIS)

    Watanabe, S.; Katayama, T.; Watanabe, T.; Yoshizawa, M.; Tomizawa, M.; Chida, K.; Arakaki, Y.; Noda, K.; Kanazawa, M.

    1992-08-01

    Several kinds of beam diagnostic instruments, have been developed at cooler-synchrotron TARN-II. These are intended to study beam dynamics at low beam current of several microamperes and then have high sensitivity of good S/N ratio. In addition, the acceleration system, especially low level RF system, has been improved to attain the maximum beam energy. With the successful performance of these instrumentations, the study of beam dynamics are presently being carried out. For example, the synchrotron acceleration of the light ions was achieved up to 220 MeV/u without any beam loss. (author)

  13. Study of dynamics of level of physical preparedness of students.

    Directory of Open Access Journals (Sweden)

    Коvalenko Y.A.

    2010-12-01

    Full Text Available The dynamics of level of physical preparedness of students is studied in the article. A tendency is marked to the decline of level of physical preparedness of students of 1-3 courses. Methodical recommendations are presented on the improvement of the system of organization of physical education of students of the Zaporizhzhya national university. The dynamics of indexes of physical preparedness of students 1, 2, 3 courses of different years of teaching is studied. Principal reasons of decline of level of physical preparedness of students are certain. There are recommendations the department of physical education in relation to physical preparedness of students.

  14. Kinetics of cellobiose hydrolysis using cellobiase composites from Trichoderma reesei and Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Grous, W.; Converse, A.; Grethlein, H.; Lynd, L.

    1985-01-01

    The enzymatic hydrolysis of cellulose to glucose involves the formation of cellobiose as an intermediate. It has been found necessary to add cellobiase from Aspergillus niger (NOVO) to the cellobiase component of Trichoderma reesei mutant Rut C-30 (Natick) cellulase enzymes in order to obtain after 48 h complete conversion of the cellobiose formed in the enzymatic hydrolysis of biomass. This study of the cellobiase activity of these two enzyme sources was undertaken as a first step in the formation of a kinetic model for cellulose hydrolysis that can be used in process design. In order to cover the full range of cellobiose concentrations, it was necessary to develop separate kinetic parameters for high- and low-concentration ranges of cellobiose for the enzymes from each organism. Competitive glucose inhibition was observed with the enzymes from both organisms. Substrate inhibition was observed only with the A. niger enzymes.

  15. The hydrolysis of geminal ethers: a kinetic appraisal of orthoesters and ketals

    Directory of Open Access Journals (Sweden)

    Sonia L. Repetto

    2016-07-01

    Full Text Available A novel approach to protecting jet fuel against the effects of water contamination is predicated upon the coupling of the rapid hydrolysis reactions of lipophilic cyclic geminal ethers, with the concomitant production of a hydrophilic acyclic hydroxyester with de-icing properties (Fuel Dehydrating Icing Inhibitors - FDII. To this end, a kinetic appraisal of the hydrolysis reactions of representative geminal ethers was undertaken using a convenient surrogate for the fuel–water interface (D2O/CD3CN 1:4. We present here a library of acyclic and five/six-membered cyclic geminal ethers arranged according to their hydroxonium catalytic coefficients for hydrolysis, providing for the first time a framework for the development of FDII. A combination of 1H NMR, labelling and computational studies was used to assess the effects that may govern the observed relative rates of hydrolyses.

  16. Effect of gamma Irradiation on the acidic hydrolysis of free-hemi cellulose thistle

    International Nuclear Information System (INIS)

    Suarez, C.; Paz, M. D.; Diaz, A.

    1983-01-01

    The effect of gamma-irradiation on the subsequent acidic hydrolysis of free-hemi cellulose Onopordum Nervosum Boiss thistle Ls determined. Its shown the influence of gamma-irradiation on the yield of sugar obtained flora the batch wise hydrol isis of the call ulose (1% H 2 SO 4 and 180 degree centigree at increasing doses. At all irradiation levels studied, the rate of hydrolysis of thistle samples was higher than the rate of hydrolysis of the cellulose from paper treated similarly. The maximum over-all yield of sugar in the irradiated lignocellulose material was about 66o at 100 MRad, less than two times the yield obtainable from the control. The corresponding yield from papel was 53%, 2'3 times that of the control. Irradiation under 1% H 2 SO 4 doesn't enhance the yield anyway. (Author) 21 refs

  17. Hydrothermal pretreatment and enzymatic hydrolysis of mixed green and woody lignocellulosics from arid regions

    DEFF Research Database (Denmark)

    Ashraf, Muhammad Tahir; Thomsen, Mette Hedegaard; Schmidt, Jens Ejbye

    2017-01-01

    Utilization of multi-specie feedstocks is imperative for application of lignocellulosic biorefineries in arid regions. Different lignocellulosic residues vary in composition and anatomical features. Pretreatment and enzymatic hydrolysis are two processes at the front end of any lignocellulosics...... biorefinery applying biochemical pathway, and have to efficiently deal with the variance in the feedstock composition and properties. However, there is limited knowledge about effect of mixing different lignocellulosics on pretreatment and enzymatic hydrolysis yields. In this study effect of mixing...... on the yields from hydrothermal pretreatment and enzymatic hydrolysis was analyzed by mixing three different lignocellulosic residues — Bermuda grass, Jasmine hedges, and date palm fronds. Results showed that the individual and the mixed lignocellulosics gave same yields when treated under similar conditions...

  18. Properties important for solid–liquid separations change during the enzymatic hydrolysis of pretreated wheat straw

    DEFF Research Database (Denmark)

    Weiss, Noah Daniel; Felby, Claus; Thygesen, Lisbeth Garbrecht

    2018-01-01

    Objectives The biochemical conversion of lignocellulosic biomass into renewable fuels and chemicals provides new challenges for industrial scale processes. One such process, which has received little attention, but is of great importance for efficient product recovery, is solid–liquid separations......, which may occur both after pretreatment and after the enzymatic hydrolysis steps. Due to the changing nature of the solid biomass during processing, the solid–liquid separation properties of the biomass can also change. The objective of this study was to show the effect of enzymatic hydrolysis...... of cellulose upon the water retention properties of pretreated biomass over the course of the hydrolysis reaction. Results Water retention value measurements, coupled with 1H NMR T2 relaxometry data, showed an increase in water retention and constraint of water by the biomass with increasing levels...

  19. Production of xylitol from corn cob hydrolysate through acid and enzymatic hydrolysis by yeast

    Science.gov (United States)

    Mardawati, Efri; Andoyo, R.; Syukra, K. A.; Kresnowati, MTAP; Bindar, Y.

    2018-03-01

    The abundance of corn production in Indonesia offers the potential for its application as the raw material for biorefinery process. The hemicellulose content in corn cobs can be considered to be used as a raw material for xylitol production. The purpose of this research was to study the effect of hydrolysis methods for xylitol production and the effect of the hydrolyzed corn cobs to produce xylitol through fermentation. Hydrolysis methods that would be evaluated were acid and enzymatic hydrolysis. The result showed that the xylitol yield of fermented solution using enzymatic hydrolysates was 0.216 g-xylitol/g-xylose, which was higher than the one that used acid hydrolysates, which was 0.100 g-xylitol/g-xylose. Moreover, the specific growth rate of biomass in fermentation using enzymatic hydrolysates was also higher than the one that used acid hydrolysates, 0.039/h compared to 0.0056/h.

  20. Sodium borohydride hydrolysis in the presence of intermetallic compound LaNi5

    International Nuclear Information System (INIS)

    Korobov, I.I.; Mozgina, N.G.

    1992-01-01

    Kinetics of catalytic hydrolysis of sodium borohydride in the 1 mol/l solution of caustic sodium within the range of 298-318 K in presence of LaNi 5 intermetallic compound is studied. It is established that the reaction has zero order by NaBH 4 and the first one by LaNi 5 . The apparent activation energy of NaBH 4 catalytic hydrolysis in presence of LaNi 5 , calculated on the basis of temperature dependence of reaction velocity, is constant within the temperature range under investigation and constitutes 56$+-$1.5 kJ/mol. Recombination of surface hydrogen on LaNi 5 in molecular one is limiting stage determining NaBH 4 hydrolysis rate

  1. Dynamics of polymers in a good solvent - a molecular dynamics study using the Connection Machine

    International Nuclear Information System (INIS)

    Shannon, S.R.; Choy, T.C.

    1996-01-01

    In recent times the use of molecular dynamics simulations has become an important tool in modelling and understanding the dynamics of interacting many-body systems. With recent advances in computing power it is now feasible to perform modelling of systems which contain a large number of interacting particles, and thus to simulate the behaviour of real systems reasonably. Our earlier discoveries of anomalous corrections to scaling behaviour of the Edward's polymer were applied to study the dynamical behaviour of two dimensional polymer systems - either a single chain immersed in a fluid, a pure polymer melt, or with any concentration of polymers in the fluid. By choosing a suitable interaction potential between the fluid particles and the monomers, we are able to study the experimentally observable time dependent structure factor of polymers in a good solvent. Simulations were performed using the Connection Machine CM5 supercomputer at the Australian National University which due to its fast multi- processor nearest neighbour communications facility, enables us to easily model large systems of at least 3000 fluid plus monomer particles. Our study is based on a finite difference solution of Newton's equations of motion i.e. the Verlet algorithm, and the results are used to test current theories of polymer dynamics, which were based primarily on the earlier models proposed by Rouse (1953) and Zimm (1956). In particular dynamical scaling predictions is scrutinised to examine the effects due to the anomalous corrections-to-scaling behaviour found in an earlier work using finite-size scaling analysis of Monte-Carlo data and now understood via a new perturbation concept

  2. Ginger and turmeric starches hydrolysis using subcritical water + CO2: the effect of the SFE pre-treatment

    Directory of Open Access Journals (Sweden)

    S. R. M. Moreschi

    2006-06-01

    Full Text Available In this work, the hydrolysis of fresh and dried turmeric (Curcuma longa L. and ginger (Zingiber officinale R. in the presence of subcritical water + CO2 was studied. The hydrolysis of ginger and turmeric bagasses from supercritical fluid extraction was also studied. The reactions were done using subcritical water and CO2 at 150 bar, 200 °C and reaction time of 11 minutes; the degree of reaction was monitored through the amount of starch hydrolyzed. Process yields were calculated using the amount of reducing and total sugars formed. The effects of supercritical fluid extraction in the starchy structures were observed by scanning electron microscopy. Higher degree of hydrolysis (97- 98 % were obtained for fresh materials and the highest total sugar yield (74% was established for ginger bagasse. The supercritical fluid extraction did not significantly modify the degree of hydrolysis in the tested conditions.

