Energy Technology Data Exchange (ETDEWEB)
Silva, Marcelo Mariano da
2008-01-15
The search for high performance and low cost hardware and software solutions always guides the developments performed at the IEN parallel computing laboratory. In this context, this dissertation about the building of programs for visualization of computational fluid dynamics (CFD) simulations using the open source software OpenDx was written. The programs developed are useful to produce videos and images in two or three dimensions. They are interactive, easily to use and were designed to serve fluid dynamics researchers. A detailed description about how this programs were developed and the complete instructions of how to use them was done. The use of OpenDx as development tool is also introduced. There are examples that help the reader to understand how programs can be useful for many applications. (author)
Energy Technology Data Exchange (ETDEWEB)
Salellas, J.; Zamora, I.; Fabbri, M.; Colomer, C.; Castillo, R.; Fradera, J.
2014-07-01
The objective of the analysis of the spread of fire through Computational Fluid Dynamics simulation with the Fire Dynamics Simulator program is to determine the identification of the affected computers and determine the livability in the areas of fire as fire postulates. The simulation with Fire Dynamics Simulator allows the evolution and spread of flame and smoke behavior in an instant in time, determining the exact moment that damage is caused by radiation or temperature to equipment and operation according to the level of toxicity and temperature of the fire area. (Author)
Molecular dynamics simulations.
Lindahl, Erik
2015-01-01
Molecular dynamics has evolved from a niche method mainly applicable to model systems into a cornerstone in molecular biology. It provides us with a powerful toolbox that enables us to follow and understand structure and dynamics with extreme detail-literally on scales where individual atoms can be tracked. However, with great power comes great responsibility: Simulations will not magically provide valid results, but it requires a skilled researcher. This chapter introduces you to this, and makes you aware of some potential pitfalls. We focus on the two basic and most used methods; optimizing a structure with energy minimization and simulating motion with molecular dynamics. The statistical mechanics theory is covered briefly as well as limitations, for instance the lack of quantum effects and short timescales. As a practical example, we show each step of a simulation of a small protein, including examples of hardware and software, how to obtain a starting structure, immersing it in water, and choosing good simulation parameters. You will learn how to analyze simulations in terms of structure, fluctuations, geometrical features, and how to create ray-traced movies for presentations. With modern GPU acceleration, a desktop can perform μs-scale simulations of small proteins in a day-only 15 years ago this took months on the largest supercomputer in the world. As a final exercise, we show you how to set up, perform, and interpret such a folding simulation.
Interactive Dynamic-System Simulation
Korn, Granino A
2010-01-01
Showing you how to use personal computers for modeling and simulation, Interactive Dynamic-System Simulation, Second Edition provides a practical tutorial on interactive dynamic-system modeling and simulation. It discusses how to effectively simulate dynamical systems, such as aerospace vehicles, power plants, chemical processes, control systems, and physiological systems. Written by a pioneer in simulation, the book introduces dynamic-system models and explains how software for solving differential equations works. After demonstrating real simulation programs with simple examples, the author
Joncas, K. P.; Birnbach, S.; Lambert, M., III
1973-01-01
Two independent models simulate dynamic and steady-state responses of electrical and electronic equipment under power load. One is resistance/capacitance/inductance network, and the other is variable resistance analog device. Resistance, inductance, and/or capacitance are selected by iterative process; time-domain response is compared with that of real equipment to select optimal values.
Dynamic simulation of a reboiler
International Nuclear Information System (INIS)
Moeck, E.O.; McMorran, P.D.
1977-07-01
A hybrid-computer simulation of reboiler dynamics was prepared, comprising models of steam condensation in tubes, heat conduction, steam generation, a surge tank, steam transmission line and flow-control valve. Time and frequency responses were obtained to illustrate the dynamics of this multivariable process. (author)
Vehicle dynamics modeling and simulation
Schramm, Dieter; Bardini, Roberto
2014-01-01
The authors examine in detail the fundamentals and mathematical descriptions of the dynamics of automobiles. In this context different levels of complexity will be presented, starting with basic single-track models up to complex three-dimensional multi-body models. A particular focus is on the process of establishing mathematical models on the basis of real cars and the validation of simulation results. The methods presented are explained in detail by means of selected application scenarios.
Digital Dynamic Simulation for All Engineering Undergraduates
Frederick, Dean K.
1975-01-01
Discusses the use of a simulation language designed to teach dynamic behavior to engineering students via a digital computer. Describes specific applications of the language and the costs of implementing digital dynamic simulation. (MLH)
Dynamic simulation of LMFBR systems
International Nuclear Information System (INIS)
Agrawal, A.K.; Khatib-Rahbar, M.
1980-01-01
This review article focuses on the dynamic analysis of liquid-metal-cooled fast breeder reactor systems in the context of protected transients. Following a brief discussion on various design and simulation approaches, a critical review of various models for in-reactor components, intermediate heat exchangers, heat transport systems and the steam generating system is presented. A brief discussion on choice of fuels as well as core and blanket system designs is also included. Numerical considerations for obtaining system-wide steady-state and transient solutions are discussed, and examples of various system transients are presented. Another area of major interest is verification of phenomenological models. Various steps involved in the code and model verification are briefly outlined. The review concludes by posing some further areas of interest in fast reactor dynamics and safety. (author)
Human motion simulation predictive dynamics
Abdel-Malek, Karim
2013-01-01
Simulate realistic human motion in a virtual world with an optimization-based approach to motion prediction. With this approach, motion is governed by human performance measures, such as speed and energy, which act as objective functions to be optimized. Constraints on joint torques and angles are imposed quite easily. Predicting motion in this way allows one to use avatars to study how and why humans move the way they do, given specific scenarios. It also enables avatars to react to infinitely many scenarios with substantial autonomy. With this approach it is possible to predict dynamic motion without having to integrate equations of motion -- rather than solving equations of motion, this approach solves for a continuous time-dependent curve characterizing joint variables (also called joint profiles) for every degree of freedom. Introduces rigorous mathematical methods for digital human modelling and simulation Focuses on understanding and representing spatial relationships (3D) of biomechanics Develops an i...
Dynamic analysis and simulation at Chalk River
International Nuclear Information System (INIS)
Green, R.E.
1976-01-01
The paper outlines the role of dynamic analysis/simulation within AECL, discusses briefly some recent dynamic analysis/simulation studies in the Reactor Control Branch at CRNL, describes the dynamic simulation facilities being used by the Branch, and discusses the operation of the Dynamic Analysis Centre and how it might be used by analysts from outside the Reactor Control Branch and indeed, outside AECL. (author)
Simulation and sequential dynamical systems
Energy Technology Data Exchange (ETDEWEB)
Mortveit, H.S.; Reidys, C.M.
1999-06-01
Computer simulations have a generic structure. Motivated by this the authors present a new class of discrete dynamical systems that captures this structure in a mathematically precise way. This class of systems consists of (1) a loopfree graph {Upsilon} with vertex set {l_brace}1,2,{hor_ellipsis},n{r_brace} where each vertex has a binary state, (2) a vertex labeled set of functions (F{sub i,{Upsilon}}:F{sub 2}{sup n} {yields} F{sub 2}{sup n}){sub i} and (3) a permutation {pi} {element_of} S{sub n}. The function F{sub i,{Upsilon}} updates the state of vertex i as a function of the states of vertex i and its {Upsilon}-neighbors and leaves the states of all other vertices fixed. The permutation {pi} represents the update ordering, i.e., the order in which the functions F{sub i,{Upsilon}} are applied. By composing the functions F{sub i,{Upsilon}} in the order given by {pi} one obtains the dynamical system (equation given in paper), which the authors refer to as a sequential dynamical system, or SDS for short. The authors will present bounds for the number of functionally different systems and for the number of nonisomorphic digraphs {Gamma}[F{sub {Upsilon}},{pi}] that can be obtained by varying the update order and applications of these to specific graphs and graph classes.
Sensitivity Analysis of Fire Dynamics Simulation
DEFF Research Database (Denmark)
Brohus, Henrik; Nielsen, Peter V.; Petersen, Arnkell J.
2007-01-01
In case of fire dynamics simulation requirements to reliable results are most often very high due to the severe consequences of erroneous results. At the same time it is a well known fact that fire dynamics simulation constitutes rather complex physical phenomena which apart from flow and energy ...
Molecular dynamics simulation of a phospholipid membrane
Egberts, Egbert; Marrink, Siewert-Jan; Berendsen, Herman J.C.
We present the results of molecular dynamics (MD) simulations of a phospholipid membrane in water, including full atomic detail. The goal of the simulations was twofold: first we wanted to set up a simulation system which is able to reproduce experimental results and can serve as a model membrane in
Visualizing Structure and Dynamics of Disaccharide Simulations
Energy Technology Data Exchange (ETDEWEB)
Matthews, J. F.; Beckham, G. T.; Himmel, M. E.; Crowley, M. F.
2012-01-01
We examine the effect of several solvent models on the conformational properties and dynamics of disaccharides such as cellobiose and lactose. Significant variation in timescale for large scale conformational transformations are observed. Molecular dynamics simulation provides enough detail to enable insight through visualization of multidimensional data sets. We present a new way to visualize conformational space for disaccharides with Ramachandran plots.
Molecular dynamics simulation of impact test
Energy Technology Data Exchange (ETDEWEB)
Akahoshi, Y. [Kyushu Inst. of Tech., Kitakyushu, Fukuoka (Japan); Schmauder, S.; Ludwig, M. [Stuttgart Univ. (Germany). Staatliche Materialpruefungsanstalt
1998-11-01
This paper describes an impact test by molecular dynamics (MD) simulation to evaluate embrittlement of bcc Fe at different temperatures. A new impact test model is developed for MD simulation. The typical fracture behaviors show transition from brittle to ductile fracture, and a history of the impact loads also demonstrates its transition. We conclude that the impact test by MD could be feasible. (orig.)
Molecular dynamics simulation of impact test
International Nuclear Information System (INIS)
Akahoshi, Y.; Schmauder, S.; Ludwig, M.
1998-01-01
This paper describes an impact test by molecular dynamics (MD) simulation to evaluate embrittlement of bcc Fe at different temperatures. A new impact test model is developed for MD simulation. The typical fracture behaviors show transition from brittle to ductile fracture, and a history of the impact loads also demonstrates its transition. We conclude that the impact test by MD could be feasible. (orig.)
Probing Cellular Dynamics with Mesoscopic Simulations
DEFF Research Database (Denmark)
Shillcock, Julian C.
2010-01-01
. Advances in computing hardware and software now allow explicit simulation of some aspects of cellular dynamics close to the molecular scale. Vesicle fusion is one example of such a process. Experiments, however, typically probe cellular behavior from the molecular scale up to microns. Standard particle...... soon be coupled to Mass Action models allowing the parameters in such models to be continuously tuned according to the finer resolution simulation. This will help realize the goal of a computational cellular simulation that is able to capture the dynamics of membrane-associated processes...
Computational plasticity algorithm for particle dynamics simulations
Krabbenhoft, K.; Lyamin, A. V.; Vignes, C.
2018-01-01
The problem of particle dynamics simulation is interpreted in the framework of computational plasticity leading to an algorithm which is mathematically indistinguishable from the common implicit scheme widely used in the finite element analysis of elastoplastic boundary value problems. This algorithm provides somewhat of a unification of two particle methods, the discrete element method and the contact dynamics method, which usually are thought of as being quite disparate. In particular, it is shown that the former appears as the special case where the time stepping is explicit while the use of implicit time stepping leads to the kind of schemes usually labelled contact dynamics methods. The framing of particle dynamics simulation within computational plasticity paves the way for new approaches similar (or identical) to those frequently employed in nonlinear finite element analysis. These include mixed implicit-explicit time stepping, dynamic relaxation and domain decomposition schemes.
Range data in vehicle dynamic simulation
Nybacka, Mikael; Fredriksson, Håkan; Hyyppä, Kalevi
2009-01-01
This paper presents a way to merge range data into the vehicle dynamic simulation software CarSim 7.1. The range data consists of measurements describing the surface of a road, and thus, creates a close to real life 3D simulation environment. This reduces the discrepancy between the real life tests and simulation of vehicle suspension systems, dampers, springs, etc. It is important for the vehicle industry to represent a real life environment in the simulation software in order to increase th...
Perspective: chemical dynamics simulations of non-statistical reaction dynamics.
Ma, Xinyou; Hase, William L
2017-04-28
Non-statistical chemical dynamics are exemplified by disagreements with the transition state (TS), RRKM and phase space theories of chemical kinetics and dynamics. The intrinsic reaction coordinate (IRC) is often used for the former two theories, and non-statistical dynamics arising from non-IRC dynamics are often important. In this perspective, non-statistical dynamics are discussed for chemical reactions, with results primarily obtained from chemical dynamics simulations and to a lesser extent from experiment. The non-statistical dynamical properties discussed are: post-TS dynamics, including potential energy surface bifurcations, product energy partitioning in unimolecular dissociation and avoiding exit-channel potential energy minima; non-RRKM unimolecular decomposition; non-IRC dynamics; direct mechanisms for bimolecular reactions with pre- and/or post-reaction potential energy minima; non-TS theory barrier recrossings; and roaming dynamics.This article is part of the themed issue 'Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces'. © 2017 The Author(s).
Dynamics of Laboratory Simulated Microbursts
Alahyari, Abbas Alexander
1995-01-01
A downburst (or microburst) is an intense, localized downdraft of cold air which reaches the Earth and spreads radially outward after it impinges on the ground. Downdrafts are typically induced by rapid evaporation of moisture or melting of hail. The divergent outflow created by a microburst produces strong winds in opposite directions. The sudden changes in the speed and direction of both horizontal and vertical winds within a microburst can create hazardous conditions for aircraft within 1000 ft of the ground, particularly during takeoff and landing. The objective of this investigation was to obtain detailed measurements within a laboratory -simulated version of this flow. The flow was modeled experimentally by releasing a small volume of heavier fluid into a less dense ambient surrounding. The heavier fluid impinged on a horizontal plate which represented the ground. Indices of refraction of the light and heavy fluid were matched to yield clear photographic images. Particle image velocimetry (PIV) was used to obtain detailed maps of the instantaneous velocity fields within horizontal and vertical cross sections through the flow. Laser-induced fluorescence (LIF) was used to determine the local concentration of heavy fluid within the downburst flow at different times. PIV measurements showed that the leading edge of the falling fluid rolled up into a vortex ring which then impacted on the ground and expanded radially outward. After touchdown, the largest horizontal velocities occurred beneath the vortex ring but also extended over some distance upstream of the vortex core. PIV results showed small vertical velocity gradients in the region below the core of the vortex ring. The effects of parameters such as initial release height and release volume shape were investigated. Using appropriate length and time scales, the measured velocities were scaled to and compared with previously studied atmospheric microbursts. The experimental data generally agree well with
Induction generator models in dynamic simulation tools
DEFF Research Database (Denmark)
Knudsen, Hans; Akhmatov, Vladislav
1999-01-01
For AC network with large amount of induction generators (windmills) the paper demonstrates a significant discrepancy in the simulated voltage recovery after fault in weak networks when comparing dynamic and transient stability descriptions and the reasons of discrepancies are explained. It is fo......For AC network with large amount of induction generators (windmills) the paper demonstrates a significant discrepancy in the simulated voltage recovery after fault in weak networks when comparing dynamic and transient stability descriptions and the reasons of discrepancies are explained...... to a tunny generator through a shaft....
Visualizing Energy on Target: Molecular Dynamics Simulations
2017-12-01
ARL-TR-8234 ● DEC 2017 US Army Research Laboratory Visualizing Energy on Target: Molecular Dynamics Simulations by DeCarlos E...return it to the originator. ARL-TR-8234● DEC 2017 US Army Research Laboratory Visualizing Energy on Target: Molecular Dynamics...REPORT TYPE Technical Report 3. DATES COVERED (From - To) 1 October 2015–30 September 2016 4. TITLE AND SUBTITLE Visualizing Energy on Target
Dynamic Fracture Simulations of Explosively Loaded Cylinders
Energy Technology Data Exchange (ETDEWEB)
Arthur, Carly W. [Univ. of California, Davis, CA (United States). Dept. of Civil and Environmental Engineering; Goto, D. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-11-30
This report documents the modeling results of high explosive experiments investigating dynamic fracture of steel (AerMet® 100 alloy) cylinders. The experiments were conducted at Lawrence Livermore National Laboratory (LLNL) during 2007 to 2008 [10]. A principal objective of this study was to gain an understanding of dynamic material failure through the analysis of hydrodynamic computer code simulations. Two-dimensional and three-dimensional computational cylinder models were analyzed using the ALE3D multi-physics computer code.
Monte carlo simulation for soot dynamics
Zhou, Kun
2012-01-01
A new Monte Carlo method termed Comb-like frame Monte Carlo is developed to simulate the soot dynamics. Detailed stochastic error analysis is provided. Comb-like frame Monte Carlo is coupled with the gas phase solver Chemkin II to simulate soot formation in a 1-D premixed burner stabilized flame. The simulated soot number density, volume fraction, and particle size distribution all agree well with the measurement available in literature. The origin of the bimodal distribution of particle size distribution is revealed with quantitative proof.
Fluid dynamics theory, computation, and numerical simulation
Pozrikidis, C
2001-01-01
Fluid Dynamics Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice There are several additions and subject expansions in the Second Edition of Fluid Dynamics, including new Matlab and FORTRAN codes Two distinguishing features of the discourse are solution procedures and algorithms are developed immediately after problem formulations are presented, and numerical methods are introduced on a need-to-know basis and in increasing order of difficulty Matlab codes are presented and discussed for a broad...
Dynamic modeling and simulation of wind turbines
International Nuclear Information System (INIS)
Ghafari Seadat, M.H.; Kheradmand Keysami, M.; Lari, H.R.
2002-01-01
Using wind energy for generating electricity in wind turbines is a good way for using renewable energies. It can also help to protect the environment. The main objective of this paper is dynamic modeling by energy method and simulation of a wind turbine aided by computer. In this paper, the equations of motion are extracted for simulating the system of wind turbine and then the behavior of the system become obvious by solving the equations. The turbine is considered with three blade rotor in wind direction, induced generator that is connected to the network and constant revolution for simulation of wind turbine. Every part of the wind turbine should be simulated for simulation of wind turbine. The main parts are blades, gearbox, shafts and generator
Molecular dynamics simulations and quantum chemical calculations ...
African Journals Online (AJOL)
Molecular dynamic simulation results indicate that the imidazoline derivative molecules uses the imidazoline ring to effectively adsorb on the surface of iron, with the alkyl hydrophobic tail forming an n shape (canopy like covering) at geometry optimization and at 353 K. The n shape canopy like covering to a large extent may ...
Sensitivity Analysis of Fire Dynamics Simulation
DEFF Research Database (Denmark)
Brohus, Henrik; Nielsen, Peter V.; Petersen, Arnkell J.
2007-01-01
equations require solution of the issues of combustion and gas radiation to mention a few. This paper performs a sensitivity analysis of a fire dynamics simulation on a benchmark case where measurement results are available for comparison. The analysis is performed using the method of Elementary Effects...
Object Oriented Modelling and Dynamical Simulation
DEFF Research Database (Denmark)
Wagner, Falko Jens; Poulsen, Mikael Zebbelin
1998-01-01
This report with appendix describes the work done in master project at DTU.The goal of the project was to develop a concept for simulation of dynamical systems based on object oriented methods.The result was a library of C++-classes, for use when both building componentbased models and when...
Simulation of Gas-Surface Dynamical Interactions
2007-07-01
surface. The substrate with lattice constant a is represented in a simple ball and spring picture. on the particular problem. Time-independent...παvwell , (26) Simulation of Gas-Surface Dynamical Interactions 4 - 10 RTO-EN-AVT-142 g E ad v mvc ∆ v’well vc cM Figure 4
Molecular dynamics simulation on the interaction mechanism ...
Indian Academy of Sciences (India)
Investigation on the microscopic interaction between polymer inhibitors and calcium phosphate contributes to the understanding of their scale inhibition mechanism. The results obtained may provide a theoretical guidance to developing new scale inhibitors. In this study, molecular dynamics simulations have been ...
SUPPORTING INFORMATION Classical dynamics simulations of ...
Indian Academy of Sciences (India)
Classical dynamics simulations of interstellar glycine formation via CH2=NH + CO + H2O reaction. YOGESHWARAN KRISHNAN, ALLEN VINCENT, and MANIKANDAN. PARANJOTHY∗. Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan,. India. E-mail: pmanikandan@iitj.ac.in.
Generator dynamics in aeroelastic analysis and simulations
Energy Technology Data Exchange (ETDEWEB)
Larsen, T.J.; Hansen, M.H.; Iov, F.
2003-05-01
This report contains a description of a dynamic model for a doubly-fed induction generator implemented in the aeroelastic code HAWC. The model has physical input parameters (resistance, reactance etc.) and input variables (stator and rotor voltage and rotor speed). The model can be used to simulate the generator torque as well as the rotor and stator currents, active and reactive power. A perturbation method has been used to reduce the original generator model equations to a set of equations which can be solved with the same time steps as a typical aeroelastic code. The method is used to separate the fast transients of the model from the slow variations and deduce a reduced order expression for the slow part. Dynamic effects of the first order terms in the model as well as the influence on drive train eigenfrequencies and damping has been investigated. Load response during time simulation of wind turbine response have been compared to simulations with a linear static generator model originally implemented i HAWC. A 2 MW turbine has been modelled in the aeroelastic code HAWC. When using the new dynamic generator model there is an interesting coupling between the generator dynamics and a global turbine vibration mode at 4.5 Hz, which only occurs when a dynamic formulation of the generator equations is applied. This frequency can especially be seen in the electrical power of the generator and the rotational speed of the generator, but also as torque variations in the drive train. (au)
Accelerated molecular dynamics simulations of protein folding.
Miao, Yinglong; Feixas, Ferran; Eun, Changsun; McCammon, J Andrew
2015-07-30
Folding of four fast-folding proteins, including chignolin, Trp-cage, villin headpiece and WW domain, was simulated via accelerated molecular dynamics (aMD). In comparison with hundred-of-microsecond timescale conventional molecular dynamics (cMD) simulations performed on the Anton supercomputer, aMD captured complete folding of the four proteins in significantly shorter simulation time. The folded protein conformations were found within 0.2-2.1 Å of the native NMR or X-ray crystal structures. Free energy profiles calculated through improved reweighting of the aMD simulations using cumulant expansion to the second-order are in good agreement with those obtained from cMD simulations. This allows us to identify distinct conformational states (e.g., unfolded and intermediate) other than the native structure and the protein folding energy barriers. Detailed analysis of protein secondary structures and local key residue interactions provided important insights into the protein folding pathways. Furthermore, the selections of force fields and aMD simulation parameters are discussed in detail. Our work shows usefulness and accuracy of aMD in studying protein folding, providing basic references in using aMD in future protein-folding studies. © 2015 Wiley Periodicals, Inc.
Dynamic Simulator for Nuclear Power Plants (DSNP)
International Nuclear Information System (INIS)
Saphier, D.
1976-01-01
A new simulation language DSNP (Dynamic Simulator for Nuclear Power Plants) is being developed. It is a simple block oriented simulation language with an extensive library of component and auxiliary modules. Each module is a self-contained unit of a part of a physical component to be found in nuclear power plants. Each module will be available in four levels of sophistication, the fourth being a user supplied model. A module can be included in the simulation by a single statement. The precompiler translates DSNP statements into FORTRAN statements, takes care of the module parameters and the intermodular communication blocks, prepares proper data files and I/0 statements and searches the various libraries for the appropriate component modules. The documentation is computerized and all the necessary information for a particular module can be retrieved by a special document generator. The DSNP will be a flexible tool which will allow dynamic simulations to be performed on a large variety of nuclear power plants or specific components of these plants
Molecular dynamics simulations and novel drug discovery.
Liu, Xuewei; Shi, Danfeng; Zhou, Shuangyan; Liu, Hongli; Liu, Huanxiang; Yao, Xiaojun
2018-01-01
Molecular dynamics (MD) simulations can provide not only plentiful dynamical structural information on biomacromolecules but also a wealth of energetic information about protein and ligand interactions. Such information is very important to understanding the structure-function relationship of the target and the essence of protein-ligand interactions and to guiding the drug discovery and design process. Thus, MD simulations have been applied widely and successfully in each step of modern drug discovery. Areas covered: In this review, the authors review the applications of MD simulations in novel drug discovery, including the pathogenic mechanisms of amyloidosis diseases, virtual screening and the interaction mechanisms between drugs and targets. Expert opinion: MD simulations have been used widely in investigating the pathogenic mechanisms of diseases caused by protein misfolding, in virtual screening, and in investigating drug resistance mechanisms caused by mutations of the target. These issues are very difficult to solve by experimental methods alone. Thus, in the future, MD simulations will have wider application with the further improvement of computational capacity and the development of better sampling methods and more accurate force fields together with more efficient analysis methods.
Simulation of Boiling Water Reactor dynamics
International Nuclear Information System (INIS)
Rasmusson, U.
1983-04-01
This master thesis describes a mathematical model of a boiling water reactor and address the dynamic behaviour of the neutron kinetics, boilding dynamics and pressur stability. The simulation have been done using the SIMNON-program. The meaning were that the result from this work possibly would be adjust to supervision methods suitable for application in computer systems. This master thesis in automatic control has been done at the Department of Automatic Control, Lund Institute of Technology. The initiative to the work came from Sydkraft AB. (author)
Description of the grout system dynamic simulation
International Nuclear Information System (INIS)
Zimmerman, B.D.
1993-07-01
The grout system dynamic computer simulation was created to allow investigation of the ability of the grouting system to meet established milestones, for various assumed system configurations and parameters. The simulation simulates the movement of tank waste through the system versus time, from initial storage tanks, through feed tanks and the grout plant, then finally to a grout vault. The simulation properly accounts for the following (1) time required to perform various actions or processes, (2) delays involved in gaining regulatory approval, (3) random system component failures, (4) limitations on equipment capacities, (5) available parallel components, and (6) different possible strategies for vault filling. The user is allowed to set a variety of system parameters for each simulation run. Currently, the output of a run primarily consists of a plot of projected grouting campaigns completed versus time, for comparison with milestones. Other outputs involving any model component can also be quickly created or deleted as desired. In particular, sensitivity runs where the effect of varying a model parameter (flow rates, delay times, number of feed tanks available, etc.) on the ability of the system to meet milestones can be made easily. The grout system simulation was implemented using the ITHINK* simulation language for Macintosh** computers
Dynamic Multicore Processing for Pandemic Influenza Simulation.
Eriksson, Henrik; Timpka, Toomas; Spreco, Armin; Dahlström, Örjan; Strömgren, Magnus; Holm, Einar
2016-01-01
Pandemic simulation is a useful tool for analyzing outbreaks and exploring the impact of variations in disease, population, and intervention models. Unfortunately, this type of simulation can be quite time-consuming especially for large models and significant outbreaks, which makes it difficult to run the simulations interactively and to use simulation for decision support during ongoing outbreaks. Improved run-time performance enables new applications of pandemic simulations, and can potentially allow decision makers to explore different scenarios and intervention effects. Parallelization of infection-probability calculations and multicore architectures can take advantage of modern processors to achieve significant run-time performance improvements. However, because of the varying computational load during each simulation run, which originates from the changing number of infectious persons during the outbreak, it is not useful to us the same multicore setup during the simulation run. The best performance can be achieved by dynamically changing the use of the available processor cores to balance the overhead of multithreading with the performance gains of parallelization.
A DYNAMIC SIMULATION OF REVERSE OSMOSIS SYSTEMS
Armijo C., J.; Departamento Académico de Operaciones Unitarias, Facultad de Q. e Ing. Química, Universidad Nacional Mayor de San Marcos Lima, Perú; Condorhuamán C., C.; Departamento Académico de Operaciones Unitarias, Facultad de Q. e Ing. Química Universidad Nacional Mayor de San Marcos Lima, Perú
2014-01-01
This paper develops a mathematical model to simulate dynamically a reverse osmosis system. The model is formed from materials balances macroscopic unsteady state combined with the model membrane transport: diffusion-solution. In this first part, we solve the system of differential equations assuming a completely mixed flow pattern in the reverse osmosis module (module polarization = 1). The system of equations is solved simultaneously by the Runge-Kutta-Fehlberg method. The results indicate t...
SPH simulation of liquid metal target dynamics
Massidda, L; Massidda, Luca
2010-01-01
An implementation of the smoothed particle hydrodynamics (SPH) method to study the dynamics of liquid metal targets under the effect of high power proton beams is presented The accuracy of the method is verified through the comparison of numerical simulations with experimental results on liquid mercury performed in ISOLDE/CERN The results are in good agreement and allow to have a better insight on the physics of the phenomenon (C) 2010 Elsevier B V All rights reserved
Validation of the train energy and dynamics simulator (TEDS).
2015-01-01
FRA has developed Train Energy and Dynamics Simulator (TEDS) based upon a longitudinal train dynamics and operations : simulation model which allows users to conduct safety and risk evaluations, incident investigations, studies of train operations, :...
Simulating coronal condensation dynamics in 3D
Moschou, S. P.; Keppens, R.; Xia, C.; Fang, X.
2015-12-01
We present numerical simulations in 3D settings where coronal rain phenomena take place in a magnetic configuration of a quadrupolar arcade system. Our simulation is a magnetohydrodynamic simulation including anisotropic thermal conduction, optically thin radiative losses, and parametrised heating as main thermodynamical features to construct a realistic arcade configuration from chromospheric to coronal heights. The plasma evaporation from chromospheric and transition region heights eventually causes localised runaway condensation events and we witness the formation of plasma blobs due to thermal instability, that evolve dynamically in the heated arcade part and move gradually downwards due to interchange type dynamics. Unlike earlier 2.5D simulations, in this case there is no large scale prominence formation observed, but a continuous coronal rain develops which shows clear indications of Rayleigh-Taylor or interchange instability, that causes the denser plasma located above the transition region to fall down, as the system moves towards a more stable state. Linear stability analysis is used in the non-linear regime for gaining insight and giving a prediction of the system's evolution. After the plasma blobs descend through interchange, they follow the magnetic field topology more closely in the lower coronal regions, where they are guided by the magnetic dips.
Dynamic simulator for PEFC propulsion plant
Energy Technology Data Exchange (ETDEWEB)
Hiraide, Masataka; Kaneda, Eiichi; Sato, Takao [Mitsui Engineering & Shipbuilding Co., Ltd., Tokyo (Japan)] [and others
1996-12-31
This report covers part of a joint study on a PEFC propulsion system for surface ships, summarized in a presentation to this Seminar, entitled {open_quote}Study on a Polymer Electrolyte Fuel Cell (PEFC) Propulsion System for Surface Ships{close_quotes}, and which envisages application to a 1,500 DWT cargo vessel. The work presented here focuses on a simulation study on PEFC propulsion plant performance, and particularly on the system response to changes in load. Using a dynamic simulator composed of system components including fuel cell, various simulations were executed, to examine the performance of the system as a whole and of the individual system components under quick and large load changes such as occasioned by maneuvering operations and by racing when the propeller emerges above water in heavy sea.
Dynamic simulation of regulatory networks using SQUAD
Directory of Open Access Journals (Sweden)
Xenarios Ioannis
2007-11-01
Full Text Available Abstract Background The ambition of most molecular biologists is the understanding of the intricate network of molecular interactions that control biological systems. As scientists uncover the components and the connectivity of these networks, it becomes possible to study their dynamical behavior as a whole and discover what is the specific role of each of their components. Since the behavior of a network is by no means intuitive, it becomes necessary to use computational models to understand its behavior and to be able to make predictions about it. Unfortunately, most current computational models describe small networks due to the scarcity of kinetic data available. To overcome this problem, we previously published a methodology to convert a signaling network into a dynamical system, even in the total absence of kinetic information. In this paper we present a software implementation of such methodology. Results We developed SQUAD, a software for the dynamic simulation of signaling networks using the standardized qualitative dynamical systems approach. SQUAD converts the network into a discrete dynamical system, and it uses a binary decision diagram algorithm to identify all the steady states of the system. Then, the software creates a continuous dynamical system and localizes its steady states which are located near the steady states of the discrete system. The software permits to make simulations on the continuous system, allowing for the modification of several parameters. Importantly, SQUAD includes a framework for perturbing networks in a manner similar to what is performed in experimental laboratory protocols, for example by activating receptors or knocking out molecular components. Using this software we have been able to successfully reproduce the behavior of the regulatory network implicated in T-helper cell differentiation. Conclusion The simulation of regulatory networks aims at predicting the behavior of a whole system when subject
Dynamic simulation of an electrorheological fluid
International Nuclear Information System (INIS)
Bonnecaze, R.T.; Brady, J.F.
1992-01-01
A molecular-dynamics-like method is presented for the simulation of a suspension of dielectric particles in a nonconductive solvent forming an electrorheological fluid. The method accurately accounts for both hydrodynamic and electrostatic interparticle interactions from dilute volume fractions to closest packing for simultaneous shear and electric fields. The hydrodynamic interactions and rheology are determined with the Stokesian dynamics methodology, while the electrostatic interactions, in particular, the conservative electrostatic interparticle forces, are determined from the electrostatic energy of the suspension. The energy of the suspension is computed from the induced particle dipoles by a method previously developed [R. T. Bonnecaze and J. F. Brady, Proc. R. Soc. London, Ser. A 430, 285 (1990)]. Using the simulation, the dynamics can be directly correlated to the observed macroscopic rheology of the suspension for a range of the so-called Mason number, Ma, the ratio of viscous to electrostatic forces. The simulation is specifically applied to a monolayer of spherical particles of areal fraction 0.4 with a particle-to-fluid dielectric constant ratio of 4 for Ma=10 -4 to ∞. The effective viscosity of the suspension increases as Ma -1 or with the square of the electric field for small Ma and has a plateau value at large Ma, as is observed experimentally. This rheological behavior can be interpreted as Bingham plastic-like with a dynamic yield stress. The first normal stress difference is negative, and its magnitude increases as Ma -1 at small Ma with a large Ma plateau value of zero. In addition to the time averages of the rheology, the time traces of the viscosities are presented along with selected ''snapshots'' of the suspension microstructure
HTTR plant dynamic simulation using a hybrid computer
International Nuclear Information System (INIS)
Shimazaki, Junya; Suzuki, Katsuo; Nabeshima, Kunihiko; Watanabe, Koichi; Shinohara, Yoshikuni; Nakagawa, Shigeaki.
1990-01-01
A plant dynamic simulation of High-Temperature Engineering Test Reactor has been made using a new-type hybrid computer. This report describes a dynamic simulation model of HTTR, a hybrid simulation method for SIMSTAR and some results obtained from dynamics analysis of HTTR simulation. It concludes that the hybrid plant simulation is useful for on-line simulation on account of its capability of computation at high speed, compared with that of all digital computer simulation. With sufficient accuracy, 40 times faster computation than real time was reached only by changing an analog time scale for HTTR simulation. (author)
Dynamical simulation of dipolar Janus colloids: dynamical properties.
