WorldWideScience

Sample records for dynamic stability

  1. Stability of dynamical systems

    CERN Document Server

    Liao, Xiaoxin; Yu, P 0

    2007-01-01

    The main purpose of developing stability theory is to examine dynamic responses of a system to disturbances as the time approaches infinity. It has been and still is the object of intense investigations due to its intrinsic interest and its relevance to all practical systems in engineering, finance, natural science and social science. This monograph provides some state-of-the-art expositions of major advances in fundamental stability theories and methods for dynamic systems of ODE and DDE types and in limit cycle, normal form and Hopf bifurcation control of nonlinear dynamic systems.ʺ Presents

  2. Structure of Dynamic, Taxol-Stabilized, and GMPPCP-Stabilized Microtubule.

    Science.gov (United States)

    Ginsburg, Avi; Shemesh, Asaf; Millgram, Abigail; Dharan, Raviv; Levi-Kalisman, Yael; Ringel, Israel; Raviv, Uri

    2017-09-14

    Microtubule (MT) is made of αβ-tubulin heterodimers that dynamically assemble into a hollow nanotube composed of straight protofilaments. MT dynamics is facilitated by hydrolysis of guanosine-5'-triphosphate (GTP) and can be inhibited by either anticancer agents like taxol or the nonhydrolyzable GTP analogues like GMPPCP. Using high-resolution synchrotron X-ray scattering, we have measured and analyzed the scattering curves from solutions of dynamic MT (in other words, in the presence of excess GTP and free of dynamic-inhibiting agents) and examined the effect of two MT stabilizers: taxol and GMPPCP. Previously, we have analyzed the structure of dynamic MT by docking the atomic model of tubulin dimer onto a 3-start left handed helical lattice, derived from the PDB ID 3J6F . 3J6F corresponds to a MT with 14 protofilaments. In this paper, we took into account the possibility of having MT structures containing between 12 and 15 protofilaments. MTs with 12 protofilaments were never observed. We determined the radii, the pitch, and the distribution of protofilament number that best fit the scattering data from dynamic MT or stabilized MT by taxol or GMPPCP. We found that the protofilament number distribution shifted when the MT was stabilized. Taxol increased the mass fraction of MT with 13 protofilaments and decreased the mass fraction of MT with 14 protofilaments. GMPPCP reduced the mass fraction of MT with 15 protofilaments and increased the mass fraction of MT with 14 protofilaments. The pitch, however, remained unchanged regardless of whether the MT was dynamic or stabilized. Higher tubulin concentrations increased the fraction of dynamic MT with 14 protofilaments.

  3. Dynamic Stability Experiment of Maglev Systems,

    Science.gov (United States)

    1995-04-01

    This report summarizes the research performed on maglev vehicle dynamic stability at Argonne National Laboratory during the past few years. It also... maglev system, it is important to consider this phenomenon in the development of all maglev systems. This report presents dynamic stability experiments...on maglev systems and compares their numerical simulation with predictions calculated by a nonlinear dynamic computer code. Instabilities of an

  4. Unifying dynamical and structural stability of equilibria

    Science.gov (United States)

    Arnoldi, Jean-François; Haegeman, Bart

    2016-09-01

    We exhibit a fundamental relationship between measures of dynamical and structural stability of linear dynamical systems-e.g. linearized models in the vicinity of equilibria. We show that dynamical stability, quantified via the response to external perturbations (i.e. perturbation of dynamical variables), coincides with the minimal internal perturbation (i.e. perturbations of interactions between variables) able to render the system unstable. First, by reformulating a result of control theory, we explain that harmonic external perturbations reflect the spectral sensitivity of the Jacobian matrix at the equilibrium, with respect to constant changes of its coefficients. However, for this equivalence to hold, imaginary changes of the Jacobian's coefficients have to be allowed. The connection with dynamical stability is thus lost for real dynamical systems. We show that this issue can be avoided, thus recovering the fundamental link between dynamical and structural stability, by considering stochastic noise as external and internal perturbations. More precisely, we demonstrate that a linear system's response to white-noise perturbations directly reflects the intensity of internal white-noise disturbance that it can accommodate before becoming stochastically unstable.

  5. Beam Stability and Nonlinear Dynamics. Proceedings

    International Nuclear Information System (INIS)

    Parsa, Z.

    1997-01-01

    These proceedings represent papers presented at the Beam Stability and Nonlinear Dynamics symposium held in Santa Barbara in December 1996. The symposium was sponsored by the National Science Foundation as part of the United States long term accelerator research. The focus of this symposium was on nonlinear dynamics and beam stability. The topics included single-particle and many-particle dynamics, and stability in large circular accelerators such as the Large Hadron Collider(LHC). Other subjects covered were spin dynamics, nonlinear aberration correction, collective effects in the LHC, sawtooth instability and Landau damping in the presence of strong nonlinearity. There were presentations concerning plasma physics including the effect of beam echo. There are 17 papers altogether in these proceedings and 8 of them have been abstracted for the Energy Science and Technology database

  6. Stability of molecular dynamics simulations of classical systems

    DEFF Research Database (Denmark)

    Toxværd, Søren

    2012-01-01

    The existence of a shadow Hamiltonian for discrete classical dynamics, obtained by an asymptotic expansion for a discrete symplectic algorithm, is employed to determine the limit of stability for molecular dynamics (MD) simulations with respect to the time-increment h of the discrete dynamics....... The investigation is based on the stability of the shadow energy, obtained by including the first term in the asymptotic expansion, and on the exact solution of discrete dynamics for a single harmonic mode. The exact solution of discrete dynamics for a harmonic potential with frequency ω gives a criterion...... for the limit of stability h ⩽ 2/ω. Simulations of the Lennard-Jones system and the viscous Kob-Andersen system show that one can use the limit of stability of the shadow energy or the stability criterion for a harmonic mode on the spectrum of instantaneous frequencies to determine the limit of stability of MD...

  7. Structural stability of nonlinear population dynamics.

    Science.gov (United States)

    Cenci, Simone; Saavedra, Serguei

    2018-01-01

    In population dynamics, the concept of structural stability has been used to quantify the tolerance of a system to environmental perturbations. Yet, measuring the structural stability of nonlinear dynamical systems remains a challenging task. Focusing on the classic Lotka-Volterra dynamics, because of the linearity of the functional response, it has been possible to measure the conditions compatible with a structurally stable system. However, the functional response of biological communities is not always well approximated by deterministic linear functions. Thus, it is unclear the extent to which this linear approach can be generalized to other population dynamics models. Here, we show that the same approach used to investigate the classic Lotka-Volterra dynamics, which is called the structural approach, can be applied to a much larger class of nonlinear models. This class covers a large number of nonlinear functional responses that have been intensively investigated both theoretically and experimentally. We also investigate the applicability of the structural approach to stochastic dynamical systems and we provide a measure of structural stability for finite populations. Overall, we show that the structural approach can provide reliable and tractable information about the qualitative behavior of many nonlinear dynamical systems.

  8. Structural stability of nonlinear population dynamics

    Science.gov (United States)

    Cenci, Simone; Saavedra, Serguei

    2018-01-01

    In population dynamics, the concept of structural stability has been used to quantify the tolerance of a system to environmental perturbations. Yet, measuring the structural stability of nonlinear dynamical systems remains a challenging task. Focusing on the classic Lotka-Volterra dynamics, because of the linearity of the functional response, it has been possible to measure the conditions compatible with a structurally stable system. However, the functional response of biological communities is not always well approximated by deterministic linear functions. Thus, it is unclear the extent to which this linear approach can be generalized to other population dynamics models. Here, we show that the same approach used to investigate the classic Lotka-Volterra dynamics, which is called the structural approach, can be applied to a much larger class of nonlinear models. This class covers a large number of nonlinear functional responses that have been intensively investigated both theoretically and experimentally. We also investigate the applicability of the structural approach to stochastic dynamical systems and we provide a measure of structural stability for finite populations. Overall, we show that the structural approach can provide reliable and tractable information about the qualitative behavior of many nonlinear dynamical systems.

  9. Local Dynamic Stability Associated with Load Carrying

    Directory of Open Access Journals (Sweden)

    Jian Liu

    2013-03-01

    Conclusion: Current study confirmed the sensitivity of local dynamic stability measure in load carrying situation. It was concluded that load carrying tasks were associated with declined local dynamic stability, which may result in increased risk of fall accident. This finding has implications in preventing fall accidents associated with occupational load carrying.

  10. Dynamic postural stability in blind athletes using the biodex stability system.

    Science.gov (United States)

    Aydoğ, E; Aydoğ, S T; Cakci, A; Doral, M N

    2006-05-01

    Three systems affect the upright standing posture in humans - visual, vestibular, and somatosensory. It is well known that the visually impaired individuals have bad postural balance. On the other hand, it is a well documented fact that some sports can improve postural balance. Therefore, it is aimed in this study to evaluate the dynamic postural stability in goal-ball athletes. Twenty blind goal-ball players, 20 sighted and 20 sedentary blind controls were evaluated using the Biodex Stability System. Three adaptation trials and three test evaluations (a 20-second balance test at a platform stability of 8) were applied to the blind people, and to the sighted with eyes open and closed. Dynamic postural stability was measured on the basis of three indices: overall, anteroposterior, and mediolateral. Means of each test score were calculated. The tests results were compared for the blind athletes, sighted (with eyes open and closed) subjects, and sedentary blind people. There were significant differences between the results of the blind people and the sighted subjects with regards to all of the three indices. Although the stability of goal-ball players was better than sedentary blinds', only ML index values were statistically different (4.47 +/- 1.24 in the goal-ball players; 6.46 +/- 3.42 in the sedentary blind, p = 0.04). Dynamic postural stability was demonstrated to be affected by vision; and it was found that blind people playing goal-ball 1 - 2 days per week have higher ML stability than the sedentary sighted people.

  11. Effect of Footwear on Dynamic Stability during Single-leg Jump Landings.

    Science.gov (United States)

    Bowser, Bradley J; Rose, William C; McGrath, Robert; Salerno, Jilian; Wallace, Joshua; Davis, Irene S

    2017-06-01

    Barefoot and minimal footwear running has led to greater interest in the biomechanical effects of different types of footwear. The effect of running footwear on dynamic stability is not well understood. The purpose of this study was to compare dynamic stability and impact loading across 3 footwear conditions; barefoot, minimal footwear and standard running shoes. 25 injury free runners (21 male, 4 female) completed 5 single-leg jump landings in each footwear condition. Dynamic stability was assessed using the dynamic postural stability index and its directional components (mediolateral, anteroposterior, vertical). Peak vertical ground reaction force and vertical loadrates were also compared across footwear conditions. Dynamic stability was dependent on footwear type for all stability indices (ANOVA, pfootwear for the anteroposterior stability index (pfootwear (p≤0.05). Dynamic stability, peak vertical force, and average loadrates during single-leg jump landings appear to be affected by footwear type. The results suggest greater dynamic stability and lower impact loading when landing barefoot or in minimal footwear. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Dynamic Stability of Maglev Systems,

    Science.gov (United States)

    1992-04-01

    AD-A259 178 ANL-92/21 Materials and Components Dynamic Stability of Technology Division Materials and Components Maglev Systems Technology Division...of Maglev Systems Y. Cai, S. S. Chen, and T. M. Mulcahy Materials and Components Technology Division D. M. Rote Center for Transportation Research...of Maglev System with L-Shaped Guideway ......................................... 6 3 Stability of M aglev System s

  13. Reliability Analysis of Dynamic Stability in Waves

    DEFF Research Database (Denmark)

    Søborg, Anders Veldt

    2004-01-01

    exhibit sufficient characteristics with respect to slope at zero heel (GM value), maximum leverarm, positive range of stability and area below the leverarm curve. The rule-based requirements to calm water leverarm curves are entirely based on experience obtained from vessels in operation and recorded......The assessment of a ship's intact stability is traditionally based on a semi-empirical deterministic concept that evaluates the characteristics of ship's calm water restoring leverarm curves. Today the ship is considered safe with respect to dynamic stability if its calm water leverarm curves...... accidents in the past. The rules therefore only leaves little room for evaluation and improvement of safety of a ship's dynamic stability. A few studies have evaluated the probability of ship stability loss in waves using Monte Carlo simulations. However, since this probability may be in the order of 10...

  14. Dynamic stability and bifurcation analysis in fractional thermodynamics

    Science.gov (United States)

    Béda, Péter B.

    2018-02-01

    In mechanics, viscoelasticity was the first field of applications in studying geomaterials. Further possibilities arise in spatial non-locality. Non-local materials were already studied in the 1960s by several authors as a part of continuum mechanics and are still in focus of interest because of the rising importance of materials with internal micro- and nano-structure. When material instability gained more interest, non-local behavior appeared in a different aspect. The problem was concerned to numerical analysis, because then instability zones exhibited singular properties for local constitutive equations. In dynamic stability analysis, mathematical aspects of non-locality were studied by using the theory of dynamic systems. There the basic set of equations describing the behavior of continua was transformed to an abstract dynamic system consisting of differential operators acting on the perturbation field variables. Such functions should satisfy homogeneous boundary conditions and act as indicators of stability of a selected state of the body under consideration. Dynamic systems approach results in conditions for cases, when the differential operators have critical eigenvalues of zero real parts (dynamic stability or instability conditions). When the critical eigenvalues have non-trivial eigenspace, the way of loss of stability is classified as a typical (or generic) bifurcation. Our experiences show that material non-locality and the generic nature of bifurcation at instability are connected, and the basic functions of the non-trivial eigenspace can be used to determine internal length quantities of non-local mechanics. Fractional calculus is already successfully used in thermo-elasticity. In the paper, non-locality is introduced via fractional strain into the constitutive relations of various conventional types. Then, by defining dynamic systems, stability and bifurcation are studied for states of thermo-mechanical solids. Stability conditions and genericity

  15. Solar Dynamic Power System Stability Analysis and Control

    Science.gov (United States)

    Momoh, James A.; Wang, Yanchun

    1996-01-01

    The objective of this research is to conduct dynamic analysis, control design, and control performance test of solar power system. Solar power system consists of generation system and distribution network system. A bench mark system is used in this research, which includes a generator with excitation system and governor, an ac/dc converter, six DDCU's and forty-eight loads. A detailed model is used for modeling generator. Excitation system is represented by a third order model. DDCU is represented by a seventh order system. The load is modeled by the combination of constant power and constant impedance. Eigen-analysis and eigen-sensitivity analysis are used for system dynamic analysis. The effects of excitation system, governor, ac/dc converter control, and the type of load on system stability are discussed. In order to improve system transient stability, nonlinear ac/dc converter control is introduced. The direct linearization method is used for control design. The dynamic analysis results show that these controls affect system stability in different ways. The parameter coordination of controllers are recommended based on the dynamic analysis. It is concluded from the present studies that system stability is improved by the coordination of control parameters and the nonlinear ac/dc converter control stabilize system oscillation caused by the load change and system fault efficiently.

  16. Dynamic stabilization of imploding liquid metal liner

    International Nuclear Information System (INIS)

    Itoh, Yasuyuki; Fujiie, Yoichi

    1979-01-01

    The rotational stabilization has been proposed against the Rayleigh-Taylor instability of the imploding liquid metal liner. In this paper, the discussion is made on the possibility of the dynamic stabilization by applying the oscillating azimuthal magnetic field in addition to the axial field. In contrast to the rotational stabilization, the required (field) energy for this stabilization is also used for the liner driving or the plasma confinement. In the analysis, the liner subjected to the acceleration is assumed to be infinitely long, at rest and have the situation at the start of the implosion or turnaround. At turnaround, the existence of the plasma is taken into account. The perturbed motion of the liner is discussed with a linear stability analysis. Results are as follows: (1) The dynamic stabilization at the start of the implosion is possible if the distance from the conducting wall to the liner outer surface is comparable with or less than the liner thickness. (2) At turnaround, the stability is improved with decreasing the ratio of the plasma radius to that of the liner inner surface however the kink mode (m = 1) cannot be suppressed. (author)

  17. ANALYSIS AND OPTIMISATION OF DYNAMIC STABILITY OF MOBILE WORKING MACHINES

    Directory of Open Access Journals (Sweden)

    Peter BIGOŠ

    2014-09-01

    Full Text Available This paper describes an investigation of the dynamic stability, which is specified for the mobile working machines. There are presented the basic theoretical principles of the stability theory together with an introduction of two illustrative examples of the dynamic stability analysis.

  18. Dynamic stability under sudden loads

    International Nuclear Information System (INIS)

    Simitses, G.J.

    1998-01-01

    The concept of dynamic stability of elastic structures subjected to sudden (step) loads is discussed. The various criteria and related methodologies for estimating critical conditions are presented with the emphasis on their similarities and differences. These are demonstrated by employing a simple mechanical model. Several structural configurations are analyzed, for demonstration purposes, with the intention of comparing critical dynamic loads to critical static loads. These configurations include shallow arches and shallow spherical caps, two bar frames, and imperfect cylindrical shells of metallic as well as laminated composite construction. In the demonstration examples, the effect of static pre loading on the dynamic critical load is presented

  19. Dynamic postural stability during advancing pregnancy.

    Science.gov (United States)

    McCrory, J L; Chambers, A J; Daftary, A; Redfern, M S

    2010-08-26

    Pregnant women are at an increased risk of experiencing a fall. Numerous anatomical, physiological, and hormonal alterations occur during pregnancy, but the influence of these factors on dynamic postural stability has not been explored. The purpose of this study was to examine dynamic postural stability in pregnant women during their second and third trimesters as well as in a group of non-pregnant control women. Eighty-one women (41 pregnant, 40 controls) participated stood on a force plate that translated anteroposteriorly at small, medium, and large magnitudes. Reaction time and center of pressure (COP) movement during the translations were analyzed. Trimester, perturbation direction, and perturbation magnitude were the independent variables in a mixed-model analysis of variance on each of the following dependent variables: reaction time, initial sway, total sway, and sway velocity. Reaction time to the perturbation was not significantly different between the groups. Initial sway, total sway, and sway velocity were significantly less during the third trimester than during the second trimester and when compared to the non-pregnant controls (Ppostural stability. 2010 Elsevier Ltd. All rights reserved.

  20. Dynamic-Stability Characteristics of Premixed Methane Oxy-Combustion

    KAUST Repository

    Shroll, Andrew P.; Shanbhogue, Santosh J.; Ghoniem, Ahmed F.

    2012-01-01

    This work explores the dynamic stability characteristics of premixed CH 4/O 2/CO 2 mixtures in a 50 kW swirl stabilized combustor. In all cases, the methane-oxygen mixture is stoichiometric, with different dilution levels of carbon dioxide used

  1. Does dynamic stability govern propulsive force generation in human walking?

    Science.gov (United States)

    Browne, Michael G; Franz, Jason R

    2017-11-01

    Before succumbing to slower speeds, older adults may walk with a diminished push-off to prioritize stability over mobility. However, direct evidence for trade-offs between push-off intensity and balance control in human walking, independent of changes in speed, has remained elusive. As a critical first step, we conducted two experiments to investigate: (i) the independent effects of walking speed and propulsive force ( F P ) generation on dynamic stability in young adults, and (ii) the extent to which young adults prioritize dynamic stability in selecting their preferred combination of walking speed and F P generation. Subjects walked on a force-measuring treadmill across a range of speeds as well as at constant speeds while modulating their F P according to a visual biofeedback paradigm based on real-time force measurements. In contrast to improvements when walking slower, walking with a diminished push-off worsened dynamic stability by up to 32%. Rather, we find that young adults adopt an F P at their preferred walking speed that maximizes dynamic stability. One implication of these findings is that the onset of a diminished push-off in old age may independently contribute to poorer balance control and precipitate slower walking speeds.

  2. On atmospheric stability in the dynamic wake meandering model

    DEFF Research Database (Denmark)

    Keck, Rolf-Erik; de Mare, Martin Tobias; Churchfield, Matthew J.

    2014-01-01

    The present study investigates a new approach for capturing the effects of atmospheric stability on wind turbine wake evolution and wake meandering by using the dynamic wake meandering model. The most notable impact of atmospheric stability on the wind is the changes in length and velocity scales...... spectra and applied to the dynamic wake meandering model to capture the correct wake meandering behaviour. The ambient turbulence in all stability classes is generated using the Mann turbulence model, where the effects of non-neutral atmospheric stability are approximated by the selection of input...... in the computational domain. The changes in the turbulent length scales due to the various atmospheric stability states impact the wake meandering characteristics and thus the power generation by the individual turbines. The proposed method is compared with results from both large-eddy simulation coupled...

  3. Navier-Stokes Predictions of Dynamic Stability Derivatives: Evaluation of Steady-State Methods

    National Research Council Canada - National Science Library

    DeSpirito, James; Silton, Sidra I; Weinacht, Paul

    2008-01-01

    The prediction of the dynamic stability derivatives-roll-damping, Magnus, and pitch-damping moments-were evaluated for three spin-stabilized projectiles using steady-state computational fluid dynamic (CFD) calculations...

  4. Dynamical stability in fluid-structure interaction

    International Nuclear Information System (INIS)

    Planchard, J.; Thomas, B.

    1991-01-01

    The aim of the paper is to investigate the dynamical stability of a group of elastic tubes placed in a cross-flow which obeys to the Navier-Stokes equations. The stability of this coupled system is deduced from the study of a quadratic eigenvalue problem arising in the linearized equations. The instability occurs when the real part of one of the eigenvalues becomes positive; the steady state is then replaced by a time-periodic state which is stable (Hopf bifurcation phenomenon). Some numerical methods for solving the quadratic eigenvalue problem are described [fr

  5. Dynamic postural stability differences between male and female players with and without ankle sprain

    NARCIS (Netherlands)

    Dallinga, Joan; van der Does, Henrike; Benjaminse, Anne; Lemmink, Koen

    2015-01-01

    Objectives: The strategy for dynamic postural stability might be different for male and female players. Additionally, dynamic and challenging tasks are recommended to measure differences in postural stability between injured and non-injured players. Therefore, the dynamic stability index (DSI) was

  6. Dynamic voltage stability constrained congestion management framework for deregulated electricity markets

    International Nuclear Information System (INIS)

    Amjady, Nima; Hakimi, Mahmood

    2012-01-01

    Highlights: ► A new congestion management method for electricity markets is proposed. ► The proposed method includes dynamic models of generators and loads. ► Dynamic voltage stability limits are properly modeled in the proposed method. ► The proposed method is compared with several other congestion management methods. ► It leads to a more robust power system with a lower congestion management cost. - Abstract: Congestion management is an important part of power system operation in today deregulated electricity markets. However, congestion management is traditionally performed based on static analysis tools, while these tools may not correctly capture dynamic voltage stability limits of a power system. In this paper, a new congestion management framework considering dynamic voltage stability boundary of power system is proposed. For this purpose, precise dynamic modeling of power system equipment, including generators and loads, is incorporated into the proposed congestion management framework. The proposed method alleviates congestion with a lower congestion management cost and more dynamic voltage stability margin, resulting in a more robust power system, compared with the previous congestion management methods. The validity of proposed congestion management framework is studied based on the New England 39-bus power system. The obtained results confirm the validity of the developed approach.

  7. On the dynamics of turbulent transport near marginal stability

    International Nuclear Information System (INIS)

    Diamond, P.H.; Hahm, T.S.

    1995-03-01

    A general methodology for describing the dynamics of transport near marginal stability is formulated. Marginal stability is a special case of the more general phenomenon of self-organized criticality. Simple, one field models of the dynamics of tokamak plasma self-organized criticality have been constructed, and include relevant features such as sheared mean flow and transport bifurcations. In such models, slow mode (i.e. large scale, low frequency transport events) correlation times determine the behavior of transport dynamics near marginal stability. To illustrate this, impulse response scaling exponents (z) and turbulent diffusivities (D) have been calculated for the minimal (Burgers) and sheared flow models. For the minimal model, z = 1 (indicating ballastic propagation) and D ∼(S 0 2 ) 1/3 , where S 0 2 is the noise strength. With an identically structured noise spectrum and flow with shearing rate exceeding the ambient decorrelation rate for the largest scale transport events, diffusion is recovered with z = 2 and D ∼ (S 0 2 ) 3/5 . This indicates a qualitative change in the dynamics, as well as a reduction in losses. These results are consistent with recent findings from ρ scaling scans. Several tokamak transport experiments are suggested

  8. Obesity May Not Induce Dynamic Stability Disadvantage during Overground Walking among Young Adults.

    Science.gov (United States)

    Liu, Zhong-Qi; Yang, Feng

    2017-01-01

    Obesity has been related to postural instability during static standing. It remains unknown how obesity influences stability during dynamic movements like gait. The primary aim of this study was to investigate the effects of obesity on dynamic gait stability control in young adults during gait. Forty-four young adults (21 normal-weight and 23 obese) participated in this study. Participants walked five times at their self-selected gait speeds on a linear walkway. Their full-body kinematics were gathered by a motion capture system. Compared with normal-weight group, individuals with obesity walked more slowly with a shorter but wider step. People with obesity also spent an elongated double stance phase than those with normal weight. A reduced gait speed decreases the body center of mass's velocity relative to the base of support, leading to a reduction in dynamic stability. On the other hand, a shortened step in accompanying with a less backward-leaning trunk has the potential to bring the center of mass closer to the base of support, resulting in an increase in dynamic stability. As the result of these adaptive changes to the gait pattern, dynamic gait stability among people with obesity did not significantly differ from the one among people with normal weight. Obesity seems to not be inducing dynamic stability disadvantage in young adults during level overground walking. These findings could provide insight into the mechanisms of stability control among people affected by obesity during dynamic locomotion.

  9. Vehicle lateral dynamics stabilization using active suspension

    Directory of Open Access Journals (Sweden)

    Drobný V.

    2008-12-01

    Full Text Available The paper deals with the investigation of active nonlinear suspension control in order to stabilize the lateral vehicle motion in similar way as systems like ESP do. The lateral stabilization of vehicle based on braking forces can be alternatively provided by the different setting of suspension forces. The basis of this control is the nonlinear property of the tyres. The vehicle has at least four wheels and it gives one or more redundant vertical forces that can be used for the different distribution of vertical suspension forces in such a way that resulting lateral and/or longitudinal forces create the required correction moment for lateral dynamic vehicle stabilization.

  10. Effect of soil stabilized by cement on dynamic response of machine foundations

    Directory of Open Access Journals (Sweden)

    Al-Wakel Saad

    2018-01-01

    Full Text Available Machine foundations require significant attention from designers. The main goal of the design of machine foundation is to limit the amplitude displacement and not disturb the people who work near the machine. In some cases, if the design of machine foundations does not satisfy the acceptable value of the dynamic response (such as maximum amplitude of displacement, the stabilization of soil under the machine foundation may be used to decrease the amplitude of displacement. This paper outlines effect of stabilized soil under the foundation by cement on the displacement response of machine foundations. Three-dimensional analyses by using finite element method are carried out to investigate the effect of depth of stabilized layer with different percentage of cement content on the dynamic response of the machine foundation. In addition, the effect of area stabilized by cement material on the dynamic response of machine foundation is investigated. The results shown that, the dynamic response of machine foundations generally decreases with increasing the depth of soil layer stabilized with cement. A significant decrease in the displacement of machine foundations is occurred for the stabilized soil layer with a depth of two times of the width of foundation, and the optimum percentage of cement for stabilizing is 6%.

  11. Dynamical behavior and Jacobi stability analysis of wound strings

    Science.gov (United States)

    Lake, Matthew J.; Harko, Tiberiu

    2016-06-01

    We numerically solve the equations of motion (EOM) for two models of circular cosmic string loops with windings in a simply connected internal space. Since the windings cannot be topologically stabilized, stability must be achieved (if at all) dynamically. As toy models for realistic compactifications, we consider windings on a small section of mathbb {R}^2, which is valid as an approximation to any simply connected internal manifold if the winding radius is sufficiently small, and windings on an S^2 of constant radius mathcal {R}. We then use Kosambi-Cartan-Chern (KCC) theory to analyze the Jacobi stability of the string equations and determine bounds on the physical parameters that ensure dynamical stability of the windings. We find that, for the same initial conditions, the curvature and topology of the internal space have nontrivial effects on the microscopic behavior of the string in the higher dimensions, but that the macroscopic behavior is remarkably insensitive to the details of the motion in the compact space. This suggests that higher-dimensional signatures may be extremely difficult to detect in the effective (3+1)-dimensional dynamics of strings compactified on an internal space, even if configurations with nontrivial windings persist over long time periods.

  12. Dynamical behavior and Jacobi stability analysis of wound strings

    Energy Technology Data Exchange (ETDEWEB)

    Lake, Matthew J. [Naresuan University, The Institute for Fundamental Study, ' ' The Tah Poe Academia Institute' ' , Phitsanulok (Thailand); Thailand Center of Excellence in Physics, Ministry of Education, Bangkok (Thailand); Harko, Tiberiu [Babes-Bolyai University, Department of Physics, Cluj-Napoca (Romania); University College London, Department of Mathematics, London (United Kingdom)

    2016-06-15

    We numerically solve the equations of motion (EOM) for two models of circular cosmic string loops with windings in a simply connected internal space. Since the windings cannot be topologically stabilized, stability must be achieved (if at all) dynamically. As toy models for realistic compactifications, we consider windings on a small section of R{sup 2}, which is valid as an approximation to any simply connected internal manifold if the winding radius is sufficiently small, and windings on an S{sup 2} of constant radius R. We then use Kosambi-Cartan-Chern (KCC) theory to analyze the Jacobi stability of the string equations and determine bounds on the physical parameters that ensure dynamical stability of the windings. We find that, for the same initial conditions, the curvature and topology of the internal space have nontrivial effects on the microscopic behavior of the string in the higher dimensions, but that the macroscopic behavior is remarkably insensitive to the details of the motion in the compact space. This suggests that higher-dimensional signatures may be extremely difficult to detect in the effective (3+1)-dimensional dynamics of strings compactified on an internal space, even if configurations with nontrivial windings persist over long time periods. (orig.)

  13. Dynamic stabilization of the imploding-shell Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Boris, J.P.

    1977-01-01

    A method for dynamic stabilization of the Rayleigh-Taylor (R-T) instability on the surface of an imploding fusion pellet is discussed. The driving laser beams are modulated in intensity so the ablation layer is subject to a rapidly and strongly oscillating acceleration. A substantial band of the Rayleigh-Taylor instability spectrum can be stabilized by this oscillation even though the time average acceleration vector lies in the destabilizing direction. By adjusting the frequency, structure, and amplitude of the modulation, the band of dynamically stabilized modes can be made to include the most unstable and dangerous modes. Thus considerably higher aspect ratio shells (i.e., thinner shells) could implode successfully than had been previously considered stable enough. Both theory and numerical simulations support this conclusion for the case of laser-driven pellet implosions. Similar modulation via transverse beam oscillations or parallel bunching should also work to stabilize the most dangerous surface Rayleigh-Taylor modes in relativistic electron-, ion- and heavy ion-pellet fusion schemes. (U.K.)

  14. Dynamic stability of self-similar solutions for a plasma pinch

    International Nuclear Information System (INIS)

    Ma, Sifeng.

    1988-01-01

    Linear Magnetohydrodynamic (MHD) stability theory is applied to a class of self-similar solutions which describe implosion, expansion and oscillation of an infinitely conducting plasma column. The equations of perturbation are derived in the Lagrangian coordinate system. Numerical procedures via the finite-element method are formulated, and general aspects of dynamic stability are discussed, The dynamic stability of the column when it is oscillatory is studied in detail using the Floquet theory, and the characteristic exponent is calculated numerically. A-pinch configuration is examined. It is found that self-similar oscillations in general destabilize the continua in the MHD spectrum, and parametric instability results

  15. Dynamic stability of a seaplane in takeoff

    CSIR Research Space (South Africa)

    Dala, L

    2015-01-01

    Full Text Available This research is based on the investigation into the dynamic stability associated with seaplanes during take-off. Various forces acting on a hydroplaning hull form have been empirically defined. Such empirical data have shown that under a certain...

  16. Combined analytical and numerical approaches in Dynamic Stability analyses of engineering systems

    Science.gov (United States)

    Náprstek, Jiří

    2015-03-01

    Dynamic Stability is a widely studied area that has attracted many researchers from various disciplines. Although Dynamic Stability is usually associated with mechanics, theoretical physics or other natural and technical disciplines, it is also relevant to social, economic, and philosophical areas of our lives. Therefore, it is useful to occasionally highlight the general aspects of this amazing area, to present some relevant examples and to evaluate its position among the various branches of Rational Mechanics. From this perspective, the aim of this study is to present a brief review concerning the Dynamic Stability problem, its basic definitions and principles, important phenomena, research motivations and applications in engineering. The relationships with relevant systems that are prone to stability loss (encountered in other areas such as physics, other natural sciences and engineering) are also noted. The theoretical background, which is applicable to many disciplines, is presented. In this paper, the most frequently used Dynamic Stability analysis methods are presented in relation to individual dynamic systems that are widely discussed in various engineering branches. In particular, the Lyapunov function and exponent procedures, Routh-Hurwitz, Liénard, and other theorems are outlined together with demonstrations. The possibilities for analytical and numerical procedures are mentioned together with possible feedback from experimental research and testing. The strengths and shortcomings of these approaches are evaluated together with examples of their effective complementing of each other. The systems that are widely encountered in engineering are presented in the form of mathematical models. The analyses of their Dynamic Stability and post-critical behaviour are also presented. The stability limits, bifurcation points, quasi-periodic response processes and chaotic regimes are discussed. The limit cycle existence and stability are examined together with their

  17. Deciphering the imprint of topology on nonlinear dynamical network stability

    International Nuclear Information System (INIS)

    Nitzbon, J; Schultz, P; Heitzig, J; Kurths, J; Hellmann, F

    2017-01-01

    Coupled oscillator networks show complex interrelations between topological characteristics of the network and the nonlinear stability of single nodes with respect to large but realistic perturbations. We extend previous results on these relations by incorporating sampling-based measures of the transient behaviour of the system, its survivability, as well as its asymptotic behaviour, its basin stability. By combining basin stability and survivability we uncover novel, previously unknown asymptotic states with solitary, desynchronized oscillators which are rotating with a frequency different from their natural one. They occur almost exclusively after perturbations at nodes with specific topological properties. More generally we confirm and significantly refine the results on the distinguished role tree-shaped appendices play for nonlinear stability. We find a topological classification scheme for nodes located in such appendices, that exactly separates them according to their stability properties, thus establishing a strong link between topology and dynamics. Hence, the results can be used for the identification of vulnerable nodes in power grids or other coupled oscillator networks. From this classification we can derive general design principles for resilient power grids. We find that striving for homogeneous network topologies facilitates a better performance in terms of nonlinear dynamical network stability. While the employed second-order Kuramoto-like model is parametrised to be representative for power grids, we expect these insights to transfer to other critical infrastructure systems or complex network dynamics appearing in various other fields. (paper)

  18. Dynamics and Stability of Permanent-Magnet Synchronous Motor

    OpenAIRE

    He, Ren; Han, Qingzhen

    2017-01-01

    The aim of this article is to explore the dynamic characteristics and stability of the permanent-magnet synchronous motor (PMSM). PMSM equilibrium local stability condition and Hopf  bifurcation condition, pitchfork bifurcation condition, and fold bifurcation condition have been derived by using the Routh-Hurwitz criterion and the bifurcation theory, respectively. Bifurcation curves of the equilibrium with single and double parameters are obtained by continuation method. Numerical simulations...

  19. Standard representation and unified stability analysis for dynamic artificial neural network models.

    Science.gov (United States)

    Kim, Kwang-Ki K; Patrón, Ernesto Ríos; Braatz, Richard D

    2018-02-01

    An overview is provided of dynamic artificial neural network models (DANNs) for nonlinear dynamical system identification and control problems, and convex stability conditions are proposed that are less conservative than past results. The three most popular classes of dynamic artificial neural network models are described, with their mathematical representations and architectures followed by transformations based on their block diagrams that are convenient for stability and performance analyses. Classes of nonlinear dynamical systems that are universally approximated by such models are characterized, which include rigorous upper bounds on the approximation errors. A unified framework and linear matrix inequality-based stability conditions are described for different classes of dynamic artificial neural network models that take additional information into account such as local slope restrictions and whether the nonlinearities within the DANNs are odd. A theoretical example shows reduced conservatism obtained by the conditions. Copyright © 2017. Published by Elsevier Ltd.

  20. Stability of nanofluids: Molecular dynamic approach and experimental study

    International Nuclear Information System (INIS)

    Farzaneh, H.; Behzadmehr, A.; Yaghoubi, M.; Samimi, A.; Sarvari, S.M.H.

    2016-01-01

    Highlights: • Nanofluid stability is investigated and discussed. • A molecular dynamic approach, considering different forces on the nanoparticles, is adopted. • Stability diagrams are presented for different thermo-fluid conditions. • An experimental investigation is carried out to confirm the theoretical approach. - Abstract: Nanofluids as volumetric absorbent in solar energy conversion devices or as working fluid in different heat exchangers have been proposed by various researchers. However, dispersion stability of nanofluids is an important issue that must be well addressed before any industrial applications. Conditions such as severe temperature gradient, high temperature of heat transfer fluid, nanoparticle mean diameters and types of nanoparticles and base fluid are among the most effective parameters on the stability of nanofluid. A molecular dynamic approach, considering kinetic energy of nanoparticles and DLVO potential energy between nanoparticles, is adopted to study the nanofluid stability for different nanofluids at different working conditions. Different forces such as Brownian, thermophoresis, drag and DLVO are considered to introduce the stability diagrams. The latter presents the conditions for which a nanofluid can be stable. In addition an experimental investigation is carried out to find a stable nanofluid and to show the validity of the theoretical approach. There is a good agreement between the experimental and theoretical results that confirms the validity of our theoretical approach.

  1. Molecular dynamics study of thermodynamic stability and dynamics of [Li(glyme)]+ complex in lithium-glyme solvate ionic liquids

    Science.gov (United States)

    Shinoda, Wataru; Hatanaka, Yuta; Hirakawa, Masashi; Okazaki, Susumu; Tsuzuki, Seiji; Ueno, Kazuhide; Watanabe, Masayoshi

    2018-05-01

    Equimolar mixtures of glymes and organic lithium salts are known to produce solvate ionic liquids, in which the stability of the [Li(glyme)]+ complex plays an important role in determining the ionic dynamics. Since these mixtures have attractive physicochemical properties for application as electrolytes, it is important to understand the dependence of the stability of the [Li(glyme)]+ complex on the ion dynamics. A series of microsecond molecular dynamics simulations has been conducted to investigate the dynamic properties of these solvate ionic liquids. Successful solvate ionic liquids with high stability of the [Li(glyme)]+ complex have been shown to have enhanced ion dynamics. Li-glyme pair exchange rarely occurs: its characteristic time is longer than that of ion diffusion by one or two orders of magnitude. Li-glyme pair exchange most likely occurs through cluster formation involving multiple [Li(glyme)]+ pairs. In this process, multiple exchanges likely take place in a concerted manner without the production of energetically unfavorable free glyme or free Li+ ions.

  2. On D-brane dynamics and moduli stabilization

    Science.gov (United States)

    Kitazawa, Noriaki

    2017-09-01

    We discuss the effect of the dynamics of D-branes on moduli stabilization in type IIB string theory compactifications, with reference to a concrete toy model of T6/Z 3 orientifold compactification with fractional D3-branes and anti-D3-branes at orbifold fixed points. The resulting attractive forces between anti-D3-branes and D3-branes, together with the repulsive forces between anti-D3-branes and O3-planes, can affect the stability of the compact space. There are no complex structure moduli in T6/Z 3 orientifold, which should thus capture some generic features of more general settings where all complex structure moduli are stabilized by three-form fluxes. The simultaneous presence of branes and anti-branes brings along the breaking of supersymmetry. Non-BPS combinations of this type are typical of “brane supersymmetry breaking” and are a necessary ingredient in the KKLT scenario for stabilizing the remaining Kähler moduli. The conclusion of our analysis is that, while mutual D-brane interactions sometimes help Kähler moduli stabilization, this is not always the case.

  3. Stability Analysis on Sparsely Encoded Associative Memory with Short-Term Synaptic Dynamics

    Science.gov (United States)

    Xu, Muyuan; Katori, Yuichi; Aihara, Kazuyuki

    This study investigates the stability of sparsely encoded associative memory in a network composed of stochastic neurons. The incorporation of short-term synaptic dynamics significantly changes the stability with respect to synaptic properties. Various states including static and oscillatory states are found in the network dynamics. Specifically, the sparseness of memory patterns raises the problem of spurious states. A mean field model is used to analyze the detailed structure in the stability and show that the performance of memory retrieval is recovered by appropriate feedback.

  4. Recent Advances in Heliogyro Solar Sail Structural Dynamics, Stability, and Control Research

    Science.gov (United States)

    Wilkie, W. Keats; Warren, Jerry E.; Horta, Lucas G.; Lyle, Karen H.; Juang, Jer-Nan; Gibbs, S. Chad; Dowell, Earl H.; Guerrant, Daniel V.; Lawrence, Dale

    2015-01-01

    Results from recent NASA sponsored research on the structural dynamics, stability, and control characteristics of heliogyro solar sails are summarized. Specific areas under investigation include coupled nonlinear finite element analysis of heliogyro membrane blade with solar radiation pressure effects, system identification of spinning membrane structures, and solarelastic stability analysis of heliogyro solar sails, including stability during blade deployment. Recent results from terrestrial 1-g blade dynamics and control experiments on "rope ladder" membrane blade analogs, and small-scale in vacuo system identification experiments with hanging and spinning high-aspect ratio membranes will also be presented. A low-cost, rideshare payload heliogyro technology demonstration mission concept is used as a mission context for these heliogyro structural dynamics and solarelasticity investigations, and is also described. Blade torsional dynamic response and control are also shown to be significantly improved through the use of edge stiffening structural features or inclusion of modest tip masses to increase centrifugal stiffening of the blade structure. An output-only system identification procedure suitable for on-orbit blade dynamics investigations is also developed and validated using ground tests of spinning sub-scale heliogyro blade models. Overall, analytical and experimental investigations to date indicate no intractable stability or control issues for the heliogyro solar sail concept.

  5. Attitude Dynamics and Stability of a Simple Solar Photon Thruster

    Directory of Open Access Journals (Sweden)

    Anna D. Guerman

    2013-01-01

    Full Text Available This paper is dedicated to the development of a model of the attitude dynamics for a nonideal Simple Solar Photon Thruster (SSPT and to the analysis of sailcraft motions with respect to their centre of mass. Derivation of the expressions for force and torque due to solar radiation that is valid for the case, when there is a misalignment of the SSPT axis with the sun direction, is followed by study of sailcraft dynamics and stability properties. Analysis of stability shows that an ideally reflecting sail is unstable, while for a sailcraft with nonideal collector, the symmetry axis is stable with respect to the Sun direction for large variety of system parameters. The motion around symmetry axis is always unstable and requires an active stabilizer.

  6. Learning and Understanding System Stability Using Illustrative Dynamic Texture Examples

    Science.gov (United States)

    Liu, Huaping; Xiao, Wei; Zhao, Hongyan; Sun, Fuchun

    2014-01-01

    System stability is a basic concept in courses on dynamic system analysis and control for undergraduate students with computer science backgrounds. Typically, this was taught using a simple simulation example of an inverted pendulum. Unfortunately, many difficult issues arise in the learning and understanding of the concepts of stability,…

  7. Trait diversity promotes stability of community dynamics

    DEFF Research Database (Denmark)

    Zhang, Lai; Thygesen, Uffe Høgsbro; Knudsen, Kim

    2013-01-01

    body size. The dynamic properties of the models are described by a stability analysis of equilibrium solutions and by the non-equilibrium dynamics. We find that the introduction of trait diversity expands the set of parameters for which the equilibrium is stable and, if the community is unstable, makes....... The analysis is performed by comparing the properties of two size spectrum models. The first model considers all individuals as belonging to the same “average” species, i.e., without a description of diversity. The second model introduces diversity by further considering individuals by a trait, here asymptotic...

  8. Assessment of stability during gait in patients with spinal deformity-A preliminary analysis using the dynamic stability margin.

    Science.gov (United States)

    Simon, Anne-Laure; Lugade, Vipul; Bernhardt, Kathie; Larson, A Noelle; Kaufman, Kenton

    2017-06-01

    Daily living activities are dynamic, requiring spinal motion through space. Current assessment of spinal deformities is based on static measurements from full-spine standing radiographs. Tools to assess dynamic stability during gait might be useful to enhance the standard evaluation. The aim of this study was to evaluate gait dynamic imbalance in patients with spinal deformity using the dynamic stability margin (DSM). Twelve normal subjects and 17 patients with spinal deformity were prospectively recruited. A kinematic 3D gait analysis was performed for the control group (CG) and the spinal deformity group (SDG). The DSM (distance between the extrapolated center of mass and the base of support) and time-distance parameters were calculated for the right and left side during gait. The relationship between DSM and step length was assessed using three variables: gait stability, symmetry, and consistency. Variables' accuracy was validated by a discriminant analysis. Patients with spinal deformity exhibited gait instability according to the DSM (0.25m versus 0.31m) with decreased velocity (1.1ms -1 versus 1.3ms -1 ) and decreased step length (0.32m versus 0.38m). According to the discriminant analysis, gait stability was the more accurate variable (area under the curve AUC=0.98) followed by gait symmetry and consistency. However, gait consistency showed 100% of specificity, sensitivity, and accuracy of precision. The DSM showed that patients with spinal malalignment exhibit decreased gait stability, symmetry, and consistency besides gait time-distance parameter changes. Additional work is required to determine how to apply the DSM for preoperative and postoperative spinal deformity management. Copyright © 2017. Published by Elsevier B.V.

  9. Dynamics and Stability of Permanent-Magnet Synchronous Motor

    Directory of Open Access Journals (Sweden)

    Ren He

    2017-01-01

    Full Text Available The aim of this article is to explore the dynamic characteristics and stability of the permanent-magnet synchronous motor (PMSM. PMSM equilibrium local stability condition and Hopf  bifurcation condition, pitchfork bifurcation condition, and fold bifurcation condition have been derived by using the Routh-Hurwitz criterion and the bifurcation theory, respectively. Bifurcation curves of the equilibrium with single and double parameters are obtained by continuation method. Numerical simulations not only confirm the theoretical analysis results but also show one kind of codimension-two-bifurcation points of the equilibrium. PMSM, with or without external load, can exhibit rich dynamic behaviors in different parameters regions. It is shown that if unstable equilibrium appears in the parameters regions, the PMSM may not be able to work stably. To ensure the PMSMs work stably, the inherent parameters should be designed in the region which has only one stable equilibrium.

  10. Stability in dynamical systems I

    International Nuclear Information System (INIS)

    Courant, E.D.; Ruth, R.D.; Weng, W.T.

    1984-08-01

    We have reviewed some of the basic techniques which can be used to analyze stability in nonlinear dynamical systems, particularly in circular particle accelerators. We have concentrated on one-dimensional systems in the examples in order to simply illustrate the general techniques. We began with a review of Hamiltonian dynamics and canonical transformations. We then reviewed linear equations with periodic coefficients using the basic techniques from accelerator theory. To handle nonlinear terms we developed a canonical perturbation theory. From this we calculated invariants and the amplitude dependence of the frequency. This led us to resonances. We studied the cubic resonance in detail by using a rotating coordinate system in phase space. We then considered a general isolated nonlinear resonance. In this case we calculated the width of the resonance and estimated the spacing of resonances in order to use the Chirikov criterion to restrict the validity of the analysis. Finally the resonance equation was reduced to the pendulum equation, and we examined the motion on a separatrix. This brought us to the beginnings of stochastic behavior in the neighborhood of the separatrix. It is this complex behavior in the neighborhood of the separatrix which causes the perturbation theory used here to diverge in many cases. In spite of this the methods developed here have been and are used quite successfully to study nonlinear effects in nearly integrable systems. When used with caution and in conjunction with numerical work they give tremendous insight into the nature of the phase space structure and the stability of nonlinear differential equations. 14 references

  11. Dynamical stability of the holographic system with two competing orders

    Energy Technology Data Exchange (ETDEWEB)

    Du, Yiqiang [School of Physics, University of Chinese Academy of Sciences,Beijing 100049 (China); Lan, Shan-Quan [Department of Physics, Beijing Normal University,Beijing 100875 (China); Tian, Yu [School of Physics, University of Chinese Academy of Sciences,Beijing 100049 (China); State Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Science,Beijing 100190 (China); Zhang, Hongbao [Department of Physics, Beijing Normal University,Beijing 100875 (China); Theoretische Natuurkunde, Vrije Universiteit Brussel and The International Solvay Institutes,Pleinlaan 2, B-1050 Brussels (Belgium)

    2016-01-04

    We investigate the dynamical stability of the holographic system with two order parameters, which exhibits competition and coexistence of condensations. In the linear regime, we have developed the gauge dependent formalism to calculate the quasi-normal modes by gauge fixing, which turns out be considerably convenient. Furthermore, by giving different Gaussian wave packets as perturbations at the initial time, we numerically evolve the full nonlinear system until it arrives at the final equilibrium state. Our results show that the dynamical stability is consistent with the thermodynamical stability. Interestingly, the dynamical evolution, as well as the quasi-normal modes, shows that the relaxation time of this model is generically much longer than the simplest holographic system. We also find that the late time behavior can be well captured by the lowest lying quasi-normal modes except for the non-vanishing order towards the single ordered phase. To our knowledge, this exception is the first counter example to the general belief that the late time behavior towards a final stable state can be captured by the lowest lying quasi-normal modes. In particular, a double relation is found for this exception in certain cases.

  12. Handbook of electrical power system dynamics modeling, stability, and control

    CERN Document Server

    Eremia, Mircea

    2013-01-01

    Complete guidance for understanding electrical power system dynamics and blackouts This handbook offers a comprehensive and up-to-date treatment of power system dynamics. Addressing the full range of topics, from the fundamentals to the latest technologies in modeling, stability, and control, Handbook of Electrical Power System Dynamics provides engineers with hands-on guidance for understanding the phenomena leading to blackouts so they can design the most appropriate solutions for a cost-effective and reliable operation. Focusing on system dynamics, the book details

  13. Adaptive Dynamic Programming for Control Algorithms and Stability

    CERN Document Server

    Zhang, Huaguang; Luo, Yanhong; Wang, Ding

    2013-01-01

    There are many methods of stable controller design for nonlinear systems. In seeking to go beyond the minimum requirement of stability, Adaptive Dynamic Programming for Control approaches the challenging topic of optimal control for nonlinear systems using the tools of  adaptive dynamic programming (ADP). The range of systems treated is extensive; affine, switched, singularly perturbed and time-delay nonlinear systems are discussed as are the uses of neural networks and techniques of value and policy iteration. The text features three main aspects of ADP in which the methods proposed for stabilization and for tracking and games benefit from the incorporation of optimal control methods: • infinite-horizon control for which the difficulty of solving partial differential Hamilton–Jacobi–Bellman equations directly is overcome, and  proof provided that the iterative value function updating sequence converges to the infimum of all the value functions obtained by admissible control law sequences; • finite-...

  14. Designing Inter-Organisational Collectivities for Dynamic Fit: Stability, maneuvrability and Application in Disaster Relief Endeavours

    Science.gov (United States)

    2011-01-01

    changed consumer preferences . Hence, static stability limits initial performance deviation (e.g., maintaining desired airplane altitude, maintaining...by changed consumer preferences . Hence, dynamic stability limits the duration of performance deviation (e.g., maintaining desired airplane altitude...altitude from wind gust. Initial resistance to deviation in profit level from change in consumer preferences . Dynamic stability Quickness of a

  15. Dynamic trunk stabilization: a conceptual back injury prevention program for volleyball athletes.

    Science.gov (United States)

    Smith, Chad E; Nyland, John; Caudill, Paul; Brosky, Joseph; Caborn, David N M

    2008-11-01

    The sport of volleyball creates considerable dynamic trunk stability demands. Back injury occurs all too frequently in volleyball, particularly among female athletes. The purpose of this clinical commentary is to review functional anatomy, muscle coactivation strategies, assessment of trunk muscle performance, and the characteristics of effective exercises for the trunk or core. From this information, a conceptual progressive 3-phase volleyball-specific training program is presented to improve dynamic trunk stability and to potentially reduce the incidence of back injury among volleyball athletes. Phase 1 addresses low-velocity motor control, kinesthetic awareness, and endurance, with the clinician providing cues to teach achievement of biomechanically neutral spine alignment. Phase 2 focuses on progressively higher velocity dynamic multiplanar endurance, coordination, and strength-power challenges integrating upper and lower extremity movements, while maintaining neutral spine alignment. Phase 3 integrates volleyball-specific skill simulations by breaking down composite movement patterns into their component parts, with differing dynamic trunk stability requirements, while maintaining neutral spine alignment. Prospective research is needed to validate the efficacy of this program.

  16. Fast Dynamic Simulation-Based Small Signal Stability Assessment and Control

    Energy Technology Data Exchange (ETDEWEB)

    Acharya, Naresh [General Electric Company, Fairfield, CT (United States); Baone, Chaitanya [General Electric Company, Fairfield, CT (United States); Veda, Santosh [General Electric Company, Fairfield, CT (United States); Dai, Jing [General Electric Company, Fairfield, CT (United States); Chaudhuri, Nilanjan [General Electric Company, Fairfield, CT (United States); Leonardi, Bruno [General Electric Company, Fairfield, CT (United States); Sanches-Gasca, Juan [General Electric Company, Fairfield, CT (United States); Diao, Ruisheng [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wu, Di [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huang, Zhenyu [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhang, Yu [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jin, Shuangshuang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zheng, Bin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chen, Yousu [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-12-31

    Power grid planning and operation decisions are made based on simulation of the dynamic behavior of the system. Enabling substantial energy savings while increasing the reliability of the aging North American power grid through improved utilization of existing transmission assets hinges on the adoption of wide-area measurement systems (WAMS) for power system stabilization. However, adoption of WAMS alone will not suffice if the power system is to reach its full entitlement in stability and reliability. It is necessary to enhance predictability with "faster than real-time" dynamic simulations that will enable the dynamic stability margins, proactive real-time control, and improve grid resiliency to fast time-scale phenomena such as cascading network failures. Present-day dynamic simulations are performed only during offline planning studies, considering only worst case conditions such as summer peak, winter peak days, etc. With widespread deployment of renewable generation, controllable loads, energy storage devices and plug-in hybrid electric vehicles expected in the near future and greater integration of cyber infrastructure (communications, computation and control), monitoring and controlling the dynamic performance of the grid in real-time would become increasingly important. The state-of-the-art dynamic simulation tools have limited computational speed and are not suitable for real-time applications, given the large set of contingency conditions to be evaluated. These tools are optimized for best performance of single-processor computers, but the simulation is still several times slower than real-time due to its computational complexity. With recent significant advances in numerical methods and computational hardware, the expectations have been rising towards more efficient and faster techniques to be implemented in power system simulators. This is a natural expectation, given that the core solution algorithms of most commercial simulators were developed

  17. Dynamic Stability of Pipe Conveying Fluid with Crack and Attached Masses

    International Nuclear Information System (INIS)

    Ahn, Tae Soo; Yoon, Han Ik; Son, In Soo; Ahn, Sung Jin

    2007-01-01

    In this paper, the dynamic stability of a cracked simply supported pipe conveying fluid with an attached mass is investigated. Also, the effect of attached masses on the dynamic stability of a simply supported pipe conveying fluid is presented for the different positions and depth of the crack. Based on the Euler-Bernoulli beam theory, the equation of motion can be constructed by the energy expressions using extended Hamilton's principle. The crack section is represented by a local flexibility matrix connecting two undamaged pipe segments. The crack is assumed to be in the first mode of a fracture and to be always opened during the vibrations. Finally, the critical flow velocities and stability maps of the pipe conveying fluid are obtained by changing the attached masses and crack severity

  18. Differentiable dynamical systems an introduction to structural stability and hyperbolicity

    CERN Document Server

    Wen, Lan

    2016-01-01

    This is a graduate text in differentiable dynamical systems. It focuses on structural stability and hyperbolicity, a topic that is central to the field. Starting with the basic concepts of dynamical systems, analyzing the historic systems of the Smale horseshoe, Anosov toral automorphisms, and the solenoid attractor, the book develops the hyperbolic theory first for hyperbolic fixed points and then for general hyperbolic sets. The problems of stable manifolds, structural stability, and shadowing property are investigated, which lead to a highlight of the book, the \\Omega-stability theorem of Smale. While the content is rather standard, a key objective of the book is to present a thorough treatment for some tough material that has remained an obstacle to teaching and learning the subject matter. The treatment is straightforward and hence could be particularly suitable for self-study. Selected solutions are available electronically for instructors only. Please send email to textbooks@ams.org for more informatio...

  19. Stabilization of computational procedures for constrained dynamical systems

    Science.gov (United States)

    Park, K. C.; Chiou, J. C.

    1988-01-01

    A new stabilization method of treating constraints in multibody dynamical systems is presented. By tailoring a penalty form of the constraint equations, the method achieves stabilization without artificial damping and yields a companion matrix differential equation for the constraint forces; hence, the constraint forces are obtained by integrating the companion differential equation for the constraint forces in time. A principal feature of the method is that the errors committed in each constraint condition decay with its corresponding characteristic time scale associated with its constraint force. Numerical experiments indicate that the method yields a marked improvement over existing techniques.

  20. Local Dynamic Stability Assessment of Motion Impaired Elderly Using Electronic Textile Pants.

    Science.gov (United States)

    Liu, Jian; Lockhart, Thurmon E; Jones, Mark; Martin, Tom

    2008-10-01

    A clear association has been demonstrated between gait stability and falls in the elderly. Integration of wearable computing and human dynamic stability measures into home automation systems may help differentiate fall-prone individuals in a residential environment. The objective of the current study was to evaluate the capability of a pair of electronic textile (e-textile) pants system to assess local dynamic stability and to differentiate motion-impaired elderly from their healthy counterparts. A pair of e-textile pants comprised of numerous e-TAGs at locations corresponding to lower extremity joints was developed to collect acceleration, angular velocity and piezoelectric data. Four motion-impaired elderly together with nine healthy individuals (both young and old) participated in treadmill walking with a motion capture system simultaneously collecting kinematic data. Local dynamic stability, characterized by maximum Lyapunov exponent, was computed based on vertical acceleration and angular velocity at lower extremity joints for the measurements from both e-textile and motion capture systems. Results indicated that the motion-impaired elderly had significantly higher maximum Lyapunov exponents (computed from vertical acceleration data) than healthy individuals at the right ankle and hip joints. In addition, maximum Lyapunov exponents assessed by the motion capture system were found to be significantly higher than those assessed by the e-textile system. Despite the difference between these measurement techniques, attaching accelerometers at the ankle and hip joints was shown to be an effective sensor configuration. It was concluded that the e-textile pants system, via dynamic stability assessment, has the potential to identify motion-impaired elderly.

  1. Investigation of biomechanical behavior of lumbar vertebral segments with dynamic stabilization device using finite element approach

    Science.gov (United States)

    Deoghare, Ashish B.; Kashyap, Siddharth; Padole, Pramod M.

    2013-03-01

    Degenerative disc disease is a major source of lower back pain and significantly alters the biomechanics of the lumbar spine. Dynamic stabilization device is a remedial technique which uses flexible materials to stabilize the affected lumbar region while preserving the natural anatomy of the spine. The main objective of this research work is to investigate the stiffness variation of dynamic stabilization device under various loading conditions under compression, axial rotation and flexion. Three dimensional model of the two segment lumbar spine is developed using computed tomography (CT) scan images. The lumbar structure developed is analyzed in ANSYS workbench. Two types of dynamic stabilization are considered: one with stabilizing device as pedicle instrumentation and second with stabilization device inserted around the inter-vertebral disc. Analysis suggests that proper positioning of the dynamic stabilization device is of paramount significance prior to the surgery. Inserting the device in the posterior region indicates the adverse effects as it shows increase in the deformation of the inter-vertebral disc. Analysis executed by positioning stabilizing device around the inter-vertebral disc yields better result for various stiffness values under compression and other loadings. [Figure not available: see fulltext.

  2. Dynamic large eddy simulation: Stability via realizability

    Science.gov (United States)

    Mokhtarpoor, Reza; Heinz, Stefan

    2017-10-01

    The concept of dynamic large eddy simulation (LES) is highly attractive: such methods can dynamically adjust to changing flow conditions, which is known to be highly beneficial. For example, this avoids the use of empirical, case dependent approximations (like damping functions). Ideally, dynamic LES should be local in physical space (without involving artificial clipping parameters), and it should be stable for a wide range of simulation time steps, Reynolds numbers, and numerical schemes. These properties are not trivial, but dynamic LES suffers from such problems over decades. We address these questions by performing dynamic LES of periodic hill flow including separation at a high Reynolds number Re = 37 000. For the case considered, the main result of our studies is that it is possible to design LES that has the desired properties. It requires physical consistency: a PDF-realizable and stress-realizable LES model, which requires the inclusion of the turbulent kinetic energy in the LES calculation. LES models that do not honor such physical consistency can become unstable. We do not find support for the previous assumption that long-term correlations of negative dynamic model parameters are responsible for instability. Instead, we concluded that instability is caused by the stable spatial organization of significant unphysical states, which are represented by wall-type gradient streaks of the standard deviation of the dynamic model parameter. The applicability of our realizability stabilization to other dynamic models (including the dynamic Smagorinsky model) is discussed.

  3. Cognitive-motor dual-task interference modulates mediolateral dynamic stability during gait in post-stroke individuals.

    Science.gov (United States)

    Tisserand, R; Armand, S; Allali, G; Schnider, A; Baillieul, S

    2018-04-01

    Gait asymmetry and dynamic balance impairments observed in post-stroke individuals increase their risk of fall. Moreover, walking while performing a cognitive task (i.e. dual-task) disturbs the control of balance in post-stroke individuals. Here we investigated the mediolateral dynamic stability in twenty-two community-dwelling participants (12 post-strokes and 10 healthy controls) while walking in single-task (normal gait) and four different dual-tasks (cognitive-motor interference). Positions of the extrapolated center of mass and mediolateral widths of both margin of stability and base of support were extracted from 35 marker trajectories. Post-stroke participants presented larger margin of stability and base of support than controls during single-task (both p dual-task was found between groups. In post-stroke participants, dual-task induced slight modification of the mediolateral stability strategy, as the margin of stability was not different between the two limbs at foot-strike, and significantly reduced the performance in every cognitive task. Post-stroke participants increased their dynamic stability in the frontal plane in single-task by extending their base of support and mainly relying on their non-paretic limb. Under cognitive-motor interference (dual-task), post-stroke participants prioritized dynamic stability over cognitive performance to ensure a safe locomotion. Thus, rehabilitation programs should consider both dynamic balance and dual-task training, even at a chronic delay following stroke, to reduce the risk of fall in post-stroke individuals. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. The validity and reliability of a dynamic neuromuscular stabilization-heel sliding test for core stability.

    Science.gov (United States)

    Cha, Young Joo; Lee, Jae Jin; Kim, Do Hyun; You, Joshua Sung H

    2017-10-23

    Core stabilization plays an important role in the regulation of postural stability. To overcome shortcomings associated with pain and severe core instability during conventional core stabilization tests, we recently developed the dynamic neuromuscular stabilization-based heel sliding (DNS-HS) test. The purpose of this study was to establish the criterion validity and test-retest reliability of the novel DNS-HS test. Twenty young adults with core instability completed both the bilateral straight leg lowering test (BSLLT) and DNS-HS test for the criterion validity study and repeated the DNS-HS test for the test-retest reliability study. Criterion validity was determined by comparing hip joint angle data that were obtained from BSLLT and DNS-HS measures. The test-retest reliability was determined by comparing hip joint angle data. Criterion validity was (ICC2,3) = 0.700 (preliability was (ICC3,3) = 0.953 (pvalidity data demonstrated a good relationship between the gold standard BSLLT and DNS-HS core stability measures. Test-retest reliability data suggests that DNS-HS core stability was a reliable test for core stability. Clinically, the DNS-HS test is useful to objectively quantify core instability and allow early detection and evaluation.

  5. Chromatin dynamics in genome stability

    DEFF Research Database (Denmark)

    Nair, Nidhi; Shoaib, Muhammad; Sørensen, Claus Storgaard

    2017-01-01

    Genomic DNA is compacted into chromatin through packaging with histone and non-histone proteins. Importantly, DNA accessibility is dynamically regulated to ensure genome stability. This is exemplified in the response to DNA damage where chromatin relaxation near genomic lesions serves to promote...... access of relevant enzymes to specific DNA regions for signaling and repair. Furthermore, recent data highlight genome maintenance roles of chromatin through the regulation of endogenous DNA-templated processes including transcription and replication. Here, we review research that shows the importance...... of chromatin structure regulation in maintaining genome integrity by multiple mechanisms including facilitating DNA repair and directly suppressing endogenous DNA damage....

  6. Guidelines for Computing Longitudinal Dynamic Stability Characteristics of a Subsonic Transport

    Science.gov (United States)

    Thompson, Joseph R.; Frank, Neal T.; Murphy, Patrick C.

    2010-01-01

    A systematic study is presented to guide the selection of a numerical solution strategy for URANS computation of a subsonic transport configuration undergoing simulated forced oscillation about its pitch axis. Forced oscillation is central to the prevalent wind tunnel methodology for quantifying aircraft dynamic stability derivatives from force and moment coefficients, which is the ultimate goal for the computational simulations. Extensive computations are performed that lead in key insights of the critical numerical parameters affecting solution convergence. A preliminary linear harmonic analysis is included to demonstrate the potential of extracting dynamic stability derivatives from computational solutions.

  7. Comparison of dynamic postural stability scores between athletes with and without chronic ankle instability during lateral jump landing.