  3. Hydrolysis and stability of thin pulsed plasma polymerised maleic anhydride coatings

    DEFF Research Database (Denmark)

    Drews, Joanna Maria; Launay, Héléne; Hansen, Charles M.

    2008-01-01

    Abstract The stability of plasma polymerised layers has become important because of their widespread use. This study explored the hydrolysis and degradation stability of coatings of plasma polymerised maleic anhydride. Coatings made with different plasma parameters were exposed to aqueous media...... of different pH as a function of time. ATR-FTIR was used for structure analysis and a toluidine blue staining method allowed quantitative analysis of the hydrolysis of anhydride groups to acid groups. Coatings with constant thickness were obtained at different plasma powers and layers with varying thickness...

  4. Fluor determination by alkaline hydrolysis of the uranium and thorium fluorides

    International Nuclear Information System (INIS)

    Barrachina Gomez, L.; Gasco Sanchez, L.

    1961-01-01

    The alkaline hydrolysis of the uranium and thorium fluorides is studded and a new method for the determination of the fluoride, on the basis of a indirect volumetric titration with standard soda, is proposed. The compounds that may influence the hydrolysis of the uranium fluoride and that may be occasionally found in it as impurities are also studied. the method can be applied to the uranium fluoride except when there is a great quantity of F 2 UO 2 or UO 3 present in the sample. (Author) 20 refs

  5. Pungent Components from Thioglucosides in Armoracia rusticana Grown in China, Obtained by Enzymatic Hydrolysis

    OpenAIRE

    Rong Li; Jimmy C. Yu; Zi-Tao Jiang

    2006-01-01

    The conditions of enzymatic hydrolysis of thioglucosides, which are the precursors of the pungent components in Armoracia rusticana grown in China, were studied. The effects of incubation time, temperature, pH and the addition of ascorbic acid on the hydrolysis of thioglucosides were determined. The optimum hydrolytic conditions for the pungent components from thioglucosides were time, 120 min; temperature, 65 oC; pH=4.0 and ascorbic acid, 2 mg/g. The mixture of pungent components in a pale-y...

  6. Immobilization of phospholipase C for the production of ceramide from sphingomyelin hydrolysis

    DEFF Research Database (Denmark)

    Zhang, Long; Hellgren, Lars; Xu, Xuebing

    2007-01-01

    The immobilization of Clostridium perfringens phospholipase C was studied for the first time and the catalytic properties of the immobilized enzyme were investigated for the hydrolysis of sphingomyelin to produce ceramide. Ceramide is of great commercial potentials in cosmetic and pharmaceutical...... industries such as in hair and skin care products, due to its major role in maintaining the water-retaining properties of the epidermis. The feasibility of enzymatic production of ceramide through hydrolysis of sphingomyelin has previously been proven. In order to improve the reusability of the enzyme...

  7. Comparison of sodium borohydride hydrolysis kinetics on Co-based nanocomposite catalysts

    International Nuclear Information System (INIS)

    Hristov, Georgi; Chorbadzhiyska, Elitsa; Mitov, Mario; Rashkov, Rashko; Hubenova, Yolina

    2011-01-01

    In this study, we compared the results, obtained with several Co-based nanocomposites (CoMnB, CoNiMnB and CoNiMoW) produced by electrodeposition on Ni-foam, as catalysts for the sodium borohydride hydrolysis reaction. Based on the comparative analyses, we propose CoNiMnB electrodeposits as most suitable catalysts for development of Hydrogen-on-Demand (HOD) system, while CoNiMoW ones as potential anodes for Direct Borohydride Fuel Cells (DBFCs). Keywords: Hydrogen-on-Demand (HOD), Nanocomposites, Hydrolysis, Catalyst, Kinetic

  8. Enzymatic Hydrolysis of Pretreated Fibre Pressed Oil Palm Frond by using Sacchariseb C6

    Science.gov (United States)

    Hashim, F. S.; Yussof, H. W.; Zahari, M. A. K. M.; Rahman, R. A.; Illias, R. M.

    2017-06-01

    Enzymatic hydrolysis becomes a prominent technology for conversion of cellulosic biomass to its glucose monomers that requires an action of cellulolytic enzymes in a sequential and synergistic manner. In this study, the effect of agitation speed, glucan loading, enzyme loading, temperature and reaction time on the production of glucose from fibre pressed oil palm frond (FPOPF) during enzymatic hydrolysis was screened by a half factorial design 25-1 using Response Surface Methodology (RSM). The FPOPF sample was first delignified by alkaline pretreatment at 4.42 (w/v) sodium hydroxide for an hour prior to enzymatic hydrolysis using commercial cellulase enzyme, Sacchariseb C6. The effect of enzymatic hydrolysis on the structural of FPOPF has been evaluated by Scanning Electron Microscopy (SEM) analysis. Characterization of raw FPOPF comprised of 4.5 extractives, 40.7 glucan, 26.1 xylan, 26.2 lignin and 1.8 ash, whereas for pretreated FPOPF gave 0.3 extractives, 61.4 glucan, 20.4 xylan, 13.3 lignin and 1.3 ash. From this study, it was found that the best enzymatic hydrolysis condition yielded 33.01 ± 0.73 g/L of glucose when performed at 200 rpm of agitation speed, 60 FPU/mL of enzyme loading, 4 (w/w) of glucan loading, temperature at 55 □ and 72 hours of reaction time. The model obtained was significant with p-value enzymatic hydrolysis from pretreated FPOPF produce high amount of glucose that enhances it potential for industrial application. This glucose can be further used to produce high-value products.

  9. Acid-functionalized nanoparticles for biomass hydrolysis

    Science.gov (United States)

    Pena Duque, Leidy Eugenia

    Cellulosic ethanol is a renewable source of energy. Lignocellulosic biomass is a complex material composed mainly of cellulose, hemicellulose, and lignin. Biomass pretreatment is a required step to make sugar polymers liable to hydrolysis. Mineral acids are commonly used for biomass pretreatment. Using acid catalysts that can be recovered and reused could make the process economically more attractive. The overall goal of this dissertation is the development of a recyclable nanocatalyst for the hydrolysis of biomass sugars. Cobalt iron oxide nanoparticles (CoFe2O4) were synthesized to provide a magnetic core that could be separated from reaction using a magnetic field and modified to carry acid functional groups. X-ray diffraction (XRD) confirmed the crystal structure was that of cobalt spinel ferrite. CoFe2O4 were covered with silica which served as linker for the acid functions. Silica-coated nanoparticles were functionalized with three different acid functions: perfluoropropyl-sulfonic acid, carboxylic acid, and propyl-sulfonic acid. Transmission electron microscope (TEM) images were analyzed to obtain particle size distributions of the nanoparticles. Total carbon, nitrogen, and sulfur were quantified using an elemental analyzer. Fourier transform infra-red spectra confirmed the presence of sulfonic and carboxylic acid functions and ion-exchange titrations accounted for the total amount of catalytic acid sites per nanoparticle mass. These nanoparticles were evaluated for their performance to hydrolyze the beta-1,4 glycosidic bond of the cellobiose molecule. Propyl-sulfonic (PS) and perfluoropropyl-sulfonic (PFS) acid functionalized nanoparticles catalyzed the hydrolysis of cellobiose significantly better than the control. PS and PFS were also evaluated for their capacity to solubilize wheat straw hemicelluloses and performed better than the control. Although PFS nanoparticles were stronger acid catalysts, the acid functions leached out of the nanoparticle during

  10. Role of quantitative and dynamic radioactive studies in renal testing

    International Nuclear Information System (INIS)

    Raynaud, C.

    1977-01-01

    Many dynamic and quantitative radioactive tests are at present used in studying renal function. Whether involving dynamic morphological tests such as sequential images, dynamic quantitative tests such as the renogram or quantitative static tests such as radioactive clearances, their effective and original contribution is rather unimportant. Only one provides original data, the Hg renal uptake test but it is generally avoided due to the radiation dose absorbed by the kidney in children. A study of the causes of this lack of effectiveness leads to the observation that such tests are not well adapted to the needs of kidneys specialists. They are for the most part based on replacing a 'cold' indicator by radioactive indicator and the advantages anticipated from using radionuclide are not evident. In fact, they are often cancelled by the shortcomings of external detection. For the future, it seems indispensable to abandon some traditional concepts which lead us to consider that the only exploitable renal function is represented by excretion. The kidney has other functions; one of the most interesting seems to be the function of uptake of heavy metals and toxic substances, a study of which is only possible using radionuclides. A new generation of radioactive tests based on a study of uptake and also on a study of other renal functions may provide dynamic or quantitative data which physician urgently need

  11. Rate of hydrolysis and degradation of the cyanogenic glycoside - dhurrin - in soil

    DEFF Research Database (Denmark)

    Johansen, Henrik; Damgaard, Lars Holm; Olsen, Carl Erik

    2007-01-01

    Cyanogenic glycosides are common plant toxins. Toxic hydrogen cyanide originating from cyanogenic glycosides may affect soil processes and water quality. In this study, hydrolysis, degradation and sorption of dhurrin (4-hydroxymandelonitrile-b-D-glucoside) produced by sorghum has been studied...