Hagy, Matthew C; Hernandez, Rigoberto
2013-05-14
The dynamical properties of dipolar Janus particles are studied through simulation using our previously-developed detailed pointwise (PW) model and an isotropically coarse-grained (CG) model [M. C. Hagy and R. Hernandez, J. Chem. Phys. 137, 044505 (2012)]. The CG model is found to have accelerated dynamics relative to the PW model over a range of conditions for which both models have near identical static equilibrium properties. Physically, this suggests dipolar Janus particles have slower transport properties (such as diffusion) in comparison to isotropically attractive particles. Time rescaling and damping with Langevin friction are explored to map the dynamics of the CG model to that of the PW model. Both methods map the diffusion constant successfully and improve the velocity autocorrelation function and the mean squared displacement of the CG model. Neither method improves the distribution of reversible bond durations f(tb) observed in the CG model, which is found to lack the longer duration reversible bonds observed in the PW model. We attribute these differences in f(tb) to changes in the energetics of multiple rearrangement mechanisms. This suggests a need for new methods that map the coarse-grained dynamics of such systems to the true time scale.
Molecular dynamics simulations of weak detonations.
Am-Shallem, Morag; Zeiri, Yehuda; Zybin, Sergey V; Kosloff, Ronnie
2011-12-01
Detonation of a three-dimensional reactive nonisotropic molecular crystal is modeled using molecular dynamics simulations. The detonation process is initiated by an impulse, followed by the creation of a stable fast reactive shock wave. The terminal shock velocity is independent of the initiation conditions. Further analysis shows supersonic propagation decoupled from the dynamics of the decomposed material left behind the shock front. The dependence of the shock velocity on crystal nonlinear compressibility resembles solitary behavior. These properties categorize the phenomena as a weak detonation. The dependence of the detonation wave on microscopic potential parameters was investigated. An increase in detonation velocity with the reaction exothermicity reaching a saturation value is observed. In all other respects the model crystal exhibits typical properties of a molecular crystal.
Traffic flow dynamics data, models and simulation
Treiber, Martin
2013-01-01
This textbook provides a comprehensive and instructive coverage of vehicular traffic flow dynamics and modeling. It makes this fascinating interdisciplinary topic, which to date was only documented in parts by specialized monographs, accessible to a broad readership. Numerous figures and problems with solutions help the reader to quickly understand and practice the presented concepts. This book is targeted at students of physics and traffic engineering and, more generally, also at students and professionals in computer science, mathematics, and interdisciplinary topics. It also offers material for project work in programming and simulation at college and university level. The main part, after presenting different categories of traffic data, is devoted to a mathematical description of the dynamics of traffic flow, covering macroscopic models which describe traffic in terms of density, as well as microscopic many-particle models in which each particle corresponds to a vehicle and its driver. Focus chapters on ...
Generator dynamics in aeroelastic analysis and simulations
DEFF Research Database (Denmark)
Larsen, Torben J.; Hansen, Morten Hartvig; Iov, F.
2003-01-01
This report contains a description of a dynamic model for a doubly-fed induction generator. The model has physical input parameters (voltage, resistance, reactance etc.) and can be used to calculate rotor and stator currents, hence active and reactivepower. A perturbation method has been used...... to reduce the original generator model equations to a set of equations which can be solved with the same time steps as a typical aeroelastic code. The method is used to separate the fast transients of the modelfrom the slow variations and deduce a reduced order expression for the slow part. Dynamic effects...... of the first order terms in the model as well as the influence on drive train eigenfrequencies and damping has been investigated. Load response during timesimulation of wind turbine response have been compared to simulations with a traditional static generator model based entirely on the slip angle. A 2 MW...
Molecular Dynamics Simulations for Predicting Surface Wetting
Directory of Open Access Journals (Sweden)
Jing Chen
2014-06-01
Full Text Available The investigation of wetting of a solid surface by a liquid provides important insights; the contact angle of a liquid droplet on a surface provides a quantitative measurement of this interaction and the degree of attraction or repulsion of that liquid type by the solid surface. Molecular dynamics (MD simulations are a useful way to examine the behavior of liquids on solid surfaces on a nanometer scale. Thus, we surveyed the state of this field, beginning with the fundamentals of wetting calculations to an examination of the different MD methodologies used. We highlighted some of the advantages and disadvantages of the simulations, and look to the future of computer modeling to understand wetting and other liquid-solid interaction phenomena.
Dynamic simulation of flywheel-type fuses
Directory of Open Access Journals (Sweden)
Editorial Office
1996-07-01
Full Text Available Rounds of ammunition are normally armed with a fuse. In this study, a fuse is developed which uses a flywheel-type mechanism controlled by time or distance. Due to its simplicity of operation and construction, the concept is expected to have high reliability. The dynamic response of all the components of this flywheel-type fuse is mathematically modelled. Simulation software was developed which connects the mathematical models of the various components. With the definition of boundary values, the response of the projectile, flywheel and other components can be determined continuously for firing and in-flight conditions.
Parallel beam dynamics simulation of linear accelerators
International Nuclear Information System (INIS)
Qiang, Ji; Ryne, Robert D.
2002-01-01
In this paper we describe parallel particle-in-cell methods for the large scale simulation of beam dynamics in linear accelerators. These techniques have been implemented in the IMPACT (Integrated Map and Particle Accelerator Tracking) code. IMPACT is being used to study the behavior of intense charged particle beams and as a tool for the design of next-generation linear accelerators. As examples, we present applications of the code to the study of emittance exchange in high intensity beams and to the study of beam transport in a proposed accelerator for the development of accelerator-driven waste transmutation technologies
Osmosis : a molecular dynamics computer simulation study
Lion, Thomas
Osmosis is a phenomenon of critical importance in a variety of processes ranging from the transport of ions across cell membranes and the regulation of blood salt levels by the kidneys to the desalination of water and the production of clean energy using potential osmotic power plants. However, despite its importance and over one hundred years of study, there is an ongoing confusion concerning the nature of the microscopic dynamics of the solvent particles in their transfer across the membrane. In this thesis the microscopic dynamical processes underlying osmotic pressure and concentration gradients are investigated using molecular dynamics (MD) simulations. I first present a new derivation for the local pressure that can be used for determining osmotic pressure gradients. Using this result, the steady-state osmotic pressure is studied in a minimal model for an osmotic system and the steady-state density gradients are explained using a simple mechanistic hopping model for the solvent particles. The simulation setup is then modified, allowing us to explore the timescales involved in the relaxation dynamics of the system in the period preceding the steady state. Further consideration is also given to the relative roles of diffusive and non-diffusive solvent transport in this period. Finally, in a novel modification to the classic osmosis experiment, the solute particles are driven out-of-equilibrium by the input of energy. The effect of this modification on the osmotic pressure and the osmotic ow is studied and we find that active solute particles can cause reverse osmosis to occur. The possibility of defining a new "osmotic effective temperature" is also considered and compared to the results of diffusive and kinetic temperatures..
Parallel Monte Carlo Simulation of Aerosol Dynamics
Directory of Open Access Journals (Sweden)
Kun Zhou
2014-02-01
Full Text Available A highly efficient Monte Carlo (MC algorithm is developed for the numerical simulation of aerosol dynamics, that is, nucleation, surface growth, and coagulation. Nucleation and surface growth are handled with deterministic means, while coagulation is simulated with a stochastic method (Marcus-Lushnikov stochastic process. Operator splitting techniques are used to synthesize the deterministic and stochastic parts in the algorithm. The algorithm is parallelized using the Message Passing Interface (MPI. The parallel computing efficiency is investigated through numerical examples. Near 60% parallel efficiency is achieved for the maximum testing case with 3.7 million MC particles running on 93 parallel computing nodes. The algorithm is verified through simulating various testing cases and comparing the simulation results with available analytical and/or other numerical solutions. Generally, it is found that only small number (hundreds or thousands of MC particles is necessary to accurately predict the aerosol particle number density, volume fraction, and so forth, that is, low order moments of the Particle Size Distribution (PSD function. Accurately predicting the high order moments of the PSD needs to dramatically increase the number of MC particles.
Parallel Monte Carlo simulation of aerosol dynamics
Zhou, K.
2014-01-01
A highly efficient Monte Carlo (MC) algorithm is developed for the numerical simulation of aerosol dynamics, that is, nucleation, surface growth, and coagulation. Nucleation and surface growth are handled with deterministic means, while coagulation is simulated with a stochastic method (Marcus-Lushnikov stochastic process). Operator splitting techniques are used to synthesize the deterministic and stochastic parts in the algorithm. The algorithm is parallelized using the Message Passing Interface (MPI). The parallel computing efficiency is investigated through numerical examples. Near 60% parallel efficiency is achieved for the maximum testing case with 3.7 million MC particles running on 93 parallel computing nodes. The algorithm is verified through simulating various testing cases and comparing the simulation results with available analytical and/or other numerical solutions. Generally, it is found that only small number (hundreds or thousands) of MC particles is necessary to accurately predict the aerosol particle number density, volume fraction, and so forth, that is, low order moments of the Particle Size Distribution (PSD) function. Accurately predicting the high order moments of the PSD needs to dramatically increase the number of MC particles. 2014 Kun Zhou et al.
Dynamics simulations for engineering macromolecular interactions
Robinson-Mosher, Avi; Shinar, Tamar; Silver, Pamela A.; Way, Jeffrey
2013-06-01
The predictable engineering of well-behaved transcriptional circuits is a central goal of synthetic biology. The artificial attachment of promoters to transcription factor genes usually results in noisy or chaotic behaviors, and such systems are unlikely to be useful in practical applications. Natural transcriptional regulation relies extensively on protein-protein interactions to insure tightly controlled behavior, but such tight control has been elusive in engineered systems. To help engineer protein-protein interactions, we have developed a molecular dynamics simulation framework that simplifies features of proteins moving by constrained Brownian motion, with the goal of performing long simulations. The behavior of a simulated protein system is determined by summation of forces that include a Brownian force, a drag force, excluded volume constraints, relative position constraints, and binding constraints that relate to experimentally determined on-rates and off-rates for chosen protein elements in a system. Proteins are abstracted as spheres. Binding surfaces are defined radially within a protein. Peptide linkers are abstracted as small protein-like spheres with rigid connections. To address whether our framework could generate useful predictions, we simulated the behavior of an engineered fusion protein consisting of two 20 000 Da proteins attached by flexible glycine/serine-type linkers. The two protein elements remained closely associated, as if constrained by a random walk in three dimensions of the peptide linker, as opposed to showing a distribution of distances expected if movement were dominated by Brownian motion of the protein domains only. We also simulated the behavior of fluorescent proteins tethered by a linker of varying length, compared the predicted Förster resonance energy transfer with previous experimental observations, and obtained a good correspondence. Finally, we simulated the binding behavior of a fusion of two ligands that could
Chain Drive Simulation Using Spatial Multibody Dynamics
Directory of Open Access Journals (Sweden)
Mohamed A. Omar
2014-04-01
Full Text Available This paper presents an efficient approach for modeling chain derives using multibody dynamics formulation based on the spatial algebra. The recursive nonlinear dynamic equations of motion are formulated using spatial Cartesian coordinates and joint variables to form an augmented set of differential-algebraic equations. The spatial algebra is used to express the kinematic and dynamic equations leading to consistent and compact set of equations. The connectivity graph is used to derive the system connectivity matrix based on the system topological relations. The connectivity matrix is used to eliminate the Cartesian quantities and to project the forces and inertia into the joint subspace. This approach will result in a minimum set of equation and can avoid iteratively solving the system of differential and algebraic equations to satisfy the constraint equations. In order to accurately capture the full dynamics of the chain links, each link in the chain is modeled as rigid body with full 6 degrees of freedom. To avoid singularities in closed loop configurations, the chain drive is considered a kinematically decoupled subsystem and the interaction between the links and other system components is modeled using force elements. The out-of-plane misalignment between the sprockets can be easily modeled using a compliant force element to model the joints between each two adjacent links. The nonlinear three dimensional contact forces between the chain links and the sprockets are modeled using elastic spring-damper element and accounts for the sliding friction. The proposed approach can be used to model complex drive chain, bicycle chain as well as conveyance systems. Results show that realistic behavior of the chain as well as out-of-plane vibration can be easily captured using the presented approach. The proposed approach for chain drive subsystem could be easily appended to any other multibody simulation system.
On sequential dynamical systems and simulation
Energy Technology Data Exchange (ETDEWEB)
Barrett, C.L.; Mortveit, H.S.; Reidys, C.M.
1999-06-01
The generic structure of computer simulations motivates a new class of discrete dynamical systems that captures this structure in a mathematically precise way. This class of systems consists of (1) a loopfree graph {Upsilon} with vertex set {l_brace}1,2,{hor_ellipsis},n{r_brace} where each vertex has a binary state, (2) a vertex labeled set of functions (F{sub i,{Upsilon}}:F{sub 2}{sup n} {r_arrow} F{sub 2}{sup n}){sub i} and (3) a permutation {pi} {element_of} S{sub n}. The function F{sub i,{Upsilon}} updates the state of vertex i as a function of the states of vertex i and its {Upsilon}-neighbors and leaves the states of all other vertices fixed. The permutation {pi} represents the update ordering, i.e., the order in which the functions F{sub i,{Upsilon}} are applied. By composing the functions F{sub i,{Upsilon}} in the order given by {pi} one obtains the dynamical system (equation given in paper) which the authors refer to as a sequential dynamical system, or SDS for short. The authors will present bounds for the number of functionally different systems and for the number of nonisomorphic digraphs {Gamma}[F{sub {Upsilon}},{pi}] that can be obtained by varying the update order and applications of these to specific graphs and graph classes. This will be done using both combinatorial/algebraic techniques and probabilistic techniques. Finally the authors give results on dynamical system properties for some special systems.
Molecular dynamic simulation study of molten cesium
Directory of Open Access Journals (Sweden)
Yeganegi Saeid
2017-01-01
Full Text Available Molecular dynamics simulations were performed to study thermodynamics and structural properties of expanded caesium fluid. Internal pressure, radial distribution functions (RDFs, coordination numbers and diffusion coefficients have been calculated at temperature range 700–1600 K and pressure range 100–800 bar. We used the internal pressure to predict the metal–non-metal transition occurrence region. RDFs were calculated at wide ranges of temperature and pressure. The coordination numbers decrease and positions of the first peak of RDFs slightly increase as the temperature increases and pressure decreases. The calculated self-diffusion coefficients at various temperatures and pressures show no distinct boundary between Cs metallic fluid and its expanded fluid where it continuously increases with temperature.
Fiber lubrication: A molecular dynamics simulation study
Liu, Hongyi
Molecular and mesoscopic level description of friction and lubrication remains a challenge because of difficulties in the phenomenological understanding of to the behaviors of solid-liquid interfaces during sliding. Fortunately, there is the computational simulation approach opens an opportunity to predict and analyze interfacial phenomena, which were studied with molecular dynamics (MD) and mesoscopic dynamics (MesoDyn) simulations. Polypropylene (PP) and cellulose are two of most common polymers in textile fibers. Confined amorphous surface layers of PP and cellulose were built successfully with xenon crystals which were used to compact the polymers. The physical and surface properties of the PP and cellulose surface layers were investigated by MD simulations, including the density, cohesive energy, volumetric thermal expansion, and contact angle with water. The topology method was employed to predict the properties of poly(alkylene glycol) (PAG) diblock copolymers and Pluronic triblock copolymers used as lubricants on surfaces. Density, zero shear viscosity, shear module, cohesive energy and solubility parameter were predicted with each block copolymer. Molecular dynamics simulations were used to study the interaction energy per unit contact area of block copolymer melts with PP and cellulose surfaces. The interaction energy is defined as the ratio of interfacial interaction energy to the contact area. Both poly(proplene oxide) (PPO) and poly(ethylene oxide) (PEO) segments provided a lipophilic character to both PP and cellulose surfaces. The PPO/PEO ratio and the molecular weight were found to impact the interaction energy on both PP and cellulose surfaces. In aqueous solutions, the interaction energy is complicated due to the presence of water and the cross interactions between the multiple molecular components. The polymer-water-surface (PWS) calculation method was proposed to calculate such complex systems. In a contrast with a vacuum condition, the presence
In silico FRET from simulated dye dynamics
Hoefling, Martin; Grubmüller, Helmut
2013-03-01
Single molecule fluorescence resonance energy transfer (smFRET) experiments probe molecular distances on the nanometer scale. In such experiments, distances are recorded from FRET transfer efficiencies via the Förster formula, E=1/(1+(). The energy transfer however also depends on the mutual orientation of the two dyes used as distance reporter. Since this information is typically inaccessible in FRET experiments, one has to rely on approximations, which reduce the accuracy of these distance measurements. A common approximation is an isotropic and uncorrelated dye orientation distribution. To assess the impact of such approximations, we present the algorithms and implementation of a computational toolkit for the simulation of smFRET on the basis of molecular dynamics (MD) trajectory ensembles. In this study, the dye orientation dynamics, which are used to determine dynamic FRET efficiencies, are extracted from MD simulations. In a subsequent step, photons and bursts are generated using a Monte Carlo algorithm. The application of the developed toolkit on a poly-proline system demonstrated good agreement between smFRET simulations and experimental results and therefore confirms our computational method. Furthermore, it enabled the identification of the structural basis of measured heterogeneity. The presented computational toolkit is written in Python, available as open-source, applicable to arbitrary systems and can easily be extended and adapted to further problems. Catalogue identifier: AENV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPLv3, the bundled SIMD friendly Mersenne twister implementation [1] is provided under the SFMT-License. No. of lines in distributed program, including test data, etc.: 317880 No. of bytes in distributed program, including test data, etc.: 54774217 Distribution format: tar.gz Programming language
Classical molecular dynamics simulation of nuclear fuels
International Nuclear Information System (INIS)
Devanathan, R.; Krack, M.; Bertolus, M.
2015-01-01
Molecular dynamics simulation using forces calculated from empirical potentials, commonly called classical molecular dynamics, is well suited to study primary damage production by irradiation, defect interactions with fission gas atoms, gas bubble nucleation, grain boundary effects on defect and gas bubble evolution in nuclear fuel, and the resulting changes in thermomechanical properties. This enables one to obtain insights into fundamental mechanisms governing the behaviour of nuclear fuel, as well as parameters that can be used as inputs for mesoscale models. The interaction potentials used for the force calculations are generated by fitting properties of interest to experimental data and electronic structure calculations (see Chapter 12). We present here the different types of potentials currently available for UO 2 and illustrations of applications to the description of the behaviour of this material under irradiation. The results obtained from the present generation of potentials for UO 2 are qualitatively similar, but quantitatively different. There is a need to refine these existing potentials to provide a better representation of the performance of polycrystalline fuel under a variety of operating conditions, develop models that are equipped to handle deviations from stoichiometry, and validate the models and assumptions used. (authors)
Simulating CubeSat Structure Deployment Dynamics, Phase I
National Aeronautics and Space Administration — There is high value in simulating the nonlinear dynamics of stowing, deploying, and performance of deployable space structures, especially given the profound...
Dynamic Response and Simulations of Nanoparticle-Enhanced Composites
National Research Council Canada - National Science Library
Mantena, P. R; Al-Ostaz, Ahmed; Cheng, Alexander H
2007-01-01
...) molecular dynamics simulations of nanoparticle-enhanced composites and fly- ash based foams that are being considered for the future generation naval structures or retrofitting of existing ones...
Studying Interactions by Molecular Dynamics Simulations at High Concentration
Directory of Open Access Journals (Sweden)
Federico Fogolari
2012-01-01
Full Text Available Molecular dynamics simulations have been used to study molecular encounters and recognition. In recent works, simulations using high concentration of interacting molecules have been performed. In this paper, we consider the practical problems for setting up the simulation and to analyse the results of the simulation. The simulation of beta 2-microglobulin association and the simulation of the binding of hydrogen peroxide by glutathione peroxidase are provided as examples.
Molecular dynamics simulation of supercritical fluids
Branam, Richard D.
Axisymmetric injectors appear in a multitude of applications ranging from rocket engines to biotechnology. While experimentation is limited to larger injectors, much interest has been shown in the micro- and nano-scales as well. Experimentation at these scales can be cost prohibitive if even possible. Often, the operating regime involves supercritical fluids or complex geometries. Molecular dynamics modeling provides a unique way to explore these flow regimes, calculate hard to measure flow parameters accurately, and determine the value of potential improvements before investing in costly experiments or manufacturing. This research effort modeled sub- and supercritical fluid flow in a cylindrical tube being injected into a quiescent chamber. The ability of four wall models to provide an accurate simulation was compared. The simplest model, the diffuse wall, proved useful in getting results quickly but the results for the higher density cases are questionable, especially with respect to velocity profiles and density distributions. The one zone model, three layers of an fcc solid tethered to the lattice sites with a spring, proved very useful for this research primarily because it did not need as many CPU hours to equilibrate. The two zone wall uses springs as a two body potential and has a second stationary zone to hold the wall in place. The most complicated, the three zone wall, employed a reactionary zone, a stochastic zone and a stationary zone using a Lennard-Jones two body potential. Jet simulations were conducted on argon and nitrogen for liquid tube diameters from 20 to 65 A at both sub and supercritical temperatures (Ar: 130 K and 160 K, N2: 120 K and 130 K). The simulations focused on pressures above the critical pressure (Ar: 6 MPa, N2: 4 MPa). The diffusive wall showed some variation from the analytical velocity profile in the tube while the atomistically modeled walls performed very well. The walls were all able to maintain system temperature to reach
Emission of water clusters: molecular dynamic simulation
International Nuclear Information System (INIS)
Kutliev, U.O.; Kalandarov, K.S.
2006-01-01
Full text: Secondary ion mass spectrometry (SIMS) is a wonderful technique for providing mass spectrometric information of molecules on surfaces. Theoretical studies of the keV bombardment of organic films on metallic surfaces have contributed to our understanding of the mechanisms governing these processes. Many experiments of keV bombardment, however, are performed both thick and thin organic targets [1]. Molecular systems investigated experimentally by SIMS include adsorbed films on a metal substrate, molecular solids, polymers, or even biological cells. In this account, we focus on thin organic layers on metal substrates as they are used for analytical purposes, are intriguing from a fundamental viewpoint, and are computationally tractable [2]. There are we present molecular dynamics (MD) simulations aimed at obtaining such a microscopic picture and mass spectrum of sputtering particles. Because of the importance of H 2 O in many of the experiments, we have chosen it as our system. Water is also attractive as a system because of the extensive literature available on its physical properties. The interaction potentials available for MD simulations of H 2 O are sufficiently reliable such that a quantitative analysis of the simulation results can be directly related to the parameters of water. From the variety of substrate materials used in different experiments, we have chosen to perform our simulations using Au. This substance is chosen to match preliminary experiments with the selective killing of cells by inserted Au nanoparticles and because of the availability of good interaction potentials for gold. In the simulations, we bombarded by ions Ar the surface Au(III) covered by ice film. The interaction potential employed to describe the H 2 O-H 2 O interaction is the simple-point-charge (SPC) water potential developed by Berendsen et al. [3]. This potential has been used extensively to study the properties of H 2 O as a solid [4, 5]. It has been shown that the
Kinetic simulations of plasmoid chain dynamics
Markidis, S.; Henri, P.; Lapenta, G.; Divin, A.; Goldman, M.; Newman, D.; Laure, E.
2013-08-01
The dynamics of a plasmoid chain is studied with three dimensional Particle-in-Cell simulations. The evolution of the system with and without a uniform guide field, whose strength is 1/3 the asymptotic magnetic field, is investigated. The plasmoid chain forms by spontaneous magnetic reconnection: the tearing instability rapidly disrupts the initial current sheet generating several small-scale plasmoids that rapidly grow in size coalescing and kinking. The plasmoid kink is mainly driven by the coalescence process. It is found that the presence of guide field strongly influences the evolution of the plasmoid chain. Without a guide field, a main reconnection site dominates and smaller reconnection regions are included in larger ones, leading to an hierarchical structure of the plasmoid-dominated current sheet. On the contrary in presence of a guide field, plasmoids have approximately the same size and the hierarchical structure does not emerge, a strong core magnetic field develops in the center of the plasmoid in the direction of the existing guide field, and bump-on-tail instability, leading to the formation of electron holes, is detected in proximity of the plasmoids.
Annual Report 1999 Environmental Dynamics and Simulation
Energy Technology Data Exchange (ETDEWEB)
NS Foster-Mills
2000-06-28
This annual report describes selected 1999 research accomplishments for the Environmental Dynamics and Simulation (ED and S) directorate, one of six research organizations in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). These accomplishments are representative of the different lines of research underway in the ED and S directorate. EMSL is one of US Department of Energy's (DOE) national scientific user facilities and is the centerpiece of DOE's commitment to providing world-class experimental, theoretical, and computational capabilities for solving the nation's environmental problems. Capabilities in the EMSL include over 100 major instrument systems for use by the resident research staff, their collaborators, and users of the EMSL. These capabilities are used to address the fundamental science that will be the basis for finding solutions to national environmental issues such as cleaning up contamianted areas at DOE sites across the country and developing green technologies that will reduce or eliminate future pollution production. The capabilities are also used to further the understanding of global climate change and environmental issues relevant to energy production and use and health effects resulting from exposure to contaminated environments.
Simulated queues in dynamic situations | Ojarikre | Journal of the ...
African Journals Online (AJOL)
Discrete event simulation of dynamic situation of queuing systems has been carried out using the next-event simulated time procedure for the Monte Carlo and Area ... The dynamic nature of the periods will change the status of a number of random variables like the length of each queue, the time delay of each customer and ...
System Design Description Salt Well Liquid Pumping Dynamic Simulation
International Nuclear Information System (INIS)
HARMSEN, R.W.
1999-01-01
The Salt Well Liquid (SWL) Pumping Dynamic Simulation used by the single-shell tank (SST) Interim Stabilization Project is described. A graphical dynamic simulation predicts SWL removal from 29 SSTs using an exponential function and unique time constant for each SST. Increasing quarterly efficiencies are applied to adjust the pumping rates during fiscal year 2000
Dynamic Simulation over Long Time Periods with 100% Solar Generation.
Energy Technology Data Exchange (ETDEWEB)
Concepcion, Ricky James [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Elliott, Ryan Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-12-01
This project aimed to identify the path forward for dynamic simulation tools to accommodate these needs by characterizing the properties of power systems (with high PV penetration), analyzing how these properties affect dynamic simulation software, and offering solutions for potential problems.
Accelerating molecular dynamics simulations by linear prediction of time series
Brutovsky, B.; Mülders, T.; Kneller, G. R.
2003-04-01
We present a molecular dynamics simulation scheme which allows to speed up molecular dynamics simulations by linear prediction of force time series. The explicit calculation of nonbonding forces is periodically replaced by linear prediction from past values. Applying our method to liquid oxygen consisting of flexible molecules we obtained real speedups between 5.4 and 6.5, compared to conventional molecular dynamics simulations. Here only the bond-stretching forces were calculated at each time step. We demonstrate that essential dynamical quantities, such as the mean-square displacement and the velocity autocorrelation function, are preserved.
Experiences on dynamic simulation software in chemical engineering education
DEFF Research Database (Denmark)
Komulainen, Tiina M.; Enemark-rasmussen, Rasmus; Sin, Gürkan
2012-01-01
Commercial process simulators are increasing interest in the chemical engineer education. In this paper, the use of commercial dynamic simulation software, D-SPICE® and K-Spice®, for three different chemical engineering courses is described and discussed. The courses cover the following topics......: basic chemical engineering, operability and safety analysis and process control. User experiences from both teachers and students are presented. The benefits of dynamic simulation as an additional teaching tool are discussed and summarized. The experiences confirm that commercial dynamic simulators...
Specification, analysis and simulation of the dynamics within an organisation
Jonker, Catholijn; Treur, Jan; Wijngaards, Wouter
2007-01-01
In this paper a modelling approach to the dynamics within a multi-agent organisation is presented. A declarative, executable specification language for dynamics within an organisation is proposed as a basis for simulation. Moreover, to be able to specify and analyse dynamic properties within an
Research on hyperspectral dynamic infrared scene simulation technology
Wang, Jun; Hu, Yu; Ding, Na; Sun, Kefeng; Sun, Dandan; Xie, Junhu; Wu, Wenli; Gao, Jiaobo
2015-02-01
The paper presents a hardware in loop dynamic IR scene simulation technology for IR hyperspectral imaging system. Along with fleetly development of new type EO detecting, remote sensing and hyperspectral imaging technique, not only static parameters' calibration of hyperspectral IR imaging system but also dynamic parameters' testing and evaluation are required, thus hyperspectral dynamic IR simulation and evaluation become more and more important. Hyperspectral dynamic IR scene projector utilizes hyperspectral space and time domain features controlling spectrum and time synchronously to realize hardware in loop simulation. Hyperspectral IR target and background simulating image can be gained by the accomplishment of 3D model and IR characteristic romancing, hyperspectral dynamic IR scene is produced by image converting device. The main parameters of a developed hyperspectral dynamic IR scene projector: wave band range is 3~5μm, 8~12μm Field of View (FOV) is 8°; spatial resolution is 1024×768 spectrum resolution is 1%~2%. IR source and simulating scene features should be consistent with spectrum characters of target, and different spectrum channel's images can be gotten from calibration. A hyperspectral imaging system splits light with dispersing type grating, pushbrooms and collects the output signal of dynamic IR scene projector. With hyperspectral scene spectrum modeling, IR features romancing, atmosphere transmission feature modeling and IR scene projecting, target and scene in outfield can be simulated ideally, simulation and evaluation of IR hyperspectral imaging system's dynamic features are accomplished in laboratory.
A note on simulation and dynamical hierarchies
Energy Technology Data Exchange (ETDEWEB)
Rasmussen, S.; Barrett, C.L. [Los Alamos National Lab., NM (United States)]|[Santa Fe Institute, Sante Fe, NM (United States); Baas, N.A. [Trondheim Univ. (Norway). Dept. of Mathematical Sciences; Olesen, M.W. [Los Alamos National Lab., NM (United States)
1996-02-22
This paper summarizes some of the problems associated with the generation of higher order emergent structures in formal dynamical systems as well as some of the formal properties of dynamical systems capable of generating higher order structures.
High tech supply chain simulation based on dynamical systems model
Yuan, X.; Ashayeri, J.
2013-01-01
During the last 45 years, system dynamics as a continuous type of simulation has been used for simulating various problems, ranging from economic to engineering and managerial when limited (historical) information is available. Control theory is another alternative for continuous simulation that
A Simulation Program for Dynamic Infrared (IR) Spectra
Zoerb, Matthew C.; Harris, Charles B.
2013-01-01
A free program for the simulation of dynamic infrared (IR) spectra is presented. The program simulates the spectrum of two exchanging IR peaks based on simple input parameters. Larger systems can be simulated with minor modifications. The program is available as an executable program for PCs or can be run in MATLAB on any operating system. Source…
Ensemble simulations with discrete classical dynamics
DEFF Research Database (Denmark)
Toxværd, Søren
2013-01-01
{E}(h)$ is employed to determine the relation with the corresponding energy, $E$ for the analytic dynamics with $h=0$ and the zero-order estimate $E_0(h)$ of the energy for discrete dynamics, appearing in the literature for MD with VA. We derive a corresponding time reversible VA algorithm for canonical dynamics......For discrete classical Molecular dynamics (MD) obtained by the "Verlet" algorithm (VA) with the time increment $h$ there exist a shadow Hamiltonian $\\tilde{H}$ with energy $\\tilde{E}(h)$, for which the discrete particle positions lie on the analytic trajectories for $\\tilde{H}$. $\\tilde...
Kinematics and dynamics analysis of a novel serial-parallel dynamic simulator
International Nuclear Information System (INIS)
Hu, Bo; Zhang, Lian Dong; Yu, Jingjing
2016-01-01
A serial-parallel dynamics simulator based on serial-parallel manipulator is proposed. According to the dynamics simulator motion requirement, the proposed serial-parallel dynamics simulator formed by 3-RRS (active revolute joint-revolute joint-spherical joint) and 3-SPR (Spherical joint-active prismatic joint-revolute joint) PMs adopts the outer and inner layout. By integrating the kinematics, constraint and coupling information of the 3-RRS and 3-SPR PMs into the serial-parallel manipulator, the inverse Jacobian matrix, velocity, and acceleration of the serial-parallel dynamics simulator are studied. Based on the principle of virtual work and the kinematics model, the inverse dynamic model is established. Finally, the workspace of the (3-RRS)+(3-SPR) dynamics simulator is constructed
Kinematics and dynamics analysis of a novel serial-parallel dynamic simulator
Energy Technology Data Exchange (ETDEWEB)
Hu, Bo; Zhang, Lian Dong; Yu, Jingjing [Parallel Robot and Mechatronic System Laboratory of Hebei Province, Yanshan University, Qinhuangdao, Hebei (China)
2016-11-15
A serial-parallel dynamics simulator based on serial-parallel manipulator is proposed. According to the dynamics simulator motion requirement, the proposed serial-parallel dynamics simulator formed by 3-RRS (active revolute joint-revolute joint-spherical joint) and 3-SPR (Spherical joint-active prismatic joint-revolute joint) PMs adopts the outer and inner layout. By integrating the kinematics, constraint and coupling information of the 3-RRS and 3-SPR PMs into the serial-parallel manipulator, the inverse Jacobian matrix, velocity, and acceleration of the serial-parallel dynamics simulator are studied. Based on the principle of virtual work and the kinematics model, the inverse dynamic model is established. Finally, the workspace of the (3-RRS)+(3-SPR) dynamics simulator is constructed.
Development Of Dynamic Probabilistic Safety Assessment: The Accident Dynamic Simulator (ADS) Tool
International Nuclear Information System (INIS)
Chang, Y.H.; Mosleh, A.; Dang, V.N.
2003-01-01
The development of a dynamic methodology for Probabilistic Safety Assessment (PSA) addresses the complex interactions between the behaviour of technical systems and personnel response in the evolution of accident scenarios. This paper introduces the discrete dynamic event tree, a framework for dynamic PSA, and its implementation in the Accident Dynamic Simulator (ADS) tool. Dynamic event tree tools generate and quantify accident scenarios through coupled simulation models of the plant physical processes, its automatic systems, the equipment reliability, and the human response. The current research on the framework, the ADS tool, and on Human Reliability Analysis issues within dynamic PSA, is discussed. (author)
Rare event simulation for dynamic fault trees
Ruijters, Enno Jozef Johannes; Reijsbergen, D.P.; de Boer, Pieter-Tjerk; Stoelinga, Mariëlle Ida Antoinette
2017-01-01
Fault trees (FT) are a popular industrial method for reliability engineering, for which Monte Carlo simulation is an important technique to estimate common dependability metrics, such as the system reliability and availability. A severe drawback of Monte Carlo simulation is that the number of
Dynamic bounds coupled with Monte Carlo simulations
Rajabali Nejad, Mohammadreza; Meester, L.E.; van Gelder, P.H.A.J.M.; Vrijling, J.K.