    Science.gov (United States)

    Shiravi, Zeinab; Shadmehr, Azadeh; Moghadam, Saeed Talebian; Moghadam, Behrouz Attarbashi

    2017-01-01

    Many ankle injuries occur while participating in sports that require jumping and landing such as basketball, volleyball and soccer. Most recent studies have investigated dynamic postural stability of patients with chronic ankle instability after landing from a forward jump. The present study aimed to investigate the dynamic postural stability of the athletes who suffer from chronic ankle sprain while landing from a lateral jump. Twelve athletes with self-reported unilateral chronic ankle instability (4 females and 8 males) and 12 matched controls (3 females and 9 males) voluntarily participated in the study. Dynamic postural stability index and its directional indices were measured while performing lateral jump landing test. No differences were found between athletes with and without chronic ankle instability during our landing protocol by means of the dynamic postural stability index and its directional indices. Findings showed that in each group, medial/lateral stability index is significantly higher than anterior/posterior and vertical stability indexes. Findings showed that dynamic postural stability was not significantly different between the two groups. Future studies should examine chronic ankle instability patients with more severe disabilities and expose them to more challenging dynamic balance conditions to further explore postural stability. IIIa.

  8. Stability theory for dynamic equations on time scales

    CERN Document Server

    Martynyuk, Anatoly A

    2016-01-01

    This monograph is a first in the world to present three approaches for stability analysis of solutions of dynamic equations. The first approach is based on the application of dynamic integral inequalities and the fundamental matrix of solutions of linear approximation of dynamic equations. The second is based on the generalization of the direct Lyapunovs method for equations on time scales, using scalar, vector and matrix-valued auxiliary functions. The third approach is the application of auxiliary functions (scalar, vector, or matrix-valued ones) in combination with differential dynamic inequalities. This is an alternative comparison method, developed for time continuous and time discrete systems. In recent decades, automatic control theory in the study of air- and spacecraft dynamics and in other areas of modern applied mathematics has encountered problems in the analysis of the behavior of solutions of time continuous-discrete linear and/or nonlinear equations of perturbed motion. In the book “Men of Ma...

  9. Dynamical stability of slip-stacking particles

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffrey; Zwaska, Robert

    2014-09-01

    We study the stability of particles in slip-stacking configuration, used to nearly double proton beam intensity at Fermilab. We introduce universal area factors to calculate the available phase space area for any set of beam parameters without individual simulation. We find perturbative solutions for stable particle trajectories. We establish Booster beam quality requirements to achieve 97% slip-stacking efficiency. We show that slip-stacking dynamics directly correspond to the driven pendulum and to the system of two standing-wave traps moving with respect to each other.

  10. BWR stability using a reducing dynamical model

    International Nuclear Information System (INIS)

    Ballestrin Bolea, J. M.; Blazquez Martinez, J. B.

    1990-01-01

    BWR stability can be treated with reduced order dynamical models. When the parameters of the model came from dynamical models. When the parameters of the model came from experimental data, the predictions are accurate. In this work an alternative derivation for the void fraction equation is made, but remarking the physical structure of the parameters. As the poles of power/reactivity transfer function are related with the parameters, the measurement of the poles by other techniques such as noise analysis will lead to the parameters, but the system of equations is non-linear. Simple parametric calculation of decay ratio are performed, showing why BWRs become unstable when they are operated at low flow and high power. (Author)

  11. Dynamic Characteristics Analysis and Stabilization of PV-Based Multiple Microgrid Clusters

    DEFF Research Database (Denmark)

    Zhao, Zhuoli; Yang, Ping; Wang, Yuewu

    2018-01-01

    -based multiple microgrid clusters. A detailed small-signal model for PV-based microgrid clusters considering local adaptive dynamic droop control mechanism of the voltage-source PV system is developed. The complete dynamic model is then used to access and compare the dynamic characteristics of the single...... microgrid and interconnected microgrids. In order to enhance system stability of the PV microgrid clusters, a tie-line flow and stabilization strategy is proposed to suppress the introduced interarea and local oscillations. Robustly selecting of the key control parameters is transformed to a multiobjective......As the penetration of PV generation increases, there is a growing operational demand on PV systems to participate in microgrid frequency regulation. It is expected that future distribution systems will consist of multiple microgrid clusters. However, interconnecting PV microgrids may lead to system...

  12. The Effect of the Loading on Dynamic Stability and Scapular Asymmetry

    Directory of Open Access Journals (Sweden)

    Mohammad Hassan Azarsa

    2014-03-01

    Full Text Available Background: Scapular stabilization and neuromuscular control provide an important parameter to characterize shoulder function during dynamic activities. Many studies have confirmed the effect of the loading on scapular position and scapulohumeral rhythm. Therefore, the evaluation of stabilizer muscles involvement in scapular asymmetry may assist in the development of clinical examination and rehabilitation program. The aim of this study was to evaluate the effect of loading on dynamic stability and scapular asymmetry in basketball players. Methods: Thirty healthy male basketball players aged between 20 to 31 years old were tested. The linear distance between scapular inferior angle and T7 spinous process was measured using a caliper in 90 degrees of unloaded scaption and with 1, 2 and 4 kg loading. The difference of distances of two sides in the above 4 positions was analyzed. Results: The amount of distances difference in two sides with 1 kg loading was minimal (9.36 mm. This difference increased to 10.19 mm and 12.22 mm, with increasing the loading to 2 and 4 kg respectively; although the 4 positions of the test did not show significant differences in distances difference (P>0.05. Conclusion: This study shows that dynamic stability of the scapula is dependent on the role of muscles, so that with increasing load on the muscles, the scapular asymmetry is more pronounced.

  13. Use efficiency of dynamic stabilizer in the post-repair period of railways in Ukraine

    Directory of Open Access Journals (Sweden)

    O.V. Gubar

    2013-08-01

    Full Text Available Purpose. To analyze the interaction forces of the track and rolling stock at application of dynamic stabilizers, as well as the determination of the area, on which the track stabilization is necessary not only according to the technical indices but also according to the economic ones. Methodology.To achieve the research purpose the methods of analysis of material flows, peculiar to the places that need applications of dynamic stabilizers on railway transport tracks are used. Findings. Researches of relatively economic efficiency of dynamic stabilizers application, which were conducted by scientists during the last years, do not spread to comparison of cost of works on the track stabilizing and losses of railway for period of running. During the running period the trains move with a limited speed that causes corresponding financial losses. Speed limitation result in the both the motion time increase and in some occasions in the heavy consumption of fuel and energy resources. The more intensive track discord and expenses increase for its maintenance are observed in the sections of braking and acceleration immediately in front of and after the areas of limitation. The methodology relative to the estimation of economic efficiency of dynamic stabilizers application after completion of track repairs for the areas of Ukrainian railways with different operational conditions was developed. This methodology includes the losses calculation of railroad, which are predefined by extra motion time, heavy consumption of fuel and energy resources and charges for current maintenance. Originality. The methodology of cost effectiveness evaluating of the dynamic stabilizers application in the post-repair period was developed. Such an approach would allow one to take the rational decisions taking into account the features of the track sections, which were reconstructed. Practical value. The obtained results will rationally assign the works on the dynamic track

  14. Radio galaxies radiation transfer, dynamics, stability and evolution of a synchrotron plasmon

    CERN Document Server

    Pacholczyk, A G

    1977-01-01

    Radio Galaxies: Radiation Transfer, Dynamics, Stability and Evolution of a Synchrotron Plasmon deals with the physics of a region in space containing magnetic field and thermal and relativistic particles (a plasmon). The synchrotron emission and absorption of this region are discussed, along with the properties of its spectrum; its linear and circular polarization; transfer of radiation through such a region; its dynamics and expansion; and interaction with external medium.Comprised of eight chapters, this volume explores the stability, turbulence, and acceleration of particles in a synchrotro

  15. Beam stability & nonlinear dynamics. Formal report

    Energy Technology Data Exchange (ETDEWEB)

    Parsa, Z. [ed.

    1996-12-31

    his Report includes copies of transparencies and notes from the presentations made at the Symposium on Beam Stability and Nonlinear Dynamics, December 3-5, 1996 at the Institute for Theoretical Physics, University of California, Santa Barbara California, that was made available by the authors. Editing, reduction and changes to the authors contributions were made only to fulfill the printing and publication requirements. We would like to take this opportunity and thank the speakers for their informative presentations and for providing copies of their transparencies and notes for inclusion in this Report.

  16. Algorithm for Stabilizing a POD-Based Dynamical System

    Science.gov (United States)

    Kalb, Virginia L.

    2010-01-01

    This algorithm provides a new way to improve the accuracy and asymptotic behavior of a low-dimensional system based on the proper orthogonal decomposition (POD). Given a data set representing the evolution of a system of partial differential equations (PDEs), such as the Navier-Stokes equations for incompressible flow, one may obtain a low-dimensional model in the form of ordinary differential equations (ODEs) that should model the dynamics of the flow. Temporal sampling of the direct numerical simulation of the PDEs produces a spatial time series. The POD extracts the temporal and spatial eigenfunctions of this data set. Truncated to retain only the most energetic modes followed by Galerkin projection of these modes onto the PDEs obtains a dynamical system of ordinary differential equations for the time-dependent behavior of the flow. In practice, the steps leading to this system of ODEs entail numerically computing first-order derivatives of the mean data field and the eigenfunctions, and the computation of many inner products. This is far from a perfect process, and often results in the lack of long-term stability of the system and incorrect asymptotic behavior of the model. This algorithm describes a new stabilization method that utilizes the temporal eigenfunctions to derive correction terms for the coefficients of the dynamical system to significantly reduce these errors.

  17. Dynamic stability of an aerodynamically efficient motorcycle

    Science.gov (United States)

    Sharma, Amrit; Limebeer, David J. N.

    2012-08-01

    Motorcycles exhibit two potentially dangerous oscillatory modes known as 'wobble' and 'weave'. The former is reminiscent of supermarket castor shimmy, while the latter is a low frequency 'fish-tailing' motion that involves a combination of rolling, yawing, steering and side-slipping motions. These unwanted dynamic features, which can occur when two-wheeled vehicles are operated at speed, have been studied extensively. The aim of this paper is to use mathematical analysis to identify important stability trends in the on-going design of a novel aerodynamically efficient motorcycle known as the ECOSSE Spirit ES1. A mathematical model of the ES1 is developed using a multi-body dynamics software package called VehicleSim [Anon, VehicleSim Lisp Reference Manual Version 1.0, Mechanical Simulation Corporation, 2008. Available at http://www.carsim.com]. This high-fidelity motorcycle model includes realistic tyre-road contact geometry, a comprehensive tyre model, tyre relaxation and a flexible frame. A parameter set representative of a modern high-performance machine and rider is used. Local stability is investigated via the eigenvalues of the linearised models that are associated with equilibrium points of interest. A comprehensive study of the effects of frame flexibilities, acceleration, aerodynamics and tyre variations is presented, and an optimal passive steering compensator is derived. It is shown that the traditional steering damper cannot be used to stabilise the ES1 over its entire operating speed range. A simple passive compensator, involving an inerter is proposed. Flexibility can be introduced deliberately into various chassis components to change the stability characteristics of the vehicle; the implications of this idea are studied.

  18. Sync in Complex Dynamical Networks: Stability, Evolution, Control, and Application

    OpenAIRE

    Li, Xiang

    2005-01-01

    In the past few years, the discoveries of small-world and scale-free properties of many natural and artificial complex networks have stimulated significant advances in better understanding the relationship between the topology and the collective dynamics of complex networks. This paper reports recent progresses in the literature of synchronization of complex dynamical networks including stability criteria, network synchronizability and uniform synchronous criticality in different topologies, ...

  19. Certain Actions from the Functional Movement Screen Do Not Provide an Indication of Dynamic Stability

    Science.gov (United States)

    Lockie, Robert G.; Callaghan, Samuel J.; Jordan, Corrin A.; Luczo, Tawni M.; Jeffriess, Matthew D.; Jalilvand, Farzad; Schultz, Adrian B.

    2015-01-01

    Dynamic stability is an essential physical component for team sport athletes. Certain Functional Movement Screen (FMS) exercises (deep squat; left- and right-leg hurdle step; left- and right-leg in-line lunge [ILL]; left- and right-leg active straight-leg raise; and trunk stability push-up [TSPU]) have been suggested as providing an indication of dynamic stability. No research has investigated relationships between these screens and an established test of dynamic stability such as the modified Star Excursion Balance Test (mSEBT), which measures lower-limb reach distance in posteromedial, medial, and anteromedial directions, in team sport athletes. Forty-one male and female team sport athletes completed the screens and the mSEBT. Participants were split into high-, intermediate-, and low-performing groups according to the mean of the excursions when both the left and right legs were used for the mSEBT stance. Any between-group differences in the screens and mSEBT were determined via a one-way analysis of variance with Bonferroni post hoc adjustment (p in any of the screens, and only two positive correlations between the screens and the mSEBT (TSPU and right stance leg posteromedial excursion, r = 0.37; left-leg ILL and left stance leg posteromedial excursion, r = 0.46). The mSEBT clearly indicated participants with different dynamic stability capabilities. In contrast to the mSEBT, the selected FMS exercises investigated in this study have a limited capacity to identify dynamic stability in team sport athletes. PMID:26557187

  20. Dynamic Stabilization of Metal Oxide–Water Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    McBriarty, Martin E.; von Rudorff, Guido Falk; Stubbs, Joanne; Eng, Peter; Blumberger, Jochen; Rosso, Kevin M.

    2017-02-08

    Metal oxide growth, dissolution, and redox reactivity depend on the structure and dynamics at the interface with aqueous solution. We present the most definitive analysis to date of the hydrated naturally abundant r-cut (11$\\bar{0}$2) termination of the iron oxide hematite (α-Fe2O3). In situ synchrotron X-ray scattering analysis reveals a ridged lateral arrangement of adsorbed water molecules hydrogen bonded to terminal aquo groups. Large-scale hybrid-functional density functional theory-based molecular dynamics (DFT-MD) simulations show how this structure is dynamically stabilized by picosecond exchange between aquo groups and adsorbed water, even under nominally dry conditions. Surface pKa prediction based on bond valence analysis suggests that water exchange may influence the proton transfer reactions associated with acid/base reactivity at the interface. Our findings rectify inconsistencies between existing models and may be extended to resolving more complex electrochemical phenomena at metal oxide-water interfaces.

  1. Topics in Modeling of Cochlear Dynamics: Computation, Response and Stability Analysis

    Science.gov (United States)

    Filo, Maurice G.

    This thesis touches upon several topics in cochlear modeling. Throughout the literature, mathematical models of the cochlea vary according to the degree of biological realism to be incorporated. This thesis casts the cochlear model as a continuous space-time dynamical system using operator language. This framework encompasses a wider class of cochlear models and makes the dynamics more transparent and easier to analyze before applying any numerical method to discretize space. In fact, several numerical methods are investigated to study the computational efficiency of the finite dimensional realizations in space. Furthermore, we study the effects of the active gain perturbations on the stability of the linearized dynamics. The stability analysis is used to explain possible mechanisms underlying spontaneous otoacoustic emissions and tinnitus. Dynamic Mode Decomposition (DMD) is introduced as a useful tool to analyze the response of nonlinear cochlear models. Cochlear response features are illustrated using DMD which has the advantage of explicitly revealing the spatial modes of vibrations occurring in the Basilar Membrane (BM). Finally, we address the dynamic estimation problem of BM vibrations using Extended Kalman Filters (EKF). Due to the limitations of noninvasive sensing schemes, such algorithms are inevitable to estimate the dynamic behavior of a living cochlea.

  2. On Stabilizing the Variance of Dynamic Functional Brain Connectivity Time Series.

    Science.gov (United States)

    Thompson, William Hedley; Fransson, Peter

    2016-12-01

    Assessment of dynamic functional brain connectivity based on functional magnetic resonance imaging (fMRI) data is an increasingly popular strategy to investigate temporal dynamics of the brain's large-scale network architecture. Current practice when deriving connectivity estimates over time is to use the Fisher transformation, which aims to stabilize the variance of correlation values that fluctuate around varying true correlation values. It is, however, unclear how well the stabilization of signal variance performed by the Fisher transformation works for each connectivity time series, when the true correlation is assumed to be fluctuating. This is of importance because many subsequent analyses either assume or perform better when the time series have stable variance or adheres to an approximate Gaussian distribution. In this article, using simulations and analysis of resting-state fMRI data, we analyze the effect of applying different variance stabilization strategies on connectivity time series. We focus our investigation on the Fisher transformation, the Box-Cox (BC) transformation and an approach that combines both transformations. Our results show that, if the intention of stabilizing the variance is to use metrics on the time series, where stable variance or a Gaussian distribution is desired (e.g., clustering), the Fisher transformation is not optimal and may even skew connectivity time series away from being Gaussian. Furthermore, we show that the suboptimal performance of the Fisher transformation can be substantially improved by including an additional BC transformation after the dynamic functional connectivity time series has been Fisher transformed.

  3. Research on Dynamics and Stability in the Stairs-Climbing of a Tracked Mobile Robot

    Directory of Open Access Journals (Sweden)

    Weijun Tao

    2012-10-01

    Full Text Available Aiming at the functional requirement of climbing up the stairs, the dynamics and stability during a tracked mobile robot's climbing of stairs is studied. First, from the analysis of its cross-country performance, the mechanical structure of the tracked mobile robot is designed and the hardware composition of its control system is given. Second, based on the analysis to its stairs-climbing process, the dynamical model of stairs-climbing is established by using the classical mechanics method. Next, the stability conditions for its stairs-climbing are determined and an evaluation method of its stairs-climbing stability is proposed, based on a mechanics analysis on the robot's backwards tumbling during the stairs-climbing process. Through simulation and experiments, the effectiveness of the dynamical model and the stability evaluation method of the tracked mobile robot in stairs-climbing is verified, which can provide design and analysis foundations for the tracked mobile robots' stairs-climbing.

  4. Stability and chaotic dynamics of a perturbed rate gyro

    International Nuclear Information System (INIS)

    Chen, H.-H.

    2006-01-01

    An analysis of stability and chaotic dynamics is presented by a single-axis rate gyro subjected to linear feedback control loops. This rate gyro is supposed to be mounted on a space vehicle which undergoes an uncertain angular velocity ω Z (t) around its spin axis and simultaneously acceleration ω-bar X (t) occurs with respect to the output axis. The necessary and sufficient conditions of stability and degeneracy conditions for the autonomous case, whose vehicle undergoes a steady rotation, were provided by Routh-Hurwitz theory. The stability of the nonlinear nonautonomous system was investigated by Liapunov stability and instability theorems. As the electrical time constant is much smaller than the mechanical time constant, the singularly perturbed system can be obtained by the singular perturbation theory. The Liapunov stability of this system by studying the reduced and boundary-layer systems was also analyzed. Using the Melinikov technique, we can give criteria for the existence of chaos in the gyro motion when the vehicle undergoes perturbed harmonic rotation about its spin and output axes

  5. Constraints on dynamic stability during forward, backward and lateral locomotion in skilled football players.

    Science.gov (United States)

    Mehdizadeh, Sina; Arshi, Ahmed Reza; Davids, Keith

    2016-01-01

    The aim of this study was to investigate effects of speed and plane of motion on stability during locomotion in skilled football players. Ten male national-level football players participated in this study to run forward, backward and in lateral directions on a treadmill at 80%, 100% and 120% of their preferred running speeds. The coordinate data of passive reflective markers attached to body segments were recorded using motion capture systems. Time series data obtained from the ankle marker were used for further analyses. The largest finite-time Lyapunov exponent and maximum Floquet multiplier were adopted to quantify local and orbital dynamic stabilities, respectively. Results showed that speed did not significantly change local and orbital dynamic stabilities in any of running patterns. However, both local and orbital dynamic stability were significantly higher in the secondary plane of progression. Data revealed that in running, unlike walking, stability in the direction perpendicular to the direction of running is significantly higher, implying that less active control is required in the secondary plane of progression. The results of this study could be useful in sports training and rehabilitation programmes where development of fundamental exercise programmes that challenge both speed and the ability to maintain stability might produce a tangible enhancement of athletic skill level.

  6. Effect of arm swing strategy on local dynamic stability of human gait.

    Science.gov (United States)

    Punt, Michiel; Bruijn, Sjoerd M; Wittink, Harriet; van Dieën, Jaap H

    2015-02-01

    Falling causes long term disability and can even lead to death. Most falls occur during gait. Therefore improving gait stability might be beneficial for people at risk of falling. Recently arm swing has been shown to influence gait stability. However at present it remains unknown which mode of arm swing creates the most stable gait. To examine how different modes of arm swing affect gait stability. Ten healthy young male subjects volunteered for this study. All subjects walked with four different arm swing instructions at seven different gait speeds. The Xsens motion capture suit was used to capture gait kinematics. Basic gait parameters, variability and stability measures were calculated. We found an increased stability in the medio-lateral direction with excessive arm swing in comparison to normal arm swing at all gait speeds. Moreover, excessive arm swing increased stability in the anterior-posterior and vertical direction at low gait speeds. Ipsilateral and inphase arm swing did not differ compared to a normal arm swing. Excessive arm swing is a promising gait manipulation to improve local dynamic stability. For excessive arm swing in the ML direction there appears to be converging evidence. The effect of excessive arm swing on more clinically relevant groups like the more fall prone elderly or stroke survivors is worth further investigating. Excessive arm swing significantly increases local dynamic stability of human gait. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Effect of speed on local dynamic stability of locomotion under different task constraints in running.

    Science.gov (United States)

    Mehdizadeh, Sina; Arshi, Ahmed Reza; Davids, Keith

    2014-01-01

    A number of studies have investigated effects of speed on local dynamic stability of walking, although this relationship has been rarely investigated under changing task constraints, such as during forward and backward running. To rectify this gap in the literature, the aim of this study was to investigate the effect of running speed on local dynamic stability of forward and backward running on a treadmill. Fifteen healthy male participants took part in this study. Participants ran in forward and backward directions at speeds of 80%, 100% and 120% of their preferred running speed. The three-dimensional motion of a C7 marker was recorded using a motion capture system. Local dynamic stability of the marker was quantified using short- and long-term largest finite-time Lyapunov exponents (LyE). Results showed that short-term largest finite-time LyE values increased with participant speed meaning that local dynamic stability decreased with increasing speed. Long-term largest finite-time LyEs, however, remained unaffected as speed increased. Results of this study indicated that, as in walking, slow running is more stable than fast running. These findings improve understanding of how stability is regulated when constraints on the speed of movements is altered. Implications for the design of rehabilitation or sport practice programmes suggest how task constraints could be manipulated to facilitate adaptations in locomotion stability during athletic training.

  8. Transition from shod to barefoot alters dynamic stability during running.

    Science.gov (United States)

    Ekizos, Antonis; Santuz, Alessandro; Arampatzis, Adamantios

    2017-07-01

    Barefoot running recently received increased attention, with controversial results regarding its effects on injury risk and performance. Numerous studies examined the kinetic and kinematic changes between the shod and the barefoot condition. Intrinsic parameters such as the local dynamic stability could provide new insight regarding neuromuscular control when immediately transitioning from one running condition to the other. We investigated the local dynamic stability during the change from shod to barefoot running. We further measured biomechanical parameters to examine the mechanisms governing this transition. Twenty habitually shod, young and healthy participants ran on a pressure plate-equipped treadmill and alternated between shod and barefoot running. We calculated the largest Lyapunov exponents as a measure of errors in the control of the movement. Biomechanical parameters were also collected. Local dynamic stability decreased significantly (d=0.41; 2.1%) during barefoot running indicating worse control over the movement. We measured higher cadence (d=0.35; 2.2%) and total flight time (d=0.58; 19%), lower total contact time (d=0.58; -5%), total vertical displacement (d=0.39; -4%), and vertical impulse (d=1.32; 11%) over the two minutes when running barefoot. The strike index changed significantly (d=1.29; 237%) towards the front of the foot. Immediate transition from shod to the barefoot condition resulted in an increased instability and indicates a worst control over the movement. The increased instability was associated with biomechanical changes (i.e. foot strike patterns) of the participants in the barefoot condition. Possible reasons why this instability arises, might be traced in the stance phase and particularly in the push-off. The decreased stability might affect injury risk and performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Interplay Between Energy-Market Dynamics and Physical Stability of a Smart Power Grid

    Science.gov (United States)

    Picozzi, Sergio; Mammoli, Andrea; Sorrentino, Francesco

    2013-03-01

    A smart power grid is being envisioned for the future which, among other features, should enable users to play the dual role of consumers as well as producers and traders of energy, thanks to emerging renewable energy production and energy storage technologies. As a complex dynamical system, any power grid is subject to physical instabilities. With existing grids, such instabilities tend to be caused by natural disasters, human errors, or weather-related peaks in demand. In this work we analyze the impact, upon the stability of a smart grid, of the energy-market dynamics arising from users' ability to buy from and sell energy to other users. The stability analysis of the resulting dynamical system is performed assuming different proposed models for this market of the future, and the corresponding stability regions in parameter space are identified. We test our theoretical findings by comparing them with data collected from some existing prototype systems.

  10. The Comprehensive Biomechanics and Load-Sharing of Semirigid PEEK and Semirigid Posterior Dynamic Stabilization Systems

    Directory of Open Access Journals (Sweden)

    D. K. Sengupta

    2013-01-01

    Full Text Available Alternatives to conventional rigid fusion have been proposed for several conditions related to degenerative disc disease when nonoperative treatment has failed. Semirigid fixation, in the form of dynamic stabilization or PEEK rods, is expected to provide compression under loading as well as an intermediate level of stabilization. This study systematically examines both the load-sharing characteristics and kinematics of these two devices compared to the standard of internal rigid fixators. Load-sharing was studied by using digital pressure films inserted between an artificially machined disc and two loading fixtures. Rigid rods, PEEK rods, and the dynamic stabilization system were inserted posteriorly for stabilization. The kinematics were quantified on ten, human, cadaver lumbosacral spines (L3-S1 which were tested under a pure bending moment, in flexion-extension, lateral bending, and axial rotation. The magnitude of load transmission through the anterior column was significantly greater with the dynamic device compared to PEEK rods and rigid rods. The contact pressures were distributed more uniformly, throughout the disc with the dynamic stabilization devices, and had smaller maximum point-loading (pressures on any particular point within the disc. Kinematically, the motion was reduced by both semirigid devices similarly in all directions, with slight rigidity imparted by a lateral interbody device.

  11. Stability of power systems coupled with market dynamics

    Science.gov (United States)

    Meng, Jianping

    This Ph.D. thesis presented here spans two relatively independent topics. The first part, Chapter 2 is self-contained, and is dedicated to studies of new algorithms for power system state estimation. The second part, encompassing the remaining chapters, is dedicated to stability analysis of power system coupled with market dynamics. The first part of this thesis presents improved Newton's methods employing efficient vectorized calculations of higher order derivatives in power system state estimation problems. The improved algorithms are proposed based on an exact Newton's method using the second order terms. By efficiently computing an exact gain matrix, combined with a special optimal multiplier method, the new algorithms show more reliable convergence compared with the existing methods of normal equations, orthogonal decomposition, and Hachtel's sparse tableau. Our methods are able to handle ill-conditioned problems, yet show minimal penalty in computational cost for well-conditioned cases. These claims are illustrated through the standard IEEE 118 and 300 bus test examples. The second part of the thesis focuses on stability analysis of market/power systems. The work presented is motivated by an emerging problem. As the frequency of market based dispatch updates increases, there will inevitably be interaction between the dynamics of markets determining the generator dispatch commands, and the physical response of generators and network interconnections, necessitating the development of stability analysis for such coupled systems. We begin with numeric tests using different market models, with detailed machine/exciter/turbine/governor dynamics, in the New England 39 bus test system. A progression of modeling refinements are introduced, including such non-ideal effects as time delays. Electricity market parameter identification algorithms are also studied based on real time data from the PJM electricity market. Finally our power market model is augmented by optimal

  12. The effect of walking speed on local dynamic stability is sensitive to calculation methods

    DEFF Research Database (Denmark)

    Stenum, Jan; Bruijn, Sjoerd M; Jensen, Bente Rona

    2014-01-01

    Local dynamic stability has been assessed by the short-term local divergence exponent (λS), which quantifies the average rate of logarithmic divergence of infinitesimally close trajectories in state space. Both increased and decreased local dynamic stability at faster walking speeds have been...... reported. This might pertain to methodological differences in calculating λS. Therefore, the aim was to test if different calculation methods would induce different effects of walking speed on local dynamic stability. Ten young healthy participants walked on a treadmill at five speeds (60%, 80%, 100%, 120......% and 140% of preferred walking speed) for 3min each, while upper body accelerations in three directions were sampled. From these time-series, λS was calculated by three different methods using: (a) a fixed time interval and expressed as logarithmic divergence per stride-time (λS-a), (b) a fixed number...

  13. Certain Actions from the Functional Movement Screen Do Not Provide an Indication of Dynamic Stability

    Directory of Open Access Journals (Sweden)

    Lockie Robert G.

    2015-09-01

    Full Text Available Dynamic stability is an essential physical component for team sport athletes. Certain Functional Movement Screen (FMS exercises (deep squat; left- and right-leg hurdle step; left- and right-leg in-line lunge [ILL]; left- and right-leg active straight-leg raise; and trunk stability push-up [TSPU] have been suggested as providing an indication of dynamic stability. No research has investigated relationships between these screens and an established test of dynamic stability such as the modified Star Excursion Balance Test (mSEBT, which measures lower-limb reach distance in posteromedial, medial, and anteromedial directions, in team sport athletes. Forty-one male and female team sport athletes completed the screens and the mSEBT. Participants were split into high-, intermediate-, and low-performing groups according to the mean of the excursions when both the left and right legs were used for the mSEBT stance. Any between-group differences in the screens and mSEBT were determined via a one-way analysis of variance with Bonferroni post hoc adjustment (p < 0.05. Data was pooled for a correlation analysis (p < 0.05. There were no between-group differences in any of the screens, and only two positive correlations between the screens and the mSEBT (TSPU and right stance leg posteromedial excursion, r = 0.37; left-leg ILL and left stance leg posteromedial excursion, r = 0.46. The mSEBT clearly indicated participants with different dynamic stability capabilities. In contrast to the mSEBT, the selected FMS exercises investigated in this study have a limited capacity to identify dynamic stability in team sport athletes.

  14. Effects of an attention demanding task on dynamic stability during treadmill walking

    Directory of Open Access Journals (Sweden)

    Troy Karen L

    2008-04-01

    Full Text Available Abstract Background People exhibit increased difficulty balancing when they perform secondary attention-distracting tasks while walking. However, a previous study by Grabiner and Troy (J. Neuroengineering Rehabil., 2005 found that young healthy subjects performing a concurrent Stroop task while walking on a motorized treadmill exhibited decreased step width variability. However, measures of variability do not directly quantify how a system responds to perturbations. This study re-analyzed data from Grabiner and Troy 2005 to determine if performing the concurrent Stroop task directly affected the dynamic stability of walking in these same subjects. Methods Thirteen healthy volunteers walked on a motorized treadmill at their self-selected constant speed for 10 minutes both while performing the Stroop test and during undisturbed walking. This Stroop test consisted of projecting images of the name of one color, printed in text of a different color, onto a wall and asking subjects to verbally identify the color of the text. Three-dimensional motions of a marker attached to the base of the neck (C5/T1 were recorded. Marker velocities were calculated over 3 equal intervals of 200 sec each in each direction. Mean variability was calculated for each time series as the average standard deviation across all strides. Both "local" and "orbital" dynamic stability were quantified for each time series using previously established methods. These measures directly quantify how quickly small perturbations grow or decay, either continuously in real time (local or discretely from one cycle to the next (orbital. Differences between Stroop and Control trials were evaluated using a 2-factor repeated measures ANOVA. Results Mean variability of trunk movements was significantly reduced during the Stroop tests compared to normal walking. Conversely, local and orbital stability results were mixed: some measures showed slight increases, while others showed slight decreases

  15. PWL approximation of nonlinear dynamical systems, part I: structural stability

    International Nuclear Information System (INIS)

    Storace, M; De Feo, O

    2005-01-01

    This paper and its companion address the problem of the approximation/identification of nonlinear dynamical systems depending on parameters, with a view to their circuit implementation. The proposed method is based on a piecewise-linear approximation technique. In particular, this paper describes the approximation method and applies it to some particularly significant dynamical systems (topological normal forms). The structural stability of the PWL approximations of such systems is investigated through a bifurcation analysis (via continuation methods)

  16. Power system dynamics and stability with synchrophasor measurement and power system toolbox

    CERN Document Server

    Sauer, Peter W; Chow, Joe H

    2017-01-01

    This new edition addresses the needs of dynamic modeling and simulation relevant to power system planning, design, and operation, including a systematic derivation of synchronous machine dynamic models together with speed and voltage control subsystems. Reduced-order modeling based on integral manifolds is used as a firm basis for understanding the derivations and limitations of lower-order dynamic models. Following these developments, a multi-machine model interconnected through the transmission network is formulated and simulated using numerical simulation methods. Energy function methods are discussed for direct evaluation of stability. Small-signal analysis is used for determining the electromechanical modes and mode-shapes, and for power system stabilizer design. Time-synchronized high-sampling-rate phasor measurement units (PMUs) to monitor power system disturbances ave been implemented throughout North America and many other countries. In this second edition, new chapters on synchrophasor measurement ...

  17. Dynamic Stability Analysis of Autonomous Medium-Voltage Mixed-Source Microgrid

    DEFF Research Database (Denmark)

    Zhao, Zhuoli; Yang, Ping; Guerrero, Josep M.

    2015-01-01

    -space model of the autonomous MV mixed-source microgrid containing diesel generator set (DGS), grid-supporting battery energy storage system (BESS), squirrel cage induction generator (SCIG) wind turbine and network is developed. Sensitivity analysis is carried out to reveal the dynamic stability margin...

  18. Dynamic remedial action scheme using online transient stability analysis

    Science.gov (United States)

    Shrestha, Arun

    Economic pressure and environmental factors have forced the modern power systems to operate closer to their stability limits. However, maintaining transient stability is a fundamental requirement for the operation of interconnected power systems. In North America, power systems are planned and operated to withstand the loss of any single or multiple elements without violating North American Electric Reliability Corporation (NERC) system performance criteria. For a contingency resulting in the loss of multiple elements (Category C), emergency transient stability controls may be necessary to stabilize the power system. Emergency control is designed to sense abnormal conditions and subsequently take pre-determined remedial actions to prevent instability. Commonly known as either Remedial Action Schemes (RAS) or as Special/System Protection Schemes (SPS), these emergency control approaches have been extensively adopted by utilities. RAS are designed to address specific problems, e.g. to increase power transfer, to provide reactive support, to address generator instability, to limit thermal overloads, etc. Possible remedial actions include generator tripping, load shedding, capacitor and reactor switching, static VAR control, etc. Among various RAS types, generation shedding is the most effective and widely used emergency control means for maintaining system stability. In this dissertation, an optimal power flow (OPF)-based generation-shedding RAS is proposed. This scheme uses online transient stability calculation and generator cost function to determine appropriate remedial actions. For transient stability calculation, SIngle Machine Equivalent (SIME) technique is used, which reduces the multimachine power system model to a One-Machine Infinite Bus (OMIB) equivalent and identifies critical machines. Unlike conventional RAS, which are designed using offline simulations, online stability calculations make the proposed RAS dynamic and adapting to any power system

  19. Static and dynamic stability of pneumatic vibration isolators and systems of isolators

    Science.gov (United States)

    Ryaboy, Vyacheslav M.

    2014-01-01

    Pneumatic vibration isolation is the most widespread effective method for creating vibration-free environments that are vital for precise experiments and manufacturing operations in optoelectronics, life sciences, microelectronics, nanotechnology and other areas. The modeling and design principles of a dual-chamber pneumatic vibration isolator, basically established a few decades ago, continue to attract attention of researchers. On the other hand, behavior of systems of such isolators was never explained in the literature in sufficient detail. This paper covers a range of questions essential for understanding the mechanics of pneumatic isolation systems from both design and application perspectives. The theory and a model of a single standalone isolator are presented in concise form necessary for subsequent analysis. Then the dynamics of a system of isolators supporting a payload is considered with main attention directed to two aspects of their behavior: first, the static stability of payloads with high positions of the center of gravity; second, dynamic stability of the feedback system formed by mechanical leveling valves. The direct method of calculating the maximum stable position of the center of gravity is presented and illustrated by three-dimensional stability domains; analytic formulas are given that delineate these domains. A numerical method for feedback stability analysis of self-leveling valve systems is given, and the results are compared with the analytical estimates for a single isolator. The relation between the static and dynamic phenomena is discussed.

  20. Nonlinear Slewing Spacecraft Control Based on Exergy, Power Flow, and Static and Dynamic Stability

    Science.gov (United States)

    Robinett, Rush D.; Wilson, David G.

    2009-10-01

    This paper presents a new nonlinear control methodology for slewing spacecraft, which provides both necessary and sufficient conditions for stability by identifying the stability boundaries, rigid body modes, and limit cycles. Conservative Hamiltonian system concepts, which are equivalent to static stability of airplanes, are used to find and deal with the static stability boundaries: rigid body modes. The application of exergy and entropy thermodynamic concepts to the work-rate principle provides a natural partitioning through the second law of thermodynamics of power flows into exergy generator, dissipator, and storage for Hamiltonian systems that is employed to find the dynamic stability boundaries: limit cycles. This partitioning process enables the control system designer to directly evaluate and enhance the stability and performance of the system by balancing the power flowing into versus the power dissipated within the system subject to the Hamiltonian surface (power storage). Relationships are developed between exergy, power flow, static and dynamic stability, and Lyapunov analysis. The methodology is demonstrated with two illustrative examples: (1) a nonlinear oscillator with sinusoidal damping and (2) a multi-input-multi-output three-axis slewing spacecraft that employs proportional-integral-derivative tracking control with numerical simulation results.

  1. EFFECT OF SHOULDER SIDE PACK ON DYNAMIC POSTURAL STABILITY IN YOUNG HEALTHY FEMALE

    Directory of Open Access Journals (Sweden)

    Enas ELsayed Mohamed Abutaleb

    2016-06-01

    Full Text Available Background: Control of balance is a complex motor skill that involves integration of sensory inputs and the planning and execution of flexible movement patterns. Carrying side packs is famous in our society especially shoulder side packs. Most students carry shoulder side packs and they don't care about the way to carry them to be more balanced. The purpose of the study is to investigate the effect of carrying shoulder side pack on dynamic postural stability and to determine the best way of carrying a shoulder side pack either on the dominant side or non-dominant side that doesn’t affect dynamic postural stability in young healthy female. Methods: Sixty female volunteers aged from 18 to 25 years old participated in the study. Biodex balance system was used to measure the dynamic postural stability in three different occasions (without carrying a shoulder side pack, with carrying a shoulder side pack on the dominant side, and on the non-dominant side with a rest period in between. Results: Repeated measure analysis of variance (ANOVA followed by Bonferroni post hoc test were used to compare dynamic posture balance without carrying and during carrying a shoulder side pack on dominant and non-dominant sides. Analysis revealed that overall, anteroposterior and mediolateral stability indexes reduced significantly (P<0.0001 when carrying shoulder side pack on dominant side in comparison with when carrying shoulder side pack on non-dominant side and without carrying bag. Conclusion: It was concluded that carrying a shoulder side pack on the non-dominant side didn't disturb the postural stability when compared to carrying on the dominant side so, we recommend the students to carry shoulder side packs on the non-dominant side.

  2. Dynamic stabilization of disruption precursors in tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Maoquan, Wang; Jianshan, Mao; Yuan, Pan [Academia Sinica, Hefei, AH (China). Inst. of Plasma Physics

    1994-12-01

    A method for dynamic stabilization of the disruption precursors in tokamak is proposed, that is a controlled ac current induced and added to the equilibrium current. The ac currents applied can be a sine alternative current with a relevant frequency, or a pulsed current with a suitable pulsed width {tau} and or a discontinuous pulsed current whose width {tau} is very shorter than the intervals between pulses, and or a `sawtooth` pulsed current with the time of ramp phase of the sawtooth is very much shorter than the sawtooth descending time, the ratio of them can be {<=}10{sup -3}. The physical model of the ac current drive is analyzed in detail. The suppression role of the ac current on the MHD perturbations was analyzed in theory and proved numerically. It is indicated that the ac current can make the discontinuous derivative, {Delta}`, more favorable for the tearing mode stabilities, and so, as long as the parameters of the applied ac currents are selected suitably, the MHD perturbations can be suppressed effectively, the perturbations will be in the zero-growing state, the profile of the plasma current and temperature remain in the initial states and not variate basically, the tokamak be in the stabilized operation state. (8 figs.).

  3. Beam stability ampersand nonlinear dynamics. Formal report

    International Nuclear Information System (INIS)

    Parsa, Z.

    1996-01-01

    This report includes copies of transparencies and notes from the presentations made at the Symposium on Beam Stability and Nonlinear Dynamics, December 3-5, 1996 at the Institute for Theoretical Physics, University of California, Santa Barbara California, that was made available by the authors. Editing, reduction and changes to the authors contributions were made only to fulfill the printing and publication requirements. We would like to take this opportunity and thank the speakers for their informative presentations and for providing copies of their transparencies and notes for inclusion in this Report

  4. Stabilities and Dynamics of Protein Folding Nuclei by Molecular Dynamics Simulation

    Science.gov (United States)

    Song, Yong-Shun; Zhou, Xin; Zheng, Wei-Mou; Wang, Yan-Ting

    2017-07-01

    To understand how the stabilities of key nuclei fragments affect protein folding dynamics, we simulate by molecular dynamics (MD) simulation in aqueous solution four fragments cut out of a protein G, including one α-helix (seqB: KVFKQYAN), two β-turns (seqA: LNGKTLKG and seqC: YDDATKTF), and one β-strand (seqD: DGEWTYDD). The Markov State Model clustering method combined with the coarse-grained conformation letters method are employed to analyze the data sampled from 2-μs equilibrium MD simulation trajectories. We find that seqA and seqB have more stable structures than their native structures which become metastable when cut out of the protein structure. As expected, seqD alone is flexible and does not have a stable structure. Throughout our simulations, the native structure of seqC is stable but cannot be reached if starting from a structure other than the native one, implying a funnel-shape free energy landscape of seqC in aqueous solution. All the above results suggest that different nuclei have different formation dynamics during protein folding, which may have a major contribution to the hierarchy of protein folding dynamics. Supported by the National Basic Research Program of China under Grant No. 2013CB932804, the National Natural Science Foundation of China under Grant No. 11421063, and the CAS Biophysics Interdisciplinary Innovation Team Project

  5. Torsional Stiffness Effects on the Dynamic Stability of a Horizontal Axis Wind Turbine Blade

    Directory of Open Access Journals (Sweden)

    Min-Soo Jeong

    2013-04-01

    Full Text Available Aeroelastic instability problems have become an increasingly important issue due to the increased use of larger horizontal axis wind turbines. To maintain these large structures in a stable manner, the blade design process should include studies on the dynamic stability of the wind turbine blade. Therefore, fluid-structure interaction analyses of the large-scaled wind turbine blade were performed with a focus on dynamic stability in this study. A finite element method based on the large deflection beam theory is used for structural analysis considering the geometric nonlinearities. For the stability analysis, a proposed aerodynamic approach based on Greenberg’s extension of Theodorsen’s strip theory and blade element momentum method were employed in conjunction with a structural model. The present methods proved to be valid for estimations of the aerodynamic responses and blade behavior compared with numerical results obtained in the previous studies. Additionally, torsional stiffness effects on the dynamic stability of the wind turbine blade were investigated. It is demonstrated that the damping is considerably influenced by variations of the torsional stiffness. Also, in normal operating conditions, the destabilizing phenomena were observed to occur with low torsional stiffness.

  6. Dynamics, stability, and statistics on lattices and networks

    International Nuclear Information System (INIS)

    Livi, Roberto

    2014-01-01

    These lectures aim at surveying some dynamical models that have been widely explored in the recent scientific literature as case studies of complex dynamical evolution, emerging from the spatio-temporal organization of several coupled dynamical variables. The first message is that a suitable mathematical description of such models needs tools and concepts borrowed from the general theory of dynamical systems and from out-of-equilibrium statistical mechanics. The second message is that the overall scenario is definitely reacher than the standard problems in these fields. For instance, systems exhibiting complex unpredictable evolution do not necessarily exhibit deterministic chaotic behavior (i.e., Lyapunov chaos) as it happens for dynamical models made of a few degrees of freedom. In fact, a very large number of spatially organized dynamical variables may yield unpredictable evolution even in the absence of Lyapunov instability. Such a mechanism may emerge from the combination of spatial extension and nonlinearity. Moreover, spatial extension allows one to introduce naturally disorder, or heterogeneity of the interactions as important ingredients for complex evolution. It is worth to point out that the models discussed in these lectures share such features, despite they have been inspired by quite different physical and biological problems. Along these lectures we describe also some of the technical tools employed for the study of such models, e.g., Lyapunov stability analysis, unpredictability indicators for “stable chaos,” hydrodynamic description of transport in low spatial dimension, spectral decomposition of stochastic dynamics on directed networks, etc

  7. Dynamics of bad-cavity-enhanced interaction with cold Sr atoms for laser stabilization

    DEFF Research Database (Denmark)

    Schäffer, S. A.; Christensen, B. T.R.; Henriksen, M. R.

    2017-01-01

    Hybrid systems of cold atoms and optical cavities are promising systems for increasing the stability of laser oscillators used in quantum metrology and atomic clocks. In this paper we map out the atom-cavity dynamics in such a system and demonstrate limitations as well as robustness of the approach....... We investigate the phase response of an ensemble of cold Sr88 atoms inside an optical cavity for use as an error signal in laser frequency stabilization. With this system we realize a regime where the high atomic phase shift limits the dynamical locking range. The limitation is caused by the cavity...

  8. Dynamical stability for finite quantum spin chains against a time-periodic inhomogeneous perturbation

    International Nuclear Information System (INIS)

    Kudo, Kazue; Nakamura, Katsuhiro

    2009-01-01

    We investigate dynamical stability of the ground state against a time-periodic and spatially-inhomogeneous magnetic field for finite quantum XXZ spin chains. We use the survival probability as a measure of stability and demonstrate that it decays as P(t) ∝ t -1/2 under a certain condition. The dynamical properties should also be related to the level statistics of the XXZ spin chains with a constant spatially-inhomogeneous magnetic field. The level statistics depends on the anisotropy parameter and the field strength. We show how the survival probability depends on the anisotropy parameter, the strength and frequency of the field.

  9. Stability of dynamical systems on the role of monotonic and non-monotonic Lyapunov functions

    CERN Document Server

    Michel, Anthony N; Liu, Derong

    2015-01-01

    The second edition of this textbook provides a single source for the analysis of system models represented by continuous-time and discrete-time, finite-dimensional and infinite-dimensional, and continuous and discontinuous dynamical systems.  For these system models, it presents results which comprise the classical Lyapunov stability theory involving monotonic Lyapunov functions, as well as corresponding contemporary stability results involving non-monotonicLyapunov functions.Specific examples from several diverse areas are given to demonstrate the applicability of the developed theory to many important classes of systems, including digital control systems, nonlinear regulator systems, pulse-width-modulated feedback control systems, and artificial neural networks.   The authors cover the following four general topics:   -          Representation and modeling of dynamical systems of the types described above -          Presentation of Lyapunov and Lagrange stability theory for dynamical sy...

  10. A unifying energy-based approach to stability of power grids with market dynamics

    NARCIS (Netherlands)

    Stegink, Tjerk; De Persis, Claudio; van der Schaft, Arjan

    2017-01-01

    In this paper a unifying energy-based approach is provided to the modeling and stability analysis of power systems coupled with market dynamics. We consider a standard model of the power network with a third-order model for the synchronous generators involving voltage dynamics. By applying the

  11. Evaluation of constraint stabilization procedures for multibody dynamical systems

    Science.gov (United States)

    Park, K. C.; Chiou, J. C.

    1987-01-01

    Comparative numerical studies of four constraint treatment techniques for the simulation of general multibody dynamic systems are presented, and results are presented for the example of a classical crank mechanism and for a simplified version of the seven-link manipulator deployment problem. The staggered stabilization technique (Park, 1986) is found to yield improved accuracy and robustness over Baumgarte's (1972) technique, the singular decomposition technique (Walton and Steeves, 1969), and the penalty technique (Lotstedt, 1979). Furthermore, the staggered stabilization technique offers software modularity, and the only data each solution module needs to exchange with the other is a set of vectors plus a common module to generate the gradient matrix of the constraints, B.

  12. Dynamic stability requirements during gait and standing exergames on the wii fit® system in the elderly

    Directory of Open Access Journals (Sweden)

    Duclos Cyril

    2012-05-01

    Full Text Available Abstract Background In rehabilitation, training intensity is usually adapted to optimize the trained system to attain better performance (overload principle. However, in balance rehabilitation, the level of intensity required during training exercises to optimize improvement in balance has rarely been studied, probably due to the difficulty in quantifying the stability level during these exercises. The goal of the present study was to test whether the stabilizing/destabilizing forces model could be used to analyze how stability is challenged during several exergames, that are more and more used in balance rehabilitation, and a dynamic functional task, such as gait. Methods Seven healthy older adults were evaluated with three-dimensional motion analysis during gait at natural and fast speed, and during three balance exergames (50/50 Challenge, Ski Slalom and Soccer. Mean and extreme values for stabilizing force, destabilizing force and the ratio of the two forces (stability index were computed from kinematic and kinetic data to determine the mean and least level of dynamic, postural and overall balance stability, respectively. Results Mean postural stability was lower (lower mean destabilizing force during the 50/50 Challenge game than during all the other tasks, but peak postural instability moments were less challenging during this game than during any of the other tasks, as shown by the minimum destabilizing force values. Dynamic stability was progressively more challenged (higher mean and maximum stabilizing force from the 50/50 Challenge to the Soccer and Slalom games, to the natural gait speed task and to the fast gait speed task, increasing the overall stability difficulty (mean and minimum stability index in the same manner. Conclusions The stabilizing/destabilizing forces model can be used to rate the level of balance requirements during different tasks such as gait or exergames. The results of our study showed that postural stability

  13. Small disturbance voltage stability assessment of power systems by modal analysis and dynamic simulation

    International Nuclear Information System (INIS)

    Amjady, Nima; Ansari, Mohammad Reza

    2008-01-01

    The introduction of liberalized electricity markets in many countries has resulted in more highly stressed power systems. On the other hand, operating points of a power system are acceptable in the feasible region, which is surrounded by the borders of different stabilities. Power system instability is critical for all participants of the electricity market. Determination of different stability margins can result in the optimum utilization of power system with minimum risk. This paper focuses on the small disturbance voltage stability, which is an important subset of the power system global stability. This kind of voltage stability is usually evaluated by static analysis tools such as continuation power flow, while it essentially has dynamic nature. Besides, a combination of linear and nonlinear analysis tools is required to correctly analyze it. In this paper, a hybrid evaluation method composed of static, dynamic, linear, and nonlinear analysis tools is proposed for this purpose. Effect of load scenario, generation pattern, branch and generator contingency on the small disturbance voltage stability are evaluated by the hybrid method. The test results are given for New England and IEEE68 bus test systems. (author)

  14. A direct comparison of spine rotational stiffness and dynamic spine stability during repetitive lifting tasks.

    Science.gov (United States)

    Graham, Ryan B; Brown, Stephen H M

    2012-06-01

    Stability of the spinal column is critical to bear loads, allow movement, and at the same time avoid injury and pain. However, there has been a debate in recent years as to how best to define and quantify spine stability, with the outcome being that different methods are used without a clear understanding of how they relate to one another. Therefore, the goal of the present study was to directly compare lumbar spine rotational stiffness, calculated with an EMG-driven biomechanical model, to local dynamic spine stability calculated using Lyapunov analyses of kinematic data, during a series of continuous dynamic lifting challenges. Twelve healthy male subjects performed 30 repetitive lifts under three varying load and three varying rate conditions. With an increase in the load lifted (constant rate) there was a significant increase in mean, maximum, and minimum spine rotational stiffness (pstiffness (pstiffness and a non-significant decrease in local dynamic stability (p>0.05). Weak linear relationships were found for the varying rate conditions (r=-0.02 to -0.27). The results suggest that spine rotational stiffness and local dynamic stability are closely related to one another, as they provided similar information when movement rate was controlled. However, based on the results from the changing lifting rate conditions, it is evident that both models provide unique information and that future research is required to completely understand the relationship between the two models. Using both techniques concurrently may provide the best information regarding the true effects of (in) stability under different loading and movement scenarios, and in comparing healthy and clinical populations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. The Effects of Core Stability Exercise on the Dynamic Balance of Volleyball Players

    Directory of Open Access Journals (Sweden)

    Hassan Sadeghi

    2013-12-01

    Full Text Available Dynamic balance is a key component of injury prevention and rehabilitation in sports. Training the core muscles has been hypothesized as an intervention for improving balance. However, there is a lack of current scientific evidence to support this claim. The purpose of this study was to evaluate the effects of a core stability program on dynamic balance of volleyball players as measured with the Star Excursion Balance Test (SEBT. Thirty healthy participants were divided into 2 groups: control and exercise groups. All participants performed the SEBT before and after 8-week exercise time. During the 8-week time, the exercise group performed a core stability program, whereas the control group abstained from any new exercise. These results also illustrated there was significant differences in the scores for pre-test and post-test of all direction according SEBT in the experimental group. An independent sample t-test was conducted to compare experimental and control group (F=43.573, Sig=0.000. These results were a significant difference in the scores for control and experimental groups. Maximum excursion distances improved for the exercise group, compared with the control group. This result justifies the hypothesis that core strengthening can improve dynamic postural control during landing of volleyball players significantly. Keywords: Core stabilization; volleyball player; dynamic balance; SEBT

  16. Dynamic stabilities of icosahedral-like clusters and their ability to form quasicrystals

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Xiaogang; Hamid, Ilyar; Duan, Haiming, E-mail: dhm@xju.edu.cn [College of Physics Science and Technology. Xinjiang University, Urumqi 830046 (China)

    2016-06-15

    The dynamic stabilities of the icosahedral-like clusters containing up to 2200 atoms are investigated for 15 metal elements. The clusters originate from five different initial structures (icosahedron, truncated decahedron, octahedron, closed-shell fragment of an HCP structure, and non-closed-shell fragment of an HCP structure). The obtained order of the dynamic stabilities of the icosahedral-like clusters can be assigned to three groups, from stronger to weaker, according to the size ranges involved: (Zr, Al, Ti) > (Cu, Fe, Co, Ni, Mg, Ag) > (Pb, Au, Pd, Pt, Rh, Ir), which correspond to the predicted formation ability of the quasicrystals. The differences of the sequences can be explained by analyzing the parameters of the Gupta-type many-body inter-atomic potentials.

  17. Strategy switching in the stabilization of unstable dynamics.

    Directory of Open Access Journals (Sweden)

    Jacopo Zenzeri

    Full Text Available In order to understand mechanisms of strategy switching in the stabilization of unstable dynamics, this work investigates how human subjects learn to become skilled users of an underactuated bimanual tool in an unstable environment. The tool, which consists of a mass and two hand-held non-linear springs, is affected by a saddle-like force-field. The non-linearity of the springs allows the users to determine size and orientation of the tool stiffness ellipse, by using different patterns of bimanual coordination: minimal stiffness occurs when the two spring terminals are aligned and stiffness size grows by stretching them apart. Tool parameters were set such that minimal stiffness is insufficient to provide stable equilibrium whereas asymptotic stability can be achieved with sufficient stretching, although at the expense of greater effort. As a consequence, tool users have two possible strategies for stabilizing the mass in different regions of the workspace: 1 high stiffness feedforward strategy, aiming at asymptotic stability and 2 low stiffness positional feedback strategy aiming at bounded stability. The tool was simulated by a bimanual haptic robot with direct torque control of the motors. In a previous study we analyzed the behavior of naïve users and we found that they spontaneously clustered into two groups of approximately equal size. In this study we trained subjects to become expert users of both strategies in a discrete reaching task. Then we tested generalization capabilities and mechanism of strategy-switching by means of stabilization tasks which consist of tracking moving targets in the workspace. The uniqueness of the experimental setup is that it addresses the general problem of strategy-switching in an unstable environment, suggesting that complex behaviors cannot be explained in terms of a global optimization criterion but rather require the ability to switch between different sub-optimal mechanisms.

  18. Effect of Semi-Rigid and Soft Ankle Braces on Static and Dynamic Postural Stability in Young Male Adults

    Directory of Open Access Journals (Sweden)

    Noriaki Maeda, Yukio Urabe, Shogo Tsutsumi, Shuhei Numano, Miho Morita, Takuya Takeuchi, Shou Iwata, Toshiki Kobayashi

    2016-06-01

    Full Text Available Ankle braces have been suggested to protect ankle joints from a sprain by restricting inversion and improving proprioception. However, the difference in effects between a semi-rigid brace and a soft brace regarding dynamic postural control after landing is not known. The aim of the present study was to compare the effect of soft (SB and semi-rigid (SRB ankle braces on static and dynamic postural stability in healthy young men. Altogether, 21 male adults (mean age 24.0 ± 1.5 years were assessed for one leg while wearing non-brace (NB, SB or SRB. Balance in single-limb stance on a single-force platform with open eyes and closed eyes were assessed for the non-dominant leg under SB, SRB, and NB conditions. Locus length/second (mm/s and the enveloped area (mm·s-2 surrounded by the circumference of the wave pattern during postural sway were calculated. For assessing dynamic postural stability, the participant jumped and landed on one leg on a force platform, and the Dynamic Postural Stability Index (DPSI and the maximum vertical ground reaction force (vGRFmax were measured. The data were compared among the three conditions with repeated-measures analysis of variance. The correlations between locus length/second, enveloped area, DPSI values (DPSI, Anterior-Posterior Stability Index, Medial-Lateral Stability Index, and Vertical Stability Index, and vGRFmax were then calculated. The results indicated that locus length/second and enveloped area with open eyes and closed eyes were not significantly different for each condition. However, a significant lower in the DPSI and Vertical Stability Index were observed with the SRB in comparison to the SB and NB. A significant improvement in vGRFmax was also observed with the SRB in comparison to NB. SRB demonstrated a positive effect on dynamic postural stability after landing on a single leg and may improve balance by increasing dynamic postural stability.

  19. The effects of core stabilization exercise on dynamic balance and gait function in stroke patients.

    Science.gov (United States)

    Chung, Eun-Jung; Kim, Jung-Hee; Lee, Byoung-Hee

    2013-07-01

    [Purpose] The purpose of this study was to determine the effects of core stabilization exercise on dynamic balance and gait function in stroke patients. [Subjects] The subjects were 16 stroke patients, who were randomly divided into two groups: a core stabilization exercise group of eight subjects and control group of eight subjects. [Methods] Subjects in both groups received general training five times per week. Subjects in the core stabilization exercise group practiced an additional core stabilization exercise program, which was performed for 30 minutes, three times per week, during a period of four weeks. All subjects were evaluated for dynamic balance (Timed Up and Go test, TUG) and gait parameters (velocity, cadence, step length, and stride length). [Results] Following intervention, the core exercise group showed a significant change in TUG, velocity, and cadence. The only significant difference observed between the core group and control group was in velocity. [Conclusion] The results of this study suggest the feasibility and suitability of core stabilization exercise for stroke patients.

  20. Dynamics and stability of radiation-driven double ablation front structures

    International Nuclear Information System (INIS)

    Drean, V.; Olazabal-Loume, M.; Tikhonchuk, V. T.; Sanz, J.

    2010-01-01

    The dynamics of double ablation front (DAF) structures is studied for planar targets with moderate atomic number ablators. These structures are obtained in hydrodynamic simulations for various materials and laser intensities and are qualitatively characterized during the acceleration stage of the target. The importance of the radiative transport for the DAF dynamics is then demonstrated. Simulated hydrodynamic profiles are compared with a theoretical model, showing the consistency of the model and the relevant parameters for the dynamics description. The stability of DAF structures with respect to two-dimensional perturbations is studied using two different approaches: one considers the assumptions of the theoretical model and the other one a more complete physics. The numerical simulations performed with both approaches demonstrate good agreement of dispersion curves.

  1. Dynamic stability control in forward falls: postural corrections after muscle fatigue in young and older adults.

    Science.gov (United States)

    Mademli, Lida; Arampatzis, Adamantios; Karamanidis, Kiros

    2008-06-01

    Many studies report that muscle strength loss may alter the human system's capacity to generate rapid force for balance corrections after perturbations, leading to deficient recovery behaviours. Yet little is known regarding the effect of modifications in the neuromuscular system induced by fatigue on dynamic stability control during postural perturbations. This study investigates the effect of muscle strength decline induced by fatiguing contractions on the dynamic stability control of young and older adults during forward falls. Eleven young and eleven older male adults had to regain balance after sudden falls before and after submaximal fatiguing knee extension-flexion contractions. Young subjects had a higher margin of stability than older ones before and after the fatiguing task. This reflects their enhanced ability in using mechanisms for maintaining dynamic stability (i.e. a greater base of support). The margin of stability, the boundary of the base of support and the position of the extrapolated centre of mass, remained unaffected by the reduction in muscle strength induced by the fatiguing contractions, indicating an appropriate adjustment of the motor commands to compensate the deficit in muscle strength. Both young and older adults were able to counteract the decreased horizontal ground reaction forces after the fatiguing task by flexing their knee to a greater extent, leading to similar decreases in the horizontal velocity of centre of mass as in the pre fatigue condition. The results demonstrate the ability of the central nervous system to rapidly modify the execution of postural corrections including mechanisms for maintaining dynamic stability.

  2. Criteria for stability of linear dynamical systems with multiple delays ...

    African Journals Online (AJOL)

    In this study we considered a linear Dynamical system with multiple delays and find suitable conditions on the systems parameters such that for a given initial function, we can define a mapping in a carefully chosen complete metric space on which the mapping has a unique fixed point. An asymptotic stability theory for the ...

  3. Dynamic plate osteosynthesis for fracture stabilization: how to do it

    Directory of Open Access Journals (Sweden)

    Juerg Sonderegger

    2010-01-01

    Full Text Available Plate osteosynthesis is one treatment option for the stabilization of long bones. It is widely accepted to achieve bone healing with a dynamic and biological fixation where the perfusion of the bone is left intact and micromotion at the fracture gap is allowed. The indications for a dynamic plate osteosynthesis include distal tibial and femoral fractures, some midshaft fractures, and adolescent tibial and femoral fractures with not fully closed growth plates. Although many lower limb shaft fractures are managed successfully with intramedullary nails, there are some important advantages of open-reduction-and-plate fixation: the risk of malalignment, anterior knee pain, or nonunion seems to be lower. The surgeon performing a plate osteosynthesis has the possibility to influence fixation strength and micromotion at the fracture gap. Long plates and oblique screws at the plate ends increase fixation strength. However, the number of screws does influence stiffness and stability. Lag screws and screws close to the fracture site reduce micromotion dramatically. Dynamic plate osteosynthesis can be achieved by applying some simple rules: long plates with only a few screws should be used. Oblique screws at the plate ends increase the pullout strength. Two or three holes at the fracture site should be omitted. Lag screws, especially through the plate, must be avoided whenever possible. Compression is not required. Locking plates are recommended only in fractures close to the joint. When respecting these basic concepts, dynamic plate osteosynthesis is a safe procedure with a high healing and a low complication rate. 

  4. Electricity Market Stochastic Dynamic Model and Its Mean Stability Analysis

    Directory of Open Access Journals (Sweden)

    Zhanhui Lu

    2014-01-01

    Full Text Available Based on the deterministic dynamic model of electricity market proposed by Alvarado, a stochastic electricity market model, considering the random nature of demand sides, is presented in this paper on the assumption that generator cost function and consumer utility function are quadratic functions. The stochastic electricity market model is a generalization of the deterministic dynamic model. Using the theory of stochastic differential equations, stochastic process theory, and eigenvalue techniques, the determining conditions of the mean stability for this electricity market model under small Gauss type random excitation are provided and testified theoretically. That is, if the demand elasticity of suppliers is nonnegative and the demand elasticity of consumers is negative, then the stochastic electricity market model is mean stable. It implies that the stability can be judged directly by initial data without any computation. Taking deterministic electricity market data combined with small Gauss type random excitation as numerical samples to interpret random phenomena from a statistical perspective, the results indicate the conclusions above are correct, valid, and practical.

  5. Skipping Posterior Dynamic Transpedicular Stabilization for Distant Segment Degenerative Disease

    Directory of Open Access Journals (Sweden)

    Bilgehan Solmaz

    2012-01-01

    Full Text Available Objective. To date, there is still no consensus on the treatment of spinal degenerative disease. Current surgical techniques to manage painful spinal disorders are imperfect. In this paper, we aimed to evaluate the prospective results of posterior transpedicular dynamic stabilization, a novel surgical approach that skips the segments that do not produce pain. This technique has been proven biomechanically and radiologically in spinal degenerative diseases. Methods. A prospective study of 18 patients averaging 54.94 years of age with distant spinal segment degenerative disease. Indications consisted of degenerative disc disease (57%, herniated nucleus pulposus (50%, spinal stenosis (14.28%, degenerative spondylolisthesis (14.28%, and foraminal stenosis (7.1%. The Oswestry Low-Back Pain Disability Questionnaire and visual analog scale (VAS for pain were recorded preoperatively and at the third and twelfth postoperative months. Results. Both the Oswestry and VAS scores showed significant improvement postoperatively (P<0.05. We observed complications in one patient who had spinal epidural hematoma. Conclusion. We recommend skipping posterior transpedicular dynamic stabilization for surgical treatment of distant segment spinal degenerative disease.

  6. A heterogenous Cournot duopoly with delay dynamics: Hopf bifurcations and stability switching curves

    Science.gov (United States)

    Pecora, Nicolò; Sodini, Mauro

    2018-05-01

    This article considers a Cournot duopoly model in a continuous-time framework and analyze its dynamic behavior when the competitors are heterogeneous in determining their output decision. Specifically the model is expressed in the form of differential equations with discrete delays. The stability conditions of the unique Nash equilibrium of the system are determined and the emergence of Hopf bifurcations is shown. Applying some recent mathematical techniques (stability switching curves) and performing numerical simulations, the paper confirms how different time delays affect the stability of the economy.