  12. Nanomaterials under extreme environments: A study of structural and dynamic properties using reactive molecular dynamics simulations

    Science.gov (United States)

    Shekhar, Adarsh

    Nanotechnology is becoming increasingly important with the continuing advances in experimental techniques. As researchers around the world are trying to expand the current understanding of the behavior of materials at the atomistic scale, the limited resolution of equipment, both in terms of time and space, act as roadblocks to a comprehensive study. Numerical methods, in general and molecular dynamics, in particular act as able compliment to the experiments in our quest for understanding material behavior. In this research work, large scale molecular dynamics simulations to gain insight into the mechano-chemical behavior under extreme conditions of a variety of systems with many real world applications. The body of this work is divided into three parts, each covering a particular system: 1) Aggregates of aluminum nanoparticles are good solid fuel due to high flame propagation rates. Multi-million atom molecular dynamics simulations reveal the mechanism underlying higher reaction rate in a chain of aluminum nanoparticles as compared to an isolated nanoparticle. This is due to the penetration of hot atoms from reacting nanoparticles to an adjacent, unreacted nanoparticle, which brings in external heat and initiates exothermic oxidation reactions. 2) Cavitation bubbles readily occur in fluids subjected to rapid changes in pressure. We use billion-atom reactive molecular dynamics simulations on a 163,840-processor BlueGene/P supercomputer to investigate chemical and mechanical damages caused by shock-induced collapse of nanobubbles in water near amorphous silica. Collapse of an empty nanobubble generates high-speed nanojet, resulting in the formation of a pit on the surface. The pit contains a large number of silanol groups and its volume is found to be directly proportional to the volume of the nanobubble. The gas-filled bubbles undergo partial collapse and consequently the damage on the silica surface is mitigated. 3) The structure and dynamics of water confined in

  13. Dilute-acid hydrolysis of apple, orange, apricot and peach pomaces as potential candidates for bioethanol production

    OpenAIRE

    Üçüncü, Can; Tarı, Canan; Demir, Hande; Büyükkileci, Ali Oğuz; Özen, Banu

    2013-01-01

    Chemical composition of four selected fruit pomaces (agro-industrial wastes) was evaluated. The effect of temperature, time, acid concentration and solid:liquid (S:L) ratio on dilute-acid hydrolysis of selected pomaces were investigated using 24 factorial and central composite design and optimum hydrolysis conditions were determined. A preliminary study was initiated using apple hydrolysate and the fungus Tricoderma harzianum in order to explore and demonstrate their potential uses in bioetha...

  14. Femtosecond photodissociation dynamics of I studied by ion imaging

    DEFF Research Database (Denmark)

    Larsen, J.J.; Bjerre, N.; Mørkbak, N.J.

    1998-01-01

    on imaging is employed to analyze the fragments from timed Coulomb explosion studies of femtosecond (fs) molecular dynamics. The technique provides high detection efficiency and direct recording of the two-dimensional velocity of all ionized fragments. We illustrate the approach by studying...... agreement with quantum mechanical wave packet simulations. We discuss the perspectives for extending the studies to photochemical reactions of small polyatomic molecules...

  15. Dynamical study of a laser with a saturable absorber

    Energy Technology Data Exchange (ETDEWEB)

    Dignowity, D; RamIrez, R [Centro de Investigaciones en Optica, Loma del Bosque 115, Col. Lomas del Campestre, 37150, Leon, Guanajuato (Mexico)

    2005-01-01

    The study of a laser including a saturable absorber is presented. The non-linear system describing the complex dynamics of the laser is presented. The laser is shown to operate in several regimes depending on the parameters used. It is also shown how the control of the laser is possible depending on the operating regime parameters.

  16. A MOLECULAR-DYNAMICS STUDY OF LECITHIN MONOLAYERS

    NARCIS (Netherlands)

    AHLSTROM, P; BERENDSEN, HJC

    1993-01-01

    Two monolayers of didecanoyllecithin at the air-water interface have been studied using molecular dynamics simulations. The model system consisted of two monolayers of 42 lecithin molecules each separated by a roughly 4 nm thick slab of SPC water. The area per lecithin molecule was 0.78 nm(2)

  17. System Dynamic Modelling for a Balanced Scorecard: A Case Study

    DEFF Research Database (Denmark)

    Nielsen, Steen; Nielsen, Erland Hejn

    Purpose - The purpose of this research is to make an analytical model of the BSC foundation by using a dynamic simulation approach for a 'hypothetical case' model, based on only part of an actual case study of BSC. Design/methodology/approach - The model includes five perspectives and a number...

  18. Asymptotic study of a magneto-hydro-dynamic system

    International Nuclear Information System (INIS)

    Benameur, J.; Ibrahim, S.; Majdoub, M.

    2003-01-01

    In this paper, we study the convergence of solutions of a Magneto-Hydro-Dynamic system. On the torus T 3 , the proof is based on Schochet's methods, whereas in the case of the whole space R 3 , we use Strichartz's type estimates. (author)

  19. Spectroscopic studies of dynamically compacted monoclinic ZrO2

    NARCIS (Netherlands)

    Maczka, M.; Lutz, E.T.G.; Verbeek, H.J.; Oskam, K.; Meijerink, A.; Hanuza, J.; Stuivinga, M.E.C.

    1999-01-01

    The properties of dynamically compacted monoclinic zirconia have been studied by X-ray powder diffraction, IR, Raman, EPR and luminescence spectroscopy. Compaction introduces a large number of defects into the sample, which leads to a broadening of the X-ray lines, and IR and Raman bands. Besides,

  20. Charge-Transfer Complexes Studied by Dynamic Force Spectroscopy

    Directory of Open Access Journals (Sweden)

    Jurriaan Huskens

    2013-03-01

    Full Text Available In this paper, the strength and kinetics of two charge-transfer complexes, naphthol-methylviologen and pyrene-methylviologen, are studied using dynamic force spectroscopy. The dissociation rates indicate an enhanced stability of the pyrene-methylviologen complex, which agrees with its higher thermodynamic stability compared to naphthol-methylviologen complex.

  1. Body dynamics and hydrodynamics of swimming larvae: a computational study

    NARCIS (Netherlands)

    Li, G.; Müller, U.K.; Leeuwen, van J.L.; Liu, H.

    2012-01-01

    To understand the mechanics of fish swimming, we need to know the forces exerted by the fluid and how these forces affect the motion of the fish. To this end, we developed a 3-D computational approach that integrates hydrodynamics and body dynamics. This study quantifies the flow around a swimming

  2. Planning Intervention Using Dynamic Assessments: A Case Study

    Science.gov (United States)

    Hasson, Natalie; Dodd, Barbara

    2014-01-01

    Dynamic assessments (DA) of language have been shown to be a useful addition to the battery of tests used to diagnose language impairments in children, and to evaluate their skills. The current article explores the value of the information gained from a DA in planning intervention for a child with language impairment. A single case study was used…

  3. Molecular dynamics study on the relaxation properties of bilayered ...

    Indian Academy of Sciences (India)

    2017-08-31

    Aug 31, 2017 ... Abstract. The influence of defects on the relaxation properties of bilayered graphene (BLG) has been studied by molecular dynamics simulation in nanometre sizes. Type and position of defects were taken into account in the calculated model. The results show that great changes begin to occur in the ...

  4. Asymptotic study of a magneto-hydro-dynamic system

    Energy Technology Data Exchange (ETDEWEB)

    Benameur, J [Institut Preparatoire aux Etudes d' Ingenieurs de Monastir (Tunisia); Ibrahim, S [Faculte des Sciences de Bizerte, Departement de Mathematiques, Bizerte (TN); [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)]. E-mail: slim.ibrahim@fsb.rnu.tn; Majdoub, M [Faculte des Sciences de Tunis, Departement de Mathematiques, Tunis (Tunisia)

    2003-01-01

    In this paper, we study the convergence of solutions of a Magneto-Hydro-Dynamic system. On the torus T{sup 3}, the proof is based on Schochet's methods, whereas in the case of the whole space R{sup 3}, we use Strichartz's type estimates. (author)

  5. Adsorption dynamics and equilibrium studies of Zn (II) onto chitosan

    Indian Academy of Sciences (India)

    Unknown

    Adsorption dynamics and equilibrium studies of Zn (II) onto chitosan. G KARTHIKEYAN*, K ANBALAGAN and N MUTHULAKSHMI ANDAL. Department of Chemistry, Gandhigram Rural Institute – Deemed University, Gandhigram 624 302, India e-mail: drg_karthikeyan@rediffmail.com. MS received 3 June 2003; revised 12 ...

  6. Fission dynamics as brought out in cold fragmentation studies

    International Nuclear Information System (INIS)

    Signarbieux, G.

    1986-10-01

    Fission dynamics problem has been addressed since the beginning. This paper is specifically concerned by ''even-odd effects '' in fragment distribution. These effects are reinterpreted, some complementary thoughts on double ionization chamber are given together with a study of fission dymanics at low energy [fr

  7. Recoil generated radiotracers in studies of molecular dynamics

    International Nuclear Information System (INIS)

    Spicer, L.D.

    1981-01-01

    This chapter summarizes many of the contributions that the recoil technique of generating excited radiotracer atoms in the presence of a thermal environment is making to the field of chemical dynamics. Specific topics discussed critically include characterization of the generation and behavior of excited molecules including fragmentation kinetics and energy transfer, measurement of thermal and hot kinetic parameters, and studies of reaction mechanisms and stereochemistry as a function of reaction energy. Distinctive features that provide unique approaches to dynamical problems are evaluated in detail and the complementarity with more conventional techniques is addressed. Prospects for future applications are also presented

  8. Lactose hydrolysis potential and thermal stability of commercial β-galactosidase in UHT and skimmed milk

    Directory of Open Access Journals (Sweden)

    Alessandra BOSSO

    2016-03-01

    Full Text Available Abstract The commercial enzyme (E.C. = 3.2.1.23 from Kluyveromyces lactis (liquid and Aspergillus oryzae(lyophilized was investigated for its hydrolysis potential in lactose substrate, UHT milk, and skimmed milk at different concentrations (0.7; 1.0 and 1.5%, pH values (5.0; 6.0; 6.5 and 7.0, and temperature (30; 35; 40 and 55 ºC. High hydrolysis rates were observed for the enzyme from K. lactis at pH 7.0 and 40 ºC, and from A. oryzae at pH 5.0 and 55 ºC. The enzyme from K. lactis showed significantly higher hydrolysis rates when compared to A. oryzae. The effect of temperature and β-galactosidase concentration on the lactose hydrolysis in UHT milk was higher than in skimmed milk, for all temperatures tested. With respect to the thermal stability, a decrease in hydrolysis rate was observed at pH 6.0 at 35 ºC for K. lactisenzyme, and at pH 6.0 at 55 ºC for the enzyme from A. oryzae. This study investigate the hydrolysis of β-galactosidase in UHT and skimmed milk. The knowledge about the characteristics of the β-galactosidase fromK. lactis and A. oryzae enables to use it most efficiently to control the enzyme concentration, temperature, and pH in many industrial processes and product formulations.