2011-01-01
For the reliability analysis of engineering structures a variety of methods is known, of which Monte Carlo (MC) simulation is widely considered to be among the most robust and most generally applicable. To reduce simulation cost of the MC method, variance reduction methods are applied. This paper
Rare Event Simulation for Dynamic Fault Trees
Ruijters, Enno Jozef Johannes; Reijsbergen, D.P.; de Boer, Pieter-Tjerk; Stoelinga, Mariëlle Ida Antoinette; Tonetta, Stefano; Schoitsch, Erwin; Bitsch, Friedemann
2017-01-01
Fault trees (FT) are a popular industrial method for reliability engineering, for which Monte Carlo simulation is an important technique to estimate common dependability metrics, such as the system reliability and availability. A severe drawback of Monte Carlo simulation is that the number of
Unified Nonlinear Flight Dynamics and Aeroelastic Simulator Tool, Phase I
National Aeronautics and Space Administration — ZONA Technology, Inc. (ZONA) proposes a R&D effort to develop a Unified Nonlinear Flight Dynamics and Aeroelastic Simulator (UNFDAS) Tool that will combine...
The framework for simulation of dynamics of mechanical aggregates
Ivankov, Petr R.; Ivankov, Nikolay P.
2007-01-01
A framework for simulation of dynamics of mechanical aggregates has been developed. This framework enables us to build model of aggregate from models of its parts. Framework is a part of universal framework for science and engineering.
Validation of Computational Fluid Dynamics Simulations for Realistic Flows (Preprint)
National Research Council Canada - National Science Library
Davoudzadeh, Farhad
2007-01-01
Strategies used to verify and validate computational fluid dynamics (CFD) calculations are described via case studies of realistic flow simulations, each representing a complex flow physics and complex geometry...
Dynamic fault simulation of wind turbines using commercial simulation tools
DEFF Research Database (Denmark)
Lund, Torsten; Eek, Jarle; Uski, Sanna
2005-01-01
This paper compares the commercial simulation tools: PSCAD/EMTDC, PowerFactory, SIMPOW and PSS/E for analysing fault sequences defined in the Danish grid code requirements for wind turbines connected to a voltage level below 100 kV. Both symmetrical and unsymmetrical faults are analysed. The devi......This paper compares the commercial simulation tools: PSCAD/EMTDC, PowerFactory, SIMPOW and PSS/E for analysing fault sequences defined in the Danish grid code requirements for wind turbines connected to a voltage level below 100 kV. Both symmetrical and unsymmetrical faults are analysed...
Perspective: Computer simulations of long time dynamics
Energy Technology Data Exchange (ETDEWEB)
Elber, Ron [Department of Chemistry, The Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712 (United States)
2016-02-14
Atomically detailed computer simulations of complex molecular events attracted the imagination of many researchers in the field as providing comprehensive information on chemical, biological, and physical processes. However, one of the greatest limitations of these simulations is of time scales. The physical time scales accessible to straightforward simulations are too short to address many interesting and important molecular events. In the last decade significant advances were made in different directions (theory, software, and hardware) that significantly expand the capabilities and accuracies of these techniques. This perspective describes and critically examines some of these advances.
Simulating market dynamics : Interactions between consumer psychology and social networks
Janssen, M.A; Jager, W.
2003-01-01
Markets can show different types of dynamics, from quiet markets dominated by one or a few products, to markets with continual penetration of new and reintroduced products. in a previous article we explored the dynamics of markets from a psychological perspective using a multi-agent simulation
QUANTUM SIMULATION OF REACTION DYNAMICS BY DENSITY-MATRIX EVOLUTION
BERENDSEN, HJC; MAVRI, J
1993-01-01
A density matrix evolution(DME) method to simulate the dynamics of quantum systems embedded in a classical environment is presented. The method is applicable when the quantum dynamical degrees of freedom can be described in a Hilbert space of limited dimensionality. The method is applied to the case
Energy conservation in molecular dynamics simulations of classical systems
DEFF Research Database (Denmark)
Toxværd, Søren; Heilmann, Ole; Dyre, J. C.
2012-01-01
Classical Newtonian dynamics is analytic and the energy of an isolated system is conserved. The energy of such a system, obtained by the discrete “Verlet” algorithm commonly used in molecular dynamics simulations, fluctuates but is conserved in the mean. This is explained by the existence...
A Process for Comparing Dynamics of Distributed Space Systems Simulations
Cures, Edwin Z.; Jackson, Albert A.; Morris, Jeffery C.
2009-01-01
The paper describes a process that was developed for comparing the primary orbital dynamics behavior between space systems distributed simulations. This process is used to characterize and understand the fundamental fidelities and compatibilities of the modeling of orbital dynamics between spacecraft simulations. This is required for high-latency distributed simulations such as NASA s Integrated Mission Simulation and must be understood when reporting results from simulation executions. This paper presents 10 principal comparison tests along with their rationale and examples of the results. The Integrated Mission Simulation (IMSim) (formerly know as the Distributed Space Exploration Simulation (DSES)) is a NASA research and development project focusing on the technologies and processes that are related to the collaborative simulation of complex space systems involved in the exploration of our solar system. Currently, the NASA centers that are actively participating in the IMSim project are the Ames Research Center, the Jet Propulsion Laboratory (JPL), the Johnson Space Center (JSC), the Kennedy Space Center, the Langley Research Center and the Marshall Space Flight Center. In concept, each center participating in IMSim has its own set of simulation models and environment(s). These simulation tools are used to build the various simulation products that are used for scientific investigation, engineering analysis, system design, training, planning, operations and more. Working individually, these production simulations provide important data to various NASA projects.
Determining Equilibrium Constants for Dimerization Reactions from Molecular Dynamics Simulations
De Jong, Djurre H.; Schafer, Lars V.; De Vries, Alex H.; Marrink, Siewert J.; Berendsen, Herman J. C.; Grubmueller, Helmut
2011-01-01
With today's available computer power, free energy calculations from equilibrium molecular dynamics simulations "via counting" become feasible for an increasing number of reactions. An example is the dimerization reaction of transmembrane alpha-helices. If an extended simulation of the two helices
Active site modeling in copper azurin molecular dynamics simulations
Rizzuti, B; Swart, M; Sportelli, L; Guzzi, R
Active site modeling in molecular dynamics simulations is investigated for the reduced state of copper azurin. Five simulation runs (5 ns each) were performed at room temperature to study the consequences of a mixed electrostatic/constrained modeling for the coordination between the metal and the
Dynamic wind turbine models in power system simulation tool
DEFF Research Database (Denmark)
Hansen, A.; Jauch, Clemens; Soerensen, P.
The present report describes the dynamic wind turbine models implemented in the power system simulation tool DIgSILENT. The developed models are a part of the results of a national research project, whose overall objective is to create a model database in different simulation tools. The report...
Computational fluid dynamics (CFD) simulation of hot air flow ...
African Journals Online (AJOL)
Computational Fluid Dynamics simulation of air flow distribution, air velocity and pressure field pattern as it will affect moisture transient in a cabinet tray dryer is performed using SolidWorks Flow Simulation (SWFS) 2014 SP 4.0 program. The model used for the drying process in this experiment was designed with Solid ...
Innovative tools for real-time simulation of dynamic systems
Palli, Gianluca; Carloni, Raffaella; Melchiorri, Claudio
2008-01-01
In this paper, we present a software architecture, based on RTAI-Linux, for the real-time simulation of dynamic systems and for the rapid prototyping of digital controllers. Our aim is to simplify the testing phase of digital controllers by providing the real-time simulation of the plant with the
Implementation of one-dimensional domain wall dynamics simulator
Kim, Hyungsuk; Heo, Seo Weon; You, Chun-Yeol
2017-12-01
We implemented a one-dimensional domain wall (DW) dynamics simulator based on the well-developed collective coordinate approach to demonstrate DW motion under a given magnetic field and/or current flow. The simulator adopted all known influences, including three-dimensional external magnetic fields, spin transfer torque with non-adiabatic contribution, spin Hall effect, Rashba effect, and Dzyaloshinskii-Moriya interaction. The simulator can calculate the position, velocity, internal magnetization angle, and tilting angle of the domain wall to the current direction or wire axis under given simulation conditions and material parameters. It will not only provide physical insights of domain wall dynamics to experimentalists, but also can be used to more easily simulate various physical circumstances before running time-consuming micromagnetic simulations or real experiments.
Yi, Zheng; Lindner, Benjamin; Prinz, Jan-Hendrik; Noé, Frank; Smith, Jeremy C
2013-11-07
Neutron scattering experiments directly probe the dynamics of complex molecules on the sub pico- to microsecond time scales. However, the assignment of the relaxations seen experimentally to specific structural rearrangements is difficult, since many of the underlying dynamical processes may exist on similar timescales. In an accompanying article, we present a theoretical approach to the analysis of molecular dynamics simulations with a Markov State Model (MSM) that permits the direct identification of structural transitions leading to each contributing relaxation process. Here, we demonstrate the use of the method by applying it to the configurational dynamics of the well-characterized alanine dipeptide. A practical procedure for deriving the MSM from an MD is introduced. The result is a 9-state MSM in the space of the backbone dihedral angles and the side-chain methyl group. The agreement between the quasielastic spectrum calculated directly from the atomic trajectories and that derived from the Markov state model is excellent. The dependence on the wavevector of the individual Markov processes is described. The procedure means that it is now practicable to interpret quasielastic scattering spectra in terms of well-defined intramolecular transitions with minimal a priori assumptions as to the nature of the dynamics taking place.
Fluid dynamics theory, computation, and numerical simulation
Pozrikidis, C
2017-01-01
This book provides an accessible introduction to the basic theory of fluid mechanics and computational fluid dynamics (CFD) from a modern perspective that unifies theory and numerical computation. Methods of scientific computing are introduced alongside with theoretical analysis and MATLAB® codes are presented and discussed for a broad range of topics: from interfacial shapes in hydrostatics, to vortex dynamics, to viscous flow, to turbulent flow, to panel methods for flow past airfoils. The third edition includes new topics, additional examples, solved and unsolved problems, and revised images. It adds more computational algorithms and MATLAB programs. It also incorporates discussion of the latest version of the fluid dynamics software library FDLIB, which is freely available online. FDLIB offers an extensive range of computer codes that demonstrate the implementation of elementary and advanced algorithms and provide an invaluable resource for research, teaching, classroom instruction, and self-study. This ...
Movement Characteristics Analysis and Dynamic Simulation of Collaborative Measuring Robot
guoqing, MA; li, LIU; zhenglin, YU; guohua, CAO; yanbin, ZHENG
2017-03-01
Human-machine collaboration is becoming increasingly more necessary, and so collaborative robot applications are also in high demand. We selected a UR10 robot as our research subject for this study. First, we applied D-H coordinate transformation of the robot to establish a link system, and we then used inverse transformation to solve the robot’s inverse kinematics and find all the joints. Use Lagrange method to analysis UR robot dynamics; use ADAMS multibody dynamics simulation software to dynamic simulation; verifying the correctness of the derived kinetic models.
Gamma ray observatory dynamics simulator in Ada (GRODY)
International Nuclear Information System (INIS)
1990-09-01
This experiment involved the parallel development of dynamics simulators for the Gamma Ray Observatory in both FORTRAN and Ada for the purpose of evaluating the applicability of Ada to the NASA/Goddard Space Flight Center's flight dynamics environment. The experiment successfully demonstrated that Ada is a viable, valuable technology for use in this environment. In addition to building a simulator, the Ada team evaluated training approaches, developed an Ada methodology appropriate to the flight dynamics environment, and established a baseline for evaluating future Ada projects
Modular simulation of reefer container dynamics
DEFF Research Database (Denmark)
Sørensen, Kresten Kjær; Nielsen, Jens Frederik Dalsgaard; Stoustrup, Jakob
2014-01-01
The amount of food transported long distances in reefer containers is constantly increasing and so is the cost per mile because of rising fuel prices. One way to reduce the cost is to minimize the energy consumed by reefer containers through a better controller but in order to achieve this a fast...... and flexible simulation model is needed for controller development. The simulation model may also be used for developing fault diagnosis methods for the reefer container and thereby further lowering costs by reducing the amount of functioning spare parts that is replaced and by providing early warning...... that ensures numerical stability and that the error is bounded using a minimum of calculations. The reefer container model is simulated using both ode15s and the proposed method both in multi-rate and monolithic configurations. The results are analyzed and compared with respect to speed and accuracy....
A dynamic simulation of the Hanford site grout facility
International Nuclear Information System (INIS)
Zimmerman, B.D.; Klimper, S.C.; Williamson, G.F.
1992-01-01
Computer-based dynamic simulation can be a powerful, low-cost tool for investigating questions concerning timing, throughput capability, and ability of engineering facilities and systems to meet established milestones. The simulation project described herein was undertaken to develop a dynamic simulation model of the Hanford site grout facility and its associated systems at the US Department of Energy's (DOE's) Hanford site in Washington State. The model allows assessment of the effects of engineering design and operation trade-offs and of variable programmatic constraints, such as regulatory review, on the ability of the grout system to meet milestones established by DOE for low-level waste disposal
Topology in dynamical lattice QCD simulations
Energy Technology Data Exchange (ETDEWEB)
Gruber, Florian
2012-08-20
Lattice simulations of Quantum Chromodynamics (QCD), the quantum field theory which describes the interaction between quarks and gluons, have reached a point were contact to experimental data can be made. The underlying mechanisms, like chiral symmetry breaking or the confinement of quarks, are however still not understood. This thesis focuses on topological structures in the QCD vacuum. Those are not only mathematically interesting but also closely related to chiral symmetry and confinement. We consider methods to identify these objects in lattice QCD simulations. Based on this, we explore the structures resulting from different discretizations and investigate the effect of a very strong electromagnetic field on the QCD vacuum.
Molecular dynamics simulations of RNA motifs
Czech Academy of Sciences Publication Activity Database
Csaszar, K.; Špačková, Naďa; Šponer, Jiří; Leontis, N. B.
2002-01-01
Roč. 223, - (2002), s. 154 ISSN 0065-7727. [Annual Meeting of the American Chemistry Society /223./. 07.04.2002-11.04.2002, Orlando ] Institutional research plan: CEZ:AV0Z5004920 Keywords : molecular dynamics * RNA * hydration Subject RIV: BO - Biophysics
Simulation of nanofractal dynamics with MBN Explorer
DEFF Research Database (Denmark)
Solov'yov, Ilia; Solov'yov, Andrey V.
2013-01-01
occurring in patterns grown on a surface were studied using a multi-purpose computer code MBN Explorer introduced in the present paper. The package allows to model molecular systems of varied level of complexity, and in the present paper was used, in particular, to study dynamics of silver nanofractal...
Approximation of quantum observables by molecular dynamics simulations
Sandberg, Mattias
2016-01-06
In this talk I will discuss how to estimate the uncertainty in molecular dynamics simulations. Molecular dynamics is a computational method to study molecular systems in materials science, chemistry, and molecular biology. The wide popularity of molecular dynamics simulations relies on the fact that in many cases it agrees very well with experiments. If we however want the simulation to predict something that has no comparing experiment, we need a mathematical estimate of the accuracy of the computation. In the case of molecular systems with few particles, such studies are made by directly solving the Schrodinger equation. In this talk I will discuss theoretical results on the accuracy between quantum mechanics and molecular dynamics, to be used for systems that are too large to be handled computationally by the Schrodinger equation.
NVU dynamics. III. Simulating molecules at constant potential energy
DEFF Research Database (Denmark)
Ingebrigtsen, Trond; Dyre, J. C.
2012-01-01
This is the final paper in a series that introduces geodesic molecular dynamics at constant potential energy. This dynamics is entitled NVU dynamics in analogy to standard energy-conserving Newtonian NVE dynamics. In the first two papers [T. S. Ingebrigtsen, S. Toxvaerd, O. J. Heilmann, T. B....... In this paper, the NVU algorithm for atomic systems is extended to be able to simulate the geodesic motion of molecules at constant potential energy. We derive an algorithm for simulating rigid bonds and test this algorithm on three different systems: an asymmetric dumbbell model, Lewis-Wahnström o......-terphenyl (OTP) and rigid SPC/E water. The rigid bonds introduce additional constraints beyond that of constant potential energy for atomic systems. The rigid-bond NVU algorithm conserves potential energy, bond lengths, and step length for indefinitely long runs. The quantities probed in simulations give results...
Distributed dynamic simulations of networked control and building performance applications.
Yahiaoui, Azzedine
2018-02-01
The use of computer-based automation and control systems for smart sustainable buildings, often so-called Automated Buildings (ABs), has become an effective way to automatically control, optimize, and supervise a wide range of building performance applications over a network while achieving the minimum energy consumption possible, and in doing so generally refers to Building Automation and Control Systems (BACS) architecture. Instead of costly and time-consuming experiments, this paper focuses on using distributed dynamic simulations to analyze the real-time performance of network-based building control systems in ABs and improve the functions of the BACS technology. The paper also presents the development and design of a distributed dynamic simulation environment with the capability of representing the BACS architecture in simulation by run-time coupling two or more different software tools over a network. The application and capability of this new dynamic simulation environment are demonstrated by an experimental design in this paper.
Dynamic system simulation of small satellite projects
Raif, M.; Walter, U.; Bouwmeester, R.
2009-01-01
A prerequisite to accomplish a system simulation is to have a system model holding all necessary project information in a centralized repository that can be accessed and edited by all parties involved. At the Institute of Astronautics of the Technische Universitaet Muenchen a modular approach for
Analytical system dynamics modeling and simulation
Fabien, Brian C
2008-01-01
This book offering a modeling technique based on Lagrange's energy method includes 125 worked examples. Using this technique enables one to model and simulate systems as diverse as a six-link, closed-loop mechanism or a transistor power amplifier.
New ways to boost molecular dynamics simulations
Krieger, E.; Vriend, G.
2015-01-01
We describe a set of algorithms that allow to simulate dihydrofolate reductase (DHFR, a common benchmark) with the AMBER all-atom force field at 160 nanoseconds/day on a single Intel Core i7 5960X CPU (no graphics processing unit (GPU), 23,786 atoms, particle mesh Ewald (PME), 8.0 A cutoff, correct
Molecular dynamics simulations of nanobubbles and nanodrops
Maheshwari, Shantanu
2018-01-01
Understanding of bubbles and drops at the nanoscale is of primary importance to many technological applications. Although lot of theoretical understanding has been developed in the last few decades for larger size bubbles and drops, fundamental understanding of nanobubbles and nanodrops in some aspects is still inadequate. In this thesis we revealed and explained a few phenomena related to the stability and growth/dissolution of nanobubbles and nanodrops with the help from molecular dynamics ...
Molecular dynamics simulation of a chemical reaction
International Nuclear Information System (INIS)
Gorecki, J.; Gryko, J.
1988-06-01
Molecular dynamics is used to study the chemical reaction A+A→B+B. It is shown that the reaction rate constant follows the Arrhenius law both for Lennard-Jones and hard sphere interaction potentials between substrate particles. A. For the denser systems the reaction rate is proportional to the value of the radial distribution function at the contact point of two hard spheres. 10 refs, 4 figs
Visualizing Energy on Target: Molecular Dynamics Simulations
2017-12-01
from the increased number of intermolecular interactions at the higher mass densities . This may also be why the size of the hot spot increases with...of energy deposition by a shocked diatomic gas into a stationary target is studied as a function of multiple variables including gas density , impact...into the vibrational channels of the gas is a function of the density . 15. SUBJECT TERMS molecular dynamics, energy deposition, rovibrational
Monte Carlo simulated dynamical magnetization of single-chain magnets
Energy Technology Data Exchange (ETDEWEB)
Li, Jun; Liu, Bang-Gui, E-mail: bgliu@iphy.ac.cn
2015-03-15
Here, a dynamical Monte-Carlo (DMC) method is used to study temperature-dependent dynamical magnetization of famous Mn{sub 2}Ni system as typical example of single-chain magnets with strong magnetic anisotropy. Simulated magnetization curves are in good agreement with experimental results under typical temperatures and sweeping rates, and simulated coercive fields as functions of temperature are also consistent with experimental curves. Further analysis indicates that the magnetization reversal is determined by both thermal-activated effects and quantum spin tunnelings. These can help explore basic properties and applications of such important magnetic systems. - Highlights: • Monte Carlo simulated magnetization curves are in good agreement with experimental results. • Simulated coercive fields as functions of temperature are consistent with experimental results. • The magnetization reversal is understood in terms of the Monte Carlo simulations.
Autonomous dynamic decision making in a nuclear fuel cycle simulator
International Nuclear Information System (INIS)
Pelakauskas, Martynas; Auzans, Aris; Schneider, Erich A.; Tkaczyk, Alan H.
2013-01-01
Highlights: • Objective criteria based decision making in a nuclear fuel cycle simulator. • Simulation driven by an evolving performance metric. • Implementation of the model in a nuclear fuel cycle simulator. • Verification of dynamic decision making based on uranium price evolution. -- Abstract: Growing energy demand and the push to move toward carbon-free ways of electricity generation have renewed the world's interest in nuclear energy. Due to the high technical and economic uncertainties related to nuclear energy, simulation tools have become a necessity in order to plan and evaluate possible nuclear fuel cycles (NFCs). Most of the NFC simulators today work by running the simulation with a user-defined set of facility build orders and preferences. While this allows for a simple way to change the simulation conditions, it may not always lead to optimal results and strongly relies on the user defining the correct parameters. This study looks into the possibility of using the expected cost of electricity (CoE) as the driving build decision variable instead of relying on user-defined build orders. This is a first step toward a more general decision making strategy in dynamic fuel cycle simulation. For this purpose, additional modules were implemented in an NFC simulator, VEGAS, with the consumption dependent price of uranium as a time-varying NFC cost component that drives the cost competitiveness of available NFC options. The model was demonstrated to verify the correct operation of a CoE-driven NFC simulator
Electrical Dynamic Simulation Activities in Forsmark NPP
International Nuclear Information System (INIS)
Lamell, Per
2015-01-01
The original power system analysis was done in the seventies in former ASEA AB software. For approximate twenty years no major new studies was done because of limited numbers of renewal projects. In the end of the nineties the plant started to update the selectivity planning and study of the loading of the safety bus-bars. The simulation and start of the development of simulation models was done in a tool named Simpow. Simpow was also an ASEA/ABB AB software developed from the program used in the seventies. To continue to work with Simpow was a decision made after doing an extensive review of on the marked available commercially software. Also at that time we start to do our first attempt building electrical simulation models of unit 1 and 2 according to the original documentation. The development of models for the unit 1, 2 and 3 became more intensive some years after the millennium. Partly because of event July 25, 2006 and also because of the renewal of unit 1 and 2 and had subsequently been initiated for unit 3 also. Today we have initiated a conversion of our models to a new program called PowerFactory. That due to the withdrawal of support and development on SIMPOW a couple of years ago. To development relevance, accuracy and detail, models are an important issue for FKA (Forsmark Kraftgrupp AB). The model is initially created according to the plant documentation and also including requested information from the original supplier. Continued development and updates of the model is done according to the data received from the contractors via the demands according to requirements in our technical documents on different electrical components in renewal projects. The development of the model is driven by known weaknesses, depending of the type of studies and necessary data related to events. An important part that will be described is to have a verified simulation tool and validated models. An example is that the models have been validated by making start and
Nonlinear mirror mode dynamics: Simulations and modeling
Czech Academy of Sciences Publication Activity Database
Califano, F.; Hellinger, Petr; Kuznetsov, E.; Passot, T.; Sulem, P. L.; Trávníček, Pavel
2008-01-01
Roč. 113, - (2008), A08219/1-A08219/20 ISSN 0148-0227 R&D Projects: GA AV ČR IAA300420702; GA AV ČR IAA300420602 Grant - others:PECS(CZ) 98024 Institutional research plan: CEZ:AV0Z30420517 Keywords : mirror instability * nonlinear evolution * numerical simulations * magnetic holes * mirror structures * kinetic plasma instabilities Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.147, year: 2008
Computer Simulation of Turbulent Reactive Gas Dynamics
Directory of Open Access Journals (Sweden)
Bjørn H. Hjertager
1984-10-01
Full Text Available A simulation procedure capable of handling transient compressible flows involving combustion is presented. The method uses the velocity components and pressure as primary flow variables. The differential equations governing the flow are discretized by integration over control volumes. The integration is performed by application of up-wind differencing in a staggered grid system. The solution procedure is an extension of the SIMPLE-algorithm accounting for compressibility effects.
Molecular dynamics simulation of ribosome jam
Matsumoto, Shigenori
2011-09-01
We propose a coarse-grained molecular dynamics model of ribosome molecules to study the dependence of translation process on environmental parameters. We found the model exhibits traffic jam property, which is consistent with an ASEP model. We estimated the influence of the temperature and concentration of molecules on the hopping probability used in the ASEP model. Our model can also treat environmental effects on the translation process that cannot be explained by such cellular automaton models. © 2010 Elsevier B.V. All rights reserved.
Multiscale simulation of microbe structure and dynamics.
Joshi, Harshad; Singharoy, Abhishek; Sereda, Yuriy V; Cheluvaraja, Srinath C; Ortoleva, Peter J
2011-10-01
A multiscale mathematical and computational approach is developed that captures the hierarchical organization of a microbe. It is found that a natural perspective for understanding a microbe is in terms of a hierarchy of variables at various levels of resolution. This hierarchy starts with the N -atom description and terminates with order parameters characterizing a whole microbe. This conceptual framework is used to guide the analysis of the Liouville equation for the probability density of the positions and momenta of the N atoms constituting the microbe and its environment. Using multiscale mathematical techniques, we derive equations for the co-evolution of the order parameters and the probability density of the N-atom state. This approach yields a rigorous way to transfer information between variables on different space-time scales. It elucidates the interplay between equilibrium and far-from-equilibrium processes underlying microbial behavior. It also provides framework for using coarse-grained nanocharacterization data to guide microbial simulation. It enables a methodical search for free-energy minimizing structures, many of which are typically supported by the set of macromolecules and membranes constituting a given microbe. This suite of capabilities provides a natural framework for arriving at a fundamental understanding of microbial behavior, the analysis of nanocharacterization data, and the computer-aided design of nanostructures for biotechnical and medical purposes. Selected features of the methodology are demonstrated using our multiscale bionanosystem simulator DeductiveMultiscaleSimulator. Systems used to demonstrate the approach are structural transitions in the cowpea chlorotic mosaic virus, RNA of satellite tobacco mosaic virus, virus-like particles related to human papillomavirus, and iron-binding protein lactoferrin. Copyright © 2011 Elsevier Ltd. All rights reserved.
Computational fluid dynamics for sport simulation
2009-01-01
All over the world sport plays a prominent role in society: as a leisure activity for many, as an ingredient of culture, as a business and as a matter of national prestige in such major events as the World Cup in soccer or the Olympic Games. Hence, it is not surprising that science has entered the realm of sports, and, in particular, that computer simulation has become highly relevant in recent years. This is explored in this book by choosing five different sports as examples, demonstrating that computational science and engineering (CSE) can make essential contributions to research on sports topics on both the fundamental level and, eventually, by supporting athletes’ performance.
Partial multicanonical algorithm for molecular dynamics and Monte Carlo simulations.
Okumura, Hisashi
2008-09-28
Partial multicanonical algorithm is proposed for molecular dynamics and Monte Carlo simulations. The partial multicanonical simulation samples a wide range of a part of the potential-energy terms, which is necessary to sample the conformational space widely, whereas a wide range of total potential energy is sampled in the multicanonical algorithm. Thus, one can concentrate the effort to determine the weight factor only on the important energy terms in the partial multicanonical simulation. The partial multicanonical, multicanonical, and canonical molecular dynamics algorithms were applied to an alanine dipeptide in explicit water solvent. The canonical simulation sampled the states of P(II), C(5), alpha(R), and alpha(P). The multicanonical simulation covered the alpha(L) state as well as these states. The partial multicanonical simulation also sampled the C(7) (ax) state in addition to the states that were sampled by the multicanonical simulation. In the partial multicanonical simulation, furthermore, backbone dihedral angles phi and psi rotated more frequently than those in the multicanonical and canonical simulations. These results mean that the partial multicanonical algorithm has a higher sampling efficiency than the multicanonical and canonical algorithms.
Molecular dynamics simulation of laser shock phenomena
Energy Technology Data Exchange (ETDEWEB)
Fukumoto, Ichirou [Japan Atomic Energy Research Inst., Kansai Research Establishment, Advanced Photon Research Center, Neyagawa, Osaka (Japan).
2001-10-01
Recently, ultrashort-pulse lasers with high peak power have been developed, and their application to materials processing is expected as a tool of precision microfabrication. When a high power laser irradiates, a shock wave propagates into the material and dislocations are generated. In this paper, laser shock phenomena of the metal were analyzed using the modified molecular dynamics method, which has been developed by Ohmura and Fukumoto. The main results obtained are summarized as follows: (1) The shock wave induced by the Gaussian beam irradiation propagates radially from the surface to the interior. (2) A lot of dislocations are generated at the solid-liquid interface by the propagation of a shock wave. (3) Some dislocations are moved instantaneously with the velocity of the longitudinal wave when the shock wave passes, and their velocity is not larger than the transverse velocity after the shock wave has passed. (author)
Molecular dynamics simulations of temperature equilibration in dense hydrogen
Glosli, J. N.; Graziani, F. R.; More, R. M.; Murillo, M. S.; Streitz, F. H.; Surh, M. P.; Benedict, L. X.; Hau-Riege, S.; Langdon, A. B.; London, R. A.
2008-08-01
The temperature equilibration rate between electrons and protons in dense hydrogen has been calculated with molecular dynamics simulations for temperatures between 10 and 600eV and densities between 1020cm-3to1024cm-3 . Careful attention has been devoted to convergence of the simulations, including the role of semiclassical potentials. We find that for Coulomb logarithms L≳1 , a model by Gericke-Murillo-Schlanges (GMS) [D. O. Gericke , Phys. Rev. E 65, 036418 (2002)] based on a T -matrix method and the approach by Brown-Preston-Singleton [L. S. Brown , Phys. Rep. 410, 237 (2005)] agrees with the simulation data to within the error bars of the simulation. For smaller Coulomb logarithms, the GMS model is consistent with the simulation results. Landau-Spitzer models are consistent with the simulation data for L>4 .
Static and dynamic simulation of hydraulic networks with the DSNP simulation language
International Nuclear Information System (INIS)
Saphier, D.
1978-01-01
A special purpose language, the Dynamic Simulator for Nuclear Power plants (DSNP) was developed. This higher level language also includes elements for general purpose dynamic simulations. A description of DSNP is presented, and the appropriate statements used in simulating hydraulic components are described in detail. The basic equations and correlations used in DSNP modules representing the various hydraulic elements are also presented. Two examples of the simulation of hydraulic networks are given using a subset of the DSNP language. The first example is a simple hydraulic loop and demonstrates the simulation method, while the second is a more complicated double hydraulic loop and demonstrates the DSNP flexibility in developing and changing complex simulations. 7 refs
Molecular Dynamic Simulations of Nanostructured Ceramic Materials on Parallel Computers
International Nuclear Information System (INIS)
Vashishta, Priya; Kalia, Rajiv
2005-01-01
Large-scale molecular-dynamics (MD) simulations have been performed to gain insight into: (1) sintering, structure, and mechanical behavior of nanophase SiC and SiO2; (2) effects of dynamic charge transfers on the sintering of nanophase TiO2; (3) high-pressure structural transformation in bulk SiC and GaAs nanocrystals; (4) nanoindentation in Si3N4; and (5) lattice mismatched InAs/GaAs nanomesas. In addition, we have designed a multiscale simulation approach that seamlessly embeds MD and quantum-mechanical (QM) simulations in a continuum simulation. The above research activities have involved strong interactions with researchers at various universities, government laboratories, and industries. 33 papers have been published and 22 talks have been given based on the work described in this report
Dynamic modeling, simulation and control of energy generation
Vepa, Ranjan
2013-01-01
This book addresses the core issues involved in the dynamic modeling, simulation and control of a selection of energy systems such as gas turbines, wind turbines, fuel cells and batteries. The principles of modeling and control could be applied to other non-convention methods of energy generation such as solar energy and wave energy.A central feature of Dynamic Modeling, Simulation and Control of Energy Generation is that it brings together diverse topics in thermodynamics, fluid mechanics, heat transfer, electro-chemistry, electrical networks and electrical machines and focuses on their appli
Beam dynamics simulation in the X-ray Compton source
Energy Technology Data Exchange (ETDEWEB)
Gladkikh, P.; Karnaukhov, I.; Telegin, Yu.; Shcherbakov, A. E-mail: shcherbakov@kipt.kharkov.ua; Zelinsky, A
2002-05-01
At the National Science Center 'Kharkov Institute of Physics and Technology' the X-ray source based on Compton scattering has been developed. The computer code for simulation of electron beam dynamics with taking into account the Compton scattering effect based on Monte Carlo method is described in this report. The first results of computer simulation of beam dynamics with electron-photon interaction, parameters of electron and photon beams are presented. Calculations were carried out with the lattice of synchrotron light source SRS-800 Ukrainian Synchrotron Center.
Beam dynamics simulation in the X-ray Compton source
International Nuclear Information System (INIS)
Gladkikh, P.; Karnaukhov, I.; Telegin, Yu.; Shcherbakov, A.; Zelinsky, A.
2002-01-01
At the National Science Center 'Kharkov Institute of Physics and Technology' the X-ray source based on Compton scattering has been developed. The computer code for simulation of electron beam dynamics with taking into account the Compton scattering effect based on Monte Carlo method is described in this report. The first results of computer simulation of beam dynamics with electron-photon interaction, parameters of electron and photon beams are presented. Calculations were carried out with the lattice of synchrotron light source SRS-800 Ukrainian Synchrotron Center
Beam dynamics simulation in the X-ray Compton source
Gladkikh, P; Telegin, Yu P; Shcherbakov, A; Zelinsky, A
2002-01-01
At the National Science Center 'Kharkov Institute of Physics and Technology' the X-ray source based on Compton scattering has been developed. The computer code for simulation of electron beam dynamics with taking into account the Compton scattering effect based on Monte Carlo method is described in this report. The first results of computer simulation of beam dynamics with electron-photon interaction, parameters of electron and photon beams are presented. Calculations were carried out with the lattice of synchrotron light source SRS-800 Ukrainian Synchrotron Center.
Simulation: A tool for steam plant dynamic analysis
Anneveld, H.
Stringent requirements of combined cycles makes design and operation of process plants increasingly complex. The behavior of the complete controlled process is studied by way of simulation. By utilizing this method, process conditions can be optimized with reduced risk. This will lead to greater financial benefits. There is a large range of simulation programs which make it possible to study realistically the dynamic behavior of a wide range of complex process conditions and problematic interactions. The steam generation and distribution, the pressure limitation controls, and the dynamic behavior of a steam plant are discussed.
Coalescence of silver unidimensional structures by molecular dynamics simulation
International Nuclear Information System (INIS)
Perez A, M.; Gutierrez W, C.E.; Mondragon, G.; Arenas, J.