  7. FINANCIAL STABILITY OF SMALL BUSINESS: THE ESTIMATION AND DYNAMICS OF REGIONAL DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    A.U. Makarova

    2008-03-01

    Full Text Available In clause the problem of an estimation of financial stability of the enterprises of small business is considered. It is offered to use traditional indicators of an estimation of the financial stability, describing it in the short-term period, and such indicators as equation of monetary streams, qualitative risk-management, a level äèâåðñèôèêàöèè business and competitive position of the company for an estimation of stability in the long-term period. On the basis of data of statistical supervision over small enterprises the estimation of dynamics of results of financial activity and financial stability of small enterprises of Sverdlovsk area is lead to 2001 – 2005 is drawn a conclusion about low parameters of solvency and financial stability of small enterprises of region in comparison with normative parameters and data on the large and average enterprises. The measures directed on increase of financial stability of the enterprises of small business are offered.

  8. Stochastic Dynamics Underlying Cognitive Stability and Flexibility.

    Directory of Open Access Journals (Sweden)

    Kai Ueltzhöffer

    2015-06-01

    updating and dopaminergic modulation of cognitive flexibility. These results show that stochastic dynamical systems can implement the basic computations underlying cognitive stability and flexibility and explain neurobiological bases of individual differences.

  9. Dynamics and stability of light-like tachyon condensation

    International Nuclear Information System (INIS)

    Barnaby, Neil; Robinson, Patrick; Mulryne, David J.; Nunes, Nelson J.

    2009-01-01

    Recently, Hellerman and Schnabl considered the dynamics of unstable D-branes in the background of a linear dilaton. Remarkably, they were able to construct light-like tachyon solutions which interpolate smoothly between the perturbative and nonperturbative vacua, without undergoing the wild oscillations that plague time-like solutions. In their analysis, however, the full structure of the initial value problem for the nonlocal dynamical equations was not considered. In this paper, therefore, we reexamine the nonlinear dynamics of light-like tachyon condensation using a combination of numerical and analytical techniques. We find that for the p-adic string the monotonic behaviour obtained previously relied on a special choice of initial conditions near the unstable maximum. For generic initial conditions the wild oscillations come back to haunt us. Interestingly, we find an 'island of stability' in initial condition space that leads to sensible evolution at late times. For the string field theory case, on the other hand, we find that the evolution is completely stable for generic choices of initial data. This provides an explicit example of a string theoretic system that admits infinitely many initial data but is nevertheless nonperturbatively stable. Qualitatively similar dynamics are obtained in nonlocal cosmologies where the Hubble damping plays a role very analogous to the dilaton gradient.

  10. Dynamics and stability of light-like tachyon condensation

    Science.gov (United States)

    Barnaby, Neil; Mulryne, David J.; Nunes, Nelson J.; Robinson, Patrick

    2009-03-01

    Recently, Hellerman and Schnabl considered the dynamics of unstable D-branes in the background of a linear dilaton. Remarkably, they were able to construct light-like tachyon solutions which interpolate smoothly between the perturbative and nonperturbative vacua, without undergoing the wild oscillations that plague time-like solutions. In their analysis, however, the full structure of the initial value problem for the nonlocal dynamical equations was not considered. In this paper, therefore, we reexamine the nonlinear dynamics of light-like tachyon condensation using a combination of numerical and analytical techniques. We find that for the p-adic string the monotonic behaviour obtained previously relied on a special choice of initial conditions near the unstable maximum. For generic initial conditions the wild oscillations come back to haunt us. Interestingly, we find an ``island of stability'' in initial condition space that leads to sensible evolution at late times. For the string field theory case, on the other hand, we find that the evolution is completely stable for generic choices of initial data. This provides an explicit example of a string theoretic system that admits infinitely many initial data but is nevertheless nonperturbatively stable. Qualitatively similar dynamics are obtained in nonlocal cosmologies where the Hubble damping plays a role very analogous to the dilaton gradient.

  11. Classical linear-control analysis applied to business-cycle dynamics and stability

    Science.gov (United States)

    Wingrove, R. C.

    1983-01-01

    Linear control analysis is applied as an aid in understanding the fluctuations of business cycles in the past, and to examine monetary policies that might improve stabilization. The analysis shows how different policies change the frequency and damping of the economic system dynamics, and how they modify the amplitude of the fluctuations that are caused by random disturbances. Examples are used to show how policy feedbacks and policy lags can be incorporated, and how different monetary strategies for stabilization can be analytically compared. Representative numerical results are used to illustrate the main points.

  12. THE WAYS AND METHODS OF MAINTENANCE OF ECONOMIC STABILITY OF BUILDING ENTERPRISE BY CAUSE OF DYNAMIC MODEL

    Directory of Open Access Journals (Sweden)

    A.M. Platonov

    2008-12-01

    Full Text Available It is considered in work what exactly is main base for construction of dynamic model of stability of the building enterprise. There are submitted normative requirements which provide economic stability and also normative parities of dynamics of the parameters that correspond to these requirements. The technique of providing of economic stability is submitted on examples of two building enterprises of Ekaterinburg in view of results of their work in years of 2005-2006. There are determined the ways of providing of economic stability on the results of the carried out calculation. There are also revealed reserves of the enterprises for growth of efficiency of their activity.

  13. Dynamical investigation and parameter stability region analysis of a flywheel energy storage system in charging mode

    International Nuclear Information System (INIS)

    Zhang Wei-Ya; Li Yong-Li; Chang Xiao-Yong; Wang Nan

    2013-01-01

    In this paper, the dynamic behavior analysis of the electromechanical coupling characteristics of a flywheel energy storage system (FESS) with a permanent magnet (PM) brushless direct-current (DC) motor (BLDCM) is studied. The Hopf bifurcation theory and nonlinear methods are used to investigate the generation process and mechanism of the coupled dynamic behavior for the average current controlled FESS in the charging mode. First, the universal nonlinear dynamic model of the FESS based on the BLDCM is derived. Then, for a 0.01 kWh/1.6 kW FESS platform in the Key Laboratory of the Smart Grid at Tianjin University, the phase trajectory of the FESS from a stable state towards chaos is presented using numerical and stroboscopic methods, and all dynamic behaviors of the system in this process are captured. The characteristics of the low-frequency oscillation and the mechanism of the Hopf bifurcation are investigated based on the Routh stability criterion and nonlinear dynamic theory. It is shown that the Hopf bifurcation is directly due to the loss of control over the inductor current, which is caused by the system control parameters exceeding certain ranges. This coupling nonlinear process of the FESS affects the stability of the motor running and the efficiency of energy transfer. In this paper, we investigate into the effects of control parameter change on the stability and the stability regions of these parameters based on the averaged-model approach. Furthermore, the effect of the quantization error in the digital control system is considered to modify the stability regions of the control parameters. Finally, these theoretical results are verified through platform experiments. (interdisciplinary physics and related areas of science and technology)

  14. BWR stability using a reduced dynamical model

    International Nuclear Information System (INIS)

    Ballestrin Bolea, J.M.; Blazquez, J.B.

    1990-01-01

    BWR stability can be treated with reduced order dynamical models. When the parameters of the model came from experimental data, the predictions are accurate. In this work an alternative derivation for the void fraction equation is made, but remarking the physical struct-ure of the parameters. As the poles of power/reactivity transfer function are related with the parameters, the measurement of the poles by other techniques such as noise analysis will lead to the parameters, but the system of equations in non-linear. Simple parametric calculat-ion of decay ratio are performed, showing why BWRs become unstable when they are operated at low flow and high power. (Author). 7 refs

  15. Stability and nonlinear dynamics of gyrotrons at cyclotron harmonics

    International Nuclear Information System (INIS)

    Saraph, G.P.; Nusinovich, G.S.; Antonsen, T.M. Jr.; Levush, B.

    1992-01-01

    Gyrotrons operating at higher harmonics of the cyclotron frequency can overcome the frequency limitations caused by achievable strength of the magnetic field. However, the excitation of modes at the fundamental frequency exhibit a major problem for stable operation of harmonic gyrotron at high power with high efficiency. Therefore the issues of stability of gyrotron operation at the cyclotron harmonics and nonlinear dynamics of mode interaction are of great importance. The results of the authors stability analysis and multimode simulation are presented here. A detailed nonlinear theory of steady state single mode operation at cyclotron harmonics has been presented previously, taking into account beam-wave coupling and nonlinear gain function at cyclotron harmonics. A set of equations describing low gain regime interaction of modes resonant at different cyclotron harmonics was studied before. The multifrequency time-dependent nonlinear analysis presented here is based on previous gyrotron studies and beam-wave interaction at cyclotron harmonics. The authors have determined the parameter space for stable single mode operation at the second harmonic. The nonlinear dynamics of mode evolution and mode interaction for a harmonic gyrotron is presented. A new nonlinear effect in which the parasite at the fundamental harmonic helps excite the operating mode at the second harmonic has been demonstrated

  16. Local stability of galactic discs in modified dynamics

    Science.gov (United States)

    Shenavar, Hossein; Ghafourian, Neda

    2018-04-01

    The local stability of stellar and fluid discs, under a new modified dynamical model, is surveyed by using WKB approximation. The exact form of the modified Toomre criterion is derived for both types of systems and it is shown that the new model is, in all situations, more locally stable than Newtonian model. In addition, it has been proved that the central surface density of the galaxies plays an important role in the local stability in the sense that low surface brightness (LSB) galaxies are more stable than high surface brightness (HSBs). Furthermore, the growth rate in the new model is found to be lower than the Newtonian one. We found that, according to this model, the local instability is related to the ratio of surface density of the disc to a critical surface density Σcrit. We provide observational evidence to support this result based on star formation rate in HSBs and LSBs.

  17. Experimental study on dynamic stabilization of the MHD instability in pinch plasmas surrounded by a conducting shell

    International Nuclear Information System (INIS)

    Yamamoto, Shunji; Ishii, Shozo; Kawamoto, Shigeshi; Hayashi, Izumi

    1981-01-01

    Experimental study on the dynamic stabilization of MHD instability with a pinch plasma generator was done, and the results were compared with the theoretical works. The previous results of theoretical analysis showed that a conducting shell worked effectively for the dynamic stabilization of MHD instability. The present experiment was carried out with a linear plasma generator which consisted of a discharge tube, a coil and a conducting shell. The macroscopic behavior of plasma was observed with an image converter camera, and the phenomena due to the instability was measured by a magnetic probe. A sine-cosine coil was employed for the observation of the growth of instability. The following results were obtained. When the frequency of RF current for dynamic stabilization was larger than the growth rate of instability, the experimental results were in agreement with the theoretical ones. The effect of a conducting shell was clearly seen. For the helical instability of short wave length, the dynamic stabilization was easily obtained even without a conducting shell. The self-reversal phenomena due to the helical instability of short wave length was suppressed by the RF current along the axis of a discharge tube. (Kato, T.)

  18. Hybrid dynamic stabilization: a biomechanical assessment of adjacent and supraadjacent levels of the lumbar spine.

    Science.gov (United States)

    Mageswaran, Prasath; Techy, Fernando; Colbrunn, Robb W; Bonner, Tara F; McLain, Robert F

    2012-09-01

    The object of this study was to evaluate the effect of hybrid dynamic stabilization on adjacent levels of the lumbar spine. Seven human spine specimens from T-12 to the sacrum were used. The following conditions were implemented: 1) intact spine; 2) fusion of L4-5 with bilateral pedicle screws and titanium rods; and 3) supplementation of the L4-5 fusion with pedicle screw dynamic stabilization constructs at L3-4, with the purpose of protecting the L3-4 level from excessive range of motion (ROM) and to create a smoother motion transition to the rest of the lumbar spine. An industrial robot was used to apply continuous pure moment (± 2 Nm) in flexion-extension with and without a follower load, lateral bending, and axial rotation. Intersegmental rotations of the fused, dynamically stabilized, and adjacent levels were measured and compared. In flexion-extension only, the rigid instrumentation at L4-5 caused a 78% decrease in the segment's ROM when compared with the intact specimen. To compensate, it caused an increase in motion at adjacent levels L1-2 (45.6%) and L2-3 (23.2%) only. The placement of the dynamic construct at L3-4 decreased the operated level's ROM by 80.4% (similar stability as the fusion at L4-5), when compared with the intact specimen, and caused a significant increase in motion at all tested adjacent levels. In flexion-extension with a follower load, instrumentation at L4-5 affected only a subadjacent level, L5-sacrum (52.0%), while causing a reduction in motion at the operated level (L4-5, -76.4%). The dynamic construct caused a significant increase in motion at the adjacent levels T12-L1 (44.9%), L1-2 (57.3%), and L5-sacrum (83.9%), while motion at the operated level (L3-4) was reduced by 76.7%. In lateral bending, instrumentation at L4-5 increased motion at only T12-L1 (22.8%). The dynamic construct at L3-4 caused an increase in motion at T12-L1 (69.9%), L1-2 (59.4%), L2-3 (44.7%), and L5-sacrum (43.7%). In axial rotation, only the placement of

  19. Dynamic stability of a vertically excited non-linear continuous system

    Czech Academy of Sciences Publication Activity Database

    Náprstek, Jiří; Fischer, Cyril

    2015-01-01

    Roč. 155, July (2015), s. 106-114 ISSN 0045-7949 R&D Projects: GA ČR(CZ) GA15-01035S Institutional support: RVO:68378297 Keywords : non-linear systems * auto-parametric systems * semi-trivial solution * dynamic stability * system recovery * post- critical response Subject RIV: JM - Building Engineering Impact factor: 2.425, year: 2015 http://www.sciencedirect.com/science/article/pii/S0045794915000024

  20. Dynamic stability and failure modes of slopes in discontinuous rock mass

    International Nuclear Information System (INIS)

    Shimizu, Yasuhiro; Aydan, O.; Ichikawa, Yasuaki; Kawamoto, Toshikazu.

    1988-01-01

    The stability of rock slopes during earthquakes are of great concern in rock engineering works such as highway, dam, and nuclear power station constructions. As rock mass in nature is usually discontinuous, the stability of rock slopes will be geverned by the spatial distribution of discontinuities in relation with the geometry of slope and their mechanical properties rather than the rock element. The authors have carried out some model tests on discontinuous rock slopes using three different model tests techniques in order to investigate the dynamic behaviour and failure modes of the slopes in discontinuous rock mass. This paper describes the findings and observations made on model rock slopes with various discontinuity patterns and slope geometry. In addition some stability criterions are developed and the calculated results are compared with those of experiments. (author)

  1. Dynamic Voltage Stability Studies using a Modified IEEE 30-Bus System

    Directory of Open Access Journals (Sweden)

    Oluwafemi Emmanuel Oni

    2016-09-01

    Full Text Available Power System stability is an essential study in the planning and operation of an efficient, economic, reliable and secure electric power system because it encompasses all the facet of power systems operations, from planning, to conceptual design stages of the project as well as during the systems operating life span. This paper presents different scenario of power system stability studies on a modified IEEE 30-bus system which is subjected to different faults conditions. A scenario whereby the longest high voltage alternating current (HVAC line is replaced with a high voltage direct current (HVDC line was implemented. The results obtained show that the HVDC line enhances system stability more compared to the contemporary HVAC line. Dynamic analysis using RMS simulation tool was used on DigSILENT PowerFactory.

  2. Short term outcome of posterior dynamic stabilization system in degenerative lumbar diseases

    Directory of Open Access Journals (Sweden)

    Mingyuan Yang

    2014-01-01

    Conclusion: Dynamic stabilization system treating lumbar degenerative disease showed clinical benefits with motion preservation of the operated segments, but does not have the significant advantage on motion preservation at adjacent segments, to avoid the degeneration of adjacent intervertebral disk.

  3. Dynamic Stability Analysis Using High-Order Interpolation

    Directory of Open Access Journals (Sweden)

    Juarez-Toledo C.

    2012-10-01

    Full Text Available A non-linear model with robust precision for transient stability analysis in multimachine power systems is proposed. The proposed formulation uses the interpolation of Lagrange and Newton's Divided Difference. The High-Order Interpolation technique developed can be used for evaluation of the critical conditions of the dynamic system.The technique is applied to a 5-area 45-machine model of the Mexican interconnected system. As a particular case, this paper shows the application of the High-Order procedure for identifying the slow-frequency mode for a critical contingency. Numerical examples illustrate the method and demonstrate the ability of the High-Order technique to isolate and extract temporal modal behavior.

  4. Stability and periodicity of solutions for delay dynamic systems on time scales

    Directory of Open Access Journals (Sweden)

    Zhi-Qiang Zhu

    2014-04-01

    Full Text Available This article concerns the stability and periodicity of solutions to the delay dynamic system $$ x^{\\triangle}(t=A(t x(t + F(t, x(t, x(g(t+C(t $$ on a time scale. By the inequality technique for vectors, we obtain some stability criteria for the above system. Then, by using the Horn fixed point theorem, we present some conditions under which our system is asymptotically periodic and its periodic solution is unique. In particular, the periodic solution is positive under proper assumptions.

  5. Stability of Intelligent Transportation Network Dynamics: A Daily Path Flow Adjustment considering Travel Time Differentiation

    Directory of Open Access Journals (Sweden)

    Ming-Chorng Hwang

    2015-01-01

    Full Text Available A theoretic formulation on how traffic time information distributed by ITS operations influences the trajectory of network flows is presented in this paper. The interactions between users and ITS operator are decomposed into three parts: (i travel time induced path flow dynamics (PFDTT; (ii demand induced path flow dynamics (PFDD; and (iii predicted travel time dynamics for an origin-destination (OD pair (PTTDOD. PFDTT describes the collective results of user’s daily route selection by pairwise comparison of path travel time provided by ITS services. The other two components, PTTDOD and PFDD, are concentrated on the evolutions of system variables which are predicted and observed, respectively, by ITS operators to act as a benchmark in guiding the target system towards an expected status faster. In addition to the delivered modelings, the stability theorem of the equilibrium solution in the sense of Lyapunov stability is also provided. A Lyapunov function is developed and employed to the proof of stability theorem to show the asymptotic behavior of the aimed system. The information of network flow dynamics plays a key role in traffic control policy-making. The evaluation of ITS-based strategies will not be reasonable without a well-established modeling of network flow evolutions.

  6. Individuals with chronic ankle instability exhibit dynamic postural stability deficits and altered unilateral landing biomechanics: A systematic review.

    Science.gov (United States)

    Simpson, Jeffrey D; Stewart, Ethan M; Macias, David M; Chander, Harish; Knight, Adam C

    2018-06-13

    To evaluate the literature regarding unilateral landing biomechanics and dynamic postural stability in individuals with and without chronic ankle instability (CAI). Four online databases (PubMed, ScienceDirect, Scopus, and SportDiscus) were searched from the earliest records to 31 January 2018, as well as reference sections of related journal articles, to complete the systematic search. Studies investigating the influence of CAI on unilateral landing biomechanics and dynamic postural stability were systematically reviewed and evaluated. Twenty articles met the criteria and were included in the systematic review. Individuals with CAI were found to have deficits in dynamic postural stability on the affected limb with medium to large effect sizes and altered lower extremity kinematics, most notably in the ankle and knee, with medium to large effect sizes. Additionally, greater loading rates and peak ground reaction forces, in addition to reductions in ankle muscle activity were also found in individuals with CAI during unilateral jump-landing tasks. Individuals with CAI demonstrate dynamic postural stability deficits, lower extremity kinematic alterations, and reduced neuromuscular control during unilateral jump-landings. These are likely factors that contribute recurrent lateral ankle sprain injuries during dynamic activity in individuals with CAI. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Conceptual Design Optimization of an Augmented Stability Aircraft Incorporating Dynamic Response Performance Constraints

    Science.gov (United States)

    Welstead, Jason

    2014-01-01

    This research focused on incorporating stability and control into a multidisciplinary de- sign optimization on a Boeing 737-class advanced concept called the D8.2b. A new method of evaluating the aircraft handling performance using quantitative evaluation of the sys- tem to disturbances, including perturbations, continuous turbulence, and discrete gusts, is presented. A multidisciplinary design optimization was performed using the D8.2b transport air- craft concept. The con guration was optimized for minimum fuel burn using a design range of 3,000 nautical miles. Optimization cases were run using xed tail volume coecients, static trim constraints, and static trim and dynamic response constraints. A Cessna 182T model was used to test the various dynamic analysis components, ensuring the analysis was behaving as expected. Results of the optimizations show that including stability and con- trol in the design process drastically alters the optimal design, indicating that stability and control should be included in conceptual design to avoid system level penalties later in the design process.

  8. Dynamic Stability Study of Static Gas Bearing for Small Cryogenic Turbo-Expander

    International Nuclear Information System (INIS)

    Wang Xuemin; Zhuang Ming; Zhang Qiyong; Li Shanshan; Fu Bao

    2011-01-01

    An experimental method is presented to analyze the dynamic stability of the gas bearing for small cryogenic turbo-expanders. The rotation imbalance response and the shape of the rotor orbit were obtained for different speeds up to 110,000 rpm, and the critical speed of the rotor-bearing system was determined by a Bode diagram. An FFT signal analytical method was applied to identify the resonance frequency, and the waterfall plot was presented. During the whole process of speeding up to the designed speed of 110,000 rpm, the rotor-bearing works stably with no whirl instability, which is validated in a waterfall plot. Also, the tested rotor-bearing model was analyzed theoretically. It was proved that the experimental results were highly consistent with those of theoretical calculations. Thus the experimental method proposed here to analyze the dynamic stability of the gas bearing is feasible. (fusion engineering)

  9. On the dynamical stability of the space 'monorail'

    Science.gov (United States)

    Bergamaschi, S.; Manni, D.

    The dynamical stability of 'monorail' tethered-satellite/elevator configurations being studied for the Space Station is investigated analytically, treating the end platforms and elevator as point masses, neglecting tether elasticity, and taking the Coriolis force and the complex gravitational field into account in analyzing the orbital-plane motion of the system. A mathematical model is constructed; the equations of motion are derived; and results obtained by numerical integration for platform masses 100,000 and 10,000 kg, elevator mass 5000 kg, and a 10-km-long 6-mm-diameter 4070-kg-mass tether are presented in graphs and briefly characterized.

  10. Dynamical Stability of Imaged Planetary Systems in Formation: Application to HL Tau

    Science.gov (United States)

    Tamayo, D.; Triaud, A. H. M. J.; Menou, K.; Rein, H.

    2015-06-01

    A recent Atacama Large Millimeter/Submillimeter Array image revealed several concentric gaps in the protoplanetary disk surrounding the young star HL Tau. We consider the hypothesis that these gaps are carved by planets, and present a general framework for understanding the dynamical stability of such systems over typical disk lifetimes, providing estimates for the maximum planetary masses. We collect these easily evaluated constraints into a workflow that can help guide the design and interpretation of new observational campaigns and numerical simulations of gap opening in such systems. We argue that the locations of resonances should be significantly shifted in massive disks like HL Tau, and that theoretical uncertainties in the exact offset, together with observational errors, imply a large uncertainty in the dynamical state and stability in such disks. This presents an important barrier to using systems like HL Tau as a proxy for the initial conditions following planet formation. An important observational avenue to breaking this degeneracy is to search for eccentric gaps, which could implicate resonantly interacting planets. Unfortunately, massive disks like HL Tau should induce swift pericenter precession that would smear out any such eccentric features of planetary origin. This motivates pushing toward more typical, less massive disks. For a nominal non-resonant model of the HL Tau system with five planets, we find a maximum mass for the outer three bodies of approximately 2 Neptune masses. In a resonant configuration, these planets can reach at least the mass of Saturn. The inner two planets’ masses are unconstrained by dynamical stability arguments.

  11. Gaze stability, dynamic balance and participation deficits in people with multiple sclerosis at fall-risk.

    Science.gov (United States)

    Garg, Hina; Dibble, Leland E; Schubert, Michael C; Sibthorp, Jim; Foreman, K Bo; Gappmaier, Eduard

    2018-05-05

    Despite the common complaints of dizziness and demyelination of afferent or efferent pathways to and from the vestibular nuclei which may adversely affect the angular Vestibulo-Ocular Reflex (aVOR) and vestibulo-spinal function in persons with Multiple Sclerosis (PwMS), few studies have examined gaze and dynamic balance function in PwMS. 1) Determine the differences in gaze stability, dynamic balance and participation measures between PwMS and controls, 2) Examine the relationships between gaze stability, dynamic balance and participation. Nineteen ambulatory PwMS at fall-risk and 14 age-matched controls were recruited. Outcomes included (a) gaze stability [angular Vestibulo-Ocular Reflex (aVOR) gain (ratio of eye to head velocity); number of Compensatory Saccades (CS) per head rotation; CS latency; gaze position error; Coefficient of Variation (CV) of aVOR gain], (b) dynamic balance [Functional Gait Assessment, FGA; four square step test], and (c) participation [dizziness handicap inventory; activities-specific balance confidence scale]. Separate independent t-tests and Pearson's correlations were calculated. PwMS were age = 53 ± 11.7yrs and had 4.2 ± 3.3 falls/yr. PwMS demonstrated significant (pbalance and participation measures compared to controls. CV of aVOR gain and CS latency were significantly correlated with FGA. Deficits and correlations across a spectrum of disability measures highlight the relevance of gaze and dynamic balance assessment in PwMS. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  12. Linear stability analysis of detonations via numerical computation and dynamic mode decomposition

    KAUST Repository

    Kabanov, Dmitry I.

    2017-12-08

    We introduce a new method to investigate linear stability of gaseous detonations that is based on an accurate shock-fitting numerical integration of the linearized reactive Euler equations with a subsequent analysis of the computed solution via the dynamic mode decomposition. The method is applied to the detonation models based on both the standard one-step Arrhenius kinetics and two-step exothermic-endothermic reaction kinetics. Stability spectra for all cases are computed and analyzed. The new approach is shown to be a viable alternative to the traditional normal-mode analysis used in detonation theory.

  13. Linear stability analysis of detonations via numerical computation and dynamic mode decomposition

    KAUST Repository

    Kabanov, Dmitry; Kasimov, Aslan R.

    2018-01-01

    We introduce a new method to investigate linear stability of gaseous detonations that is based on an accurate shock-fitting numerical integration of the linearized reactive Euler equations with a subsequent analysis of the computed solution via the dynamic mode decomposition. The method is applied to the detonation models based on both the standard one-step Arrhenius kinetics and two-step exothermic-endothermic reaction kinetics. Stability spectra for all cases are computed and analyzed. The new approach is shown to be a viable alternative to the traditional normal-mode analysis used in detonation theory.

  14. Linear stability analysis of detonations via numerical computation and dynamic mode decomposition

    KAUST Repository

    Kabanov, Dmitry

    2018-03-20

    We introduce a new method to investigate linear stability of gaseous detonations that is based on an accurate shock-fitting numerical integration of the linearized reactive Euler equations with a subsequent analysis of the computed solution via the dynamic mode decomposition. The method is applied to the detonation models based on both the standard one-step Arrhenius kinetics and two-step exothermic-endothermic reaction kinetics. Stability spectra for all cases are computed and analyzed. The new approach is shown to be a viable alternative to the traditional normal-mode analysis used in detonation theory.

  15. Finite difference method for inner-layer equations in the resistive MagnetoHydroDynamic stability analysis

    International Nuclear Information System (INIS)

    Tokuda, Shinji; Watanabe, Tomoko.

    1996-08-01

    The matching problem in resistive MagnetoHydroDynamic stability analysis by the asymptotic matching method has been reformulated as an initial-boundary value problem for the inner-layer equations describing the plasma dynamics in the thin layer around a rational surface. The third boundary conditions at boundaries of a finite interval are imposed on the inner layer equations in the formulation instead of asymptotic conditions at infinities. The finite difference method for this problem has been applied to model equations whose solutions are known in a closed form. It has been shown that the initial value problem and the associated eigenvalue problem for the model equations can be solved by the finite difference method with numerical stability. The formulation presented here enables the asymptotic matching method to be a practical method for the resistive MHD stability analysis. (author)

  16. The Effects of Core Stabilization Exercise on Dynamic Balance and Gait Function in Stroke Patients

    OpenAIRE

    Chung, Eun-Jung; Kim, Jung-Hee; Lee, Byoung-Hee

    2013-01-01

    [Purpose] The purpose of this study was to determine the effects of core stabilization exercise on dynamic balance and gait function in stroke patients. [Subjects] The subjects were 16 stroke patients, who were randomly divided into two groups: a core stabilization exercise group of eight subjects and control group of eight subjects. [Methods] Subjects in both groups received general training five times per week. Subjects in the core stabilization exercise group practiced an additional core s...

  17. Study of V-OTDR stability for dynamic strain measurement in piezoelectric vibration

    Science.gov (United States)

    Ren, Meiqi; Lu, Ping; Chen, Liang; Bao, Xiaoyi

    2016-09-01

    In a phase-sensitive optical-time domain reflectometry (Φ-OTDR) system, the challenge for dynamic strain measurement lies in large intensity fluctuations from trace to trace. The intensity fluctuation caused by stochastic characteristics of Rayleigh backscattering sets detection limit for the minimum strength of vibration measurement and causes the large measurement uncertainty. Thus, a trace-to-trace correlation coefficient is introduced to quantify intensity fluctuation of Φ-OTDR traces and stability of the sensor system theoretically and experimentally. A novel approach of measuring dynamic strain induced by various driving voltages of lead zirconate titanate (PZT) in Φ-OTDR is also demonstrated. Piezoelectric vibration signals are evaluated through analyzing peak values of fast Fourier transform spectra at the fundamental frequency and high-order harmonics based on Bessel functions. High trace-to-trace correlation coefficients varying from 0.824 to 0.967 among 100 measurements are obtained in experimental results, showing the good stability of our sensor system, as well as small uncertainty of measured peak values.

  18. Spin dynamics and thermal stability in L10 FePt

    Science.gov (United States)

    Chen, Tianran; Toomey, Wahida

    Increasing the data storage density of hard drives remains one of the continuing goals in magnetic recording technology. A critical challenge for increasing data density is the thermal stability of the written information, which drops rapidly as the bit size gets smaller. To maintain good thermal stability in small bits, one should consider materials with high anisotropy energy such as L10 FePt. High anisotropy energy nevertheless implies high coercivity, making it difficult to write information onto the disk. This issue can be overcome by a new technique called heat-assisted magnetic recording, where a laser is used to locally heat the recording medium to reduce its coercivity while retaining relatively good thermal stability. Many of the microscopic magnetic properties of L10 FePt, however, have not been theoretically well understood. In this poster, I will focus on a single L10 FePt grain, typically of a few nanometers. Specifically, I will discuss its critical temperature, size effect and, in particular, spin dynamics in the writing process, a key to the success of heat-assisted magnetic recording. WCU URF16.

  19. Comparative effectiveness of lumbar stabilization, dynamic strengthening, and Pilates on chronic low back pain: randomized clinical trial.

    Science.gov (United States)

    Bhadauria, Esha A; Gurudut, Peeyoosha

    2017-08-01

    The aim of the present study was to compare three different forms of exercises namely lumbar stabilization, dynamic strengthening, and Pilates on chronic low back pain (LBP) in terms of pain, range of motion, core strength and function. In this study, 44 subjects suffering from non-specific LBP for more than 3 months were randomly allocated into the lumbar stabilization group, the dynamic strengthening group, and the Pilates group. Ten sessions of exercises for 3 weeks were prescribed along with interferential current and hot moist pack. Pain was assessed by visual analog scale, functional affection by modified Oswestry Disability Questionnaire, range of motion by assessing lumbar flexion and extension by modified Schober test and core strength was assessed by pressure biofeedback on day 1 and day 10 of the treatment. There was reduction of pain, improvement in range of motion, functional ability and core strength in all the 3 exercise groups. The improvement was significantly greater in the lumbar stabilization group for all the outcome measures, when compared the posttreatment after 10th session. Pairwise comparison showed that there was greater reduction of disability in the Pilates group than the dynamic strengthening group. It was concluded that the lumbar stabilization is more superior compared to the dynamic strengthening and Pilates in chronic nonspecific LBP. However, long-term benefits need to be assessed and compared with prospective follow-up studies.

  20. Reliability and Minimum Detectable Change of Temporal-Spatial, Kinematic, and Dynamic Stability Measures during Perturbed Gait.

    Directory of Open Access Journals (Sweden)

    Christopher A Rábago

    Full Text Available Temporal-spatial, kinematic variability, and dynamic stability measures collected during perturbation-based assessment paradigms are often used to identify dysfunction associated with gait instability. However, it remains unclear which measures are most reliable for detecting and tracking responses to perturbations. This study systematically determined the between-session reliability and minimum detectable change values of temporal-spatial, kinematic variability, and dynamic stability measures during three types of perturbed gait. Twenty young healthy adults completed two identical testing sessions two weeks apart, comprised of an unperturbed and three perturbed (cognitive, physical, and visual walking conditions in a virtual reality environment. Within each session, perturbation responses were compared to unperturbed walking using paired t-tests. Between-session reliability and minimum detectable change values were also calculated for each measure and condition. All temporal-spatial, kinematic variability and dynamic stability measures demonstrated fair to excellent between-session reliability. Minimal detectable change values, normalized to mean values ranged from 1-50%. Step width mean and variability measures demonstrated the greatest response to perturbations with excellent between-session reliability and low minimum detectable change values. Orbital stability measures demonstrated specificity to perturbation direction and sensitivity with excellent between-session reliability and low minimum detectable change values. We observed substantially greater between-session reliability and lower minimum detectable change values for local stability measures than previously described which may be the result of averaging across trials within a session and using velocity versus acceleration data for reconstruction of state spaces. Across all perturbation types, temporal-spatial, orbital and local measures were the most reliable measures with the

  1. Transient Dynamics of Electric Power Systems: Direct Stability Assessment and Chaotic Motions

    Science.gov (United States)

    Chu, Chia-Chi

    A power system is continuously experiencing disturbances. Analyzing, predicting, and controlling transient dynamics, which describe transient behaviors of the power system following disturbances, is a major concern in the planning and operation of a power utility. Important conclusions and decisions are made based on the result of system transient behaviors. As today's power network becomes highly interconnected and much more complex, it has become essential to enhance the fundamental understanding of transient dynamics, and to develop fast and reliable computational algorithms. In this thesis, we emphasize mathematical rigor rather than physical insight. Nonlinear dynamical system theory is applied to study two fundamental topics: direct stability assessment and chaotic motions. Conventionally, power system stability is determined by calculating the time-domain transient behaviors for a given disturbance. In contrast, direct methods identify whether or not the system will remain stable once the disturbance is removed by comparing the corresponding energy value of the post-fault system to a calculated threshold value. Direct methods not only avoid the time-consuming numerical integration of the time domain approach, but also provide a quantitative measure of the degree of system stability. We present a general framework for the theoretical foundations of direct methods. Canonical representations of network-reduction models as well as network-preserving models are proposed to facilitate the analysis and the construction of energy functions of various power system models. An advanced and practical method, called the boundary of stability region based controlling unstable equilibrium point method (BCU method), of computing the controlling unstable equilibrium point is proposed along with its theoretical foundation. Numerical solution algorithms capable of supporting on-line applications of direct methods are provided. Further possible improvements and enhancements are

  2. Polyhedral Lyapunov functions structurally ensure global asymptotic stability of dynamical networks iff the Jacobian is non-singular

    NARCIS (Netherlands)

    Blanchini, Franco; Giordano, G.

    2017-01-01

    For a vast class of dynamical networks, including chemical reaction networks (CRNs) with monotonic reaction rates, the existence of a polyhedral Lyapunov function (PLF) implies structural (i.e., parameter-free) local stability. Global structural stability is ensured under the additional

  3. Nonlinear flight dynamics and stability of hovering model insects

    Science.gov (United States)

    Liang, Bin; Sun, Mao

    2013-01-01

    Current analyses on insect dynamic flight stability are based on linear theory and limited to small disturbance motions. However, insects' aerial environment is filled with swirling eddies and wind gusts, and large disturbances are common. Here, we numerically solve the equations of motion coupled with the Navier–Stokes equations to simulate the large disturbance motions and analyse the nonlinear flight dynamics of hovering model insects. We consider two representative model insects, a model hawkmoth (large size, low wingbeat frequency) and a model dronefly (small size, high wingbeat frequency). For small and large initial disturbances, the disturbance motion grows with time, and the insects tumble and never return to the equilibrium state; the hovering flight is inherently (passively) unstable. The instability is caused by a pitch moment produced by forward/backward motion and/or a roll moment produced by side motion of the insect. PMID:23697714

  4. Feedback control stabilization of critical dynamics via resource transport on multilayer networks: How glia enable learning dynamics in the brain

    Science.gov (United States)

    Virkar, Yogesh S.; Shew, Woodrow L.; Restrepo, Juan G.; Ott, Edward

    2016-10-01

    Learning and memory are acquired through long-lasting changes in synapses. In the simplest models, such synaptic potentiation typically leads to runaway excitation, but in reality there must exist processes that robustly preserve overall stability of the neural system dynamics. How is this accomplished? Various approaches to this basic question have been considered. Here we propose a particularly compelling and natural mechanism for preserving stability of learning neural systems. This mechanism is based on the global processes by which metabolic resources are distributed to the neurons by glial cells. Specifically, we introduce and study a model composed of two interacting networks: a model neural network interconnected by synapses that undergo spike-timing-dependent plasticity; and a model glial network interconnected by gap junctions that diffusively transport metabolic resources among the glia and, ultimately, to neural synapses where they are consumed. Our main result is that the biophysical constraints imposed by diffusive transport of metabolic resources through the glial network can prevent runaway growth of synaptic strength, both during ongoing activity and during learning. Our findings suggest a previously unappreciated role for glial transport of metabolites in the feedback control stabilization of neural network dynamics during learning.

  5. Stability Result For Dynamic Inversion Devised to Control Large Flexible Aircraft

    Science.gov (United States)

    Gregory, Irene M.

    2001-01-01

    High performance aircraft of the future will be designed lighter, more maneuverable, and operate over an ever expanding flight envelope. One of the largest differences from the flight control perspective between current and future advanced aircraft is elasticity. Over the last decade, dynamic inversion methodology has gained considerable popularity in application to highly maneuverable fighter aircraft, which were treated as rigid vehicles. This paper is an initial attempt to establish global stability results for dynamic inversion methodology as applied to a large, flexible aircraft. This work builds on a previous result for rigid fighter aircraft and adds a new level of complexity that is the flexible aircraft dynamics, which cannot be ignored even in the most basic flight control. The results arise from observations of the control laws designed for a new generation of the High-Speed Civil Transport aircraft.

  6. Atmospheric stability analysis over statically and dynamically rough surfaces

    Science.gov (United States)

    Maric, Emina; Metzger, Meredith; Singha, Arindam; Sadr, Reza

    2011-11-01

    The ratio of buoyancy flux to turbulent kinetic energy production in the atmospheric surface layer is investigated experimentally for air flow over two types of surfaces characterized by static and dynamic roughness. In this study, ``static'' refers to the time-invariant nature of naturally-occurring roughness over a mud/salt playa; while, ``dynamic'' refers to the behavior of water waves along an air-water interface. In both cases, time-resolved measurements of the momentum and heat fluxes were acquired from synchronized 3D sonic anemometers mounted on a vertical tower. Field campaigns were conducted at two sites, representing the ``statically'' and ``dynamically'' rough surfaces, respectively: (1) the SLTEST facility in Utah's western desert, and (2) the new Doha airport in Qatar under construction along the coast of the Persian Gulf. Note, at site 2, anemometers were located directly above the water by extension from a tower secured to the end of a 1 km-long pier. Comparisons of the Monin-Obukhov length, flux Richardson number, and gradient Richardson number are presented, and discussed in the context of the observed evolution of the turbulent spectra in response to diurnal variations of atmospheric stability. Supported by the Qatar National Research Fund.

  7. Dynamic Stabilization of Metal Oxide–Water Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    McBriarty, Martin E.; von Rudorff, Guido Falk; Stubbs, Joanne E.; Eng, Peter J.; Blumberger, Jochen; Rosso, Kevin M.

    2017-02-08

    The interaction of water with metal oxide surfaces plays a crucial role in the catalytic and geochemical behavior of metal oxides. In a vast majority of studies, the interfacial structure is assumed to arise from a relatively static lowest energy configuration of atoms, even at room temperature. Using hematite (α-Fe2O3) as a model oxide, we show through a direct comparison of in situ synchrotron X-ray scattering with density functional theory-based molecular dynamics simulations that the structure of the (1102) termination is dynamically stabilized by picosecond water exchange. Simulations show frequent exchanges between terminal aquo groups and adsorbed water in locations and with partial residence times consistent with experimentally determined atomic sites and fractional occupancies. Frequent water exchange occurs even for an ultrathin adsorbed water film persisting on the surface under a dry atmosphere. The resulting time-averaged interfacial structure consists of a ridged lateral arrangement of adsorbed water molecules hydrogen bonded to terminal aquo groups. Surface pKa prediction based on bond valence analysis suggests that water exchange will influence the proton-transfer reactions underlying the acid/base reactivity at the interface. Our findings provide important new insights for understanding complex interfacial chemical processes at metal oxide–water interfaces.

  8. Dynamic-Stability Characteristics of Premixed Methane Oxy-Combustion

    KAUST Repository

    Shroll, Andrew P.

    2012-01-01

    This work explores the dynamic stability characteristics of premixed CH 4/O 2/CO 2 mixtures in a 50 kW swirl stabilized combustor. In all cases, the methane-oxygen mixture is stoichiometric, with different dilution levels of carbon dioxide used to control the flame temperature (T ad). For the highest T ad\\'s, the combustor is unstable at the first harmonic of the combustor\\'s natural frequency. As the temperature is reduced, the combustor jumps to fundamental mode and then to a low-frequency mode whose value is well below the combustor\\'s natural frequency, before eventually reaching blowoff. Similar to the case of CH 4/air mixtures, the transition from one mode to another is predominantly a function of the T ad of the reactive mixture, despite significant differences in laminar burning velocity and/or strained flame consumption speed between air and oxy-fuel mixtures for a given T ad. High speed images support this finding by revealing similar vortex breakdown modes and thus similar turbulent flame geometries that change as a function of flame temperature. Copyright © 2012 American Society of Mechanical Engineers.

  9. Tuning of tool dynamics for increased stability of parallel (simultaneous) turning processes

    Science.gov (United States)

    Ozturk, E.; Comak, A.; Budak, E.

    2016-01-01

    Parallel (simultaneous) turning operations make use of more than one cutting tool acting on a common workpiece offering potential for higher productivity. However, dynamic interaction between the tools and workpiece and resulting chatter vibrations may create quality problems on machined surfaces. In order to determine chatter free cutting process parameters, stability models can be employed. In this paper, stability of parallel turning processes is formulated in frequency and time domain for two different parallel turning cases. Predictions of frequency and time domain methods demonstrated reasonable agreement with each other. In addition, the predicted stability limits are also verified experimentally. Simulation and experimental results show multi regional stability diagrams which can be used to select most favorable set of process parameters for higher stable material removal rates. In addition to parameter selection, developed models can be used to determine the best natural frequency ratio of tools resulting in the highest stable depth of cuts. It is concluded that the most stable operations are obtained when natural frequency of the tools are slightly off each other and worst stability occurs when the natural frequency of the tools are exactly the same.

  10. Static and dynamic stability results for a class of three-dimensional configurations of Kirchhoff elastic rods

    KAUST Repository

    Majumdar, Apala

    2013-06-01

    We analyze the dynamical stability of a naturally straight, inextensible and unshearable elastic rod, under tension and controlled end rotation, within the Kirchhoff model in three dimensions. The cases of clamped boundary conditions and isoperimetric constraints are treated separately. We obtain explicit criteria for the static stability of arbitrary extrema of a general quadratic strain energy. We exploit the equivalence between the total energy and a suitably defined norm to prove that local minimizers of the strain energy, under explicit hypotheses, are stable in the dynamic sense due to Liapounov. We also extend our analysis to damped systems to show that static equilibria are dynamically stable in the Liapounov sense, in the presence of a suitably defined local drag force. © 2013 Elsevier B.V. All rights reserved.

  11. Intense field stabilization in circular polarization: Three-dimensional time-dependent dynamics

    International Nuclear Information System (INIS)

    Choi, Dae-Il; Chism, Will

    2002-01-01

    We investigate the stabilization of hydrogen atoms in a circularly polarized laser field. We use a three-dimensional, time-dependent approach to study the quantum dynamics of hydrogen atoms subject to high-intensity, short-wavelength, laser pulses. We find an enhanced survival probability as the field is increased under fixed envelope conditions. We also confirm wave packet behaviors previously seen in two-dimensional time-dependent computations

  12. Dispersal and metapopulation stability

    Directory of Open Access Journals (Sweden)

    Shaopeng Wang

    2015-10-01

    Full Text Available Metapopulation dynamics are jointly regulated by local and spatial factors. These factors may affect the dynamics of local populations and of the entire metapopulation differently. Previous studies have shown that dispersal can stabilize local populations; however, as dispersal also tends to increase spatial synchrony, its net effect on metapopulation stability has been controversial. Here we present a simple metapopulation model to study how dispersal, in interaction with other spatial and local processes, affects the temporal variability of metapopulations in a stochastic environment. Our results show that in homogeneous metapopulations, the local stabilizing and spatial synchronizing effects of dispersal cancel each other out, such that dispersal has no effect on metapopulation variability. This result is robust to moderate heterogeneities in local and spatial parameters. When local and spatial dynamics exhibit high heterogeneities, however, dispersal can either stabilize or destabilize metapopulation dynamics through various mechanisms. Our findings have important theoretical and practical implications. We show that dispersal functions as a form of spatial intraspecific mutualism in metapopulation dynamics and that its effect on metapopulation stability is opposite to that of interspecific competition on local community stability. Our results also suggest that conservation corridors should be designed with appreciation of spatial heterogeneities in population dynamics in order to maximize metapopulation stability.

  13. Influence of the swing ankle angle on walking stability for a passive dynamic walking robot with flat feet

    Directory of Open Access Journals (Sweden)

    Xizhe Zang

    2016-03-01

    Full Text Available To achieve high walking stability for a passive dynamic walking robot is not easy. In this article, we aim to investigate whether the walking performance for a passive dynamic walking robot can be improved by just simply changing the swing ankle angle before impact. To validate this idea, a passive bipedal walking model with two straight legs, two flat feet, a hip joint, and two ankle joints was built in this study. The walking dynamics that contains double stance phase was derived. By numerical simulation of the walking in MATLAB, we found that the walking performance can be adjusted effectively by only simply changing the swing ankle angle before impact. A bigger swing ankle angle in a reasonable range will lead to a higher walking stability and a lower initial walking speed of the next step. A bigger swing ankle angle before impact leads to a bigger amount of energy lost during impact for the quasi-passive dynamic walking robot which will influence the walking stability of the next step.

  14. Conceptual Design Optimization of an Augmented Stability Aircraft Incorporating Dynamic Response and Actuator Constraints

    Science.gov (United States)

    Welstead, Jason; Crouse, Gilbert L., Jr.

    2014-01-01

    Empirical sizing guidelines such as tail volume coefficients have long been used in the early aircraft design phases for sizing stabilizers, resulting in conservatively stable aircraft. While successful, this results in increased empty weight, reduced performance, and greater procurement and operational cost relative to an aircraft with optimally sized surfaces. Including flight dynamics in the conceptual design process allows the design to move away from empirical methods while implementing modern control techniques. A challenge of flight dynamics and control is the numerous design variables, which are changing fluidly throughout the conceptual design process, required to evaluate the system response to some disturbance. This research focuses on addressing that challenge not by implementing higher order tools, such as computational fluid dynamics, but instead by linking the lower order tools typically used within the conceptual design process so each discipline feeds into the other. In thisresearch, flight dynamics and control was incorporated into the conceptual design process along with the traditional disciplines of vehicle sizing, weight estimation, aerodynamics, and performance. For the controller, a linear quadratic regulator structure with constant gains has been specified to reduce the user input. Coupling all the disciplines in the conceptual design phase allows the aircraft designer to explore larger design spaces where stabilizers are sized according to dynamic response constraints rather than historical static margin and volume coefficient guidelines.

  15. Advanced numerical methods for uncertainty reduction when predicting heat exchanger dynamic stability limits: Review and perspectives

    International Nuclear Information System (INIS)

    Longatte, E.; Baj, F.; Hoarau, Y.; Braza, M.; Ruiz, D.; Canteneur, C.

    2013-01-01

    Highlights: ► Proposal of hybrid computational methods for investigating dynamical system stability. ► Modeling turbulence disequilibrium due to interaction with moving solid boundaries. ► Providing computational procedure for large size system solution approximation through model reduction. -- Abstract: This article proposes a review of recent and current developments in the modeling and advanced numerical methods used to simulate large-size systems involving multi-physics in the field of mechanics. It addresses the complex issue of stability analysis of dynamical systems submitted to external turbulent flows and aims to establish accurate stability maps applicable to heat exchanger design. The purpose is to provide dimensionless stability limit modeling that is suitable for a variety of configurations and is as accurate as possible in spite of the large scale of the systems to be considered. The challenge lies in predicting local effects that may impact global systems. A combination of several strategies that are suited concurrently to multi-physics, multi-scale and large-size system computation is therefore required. Based on empirical concepts, the heuristic models currently used in the framework of standard stability analysis suffer from a lack of predictive capabilities. On the other hand, numerical approaches based on fully-coupled fluid–solid dynamics system computation remain expensive due to the multi-physics patterns of physics and the large number of degrees of freedom involved. In this context, since experimentation cannot be achieved and numerical simulation is unavoidable but prohibitive, a hybrid strategy is proposed in order to take advantage of both numerical local solutions and empirical global solutions

  16. Adult's Degenerative Scoliosis: Midterm Results of Dynamic Stabilization without Fusion in Elderly Patients—Is It Effective?

    Science.gov (United States)

    Di Silvestre, Mario; Lolli, Francesco; Greggi, Tiziana; Vommaro, Francesco; Baioni, Andrea

    2013-01-01

    Study Design. A retrospective study. Purpose. Posterolateral fusion with pedicle screw instrumentation used for degenerative lumbar scoliosis can lead to several complications. In elderly patients without sagittal imbalance, dynamic stabilization could represent an option to avoid these adverse events. Methods. 57 patients treated by dynamic stabilization without fusion were included. All patients had degenerative lumbar de novo scoliosis (average Cobb angle 17.2°), without sagittal imbalance, associated in 52 cases (91%) with vertebral canal stenosis and in 24 (42%) with degenerative spondylolisthesis. Nineteen patients (33%) had previously undergone lumbar spinal surgery. Results. At an average followup of 77 months, clinical results improved with statistical significance. Scoliosis Cobb angle was 17.2° (range, 12° to 38°) before surgery and 11.3° (range, 4° to 26°) at last follow-up. In the patients with associated spondylolisthesis, anterior vertebral translation was 19.5% (range, 12% to 27%) before surgery, 16.7% (range, 0% to 25%) after surgery, and 17.5% (range, 0% to 27%) at followup. Complications incidence was low (14%), and few patients required revision surgery (4%). Conclusions. In elderly patients with mild degenerative lumbar scoliosis without sagittal imbalance, pedicle screw-based dynamic stabilization is an effective option, with low complications incidence, granting curve stabilization during time and satisfying clinical results. PMID:23781342

  17. Stability and Control of Large-Scale Dynamical Systems A Vector Dissipative Systems Approach

    CERN Document Server

    Haddad, Wassim M

    2011-01-01

    Modern complex large-scale dynamical systems exist in virtually every aspect of science and engineering, and are associated with a wide variety of physical, technological, environmental, and social phenomena, including aerospace, power, communications, and network systems, to name just a few. This book develops a general stability analysis and control design framework for nonlinear large-scale interconnected dynamical systems, and presents the most complete treatment on vector Lyapunov function methods, vector dissipativity theory, and decentralized control architectures. Large-scale dynami

  18. Locomotor Stability in a Model Swimmer: Coupling Fluid Dynamics, Neurophysiology and Muscle Mechanics

    Science.gov (United States)

    2017-07-05

    SECURITY CLASSIFICATION OF: We use multiscale modeling and computational fluid dynamics to examine the stability of a swimming organism in the face of...information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and

  19. Simplified distributed parameters BWR dynamic model for transient and stability analysis

    International Nuclear Information System (INIS)

    Espinosa-Paredes, Gilberto; Nunez-Carrera, Alejandro; Vazquez-Rodriguez, Alejandro

    2006-01-01

    This paper describes a simplified model to perform transient and linear stability analysis for a typical boiling water reactor (BWR). The simplified transient model was based in lumped and distributed parameters approximations, which includes vessel dome and the downcomer, recirculation loops, neutron process, fuel pin temperature distribution, lower and upper plenums reactor core and pressure and level controls. The stability was determined by studying the linearized versions of the equations representing the BWR system in the frequency domain. Numerical examples are used to illustrate the wide application of the simplified BWR model. We concluded that this simplified model describes properly the dynamic of a BWR and can be used for safety analysis or as a first approach in the design of an advanced BWR

  20. Moduli stabilization and uplifting with dynamically generated F-terms

    International Nuclear Information System (INIS)

    Dudas, Emilian; Papineau, Chloe; Pokorski, Stefan

    2007-01-01

    We use the F-term dynamical supersymmetry breaking models with metastable vacua in order to uplift the vacuum energy in the KKLT moduli stabilization scenario. The main advantage compared to earlier proposals is the manifest supersymmetric treatment and the natural coexistence of a TeV gravitino mass with a zero cosmological constant. We argue that it is generically difficult to avoid anti de-Sitter supersymmetric minima, however the tunneling rate from the metastable vacuum with zero vacuum energy towards them can be very suppressed. We briefly comment on the properties of the induced soft terms in the observable sector

  1. Moduli stabilization and uplifting with dynamically generated F-terms

    Energy Technology Data Exchange (ETDEWEB)

    Dudas, Emilian [CERN Theory Division, CH-1211, Geneva 23 (Switzerland); Papineau, Chloe [CPhT, Ecole Polytechnique, F-91128 Palaiseau Cedex (France); Pokorski, Stefan [Institute of Theoretical Physics, Univ. of Warsaw, 00-681 Warsaw (Poland)

    2007-02-15

    We use the F-term dynamical supersymmetry breaking models with metastable vacua in order to uplift the vacuum energy in the KKLT moduli stabilization scenario. The main advantage compared to earlier proposals is the manifest supersymmetric treatment and the natural coexistence of a TeV gravitino mass with a zero cosmological constant. We argue that it is generically difficult to avoid anti de-Sitter supersymmetric minima, however the tunneling rate from the metastable vacuum with zero vacuum energy towards them can be very suppressed. We briefly comment on the properties of the induced soft terms in the observable sector.

  2. Dynamic respiration index as a descriptor of the biological stability of organic wastes.

    Science.gov (United States)

    Adani, Fabrizio; Confalonieri, Roberto; Tambone, Fulvia

    2004-01-01

    Analytical methods applicable to different organic wastes are needed to establish the extent to which readily biodegradable organic matter has decomposed (i.e., biological stability). The objective of this study was to test a new respirometric method for biological stability determination of organic wastes. Dynamic respiration index (DRI) measurements were performed on 16 organic wastes of different origin, composition, and biological stability degree to validate the test method and result expression, and to propose biological stability limits. In addition, theoretical DRI trends were obtained by using a mathematical model. Each test lasted 96 h in a 148-L-capacity respirometer apparatus, and DRI was monitored every hour. The biological stability was expressed as both single and cumulative DRI values. Results obtained indicated that DRI described biological stability in relation to waste typology and age well, revealing lower-stability waste characterized by a well-pronounced DRI profile (a marked peak was evident) that became practically flat for samples with higher biological stability. Fitting indices showed good model prediction compared with the experimental data, indicating that the method was able to reproduce the aerobic process, providing a reliable indication of the biological stability. The DRI can therefore be proposed as a useful method to measure the biological stability of organic wastes, and DRI values, calculated as a mean of 24 h of the highest microbial activity, of 1000 and 500 mg O(2) kg(-1) volatile solids (VS) h(-1) are proposed to indicate medium (e.g., fresh compost) and high (e.g., mature compost) biological stabilities, respectively.

  3. Asymptotic stability and blow up for a semilinear damped wave equation with dynamic boundary conditions

    KAUST Repository

    Gerbi, Stéphane

    2011-12-01

    In this paper we consider a multi-dimensional wave equation with dynamic boundary conditions, related to the KelvinVoigt damping. Global existence and asymptotic stability of solutions starting in a stable set are proved. Blow up for solutions of the problem with linear dynamic boundary conditions with initial data in the unstable set is also obtained. © 2011 Elsevier Ltd. All rights reserved.

  4. Asymptotic stability and blow up for a semilinear damped wave equation with dynamic boundary conditions

    KAUST Repository

    Gerbi, Sté phane; Said-Houari, Belkacem

    2011-01-01

    In this paper we consider a multi-dimensional wave equation with dynamic boundary conditions, related to the KelvinVoigt damping. Global existence and asymptotic stability of solutions starting in a stable set are proved. Blow up for solutions of the problem with linear dynamic boundary conditions with initial data in the unstable set is also obtained. © 2011 Elsevier Ltd. All rights reserved.

  5. Stability and Dynamic of strain mediated Adatom Superlattices on Cu<111>

    OpenAIRE

    Kappus, Wolfgang

    2012-01-01

    Substrate strain mediated adatom density distributions have been calculated for Cu surfaces. Complemented by Monte Carlo calculations a hexagonal close packaged adatom superlattice in a coverage range up to 0.045 ML is derived. Conditions for the stability of the superlattice against nucleation and degradation are analyzed using simple neighborhood models. Such models are also used to investigate the dynamic of adatoms within their superlattice neighborhood. Collective modes of adatom diffusi...

  6. The stability analysis of the nutrition restricted dynamic model of the microalgae biomass growth

    Science.gov (United States)

    Ratianingsih, R.; Fitriani, Nacong, N.; Resnawati, Mardlijah, Widodo, B.

    2018-03-01

    The biomass production is very essential in microalgae farming such that its growth rate is very important to be determined. This paper proposes the dynamics model of it that restricted by its nutrition. The model is developed by considers some related processes that are photosynthesis, respiration, nutrition absorption, stabilization, lipid synthesis and CO2 mobilization. The stability of the dynamical system that represents the processes is analyzed using the Jacobian matrix of the linearized system in the neighborhood of its critical point. There is a lipid formation threshold needed to require its existence. In such case, the absorption rate of respiration process has to be inversely proportional to the absorption rate of CO2 due to photosynthesis process. The Pontryagin minimal principal also shows that there are some requirements needed to have a stable critical point, such as the rate of CO2 released rate, due to the stabilization process that is restricted by 50%, and the threshold of its shifted critical point. In case of the rate of CO2 released rate due to the photosynthesis process is restricted in such interval; the stability of the model at the critical point could not be satisfied anymore. The simulation shows that the external nutrition plays a role in glucose formation such that sufficient for the biomass growth and the lipid production.

  7. Identification of process dynamics. Stability monitoring in BWR type reactors

    International Nuclear Information System (INIS)

    Abrahamsson, P.; Hallgren, P.

    1991-06-01

    Identification of process dynamics is used for stability monitoring in nuclear reactors (Boiling Water Reactor). This report treats the problem of estimating a damping factor and a resonance frequency from the neutron flux as measured in the reactor. A new parametric online method for identification is derived and presented, and is shown to meet the requirements of stability monitoring. The technique for estimating the process parameters is based on a recursive lattice filter algorithm. The problem of time varying parameters and offset, as well as offline experiments and signal processing are treated. All parts are implemented in a realtime program, using the language C. In comparison with earlier identifications, the new way of estimating the damping factor is shown to work well. Estimates of both the damping factor and the resonance frequency show a stable and reliable behavior. Future development and improvements are also indicated. (au)

  8. Theory and analysis of nonlinear dynamics and stability in storage rings: A working group summary

    International Nuclear Information System (INIS)

    Chattopadhyay, S.; Audy, P.; Courant, E.D.

    1988-07-01

    A summary and commentary of the available theoretical and analytical tools and recent advances in the nonlinear dynamics, stability and aperture issues in storage rings are presented. 11 refs., 4 figs

  9. Abl N-terminal cap stabilization of SH3 domain dynamics.

    Science.gov (United States)

    Chen, Shugui; Dumitrescu, Teodora Pene; Smithgall, Thomas E; Engen, John R

    2008-05-27

    Crystal structures and other biochemical data indicate that the N-terminal cap (NCap) region of the Abelson tyrosine kinase (c-Abl) is important for maintaining the downregulated conformation of the kinase domain. The exact contributions that the NCap makes in stabilizing the various intramolecular interactions within c-Abl are less clear. While the NCap appears to be important for locking the SH3 and SH2 domains to the back of the kinase domain, there may be other more subtle elements of regulation. Hydrogen exchange (HX) and mass spectrometry (MS) were used to determine if the NCap contributes to intramolecular interactions involving the Abl SH3 domain. Under physiological conditions, the Abl SH3 domain underwent partial unfolding and its unfolding half-life was slowed during binding to the SH2 kinase linker, providing a unique assay for testing NCap-induced stabilization of the SH3 domain in various constructs. The results showed that the NCap stabilizes the dynamics of the SH3 domain in certain constructs but does not increase the relative affinity of the SH3 domain for the native SH2 kinase linker. The stabilization effect was absent in constructs of just the NCap and SH3 but was obvious when the SH2 domain and the SH2 kinase linker were present. These results suggest that interactions between the NCap and the SH3 domain can contribute to c-Abl stabilization in constructs that contain at least the SH2 domain, an effect that may partially compensate for the absence of the negative regulatory C-terminal tail found in the related Src family of kinases.

  10. Stability mechanisms of a thermophilic laccase probed by molecular dynamics

    DEFF Research Database (Denmark)

    Christensen, Niels Johan; Kepp, Kasper Planeta

    2013-01-01

    Laccases are highly stable, industrially important enzymes capable of oxidizing a large range of substrates. Causes for their stability are, as for other proteins, poorly understood. In this work, multiple-seed molecular dynamics (MD) was applied to a Trametes versicolor laccase in response...... integrity by increasing persistent backbone hydrogen bonds by ∼4 across simulations, mainly via prevention of F(-) intrusion. Hydrogen-bond loss in distinct loop regions and ends of critical β-sheets suggest potential strategies for laboratory optimization of these industrially important enzymes....

  11. Microjet Injection Strategies for Mitigating Dynamics in a Lean Premixed Swirl-Stabilized Combustor

    KAUST Repository

    LaBry, Zachary; Shanbhogue, Santosh; Ghoniem, Ahmed

    2011-01-01

    Combustion dynamics remain a challenge in the development of low-emission, air-breathing combustors for power generation and aircraft propulsion. In this paper, we presenta parametric study on the use of microjet injectors for suppressing or mitigating the combustion dynamics that energize the thermoacoustic instability in a swirl-stabilized, premixed combustor. Microjet injectors consist of small inlet ports intended to inject flow with high momentum at relatively low mass flow rates into the flame-anchoring region. The microjets were configured to inject flow either axially, into the outer recirculation zone, or radially into the inner recirculation zone. Additionally, different injectors were tested with different relative senses of swirl (signs of angular momentum)with respect to the main flow: co-swirling, not swirling, or counter-swirling. We observed that injecting air or premixed fuel/air into the inner recirculation zone via counter-swirling radial microjets, we were able to reduce the overall sound pressure level in the combustor by over 20 dB in the lean end of the operating range. Other injector configurations were not observed to positively influence the combust or stability. Detailed PIV measurements are used to examine possible mechanisms of how the microjets impact the combustion dynamics, and the technology implications of our experiments are discussed.

  12. Microjet Injection Strategies for Mitigating Dynamics in a Lean Premixed Swirl-Stabilized Combustor

    KAUST Repository

    LaBry, Zachary

    2011-01-04

    Combustion dynamics remain a challenge in the development of low-emission, air-breathing combustors for power generation and aircraft propulsion. In this paper, we presenta parametric study on the use of microjet injectors for suppressing or mitigating the combustion dynamics that energize the thermoacoustic instability in a swirl-stabilized, premixed combustor. Microjet injectors consist of small inlet ports intended to inject flow with high momentum at relatively low mass flow rates into the flame-anchoring region. The microjets were configured to inject flow either axially, into the outer recirculation zone, or radially into the inner recirculation zone. Additionally, different injectors were tested with different relative senses of swirl (signs of angular momentum)with respect to the main flow: co-swirling, not swirling, or counter-swirling. We observed that injecting air or premixed fuel/air into the inner recirculation zone via counter-swirling radial microjets, we were able to reduce the overall sound pressure level in the combustor by over 20 dB in the lean end of the operating range. Other injector configurations were not observed to positively influence the combust or stability. Detailed PIV measurements are used to examine possible mechanisms of how the microjets impact the combustion dynamics, and the technology implications of our experiments are discussed.

  13. Dynamical stability of a many-body Kapitza pendulum

    Energy Technology Data Exchange (ETDEWEB)

    Citro, Roberta, E-mail: citro@sa.infn.it [Dipartimento di Fisica “E. R. Caianiello” and Spin-CNR, Universita’ degli Studi di Salerno, Via Giovanni Paolo II, I-84084 Fisciano (Italy); Dalla Torre, Emanuele G., E-mail: emanuele.dalla-torre@biu.ac.il [Department of Physics, Bar Ilan University, Ramat Gan 5290002 (Israel); Department of Physics, Harvard University, Cambridge, MA 02138 (United States); D’Alessio, Luca [Department of Physics, The Pennsylvania State University, University Park, PA 16802 (United States); Department of Physics, Boston University, Boston, MA 02215 (United States); Polkovnikov, Anatoli [Department of Physics, Boston University, Boston, MA 02215 (United States); Babadi, Mehrtash [Department of Physics, Harvard University, Cambridge, MA 02138 (United States); Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA 91125 (United States); Oka, Takashi [Department of Applied Physics, University of Tokyo, Tokyo, 113-8656 (Japan); Demler, Eugene [Department of Physics, Harvard University, Cambridge, MA 02138 (United States)

    2015-09-15

    We consider a many-body generalization of the Kapitza pendulum: the periodically-driven sine–Gordon model. We show that this interacting system is dynamically stable to periodic drives with finite frequency and amplitude. This finding is in contrast to the common belief that periodically-driven unbounded interacting systems should always tend to an absorbing infinite-temperature state. The transition to an unstable absorbing state is described by a change in the sign of the kinetic term in the Floquet Hamiltonian and controlled by the short-wavelength degrees of freedom. We investigate the stability phase diagram through an analytic high-frequency expansion, a self-consistent variational approach, and a numeric semiclassical calculation. Classical and quantum experiments are proposed to verify the validity of our results.