  9. Defense waste processing facility precipitate hydrolysis process

    International Nuclear Information System (INIS)

    Doherty, J.P.; Eibling, R.E.; Marek, J.C.

    1986-03-01

    Sodium tetraphenylborate and sodium titanate are used to assist in the concentration of soluble radionuclide in the Savannah River Plant's high-level waste. In the Defense Waste Processing Facility, concentrated tetraphenylborate/sodium titanate slurry containing cesium-137, strontium-90 and traces of plutonium from the waste tank farm is hydrolyzed in the Salt Processing Cell forming organic and aqueous phases. The two phases are then separated and the organic phase is decontaminated for incineration outside the DWPF building. The aqueous phase, containing the radionuclides and less than 10% of the original organic, is blended with the insoluble radionuclides in the high-level waste sludge and is fed to the glass melter for vitrification into borosilicate glass. During the Savannah River Laboratory's development of this process, copper (II) was found to act as a catalyst during the hydrolysis reactions, which improved the organic removal and simplified the design of the reactor

  10. Hydrolysis and formation constants at 250C

    International Nuclear Information System (INIS)

    Phillips, S.L.

    1982-05-01

    A database consisting of hydrolysis and formation constants for about 20 metals associated with the disposal of nuclear waste is given. Complexing ligands for the various ionic species of these metals include OH, F, Cl, SO 4 , PO 4 and CO 3 . Table 1 consists of tabulated calculated and experimental values of log K/sub xy/, mainly at 25 0 C and various ionic strengths together with references to the origin of the data. Table 2 consists of a column of recommended stability constants at 25 0 C and zero ionic strength tabulated in the column headed log K/sub xy/(0); other columns contain coefficients for an extended Debye-Huckel equation to permit calculations of stability constants up to 3 ionic strength, and up to 0.7 ionic strength using the Davies equation. Selected stability constants calculated with these coefficients for various ionic strengths agree to an average of +- 2% when compared with published experimental and calculated values

  11. [Anaerobic hydrolysis of terramycin crystallizing mother solution].

    Science.gov (United States)

    Ma, W; Wang, J; Liang, C; Qi, R; Yang, M

    2001-09-01

    The terramycin crystallizing mother solution contained high organics and high nitrogen. There were many kinds of bioinhibition in it but not enough electronic donor. Anaerobic hydrolysis of terramycin crystallizing mother solution was completed with up anarobic sludge bed in order to improve the biodegradability of wastewater and electronic donor in it. The variations of pH, COD, NH4+, and SO4(2-) were monitored. The COD removal was in a narrow range between 10% and 16.4% even when the HRT of the reactor was changed from 1.5 h to 6 h. pH increased because of formation of NH3 and reduction of SO4(2-). Most of SO4(2-) was reduced to S2- when the HRT was longer than 2 h. Batch experiments on hydrolyzed wastewater demonstrated that reaction rates of nitrification and denitrification increased by 90.9% and 45.2%, respectively.

  12. A study of dynamic filtration; Um estudo sobre filtracao dinamica

    Energy Technology Data Exchange (ETDEWEB)

    Girao, Joaquim Helder S [PETROBRAS, Natal, RN (Brazil). Distrito de Perfuracao da Bacia Potiguar. Div. de Tecnicas de Perfuracao

    1990-12-31

    The problems that cause cost increase such as: formation damage and borehole swelling or caving lead us to study the filtration of the liquid part of formation drilling fluid. With the aim of comparing static and dynamic filtration rates, we developed a modest dynamic filtration equipment, consisting of a modified API filter, connected to reservoir by means of a positive injection pump. We carried out various tests, and the results were set in charts and tables. Through these, it is possible to notice how the static and dynamic filtration curves come apart for a same pressure value. We also evaluated the effects of circulation speed, starch concentration and counter pressure. This paper does not include calculations or mathematical models accounting for filtrate invasion radii, but it demonstrates, for example, that cleaning circulation will cause lower filtration rates at lower flows. (author) 5 refs., 11 figs., 14 tabs.

  13. A study of dynamic filtration; Um estudo sobre filtracao dinamica

    Energy Technology Data Exchange (ETDEWEB)

    Girao, Joaquim Helder S. [PETROBRAS, Natal, RN (Brazil). Distrito de Perfuracao da Bacia Potiguar. Div. de Tecnicas de Perfuracao

    1989-12-31

    The problems that cause cost increase such as: formation damage and borehole swelling or caving lead us to study the filtration of the liquid part of formation drilling fluid. With the aim of comparing static and dynamic filtration rates, we developed a modest dynamic filtration equipment, consisting of a modified API filter, connected to reservoir by means of a positive injection pump. We carried out various tests, and the results were set in charts and tables. Through these, it is possible to notice how the static and dynamic filtration curves come apart for a same pressure value. We also evaluated the effects of circulation speed, starch concentration and counter pressure. This paper does not include calculations or mathematical models accounting for filtrate invasion radii, but it demonstrates, for example, that cleaning circulation will cause lower filtration rates at lower flows. (author) 5 refs., 11 figs., 14 tabs.

  14. Molecular dynamics study of atomic displacements in disordered solid alloys

    Science.gov (United States)

    Puzyrev, Yevgeniy S.

    The effects of atomic displacements on the energetics of alloys plays important role in the determining the properties of alloys. We studied the atomic displacements in disordered solid alloys using molecular dynamics and Monte-Carlo methods. The diffuse scattering of pure materials, copper, gold, nickel, and palladium was calculated. The experimental data for pure Cu was obtained from diffuse scattering intensity of synchrotron x-ray radiation. The comparison showed the advantages of molecular dynamics method for calculating the atomic displacements in solid alloys. The individual nearest neighbor separations were calculated for Cu 50Au50 alloy and compared to the result of XAFS experiment. The molecular dynamics method provided theoretical predictions of nearest neighbor pair separations in other binary alloys, Cu-Pd and Cu-Al for wide range of the concentrations. We also experimentally recovered the diffuse scattering maps for the Cu47.3Au52.7 and Cu85.2Al14.8 alloy.

  15. Study on dynamic behavior analysis of towed line array sensor

    Directory of Open Access Journals (Sweden)

    Hyun Kyoung Shin

    2012-03-01

    Full Text Available A set of equations of motion is derived for vibratory motions of an underwater cable connected to a moving vehicle at one end and with drogues at the other end. From the static analysis, cable configurations are obtained for different vehicle speeds and towing pretensions are determined by fluid resistance of drogues. Also the dynamic analysis is required to predict its vibratory motion. Nonlinear fluid drag forces greatly influence the dynamic tension. In this study, a numerical analysis program was developed to find out the characteristic of cable behaviour. The motion is described in terms of space and time coordinates based on Chebyshev polynomial expansions. For the spatial integration the collocation method is employed and the Newmark method is applied for the time integration. Dynamic tensions, displacements, velocities, accelerations were predicted in the time domain while natural frequencies and transfer functions were obtained in the frequency domain.

  16. Dynamic study on digital cineangiography of acute digestive tract hemorrhage

    International Nuclear Information System (INIS)

    Yu Jianming; Feng Gansheng; Zeng Jun; Xu Caiyuan

    2000-01-01

    Objective: To study dynamically acute gastrointestinal tract hemorrhage with digital cine angiography. Methods: Fifty patients with acute gastrointestinal tract hemorrhage were performed with digital cineangiography and observed dynamically during arterial, capillary and venous phases. Results: Among 50 cases, there were positive results in 44 ones including gastrointestinal hemorrhage in 14, biliary hemorrhage in 2, splenic arterial bleeding in 3, left gastric arterial bleeding in 4, right gastroepiploic arterial bleeding in 5, SMA bleeding in 7 and IMA bleeding in 9.17 cases underwent a permanent embolization through artery and 11 with temporary embolization as well as 9 with infusion of hemostatic agent via artery. Conclusions: Serial digital cineangiogram can dynamically show acute digestive tract hemorrhage within different phase. It is helpful to detect the location and cause of hemorrhage

  17. Hydrolysis rates of domestic wastewater sludge using biochemical ...

    African Journals Online (AJOL)

    Domestic wastewater treatment can be improved by reducing energy consumption and increasing carbon recovery, which can be achieved using anaerobic digestion of sludge with methane recovery at ambient temperature. Hydrolysis can be a limiting step in anaerobic digestion, and characterisation of hydrolysis rates ...

  18. Enhanced functional properties of tannic acid after thermal hydrolysis

    Science.gov (United States)

    Thermal hydrolysis processing of fresh tannic acid was carried out in a closed reactor at four different temperatures (65, 100, 150 and 200°C). Pressures reached in the system were 1.3 and 4.8 MPa at 150 and 200°C, respectively. Hydrolysis products (gallic acid and pyrogallol) were separated and qua...

  19. The kinetics of hydrolysis of acetylsalicylic acid (Aspirin) in different ...

    African Journals Online (AJOL)

    The kinetics of hydrolysis of Acetylsalicylic acid (Aspirin) to salicylic acid was followed by the direct spectrophotometric measurement of the amount of salicylic acid produced with time. Salicylic acid was complexed with ferric ion giving a characteristic purple colour (λlm 523nm). The kinetics of hydrolysis was found to follow ...

  20. Multivariate data analysis of enzyme production for hydrolysis purposes

    DEFF Research Database (Denmark)

    Schmidt, A.S.; Suhr, K.I.

    1999-01-01

    of the structure in the data - possibly combined with analysis of variance (ANOVA). Partial least squares regression (PLSR) showed a clear connection between the two differentdata matrices (the fermentation variables and the hydrolysis variables). Hence, PLSR was suitable for prediction purposes. The hydrolysis...

  1. Hydrogen-bonded intermediates and transition states during spontaneous and acid-catalyzed hydrolysis of the carcinogen (+)-anti-BPDE.

    Science.gov (United States)

    Palenik, Mark C; Rodriguez, Jorge H

    2014-07-07

    Understanding mechanisms of (+)-anti-BPDE detoxification is crucial for combating its mutagenic and potent carcinogenic action. However, energetic-structural correlations of reaction intermediates and transition states during detoxification via hydrolysis are poorly understood. To gain mechanistic insight we have computationally characterized intermediate and transition species associated with spontaneous and general-acid catalyzed hydrolysis of (+)-anti-BPDE. We studied the role of cacodylic acid as a proton donor in the rate limiting step. The computed activation energy (ΔG‡) is in agreement with the experimental value for hydrolysis in a sodium cacodylate buffer. Both types of, spontaneous and acid catalyzed, BPDE hydrolysis can proceed through low-entropy hydrogen bonded intermediates prior to formation of transition states whose energies determine reaction activation barriers and rates.