2007-01-01
The study of nanoparticles coalescence and silver nano rods phenomena by means of molecular dynamics simulation under the thermodynamic laws is reported. In this work we focus ourselves to see the conditions under which the one can be given one dimension growth of silver nano rods for the coalescence phenomenon among two nano rods or one nano rod and one particle; what allows us to study those structural, dynamic and morphological properties of the silver nano rods to different thermodynamic conditions. The simulations are carried out using the Sutton-Chen potentials of interaction of many bodies that allow to obtain appropriate results with the real physical systems. (Author)
Lessons Learned From Dynamic Simulations of Advanced Fuel Cycles
Energy Technology Data Exchange (ETDEWEB)
Steven J. Piet; Brent W. Dixon; Jacob J. Jacobson; Gretchen E. Matthern; David E. Shropshire
2009-04-01
Years of performing dynamic simulations of advanced nuclear fuel cycle options provide insights into how they could work and how one might transition from the current once-through fuel cycle. This paper summarizes those insights from the context of the 2005 objectives and goals of the Advanced Fuel Cycle Initiative (AFCI). Our intent is not to compare options, assess options versus those objectives and goals, nor recommend changes to those objectives and goals. Rather, we organize what we have learned from dynamic simulations in the context of the AFCI objectives for waste management, proliferation resistance, uranium utilization, and economics. Thus, we do not merely describe “lessons learned” from dynamic simulations but attempt to answer the “so what” question by using this context. The analyses have been performed using the Verifiable Fuel Cycle Simulation of Nuclear Fuel Cycle Dynamics (VISION). We observe that the 2005 objectives and goals do not address many of the inherently dynamic discriminators among advanced fuel cycle options and transitions thereof.
Simulation of the Production Process Dynamics using Vensim and Stella
Directory of Open Access Journals (Sweden)
Corina SBUGHEA
2016-04-01
Full Text Available This paper aims to make a brief presentation of the principles of dynamic systems and to analyze two applications support for modeling and simulation of the evolution of these systems. For illustration, we chose a classic model of the dynamics of the production process, which we have implemented in Vensim and Stella, in order to obtain evolutionary trajectories of the endogenous variables and analyze the behavior of the system.
Dynamic Simulation of Water Resources Sustainable Utilization of Kiamusze Based on System Dynamics
Jiang, Qiuxiang; Wang, Zilong; Fu, Qiang
2012-01-01
International audience; In order to determine the sustainable supporting capacity of current Kiamusze water utilization situation to future society and economy, a dynamic simulation model of water resources sustainable utilization was built based on system dynamics (SD). The simulation results indicated that current Kiamusze water resources could not satisfy future demand of industrial and agricultural production and also restricted socioeconomic development. In view of the situation, the wat...
Dynamic Garment Simulation based on Hybrid Bounding Volume Hierarchy
Directory of Open Access Journals (Sweden)
Zhu Dongyong
2016-12-01
Full Text Available In order to solve the computing speed and efficiency problem of existing dynamic clothing simulation, this paper presents a dynamic garment simulation based on a hybrid bounding volume hierarchy. It firstly uses MCASG graph theory to do the primary segmentation for a given three-dimensional human body model. And then it applies K-means cluster to do the secondary segmentation to collect the human body’s upper arms, lower arms, upper legs, lower legs, trunk, hip and woman’s chest as the elementary units of dynamic clothing simulation. According to different shapes of these elementary units, it chooses the closest and most efficient hybrid bounding box to specify these units, such as cylinder bounding box and elliptic cylinder bounding box. During the process of constructing these bounding boxes, it uses the least squares method and slices of the human body to get the related parameters. This approach makes it possible to use the least amount of bounding boxes to create close collision detection regions for the appearance of the human body. A spring-mass model based on a triangular mesh of the clothing model is finally constructed for dynamic simulation. The simulation result shows the feasibility and superiority of the method described.
Computer simulation and image guidance for individualised dynamic spinal stabilization.
Kantelhardt, S R; Hausen, U; Kosterhon, M; Amr, A N; Gruber, K; Giese, A
2015-08-01
Dynamic implants for the human spine are used to re-establish regular segmental motion. However, the results have often been unsatisfactory and complications such as screw loosening are common. Individualisation of appliances and precision implantation are needed to improve the outcome of this procedure. Computer simulation, virtual implant optimisation and image guidance were used to improve the technique. A human lumbar spine computer model was developed using multi-body simulation software. The model simulates spinal motion under load and degenerative changes. After virtual degeneration of a L4/5 segment, virtual pedicle screw-based implants were introduced. The implants' positions and properties were iteratively optimised. The resulting implant positions were used as operative plan for image guidance and finally implemented in a physical spine model. In the simulation, the introduction and optimisation of virtually designed dynamic implants could partly compensate for the effects of virtual lumbar segment degeneration. The optimised operative plan was exported to two different image-guidance systems for transfer to a physical spine model. Three-dimensional computer graphic simulation is a feasible means to develop operative plans for dynamic spinal stabilization. These operative plans can be transferred to commercially available image-guidance systems for use in implantation of physical implants in a spine model. This concept has important potential in the design of operative plans and implants for individualised dynamic spine stabilization surgery.
Thermal Transport in Fullerene Derivatives Using Molecular Dynamics Simulations
Chen, Liang; Wang, Xiaojia; Kumar, Satish
2015-01-01
In order to study the effects of alkyl chain on the thermal properties of fullerene derivatives, we perform molecular dynamics (MD) simulations to predict the thermal conductivity of fullerene (C60) and its derivative phenyl-C61-butyric acid methyl ester (PCBM). The results of non-equilibrium MD simulations show a length-dependent thermal conductivity for C60 but not for PCBM. The thermal conductivity of C60, obtained from the linear extrapolation of inverse conductivity vs. inverse length cu...
Dynamic wind turbine models in power system simulation tool
DEFF Research Database (Denmark)
Hansen, A.; Jauch, Clemens; Soerensen, P.
The present report describes the dynamic wind turbine models implemented in the power system simulation tool DIgSILENT. The developed models are a part of the results of a national research project, whose overall objective is to create a model database in different simulation tools. The report...... provides a description of the wind turbine modelling, both at a component level and at a system level....
Molecular dynamics simulation of ion mobility in gases
Lai, Rui; Dodds, Eric D.; Li, Hui
2018-02-01
A force field molecular dynamics method is developed to directly simulate ion drift in buffer gases driven by an electric field. The ion mobility and collision cross sections (CCSs) with relevance to ion mobility spectrometry can be obtained from the simulated drift velocity in high-density buffer gases (pressure ˜50 bars) and high electric fields (˜107 V/m). Compared to trajectory methods, the advantage of the molecular dynamics method is that it can simultaneously sample the internal dynamic motions of the ion and the ion-gas collisions. For ions with less than 100 atoms, the simulated collision cross section values can be converged to within ±1%-2% by running a 100 ns simulation for 5-19 h using one computer core. By using a set of element-based Lennard-Jones parameters that are not tuned for different atomic types in different molecules, the simulated collision cross sections for 15 small molecular ions (number of atoms ranging from 17 to 85, mass ranging from 74.1 to 609.4 g/mol) are consistent with experimental values: the mean unsigned error is 2.6 Å2 for He buffer gas and 4.4 Å2 for N2 buffer gas. The sensitivity of the simulated CCS values to random diffusion, drift velocity, electric field strength, temperature, and buffer gas density is examined.
A multibody approach in granular dynamics simulations
Vinogradov, O.; Sun, Y.
A plane model of a granular system made out of interconnected disks is treated as a multibody system with variable topology and one-sided constraints between the disks. The motion of such a system is governed by a set of nonlinear algebraic and differential equations. In the paper two formalisms (Lagrangian and Newton-Euler) and two solvers (Runge-Kutta and iterative) are discussed. It is shown numerically that a combination of the Newton-Euler formalism and an iterative method allows to maintain the accuracy of the fourth order Runge-Kutta solver while reducing substantially the CPU time. The accuracy and efficiency are achieved by integrating the error control into the iterative process. Two levels of error control are introduced: one, based on satisfying the position, velocity and acceleration constraints, and another, on satisfying the energy conservation requirement. An adaptive time step based on the rate of convergence at the previous time step is introduced which also allows to reduce the simulation time. The efficiency and accuracy is investigated on a physically unstable vertical stack of disks and on multibody pendulums with 50, 100, 150 and 240 masses. An application to the problem of jamming in a two-phase flow is presented.
Numerical simulation of the gould belt dynamics
Vasilkova, O. O.
2014-01-01
The results of numerical simulations of the Gould Belt motion for the 2D (a ring in the Galactic plane) and 3D (a spherical shell outside the Galactic plane) cases are presented. Particles of the expanding shell interact with each other within the framework of the N-body problem. The Galactic potential has been borrowed from Flynn et al. (1996). The total mass of the shell is 1.5 × 106 M⊙ in accordance with the estimate from Bobylev (2006). The initial mutual distances and velocities of the shell components are chosen in such a way that the shell reaches the present-day sizes of the Gould Belt in 30-60 Myr. In the 2D case, the ring is shown to be stretched with time into a rotating ellipse, which is consistent with the results from Blaauw (1952) obtained by other methods. In the 3D case, the projections of the initially spherical shell onto the Galactic plane are also rotating ellipses. A vertical oscillation of the Gould Belt components relative to the Galactic plane, a flattening of the spherical shell, and its inclination to the Galactic plane after a certain time interval have been revealed.
Molecular dynamics simulations of oscillatory flows in microfluidic channels
DEFF Research Database (Denmark)
Hansen, J.S.; Ottesen, Johnny T.
2006-01-01
In this paper we apply the direct non-equilibrium molecular dynamics technique to oscillatory flows of fluids in microscopic channels. Initially, we show that the microscopic simulations resemble the macroscopic predictions based on the Navier–Stokes equation very well for large channel width, high...... density and low temperature. Further simulations for high temperature and low density show that the non-slip boundary condition traditionally used in the macroscopic equation is greatly compromised when the fluid–wall interactions are the same as the fluid–fluid interactions. Simulations of a system...
A statistical-dynamical downscaling procedure for global climate simulations
International Nuclear Information System (INIS)
Frey-Buness, A.; Heimann, D.; Sausen, R.; Schumann, U.
1994-01-01
A statistical-dynamical downscaling procedure for global climate simulations is described. The procedure is based on the assumption that any regional climate is associated with a specific frequency distribution of classified large-scale weather situations. The frequency distributions are derived from multi-year episodes of low resolution global climate simulations. Highly resolved regional distributions of wind and temperature are calculated with a regional model for each class of large-scale weather situation. They are statistically evaluated by weighting them with the according climate-specific frequency. The procedure is exemplarily applied to the Alpine region for a global climate simulation of the present climate. (orig.)
Molecular dynamics simulations of oscillatory flows in microfluidic channels
DEFF Research Database (Denmark)
Hansen, J.S.; Ottesen, Johnny T.
2006-01-01
In this paper we apply the direct non-equilibrium molecular dynamics technique to oscillatory flows of fluids in microscopic channels. Initially, we show that the microscopic simulations resemble the macroscopic predictions based on the Navier–Stokes equation very well for large channel width, hi...
Computational Fluid Dynamics and Building Energy Performance Simulation
DEFF Research Database (Denmark)
Nielsen, Peter V.; Tryggvason, Tryggvi
An interconnection between a building energy performance simulation program and a Computational Fluid Dynamics program (CFD) for room air distribution will be introduced for improvement of the predictions of both the energy consumption and the indoor environment. The building energy performance...
Computational Fluid Dynamics and Building Energy Performance Simulation
DEFF Research Database (Denmark)
Nielsen, Peter Vilhelm; Tryggvason, T.
1998-01-01
An interconnection between a building energy performance simulation program and a Computational Fluid Dynamics program (CFD) for room air distribution will be introduced for improvement of the predictions of both the energy consumption and the indoor environment. The building energy performance...
A Neural Network Model for Dynamics Simulation | Bholoa ...
African Journals Online (AJOL)
University of Mauritius Research Journal. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 15, No 1 (2009) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. A Neural Network Model for Dynamics Simulation.
A Dynamic Simulation Game (UNIGAME) for Strategic University Management.
Barlas, Yaman; Diker, Vedat Guclu
2000-01-01
Presents an interactive simulation model on which the academic aspects of university management can be analyzed and alternative management strategies tested. Focuses specifically on long-term, dynamic, strategic management problems and yields performance measures about the fundamental activities in a university that can support strategic…
Using simulation to assess the opportunities of dynamic waste collection
Mes, Martijn R.K.; Bangsow, S.
2012-01-01
In this chapter, we illustrate the use of discrete event simulation to evaluate how dynamic planning methodologies can be best applied for the collection of waste from underground containers. We present a case study that took place at the waste collection company Twente Milieu, located in The
Using Simulation to Assess the Opportunities of Dynamic Waste Collection
Mes, Martijn R.K.
In this paper, we illustrate the use of discrete event simulation to evaluate how dynamic planning methodologies can be best applied for the collection of waste from underground containers. We present a case study that took place at the waste collection company Twente Milieu, located in The
Efficient dynamic simulation of flexible link manipulators with PID control
Aarts, Ronald G.K.M.; Jonker, Jan B.; Mook, D.T.; Balachandran, B.
2001-01-01
For accurate simulations of the dynamic behavior of flexible manipulators the combination of a perturbation method and modal analysis is proposed. First, the vibrational motion is modeled as a first-order perturbation of a nominal rigid link motion. The vibrational motion is then described by a set
Molecular dynamics simulations and free energy profile of ...
Indian Academy of Sciences (India)
Molecular dynamics simulations and free energy profile of Paracetamol in DPPC and DMPC lipid bilayers. YOUSEF NADEMIa, SEPIDEH AMJAD IRANAGHb, ABBAS YOUSEFPOURa,. SEYEDEH ZAHRA MOUSAVIa and HAMID MODARRESSa,∗. aDepartment of Chemical Engineering, bDepartment of Chemistry, ...
Improved Angle Potentials for Coarse-Grained Molecular Dynamics Simulations
Bulacu, Monica; Goga, Nicolae; Zhao, Wei; Rossi, Giulia; Monticelli, Luca; Periole, Xavier; Tieleman, D. Peter; Marrink, Siewert J.
Potentials routinely used in atomistic molecular dynamics simulations are not always suitable for modeling systems at coarse-grained resolution. For example, in the calculation of traditional torsion angle potentials, numerical instability is often encountered in the case of very flexible molecules.
Classical dynamics simulations of interstellar glycine formation via ...
Indian Academy of Sciences (India)
YOGESHWARAN KRISHNAN
2017-09-20
Sep 20, 2017 ... reaction site. Computational modeling is becoming a very use- ful tool for studying interstellar chemistry.32,33 In the present work, we have investigated the dynamics of reaction 1 and reaction 2 (with n = 2) using ab initio classical trajectory simulations.34,35 Trajectories were initiated at the rate-controlling ...
Ab initio molecular dynamics simulation of laser melting of silicon
Silvestrelli, P.-L.; Alavi, A.; Parrinello, M.; Frenkel, D.
1996-01-01
The method of ab initio molecular dynamics, based on finite temperature density functional theory, is used to simulate laser heating of crystal silicon. We have found that a high concentration of excited electrons dramatically weakens the covalent bond. As a result, the system undergoes a melting
Effects of transition on wind tunnel simulation of vehicel dynamics
Ericsson, L. E.
Among the many problems the test engineer faces when trying to simulate full-scale vehicle dynamics in a wind tunnel test is the fact that the test usually will be performed at Reynolds numbers far below those existing on the full-scale vehicle. It is found that a severe scaling problem may exist even in the case of attached flow. The strong coupling existing between boundary layer transition and vehicle motion can cause the wind tunnel results to be very misleading, in some cases dangerously so. For example, the subscale test could fail to show a dynamic stability problem existing in full-scale flight, or, conversely, show one that does not exist. When flow separation occurs together with boundary layer transition, the scaling problem becomes more complicated, and the potential for dangerously misleading subscale test results increases. The existing literature is reviewed to provide examples of the different types of dynamic simulation problems that the test engineer is likely to face. It should be emphasized that the difficulties presented by transition effects in the case of wind tunnel simulation of vehicle dynamics apply to the same extent to numeric simulation methods.
Molecular dynamics simulations of phase transformations in niti bicrystals
Srinivasan, P.; Nicola, L.; Simone, A.; Floryan, J.M.; Tvergaard, V.; van Campen, D.
2016-01-01
The influence of grain boundaries and grain misorientation on the nucleation and growth of martensite in an equi-atomic nickeltitanium (NiTi) shape memory alloy (SMA) is investigated by performing molecular dynamics (MD) simulations on bicrystals with a modified embedded atom method (MEAM)
Molecular dynamics simulations of lipid vesicle fusion in atomic detail
Knecht, Volker; Marrink, Siewert-Jan
The fusion of a membrane-bounded vesicle with a target membrane is a key step in intracellular trafficking, exocytosis, and drug delivery. Molecular dynamics simulations have been used to study the fusion of small unilamellar vesicles composed of a dipalmitoyl-phosphatidylcholine (DPPC)/palmitic
Microrheology of colloidal dispersions by Brownian dynamics simulations
Carpen, I.C.; Brady, John F.; Brady, J.F.
2005-01-01
We investigate active particle-tracking microrheology in a colloidal dispersion by Brownian dynamics simulations. A probe particle is dragged through the dispersion with an externally imposed force in order to access the nonlinear viscoelastic response of the medium. The probe’s motion is governed
Coarse – grained molecular dynamics simulation of cross – linking ...
African Journals Online (AJOL)
Coarse – grained molecular dynamics simulation of cross – linking of DGEBA epoxy resin and estimation of the adhesive strength. ... The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader). If you would like more ...
Combining molecular dynamics with mesoscopic Green’s function reaction dynamics simulations
International Nuclear Information System (INIS)
Vijaykumar, Adithya; Bolhuis, Peter G.; Rein ten Wolde, Pieter
2015-01-01
In many reaction-diffusion processes, ranging from biochemical networks, catalysis, to complex self-assembly, the spatial distribution of the reactants and the stochastic character of their interactions are crucial for the macroscopic behavior. The recently developed mesoscopic Green’s Function Reaction Dynamics (GFRD) method enables efficient simulation at the particle level provided the microscopic dynamics can be integrated out. Yet, many processes exhibit non-trivial microscopic dynamics that can qualitatively change the macroscopic behavior, calling for an atomistic, microscopic description. We propose a novel approach that combines GFRD for simulating the system at the mesoscopic scale where particles are far apart, with a microscopic technique such as Langevin dynamics or Molecular Dynamics (MD), for simulating the system at the microscopic scale where reactants are in close proximity. This scheme defines the regions where the particles are close together and simulated with high microscopic resolution and those where they are far apart and simulated with lower mesoscopic resolution, adaptively on the fly. The new multi-scale scheme, called MD-GFRD, is generic and can be used to efficiently simulate reaction-diffusion systems at the particle level
Molecular dynamics simulations of Pd-Ni transition metal alloys
International Nuclear Information System (INIS)
Kart, S. O.; Kart, H. H.; Uludogan, M.; Tomak, M.; Cagin, T.
2002-01-01
Molecular Dynamics simulations are performed to study bulk properties of fcc metals and metal alloys by using the quantum Sutton-Chen many-body potentials within the context of the tight-binding approach. The Molecular Dynamics algorithms we used in the simulations of Pd-Ni alloys are based on an extended Hamiltonian formalism arising from the works of Andersen (1980), Parinello and Rahman (1980), Nose (1984), Hoover (1985) and Cagin (1988). In these simulations, the effect of temperature and concentration on the solid and liquid properties are studied. Elastic constants and phonon dispersion relation are the solid properties we simulated in this work. Dynamic and static properties of liquid Pd-Ni are also computed by examining the behavior of density, enthalpy, pair distribution function and structure factor. The melting temperatures of Pd-Ni alloys are investigated. The diffusion coefficients are calculated from the mean square displacement using Einstein relation and from velocity auto-correlation function using Green-Kubo relations. The simulation results are in good agreement with the experiments
Dynamic simulation of sustainable farm development scenarios using cognitive modeling
Directory of Open Access Journals (Sweden)
Tuzhyk Kateryna
2017-03-01
Full Text Available Dynamic simulation of sustainable farm development scenarios using cognitive modeling. The paper presents a dynamic simulation system of sustainable development scenarios on farms using cognitive modeling. The system incorporates relevant variables which affect the sustainable development of farms. Its user provides answers to strategic issues connected with the level of farm sustainability over a long-term perspective of dynamic development. The work contains a description of the model structure as well as the results of simulations carried out on 16 farms in northern Ukraine. The results show that the process of sustainability is based mainly on the potential for innovation in agricultural production and biodiversity. The user is able to simulate various scenarios for the sustainable development of a farm and visualize the influence of factors on the economic and social situation, as well as on environmental aspects. Upon carrying out a series of simulations, it was determined that the development of farms characterized by sustainable development is based on additional profit, which serves as the main motivation for transforming a conventional farm into a sustainable one. Nevertheless, additional profit is not the only driving force in the system of sustainable development. The standard of living, market condition, and legal regulations as well as government support also play a significant motivational role.
Liquid-vapor coexistence by molecular dynamics simulation
International Nuclear Information System (INIS)
Baranyai, Andras; Cummings, Peter T.
2000-01-01
We present a simple and consistent molecular dynamics algorithm for determining the equilibrium properties of a bulk liquid and its coexisting vapor phase. The simulation follows the dynamics of the two systems simultaneously while maintaining the volume and the number of particles of the composite system fixed. The thermostat can constrain either the total energy or the temperature at a desired value. Division of the extensive properties between the two phases is governed by the difference of the corresponding intensive state variables. Particle numbers are continuous variables and vary only in virtual sense, i.e., the real sizes of the two systems are the same and do not change during the course of the simulation. Calculation of the chemical potential is separate from the dynamics; thus, one can replace the particle exchange step with other method if it improves the efficiency of the code. (c) 2000 American Institute of Physics
Understanding water: Molecular dynamics simulations of solubilized and crystallized myoglobin
International Nuclear Information System (INIS)
Wei Gu; Garcia, A.E.; Schoenborn, B.P.
1994-01-01
Molecular dynamics simulations were performed on CO myoglobin to evaluate the stability of the bound water molecules as determined in a neutron diffraction analysis. The myoglobin structure derived from the neutron analysis provided the starting coordinate set used in the simulations. The simulations show that only a few water molecules are tightly bound to protein atoms, while most solvent molecules are labile, breaking and reforming hydrogen bonds. Comparison between myoglobin in solution and in a single crystal highlighted some of the packing effects on the solvent structure and shows that water solvent plays an indispensable role in protein dynamics and structural stability. The described observations explain some of the differences in the experimental results of protein hydration as observed in NMR, neutron and X-ray diffraction studies
Haptization of molecular dynamics simulation with thermal display
International Nuclear Information System (INIS)
Tamura, Yuichi; Fujiwara, Susumu; Nakamura, Hiroaki
2010-01-01
Thermal display, which is a type of haptic display, is effective in providing intuitive information of temperature. However, in many studies, the user has assumed a sitting position during the use of these devices. In contrast, the user generally watches 3D objects while standing and walking around in large-scale virtual reality system, In addition, in scientific visualization, the response time is very important for observing physical phenomena, especially for dynamic numerical simulation. One solution is to provide two types of thermal information: information about the rate of thermal change and information about the actual temperature. We propose a thermal display with two Peltier elements which can show above two pairs of information and the result (for example energy and temperature, as thermal information) of numerical simulation. Finally, we represent an example of visualizing and haptizing the result of molecular dynamics simulation. (author)
A Thermodynamic Library for Simulation and Optimization of Dynamic Processes
DEFF Research Database (Denmark)
Ritschel, Tobias Kasper Skovborg; Gaspar, Jozsef; Jørgensen, John Bagterp
2017-01-01
Process system tools, such as simulation and optimization of dynamic systems, are widely used in the process industries for development of operational strategies and control for process systems. These tools rely on thermodynamic models and many thermodynamic models have been developed for different...... compounds and mixtures. However, rigorous thermodynamic models are generally computationally intensive and not available as open-source libraries for process simulation and optimization. In this paper, we describe the application of a novel open-source rigorous thermodynamic library, ThermoLib, which...... is designed for dynamic simulation and optimization of vapor-liquid processes. ThermoLib is implemented in Matlab and C and uses cubic equations of state to compute vapor and liquid phase thermodynamic properties. The novelty of ThermoLib is that it provides analytical first and second order derivatives...
Parallel alternating direction preconditioner for isogeometric simulations of explicit dynamics
Łoś, Marcin
2015-04-27
In this paper we present a parallel implementation of the alternating direction preconditioner for isogeometric simulations of explicit dynamics. The Alternating Direction Implicit (ADI) algorithm, belongs to the category of matrix-splitting iterative methods, was proposed almost six decades ago for solving parabolic and elliptic partial differential equations, see [1–4]. The new version of this algorithm has been recently developed for isogeometric simulations of two dimensional explicit dynamics [5] and steady-state diffusion equations with orthotropic heterogenous coefficients [6]. In this paper we present a parallel version of the alternating direction implicit algorithm for three dimensional simulations. The algorithm has been incorporated as a part of PETIGA an isogeometric framework [7] build on top of PETSc [8]. We show the scalability of the parallel algorithm on STAMPEDE linux cluster up to 10,000 processors, as well as the convergence rate of the PCG solver with ADI algorithm as preconditioner.
Information diversity in structure and dynamics of simulated neuronal networks.
Mäki-Marttunen, Tuomo; Aćimović, Jugoslava; Nykter, Matti; Kesseli, Juha; Ruohonen, Keijo; Yli-Harja, Olli; Linne, Marja-Leena
2011-01-01
Neuronal networks exhibit a wide diversity of structures, which contributes to the diversity of the dynamics therein. The presented work applies an information theoretic framework to simultaneously analyze structure and dynamics in neuronal networks. Information diversity within the structure and dynamics of a neuronal network is studied using the normalized compression distance. To describe the structure, a scheme for generating distance-dependent networks with identical in-degree distribution but variable strength of dependence on distance is presented. The resulting network structure classes possess differing path length and clustering coefficient distributions. In parallel, comparable realistic neuronal networks are generated with NETMORPH simulator and similar analysis is done on them. To describe the dynamics, network spike trains are simulated using different network structures and their bursting behaviors are analyzed. For the simulation of the network activity the Izhikevich model of spiking neurons is used together with the Tsodyks model of dynamical synapses. We show that the structure of the simulated neuronal networks affects the spontaneous bursting activity when measured with bursting frequency and a set of intraburst measures: the more locally connected networks produce more and longer bursts than the more random networks. The information diversity of the structure of a network is greatest in the most locally connected networks, smallest in random networks, and somewhere in between in the networks between order and disorder. As for the dynamics, the most locally connected networks and some of the in-between networks produce the most complex intraburst spike trains. The same result also holds for sparser of the two considered network densities in the case of full spike trains.
Dynamic simulation for distortion image with turbulence atmospheric transmission effects
Du, Huijie; Fei, Jindong; Qing, Duzheng; Zhao, Hongming; Yu, Hong; Cheng, Chen
2013-09-01
The imaging through atmospheric turbulence is an inevitable problem encountered by infrared imaging sensors working in the turbulence atmospheric environment. Before light-rays enter the window of the imaging sensors, the atmospheric turbulence will randomly interfere with the transmission of the light waves came from the objects, causing the distribution of image intensity values on the focal plane to diffuse, the peak value to decrease, the image to get blurred, and the pixels to deviate, and making image identification very difficult. Owing to the fact of the long processing time and that the atmospheric turbulent flow field is unknown and hard to be described by mathematical models, dynamic simulation for distortion Image with turbulence atmospheric transmission effects is much more difficult and challenging in the world. This paper discusses the dynamic simulation for distortion Image of turbulence atmospheric transmission effect. First of all, with the data and the optical transmission model of the turbulence atmospheric, the ray-tracing method is applied to obtain the propagation path of optical ray which propagates through the high-speed turbulent flow field, and then to calculate the OPD from the reference wave to the reconverted wave front and obtain the point spread function (PSF). Secondly, infrared characteristics models of typical scene were established according to the theory of infrared physics and heat conduction, and then the dynamic infrared image was generated by OpenGL. The last step is to obtain the distortion Image with turbulence atmospheric transmission effects .With the data of atmospheric transmission computation, infrared simulation image of every frame was processed according to the theory of image processing and the real-time image simulation, and then the dynamic distortion simulation images with effects of blurring, jitter and shifting were obtained. Above-mentioned simulation method can provide the theoretical bases for recovering
Computational Dehydration of Crystalline Hydrates Using Molecular Dynamics Simulations
DEFF Research Database (Denmark)
Larsen, Anders Støttrup; Rantanen, Jukka; Johansson, Kristoffer E
2017-01-01
Molecular dynamics (MD) simulations have evolved to an increasingly reliable and accessible technique and are today implemented in many areas of biomedical sciences. We present a generally applicable method to study dehydration of hydrates based on MD simulations and apply this approach to the de......Molecular dynamics (MD) simulations have evolved to an increasingly reliable and accessible technique and are today implemented in many areas of biomedical sciences. We present a generally applicable method to study dehydration of hydrates based on MD simulations and apply this approach...... to the dehydration of ampicillin trihydrate. The crystallographic unit cell of the trihydrate is used to construct the simulation cell containing 216 ampicillin and 648 water molecules. This system is dehydrated by removing water molecules during a 2200 ps simulation, and depending on the computational dehydration...... rate, different dehydrated structures were observed. Removing all water molecules immediately and removing water relatively fast (10 water molecules/10 ps) resulted in an amorphous system, whereas relatively slow computational dehydration (3 water molecules/10 ps) resulted in a crystalline anhydrate...
The Fermi-Pasta-Ulam problem: Simulation and modern dynamics
International Nuclear Information System (INIS)
Weissert, T.P.
1992-01-01
In 1952, Enrico Fermi, John Pasta and Stanislaw Ulam (FPU) simulated the loaded string model, perturbed with small, nonlinear interaction terms. Because Poincare's theorem guarantees the non-existence of a complete set of integrals for three-body problem, they expected to see the diffusion of energy from its single-mode initial condition to all other modes of the string. But for every combination of initial conditions, the energy remained bounded within the lowest few modes. No theoretical explanation existed for this failure of the underlying hypothesis that erogidicity follows from the lack of a complete set of integrals of the motion in a Hamiltonian model. The author traces the history of this problem from the FPU simulation to the point that a consensus was reached concerning its solution twenty years later. During this period, the simulation of nonlinearly-perturbed integral models became the methodology for a new era in dynamics. Through the use of simulation, dynamicists discovered deterministic chaos, in which the exponential separation of pair orbits generate randomness in deterministic macroscopic systems, and a new kind of structure-related to the KAM theorem-that provides limited order in the absence of analytic integrals of the motions. The author maps the set of conceptually-related journal articles into a chronological inference topology that tracks the understanding of this problem of dynamics. Simulating non-integrable models on a digital computer requires the discretization of time and space. These approximations affect what the simulation can reveal about the model, and the model about reality. Simulations play the role of experiments on mathematical models. A discussion is presented of the issues that emerge with the use of simulation as a heuristic device and the groundwork is laid for an epistemology of simulation
Fast Simulation of Dynamic Ultrasound Images Using the GPU.
Storve, Sigurd; Torp, Hans
2017-10-01
Simulated ultrasound data is a valuable tool for development and validation of quantitative image analysis methods in echocardiography. Unfortunately, simulation time can become prohibitive for phantoms consisting of a large number of point scatterers. The COLE algorithm by Gao et al. is a fast convolution-based simulator that trades simulation accuracy for improved speed. We present highly efficient parallelized CPU and GPU implementations of the COLE algorithm with an emphasis on dynamic simulations involving moving point scatterers. We argue that it is crucial to minimize the amount of data transfers from the CPU to achieve good performance on the GPU. We achieve this by storing the complete trajectories of the dynamic point scatterers as spline curves in the GPU memory. This leads to good efficiency when simulating sequences consisting of a large number of frames, such as B-mode and tissue Doppler data for a full cardiac cycle. In addition, we propose a phase-based subsample delay technique that efficiently eliminates flickering artifacts seen in B-mode sequences when COLE is used without enough temporal oversampling. To assess the performance, we used a laptop computer and a desktop computer, each equipped with a multicore Intel CPU and an NVIDIA GPU. Running the simulator on a high-end TITAN X GPU, we observed two orders of magnitude speedup compared to the parallel CPU version, three orders of magnitude speedup compared to simulation times reported by Gao et al. in their paper on COLE, and a speedup of 27000 times compared to the multithreaded version of Field II, using numbers reported in a paper by Jensen. We hope that by releasing the simulator as an open-source project we will encourage its use and further development.
Simulation of noisy dynamical system by Deep Learning
Yeo, Kyongmin
2017-11-01
Deep learning has attracted huge attention due to its powerful representation capability. However, most of the studies on deep learning have been focused on visual analytics or language modeling and the capability of the deep learning in modeling dynamical systems is not well understood. In this study, we use a recurrent neural network to model noisy nonlinear dynamical systems. In particular, we use a long short-term memory (LSTM) network, which constructs internal nonlinear dynamics systems. We propose a cross-entropy loss with spatial ridge regularization to learn a non-stationary conditional probability distribution from a noisy nonlinear dynamical system. A Monte Carlo procedure to perform time-marching simulations by using the LSTM is presented. The behavior of the LSTM is studied by using noisy, forced Van der Pol oscillator and Ikeda equation.
Synthesis of recurrent neural networks for dynamical system simulation.
Trischler, Adam P; D'Eleuterio, Gabriele M T
2016-08-01
We review several of the most widely used techniques for training recurrent neural networks to approximate dynamical systems, then describe a novel algorithm for this task. The algorithm is based on an earlier theoretical result that guarantees the quality of the network approximation. We show that a feedforward neural network can be trained on the vector-field representation of a given dynamical system using backpropagation, then recast it as a recurrent network that replicates the original system's dynamics. After detailing this algorithm and its relation to earlier approaches, we present numerical examples that demonstrate its capabilities. One of the distinguishing features of our approach is that both the original dynamical systems and the recurrent networks that simulate them operate in continuous time. Copyright © 2016 Elsevier Ltd. All rights reserved.
Simulation and experimental investigation of structural dynamic frequency characteristics control.
Zhang, Xingwu; Chen, Xuefeng; You, Shangqin; He, Zhengjia; Li, Bing
2012-01-01
In general, mechanical equipment such as cars, airplanes, and machine tools all operate with constant frequency characteristics. These constant working characteristics should be controlled if the dynamic performance of the equipment demands improvement or the dynamic characteristics is intended to change with different working conditions. Active control is a stable and beneficial method for this, but current active control methods mainly focus on vibration control for reducing the vibration amplitudes in the time domain or frequency domain. In this paper, a new method of dynamic frequency characteristics active control (DFCAC) is presented for a flat plate, which can not only accomplish vibration control but also arbitrarily change the dynamic characteristics of the equipment. The proposed DFCAC algorithm is based on a neural network including two parts of the identification implement and the controller. The effectiveness of the DFCAC method is verified by several simulation and experiments, which provide desirable results.
Generic solar photovoltaic system dynamic simulation model specification
Energy Technology Data Exchange (ETDEWEB)
Ellis, Abraham [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Behnke, Michael Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Elliott, Ryan Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2013-10-01
This document is intended to serve as a specification for generic solar photovoltaic (PV) system positive-sequence dynamic models to be implemented by software developers and approved by the WECC MVWG for use in bulk system dynamic simulations in accordance with NERC MOD standards. Two specific dynamic models are included in the scope of this document. The first, a Central Station PV System model, is intended to capture the most important dynamic characteristics of large scale (> 10 MW) PV systems with a central Point of Interconnection (POI) at the transmission level. The second, a Distributed PV System model, is intended to represent an aggregation of smaller, distribution-connected systems that comprise a portion of a composite load that might be modeled at a transmission load bus.