  14. Research on Dynamics and Stability in the Stairs-climbing of a Tracked Mobile Robot

    OpenAIRE

    Tao, Weijun; Ou, Yi; Feng, Hutian

    2012-01-01

    Aiming at the functional requirement of climbing up the stairs, the dynamics and stability during a tracked mobile robot's climbing of stairs is studied. First, from the analysis of its cross-country performance, the mechanical structure of the tracked mobile robot is designed and the hardware composition of its control system is given. Second, based on the analysis to its stairs-climbing process, the dynamical model of stairs-climbing is established by using the classical mechanics method. N...

  15. Dynamic Postural-Stability Deficits After Cryotherapy to the Ankle Joint.

    Science.gov (United States)

    Fullam, Karl; Caulfield, Brian; Coughlan, Garrett F; McGroarty, Mark; Delahunt, Eamonn

    2015-09-01

    Decreased postural stability is a primary risk factor for lower limb musculoskeletal injuries. During athletic competitions, cryotherapy may be applied during short breaks in play or during half-time; however, its effects on postural stability remain unclear. To investigate the acute effects of a 15-minute ankle-joint cryotherapy application on dynamic postural stability. Controlled laboratory study. University biomechanics laboratory. A total of 29 elite-level collegiate male field-sport athletes (age = 20.8 ± 1.12 years, height = 1.80 ± 0.06 m, mass = 81.89 ± 8.59 kg) participated. Participants were tested on the anterior (ANT), posterolateral (PL), and posteromedial (PM) reach directions of the Star Excursion Balance Test before and after a 15-minute ankle-joint cryotherapy application. Normalized reach distances; sagittal-plane kinematics of the hip, knee, and ankle joints; and associated mean velocity of the center-of-pressure path during performance of the ANT, PL, and PM reach directions of the Star Excursion Balance Test. We observed a decrease in reach-distance scores for the ANT, PL, and PM reach directions from precryotherapy to postcryotherapy (P .05). We noted a decrease in mean velocity of the center-of-pressure path from precryotherapy to postcryotherapy (P cryotherapy to the ankle joint.

  16. Potential and flux field landscape theory. I. Global stability and dynamics of spatially dependent non-equilibrium systems.

    Science.gov (United States)

    Wu, Wei; Wang, Jin

    2013-09-28

    We established a potential and flux field landscape theory to quantify the global stability and dynamics of general spatially dependent non-equilibrium deterministic and stochastic systems. We extended our potential and flux landscape theory for spatially independent non-equilibrium stochastic systems described by Fokker-Planck equations to spatially dependent stochastic systems governed by general functional Fokker-Planck equations as well as functional Kramers-Moyal equations derived from master equations. Our general theory is applied to reaction-diffusion systems. For equilibrium spatially dependent systems with detailed balance, the potential field landscape alone, defined in terms of the steady state probability distribution functional, determines the global stability and dynamics of the system. The global stability of the system is closely related to the topography of the potential field landscape in terms of the basins of attraction and barrier heights in the field configuration state space. The effective driving force of the system is generated by the functional gradient of the potential field alone. For non-equilibrium spatially dependent systems, the curl probability flux field is indispensable in breaking detailed balance and creating non-equilibrium condition for the system. A complete characterization of the non-equilibrium dynamics of the spatially dependent system requires both the potential field and the curl probability flux field. While the non-equilibrium potential field landscape attracts the system down along the functional gradient similar to an electron moving in an electric field, the non-equilibrium flux field drives the system in a curly way similar to an electron moving in a magnetic field. In the small fluctuation limit, the intrinsic potential field as the small fluctuation limit of the potential field for spatially dependent non-equilibrium systems, which is closely related to the steady state probability distribution functional, is

  17. Effect of Jaw Clenching on Balance Recovery: Dynamic Stability and Lower Extremity Joint Kinematics after Forward Loss of Balance

    Directory of Open Access Journals (Sweden)

    Steffen eRinghof

    2016-03-01

    Full Text Available Postural control is crucial for most tasks of daily living, delineating postural orientation and balance, with its main goal of fall prevention. Nevertheless, falls are common events and have been associated with deficits in muscle strength and dynamic stability. Recent studies reported on improvements in rate of force development and static postural control evoked by jaw clenching activities, potentially induced by facilitation of human motor system excitability. However, there are no studies describing the effects on dynamic stability. The present study, therefore, aimed investigated the effects of submaximum jaw clenching on recovery behavior from forward loss of balance. Participants were twelve healthy young adults, who were instructed to recover balance from a simulated forward fall by taking a single step while either biting at a submaximum force or keeping the mandible at rest. Bite forces were measured by means of hydrostatic splints, whereas a 3D motion capture system was used to analyze spatiotemporal parameters and joint angles, respectively. Additionally, dynamic stability was quantified by the extrapolated CoM concept, designed to determine postural stability in dynamic situations. Paired t-tests revealed that submaximum biting did not significantly influence recovery behavior with respect to any variable under investigation. Therefore, reductions in postural sway evoked by submaximum biting are obviously not transferable to dynamic stability. It is suggested that these contradictions are the result of different motor demands associated with the abovementioned tasks. Furthermore, floor effects and the sample size might be discussed as potential reasons for the absence of significances. Notwithstanding this, the present study also revealed that bite forces under both conditions significantly increased from subjects’ release to touchdown of the recovery limb. Clenching the jaw, hence, seems to be part of a common physiological

  18. In Vivo Study of Dynamics and Stability of Dendritic Spines on Olfactory Bulb Interneurons in Xenopus laevis Tadpoles.

    Directory of Open Access Journals (Sweden)

    Yu-Bin Huang

    Full Text Available Dendritic spines undergo continuous remodeling during development of the nervous system. Their stability is essential for maintaining a functional neuronal circuit. Spine dynamics and stability of cortical excitatory pyramidal neurons have been explored extensively in mammalian animal models. However, little is known about spiny interneurons in non-mammalian vertebrate models. In the present study, neuronal morphology was visualized by single-cell electroporation. Spiny neurons were surveyed in the Xenopus tadpole brain and observed to be widely distributed in the olfactory bulb and telencephalon. DsRed- or PSD95-GFP-expressing spiny interneurons in the olfactory bulb were selected for in vivo time-lapse imaging. Dendritic protrusions were classified as filopodia, thin, stubby, or mushroom spines based on morphology. Dendritic spines on the interneurons were highly dynamic, especially the filopodia and thin spines. The stubby and mushroom spines were relatively more stable, although their stability significantly decreased with longer observation intervals. The 4 spine types exhibited diverse preferences during morphological transitions from one spine type to others. Sensory deprivation induced by severing the olfactory nerve to block the input of mitral/tufted cells had no significant effects on interneuron spine stability. Hence, a new model was established in Xenopus laevis tadpoles to explore dendritic spine dynamics in vivo.

  19. Stability and dynamic of strain mediated adatom superlattices on Cu

    Science.gov (United States)

    Kappus, Wolfgang

    2013-03-01

    Substrate strain mediated adatom equilibrium density distributions have been calculated for Cu surfaces using two complementing methods. A hexagonal adatom superlattice in a coverage range up to 0.045 ML is derived for repulsive short range interactions. For zero short range interactions a hexagonal superstructure of adatom clusters is derived in a coverage range about 0.08 ML. Conditions for the stability of the superlattice against formation of dimers or clusters and degradation are analyzed using simple neighborhood models. Such models are also used to investigate the dynamic of adatoms within their superlattice neighborhood. Collective modes of adatom diffusion are proposed from the analogy with bulk lattice dynamics and methods for measurement are suggested. The recently put forward explanation of surface state mediated interactions for superstructures found in scanning tunneling microscopy experiments is put in question and strain mediated interactions are proposed as an alternative.

  20. Dynamic postural stability differences between male and female players with and without ankle sprain

    NARCIS (Netherlands)

    Dallinga, Joan M.; Does, van der Henrike T. D.; Benjaminse, Anne; Lemmink, Koen A. P. M.

    Objectives: To evaluate dynamic stability index (DSI) differences between males and females for different jump directions. To examine both preseason DSI differences between players with and without a history of ankle sprain, and between players with and without an ankle sprain during the subsequent

  1. Dynamical stability of the one-dimensional rigid Brownian rotator: the role of the rotator’s spatial size and shape

    Science.gov (United States)

    Jeknić-Dugić, Jasmina; Petrović, Igor; Arsenijević, Momir; Dugić, Miroljub

    2018-05-01

    We investigate dynamical stability of a single propeller-like shaped molecular cogwheel modelled as the fixed-axis rigid rotator. In the realistic situations, rotation of the finite-size cogwheel is subject to the environmentally-induced Brownian-motion effect that we describe by utilizing the quantum Caldeira-Leggett master equation. Assuming the initially narrow (classical-like) standard deviations for the angle and the angular momentum of the rotator, we investigate the dynamics of the first and second moments depending on the size, i.e. on the number of blades of both the free rotator as well as of the rotator in the external harmonic field. The larger the standard deviations, the less stable (i.e. less predictable) rotation. We detect the absence of the simple and straightforward rules for utilizing the rotator’s stability. Instead, a number of the size-related criteria appear whose combinations may provide the optimal rules for the rotator dynamical stability and possibly control. In the realistic situations, the quantum-mechanical corrections, albeit individually small, may effectively prove non-negligible, and also revealing subtlety of the transition from the quantum to the classical dynamics of the rotator. As to the latter, we detect a strong size-dependence of the transition to the classical dynamics beyond the quantum decoherence process.

  2. Structure, stability and ELM dynamics of the H-mode pedestal in DIII-D

    International Nuclear Information System (INIS)

    Fenstermacher, M.E.; Leonard, A.W.; Osborne, T.H.

    2005-01-01

    Experiments are described that have increased understanding of the transport and stability physics that set the H-mode edge pedestal width and height, determine the onset of Type-I edge localized modes (ELMs), and produce the nonlinear dynamics of the ELM perturbation in the pedestal and scrape-off layer (SOL). Predictive models now exist for the n e pedestal profile and the p e height at the onset of Type-I ELMs, and progress has been made toward predictive models of the T e pedestal width and nonlinear ELM evolution. Similarity experiments between DIII-D and JET suggested that neutral penetration physics dominates in the relationship between the width and height of the n e pedestal while plasma physics dominates in setting the T e pedestal width. Measured pedestal conditions including edge current at ELM onset agree with intermediate-n peeling-ballooning (P-B) stability predictions. Midplane ELM dynamics data show the predicted (P-B) structure at ELM onset, large rapid variations of the SOL parameters, and fast radial propagation in later phases, similar to features in nonlinear ELM simulations. (author)

  3. Modelling of gas-liquid reactors - stability and dynamic behaviour of gas-liquid mass transfer accompanied by irreversible reaction

    NARCIS (Netherlands)

    Elk, E.P. van; Borman, P.C.; Kuipers, J.A.M.; Versteeg, G.F.

    1999-01-01

    The dynamic behaviour and stability of single-phase reacting systems has been investigated thoroughly in the past and design rules for stable operation are available from literature. The dynamic behaviour of gas-liquid processes is considerably more complex and has received relatively little

  4. Modelling of gas-liquid reactors - stability and dynamic behaviour of gas-liquid mass transfer accompanied by irreversible reaction

    NARCIS (Netherlands)

    Elk, van E.P.; Borman, P.C.; Kuipers, J.A.M.; Versteeg, G.F.

    1999-01-01

    The dynamic behaviour and stability of single-phase reacting systems has been investigated thoroughly in the past and design rules for stable operation are available from literature. The dynamic behaviour of gas–liquid processes is considerably more complex and has received relatively little

  5. Dynamic motion stabilization for front-wheel drive in-wheel motor electric vehicles

    Directory of Open Access Journals (Sweden)

    Jia-Sheng Hu

    2015-12-01

    Full Text Available This article presents a new dynamic motion stabilization approach to front-wheel drive in-wheel motor electric vehicles. The approach includes functions such as traction control system, electronic differential system, and electronic stability control. The presented electric vehicle was endowed with anti-skid performance in longitudinal accelerated start; smooth turning with less tire scrubbing; and safe driving experience in two-dimensional steering. The analysis of the presented system is given in numerical derivations. For practical verifications, this article employed a hands-on electric vehicle named Corsa-electric vehicle to carry out the tests. The presented approach contains an integrated scheme which can achieve the mentioned functions in a single microprocessor. The experimental results demonstrated the effectiveness and feasibility of the presented methodology.

  6. Dynamics and stability of a tethered centrifuge in low earth orbit

    Science.gov (United States)

    Quadrelli, B. M.; Lorenzini, E. C.

    1992-01-01

    The three-dimensional attitude dynamics of a spaceborne tethered centrifuge for artificial gravity experiments in low earth orbit is analyzed using two different methods. First, the tethered centrifuge is modeled as a dumbbell with a straight viscoelastic tether, point tip-masses, and sophisticated environmental models such as nonspherical gravity, thermal perturbations, and a dynamic atmospheric model. The motion of the centrifuge during spin-up, de-spin, and steady-rotation is then simulated. Second, a continuum model of the tether is developed for analyzing the stability of lateral tether oscillations. Results indicate that the maximum fluctuation about the 1-g radial acceleration level is less than 0.001 g; the time required for spin-up and de-spin is less than one orbit; and lateral oscillations are stable for any practical values of the system parameters.

  7. On the stability and dynamics of stochastic spiking neuron models: Nonlinear Hawkes process and point process GLMs.

    Science.gov (United States)

    Gerhard, Felipe; Deger, Moritz; Truccolo, Wilson

    2017-02-01

    Point process generalized linear models (PP-GLMs) provide an important statistical framework for modeling spiking activity in single-neurons and neuronal networks. Stochastic stability is essential when sampling from these models, as done in computational neuroscience to analyze statistical properties of neuronal dynamics and in neuro-engineering to implement closed-loop applications. Here we show, however, that despite passing common goodness-of-fit tests, PP-GLMs estimated from data are often unstable, leading to divergent firing rates. The inclusion of absolute refractory periods is not a satisfactory solution since the activity then typically settles into unphysiological rates. To address these issues, we derive a framework for determining the existence and stability of fixed points of the expected conditional intensity function (CIF) for general PP-GLMs. Specifically, in nonlinear Hawkes PP-GLMs, the CIF is expressed as a function of the previous spike history and exogenous inputs. We use a mean-field quasi-renewal (QR) approximation that decomposes spike history effects into the contribution of the last spike and an average of the CIF over all spike histories prior to the last spike. Fixed points for stationary rates are derived as self-consistent solutions of integral equations. Bifurcation analysis and the number of fixed points predict that the original models can show stable, divergent, and metastable (fragile) dynamics. For fragile models, fluctuations of the single-neuron dynamics predict expected divergence times after which rates approach unphysiologically high values. This metric can be used to estimate the probability of rates to remain physiological for given time periods, e.g., for simulation purposes. We demonstrate the use of the stability framework using simulated single-neuron examples and neurophysiological recordings. Finally, we show how to adapt PP-GLM estimation procedures to guarantee model stability. Overall, our results provide a

  8. Craton stability and continental lithosphere dynamics during plume-plate interaction

    Science.gov (United States)

    Wang, H.; Van Hunen, J.; Pearson, D.

    2013-12-01

    Survival of thick cratonic roots in a vigorously convecting mantle system for billions of years has long been studied by the geodynamical community. A high cratonic root strength is generally considered to be the most important factor. We first perform and discuss new numerical models to investigate craton stability in both Newtonian and non-Newtonian rheology in the stagnant lid regime. The results show that only a modest compositional rheological factor of Δη=10 with non-Newtonian rheology is required for the survival of cratonic roots in a stagnant lid regime. A larger rheological factor (100 or more) is needed to maintain similar craton longevity in a Newtonian rheology environment. Furthermore, chemical buoyancy plays an important role on craton stability and its evolution, but could only work with suitable compositional rheology. During their long lifespan, cratons experienced a suite of dynamic, tectonothermal events, such as nearby subduction and mantle plume activity. Cratonic nuclei are embedded in shorter-lived, more vulnerable continental areas of different thickness, composition and rheology, which would influence the lithosphere dynamic when tectonothermal events happen nearby. South Africa provides a very good example to investigate such dynamic processes as it hosts several cratons and there are many episodic thermal events since the Mesozoic as indicated by a spectrum of magmatic activity. We numerically investigate such an integrated system using the topographic evolution of cratons and surrounding lithosphere as a diagnostic observable. The post-70Ma thinning of pericratonic lithosphere by ~50km around Kaapvaal craton (Mather et al., 2011) is also investigated through our numerical models. The results show that the pericratonic lithosphere cools and grows faster than cratons do, but is also more likely to be effected by episodic thermal events. This leads to surface topography change that is significantly larger around the craton than within

  9. Dynamic stability of a curved pipe bent in the arc of a circle on hinge ...

    Indian Academy of Sciences (India)

    of numerical solution of the dynamic stability of a pipe in its plane are developed. An example of a ... Most scientific researches in the area of vibrations of pipes conveying liquids are concerned with investigation of ..... is good coincidence. 5.

  10. A new strategy for transient stability using augmented generator control and local dynamic braking

    Energy Technology Data Exchange (ETDEWEB)

    Dorsey, J; Jiang, H; Habetler, T [Georgia Inst. of Tech., Atlanta, GA (United States); Qu, Z [University of Central Florida, Orlando, FL (United States)

    1994-12-31

    A decentralized automatic control strategy for significantly improving the transient stability of a large power system is introduced. The strategy combines local dynamic braking and a straightforward augmentation of the existing turbine / governor control system that uses only local feedback. The brake resistor, which employs thick film, metal oxide technology, has no inductance and is of very low resistance, allowing its use during fault to show a generator`s acceleration. Simulation results using the 39 Bus New England system show that the strategy dramatically increases the global stability of a power system. (author) 15 refs., 7 figs., 1 tab.

  11. Learning Probabilistic Models of Hydrogen Bond Stability from Molecular Dynamics Simulation Trajectories

    KAUST Repository

    Chikalov, Igor

    2011-04-02

    Hydrogen bonds (H-bonds) play a key role in both the formation and stabilization of protein structures. H-bonds involving atoms from residues that are close to each other in the main-chain sequence stabilize secondary structure elements. H-bonds between atoms from distant residues stabilize a protein’s tertiary structure. However, H-bonds greatly vary in stability. They form and break while a protein deforms. For instance, the transition of a protein from a nonfunctional to a functional state may require some H-bonds to break and others to form. The intrinsic strength of an individual H-bond has been studied from an energetic viewpoint, but energy alone may not be a very good predictor. Other local interactions may reinforce (or weaken) an H-bond. This paper describes inductive learning methods to train a protein-independent probabilistic model of H-bond stability from molecular dynamics (MD) simulation trajectories. The training data describes H-bond occurrences at successive times along these trajectories by the values of attributes called predictors. A trained model is constructed in the form of a regression tree in which each non-leaf node is a Boolean test (split) on a predictor. Each occurrence of an H-bond maps to a path in this tree from the root to a leaf node. Its predicted stability is associated with the leaf node. Experimental results demonstrate that such models can predict H-bond stability quite well. In particular, their performance is roughly 20% better than that of models based on H-bond energy alone. In addition, they can accurately identify a large fraction of the least stable H-bonds in a given conformation. The paper discusses several extensions that may yield further improvements.

  12. Floquet stability analysis of the longitudinal dynamics of two hovering model insects

    Science.gov (United States)

    Wu, Jiang Hao; Sun, Mao

    2012-01-01

    Because of the periodically varying aerodynamic and inertial forces of the flapping wings, a hovering or constant-speed flying insect is a cyclically forcing system, and, generally, the flight is not in a fixed-point equilibrium, but in a cyclic-motion equilibrium. Current stability theory of insect flight is based on the averaged model and treats the flight as a fixed-point equilibrium. In the present study, we treated the flight as a cyclic-motion equilibrium and used the Floquet theory to analyse the longitudinal stability of insect flight. Two hovering model insects were considered—a dronefly and a hawkmoth. The former had relatively high wingbeat frequency and small wing-mass to body-mass ratio, and hence very small amplitude of body oscillation; while the latter had relatively low wingbeat frequency and large wing-mass to body-mass ratio, and hence relatively large amplitude of body oscillation. For comparison, analysis using the averaged-model theory (fixed-point stability analysis) was also made. Results of both the cyclic-motion stability analysis and the fixed-point stability analysis were tested by numerical simulation using complete equations of motion coupled with the Navier–Stokes equations. The Floquet theory (cyclic-motion stability analysis) agreed well with the simulation for both the model dronefly and the model hawkmoth; but the averaged-model theory gave good results only for the dronefly. Thus, for an insect with relatively large body oscillation at wingbeat frequency, cyclic-motion stability analysis is required, and for their control analysis, the existing well-developed control theories for systems of fixed-point equilibrium are no longer applicable and new methods that take the cyclic variation of the flight dynamics into account are needed. PMID:22491980

  13. Dynamical Stability of Imaged Planetary Systems in Formation: Application to HL Tau

    OpenAIRE

    Tamayo, Daniel; Triaud, Amaury H. M. J.; Menou, Kristen; Rein, Hanno

    2015-01-01

    A recent ALMA image revealed several concentric gaps in the protoplanetary disk surrounding the young star HL Tau. We consider the hypothesis that these gaps are carved by planets, and present a general framework for understanding the dynamical stability of such systems over typical disk lifetimes, providing estimates for the maximum planetary masses. We collect these easily evaluated constraints into a workflow that can help guide the design and interpretation of new observational campaigns ...

  14. Stability Analysis of an Advanced Persistent Distributed Denial-of-Service Attack Dynamical Model

    Directory of Open Access Journals (Sweden)

    Chunming Zhang

    2018-01-01

    Full Text Available The advanced persistent distributed denial-of-service (APDDoS attack is a fairly significant threat to cybersecurity. Formulating a mathematical model for accurate prediction of APDDoS attack is important. However, the dynamical model of APDDoS attack has barely been reported. This paper first proposes a novel dynamical model of APDDoS attack to understand the mechanisms of APDDoS attack. Then, the attacked threshold of this model is calculated. The global stability of attack-free and attacked equilibrium are both proved. The influences of the model’s parameters on attacked equilibrium are discussed. Eventually, the main conclusions of the theoretical analysis are examined through computer simulations.

  15. Path to Stochastic Stability: Comparative Analysis of Stochastic Learning Dynamics in Games

    KAUST Repository

    Jaleel, Hassan

    2018-04-08

    Stochastic stability is a popular solution concept for stochastic learning dynamics in games. However, a critical limitation of this solution concept is its inability to distinguish between different learning rules that lead to the same steady-state behavior. We address this limitation for the first time and develop a framework for the comparative analysis of stochastic learning dynamics with different update rules but same steady-state behavior. We present the framework in the context of two learning dynamics: Log-Linear Learning (LLL) and Metropolis Learning (ML). Although both of these dynamics have the same stochastically stable states, LLL and ML correspond to different behavioral models for decision making. Moreover, we demonstrate through an example setup of sensor coverage game that for each of these dynamics, the paths to stochastically stable states exhibit distinctive behaviors. Therefore, we propose multiple criteria to analyze and quantify the differences in the short and medium run behavior of stochastic learning dynamics. We derive and compare upper bounds on the expected hitting time to the set of Nash equilibria for both LLL and ML. For the medium to long-run behavior, we identify a set of tools from the theory of perturbed Markov chains that result in a hierarchical decomposition of the state space into collections of states called cycles. We compare LLL and ML based on the proposed criteria and develop invaluable insights into the comparative behavior of the two dynamics.

  16. Local dynamic stability and variability of gait are associated with fall history in elderly subjects

    NARCIS (Netherlands)

    Toebes, M.J.P.; Hoozemans, M.J.M.; Furrer, R.; Dekker, J.; van Dieen, J.H.

    2012-01-01

    Gait parameters that can be measured with simple instrumentation may hold promise for identifying individuals at risk of falling. Increased variability of gait is associated with increased risk of falling, but research on additional parameters indicates that local dynamic stability (LDS) of gait may

  17. Wholesale energy market in a smart grid. Dynamic modeling, stability, and robustness

    Energy Technology Data Exchange (ETDEWEB)

    Kiani Bejestani, Arman

    2013-01-24

    The recent paradigm shift in the architecture of the smart grid is driven by the need to integrate Renewable Energy Resources (RER), the availability of information through communication networks, and an emerging policy of demand that is intertwined with pricing. A major component of this architecture is the design of electricity markets, which pertains to the optimal scheduling of power generation and reserve requirements. The challenge is to carry out this scheduling with a high level of integration of renewable generation sources, a formidable task due to intermittency and uncertainty. Introducing huge intermittency and uncertainty in the smart grid will demand a dynamic framework for addressing the operation, scheduling and financial settlements in the uncertain environment. The temporal components in scheduling generation are necessary due to increasing penetration of renewable sources, and increasing potential of adjustable demand via Demand Response (DR). The former brings issues of strong intermittency and uncertainty, and the latter brings a feedback structure, where demand can be modulated over a range of time-scales. Both of these components are dictating a new look at market mechanisms, with a controls viewpoint enabling a novel framework for analysis and synthesis. This dissertation provides static and dynamic models that capture the various aspects of electrical power systems, including the dynamics of market participants, the physical and technical constraints of power systems, and the uncertainty of RER. The proposed models shed new light on wholesale electricity market design, allowing an understanding to be gained of how to create markets, which enhance the stability of price profiles, and efficiency of the power systems, in the presence of uncertain demand and intermittent resources. The notion of market equilibrium in the presence of RER and DR is presented. The effects of uncertainties due to forecast errors in RER and variations due to DR on

  18. On the internal stability of non-linear dynamic inversion: application to flight control

    Czech Academy of Sciences Publication Activity Database

    Alam, M.; Čelikovský, Sergej

    2017-01-01

    Roč. 11, č. 12 (2017), s. 1849-1861 ISSN 1751-8644 R&D Projects: GA ČR(CZ) GA17-04682S Institutional support: RVO:67985556 Keywords : flight control * non-linear dynamic inversion * stability Subject RIV: BC - Control Systems Theory OBOR OECD: Automation and control systems Impact factor: 2.536, year: 2016 http://library.utia.cas.cz/separaty/2017/TR/celikovsky-0476150.pdf

  19. Dynamic modelling of tearing mode stabilization by RF current drive

    International Nuclear Information System (INIS)

    Giruzzi, G.; Zabiego, M.; Gianakon, T.A.; Garbet, X.; Bernabei, S.

    1998-01-01

    The theory of tearing mode stabilization in toroidal plasmas by RF-driven currents that are modulated in phase with the island rotation is investigated. A time scale analysis of the phenomena involved indicates that transient effects, such as finite time response of the driven currents, island rotation during the power pulses, and the inductive response of the plasma, are intrinsically important. A dynamic model of such effects is developed, based on a 3-D Fokker-Planck code coupled to both the electric field diffusion and the island evolution equations. Extensive applications to both Electron Cyclotron and Lower Hybrid current drive in ITER are presented. (author)

  20. Dynamic Postural-Stability Deficits After Cryotherapy to the Ankle Joint

    Science.gov (United States)

    Fullam, Karl; Caulfield, Brian; Coughlan, Garrett F.; McGroarty, Mark; Delahunt, Eamonn

    2015-01-01

    Context  Decreased postural stability is a primary risk factor for lower limb musculoskeletal injuries. During athletic competitions, cryotherapy may be applied during short breaks in play or during half-time; however, its effects on postural stability remain unclear. Objective  To investigate the acute effects of a 15-minute ankle-joint cryotherapy application on dynamic postural stability. Design  Controlled laboratory study. Setting  University biomechanics laboratory. Patients or Other Participants  A total of 29 elite-level collegiate male field-sport athletes (age = 20.8 ± 1.12 years, height = 1.80 ± 0.06 m, mass = 81.89 ± 8.59 kg) participated. Intervention(s)  Participants were tested on the anterior (ANT), posterolateral (PL), and posteromedial (PM) reach directions of the Star Excursion Balance Test before and after a 15-minute ankle-joint cryotherapy application. Main Outcome Measure(s)  Normalized reach distances; sagittal-plane kinematics of the hip, knee, and ankle joints; and associated mean velocity of the center-of-pressure path during performance of the ANT, PL, and PM reach directions of the Star Excursion Balance Test. Results  We observed a decrease in reach-distance scores for the ANT, PL, and PM reach directions from precryotherapy to postcryotherapy (P .05). We noted a decrease in mean velocity of the center-of-pressure path from precryotherapy to postcryotherapy (P cryotherapy to the ankle joint. PMID:26285088

  1. Operational Limitations of Arctic Waste Stabilization Ponds: Insights from Modeling Oxygen Dynamics and Carbon Removal

    DEFF Research Database (Denmark)

    Ragush, Colin M.; Gentleman, Wendy C.; Hansen, Lisbeth Truelstrup

    2018-01-01

    Presented here is a mechanistic model of the biological dynamics of the photic zone of a single-cell arctic waste stabilization pond (WSP) for the prediction of oxygen concentration and the removal of oxygen-demanding substances. The model is an exploratory model to assess the limiting environmen...

  2. Dynamic Phasors-Based Modeling and Stability Analysis of Droop-Controlled Inverters for Microgrid Applications

    DEFF Research Database (Denmark)

    Guo, Xiaoqiang; Lu, Zhigang; Wang, Baocheng

    2014-01-01

    models fail to predict the system instabilities. In order to solve the problem, a new modeling approach for inverter-dominated microgrids by using dynamic phasors is presented in this paper. Our findings indicate that the proposed dynamic phasor model is able to predict accurately the stability margins...... of the system, while the conventional reduced-order small signal model fails. In addition, the virtual ω-E frame power control method, which deals with the power coupling caused by the line impedance X/R characteristic, has also been chosen as an application example of the proposed modeling technique....

  3. Interval stability for complex systems

    Science.gov (United States)

    Klinshov, Vladimir V.; Kirillov, Sergey; Kurths, Jürgen; Nekorkin, Vladimir I.

    2018-04-01

    Stability of dynamical systems against strong perturbations is an important problem of nonlinear dynamics relevant to many applications in various areas. Here, we develop a novel concept of interval stability, referring to the behavior of the perturbed system during a finite time interval. Based on this concept, we suggest new measures of stability, namely interval basin stability (IBS) and interval stability threshold (IST). IBS characterizes the likelihood that the perturbed system returns to the stable regime (attractor) in a given time. IST provides the minimal magnitude of the perturbation capable to disrupt the stable regime for a given interval of time. The suggested measures provide important information about the system susceptibility to external perturbations which may be useful for practical applications. Moreover, from a theoretical viewpoint the interval stability measures are shown to bridge the gap between linear and asymptotic stability. We also suggest numerical algorithms for quantification of the interval stability characteristics and demonstrate their potential for several dynamical systems of various nature, such as power grids and neural networks.

  4. Dynamic Rocker-Bogie: Kinematical Analysis in a High-Speed Traversal Stability Enhancement

    Directory of Open Access Journals (Sweden)

    Sunxin Wang

    2016-01-01

    Full Text Available The rocker-bogie suspension system has robust capabilities to deal with uneven terrain because of its distributing of the payload over its six wheels uniformly, while there is one major shortcoming to high-speed traversal over the planar terrain. This paper proposes a new dynamic rocker-bogie suspension system with two modes of operation: it can expand the span of the rocker-bogie support polygon to increase travel rate when the terrain is planar; and it can switch to its original configuration to move by low speed when it is faced with rough terrain. The analysis on dynamic stability margin and kinematical simulation on the two operating modes of rocker-bogie are employed to analyze and verify the rationality and effectiveness of the modification in the structure.

  5. Robust Adaptive Stabilization of Linear Time-Invariant Dynamic Systems by Using Fractional-Order Holds and Multirate Sampling Controls

    Directory of Open Access Journals (Sweden)

    S. Alonso-Quesada

    2010-01-01

    Full Text Available This paper presents a strategy for designing a robust discrete-time adaptive controller for stabilizing linear time-invariant (LTI continuous-time dynamic systems. Such systems may be unstable and noninversely stable in the worst case. A reduced-order model is considered to design the adaptive controller. The control design is based on the discretization of the system with the use of a multirate sampling device with fast-sampled control signal. A suitable on-line adaptation of the multirate gains guarantees the stability of the inverse of the discretized estimated model, which is used to parameterize the adaptive controller. A dead zone is included in the parameters estimation algorithm for robustness purposes under the presence of unmodeled dynamics in the controlled dynamic system. The adaptive controller guarantees the boundedness of the system measured signal for all time. Some examples illustrate the efficacy of this control strategy.

  6. Inclusion of methoxy groups inverts the thermodynamic stabilities of DNA-RNA hybrid duplexes: A molecular dynamics simulation study.

    Science.gov (United States)

    Suresh, Gorle; Priyakumar, U Deva

    2015-09-01

    Modified nucleic acids have found profound applications in nucleic acid based technologies such as antisense and antiviral therapies. Previous studies on chemically modified nucleic acids have suggested that modifications incorporated in furanose sugar especially at 2'-position attribute special properties to nucleic acids when compared to other modifications. 2'-O-methyl modification to deoxyribose sugars of DNA-RNA hybrids is one such modification that increases nucleic acid stability and has become an attractive class of compounds for potential antisense applications. It has been reported that modification of DNA strands with 2'-O-methyl group reverses the thermodynamic stability of DNA-RNA hybrid duplexes. Molecular dynamics simulations have been performed on two hybrid duplexes (DR and RD) which differ from each other and 2'-O-methyl modified counterparts to investigate the effect of 2'-O-methyl modification on their duplex stability. The results obtained suggest that the modification drives the conformations of both the hybrid duplexes towards A-RNA like conformation. The modified hybrid duplexes exhibit significantly contrasting dynamics and hydration patterns compared to respective parent duplexes. In line with the experimental results, the relative binding free energies suggest that the introduced modifications stabilize the less stable DR hybrid, but destabilize the more stable RD duplex. Binding free energy calculations suggest that the increased hydrophobicity is primarily responsible for the reversal of thermodynamic stability of hybrid duplexes. Free energy component analysis further provides insights into the stability of modified duplexes. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Theoretical analysis of turbulent transport through the diffuse boundary layer in the dynamic stabilization of superimposed miscible liquids

    International Nuclear Information System (INIS)

    Gerhauser, H.

    1980-02-01

    Two superimposed miscible liquids are separated by a diffuse boundary layer providing a steady transition of density. If the heavy fluid is on top of the light one, Rayleigh-Taylor-instabilities develop and cause a rapid interchange and eventually an intermixing. This process can be subjected to dynamic stabilization by enforcing vertical oscillations upon the whole system. However, since only part of the unstable mode spectrum is completely stabilized, the remaining weakly unstable modes lead to turbulent transport processes through the boundary layer ('anomalous diffusion'), so that only a quasistationary equilibrium is achieved. In the present paper, previous experimental results on the dynamic stabilization of water superimposed by an aqueous ZnJ-solution are theoretically interpreted, and the observed spatial structure as well as the time development of the density profiles are explained. There exists an analogy between these phenomena and turbulent transport processes in tokamak discharges such as the sawtooth oscillations of internal disruptions. (orig.) [de

  8. Mathematical modeling of the dynamic stability of fluid conveying pipe based on integral equation formulations

    International Nuclear Information System (INIS)

    Elfelsoufi, Z.; Azrar, L.

    2016-01-01

    In this paper, a mathematical modeling of flutter and divergence analyses of fluid conveying pipes based on integral equation formulations is presented. Dynamic stability problems related to fluid pressure, velocity, tension, topography slope and viscoelastic supports and foundations are formulated. A methodological approach is presented and the required matrices, associated to the influencing fluid and pipe parameters, are explicitly given. Internal discretizations are used allowing to investigate the deformation, the bending moment, slope and shear force at internal points. Velocity–frequency, pressure-frequency and tension-frequency curves are analyzed for various fluid parameters and internal elastic supports. Critical values of divergence and flutter behaviors with respect to various fluid parameters are investigated. This model is general and allows the study of dynamic stability of tubes crossed by stationary and instationary fluid on various types of supports. Accurate predictions can be obtained and are of particular interest for a better performance and for an optimal safety of piping system installations. - Highlights: • Modeling the flutter and divergence of fluid conveying pipes based on RBF. • Dynamic analysis of a fluid conveying pipe with generalized boundary conditions. • Considered parameters fluid are the pressure, tension, slopes topography, velocity. • Internal support increase the critical velocity value. • This methodologies determine the fluid parameters effects.

  9. Stability of a general delayed virus dynamics model with humoral immunity and cellular infection

    Science.gov (United States)

    Elaiw, A. M.; Raezah, A. A.; Alofi, A. S.

    2017-06-01

    In this paper, we investigate the dynamical behavior of a general nonlinear model for virus dynamics with virus-target and infected-target incidences. The model incorporates humoral immune response and distributed time delays. The model is a four dimensional system of delay differential equations where the production and removal rates of the virus and cells are given by general nonlinear functions. We derive the basic reproduction parameter R˜0 G and the humoral immune response activation number R˜1 G and establish a set of conditions on the general functions which are sufficient to determine the global dynamics of the models. We use suitable Lyapunov functionals and apply LaSalle's invariance principle to prove the global asymptotic stability of the all equilibria of the model. We confirm the theoretical results by numerical simulations.

  10. New Systematic CFD Methods to Calculate Static and Single Dynamic Stability Derivatives of Aircraft

    Directory of Open Access Journals (Sweden)

    Bai-gang Mi

    2017-01-01

    Full Text Available Several new systematic methods for high fidelity and reliability calculation of static and single dynamic derivatives are proposed in this paper. Angle of attack step response is used to obtain static derivative directly; then translation acceleration dynamic derivative and rotary dynamic derivative can be calculated by employing the step response motion of rate of the angle of attack and unsteady motion of pitching angular velocity step response, respectively. Longitudinal stability derivative calculations of SACCON UCAV are taken as test cases for validation. Numerical results of all cases achieve good agreement with reference values or experiments data from wind tunnel, which indicate that the proposed methods can be considered as new tools in the process of design and production of advanced aircrafts for their high efficiency and precision.

  11. Static and dynamic stability of the guidance force in a side-suspended HTS maglev system

    Science.gov (United States)

    Zhou, Dajin; Cui, Chenyu; Zhao, Lifeng; Zhang, Yong; Wang, Xiqing; Zhao, Yong

    2017-02-01

    The static and dynamic stability of the guidance force in a side-suspended HTS-PMG (permanent magnetic guideway) system were studied theoretically and experimentally. It is found that there are two types of guidance force that exist in the HTS-PMG system, which are sensitive to the levitation gap and the arrangement of YBCO bulks around the central axis of the PMG. An optimized YBCO array was used to stabilize the system, which enabled a side-suspended HTS-PMG maglev vehicle to run stably at 102 km h-1 on a circular test track with 6.5 m in diameter.

  12. Stability of the Supply Chain Using System Dynamics Simulation and the Accumulated Deviations from Equilibrium

    Directory of Open Access Journals (Sweden)

    Luis Rabelo

    2011-01-01

    Full Text Available We propose and demonstrate a new methodology to stabilize systems with complex dynamics like the supply chain. This method is based on the accumulated deviations from equilibrium (ADE. It is most beneficial for controlling system dynamic models characterized by multiple types of delays, many interacting variables, and feedback processes. We employ the classical version of particle swarm optimization as the optimization approach due to its performance in multidimensional space, stochastic properties, and global reach. We demonstrate the effectiveness of our method based on ADE using a manufacturing-supply-chain case study.

  13. Dynamic State Estimation for Multi-Machine Power System by Unscented Kalman Filter With Enhanced Numerical Stability

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Junjian; Sun, Kai; Wang, Jianhui; Liu, Hui

    2018-03-01

    In this paper, in order to enhance the numerical stability of the unscented Kalman filter (UKF) used for power system dynamic state estimation, a new UKF with guaranteed positive semidifinite estimation error covariance (UKFGPS) is proposed and compared with five existing approaches, including UKFschol, UKF-kappa, UKFmodified, UKF-Delta Q, and the squareroot UKF (SRUKF). These methods and the extended Kalman filter (EKF) are tested by performing dynamic state estimation on WSCC 3-machine 9-bus system and NPCC 48-machine 140-bus system. For WSCC system, all methods obtain good estimates. However, for NPCC system, both EKF and the classic UKF fail. It is found that UKFschol, UKF-kappa, and UKF-Delta Q do not work well in some estimations while UKFGPS works well in most cases. UKFmodified and SRUKF can always work well, indicating their better scalability mainly due to the enhanced numerical stability.

  14. Effect of Ankle Taping and Fatigue on Dynamic Stability in Athletes With and Without Chronic Ankle Instability

    Directory of Open Access Journals (Sweden)

    Tahereh Pourkhani

    2017-07-01

    Conclusion In the athletes with chronic ankle instability, taping without fatigue improved dynamic balance in the vertical direction. Taping after fatigue could not improve dynamic stability in the athletes with and without chronic ankle instability. Future researchers should examine injured and uninjured participants tested under these conditions to determine if these results are useful in selecting appropriate prophylactic method that can treat or prevent injury to the ankle during functional activities.

  15. Theory of the dynamic stability of plasma systems

    International Nuclear Information System (INIS)

    Bud'ko, A.B.; Velikovich, A.L.; Kleev, A.I.; Liberman, M.A.; Felber, F.S.

    1989-01-01

    Internal instabilities of the plasma of a diffuse pinch result from the acceleration of the plasma in the course of its compression and the expansion of the current channel. The spectra of the growth rates σ m,k of the hydromagnetic instabilities responsible for the disruption of the initial cylindrical symmetry during compression are calculated. For a Z-pinch with a Gaussian density profile, the major instabilities in the course of the compression are the small-scale sausage and kink instabilities with kR >> 1 (R is a typical radius of the pinch). Superimposed on these small-scale instabilities is a filamentation instability with m >> 1, which develops more slowly. If the density instead has a power-law profile, the filamentation instabilities will develop more rapidly than the sausage and kink instabilities. Dynamic stabilization of a pinch by a longitudinal magnetic field makes it possible to maintain symmetry up to radial compressions of the plasma significantly higher than in the absence of a field

  16. Relationship between the medial longitudinal arch and the thoracic and lumbar curvatures with the static and dynamic stability in obese females

    Directory of Open Access Journals (Sweden)

    Abbas Rahimi

    2012-07-01

    Full Text Available Background and Aim: Reviewing the literature reveals a possible correlation between the obesity and the potential foot, spine and stability problems. Investigating the important parameters affecting the balance of obese people and prevention from falling are of high importance to reduce the resulting expenditures. This study aimed to assess the acts and the counter acts between the medial longitudinal arch (MLA and the thoracic and lumbar curvatures with the static and dynamic stability in obese females. Materials and Methods: Twenty eight obese females (age= 25±8 years old, BMI=37±4 and twenty nine non-obese females (age= 23±4 years old, BMI=23±3 were recruited in this case-control study with the cross-sectional technique. The MLA, spinal curve angles and the static or dynamic balance index of the subjects were measured using the navicular drop, flexible ruler and Biodex balance system tools, respectively. The static balance test was carried out using a modified Clinical Test of Sensory Interaction and Balance (CTSIB test in both the open and closed eyes while the subjects stood on their dominant legs. The order of the dynamic and static tests was selected randomly.Results: The findings of this study showed that in closed eye condition, most changes happened between the global Stability Index (SI and BMI; while in open eye condition, most changes occurred between the lateral-medial stability index and BMI (r=0.5. Also during an open eye condition, a moderate correlation was found between the navicular drop and lateral-medial stability index (r=0.05. In closed eyes condition, no significant changes were found between the SI and lumbar lordosis (r=0.0004; while a weak correlation was found between the thoracic curve angle and lateral-medial stability index (r=0.04.Conclusion: The dynamic stability is not only correlated to their BMI, but is highly dependent on their foot curvature types and slightly on their thoracic curve angle. Abdominal

  17. Dynamic stability analysis of circular arch subjected to follower forces with small disturbances; Judo kaju wo ukeru enkei arch no yuran ni yoru doteki kyodo to anteisei kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Fukuchi, N.; Okada, K. [Kyushu University, Fukuoka (Japan). Faculty of Engineering; Hirano, Y. [Sumitomo Heavy Industries, Ltd., Tokyo (Japan)

    1997-09-04

    This paper describes the deformation and dynamic stability of circular arch subjected to follower forces in a submerged membrane type marine structure reinforced by arch frames. Governing equations for finite deformations of the circular arch subjected to follower forces are introduced using an embedded curve coordinate, which are formulated by applying Galerkin method. In addition, equations of motion due to small disturbances under given condition of loading are introduced. Based on these equations, dynamic stability of the arch is analyzed by means of Runnge-Kutta-Gill method, to clarify the relationship between disturbances and instability regions and the resulting phenomena. Near the boundary regions of stability, both amplitude and cycle of deformation are greatly affected by the amplitude of disturbances. The dynamic instability is governed by the inverse symmetry primary mode with minimum characteristic frequency which is specific for the circular arch. The dynamic stability has high parameter dependency, and the instability regions have a complicated shapes. Although flattened arch has a smaller static critical load, it provides the dynamic stability against the disturbance. 5 refs., 10 figs.

  18. Dynamic aeroelastic stability of vertical-axis wind turbines under constant wind velocity

    Science.gov (United States)

    Nitzsche, Fred

    1994-05-01

    The flutter problem associated with the blades of a class of vertical-axis wind turbines called Darrieus is studied in detail. The spinning blade is supposed to be initially curved in a particular shape characterized by a state of pure tension at the blade cross section. From this equilibrium position a three-dimensional linear perturbation pattern is superimposed to determine the dynamic aeroelastic stability of the blade in the presence of free wind speed by means of the Floquet-Lyapunov theory for periodic systems.

  19. Assessment of pipeline stability in the Gulf of Mexico during hurricanes using dynamic analysis

    Directory of Open Access Journals (Sweden)

    Yinghui Tian

    2015-03-01

    Full Text Available Pipelines are the critical link between major offshore oil and gas developments and the mainland. Any inadequate on-bottom stability design could result in disruption and failure, having a devastating impact on the economy and environment. Predicting the stability behavior of offshore pipelines in hurricanes is therefore vital to the assessment of both new design and existing assets. The Gulf of Mexico has a very dense network of pipeline systems constructed on the seabed. During the last two decades, the Gulf of Mexico has experienced a series of strong hurricanes, which have destroyed, disrupted and destabilized many pipelines. This paper first reviews some of these engineering cases. Following that, three case studies are retrospectively simulated using an in-house developed program. The study utilizes the offshore pipeline and hurricane details to conduct a Dynamic Lateral Stability analysis, with the results providing evidence as to the accuracy of the modeling techniques developed.

  20. Dynamic stability of passive dynamic walking on an irregular surface.

    Science.gov (United States)

    Su, Jimmy Li-Shin; Dingwell, Jonathan B

    2007-12-01

    Falls that occur during walking are a significant health problem. One of the greatest impediments to solve this problem is that there is no single obviously "correct" way to quantify walking stability. While many people use variability as a proxy for stability, measures of variability do not quantify how the locomotor system responds to perturbations. The purpose of this study was to determine how changes in walking surface variability affect changes in both locomotor variability and stability. We modified an irreducibly simple model of walking to apply random perturbations that simulated walking over an irregular surface. Because the model's global basin of attraction remained fixed, increasing the amplitude of the applied perturbations directly increased the risk of falling in the model. We generated ten simulations of 300 consecutive strides of walking at each of six perturbation amplitudes ranging from zero (i.e., a smooth continuous surface) up to the maximum level the model could tolerate without falling over. Orbital stability defines how a system responds to small (i.e., "local") perturbations from one cycle to the next and was quantified by calculating the maximum Floquet multipliers for the model. Local stability defines how a system responds to similar perturbations in real time and was quantified by calculating short-term and long-term local exponential rates of divergence for the model. As perturbation amplitudes increased, no changes were seen in orbital stability (r(2)=2.43%; p=0.280) or long-term local instability (r(2)=1.0%; p=0.441). These measures essentially reflected the fact that the model never actually "fell" during any of our simulations. Conversely, the variability of the walker's kinematics increased exponentially (r(2)>or=99.6%; psimulated conditions, the walker remained orbitally stable, while exhibiting substantial local instability. This was because very small initial perturbations diverged away from the limit cycle, while larger

  1. Dynamic stability of running: The effects of speed and leg amputations on the maximal Lyapunov exponent

    International Nuclear Information System (INIS)

    Look, Nicole; Arellano, Christopher J.; Grabowski, Alena M.; Kram, Rodger; McDermott, William J.; Bradley, Elizabeth

    2013-01-01

    In this paper, we study dynamic stability during running, focusing on the effects of speed, and the use of a leg prosthesis. We compute and compare the maximal Lyapunov exponents of kinematic time-series data from subjects with and without unilateral transtibial amputations running at a wide range of speeds. We find that the dynamics of the affected leg with the running-specific prosthesis are less stable than the dynamics of the unaffected leg and also less stable than the biological legs of the non-amputee runners. Surprisingly, we find that the center-of-mass dynamics of runners with two intact biological legs are slightly less stable than those of runners with amputations. Our results suggest that while leg asymmetries may be associated with instability, runners may compensate for this effect by increased control of their center-of-mass dynamics

  2. Local dynamic stability of lower extremity joints in lower limb amputees during slope walking.

    Science.gov (United States)

    Chen, Jin-Ling; Gu, Dong-Yun

    2013-01-01

    Lower limb amputees have a higher fall risk during slope walking compared with non-amputees. However, studies on amputees' slope walking were not well addressed. The aim of this study was to identify the difference of slope walking between amputees and non-amputees. Lyapunov exponents λS was used to estimate the local dynamic stability of 7 transtibial amputees' and 7 controls' lower extremity joint kinematics during uphill and downhill walking. Compared with the controls, amputees exhibited significantly lower λS in hip (P=0.04) and ankle (P=0.01) joints of the sound limb, and hip joints (P=0.01) of the prosthetic limb during uphill walking, while they exhibited significantly lower λS in knee (P=0.02) and ankle (P=0.03) joints of the sound limb, and hip joints (P=0.03) of the prosthetic limb during downhill walking. Compared with amputees level walking, they exhibited significantly lower λS in ankle joints of the sound limb during both uphill (P=0.01) and downhill walking (P=0.01). We hypothesized that the better local dynamic stability of amputees was caused by compensation strategy during slope walking.

  3. Molecular Dynamics Driven Design of pH-Stabilized Mutants of MNEI, a Sweet Protein.

    Directory of Open Access Journals (Sweden)

    Serena Leone

    Full Text Available MNEI is a single chain derivative of monellin, a plant protein that can interact with the human sweet taste receptor, being therefore perceived as sweet. This unusual physiological activity makes MNEI a potential template for the design of new sugar replacers for the food and beverage industry. Unfortunately, applications of MNEI have been so far limited by its intrinsic sensitivity to some pH and temperature conditions, which could occur in industrial processes. Changes in physical parameters can, in fact, lead to irreversible protein denaturation, as well as aggregation and precipitation. It has been previously shown that the correlation between pH and stability in MNEI derives from the presence of a single glutamic residue in a hydrophobic pocket of the protein. We have used molecular dynamics to study the consequences, at the atomic level, of the protonation state of such residue and have identified the network of intramolecular interactions responsible for MNEI stability at acidic pH. Based on this information, we have designed a pH-independent, stabilized mutant of MNEI and confirmed its increased stability by both molecular modeling and experimental techniques.

  4. Molecular Dynamics Driven Design of pH-Stabilized Mutants of MNEI, a Sweet Protein.

    Science.gov (United States)

    Leone, Serena; Picone, Delia

    2016-01-01

    MNEI is a single chain derivative of monellin, a plant protein that can interact with the human sweet taste receptor, being therefore perceived as sweet. This unusual physiological activity makes MNEI a potential template for the design of new sugar replacers for the food and beverage industry. Unfortunately, applications of MNEI have been so far limited by its intrinsic sensitivity to some pH and temperature conditions, which could occur in industrial processes. Changes in physical parameters can, in fact, lead to irreversible protein denaturation, as well as aggregation and precipitation. It has been previously shown that the correlation between pH and stability in MNEI derives from the presence of a single glutamic residue in a hydrophobic pocket of the protein. We have used molecular dynamics to study the consequences, at the atomic level, of the protonation state of such residue and have identified the network of intramolecular interactions responsible for MNEI stability at acidic pH. Based on this information, we have designed a pH-independent, stabilized mutant of MNEI and confirmed its increased stability by both molecular modeling and experimental techniques.

  5. Diagonal recurrent neural network based adaptive control of nonlinear dynamical systems using lyapunov stability criterion.

    Science.gov (United States)

    Kumar, Rajesh; Srivastava, Smriti; Gupta, J R P

    2017-03-01

    In this paper adaptive control of nonlinear dynamical systems using diagonal recurrent neural network (DRNN) is proposed. The structure of DRNN is a modification of fully connected recurrent neural network (FCRNN). Presence of self-recurrent neurons in the hidden layer of DRNN gives it an ability to capture the dynamic behaviour of the nonlinear plant under consideration (to be controlled). To ensure stability, update rules are developed using lyapunov stability criterion. These rules are then used for adjusting the various parameters of DRNN. The responses of plants obtained with DRNN are compared with those obtained when multi-layer feed forward neural network (MLFFNN) is used as a controller. Also, in example 4, FCRNN is also investigated and compared with DRNN and MLFFNN. Robustness of the proposed control scheme is also tested against parameter variations and disturbance signals. Four simulation examples including one-link robotic manipulator and inverted pendulum are considered on which the proposed controller is applied. The results so obtained show the superiority of DRNN over MLFFNN as a controller. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Temporal changes in vegetation of a virgin beech woodland remnant: stand-scale stability with intensive fine-scale dynamics governed by stand dynamic events

    Directory of Open Access Journals (Sweden)

    Tibor Standovár

    2017-03-01

    Full Text Available The aim of this resurvey study is to check if herbaceous vegetation on the forest floor exhibits overall stability at the stand-scale in spite of intensive dynamics at the scale of individual plots and stand dynamic events (driven by natural fine scale canopy gap dynamics. In 1996, we sampled a 1.5 ha patch using 0.25 m² plots placed along a 5 m × 5 m grid in the best remnant of central European montane beech woods in Hungary. All species in the herbaceous layer and their cover estimates were recorded. Five patches representing different stand developmental situations (SDS were selected for resurvey. In 2013, 306 plots were resurveyed by using blocks of four 0.25 m² plots to test the effects of imperfect relocation. We found very intensive fine-scale dynamics in the herbaceous layer with high species turnover and sharp changes in ground layer cover at the local-scale (< 1 m2. A decrease in species richness and herbaceous layer cover, as well as high species turnover, characterized the closing gaps. Colonization events and increasing species richness and herbaceous layer cover prevailed in the two newly created gaps. A pronounced decrease in the total cover, but low species turnover and survival of the majority of the closed forest specialists was detected by the resurvey at the stand-scale. The test aiming at assessing the effect of relocation showed a higher time effect than the effect of imprecise relocation. The very intensive fine-scale dynamics of the studied beech forest are profoundly determined by natural stand dynamics. Extinction and colonisation episodes even out at the stand-scale, implying an overall compositional stability of the herbaceous vegetation at the given spatial and temporal scale. We argue that fine-scale gap dynamics, driven by natural processes or applied as a management method, can warrant the survival of many closed forest specialist species in the long-run. Nomenclature: Flora Europaea (Tutin et al. 2010 for

  7. Solutions Stability of Initial Boundary Problem, Modeling of Dynamics of Some Discrete Continuum Mechanical System

    Directory of Open Access Journals (Sweden)

    D. A. Eliseev

    2015-01-01

    Full Text Available The solution stability of an initial boundary problem for a linear hybrid system of differential equations, which models the rotation of a rigid body with two elastic rods located in the same plane is studied in the paper. To an axis passing through the mass center of the rigid body perpendicularly to the rods location plane is applied the stabilizing moment proportional to the angle of the system rotation, derivative of the angle, integral of the angle. The external moment provides a feedback. A method of studying the behavior of solutions of the initial boundary problem is proposed. This method allows to exclude from the hybrid system of differential equations partial differential equations, which describe the dynamics of distributed elements of a mechanical system. It allows us to build one equation for an angle of the system rotation. Its characteristic equation defines the stability of solutions of all the system. In the space of feedback-coefficients the areas that provide the asymptotic stability of solutions of the initial boundary problem are built up.

  8. Study of the influence of imperfections on the dynamic stability of tanks

    International Nuclear Information System (INIS)

    Uras, R.A.; Liu, Wing Kam; Chen, Yi-Jung

    1990-01-01

    The influence of geometrical imperfections on the dynamic stability of liquid-filled shells under horizontal ground excitation is studied. Some basic concepts in the large deformation and large deformation thin shell theory are recalled. The work done by inertial and internal forces are given in the Gaussian surface coordinate system. A general imperfection pattern in the circumferential direction is introduced. The emphasis is particularly dedicated to the analysis of the geometrical stiffness term. Different patterns are studied to explain the occurrence of additional instability regions. 6 refs., 1 fig., 3 tabs

  9. Dynamics of Stability of Orientation Maps Recorded with Optical Imaging.

    Science.gov (United States)

    Shumikhina, S I; Bondar, I V; Svinov, M M

    2018-03-15

    Orientation selectivity is an important feature of visual cortical neurons. Optical imaging of the visual cortex allows for the generation of maps of orientation selectivity that reflect the activity of large populations of neurons. To estimate the statistical significance of effects of experimental manipulations, evaluation of the stability of cortical maps over time is required. Here, we performed optical imaging recordings of the visual cortex of anesthetized adult cats. Monocular stimulation with moving clockwise square-wave gratings that continuously changed orientation and direction was used as the mapping stimulus. Recordings were repeated at various time intervals, from 15 min to 16 h. Quantification of map stability was performed on a pixel-by-pixel basis using several techniques. Map reproducibility showed clear dynamics over time. The highest degree of stability was seen in maps recorded 15-45 min apart. Averaging across all time intervals and all stimulus orientations revealed a mean shift of 2.2 ± 0.1°. There was a significant tendency for larger shifts to occur at longer time intervals. Shifts between 2.8° (mean ± 2SD) and 5° were observed more frequently at oblique orientations, while shifts greater than 5° appeared more frequently at cardinal orientations. Shifts greater than 5° occurred rarely overall (5.4% of cases) and never exceeded 11°. Shifts of 10-10.6° (0.7%) were seen occasionally at time intervals of more than 4 h. Our findings should be considered when evaluating the potential effect of experimental manipulations on orientation selectivity mapping studies. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Dynamics of microresonator frequency comb generation: models and stability

    Directory of Open Access Journals (Sweden)

    Hansson Tobias

    2016-06-01

    Full Text Available Microresonator frequency combs hold promise for enabling a new class of light sources that are simultaneously both broadband and coherent, and that could allow for a profusion of potential applications. In this article, we review various theoretical models for describing the temporal dynamics and formation of optical frequency combs. These models form the basis for performing numerical simulations that can be used in order to better understand the comb generation process, for example helping to identify the universal combcharacteristics and their different associated physical phenomena. Moreover, models allow for the study, design and optimization of comb properties prior to the fabrication of actual devices. We consider and derive theoretical formalisms based on the Ikeda map, the modal expansion approach, and the Lugiato-Lefever equation. We further discuss the generation of frequency combs in silicon resonators featuring multiphoton absorption and free-carrier effects. Additionally, we review comb stability properties and consider the role of modulational instability as well as of parametric instabilities due to the boundary conditions of the cavity. These instability mechanisms are the basis for comprehending the process of frequency comb formation, for identifying the different dynamical regimes and the associated dependence on the comb parameters. Finally, we also discuss the phenomena of continuous wave bi- and multistability and its relation to the observation of mode-locked cavity solitons.

  11. Influence of neuromuscular noise and walking speed on fall risk and dynamic stability in a 3D dynamic walking model.

    Science.gov (United States)

    Roos, Paulien E; Dingwell, Jonathan B

    2013-06-21

    Older adults and those with increased fall risk tend to walk slower. They may do this voluntarily to reduce their fall risk. However, both slower and faster walking speeds can predict increased risk of different types of falls. The mechanisms that contribute to fall risk across speeds are not well known. Faster walking requires greater forward propulsion, generated by larger muscle forces. However, greater muscle activation induces increased signal-dependent neuromuscular noise. These speed-related increases in neuromuscular noise may contribute to the increased fall risk observed at faster walking speeds. Using a 3D dynamic walking model, we systematically varied walking speed without and with physiologically-appropriate neuromuscular noise. We quantified how actual fall risk changed with gait speed, how neuromuscular noise affected speed-related changes in fall risk, and how well orbital and local dynamic stability measures predicted changes in fall risk across speeds. When we included physiologically-appropriate noise to the 'push-off' force in our model, fall risk increased with increasing walking speed. Changes in kinematic variability, orbital, and local dynamic stability did not predict these speed-related changes in fall risk. Thus, the increased neuromuscular variability that results from increased signal-dependent noise that is necessitated by the greater muscular force requirements of faster walking may contribute to the increased fall risk observed at faster walking speeds. The lower fall risk observed at slower speeds supports experimental evidence that slowing down can be an effective strategy to reduce fall risk. This may help explain the slower walking speeds observed in older adults and others. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Blowoff dynamics of bluff body stabilized turbulent premixed flames

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhuri, Swetaprovo; Kostka, Stanislav; Renfro, Michael W.; Cetegen, Baki M. [Department of Mechanical Engineering, University of Connecticut, 191 Auditorium Road, U-3139, Storrs, CT 06269 (United States)

    2010-04-15

    This article concerns the flame dynamics of a bluff body stabilized turbulent premixed flame as it approaches lean blowoff. Time resolved chemiluminescence imaging along with simultaneous particle image velocimetry and OH planar laser-induced fluorescence were utilized in an axisymmetric bluff body stabilized, propane-air flame to determine the sequence of events leading to blowoff and provide a quantitative analysis of the experimental results. It was found that as lean blowoff is approached by reduction of equivalence ratio, flame speed decreases and the flame shape progressively changes from a conical to a columnar shape. For a stably burning conical flame away from blowoff, the flame front envelopes the shear layer vortices. Near blowoff, the columnar flame front and shear layer vortices overlap to induce high local stretch rates that exceed the extinction stretch rates instantaneously and in the mean, resulting in local flame extinction along the shear layers. Following shear layer extinction, fresh reactants can pass through the shear layers to react within the recirculation zone with all other parts of the flame extinguished. This flame kernel within the recirculation zone may survive for a few milliseconds and can reignite the shear layers such that the entire flame is reestablished for a short period. This extinction and reignition event can happen several times before final blowoff which occurs when the flame kernel fails to reignite the shear layers and ultimately leads to total flame extinguishment. (author)

  13. Accuracy Enhanced Stability and Structure Preserving Model Reduction Technique for Dynamical Systems with Second Order Structure

    DEFF Research Database (Denmark)

    Tahavori, Maryamsadat; Shaker, Hamid Reza

    A method for model reduction of dynamical systems with the second order structure is proposed in this paper. The proposed technique preserves the second order structure of the system, and also preserves the stability of the original systems. The method uses the controllability and observability...... gramians within the time interval to build the appropriate Petrov-Galerkin projection for dynamical systems within the time interval of interest. The bound on approximation error is also derived. The numerical results are compared with the counterparts from other techniques. The results confirm...

  14. Nonlinear stability of ideal fluid equilibria

    International Nuclear Information System (INIS)

    Holm, D.D.

    1988-01-01

    The Lyapunov method for establishing stability is related to well- known energy principles for nondissipative dynamical systems. A development of the Lyapunov method for Hamiltonian systems due to Arnold establishes sufficient conditions for Lyapunov stability by using the energy plus other conserved quantities, together with second variations and convexity estimates. When treating the stability of ideal fluid dynamics within the Hamiltonian framework, a useful class of these conserved quantities consists of the Casimir functionals, which Poisson-commute with all functionals of the dynamical fluid variables. Such conserved quantities, when added to the energy, help to provide convexity estimates that bound the growth of perturbations. These convexity estimates, in turn, provide norms necessary for establishing Lyapunov stability under the nonlinear evolution. In contrast, the commonly used second variation or spectral stability arguments only prove linearized stability. As ideal fluid examples, in these lectures we discuss planar barotropic compressible fluid dynamics, the three-dimensional hydrostatic Boussinesq model, and a new set of shallow water equations with nonlinear dispersion due to Basdenkov, Morosov, and Pogutse[1985]. Remarkably, all three of these samples have the same Hamiltonian structure and, thus, possess the same Casimir functionals upon which their stability analyses are based. We also treat stability of modified quasigeostrophic flow, a problem whose Hamiltonian structure and Casimirs closely resemble Arnold's original example. Finally, we discuss some aspects of conditional stability and the applicability of Arnold's development of the Lyapunov technique. 100 refs

  15. Effect of high hydrostatic pressure and high dynamic pressure on stability and rheological properties of model oil-in-water emulsions

    Science.gov (United States)

    Bigikocin, Erman; Mert, Behic; Alpas, Hami

    2011-09-01

    Both static and dynamic high pressure applications provide interesting modifications in food structures which lead to new product formulations. In this study, the effects of two different treatments, high hydrostatic pressure (HHP) and high dynamic pressure (HDP), on oil-in-water emulsions were identified and compared. Microfluidization was selected from among the HDP homogenization techniques. The performance of each process was analyzed in terms of rheological modifications and emulsion stability improvements compared with the coarse emulsions. The stability of the emulsions was determined comparatively by using an analytical photo-centrifuge device employing novel analysis technology. Whey protein isolate (WPI) in combination with a food polysaccharide (xanthan gum, guar gum or locust bean gum) were used as emulsifying and stabilizing ingredients. The effective disruption of oil droplets and the degradation of polysaccharides by the shear forces under high pressure in HDP microfluidization yielded finer emulsions with lower viscosities, leading to distinctive improvements in emulsion stability. On the other hand, improvements in stability obtained with HHP treatment were due to the thickening of the emulsions mainly induced by protein unfolding. The corresponding increases in viscosity were intensified in emulsion formulations containing higher oil content. Apart from these, HHP treatment was found to be relatively more contributive to the enhancements in viscoelastic properties.