  2. Plantain starch granules morphology, crystallinity, structure transition, and size evolution upon acid hydrolysis.

    Science.gov (United States)

    Hernández-Jaimes, C; Bello-Pérez, L A; Vernon-Carter, E J; Alvarez-Ramirez, J

    2013-06-05

    Plantain native starch was hydrolysed with sulphuric acid for twenty days. Hydrolysis kinetics was described by a logistic function, with a zero-order rate during the first seven days, followed by a slower kinetics dynamics at longer times. X-ray diffraction results revealed a that gradual increase in crystallinity occurred during the first seven days, followed by a decrease to values similar to those found in the native starch. Differential scanning calorimetry analysis suggested a sharp structure transition by the seventh day probably due to a molecular rearrangement of the starch blocklets and inhomogeneous erosion of the amorphous regions and semi crystalline lamellae. Scanning electron micrographs showed that starch granules morphology was continually degraded from an initial oval-like shape to irregular shapes due to aggregation effects. Granule size distribution broadened as hydrolysis time proceeded probably due to fragmentation and agglomeration phenomena of the hydrolysed starch granules. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Optimization of a synthetic mixture composed of major Trichoderma reesei enzymes for the hydrolysis of steam-exploded wheat straw

    Directory of Open Access Journals (Sweden)

    Billard Hélène

    2012-02-01

    Full Text Available Abstract Background An efficient hydrolysis of lignocellulosic substrates to soluble sugars for biofuel production necessitates the interplay and synergistic interaction of multiple enzymes. An optimized enzyme mixture is crucial for reduced cost of the enzymatic hydrolysis step in a bioethanol production process and its composition will depend on the substrate and type of pretreatment used. In the present study, an experimental design was used to determine the optimal composition of a Trichoderma reesei enzyme mixture, comprising the main cellulase and hemicellulase activities, for the hydrolysis of steam-exploded wheat straw. Methods Six enzymes, CBH1 (Cel7a, CBH2 (Cel6a, EG1 (Cel7b, EG2 (Cel5a, as well as the xyloglucanase Cel74a and the xylanase XYN1 (Xyl11a were purified from a T. reesei culture under lactose/xylose-induced conditions. Sugar release was followed in milliliter-scale hydrolysis assays for 48 hours and the influence of the mixture on initial conversion rates and final yields is assessed. Results The developed model could show that both responses were strongly correlated. Model predictions suggest that optimal hydrolysis yields can be obtained over a wide range of CBH1 to CBH2 ratios, but necessitates a high proportion of EG1 (13% to 25% which cannot be replaced by EG2. Whereas 5% to 10% of the latter enzyme and a xylanase content above 6% are required for highest yields, these enzymes are predicted to be less important in the initial stage of hydrolysis. Conclusions The developed model could reliably predict hydrolysis yields of enzyme mixtures in the studied domain and highlighted the importance of the respective enzyme components in both the initial and the final hydrolysis phase of steam-exploded wheat straw.

  4. Kinetic study on alkaline hydrolysis of Y-substituted phenyl X-substituted benzenesulfonates: Effects of changing nucleophile from azide to hydroxide ion on reactivity and transition-state structure

    International Nuclear Information System (INIS)

    Moon, Ji Hyun; Kim, Min Young; Han, So Yeop; Um, Ik Hwan

    2015-01-01

    Second-order rate constants (math formula) for alkaline hydrolysis of 2,4-dinitrophenyl X-substituted benzenesulfonates (1a–1f) and Y-substituted phenyl 4-nitrobezenesulfonates (2a–2g) have been measured spectrophotometrically. Comparison of math formula with the math formula values reported previously for the corresponding reactions with math formula has revealed that OH [BOND] is only 10"3-fold more reactive than math formula, although the former is 11 pK _a units more basic than the latter. The Yukawa–Tsuno plot for the reactions of 1a–1f results in an excellent linear correlation with ρ_X = 2.09 and r = 0.41. The Brønsted-type plot for the reactions of 2a–2g is linear with β_l_g = −0.51, which is typical for reactions reported to proceed through a concerted mechanism. The Yukawa–Tsuno plot for the reactions of 2a–2g exhibits excellent linearity with ρ_Y = 1.85 and r = 0.25, indicating that a partial negative charge develops on the O atom of the leaving group in the transition state. Thus, the alkaline hydrolysis of 1a–1f and 2a–2g has been concluded to proceed through a concerted mechanism. Comparison of the ρ_X and β_l_g values for the reactions with math formula ions suggests that the reactions with hydroxide ion proceed through a tighter transition-state structure than those with azide ion

  5. Photocatalytic degradation of 4-amino-6-chlorobenzene-1,3-disulfonamide stable hydrolysis product of hydrochlorothiazide: Detection of intermediates and their toxicity.

    Science.gov (United States)

    Armaković, Sanja J; Armaković, Stevan; Četojević-Simin, Dragana D; Šibul, Filip; Abramović, Biljana F

    2018-02-01

    In this work we have investigated in details the process of degradation of the 4-amino-6-chlorobenzene-1,3-disulfonamide (ABSA), stable hydrolysis product of frequently used pharmaceutical hydrochlorothiazide (HCTZ), as one of the most ubiquitous contaminants in the sewage water. The study encompassed investigation of degradation by hydrolysis, photolysis, and photocatalysis employing commercially available TiO 2 Degussa P25 catalyst. The process of direct photolysis and photocatalytic degradation were investigated under different type of lights. Detailed insights into the reactive properties of HCTZ and ABSA have been obtained by density functional theory calculations and molecular dynamics simulations. Specifically, preference of HCTZ towards hydrolysis was confirmed experimentally and explained using computational study. Results obtained in this study indicate very limited efficiency of hydrolytic and photolytic degradation in the case of ABSA, while photocatalytic degradation demonstrated great potential. Namely, after 240 min of photocatalytic degradation, 65% of ABSA was mineralizated in water/TiO 2 suspension under SSI, while the nitrogen was predominantly present as NH 4 + . Reaction intermediates were studied and a number of them were detected using LC-ESI-MS/MS. This study also involves toxicity assessment of HCTZ, ABSA, and their mixtures formed during the degradation processes towards mammalian cell lines (rat hepatoma, H-4-II-E, human colon adenocarcinoma, HT-29, and human fetal lung, MRC-5). Toxicity assessments showed that intermediates formed during the process of photocatalysis exerted only mild cell growth effects in selected cell lines, while direct photolysis did not affect cell growth. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The interplay between dynamic heterogeneities and structure of bulk liquid water: A molecular dynamics simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Demontis, Pierfranco; Suffritti, Giuseppe B. [Dipartimento di Chimica e Farmacia, Università degli studi di Sassari, Sassari (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Unità di ricerca di Sassari, Via Vienna, 2, I-07100 Sassari (Italy); Gulín-González, Jorge [Grupo de Matemática y Física Computacionales, Universidad de las Ciencias Informáticas (UCI), Carretera a San Antonio de los Baños, Km 21/2, La Lisa, La Habana (Cuba); Masia, Marco [Dipartimento di Chimica e Farmacia, Università degli studi di Sassari, Sassari (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Unità di ricerca di Sassari, Via Vienna, 2, I-07100 Sassari (Italy); Istituto Officina dei Materiali del CNR, UOS SLACS, Via Vienna 2, 07100 Sassari (Italy); Sant, Marco [Dipartimento di Chimica e Farmacia, Università degli studi di Sassari, Sassari (Italy)

    2015-06-28

    In order to study the interplay between dynamical heterogeneities and structural properties of bulk liquid water in the temperature range 130–350 K, thus including the supercooled regime, we use the explicit trend of the distribution functions of some molecular properties, namely, the rotational relaxation constants, the atomic mean-square displacements, the relaxation of the cross correlation functions between the linear and squared displacements of H and O atoms of each molecule, the tetrahedral order parameter q and, finally, the number of nearest neighbors (NNs) and of hydrogen bonds (HBs) per molecule. Two different potentials are considered: TIP4P-Ew and a model developed in this laboratory for the study of nanoconfined water. The results are similar for the dynamical properties, but are markedly different for the structural characteristics. In particular, for temperatures higher than that of the dynamic crossover between “fragile” (at higher temperatures) and “strong” (at lower temperatures) liquid behaviors detected around 207 K, the rotational relaxation of supercooled water appears to be remarkably homogeneous. However, the structural parameters (number of NNs and of HBs, as well as q) do not show homogeneous distributions, and these distributions are different for the two water models. Another dynamic crossover between “fragile” (at lower temperatures) and “strong” (at higher temperatures) liquid behaviors, corresponding to the one found experimentally at T{sup ∗} ∼ 315 ± 5 K, was spotted at T{sup ∗} ∼ 283 K and T{sup ∗} ∼ 276 K for the TIP4P-Ew and the model developed in this laboratory, respectively. It was detected from the trend of Arrhenius plots of dynamic quantities and from the onset of a further heterogeneity in the rotational relaxation. To our best knowledge, it is the first time that this dynamical crossover is detected in computer simulations of bulk water. On the basis of the simulation results, the possible

  7. Study of dynamic strain aging in dual phase steel

    International Nuclear Information System (INIS)

    Queiroz, R.R.U.; Cunha, F.G.G.; Gonzalez, B.M.

    2012-01-01

    Highlights: ► Characterization of the high temperature mechanical behavior of a dual phase steel. ► Determination of the effect of dynamic strain aging on the strain hardening rate. ► Identification of the mechanism associated with dynamic strain aging. ► The value of the interaction energy carbon–dislocation in ferrite was confirmed. - Abstract: The susceptibility to dynamic strain aging of a dual phase steel was evaluated by the variation of mechanical properties in tension with the temperature and the strain rate. The tensile tests were performed at temperatures varying between 25 °C and 600 °C and at strain rates ranging from 10 −2 to 5 × 10 −4 s −1 . The studied steel presented typical manifestations related to dynamic strain aging: serrated flow (the Portevin–Le Chatelier effect) for certain combinations of temperature and strain rates; the presence of a plateau in the variation of yield stress with temperature; a maximum in the curves of tensile strength, flow stress, and work hardening exponent as a function of temperature; and a minimum in the variation of total elongation with temperature. The determined apparent activation energy values, associated with the beginning of the Portevin–Le Chatelier effect and the maximum in the variation of flow stress with temperature, were 83 kJ/mol and 156 kJ/mol, respectively. These values suggest that the mechanism responsible for dynamic strain aging in the dual phase steel is the locking of dislocations by carbon atoms in ferrite and that the formation of clusters and/or transition carbides and carbide precipitation in martensite do not interfere with the dynamic strain aging process.