Extracting Markov Models of Peptide Conformational Dynamics from Simulation Data.
Schultheis, Verena; Hirschberger, Thomas; Carstens, Heiko; Tavan, Paul
2005-07-01
A high-dimensional time series obtained by simulating a complex and stochastic dynamical system (like a peptide in solution) may code an underlying multiple-state Markov process. We present a computational approach to most plausibly identify and reconstruct this process from the simulated trajectory. Using a mixture of normal distributions we first construct a maximum likelihood estimate of the point density associated with this time series and thus obtain a density-oriented partition of the data space. This discretization allows us to estimate the transfer operator as a matrix of moderate dimension at sufficient statistics. A nonlinear dynamics involving that matrix and, alternatively, a deterministic coarse-graining procedure are employed to construct respective hierarchies of Markov models, from which the model most plausibly mapping the generating stochastic process is selected by consideration of certain observables. Within both procedures the data are classified in terms of prototypical points, the conformations, marking the various Markov states. As a typical example, the approach is applied to analyze the conformational dynamics of a tripeptide in solution. The corresponding high-dimensional time series has been obtained from an extended molecular dynamics simulation.
Spotting the difference in molecular dynamics simulations of biomolecules
Sakuraba, Shun; Kono, Hidetoshi
2016-08-01
Comparing two trajectories from molecular simulations conducted under different conditions is not a trivial task. In this study, we apply a method called Linear Discriminant Analysis with ITERative procedure (LDA-ITER) to compare two molecular simulation results by finding the appropriate projection vectors. Because LDA-ITER attempts to determine a projection such that the projections of the two trajectories do not overlap, the comparison does not suffer from a strong anisotropy, which is an issue in protein dynamics. LDA-ITER is applied to two test cases: the T4 lysozyme protein simulation with or without a point mutation and the allosteric protein PDZ2 domain of hPTP1E with or without a ligand. The projection determined by the method agrees with the experimental data and previous simulations. The proposed procedure, which complements existing methods, is a versatile analytical method that is specialized to find the "difference" between two trajectories.
Cross-scale MD simulations of dynamic strength of tantalum
Bulatov, Vasily
2017-06-01
Dislocations are ubiquitous in metals where their motion presents the dominant and often the only mode of plastic response to straining. Over the last 25 years computational prediction of plastic response in metals has relied on Discrete Dislocation Dynamics (DDD) as the most fundamental method to account for collective dynamics of moving dislocations. Here we present first direct atomistic MD simulations of dislocation-mediated plasticity that are sufficiently large and long to compute plasticity response of single crystal tantalum while tracing the underlying dynamics of dislocations in all atomistic details. Where feasible, direct MD simulations sidestep DDD altogether thus reducing uncertainties of strength predictions to those of the interatomic potential. In the specific context of shock-induced material dynamics, the same MD models predict when, under what conditions and how dislocations interact and compete with other fundamental mechanisms of dynamic response, e.g. twinning, phase-transformations, fracture. In collaboration with: Luis Zepeda-Ruiz, Lawrence Livermore National Laboratory; Alexander Stukowski, Technische Universitat Darmstadt; Tomas Oppelstrup, Lawrence Livermore National Laboratory. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Using system dynamics simulation for assessment of hydropower system safety
King, L. M.; Simonovic, S. P.; Hartford, D. N. D.
2017-08-01
Hydropower infrastructure systems are complex, high consequence structures which must be operated safely to avoid catastrophic impacts to human life, the environment, and the economy. Dam safety practitioners must have an in-depth understanding of how these systems function under various operating conditions in order to ensure the appropriate measures are taken to reduce system vulnerability. Simulation of system operating conditions allows modelers to investigate system performance from the beginning of an undesirable event to full system recovery. System dynamics simulation facilitates the modeling of dynamic interactions among complex arrangements of system components, providing outputs of system performance that can be used to quantify safety. This paper presents the framework for a modeling approach that can be used to simulate a range of potential operating conditions for a hydropower infrastructure system. Details of the generic hydropower infrastructure system simulation model are provided. A case study is used to evaluate system outcomes in response to a particular earthquake scenario, with two system safety performance measures shown. Results indicate that the simulation model is able to estimate potential measures of system safety which relate to flow conveyance and flow retention. A comparison of operational and upgrade strategies is shown to demonstrate the utility of the model for comparing various operational response strategies, capital upgrade alternatives, and maintenance regimes. Results show that seismic upgrades to the spillway gates provide the largest improvement in system performance for the system and scenario of interest.
Driving Ordering Processes in Molecular-Dynamics Simulations
Dittmar, Harro; Kusalik, Peter G.
2014-05-01
Self-organized criticality describes the emergence of complexity in dynamical nonequilibrium systems. In this paper we introduce a unique approach whereby a driven energy conversion is utilized as a sampling bias for ordered arrangements in molecular dynamics simulations of atomic and molecular fluids. This approach gives rise to dramatically accelerated nucleation rates, by as much as 30 orders of magnitude, without the need of predefined order parameters, which commonly employed rare-event sampling methods rely on. The measured heat fluxes suggest how the approach can be generalized.
Lineage grammars: describing, simulating and analyzing population dynamics.
Spiro, Adam; Cardelli, Luca; Shapiro, Ehud
2014-07-21
Precise description of the dynamics of biological processes would enable the mathematical analysis and computational simulation of complex biological phenomena. Languages such as Chemical Reaction Networks and Process Algebras cater for the detailed description of interactions among individuals and for the simulation and analysis of ensuing behaviors of populations. However, often knowledge of such interactions is lacking or not available. Yet complete oblivion to the environment would make the description of any biological process vacuous. Here we present a language for describing population dynamics that abstracts away detailed interaction among individuals, yet captures in broad terms the effect of the changing environment, based on environment-dependent Stochastic Tree Grammars (eSTG). It is comprised of a set of stochastic tree grammar transition rules, which are context-free and as such abstract away specific interactions among individuals. Transition rule probabilities and rates, however, can depend on global parameters such as population size, generation count, and elapsed time. We show that eSTGs conveniently describe population dynamics at multiple levels including cellular dynamics, tissue development and niches of organisms. Notably, we show the utilization of eSTG for cases in which the dynamics is regulated by environmental factors, which affect the fate and rate of decisions of the different species. eSTGs are lineage grammars, in the sense that execution of an eSTG program generates the corresponding lineage trees, which can be used to analyze the evolutionary and developmental history of the biological system under investigation. These lineage trees contain a representation of the entire events history of the system, including the dynamics that led to the existing as well as to the extinct individuals. We conclude that our suggested formalism can be used to easily specify, simulate and analyze complex biological systems, and supports modular
Dislocation dynamics simulations of plasticity at small scales
Energy Technology Data Exchange (ETDEWEB)
Zhou, Caizhi [Iowa State Univ., Ames, IA (United States)
2010-01-01
As metallic structures and devices are being created on a dimension comparable to the length scales of the underlying dislocation microstructures, the mechanical properties of them change drastically. Since such small structures are increasingly common in modern technologies, there is an emergent need to understand the critical roles of elasticity, plasticity, and fracture in small structures. Dislocation dynamics (DD) simulations, in which the dislocations are the simulated entities, offer a way to extend length scales beyond those of atomistic simulations and the results from DD simulations can be directly compared with the micromechanical tests. The primary objective of this research is to use 3-D DD simulations to study the plastic deformation of nano- and micro-scale materials and understand the correlation between dislocation motion, interactions and the mechanical response. Specifically, to identify what critical events (i.e., dislocation multiplication, cross-slip, storage, nucleation, junction and dipole formation, pinning etc.) determine the deformation response and how these change from bulk behavior as the system decreases in size and correlate and improve our current knowledge of bulk plasticity with the knowledge gained from the direct observations of small-scale plasticity. Our simulation results on single crystal micropillars and polycrystalline thin films can march the experiment results well and capture the essential features in small-scale plasticity. Furthermore, several simple and accurate models have been developed following our simulation results and can reasonably predict the plastic behavior of small scale materials.
A Coupling Tool for Parallel Molecular Dynamics-Continuum Simulations
Neumann, Philipp
2012-06-01
We present a tool for coupling Molecular Dynamics and continuum solvers. It is written in C++ and is meant to support the developers of hybrid molecular - continuum simulations in terms of both realisation of the respective coupling algorithm as well as parallel execution of the hybrid simulation. We describe the implementational concept of the tool and its parallel extensions. We particularly focus on the parallel execution of particle insertions into dense molecular systems and propose a respective parallel algorithm. Our implementations are validated for serial and parallel setups in two and three dimensions. © 2012 IEEE.
Computational fluid dynamics simulations of light water reactor flows
International Nuclear Information System (INIS)
Tzanos, C.P.; Weber, D.P.
1999-01-01
Advances in computational fluid dynamics (CFD), turbulence simulation, and parallel computing have made feasible the development of three-dimensional (3-D) single-phase and two-phase flow CFD codes that can simulate fluid flow and heat transfer in realistic reactor geometries with significantly reduced reliance, especially in single phase, on empirical correlations. The objective of this work was to assess the predictive power and computational efficiency of a CFD code in the analysis of a challenging single-phase light water reactor problem, as well as to identify areas where further improvements are needed
Space Station Solar Dynamic Module modelling and simulation
Tylim, A.
1989-01-01
Efforts to model and simulate the Solar Dynamic Power Module (SDPM) for the Space Station are discussed. The SDPM configuration is given and the SDPM subsytems are described, including the concentrator assembly, the fine pointing and tracking system, the power generation system, the heat rejection assembly, the electrical equipment, the interface structure and integration hardware, and the beta gimbal assembly. Performance requirements and design considerations are given. The development of models to simulate the SDPM is examined, noting research on models such as the Electric Power System Transient Analysis Model, the Electric Power System on Orbit Performance model, and a spatial flux distribution function.
National Aeronautics and Space Administration — ZONA Technology, Inc. proposes to develop an integrated flight dynamics simulation capability with nonlinear aeroelastic interactions by combining a flight dynamics...
A review of the analytical simulation of aircraft crash dynamics
Fasanella, Edwin L.; Carden, Huey D.; Boitnott, Richard L.; Hayduk, Robert J.
1990-01-01
A large number of full scale tests of general aviation aircraft, helicopters, and one unique air-to-ground controlled impact of a transport aircraft were performed. Additionally, research was also conducted on seat dynamic performance, load-limiting seats, load limiting subfloor designs, and emergency-locator-transmitters (ELTs). Computer programs were developed to provide designers with methods for predicting accelerations, velocities, and displacements of collapsing structure and for estimating the human response to crash loads. The results of full scale aircraft and component tests were used to verify and guide the development of analytical simulation tools and to demonstrate impact load attenuating concepts. Analytical simulation of metal and composite aircraft crash dynamics are addressed. Finite element models are examined to determine their degree of corroboration by experimental data and to reveal deficiencies requiring further development.
Dynamic simulation of flash drums using rigorous physical property calculations
Directory of Open Access Journals (Sweden)
F. M. Gonçalves
2007-06-01
Full Text Available The dynamics of flash drums is simulated using a formulation adequate for phase modeling with equations of state (EOS. The energy and mass balances are written as differential equations for the internal energy and the number of moles of each species. The algebraic equations of the model, solved at each time step, are those of a flash with specified internal energy, volume and mole numbers (UVN flash. A new aspect of our dynamic simulations is the use of direct iterations in phase volumes (instead of pressure for solving the algebraic equations. It was also found that an iterative procedure previously suggested in the literature for UVN flashes becomes unreliable close to phase boundaries and a new alternative is proposed. Another unusual aspect of this work is that the model expressions, including the physical properties and their analytical derivatives, were quickly implemented using computer algebra.
The use of system dynamics for EROI simulation
DEFF Research Database (Denmark)
Atlason, Reynir Smari
to construct a systems dynamics model to represent a geothermal power plant and calculate the EROI3,i. The benefits of such models are their simplicity, and simulation power. The system simulated is adapted from Atlason et al. (2013) where the EROI for the Nesjavellir geothermal power plant was calculated....... The systems dynamics model essentially provides other researchers with a clear demonstration of inputs, outputs and assumptions used in the calculations. I propose, that EROI studies are supplemented with such models for clarity....... along with publications where inputs and outputs from energy systems are shown, but that is seldom or ever the case. Doing so would allow other researchers to see if energy systems or studies are actually comparable and if inputs, outputs and assumptions are the same. In this study, I demonstrate how...
Deformation mechanisms in nanotwinned copper by molecular dynamics simulation
International Nuclear Information System (INIS)
Zhao, Xing; Lu, Cheng; Tieu, Anh Kiet; Pei, Linqing; Zhang, Liang; Su, Lihong; Zhan, Lihua
2017-01-01
Nanotwinned materials exhibit simultaneous ultrahigh strength and high ductility which is attributed to the interactions between dislocations and twin boundaries but the specific deformation mechanisms are rarely seen in experiments at the atomic level. Here we use large scale molecular dynamics simulations to explore this intricate interplay during the plastic deformation of nanotwinned Cu. We demonstrate that the dominant deformation mechanism transits dynamically from slip transfer to twin boundary migration to slip-twin interactions as the twin boundary orientation changes from horizontal to slant, and then to a vertical direction. Building on the fundamental physics of dislocation processes from computer simulations and combining the available experimental investigations, we unravel the underlying deformation mechanisms for nanotwinned Cu, incorporating all three distinct dislocation processes. Our results give insights into systematically engineering the nanoscale twins to fabricate nanotwinned metals or alloys that have high strength and considerable ductility.
Hydrodynamics in adaptive resolution particle simulations: Multiparticle collision dynamics
Energy Technology Data Exchange (ETDEWEB)
Alekseeva, Uliana, E-mail: Alekseeva@itc.rwth-aachen.de [Jülich Supercomputing Centre (JSC), Institute for Advanced Simulation (IAS), Forschungszentrum Jülich, D-52425 Jülich (Germany); German Research School for Simulation Sciences (GRS), Forschungszentrum Jülich, D-52425 Jülich (Germany); Winkler, Roland G., E-mail: r.winkler@fz-juelich.de [Theoretical Soft Matter and Biophysics, Institute for Advanced Simulation (IAS), Forschungszentrum Jülich, D-52425 Jülich (Germany); Sutmann, Godehard, E-mail: g.sutmann@fz-juelich.de [Jülich Supercomputing Centre (JSC), Institute for Advanced Simulation (IAS), Forschungszentrum Jülich, D-52425 Jülich (Germany); ICAMS, Ruhr-University Bochum, D-44801 Bochum (Germany)
2016-06-01
A new adaptive resolution technique for particle-based multi-level simulations of fluids is presented. In the approach, the representation of fluid and solvent particles is changed on the fly between an atomistic and a coarse-grained description. The present approach is based on a hybrid coupling of the multiparticle collision dynamics (MPC) method and molecular dynamics (MD), thereby coupling stochastic and deterministic particle-based methods. Hydrodynamics is examined by calculating velocity and current correlation functions for various mixed and coupled systems. We demonstrate that hydrodynamic properties of the mixed fluid are conserved by a suitable coupling of the two particle methods, and that the simulation results agree well with theoretical expectations.
Parallel Multiscale Algorithms for Astrophysical Fluid Dynamics Simulations
Norman, Michael L.
1997-01-01
Our goal is to develop software libraries and applications for astrophysical fluid dynamics simulations in multidimensions that will enable us to resolve the large spatial and temporal variations that inevitably arise due to gravity, fronts and microphysical phenomena. The software must run efficiently on parallel computers and be general enough to allow the incorporation of a wide variety of physics. Cosmological structure formation with realistic gas physics is the primary application driver in this work. Accurate simulations of e.g. galaxy formation require a spatial dynamic range (i.e., ratio of system scale to smallest resolved feature) of 104 or more in three dimensions in arbitrary topologies. We take this as our technical requirement. We have achieved, and in fact, surpassed these goals.
First Principles Modelling of Shape Memory Alloys Molecular Dynamics Simulations
Kastner, Oliver
2012-01-01
Materials sciences relate the macroscopic properties of materials to their microscopic structure and postulate the need for holistic multiscale research. The investigation of shape memory alloys is a prime example in this regard. This particular class of materials exhibits strong coupling of temperature, strain and stress, determined by solid state phase transformations of their metallic lattices. The present book presents a collection of simulation studies of this behaviour. Employing conceptually simple but comprehensive models, the fundamental material properties of shape memory alloys are qualitatively explained from first principles. Using contemporary methods of molecular dynamics simulation experiments, it is shown how microscale dynamics may produce characteristic macroscopic material properties. The work is rooted in the materials sciences of shape memory alloys and covers thermodynamical, micro-mechanical and crystallographical aspects. It addresses scientists in these research fields and thei...
Molecular dynamics simulation of polyacrylamides in potassium montmorillonite clay hydrates
International Nuclear Information System (INIS)
Zhang Junfang; Rivero, Mayela; Choi, S K
2007-01-01
We present molecular dynamics simulation results for polyacrylamide in potassium montmorillonite clay-aqueous systems. Interlayer molecular structure and dynamics properties are investigated. The number density profile, radial distribution function, root-mean-square deviation (RMSD), mean-square displacement (MSD) and diffusion coefficient are reported. The calculations are conducted in constant NVT ensembles, at T = 300 K and with layer spacing of 40 A. Our simulation results showed that polyacrylamides had little impact on the structure of interlayer water. Density profiles and radial distribution function indicated that hydration shells were formed. In the presence of polyacrylamides more potassium counterions move close to the clay surface while water molecules move away, indicating that potassium counterions are hydrated to a lesser extent than the system in which no polyacrylamides were added. The diffusion coefficients for potassium and water decreased when polyacrylamides were added
Molecular dynamics simulation of polyacrylamides in potassium montmorillonite clay hydrates
Energy Technology Data Exchange (ETDEWEB)
Zhang Junfang [CSIRO Petroleum Resources, Ian Wark Laboratory, Bayview Avenue, Clayton, Victoria 3168 (Australia); Rivero, Mayela [CSIRO Petroleum, PO Box 1130, Bentley, Western Australia, 6102 (Australia); Choi, S K [CSIRO Petroleum Resources, Ian Wark Laboratory, Bayview Avenue, Clayton, Victoria 3168 (Australia)
2007-02-14
We present molecular dynamics simulation results for polyacrylamide in potassium montmorillonite clay-aqueous systems. Interlayer molecular structure and dynamics properties are investigated. The number density profile, radial distribution function, root-mean-square deviation (RMSD), mean-square displacement (MSD) and diffusion coefficient are reported. The calculations are conducted in constant NVT ensembles, at T = 300 K and with layer spacing of 40 A. Our simulation results showed that polyacrylamides had little impact on the structure of interlayer water. Density profiles and radial distribution function indicated that hydration shells were formed. In the presence of polyacrylamides more potassium counterions move close to the clay surface while water molecules move away, indicating that potassium counterions are hydrated to a lesser extent than the system in which no polyacrylamides were added. The diffusion coefficients for potassium and water decreased when polyacrylamides were added.
Molecular Dynamics Simulation of Membranes and a Transmembrane Helix
Duong, Tap Ha; Mehler, Ernest L.; Weinstein, Harel
1999-05-01
Three molecular dynamics (MD) simulations of 1.5-ns length were carried out on fully hydrated patches of dimyristoyl phosphatidylcholine (DMPC) bilayers in the liquid-crystalline phase. The simulations were performed using different ensembles and electrostatic conditions: a microcanonical ensemble or constant pressure-temperature ensemble, with or without truncated electrostatic interactions. Calculated properties of the membrane patches from the three different protocols were compared to available data from experiments. These data include the resulting overall geometrical dimensions, the order characteristics of the lipid hydrocarbon chains, as well as various measures of the conformations of the polar head groups. The comparisons indicate that the simulation carried out within the microcanonical ensemble with truncated electrostatic interactions yielded results closest to the experimental data, provided that the initial equilibration phase preceding the production run was sufficiently long. The effects of embedding a non-ideal helical protein domain in the membrane patch were studied with the same MD protocols. This simulation was carried out for 2.5 ns. The protein domain corresponds to the seventh transmembrane segment (TMS7) of the human serotonin 5HT 2Areceptor. The peptide is composed of two α-helical segments linked by a hinge domain around a perturbing Asn-Pro motif that produces at the end of the simulation a kink angle of nearly 80° between the two helices. Several aspects of the TMS7 structure, such as the bending angle, backbone Φ and Ψ torsion angles, the intramolecular hydrogen bonds, and the overall conformation, were found to be very similar to those determined by NMR for the corresponding transmembrane segment of the tachykinin NK-1 receptor. In general, the simulations were found to yield structural and dynamic characteristics that are in good agreement with experiment. These findings support the application of simulation methods to the study
Dynamic information architecture system (DIAS) : multiple model simulation management.
Energy Technology Data Exchange (ETDEWEB)
Simunich, K. L.; Sydelko, P.; Dolph, J.; Christiansen, J.
2002-05-13
Dynamic Information Architecture System (DIAS) is a flexible, extensible, object-based framework for developing and maintaining complex multidisciplinary simulations of a wide variety of application contexts. The modeling domain of a specific DIAS-based simulation is determined by (1) software Entity (domain-specific) objects that represent the real-world entities that comprise the problem space (atmosphere, watershed, human), and (2) simulation models and other data processing applications that express the dynamic behaviors of the domain entities. In DIAS, models communicate only with Entity objects, never with each other. Each Entity object has a number of Parameter and Aspect (of behavior) objects associated with it. The Parameter objects contain the state properties of the Entity object. The Aspect objects represent the behaviors of the Entity object and how it interacts with other objects. DIAS extends the ''Object'' paradigm by abstraction of the object's dynamic behaviors, separating the ''WHAT'' from the ''HOW.'' DIAS object class definitions contain an abstract description of the various aspects of the object's behavior (the WHAT), but no implementation details (the HOW). Separate DIAS models/applications carry the implementation of object behaviors (the HOW). Any model deemed appropriate, including existing legacy-type models written in other languages, can drive entity object behavior. The DIAS design promotes plug-and-play of alternative models, with minimal recoding of existing applications. The DIAS Context Builder object builds a constructs or scenario for the simulation, based on developer specification and user inputs. Because DIAS is a discrete event simulation system, there is a Simulation Manager object with which all events are processed. Any class that registers to receive events must implement an event handler (method) to process the event during execution. Event handlers
Dynamic information architecture system (DIAS) : multiple model simulation management
International Nuclear Information System (INIS)
Simunich, K. L.; Sydelko, P.; Dolph, J.; Christiansen, J.
2002-01-01
Dynamic Information Architecture System (DIAS) is a flexible, extensible, object-based framework for developing and maintaining complex multidisciplinary simulations of a wide variety of application contexts. The modeling domain of a specific DIAS-based simulation is determined by (1) software Entity (domain-specific) objects that represent the real-world entities that comprise the problem space (atmosphere, watershed, human), and (2) simulation models and other data processing applications that express the dynamic behaviors of the domain entities. In DIAS, models communicate only with Entity objects, never with each other. Each Entity object has a number of Parameter and Aspect (of behavior) objects associated with it. The Parameter objects contain the state properties of the Entity object. The Aspect objects represent the behaviors of the Entity object and how it interacts with other objects. DIAS extends the ''Object'' paradigm by abstraction of the object's dynamic behaviors, separating the ''WHAT'' from the ''HOW.'' DIAS object class definitions contain an abstract description of the various aspects of the object's behavior (the WHAT), but no implementation details (the HOW). Separate DIAS models/applications carry the implementation of object behaviors (the HOW). Any model deemed appropriate, including existing legacy-type models written in other languages, can drive entity object behavior. The DIAS design promotes plug-and-play of alternative models, with minimal recoding of existing applications. The DIAS Context Builder object builds a constructs or scenario for the simulation, based on developer specification and user inputs. Because DIAS is a discrete event simulation system, there is a Simulation Manager object with which all events are processed. Any class that registers to receive events must implement an event handler (method) to process the event during execution. Event handlers can schedule other events; create or remove Entities from the
Directory of Open Access Journals (Sweden)
Ronak Y. Patel
2011-01-01
Full Text Available Glycolipids are important constituents of biological membranes, and understanding their structure and dynamics in lipid bilayers provides insights into their physiological and pathological roles. Experimental techniques have provided details into their behavior at model and biological membranes; however, computer simulations are needed to gain atomic level insights. This paper summarizes the insights obtained from MD simulations into the conformational and orientational dynamics of glycosphingolipids and their exposure, hydration, and hydrogen-bonding interactions in membrane environment. The organization of glycosphingolipids in raft-like membranes and their modulation of lipid membrane structure are also reviewed.
Simulation of dynamic systems with Matlab and Simulink
Klee, Harold
2011-01-01
Mathematical ModelingDerivation of a Mathematical ModelDifference EquationsFirst Look at Discrete-Time SystemsCase Study: Population Dynamics (Single Species)Continuous-Time SystemsFirst-Order SystemsSecond-Order SystemsSimulation DiagramsHigher-Order SystemsState VariablesNonlinear SystemsCase Study: Submarine Depth Control SystemElementary Numerical IntegrationDiscrete-Time System Approximation of a Continuous-
Mild Traumatic Brain Injury and Dynamic Simulated Shooting Performance
2016-02-01
USAARL Report No. 2016-16 Mild Traumatic Brain Injury and Dynamic Simulated Shooting Performance By Ben Lawson1, Bethany Ranes1, Amanda... Form 298 (Rev. 8/98) REPORT DOCUMENTATION PAGE Prescribed by ANSI Std. Z39.18 Form Approved OMB No. 0704-0188 The public reporting burden for this...collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT
Using Soft Computing Technologies for the Simulation of LCAC Dynamics
2011-09-01
like all hovercraft , rides on a cushion of air. The air is supplied to the cushion by four centrifugal fans driven by the craft’s gas turbine...vehicle. Additionally, the ability of this RNN simulation to model the dynamics of the LCAC hovercraft suggests the ability to accurately model the...motion of similar hovercraft designs. Because information describing the geometry of the LCAC model was incorporated into the RNN code, it may be
Simulating soil melting with CFD [computational fluid dynamics
International Nuclear Information System (INIS)
Hawkes, G.L.
1997-01-01
Computational fluid dynamics (CFD) is being used to validate the use of thermal plasma arc vitrification for treatment of contaminated soil. Soil melting is modelled by a CFD calculation code which links electrical fields, heat transport, and natural convection. The developers believe it is the first successful CFD analysis to incorporate a simulated PID (proportional-integral-derivative) controller, which plays a vital role by following the specified electrical power curve. (Author)
Molecular dynamics simulation of nanocrystalline nickel: structure and mechanical properties
Energy Technology Data Exchange (ETDEWEB)
Swygenhoven, H. van [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Caro, A. [Comision Nacional de Energia Atomica, San Carlos de Bariloche (Argentina). Centro Atomico Bariloche
1997-09-01
Molecular dynamics computer simulations of low temperature elastic and plastic deformation of Ni nanophase samples (3-7 nm) are performed. The samples are polycrystals nucleated from different seeds, with random locations and orientations. Bulk and Young`s modulus, onset of plastic deformation and mechanism responsible for the plastic behaviour are studied and compared with the behaviour of coarse grained samples. (author) 1 fig., 3 refs.
Applying Parallel Processing Techniques to Tether Dynamics Simulation
Wells, B. Earl
1996-01-01
The focus of this research has been to determine the effectiveness of applying parallel processing techniques to a sizable real-world problem, the simulation of the dynamics associated with a tether which connects two objects in low earth orbit, and to explore the degree to which the parallelization process can be automated through the creation of new software tools. The goal has been to utilize this specific application problem as a base to develop more generally applicable techniques.
Improved Pyrolysis Micro reactor Design via Computational Fluid Dynamics Simulations
2017-05-23
NUMBER (Include area code) 23 May 2017 Briefing Charts 25 April 2017 - 23 May 2017 Improved Pyrolysis Micro-reactor Design via Computational Fluid... PYROLYSIS MICRO-REACTOR DESIGN VIA COMPUTATIONAL FLUID DYNAMICS SIMULATIONS Ghanshyam L. Vaghjiani* DISTRIBUTION A: Approved for public release...Approved for public release, distribution unlimited. PA Clearance 17247 Chen-Source (>240 references from SciFinder as of 5/1/17): Flash pyrolysis
Simulating market dynamics: interactions between consumer psychology and social networks.
Janssen, Marco A; Jager, Wander
2003-01-01
Markets can show different types of dynamics, from quiet markets dominated by one or a few products, to markets with continual penetration of new and reintroduced products. In a previous article we explored the dynamics of markets from a psychological perspective using a multi-agent simulation model. The main results indicated that the behavioral rules dominating the artificial consumer's decision making determine the resulting market dynamics, such as fashions, lock-in, and unstable renewal. Results also show the importance of psychological variables like social networks, preferences, and the need for identity to explain the dynamics of markets. In this article we extend this work in two directions. First, we will focus on a more systematic investigation of the effects of different network structures. The previous article was based on Watts and Strogatz's approach, which describes the small-world and clustering characteristics in networks. More recent research demonstrated that many large networks display a scale-free power-law distribution for node connectivity. In terms of market dynamics this may imply that a small proportion of consumers may have an exceptional influence on the consumptive behavior of others (hubs, or early adapters). We show that market dynamics is a self-organized property depending on the interaction between the agents' decision-making process (heuristics), the product characteristics (degree of satisfaction of unit of consumption, visibility), and the structure of interactions between agents (size of network and hubs in a social network).
New modelling strategy for IRIS dynamic response simulation
International Nuclear Information System (INIS)
Cammi, A.; Ricotti, M. E.; Casella, F.; Schiavo, F.
2004-01-01
The pressurized light water cooled, medium power (1000 MWt) IRIS (International Reactor Innovative and Secure) has been under development for four years by an international consortium of over 21 organizations from ten countries. The plant conceptual design was completed in 2001 and the preliminary design is nearing completion. The pre-application licensing process with NRC started in October, 2002 and IRIS is one of the designs considered by US utilities as part of the ESP (Early Site Permit) process. In this paper the development of an adequate modeling and simulation tool for Dynamics and Control tasks is presented. The key features of the developed simulator are: a) Modularity: the system model is built by connecting the models of its components, which are written independently of their boundary conditions; b) Openness: the code of each component model is clearly readable and close to the original equations and easily customised by the experienced user; c) Efficiency: the simulation code is fast; d) Tool support: the simulation tool is based on reliable, tested and well-documented software. To achieve these objectives, the Modelica language was used as a basis for the development of the simulator. The Modelica language is the results of recent advances in the field of object-oriented, multi-physics, dynamic system modelling. The language definition is open-source and it has already been successfully adopted in several industrial fields. To provide the required capabilities for the analysis, specific models for nuclear reactor components have been developed, to be applied for the dynamic simulation of the IRIS integral reactor, albeit keeping general validity for PWR plants. The following Modelica models have been written to satisfy the IRIS modelling requirements and are presented in this paper: neutronics point kinetic, fuel heat transfer, control rods model, including the innovative internal drive mechanism type, and a once-through type steam generator, thus
Dynamic simulation of variable capacity refrigeration systems under abnormal conditions
International Nuclear Information System (INIS)
Liang Nan; Shao Shuangquan; Tian Changqing; Yan Yuying
2010-01-01
There are often abnormal working conditions at evaporator outlet of a refrigeration system, such as two-phase state in transient process, and it is essential to investigate such transient behaviours for system design and control strategy. In this paper, a dynamic lumped parameter model is developed to simulate the transient behaviours of refrigeration system with variable capacity in both normal and abnormal working conditions. The appropriate discriminant method is adopted to switch the normal and abnormal conditions smoothly and to eliminate the simulated data oscillation. In order to verify the dynamic model, we built a test system with variable frequency compressor, water-cooling condenser, evaporator and electronic expansion valve. Calculated values from the mathematical model show reasonable agreement with the experimental data. The simulation results show that the transient behaviours of the variable capacity refrigeration system in the abnormal working conditions can be calculated reliably with the dynamic model when the compressor rotary speed or the opening of electronic expansion valve changes abruptly.
Energetic Particle Hybrid Simulations for Kinetic Ring Current Dynamics
Amano, T.; Miyoshi, Y.; Seki, K.
2016-12-01
The energetic ring current particles dominate the plasma pressure in the inner magnetosphere. Therefore, it is essential to take into account the ring current dynamics in understanding the various inner magnetospheric phenomena. It has been known that the Magnetohydrodynamics (MHD) approximation is not adequate in numerical modeling of the ring current dynamics and the kinetic effect associated with the ring current ions must be included in a self-consistent manner. In particular, the so-called drift-bounce resonance including finite Larmor radius correction has been considered to be a plausible mechanism for internal excitation of ULF waves. However, the scenario has not been confirmed in a self-consistent simulation. We have developed a new three-dimensional numerical simulation code that incorporates the self-consistent coupling between the fully kinetic ring current particle dynamics and the cold background plasma. In other words, it is essentially a hybrid code that solves the ring current ions by using the particle-in-cell method, whereas the two-fluid approximation is adopted for the background electron and proton fluids. The coupling between the two populations has been introduced in a systematic manner. By performing kinetic temperature-anisotropy driven instabilities, we show that the code is indeed capable of describing the kinetic effect associated with the ring current ions. We also discuss three-dimensional simulation results using an approximate magnetosphere-like equilibrium as an initial condition. The initial equilibrium was obtained by iteratively solving a Grad-Shafranov-like equation for an anisotropic bounce-averaged ring current pressure distribution in a two-dimensional dipole-like potential magnetic field. Depending on parameters, we believe that the simulation model should be able to reproduce ULF wave excitation via drift-bounce resonance. Simulation results with different plasma beta, temperature anisotropy, and pressure gradient scale
Molecular dynamics simulations of lysozyme in water/sugar solutions
Energy Technology Data Exchange (ETDEWEB)
Lerbret, A. [Department of Food Science, Cornell University, 101 Stocking Hall, Ithaca, NY 14853 (United States); Affouard, F. [Laboratoire de Dynamique et Structure des Materiaux Moleculaires, UMR CNRS 8024, Universite Lille I, 59655 Villeneuve d' Ascq Cedex (France)], E-mail: frederic.affouard@univ-lille1.fr; Bordat, P. [Laboratoire de Chimie Theorique et de Physico-Chimie Moleculaire, UMR 5624, Universite de Pau et des Pays de l' Adour, 64000 Pau (France); Hedoux, A.; Guinet, Y.; Descamps, M. [Laboratoire de Dynamique et Structure des Materiaux Moleculaires, UMR CNRS 8024, Universite Lille I, 59655 Villeneuve d' Ascq Cedex (France)
2008-04-18
Structural and dynamical properties of the solvent at the protein/solvent interface have been investigated by molecular dynamics simulations of lysozyme in trehalose, maltose and sucrose solutions. Results are discussed in the framework of the bioprotection phenomena. The analysis of the relative concentration of water oxygen atoms around lysozyme suggests that lysozyme is preferentially hydrated. When comparing the three sugars, trehalose is seen more excluded than maltose and sucrose. The preferential exclusion of sugars from the protein surface induces some differences in the behavior of trehalose and maltose, particularly at 50 and 60 wt% concentrations, that are not observed experimentally in binary sugar/mixtures. The dynamical slowing down of the solvent is suggested to mainly arise from the homogeneity of the water/sugar matrices controlled by the percolation of the sugar hydrogen bonds networks. Furthermore, lysozyme strongly increases relaxation times of solvent molecules at the protein/solvent interface.