  16. Effects of a cognitive dual task on variability and local dynamic stability in sustained repetitive arm movements using principal component analysis: a pilot study.

    Science.gov (United States)

    Longo, Alessia; Federolf, Peter; Haid, Thomas; Meulenbroek, Ruud

    2018-06-01

    In many daily jobs, repetitive arm movements are performed for extended periods of time under continuous cognitive demands. Even highly monotonous tasks exhibit an inherent motor variability and subtle fluctuations in movement stability. Variability and stability are different aspects of system dynamics, whose magnitude may be further affected by a cognitive load. Thus, the aim of the study was to explore and compare the effects of a cognitive dual task on the variability and local dynamic stability in a repetitive bimanual task. Thirteen healthy volunteers performed the repetitive motor task with and without a concurrent cognitive task of counting aloud backwards in multiples of three. Upper-body 3D kinematics were collected and postural reconfigurations-the variability related to the volunteer's postural change-were determined through a principal component analysis-based procedure. Subsequently, the most salient component was selected for the analysis of (1) cycle-to-cycle spatial and temporal variability, and (2) local dynamic stability as reflected by the largest Lyapunov exponent. Finally, end-point variability was evaluated as a control measure. The dual cognitive task proved to increase the temporal variability and reduce the local dynamic stability, marginally decrease endpoint variability, and substantially lower the incidence of postural reconfigurations. Particularly, the latter effect is considered to be relevant for the prevention of work-related musculoskeletal disorders since reduced variability in sustained repetitive tasks might increase the risk of overuse injuries.

  17. Dynamic shear stabilization of hydromagnetic instabilities in low-beta plasma column by a frequency near the ion cyclotron frequency

    International Nuclear Information System (INIS)

    Minami, Kazuo; Sato, Kazunori.

    1978-09-01

    The dynamic shear stabilization of the hydromagnetic instability in low-beta plasmas by an axial RF current whose frequency is not much smaller than the ion cyclotron frequency ωsub(ci) is analyzed in some detail. We adopt the simple model of a uniform plasma column with infinite conductivity. Attention is limited to the case of the m = 1 kink mode with long wave lengths. The Mathieu equation, in which the effect of the ion cyclotron motion is taken into account, is derived. It is shown that the dynamic shear stabilization is still effective, even if the frequency of the applied RF current is of the order of ωsub(ci), which is considerably higher than the frequencies believed to be available in the previous analyses. (author)

  18. Dynamic behavior of tripolar hip endoprostheses under physiological conditions and their effect on stability.

    Science.gov (United States)

    Fabry, Christian; Kaehler, Michael; Herrmann, Sven; Woernle, Christoph; Bader, Rainer

    2014-01-01

    Tripolar systems have been implanted to reduce the risk of recurrent dislocation. However, there is little known about the dynamic behavior of tripolar hip endoprostheses under daily life conditions and achieved joint stability. Hence, the objective of this biomechanical study was to examine the in vivo dynamics and dislocation behavior of two types of tripolar systems compared to a standard total hip replacement (THR) with the same outer head diameter. Several load cases of daily life activities were applied to an eccentric and a concentric tripolar system by an industrial robot. During testing, the motion of the intermediate component was measured using a stereo camera system. Additionally, their behavior under different dislocation scenarios was investigated in comparison to a standard THR. For the eccentric tripolar system, the intermediate component demonstrated the shifting into moderate valgus-positions, regardless of the type of movement. This implant showed the highest resisting torque against dislocation in combination with a large range of motion. In contrast, the concentric tripolar system tended to remain in varus-positions and was primarily moved after stem contact. According to the results, eccentric tripolar systems can work well under in vivo conditions and increase hip joint stability in comparison to standard THRs. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  19. Induced Unbalance as a Method for Improving the Dynamic Stability of High-Speed Turbochargers

    KAUST Repository

    Gordon Kirk, R.; Alsaeed, Ali A.

    2011-01-01

    The high-speed diesel engine turbocharger is known to have subsynchronous vibrations for a wide speed range. The bearing fluid-film instability is the main source of the vibration. The nonlinear forces inside the bearings are causing the rotor to whirl in a limit cycle. This study presents a new method for improving the dynamic stability by inducing the turbocharger rotor unbalance in order to suppress the subsynchronous vibration. The finite-element model of the turbocharger with floating-ring bearings is numerically solved for the nonlinear time-transient response. Both compressor and turbine added unbalance are induced and the dynamic stability is computed. The turbocharger model with linearized floating-ring bearings is also solved for eigenvalues to predict the modes of instability. The linear analysis demonstrates that the forward whirling mode of the floating-ring at the compressor end also becomes unstable at the higher turbocharger speeds, in addition to the unstable forward conical and cylindrical modes. The numerical predictions are also compared to the former experimental results of a similar turbocharger. The results of the study show that the subsynchronous frequency amplitude of the dominant first mode is reduced when inducing either the compressor or the turbine unbalance at a certain level. © 2011 R. Gordon Kirk and Ali A. Alsaeed.

  20. THE DETERMINATION OF A CRITICAL VALUE FOR DYNAMIC STABILITY OF SEMICONDUCTOR LASER DIODE WITH EXTERNAL OPTICAL FEEDBACK

    Directory of Open Access Journals (Sweden)

    Remzi YILDIRIM

    1998-01-01

    Full Text Available In this study, dynamic stability analysis of semiconductor laser diodes with external optical feedback has been realized. In the analysis the frequency response of the transfer function of laser diode H jw( , the transfer m function of laser diode with external optical feedback TF jw( , and optical feedback transfer function m K jw( obtained from small signal equations has been m accomplished using Nyquist stability analysis in complex domain. The effect of optical feedback on the stability of the system has been introduced and to bring the laser diode to stable condition the working critical boundary range of dampig frequency and reflection power constant (R has been determined. In the study the reflection power has been taken as ( .

  1. Tuned dynamics stabilizes an idealized regenerative axial-torsional model of rotary drilling

    Science.gov (United States)

    Gupta, Sunit K.; Wahi, Pankaj

    2018-01-01

    We present an exact stability analysis of a dynamical system idealizing rotary drilling. This system comprises lumped parameter axial-torsional modes of the drill-string coupled via the cutting forces and torques. The kinematics of cutting is modeled through a functional description of the cut surface which evolves as per a partial differential equation (PDE). Linearization of this model is straightforward as opposed to the traditional state-dependent delay (SDDE) model and both the approaches result in the same characteristic equation. A systematic study on the key system parameters influencing the stability characteristics reveals that torsional damping is very critical and stable drilling is, in general, not possible in its absence. The stable regime increases as the natural frequency of the axial mode approaches that of the torsional mode and a 1:1 internal resonance leads to a significant improvement in the system stability. Hence, from a practical point of view, a drill-string with 1:1 internal resonance is desirable to avoid vibrations during rotary drilling. For the non-resonant case, axial damping reduces the stable range of operating parameters while for the resonant case, an optimum value of axial damping (equal to the torsional damping) results in the largest stable regime. Interestingly, the resonant (tuned) system has a significant parameter regime corresponding to stable operation even in the absence of damping.

  2. Gender differences in head-neck segment dynamic stabilization during head acceleration.

    Science.gov (United States)

    Tierney, Ryan T; Sitler, Michael R; Swanik, C Buz; Swanik, Kathleen A; Higgins, Michael; Torg, Joseph

    2005-02-01

    Recent epidemiological research has revealed that gender differences exist in concussion incidence but no study has investigated why females may be at greater risk of concussion. Our purpose was to determine whether gender differences existed in head-neck segment kinematic and neuromuscular control variables responses to an external force application with and without neck muscle preactivation. Forty (20 females and 20 males) physically active volunteers participated in the study. The independent variables were gender, force application (known vs unknown), and force direction (forced flexion vs forced extension). The dependent variables were kinematic and EMG variables, head-neck segment stiffness, and head-neck segment flexor and extensor isometric strength. Statistical analyses consisted of multiple multivariate and univariate analyses of variance, follow-up univariate analyses of variance, and t-tests (P Gender differences existed in head-neck segment dynamic stabilization during head angular acceleration. Females exhibited significantly greater head-neck segment peak angular acceleration (50%) and displacement (39%) than males despite initiating muscle activity significantly earlier (SCM only) and using a greater percentage of their maximum head-neck segment muscle activity (79% peak activity and 117% muscle activity area). The head-neck segment angular acceleration differences may be because females exhibited significantly less isometric strength (49%), neck girth (30%), and head mass (43%), resulting in lower levels of head-neck segment stiffness (29%). For our subject demographic, the results revealed gender differences in head-neck segment dynamic stabilization during head acceleration in response to an external force application. Females exhibited significantly greater head-neck segment peak angular acceleration and displacement than males despite initiating muscle activity earlier (SCM only) and using a greater percentage of their maximum head-neck segment

  3. Enhanced Dynamic Voltage Stability Support by VSC-HVDC for Offshore Wind Applications using Trajectory Sensitivity Analysis

    DEFF Research Database (Denmark)

    Liu, Hongzhi; Chen, Zhe; Liu, Leo

    2013-01-01

    The integration of large-scale wind power plants changes the structure, configuration and operation of conventional power systems and brings challenges to the security and stability of power systems. Dynamic voltage stability of power systems with high wind penetration is one of the critical issues....... In this paper, VSC-HVDC transmission system is used to integrate a large-scale wind power plant into the onshore power grid. For different voltage support strategies of VSC-HVDC, a trajectory sensitivity analysisbased approach is proposed to find the minimum onshore VSC capacity with which the VSC-HVDC can...... provide enough support for the improvement of system voltage stability after a disturbance. Sensitivities of reactive power output of VSC to its capacity increase are calculated instead of the sensitivities of bus voltage magnitude towards the reactive power injection variation of VSC. Simulation results...

  4. Exponential Stabilization of Underactuated Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Pettersen, K.Y.

    1996-12-31

    Underactuated vehicles are vehicles with fewer independent control actuators than degrees of freedom to be controlled. Such vehicles may be used in inspection of sub-sea cables, inspection and maintenance of offshore oil drilling platforms, and similar. This doctoral thesis discusses feedback stabilization of underactuated vehicles. The main objective has been to further develop methods from stabilization of nonholonomic systems to arrive at methods that are applicable to underactuated vehicles. A nonlinear model including both dynamics and kinematics is used to describe the vehicles, which may be surface vessels, spacecraft or autonomous underwater vehicles (AUVs). It is shown that for a certain class of underactuated vehicles the stabilization problem is not solvable by linear control theory. A new stability result for a class of homogeneous time-varying systems is derived and shown to be an important tool for developing continuous periodic time-varying feedback laws that stabilize underactuated vehicles without involving cancellation of dynamics. For position and orientation control of a surface vessel without side thruster a new continuous periodic feedback law is proposed that does not cancel any dynamics, and that exponentially stabilizes the origin of the underactuated surface vessel. A further issue considered is the stabilization of the attitude of an AUV. Finally, the thesis discusses stabilization of both position and attitude of an underactuated AUV. 55 refs., 28 figs.

  5. Dynamic Analysis of a Pendulum Dynamic Automatic Balancer

    Directory of Open Access Journals (Sweden)

    Jin-Seung Sohn

    2007-01-01

    Full Text Available The automatic dynamic balancer is a device to reduce the vibration from unbalanced mass of rotors. Instead of considering prevailing ball automatic dynamic balancer, pendulum automatic dynamic balancer is analyzed. For the analysis of dynamic stability and behavior, the nonlinear equations of motion for a system are derived with respect to polar coordinates by the Lagrange's equations. The perturbation method is applied to investigate the dynamic behavior of the system around the equilibrium position. Based on the linearized equations, the dynamic stability of the system around the equilibrium positions is investigated by the eigenvalue analysis.

  6. Investigations of slope stability

    Energy Technology Data Exchange (ETDEWEB)

    Nonveiller, E.

    1979-01-01

    The dynamics of slope slides and parameters for calculating slope stability is discussed. Two types of slides are outlined: rotation slide and translation slide. Slide dynamics are analyzed according to A. Heim. A calculation example of a slide which occurred at Vajont, Yugoslavia is presented. Calculation results differ from those presented by Ciabatti. For investigation of slope stability the calculation methods of A.W. Bishop (1955), N. Morgenstern and M. Maksimovic are discussed. 12 references

  7. Stability and morphology of Ag nanoplatelets probed by depolarized dynamic light scattering

    Science.gov (United States)

    Zimbone, M.; Contino, A.; Maccarrone, G.; Musumeci, P.; Lo Faro, M. J.; Calcagno, L.

    2018-06-01

    The stability of silver nanoplatelet (NP) suspensions prepared with different concentrations of trisodium citrate (TSC) was studied by depolarized dynamic light scattering (DDLS) and UV–vis spectrometry. The morphology of the nanoparticles, as well as the color and stability of the sols, are tuned by the concentration of the capping agent. The nanoparticles prepared with high TSC concentration (>10‑4 M) are blue triangular NPs showing a slight truncation of the tips with aging. When low TSC concentrations are used, the color of the sols changes from blue to yellow with aging time and a strong modification of the morphology occurs: the nanoparticle shape changes from triangular to spherical. Remarkably, they show a high degree of anisotropy. The aging process was followed by the UV–vis spectra and by measuring the rotational diffusion coefficient by DDLS, providing information on the nanoparticle size and shape evolution. The high intensity of depolarized signal and the high value of rotational diffusion coefficient suggest that the aging process increases the thickness and the roughness of the nanoparticles

  8. Posterior Transpedicular Dynamic Stabilization versus Total Disc Replacement in the Treatment of Lumbar Painful Degenerative Disc Disease: A Comparison of Clinical Results

    Directory of Open Access Journals (Sweden)

    Tunc Oktenoglu

    2013-01-01

    Full Text Available Study Design. Prospective clinical study. Objective. This study compares the clinical results of anterior lumbar total disc replacement and posterior transpedicular dynamic stabilization in the treatment of degenerative disc disease. Summary and Background Data. Over the last two decades, both techniques have emerged as alternative treatment options to fusion surgery. Methods. This study was conducted between 2004 and 2010 with a total of 50 patients (25 in each group. The mean age of the patients in total disc prosthesis group was 37,32 years. The mean age of the patients in posterior dynamic transpedicular stabilization was 43,08. Clinical (VAS and Oswestry and radiological evaluations (lumbar lordosis and segmental lordosis angles of the patients were carried out prior to the operation and 3, 12, and 24 months after the operation. We compared the average duration of surgery, blood loss during the surgery and the length of hospital stay of both groups. Results. Both techniques offered significant improvements in clinical parameters. There was no significant change in radiologic evaluations after the surgery for both techniques. Conclusion. Both dynamic systems provided spine stability. However, the posterior dynamic system had a slight advantage over anterior disc prosthesis because of its convenient application and fewer possible complications.

  9. Dynamics of a stabilized motor defense conditioned reflex at different levels of motivation in irradiated rats

    Energy Technology Data Exchange (ETDEWEB)

    Shtemberg, A S

    1982-05-01

    Postradiation dynamics of strengthened motor-defense conditioned reflex in rats-males irradiated with the doses of 94.111 and 137 Gy was studied. Phase disturbances of conditioned-reflex activity increased with enhancing irradiation dose have been revealed. Rapid recovery of conditioned reflex after short primary aggravation was a characteristic peculiarity. At that, the dynamics of relation of main nervous processes in cortex was noted for significant instability increasing with radiation syndrome development. Enhancement of force of electro-defense support promoted more effective strengthening of temporary connections and conditioned high stability of trained-reflex reactions during serious functional disturbances resulted from sublethal dose irradiation.

  10. Elderly fallers enhance dynamic stability through anticipatory postural adjustments during a choice stepping reaction time

    Directory of Open Access Journals (Sweden)

    Romain Tisserand

    2016-11-01

    Full Text Available In the case of disequilibrium, the capacity to step quickly is critical to avoid falling for elderly. This capacity can be simply assessed through the choice stepping reaction time test (CSRT, where elderly fallers (F take longer to step than elderly non-fallers (NF. However, reasons why elderly F elongate their stepping time remain unclear. The purpose of this study is to assess the characteristics of anticipated postural adjustments (APA that elderly F develop in a stepping context and their consequences on the dynamic stability. 44 community-dwelling elderly subjects (20 F and 22 NF performed a CSRT where kinematics and ground reaction forces were collected. Variables were analyzed using two-way repeated measures ANOVAs. Results for F compared to NF showed that stepping time is elongated, due to a longer APA phase. During APA, they seem to use two distinct balance strategies, depending on the axis: in the anteroposterior direction, we measured a smaller backward movement and slower peak velocity of the center of pressure (CoP; in the mediolateral direction, the CoP movement was similar in amplitude and peak velocity between groups but lasted longer. The biomechanical consequence of both strategies was an increased margin of stability (MoS at foot-off, in the respective direction. By elongating their APA, elderly F use a safer balance strategy that prioritizes dynamic stability conditions instead of the objective of the task. Such a choice in balance strategy probably comes from muscular limitations and/or a higher fear of falling and paradoxically indicates an increased risk of fall.

  11. Long-time stability effects of quadrature and artificial viscosity on nodal discontinuous Galerkin methods for gas dynamics

    Science.gov (United States)

    Durant, Bradford; Hackl, Jason; Balachandar, Sivaramakrishnan

    2017-11-01

    Nodal discontinuous Galerkin schemes present an attractive approach to robust high-order solution of the equations of fluid mechanics, but remain accompanied by subtle challenges in their consistent stabilization. The effect of quadrature choices (full mass matrix vs spectral elements), over-integration to manage aliasing errors, and explicit artificial viscosity on the numerical solution of a steady homentropic vortex are assessed over a wide range of resolutions and polynomial orders using quadrilateral elements. In both stagnant and advected vortices in periodic and non-periodic domains the need arises for explicit stabilization beyond the numerical surface fluxes of discontinuous Galerkin spectral elements. Artificial viscosity via the entropy viscosity method is assessed as a stabilizing mechanism. It is shown that the regularity of the artificial viscosity field is essential to its use for long-time stabilization of small-scale features in nodal discontinuous Galerkin solutions of the Euler equations of gas dynamics. Supported by the Department of Energy Predictive Science Academic Alliance Program Contract DE-NA0002378.

  12. Digestive stability of xanthophylls exceeds that of carotenes as studied in a dynamic in vitro gastrointestinal system.

    Science.gov (United States)

    Blanquet-Diot, Stéphanie; Soufi, Maha; Rambeau, Mathieu; Rock, Edmond; Alric, Monique

    2009-05-01

    Epidemiological studies have suggested that high consumption of tomato products is associated with a lower risk for chronic diseases. To exert their health effect, the phytochemicals of tomatoes have to be bioavailable and therefore it implies their stability through the digestion process. Here, we assessed the digestive stability of the red-pigmented lycopene and other carotenoids brought in nutritional quantity within different food matrixes, using the TNO gastrointestinal tract model (TIM). This multicompartmental dynamic system accurately reproduces the main parameters of gastric and small intestinal digestion in human. In vitro digestions of a standard meal containing red tomato (RT), yellow tomato (devoid of lycopene), or lycopene beadlets were performed. Zeaxanthin and lutein were stable throughout artificial digestions, whereas beta-carotene and all-trans lycopene were degraded (approximately 30 and 20% loss at the end of digestion, respectively) in the jejunal and ileal compartments. The recovery of beta-carotene in the digesta of the RT meal was significantly lower than that in the yellow one, showing a food matrix effect. In the same way, until 180 min of digestion, the recovery percentages of all-trans lycopene from RT were significantly lower than those issued from the supplement. Isomeric conformation also influenced the stability of carotenoids, 5-cis lycopene being the most stable isomer followed by all-trans and 9-cis. No trans-cis isomerization of lycopene occurred in the TIM. By using a relevant dynamic in vitro system, this study allowed us to gain further insight into the parameters influencing the digestive stability of carotenoids, and therefore their bioavailability, in humans.

  13. Stability of nanocrystalline Ni-based alloys: coupling Monte Carlo and molecular dynamics simulations

    Science.gov (United States)

    Waseda, O.; Goldenstein, H.; Silva, G. F. B. Lenz e.; Neiva, A.; Chantrenne, P.; Morthomas, J.; Perez, M.; Becquart, C. S.; Veiga, R. G. A.

    2017-10-01

    The thermal stability of nanocrystalline Ni due to small additions of Mo or W (up to 1 at%) was investigated in computer simulations by means of a combined Monte Carlo (MC)/molecular dynamics (MD) two-steps approach. In the first step, energy-biased on-lattice MC revealed segregation of the alloying elements to grain boundaries. However, the condition for the thermodynamic stability of these nanocrystalline Ni alloys (zero grain boundary energy) was not fulfilled. Subsequently, MD simulations were carried out for up to 0.5 μs at 1000 K. At this temperature, grain growth was hindered for minimum global concentrations of 0.5 at% W and 0.7 at% Mo, thus preserving most of the nanocrystalline structure. This is in clear contrast to a pure Ni model system, for which the transformation into a monocrystal was observed in MD simulations within 0.2 μs at the same temperature. These results suggest that grain boundary segregation of low-soluble alloying elements in low-alloyed systems can produce high-temperature metastable nanocrystalline materials. MD simulations carried out at 1200 K for 1 at% Mo/W showed significant grain boundary migration accompanied by some degree of solute diffusion, thus providing additional evidence that solute drag mostly contributed to the nanostructure stability observed at lower temperature.

  14. Molecular dynamics study of the RNA ring nanostructure: a phenomenon of self-stabilization

    International Nuclear Information System (INIS)

    Paliy, Maxim; Melnik, Roderick; Shapiro, Bruce A

    2009-01-01

    We study mechanical and thermodynamic properties of RNA nanostructures focusing on a hexagonal nanoring discussed in Yingling and Shapiro (2007 Nano Lett. 7 2328). We are concerned with the following main issues: (i) the stability of the nanoring versus temperature; (ii) the effect of the environment (solvent, counterions) on its stability; (iii) conformations and dynamics under external force. The process of evaporation of the ions from the ring upon temperature drop has been found, demonstrating a surprising feature—the uptake of ions by the nanoring increases with the temperature. The connection of this behavior to the dielectric constant of water, hydration and structural changes in the nanoring is discussed. Several properties of the nanoring, such as elastic and transport coefficients, have been determined. A measure of the tensile elasticity of the ring against its uniform 2D in-plane compression has been given, as K eff ≤ 0.01 GPa, which is a much lower value compared to typical values found for soft matter other than RNA

  15. Voltage regulator for on-board CMS ECAL powering : dynamic stability of the feedback loop

    CERN Document Server

    Wertelaers, P

    2010-01-01

    Traditionally, a capacitor is parallelled to the load of the regulator. Its main function is to steer (limit) the loop bandwidth. An ideal capacitor would provoke near-to-no dynamic stability. A typical remedy, not always elegant, is to select a device with appreciable parasitic series resistance. In this Note, and alternative method is proposed. The CMS ECAL regulator is of adjustable type, and adding a small capacitor at the divider there, brings about a "lead" type control action.

  16. Investigation of elastic stability of the lower part of drill pipe string (dynamic problems)

    Energy Technology Data Exchange (ETDEWEB)

    Griguletskii, V.G.

    1981-12-01

    Based on V.V. Bolotin's results, the problem of dynamic stability of the lower part of a string of drill pipes in a vertical well is formulated (and solved in the first approximation). An investigation of the phenomena during the interaction between lengthwise and transverse oscillations of the bottom part of the drill pipe string is carried out. Excitation conditions are determined and the mechanism of the onset of parametric oscillations is explained. 20 refs.

  17. Local dynamic stability during treadmill walking can detect children with developmental coordination disorder

    DEFF Research Database (Denmark)

    Speedtsberg, Merete Brink; Christensen, Sofie Bouschinger; Stenum, Jan

    2018-01-01

    -posterior directions were recorded with a sternum mounted accelerometer at 256Hz. Short term local dynamic stability (λs), root mean square (RMS) and relative root mean square (RMSR) were calculated from measures of orthogonal trunk accelerations. Receiver operating characteristic curve (ROC) analysis was performed...... between children with DCD and TD children in any direction. The ROC analysis of λs in separate directions and in two dimensions showed an excellent accuracy of discriminating between children with DCD and TD children. Anterior-posterior direction in combination with medio-lateral or vertical showed best...

  18. Thermodynamical stability of the Bardeen black hole

    Energy Technology Data Exchange (ETDEWEB)

    Bretón, Nora [Dpto. de Física, Centro de Investigación y de Estudios Avanzados del I. P. N., Apdo. 14-740, D.F. (Mexico); Perez Bergliaffa, Santiago E. [Dpto. de Física, U. Estado do Rio de Janeiro (Brazil)

    2014-01-14

    We analyze the stability of the regular magnetic Bardeen black hole both thermodynamically and dynamically. For the thermodynamical analysis we consider a microcanonical ensemble and apply the turning point method. This method allows to decide a change in stability (or instability) of a system, requiring only the assumption of smoothness of the area functional. The dynamical stability is asserted using criteria based on the signs of the Lagrangian and its derivatives. It turns out from our analysis that the Bardeen black hole is both thermodynamically and dynamically stable.

  19. Modeling and simulation of combustion dynamics in lean-premixed swirl-stabilized gas-turbine engines

    Science.gov (United States)

    Huang, Ying

    This research focuses on the modeling and simulation of combustion dynamics in lean-premixed gas-turbines engines. The primary objectives are: (1) to establish an efficient and accurate numerical framework for the treatment of unsteady flame dynamics; and (2) to investigate the parameters and mechanisms responsible for driving flow oscillations in a lean-premixed gas-turbine combustor. The energy transfer mechanisms among mean flow motions, periodic motions and background turbulent motions in turbulent reacting flow are first explored using a triple decomposition technique. Then a comprehensive numerical study of the combustion dynamics in a lean-premixed swirl-stabilized combustor is performed. The analysis treats the conservation equations in three dimensions and takes into account finite-rate chemical reactions and variable thermophysical properties. Turbulence closure is achieved using a large-eddy-simulation (LES) technique. The compressible-flow version of the Smagorinsky model is employed to describe subgrid-scale turbulent motions and their effect on large-scale structures. A level-set flamelet library approach is used to simulate premixed turbulent combustion. In this approach, the mean flame location is modeled using a level-set G-equation, where G is defined as a distance function. Thermophysical properties are obtained using a presumed probability density function (PDF) along with a laminar flamelet library. The governing equations and the associated boundary conditions are solved by means of a four-step Runge-Kutta scheme along with the implementation of the message passing interface (MPI) parallel computing architecture. The analysis allows for a detailed investigation into the interaction between turbulent flow motions and oscillatory combustion of a swirl-stabilized injector. Results show good agreement with an analytical solution and experimental data in terms of acoustic properties and flame evolution. A study of flame bifurcation from a stable

  20. Modified TOV in gravity’s rainbow: properties of neutron stars and dynamical stability conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hendi, S.H. [Physics Department and Biruni Observatory, College of Sciences, Shiraz University,Shiraz 71454 (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM),P.O. Box 55134-441, Maragha (Iran, Islamic Republic of); Bordbar, G.H. [Physics Department and Biruni Observatory, College of Sciences, Shiraz University,Shiraz 71454 (Iran, Islamic Republic of); Center for Excellence in Astronomy and Astrophysics (CEAA-RIAAM)-Maragha,P.O. Box 55134-441, Maragha 55177-36698 (Iran, Islamic Republic of); Panah, B. Eslam [Physics Department and Biruni Observatory, College of Sciences, Shiraz University,Shiraz 71454 (Iran, Islamic Republic of); Panahiyan, S. [Physics Department and Biruni Observatory, College of Sciences, Shiraz University,Shiraz 71454 (Iran, Islamic Republic of); Physics Department, Shahid Beheshti University,Tehran 19839 (Iran, Islamic Republic of)

    2016-09-09

    In this paper, we consider a spherical symmetric metric to extract the hydrostatic equilibrium equation of stars in (3+1)-dimensional gravity’s rainbow in the presence of cosmological constant. Then, we generalize the hydrostatic equilibrium equation to d-dimensions and obtain the hydrostatic equilibrium equation for this gravity. Also, we obtain the maximum mass of neutron star using the modern equations of state of neutron star matter derived from the microscopic calculations. It is notable that, in this paper, we consider the effects of rainbow functions on the diagrams related to the mass-central mass density (M-ρ{sub c}) relation and also the mass-radius (M-R) relation of neutron star. We also study the effects of rainbow functions on the other properties of neutron star such as the Schwarzschild radius, average density, strength of gravity and gravitational redshift. Then, we apply the cosmological constant to this theory to obtain the diagrams of M-ρ{sub c} (or M-R) and other properties of these stars. Next, we investigate the dynamical stability condition for these stars in gravity’s rainbow and show that these stars have dynamical stability. We also obtain a relation between mass of neutron stars and Planck mass. In addition, we compare obtained results of this theory with the observational data.

  1. The impact of dynamic topography change on Antarctic Ice Sheet stability during the Mid-Pliocene Warm Period

    Science.gov (United States)

    Austermann, J.; Pollard, D.; Mitrovica, J. X.; Moucha, R.; Forte, A. M.; Deconto, R. M.; Rowley, D. B.; Raymo, M. E.

    2015-12-01

    The mid-Pliocene warm period (MPWP; ~ 3Ma), characterized by globally elevated temperatures (2-3º C) and carbon dioxide levels of ~400ppm, is commonly used as a testing ground for investigating ice sheet stability in a slightly warmer world. The central, unanswered question in this regard is the extent of East Antarctic melting during the MPWP. Here we assess the potential role of dynamic topography on this issue. Model reconstructions of the evolution of the Antarctic ice sheet during the ice age require an estimate of bedrock elevation through time. Ice sheet models account for changes in bedrock elevation due to glacial isostatic adjustment (GIA), often using simplified models of the GIA process, but they generally do not consider other processes that may perturb subglacial topography. One such notable process is dynamic topography, i.e. the deflection of the solid surface of the Earth due to convective flow and buoyancy variations within the mantle and lithosphere. Paleo-shorelines of Pliocene age reflect the influence of dynamic topography, but the impact of these bedrock elevation changes on ice sheet stability in the Antarctic region is unknown. In this study we use viscous flow simulations of mantle dynamics to predict changes in dynamic topography and reconstruct bedrock elevations below the Antarctic Ice Sheet since the MPWP. We furthermore couple this reconstruction to a three-dimensional ice sheet model in order to explore the impact of dynamic topography on the extent of the Antarctic Ice Sheet during the Pliocene. Our modeling indicates that uplift occurred in the area of the Transantarctic Mountains and the adjacent Wilkes Basin. This predicted uplift, which is consistent with geological inferences of uplift in the Transantarctic Mountains, implies a significantly (~100-200 m) lower elevation of the Wilkes Basin in the Pliocene. This lower elevation leads to ~400 km of additional retreat of the grounding line in this region relative to simulations

  2. Binding stability of peptides on major histocompatibility complex class I proteins: role of entropy and dynamics

    Science.gov (United States)

    Gul, Ahmet; Erman, Burak

    2018-03-01

    Prediction of peptide binding on specific human leukocyte antigens (HLA) has long been studied with successful results. We herein describe the effects of entropy and dynamics by investigating the binding stabilities of 10 nanopeptides on various HLA Class I alleles using a theoretical model based on molecular dynamics simulations. The fluctuational entropies of the peptides are estimated over a temperature range of 310-460 K. The estimated entropies correlate well with experimental binding affinities of the peptides: peptides that have higher binding affinities have lower entropies compared to non-binders, which have significantly larger entropies. The computation of the entropies is based on a simple model that requires short molecular dynamics trajectories and allows for approximate but rapid determination. The paper draws attention to the long neglected dynamic aspects of peptide binding, and provides a fast computation scheme that allows for rapid scanning of large numbers of peptides on selected HLA antigens, which may be useful in defining the right peptides for personal immunotherapy.

  3. Polymer confined in membrane phases: influences on stability, structure and dynamics

    International Nuclear Information System (INIS)

    Javierre, Isabelle

    1999-01-01

    The addition of a hydrosoluble polymer to the different structures obtained with mixtures of water/surfactant/alcohol/oil alters the thermodynamic stability of microemulsion and lamellar phases. The reverse sponge phase disappears while one can observe the occurrence of a new phase, labelled L5, at intermediate polymer concentration. In polymer-'doped' solvent lamellar phase, the polymer induces an attractive contribution to the interaction between bilayers while in polymer-'doped' bilayers lamellar phase, the polymer increases the flexibility. The L5 phase exhibits symmetric sponge properties and furthermore presents very strong symmetry fluctuations. The relaxation of these fluctuations were experimentally evidenced for the first time. This unusual dynamic behaviour was confronted to the one of other sponge phases, in a large range of concentrations. (author) [fr

  4. Learning probabilistic models of hydrogen bond stability from molecular dynamics simulation trajectories

    KAUST Repository

    Chikalov, Igor

    2011-02-15

    Background: Hydrogen bonds (H-bonds) play a key role in both the formation and stabilization of protein structures. They form and break while a protein deforms, for instance during the transition from a non-functional to a functional state. The intrinsic strength of an individual H-bond has been studied from an energetic viewpoint, but energy alone may not be a very good predictor.Methods: This paper describes inductive learning methods to train protein-independent probabilistic models of H-bond stability from molecular dynamics (MD) simulation trajectories of various proteins. The training data contains 32 input attributes (predictors) that describe an H-bond and its local environment in a conformation c and the output attribute is the probability that the H-bond will be present in an arbitrary conformation of this protein achievable from c within a time duration ?. We model dependence of the output variable on the predictors by a regression tree.Results: Several models are built using 6 MD simulation trajectories containing over 4000 distinct H-bonds (millions of occurrences). Experimental results demonstrate that such models can predict H-bond stability quite well. They perform roughly 20% better than models based on H-bond energy alone. In addition, they can accurately identify a large fraction of the least stable H-bonds in a conformation. In most tests, about 80% of the 10% H-bonds predicted as the least stable are actually among the 10% truly least stable. The important attributes identified during the tree construction are consistent with previous findings.Conclusions: We use inductive learning methods to build protein-independent probabilistic models to study H-bond stability, and demonstrate that the models perform better than H-bond energy alone. 2011 Chikalov et al; licensee BioMed Central Ltd.

  5. Dynamic ankle stability and ankle sprain occurrence in elite ball team athletes : a one season prospective study

    NARCIS (Netherlands)

    Chris Visscher; Anne Benjaminse; Koen A.P.M. Lemmink; Msc Henrike van der Does; Michel Brink; Joan Dallinga

    2013-01-01

    To compare the dynamic stability index (DSI) measured at baseline between elite ball team athletes with and without an ankle sprain during the season. Methods Forty-four elite male (age:22.5±3.6yr,height:193.7±8.0cm,mass:87.1±10.9kg) and eighteen female

  6. Dynamic stability analysis of microgrid by integrating transfer function of DERs

    Energy Technology Data Exchange (ETDEWEB)

    Basak, Prasenjit [Calcutta Institute of Engineering & Management, Electrical Engineering Department, Kolkata (India); Chowdhury, S.; Chowdhury, S.P. [University of Cape Town, Electrical Engineering Department, Cape Town (South Africa)

    2010-07-01

    A microgrid is an integrated form of distributed energy resources (DERs) which are connected together to serve electrical power to the selected consumers or can exchange power with the existing utility grid suitably under standalone or grid connected mode. The microgrid can be cited as a physical system which is a combination of DERs such as, Photovoltaic Generator, Wind turbine, Fuel Cell, Microturbine etc. and can be modelled with suitable assumptions depending upon specific operational condition to be studied. Interconnection of several kinds of power sources would impact the quality of power within the microgrid. Since voltage and frequency are not the only factors for a system delivering good quality power, the capacity of the same to withstand instability due to transient condition is one of the prime factors to be considered to accept a system as a stable system. Before practical integration of distributed energy resources, it would be essential to check the stability of the system at the design stage. In this paper, the authors have presented the microgrid based on control system engineering. To represent the individual components of microgrid, the DERs (Distributed Energy Resources) have been represented with their transfer functions and they have been simulated using Simulink-Matlab. To observe the response of the DERs, the frequency fluctuation due to step and random change in output power/load are considered as the main factors for stability analysis. All the DERs are integrated forming the microgrid which is represented with an equivalent transfer function based model. The models are studied and results are discussed with the waveforms. This paper shows one feasible method to check the dynamic stability of a proposed microgrid.

  7. STUDY OF STATIC AND DYNAMIC STABILITY OF THIN-WALLED BARS EXCITED BY PERIODICAL AXIAL EXTERNAL FORCES.

    Directory of Open Access Journals (Sweden)

    Minodora Maria PASĂRE

    2010-10-01

    Full Text Available In these paper, starting from the relations for the displacements and spinning the transversal section of a bar with thin walls of sections opened expressed by the corresponding influence functions and introducing the components of the exterior forces distributed and the moments of the exterior forces distributed due to the inertia forces, the exciting axial forces together with the following effect of these and of the reaction forces of the elastic environment for leaning it may reach to the system of the equations of parametric vibrations under the form of three integral equation These equations may serve for the study of vibrations of the bars, to study the static stability and to study the dynamic stability

  8. NEAR-BLOWOFF DYNAMICS OF BLUFF-BODY-STABILIZED PREMIXED HYDROGEN/AIR FLAMES IN A NARROW CHANNEL

    KAUST Repository

    Lee, Bok Jik

    2015-06-07

    The flame stability is known to be significantly enhanced when the flame is attached to a bluff-body. The main interest of this study is on the stability of the flame in a meso-scale channel, considering applications such as combustion-based micro power generators. We investigate the dynamics of lean premixed hydrogen/air flames stabilized behind a square box in a two-dimensional meso-scale channel with high-fidelity numerical simulations. Characteristics of both non-reacting flows and reacting flows over the bluff-body are studied for a range of the mean inflow velocity. The flame stability in reacting flows is investigated by ramping up the mean inflow velocity step by step. As the inlet velocity is increased, the initially stable steady flames undergo a transition to an unsteady mode of regular asymmetric fluctuation. When the inlet velocity is further increased, the flame is eventually blown off. Between the regular fluctuation mode and blowoff limit, there exists a narrow range of the inlet velocity where the flames exhibit periodic local extinction and recovery. Approaching further to blowoff limit, the local extinction and recovery becomes highly transient and a failure of recovery leads blowoff and extinction of the flame kernel.

  9. A dynamical stabilizer in the climate system: a mechanism suggested by a simple model

    Science.gov (United States)

    Bates, J. R.

    1999-05-01

    A simple zonally averaged hemispheric model of the climate system is constructed, based on energy equations for two ocean basins separated at 30° latitude with the surface fluxes calculated explicitly. A combination of empirical input and theoretical calculation is used to determine an annual mean equilibrium climate for the model and to study its stability with respect to small perturbations. The insolation, the mean albedos and the equilibrium temperatures for the two model zones are prescribed from observation. The principal agent of interaction between the zones is the vertically integrated poleward transport of atmospheric angular momentum across their common boundary. This is parameterized using an empirical formula derived from a multiyear atmospheric data set. The surface winds are derived from the angular momentum transport assuming the atmosphere to be in a state of dynamic balance on the climatic timescales of interest. A further assumption that the air sea temperature difference and low level relative humidity remain fixed at their mean observed values then allows the surface fluxes of latent and sensible heat to be calculated. Results from a radiative model, which show a positive lower tropospheric water vapour/infrared radiative feedback on SST perturbations in both zones, are used to calculate the net upward infrared radiative fluxes at the surface. In the model's equilibrium climate, the principal processes balancing the solar radiation absorbed at the surface are evaporation in the tropical zone and net infrared radiation in the extratropical zone. The stability of small perturbations about the equilibrium is studied using a linearized form of the ocean energy equations. Ice-albedo and cloud feedbacks are omitted and attention is focussed on the competing effects of the water vapour/infrared radiative feedback and the turbulent surface flux and oceanic heat transport feedbacks associated with the angular momentum cycle. The perturbation equations

  10. Dynamic stability of nano-fibers self-assembled from short amphiphilic A6D peptides.

    Science.gov (United States)

    Nikoofard, Narges; Maghsoodi, Fahimeh

    2018-04-07

    Self-assembly of A 6 D amphiphilic peptides in explicit water is studied by using coarse-grained molecular dynamics simulations. It is observed that the self-assembly of randomly distributed A 6 D peptides leads to the formation of a network of nano-fibers. Two other simulations with cylindrical nano-fibers as the initial configuration show the dynamic stability of the self-assembled nano-fibers. As a striking feature, notable fluctuations occur along the axes of the nano-fibers. Depending on the number of peptides per unit length of the nano-fiber, flat-shaped bulges or spiral shapes along the nano-fiber axis are observed at the fluctuations. Analysis of the particle distribution around the nano-fiber indicates that the hydrophobic core and the hydrophilic shell of the nano-structure are preserved in both simulations. The size of the deformations and their correlation times are different in the two simulations. This study gives new insights into the dynamics of the self-assembled nano-structures of short amphiphilic peptides.

  11. Dynamic stability of nano-fibers self-assembled from short amphiphilic A6D peptides

    Science.gov (United States)

    Nikoofard, Narges; Maghsoodi, Fahimeh

    2018-04-01

    Self-assembly of A6D amphiphilic peptides in explicit water is studied by using coarse-grained molecular dynamics simulations. It is observed that the self-assembly of randomly distributed A6D peptides leads to the formation of a network of nano-fibers. Two other simulations with cylindrical nano-fibers as the initial configuration show the dynamic stability of the self-assembled nano-fibers. As a striking feature, notable fluctuations occur along the axes of the nano-fibers. Depending on the number of peptides per unit length of the nano-fiber, flat-shaped bulges or spiral shapes along the nano-fiber axis are observed at the fluctuations. Analysis of the particle distribution around the nano-fiber indicates that the hydrophobic core and the hydrophilic shell of the nano-structure are preserved in both simulations. The size of the deformations and their correlation times are different in the two simulations. This study gives new insights into the dynamics of the self-assembled nano-structures of short amphiphilic peptides.

  12. A Dynamic Combinatorial Approach for Identifying Side Groups that Stabilize DNA-Templated Supramolecular Self-Assemblies

    Directory of Open Access Journals (Sweden)

    Delphine Paolantoni

    2015-02-01

    Full Text Available DNA-templated self-assembly is an emerging strategy for generating functional supramolecular systems, which requires the identification of potent multi-point binding ligands. In this line, we recently showed that bis-functionalized guanidinium compounds can interact with ssDNA and generate a supramolecular complex through the recognition of the phosphodiester backbone of DNA. In order to probe the importance of secondary interactions and to identify side groups that stabilize these DNA-templated self-assemblies, we report herein the implementation of a dynamic combinatorial approach. We used an in situ fragment assembly process based on reductive amination and tested various side groups, including amino acids. The results reveal that aromatic and cationic side groups participate in secondary supramolecular interactions that stabilize the complexes formed with ssDNA.

  13. Unsteady Vibration Aerodynamic Modeling and Evaluation of Dynamic Derivatives Using Computational Fluid Dynamics

    Directory of Open Access Journals (Sweden)

    Xu Liu

    2015-01-01

    Full Text Available Unsteady aerodynamic system modeling is widely used to solve the dynamic stability problems encountering aircraft design. In this paper, single degree-of-freedom (SDF vibration model and forced simple harmonic motion (SHM model for dynamic derivative prediction are developed on the basis of modified Etkin model. In the light of the characteristics of SDF time domain solution, the free vibration identification methods for dynamic stability parameters are extended and applied to the time domain numerical simulation of blunted cone calibration model examples. The dynamic stability parameters by numerical identification are no more than 0.15% deviated from those by experimental simulation, confirming the correctness of SDF vibration model. The acceleration derivatives, rotary derivatives, and combination derivatives of Army-Navy Spinner Rocket are numerically identified by using unsteady N-S equation and solving different SHV patterns. Comparison with the experimental result of Army Ballistic Research Laboratories confirmed the correctness of the SHV model and dynamic derivative identification. The calculation result of forced SHM is better than that by the slender body theory of engineering approximation. SDF vibration model and SHM model for dynamic stability parameters provide a solution to the dynamic stability problem encountering aircraft design.

  14. Mini-trampoline exercise related to mechanisms of dynamic stability improves the ability to regain balance in elderly.

    Science.gov (United States)

    Aragão, Fernando Amâncio; Karamanidis, Kiros; Vaz, Marco Aurélio; Arampatzis, Adamantios

    2011-06-01

    Falls have been described by several studies as the major cause of hip and femur fractures among the elderly. Therefore, interventions to reduce fall risks, improve dynamic stability and the falling recovery strategies in the elderly population are highly relevant. This study aimed at investigating the effects of a 14-week mini-trampoline exercise intervention regarding the mechanisms of dynamic stability on elderly balance ability during sudden forward falls. Twenty-two elderly subjects participated on mini-trampoline training and 12 subjects were taken as controls. The subjects of the experimental group were evaluated before and after the 14-week trampoline training (exercised group), whereas control subjects were evaluated twice in the forward fall task with a three-month interval. The applied exercise intervention increased the plantarflexors muscle strength (∼10%) as well as the ability to regain balance during the forward falls (∼35%). The 14-week mini-trampoline training intervention increased elderly abilities to recover balance during forward falls; the improvement was attributed to the higher rate of hip moment generation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Global Stability of Polytopic Linear Time-Varying Dynamic Systems under Time-Varying Point Delays and Impulsive Controls

    Directory of Open Access Journals (Sweden)

    M. de la Sen

    2010-01-01

    Full Text Available This paper investigates the stability properties of a class of dynamic linear systems possessing several linear time-invariant parameterizations (or configurations which conform a linear time-varying polytopic dynamic system with a finite number of time-varying time-differentiable point delays. The parameterizations may be timevarying and with bounded discontinuities and they can be subject to mixed regular plus impulsive controls within a sequence of time instants of zero measure. The polytopic parameterization for the dynamics associated with each delay is specific, so that (q+1 polytopic parameterizations are considered for a system with q delays being also subject to delay-free dynamics. The considered general dynamic system includes, as particular cases, a wide class of switched linear systems whose individual parameterizations are timeinvariant which are governed by a switching rule. However, the dynamic system under consideration is viewed as much more general since it is time-varying with timevarying delays and the bounded discontinuous changes of active parameterizations are generated by impulsive controls in the dynamics and, at the same time, there is not a prescribed set of candidate potential parameterizations.

  16. Very high repetition-rate electro-optical cavity-dumped Nd: YVO4 laser with optics and dynamics stabilities

    Science.gov (United States)

    Liu, Xuesong; Shi, Zhaohui; Huang, Yutao; Fan, Zhongwei; Yu, Jin; Zhang, Jing; Hou, Liqun

    2015-02-01

    In this paper, a very high repetition-rate, short-pulse, electro-optical cavity-dumped Nd: YVO4 laser is experimentally and theoretically investigated. The laser performance is optimized from two aspects. Firstly, the laser resonator is designed for a good thermal stability under large pump power fluctuation through optics methods. Secondly, dynamics simulation as well as experiments verifies that cavity dumping at very high repetition rate has better stability than medium/high repetition rate. At 30 W, 880 nm pump power, up to 500 kHz, constant 5 ns, stable 1064 nm fundamental-mode laser pulses can be obtained with 10 W average output power.

  17. Is it possible to preserve lumbar lordosis after hybrid stabilization? Preliminary results of a novel rigid-dynamic stabilization system in degenerative lumbar pathologies.

    Science.gov (United States)

    Formica, Matteo; Cavagnaro, Luca; Basso, Marco; Zanirato, Andrea; Felli, Lamberto; Formica, Carlo

    2015-11-01

    To evaluate the results of a novel rigid-dynamic stabilization technique in lumbar degenerative segment diseases (DSD), expressly pointing out the preservation of postoperative lumbar lordosis (LL). Forty-one patients with one level lumbar DSD and initial disc degeneration at the adjacent level were treated. Circumferential lumbar arthrodesis and posterior hybrid instrumentation were performed to preserve an initial disc degeneration above the segment that has to be fused. Clinical and spino-pelvic parameters were evaluated pre- and postoperatively. At 2-year follow-up, a significant improvement of clinical outcomes was reported. No statistically significant difference was noted between postoperative and 2-year follow-up in LL and in disc/vertebral body height ratio at the upper adjacent fusion level. When properly selected, this technique leads to good results. A proper LL should be achieved after any hybrid stabilization to preserve the segment above the fusion.

  18. Existence and global exponential stability of periodic solutions for n-dimensional neutral dynamic equations on time scales.

    Science.gov (United States)

    Li, Bing; Li, Yongkun; Zhang, Xuemei

    2016-01-01

    In this paper, by using the existence of the exponential dichotomy of linear dynamic equations on time scales and the theory of calculus on time scales, we study the existence and global exponential stability of periodic solutions for a class of n-dimensional neutral dynamic equations on time scales. We also present an example to illustrate the feasibility of our results. The results of this paper are completely new and complementary to the previously known results even in both the case of differential equations (time scale [Formula: see text]) and the case of difference equations (time scale [Formula: see text]).

  19. Evaluation of aggregate stability of Haplic Stagnosols using dynamic light scattering, phase analysis light scattering and color coordinates

    Czech Academy of Sciences Publication Activity Database

    Artemyeva, Z.; Žigová, Anna; Kirillova, N.; Šťastný, Martin; Holubík, O.; Podrázský, V.

    2017-01-01

    Roč. 63, č. 13 (2017), s. 1838-1851 ISSN 0365-0340 Institutional support: RVO:67985831 Keywords : land use * aggregate stability * organo-clay complexes * dynamic light scattering * phase analysis light scattering * color coordinates Subject RIV: DF - Soil Science OBOR OECD: Soil science Impact factor: 2.137, year: 2016

  20. To what extent does not wearing shoes affect the local dynamic stability of walking?: effect size and intrasession repeatability.

    Science.gov (United States)

    Terrier, Philippe; Reynard, Fabienne

    2014-04-01

    Local dynamic stability (stability) quantifies how a system responds to small perturbations. Several experimental and clinical findings have highlighted the association between gait stability and fall risk. Walking without shoes is known to slightly modify gait parameters. Barefoot walking may cause unusual sensory feedback to individuals accustomed to shod walking, and this may affect stability. The objective was therefore to compare the stability of shod and barefoot walking in healthy individuals and to analyze the intrasession repeatability. Forty participants traversed a 70 m indoor corridor wearing normal shoes in one trial and walking barefoot in a second trial. Trunk accelerations were recorded with a 3D-accelerometer attached to the lower back. The stability was computed using the finite-time maximal Lyapunov exponent method. Absolute agreement between the forward and backward paths was estimated with the intraclass correlation coefficient (ICC). Barefoot walking did not significantly modify the stability as compared with shod walking (average standardized effect size: +0.11). The intrasession repeatability was high (ICC: 0.73-0.81) and slightly higher in barefoot walking condition (ICC: 0.81-0.87). Therefore, it seems that barefoot walking can be used to evaluate stability without introducing a bias as compared with shod walking, and with a sufficient reliability.

  1. Probing the 3-D Structure, Dynamics, and Stability of Bacterial Collagenase Collagen Binding Domain (apo- versus holo-) by Limited Proteolysis MALDI-TOF MS

    Science.gov (United States)

    Sides, Cynthia R.; Liyanage, Rohana; Lay, Jackson O.; Philominathan, Sagaya Theresa Leena; Matsushita, Osamu; Sakon, Joshua

    2012-03-01

    Pairing limited proteolysis and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) to probe clostridial collagenase collagen binding domain (CBD) reveals the solution dynamics and stability of the protein, as these factors are crucial to CBD effectiveness as a drug-delivery vehicle. MS analysis of proteolytic digests indicates initial cleavage sites, thereby specifying the less stable and highly accessible regions of CBD. Modulation of protein structure and stability upon metal binding is shown through MS analysis of calcium-bound and cobalt-bound CBD proteolytic digests. Previously determined X-ray crystal structures illustrate that calcium binding induces secondary structure transformation in the highly mobile N-terminal arm and increases protein stability. MS-based detection of exposed residues confirms protein flexibility, accentuates N-terminal dynamics, and demonstrates increased global protein stability exported by calcium binding. Additionally, apo- and calcium-bound CBD proteolysis sites correlate well with crystallographic B-factors, accessibility, and enzyme specificity. MS-observed cleavage sites with no clear correlations are explained either by crystal contacts of the X-ray crystal structures or by observed differences between Molecules A and B in the X-ray crystal structures. The study newly reveals the absence of the βA strand and thus the very dynamic N-terminal linker, as corroborated by the solution X-ray scattering results. Cobalt binding has a regional effect on the solution phase stability of CBD, as limited proteolysis data implies the capture of an intermediate-CBD solution structure when cobalt is bound.

  2. Dynamics of bluff-body-stabilized lean premixed syngas flames in a meso-scale channel

    KAUST Repository

    Lee, Bok Jik

    2016-07-15

    Direct numerical simulations are conducted to investigate the dynamics of lean premixed syngas flames stabilized by a bluff-body in a meso-scale channel at near blow-off conditions, in order to provide fundamental insights into the physical mechanisms responsible for the critical phenomena. Flames in a two-dimensional meso-scale channel with a square flame holder are adopted as the model configuration, and a syngas mixture at an equivalence ratio of 0.5 with the CO:H ratio of 1 is considered. As the inlet velocity is increased, the initially stable steady flames undergo a transition to an unsteady mode of regular asymmetric fluctuation. When the inlet velocity is further increased, the flame is eventually blown off. Between the regular fluctuation mode and blow-off limit, there exists a narrow range of the inlet velocity where the flames exhibit periodic local extinction and recovery. Approaching further to the blow-off limit, the recovery mode fails to occur but the flame survives as a short kernel attached to the base of the bluff-body, until it is completely extinguished as the attached flames are gradually shrunk towards the bluff-body. The results are systematically compared with the hydrogen flame results reported in our earlier study. Examination of the characteristic time scales of relevant processes provided understanding of key mechanisms responsible for the observed differences, thereby allowing improved description of the local extinction and re-ignition dynamics that are critical to flame stabilization.

  3. Stability of high-brilliance synchrotron radiation sources

    International Nuclear Information System (INIS)

    Chattopadhyay, S.

    1989-12-01

    This paper discusses the following topics: characteristics of synchrotron radiation sources; stability of the orbits; orbit control; nonlinear dynamic stability; and coherent stability and control. 1 ref., 5 figs., 1 tab

  4. Local dynamic stability and variability of gait are associated with fall history in elderly subjects

    OpenAIRE

    Toebes, M.J.P.; Hoozemans, M.J.M.; Furrer, R.; Dekker, J.; van Dieen, J.H.

    2012-01-01

    Gait parameters that can be measured with simple instrumentation may hold promise for identifying individuals at risk of falling. Increased variability of gait is associated with increased risk of falling, but research on additional parameters indicates that local dynamic stability (LDS) of gait may also be a predictor of fall risk. The objective of the present study was to assess the association between gait variability, LDS of gait and fall history in a large sample of elderly subjects.Subj...

  5. Assessment of polyelectrolyte coating stability under dynamic buffer conditions in CE.

    Science.gov (United States)

    Swords, Kyleen E; Bartline, Peter B; Roguski, Katherine M; Bashaw, Sarah A; Frederick, Kimberley A

    2011-09-01

    Dynamic buffer conditions are present in many electrophoretically driven separations. Polyelectrolyte multilayer coatings have been employed in CE because of their chemical and physical stability as well as their ease of application. The goal of this study is to measure the effect of dynamic changes in buffer pH on flow using a real-time method for measuring EOF. Polyelectrolyte multilayers (PEMs) were composed of pairs of strong or completely ionized polyelectrolytes including poly(diallyldimethylammonium) chloride and poly(styrene sulfonate) and weak or ionizable polyelectrolytes including poly(allylamine) and poly(methacrylic acid). Polyelectrolyte multilayers of varying thicknesses (3, 4, 7, 8, 15, or 16 layers) were also studied. While the magnitude of the EOF was monitored every 2 s, the buffer pH was exchanged from a relatively basic pH (7.1) to increasingly acidic pHs (6.6, 6.1, 5.5, and 5.1). Strong polyelectrolytes responded minimally to changes in buffer pH (10%) and sometimes irreversible changes were measured with weak polyelectrolytes. Thicker coatings resulted in a similar magnitude of response but were more likely to degrade in response to buffer pH changes. The most stable coatings were formed from thinner layers of strong polyelectrolytes. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Dynamic posterior stabilization for degenerative lumbar spine disease: a large consecutive case series with long-term follow-up by additional postal survey.

    Science.gov (United States)

    Greiner-Perth, R; Sellhast, N; Perler, G; Dietrich, D; Staub, L P; Röder, C

    2016-08-01

    Dynamic stabilization of the degenerated spine was invented to overcome the negative side effects of fusion surgery like adjacent segment degeneration. Amongst various different implants DSS(®) is a pedicle-based dynamic device for stabilizing the spine and preserving motion. Nearly no clinical data of the implant have been reported so far. The current analysis presents results from a single spine surgeon who has been using DSS(®) for the past 5 years and recorded all treatment and outcome data in the international Spine Tango registry. From the prospectively documented overall patient pool 436 cases treated with DSS(®) could be identified. The analysis was enhanced with a mailing of COMI patient questionnaires for generating longer-term follow-ups up to 4 years. 387 patients (189 male, 198 female; mean age 67.3 years) with degenerative lumbar spinal disease including degenerative spondylolisthesis (6.1 %) could be evaluated. The type of degeneration was mainly spinal stenosis (89.9 %). After a mean follow-up of 1.94 years, the COMI score and NRS back and leg pain improved significantly and to a clinically relevant extent. The postoperative trend analysis could not determine a relevant deterioration of these outcomes until 4 years postoperative. 10 patients were revised (2.6 %) and the implant was removed; in most cases, a fusion was performed. Another 5 cases (1.3 %) had an extension of the dynamic stabilization system to the adjacent level. 84.2 % of patients rated that the surgery had helped a lot or had helped. The results of this large consecutive series with a follow-up up to 4 years could demonstrate a good and stable clinical outcome after posterior dynamic stabilization with DSS(®). For degenerative diseases of the lumbar spine, this treatment seems to be a valid alternative to fusion surgery.

  7. BWR stability using a reducing dynamical model; Estabilidad de un BWR con un modelo dinamico reducido

    Energy Technology Data Exchange (ETDEWEB)

    Ballestrin Bolea, J M; Blazquez Martinez, J B

    1990-07-01

    BWR stability can be treated with reduced order dynamical models. When the parameters of the model came from dynamical models. When the parameters of the model came from experimental data, the predictions are accurate. In this work an alternative derivation for the void fraction equation is made, but remarking the physical structure of the parameters. As the poles of power/reactivity transfer function are related with the parameters, the measurement of the poles by other techniques such as noise analysis will lead to the parameters, but the system of equations is non-linear. Simple parametric calculation of decay ratio are performed, showing why BWRs become unstable when they are operated at low flow and high power. (Author)

  8. Dynamics and stabilization of peak current-mode controlled buck converter with constant current load

    International Nuclear Information System (INIS)

    Leng Min-Rui; Zhou Guo-Hua; Zhang Kai-Tun; Li Zhen-Hua

    2015-01-01

    The discrete iterative map model of peak current-mode controlled buck converter with constant current load (CCL), containing the output voltage feedback and ramp compensation, is established in this paper. Based on this model the complex dynamics of this converter is investigated by analyzing bifurcation diagrams and the Lyapunov exponent spectrum. The effects of ramp compensation and output voltage feedback on the stability of the converter are investigated. Experimental results verify the simulation and theoretical analysis. The stability boundary and chaos boundary are obtained under the theoretical conditions of period-doubling bifurcation and border collision. It is found that there are four operation regions in the peak current-mode controlled buck converter with CCL due to period-doubling bifurcation and border-collision bifurcation. Research results indicate that ramp compensation can extend the stable operation range and transfer the operating mode, and output voltage feedback can eventually eliminate the coexisting fast-slow scale instability. (paper)

  9. A molecular dynamics study of the nucleation, thermal stability and nanomechanics of carbon nanocones

    International Nuclear Information System (INIS)

    Tsai, P-C; Fang, T-H

    2007-01-01

    In this study, the nucleation mechanism of carbon nanocones is investigated using molecular dynamics (MD) simulations and structural analyses and is compared with that of carbon nanotubes. It is shown that the structural stability of carbon nanocones is sensitive to the cone apex angle. Specifically, an increase in the conical angle results in a moderate improvement in the structural stability of the nanocone as a result of a lower strain energy in the capped mantle. The simulation results also show that the melting temperature of the nanocone increases with increasing conical angle. Furthermore, it is observed that a metastable tube-like structure is formed in carbon nanocones with a lower conical angle at temperatures ranging from 2400 to 3600 K. Finally, the numerical simulations reveal that the mechanical properties of carbon nanocones under nanoindentation are strongly dependent on the conical angle. For carbon nanocones with a large conical angle, the high deformation-promoted reactivity and reversible mechanical response have been performed due to highly symmetrical networks

  10. Controllability and stability analysis of large transcriptomic dynamic systems for host response to influenza infection in human

    Directory of Open Access Journals (Sweden)

    Xiaodian Sun

    2016-10-01

    Full Text Available Background: Gene regulatory networks are complex dynamic systems and the reverse-engineering of such networks from high-dimensional time course transcriptomic data have attracted researchers from various fields. It is also interesting and important to study the behavior of the reconstructed networks on the basis of dynamic models and the biological mechanisms. We focus on the gene regulatory networks reconstructed using the ordinary differential equation (ODE modelling approach and investigate the properties of these networks. Results: Controllability and stability analyses are conducted for the reconstructed gene response networks of 17 influenza infected subjects based on ODE models. Symptomatic subjects tend to have larger numbers of driver nodes, higher proportions of critical links and lower proportions of redundant links than asymptomatic subjects. We also show that the degree distribution, rather than the structure of networks, plays an important role in controlling the network in response to influenza infection. In addition, we find that the stability of high-dimensional networks is very sensitive to randomness in the reconstructed systems brought by errors in measurements and parameter estimation. Conclusions: The gene response networks of asymptomatic subjects are easier to be controlled than those of symptomatic subjects. This may indicate that the regulatory systems of asymptomatic subjects are easier to recover from disease stimulations, so these subjects are less likely to develop symptoms. Our results also suggest that stability constraint should be considered in the modelling of high-dimensional networks and the estimation of network parameters.

  11. A novel vehicle dynamics stability control algorithm based on the hierarchical strategy with constrain of nonlinear tyre forces

    Science.gov (United States)

    Li, Liang; Jia, Gang; Chen, Jie; Zhu, Hongjun; Cao, Dongpu; Song, Jian

    2015-08-01

    Direct yaw moment control (DYC), which differentially brakes the wheels to produce a yaw moment for the vehicle stability in a steering process, is an important part of electric stability control system. In this field, most control methods utilise the active brake pressure with a feedback controller to adjust the braked wheel. However, the method might lead to a control delay or overshoot because of the lack of a quantitative project relationship between target values from the upper stability controller to the lower pressure controller. Meanwhile, the stability controller usually ignores the implementing ability of the tyre forces, which might be restrained by the combined-slip dynamics of the tyre. Therefore, a novel control algorithm of DYC based on the hierarchical control strategy is brought forward in this paper. As for the upper controller, a correctional linear quadratic regulator, which not only contains feedback control but also contains feed forward control, is introduced to deduce the object of the stability yaw moment in order to guarantee the yaw rate and side-slip angle stability. As for the medium and lower controller, the quantitative relationship between the vehicle stability object and the target tyre forces of controlled wheels is proposed to achieve smooth control performance based on a combined-slip tyre model. The simulations with the hardware-in-the-loop platform validate that the proposed algorithm can improve the stability of the vehicle effectively.

  12. An analytical model for the prediction of the dynamic response of premixed flames stabilized on a heat-conducting perforated plate

    KAUST Repository

    Kedia, Kushal S.; Ghoniem, Ahmed F.