  8. The dynamics of physisorbed layers studied by neutron scattering

    International Nuclear Information System (INIS)

    Nielsen, M.; McTague, J.P.

    1978-01-01

    We discuss the neutron scattering technique applied to the study of adsorbed thin films. Despite the fact that neutrons are scattered very weakly by surfaces, recent studies have shown that both structural and dynamical information can be obtained even for submonolayer coverages. Results will be shown for films of Ar, D 2 , H 2 , and O 2 adsorbed on (001) surfaces of graphite and for H 2 molecules adsorbed on activated alumina. (orig.) [de

  9. Reaction mechanism of the acidic hydrolysis of highly twisted amides: Rate acceleration caused by the twist of the amide bond.

    Science.gov (United States)

    Mujika, Jon I; Formoso, Elena; Mercero, Jose M; Lopez, Xabier

    2006-08-03

    We present an ab initio study of the acid hydrolysis of a highly twisted amide and a planar amide analogue. The aim of these studies is to investigate the effect that the twist of the amide bond has on the reaction barriers and mechanism of acid hydrolysis. Concerted and stepwise mechanisms were investigated using density functional theory and polarizable continuum model calculations. Remarkable differences were observed between the mechanism of twisted and planar amide, due mainly to the preference for N-protonation of the former and O-protonation of the latter. In addition, we were also able to determine that the hydrolytic mechanism of the twisted amide will be pH dependent. Thus, there is a preference for a stepwise mechanism with formation of an intermediate in the acid hydrolysis, whereas the neutral hydrolysis undergoes a concerted-type mechanism. There is a nice agreement between the characterized intermediate and available X-ray data and a good agreement with the kinetically estimated rate acceleration of hydrolysis with respect to analogous undistorted amide compounds. This work, along with previous ab initio calculations, describes a complex and rich chemistry for the hydrolysis of highly twisted amides as a function of pH. The theoretical data provided will allow for a better understanding of the available kinetic data of the rate acceleration of amides upon twisting and the relation of the observed rate acceleration with intrinsic differential reactivity upon loss of amide bond resonance.

  10. A Molecular Dynamics Study of the Structural and Dynamical Properties of Putative Arsenic Substituted Lipid Bilayers

    Directory of Open Access Journals (Sweden)

    Ratna Juwita

    2013-04-01

    Full Text Available Cell membranes are composed mainly of phospholipids which are in turn, composed of five major chemical elements: carbon, hydrogen, nitrogen, oxygen, and phosphorus. Recent studies have suggested the possibility of sustaining life if the phosphorus is substituted by arsenic. Although this issue is still controversial, it is of interest to investigate the properties of arsenated-lipid bilayers to evaluate this possibility. In this study, we simulated arsenated-lipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-arsenocholine (POAC, lipid bilayers using all-atom molecular dynamics to understand basic structural and dynamical properties, in particular, the differences from analogous 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, (POPC lipid bilayers. Our simulations showed that POAC lipid bilayers have distinct structural and dynamical properties from those of native POPC lipid bilayers. Relative to POPC lipid bilayers, POAC lipid bilayers have a more compact structure with smaller lateral areas and greater order. The compact structure of POAC lipid bilayers is due to the fact that more inter-lipid salt bridges are formed with arsenate-choline compared to the phosphate-choline of POPC lipid bilayers. These inter-lipid salt bridges bind POAC lipids together and also slow down the head group rotation and lateral diffusion of POAC lipids. Thus, it would be anticipated that POAC and POPC lipid bilayers would have different biological implications.

  11. Effect of pH and VFA on hydrolysis of organic solid waste

    NARCIS (Netherlands)

    Veeken, A.H.M.; Kalyuzhnyi, S.; Scharff, H.; Hamelers, H.V.M.

    2000-01-01

    The anaerobic hydrolysis rate of organic solid waste was studied at fixed volatile fatty acid (VFA) concentrations ranging from 3 to 30 g COD/L and fixed pH values between 5 and 7. For separate control of both VFA and pH, a special completely mixed reactor was designed. In this way, it was possible

  12. Competitive reactions during synthesis of zinc aluminum layered double hydroxides by thermal hydrolysis of urea

    DEFF Research Database (Denmark)

    Staal, Line Boisen; Pushparaj, Suraj Shiv Charan; Forano, Claude

    2017-01-01

    Homogeneous precipitation by thermal hydrolysis of urea (“The urea method”) is preferred for the preparation of pure and highly crystalline layered double hydroxides (LDHs). However, our recent study revealed large concentrations of amorphous aluminum hydroxide (AOH) in several zinc(II) aluminum(...

  13. Effective of Microwave-KOH Pretreatment on Enzymatic Hydrolysis of Bamboo

    Science.gov (United States)

    Zhiqiang Li; Zehui Jiang; Yan Yu; Zhiyong Cai

    2012-01-01

    Bamboo, with its advantages of fast growth, short renovation, easy propagation and rich in cellulose and hemicellulose, is a potential feedstock for bioethanol or other biofuels production. The objective of this study was to examine the fea- sibility of microwave assistant KOH pretreatments to enhance enzymatic hydrolysis of bamboo. Pretreatment was car- ried out by...

  14. Eliminating inhibition of enzymatic hydrolysis by lignosulfonate in unwashed sulfite-pretreated aspen using metal salts

    Science.gov (United States)

    Hao Liu; Junyong Zhu

    2010-01-01

    This study demonstrated the efficiency of Ca(II) and Mg(II) in removing inhibition of enzymatic hydrolysis by lignosulfonate through non-productive adsorption of enzymes. Adding 1 mmol/g cellulose of either metal salt restores approximately 65% of the activity lost when a pure cellulose/cellulase solution is spiked with lignosulfonate. Addition of either Ca(II) or Mg(...

  15. Effect of Acid mixtures on the Hydrolysis of Coconut Coir for ...

    African Journals Online (AJOL)

    In this study, coconut coir was hydrolysed to produce fermentable sugars using dilute nitric and acetic acid. The hydrolysis process was carried out according to a four variable Box-Behnken design which was used to develop a statistical model to describe the relationship between the concentration of fermentable sugars ...

  16. Solid Acid-Catalyzed Cellulose Hydrolysis Monitored by In Situ ATR-IR Spectroscopy

    NARCIS (Netherlands)

    Zakzeski, J.; Grisel, R.J.H.; Smit, A.T.; Weckhuysen, B.M.

    2012-01-01

    The solid acid-catalyzed hydrolysis of cellulose was studied under elevated temperatures and autogenous pressures using in situ ATR-IR spectroscopy. Standards of cellulose and pure reaction products, which include glucose, fructose, hydroxymethylfurfural (HMF), levulinic acid (LA), formic acid, and

  17. General-base catalysed hydrolysis and nucleophilic substitution of activated amides in aqueous solutions

    NARCIS (Netherlands)

    Buurma, NJ; Blandamer, MJ; Engberts, JBFN; Buurma, Niklaas J.

    The reactivity of 1-benzoyl-3-phenyl-1,2,4-triazole (1a) was studied in the presence of a range of weak bases in aqueous solution. A change in mechanism is observed from general-base catalysed hydrolysis to nucleophilic substitution and general-base catalysed nucleophilic substitution. A slight

  18. Initial Chemical Events in CL-20 Under Extreme Conditions: An Ab Initio Molecular Dynamics Study

    National Research Council Canada - National Science Library

    Isaev, Olexandr; Kholod, Yana; Gorb, Leonid; Qasim, Mohammad; Fredrickson, Herb; Leszczynski, Jerzy

    2006-01-01

    .... In the present study molecular structure, electrostatic potential, vibrational spectrum and dynamics of thermal decomposition of CL-20 have been investigated by static and dynamic methods of ab...

  19. Statistical ensembles and molecular dynamics studies of anisotropic solids. II

    International Nuclear Information System (INIS)

    Ray, J.R.; Rahman, A.

    1985-01-01

    We have recently discussed how the Parrinello--Rahman theory can be brought into accord with the theory of the elastic and thermodynamic behavior of anisotropic media. This involves the isoenthalpic--isotension ensemble of statistical mechanics. Nose has developed a canonical ensemble form of molecular dynamics. We combine Nose's ideas with the Parrinello--Rahman theory to obtain a canonical form of molecular dynamics appropriate to the study of anisotropic media subjected to arbitrary external stress. We employ this isothermal--isotension ensemble in a study of a fcc→ close-packed structural phase transformation in a Lennard-Jones solid subjected to uniaxial compression. Our interpretation of the Nose theory does not involve a scaling of the time variable. This latter fact leads to simplifications when studying the time dependence of quantities

  20. Spectrophotometric determination of the first hydrolysis constant of praseodymium (III)

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez M, R.; Lopez G, H. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Rojas H, A., E-mail: hilario.lopez@inin.gob.m [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Departamento de Quimica, Av. San Rafael Atlixco No. 186, Col. Vicentina, 09340 Mexico D. F. (Mexico)

    2010-07-01

    The behavior of the trivalent ion praseodymium in 2 M of NaCl at 303 K and in CO{sub 2} free conditions, was studied. Spectrophotometric titrations of the soluble species were used, in order to obtain the value of the first hydrolysis constant of Pr(III). The data obtained were treated with both the program Squad and by a graphic method, respectively. The result obtained using Squad was log*{beta}{sub 1}= -8.94 {+-} 0.03, while it was log*{beta}{sub 1}= -8.77 {+-} 0.03, when calculated graphically. These results are similar to the value obtained previously with the potentiometric method. (Author)

  1. Preparation of immobilized growing cells and enzymatic hydrolysis of sawdust

    International Nuclear Information System (INIS)

    Kumakura, M.; Kaetsu, I.