Reweighted ensemble dynamics simulations: Theory, improvement, and application
Gong, Lin-Chen; Zhou, Xin; Ouyang, Zhong-Can
2015-06-01
Based on multiple parallel short molecular dynamics simulation trajectories, we designed the reweighted ensemble dynamics (RED) method to more efficiently sample complex (biopolymer) systems, and to explore their hierarchical metastable states. Here we further present an improvement to depress statistical errors of the RED and we discuss a few keys in practical application of the RED, provide schemes on selection of basis functions, and determination of the free parameter in the RED. We illustrate the application of the improvements in two toy models and in the solvated alanine dipeptide. The results show the RED enables us to capture the topology of multiple-state transition networks, to detect the diffusion-like dynamical behavior in an entropy-dominated system, and to identify solvent effects in the solvated peptides. The illustrations serve as general applications of the RED in more complex biopolymer systems. Project supported by the National Natural Science Foundation of China (Grant No. 11175250).
Molecular dynamics simulations of lysozyme in water/sugar solutions
International Nuclear Information System (INIS)
Lerbret, A.; Affouard, F.; Bordat, P.; Hedoux, A.; Guinet, Y.; Descamps, M.
2008-01-01
Structural and dynamical properties of the solvent at the protein/solvent interface have been investigated by molecular dynamics simulations of lysozyme in trehalose, maltose and sucrose solutions. Results are discussed in the framework of the bioprotection phenomena. The analysis of the relative concentration of water oxygen atoms around lysozyme suggests that lysozyme is preferentially hydrated. When comparing the three sugars, trehalose is seen more excluded than maltose and sucrose. The preferential exclusion of sugars from the protein surface induces some differences in the behavior of trehalose and maltose, particularly at 50 and 60 wt% concentrations, that are not observed experimentally in binary sugar/mixtures. The dynamical slowing down of the solvent is suggested to mainly arise from the homogeneity of the water/sugar matrices controlled by the percolation of the sugar hydrogen bonds networks. Furthermore, lysozyme strongly increases relaxation times of solvent molecules at the protein/solvent interface
Two-Speed Gearbox Dynamic Simulation Predictions and Test Validation
Lewicki, David G.; DeSmidt, Hans; Smith, Edward C.; Bauman, Steven W.
2010-01-01
Dynamic simulations and experimental validation tests were performed on a two-stage, two-speed gearbox as part of the drive system research activities of the NASA Fundamental Aeronautics Subsonics Rotary Wing Project. The gearbox was driven by two electromagnetic motors and had two electromagnetic, multi-disk clutches to control output speed. A dynamic model of the system was created which included a direct current electric motor with proportional-integral-derivative (PID) speed control, a two-speed gearbox with dual electromagnetically actuated clutches, and an eddy current dynamometer. A six degree-of-freedom model of the gearbox accounted for the system torsional dynamics and included gear, clutch, shaft, and load inertias as well as shaft flexibilities and a dry clutch stick-slip friction model. Experimental validation tests were performed on the gearbox in the NASA Glenn gear noise test facility. Gearbox output speed and torque as well as drive motor speed and current were compared to those from the analytical predictions. The experiments correlate very well with the predictions, thus validating the dynamic simulation methodologies.
Large scale molecular dynamics simulations of nuclear pasta
Horowitz, C. J.; Berry, D.; Briggs, C.; Chapman, M.; Clark, E.; Schneider, A.
2014-09-01
We report large-scale molecular dynamics simulations of nuclear pasta using from 50,000 to more than 3,000,000 nucleons. We use a simple phenomenological two-nucleon potential that reproduces nuclear saturation. We find a complex ``nuclear waffle'' phase in addition to more conventional rod, plate, and sphere phases. We also find long-lived topological defects involving screw like dislocations that may reduce the electrical conductivity and thermal conductivity of lasagna phases. From MD trajectories we calculate a variety of quantities including static structure factor, dynamical response function, shear modulus and breaking strain. We report large-scale molecular dynamics simulations of nuclear pasta using from 50,000 to more than 3,000,000 nucleons. We use a simple phenomenological two-nucleon potential that reproduces nuclear saturation. We find a complex ``nuclear waffle'' phase in addition to more conventional rod, plate, and sphere phases. We also find long-lived topological defects involving screw like dislocations that may reduce the electrical conductivity and thermal conductivity of lasagna phases. From MD trajectories we calculate a variety of quantities including static structure factor, dynamical response function, shear modulus and breaking strain. Supported in parts by DOE Grants No. DE-FG02-87ER40365 (Indiana University) and No. DE-SC0008808 (NUCLEI SciDAC Collaboration).
A Dynamical Training and Design Simulator for Active Catheters
Directory of Open Access Journals (Sweden)
Georges Dumont
2008-11-01
Full Text Available This work addresses the design of an active multi-link micro-catheter actuated by Shape Memory Alloy (SMA micro actuators. This may be a response to one medical major demand on such devices, which will be useful for surgical explorations and interventions. In this paper, we focus on a training and design simulator dedicated to such catheters. This simulator is based on an original simulation platform (OpenMASK. The catheter is a robotic system, which is evaluated by a dynamical simulation addressing a navigation task in its environment. The design of the prototype and its mechanical model are presented. We develop an interaction model for contact. This model uses a real medical database for which distance cartography is proposed. Then we focus on an autonomous control model based on a multi-agent approach and including the behaviour description of the SMA actuators. Results of mechanical simulations including interaction with the ducts are presented. Furthermore, the interest of such a simulator is presented by applying virtual prototyping techniques for the design optimization. This optimization process is achieved by using genetic algorithms at different stages with respect to the specified task.
Molecular dynamics simulation of thermophysical properties of undercooled liquid cobalt
International Nuclear Information System (INIS)
Han, X J; Wang, J Z; Chen, M; Guo, Z Y
2004-01-01
Molecular dynamics simulations with two different embedded-atom-method (EAM) potentials are applied to calculate the density, specific heat and self-diffusion coefficient of liquid cobalt at temperatures above and below the melting temperature. Simulation shows that Pasianot's EAM model of cobalt constructed on the basis of a hcp structure is more successful than Stoop's EAM model in the framework of a fcc structure in predicting the thermophysical properties of liquid cobalt. Simulations with Pasianot's EAM model indicate that the density fits into ρ = 7.49-9.17 x 10 -4 (T- T m ) g cm -3 , and the self-diffusion coefficient is given by D = 1.291 x 10 -7 exp(-48 795.71/RT) m 2 s -1 . Dissimilar to the linear dependence of the density and the Arrhenius dependence of the self-diffusion coefficient on temperature, the specific heat shows almost a constant value of 38.595 ± 0.084 J mol -1 K -1 within the temperature range of simulation. The simulated properties of liquid cobalt are compared with experimental data available. Comparisons show reasonable agreements between the simulated results from Pasianot's EAM model and experimental data
A Dynamical Training and Design Simulator for Active Catheters
Directory of Open Access Journals (Sweden)
Georges Dumont
2004-12-01
Full Text Available This work addresses the design of an active multi-link micro-catheter actuated by Shape Memory Alloy (SMA micro actuators. This may be a response to one medical major demand on such devices, which will be useful for surgical explorations and interventions. In this paper, we focus on a training and design simulator dedicated to such catheters. This simulator is based on an original simulation platform (OpenMASK. The catheter is a robotic system, which is evaluated by a dynamical simulation addressing a navigation task in its environment. The design of the prototype and its mechanical model are presented. We develop an interaction model for contact. This model uses a real medical database for which distance cartography is proposed. Then we focus on an autonomous control model based on a multi-agent approach and including the behaviour description of the SMA actuators. Results of mechanical simulations including interaction with the ducts are presented. Furthermore, the interest of such a simulator is presented by applying virtual prototyping techniques for the design optimization. This optimization process is achieved by using genetic algorithms at different stages with respect to the specified task.
Molecular dynamics simulation of pervaporation in zeolite membranes
Jia, W.; Murad, S.
The pervaporation separation of liquid mixtures of water/ethanol and water/methanol using three zeolite (Silicalite, NaA and Chabazite) membranes has been examined using the method of molecular dynamics. The main goal of this study was to identify intermolecular interactions between water, methanol, ethanol and the membrane surface that play a critical role in the separations. This would then allow better membranes to be designed more efficiently and systematically than the trial-and-error procedures often being used. Our simulations correctly exhibited all the qualitative experimental observations for these systems, including the hydrophobic or hydrophilic behaviour of zeolite membranes. The simulations showed that, for Silicalite zeolite, the separation is strongly influenced by the selective adsorption of ethanol. The separation factor, as a consequence, increases almost exponentially as the ethanol composition decreases. For ethanol dehydration in NaA and Chabazite, pore size was found to play a very important role in the separation; very high separation factors were therefore possible. Simulations were also used to investigate the effect of pore structure, feed compositions and operating conditions on the pervaporation efficiency. Finally, our simulations also demonstrated that molecular simulations could serve as a useful screening tool to determine the suitability of a membrane for potential pervaporation separation applications. Simulations can cost only a small fraction of an experiment, and can therefore be used to design experiments most likely to be successful.
Simulated impacts of insect defoliation on forest carbon dynamics
International Nuclear Information System (INIS)
Medvigy, D; Clark, K L; Skowronski, N S; Schäfer, K V R
2012-01-01
Many temperate and boreal forests are subject to insect epidemics. In the eastern US, over 41 million meters squared of tree basal area are thought to be at risk of gypsy moth defoliation. However, the decadal-to-century scale implications of defoliation events for ecosystem carbon dynamics are not well understood. In this study, the effects of defoliation intensity, periodicity and spatial pattern on the carbon cycle are investigated in a set of idealized model simulations. A mechanistic terrestrial biosphere model, ecosystem demography model 2, is driven with observations from a xeric oak–pine forest located in the New Jersey Pine Barrens. Simulations indicate that net ecosystem productivity (equal to photosynthesis minus respiration) decreases linearly with increasing defoliation intensity. However, because of interactions between defoliation and drought effects, aboveground biomass exhibits a nonlinear decrease with increasing defoliation intensity. The ecosystem responds strongly with both reduced productivity and biomass loss when defoliation periodicity varies from 5 to 15 yr, but exhibits a relatively weak response when defoliation periodicity varies from 15 to 60 yr. Simulations of spatially heterogeneous defoliation resulted in markedly smaller carbon stocks than simulations with spatially homogeneous defoliation. These results show that gypsy moth defoliation has a large effect on oak–pine forest biomass dynamics, functioning and its capacity to act as a carbon sink. (letter)
Dispersion analysis techniques within the space vehicle dynamics simulation program
Snow, L. S.; Kuhn, A. E.
1975-01-01
The Space Vehicle Dynamics Simulation (SVDS) program was evaluated as a dispersion analysis tool. The Linear Error Analysis (LEA) post processor was examined in detail and simulation techniques relative to conducting a dispersion analysis using the SVDS were considered. The LEA processor is a tool for correlating trajectory dispersion data developed by simulating 3 sigma uncertainties as single error source cases. The processor combines trajectory and performance deviations by a root-sum-square (RSS process) and develops a covariance matrix for the deviations. Results are used in dispersion analyses for the baseline reference and orbiter flight test missions. As a part of this study, LEA results were verified as follows: (A) Hand calculating the RSS data and the elements of the covariance matrix for comparison with the LEA processor computed data. (B) Comparing results with previous error analyses. The LEA comparisons and verification are made at main engine cutoff (MECO).
Simulation of Tailrace Hydrodynamics Using Computational Fluid Dynamics Models; FINAL
International Nuclear Information System (INIS)
Cook, Chris B; Richmond, Marshall C
2001-01-01
This report investigates the feasibility of using computational fluid dynamics (CFD) tools to investigate hydrodynamic flow fields surrounding the tailrace zone below large hydraulic structures. Previous and ongoing studies using CFD tools to simulate gradually varied flow with multiple constituents and forebay/intake hydrodynamics have shown that CFD tools can provide valuable information for hydraulic and biological evaluation of fish passage near hydraulic structures. These studies however are incapable of simulating the rapidly varying flow fields that involving breakup of the free-surface, such as those through and below high flow outfalls and spillways. Although the use of CFD tools for these types of flow are still an active area of research, initial applications discussed in this report show that these tools are capable of simulating the primary features of these highly transient flow fields
Dynamic simulation of the 2 MWt slowpoke heating reactor
International Nuclear Information System (INIS)
Tseng, C.M.; Lepp, R.M.
1982-04-01
A 2 MWt SLOWPOKE reactor, intended for commercial space heating, is being developed at the Chalk River Nuclear Laboratories. A small-signal dynamic simulation of this reactor, without closed-loop control, was developed. Basic equations were used to describe the physical phenomena in each kf the eight reactor subsystems. These equations were then linearized about the normal operation conditions and rearranged in a dimensionless form for implementation. The overall simulation is non-linear. Slow transient responses (minutes to days) of the simulation to both reactivity and temperature perturbations were measured at full power. In all cases the system reached a new steady state in times varying from 12 h to 250 h. These results illustrate the benefits of the inherent negative reactivity feedback of this reactor concept. The addition of closed-loop control using core outlet temperature as the controlled variable to move a beryllium reflector is also examined
Simulation of Tailrace Hydrodynamics Using Computational Fluid Dynamics Models
Energy Technology Data Exchange (ETDEWEB)
Cook, Christopher B.; Richmond, Marshall C.
2001-05-01
This report investigates the feasibility of using computational fluid dynamics (CFD) tools to investigate hydrodynamic flow fields surrounding the tailrace zone below large hydraulic structures. Previous and ongoing studies using CFD tools to simulate gradually varied flow with multiple constituents and forebay/intake hydrodynamics have shown that CFD tools can provide valuable information for hydraulic and biological evaluation of fish passage near hydraulic structures. These studies however are incapable of simulating the rapidly varying flow fields that involving breakup of the free-surface, such as those through and below high flow outfalls and spillways. Although the use of CFD tools for these types of flow are still an active area of research, initial applications discussed in this report show that these tools are capable of simulating the primary features of these highly transient flow fields.
Molecular dynamics simulation of gold cluster growth during sputter deposition
Energy Technology Data Exchange (ETDEWEB)
Abraham, J. W., E-mail: abraham@theo-physik.uni-kiel.de; Bonitz, M., E-mail: bonitz@theo-physik.uni-kiel.de [Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, D-24098 Kiel (Germany); Strunskus, T.; Faupel, F. [Institut für Materialwissenschaft, Lehrstuhl für Materialverbunde, Christian-Albrechts-Universität zu Kiel, Kaiserstraße 2, D-24143 Kiel (Germany)
2016-05-14
We present a molecular dynamics simulation scheme that we apply to study the time evolution of the self-organized growth process of metal cluster assemblies formed by sputter-deposited gold atoms on a planar surface. The simulation model incorporates the characteristics of the plasma-assisted deposition process and allows for an investigation over a wide range of deposition parameters. It is used to obtain data for the cluster properties which can directly be compared with recently published experimental data for gold on polystyrene [M. Schwartzkopf et al., ACS Appl. Mater. Interfaces 7, 13547 (2015)]. While good agreement is found between the two, the simulations additionally provide valuable time-dependent real-space data of the surface morphology, some of whose details are hidden in the reciprocal-space scattering images that were used for the experimental analysis.
Lightweight computational steering of very large scale molecular dynamics simulations
International Nuclear Information System (INIS)
Beazley, D.M.
1996-01-01
We present a computational steering approach for controlling, analyzing, and visualizing very large scale molecular dynamics simulations involving tens to hundreds of millions of atoms. Our approach relies on extensible scripting languages and an easy to use tool for building extensions and modules. The system is extremely easy to modify, works with existing C code, is memory efficient, and can be used from inexpensive workstations and networks. We demonstrate how we have used this system to manipulate data from production MD simulations involving as many as 104 million atoms running on the CM-5 and Cray T3D. We also show how this approach can be used to build systems that integrate common scripting languages (including Tcl/Tk, Perl, and Python), simulation code, user extensions, and commercial data analysis packages
Beam dynamics simulations using a parallel version of PARMILA
International Nuclear Information System (INIS)
Ryne, R.D.
1996-01-01
The computer code PARMILA has been the primary tool for the design of proton and ion linacs in the United States for nearly three decades. Previously it was sufficient to perform simulations with of order 10000 particles, but recently the need to perform high resolution halo studies for next-generation, high intensity linacs has made it necessary to perform simulations with of order 100 million particles. With the advent of massively parallel computers such simulations are now within reach. Parallel computers already make it possible, for example, to perform beam dynamics calculations with tens of millions of particles, requiring over 10 GByte of core memory, in just a few hours. Also, parallel computers are becoming easier to use thanks to the availability of mature, Fortran-like languages such as Connection Machine Fortran and High Performance Fortran. We will describe our experience developing a parallel version of PARMILA and the performance of the new code
cellGPU: Massively parallel simulations of dynamic vertex models
Sussman, Daniel M.
2017-10-01
Vertex models represent confluent tissue by polygonal or polyhedral tilings of space, with the individual cells interacting via force laws that depend on both the geometry of the cells and the topology of the tessellation. This dependence on the connectivity of the cellular network introduces several complications to performing molecular-dynamics-like simulations of vertex models, and in particular makes parallelizing the simulations difficult. cellGPU addresses this difficulty and lays the foundation for massively parallelized, GPU-based simulations of these models. This article discusses its implementation for a pair of two-dimensional models, and compares the typical performance that can be expected between running cellGPU entirely on the CPU versus its performance when running on a range of commercial and server-grade graphics cards. By implementing the calculation of topological changes and forces on cells in a highly parallelizable fashion, cellGPU enables researchers to simulate time- and length-scales previously inaccessible via existing single-threaded CPU implementations. Program Files doi:http://dx.doi.org/10.17632/6j2cj29t3r.1 Licensing provisions: MIT Programming language: CUDA/C++ Nature of problem: Simulations of off-lattice "vertex models" of cells, in which the interaction forces depend on both the geometry and the topology of the cellular aggregate. Solution method: Highly parallelized GPU-accelerated dynamical simulations in which the force calculations and the topological features can be handled on either the CPU or GPU. Additional comments: The code is hosted at https://gitlab.com/dmsussman/cellGPU, with documentation additionally maintained at http://dmsussman.gitlab.io/cellGPUdocumentation
DEFF Research Database (Denmark)
Maragakis, Paul; Lindorff-Larsen, Kresten; Eastwood, Michael P
2008-01-01
. Molecular dynamics (MD) simulation provides a complementary approach to the study of protein dynamics on similar time scales. Comparisons between NMR spectroscopy and MD simulations can be used to interpret experimental results and to improve the quality of simulation-related force fields and integration...
Lee, Kyoung O; Holmes, Thomas W; Calderon, Adan F; Gardner, Robin P
2012-05-01
Using a Monte Carlo (MC) simulation, random walks were used for pebble tracking in a two-dimensional geometry in the presence of a biased gravity field. We investigated the effect of viscosity damping in the presence of random Gaussian fluctuations. The particle tracks were generated by Molecular Dynamics (MD) simulation for a Pebble Bed Reactor. The MD simulations were conducted in the interaction of noncohesive Hertz-Mindlin theory where the random walk MC simulation has a correlation with the MD simulation. This treatment can easily be extended to include the generation of transient gamma-ray spectra from a single pebble that contains a radioactive tracer. Then the inverse analysis thereof could be made to determine the uncertainty of the realistic measurement of transient positions of that pebble by any given radiation detection system designed for that purpose. Copyright Â© 2011 Elsevier Ltd. All rights reserved.
Monte Carlo-based simulation of dynamic jaws tomotherapy
International Nuclear Information System (INIS)
Sterpin, E.; Chen, Y.; Chen, Q.; Lu, W.; Mackie, T. R.; Vynckier, S.
2011-01-01
Purpose: Original TomoTherapy systems may involve a trade-off between conformity and treatment speed, the user being limited to three slice widths (1.0, 2.5, and 5.0 cm). This could be overcome by allowing the jaws to define arbitrary fields, including very small slice widths (<1 cm), which are challenging for a beam model. The aim of this work was to incorporate the dynamic jaws feature into a Monte Carlo (MC) model called TomoPen, based on the MC code PENELOPE, previously validated for the original TomoTherapy system. Methods: To keep the general structure of TomoPen and its efficiency, the simulation strategy introduces several techniques: (1) weight modifiers to account for any jaw settings using only the 5 cm phase-space file; (2) a simplified MC based model called FastStatic to compute the modifiers faster than pure MC; (3) actual simulation of dynamic jaws. Weight modifiers computed with both FastStatic and pure MC were compared. Dynamic jaws simulations were compared with the convolution/superposition (C/S) of TomoTherapy in the ''cheese'' phantom for a plan with two targets longitudinally separated by a gap of 3 cm. Optimization was performed in two modes: asymmetric jaws-constant couch speed (''running start stop,'' RSS) and symmetric jaws-variable couch speed (''symmetric running start stop,'' SRSS). Measurements with EDR2 films were also performed for RSS for the formal validation of TomoPen with dynamic jaws. Results: Weight modifiers computed with FastStatic were equivalent to pure MC within statistical uncertainties (0.5% for three standard deviations). Excellent agreement was achieved between TomoPen and C/S for both asymmetric jaw opening/constant couch speed and symmetric jaw opening/variable couch speed, with deviations well within 2%/2 mm. For RSS procedure, agreement between C/S and measurements was within 2%/2 mm for 95% of the points and 3%/3 mm for 98% of the points, where dose is greater than 30% of the prescription dose (gamma analysis
Czech Academy of Sciences Publication Activity Database
Brennan, J.K.; Lísal, Martin; Gubbins, K.E.; Rice, B.M.
2004-01-01
Roč. 70, č. 6 (2004), 0611031-0611034 ISSN 1063-651X R&D Projects: GA ČR GA203/03/1588 Grant - others:NSF(US) CTS-0211792 Institutional research plan: CEZ:AV0Z4072921 Keywords : reacting systems * simulation * molecular dynamics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.352, year: 2004
Parallel Cellular Automata-based simulation of laser dynamics using dynamic load balancing
Guisado, J.L.; Fernández de Vega, F.; Jiménez Morales, F.; Iskra, K.A.; Sloot, P.M.A.; Garnica, Ó.
2008-01-01
In order to analyze the feasibility of executing a parallel bioinspired model of laser dynamics on a heterogeneous non-dedicated cluster, we evaluate its performance including artificial load to simulate other tasks or jobs submitted by other users. As the model is based on a synchronous cellular
Marrink, SJ; Mark, AE
2003-01-01
Here, we use coarse grained molecular dynamics (MD) simulations to study the spontaneous aggregation of dipalmitoylphosphatidylcholine (DPPC) lipids into small unilamellar vesicles. We show that the aggregation process occurs on a nanosecond time scale, with bicelles and cuplike vesicles formed at
Dynamic Simulation in the Processing Industries: Case Studies from Mobil Experience
Directory of Open Access Journals (Sweden)
J.W. Womack
1985-10-01
Full Text Available This paper provides an overview of Mobil's recent use of dynamic simulation. It provides examples of applications to capital projects, to operator training, and to existing facilities. Techniques and methodology of dynamic simulation are considered. Desirable future developments for dynamic simulation software are discussed.
Machine learning molecular dynamics for the simulation of infrared spectra.
Gastegger, Michael; Behler, Jörg; Marquetand, Philipp
2017-10-01
Machine learning has emerged as an invaluable tool in many research areas. In the present work, we harness this power to predict highly accurate molecular infrared spectra with unprecedented computational efficiency. To account for vibrational anharmonic and dynamical effects - typically neglected by conventional quantum chemistry approaches - we base our machine learning strategy on ab initio molecular dynamics simulations. While these simulations are usually extremely time consuming even for small molecules, we overcome these limitations by leveraging the power of a variety of machine learning techniques, not only accelerating simulations by several orders of magnitude, but also greatly extending the size of systems that can be treated. To this end, we develop a molecular dipole moment model based on environment dependent neural network charges and combine it with the neural network potential approach of Behler and Parrinello. Contrary to the prevalent big data philosophy, we are able to obtain very accurate machine learning models for the prediction of infrared spectra based on only a few hundreds of electronic structure reference points. This is made possible through the use of molecular forces during neural network potential training and the introduction of a fully automated sampling scheme. We demonstrate the power of our machine learning approach by applying it to model the infrared spectra of a methanol molecule, n -alkanes containing up to 200 atoms and the protonated alanine tripeptide, which at the same time represents the first application of machine learning techniques to simulate the dynamics of a peptide. In all of these case studies we find an excellent agreement between the infrared spectra predicted via machine learning models and the respective theoretical and experimental spectra.
Preliminary analysis of the dynamic heliosphere by MHD simulations
International Nuclear Information System (INIS)
Washimi, H.; Zank, G. P.; Tanaka, T.
2006-01-01
A preliminary analysis of the dynamic heliosphere to estimate the termination shock (TS) distance from the sun around the time when Voyager 1 passed the termination shock at December 16, 2004 is performed by using MHD simulations. For input to this simulation, we use the Voyager 2 solar-wind data. We first find a stationary solution of the 3-D outer heliosphere by assigning a set of LISM parameters as our outer boundary conditions and then the dynamical analysis is performed. The model TS crossing is within 6 months of the observed date. The TS is pushed outward every time a high ram-pressure solar wind pulse arrives. After the end of the high ram-pressure wind, the TS shock shrinks inward. When the last Halloween event passed through the TS at DOY 250, 2004, the TS began to shrink inward very quickly and the TS crossed V1. The highest inward speed of the TS is over 400 km/s. The high ram-pressure solar wind transmitted through the TS becomes a high thermal-pressure plasma in the heliosheath, acting to push the TS inward. This suggests that the position of the TS is determined not only by the steady-state pressure balance condition between the solar wind ram-pressure and the LISM pressure, but by the dynamical ram pressure too. The period when the high ram-pressure solar wind arrives at the TS shock seems to correspond to the period of the TS particle event (Stone et al, 2005, Decker et al., 2005). The TS crossing date will be revised in future simulations using a more appropriate set of parameters for the LISM. This will enable us to undertake a detailed comparison of the simulation results with the TS particle events
Parachute-Payload System Flight Dynamics and Trajectory Simulation
Directory of Open Access Journals (Sweden)
Giorgio Guglieri
2012-01-01
Full Text Available The work traces a general procedure for the design of a flight simulation tool still representative of the major flight physics of a parachute-payload system along decelerated trajectories. An example of limited complexity simulation models for a payload decelerated by one or more parachutes is given, including details and implementation features usually omitted as the focus of the research in this field is typically on the investigation of mission design issues, rather than addressing general implementation guidelines for the development of a reconfigurable simulation tool. The dynamics of the system are modeled through a simple multibody model that represents the expected behavior of an entry vehicle during the terminal deceleration phase. The simulators are designed according to a comprehensive vision that enforces the simplification of the coupling mechanism between the payload and the parachute, with an adequate level of physical insight still available. The results presented for a realistic case study define the sensitivity of the simulation outputs to the functional complexity of the mathematical model. Far from being an absolute address for the software designer, this paper tries to contribute to the area of interest with some technical considerations and clarifications.
A dynamic motion simulator for future European docking systems
Brondino, G.; Marchal, PH.; Grimbert, D.; Noirault, P.
1990-01-01
Europe's first confrontation with docking in space will require extensive testing to verify design and performance and to qualify hardware. For this purpose, a Docking Dynamics Test Facility (DDTF) was developed. It allows reproduction on the ground of the same impact loads and relative motion dynamics which would occur in space during docking. It uses a 9 degree of freedom, servo-motion system, controlled by a real time computer, which simulates the docking spacecraft in a zero-g environment. The test technique involves and active loop based on six axis force and torque detection, a mathematical simulation of individual spacecraft dynamics, and a 9 degree of freedom servomotion of which 3 DOFs allow extension of the kinematic range to 5 m. The configuration was checked out by closed loop tests involving spacecraft control models and real sensor hardware. The test facility at present has an extensive configuration that allows evaluation of both proximity control and docking systems. It provides a versatile tool to verify system design, hardware items and performance capabilities in the ongoing HERMES and COLUMBUS programs. The test system is described and its capabilities are summarized.
Pattern Recognition for a Flight Dynamics Monte Carlo Simulation
Restrepo, Carolina; Hurtado, John E.
2011-01-01
The design, analysis, and verification and validation of a spacecraft relies heavily on Monte Carlo simulations. Modern computational techniques are able to generate large amounts of Monte Carlo data but flight dynamics engineers lack the time and resources to analyze it all. The growing amounts of data combined with the diminished available time of engineers motivates the need to automate the analysis process. Pattern recognition algorithms are an innovative way of analyzing flight dynamics data efficiently. They can search large data sets for specific patterns and highlight critical variables so analysts can focus their analysis efforts. This work combines a few tractable pattern recognition algorithms with basic flight dynamics concepts to build a practical analysis tool for Monte Carlo simulations. Current results show that this tool can quickly and automatically identify individual design parameters, and most importantly, specific combinations of parameters that should be avoided in order to prevent specific system failures. The current version uses a kernel density estimation algorithm and a sequential feature selection algorithm combined with a k-nearest neighbor classifier to find and rank important design parameters. This provides an increased level of confidence in the analysis and saves a significant amount of time.
Simulation error propagation for a dynamic rod worth measurement technique
International Nuclear Information System (INIS)
Kastanya, D.F.; Turinsky, P.J.
1996-01-01
KRSKO nuclear station, subsequently adapted by Westinghouse, introduced the dynamic rod worth measurement (DRWM) technique for measuring pressurized water reactor rod worths. This technique has the potential for reduced test time and primary loop waste water versus alternatives. The measurement is performed starting from a slightly supercritical state with all rods out (ARO), driving a bank in at the maximum stepping rate, and recording the ex-core detectors responses and bank position as a function of time. The static bank worth is obtained by (1) using the ex-core detectors' responses to obtain the core average flux (2) using the core average flux in the inverse point-kinetics equations to obtain the dynamic bank worth (3) converting the dynamic bank worth to the static bank worth. In this data interpretation process, various calculated quantities obtained from a core simulator are utilized. This paper presents an analysis of the sensitivity to the impact of core simulator errors on the deduced static bank worth
Analyzing, Modeling, and Simulation for Human Dynamics in Social Network
Directory of Open Access Journals (Sweden)
Yunpeng Xiao
2012-01-01
Full Text Available This paper studies the human behavior in the top-one social network system in China (Sina Microblog system. By analyzing real-life data at a large scale, we find that the message releasing interval (intermessage time obeys power law distribution both at individual level and at group level. Statistical analysis also reveals that human behavior in social network is mainly driven by four basic elements: social pressure, social identity, social participation, and social relation between individuals. Empirical results present the four elements' impact on the human behavior and the relation between these elements. To further understand the mechanism of such dynamic phenomena, a hybrid human dynamic model which combines “interest” of individual and “interaction” among people is introduced, incorporating the four elements simultaneously. To provide a solid evaluation, we simulate both two-agent and multiagent interactions with real-life social network topology. We achieve the consistent results between empirical studies and the simulations. The model can provide a good understanding of human dynamics in social network.
Molecular dynamics simulations of solutions at constant chemical potential
Perego, C.; Salvalaglio, M.; Parrinello, M.
2015-04-01
Molecular dynamics studies of chemical processes in solution are of great value in a wide spectrum of applications, which range from nano-technology to pharmaceutical chemistry. However, these calculations are affected by severe finite-size effects, such as the solution being depleted as the chemical process proceeds, which influence the outcome of the simulations. To overcome these limitations, one must allow the system to exchange molecules with a macroscopic reservoir, thus sampling a grand-canonical ensemble. Despite the fact that different remedies have been proposed, this still represents a key challenge in molecular simulations. In the present work, we propose the Constant Chemical Potential Molecular Dynamics (CμMD) method, which introduces an external force that controls the environment of the chemical process of interest. This external force, drawing molecules from a finite reservoir, maintains the chemical potential constant in the region where the process takes place. We have applied the CμMD method to the paradigmatic case of urea crystallization in aqueous solution. As a result, we have been able to study crystal growth dynamics under constant supersaturation conditions and to extract growth rates and free-energy barriers.
Molecular dynamics simulations suggest ligand's binding to nicotinamidase/pyrazinamidase.
Zhang, Ji-Long; Zheng, Qing-Chuan; Li, Zheng-Qiang; Zhang, Hong-Xing
2012-01-01
The research on the binding process of ligand to pyrazinamidase (PncA) is crucial for elucidating the inherent relationship between resistance of Mycobacterium tuberculosis and PncA's activity. In the present study, molecular dynamics (MD) simulation methods were performed to investigate the unbinding process of nicotinamide (NAM) from two PncA enzymes, which is the reverse of the corresponding binding process. The calculated potential of mean force (PMF) based on the steered molecular dynamics (SMD) simulations sheds light on an optimal binding/unbinding pathway of the ligand. The comparative analyses between two PncAs clearly exhibit the consistency of the binding/unbinding pathway in the two enzymes, implying the universality of the pathway in all kinds of PncAs. Several important residues dominating the pathway were also determined by the calculation of interaction energies. The structural change of the proteins induced by NAM's unbinding or binding shows the great extent interior motion in some homologous region adjacent to the active sites of the two PncAs. The structure comparison substantiates that this region should be very important for the ligand's binding in all PncAs. Additionally, MD simulations also show that the coordination position of the ligand is displaced by one water molecule in the unliganded enzymes. These results could provide the more penetrating understanding of drug resistance of M. tuberculosis and be helpful for the development of new antituberculosis drugs.
Molecular dynamics simulations suggest ligand's binding to nicotinamidase/pyrazinamidase.
Directory of Open Access Journals (Sweden)
Ji-Long Zhang
Full Text Available The research on the binding process of ligand to pyrazinamidase (PncA is crucial for elucidating the inherent relationship between resistance of Mycobacterium tuberculosis and PncA's activity. In the present study, molecular dynamics (MD simulation methods were performed to investigate the unbinding process of nicotinamide (NAM from two PncA enzymes, which is the reverse of the corresponding binding process. The calculated potential of mean force (PMF based on the steered molecular dynamics (SMD simulations sheds light on an optimal binding/unbinding pathway of the ligand. The comparative analyses between two PncAs clearly exhibit the consistency of the binding/unbinding pathway in the two enzymes, implying the universality of the pathway in all kinds of PncAs. Several important residues dominating the pathway were also determined by the calculation of interaction energies. The structural change of the proteins induced by NAM's unbinding or binding shows the great extent interior motion in some homologous region adjacent to the active sites of the two PncAs. The structure comparison substantiates that this region should be very important for the ligand's binding in all PncAs. Additionally, MD simulations also show that the coordination position of the ligand is displaced by one water molecule in the unliganded enzymes. These results could provide the more penetrating understanding of drug resistance of M. tuberculosis and be helpful for the development of new antituberculosis drugs.
Molecular dynamics simulations through GPU video games technologies.