    2013-01-01

    The dynamic response of a premixed flame stabilized on a heat-conducting perforated plate depends critically on their coupled thermal interaction. The objective of this paper is to develop an analytical model to capture this coupling. The model

  13. Lateral dynamic flight stability of a model hoverfly in normal and inclined stroke-plane hovering

    International Nuclear Information System (INIS)

    Xu, Na; Sun, Mao

    2014-01-01

    Many insects hover with their wings beating in a horizontal plane (‘normal hovering’), while some insects, e.g., hoverflies and dragonflies, hover with inclined stroke-planes. Here, we investigate the lateral dynamic flight stability of a hovering model hoverfly. The aerodynamic derivatives are computed using the method of computational fluid dynamics, and the equations of motion are solved by the techniques of eigenvalue and eigenvector analysis. The following is shown: The flight of the insect is unstable at normal hovering (stroke-plane angle equals 0) and the instability becomes weaker as the stroke-plane angle increases; the flight becomes stable at a relatively large stroke-plane angle (larger than about 24°). As previously shown, the instability at normal hovering is due to a positive roll-moment/side-velocity derivative produced by the ‘changing-LEV-axial-velocity’ effect. When the stroke-plane angle increases, the wings bend toward the back of the body, and the ‘changing-LEV-axial-velocity’ effect decreases; in addition, another effect, called the ‘changing-relative-velocity’ effect (the ‘lateral wind’, which is due to the side motion of the insect, changes the relative velocity of its wings), becomes increasingly stronger. This causes the roll-moment/side-velocity derivative to first decrease and then become negative, resulting in the above change in stability as a function of the stroke-plane angle. (paper)

  14. Stability mechanisms of a thermophilic laccase probed by molecular dynamics.

    Directory of Open Access Journals (Sweden)

    Niels J Christensen

    Full Text Available Laccases are highly stable, industrially important enzymes capable of oxidizing a large range of substrates. Causes for their stability are, as for other proteins, poorly understood. In this work, multiple-seed molecular dynamics (MD was applied to a Trametes versicolor laccase in response to variable ionic strengths, temperatures, and glycosylation status. Near-physiological conditions provided excellent agreement with the crystal structure (average RMSD ∼0.92 Å and residual agreement with experimental B-factors. The persistence of backbone hydrogen bonds was identified as a key descriptor of structural response to environment, whereas solvent-accessibility, radius of gyration, and fluctuations were only locally relevant. Backbone hydrogen bonds decreased systematically with temperature in all simulations (∼9 per 50 K, probing structural changes associated with enthalpy-entropy compensation. Approaching T opt (∼350 K from 300 K, this change correlated with a beginning "unzipping" of critical β-sheets. 0 M ionic strength triggered partial denucleation of the C-terminal (known experimentally to be sensitive at 400 K, suggesting a general salt stabilization effect. In contrast, F(- (but not Cl(- specifically impaired secondary structure by formation of strong hydrogen bonds with backbone NH, providing a mechanism for experimentally observed small anion destabilization, potentially remedied by site-directed mutagenesis at critical intrusion sites. N-glycosylation was found to support structural integrity by increasing persistent backbone hydrogen bonds by ∼4 across simulations, mainly via prevention of F(- intrusion. Hydrogen-bond loss in distinct loop regions and ends of critical β-sheets suggest potential strategies for laboratory optimization of these industrially important enzymes.

  15. GLOBAL STABILITY AND PERIODIC SOLUTION OF A VIRAL DYNAMIC MODEL

    Directory of Open Access Journals (Sweden)

    Erhan COŞKUN

    2009-02-01

    Full Text Available Abstract:In this paper, we consider the classical viral dynamic mathematical model. Global dynamics of the model is rigorously established. We prove that, if the basic reproduction number, the HIV infection is cleared from the T-cell population; if , the HIV infection persists. For an open set of parameter values, the chronic-infection equilibrium can be unstable and periodic solutions may exist. We establish parameter regions for which is globally stable. Keywords: Global stability, HIV infection; CD4+ T cells; Periodic solution Mathematics Subject Classifications (2000: 65L10, 34B05 BİR VİRAL DİNAMİK MODELİN GLOBAL KARARLILIĞI VE PERİYODİK ÇÖZÜMÜ Özet: Bu makalede klasik viral dinamik modeli ele aldık. Modelin global dinamikleri oluşturuldu. Eğer temel üretim sayısı olur ise HIV enfeksiyonu T hücre nüfusundan çıkartılır, eğer olursa HIV enfeksiyonu çıkartılamaz. Parametre değerlerinin açık bir kümesi için kronik enfeksiyon dengesi kararsızdır ve periyodik çözüm oluşabilir. ın global kararlı olduğu parametre bölgeleri oluşturuldu. Anahtar Kelimeler: Global Kararlılık, HIV enfeksiyon, CD4+ T hücreler, Periyodik çözüm

  16. Dynamic voltage stability of a distribution system with high penetration of grid-connected photovoltaic type solar generators

    Directory of Open Access Journals (Sweden)

    Zetty Adibah Kamaruzzaman

    2016-06-01

    Full Text Available This paper presents the impact of grid-connected photovoltaic (PV generator on dynamic voltage stability of a power distribution system by considering solar intermittency, PV penetration level, and contingencies such as line outage and load increase. The IEEE 13 node test feeder is used as a test system, and a solar PV of 0.48 kV/0.5 MVA is integrated into the test system. Test results show that system voltage is stable at high PV penetration levels. Increase in load causes voltage instability, in which voltage drops below its allowable operating limit. Thus, increase in PV penetration level does not improve system voltage stability because the system experiences voltage collapse during line outage.

  17. Biological soil crusts exhibit a dynamic response to seasonal rain and release from grazing with implications for soil stability

    Science.gov (United States)

    Jimenez, Aguilar A.; Huber-Sannwald, E.; Belnap, J.; Smart, D.R.; Arredondo, Moreno J.T.

    2009-01-01

    In Northern Mexico, long-term grazing has substantially degraded semiarid landscapes. In semiarid systems, ecological and hydrological processes are strongly coupled by patchy plant distribution and biological soil crust (BSC) cover in plant-free interspaces. In this study, we asked: 1) how responsive are BSC cover/composition to a drying/wetting cycle and two-year grazing removal, and 2) what are the implications for soil erosion? We characterized BSC morphotypes and their influence on soil stability under grazed/non-grazed conditions during a dry and wet season. Light- and dark-colored cyanobacteria were dominant at the plant tussock and community level. Cover changes in these two groups differed after a rainy season and in response to grazing removal. Lichens with continuous thalli were more vulnerable to grazing than those with semi-continuous/discontinuous thalli after the dry season. Microsites around tussocks facilitated BSC colonization compared to interspaces. Lichen and cyanobacteria morphotypes differentially enhanced resistance to soil erosion; consequently, surface soil stability depends on the spatial distribution of BSC morphotypes, suggesting soil stability may be as dynamic as changes in the type of BSC cover. Longer-term spatially detailed studies are necessary to elicit spatiotemporal dynamics of BSC communities and their functional role in biotically and abiotically variable environments. ?? 2009 Elsevier Ltd.

  18. Study of orbit stability in the SSRF storage ring

    International Nuclear Information System (INIS)

    Dai Zhimin; Liu Guimin; Huang Nan

    2003-01-01

    In this paper, analysis of the beam orbit stability and conceptual study of the dynamic orbit feedback in the SSRF storage ring are presented. It is shown that beam orbit position movement at the photon source points is smaller than the orbit stability requirements in horizontal plane, but exceeds the orbit stability requirements in vertical plane. A dynamic global orbit feedback system, which consists of 38 high-bandwidth air-coil correctors and 40 high-precise BPMs, is proposed to suppress the vertical beam orbit position movement. Numerical simulations show that this dynamic orbit feedback system can stabilize the vertical beam orbit position movement in the frequency range up to 100 Hz

  19. Distributed Dynamic State Estimator, Generator Parameter Estimation and Stability Monitoring Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Meliopoulos, Sakis [Georgia Inst. of Technology, Atlanta, GA (United States); Cokkinides, George [Georgia Inst. of Technology, Atlanta, GA (United States); Fardanesh, Bruce [New York Power Authority, NY (United States); Hedrington, Clinton [U.S. Virgin Islands Water and Power Authority (WAPA), St. Croix (U.S. Virgin Islands)

    2013-12-31

    This is the final report for this project that was performed in the period: October1, 2009 to June 30, 2013. In this project, a fully distributed high-fidelity dynamic state estimator (DSE) that continuously tracks the real time dynamic model of a wide area system with update rates better than 60 times per second is achieved. The proposed technology is based on GPS-synchronized measurements but also utilizes data from all available Intelligent Electronic Devices in the system (numerical relays, digital fault recorders, digital meters, etc.). The distributed state estimator provides the real time model of the system not only the voltage phasors. The proposed system provides the infrastructure for a variety of applications and two very important applications (a) a high fidelity generating unit parameters estimation and (b) an energy function based transient stability monitoring of a wide area electric power system with predictive capability. Also the dynamic distributed state estimation results are stored (the storage scheme includes data and coincidental model) enabling an automatic reconstruction and “play back” of a system wide disturbance. This approach enables complete play back capability with fidelity equal to that of real time with the advantage of “playing back” at a user selected speed. The proposed technologies were developed and tested in the lab during the first 18 months of the project and then demonstrated on two actual systems, the USVI Water and Power Administration system and the New York Power Authority’s Blenheim-Gilboa pumped hydro plant in the last 18 months of the project. The four main thrusts of this project, mentioned above, are extremely important to the industry. The DSE with the achieved update rates (more than 60 times per second) provides a superior solution to the “grid visibility” question. The generator parameter identification method fills an important and practical need of the industry. The “energy function” based

  20. Shock structure in continuum models of gas dynamics: stability and bifurcation analysis

    International Nuclear Information System (INIS)

    Simić, Srboljub S

    2009-01-01

    The problem of shock structure in gas dynamics is analysed through a comparative study of two continuum models: the parabolic Navier–Stokes–Fourier model and the hyperbolic system of 13 moments equations modeling viscous, heat-conducting monatomic gases within the context of extended thermodynamics. When dissipative phenomena are neglected these models both reduce to classical Euler's equations of gas dynamics. The shock profile solution, assumed in the form of a planar travelling wave, reduces the problem to a system of ordinary differential equations, and equilibrium states appear to be stationary points of the system. It is shown that in both models an upstream equilibrium state suffers an exchange of stability when the shock speed crosses the critical value which coincides with the highest characteristic speed of the Euler's system. At the same time a downstream equilibrium state could be seen as a steady bifurcating solution, while the shock profile represents a heteroclinic orbit connecting the two stationary points. Using centre manifold reduction it is demonstrated that both models, although mathematically different, obey the same transcritical bifurcation pattern in the neighbourhood of the bifurcation point corresponding to the critical value of shock speed, the speed of sound

  1. Preservation of stability and synchronization in nonlinear systems

    International Nuclear Information System (INIS)

    Fernandez-Anaya, G.; Flores-Godoy, J.J.; Femat, R.; Alvarez-Ramirez, J.J.

    2007-01-01

    Preservation of stability in the presence of structural and/or parametric changes is an important issue in the study of dynamical systems. A specific case is the synchronization of chaos in complex networks where synchronization should be preserved in spite of changes in the network parameters and connectivity. In this work, a methodology to establish conditions for preservation of stability in a class of dynamical system is given in terms of Lyapunov methods. The idea is to construct a group of dynamical transformations under which stability is retained along certain manifolds. Some synchronization examples illustrate the results

  2. Preservation of stability and synchronization in nonlinear systems

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Anaya, G. [Departamento de Fisica y Matematicas, Universidad Iberoamericana, Prol. Paseo de la Reforma 880, Lomas de Santa Fe, Mexico, D.F. 01210 (Mexico)], E-mail: guillermo.fernandez@uia.mx; Flores-Godoy, J.J. [Departamento de Fisica y Matematicas, Universidad Iberoamericana, Prol. Paseo de la Reforma 880, Lomas de Santa Fe, Mexico, D.F. 01210 (Mexico)], E-mail: job.flores@uia.mx; Femat, R. [Division de Matematicas Aplicadas y Sistemas Computacionales, IPICyT, Camino a la Presa San Jose 2055, Col. Lomas 4a. seccion, San Luis Potosi, San Luis Potosi 78216 (Mexico)], E-mail: rfemat@ipicyt.edu.mx; Alvarez-Ramirez, J.J. [Ingenieria de Procesos e Hidraulica, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Mexico, D.F. 09340 (Mexico)], E-mail: jjar@xanum.uam.mx

    2007-11-12

    Preservation of stability in the presence of structural and/or parametric changes is an important issue in the study of dynamical systems. A specific case is the synchronization of chaos in complex networks where synchronization should be preserved in spite of changes in the network parameters and connectivity. In this work, a methodology to establish conditions for preservation of stability in a class of dynamical system is given in terms of Lyapunov methods. The idea is to construct a group of dynamical transformations under which stability is retained along certain manifolds. Some synchronization examples illustrate the results.

  3. The determination of temperature stability of silver nanotubes by the molecular dynamics simulation

    Science.gov (United States)

    Filatov, O.; Soldatenko, S.; Soldatenko, O.

    2018-04-01

    Molecular dynamics simulation using the embedded-atom method is applied to study thermal stability of silver nanotubes and its coefficient of linear thermal expansion. The correspondence of face centered cubic structure potential for this task is tested. Three types of nanotubes are modelled: scrolled from graphene-like plane, scrolled from plane with cubic structure and cut from cylinder. It is established that only the last two of them are stable. The last one describes in details. There is critical temperature when free ends of the nanotube close but the interior surface retains. At higher temperatures, the interior surface collapses and the nanotube is unstable.

  4. Stability Analysis for Rotating Stall Dynamics in Axial Flow Compressors

    Science.gov (United States)

    1999-01-01

    modes determines collectively local stability of the compressor model. Explicit conditions are obtained for local stability of rotating stall which...critical modes determines the stability for rotating stall collectively . We point out that although in a special case our stability condition for...strict crossing assumption implies that the zero solution changes its stability as ~, crosses ~’c. For instance, odk (yc ) > 0 implies that the zero

  5. Nonlinear dynamics and stability of boiling water reactors: qualitative and quantitative analyses

    International Nuclear Information System (INIS)

    March-Leuba, J.; Cacuci, D.G.; Perez, R.B.

    1985-01-01

    A phenomenological model has been developed to simulate the qualitative behavior of boiling water reactors (BWRs) in the nonlinear regime under deterministic and stochastic excitations. After the linear stability threshold is crossed, limit cycle oscillations appear due to interactions between two unstable equilibrium points and the phase-space trajectories. This limit cycle becomes unstable when the feedback gain exceeds a certain critical value. Subsequent limit cycle instabilities produce a cascade of period-doubling bifurcations that leads to a periodic pulsed behavior. Under stochastic excitations, BWRs exhibit a single characteristic resonance, at approx.0.5 Hz, in the linear regime. By contrast, this work shows that harmonics of this characteristic frequency appear in the nonlinear regime. Furthermore, this work also demonstrates that amplitudes of the limit cycle oscillations do not depend on the variance of the stochastic excitation and remain bounded at all times. A physical model of nonlinear BWR dynamics has also been developed and employed to calculate the amplitude of limit cycle oscillations and their effects on fuel integrity over a wide range of operating conditions in the Vermont Yankee reactor. These calculations have confirmed that, beyond the threshold for linear stability, the reactor's state variable undergo limit cycle oscillations

  6. In-Well Sediment Incubators to Evaluate Microbial Community Stability and Dynamics following Bioimmobilization of Uranium

    International Nuclear Information System (INIS)

    Baldwin, Brett R.; Peacock, Aaron D.; Gan, M.; Resch, Charles T.; Arntzen, Evan V.; Smithgall, A.N.; Pfiffner, S.; Freifeld, Barry M.; White, D.C.; Long, Philip E.

    2009-01-01

    An in-situ incubation device (ISI) was developed in order to investigate the stability and dynamics of sediment associated microbial communities to prevailing subsurface oxidizing or reducing conditions. Here we describe the use of these devices at the Old Rifle Uranium Mill Tailings Remedial Action (UMTRA) site. During the 7 month deployment oxidized Rifle aquifer background sediments (RABS) were deployed in previously biostimulated wells under iron reducing conditions, cell densities of known iron reducing bacteria including Geobacteraceae increased significantly showing the microbial community response to local subsurface conditions. PLFA profiles of RABS following in situ deployment were strikingly similar to those of adjacent sediment cores suggesting ISI results could be extrapolated to the native material of the test plots. Results for ISI deployed reduced sediments showed only slight changes in community composition and pointed toward the ability of the ISIs to monitor microbial community stability and response to subsurface conditions.

  7. Stability and bifurcation in a model for the dynamics of stem-like cells in leukemia under treatment

    Science.gov (United States)

    Rǎdulescu, I. R.; Cândea, D.; Halanay, A.

    2012-11-01

    A mathematical model for the dynamics of leukemic cells during treatment is introduced. Delay differential equations are used to model cells' evolution and are based on the Mackey-Glass approach, incorporating Goldie-Coldman law. Since resistance is propagated by cells that have the capacity of self-renewal, a population of stem-like cells is studied. Equilibrium points are calculated and their stability properties are investigated.

  8. Towards the prediction of multiple necking during dynamic extension of round bar: linear stability approach versus finite element calculations

    International Nuclear Information System (INIS)

    Maï, S El; Petit, J; Mercier, S; Molinari, A

    2014-01-01

    The fragmentation of structures subject to dynamic conditions is a matter of interest for civil industries as well as for Defence institutions. Dynamic expansions of structures, such as cylinders or rings, have been performed to obtain crucial information on fragment distributions. Many authors have proposed to capture by FEA the experimental distribution of fragment size by introducing in the FE model a perturbation. Stability and bifurcation analyses have also been proposed to describe the evolution of the perturbation growth rate. In the proposed contribution, the multiple necking of a round bar in dynamic tensile loading is analysed by the FE method. A perturbation on the initial flow stress is introduced in the numerical model to trigger instabilities. The onset time and the dominant mode of necking have been characterized precisely and showed power law evolutions, with the loading velocities and moderately with the amplitudes and the cell sizes of the perturbations. In the second part of the paper, the development of linear stability analysis and the use of salient criteria in terms of the growth rate of perturbations enabled comparisons with the numerical results. A good correlation in terms of onset time of instabilities and of number of necks is shown.

  9. Stability and dewetting of metal nanoparticle filled thin polymer films: control of instability length scale and dynamics.

    Science.gov (United States)

    Mukherjee, Rabibrata; Das, Soma; Das, Anindya; Sharma, Satinder K; Raychaudhuri, Arup K; Sharma, Ashutosh

    2010-07-27

    We investigate the influence of gold nanoparticle addition on the stability, dewetting, and pattern formation in ultrathin polymer-nanoparticle (NP) composite films by examining the length and time scales of instability, morphology, and dynamics of dewetting. For these 10-50 nm thick (h) polystyrene (PS) thin films containing uncapped gold nanoparticles (diameter approximately 3-4 nm), transitions from complete dewetting to arrested dewetting to absolute stability were observed depending on the concentration of the particles. Experiments show the existence of three distinct stability regimes: regime 1, complete dewetting leading to droplet formation for nanoparticle concentration of 2% (w/w) or below; regime 2, partial dewetting leading to formation of arrested holes for NP concentrations in the range of 3-6%; and regime 3, complete inhibition of dewetting for NP concentrations of 7% and above. Major results are (a) length scale of instability, where lambdaH approximately hn remains unchanged with NP concentration in regime 1 (n approximately 2) but increases in regime 2 with a change in the scaling relation (n approximately 3-3.5); (b) dynamics of instability and dewetting becomes progressively sluggish with an increase in the NP concentration; (c) there are distinct regimes of dewetting velocity at low NP concentrations; (d) force modulation AFM, as well as micro-Raman analysis, shows phase separation and aggregation of the gold nanoparticles within each dewetted polymer droplet leading to the formation of a metal core-polymer shell morphology. The polymer shell could be removed by washing in a selective solvent, thus exposing an array of bare gold nanoparticle aggregates.

  10. Long term stability of power systems

    Energy Technology Data Exchange (ETDEWEB)

    Kundur, P; Gao, B [Powertech Labs. Inc., Surrey, BC (Canada)

    1994-12-31

    Power system long term stability is still a developing subject. In this paper we provide our perspectives and experiences related to long term stability. The paper begins with the description of the nature of the long term stability problem, followed by the discussion of issues related to the modeling and solution techniques of tools for long term stability analysis. Cases studies are presented to illustrate the voltage stability aspect and plant dynamics aspect of long term stability. (author) 20 refs., 11 figs.

  11. Justification for parameters of a dynamic stabilizer of the experimental stand mobile unit in studying of active rotational working tools of tiller machines

    Directory of Open Access Journals (Sweden)

    Vladimir F. Kupryashkin

    2017-03-01

    Full Text Available Introduction: The article deals with design options and technological modes of the dynamic stabilizer of the experimental stand mobile unit for studying tillage machine active rotating work tools. Based on theoretical and experimental studies, the possibility the movable module instability was discovered. This negatively affects on implementing the experiment program trough the especific method. The need in engineering solutions for the defect correction is shown. In addition, the authors consider the structural features and characteristics of the used devices for providing the stabilization of the movable module in the study of active rotating work tools of tillage machines. An electromagnetic brake dynamic stabilizer in the structure of the existing rolling module was proposed as an engineering device. Materials and Methods: A theoretical study of rolling module stability, based on synthesis of basic regulations and laws of mechanics related to active rotating work tools was conducted. As a result of the theoretical research, a design scheme of movable module loading was created. This scheme includes the design features and structural power factors. Results: A database representing the settings of power specification in the motion stability determining the mobile unit was created. Further use of the database values allow supporting the most optimal location of the electromagnetic brake with its design options. Discussion and Conclusions: The research of the electromagnetic brake in a mobile unit promoted stabilizing the unit movement, increased the frequency of its use and provided data that are more precise during experiments.

  12. Stabilizing weighted complex networks

    International Nuclear Information System (INIS)

    Xiang Linying; Chen Zengqiang; Liu Zhongxin; Chen Fei; Yuan Zhuzhi

    2007-01-01

    Real networks often consist of local units which interact with each other via asymmetric and heterogeneous connections. In this paper, the V-stability problem is investigated for a class of asymmetric weighted coupled networks with nonidentical node dynamics, which includes the unweighted network as a special case. Pinning control is suggested to stabilize such a coupled network. The complicated stabilization problem is reduced to measuring the semi-negative property of the characteristic matrix which embodies not only the network topology, but also the node self-dynamics and the control gains. It is found that network stabilizability depends critically on the second largest eigenvalue of the characteristic matrix. The smaller the second largest eigenvalue is, the more the network is pinning controllable. Numerical simulations of two representative networks composed of non-chaotic systems and chaotic systems, respectively, are shown for illustration and verification

  13. Influence of Dynamic Neuromuscular Stabilization Approach on Maximum Kayak Paddling Force

    Directory of Open Access Journals (Sweden)

    Davidek Pavel

    2018-03-01

    Full Text Available The purpose of this study was to examine the effect of Dynamic Neuromuscular Stabilization (DNS exercise on maximum paddling force (PF and self-reported pain perception in the shoulder girdle area in flatwater kayakers. Twenty male flatwater kayakers from a local club (age = 21.9 ± 2.4 years, body height = 185.1 ± 7.9 cm, body mass = 83.9 ± 9.1 kg were randomly assigned to the intervention or control groups. During the 6-week study, subjects from both groups performed standard off-season training. Additionally, the intervention group engaged in a DNS-based core stabilization exercise program (quadruped exercise, side sitting exercise, sitting exercise and squat exercise after each standard training session. Using a kayak ergometer, the maximum PF stroke was measured four times during the six weeks. All subjects completed the Disabilities of the Arm, Shoulder and Hand (DASH questionnaire before and after the 6-week interval to evaluate subjective pain perception in the shoulder girdle area. Initially, no significant differences in maximum PF and the DASH questionnaire were identified between the two groups. Repeated measures analysis of variance indicated that the experimental group improved significantly compared to the control group on maximum PF (p = .004; Cohen’s d = .85, but not on the DASH questionnaire score (p = .731 during the study. Integration of DNS with traditional flatwater kayak training may significantly increase maximum PF, but may not affect pain perception to the same extent.

  14. Aircraft nonlinear stability analysis and multidimensional stability region estimation under icing conditions

    Directory of Open Access Journals (Sweden)

    Liang QU

    2017-06-01

    Full Text Available Icing is one of the crucial factors that could pose great threat to flight safety, and thus research on stability and stability region of aircraft safety under icing conditions is significant for control and flight. Nonlinear dynamical equations and models of aerodynamic coefficients of an aircraft are set up in this paper to study the stability and stability region of the aircraft under an icing condition. Firstly, the equilibrium points of the iced aircraft system are calculated and analyzed based on the theory of differential equation stability. Secondly, according to the correlation theory about equilibrium points and the stability region, this paper estimates the multidimensional stability region of the aircraft, based on which the stability regions before and after icing are compared. Finally, the results are confirmed by the time history analysis. The results can give a reference for stability analysis and envelope protection of the nonlinear system of an iced aircraft.

  15. Nonlinear dynamics of human locomotion: effects of rhythmic auditory cueing on local dynamic stability

    Directory of Open Access Journals (Sweden)

    Philippe eTerrier

    2013-09-01

    Full Text Available It has been observed that times series of gait parameters (stride length (SL, stride time (ST and stride speed (SS, exhibit long-term persistence and fractal-like properties. Synchronizing steps with rhythmic auditory stimuli modifies the persistent fluctuation pattern to anti-persistence. Another nonlinear method estimates the degree of resilience of gait control to small perturbations, i.e. the local dynamic stability (LDS. The method makes use of the maximal Lyapunov exponent, which estimates how fast a nonlinear system embedded in a reconstructed state space (attractor diverges after an infinitesimal perturbation. We propose to use an instrumented treadmill to simultaneously measure basic gait parameters (time series of SL, ST and SS from which the statistical persistence among consecutive strides can be assessed, and the trajectory of the center of pressure (from which the LDS can be estimated. In 20 healthy participants, the response to rhythmic auditory cueing (RAC of LDS and of statistical persistence (assessed with detrended fluctuation analysis (DFA was compared. By analyzing the divergence curves, we observed that long-term LDS (computed as the reverse of the average logarithmic rate of divergence between the 4th and the 10th strides downstream from nearest neighbors in the reconstructed attractor was strongly enhanced (relative change +47%. That is likely the indication of a more dampened dynamics. The change in short-term LDS (divergence over one step was smaller (+3%. DFA results (scaling exponents confirmed an anti-persistent pattern in ST, SL and SS. Long-term LDS (but not short-term LDS and scaling exponents exhibited a significant correlation between them (r=0.7. Both phenomena probably result from the more conscious/voluntary gait control that is required by RAC. We suggest that LDS and statistical persistence should be used to evaluate the efficiency of cueing therapy in patients with neurological gait disorders.

  16. Fluctuating interaction network and time-varying stability of a natural fish community

    Science.gov (United States)

    Ushio, Masayuki; Hsieh, Chih-Hao; Masuda, Reiji; Deyle, Ethan R.; Ye, Hao; Chang, Chun-Wei; Sugihara, George; Kondoh, Michio

    2018-02-01

    Ecological theory suggests that large-scale patterns such as community stability can be influenced by changes in interspecific interactions that arise from the behavioural and/or physiological responses of individual species varying over time. Although this theory has experimental support, evidence from natural ecosystems is lacking owing to the challenges of tracking rapid changes in interspecific interactions (known to occur on timescales much shorter than a generation time) and then identifying the effect of such changes on large-scale community dynamics. Here, using tools for analysing nonlinear time series and a 12-year-long dataset of fortnightly collected observations on a natural marine fish community in Maizuru Bay, Japan, we show that short-term changes in interaction networks influence overall community dynamics. Among the 15 dominant species, we identify 14 interspecific interactions to construct a dynamic interaction network. We show that the strengths, and even types, of interactions change with time; we also develop a time-varying stability measure based on local Lyapunov stability for attractor dynamics in non-equilibrium nonlinear systems. We use this dynamic stability measure to examine the link between the time-varying interaction network and community stability. We find seasonal patterns in dynamic stability for this fish community that broadly support expectations of current ecological theory. Specifically, the dominance of weak interactions and higher species diversity during summer months are associated with higher dynamic stability and smaller population fluctuations. We suggest that interspecific interactions, community network structure and community stability are dynamic properties, and that linking fluctuating interaction networks to community-level dynamic properties is key to understanding the maintenance of ecological communities in nature.

  17. Short-term action potential memory and electrical restitution: A cellular computational study on the stability of cardiac repolarization under dynamic pacing.

    Directory of Open Access Journals (Sweden)

    Massimiliano Zaniboni

    Full Text Available Electrical restitution (ER is a major determinant of repolarization stability and, under fast pacing rate, it reveals memory properties of the cardiac action potential (AP, whose dynamics have never been fully elucidated, nor their ionic mechanisms. Previous studies have looked at ER mainly in terms of changes in AP duration (APD when the preceding diastolic interval (DI changes and described dynamic conditions where this relationship shows hysteresis which, in turn, has been proposed as a marker of short-term AP memory and repolarization stability. By means of numerical simulations of a non-propagated human ventricular AP, we show here that measuring ER as APD versus the preceding cycle length (CL provides additional information on repolarization dynamics which is not contained in the companion formulation. We focus particularly on fast pacing rate conditions with a beat-to-beat variable CL, where memory properties emerge from APD vs CL and not from APD vs DI and should thus be stored in APD and not in DI. We provide an ion-currents characterization of such conditions under periodic and random CL variability, and show that the memory stored in APD plays a stabilizing role on AP repolarization under pacing rate perturbations. The gating kinetics of L-type calcium current seems to be the main determinant of this safety mechanism. We also show that, at fast pacing rate and under otherwise identical pacing conditions, a periodically beat-to-beat changing CL is more effective than a random one in stabilizing repolarization. In summary, we propose a novel view of short-term AP memory, differentially stored between systole and diastole, which opens a number of methodological and theoretical implications for the understanding of arrhythmia development.

  18. Prediction of dynamic cutting force and regenerative chatter stability in inserted cutters milling

    Science.gov (United States)

    Li, Zhongqun; Liu, Qiang; Yuan, Songmei; Huang, Kaisheng

    2013-05-01

    Currently, the modeling of cutting process mainly focuses on two aspects: one is the setup of the universal cutting force model that can be adapted to a broader cutting condition; the other is the setup of the exact cutting force model that can accurately reflect a true cutting process. However, there is little research on the prediction of chatter stablity in milling. Based on the generalized mathematical model of inserted cutters introduced by ENGIN, an improved geometrical, mechanical and dynamic model for the vast variety of inserted cutters widely used in engineering applications is presented, in which the average directional cutting force coefficients are obtained by means of a numerical approach, thus leading to an analytical determination of stability lobes diagram (SLD) on the axial depth of cut. A new kind of SLD on the radial depth of cut is also created to satisfy the special requirement of inserted cutter milling. The corresponding algorithms used for predicting cutting forces, vibrations, dimensional surface finish and stability lobes in inserted cutter milling under different cutting conditions are put forward. Thereafter, a dynamic simulation module of inserted cutter milling is implemented by using hybrid program of Matlab with Visual Basic. Verification tests are conducted on a vertical machine center for Aluminum alloy LC4 by using two different types of inserted cutters, and the effectiveness of the model and the algorithm is verified by the good agreement of simulation result with that of cutting tests under different cutting conditions. The proposed model can predict the cutting process accurately under a variety of cutting conditions, and a high efficient and chatter-free milling operation can be achieved by a cutting condition optimization in industry applications.

  19. A Dynamic Analysis for an Anaerobic Digester: Stability and Bifurcation Branches

    Directory of Open Access Journals (Sweden)

    Alejandro Rincón

    2014-01-01

    Full Text Available This work presents a dynamic analysis for an anaerobic digester, supported on the analytical application of the indirect Lyapunov method. The mass-balance model considered is based on two biological reaction pathways and involves both Monod and Haldane representations of the specific biomass growth rates. The dilution rate, the influent concentration of chemical oxygen demand (COD, and the influent concentration of volatile fatty acids (VFA are considered as stability parameters. Several characteristics are determined analytically for the normal operation equilibrium point: (i equilibrium coordinates, (ii parameter conditions that lead to positive values of the equilibrium state variables, (iii parameter conditions for locally stable nature of the equilibrium, (iv coordinates for the local bifurcation points—fold and transcritical—, and (v coordinates of the crossing between bifurcation points. These factors are computed analytically and explicitly as expressions of the dilution rate and the influent concentrations of COD and VFA.

  20. The effects of host-feeding on stability of discrete-time host-parasitoid population dynamic models.

    Science.gov (United States)

    Emerick, Brooks; Singh, Abhyudai

    2016-02-01

    Discrete-time models are the traditional approach for capturing population dynamics of a host-parasitoid system. Recent work has introduced a semi-discrete framework for obtaining model update functions that connect host-parasitoid population levels from year-to-year. In particular, this framework uses differential equations to describe the host-parasitoid interaction during the time of year when they come in contact, allowing specific behaviors to be mechanistically incorporated. We use the semi-discrete approach to study the effects of host-feeding, which occurs when a parasitoid consumes a potential host larva without ovipositing. We find that host-feeding by itself cannot stabilize the system, and both populations exhibit behavior similar to the Nicholson-Bailey model. However, when combined with stabilizing mechanisms such as density-dependent host mortality, host-feeding contracts the region of parameter space that allows for a stable host-parasitoid equilibrium. In contrast, when combined with a density-dependent parasitoid attack rate, host-feeding expands the non-zero equilibrium stability region. Our results show that host-feeding causes inefficiency in the parasitoid population, which yields a higher population of hosts per generation. This suggests that host-feeding may have limited long-term impact in terms of suppressing host levels for biological control applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Stability analysis and stabilization strategies for linear supply chains

    Science.gov (United States)

    Nagatani, Takashi; Helbing, Dirk

    2004-04-01

    Due to delays in the adaptation of production or delivery rates, supply chains can be dynamically unstable with respect to perturbations in the consumption rate, which is known as “bull-whip effect”. Here, we study several conceivable production strategies to stabilize supply chains, which is expressed by different specifications of the management function controlling the production speed in dependence of the stock levels. In particular, we will investigate, whether the reaction to stock levels of other producers or suppliers has a stabilizing effect. We will also demonstrate that the anticipation of future stock levels can stabilize the supply system, given the forecast horizon τ is long enough. To show this, we derive linear stability conditions and carry out simulations for different control strategies. The results indicate that the linear stability analysis is a helpful tool for the judgement of the stabilization effect, although unexpected deviations can occur in the non-linear regime. There are also signs of phase transitions and chaotic behavior, but this remains to be investigated more thoroughly in the future.

  2. Fixed-time stability of dynamical systems and fixed-time synchronization of coupled discontinuous neural networks.

    Science.gov (United States)

    Hu, Cheng; Yu, Juan; Chen, Zhanheng; Jiang, Haijun; Huang, Tingwen

    2017-05-01

    In this paper, the fixed-time stability of dynamical systems and the fixed-time synchronization of coupled discontinuous neural networks are investigated under the framework of Filippov solution. Firstly, by means of reduction to absurdity, a theorem of fixed-time stability is established and a high-precision estimation of the settling-time is given. It is shown by theoretic proof that the estimation bound of the settling time given in this paper is less conservative and more accurate compared with the classical results. Besides, as an important application, the fixed-time synchronization of coupled neural networks with discontinuous activation functions is proposed. By designing a discontinuous control law and using the theory of differential inclusions, some new criteria are derived to ensure the fixed-time synchronization of the addressed coupled networks. Finally, two numerical examples are provided to show the effectiveness and validity of the theoretical results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Microwave stability at transition

    International Nuclear Information System (INIS)

    Holt, J.A.; Colestock, P.L.

    1995-05-01

    The question of microwave stability at transition is revisited using a Vlasov approach retaining higher order terms in the particle dynamics near the transition energy. A dispersion relation is derived which can be solved numerically for the complex frequency in terms of the longitudinal impedance and other beam parameters. Stability near transition is examined and compared with simulation results

  4. Structural stability, dynamical stability, thermoelectric properties, and elastic properties of GeTe at high pressure

    Science.gov (United States)

    Kagdada, Hardik L.; Jha, Prafulla K.; Śpiewak, Piotr; Kurzydłowski, Krzysztof J.

    2018-04-01

    The stability of GeTe in rhombohedral (R 3 m ), face centred cubic (F m 3 m ), and simple cubic (P m 3 m ) phases has been studied using density functional perturbation theory. The rhombohedral phase of GeTe is dynamically stable at 0 GPa, while F m 3 m and P m 3 m phases are stable at 3.1 and 33 GPa, respectively. The pressure-dependent phonon modes are observed in F m 3 m and P m 3 m phases at Γ and M points, respectively. The electronic and the thermoelectric properties have been investigated for the stable phases of GeTe. The electronic band gap for rhombohedral and F m 3 m phases of GeTe has been observed as 0.66 and 0.17 eV, respectively, while the P m 3 m phase shows metallic behavior. We have used the Boltzmann transport equation under a rigid band approximation and constant relaxation time approximation as implemented in boltztrap code for the calculation of thermoelectric properties of GeTe. The metallic behavior of P m 3 m phase gives a very low value of Seebeck coefficient compared to the other two phases as a function of temperature and the chemical potential μ. It is observed that the rhombohedral phase of GeTe exhibits higher thermoelectric performance. Due to the metallic nature of P m 3 m phase, negligible thermoelectric performance is observed compared to R 3 m and F m 3 m -GeTe. The calculated lattice thermal conductivities are low for F m 3 m -GeTe and high for R 3 m -GeTe. At the relatively higher temperature of 1350 K, the figure of merit ZT is found to be 0.7 for rhombohedral GeTe. The elastic constants satisfy the Born stability criteria for all three phases. The rhombohedral and F m 3 m phases exhibits brittleness and the P m 3 m phase shows ductile nature.

  5. Gravity stabilizes itself

    International Nuclear Information System (INIS)

    Chakraborty, Sumanta; SenGupta, Soumitra

    2017-01-01

    We show that a possible resolution to the stabilization of an extra spatial dimension (radion) can be obtained solely in the context of gravitational dynamics itself without the necessity of introducing any external stabilizing field. In this scenario the stabilized value of the radion field gets determined in terms of the parameters appearing in the higher curvature gravitational action. Furthermore, the mass of the radion field and its coupling to the standard model fields are found to be in the weak scale implying possible signatures in the TeV scale colliders. Some resulting implications are also discussed. (orig.)

  6. Gravity stabilizes itself

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Sumanta; SenGupta, Soumitra [Indian Association for the Cultivation of Science, Department of Theoretical Physics, Kolkata (India)

    2017-08-15

    We show that a possible resolution to the stabilization of an extra spatial dimension (radion) can be obtained solely in the context of gravitational dynamics itself without the necessity of introducing any external stabilizing field. In this scenario the stabilized value of the radion field gets determined in terms of the parameters appearing in the higher curvature gravitational action. Furthermore, the mass of the radion field and its coupling to the standard model fields are found to be in the weak scale implying possible signatures in the TeV scale colliders. Some resulting implications are also discussed. (orig.)

  7. Effects of grab bar on utilized friction and dynamic stability when elderly people enter the bathtub.

    Science.gov (United States)

    Sekiguchi, Yusuke; Kato, Tomohisa; Honda, Keita; Kanetaka, Hiroyasu; Izumi, Shin-Ichi

    2017-08-01

    The effect of the grab bar on dynamic stability when elderly people enter the bathtub remains unclear. The purpose of the present study is to examine the age-related effect of the grab bar on dynamic stability during lateral stepping over an obstacle when entering bathtub. Sixteen young, healthy adults and sixteen elderly adults participated. The subjects performed lateral stepping over an obstacle with and without vertical and horizontal bars. Displacement and velocity of the center of mass and utilized friction, which is the required coefficient of friction to avoid slipping, were simultaneously measured by a three-dimensional motion analysis system and two force plates. A post hoc test for two-way ANOVA revealed that velocity of the center of mass in the vertical direction (pbar were significantly slower and smaller than those without the grab bar in young and elderly people. Moreover, the utilized friction at push off of the trailing leg with the vertical bar in elderly people was lower (pbar. The use of each grab bar while performing a lateral step over an obstacle may help maintaining balance in lateral and vertical directions. However, use of the vertical bar while lateral stepping over an object in elderly people may need low utilized friction to prevent slipping. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Strategies for the stabilization of longitudinal forward flapping flight revealed using a dynamically-scaled robotic fly

    International Nuclear Information System (INIS)

    Elzinga, Michael J; Van Breugel, Floris; Dickinson, Michael H

    2014-01-01

    The ability to regulate forward speed is an essential requirement for flying animals. Here, we use a dynamically-scaled robot to study how flapping insects adjust their wing kinematics to regulate and stabilize forward flight. The results suggest that the steady-state lift and thrust requirements at different speeds may be accomplished with quite subtle changes in hovering kinematics, and that these adjustments act primarily by altering the pitch moment. This finding is consistent with prior hypotheses regarding the relationship between body pitch and flight speed in fruit flies. Adjusting the mean stroke position of the wings is a likely mechanism for trimming the pitch moment at all speeds, whereas changes in the mean angle of attack may be required at higher speeds. To ensure stability, the flapping system requires additional pitch damping that increases in magnitude with flight speed. A compensatory reflex driven by fast feedback of pitch rate from the halteres could provide such damping, and would automatically exhibit gain scheduling with flight speed if pitch torque was regulated via changes in stroke deviation. Such a control scheme would provide an elegant solution for stabilization across a wide range of forward flight speeds. (paper)

  9. Network stability is a balancing act of personality, power, and conflict dynamics in rhesus macaque societies.

    Directory of Open Access Journals (Sweden)

    Brenda McCowan

    Full Text Available Stability in biological systems requires evolved mechanisms that promote robustness. Cohesive primate social groups represent one example of a stable biological system, which persist in spite of frequent conflict. Multiple sources of stability likely exist for any biological system and such robustness, or lack thereof, should be reflected and thus detectable in the group's network structure, and likely at multiple levels. Here we show how network structure and group stability are linked to the fundamental characteristics of the individual agents in groups and to the environmental and social contexts in which these individuals interact. Both internal factors (e.g., personality, sex and external factors (e.g., rank dynamics, sex ratio were considered from the level of the individual to that of the group to examine the effects of network structure on group stability in a nonhuman primate species. The results yielded three main findings. First, successful third-party intervention behavior is a mechanism of group stability in rhesus macaques in that successful interventions resulted in less wounding in social groups. Second, personality is the primary factor that determines which individuals perform the role of key intervener, via its effect on social power and dominance discrepancy. Finally, individuals with high social power are not only key interveners but also key players in grooming networks and receive reconciliations from a higher diversity of individuals. The results from this study provide sound evidence that individual and group characteristics such as personality and sex ratio influence network structures such as patterns of reconciliation, grooming and conflict intervention that are indicators of network robustness and consequent health and well-being in rhesus macaque societies. Utilizing this network approach has provided greater insight into how behavioral and social processes influence social stability in nonhuman primate groups.

  10. Network stability is a balancing act of personality, power, and conflict dynamics in rhesus macaque societies.

    Science.gov (United States)

    McCowan, Brenda; Beisner, Brianne A; Capitanio, John P; Jackson, Megan E; Cameron, Ashley N; Seil, Shannon; Atwill, Edward R; Fushing, Hsieh

    2011-01-01

    Stability in biological systems requires evolved mechanisms that promote robustness. Cohesive primate social groups represent one example of a stable biological system, which persist in spite of frequent conflict. Multiple sources of stability likely exist for any biological system and such robustness, or lack thereof, should be reflected and thus detectable in the group's network structure, and likely at multiple levels. Here we show how network structure and group stability are linked to the fundamental characteristics of the individual agents in groups and to the environmental and social contexts in which these individuals interact. Both internal factors (e.g., personality, sex) and external factors (e.g., rank dynamics, sex ratio) were considered from the level of the individual to that of the group to examine the effects of network structure on group stability in a nonhuman primate species. The results yielded three main findings. First, successful third-party intervention behavior is a mechanism of group stability in rhesus macaques in that successful interventions resulted in less wounding in social groups. Second, personality is the primary factor that determines which individuals perform the role of key intervener, via its effect on social power and dominance discrepancy. Finally, individuals with high social power are not only key interveners but also key players in grooming networks and receive reconciliations from a higher diversity of individuals. The results from this study provide sound evidence that individual and group characteristics such as personality and sex ratio influence network structures such as patterns of reconciliation, grooming and conflict intervention that are indicators of network robustness and consequent health and well-being in rhesus macaque societies. Utilizing this network approach has provided greater insight into how behavioral and social processes influence social stability in nonhuman primate groups.

  11. Stability of the thermodynamic equilibrium - A test of the validity of dynamic models as applied to gyroviscous perpendicular magnetohydrodynamics

    Science.gov (United States)

    Faghihi, Mustafa; Scheffel, Jan; Spies, Guenther O.

    1988-05-01

    Stability of the thermodynamic equilibrium is put forward as a simple test of the validity of dynamic equations, and is applied to perpendicular gyroviscous magnetohydrodynamics (i.e., perpendicular magnetohydrodynamics with gyroviscosity added). This model turns out to be invalid because it predicts exponentially growing Alfven waves in a spatially homogeneous static equilibrium with scalar pressure.

  12. Stability of the thermodynamic equilibrium: A test of the validity of dynamic models as applied to gyroviscous perpendicular magnetohydrodynamics

    International Nuclear Information System (INIS)

    Faghihi, M.; Scheffel, J.; Spies, G.O.

    1988-01-01

    Stability of the thermodynamic equilibrium is put forward as a simple test of the validity of dynamic equations, and is applied to perpendicular gyroviscous magnetohydrodynamics (i.e., perpendicular magnetohydrodynamics with gyroviscosity added). This model turns out to be invalid because it predicts exponentially growing Alfven waves in a spatially homogeneous static equilibrium with scalar pressure

  13. Synchronisation and stability in river metapopulation networks.

    Science.gov (United States)

    Yeakel, J D; Moore, J W; Guimarães, P R; de Aguiar, M A M

    2014-03-01

    Spatial structure in landscapes impacts population stability. Two linked components of stability have large consequences for persistence: first, statistical stability as the lack of temporal fluctuations; second, synchronisation as an aspect of dynamic stability, which erodes metapopulation rescue effects. Here, we determine the influence of river network structure on the stability of riverine metapopulations. We introduce an approach that converts river networks to metapopulation networks, and analytically show how fluctuation magnitude is influenced by interaction structure. We show that river metapopulation complexity (in terms of branching prevalence) has nonlinear dampening effects on population fluctuations, and can also buffer against synchronisation. We conclude by showing that river transects generally increase synchronisation, while the spatial scale of interaction has nonlinear effects on synchronised dynamics. Our results indicate that this dual stability - conferred by fluctuation and synchronisation dampening - emerges from interaction structure in rivers, and this may strongly influence the persistence of river metapopulations. © 2013 John Wiley & Sons Ltd/CNRS.

  14. Study on seismic stability of seawall in man-made island. Pt. 1. Shaking table tests on dynamic behavior of seawall constructed on the bedrock

    International Nuclear Information System (INIS)

    Tochigi, Hitoshi; Kanatani, Mamoru; Kawai, Tadashi

    1999-01-01

    In the development of siting technology for off-shore nuclear power plants on man-made island, assessing the stability of seawall which ensures the safety of backfill ground against ocean waves and earthquakes is indispensable. In assessing seismic stability of seawall, evaluation of dynamic nonlinear behavior like sliding and settlement is an important factor. For this purpose, shake-table tests of seawall model have been carried out. By the experiments in the case of well compacted backfill ground, it is indicated that dynamic failure of caisson type seawall constructed on the strong seabed ground is mainly induced by the sliding of caisson toward the sea and followed by the settlement of backfill ground. And as the influence of armour embankment on the seismic stability of seawall, we experimentally showed that the sliding displacement of caisson during earthquake is reduced by the lateral pressure of armour units and armour embankment works effectively to rise up earthquake resistance capability of seawall. (author)

  15. Brownian dynamics simulations of an order-disorder transition in sheared sterically stabilized colloidal suspensions

    International Nuclear Information System (INIS)

    Rigos, A.A.; Wilemski, G.

    1992-01-01

    The shear thinning behavior of a sterically stabilized nonaqueous colloidal suspension was investigated using nonequilibrium Brownian dynamics simulations of systems with 108 and 256 particles. At a volume fraction of 0.4, the suspension is thixotropic: it has a reversible shear thinning transition from a disordered state to an ordered, lamellar state with triangularly packed strings of particles. The time scale for the transition is set by the free particle diffusion constant. For the smaller system, the transition occurs gradually with increasing shear rate. For the larger system, the transition is sharp and discontinuous shear thinning is found. 34 refs., 9 figs., 1 tab

  16. Modeling, Stability Analysis and Active Stabilization of Multiple DC-Microgrids Clusters

    DEFF Research Database (Denmark)

    Shafiee, Qobad; Dragicevic, Tomislav; Vasquez, Juan Carlos

    2014-01-01

    ), and more especially during interconnection with other MGs, creating dc MG clusters. This paper develops a small signal model for dc MGs from the control point of view, in order to study stability analysis and investigate effects of CPLs and line impedances between the MGs on stability of these systems....... This model can be also used to synthesis and study dynamics of control loops in dc MGs and also dc MG clusters. An active stabilization method is proposed to be implemented as a dc active power filter (APF) inside the MGs in order to not only increase damping of dc MGs at the presence of CPLs but also...... to improve their stability while connecting to the other MGs. Simulation results are provided to evaluate the developed models and demonstrate the effectiveness of proposed active stabilization technique....

  17. Stabilization of atoms with nonzero magnetic quantum numbers

    International Nuclear Information System (INIS)

    Sundaram, B.; Jensen, R.V.

    1993-01-01

    A classical analysis of the interaction of an atomic electron with an oscillating electric field with arbitrary initial quantum number, n, magnetic quantum number, m > 0, field strength, and frequency shows that the classical, dynamics for the perturbed electron can be stabilized for large fields and high frequencies. Using a four-dimensional map approximation to the classical dynamics, explicit expressions are obtained for the full parameter dependence of the boundaries of stability surrounding the open-quotes death valleyclose quotes of rapid classical ionization. A preliminary analysis of the quantum dynamics in terms of the quasienergy states associated with the corresponding quantum map is also included with particular emphasis on the role of unstable classical structures in stabilizing atoms. Together, these results provide motivation and direction for further theoretical and experimental studies of stabilization of atoms (and molecules) in super-intense microwave and laser fields

  18. Dynamics of fault slip near the stability transition combining laboratory and numerical experiments

    Science.gov (United States)

    Mele Veedu, D.; Giorgetti, C.; Scuderi, M. M.; Barbot, S.; Marone, C.; Collettini, C.

    2017-12-01

    Frictional stability controls the seismogenic potential of faults. Laboratory (1) and theoretical (2) studies document and predict the conditions under which fault slip is seismic or aseismic. However, the full gamut of fault slip behavior near the stable/unstable boundary is still poorly known. Here, we combine insight from laboratory and numerical experiments to identify the wide spectrum of frictional instabilities around that transition, including slow-slip events, period-multiplying events, and chaos. We present a synoptic picture of the dynamics of fault slip in a bifurcation diagram obtained from a series of laboratory and numerical experiments. We compare the laboratory observations with spring-slider and finite-fault numerical models. In the laboratory, we vary the stiffness of the system by modulating the stress field around the experimental fault. In the numerical experiments, we vary the characteristic weakening distance to explore a range of critical nucleation sizes. Contrarily to previously found (3), complex fault dynamics can be obtained with a rate-and-state constitutive law with a single state variable. While the dynamics of fault slip is complicated on large faults by the presence of morphological and rheological heterogeneities, the range of instabilities identified in the laboratory is reminiscent of the variety of slow and fast earthquakes found along subduction zones (4). The accord between laboratory data and theoretical models affords more realistic predictions of fault behavior at slow slip speeds. (1) Scuderi et al., (2016), (2) Ruina (1983), (3) Gu & Wong (1994), (4) Obara & Kato (2016)

  19. Dynamic and energetic stabilization of persistent currents in Bose-Einstein condensates

    KAUST Repository

    Law, Kody; Neely, T. W.; Kevrekidis, P. G.; Anderson, B. P.; Bradley, A. S.; Carretero-Gonzá lez, R.

    2014-01-01

    We study conditions under which vortices in a highly oblate harmonically trapped Bose-Einstein condensate (BEC) can be stabilized due to pinning by a blue-detuned Gaussian laser beam, with particular emphasis on the potentially destabilizing effects of laser beam positioning within the BEC. Our approach involves theoretical and numerical exploration of dynamically and energetically stable pinning of vortices with winding number up to S=6, in correspondence with experimental observations. Stable pinning is quantified theoretically via Bogoliubov-de Gennes excitation spectrum computations and confirmed via direct numerical simulations for a range of conditions similar to those of experimental observations. The theoretical and numerical results indicate that the pinned winding number, or equivalently the winding number of the superfluid current about the laser beam, decays as a laser beam of fixed intensity moves away from the BEC center. Our theoretical analysis helps explain previous experimental observations and helps define limits of stable vortex pinning for future experiments involving vortex manipulation by laser beams.

  20. Dynamic and energetic stabilization of persistent currents in Bose-Einstein condensates

    KAUST Repository

    Law, Kody

    2014-05-09

    We study conditions under which vortices in a highly oblate harmonically trapped Bose-Einstein condensate (BEC) can be stabilized due to pinning by a blue-detuned Gaussian laser beam, with particular emphasis on the potentially destabilizing effects of laser beam positioning within the BEC. Our approach involves theoretical and numerical exploration of dynamically and energetically stable pinning of vortices with winding number up to S=6, in correspondence with experimental observations. Stable pinning is quantified theoretically via Bogoliubov-de Gennes excitation spectrum computations and confirmed via direct numerical simulations for a range of conditions similar to those of experimental observations. The theoretical and numerical results indicate that the pinned winding number, or equivalently the winding number of the superfluid current about the laser beam, decays as a laser beam of fixed intensity moves away from the BEC center. Our theoretical analysis helps explain previous experimental observations and helps define limits of stable vortex pinning for future experiments involving vortex manipulation by laser beams.

  1. Some considerations on the seismic stability of large slopes surrounding the nuclear power plant

    International Nuclear Information System (INIS)

    Ito, Hiroshi; Watanabe, Hiroyuki

    1982-01-01

    As a series of the research on the seismic stabilities of a large scale slope surrounding the Nuclear Power Plant, the numerical simulation and analytical stability calculation are conducted in order to clarify the applicability of static stability evaluation method (conventional circular arc slip method, static non-linear F.E. analysis) and dynamic one (2-dimensional dynamic F.E. analysis). The discussions on these slope stability methods are done and the followings are clarified, i) The results of numerical simulation by dynamic F.E. analysis concerning the response property and the failure mode are qualitatively corresponded with the behaviour of dynamic failure test. ii) From the results of static and dynamic stability analysis, it is concluded that the conventional circular arc slip method gives the severest evaluation for slope stability. iii) It is proposed that the seismic coefficient for static slope stability analysis should be used the value of the equivalent instant acceleration. (author)

  2. On the dynamic stability of shear deformable beams under a tensile load

    Science.gov (United States)

    Caddemi, S.; Caliò, I.; Cannizzaro, F.

    2016-07-01

    Loss of stability of beams in a linear static context due to the action of tensile loads has been disclosed only recently in the scientific literature. However, tensile instability in the dynamic regime has been only marginally covered. Several aspects concerning the role of shear deformation on the tensile dynamic instability on continuous and discontinuous beams are still to be addressed. It may appear as a paradox, but also for the case of the universally studied Timoshenko beam model, despite its old origin, frequency-axial load diagrams in the range of negative values of the load (i.e. tensile load) has never been brought to light. In this paper, for the first time, the influence of a conservative tensile axial loads on the dynamic behaviour of the Timoshenko model, according to the Haringx theory, is assessed. It is shown that, under increasing tensile loads, regions of positive/negative fundamental frequency variations can be distinguished. In addition, the beam undergoes eigen-mode changes, from symmetric to anti-symmetric shapes, until tensile instability of divergence type is reached. As a further original contribution on the subject, taking advantage of a new closed form solution, it is shown that the same peculiarities are recovered for an axially loaded Euler-Bernoulli vibrating beam with multiple elastic sliders. This latter model can be considered as the discrete counterpart of the Timoshenko beam-column in which the internal sliders concentrate the shear deformation that in the Timoshenko model is continuously distributed. Original aspects regarding the evolution of the vibration frequencies and the relevant mode shapes with the tensile load value are highlighted.

  3. Financial stability, wealth effects and optimal macroeconomic policy combination in the United Kingdom: A new-Keynesian dynamic stochastic general equilibrium framework

    Directory of Open Access Journals (Sweden)

    Muhammad Ali Nasir

    2016-12-01

    Full Text Available This study derives an optimal macroeconomic policy combination for financial sector stability in the United Kingdom by employing a New Keynesian Dynamic Stochastic General Equilibrium (NK-DSGE framework. The empirical results obtained show that disciplined fiscal and accommodative monetary policies stance is optimal for financial sector stability. Furthermore, fiscal indiscipline countered by contractionary monetary stance adversely affects financial sector stability. Financial markets, e.g. stocks and Gilts show a short-term asymmetric response to macroeconomic policy interaction and to each other. The asymmetry is a reflection of portfolio adjustment. However in the long-run, the responses to suggested optimal policy combination had homogenous effects and there was evidence of co-movement in the stock and Gilt markets.

  4. Structural Stability and Vibration

    DEFF Research Database (Denmark)

    Wiggers, Sine Leergaard; Pedersen, Pauli

    This book offers an integrated introduction to the topic of stability and vibration. Strikingly, it describes stability as a function of boundary conditions and eigenfrequency as a function of both boundary conditions and column force. Based on a post graduate course held by the author at the Uni...... and their derivation, thus stimulating them to write interactive and dynamic programs to analyze instability and vibrational modes....

  5. Algorithm of dynamic stabilization system for a car 4x4 with a link rear axle

    Directory of Open Access Journals (Sweden)

    M. M. Jileikin

    2014-01-01

    Full Text Available The slow development of active safety systems of the automobile all-wheel drive vehicles is the cause of lack of researches in the field of power distribution under the specific conditions of movement. The purpose of work is to develop methods to control a curvilinear motion of 4x4 cars with a link to the rear axle that provides the increase in directional and trajectory stability of the car. The paper analyses the known methods to increase wheeled vehicles movement stability. It also offers a method for power flow redistribution in the transmission of the car 4x4 with a link to the rear axle, providing the increase in directional and trajectory stability of the car.To study the performance and effectiveness of the proposed method a mathematical model of the moving car 4x4 with a link to the rear axle is developed. Simulation methods allowed us to establish the following:1. for car 4x4 with redistribution of torque between the driving axles in the range of 100:0 - 50:50 and with redistribution of torque between the wheels of the rear axle in the range of 0:100 the most effective are the stabilization algorithms used in combination “Lowing power consumption of the engine +Creation of stabilizing the moment due to the redistribution of torque on different wheels", providing the increase in directional and trajectory stability by 12...93%;2. for car 4x4 with redistribution of torque between the driving axles in the range 100:0 - 0:100 and with redistribution of torque between the wheels of the rear axle in the range of 0:100 the best option is a combination of algorithms "Lowing power consumption of the engine + Creation of stabilizing moment due to redistribution of torques on different wheels", providing the increase in directional and trajectory stability by 27...93%.A comparative analysis of algorithms efficiency of dynamic stabilization system operation for two-axle wheeled vehicles depending on the torque redistribution between the driving

  6. FINANCIAL STABILITY OF ISLAMIC AND CONVENTIONAL BANKS IN BANGLADESH: REVISITING STABILITY MEASURES AND ANALYZING STABILITY BEHAVIOR

    Directory of Open Access Journals (Sweden)

    Md Enayet Hossain

    2018-03-01

    Full Text Available This study intends to assess the relative financial stability of Islamic banks in Bangladesh using three different Z-Scores as financial stability measures, based on a sample of 29 listed commercial banks (23 conventional and 6 Islamic in Bangladesh over the period 2005-2016. Apart from the existing measure of financial stability, Z-Score, the paper contributes to the literature by developing an alternative Z-Score based on bank’s loan portfolio infection ratio. We first use pair-wise comparison and find that Islamic banks are financially more stable in two stability measures i.e. Z-Score (based on Capital Adequacy Ratio and Z-Score (based on Infection Ratio. We then perform static (random effects and dynamic (GMM panel data analysis. By controlling for bank-specific, industry-specific and macroeconomic variables in the regressions, we find that Islamic banks are financially more stable in 2 panel regressions of Z-Score (based on Infection Ratio. We also find that the presence of Islamic banks increases the stability of all banks in the system including their conventional peers.

  7. Consequences of Urban Stability Conditions for Computational Fluid Dynamics Simulations of Urban Dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Lundquist, J K; Chan, S T

    2005-11-30

    The validity of omitting stability considerations when simulating transport and dispersion in the urban environment is explored using observations from the Joint URBAN 2003 field experiment and computational fluid dynamics simulations of that experiment. Four releases of sulfur hexafluoride, during two daytime and two nighttime intensive observing periods, are simulated using the building-resolving computational fluid dynamics model, FEM3MP to solve the Reynolds Averaged Navier-Stokes equations with two options of turbulence parameterizations. One option omits stability effects but has a superior turbulence parameterization using a non-linear eddy viscosity (NEV) approach, while the other considers buoyancy effects with a simple linear eddy viscosity (LEV) approach for turbulence parameterization. Model performance metrics are calculated by comparison with observed winds and tracer data in the downtown area, and with observed winds and turbulence kinetic energy (TKE) profiles at a location immediately downwind of the central business district (CBD) in the area we label as the urban shadow. Model predictions of winds, concentrations, profiles of wind speed, wind direction, and friction velocity are generally consistent with and compare reasonably well with the field observations. Simulations using the NEV turbulence parameterization generally exhibit better agreement with observations. To further explore this assumption of a neutrally-stable atmosphere within the urban area, TKE budget profiles slightly downwind of the urban wake region in the 'urban shadow' are examined. Dissipation and shear production are the largest terms which may be calculated directly. The advection of TKE is calculated as a residual; as would be expected downwind of an urban area, the advection of TKE produced within the urban area is a very large term. Buoyancy effects may be neglected in favor of advection, shear production, and dissipation. For three of the IOPs, buoyancy

  8. Soil moisture storage and hillslope stability

    NARCIS (Netherlands)

    Talebi, A.; Uijlenhoet, R.; Troch, P.A.

    2007-01-01

    Recently, we presented a steady-state analytical hillslope stability model to study rain-induced shallow landslides. This model is based on kinematic wave dynamics of saturated subsurface storage and the infinite slope stability assumption. Here we apply the model to investigate the effect of

  9. A boundary PDE feedback control approach for the stabilization of mortgage price dynamics

    Science.gov (United States)

    Rigatos, G.; Siano, P.; Sarno, D.

    2017-11-01

    Several transactions taking place in financial markets are dependent on the pricing of mortgages (loans for the purchase of residences, land or farms). In this article, a method for stabilization of mortgage price dynamics is developed. It is considered that mortgage prices follow a PDE model which is equivalent to a multi-asset Black-Scholes PDE. Actually it is a diffusion process evolving in a 2D assets space, where the first asset is the house price and the second asset is the interest rate. By applying semi-discretization and a finite differences scheme this multi-asset PDE is transformed into a state-space model consisting of ordinary nonlinear differential equations. For the local subsystems, into which the mortgage PDE is decomposed, it becomes possible to apply boundary-based feedback control. The controller design proceeds by showing that the state-space model of the mortgage price PDE stands for a differentially flat system. Next, for each subsystem which is related to a nonlinear ODE, a virtual control input is computed, that can invert the subsystem's dynamics and can eliminate the subsystem's tracking error. From the last row of the state-space description, the control input (boundary condition) that is actually applied to the multi-factor mortgage price PDE system is found. This control input contains recursively all virtual control inputs which were computed for the individual ODE subsystems associated with the previous rows of the state-space equation. Thus, by tracing the rows of the state-space model backwards, at each iteration of the control algorithm, one can finally obtain the control input that should be applied to the mortgage price PDE system so as to assure that all its state variables will converge to the desirable setpoints. By showing the feasibility of such a control method it is also proven that through selected modification of the PDE boundary conditions the price of the mortgage can be made to converge and stabilize at specific

  10. Stability of Boolean multilevel networks.

    Science.gov (United States)

    Cozzo, Emanuele; Arenas, Alex; Moreno, Yamir

    2012-09-01

    The study of the interplay between the structure and dynamics of complex multilevel systems is a pressing challenge nowadays. In this paper, we use a semiannealed approximation to study the stability properties of random Boolean networks in multiplex (multilayered) graphs. Our main finding is that the multilevel structure provides a mechanism for the stabilization of the dynamics of the whole system even when individual layers work on the chaotic regime, therefore identifying new ways of feedback between the structure and the dynamics of these systems. Our results point out the need for a conceptual transition from the physics of single-layered networks to the physics of multiplex networks. Finally, the fact that the coupling modifies the phase diagram and the critical conditions of the isolated layers suggests that interdependency can be used as a control mechanism.

  11. Stability of Switched Feedback Time-Varying Dynamic Systems Based on the Properties of the Gap Metric for Operators

    Directory of Open Access Journals (Sweden)

    M. De la Sen

    2012-01-01

    Full Text Available The stabilization of dynamic switched control systems is focused on and based on an operator-based formulation. It is assumed that the controlled object and the controller are described by sequences of closed operator pairs (L,C on a Hilbert space H of the input and output spaces and it is related to the existence of the inverse of the resulting input-output operator being admissible and bounded. The technical mechanism addressed to get the results is the appropriate use of the fact that closed operators being sufficiently close to bounded operators, in terms of the gap metric, are also bounded. That philosophy is followed for the operators describing the input-output relations in switched feedback control systems so as to guarantee the closed-loop stabilization.

  12. Feasibility Study of a Magnetic Suspension System for Testing the Dynamic Stability of Blunt Bodies in NASA GRC’s 225 square centimeter Supersonic Wind Tunnel

    Data.gov (United States)

    National Aeronautics and Space Administration — The dynamic stability of blunt bodies during planetary entry is difficult to quantify as computational methods have yet to demonstrate accurate predictive...

  13. Dynamic modeling and dynamical analysis of pump-turbines in S-shaped regions during runaway operation

    International Nuclear Information System (INIS)

    Zhang, Hao; Chen, Diyi; Wu, Changzhi; Wang, Xiangyu; Lee, Jae-Myung; Jung, Kwang-Hyo

    2017-01-01

    Highlights: • Novel dynamic model of a pump-turbine in S-shaped regions is proposed. • A stability criterion of runaway point is given. • Global dynamic characteristics of the pump-turbine are investigated. • Effects of the slopes of the characteristic curve on the stability are studied. - Abstract: There is a region of pump-turbine operation, often called the S-shaped region, in which one unit rotational speed corresponds to three unit flows or torques. In this paper, the dynamic model of the pump-turbine in S-shaped regions is established by introducing the nonlinear piecewise function of relative parameters. Then, the global bifurcation diagrams of the pump-turbine are presented to analyze its dynamic characteristics in the S-shaped regions. Meanwhile, a stability criterion of runaway point is given based on the established theoretical model. The numerical experiments are conducted on the model and the results are in good agreement with the theoretical analysis. Furthermore, the effects of the characteristic curve slopes on the stability of the pump-turbine are studied by an innovative use of the three-dimensional bifurcation diagrams. Finally, the factors influencing the runaway stability of pump-turbines are also discussed, based on the dynamic analysis.