    1984-01-01

    Trichoderma reesei cells were immobilized by radiation polymerization using porous materials such as non-woven material and sawdust, and the enzymatic hydrolysis of sawdust with the enzyme solution from the immobilized growing cells was studied. The filter paper activity, which shows the magnitude of cellulase production in the immobilized cells, was comparable with that in the intact cells. The filter paper activity was affected by addition concentration of monomer and porous materials. The cells in the immobilized cells grew to be adhered on the surface of the fibrous polymers. Sawdust, which was pretreated by irradiation technique, was effectively hydrolyzed with the enzyme solution resulting from the culture of the immobilized cells, in which the glucose yield increased increasing the culture time of the immobilized cells. (author)

  2. Beam irradiation pretreatment on enzymatic hydrolysis of biomass

    International Nuclear Information System (INIS)

    Yoo, Hah Young; Choi, Han Suk; Yang, Soo Jeong; Lee, Ja Hyun; Kim, Sung Bong; Jung, Da Un; Kim, Seung Wook

    2013-01-01

    As a renewable energy resource, lignocellulosic biomass has become great attention these days. Miscanthus is considered as one of the best feed stock for sugar production due to its high carbohydrate conversion, more efficient pretreatment process was necessary for removal of enzymatic hydrolysis barriers. In this study, electron beam irradiation pretreatment was utilized to Miscanthus straw for the enhancement of sugar conversion. The prepared samples were exposed 20 ∼ 500 kGy of doses and 5 ∼ 100 kGy of dose rate under 1 MeV of energy. Optimum irradiation conditions were 300 kGy of doses, 10 kGy of doses rate and 7.4 mA of current. Finally, compared with untreated Miscanthus, the glucose conversion was 2 fold increased under optimal conditions

  3. High-speed AFM for Studying Dynamic Biomolecular Processes

    Science.gov (United States)

    Ando, Toshio

    2008-03-01

    Biological molecules show their vital activities only in aqueous solutions. It had been one of dreams in biological sciences to directly observe biological macromolecules (protein, DNA) at work under a physiological condition because such observation is straightforward to understanding their dynamic behaviors and functional mechanisms. Optical microscopy has no sufficient spatial resolution and electron microscopy is not applicable to in-liquid samples. Atomic force microscopy (AFM) can visualize molecules in liquids at high resolution but its imaging rate was too low to capture dynamic biological processes. This slow imaging rate is because AFM employs mechanical probes (cantilevers) and mechanical scanners to detect the sample height at each pixel. It is quite difficult to quickly move a mechanical device of macroscopic size with sub-nanometer accuracy without producing unwanted vibrations. It is also difficult to maintain the delicate contact between a probe tip and fragile samples. Two key techniques are required to realize high-speed AFM for biological research; fast feedback control to maintain a weak tip-sample interaction force and a technique to suppress mechanical vibrations of the scanner. Various efforts have been carried out in the past decade to materialize high-speed AFM. The current high-speed AFM can capture images on video at 30-60 frames/s for a scan range of 250nm and 100 scan lines, without significantly disturbing week biomolecular interaction. Our recent studies demonstrated that this new microscope can reveal biomolecular processes such as myosin V walking along actin tracks and association/dissociation dynamics of chaperonin GroEL-GroES that occurs in a negatively cooperative manner. The capacity of nanometer-scale visualization of dynamic processes in liquids will innovate on biological research. In addition, it will open a new way to study dynamic chemical/physical processes of various phenomena that occur at the liquid-solid interfaces.

  4. Hydrolysis products generated by lipoprotein lipase and endothelial lipase differentially impact THP-1 macrophage cell signalling pathways.

    Science.gov (United States)

    Essaji, Yasmin; Yang, Yanbo; Albert, Carolyn J; Ford, David A; Brown, Robert J

    2013-08-01

    Macrophages express lipoprotein lipase (LPL) and endothelial lipase (EL) within atherosclerotic plaques; however, little is known about how lipoprotein hydrolysis products generated by these lipases might affect macrophage cell signalling pathways. We hypothesized that hydrolysis products affect macrophage cell signalling pathways associated with atherosclerosis. To test our hypothesis, we incubated differentiated THP-1 macrophages with products from total lipoprotein hydrolysis by recombinant LPL or EL. Using antibody arrays, we found that the phosphorylation of six receptor tyrosine kinases and three signalling nodes--most associated with atherosclerotic processes--was increased by LPL derived hydrolysis products. EL derived hydrolysis products only increased the phosphorylation of tropomyosin-related kinase A, which is also implicated in playing a role in atherosclerosis. Using electrospray ionization-mass spectrometry, we identified the species of triacylglycerols and phosphatidylcholines that were hydrolyzed by LPL and EL, and we identified the fatty acids liberated by gas chromatography-mass spectrometry. To determine if the total liberated fatty acids influenced signalling pathways, we incubated differentiated THP-1 macrophages with a mixture of the fatty acids that matched the concentrations of liberated fatty acids from total lipoproteins by LPL, and we subjected cell lysates to antibody array analyses. The analyses showed that only the phosphorylation of Akt was significantly increased in response to fatty acid treatment. Overall, our study shows that macrophages display potentially pro-atherogenic signalling responses following acute treatments with LPL and EL lipoprotein hydrolysis products.

  5. Hydrolysis of whey lactose by immobilized β-galactosidase in a bioreactor with a spirally wound membrane.

    Science.gov (United States)

    Vasileva, Nastya; Ivanov, Yavor; Damyanova, Stanka; Kostova, Iliana; Godjevargova, Tzonka

    2016-01-01

    The β-galactosidase was covalently immobilized onto a modified polypropylene membrane, using glutaraldehyde. The optimal conditions for hydrolysis of lactose (4.7%) by immobilized β-galactosidase in a batch process were determined 13.6 U enzyme activity, 40°C, pH 6.8 and 10h. The obtained degree of hydrolysis was compared with results received by a free enzyme. It was found, that the lactose hydrolysis by an immobilized enzyme was 1.6 times more effective than the lactose hydrolysis by a free enzyme. It was determined that the stability of the immobilized enzyme was 2 times higher in comparison with the stability of free enzyme. The obtained immobilized system β-galactosidase/polypropylene membrane was applied to produce glucose-galactose syrup from waste whey. The whey characteristics and the different preliminary treatments of the whey were investigated. Then the whey lactose hydrolysis in a bioreactor by an immobilized enzyme on a spirally wound membrane was performed. The optimal membrane surface and the optimal flow rate of the whey through the membrane module were determined, respectively 100 cm(2) and 1.0 mL min(-1). After 10h, the degree of lactose hydrolysis was increased to 91%. The operation stability was studied. After 20th cycle the yield of bioreactor was 69.7%. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. A Numerical Study on Hydrodynamic Interactions between Dynamic Positioning Thrusters

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Doo Hwa; Lee, Sang Wook [University of Ulsan, Ulsan (Korea, Republic of)

    2017-06-15

    In this study, we conducted computational fluid dynamics (CFD) simulations for the unsteady hydrodynamic interaction of multiple thrusters by solving Reynolds averaged Navier-Stokes equations. A commercial CFD software, STAR-CCM+ was used for all simulations by employing a ducted thruster model with combination of a propeller and No. 19a duct. A sliding mesh technique was used to treat dynamic motion of propeller rotation and non-conformal hexahedral grid system was considered. Four different combinations in tilting and azimuth angles of the thrusters were considered to investigate the effects on the propulsion performance. We could find that thruster-hull and thruster-thruster interactions has significant effect on propulsion performance and further study will be required for the optimal configurations with the best tilting and relative azimuth angle between thrusters.

  7. Dynamic functional studies in nuclear medicine in developing countries

    International Nuclear Information System (INIS)

    1989-01-01

    The Proceedings document some of the trials and tribulations involved in setting up nuclear medicine facilities in general and specifically as regards nuclear medicine applications for the diagnosis of the diseases prevalent in the less developed countries. Most of the 51 papers deal with various clinical applications of dynamic functional studies. However, there was also a session on quality control of the equipment used, and a panel discussion critically looked at the problems and potential of dynamic studies in developing countries. This book will be of interest and use not only to those practising nuclear medicine in the developing countries, but it may also bring home to users in developed countries how ''more can be done with less''. Refs, figs and tabs

  8. Effects of acid-hydrolysis and hydroxypropylation on functional properties of sago starch.

    Science.gov (United States)

    Fouladi, Elham; Mohammadi Nafchi, Abdorreza

    2014-07-01

    In this study, sago starch was hydrolyzed by 0.14M HCl for 6, 12, 18, and 24h, and then modified by propylene oxide at a concentration of 0-30% (v/w). The effects of hydrolysis and etherification on molecular weight distribution, physicochemical, rheological, and thermal properties of dually modified starch were estimated. Acid hydrolysis of starch decreased the molecular weight of starch especially amylopectin, but hydroxypropylation had no effect on the molecular weight distribution. The degree of Molar substitution (DS) of hydroxypropylated starch after acid hydrolysis ranged from 0.007 to 0.15. Dually modified starch with a DS higher than 0.1 was completely soluble in cold water at up to 25% concentration of the starch. This study shows that hydroxypropylation and hydrolysis have synergistic effects unlike individual modifications. Dually modified sago starch can be applied to dip-molding for food and pharmaceutical processing because of its high solubility and low tendency for retrogradation. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Enzymatic Hydrolysis Does Not Reduce the Biological Reactivity of Soybean Proteins for All Allergic Subjects.

    Science.gov (United States)

    Panda, Rakhi; Tetteh, Afua O; Pramod, Siddanakoppalu N; Goodman, Richard E

    2015-11-04

    Many soybean protein products are processed by enzymatic hydrolysis to attain desirable functional food properties or in some cases to reduce allergenicity. However, few studies have investigated the effects of enzymatic hydrolysis on the allergenicity of soybean products. In this study the allergenicity of soybean protein isolates (SPI) hydrolyzed by Alcalase, trypsin, chymotrypsin, bromelain, or papain was evaluated by IgE immunoblots using eight soybean-allergic patient sera. The biological relevance of IgE binding was evaluated by a functional assay using a humanized rat basophilic leukemia (hRBL) cell line and serum from one subject. Results indicated that hydrolysis of SPI by the enzymes did not reduce the allergenicity, and hydrolysis by chymotrypsin or bromelain has the potential to increase the allergenicity of SPI. Two-dimensional (2D) immunoblot and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of the chymotrypsin-hydrolyzed samples indicated fragments of β-conglycinin protein are responsible for the apparent higher allergenic potential of digested SPI.