Loukatou, Styliani; Papageorgiou, Louis; Fakourelis, Paraskevas; Filntisi, Arianna; Polychronidou, Eleftheria; Bassis, Ioannis; Megalooikonomou, Vasileios; Makałowski, Wojciech; Vlachakis, Dimitrios; Kossida, Sophia
Bioinformatics is the scientific field that focuses on the application of computer technology to the management of biological information. Over the years, bioinformatics applications have been used to store, process and integrate biological and genetic information, using a wide range of methodologies. One of the most de novo techniques used to understand the physical movements of atoms and molecules is molecular dynamics (MD). MD is an in silico method to simulate the physical motions of atoms and molecules under certain conditions. This has become a state strategic technique and now plays a key role in many areas of exact sciences, such as chemistry, biology, physics and medicine. Due to their complexity, MD calculations could require enormous amounts of computer memory and time and therefore their execution has been a big problem. Despite the huge computational cost, molecular dynamics have been implemented using traditional computers with a central memory unit (CPU). A graphics processing unit (GPU) computing technology was first designed with the goal to improve video games, by rapidly creating and displaying images in a frame buffer such as screens. The hybrid GPU-CPU implementation, combined with parallel computing is a novel technology to perform a wide range of calculations. GPUs have been proposed and used to accelerate many scientific computations including MD simulations. Herein, we describe the new methodologies developed initially as video games and how they are now applied in MD simulations.
Building a dynamic code to simulate new reactor concepts
International Nuclear Information System (INIS)
Catsaros, N.; Gaveau, B.; Jaekel, M.-T.; Maillard, J.; Maurel, G.; Savva, P.; Silva, J.; Varvayanni, M.
2012-01-01
Highlights: ► We develop a stochastic neutronic code based on an existing High Energy Physics code. ► The code simulates innovative reactor designs including Accelerator Driven Systems. ► Core materials evolution will be dynamically simulated, including fuel burnup. ► Continuous feedback between the main inter-related parameters will be established. ► A description of the current research development and achievements is also given. - Abstract: Innovative nuclear reactor designs have been proposed, such as the Accelerator Driven Systems (ADSs), the “candle” reactors, etc. These reactor designs introduce computational nuclear technology problems the solution of which necessitates a new, global and dynamic computational approach of the system. A continuous feedback procedure must be established between the main inter-related parameters of the system such as the chemical, physical and isotopic composition of the core, the neutron flux distribution and the temperature field. Furthermore, as far as ADSs are concerned, the ability of the computational tool to simulate the nuclear cascade created from the interaction of accelerated protons with the spallation target as well as the produced neutrons, is also required. The new Monte Carlo code ANET (Advanced Neutronics with Evolution and Thermal hydraulic feedback) is being developed based on the GEANT3 High Energy Physics code, aiming to progressively satisfy all the above requirements. A description of the capabilities and methodologies implemented in the present version of ANET is given here, together with some illustrative applications of the code.
Improved Angle Potentials for Coarse-Grained Molecular Dynamics Simulations.
Bulacu, Monica; Goga, Nicolae; Zhao, Wei; Rossi, Giulia; Monticelli, Luca; Periole, Xavier; Tieleman, D Peter; Marrink, Siewert J
2013-08-13
Potentials routinely used in atomistic molecular dynamics simulations are not always suitable for modeling systems at coarse-grained resolution. For example, in the calculation of traditional torsion angle potentials, numerical instability is often encountered in the case of very flexible molecules. To improve the stability and accuracy of coarse-grained molecular dynamics simulations, we propose two approaches. The first makes use of improved forms for the angle potentials: the restricted bending (ReB) potential prevents torsion angles from visiting unstable or unphysical configurations and the combined bending-torsion (CBT) potential smoothly flattens the interactions when such configurations are sampled. In the second approach, dummy-assisted dihedral (DAD), the torsion potential is applied differently: instead of acting directly on the beads, it acts on virtual beads, bound to the real ones. For simple geometrical reasons, the unstable region is excluded from the accessible conformational space. The benefits of the new approaches are demonstrated in simulations of polyethylene glycol (PEG), polystyrene (PS), and polypeptide molecules described by the MARTINI coarse-grained force field. The new potentials are implemented in an in-house version of the Gromacs package, publicly available.
Huge-scale molecular dynamics simulation of multibubble nuclei
Watanabe, Hiroshi
2013-12-01
We have developed molecular dynamics codes for a short-range interaction potential that adopt both the flat-MPI and MPI/OpenMP hybrid parallelizations on the basis of a full domain decomposition strategy. Benchmark simulations involving up to 38.4 billion Lennard-Jones particles were performed on Fujitsu PRIMEHPC FX10, consisting of 4800 SPARC64 IXfx 1.848 GHz processors, at the Information Technology Center of the University of Tokyo, and a performance of 193 teraflops was achieved, which corresponds to a 17.0% execution efficiency. Cavitation processes were also simulated on PRIMEHPC FX10 and SGI Altix ICE 8400EX at the Institute of Solid State Physics of the University of Tokyo, which involved 1.45 billion and 22.9 million particles, respectively. Ostwald-like ripening was observed after the multibubble nuclei. Our results demonstrate that direct simulations of multiscale phenomena involving phase transitions from the atomic scale are possible and that the molecular dynamics method is a promising method that can be applied to petascale computers. © 2013 Elsevier B.V. All rights reserved.
Theoretical studies of lipid bilayer electroporation using molecular dynamics simulations
Levine, Zachary Alan
Computer simulations of physical, chemical, and biological systems have improved tremendously over the past five decades. From simple studies of liquid argon in the 1960s to fully atomistic simulations of entire viruses in the past few years, recent advances in high-performance computing have continuously enabled simulations to bridge the gap between scientific theory and experiment. Molecular dynamics simulations in particular have allowed for the direct observation of spatial and temporal events which are at present inaccessible to experiments. For this dissertation I employ all-atom molecular dynamics simulations to study the transient, electric field-induced poration (or electroporation) of phospholipid bilayers at MV/m electric fields. Phospholipid bilayers are the dominant constituents of cell membranes and act as both a barrier and gatekeeper to the cell interior. This makes their structural integrity and susceptibility to external perturbations an important topic for study, especially as the density of electromagnetic radiation in our environment is increasing steadily. The primary goal of this dissertation is to understand the specific physical and biological mechanisms which facilitate electroporation, and to connect our simulated observations to experiments with live cells and to continuum models which seek to describe the underlying biological processes of electroporation. In Chapter 1 I begin with a brief introduction to phospholipids and phospholipid bilayers, followed by an extensive overview of electroporation and atomistic molecular dynamics simulations. The following chapters will then focus on peer-reviewed and published work we performed, or on existing projects which are currently being prepared for submission. Chapter 2 looks at how external electric fields affect both oxidized and unoxidized lipid bilayers as a function of oxidation concentration and oxidized lipid type. Oxidative damage to cell membranes represents a physiologically relevant
Dynamic modelling and simulation for control of a cylindrical robotic manipulator
International Nuclear Information System (INIS)
Iqbal, A.; Athar, S.M.
1995-03-01
In this report a dynamic model for the three degrees-of-freedom cylindrical manipulator, INFOMATE has been developed. Although the robot dynamics are highly coupled and non-linear, the developed model is relatively straight forward and compact for control engineering and simulation applications. The model has been simulated using the graphical simulation package SIMULINK. Different aspects of INFOMATE associated with forward dynamics, inverse dynamics and control have been investigated by performing various simulation experiments. These simulation experiments confirm the accuracy and applicability of the dynamic robot model. (author) 18 figs
Molecular dynamics simulation of nanomaterials using an artificial neural net
Benedict, Mark; Maguire, John F.
2004-11-01
We report a method of conducting molecular dynamics (MD) simulations that uses an artificial neural net (ANN) to significantly increase computational speed. The technique enables dynamical simulation of hard objects with essentially arbitrarily complex geometry and is well suited to the simulation of granular matter over a wide range of densities. In hard systems, binary collisions are well defined and the ANN approach enables an efficient algorithm to determine the time to next collision with high accuracy. The method has been used to enable an MD study of an ensemble of 1800 hard, smooth, impenetrable equilateral triangles in a two-dimensional periodic space. At high packing fraction (0.6translational order but in which there is nearly perfect long-range orientational order. As the packing fraction decreases, the LCP undergoes a transition to a fluid state in which the long-range orientational correlation vanishes but short-range order is retained. Long-lived clusters, notably hexamers, are clearly apparent in the liquid phase and appear to be stabilized by a sort of internal “orientational” osmotic pressure. Insofar as can be inferred from our machine calculations, the transition between the LCP and the liquid occurs around ρ˜0.57 and appears to be second order. At low density, the hard-triangle system undergoes “chattering” collisions in which pairs of triangles collide and become associated, undergoing multiple collisions with each other before colliding with a third particle. The radial distribution function obtained from both molecular dynamics and Monte Carlo calculations shows a weak peak at low packing fraction.
Beam dynamics simulation of a double pass proton linear accelerator
Hwang, Kilean; Qiang, Ji
2017-04-01
A recirculating superconducting linear accelerator with the advantage of both straight and circular accelerator has been demonstrated with relativistic electron beams. The acceleration concept of a recirculating proton beam was recently proposed [J. Qiang, Nucl. Instrum. Methods Phys. Res., Sect. A 795, 77 (2015, 10.1016/j.nima.2015.05.056)] and is currently under study. In order to further support the concept, the beam dynamics study on a recirculating proton linear accelerator has to be carried out. In this paper, we study the feasibility of a two-pass recirculating proton linear accelerator through the direct numerical beam dynamics design optimization and the start-to-end simulation. This study shows that the two-pass simultaneous focusing without particle losses is attainable including fully 3D space-charge effects through the entire accelerator system.
Beam dynamics simulation of a double pass proton linear accelerator
Directory of Open Access Journals (Sweden)
Kilean Hwang
2017-04-01
Full Text Available A recirculating superconducting linear accelerator with the advantage of both straight and circular accelerator has been demonstrated with relativistic electron beams. The acceleration concept of a recirculating proton beam was recently proposed [J. Qiang, Nucl. Instrum. Methods Phys. Res., Sect. A 795, 77 (2015NIMAER0168-900210.1016/j.nima.2015.05.056] and is currently under study. In order to further support the concept, the beam dynamics study on a recirculating proton linear accelerator has to be carried out. In this paper, we study the feasibility of a two-pass recirculating proton linear accelerator through the direct numerical beam dynamics design optimization and the start-to-end simulation. This study shows that the two-pass simultaneous focusing without particle losses is attainable including fully 3D space-charge effects through the entire accelerator system.
Modeling and simulation of dynamic voltage restorer in power system
International Nuclear Information System (INIS)
Abdel Aziz, M.A.A.M.
2012-01-01
There are many loads subjected to several Power Quality Problems such as voltage sags/swells, unbalance, harmonics distortion, and short interruption. These loads encompass a wide range of equipment which are very sensitive to voltage disturbances. The Dynamic Voltage Restorer (DVR) has recently been introduced to protect sensitive loads from voltage sags and other voltage disturbances in addition to this, it mitigates current harmonics distortion. It is a series connected power electronic based device. It is considered as one of the most efficient and effective solutions. Its appeal includes smaller size and fast dynamic response to disturbances. This work describes a proposal of the DVR to improve power quality distribution (medium voltage) system. The control of the compensation voltage and harmonics cancellation in the DVR is based on Adaptive Noise Canceling (ANC) technique. Simulation results carried out by PSCAD/EMTDC to investigate the performance of the proposed method.
Phase portrait methods for verifying fluid dynamic simulations
Energy Technology Data Exchange (ETDEWEB)
Stewart, H.B.
1989-01-01
As computing resources become more powerful and accessible, engineers more frequently face the difficult and challenging engineering problem of accurately simulating nonlinear dynamic phenomena. Although mathematical models are usually available, in the form of initial value problems for differential equations, the behavior of the solutions of nonlinear models is often poorly understood. A notable example is fluid dynamics: while the Navier-Stokes equations are believed to correctly describe turbulent flow, no exact mathematical solution of these equations in the turbulent regime is known. Differential equations can of course be solved numerically, but how are we to assess numerical solutions of complex phenomena without some understanding of the mathematical problem and its solutions to guide us
Modelization and numerical simulation of atmospheric aerosols dynamics
International Nuclear Information System (INIS)
Debry, Edouard
2004-01-01
Chemical-transport models are now able to describe in a realistic way gaseous pollutants behavior in the atmosphere. Nevertheless atmospheric pollution also exists as a fine suspended particles, called aerosols which interact with gaseous phase, solar radiation, and have their own dynamic behavior. The goal of this thesis is the modelization and numerical simulation of the General Dynamic Equation of aerosols (GDE). Part I deals with some theoretical aspects of aerosol modelization. Part II is dedicated to the building of one size resolved aerosol model (SIREAM). In part III we perform the reduction of this model in order to use it in dispersion models as POLAIR3D. Several modelization issues are still opened: organic aerosol matter, externally mixed aerosols, coupling with turbulent mixing, and nano-particles. (author) [fr
ALADYN - a spatially explicit, allelic model for simulating adaptive dynamics.
Schiffers, Katja H; Travis, Justin Mj
2014-12-01
ALADYN is a freely available cross-platform C++ modeling framework for stochastic simulation of joint allelic and demographic dynamics of spatially-structured populations. Juvenile survival is linked to the degree of match between an individual's phenotype and the local phenotypic optimum. There is considerable flexibility provided for the demography of the considered species and the genetic architecture of the traits under selection. ALADYN facilitates the investigation of adaptive processes to spatially and/or temporally changing conditions and the resulting niche and range dynamics. To our knowledge ALADYN is so far the only model that allows a continuous resolution of individuals' locations in a spatially explicit landscape together with the associated patterns of selection.
Dynamic Simulation and Optimization of Nuclear Hydrogen Production Systems
Energy Technology Data Exchange (ETDEWEB)
Paul I. Barton; Mujid S. Kaximi; Georgios Bollas; Patricio Ramirez Munoz
2009-07-31
This project is part of a research effort to design a hydrogen plant and its interface with a nuclear reactor. This project developed a dynamic modeling, simulation and optimization environment for nuclear hydrogen production systems. A hybrid discrete/continuous model captures both the continuous dynamics of the nuclear plant, the hydrogen plant, and their interface, along with discrete events such as major upsets. This hybrid model makes us of accurate thermodynamic sub-models for the description of phase and reaction equilibria in the thermochemical reactor. Use of the detailed thermodynamic models will allow researchers to examine the process in detail and have confidence in the accurary of the property package they use.
An example of quaternion parameterization for dynamical simulations
International Nuclear Information System (INIS)
Kore, Cittadella Universitaria, 94100 Enna (Italy))" data-affiliation=" (Faculty of Engineering and Architecture, University of Enna Kore, Cittadella Universitaria, 94100 Enna (Italy))" >Artale, Valeria; Kore, Cittadella Universitaria, 94100 Enna (Italy))" data-affiliation=" (Faculty of Engineering and Architecture, University of Enna Kore, Cittadella Universitaria, 94100 Enna (Italy))" >Milazzo, Cristina L R; Kore, Cittadella Universitaria, 94100 Enna (Italy))" data-affiliation=" (Faculty of Engineering and Architecture, University of Enna Kore, Cittadella Universitaria, 94100 Enna (Italy))" >Ricciardello, Angela
2014-01-01
The dynamical simulation of rigid bodies can be gathered from the classical Newton-Euler differential equations, which commonly make use of the Euler angles parametrization. In this work, the initial value problem associated with motion is presented in terms of quaternion formulation instead of the Euler one. The reason why the quaternion parametrization is proposed lies on the possibility of avoiding singularities that can occur by considering Euler angles. Moreover, the strength of quaternions is represented by the linearity of their formulation, the easiness of their algebraic structure and, overall, on their stability and efficiency. Our proposed application is the mathematical modelling of a small Unmanned Aerial Vehicle dynamics. In particular a multirotor with six blades has been taken into account, its mathematical model is deduced and a comparison between the results obtained by implementing our formulation and the classical one is produced
Dynamic simulation of the in-tank precipitation process
International Nuclear Information System (INIS)
Hang, T.; Shanahan, K.L.; Gregory, M.V.; Walker, D.D.
1993-01-01
As part of the High-Level Waste Tank Farm at the Savannah River Site (SRS), the In-Tank Precipitation (ITP) facility was designed to decontaminate the radioactive waste supernate by removing cesium as precipitated cesium tetraphenylborate. A dynamic computer model of the ITP process was developed using SPEEDUP TM software to provide guidance in the areas of operation and production forecast, production scheduling, safety, air emission, and process improvements. The model performs material balance calculations in all phase (solid, liquid, and gas) for 50 key chemical constituents to account for inventory accumulation, depletion, and dilution. Calculations include precipitation, benzene radiolytic reactions, evaporation, dissolution, adsorption, filtration, and stripping. To control the ITP batch operation a customized FORTRAN program was generated and linked to SPEEDUP TM simulation This paper summarizes the model development and initial results of the simulation study
A Modal Model to Simulate Typical Structural Dynamic Nonlinearity
Energy Technology Data Exchange (ETDEWEB)
Pacini, Benjamin Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mayes, Randall L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roettgen, Daniel R [Univ. of Wisconsin, Madison, WI (United States)
2015-10-01
Some initial investigations have been published which simulate nonlinear response with almost traditional modal models: instead of connecting the modal mass to ground through the traditional spring and damper, a nonlinear Iwan element was added. This assumes that the mode shapes do not change with amplitude and there are no interactions between modal degrees of freedom. This work expands on these previous studies. An impact experiment is performed on a structure which exhibits typical structural dynamic nonlinear response, i.e. weak frequency dependence and strong damping dependence on the amplitude of vibration. Use of low level modal test results in combination with high level impacts are processed using various combinations of modal filtering, the Hilbert Transform and band-pass filtering to develop response data that are then fit with various nonlinear elements to create a nonlinear pseudo-modal model. Simulations of forced response are compared with high level experimental data for various nonlinear element assumptions.
Interfacial colloidal rod dynamics: Coefficients, simulations, and analysis
Yang, Yuguang; Bevan, Michael A.
2017-08-01
Colloidal rod diffusion near a wall is modeled and simulated based on a constrained Stokesian dynamic model of chains-of-spheres. By modeling colloidal rods as chains-of-spheres, complete diffusion tensors are computed for colloidal rods in bulk media and near interfaces, including hydrodynamic interactions, translation-rotation coupling, and all diffusion modes in the particle and lab frames. Simulated trajectories based on the chain-of-spheres diffusion tensor are quantified in terms of typical experimental quantities such as mean squared positional and angular displacements as well as autocorrelation functions. Theoretical expressions are reported to predict measured average diffusivities as well as the crossover from short-time anisotropic translational diffusion along the rod's major axis to isotropic diffusion. Diffusion modes are quantified in terms of closed form empirical fits to model results to aid their use in interpretation and prediction of experiments involving colloidal rod diffusion in interfacial and confined systems.
Structural modeling and molecular dynamics simulation of the actin filament.
Splettstoesser, Thomas; Holmes, Kenneth C; Noé, Frank; Smith, Jeremy C
2011-07-01
Actin is a major structural protein of the eukaryotic cytoskeleton and enables cell motility. Here, we present a model of the actin filament (F-actin) that not only incorporates the global structure of the recently published model by Oda et al. but also conserves internal stereochemistry. A comparison is made using molecular dynamics simulation of the model with other recent F-actin models. A number of structural determents such as the protomer propeller angle, the number of hydrogen bonds, and the structural variation among the protomers are analyzed. The MD comparison is found to reflect the evolution in quality of actin models over the last 6 years. In addition, simulations of the model are carried out in states with both ADP or ATP bound and local hydrogen-bonding differences characterized. Copyright © 2011 Wiley-Liss, Inc.
Smile - a dynamic simulation environment. Smile - eine dynamische Simulationsumgebung
Energy Technology Data Exchange (ETDEWEB)
Jochum, P. (Institut fuer Energietechnik, TU Berlin (Germany)); Kloas, M. (Institut fuer Energietechnik, TU Berlin (Germany))
1993-08-01
One has been working on the development of a new system for the dynamic simulation of complex energy conversion processed at the Institute for Energy Technology of the Technical University of Berlin since the beginning of 1990. The aim of the work is the production of as flexible a program as possible for the simulation of (nearly) any plant configuration from general energy technology, including the ecological and economic aspects. This program with the name of Smile should serve consultants and designers of industrial, community and private energy supplies as an aid for planning, design and optimisation of multi-valent heating systems. The results up to now and the prospects developed from these are described in the article. (BWI)
Dynamic simulations of many-body electrostatic self-assembly
Lindgren, Eric B.; Stamm, Benjamin; Maday, Yvon; Besley, Elena; Stace, A. J.
2018-03-01
Two experimental studies relating to electrostatic self-assembly have been the subject of dynamic computer simulations, where the consequences of changing the charge and the dielectric constant of the materials concerned have been explored. One series of calculations relates to experiments on the assembly of polymer particles that have been subjected to tribocharging and the simulations successfully reproduce many of the observed patterns of behaviour. A second study explores events observed following collisions between single particles and small clusters composed of charged particles derived from a metal oxide composite. As before, observations recorded during the course of the experiments are reproduced by the calculations. One study in particular reveals how particle polarizability can influence the assembly process. This article is part of the theme issue `Modern theoretical chemistry'.
Computational Fluid Dynamics (CFD) simulations of a Heisenberg Vortex Tube
Bunge, Carl; Sitaraman, Hariswaran; Leachman, Jake
2017-11-01
A 3D Computational Fluid Dynamics (CFD) simulation of a Heisenberg Vortex Tube (HVT) is performed to estimate cooling potential with cryogenic hydrogen. The main mechanism driving operation of the vortex tube is the use of fluid power for enthalpy streaming in a highly turbulent swirl in a dual-outlet tube. This enthalpy streaming creates a temperature separation between the outer and inner regions of the flow. Use of a catalyst on the peripheral wall of the centrifuge enables endothermic conversion of para-ortho hydrogen to aid primary cooling. A κ- ɛ turbulence model is used with a cryogenic, non-ideal equation of state, and para-orthohydrogen species evolution. The simulations are validated with experiments and strategies for parametric optimization of this device are presented.
Dynamic Simulation of Rigid Guide Structure Based on ANSYS
Directory of Open Access Journals (Sweden)
Zhang Xin
2017-01-01
Full Text Available In order to reflect the varying law of the deflection of the rigid guide when the relative motion occur between the rigid guide and the cage roller, transient dynamic simulation is carried out for the commonly used calculation model of rigid guide and bunton by ANSYS. Simulation of the horizontal force through a section of the guide evenly, and the deflection curves of each model are obtained. It is found that the deflection of the simply supported beam model is the largest, and the three-span continuous beam model have similar peak spans in each span with the spatial grid model, but the spatial grid model has obvious fluctuation with the horizontal force.
Molecular Dynamics Simulations of Clathrate Hydrates on Specialised Hardware Platforms
Directory of Open Access Journals (Sweden)
Christian R. Trott
2012-09-01
Full Text Available Classical equilibrium molecular dynamics (MD simulations have been performed to investigate the computational performance of the Simple Point Charge (SPC and TIP4P water models applied to simulation of methane hydrates, and also of liquid water, on a variety of specialised hardware platforms, in addition to estimation of various equilibrium properties of clathrate hydrates. The FPGA-based accelerator MD-GRAPE 3 was used to accelerate substantially the computation of non-bonded forces, while GPU-based platforms were also used in conjunction with CUDA-enabled versions of the LAMMPS MD software packages to reduce computational time dramatically. The dependence of molecular system size and scaling with number of processors was also investigated. Considering performance relative to power consumption, it is seen that GPU-based computing is quite attractive.
A novel dynamic cardiac simulator utilizing pneumatic artificial muscle.
Liu, Hao; Yan, Jie; Zhou, Yuanyuan; Li, Hongyi; Li, Changji
2013-01-01
With the development of methods and skills of minimally invasive surgeries, equipments for doctors' training and practicing are in high demands. Especially for the cardiovascular surgeries, operators are requested to be familiar with the surgical environment of a beating heart. In this paper, we present a new dynamic cardiac simulator utilizing pneumatic artificial muscle to realize heartbeat. It's an artificial left ventricular of which the inner chamber is made of thermoplastic elastomers (TPE) with an anatomical structure of the real human heart. It is covered by another layer of material forming the artificial muscle which actuates the systole and diastole uniformly and omnidirectionally as the cardiac muscle does. Preliminary experiments were conducted to evaluate the performance of the simulator. The results indicated that the pressure at the terminal of the aorta could be controlled within the range of normal human systolic pressure, which quantitatively validated the new actuating mode of the heart-beating is effective.
THE DYNAMICS OF A DISTRIBUTION SYSTEM SIMULATED ON A SPREADSHEET
Directory of Open Access Journals (Sweden)
R. Reinecke
2012-01-01
Full Text Available
ENGLISH ABSTRACT: The dynamics of a typical production-distribution system, namely from manufacturer to distributors to retailers has been simulated with the aid of Lotus 123 on a personal computer. The original simulation program DYNAr10 was run on an IBM 1620 mainframe computer but we successfully converted it to run on a personal computer using LOTUS 123.
This paper deals with problems encountered in using the present MS-DOS limited PC machines to run application programmes written for earlier mainframe machines. It is also shown that results very comparable with those obtained on mainframe machines can be generated on a simple PC.
AFRIKAANSE OPSOMMING: Hierdie referaat beskryf die ervaring van magisterstudente met die omskakeling van die simulasieprogram DYNAMO vir die ondersoek van die dinamika van industriele stelsels van hoofraamrekenaar na 'n persoonlike rekenaar.
Coding considerations for standalone molecular dynamics simulations of atomistic structures
Ocaya, R. O.; Terblans, J. J.
2017-10-01
The laws of Newtonian mechanics allow ab-initio molecular dynamics to model and simulate particle trajectories in material science by defining a differentiable potential function. This paper discusses some considerations for the coding of ab-initio programs for simulation on a standalone computer and illustrates the approach by C language codes in the context of embedded metallic atoms in the face-centred cubic structure. The algorithms use velocity-time integration to determine particle parameter evolution for up to several thousands of particles in a thermodynamical ensemble. Such functions are reusable and can be placed in a redistributable header library file. While there are both commercial and free packages available, their heuristic nature prevents dissection. In addition, developing own codes has the obvious advantage of teaching techniques applicable to new problems.
Study on Dynamic Simulation of New Cosine Gear
Cai, Yu-yu; Wang, Wei
2017-11-01
Based on the gear meshing theory, after the process of construction is discussed, the mathematical model about profile curve equation, conjugate equation and action line equation is built. It provides some theoretical proofs for research of performance and manufacture of cosine-gear. In this article, the profile curve equation of cosine gear is introduced, and the conjugate equation is deduced. The solid model of cosine-gear is built by example with Pro/E software, and the meshing process of a pair of cosine-gears is simulated. From the result of simulating, it can detect the interference and the dynamic characteristics of a pair of cosine gears quickly, and during the meshing process, there is no meshing interference. Moreover, the cosine gear is line contact. It is significant to improve the efficiency of design and manufacturing of cosine gear.
Simulation of dynamics of a permanent magnet linear actuator
DEFF Research Database (Denmark)
Yatchev, Ivan; Ritchie, Ewen
2010-01-01
Comparison of two approaches for the simulation of the dynamic behaviour of a permanent magnet linear actuator is presented. These are full coupled model, where the electromagnetic field, electric circuit and mechanical motion problems are solved simultaneously, and decoupled model, where first...... a set of static magnetic filed analysis is carried out and then the electric circuit and mechanical motion equations are solved employing bi-cubic spline approximations of the field analysis results. The results show that the proposed decoupled model is of satisfactory accuracy and gives more...
Numerical simulation of the RISOe1-airfoil dynamic stall
Energy Technology Data Exchange (ETDEWEB)
Bertagnolio, F.; Soerensen, N. [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)
1997-12-31
In this paper we are concerned with the numerical computation of the dynamic stall that occur in the viscous flowfield over an airfoil. These results are compared to experimental data that were obtained with the new designed RISOe1-airfoil, both for a motionless airfoil and for a pitching motion. Moreover, we present some numerical computations of the plunging and lead-lag motions. We also investigate the possibility of using the pitching motion to simulate the plunging and lead-lag situations. (au)
Treadmilling of actin filaments via Brownian dynamics simulations
DEFF Research Database (Denmark)
Guo, Kunkun; Shillcock, Julian C.; Lipowsky, Reinhard
2010-01-01
Actin polymerization is coupled to the hydrolysis of adenosine triphosphate (ATP) into adenosine diphosphate (ADP) and inorganic phosphate (Pi). Therefore, each protomer within an actin ﬁlament can attain three different nucleotide states corresponding to bound ATP, ADP / Pi, and ADP....... These protomer states form spatial patterns on the growing (or shrinking) ﬁlaments. Using Brownian dynamics simulations, the growth behavior of long ﬁlaments is studied, together with the associated protomer patterns, as a function of ATP-actin monomer concentration, CT, within the surrounding solution...
Modelling of windmill induction generators in dynamic simulation programs
DEFF Research Database (Denmark)
Akhmatov, Vladislav; Knudsen, Hans
1999-01-01
For AC networks with large amounts of induction generators-in case of e.g. windmills-the paper demonstrates a significant discrepancy in the simulated voltage recovery after faults in weak networks, when comparing result obtained with dynamic stability programs and transient programs, respectively...... with and without a model of the mechanical shaft. The reason for the discrepancies are explained, and it is shown that the phenomenon is due partly to the presence of DC offset currents in the induction machine stator, and partly to the mechanical shaft system of the wind turbine and the generator rotor...
Dynamic computer simulation of the Fort St. Vrain steam turbines
International Nuclear Information System (INIS)
Conklin, J.C.
1983-01-01
A computer simulation is described for the dynamic response of the Fort St. Vrain nuclear reactor regenerative intermediate- and low-pressure steam turbines. The fundamental computer-modeling assumptions for the turbines and feedwater heaters are developed. A turbine heat balance specifying steam and feedwater conditions at a given generator load and the volumes of the feedwater heaters are all that are necessary as descriptive input parameters. Actual plant data for a generator load reduction from 100 to 50% power (which occurred as part of a plant transient on November 9, 1981) are compared with computer-generated predictions, with reasonably good agreement
New Dynamic Library of Reverse Osmosis Plants with Fault Simulation
International Nuclear Information System (INIS)
Luis, Palacin; Fernando, Tadeo; Cesar, de Prada; Elfil, Hamza
2009-01-01
This paper presents an update of a dynamic library of reverse osmosis plants (ROSIM). This library has been developed in order to be used for optimization, simulation, controller testing or fault detection strategies and a simple fault tolerant control is tested. ROSIM is based in a set of components representing the different units of a typical reverse osmosis plant (as sand filters, cartridge filters, exchanger energy recoveries, pumps, membranes, storage tanks, control systems, valves, etc.). Different types of fouling (calcium carbonate, iron hydroxide, biofouling) have been added and the mathematical model of the reverse osmosis membranes, proposed in the original library, has been improved.
Cellular automaton model for the simulation of laser dynamics.
Guisado, J L; Jiménez-Morales, F; Guerra, J M
2003-06-01
The classical modeling approach for laser study relies on the differential equations. In this paper, a cellular automaton model is proposed as an alternative for the simulation of population dynamics. Even though the model is simplified it captures the essence of laser phenomenology: (i) there is a threshold pumping rate that depends inversely on the decaying lifetime of the atoms and the photons; and (ii) depending on these lifetimes and on the pumping rate, a constant or an oscillatory behavior can be observed. More complex behaviors such as spiking and pattern formation can also be studied with the cellular automaton model.
Simulation of nonadiabatic dynamics in matrix and solution
International Nuclear Information System (INIS)
Ruckenbauer, M. B.
2011-01-01
The ab-initio electronic structure program suite Columbus and the nonadiabatic molecular dynamics program Newton-X were extended with the capabilities for nonadiabatic hybrid quantum mechanic/- molecular mechanic calculations. The Columbus code was extended with the ability to include the influence of a set of point charges in the calculation of energies, gradients and nonadiabatic coupling vectors on all levels of theory available. In Newton-X a new module facilitating the organization of the hybrid energy and gradient calculations and the collection and merging of the partial results in an overall energy and gradient has been implemented. A new paradigm for the treatment of nonadiabatic coupling vectors in hybrid calculations called core control has been developed. A scheme to create hybrid initial conditions apt for thermalized nonadiabatic dynamics has been created. The Newton-X hybrid module was used in the simulation of various systems, first and foremost for the comparative study on the nonadiabatic dynamics of the penta-2,4-dien-1-iminium and the 4-methylpenta- 2,4-dien-1-iminium in gas phase and in apolar solution and for the simulation of the nonadiabatic short time dynamics of azomethane in solvents of different polarity. In collaboration with the Faculty for Computer Science a framework for the easy, flexible, secure and transparent access to local and remote computational resources has been developed and used in the computational campaigns using the Newton-X hybrid module. The created framework was used for the implementation of an automated scientific workflow. (author) [de
Aeroelastic Dynamics Simulation of Two BaffleBased Connected Shells
Directory of Open Access Journals (Sweden)
G. A. Shcheglov
2015-01-01
Full Text Available The present work is an extention study of aeroelastic vibrations of thin-walled structures with a spatial subsonic flow. An original algorithm for solving complex conjugated aeroelasticity problem, allowing to carry out direct numerical simulation of structural oscillations in the spatial flow of an incompressible medium are developed and tested. On the basis of this simulation study of the spectrum comes the driving forces acting on the flow in a spatial component elastic structure mounted on an impenetrable screen.Currently, updating the mathematical models of unsteady loads that act on the spacepurpose elastic designs such as launch vehicles, service tower installed on the launch pad is a challenge. We consider two thin-walled cantilevered rotating shells connected by a system of elastic couplings, installed next to the impenetrable baffle so that the axes of rotation are perpendicular to the baffle. Dynamics of elastic system is investigated numerically, using the vortex element method with the spatial separated flow of an incompressible medium. A feature of the algorithm is the common commercial complex MSC Patran / Nastran which is used in preparing data to calculate the shell dynamics thereby allowing to consider very complex dynamic schemes.The work performs the first calculations of the model problem concerning the forced oscillations of two coupled cylindrical shells in the flow of an incompressible medium. Comparing the load spectra for the elastic and absolutely rigid structure has shown that the frequency spectra vary slightly. Further calculations are required in which it will be necessary to increase the duration of the calculations, sampling in construction of design scheme, and given the large number of vibration modes that require increasing computing power.Experience in calculating aeroelastic dynamics of complex elastic structures taking into account the screen proved to be successful as a whole, thereby allowing to turn to
An evaluation of Dynamic TOPMODEL for low flow simulation
Coxon, G.; Freer, J. E.; Quinn, N.; Woods, R. A.; Wagener, T.; Howden, N. J. K.