  14. Sensitivity analysis and calibration of a dynamic physically based slope stability model

    Science.gov (United States)

    Zieher, Thomas; Rutzinger, Martin; Schneider-Muntau, Barbara; Perzl, Frank; Leidinger, David; Formayer, Herbert; Geitner, Clemens

    2017-06-01

    Physically based modelling of slope stability on a catchment scale is still a challenging task. When applying a physically based model on such a scale (1 : 10 000 to 1 : 50 000), parameters with a high impact on the model result should be calibrated to account for (i) the spatial variability of parameter values, (ii) shortcomings of the selected model, (iii) uncertainties of laboratory tests and field measurements or (iv) parameters that cannot be derived experimentally or measured in the field (e.g. calibration constants). While systematic parameter calibration is a common task in hydrological modelling, this is rarely done using physically based slope stability models. In the present study a dynamic, physically based, coupled hydrological-geomechanical slope stability model is calibrated based on a limited number of laboratory tests and a detailed multitemporal shallow landslide inventory covering two landslide-triggering rainfall events in the Laternser valley, Vorarlberg (Austria). Sensitive parameters are identified based on a local one-at-a-time sensitivity analysis. These parameters (hydraulic conductivity, specific storage, angle of internal friction for effective stress, cohesion for effective stress) are systematically sampled and calibrated for a landslide-triggering rainfall event in August 2005. The identified model ensemble, including 25 behavioural model runs with the highest portion of correctly predicted landslides and non-landslides, is then validated with another landslide-triggering rainfall event in May 1999. The identified model ensemble correctly predicts the location and the supposed triggering timing of 73.0 % of the observed landslides triggered in August 2005 and 91.5 % of the observed landslides triggered in May 1999. Results of the model ensemble driven with raised precipitation input reveal a slight increase in areas potentially affected by slope failure. At the same time, the peak run-off increases more markedly, suggesting that

  15. Effect of Jaw Clenching on Balance Recovery: Dynamic Stability and Lower Extremity Joint Kinematics after Forward Loss of Balance

    OpenAIRE

    Ringhof, Steffen; Stein, Thorsten; Hellmann, Daniel; Schindler, Hans J.; Potthast, Wolfgang

    2016-01-01

    Postural control is crucial for most tasks of daily living, delineating postural orientation and balance, with its main goal of fall prevention. Nevertheless, falls are common events, and have been associated with deficits in muscle strength and dynamic postural stability. Recent studies reported on improvements in rate of force development and static postural control evoked by jaw clenching activities, potentially induced by facilitation of human ...

  16. Power system observability and dynamic state estimation for stability monitoring using synchrophasor measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Kai; Qi, Junjian; Kang, Wei

    2016-08-01

    Growing penetration of intermittent resources such as renewable generations increases the risk of instability in a power grid. This paper introduces the concept of observability and its computational algorithms for a power grid monitored by the wide-area measurement system (WAMS) based on synchrophasors, e.g. phasor measurement units (PMUs). The goal is to estimate real-time states of generators, especially for potentially unstable trajectories, the information that is critical for the detection of rotor angle instability of the grid. The paper studies the number and siting of synchrophasors in a power grid so that the state of the system can be accurately estimated in the presence of instability. An unscented Kalman filter (UKF) is adopted as a tool to estimate the dynamic states that are not directly measured by synchrophasors. The theory and its computational algorithms are illustrated in detail by using a 9-bus 3-generator power system model and then tested on a 140-bus 48-generator Northeast Power Coordinating Council power grid model. Case studies on those two systems demonstrate the performance of the proposed approach using a limited number of synchrophasors for dynamic state estimation for stability assessment and its robustness against moderate inaccuracies in model parameters.

  17. Stabilizing IkappaBalpha by "consensus" design.

    Science.gov (United States)

    Ferreiro, Diego U; Cervantes, Carla F; Truhlar, Stephanie M E; Cho, Samuel S; Wolynes, Peter G; Komives, Elizabeth A

    2007-01-26

    IkappaBalpha is the major regulator of transcription factor NF-kappaB function. The ankyrin repeat region of IkappaBalpha mediates specific interactions with NF-kappaB dimers, but ankyrin repeats 1, 5 and 6 display a highly dynamic character when not in complex with NF-kappaB. Using chemical denaturation, we show here that IkappaBalpha displays two folding transitions: a non-cooperative conversion under weak perturbation, and a major cooperative folding phase upon stronger insult. Taking advantage of a native Trp residue in ankyrin repeat (AR) 6 and engineered Trp residues in AR2, AR4 and AR5, we show that the cooperative transition involves AR2 and AR3, while the non-cooperative transition involves AR5 and AR6. The major structural transition can be affected by single amino acid substitutions converging to the "consensus" ankyrin repeat sequence, increasing the native state stability significantly. We further characterized the structural and dynamic properties of the native state ensemble of IkappaBalpha and the stabilized mutants by H/(2)H exchange mass spectrometry and NMR. The solution experiments were complemented with molecular dynamics simulations to elucidate the microscopic origins of the stabilizing effect of the consensus substitutions, which can be traced to the fast conformational dynamics of the folded ensemble.

  18. Dynamic ocean topography from CryoSat-2: examining recent changes in ice-ocean stress and advancing a theory for Beaufort Gyre stabilization

    Science.gov (United States)

    Dewey, S.; Morison, J.; Kwok, R.; Dickinson, S.; Morison, D.; Andersen, R.

    2017-12-01

    Model and sparse observational evidence has shown the ocean current speed in the Beaufort Gyre to have increased and recently stabilized. However, full-basin altimetric observations of dynamic ocean topography (DOT) and ocean surface currents have yet to be applied to the dynamics of gyre stabilization. DOT fields from retracked CryoSat-2 retrievals in Arctic Ocean leads have enabled us to calculate 2-month average ocean geostrophic currents. These currents are crucial to accurately computing ice-ocean stress, especially because they have accelerated so that their speed rivals that of the overlying sea ice. Given these observations, we can shift our view of the Beaufort Gyre as a system in which the wind drives the ice and the ice drives a passive ocean to a system with the following feedback: After initial input of energy by wind, ice velocity decreases due to water drag and internal ice stress and the ocean drives the ice, reversing Ekman pumping and decelerating the gyre. This reversal changes the system from a persistently convergent regime to one in which freshwater is released from the gyre and doming of the gyre decreases, without any change in long-term average wind stress curl. Through these processes, the ice-ocean stress provides a key feedback in Beaufort Gyre stabilization.

  19. Stability and convergence analysis of the quasi-dynamics method for the initial pebble packing

    International Nuclear Information System (INIS)

    Li, Y.; Ji, W.

    2012-01-01

    The simulation for the pebble flow recirculation within Pebble Bed Reactors (PBRs) requires an efficient algorithm to generate an initial overlap-free pebble configuration within the reactor core. In the previous work, a dynamics-based approach, the Quasi-Dynamics Method (QDM), has been proposed to generate densely distributed pebbles in PBRs with cylindrical and annular core geometries. However, the stability and the efficiency of the QDM were not fully addressed. In this work, the algorithm is reformulated with two control parameters and the impact of these parameters on the algorithm performance is investigated. Firstly, the theoretical analysis for a 1-D packing system is conducted and the range of the parameter in which the algorithm is convergent is estimated. Then, this estimation is verified numerically for a 3-D packing system. Finally, the algorithm is applied to modeling the PBR fuel loading configuration and the convergence performance at different packing fractions is presented. Results show that the QDM is efficient in packing pebbles within the realistic range of the packing fraction in PBRs, and it is capable in handling cylindrical geometry with packing fractions up to 63.5%. (authors)

  20. Mathematical modelling and linear stability analysis of laser fusion cutting

    International Nuclear Information System (INIS)

    Hermanns, Torsten; Schulz, Wolfgang; Vossen, Georg; Thombansen, Ulrich

    2016-01-01

    A model for laser fusion cutting is presented and investigated by linear stability analysis in order to study the tendency for dynamic behavior and subsequent ripple formation. The result is a so called stability function that describes the correlation of the setting values of the process and the process’ amount of dynamic behavior.

  1. Mathematical modelling and linear stability analysis of laser fusion cutting

    Energy Technology Data Exchange (ETDEWEB)

    Hermanns, Torsten; Schulz, Wolfgang [RWTH Aachen University, Chair for Nonlinear Dynamics, Steinbachstr. 15, 52047 Aachen (Germany); Vossen, Georg [Niederrhein University of Applied Sciences, Chair for Applied Mathematics and Numerical Simulations, Reinarzstr.. 49, 47805 Krefeld (Germany); Thombansen, Ulrich [RWTH Aachen University, Chair for Laser Technology, Steinbachstr. 15, 52047 Aachen (Germany)

    2016-06-08

    A model for laser fusion cutting is presented and investigated by linear stability analysis in order to study the tendency for dynamic behavior and subsequent ripple formation. The result is a so called stability function that describes the correlation of the setting values of the process and the process’ amount of dynamic behavior.

  2. Passivity and Evolutionary Game Dynamics

    KAUST Repository

    Park, Shinkyu; Shamma, Jeff S.; Martins, Nuno C.

    2018-01-01

    This paper investigates an energy conservation and dissipation -- passivity -- aspect of dynamic models in evolutionary game theory. We define a notion of passivity using the state-space representation of the models, and we devise systematic methods to examine passivity and to identify properties of passive dynamic models. Based on the methods, we describe how passivity is connected to stability in population games and illustrate stability of passive dynamic models using numerical simulations.

  3. Passivity and Evolutionary Game Dynamics

    KAUST Repository

    Park, Shinkyu

    2018-03-21

    This paper investigates an energy conservation and dissipation -- passivity -- aspect of dynamic models in evolutionary game theory. We define a notion of passivity using the state-space representation of the models, and we devise systematic methods to examine passivity and to identify properties of passive dynamic models. Based on the methods, we describe how passivity is connected to stability in population games and illustrate stability of passive dynamic models using numerical simulations.

  4. Localized nonlinear waves and dynamical stability in spinor Bose–Einstein condensates with time–space modulation

    Science.gov (United States)

    Yao, Yu-Qin; Han, Wei; Li, Ji; Liu, Wu-Ming

    2018-05-01

    Nonlinearity is one of the most remarkable characteristics of Bose–Einstein condensates (BECs). Much work has been done on one- and two-component BECs with time- or space-modulated nonlinearities, while there is little work on spinor BECs with space–time-modulated nonlinearities. In the present paper we investigate localized nonlinear waves and dynamical stability in spinor Bose–Einstein condensates with nonlinearities dependent on time and space. We solve the three coupled Gross–Pitaevskii equations by similarity transformation and obtain two families of exact matter wave solutions in terms of Jacobi elliptic functions and the Mathieu equation. The localized states of the spinor matter wave describe the dynamics of vector breathing solitons, moving breathing solitons, quasi-breathing solitons and resonant solitons. The results show that one-order vector breathing solitons, quasi-breathing solitons, resonant solitons and the moving breathing solitons ψ ±1 are all stable, but the moving breathing soliton ψ 0 is unstable. We also present the experimental parameters to realize these phenomena in future experiments.

  5. Magneto-optical detection of the relaxation dynamics of alloy nanoparticles with a high-stability magnetic circular dichroism setup

    Energy Technology Data Exchange (ETDEWEB)

    Cavigli, L. [L.E.N.S. University of Florence, via N. Carrara 1, I-50019 Sesto F.no (Italy); INSTM Department of Chemistry, University of Florence, via della Lastruccia 5, I-50019 Sesto F.no (Italy); Julian Fernandez, C. de [Department of Physics, University of Padua, via Marzolo 8, I-35131 Padova (Italy); Gatteschi, D. [INSTM Department of Chemistry, University of Florence, via della Lastruccia 5, I-50019 Sesto F.no (Italy); Gurioli, M. [L.E.N.S. University of Florence, via N. Carrara 1, I-50019 Sesto F.no (Italy); Sangregorio, C. [INSTM Department of Chemistry, University of Florence, via della Lastruccia 5, I-50019 Sesto F.no (Italy)]. E-mail: claudio.sangregorio@unifi.it; Mattei, G. [Department of Physics, University of Padua, via Marzolo 8, I-35131 Padova (Italy); Mazzoldi, P. [Department of Physics, University of Padua, via Marzolo 8, I-35131 Padova (Italy); Bogani, L. [L.E.N.S. University of Florence, via N. Carrara 1, I-50019 Sesto F.no (Italy); INSTM Department of Chemistry, University of Florence, via della Lastruccia 5, I-50019 Sesto F.no (Italy)

    2007-09-15

    We present a versatile high-stability and high-sensitivity magneto-optical setup that allows transmission and reflection measurements at high fields and low temperatures. We apply the technique to measure the decay in time of the magnetization of highly monodisperse 3.3nm Co{sub 33}Ni{sub 67} alloy nanoparticles embedded in a silica host. We demonstrate the possibility of observing the dynamics of the magnetization over a macroscopic timescale in dilute samples, where other techniques are unavailable.

  6. Magneto-optical detection of the relaxation dynamics of alloy nanoparticles with a high-stability magnetic circular dichroism setup

    International Nuclear Information System (INIS)

    Cavigli, L.; Julian Fernandez, C. de; Gatteschi, D.; Gurioli, M.; Sangregorio, C.; Mattei, G.; Mazzoldi, P.; Bogani, L.

    2007-01-01

    We present a versatile high-stability and high-sensitivity magneto-optical setup that allows transmission and reflection measurements at high fields and low temperatures. We apply the technique to measure the decay in time of the magnetization of highly monodisperse 3.3nm Co 33 Ni 67 alloy nanoparticles embedded in a silica host. We demonstrate the possibility of observing the dynamics of the magnetization over a macroscopic timescale in dilute samples, where other techniques are unavailable

  7. Magneto-optical detection of the relaxation dynamics of alloy nanoparticles with a high-stability magnetic circular dichroism setup

    Science.gov (United States)

    Cavigli, L.; de Julián Fernández, C.; Gatteschi, D.; Gurioli, M.; Sangregorio, C.; Mattei, G.; Mazzoldi, P.; Bogani, L.

    2007-09-01

    We present a versatile high-stability and high-sensitivity magneto-optical setup that allows transmission and reflection measurements at high fields and low temperatures. We apply the technique to measure the decay in time of the magnetization of highly monodisperse 3.3 nm Co33Ni67 alloy nanoparticles embedded in a silica host. We demonstrate the possibility of observing the dynamics of the magnetization over a macroscopic timescale in dilute samples, where other techniques are unavailable.

  8. Analysis and Stabilization of Chaos in Permanent Magnet DC Motor Driver

    Science.gov (United States)

    Tahir, Fadhil Rahma; Abdul-Hassan, Khalid M.; Abdullah, Mohammed Abbas; Pham, Viet-Thanh; Hoang, Thang Manh; Wang, Xiong

    In this paper, the nonlinear dynamics of permanent magnet (PM) DC motor drive with proportional (P) controller have been investigated. The drive system shows different dynamical behaviors; periodic, quasi-periodic, and chaotic behaviors, and those are characterized by using bifurcation diagram, phase portrait, and time series. The stability analysis of period-1 behavior is studied by using Filippov’s method, the analytic results show good agreement with simulation ones. Then, the stabilization of chaos to fixed point is carried out by using the sliding mode control (SMC). In addition, experimentally the nonlinear dynamics and the proposed stabilization method to PM DC motor drive system have been achieved by using a microcontroller. For the first time, it is noted that when the system is in chaotic dynamics, the vibration of the motor is increased approximately 400% compared with the system in periodic dynamical behavior.

  9. The influence of crystal anisotropy on the critical state stability and flux jump dynamics of a single crystal of La1.85Sr0.15CuO4

    International Nuclear Information System (INIS)

    Nabiałek, A; Wiśniewski, A; Chabanenko, V V; Vasiliev, S V; Tsvetkov, T V; Pérez-Rodríguez, F

    2012-01-01

    We studied the critical state stability of a large cubic sample of single-crystalline La 1.85 Sr 0.15 CuO 4 for different sample orientations with respect to the external magnetic field as well as the dynamics of the flux jumps. It is shown that thermomagnetic avalanches develop under dynamic conditions, which are characterized by the magnetic diffusivity being significantly lower than the thermal case. In this case, the critical state stability depends strongly on the cooling conditions. We compared predictions from the isothermal model and from the model for a weakly cooled sample with experimental results. In both models, the field of the first flux jump decreases with increase of the sweep rate of the external magnetic field. We also investigated the influence of the external magnetic field on the dynamics of the following stages of the thermomagnetic avalanche. It is shown that the dynamics of the flux jumps is correlated with the magnetic diffusivity, which is proportional to the flux flow resistivity. (paper)

  10. Generic dynamic wind turbine models for power system stability analysis: A comprehensive review

    DEFF Research Database (Denmark)

    Honrubia-Escribano, A.; Gómez-Lázaro, E.; Fortmann, J.

    2018-01-01

    In recent years, international working groups, mainly from the International Electrotechnical Commission (IEC) and the Western Electricity Coordinating Council (WECC), have made a major effort to develop generic —also known as simplified or standard— dynamic wind turbine models to be used for power...... system stability analysis. These models are required by power system operators to conduct the planning and operation activities of their networks since the use of detailed manufacturer models is not practical. This paper presents a comprehensive review of the work done in this field, based on the results...... obtained by IEC and WECC working groups in the course of their research, which have motivated the publication of the IEC 61400-27 in February 2015. The final published versions of the generic models developed according to the existing four wind turbine technology types are detailed, highlighting...

  11. Ab initio study on stacking sequences, free energy, dynamical stability and potential energy surfaces of graphite structures

    International Nuclear Information System (INIS)

    Anees, P; Valsakumar, M C; Chandra, Sharat; Panigrahi, B K

    2014-01-01

    Ab initio simulations have been performed to study the structure, energetics and stability of several plausible stacking sequences in graphite. These calculations suggest that in addition to the standard structures, graphite can also exist in AA-simple hexagonal, AB-orthorhombic and ABC-hexagonal type stacking. The free energy difference between these structures is very small (∼1 meV/atom), and hence all the structures can coexist from purely energetic considerations. Calculated x-ray diffraction patterns are similar to those of the standard structures for 2θ ⩽ 70°. Shear elastic constant C 44 is negative in AA-simple hexagonal, AB-orthorhombic and ABC-hexagonal structures, suggesting that these structures are mechanically unstable. Phonon dispersions show that the frequencies of some modes along the Γ–A direction in the Brillouin zone are imaginary in all of the new structures, implying that these structures are dynamically unstable. Incorporation of zero point vibrational energy via the quasi-harmonic approximation does not result in the restoration of dynamical stability. Potential energy surfaces for the unstable normal modes are seen to have the topography of a potential hill for all the new structures, confirming that all of the new structures are inherently unstable. The fact that the potential energy surface is not in the form of a double well implies that the structures are linearly as well as globally unstable. (paper)

  12. Study on Roll Instability Mechanism and Stability Index of Articulated Steering Vehicles

    Directory of Open Access Journals (Sweden)

    Xuefei Li

    2016-01-01

    Full Text Available This study examines the roll instability mechanism and stability index of articulated steering vehicles (ASVs by taking wheel loaders as the research object. A seven-degree-of-freedom nonlinear dynamics model of the ASVs is built on the basis of multibody dynamics. A physical prototype model of an ASV is designed and manufactured to validate the dynamic model. Test results reasonably agree with the simulation results, which indicates that the established dynamic model can reasonably describe ASV movements. Detailed analysis of the rollover stability of the wheel loader is performed with the use of the established dynamic model. Analysis results show that rollover will occur when the roll angular velocity exceeds a critical threshold, which is affected by lateral acceleration and slope angle. On this basis, a dynamic stability index applicable to the ASVs is presented.

  13. Results of the Workshop on Two-Phase Flow, Fluid Stability and Dynamics: Issues in Power, Propulsion, and Advanced Life Support Systems

    Science.gov (United States)

    McQuillen, John; Rame, Enrique; Kassemi, Mohammad; Singh, Bhim; Motil, Brian

    2003-01-01

    The Two-phase Flow, Fluid Stability and Dynamics Workshop was held on May 15, 2003 in Cleveland, Ohio to define a coherent scientific research plan and roadmap that addresses the multiphase fluid problems associated with NASA s technology development program. The workshop participants, from academia, industry and government, prioritized various multiphase issues and generated a research plan and roadmap to resolve them. This report presents a prioritization of the various multiphase flow and fluid stability phenomena related primarily to power, propulsion, fluid and thermal management and advanced life support; and a plan to address these issues in a logical and timely fashion using analysis, ground-based and space-flight experiments.

  14. Topics in stability and transport in tokamaks: Dynamic transition to second stability with auxiliary heating; stability of global Alfven waves in an ignited plasma

    International Nuclear Information System (INIS)

    Fu, G.

    1988-01-01

    The problem of access to the high-beta ballooning second-stability regime by means of auxiliary heating and the problem of the stability of global-shear Alfven waves in an ignited tokamak plasma are theoretically investigated. These two problems are related to the confinement of both the bulk plasma as well as the fusion-product alpha particles an dare fundamentally important to the operation of ignited tokamak plasma. First, a model that incorporates both transport and ballooning mode stability was developed in order to estimate the auxiliary heating power required for tokamak plasma to evolve in time self-consistently into a high-beta, globally self-stabilized equilibrium. The critical heating power needed for access to second stability is found to be proportional to the square root of the anomalous diffusivity induced by the ballooning instability. Next, the full effects of toroidicity are retained in a theoretical description of global-type-shear Alfven modes whose stability can be modified by the fusion-product alpha particles that will present in an ignited tokamak plasma. Toroidicity is found to induce mode coupling and to stabilize the so-called Global Alfven Eigenmodes (GAE)

  15. Bioaccessibility and digestive stability of carotenoids in cooked eggs studied using a dynamic in vitro gastrointestinal model.

    Science.gov (United States)

    Nimalaratne, Chamila; Savard, Patricia; Gauthier, Sylvie F; Schieber, Andreas; Wu, Jianping

    2015-03-25

    Among dietary carotenoids, lutein and zeaxanthin are known to protect against age-related macular degeneration, a leading cause of irreversible vision loss in the elderly. Egg yolk is rich in lutein and zeaxanthin, however, the effect of cooking and gastrointestinal digestion on yolk carotenoids is poorly understood. An in vitro dynamic gastrointestinal model (TIM-1) was used to investigate the digestive stability and bioaccessibility of carotenoids from boiled, fried, and scrambled eggs. Bioaccessibility but not digestive stability was significantly affected by the method of cooking. The main egg carotenoids, all-E-lutein and all-E-zeaxanthin, were stable during the digestion with average recoveries of 90 and 88%, respectively. No trans-cis isomerization of carotenoids was observed during digestion. Both all-E-lutein and all-E-zeaxanthin from scrambled eggs showed significantly lower bioaccessibility compared to boiled eggs. The results indicate that the bioaccessibility of egg carotenoids can be affected by different food preparation methods.

  16. Improved Precision and Efficiency of a Modified ORG0020 Dynamic Respiration Test Setup for Compost Stability Assessment

    Directory of Open Access Journals (Sweden)

    Diana Guillen Ferrari

    2017-12-01

    Full Text Available The ORG0020 dynamic respiration test is effective at distinguishing source segregated organic waste derived composts across a wide range of stabilities when compared to other standard tests; however, using the original diaphragm pump and manifold setup, the test is affected by variability in flow rate with time and across sample replicate vessels. Here, we demonstrate the use of a multichannel peristaltic pump to deliver a more consistent air flow to individual vessels. Using finished and unfinished industry compost samples from different sites with varying stabilities, we provide evidence of greater precision of the modified setup compared to the original. Furthermore, the reduced need for air flow adjustment resulted in improved running cost efficiency with less labour demand. Analysis of compost sample oxygen demand supports the current test air flow rate of 25–75 mL min−1, although the improved air flow control will enable future narrowing of the acceptable range for better inter-laboratory performance.

  17. The mathematical model of dynamic stabilization system for autonomous car

    Science.gov (United States)

    Saikin, A. M.; Buznikov, S. E.; Shabanov, N. S.; Elkin, D. S.

    2018-02-01

    Leading foreign companies and domestic enterprises carry out extensive researches and developments in the field of control systems for autonomous cars and in the field of improving driver assistance systems. The search for technical solutions, as a rule, is based on heuristic methods and does not always lead to satisfactory results. The purpose of this research is to formalize the road safety problem in the terms of modern control theory, to construct the adequate mathematical model for solving it, including the choice of software and hardware environment. For automatic control of the object, it is necessary to solve the problem of dynamic stabilization in the most complete formulation. The solution quality of the problem on a finite time interval is estimated by the value of the quadratic functional. Car speed, turn angle and additional yaw rate (during car drift or skidding) measurements are performed programmatically by the original virtual sensors. The limit speeds at which drift, skidding or rollover begins are calculated programmatically taking into account the friction coefficient identified in motion. The analysis of the results confirms both the adequacy of the mathematical models and the algorithms and the possibility of implementing the system in the minimal technical configuration.

  18. Fixed-time stabilization of impulsive Cohen-Grossberg BAM neural networks.

    Science.gov (United States)

    Li, Hongfei; Li, Chuandong; Huang, Tingwen; Zhang, Wanli

    2018-02-01

    This article is concerned with the fixed-time stabilization for impulsive Cohen-Grossberg BAM neural networks via two different controllers. By using a novel constructive approach based on some comparison techniques for differential inequalities, an improvement theorem of fixed-time stability for impulsive dynamical systems is established. In addition, based on the fixed-time stability theorem of impulsive dynamical systems, two different control protocols are designed to ensure the fixed-time stabilization of impulsive Cohen-Grossberg BAM neural networks, which include and extend the earlier works. Finally, two simulations examples are provided to illustrate the validity of the proposed theoretical results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Dynamics and Control of a Maglev Vehicle

    Directory of Open Access Journals (Sweden)

    Won ko

    2006-06-01

    Full Text Available In this paper, dynamics of a Maglev vehicle was analyzed and controls utilizing an optimized damping and an LQR algorithms were designed to stabilize the vehicle. The dynamics of magnetically levitated and propelled Maglev vehicle are complex and inherently unstable. Moreover, 6-DOF system dynamics is highly nonlinear and coupled. The proposed control schemes provide the dynamic stability and controllability, which computer simulations confirmed the effectiveness.

  20. Nonlinear physical systems spectral analysis, stability and bifurcations

    CERN Document Server

    Kirillov, Oleg N

    2013-01-01

    Bringing together 18 chapters written by leading experts in dynamical systems, operator theory, partial differential equations, and solid and fluid mechanics, this book presents state-of-the-art approaches to a wide spectrum of new and challenging stability problems.Nonlinear Physical Systems: Spectral Analysis, Stability and Bifurcations focuses on problems of spectral analysis, stability and bifurcations arising in the nonlinear partial differential equations of modern physics. Bifurcations and stability of solitary waves, geometrical optics stability analysis in hydro- and magnetohydrodynam

  1. Effect of dynamic surface polarization on the oxidative stability of solvents in nonaqueous Li-O 2 batteries

    Science.gov (United States)

    Khetan, Abhishek; Pitsch, Heinz; Viswanathan, Venkatasubramanian

    2017-09-01

    Polarization-induced renormalization of the frontier energy levels of interacting molecules and surfaces can cause significant shifts in the excitation and transport behavior of electrons. This phenomenon is crucial in determining the oxidative stability of nonaqueous electrolytes in high-energy density electrochemical systems such as the Li-O2 battery. On the basis of partially self-consistent first-principles Sc G W0 calculations, we systematically study how the electronic energy levels of four commonly used solvent molecules, namely, dimethylsulfoxide (DMSO), dimethoxyethane (DME), tetrahydrofuran (THF), and acetonitrile (ACN), renormalize when physisorbed on the different stable surfaces of Li2O2 , the main discharge product. Using band level alignment arguments, we propose that the difference between the solvent's highest occupied molecular orbital (HOMO) level and the surface's valence-band maximum (VBM) is a refined metric of oxidative stability. This metric and a previously used descriptor, solvent's gas phase HOMO level, agree quite well for physisorbed cases on pristine surfaces where ACN is oxidatively most stable followed by DME, THF, and DMSO. However, this effect is intrinsically linked to the surface chemistry of the solvent's interaction with the surface states and defects, and depends strongly on their nature. We conclusively show that the propensity of solvent molecules to oxidize will be significantly higher on Li2O2 surfaces with defects as compared to pristine surfaces. This suggests that the oxidative stability of a solvent is dynamic and is a strong function of surface electronic properties. Thus, while gas phase HOMO levels could be used for preliminary solvent candidate screening, a more refined picture of solvent stability requires mapping out the solvent stability as a function of the state of the surface under operating conditions.

  2. Non-Linear Aeroelastic Stability of Wind Turbines

    DEFF Research Database (Denmark)

    Zhang, Zili; Sichani, Mahdi Teimouri; Li, Jie

    2013-01-01

    trigger off internal resonances. Further, the rotational speed of the rotor is not constant due to the stochastic turbulence, which may also influence the stability. In this paper, a robust measure of the dynamic stability of wind turbines is suggested, which takes the collective blade pitch control...

  3. An Investigation of Power Stabilization and Space-Dependent Dynamics of a Nuclear Fluidized-Bed Reactor

    International Nuclear Information System (INIS)

    Pain, Christopher C.; Eaton, Matthew D.; Gomes, Jefferson L.M.A.; Oliveira, Cassiano R.E. de; Umpleby, Adrian P.; Ziver, Kemal; Ackroyd, Ron T.; Miles, Bryan; Goddard, Antony J.H.; Dam, H. van; Hagen, T.H.J.J. van der; Lathouwers, D.

    2003-01-01

    Previous work into the space-dependent kinetics of the conceptual nuclear fluidized bed has highlighted the sensitivity of fission power to particle movements within the bed. The work presented in this paper investigates a method of stabilizing the fission power by making it less sensitive to fuel particle movement. Steady-state neutronic calculations are performed to obtain a suitable design that is stable to radial and axial fuel particle movements in the bed. Detailed spatial/temporal simulations performed using the finite element transient criticality (FETCH) code investigate the dynamics of the new reactor design. A dual requirement of the design is that it has a moderate power output of ∼300 MW(thermal)

  4. Game equilibrium models I evolution and game dynamics

    CERN Document Server

    1991-01-01

    There are two main approaches towards the phenotypic analysis of frequency dependent natural selection. First, there is the approach of evolutionary game theory, which was introduced in 1973 by John Maynard Smith and George R. Price. In this theory, the dynamical process of natural selection is not modeled explicitly. Instead, the selective forces acting within a population are represented by a fitness function, which is then analysed according to the concept of an evolutionarily stable strategy or ESS. Later on, the static approach of evolutionary game theory has been complemented by a dynamic stability analysis of the replicator equations. Introduced by Peter D. Taylor and Leo B. Jonker in 1978, these equations specify a class of dynamical systems, which provide a simple dynamic description of a selection process. Usually, the investigation of the replicator dynamics centers around a stability analysis of their stationary solutions. Although evolutionary stability and dynamic stability both intend to charac...

  5. ROBUST ALGORITHMS OF PARAMETRIC ESTIMATION IN SOME STABILIZATION PROBLEMS

    Directory of Open Access Journals (Sweden)

    A.A. Vedyakov

    2016-07-01

    Full Text Available Subject of Research.The tasks of dynamic systems provision in the stable state by means of ensuring of trite solution stability for various dynamic systems in the education regime with the aid of their parameters tuning are considered. Method. The problems are solved by application of ideology of the robust finitely convergent algorithms creation. Main Results. The concepts of parametric algorithmization of stability and steady asymptotic stability are introduced and the results are presented on synthesis of coarsed gradient algorithms solving the proposed tasks for finite number of iterations with the purpose of the posed problems decision. Practical Relevance. The article results may be called for decision of practical stabilization tasks in the process of various engineering constructions and devices operation.

  6. Biochemical Stability and Molecular Dynamic Characterization of Aspergillus fumigatus Cystathionine γ-Lyase in Response to Various Reaction Effectors

    KAUST Repository

    El-Sayed, Ashraf S.A.

    2015-08-11

    Cystathionine γ-lyase (CGL) is a key enzyme in the methionine-cysteine cycle in all living organisms forming cysteine, α-ketobutyrate and ammonia via homocysteine and cystathionine intermediates. Although, human and plant CGLs have been extensively studied at the molecular and mechanistic levels, there has been little work on the molecular and catalytic properties of fungal CGL. Herein, we studied in detail for the first time the molecular and catalytic stability of Aspergillus fumigatus CGL, since conformational instability, inactivation and structural antigenicity are the main limitations of the PLP-dependent enzymes on various therapeutic uses. We examined these properties in response to buffer compositions, stabilizing and destabilizing agents using Differential Scanning Fluorometery (DSF), steady state and gel-based fluorescence of the intrinsic hydrophobic core, stability of internal aldimine linkage and catalytic properties. The activity of the recombinant A. fumigatus CGL was 13.8 U/mg. The melting temperature (Tm) of CGL in potassium phosphate buffer (pH 7.0-8.0) was 73.3 °C, with ∼3 °C upshifting in MES and sodium phosphate buffers (pH 7.0). The conformational thermal stability was increased in potassium phosphate, sodium phosphate and MES buffers, in contrast to Tris-HCl, HEPES (pH 7.0) and CAPS (pH 9.0-10.0). The thermal stability and activity of CGL was slightly increased in the presence of trehalose and glycerol that might be due to hydration of the enzyme backbone, unlike the denaturing effect of GdmCl and urea. Modification of surface CGL glutamic and aspartic acids had no significant effect on the enzyme conformational and catalytic stability. Molecular modeling and dynamics simulations unveil the high conformational stability of the overall scaffold of CGL with high flexibility at the non-structural regions. CGL structure has eight buried Trp residues, which are reoriented to the enzyme surface and get exposed to the solvent under

  7. Biochemical Stability and Molecular Dynamic Characterization of Aspergillus fumigatus Cystathionine γ-Lyase in Response to Various Reaction Effectors

    KAUST Repository

    El-Sayed, Ashraf S.A.; Abdel-Azeim, Safwat; Ibrahim, Hend M.; Yassin, Marwa A.; Abdel-Ghany, Salah E.; Esener, Sadik; Ali, Gul Shad

    2015-01-01

    Cystathionine γ-lyase (CGL) is a key enzyme in the methionine-cysteine cycle in all living organisms forming cysteine, α-ketobutyrate and ammonia via homocysteine and cystathionine intermediates. Although, human and plant CGLs have been extensively studied at the molecular and mechanistic levels, there has been little work on the molecular and catalytic properties of fungal CGL. Herein, we studied in detail for the first time the molecular and catalytic stability of Aspergillus fumigatus CGL, since conformational instability, inactivation and structural antigenicity are the main limitations of the PLP-dependent enzymes on various therapeutic uses. We examined these properties in response to buffer compositions, stabilizing and destabilizing agents using Differential Scanning Fluorometery (DSF), steady state and gel-based fluorescence of the intrinsic hydrophobic core, stability of internal aldimine linkage and catalytic properties. The activity of the recombinant A. fumigatus CGL was 13.8 U/mg. The melting temperature (Tm) of CGL in potassium phosphate buffer (pH 7.0-8.0) was 73.3 °C, with ∼3 °C upshifting in MES and sodium phosphate buffers (pH 7.0). The conformational thermal stability was increased in potassium phosphate, sodium phosphate and MES buffers, in contrast to Tris-HCl, HEPES (pH 7.0) and CAPS (pH 9.0-10.0). The thermal stability and activity of CGL was slightly increased in the presence of trehalose and glycerol that might be due to hydration of the enzyme backbone, unlike the denaturing effect of GdmCl and urea. Modification of surface CGL glutamic and aspartic acids had no significant effect on the enzyme conformational and catalytic stability. Molecular modeling and dynamics simulations unveil the high conformational stability of the overall scaffold of CGL with high flexibility at the non-structural regions. CGL structure has eight buried Trp residues, which are reoriented to the enzyme surface and get exposed to the solvent under

  8. Stability of large scale interconnected dynamical systems

    International Nuclear Information System (INIS)

    Akpan, E.P.

    1993-07-01

    Large scale systems modelled by a system of ordinary differential equations are considered and necessary and sufficient conditions are obtained for the uniform asymptotic connective stability of the systems using the method of cone-valued Lyapunov functions. It is shown that this model significantly improves the existing models. (author). 9 refs

  9. Novel Gyroscopic Mounting for Crystal Oscillators to Increase Short and Medium Term Stability under Highly Dynamic Conditions.

    Science.gov (United States)

    Abedi, Maryam; Jin, Tian; Sun, Kewen

    2015-06-17

    In this paper, a gyroscopic mounting method for crystal oscillators to reduce the impact of dynamic loads on their output stability has been proposed. In order to prove the efficiency of this mounting approach, each dynamic load-induced instability has been analyzed in detail. A statistical study has been performed on the elevation angle of the g-sensitivity vector of Stress Compensated-cut (SC-cut) crystals. The analysis results show that the proposed gyroscopic mounting method gives good performance for host vehicle attitude changes. A phase noise improvement of 27 dB maximum and 5.7 dB on average can be achieved in the case of steady state loads, while under sinusoidal vibration conditions, the maximum and average phase noise improvement are as high as 24 dB and 7.5 dB respectively. With this gyroscopic mounting method, random vibration-induced phase noise instability is reduced 30 dB maximum and 8.7 dB on average. Good effects are apparent for crystal g-sensitivity vectors with low elevation angle φ and azimuthal angle β. under highly dynamic conditions, indicating the probability that crystal oscillator instability will be significantly reduced by using the proposed mounting approach.

  10. The dynamic stability of OPEC's oil price mechanism

    International Nuclear Information System (INIS)

    Hammoudeh, S.; Madan, V.

    1992-01-01

    This paper examines OPEC's long-lived mechanism which targets the oil price and adjusts the quality ceiling to meet the target. The stability of this controversial mechanism is compared to that of two alternatives: one requires quantity control without any price targeting and the other is a synthesis of quantity control and the OPEC mechanisms. All three mechanisms passed the stability test and the two alternatives give rise to some interesting policy implications. Practicality considerations which involve the availability of specific information make OPEC's mechanism the most appropriate in terms of achieved targeted revenues. The paper also offers a convergence strategy that speeds up the achievement of targeted revenues under OPEC's current mechanism. (author)

  11. Market liquidity and financial stability.

    OpenAIRE

    Crockett, A.

    2008-01-01

    Stability in financial institutions and in financial markets are closely intertwined. Banks and other financial institutions need liquid markets through which to conduct risk management. And markets need the back-up liquidity lines provided by financial institutions. Market liquidity depends not only on objective, exogenous factors, but also on endogenous market dynamics. Central banks responsible for systemic stability need to consider how far their traditional responsibility for the health ...

  12. The Nature of Stability in Replicating Systems

    Directory of Open Access Journals (Sweden)

    Addy Pross

    2011-02-01

    Full Text Available We review the concept of dynamic kinetic stability, a type of stability associated specifically with replicating entities, and show how it differs from the well-known and established (static kinetic and thermodynamic stabilities associated with regular chemical systems. In the process we demonstrate how the concept can help bridge the conceptual chasm that continues to separate the physical and biological sciences by relating the nature of stability in the animate and inanimate worlds, and by providing additional insights into the physicochemical nature of abiogenesis.

  13. Stability of boson stars

    International Nuclear Information System (INIS)

    Gleiser, M.

    1988-01-01

    Boson stars are gravitationally bound, spherically symmetric equilibrium configurations of cold, free, or interacting complex scalar fields phi. As these equilibrium configurations naturally present local anisotropy, it is sensible to expect departures from the well-known stability criteria for fluid stars. With this in mind, I investigate the dynamical instability of boson stars against charge-conserving, small radial perturbations. Following the method developed by Chandrasekhar, a variational base for determining the eigenfrequencies of the perturbations is found. This approach allows one to find numerically an upper bound for the central density where dynamical instability occurs. As applications of the formalism, I study the stability of equilibrium configurations obtained both for the free and for the self-interacting [with V(phi) = (λ/4)chemical bondphichemical bond 4 ] massive scalar field phi. Instabilities are found to occur not for the critical central density as in fluid stars but for central densities considerably higher. The departure from the results for fluid stars is sensitive to the coupling λ; the higher the value of λ, the more the stability properties of boson stars approach those of a fluid star. These results are linked to the fractional anisotropy at the radius of the configuration

  14. Turbulence and the Stabilization Principle

    Science.gov (United States)

    Zak, Michail

    2010-01-01

    Further results of research, reported in several previous NASA Tech Briefs articles, were obtained on a mathematical formalism for postinstability motions of a dynamical system characterized by exponential divergences of trajectories leading to chaos (including turbulence). To recapitulate: Fictitious control forces are introduced to couple the dynamical equations with a Liouville equation that describes the evolution of the probability density of errors in initial conditions. These forces create a powerful terminal attractor in probability space that corresponds to occurrence of a target trajectory with probability one. The effect in ordinary perceived three-dimensional space is to suppress exponential divergences of neighboring trajectories without affecting the target trajectory. Con sequently, the postinstability motion is represented by a set of functions describing the evolution of such statistical quantities as expectations and higher moments, and this representation is stable. The previously reported findings are analyzed from the perspective of the authors Stabilization Principle, according to which (1) stability is recognized as an attribute of mathematical formalism rather than of underlying physics and (2) a dynamical system that appears unstable when modeled by differentiable functions only can be rendered stable by modifying the dynamical equations to incorporate intrinsic stochasticity.

  15. A theoretical analysis of pitch stability during gliding in flying snakes.

    Science.gov (United States)

    Jafari, Farid; Ross, Shane D; Vlachos, Pavlos P; Socha, John J

    2014-06-01

    Flying snakes use their entire body as a continuously morphing 'wing' to produce lift and shallow their glide trajectory. Their dominant behavior during gliding is aerial undulation, in which lateral waves are sent posteriorly down the body. This highly dynamic behavior, which is unique among animal gliders, should have substantial effects on the flight dynamics and stability of the snakes, resulting from the continuous redistribution of mass and aerodynamic forces. In this study, we develop two-dimensional theoretical models to assess the stability characteristics of snakes in the pitch direction. Previously measured force coefficients are used to simulate aerodynamic forces acting on the models, and undulation is simulated by varying mass. Model 1 is a simple three-airfoil representation of the snake's body that possesses a passively stable equilibrium solution, whose basin of stability contains initial conditions observed in experimental gliding trajectories. Model 2 is more sophisticated, with more degrees of freedom allowing for postural changes to better represent the snake's real kinematics; in addition, a restoring moment is added to simulate potential active control. The application of static and dynamic stability criteria show that Model 2 is passively unstable, but can be stabilized with a restoring moment. Overall, these models suggest that undulation does not contribute to stability in pitch, and that flying snakes require a closed-loop control system formed around a passively stable dynamical framework.

  16. The effect of proximal tibial slope on dynamic stability testing of the posterior cruciate ligament- and posterolateral corner-deficient knee.

    Science.gov (United States)

    Petrigliano, Frank A; Suero, Eduardo M; Voos, James E; Pearle, Andrew D; Allen, Answorth A

    2012-06-01

    Proximal tibial slope has been shown to influence anteroposterior translation and tibial resting point in the posterior cruciate ligament (PCL)-deficient knee. The effect of proximal tibial slope on rotational stability of the knee is unknown. Change in proximal tibial slope produced via osteotomy can influence both static translation and dynamic rotational kinematics in the PCL/posterolateral corner (PLC)-deficient knee. Controlled laboratory study. Posterior drawer, dial, and mechanized reverse pivot-shift (RPS) tests were performed on hip-to-toe specimens and translation of the lateral and medial compartments measured utilizing navigation (n = 10). The PCL and structures of the PLC were then sectioned. Stability testing was repeated, and compartmental translation was recorded. A proximal tibial osteotomy in the sagittal plane was then performed achieving either +5° or -5° of tibial slope variation, after which stability testing was repeated (n = 10). Analysis was performed using 1-way analysis of variance (ANOVA; α = .05). Combined sectioning of the PCL and PLC structures resulted in a 10.5-mm increase in the posterior drawer, 15.5-mm increase in the dial test at 30°, 14.5-mm increase in the dial test at 90°, and 17.9-mm increase in the RPS (vs intact; P slope (high tibial osteotomy [HTO] +5°) in the PCL/PLC-deficient knee reduced medial compartment translation by 3.3 mm during posterior drawer (vs deficient; P slope (HTO -5°) caused a 4.8-mm increase in medial compartment translation (vs deficient state; P slope diminished static posterior instability of the PCL/PLC-deficient knee as measured by the posterior drawer test but had little effect on rotational or dynamic multiplanar stability as assessed by the dial and RPS tests, respectively. Conversely, decreasing posterior slope resulted in increased posterior instability and a significant increase in the magnitude of the RPS. These results suggest that increasing posterior tibial slope may improve

  17. Asymptotic stabilization of nonlinear systems using state feedback

    International Nuclear Information System (INIS)

    D'Attellis, Carlos

    1990-01-01

    This paper studies the design of state-feedback controllers for the stabilization of single-input single-output nonlinear systems x = f(x) + g(x)u, y = h(x). Two approaches for the stabilization problem are given; the asymptotic stability is achieved by means of: a) nonlinear state feedback: two nonlinear feedbacks are used; the first separates the system in a controllable linear part and in the zeros-dynamic part. The second feedback generates an asymptotically stable equilibrium on the manifold where this dynamics evolves; b) nonlinear dynamic feedback: conditions are established under which the system can follow the output of a completely controllable bilinear system which uses bounded controls. This fact enables the system to reach, using bounded controls too, a desired output value in finite time. As this value corresponds to a state that lays in the attraction basin of a stable equilibrium with the same output, the system evolves to that point. The two methods are illustrated by examples. (Author) [es

  18. The dynamical structure of the MEO region: long-term stability, chaos, and transport

    Science.gov (United States)

    Daquin, Jérôme; Rosengren, Aaron J.; Alessi, Elisa Maria; Deleflie, Florent; Valsecchi, Giovanni B.; Rossi, Alessandro

    2016-04-01

    It has long been suspected that the Global Navigation Satellite Systems exist in a background of complex resonances and chaotic motion; yet, the precise dynamical character of these phenomena remains elusive. Recent studies have shown that the occurrence and nature of the resonances driving these dynamics depend chiefly on the frequencies of nodal and apsidal precession and the rate of regression of the Moon's nodes. Woven throughout the inclination and eccentricity phase space is an exceedingly complicated web-like structure of lunisolar secular resonances, which become particularly dense near the inclinations of the navigation satellite orbits. A clear picture of the physical significance of these resonances is of considerable practical interest for the design of disposal strategies for the four constellations. Here we present analytical and semi-analytical models that accurately reflect the true nature of the resonant interactions, and trace the topological organization of the manifolds on which the chaotic motions take place. We present an atlas of FLI stability maps, showing the extent of the chaotic regions of the phase space, computed through a hierarchy of more realistic, and more complicated, models, and compare the chaotic zones in these charts with the analytical estimation of the width of the chaotic layers from the heuristic Chirikov resonance-overlap criterion. As the semi-major axis of the satellite is receding, we observe a transition from stable Nekhoroshev-like structures at three Earth radii, where regular orbits dominate, to a Chirikov regime where resonances overlap at five Earth radii. From a numerical estimation of the Lyapunov times, we find that many of the inclined, nearly circular orbits of the navigation satellites are strongly chaotic and that their dynamics are unpredictable on decadal timescales.

  19. Dynamic stability of a cantilevered Timoshenko beam on partial elastic foundations subjected to a follower force

    International Nuclear Information System (INIS)

    Ryu, Bong Jo; Shin, Kwang Bok; Yim, Kyung Bin; Yoon, Young Sik

    2006-01-01

    This paper presents the dynamic stability of a cantilevered Timoshenko beam with a concentrated mass, partially attached to elastic foundations, and subjected to a follower force. Governing equations are derived from the extended Hamilton's principle, and FEM is applied to solve the discretized equation. The influence of some parameters such as the elastic foundation parameter, the positions of partial elastic foundations, shear deformations, the rotary inertia of the beam, and the mass and the rotary inertia of the concentrated mass on the critical flutter load is investigated. Finally, the optimal attachment ratio of partial elastic foundation that maximizes the critical flutter load is presented

  20. Static and Dynamic Stability Analysis of Distributed Energy Resources Components with Storage Devices and Loads for Smart Grids

    DEFF Research Database (Denmark)

    Mihet-Popa, Lucian; Groza, V.

    2011-01-01

    of the Smart Grids (SGs). A SG can operate interconnected to the main distribution grid or in islanded mode. This paper presents experimental tests for static and dynamic stability analysis carried out in a dedicated laboratory for research in distributed control and smart grid with a high share of renewable......The distributed energy resources (DER) contains several technologies, such as diesel engines, small wind turbines, photovoltaic inverters, etc. The control of DER components with storage devices and (controllable) loads, such as batteries, capacitors, dump loads, are central to the concept...... energy production. Moreover to point out, on a laboratory scale, the coupling between DR and storage and to effectively compensate wind fluctuations a number of tests have been done. In order to find out the parameters of various types of DER components for dynamic simulation models a number of tests...

  1. Changes in gait and posture as factors of dynamic stability during walking in pregnancy.

    Science.gov (United States)

    Krkeljas, Zarko

    2018-04-01

    Changes in gait and postural control during pregnancy may lead to increased fall rates during walking relative to non-pregnant women. Due to lack of empirical evidence on balance and postural control in dynamic conditions, the primary aim of this study was investigate the changes in gait and postural control as factors of stability during walking. Gait and posture of thirty-five (35) pregnant women (27 ± 6.1 years) were analysed at self-selected walking speed, and at different stage of pregnancy. The results indicate that although the gait kinematics did not differ between the trimesters, significant associations were noted between the step width, the lateral trunk lean, and the medio-lateral deviations in centre of gravity and centre of pressure. In contrast to the static conditions, anterior-posterior postural sway is not present during walking, whereas the lateral trunk lean is the primary factor women use in pregnancy to keep the centre of gravity closer to the base of support. Postural changes and those in gait kinematics were largely affected by the relative mass gain, rather than the absolute mass. Considering the importance of relative mass gain, more attention during healthy pregnancy should be given to monitoring the timing of onset of musculoskeletal changes, and design of antenatal exercise programs targeting core strength and pelvic stability. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Dynamics and stabilization of peak current-mode controlled buck converter with constant current load

    Science.gov (United States)

    Leng, Min-Rui; Zhou, Guo-Hua; Zhang, Kai-Tun; Li, Zhen-Hua

    2015-10-01

    The discrete iterative map model of peak current-mode controlled buck converter with constant current load (CCL), containing the output voltage feedback and ramp compensation, is established in this paper. Based on this model the complex dynamics of this converter is investigated by analyzing bifurcation diagrams and the Lyapunov exponent spectrum. The effects of ramp compensation and output voltage feedback on the stability of the converter are investigated. Experimental results verify the simulation and theoretical analysis. The stability boundary and chaos boundary are obtained under the theoretical conditions of period-doubling bifurcation and border collision. It is found that there are four operation regions in the peak current-mode controlled buck converter with CCL due to period-doubling bifurcation and border-collision bifurcation. Research results indicate that ramp compensation can extend the stable operation range and transfer the operating mode, and output voltage feedback can eventually eliminate the coexisting fast-slow scale instability. Project supported by the National Natural Science Foundation of China (Grant No. 61371033), the Fok Ying-Tung Education Foundation for Young Teachers in the Higher Education Institutions of China (Grant No. 142027), the Sichuan Provincial Youth Science and Technology Fund, China (Grant Nos. 2014JQ0015 and 2013JQ0033), and the Fundamental Research Funds for the Central Universities, China (Grant No. SWJTU11CX029).

  3. Stability and equilibrium in quantum statistical mechanics

    International Nuclear Information System (INIS)

    Kastler, Daniel.

    1975-01-01

    A derivation of the Gibbs Ansatz, base of the equilibrium statistical mechanics is provided from a stability requirements, in technical connection with the harmonic analysis of non-commutative dynamical systems. By the same token a relation is established between stability and the positivity of Hamiltonian in the zero temperature case [fr

  4. Stabilization Strategies of Supply Networks with Stochastic Switched Topology

    Directory of Open Access Journals (Sweden)

    Shukai Li

    2013-01-01

    Full Text Available In this paper, a dynamical supply networks model with stochastic switched topology is presented, in which the stochastic switched topology is dependent on a continuous time Markov process. The goal is to design the state-feedback control strategies to stabilize the dynamical supply networks. Based on Lyapunov stability theory, sufficient conditions for the existence of state feedback control strategies are given in terms of matrix inequalities, which ensure the robust stability of the supply networks at the stationary states and a prescribed H∞ disturbance attenuation level with respect to the uncertain demand. A numerical example is given to illustrate the effectiveness of the proposed method.

  5. Nolinear stability analysis of nuclear reactors : expansion methods for stability domains

    International Nuclear Information System (INIS)

    Yang, Chae Yong

    1992-02-01

    Two constructive methods for estimating asymptotic stability domains of nonlinear reactor models are developed in this study: an improved Chang and Thorp's method based on expansion of a Lyapunov function and a new method based on expansion of any positive definite function. The methods are established on the concept of stability definitions of Lyapunov itself. The first method provides a sequence of stability regions that eventually approaches the exact stability domain, but requires many expansions in order to obtain the entire stability region because the starting Lyapunov function usually corresponds to a small stability region and because most dynamic systems are stiff. The second method (new method) requires only a positive definite function and thus it is easy to come up with a starting region. From a large starting region, the entire stability region is estimated effectively after sufficient iterations. It is particularly useful for stiff systems. The methods are applied to several nonlinear reactor models known in the literature: one-temperature feedback model, two-temperature feedback model, and xenon dynamics model, and the results are compared. A reactor feedback model for a pressurized water reactor (PWR) considering fuel and moderator temperature effects is developed and the nonlinear stability regions are estimated for the various values of design parameters by using the new method. The steady-state properties of the nonlinear reactor system are analyzed via bifurcation theory. The analysis of nonlinear phenomena is carried out for the various forms of reactivity feedback coefficients that are both temperature- (or power-) independent and dependent. If one of two temperature coefficients is positive, unstable limit cycles or multiplicity of the steady-state solutions appear when the other temperature coefficient exceeds a certain critical value. As an example, even though the fuel temperature coefficient is negative, if the moderator temperature

  6. Eroding market stability by proliferation of financial instruments

    Science.gov (United States)

    Caccioli, F.; Marsili, M.; Vivo, P.

    2009-10-01

    We contrast Arbitrage Pricing Theory (APT), the theoretical basis for the development of financial instruments, with a dynamical picture of an interacting market, in a simple setting. The proliferation of financial instruments apparently provides more means for risk diversification, making the market more efficient and complete. In the simple market of interacting traders discussed here, the proliferation of financial instruments erodes systemic stability and it drives the market to a critical state characterized by large susceptibility, strong fluctuations and enhanced correlations among risks. This suggests that the hypothesis of APT may not be compatible with a stable market dynamics. In this perspective, market stability acquires the properties of a common good, which suggests that appropriate measures should be introduced in derivative markets, to preserve stability. in here

  7. Yield performance and stability of CMS-based triticale hybrids.

    Science.gov (United States)

    Mühleisen, Jonathan; Piepho, Hans-Peter; Maurer, Hans Peter; Reif, Jochen Christoph

    2015-02-01

    CMS-based triticale hybrids showed only marginal midparent heterosis for grain yield and lower dynamic yield stability compared to inbred lines. Hybrids of triticale (×Triticosecale Wittmack) are expected to possess outstanding yield performance and increased dynamic yield stability. The objectives of the present study were to (1) examine the optimum choice of the biometrical model to compare yield stability of hybrids versus lines, (2) investigate whether hybrids exhibit a more pronounced grain yield performance and yield stability, and (3) study optimal strategies to predict yield stability of hybrids. Thirteen female and seven male parental lines and their 91 factorial hybrids as well as 30 commercial lines were evaluated for grain yield in up to 20 environments. Hybrids were produced using a cytoplasmic male sterility (CMS)-inducing cytoplasm that originated from Triticumtimopheevii Zhuk. We found that the choice of the biometrical model can cause contrasting results and concluded that a group-by-environment interaction term should be added to the model when estimating stability variance of hybrids and lines. midparent heterosis for grain yield was on average 3 % with a range from -15.0 to 11.5 %. No hybrid outperformed the best inbred line. Hybrids had, on average, lower dynamic yield stability compared to the inbred lines. Grain yield performance of hybrids could be predicted based on midparent values and general combining ability (GCA)-predicted values. In contrast, stability variance of hybrids could be predicted only based on GCA-predicted values. We speculated that negative effects of the used CMS cytoplasm might be the reason for the low performance and yield stability of the hybrids. For this purpose a detailed study on the reasons for the drawback of the currently existing CMS system in triticale is urgently required comprising also the search of potentially alternative hybridization systems.

  8. Evaluating plyometric exercises using time to stabilization.

    Science.gov (United States)

    Ebben, William P; Vanderzanden, Tyler; Wurm, Bradley J; Petushek, Erich J

    2010-02-01

    Plyometric exercises are frequently used in strength and conditioning and rehabilitation programs because the landing phase of these exercises requires dynamic stabilization. This study examined the differences in landing stability of a variety of plyometric exercises by assessing time to stabilization (TTS), its reliability, and sex differences therein. Forty-nine men and women performed a variety of plyometric exercises thought to represent a continuum of difficulty of dynamic stabilization during landing. Plyometric exercises included line hops, cone hops, squat jumps, tuck jumps, countermovement jumps, dumbbell countermovement jumps, and single leg countermovement jumps, each performed for 3 repetitions on a force platform. A 2-way mixed analysis of covariance with repeated measures for plyometric exercise type was used to evaluate the main effects for plyometric exercise type and the interaction between plyometric exercise type and sex for TTS. Subject jumping ability was evaluated as a covariate. Results revealed significant main effects for plyometric exercise type (p plyometric exercise type and sex (p = 0.002). Bonferroni adjusted post hoc analysis demonstrated differences in TTS between a number of plyometric exercises for men and women. Reliability analysis revealed intraclass correlation coefficients ranging from 0.51 to 0.86 with no significant difference between trials (p > 0.05). Practitioners who use plyometrics to train dynamic stability should create programs that progress the intensity of the exercises based on the results of this study. This study also demonstrated that TTS is moderately to highly reliable for a variety of jumping conditions for both men and women.

  9. Biomechanics of Posterior Dynamic Fusion Systems in the Lumbar Spine: Implications for Stabilization With Improved Arthrodesis.

    Science.gov (United States)

    Yu, Alexander K; Siegfried, Catherine M; Chew, Brandon; Hobbs, Joseph; Sabersky, Abraham; Jho, Diana J; Cook, Daniel J; Bellotte, Jonathan Brad; Whiting, Donald M; Cheng, Boyle C

    2016-08-01

    A comparative biomechanical human cadaveric spine study of a dynamic fusion rod and a traditional titanium rod. The purpose of this study was to measure and compare the biomechanical metrics associated with a dynamic fusion device, Isobar TTL Evolution, and a rigid rod. Dynamic fusion rods may enhance arthrodesis compared with a rigid rod. Wolff's law implies that bone remodeling and growth may be enhanced through anterior column loading (AL). This is important for dynamic fusion rods because their purpose is to increase AL. Six fresh-frozen lumbar cadaveric specimens were used. Each untreated specimen (Intact) underwent biomechanical testing. Next, each specimen had a unilateral transforaminal lumbar interbody fusion performed at L3-L4 using a cage with an integrated load cell. Pedicle screws were also placed at this time. Subsequently, the Isobar was implanted and tested, and finally, a rigid rod replaced the Isobar in the same pedicle screw arrangement. In terms of range of motion, the Isobar performed comparably to the rigid rod and there was no statistical difference found between Isobar and rigid rod. There was a significant difference between the intact and rigid rod and also between intact and Isobar conditions in flexion extension. For interpedicular displacement, there was a significant increase in flexion extension (P=0.017) for the Isobar compared with the rigid rod. Isobar showed increased AL under axial compression compared with the rigid rod (P=0.024). Isobar provided comparable stabilization to a rigid rod when using range of motion as the metric, however, AL was increased because of the greater interpedicular displacement of dynamic rod compared with a rigid rod. By increasing interpedicular displacement and AL, it potentially brings clinical benefit to procedures relying on arthrodesis.

  10. Stability in a changing world -

    DEFF Research Database (Denmark)

    Olivares, Ingrid; Svenning, J.-C.; van Bodegom, Peter M

    2016-01-01

    Are the hyperdiverse local forests of the western Amazon undergoing changes linked to global and local drivers such as climate change, or successional dynamics? We analyzed local climatic records to assess potential climatic changes in Yasuní National Park, Ecuador, and compared two censuses (1995...... dynamics in Yasuní contrast with recent findings from eastern Amazon, where environmental change is driving significant changes in ecosystem dynamics. Our findings suggest that until now, local forests in the northwest Amazon may have escaped pressure from climate change. The stability of this rich palm...

  11. The roles of amensalistic and commensalistic interactions in large ecological network stability.

    Science.gov (United States)

    Mougi, Akihiko

    2016-07-13

    Ecological communities comprise diverse species and their interactions. Notably, ecological and evolutionary studies have revealed that reciprocal interactions such as predator-prey, competition, and mutualism, are key drivers of community dynamics. However, there is an argument that many species interactions are asymmetric, where one species unilaterally affects another species (amensalism or commensalism). This raises the unanswered question of what is the role of unilateral interactions in community dynamics. Here I use a theoretical approach to demonstrate that unilateral interactions greatly enhance community stability. The results suggested that amensalism and commensalism were more stabilizing than symmetrical interactions, such as competition and mutualism, but they were less stabilizing than an asymmetric antagonistic interaction. A mix of unilateral interactions increased stability. Furthermore, in communities with all interaction types, unilateral interactions tended to increase stability. This study suggests that unilateral interactions play a major role in maintaining communities, underlining the need to further investigate their roles in ecosystem dynamics.

  12. Channel Planform Dynamics Monitoring and Channel Stability Assessment in Two Sediment-Rich Rivers in Taiwan

    Directory of Open Access Journals (Sweden)

    Cheng-Wei Kuo

    2017-01-01

    Full Text Available Recurrent flood events induced by typhoons are powerful agents to modify channel morphology in Taiwan’s rivers. Frequent channel migrations reflect highly sensitive valley floors and increase the risk to infrastructure and residents along rivers. Therefore, monitoring channel planforms is essential for analyzing channel stability as well as improving river management. This study analyzed annual channel changes along two sediment-rich rivers, the Zhuoshui River and the Gaoping River, from 2008 to 2015 based on satellite images of FORMOSAT-2. Channel areas were digitized from mid-catchment to river mouth (~90 km. Channel stability for reaches was assessed through analyzing the changes of river indices including braid index, active channel width, and channel activity. In general, the valley width plays a key role in braided degree, active channel width, and channel activity. These indices increase as the valley width expands whereas the braid index decreases slightly close to the river mouth due to the change of river types. This downstream pattern in the Zhuoshui River was interrupted by hydraulic construction which resulted in limited changes downstream from the weir, due to the lack of water and sediment supply. A 200-year flood, Typhoon Morakot in 2009, induced significant changes in the two rivers. The highly active landscape in Taiwan results in very sensitive channels compared to other regions. An integrated Sensitivity Index was proposed for identifying unstable reaches, which could be a useful reference for river authorities when making priorities in river regulation strategy. This study shows that satellite image monitoring coupled with river indices analysis could be an effective tool to evaluate spatial and temporal changes in channel stability in highly dynamic river systems.

  13. Stabilization of third-order bilinear systems using constant controls

    Directory of Open Access Journals (Sweden)

    A. E. Golubev

    2014-01-01

    Full Text Available This paper deals with the zero equilibrium stabilization for dynamical systems that have control input singularities. A dynamical system with scalar control input is called nonregular if the coefficient of input becomes null on a subset of the phase space that contains the origin. One of the classes of nonregular dynamical systems is represented by bilinear systems. In case of second-order bilinear systems the necessary and sufficient conditions for the zero equilibrium stabilizability are known in the literature. However, in general case the stabilization problem in the presence of control input singularities has not been solved yet.In this note we solve the problem of the zero equilibrium stabilization for the third-order bilinear dynamical systems given in a canonical form. The solution is found in the class of constant controls. The necessary and sufficient conditions are obtained for the zero equilibrium stabilizability of the bilinear systems in question.The dependence of the zero equilibrium stabilizability on system parameter values is analyzed. The general criteria of stabilizability by means of constant controls are given for the bilinear systems in question. In case when all the system parameters have nonzero values the necessary and sufficient stabilizability conditions are proved. The case when some of the parameters are equal to zero is also considered.Further research can be focused on extending the obtained results to a higher-order case of bilinear and affine dynamical systems. The solution of the considered stabilization problem should also be found not only within constant controls but also in a class of state feedbacks, particularly, in the case when stabilizing constant control does not exist.One of the potential application areas for the obtained theoretical results is automatic control of technical plants like unmanned aerial vehicles and mobile robots.

  14. Modeling and Stability Assessment of Single-Phase Grid Synchronization Techniques

    DEFF Research Database (Denmark)

    Golestan, Saeed; Guerrero, Josep M.; Vasquez, Juan

    2018-01-01

    (GSTs) is of vital importance. This task is most often based on obtaining a linear time-invariant (LTI) model for the GST and applying standard stability tests to it. Another option is modeling and dynamics/stability assessment of GSTs in the linear time-periodic (LTP) framework, which has received...... a very little attention. In this letter, the procedure of deriving the LTP model for single-phase GSTs is first demonstrated. The accuracy of the LTP model in predicting the GST dynamic behavior and stability is then evaluated and compared with that of the LTI one. Two well-known single-phase GSTs, i...