  10. Optimization of olive oil hydrolysis process using immobilized Lipase from Burkholderia cepacia sp. in Polyurethane

    Directory of Open Access Journals (Sweden)

    Nádia Ligianara Dewes Nyari

    2017-09-01

    Full Text Available The aim of this study was to achieve the best conditions for the  olive oil hydrolysis process at optimal pH and temperature using Burkholderia cepacia lipase immobilized in situ in rigid polyurethane support. The influences of the temperature (13.85 to 56.5ºC and pH (4.18 to 9.82 were evaluated by a central composite rotational experimental design 22. The operational stability and storage conditions were also studied. The olive oil hydrolysis process was optimized in pH 7.0, at 40°C and 15 min of reaction, with 66 and 93 U g-1 of hydrolysis activity in free and immobilized lipase, respectively, with > 700% yield. The immobilized remained stable for up to 40 days of storage at temperatures of 60oC, and for 100 days from 4 to 25°C. The operational stability of the immobilized was 6 continuous cycles. In this way, immobilization showed to be a promising alternative for its application in olive oil hydrolysis, having storage stability and reuse capability.

  11. A Dynamic Wind Generation Model for Power Systems Studies

    OpenAIRE

    Estanqueiro, Ana

    2007-01-01

    In this paper, a wind park dynamic model is presented together with a base methodology for its application to power system studies. This detailed wind generation model addresses the wind turbine components and phenomena more relevant to characterize the power quality of a grid connected wind park, as well as the wind park response to the grid fast perturbations, e.g., low voltage ride through fault. The developed model was applied to the operating conditions of the selected sets of wind turbi...

  12. Dynamic capabilities and innovation: a Multiple-Case Study

    OpenAIRE

    Bravo Ibarra, Edna Rocío; Mundet Hiern, Joan; Suñé Torrents, Albert

    2009-01-01

    After a detailed survey of the scientific literature, it was found that several characteristics of dynamic capabilities were similar to those of innovation capability. Therefore, with a deeper study of the first ones, it could be possible to design a model aimed to structure innovation capability. Thus, this work presents a conceptual model, where the innovation capability is shown as result of three processes: knowledge absorption and creation capability, knowledge integration and knowledge ...

  13. Dynamic Aperture Studies for the FCC-ee

    CERN Document Server

    Medina, L; Tomas, R; Zimmermann, F

    2015-01-01

    Dynamic aperture (DA) studies have been conducted on the latest Future Circular Collider – ee (FCC-ee) lattices as a function of momentum deviation.Two different schemes for the interaction region are used, which are connected to the main arcs: the crab waist approach, developed by BINP, and an update to the CERN design where the use of crab cavities is envisioned. The results presented show an improvement in the performance of both designs.

  14. Water Tunnel Studies of Dynamic Wing Flap Effects

    Science.gov (United States)

    2016-06-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited WATER TUNNEL...Master’s Thesis 4. TITLE AND SUBTITLE WATER TUNNEL STUDIES OF DYNAMIC WING FLAP EFFECTS 5. FUNDING NUMBERS 6. AUTHOR(S) Edgar E. González 7. PERFORMING...ABSTRACT (maximum 200 words ) The flow features developing over a two-element NACA 0012 airfoil, with the rear portion serving as a trailing edge flap

  15. Dynamic Aperture Studies for the LHC High Luminosity Lattice

    CERN Document Server

    De Maria, R; Giovannozzi, Massimo; Mcintosh, Eric; Cai, Y; Nosochkov, Y; Wang, M H

    2015-01-01

    Since quite some time, dynamic aperture studies have been undertaken with the aim of specifying the required field quality of the new magnets that will be installed in the LHC ring in the framework of the high-luminosity upgrade. In this paper the latest results concerning the specification work will be presented, taking into account both injection and collision energies and the field quality contribution from all the magnets in the newly designed interaction regions.

  16. Numerical study of the initial dynamics in tormac

    International Nuclear Information System (INIS)

    Aydemir, A.Y.

    1979-01-01

    Using a single fluid magnetohydrodynamic (MHD) code, we study the initial plasma dynamics in Tormac, an experimental device which attempts to confine plasma in a toroidal, two-pole cusp field. The code is in two dimensions and includes classical electrical conductivity and a constant heat conductivity. The full set of nonlinear MHD equations for the mass density, fluid velocity, temperature, the poloidal flux function, and the poloidal current function are solved using a predictor-corrector method

  17. Enzymatic lignocellulose hydrolysis: Improved cellulase productivity by insoluble solids recycling

    Science.gov (United States)

    2013-01-01

    Background It is necessary to develop efficient methods to produce renewable fuels from lignocellulosic biomass. One of the main challenges to the industrialization of lignocellulose conversion processes is the large amount of cellulase enzymes used for the hydrolysis of cellulose. One method for decreasing the amount of enzyme used is to recycle the enzymes. In this study, the recycle of enzymes associated with the insoluble solid fraction after the enzymatic hydrolysis of cellulose was investigated for pretreated corn stover under a variety of recycling conditions. Results It was found that a significant amount of cellulase activity could be recovered by recycling the insoluble biomass fraction, and the enzyme dosage could be decreased by 30% to achieve the same glucose yields under the most favorable conditions. Enzyme productivity (g glucose produced/g enzyme applied) increased between 30 and 50% by the recycling, depending on the reaction conditions. While increasing the amount of solids recycled increased process performance, the methods applicability was limited by its positive correlation with increasing total solids concentrations, reaction volumes, and lignin content of the insoluble residue. However, increasing amounts of lignin rich residue during the recycle did not negatively impact glucose yields. Conclusions To take advantage of this effect, the amount of solids recycled should be maximized, based on a given processes ability to deal with higher solids concentrations and volumes. Recycling of enzymes by recycling the insoluble solids fraction was thus shown to be an effective method to decrease enzyme usage, and research should be continued for its industrial application. PMID:23336604

  18. Enzymatic lignocellulose hydrolysis: Improved cellulase productivity by insoluble solids recycling

    Directory of Open Access Journals (Sweden)

    Weiss Noah

    2013-01-01

    Full Text Available Abstract Background It is necessary to develop efficient methods to produce renewable fuels from lignocellulosic biomass. One of the main challenges to the industrialization of lignocellulose conversion processes is the large amount of cellulase enzymes used for the hydrolysis of cellulose. One method for decreasing the amount of enzyme used is to recycle the enzymes. In this study, the recycle of enzymes associated with the insoluble solid fraction after the enzymatic hydrolysis of cellulose was investigated for pretreated corn stover under a variety of recycling conditions. Results It was found that a significant amount of cellulase activity could be recovered by recycling the insoluble biomass fraction, and the enzyme dosage could be decreased by 30% to achieve the same glucose yields under the most favorable conditions. Enzyme productivity (g glucose produced/g enzyme applied increased between 30 and 50% by the recycling, depending on the reaction conditions. While increasing the amount of solids recycled increased process performance, the methods applicability was limited by its positive correlation with increasing total solids concentrations, reaction volumes, and lignin content of the insoluble residue. However, increasing amounts of lignin rich residue during the recycle did not negatively impact glucose yields. Conclusions To take advantage of this effect, the amount of solids recycled should be maximized, based on a given processes ability to deal with higher solids concentrations and volumes. Recycling of enzymes by recycling the insoluble solids fraction was thus shown to be an effective method to decrease enzyme usage, and research should be continued for its industrial application.

  19. Dissociation of polycyclic aromatic hydrocarbons: molecular dynamics studies

    Science.gov (United States)

    Simon, A.; Rapacioli, M.; Rouaut, G.; Trinquier, G.; Gadéa, F. X.

    2017-03-01

    We present dynamical studies of the dissociation of polycyclic aromatic hydrocarbon (PAH) radical cations in their ground electronic states with significant internal energy. Molecular dynamics simulations are performed, the electronic structure being described on-the-fly at the self-consistent-charge density functional-based tight binding (SCC-DFTB) level of theory. The SCC-DFTB approach is first benchmarked against DFT results. Extensive simulations are achieved for naphthalene , pyrene and coronene at several energies. Such studies enable one to derive significant trends on branching ratios, kinetics, structures and hints on the formation mechanism of the ejected neutral fragments. In particular, dependence of branching ratios on PAH size and energy were retrieved. The losses of H and C2H2 (recognized as the ethyne molecule) were identified as major dissociation channels. The H/C2H2 ratio was found to increase with PAH size and to decrease with energy. For , which is the most interesting PAH from the astrophysical point of view, the loss of H was found as the quasi-only channel for an internal energy of 30 eV. Overall, in line with experimental trends, decreasing the internal energy or increasing the PAH size will favour the hydrogen loss channels with respect to carbonaceous fragments. This article is part of the themed issue 'Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces'.

  20. Physical properties of Cu nanoparticles: A molecular dynamics study

    International Nuclear Information System (INIS)

    Kart, H.H.; Yildirim, H.; Ozdemir Kart, S.; Çağin, T.

    2014-01-01

    Thermodynamical, structural and dynamical properties of Cu nanoparticles are investigated by using Molecular Dynamics (MD) simulations at various temperatures. In this work, MD simulations of the Cu-nanoparticles are performed by means of the MPiSiM codes by utilizing from Quantum Sutton-Chen (Q-SC) many-body force potential to define the interactions between the Cu atoms. The diameters of the copper nanoparticles are varied from 2 nm to 10 nm. MD simulations of Cu nanoparticles are carried out at low and high temperatures to study solid and liquid properties of Cu nanoparticles. Simulation results such as melting point, radial distribution function are compared with the available experimental bulk results. Radial distribution function, mean square displacement, diffusion coefficient, Lindemann index and Honeycutt–Andersen index are also calculated for estimating the melting point of the Copper nanoparticles. - Highlights: • Solid and liquid properties of Cu nanoparticles are studied. • Molecular dynamics utilizing the Quantum Sutton Chen potential is used in this work. • Melting temperatures of nanoparticles are strongly depended on nanoparticle sizes. • Heat capacity, radial distribution function and diffusion coefficients are studied. • Structures of nanoparticles are analyzed by Lindemann and Honeycutt–Andersen index