  15. Allee effects on population dynamics in continuous (overlapping) case

    International Nuclear Information System (INIS)

    Merdan, H.; Duman, O.; Akin, O.; Celik, C.

    2009-01-01

    This paper presents the stability analysis of equilibrium points of a continuous population dynamics with delay under the Allee effect which occurs at low population density. The mathematical results and numerical simulations show the stabilizing role of the Allee effects on the stability of the equilibrium point of this population dynamics.

  16. Global stability analysis of epidemiological models based on Volterra–Lyapunov stable matrices

    International Nuclear Information System (INIS)

    Liao Shu; Wang Jin

    2012-01-01

    Highlights: ► Global dynamics of high dimensional dynamical systems. ► A systematic approach for global stability analysis. ► Epidemiological models of environment-dependent diseases. - Abstract: In this paper, we study the global dynamics of a class of mathematical epidemiological models formulated by systems of differential equations. These models involve both human population and environmental component(s) and constitute high-dimensional nonlinear autonomous systems, for which the global asymptotic stability of the endemic equilibria has been a major challenge in analyzing the dynamics. By incorporating the theory of Volterra–Lyapunov stable matrices into the classical method of Lyapunov functions, we present an approach for global stability analysis and obtain new results on some three- and four-dimensional model systems. In addition, we conduct numerical simulation to verify the analytical results.

  17. Allee effects on population dynamics with delay

    International Nuclear Information System (INIS)

    Celik, C.; Merdan, H.; Duman, O.; Akin, O.

    2008-01-01

    In this paper, we study the stability analysis of equilibrium points of population dynamics with delay when the Allee effect occurs at low population density. Mainly, our mathematical results and numerical simulations point to the stabilizing effect of the Allee effects on population dynamics with delay

  18. Feasibility Study for Implementing Magnetic Suspension in the Glenn Research Center 225 cm2 Supersonic Wind Tunnel for Testing the Dynamic Stability of Blunt Bodies

    Science.gov (United States)

    Sevier, Abigail; Davis, David O.; Schoenenberger, Mark; Barnhart, Paul

    2016-01-01

    The implementation of a magnetic suspension system in the NASA Glenn Research Center (GRC) 225 cm2 Supersonic Wind Tunnel would be a powerful test technique that could accurately determine the dynamic stability of blunt body entry vehicles with no sting interference. This paper explores initial design challenges to be evaluated before implementation, including defining the lowest possible operating dynamic pressure and corresponding model size, developing a compatible video analysis technique, and incorporating a retractable initial support sting.

  19. A theoretical analysis of pitch stability during gliding in flying snakes

    International Nuclear Information System (INIS)

    Jafari, Farid; Ross, Shane D; Socha, John J; Vlachos, Pavlos P

    2014-01-01

    Flying snakes use their entire body as a continuously morphing ‘wing’ to produce lift and shallow their glide trajectory. Their dominant behavior during gliding is aerial undulation, in which lateral waves are sent posteriorly down the body. This highly dynamic behavior, which is unique among animal gliders, should have substantial effects on the flight dynamics and stability of the snakes, resulting from the continuous redistribution of mass and aerodynamic forces. In this study, we develop two-dimensional theoretical models to assess the stability characteristics of snakes in the pitch direction. Previously measured force coefficients are used to simulate aerodynamic forces acting on the models, and undulation is simulated by varying mass. Model 1 is a simple three-airfoil representation of the snake’s body that possesses a passively stable equilibrium solution, whose basin of stability contains initial conditions observed in experimental gliding trajectories. Model 2 is more sophisticated, with more degrees of freedom allowing for postural changes to better represent the snake’s real kinematics; in addition, a restoring moment is added to simulate potential active control. The application of static and dynamic stability criteria show that Model 2 is passively unstable, but can be stabilized with a restoring moment. Overall, these models suggest that undulation does not contribute to stability in pitch, and that flying snakes require a closed-loop control system formed around a passively stable dynamical framework. (papers)

  20. Discrete dynamical model of mechanisms determining the relations of biodiversity and stability at different levels of organization of living matter

    OpenAIRE

    Kabalyants, Petr; Nosov, Konstantin; Bespalov, Yuri

    2017-01-01

    The paper aims at building the model of relations of biodiversity and stability at different levels of organization of living matter with the use of discrete dynamical models. The relations revealed in the study are illustrated by case studies of zooplankton community of the eutrophicated lake and the colorimetric parameters of the microalgae community of phytobenthos and phytoperiphyton. The results offer: (1) new approaches to estimating the risk of mass development of toxic cyanobacteria i...

  1. Wake meandering under non-neutral atmospheric stability conditions – theory and facts

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Machefaux, Ewan; Chougule, Abhijit S.

    2015-01-01

    This paper deals with modelling of wake dynamics under influence of atmospheric stability conditions different from neutral. In particular, it is investigated how the basic split in turbulent scales, on which the Dynamic Wake Meandering model is based, can be utilized to include atmospheric...... stability effects in this model. This is done partly by analyzing a large number of turbulence spectra obtained from sonic measurements, partly by analyzing dedicated full-scale LiDAR measurements from which wake dynamics can be directly resolved. The theory behind generalizing the Dynamic Wake Meandering...

  2. Electric Vehicle Fast-Charging Station Unified Modeling and Stability Analysis in the dq Frame

    Directory of Open Access Journals (Sweden)

    Xiang Wang

    2018-05-01

    Full Text Available The electric vehicle fast-charging station is an important guarantee for the popularity of electric vehicle. As the fast-charging piles are voltage source converters, stability issues will occur in the grid-connected fast-charging station. Since the dynamic input admittance of the fast-charging pile and the dynamic output impedance play an important role in the interaction system stability, the station and grid interaction system is regarded as load-side and source-side sub-systems to build the dynamic impedance model. The dynamic input admittance in matrix form is derived from the fast-charging pile current control loop considering the influence of the LC filter. Similarly, the dynamic output impedance can be obtained similarly by considering the regional power grid capacity, transformer capacity, and feed line length. On this basis, a modified forbidden region-based stability criterion is used for the fast-charging station stability analysis. The frequency-domain case studies and time-domain simulations are presented next to show the influence of factors from both the power grid side and fast-charging pile side. The simulation results validated the effectiveness of the dq frame impedance model and the stability analysis method.

  3. Self-organizing dynamic stability of far-from-equilibrium biological systems

    Science.gov (United States)

    Ivanitskii, G. R.

    2017-10-01

    One indication of the stability of a living system is the variation of the system’s characteristic time scales. Underlying the stability mechanism are the structural hierarchy and self-organization of systems, factors that give rise to a positive (accelerating) feedback and a negative (braking) feedback. Information processing in the brain cortex plays a special role in highly organized living organisms.

  4. Hamiltonian dynamics for complex food webs

    Science.gov (United States)

    Kozlov, Vladimir; Vakulenko, Sergey; Wennergren, Uno

    2016-03-01

    We investigate stability and dynamics of large ecological networks by introducing classical methods of dynamical system theory from physics, including Hamiltonian and averaging methods. Our analysis exploits the topological structure of the network, namely the existence of strongly connected nodes (hubs) in the networks. We reveal new relations between topology, interaction structure, and network dynamics. We describe mechanisms of catastrophic phenomena leading to sharp changes of dynamics and hence completely altering the ecosystem. We also show how these phenomena depend on the structure of interaction between species. We can conclude that a Hamiltonian structure of biological interactions leads to stability and large biodiversity.

  5. Model reference adaptive control and adaptive stability augmentation

    DEFF Research Database (Denmark)

    Henningsen, Arne; Ravn, Ole

    1993-01-01

    A comparison of the standard concepts in MRAC design suggests that a combination of the implicit and the explicit design techniques may lead to an improvement of the overall system performance in the presence of unmodelled dynamics. Using the ideas of adaptive stability augmentation a combined...... stability augmented model reference design is proposed. By utilizing the closed-loop control error, a simple auxiliary controller is tuned, using a normalized MIT rule for the parameter adjustment. The MIT adjustment is protected against the effects of unmodelled dynamics by lowpass filtering...... of the gradient. The proposed method is verified through simulation results indicating that the method may lead to an improvement of the model reference controller in the presence of unmodelled dynamics...

  6. Long-term follow-up of a randomized controlled trial on additional core stability exercises training for improving dynamic sitting balance and trunk control in stroke patients.

    Science.gov (United States)

    Cabanas-Valdés, Rosa; Bagur-Calafat, Caritat; Girabent-Farrés, Montserrat; Caballero-Gómez, Fernanda Mª; du Port de Pontcharra-Serra, Helena; German-Romero, Ana; Urrútia, Gerard

    2017-11-01

    Analyse the effect of core stability exercises in addition to conventional physiotherapy training three months after the intervention ended. A randomized controlled trial. Outpatient services. Seventy-nine stroke survivors. In the intervention period, both groups underwent conventional physiotherapy performed five days/week for five weeks, and in addition the experimental group performed core stability exercises for 15 minutes/day. Afterwards, during a three-month follow-up period, both groups underwent usual care that could eventually include conventional physiotherapy or physical exercise but not in a controlled condition. Primary outcome was trunk control and dynamic sitting balance assessed by the Spanish-Version of Trunk Impairment Scale 2.0 and Function in Sitting Test. Secondary outcomes were standing balance and gait evaluated by the Berg Balance Scale, Tinetti Test, Brunel Balance Assessment, Spanish-Version of Postural Assessment Scale for Stroke and activities of daily living using the Barthel Index. A total of 68 subjects out of 79 completed the three-month follow-up period. The mean difference (SD) between groups was 0.78 (1.51) points ( p = 0.003) for total score on the Spanish-Version of Trunk Impairment Scale 2.0, 2.52 (6.46) points ( p = 0.009) for Function in Sitting Test, dynamic standing balance was 3.30 (9.21) points ( p= 0.009) on the Berg Balance Scale, gait was 0.82 (1.88) points ( p = 0.002) by Brunel Balance Assessment (stepping), and 1.11 (2.94) points ( p = 0.044) by Tinetti Test (gait), all in favour of core stability exercises. Core stability exercises plus conventional physiotherapy have a positive long-term effect on improving dynamic sitting and standing balance and gait in post-stroke patients.

  7. Mathematical Model and Stability Analysis of Inverter-Based Distributed Generator

    Directory of Open Access Journals (Sweden)

    Alireza Khadem Abbasi

    2013-01-01

    Full Text Available This paper presents a mathematical (small-signal model of an electronically interfaced distributed generator (DG by considering the effect of voltage and frequency variations of the prime source. Dynamic equations are found by linearization about an operating point. In this study, the dynamic of DC part of the interface is included in the model. The stability analysis shows with proper selection of system parameters; the system is stable during steady-state and dynamic situations, and oscillatory modes are well damped. The proposed model is useful to study stability analysis of a standalone DG or a Microgrid.

  8. Prediction of turning stability using receptance coupling

    Science.gov (United States)

    Jasiewicz, Marcin; Powałka, Bartosz

    2018-01-01

    This paper presents an issue of machining stability prediction of dynamic "lathe - workpiece" system evaluated using receptance coupling method. Dynamic properties of the lathe components (the spindle and the tailstock) are assumed to be constant and can be determined experimentally based on the results of the impact test. Hence, the variable of the system "machine tool - holder - workpiece" is the machined part, which can be easily modelled analytically. The method of receptance coupling enables a synthesis of experimental (spindle, tailstock) and analytical (machined part) models, so impact testing of the entire system becomes unnecessary. The paper presents methodology of analytical and experimental models synthesis, evaluation of the stability lobes and experimental validation procedure involving both the determination of the dynamic properties of the system and cutting tests. In the summary the experimental verification results would be presented and discussed.

  9. Consideration on the price stability – financial stability relationship in the context of financial globalization

    Directory of Open Access Journals (Sweden)

    Marius Apostoaie

    2010-12-01

    Full Text Available This study is focused upon the involvement of the central banks regarding the fulfillment of the two main objectives: price  stability and financial stability. These two key concepts are part of an old and ongoing debate that the current turmoil has revived, and that is whether monetary policy should aim, or not, at ensuring financial stability in parallel to its main objective of price stability. On both sides there are solid and well known arguments. In the beginning of the study I have  considered a literature review with regard to price and financial stability issues. After that I have tried to shed some light (from a theoretical point of view on the nature and dynamics of the fundamental interlinkages between the two aspects and there implications on the central banks and the economy. Finally I outline some general conclusions that have emerged in the present study.

  10. The Impact of Sloshing Liquids on Ship Stability for Various Dimensions of Partly Filled Tanks

    Directory of Open Access Journals (Sweden)

    Przemyslaw Krata

    2013-12-01

    Full Text Available Liquid sloshing phenomenon taking place in partly filled ships’ tanks directly affects the stability of a vessel. However, only static calculations are carried out onboard ships nowadays and static transfer of liquid weight is taken into account in the course of routine stability calculation. The paper is focused on a dynamic heeling moment due to liquid sloshing in tanks onboard ships. A number of numerical simulations of liquid sloshing taking place in a moving tank is carried out. The wide range of ship’s tanks is taken into account. The conducted CFD simulations are experimentally verified. Finally, the method of an assessment of the liquid sloshing impact on ship transverse stability is worked out. The key point of the method is a dynamic coefficient describing relation of the researched dynamic heeling moment and the quasi-static one in terms of dynamic stability of a vessel which is related to the weather criterion of ship stability assessment.

  11. Combustion Dynamics and Stability Modeling of a Liquid Oxygen/RP-2 Oxygen-Rich Staged Combustion Preburner and Thrust Chamber Assembly with Gas-Centered Swirl Coaxial Injector Elements

    Science.gov (United States)

    Casiano, M. J.; Kenny, R. J.; Protz, C. S.; Garcia, C. P.; Simpson, S. P.; Elmore, J. L.; Fischbach, S. R.; Giacomoni, C. B.; Hulka, J. R.

    2016-01-01

    The Combustion Stability Tool Development (CSTD) project, funded by the Air Force Space and Missile Systems Center, began in March 2015 supporting a renewed interest in the development of a liquid oxygen/hydrocarbon, oxygen-rich combustion engine. The project encompasses the design, assembly, and hot-fire testing of the NASA Marshall Space Flight Center 40-klbf Integrated Test Rig (MITR). The test rig models a staged-combustion configuration by combining an oxygen-rich preburner (ORPB), to generate hot gas, with a thrust chamber assembly (TCA) using gas-centered swirl coaxial injector elements. There are five separately designed interchangeable injectors in the TCA that each contain 19- or 27- injector elements. A companion paper in this JANNAF conference describes the design characteristics, rationale, and fabrication issues for all the injectors. The data acquired from a heavily instrumented rig encompasses several injectors, several operating points, and stability bomb tests. Another companion paper in this JANNAF conference describes this test program in detail. In this paper, dynamic data from the hot-fire testing is characterized and used to identify the responses in the ORPB and TCA. A brief review of damping metrics are discussed and applied as a measure of stability margin for damped acoustic modes. Chug and longitudinal combustion stability models and predictions are described which includes new dynamic models for compressible flow through an orifice and a modification to incorporate a third feed line for inclusion of the fuel-film coolant. Flow-acoustics finite element modeling is used to investigate the anticipated TCA acoustics, the effects of injector element length on stability margin, and the potential use of an ORPB orifice trip ring for improving longitudinal stability margin.

  12. Nanojets: Electrification, Energetics, Dynamics, Stability and Breakup

    National Research Council Canada - National Science Library

    Landman, Uzi

    2006-01-01

    Simulation methodologies, algorithms, and computer codes allowing molecular dynamics simulations of formation, propagation, and breakup processes of nanojets, generated either through the application...

  13. Dynamics, Stability, and Evolutionary Patterns of Mesoscale Intrathermocline Vortices

    Science.gov (United States)

    2016-12-01

    different manner from a dynamic eddy, which underscores inherent limitations of intrusion modeling in quiescent background states. Finally, it...of observed values. (3) A static eddy dissipates in a very different manner from a dynamic eddy, which underscores inherent limitations of...does not react to the environment in a physical manner . This establishes a need for future research on eddies to be modeled on a dynamically rotating

  14. Stabilization and tracking controller for a class of nonlinear discrete-time systems

    International Nuclear Information System (INIS)

    Sharma, B.B.; Kar, I.N.

    2011-01-01

    Highlights: → We present recursive design of stabilizing controller for nonlinear discrete-time systems. → Problem of stabilizing and tracking control of single link manipulator system is addressed. → We extend the proposed results to output tracking problems. → The proposed methodology is applied satisfactorily to discrete-time chaotic maps. - Abstract: In this paper, stabilization and tracking control problem for parametric strict feedback class of discrete time systems is addressed. Recursive design of control function based on contraction theory framework is proposed instead of traditional Lyapunov based method. Explicit structure of controller is derived for the addressed class of nonlinear discrete-time systems. Conditions for exponential stability of system states are derived in terms of controller parameters. At each stage of recursive procedure a specific structure of Jacobian matrix is ensured so as to satisfy conditions of stability. The closed loop dynamics in this case remains nonlinear in nature. The proposed algorithm establishes global stability results in quite a simple manner as it does not require formulation of error dynamics. Problem of stabilization and output tracking control in case of single link manipulator system with actuator dynamics is analyzed using the proposed strategy. The proposed results are further extended to stabilization of discrete time chaotic systems. Numerical simulations presented in the end show the effectiveness of the proposed approach.

  15. Numerical Computation of Detonation Stability

    KAUST Repository

    Kabanov, Dmitry

    2018-01-01

    Then we investigate the Fickett’s detonation analogue coupled with a particular reaction-rate expression. In addition to the linear stability analysis of this model, we demonstrate that it exhibits rich nonlinear dynamics with multiple bifurcations and chaotic behavior.

  16. Model predictive control of hybrid systems : stability and robustness

    NARCIS (Netherlands)

    Lazar, M.

    2006-01-01

    This thesis considers the stabilization and the robust stabilization of certain classes of hybrid systems using model predictive control. Hybrid systems represent a broad class of dynamical systems in which discrete behavior (usually described by a finite state machine) and continuous behavior

  17. Stability Analysis of the Embankment Model

    Directory of Open Access Journals (Sweden)

    G.S. Gopalakrishna

    2009-01-01

    Full Text Available In analysis of embankment model affected by dynamic force, employment of shaking table is a scientific way in assessment of earthquake behavior. This work focused on saturated loose sandy foundation and enbankment. The results generated through the pore pressure sensors indicated pore water pressure playing main role in creation of liquefaction and stability of the system, and also revealed deformation, settlement, liquefaction intensity and time stability of system in direct correlation with the strength and characteristics of soil. One of the economical methods in stabilization of soil foundation is improvement of some part soil foundation.

  18. Screening of mutations affecting protein stability and dynamics of FGFR1—A simulation analysis

    Directory of Open Access Journals (Sweden)

    C. George Priya Doss

    2012-12-01

    Full Text Available Single amino acid substitutions in Fibroblast Growth Factor Receptor 1 (FGFR1 destabilize protein and have been implicated in several genetic disorders like various forms of cancer, Kallamann syndrome, Pfeiffer syndrome, Jackson Weiss syndrome, etc. In order to gain functional insight into mutation caused by amino acid substitution to protein function and expression, special emphasis was laid on molecular dynamics simulation techniques in combination with in silico tools such as SIFT, PolyPhen 2.0, I-Mutant 3.0 and SNAP. It has been estimated that 68% nsSNPs were predicted to be deleterious by I-Mutant, slightly higher than SIFT (37%, PolyPhen 2.0 (61% and SNAP (58%. From the observed results, P722S mutation was found to be most deleterious by comparing results of all in silico tools. By molecular dynamics approach, we have shown that P722S mutation leads to increase in flexibility, and deviated more from the native structure which was supported by the decrease in the number of hydrogen bonds. In addition, biophysical analysis revealed a clear insight of stability loss due to P722S mutation in FGFR1 protein. Majority of mutations predicted by these in silico tools were in good concordance with the experimental results.

  19. Ultrahigh stability of atomically thin metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Cao, C. R.; Huang, K. Q.; Zhao, N. J.; Sun, Y. T.; Bai, H. Y.; Gu, L., E-mail: l.gu@iphy.ac.cn, E-mail: dzheng@iphy.ac.cn, E-mail: whw@iphy.ac.cn; Zheng, D. N., E-mail: l.gu@iphy.ac.cn, E-mail: dzheng@iphy.ac.cn, E-mail: whw@iphy.ac.cn; Wang, W. H., E-mail: l.gu@iphy.ac.cn, E-mail: dzheng@iphy.ac.cn, E-mail: whw@iphy.ac.cn [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-07-07

    We report the fabrication and study of thermal stability of atomically thin ZrCu-based metallic glass films. The ultrathin films exhibit striking dynamic properties, ultrahigh thermal stability, and unique crystallization behavior with discrete crystalline nanoparticles sizes. The mechanisms for the remarkable high stability and crystallization behaviors are attributed to the dewetting process of the ultrathin film. We demonstrated a promising avenue for understanding some fundamental issues such as glassy structure, crystallization, deformation, and glass formation through atomic resolution imaging of the two dimensional like metallic glasses.

  20. Crack stability in a representative piping system under combined inertial and seismic/dynamic displacement-controlled stresses. Subtask 1.3 final report

    International Nuclear Information System (INIS)

    Scott, P.; Olson, R.; Wilkowski, O.G.; Marschall, C.; Schmidt, R.

    1997-06-01

    This report presents the results from Subtask 1.3 of the International Piping Integrity Research Group (IPIRG) program. The objective of Subtask 1.3 is to develop data to assess analysis methodologies for characterizing the fracture behavior of circumferentially cracked pipe in a representative piping system under combined inertial and displacement-controlled stresses. A unique experimental facility was designed and constructed. The piping system evaluated is an expansion loop with over 30 meters of 16-inch diameter Schedule 100 pipe. The experimental facility is equipped with special hardware to ensure system boundary conditions could be appropriately modeled. The test matrix involved one uncracked and five cracked dynamic pipe-system experiments. The uncracked experiment was conducted to evaluate piping system damping and natural frequency characteristics. The cracked-pipe experiments evaluated the fracture behavior, pipe system response, and stability characteristics of five different materials. All cracked-pipe experiments were conducted at PWR conditions. Material characterization efforts provided tensile and fracture toughness properties of the different pipe materials at various strain rates and temperatures. Results from all pipe-system experiments and material characterization efforts are presented. Results of fracture mechanics analyses, dynamic finite element stress analyses, and stability analyses are presented and compared with experimental results

  1. Crack stability in a representative piping system under combined inertial and seismic/dynamic displacement-controlled stresses. Subtask 1.3 final report

    Energy Technology Data Exchange (ETDEWEB)

    Scott, P.; Olson, R.; Wilkowski, O.G.; Marschall, C.; Schmidt, R.

    1997-06-01

    This report presents the results from Subtask 1.3 of the International Piping Integrity Research Group (IPIRG) program. The objective of Subtask 1.3 is to develop data to assess analysis methodologies for characterizing the fracture behavior of circumferentially cracked pipe in a representative piping system under combined inertial and displacement-controlled stresses. A unique experimental facility was designed and constructed. The piping system evaluated is an expansion loop with over 30 meters of 16-inch diameter Schedule 100 pipe. The experimental facility is equipped with special hardware to ensure system boundary conditions could be appropriately modeled. The test matrix involved one uncracked and five cracked dynamic pipe-system experiments. The uncracked experiment was conducted to evaluate piping system damping and natural frequency characteristics. The cracked-pipe experiments evaluated the fracture behavior, pipe system response, and stability characteristics of five different materials. All cracked-pipe experiments were conducted at PWR conditions. Material characterization efforts provided tensile and fracture toughness properties of the different pipe materials at various strain rates and temperatures. Results from all pipe-system experiments and material characterization efforts are presented. Results of fracture mechanics analyses, dynamic finite element stress analyses, and stability analyses are presented and compared with experimental results.

  2. Repeated pulse feeding induces functional stability in anaerobic digestion.

    Science.gov (United States)

    De Vrieze, Jo; Verstraete, Willy; Boon, Nico

    2013-07-01

    Anaerobic digestion is an environmental key technology in the future bio-based economy. To achieve functional stability, a minimal microbial community diversity is required. This microbial community should also have a certain 'elasticity', i.e. the ability to rapidly adapt to suboptimal conditions or stress. In this study it was evaluated whether a higher degree of functional stability could be achieved by changing the feeding pattern, which can change the evenness, dynamics and richness of the bacterial community. The first reactor (CSTR stable ) was fed on daily basis, whereas the second reactor (CSTR dynamic ) was fed every 2 days. Average biogas production was 0.30 l CH4 l(-1) day(-1) in both reactors, although daily variation was up to four times higher in the CSTR dynamic compared with the CSTR stable during the first 50 days. Bacterial analysis revealed that this CSTR dynamic had a two times higher degree of bacterial community dynamics. The CSTR dynamic also appeared to be more tolerant to an organic shock load of 8 g COD l(-1) and ammonium levels up to 8000 mg TAN l(-1). These results suggest that the regular application of a limited pulse of organic material and/or a variation in the substrate composition might promote higher functional stability in anaerobic digestion. © 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  3. Stability and dynamics of a controlled van der Pol-Duffing oscillator

    International Nuclear Information System (INIS)

    Ji, J.C.; Hansen, C.H.

    2006-01-01

    The trivial equilibrium of a van der Pol-Duffing oscillator under a linear-plus-nonlinear feedback control may change its stability either via a single or via a double Hopf bifurcation if the time delay involved in the feedback reaches certain values. It is found that the trivial equilibrium may lose its stability via a subcritical or supercritical Hopf bifurcation and regain its stability via a reverse subcritical or supercritical Hopf bifurcation as the time delay increases. A stable limit cycle appears after a supercritical Hopf bifurcation occurs and disappears through a reverse supercritical Hopf bifurcation. The interaction of the weakly periodic excitation and the stable bifurcating solution is investigated for the forced system under primary resonance conditions. It is shown that the forced periodic response may lose its stability via a Neimark-Sacker bifurcation. Analytical results are validated by a comparison with those of direct numerical integration

  4. Dynamic stability analysis of caisson breakwater in lifetime considering the annual frequency of severe storm

    Science.gov (United States)

    Wang, Yu-chi; Wang, Yuan-zhan; Hong, Ning-ning

    2015-04-01

    In the dynamic stability analysis of a caisson breakwater, most of current studies pay attention to the motion characteristics of caisson breakwaters under a single periodical breaking wave excitation. And in the lifetime stability analysis of caisson breakwater, it is assumed that the caisson breakwater suffers storm wave excitation once annually in the design lifetime. However, the number of annual severe storm occurrence is a random variable. In this paper, a series of random waves are generated by the Wen Sheng-chang wave spectrum, and the histories of successive and long-term random wave forces are built up by using the improved Goda wave force model. It is assumed that the number of annual severe storm occurrence is in the Poisson distribution over the 50-year design lifetime, and the history of random wave excitation is generated for each storm by the wave spectrum. The response histories of the caisson breakwater to the random waves over 50-year design lifetime are calculated and taken as a set of samples. On the basis of the Monte Carlo simulation technique, a large number of samples can be obtained, and the probability assessment of the safety of the breakwater during the complete design lifetime is obtained by statistical analysis of a large number of samples. Finally, the procedure of probability assessment of the breakwater safety is illustrated by an example.

  5. Vehicle Dynamics and Control

    CERN Document Server

    Rajamani, Rajesh

    2012-01-01

    Vehicle Dynamics and Control provides a comprehensive coverage of vehicle control systems and the dynamic models used in the development of these control systems. The control system applications covered in the book include cruise control, adaptive cruise control, ABS, automated lane keeping, automated highway systems, yaw stability control, engine control, passive, active and semi-active suspensions, tire-road friction coefficient estimation, rollover prevention, and hybrid electric vehicle. In developing the dynamic model for each application, an effort is made to both keep the model simple enough for control system design but at the same time rich enough to capture the essential features of the dynamics. A special effort has been made to explain the several different tire models commonly used in literature and to interpret them physically. In the second edition of the book, chapters on roll dynamics, rollover prevention and hybrid electric vehicles have been added, and the chapter on electronic stability co...

  6. Existence, stability, and dynamics of harmonically trapped one-dimensional multi-component solitary waves: The near-linear limit

    Science.gov (United States)

    Xu, H.; Kevrekidis, P. G.; Kapitula, T.

    2017-06-01

    In the present work, we consider a variety of two-component, one-dimensional states in nonlinear Schrödinger equations in the presence of a parabolic trap, inspired by the atomic physics context of Bose-Einstein condensates. The use of Lyapunov-Schmidt reduction methods allows us to identify persistence criteria for the different families of solutions which we classify as (m, n), in accordance with the number of zeros in each component. Upon developing the existence theory, we turn to a stability analysis of the different configurations, using the Krein signature and the Hamiltonian-Krein index as topological tools identifying the number of potentially unstable eigendirections for each branch. A perturbation expansion for the eigenvalue problems associated with nonlinear states found near the linear limit permits us to obtain explicit asymptotic expressions for the eigenvalues. Finally, when the states are found to be unstable, typically by virtue of Hamiltonian Hopf bifurcations, their dynamics is studied in order to identify the nature of the respective instability. The dynamics is generally found to lead to a vibrational evolution over long time scales.

  7. Prospects for stability in a nuclear subcontinent

    International Nuclear Information System (INIS)

    Rajagopal, S; Chari, Sridhar K.

    2003-01-01

    This book explore the prospects for stability in a nuclear sub-continent. The nonproliferation regimes and nuclear threat reduction, nonproliferation regimes and south asia - is there a meeting point?; maintaining a threshold of strategic autonomy at least cost: continuity in the evolution of India's nuclear policies; role of nuclear doctrines and the state of the armed forces in South Asia; nuclear weapons, deterrence and stability in the international system: South Asian dynamics; assessing China's Asian role and security policies; Kargil war to current threat of war: prospects for stability; discussion; international terrorism and its impact on South Asian stability; a view from Bangladesh etc. are some of the topics covered

  8. Hydrodynamic theory of convective transport across a dynamically stabilized diffuse boundary layer

    International Nuclear Information System (INIS)

    Gerhauser, H.

    1983-09-01

    The diffuse boundary layer between miscible liquids is subject to Rayleigh-Taylor instabilities if the heavy fluid is supported by the light one. The resulting rapid interchange of the liquids can be suppressed by enforcing vertical oscillations on the whole system. This dynamic stabilization is incomplete and produces some peculiar novel transport phenomena such as decay off the density profile into several steps, periodic peeling of density sheets of the boundary layer and the appearance of steady vortex flow. The theory presented in this paper identifies the basic mechanism as formation of convective cells leading to enhanced diffusion, and explains previous experimental results with water and ZnJ 2 -solutions. A nonlinear treatment of the stationary convective flow problem gives the saturation amplitude of the ground mode and provides an upper bound for the maximum convective transport. The hydrodynamic model can be used for visualizing similar transport processes in the plasma of toroidal confinement devices such as sawtooth oscillations in soft disruptions of tokamak discharges and anomalous diffusion by excitation of convective cells. The latter process is investigated here in some detail, leading to the result that the maximum possible transport is of the order of Bohm diffusion. (orig.)

  9. STUDY ABOUT THE STABILITY AND CONTROL OF A ROTOR AIRPLANE

    OpenAIRE

    Stafy, Victor; Neto, Aristeu Silveira

    2017-01-01

    On this paper is studied the stability and control of a Rotor Airplane, more specifically a MAV (Micro Air Vehicle) and how works the dynamics of flight of this unusual configuration of aircraft. It’s discussed the impact of the gyroscopic effect on stability (mainly lateral and directional stability) and was found the best feasible configuration of the stability surface, but the project of the stabilizers was limited to lifting surfaces that use airfoil sections, the possibility of a very un...

  10. Stability improvement of induction generator-based wind turbine systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Hu, Y.; Blaabjerg, Frede

    2007-01-01

    The stability improvement of induction-generator-based wind turbine systems under power system fault conditions has been studied. Two types of generators are considered, namely rotor short-circuited induction generators and dynamic slip-controlled wound rotor induction generators. The factors...... affecting the stability are analysed. The characteristics of the induction-generator-based wind turbines are described, and possible methods of improving stability of the wind generators are discussed. The system modelling is presented, and then the discussed methods of improving stability are investigated...

  11. Parameter-dependent PWQ Lyapunov function stability criteria for uncertain piecewise linear systems

    Directory of Open Access Journals (Sweden)

    Morten Hovd

    2018-01-01

    Full Text Available The calculation of piecewise quadratic (PWQ Lyapunov functions is addressed in view of stability analysis of uncertain piecewise linear dynamics. As main contribution, the linear matrix inequality (LMI approach proposed in (Johansson and Rantzer, 1998 for the stability analysis of PWL and PWA dynamics is extended to account for parametric uncertainty based on a improved relaxation technique. The results are applied for the analysis of a Phase Locked Loop (PLL benchmark and the ability to guarantee a stability region in the parameter space well beyond the state of the art is demonstrated.

  12. Nonlinear dynamics non-integrable systems and chaotic dynamics

    CERN Document Server

    Borisov, Alexander

    2017-01-01

    This monograph reviews advanced topics in the area of nonlinear dynamics. Starting with theory of integrable systems – including methods to find and verify integrability – the remainder of the book is devoted to non-integrable systems with an emphasis on dynamical chaos. Topics include structural stability, mechanisms of emergence of irreversible behaviour in deterministic systems as well as chaotisation occurring in dissipative systems.

  13. Application of dynamic programming to evaluate the slope stability of a vertical extension to a balefill.

    Science.gov (United States)

    Kremen, Arie; Tsompanakis, Yiannis

    2010-04-01

    The slope-stability of a proposed vertical extension of a balefill was investigated in the present study, in an attempt to determine a geotechnically conservative design, compliant with New Jersey Department of Environmental Protection regulations, to maximize the utilization of unclaimed disposal capacity. Conventional geotechnical analytical methods are generally limited to well-defined failure modes, which may not occur in landfills or balefills due to the presence of preferential slip surfaces. In addition, these models assume an a priori stress distribution to solve essentially indeterminate problems. In this work, a different approach has been applied, which avoids several of the drawbacks of conventional methods. Specifically, the analysis was performed in a two-stage process: (a) calculation of stress distribution, and (b) application of an optimization technique to identify the most probable failure surface. The stress analysis was performed using a finite element formulation and the location of the failure surface was located by dynamic programming optimization method. A sensitivity analysis was performed to evaluate the effect of the various waste strength parameters of the underlying mathematical model on the results, namely the factor of safety of the landfill. Although this study focuses on the stability investigation of an expanded balefill, the methodology presented can easily be applied to general geotechnical investigations.

  14. Probing Conformational Stability and Dynamics of Erythroid and Nonerythroid Spectrin: Effects of Urea and Guanidine Hydrochloride

    Science.gov (United States)

    Patra, Malay; Mukhopadhyay, Chaitali; Chakrabarti, Abhijit

    2015-01-01

    We have studied the conformational stability of the two homologous membrane skeletal proteins, the erythroid and non-erythroid spectrins, in their dimeric and tetrameric forms respectively during unfolding in the presence of urea and guanidine hydrochloride (GuHCl). Fluorescence and circular dichroism (CD) spectroscopy have been used to study the changes of intrinsic tryptophan fluorescence, anisotropy, far UV-CD and extrinsic fluorescence of bound 1-anilinonapthalene-8-sulfonic acid (ANS). Chemical unfolding of both proteins were reversible and could be described as a two state transition. The folded erythroid spectrin and non-erythroid spectrin were directly converted to unfolded monomer without formation of any intermediate. Fluorescence quenching, anisotropy, ANS binding and dynamic light scattering data suggest that in presence of low concentrations of the denaturants (up-to 1M) hydrogen bonding network and van der Waals interaction play a role inducing changes in quaternary as well as tertiary structures without complete dissociation of the subunits. This is the first report of two large worm like, multi-domain proteins obeying twofold rule which is commonly found in small globular proteins. The free energy of stabilization (ΔGu H 2 0) for the dimeric spectrin has been 20 kcal/mol lesser than the tetrameric from. PMID:25617632

  15. Peptide insertion, positioning, and stabilization in a membrane: insight from an all-atom molecular dynamics simulation.

    Science.gov (United States)

    Babakhani, Arneh; Gorfe, Alemayehu A; Gullingsrud, Justin; Kim, Judy E; Andrew McCammon, J

    Peptide insertion, positioning, and stabilization in a model membrane are probed via an all-atom molecular dynamics (MD) simulation. One peptide (WL5) is simulated in each leaflet of a solvated dimyristoylglycero-3-phosphate (DMPC) membrane. Within the first 5 ns, the peptides spontaneously insert into the membrane and then stabilize during the remaining 70 ns of simulation time. In both leaflets, the peptides localize to the membrane interface, and this localization is attributed to the formation of peptide-lipid hydrogen bonds. We show that the single tryptophan residue in each peptide contributes significantly to these hydrogen bonds; specifically, the nitrogen heteroatom of the indole ring plays a critical role. The tilt angles of the indole rings relative to the membrane normal in the upper and lower leaflets are approximately 26 degrees and 54 degrees , respectively. The tilt angles of the entire peptide chain are 62 degrees and 74 degrees . The membrane induces conformations of the peptide that are characteristic of beta-sheets, and the peptide enhances the lipid ordering in the membrane. Finally, the diffusion rate of the peptides in the membrane plane is calculated (based on experimental peptide concentrations) to be approximately 6 A(2)/ns, thus suggesting a 500 ns time scale for intermolecular interactions.

  16. Nonlinear dynamics near the stability margin in rotating pipe flow

    Science.gov (United States)

    Yang, Z.; Leibovich, S.

    1991-01-01

    The nonlinear evolution of marginally unstable wave packets in rotating pipe flow is studied. These flows depend on two control parameters, which may be taken to be the axial Reynolds number R and a Rossby number, q. Marginal stability is realized on a curve in the (R, q)-plane, and the entire marginal stability boundary is explored. As the flow passes through any point on the marginal stability curve, it undergoes a supercritical Hopf bifurcation and the steady base flow is replaced by a traveling wave. The envelope of the wave system is governed by a complex Ginzburg-Landau equation. The Ginzburg-Landau equation admits Stokes waves, which correspond to standing modulations of the linear traveling wavetrain, as well as traveling wave modulations of the linear wavetrain. Bands of wavenumbers are identified in which the nonlinear modulated waves are subject to a sideband instability.

  17. The Influence of Dynamics of Export on the Level of Political Stability (on Example of Russia

    Directory of Open Access Journals (Sweden)

    Владимир Геннадьевич Иванов

    2012-09-01

    Full Text Available In the given article there are analyzed the mechanisms and patterns of the influence of dynamics of external economic parameters of a country on the level of stability of its political regime. The author supposes that the most valid economic indicator and predictor of instability is volume of exports. Export possesses so much socio-political importance not only because of its role as an engine of economy but also as a vital factor of external economic durability of a country. The analysis of the discovered regularity is carried out on the example of the three periods of modern Russian history, two of which resulted in revolutions: 1 the period of 1905-1917; 2 1985-1991; 3 the modern period (1991-2012.

  18. Dynamic Data-Driven Prediction of Lean Blowout in a Swirl-Stabilized Combustor

    Directory of Open Access Journals (Sweden)

    Soumalya Sarkar

    2015-09-01

    Full Text Available This paper addresses dynamic data-driven prediction of lean blowout (LBO phenomena in confined combustion processes, which are prevalent in many physical applications (e.g., land-based and aircraft gas-turbine engines. The underlying concept is built upon pattern classification and is validated for LBO prediction with time series of chemiluminescence sensor data from a laboratory-scale swirl-stabilized dump combustor. The proposed method of LBO prediction makes use of the theory of symbolic dynamics, where (finite-length time series data are partitioned to produce symbol strings that, in turn, generate a special class of probabilistic finite state automata (PFSA. These PFSA, called D-Markov machines, have a deterministic algebraic structure and their states are represented by symbol blocks of length D or less, where D is a positive integer. The D-Markov machines are constructed in two steps: (i state splitting, i.e., the states are split based on their information contents, and (ii state merging, i.e., two or more states (of possibly different lengths are merged together to form a new state without any significant loss of the embedded information. The modeling complexity (e.g., number of states of a D-Markov machine model is observed to be drastically reduced as the combustor approaches LBO. An anomaly measure, based on Kullback-Leibler divergence, is constructed to predict the proximity of LBO. The problem of LBO prediction is posed in a pattern classification setting and the underlying algorithms have been tested on experimental data at different extents of fuel-air premixing and fuel/air ratio. It is shown that, over a wide range of fuel-air premixing, D-Markov machines with D > 1 perform better as predictors of LBO than those with D = 1.

  19. Dynamic Stability of the Rate, State, Temperature, and Pore Pressure Friction Model at a Rock Interface

    Science.gov (United States)

    Sinha, Nitish; Singh, Arun K.; Singh, Trilok N.

    2018-05-01

    In this article, we study numerically the dynamic stability of the rate, state, temperature, and pore pressure friction (RSTPF) model at a rock interface using standard spring-mass sliding system. This particular friction model is a basically modified form of the previously studied friction model namely the rate, state, and temperature friction (RSTF). The RSTPF takes into account the role of thermal pressurization including dilatancy and permeability of the pore fluid due to shear heating at the slip interface. The linear stability analysis shows that the critical stiffness, at which the sliding becomes stable to unstable or vice versa, increases with the coefficient of thermal pressurization. Critical stiffness, on the other hand, remains constant for small values of either dilatancy factor or hydraulic diffusivity, but the same decreases as their values are increased further from dilatancy factor (˜ 10^{ - 4} ) and hydraulic diffusivity (˜ 10^{ - 9} {m}2 {s}^{ - 1} ) . Moreover, steady-state friction is independent of the coefficient of thermal pressurization, hydraulic diffusivity, and dilatancy factor. The proposed model is also used for predicting time of failure of a creeping interface of a rock slope under the constant gravitational force. It is observed that time of failure decreases with increase in coefficient of thermal pressurization and hydraulic diffusivity, but the dilatancy factor delays the failure of the rock fault under the condition of heat accumulation at the creeping interface. Moreover, stiffness of the rock-mass also stabilizes the failure process of the interface as the strain energy due to the gravitational force accumulates in the rock-mass before it transfers to the sliding interface. Practical implications of the present study are also discussed.

  20. Stability in a changing world - palm community dynamics in the hyperdiverse western Amazon over 17 years.

    Science.gov (United States)

    Olivares, Ingrid; Svenning, Jens-Christian; van Bodegom, Peter M; Valencia, Renato; Balslev, Henrik

    2017-03-01

    Are the hyperdiverse local forests of the western Amazon undergoing changes linked to global and local drivers such as climate change, or successional dynamics? We analyzed local climatic records to assess potential climatic changes in Yasuní National Park, Ecuador, and compared two censuses (1995, 2012) of a palm community to assess changes in community structure and composition. Over 17 years, the structure and composition of this palm community remained remarkably stable. Soil humidity was significantly lower and canopy conditions were significantly more open in 2012 compared to 1995, but local climatic records showed that no significant changes in precipitation, temperature or river level have occurred during the last decade. Thus, we found no evidence of recent directional shifts in climate or the palm community in Yasuní. The absence of changes in local climate and plant community dynamics in Yasuní contrasts with recent findings from eastern Amazon, where environmental change is driving significant changes in ecosystem dynamics. Our findings suggest that until now, local forests in the northwest Amazon may have escaped pressure from climate change. The stability of this rich palm community embedded in the hyperdiverse Yasuní National Park underlines its uniqueness as a sanctuary for the protection of Amazonian diversity from global change impacts. © 2016 John Wiley & Sons Ltd.

  1. Stability and dynamic analysis of a service robot

    NARCIS (Netherlands)

    Bouten, J.T.; Alvarez Aguirre, A.; Derks, R.J.S.; Nijmeijer, H.

    2011-01-01

    A Remote Operated SErvice robot (ROSE) is built to assist elderly people in health care. The use of technology to assist the elderly and disabled is desirable to ease the burden on the decreasing working population in the Netherlands and all over Europe. In this report the stability of the ROSE

  2. Seismic Stability of Reinforced Soil Slopes

    DEFF Research Database (Denmark)

    Tzavara, I.; Zania, Varvara; Tsompanakis, Y.

    2012-01-01

    Over recent decades increased research interest has been observed on the dynamic response and stability issues of earth walls and reinforced soil structures. The current study aims to provide an insight into the dynamic response of reinforced soil structures and the potential of the geosynthetics...... to prevent the development of slope instability taking advantage of their reinforcing effect. For this purpose, a onedimensional (SDOF) model, based on Newmark’s sliding block model as well as a two-dimensional (plane-strain) dynamic finite-element analyses are conducted in order to investigate the impact...

  3. An analytical model for the prediction of the dynamic response of premixed flames stabilized on a heat-conducting perforated plate

    KAUST Repository

    Kedia, Kushal S.

    2013-01-01

    The dynamic response of a premixed flame stabilized on a heat-conducting perforated plate depends critically on their coupled thermal interaction. The objective of this paper is to develop an analytical model to capture this coupling. The model predicts the mean flame base standoff distance; the flame base area, curvature and speed; and the burner plate temperature given the operating conditions; the mean velocity, temperature and equivalence ratio of the reactants; thermal conductivity and the perforation ratio of the burner. This coupled model is combined with our flame transfer function (FTF) model to predict the dynamic response of the flame to velocity perturbations. We show that modeling the thermal coupling between the flame and the burner, while accounting for the two-dimensionality of the former, is critical to predicting the dynamic response characteristics such as the overshoot in the gain curve (resonant condition) and the phase delay. Good agreement with the numerical and experimental results is demonstrated over a range of conditions. © 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

  4. Numerical Computation of Detonation Stability

    KAUST Repository

    Kabanov, Dmitry

    2018-06-03

    Detonation is a supersonic mode of combustion that is modeled by a system of conservation laws of compressible fluid mechanics coupled with the equations describing thermodynamic and chemical properties of the fluid. Mathematically, these governing equations admit steady-state travelling-wave solutions consisting of a leading shock wave followed by a reaction zone. However, such solutions are often unstable to perturbations and rarely observed in laboratory experiments. The goal of this work is to study the stability of travelling-wave solutions of detonation models by the following novel approach. We linearize the governing equations about a base travelling-wave solution and solve the resultant linearized problem using high-order numerical methods. The results of these computations are postprocessed using dynamic mode decomposition to extract growth rates and frequencies of the perturbations and predict stability of travelling-wave solutions to infinitesimal perturbations. We apply this approach to two models based on the reactive Euler equations for perfect gases. For the first model with a one-step reaction mechanism, we find agreement of our results with the results of normal-mode analysis. For the second model with a two-step mechanism, we find that both types of admissible travelling-wave solutions exhibit the same stability spectra. Then we investigate the Fickett’s detonation analogue coupled with a particular reaction-rate expression. In addition to the linear stability analysis of this model, we demonstrate that it exhibits rich nonlinear dynamics with multiple bifurcations and chaotic behavior.

  5. Measuring the emulsification dynamics and stability of self-emulsifying drug delivery systems.

    Science.gov (United States)

    Vasconcelos, Teófilo; Marques, Sara; Sarmento, Bruno

    2018-02-01

    Self-emulsifying drug delivery systems (SEDDS) are one of the most promising technologies in the drug delivery field, particularly for addressing solubility and bioavailability issues of drugs. The development of these drug carriers excessively relies in visual observations and indirect determinations. The present manuscript intended to describe a method able to measure the emulsification of SEDDS, both micro and nano-emulsions, able to measure the droplet size and to evaluate the physical stability of these formulations. Additionally, a new process to evaluate the physical stability of SEDDS after emulsification was also proposed, based on a cycle of mechanical stress followed by a resting period. The use of a multiparameter continuous evaluation during the emulsification process and stability was of upmost value to understand SEDDS emulsification process. Based on this method, SEDDS were classified as fast and slow emulsifiers. Moreover, emulsification process and stabilization of emulsion was subject of several considerations regarding the composition of SEDDS as major factor that affects stability to physical stress and the use of multicomponent with different properties to develop a stable and robust SEDDS formulation. Drug loading level is herein suggested to impact droplets size of SEDDS after dispersion and SEDDS stability to stress conditions. The proposed protocol allows an online measurement of SEDDS droplet size during emulsification and a rationale selection of excipients based on its emulsification and stabilization performance. Copyright © 2017. Published by Elsevier B.V.

  6. Forest dynamics.

    Science.gov (United States)

    Frelich, Lee

    2016-01-01

    Forest dynamics encompass changes in stand structure, species composition, and species interactions with disturbance and environment over a range of spatial and temporal scales. For convenience, spatial scale is defined as individual tree, neighborhood, stand, and landscape. Whether a given canopy-leveling disturbance will initiate a sequence of development in structure with little change in composition or initiate an episode of succession depends on a match or mismatch, respectively, with traits of the dominant tree species that allow the species to survive disturbance. When these match, certain species-disturbance type combinations lock in a pattern of stand and landscape dynamics that can persist for several generations of trees; thus, dominant tree species regulate, as well as respond to, disturbance. A complex interaction among tree species, neighborhood effects, disturbance type and severity, landform, and soils determines how stands of differing composition form and the mosaic of stands that compose the landscape. Neighborhood effects (e.g., serotinous seed rain, sprouting, shading, leaf-litter chemistry, and leaf-litter physical properties) operate at small spatial extents of the individual tree and its neighbors but play a central role in forest dynamics by contributing to patch formation at stand scales and dynamics of the entire landscape. Dominance by tree species with neutral to negative neighborhood effects leads to unstable landscape dynamics in disturbance-prone regions, wherein most stands are undergoing succession; stability can only occur under very low-severity disturbance regimes. Dominance by species with positive effects leads to stable landscape dynamics wherein only a small proportion of stands undergo succession at any one time. Positive neighborhood effects are common in temperate and boreal zones, whereas negative effects are more common in tropical climates. Landscapes with positive dynamics have alternate categories of dynamics

  7. The nekhoroshev theorem and long-term stabilities in the solar system

    Directory of Open Access Journals (Sweden)

    Guzzo M.

    2015-01-01

    Full Text Available The Nekhoroshev theorem has been often indicated in the last decades as the reference theorem for explaining the dynamics of several systems which are stable in the long-term. The Solar System dynamics provides a wide range of possible and useful applications. In fact, despite the complicated models which are used to numerically integrate realistic Solar System dynamics as accurately as possible, when the integrated solutions are chaotic the reliability of the numerical integrations is limited, and a theoretical long-term stability analysis is required. After the first formulation of Nekhoroshev’s theorem in 1977, many theoretical improvements have been achieved. On the one hand, alternative proofs of the theorem itself led to consistent improvements of the stability estimates; on the other hand, the extensions which were necessary to apply the theorem to the systems of interest for Solar System Dynamics, in particular concerning the removal of degeneracies and the implementation of computer assisted proofs, have been developed. In this review paper we discuss some of the motivations and the results which have made Nekhoroshev’s theorem a reference stability result for many applications in the Solar System dynamics.

  8. Students' Understanding of Equilibrium and Stability: The Case of Dynamic Systems

    Science.gov (United States)

    Canu, Michaël; de Hosson, Cécile; Duque, Mauricio

    2016-01-01

    Engineering students in control courses have been observed to lack an understanding of equilibrium and stability, both of which are crucial concepts in this discipline. The introduction of these concepts is generally based on the study of classical examples from Newtonian mechanics supplemented with a control system. Equilibrium and stability are…

  9. Long-term spatiotemporal stability and dynamic changes in helminth infracommunities of bank voles (Myodes glareolus) in NE Poland.

    Science.gov (United States)

    Grzybek, Maciej; Bajer, Anna; Bednarska, Małgorzata; Al-Sarraf, Mohammed; Behnke-Borowczyk, Jolanta; Harris, Philip D; Price, Stephen J; Brown, Gabrielle S; Osborne, Sarah-Jane; Siński, Edward; Behnke, Jerzy M

    2015-12-01

    Parasites are considered to be an important selective force in host evolution but ecological studies of host-parasite systems are usually short-term providing only snap-shots of what may be dynamic systems. We have conducted four surveys of helminths of bank voles at three ecologically similar woodland sites in NE Poland, spaced over a period of 11 years, to assess the relative importance of temporal and spatial effects on helminth infracommunities. Some measures of infracommunity structure maintained relative stability: the rank order of prevalence and abundance of Heligmosomum mixtum, Heligmosomoides glareoli and Mastophorus muris changed little between the four surveys. Other measures changed markedly: dynamic changes were evident in Syphacia petrusewiczi which declined to local extinction, while the capillariid Aonchotheca annulosa first appeared in 2002 and then increased in prevalence and abundance over the remaining three surveys. Some species are therefore dynamic and both introductions and extinctions can be expected in ecological time. At higher taxonomic levels and for derived measures, year and host-age effects and their interactions with site are important. Our surveys emphasize that the site of capture is the major determinant of the species contributing to helminth community structure, providing some predictability in these systems.

  10. Dynamics differentiate between active and inactive inteins.

    Science.gov (United States)

    Cronin, Melissa; Coolbaugh, Michael J; Nellis, David; Zhu, Jianwei; Wood, David W; Nussinov, Ruth; Ma, Buyong

    2015-02-16

    The balance between stability and dynamics for active enzymes can be somewhat quantified by studies of intein splicing and cleaving reactions. Inteins catalyze the ligation of flanking host exteins while excising themselves. The potential for applications led to engineering of a mini-intein splicing domain, where the homing endonuclease domain of the Mycobacterium tuberculosis RecA (Mtu recA) intein was removed. The remaining domains were linked by several short peptides, but splicing activity in all was substantially lower than the full-length intein. Native splicing activity was restored in some cases by a V67L mutation. Using computations and experiments, we examine the impact of this mutation on the stability and conformational dynamics of the mini-intein splicing domain. Molecular dynamics simulations were used to delineate the factors that determine the active state, including the V67L mini-intein mutant, and peptide linker. We found that (1) the V67L mutation lowers the global fluctuations in all modeled mini-inteins, stabilizing the mini-intein constructs; (2) the connecting linker length affects intein dynamics; and (3) the flexibilities of the linker and intein core are higher in the active structure. We have observed that the interaction of the linker region and a turn region around residues 35-41 provides the pathway for the allostery interaction. Our experiments reveal that intein catalysis is characterized by non-linear Arrhenius plot, confirming the significant contribution of protein conformational dynamics to intein function. We conclude that while the V67L mutation stabilizes the global structure, cooperative dynamics of all intein regions appear more important for intein function than high stability. Our studies suggest that effectively quenching the conformational dynamics of an intein through engineered allosteric interactions could deactivate intein splicing or cleaving. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  11. Effects of obesity on dynamic stability control during recovery from a treadmill-induced slip among young adults.

    Science.gov (United States)

    Yang, Feng; Kim, JaeEun; Yang, Fei

    2017-02-28

    This study sought to investigate the effects of obesity on falls and dynamic stability control in young adults when subject to a standardized treadmill-induced gait-slip. Forty-four young adults (21 normal-weight and 23 obese) participated in this study. After their muscle strength was assessed at the right knee under maximum voluntary isometric (flexion and extension) contractions, participants were moved to an ActiveStep treadmill. Following 5 normal walking trials on the treadmill, all participants encountered an identical and unexpected slip defined as a perturbation in the anterior direction with the magnitude of 24-cm slip distance and 2.4-m/s peak slip velocity. The trials were categorized as a fall or recovery based on the reliance of the subject on external support following the slip. Compared with the normal-weight group, the obese group demonstrated less relative muscle strength and fell more responding to the slip (78.3% vs. 40.0%, p=0.009). After adjusting the body height and gender, the results indicated that the obese group was 19.1-time (95% confidence interval: [2.06, 177.36]) more prone to a fall than the normal-weight group when experiencing the same treadmill-induced slip. The obese group showed significantly impaired dynamic stability after slip possibly due to the inability of controlling the trunk segment׳s backward lean movement. Obesity measurements explained more slip outcome variance than did the strength measurements (53.4% vs. 18.1%). This study indicates that obesity most likely influences the ability to recover from slip perturbations. It is important to develop interventions to improve the capability of balance recovery among individuals with obesity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Dynamics of bluff-body-stabilized premixed hydrogen/air flames in a narrow channel

    KAUST Repository

    Lee, Bok Jik

    2015-06-01

    Two-dimensional direct numerical simulations were conducted for bluff-body stabilized flames of a lean hydrogen/air mixture at near-blowoff conditions in a meso-scale channel. Parametric simulations were conducted by incrementally varying the inflow velocity in the vicinity of the blowoff limit, and the corresponding flame response was monitored. The present study is a showcase of combustion DNS with embedded boundary representation, and full demonstration of the detailed visualization of the near-blowoff flame characteristics. As the inflow velocity approaches blowoff limit, the flame dynamics exhibit a complex sequence of events, such as periodic local extinction and recovery, and regrowth of the bulk flame by the flame segments attached behind the bluff-body. The total extinction is observed as the attached flames shrink down and are no longer able to regrow the bulk flames. Despite the disparity in the physical scale under study, the observed sequence of the extinction pathway shows a strong similarity with experimental observations at larger scale combustion systems. © 2015 The Combustion Institute.

  13. Medium-term effects of Dynesys dynamic stabilization versus posterior lumbar interbody fusion for treatment of multisegmental lumbar degenerative disease.

    Science.gov (United States)

    Wu, Haiting; Pang, Qingjiang; Jiang, Guoqiang

    2017-10-01

    Objective To compare the medium-term clinical and radiographic outcomes of Dynesys dynamic stabilization and posterior lumbar interbody fusion (PLIF) for treatment of multisegmental lumbar degenerative disease. Methods Fifty-seven patients with multisegmental lumbar degenerative disease underwent Dynesys stabilization (n = 26) or PLIF (n = 31) from December 2008 to February 2010. The mean follow-up period was 50.3 (range, 46-65) months. Clinical outcomes were evaluated using a visual analogue scale (VAS) and the Oswestry disability index (ODI). Radiographic evaluations included disc height and range of motion (ROM) of the operative segments and proximal adjacent segment on lumbar flexion-extension X-rays. The intervertebral disc signal change was defined by magnetic resonance imaging, and disc degeneration was classified by the Pfirrmann grade. Results The clinical outcomes including the VAS score and ODI were significantly improved in both groups at 3 months and the final follow-up, but the difference between the two was not significant. At the final follow-up, the disc height of stabilized segments in both groups was significantly increased; the increase was more notable in the Dynesys than PLIF group. The ROM of stabilized segments at the final follow-up decreased from 6.20° to 2.76° and 6.56° to 0.00° in the Dynesys and PLIF groups, respectively. There was no distinct change in the height of the proximal adjacent segment in the two groups. The ROM of the proximal adjacent segment in both groups increased significantly at the final follow-up; the change was significantly greater in the PLIF than Dynesys group. Only one case of adjacent segment degeneration occurred in the PLIF group, and this patient underwent a second operation. Conclusions Both Dynesys stabilization and PLIF can improve the clinical and radiographic outcomes of multisegmental lumbar degenerative disease. Compared with PLIF, Dynesys stabilization can maintain the mobility of the

  14. Concerning the Effect of a Viscoelastic Foundation on the Dynamic Stability of a Pipeline System Conveying an Incompressible Fluid

    Directory of Open Access Journals (Sweden)

    Vincent Olunloyo

    2016-12-01

    Full Text Available In this paper, we present an analytical method for solving a well-posed boundary value problem of mathematical physics governing the vibration characteristics of an internal flow propelled fluid-structure interaction where the pipeline segment is idealized as an elastic hollow beam conveying an incompressible fluid on a viscoelastic foundation. The effect of Coriolis and damping forces on the overall dynamic response of the system is investigated. In actuality, for a pipe segment supported at both ends and subject to a free motion, these two forces generate conjugate complex frequencies for all flow velocities. On employing integral transforms and complex variable functions, a closed form analytical expression is derived for the overall dynamic response. It is demonstrated that a concise mathematical expression for the natural frequency associated with any mode of vibration can be deduced from the algebraic product of the complex frequency pairs. By a way of comparative analysis for damping decrement physics reminiscent with laminated structures, mathematical expressions are derived to illustrate viscoelastic damping effects on dynamic stability for any flow velocity. The integrity of the analytical solution is verified and validated by confirming theresults in literature in appropriate asymptotic limits.

  15. Temperature stability of static and dynamic properties of 1.55 µm quantum dot lasers.

    Science.gov (United States)

    Abdollahinia, A; Banyoudeh, S; Rippien, A; Schnabel, F; Eyal, O; Cestier, I; Kalifa, I; Mentovich, E; Eisenstein, G; Reithmaier, J P

    2018-03-05

    Static and dynamic properties of InP-based 1.55 µm quantum dot (QD) lasers were investigated. Due to the reduced size inhomogeneity and a high dot density of the newest generation of 1.55 µm QD gain materials, ridge waveguide lasers (RWG) exhibit improved temperature stability and record-high modulation characteristics. Detailed results are shown for the temperature dependence of static properties including threshold current, voltage-current characteristics, external differential efficiency and emission wavelength. Similarly, small and large signal modulations were found to have only minor dependences on temperature. Moreover, we show the impact of the active region design and the cavity length on the temperature stability. Measurements were performed in pulsed and continuous wave operation. High characteristic temperatures for the threshold current were obtained with T 0 values of 144 K (15 - 60 °C), 101 K (60 - 110 °C) and 70 K up to 180 °C for a 900-µm-long RWG laser comprising 8 QD layers. The slope efficiency in these lasers is nearly independent of temperature showing a T 1 value of more than 900 K up to 110 °C. Due to the high modal gain, lasers with a cavity length of 340 µm reached new record modulation bandwidths of 17.5 GHz at 20 °C and 9 GHz at 80 °C, respectively. These lasers were modulated at 26 GBit/s in the non-return to zero format at 80 °C and at 25 GBaud using a four-level pulse amplitude format at 21 °C.

  16. Stability of a spatial model of social interactions

    International Nuclear Information System (INIS)

    Bragard, Jean; Mossay, Pascal

    2016-01-01

    We study a spatial model of social interactions. Though the properties of the spatial equilibrium have been largely discussed in the existing literature, the stability of equilibrium remains an unaddressed issue. Our aim is to fill up this gap by introducing dynamics in the model and by determining the stability of equilibrium. First we derive a variational equation useful for the stability analysis. This allows to study the corresponding eigenvalue problem. While odd modes are shown to be always stable, there is a single even mode of which stability depends on the model parameters. Finally various numerical simulations illustrate our theoretical results.

  17. Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota.

    Directory of Open Access Journals (Sweden)

    Richard R Stein

    Full Text Available The intestinal microbiota is a microbial ecosystem of crucial importance to human health. Understanding how the microbiota confers resistance against enteric pathogens and how antibiotics disrupt that resistance is key to the prevention and cure of intestinal infections. We present a novel method to infer microbial community ecology directly from time-resolved metagenomics. This method extends generalized Lotka-Volterra dynamics to account for external perturbations. Data from recent experiments on antibiotic-mediated Clostridium difficile infection is analyzed to quantify microbial interactions, commensal-pathogen interactions, and the effect of the antibiotic on the community. Stability analysis reveals that the microbiota is intrinsically stable, explaining how antibiotic perturbations and C. difficile inoculation can produce catastrophic shifts that persist even after removal of the perturbations. Importantly, the analysis suggests a subnetwork of bacterial groups implicated in protection against C. difficile. Due to its generality, our method can be applied to any high-resolution ecological time-series data to infer community structure and response to external stimuli.

  18. Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota.

    Science.gov (United States)

    Stein, Richard R; Bucci, Vanni; Toussaint, Nora C; Buffie, Charlie G; Rätsch, Gunnar; Pamer, Eric G; Sander, Chris; Xavier, João B

    2013-01-01

    The intestinal microbiota is a microbial ecosystem of crucial importance to human health. Understanding how the microbiota confers resistance against enteric pathogens and how antibiotics disrupt that resistance is key to the prevention and cure of intestinal infections. We present a novel method to infer microbial community ecology directly from time-resolved metagenomics. This method extends generalized Lotka-Volterra dynamics to account for external perturbations. Data from recent experiments on antibiotic-mediated Clostridium difficile infection is analyzed to quantify microbial interactions, commensal-pathogen interactions, and the effect of the antibiotic on the community. Stability analysis reveals that the microbiota is intrinsically stable, explaining how antibiotic perturbations and C. difficile inoculation can produce catastrophic shifts that persist even after removal of the perturbations. Importantly, the analysis suggests a subnetwork of bacterial groups implicated in protection against C. difficile. Due to its generality, our method can be applied to any high-resolution ecological time-series data to infer community structure and response to external stimuli.

  19. Dynamics and stability of transverse vibrations of nonlocal nanobeams with a variable axial load

    International Nuclear Information System (INIS)

    Li, C; Yu, J L; Lim, C W

    2011-01-01

    This paper investigates the natural frequency, steady-state resonance and stability for the transverse vibrations of a nanobeam subjected to a variable initial axial force, including axial tension and axial compression, based on nonlocal elasticity theory. It is reported that the nonlocal nanoscale has significant effects on vibration behavior, which results in a new effective nonlocal bending moment different to but dependent on the corresponding nonlocal bending moment. The effects of nonlocal nanoscale and the variation of initial axial force on the natural frequency as well as the instability regions are analyzed by the perturbation method. It concludes that both the nonlocal nanoscale and the initial tension, including static and dynamic tensions, cause an increase in natural frequency, while an initial compression causes the natural frequency to decrease. Instability regions are also greatly influenced by the nonlocal nanoscale and initial tension and they become smaller with stronger nonlocal effects or larger initial tension

  20. Nonconservative stability problems of modern physics

    CERN Document Server

    Kirillov, Oleg N

    2013-01-01

    This work gives a complete overview on the subject of nonconservative stability from the modern point of view. Relevant mathematical concepts are presented, as well as rigorous stability results and numerous classical and contemporary examples from mechanics and physics.The book shall serve to present and prospective specialists providing the current state of knowledge in this actively developing field. The understanding of this theory is vital for many areas of technology, as dissipative effects in rotor dynamics orcelestial mechanics.