2015-12-01
Hydrological models are essential tools for drought risk management, often providing input to water resource system models, aiding our understanding of low flow processes within catchments and providing low flow predictions. However, simulating low flows and droughts is challenging as hydrological systems often demonstrate threshold effects in connectivity, non-linear groundwater contributions and a greater influence of water resource system elements during low flow periods. These dynamic processes are typically not well represented in commonly used hydrological models due to data and model limitations. Furthermore, calibrated or behavioural models may not be effectively evaluated during more extreme drought periods. A better understanding of the processes that occur during low flows and how these are represented within models is thus required if we want to be able to provide robust and reliable predictions of future drought events. In this study, we assess the performance of dynamic TOPMODEL for low flow simulation. Dynamic TOPMODEL was applied to a number of UK catchments in the Thames region using time series of observed rainfall and potential evapotranspiration data that captured multiple historic droughts over a period of several years. The model performance was assessed against the observed discharge time series using a limits of acceptability framework, which included uncertainty in the discharge time series. We evaluate the models against multiple signatures of catchment low-flow behaviour and investigate differences in model performance between catchments, model diagnostics and for different low flow periods. We also considered the impact of surface water and groundwater abstractions and discharges on the observed discharge time series and how this affected the model evaluation. From analysing the model performance, we suggest future improvements to Dynamic TOPMODEL to improve the representation of low flow processes within the model structure.
Description of waste pretreatment and interfacing systems dynamic simulation model
Energy Technology Data Exchange (ETDEWEB)
Garbrick, D.J.; Zimmerman, B.D.
1995-05-01
The Waste Pretreatment and Interfacing Systems Dynamic Simulation Model was created to investigate the required pretreatment facility processing rates for both high level and low level waste so that the vitrification of tank waste can be completed according to the milestones defined in the Tri-Party Agreement (TPA). In order to achieve this objective, the processes upstream and downstream of the pretreatment facilities must also be included. The simulation model starts with retrieval of tank waste and ends with vitrification for both low level and high level wastes. This report describes the results of three simulation cases: one based on suggested average facility processing rates, one with facility rates determined so that approximately 6 new DSTs are required, and one with facility rates determined so that approximately no new DSTs are required. It appears, based on the simulation results, that reasonable facility processing rates can be selected so that no new DSTs are required by the TWRS program. However, this conclusion must be viewed with respect to the modeling assumptions, described in detail in the report. Also included in the report, in an appendix, are results of two sensitivity cases: one with glass plant water recycle steams recycled versus not recycled, and one employing the TPA SST retrieval schedule versus a more uniform SST retrieval schedule. Both recycling and retrieval schedule appear to have a significant impact on overall tank usage.
Simulation of Venus Atmosphere Dynamics With an Earth Climate GCM
Parish, H. F.; Schubert, G.; Covey, C. C.; Grossman, A.
2008-12-01
We describe the results of initial simulations of the Venusian atmosphere, using the Community Atmosphere Model (CAM). The CAM model is a descendant of the NCAR Community Climate Model, and is defined as one of two "high-end" models designated by the US Climate Change Science Program for basic research. It may also be the most widely used 3D climate model in the US. CAM has grown substantially in complexity and Earth-specificity since the original version was released in 1983, and many of these Earth based physics parameterizations need to be adjusted to simulate the Venus atmosphere. Other groups are adapting CAM to simulate the atmospheres of Mars and Titan, thereby promising CAM simulation for all four terrestrial planets known to have substantial atmospheres. Studying these worlds together will provide calibration of Earth-centric studies of climate changes like global warming. It will also provide context for future searches for Earth-like planets orbiting other stars. In this work we will focus on Venus. The Venus atmosphere represents an extreme environment, strongly influenced by the greenhouse effect, and studying the Venus atmosphere may therefore be relevant to the possible future direction of the Earth's climate. The dynamical processes which occur in the Venusian atmosphere are not well understood, including the cause of the strong superrotation of the atmosphere, in which the planetary surface rotates with a period of around 243 days, but the atmosphere near the cloud tops has a rotational period of only around 4 days. We show the results of initial simulations of the dynamics of the Venus atmosphere, using a version of the CAM model with most of the Earth related processes, such as the cloud physics, removed. A simplified form of heating has been applied, similar to the thermal forcing approach used recently by other authors. We investigate the sensitivity of the model results to changes in the physics parameterizations we have used, including
Protein Dynamics in Organic Media at Varying Water Activity Studied by Molecular Dynamics Simulation
DEFF Research Database (Denmark)
Wedberg, Nils Hejle Rasmus Ingemar; Abildskov, Jens; Peters, Günther H.J.
2012-01-01
relies on determining the water content of the bulk phase and uses a combination of Kirkwood−Buff theory and free energy calculations to determine corresponding activity coefficients. We apply the method in a molecular dynamics study of Candida antarctica lipase B in pure water and the organic solvents......In nonaqueous enzymology, control of enzyme hydration is commonly approached by fixing the thermodynamic water activity of the medium. In this work, we present a strategy for evaluating the water activity in molecular dynamics simulations of proteins in water/organic solvent mixtures. The method...
IMPROVING MEDICAL EDUCATION: SIMULATING CHANGES IN PATIENT ANATOMY USING DYNAMIC HAPTIC FEEDBACK
Yovanoff, Mary; Pepley, David; Mirkin, Katelin; Moore, Jason; Han, David; Miller, Scarlett
2016-01-01
Virtual simulation is an emerging field in medical education. Research suggests that simulation reduces complication rates and improves learning gains for medical residents. One benefit of simulators is their allowance for more realistic and dynamic patient anatomies. While potentially useful throughout medical education, few studies have explored the impact of dynamic haptic simulators on medical training. In light of this research void, this study was developed to examine how a Dynamic-Hapt...
International Nuclear Information System (INIS)
Phillips, Carolyn L.; Anderson, Joshua A.; Glotzer, Sharon C.
2011-01-01
Highlights: → Molecular Dynamics codes implemented on GPUs have achieved two-order of magnitude computational accelerations. → Brownian Dynamics and Dissipative Particle Dynamics simulations require a large number of random numbers per time step. → We introduce a method for generating small batches of pseudorandom numbers distributed over many threads of calculations. → With this method, Dissipative Particle Dynamics is implemented on a GPU device without requiring thread-to-thread communication. - Abstract: Brownian Dynamics (BD), also known as Langevin Dynamics, and Dissipative Particle Dynamics (DPD) are implicit solvent methods commonly used in models of soft matter and biomolecular systems. The interaction of the numerous solvent particles with larger particles is coarse-grained as a Langevin thermostat is applied to individual particles or to particle pairs. The Langevin thermostat requires a pseudo-random number generator (PRNG) to generate the stochastic force applied to each particle or pair of neighboring particles during each time step in the integration of Newton's equations of motion. In a Single-Instruction-Multiple-Thread (SIMT) GPU parallel computing environment, small batches of random numbers must be generated over thousands of threads and millions of kernel calls. In this communication we introduce a one-PRNG-per-kernel-call-per-thread scheme, in which a micro-stream of pseudorandom numbers is generated in each thread and kernel call. These high quality, statistically robust micro-streams require no global memory for state storage, are more computationally efficient than other PRNG schemes in memory-bound kernels, and uniquely enable the DPD simulation method without requiring communication between threads.
Comportamento de programas maliciosos
André Ricardo Abed Grégio
2012-01-01
Resumo: Ataques envolvendo programas maliciosos (malware) s~ao a grande ameaça atual _a segurança de sistemas. Assim, a motivação desta tese _e estudar o comportamento de malware e como este pode ser utilizado para fins de defesa. O principal mecanismo utilizado para defesa contra malware _e o antivírus (AV). Embora seu propósito seja detectar (e remover) programas maliciosos de máquinas infectadas, os resultados desta detecção provêem, para usuários e analistas, informações insuficientes sob...
Simulation of a lipid monolayer using molecular dynamics
Kox, A. J.; Michels, J. P. J.; Wiegel, F. W.
1980-09-01
Numerical simulation is often a useful tool f or investigating the behaviour of complex systems with many degrees of freedom. Of the two major methods in this field, the Monte Carlo method and the molecular dynamics method, only the first has been applied to realistic models of lipid monolayers1-5. The term lipid monolayer is used here to describe a class of systems consisting of chain molecules on a liquid substrate, the characteristic properties of which can be summarized as follows. (1) The constituent molecules are amphipathic, that is they consist of a hydrophilic (polar) head group and one or more hydrophobic hydrocarbon chains. (2) Due to the amphipathic character of the molecules, the head groups are constrained to the plane of the substrate, whereas the tails are directed outwards from this plane. (3) The collective properties of the molecules are determined by their short-range repulsive and long-range attractive interactions and by the steric repulsion of the tails. We now present what we believe to be the first molecular dynamics simulation of a realistic model of a lipid monolayer. The model system, which has all three properties enumerated above, shows a first order phase transition from an ordered fluid-like state to a disordered, gas-like state.
Lattice gas simulations of dynamical geometry in two dimensions.
Klales, Anna; Cianci, Donato; Needell, Zachary; Meyer, David A; Love, Peter J
2010-10-01
We present a hydrodynamic lattice gas model for two-dimensional flows on curved surfaces with dynamical geometry. This model is an extension to two dimensions of the dynamical geometry lattice gas model previously studied in one dimension. We expand upon a variation of the two-dimensional flat space Frisch-Hasslacher-Pomeau (FHP) model created by Frisch [Phys. Rev. Lett. 56, 1505 (1986)] and independently by Wolfram, and modified by Boghosian [Philos. Trans. R. Soc. London, Ser. A 360, 333 (2002)]. We define a hydrodynamic lattice gas model on an arbitrary triangulation whose flat space limit is the FHP model. Rules that change the geometry are constructed using the Pachner moves, which alter the triangulation but not the topology. We present results on the growth of the number of triangles as a function of time. Simulations show that the number of triangles grows with time as t(1/3), in agreement with a mean-field prediction. We also present preliminary results on the distribution of curvature for a typical triangulation in these simulations.
Molecular dynamics simulation of irradiation damage in tungsten
Energy Technology Data Exchange (ETDEWEB)
Park, Na-Young [School of Advanced Materials Engineering, Kookmin University, Seoul 136-702 (Korea, Republic of); Kim, Yu-Chan; Seok, Hyun-Kwang; Han, Seung-Hee [Advanced Metals Research Center, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Cho, Seungyon [Reactor Engineering Team, Division of Research and Development, National Fusion Research Center, Daejeon 305-333 (Korea, Republic of); Cha, Pil-Ryung [School of Advanced Materials Engineering, Kookmin University, Seoul 136-702 (Korea, Republic of)], E-mail: cprdream@kookmin.ac.kr
2007-12-15
Molecular dynamics (MD) simulations have been performed for the radiation damage of tungsten using a modified Finnis-Sinclair type many-body interatomic potential. The interstitial defects and vacancies are distinguished by the Wigner-Seitz cell method and the types of the interstitial dumbbells are also identified by the azimuth and polar angles of dumbbell line vectors. It is observed that the number of interstitial defects and vacancies initially sharply increases and passing through the peak position, relaxes to the steady state for all PKA energies and that all residual interstitial dumbbells at the steady state are the <1 1 1>-oriented. Based on the variation of the orientation angles of dumbbells during the radiation damage simulation, it is found that the recombination of the <1 1 1>-oriented dumbbells with the vacancies is much faster than that of two other types of dumbbells and that the population of the <1 0 0> dumbbells is much larger than that of the <1 1 0> ones in spite of its higher formation energy, the reason of which is explained with the dynamics of the individual dumbbell.
Animated molecular dynamics simulations of hydrated Cesium-smectite interlayers
International Nuclear Information System (INIS)
Sutton, Rebecca; Sposito, Garrison
2002-01-01
Computer animation of center of mass coordinates obtained from 800 ps molecular dynamics simulations of Cs-smectite hydrates (1/3 and 2/3 water monolayers) provided information concerning the structure and dynamics of the interlayer region that could not be obtained through traditional analytical methods. Cs+ could be seen to jump from one attracting location near a layer charge site to the next, and water molecules were observed to migrate from the hydration shell of one ion to that of another. Neighboring ions maintained a partial hydration shell by sharing water molecules, such that a single water molecule hydrated two ions simultaneously for hundreds of picoseconds. The extent of this sharing interaction in the interlayer was determined by the smectite charge distribution, but increased with increasing water content. Water molecules also could be seen to interact directly with the mineral surface, entering its ditrigonal cavities to approach attracting charge sites. The frequency and duration of cavity habitation increased with increasing water content and tetrahedral charge, and was inhibited the more perpendicular was the structural hydroxyl orientation relative to the mineral surface. Competition between Cs+ and water molecules for surface sites was evident. These important cooperative and competitive features of interlayer molecular behavior were uniquely revealed by animation of an otherwise highly complex simulation output
Dynamic Simulation of Random Packing of Polydispersive Fine Particles
Ferraz, Carlos Handrey Araujo; Marques, Samuel Apolinário
2018-02-01
In this paper, we perform molecular dynamic (MD) simulations to study the two-dimensional packing process of both monosized and random size particles with radii ranging from 1.0 to 7.0 μm. The initial positions as well as the radii of five thousand fine particles were defined inside a rectangular box by using a random number generator. Both the translational and rotational movements of each particle were considered in the simulations. In order to deal with interacting fine particles, we take into account both the contact forces and the long-range dispersive forces. We account for normal and static/sliding tangential friction forces between particles and between particle and wall by means of a linear model approach, while the long-range dispersive forces are computed by using a Lennard-Jones-like potential. The packing processes were studied assuming different long-range interaction strengths. We carry out statistical calculations of the different quantities studied such as packing density, mean coordination number, kinetic energy, and radial distribution function as the system evolves over time. We find that the long-range dispersive forces can strongly influence the packing process dynamics as they might form large particle clusters, depending on the intensity of the long-range interaction strength.
The study of dynamics heterogeneity and slow down of silica by molecular dynamics simulation
International Nuclear Information System (INIS)
San, L T; Hung, P K; Hue, H V
2016-01-01
We have numerically studied the diffusion in silica liquids via the SiO x → SiO x±1 , OSi y → OSi y±1 reactions and coordination cells (CC). Five models with temperatures from 1000 to 3500 K have been constructed by molecular dynamics simulation. We reveal that the reactions happen not randomly in the space. In addition, the reactions correlated strongly with the mobility of CC atom. Further we examine the clustering of atoms having unbroken bonds and restored bonds. The time evolution of these clusters under temperature is also considered. The simulation shows that both slow down and dynamic heterogeneity (DH) is related not only to the percolation of restored-rigid clusters near glass transition but also to their long lifetime. (paper)
Architectural Large Constructed Environment. Modeling and Interaction Using Dynamic Simulations
Fiamma, P.
2011-09-01
How to use for the architectural design, the simulation coming from a large size data model? The topic is related to the phase coming usually after the acquisition of the data, during the construction of the model and especially after, when designers must have an interaction with the simulation, in order to develop and verify their idea. In the case of study, the concept of interaction includes the concept of real time "flows". The work develops contents and results that can be part of the large debate about the current connection between "architecture" and "movement". The focus of the work, is to realize a collaborative and participative virtual environment on which different specialist actors, client and final users can share knowledge, targets and constraints to better gain the aimed result. The goal is to have used a dynamic micro simulation digital resource that allows all the actors to explore the model in powerful and realistic way and to have a new type of interaction in a complex architectural scenario. On the one hand, the work represents a base of knowledge that can be implemented more and more; on the other hand the work represents a dealt to understand the large constructed architecture simulation as a way of life, a way of being in time and space. The architectural design before, and the architectural fact after, both happen in a sort of "Spatial Analysis System". The way is open to offer to this "system", knowledge and theories, that can support architectural design work for every application and scale. We think that the presented work represents a dealt to understand the large constructed architecture simulation as a way of life, a way of being in time and space. Architecture like a spatial configuration, that can be reconfigurable too through designing.
ARCHITECTURAL LARGE CONSTRUCTED ENVIRONMENT. MODELING AND INTERACTION USING DYNAMIC SIMULATIONS
Directory of Open Access Journals (Sweden)
P. Fiamma
2012-09-01
Full Text Available How to use for the architectural design, the simulation coming from a large size data model? The topic is related to the phase coming usually after the acquisition of the data, during the construction of the model and especially after, when designers must have an interaction with the simulation, in order to develop and verify their idea. In the case of study, the concept of interaction includes the concept of real time "flows". The work develops contents and results that can be part of the large debate about the current connection between "architecture" and "movement". The focus of the work, is to realize a collaborative and participative virtual environment on which different specialist actors, client and final users can share knowledge, targets and constraints to better gain the aimed result. The goal is to have used a dynamic micro simulation digital resource that allows all the actors to explore the model in powerful and realistic way and to have a new type of interaction in a complex architectural scenario. On the one hand, the work represents a base of knowledge that can be implemented more and more; on the other hand the work represents a dealt to understand the large constructed architecture simulation as a way of life, a way of being in time and space. The architectural design before, and the architectural fact after, both happen in a sort of "Spatial Analysis System". The way is open to offer to this "system", knowledge and theories, that can support architectural design work for every application and scale. We think that the presented work represents a dealt to understand the large constructed architecture simulation as a way of life, a way of being in time and space. Architecture like a spatial configuration, that can be reconfigurable too through designing.
Animated molecular dynamics simulations of hydrated caesium-smectite interlayers
Sutton, Rebecca; Sposito, Garrison
2002-01-01
Computer animation of center of mass coordinates obtained from 800 ps molecular dynamics simulations of Cs-smectite hydrates (1/3 and 2/3 water monolayers) provided information concerning the structure and dynamics of the interlayer region that could not be obtained through traditional simulation analysis methods. Cs+ formed inner sphere complexes with the mineral surface, and could be seen to jump from one attracting location near a layer charge site to the next, while water molecules were observed to migrate from the hydration shell of one ion to that of another. Neighboring ions maintained a partial hydration shell by sharing water molecules, such that a single water molecule hydrated two ions simultaneously for hundreds of picoseconds. Cs-montmorillonite hydrates featured the largest extent of this sharing interaction, because interlayer ions were able to inhabit positions near surface cavities as well as at their edges, close to oxygen triads. The greater positional freedom of Cs+ within the montmorillonite interlayer, a result of structural hydroxyl orientation and low tetrahedral charge, promoted the optimization of distances between cations and water molecules required for water sharing. Preference of Cs+ for locations near oxygen triads was observed within interlayer beidellite and hectorite. Water molecules also could be seen to interact directly with the mineral surface, entering its surface cavities to approach attracting charge sites and structural hydroxyls. With increasing water content, water molecules exhibited increased frequency and duration of both cavity habitation and water sharing interactions. Competition between Cs+ and water molecules for surface sites was evident. These important cooperative and competitive features of interlayer molecular behavior were uniquely revealed by animation of an otherwise highly complex simulation output.
Animated molecular dynamics simulations of hydrated caesium-smectite interlayers
Directory of Open Access Journals (Sweden)
Sposito Garrison
2002-09-01
Full Text Available Computer animation of center of mass coordinates obtained from 800 ps molecular dynamics simulations of Cs-smectite hydrates (1/3 and 2/3 water monolayers provided information concerning the structure and dynamics of the interlayer region that could not be obtained through traditional simulation analysis methods. Cs+ formed inner sphere complexes with the mineral surface, and could be seen to jump from one attracting location near a layer charge site to the next, while water molecules were observed to migrate from the hydration shell of one ion to that of another. Neighboring ions maintained a partial hydration shell by sharing water molecules, such that a single water molecule hydrated two ions simultaneously for hundreds of picoseconds. Cs-montmorillonite hydrates featured the largest extent of this sharing interaction, because interlayer ions were able to inhabit positions near surface cavities as well as at their edges, close to oxygen triads. The greater positional freedom of Cs+ within the montmorillonite interlayer, a result of structural hydroxyl orientation and low tetrahedral charge, promoted the optimization of distances between cations and water molecules required for water sharing. Preference of Cs+ for locations near oxygen triads was observed within interlayer beidellite and hectorite. Water molecules also could be seen to interact directly with the mineral surface, entering its surface cavities to approach attracting charge sites and structural hydroxyls. With increasing water content, water molecules exhibited increased frequency and duration of both cavity habitation and water sharing interactions. Competition between Cs+ and water molecules for surface sites was evident. These important cooperative and competitive features of interlayer molecular behavior were uniquely revealed by animation of an otherwise highly complex simulation output.
Statistical properties of dynamical systems – Simulation and abstract computation
International Nuclear Information System (INIS)
Galatolo, Stefano; Hoyrup, Mathieu; Rojas, Cristóbal
2012-01-01
Highlights: ► A survey on results about computation and computability on the statistical properties of dynamical systems. ► Computability and non-computability results for invariant measures. ► A short proof for the computability of the convergence speed of ergodic averages. ► A kind of “constructive” version of the pointwise ergodic theorem. - Abstract: We survey an area of recent development, relating dynamics to theoretical computer science. We discuss some aspects of the theoretical simulation and computation of the long term behavior of dynamical systems. We will focus on the statistical limiting behavior and invariant measures. We present a general method allowing the algorithmic approximation at any given accuracy of invariant measures. The method can be applied in many interesting cases, as we shall explain. On the other hand, we exhibit some examples where the algorithmic approximation of invariant measures is not possible. We also explain how it is possible to compute the speed of convergence of ergodic averages (when the system is known exactly) and how this entails the computation of arbitrarily good approximations of points of the space having typical statistical behaviour (a sort of constructive version of the pointwise ergodic theorem).
Extensions to Dynamic System Simulation of Fissile Solution Systems
Energy Technology Data Exchange (ETDEWEB)
Klein, Steven Karl [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bernardin, John David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kimpland, Robert Herbert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Spernjak, Dusan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-08-24
Previous reports have documented the results of applying dynamic system simulation (DSS) techniques to model a variety of fissile solution systems. The SUPO (Super Power) aqueous homogeneous reactor (AHR) was chosen as the benchmark for comparison of model results to experimental data for steadystate operation.1 Subsequently, DSS was applied to additional AHR to verify results obtained for SUPO and extend modeling to prompt critical excursions, ramp reactivity insertions of various magnitudes and rate, and boiling operations in SILENE and KEWB (Kinetic Experiment Water Boiler).2 Additional models for pressurized cores (HRE: Homogeneous Reactor Experiment), annular core geometries, and accelerator-driven subcritical systems (ADAHR) were developed and results reported.3 The focus of each of these models is core dynamics; neutron kinetics, thermal hydraulics, radiolytic gas generation and transport are coupled to examine the time-based evolution of these systems from start-up through transition to steady-state. A common characteristic of these models is the assumption that (a) core cooling system inlet temperature and flow and (b) plenum gas inlet pressure and flow are held constant; no external (to core) component operations that may result in dynamic change to these parameters are considered. This report discusses extension of models to include explicit reference to cooling structures and radiolytic gas handling. The accelerator-driven subcritical generic system model described in References 3 and 4 is used as a basis for this extension.
Probing into frictional contact dynamics by ultrasound and electrical simulations
Directory of Open Access Journals (Sweden)
Changshan Jin
2014-12-01
Full Text Available Friction arises in the interface of friction pair, and therefore, it is difficult to detect it. Ultrasonic means, as a NDT, is the correct alternative. This paper introduces a means of detecting dynamic contact and an interpretation of behaviors of dry friction. It has been determined that frictional surfaces have a specific property of dynamic response hardening (DRH. Dynamic response forces and oscillation arise during static–kinetic transition process. While the contact zone of sliding surfaces appears “hard” in motion, it appears “soft” at rest. Consequently, a separation of the surfaces occurs and the real area of contact is decreased as sliding velocity increases. This is the cause of F–v descent phenomenon. When the friction comes to a rest, the remaining process of DRH and micro-oscillation do not disappear instantaneously, instead they gradually return to their original static position. The contact area, therefore, is increased by rest period (F–T ascent characteristics. Based on analogies between a solid unit (η–m–k and an R-L-C circuit, the DRH is demonstrated by electrical simulations.
Observations of Crew Dynamics during Mars Analog Simulations
Cusack, Stacy L.
2010-01-01
This presentation reviews the crew dynamics during two simulations of Mars Missions. Using an analog of a Mars habitat in two locations, Flashline Mars Arctic Research Station (FMARS) which is located on Devon Island at 75 deg North in the Canadian Arctic, and the Mars Desert Research Station (MDRS) which is located in the south of Utah, the presentation examines the crew dynamics in relation to the leadership style of the commander of the mission. The difference in the interaction of the two crews were shown to be related to the leadership style and the age group in the crew. As much as possible the habitats and environment was to resemble a Mars outpost. The difference between the International Space Station and a Mars missions is reviewed. The leadership styles are reviewed and the contrast between the FMARS and the MDRS leadership styles were related to crew productivity, and the personal interactions between the crew members. It became evident that leadership styles and interpersonal skill had more affect on mission success and crew dynamics than other characteristics.
In situ structure and dynamics of DNA origami determined through molecular dynamics simulations.
Yoo, Jejoong; Aksimentiev, Aleksei
2013-12-10
The DNA origami method permits folding of long single-stranded DNA into complex 3D structures with subnanometer precision. Transmission electron microscopy, atomic force microscopy, and recently cryo-EM tomography have been used to characterize the properties of such DNA origami objects, however their microscopic structures and dynamics have remained unknown. Here, we report the results of all-atom molecular dynamics simulations that characterized the structural and mechanical properties of DNA origami objects in unprecedented microscopic detail. When simulated in an aqueous environment, the structures of DNA origami objects depart from their idealized targets as a result of steric, electrostatic, and solvent-mediated forces. Whereas the global structural features of such relaxed conformations conform to the target designs, local deformations are abundant and vary in magnitude along the structures. In contrast to their free-solution conformation, the Holliday junctions in the DNA origami structures adopt a left-handed antiparallel conformation. We find the DNA origami structures undergo considerable temporal fluctuations on both local and global scales. Analysis of such structural fluctuations reveals the local mechanical properties of the DNA origami objects. The lattice type of the structures considerably affects global mechanical properties such as bending rigidity. Our study demonstrates the potential of all-atom molecular dynamics simulations to play a considerable role in future development of the DNA origami field by providing accurate, quantitative assessment of local and global structural and mechanical properties of DNA origami objects.
Linear interfacial polymerization: theory and simulations with dissipative particle dynamics.
Berezkin, Anatoly V; Kudryavtsev, Yaroslav V
2014-11-21
Step-growth alternating interfacial polymerization between two miscible or immiscible monomer melts is investigated theoretically and by dissipative particle dynamics simulations. In both cases the kinetics for an initially bilayer system passes from the reaction to diffusion control. The polymer composed of immiscible monomers precipitates at the interface forming a film of nearly uniform density. It is demonstrated that the reaction proceeds in a narrow zone, which expands much slower than the whole film, so that newly formed polymer is extruded from the reaction zone. This concept of "reactive extrusion" is used to analytically predict the degree of polymerization and distribution of all components (monomers, polymer, and end groups) within the film in close agreement with the simulations. Increasing the comonomer incompatibility leads to thinner and more uniform films with the higher average degree of polymerization. The final product is considerably more polydisperse than expected for the homogeneous step-growth polymerization. The results extend the previous theoretical reports on interfacial polymerization and provide new insights into the internal film structure and polymer characteristics, which are important for membrane preparation, microencapsulation, and 3D printing technologies. A systematic way of mapping the simulation data onto laboratory scales is discussed.
Close-packed (polytypic) structures in molecular-dynamics simulations
International Nuclear Information System (INIS)
Moody, M.; Ray, J.R.; Rahman, A.
1987-01-01
Molecular-dynamics (MD) computer-simulation studies are used to study close-packed structures found in solid-phase atomic systems interacting via a Morse potential (parametrized to model Ni). A graphical display of particle positions [a (112-bar0) projection] within the parallelepiped forming the MD cell is illustrated. Such a graphic projection allows accurate, complete, and readily visual recognition of the stacking order of close-packed planes and is a much more effective way of identifying polytypes than a study of the pair-distribution function for the structure. These illustrations demonstrate the polytypic nature of previously and newly recognized MD close-packed structures. When assuming compatibility with periodic boundary conditions, as is conventional in MD, only certain polytypes are allowed for an MD simulation system. A discussion of compatibility between close-packed structures and the periodic boundary conditions is presented. The pair coordination numbers, geometrical structure-factor intensities, and potential-energy lattice sums are then calculated for some of these compatible structures. This paper concludes that, through careful consideration, a considerable variety of close-packed physical systems may be appropriately modeled with use of MD computer simulation. Conversely, proper interpretation of the data obtained during such studies may require awareness of the findings presented here
Molecular Dynamics Simulations of Slip on Curved Surfaces
Directory of Open Access Journals (Sweden)
Ross D.A.
2016-07-01
Full Text Available We present Molecular Dynamics (MD simulations of liquid water confined within nanoscale geometries, including slit-like and cylindrical graphitic pores. These equilibrium results are used for calculating friction coefficients, which in turn can be used to calculate slip lengths. The slip length is a material property independent of the fluid flow rate. It is therefore a better quantity for study than the fluid velocity at the wall, also known as the slip velocity. Once the slip length has been found as a function of surface curvature, it can be used to parameterise Lattice Boltzmann (LB simulations. These larger scale simulations are able to tell us about how fluid transport is affected by slip in complex geometries; not just limited to single pores. Applications include flow and transport in nano-porous engine valve deposits and gas shales. The friction coefficient is found to be a function of curvature and is higher for fluid on convex surfaces and lower for concave surfaces. Both concave and convex surfaces approach the same value of the friction coefficient, which is constant above some critical radius of curvature, here found to be 7.4 ± 2.9 nm. The constant value of the friction coefficient is 10,000 ± 600 kg m−2 s−1, which is equivalent to a slip length of approximately 67 ± 4 nm.
Molecular dynamics simulation and characterization of graphene-cellulose nanocomposites.
Rahman, R; Foster, J T; Haque, A
2013-06-27
The mechanical properties of graphene-cellulose (GC) nanocomposites are investigated using molecular dynamic (MD) simulations in this work. The influences of graphene concentrations, aspect ratios, and agglomeration on elastic constants and interfacial properties are reported. A polymer consistent force field (pcff) was used in the analysis. The GC nanocomposites system underwent NVT (constant number of atoms, volume, and temperature) and NPT (constant number of atoms, pressure, and temperature) ensemble with an applied uniform strain during the MD simulations. The stress-strain responses were evaluated for both randomly dispersed and stacked GC unit cell in order to study the effects of graphene concentrations, aspect ratio, and agglomeration on Young's modulus. The results indicate that Young's modulus of neat cellulose may be enhanced by incorporating graphene in the GC nanocomposites. It is observed that dispersed graphene shows a comparatively higher Young's modulus than the same with agglomerated graphene. The cohesive and pullout forces versus displacement data are reported under normal and shear modes. It is seen that both cohesive and pullout forces are enhanced for GC specimens with higher graphene aspect ratios due to enlarged surface/interfacial area. The MD simulation results show reasonable agreement with available experimental data.
Effective particle size from molecular dynamics simulations in fluids
Ju, Jianwei; Welch, Paul M.; Rasmussen, Kim Ø.; Redondo, Antonio; Vorobieff, Peter; Kober, Edward M.
2018-04-01
We report molecular dynamics simulations designed to investigate the effective size of colloidal particles suspended in a fluid in the vicinity of a rigid wall where all interactions are defined by smooth atomic potential functions. These simulations are used to assess how the behavior of this system at the atomistic length scale compares to continuum mechanics models. In order to determine the effective size of the particles, we calculate the solvent forces on spherical particles of different radii as a function of different positions near and overlapping with the atomistically defined wall and compare them to continuum models. This procedure also then determines the effective position of the wall. Our analysis is based solely on forces that the particles sense, ensuring self-consistency of the method. The simulations were carried out using both Weeks-Chandler-Andersen and modified Lennard-Jones (LJ) potentials to identify the different contributions of simple repulsion and van der Waals attractive forces. Upon correction for behavior arising the discreteness of the atomic system, the underlying continuum physics analysis appeared to be correct down to much less than the particle radius. For both particle types, the effective radius was found to be ˜ 0.75σ , where σ defines the length scale of the force interaction (the LJ diameter). The effective "hydrodynamic" radii determined by this means are distinct from commonly assumed values of 0.5σ and 1.0σ , but agree with a value developed from the atomistic analysis of the viscosity of such systems.
Hypervelocity impact properties of graphene armor via molecular dynamics simulations
Directory of Open Access Journals (Sweden)
Wang W.
2012-08-01
Full Text Available Hypervelocity impact properties of two different graphene armor systems are investigated using molecular dynamics simulations. One system is the so-called spaced armor which consists of a number of graphene plates spaced certain distance apart. Its response under normal impact of a spherical projectile is studied, focusing on the effect of the number of graphene monolayers per plate (denoted by n on the penetration resistance of the armor. We find that under normal impact by a spherical projectile the penetration resistance increases with decreasing number of monolayers per plate (n, and the best penetration resistance is achieved in the system with one graphene layer for each plate. Note that the monolayers in all the simulated multilayer graphene plates were AB-stacked. The second system being studied is the laminated copper/graphene composites with the graphene layers inside copper, on impact or back surface, or on both the impact and back surfaces. The simulation results show that under normal impact by a spherical projectile the laminated copper/graphene composite has much higher penetration resistance than the monolithic copper plate. The best efficiency is achieved when the graphene layers are on both the impact and back surfaces.
MOLECULAR DYNAMICS SIMULATIONS OF DISPLACEMENT CASCADES IN MOLYBDENUM
International Nuclear Information System (INIS)
Smith, Richard Whiting
2003-01-01
Molecular dynamics calculations have been employed to simulate displacement cascades in neutron irradiated Mo. A total of 90 simulations were conducted for PKA energies between 1 and 40 keV and temperatures from 298 to 923K. The results suggest very little effect of temperature on final defect count and configuration, but do display a temperature effect on peak defect generation prior to cascade collapse. Cascade efficiency, relative to the NRT model, is computed to lie between 1/4 and 1/3 in agreement with simulations performed on previous systems. There is a tendency for both interstitials and vacancies to cluster together following cascade collapse producing vacancy rich regions surrounded by interstitials. Although coming to rest in close proximity, the point defects comprising the clusters generally do not lie within the nearest neighbor positions of one another, except for the formation of dumbbell di-interstitials. Cascades produced at higher PKA energies (20 or 40 keV) exhibit the formation of subcascades
Effective particle size from molecular dynamics simulations in fluids
Ju, Jianwei; Welch, Paul M.; Rasmussen, Kim Ø.; Redondo, Antonio; Vorobieff, Peter; Kober, Edward M.
2017-12-01
We report molecular dynamics simulations designed to investigate the effective size of colloidal particles suspended in a fluid in the vicinity of a rigid wall where all interactions are defined by smooth atomic potential functions. These simulations are used to assess how the behavior of this system at the atomistic length scale compares to continuum mechanics models. In order to determine the effective size of the particles, we calculate the solvent forces on spherical particles of different radii as a function of different positions near and overlapping with the atomistically defined wall and compare them to continuum models. This procedure also then determines the effective position of the wall. Our analysis is based solely on forces that the particles sense, ensuring self-consistency of the method. The simulations were carried out using both Weeks-Chandler-Andersen and modified Lennard-Jones (LJ) potentials to identify the different contributions of simple repulsion and van der Waals attractive forces. Upon correction for behavior arising the discreteness of the atomic system, the underlying continuum physics analysis appeared to be correct down to much less than the particle radius. For both particle types, the effective radius was found to be ˜ 0.75σ , where σ defines the length scale of the force interaction (the LJ diameter). The effective "hydrodynamic" radii determined by this means are distinct from commonly assumed values of 0.5σ and 1.0σ , but agree with a value developed from the atomistic analysis of the viscosity of such systems.
Blob dynamics simulations for the TJ-K plasma
Energy Technology Data Exchange (ETDEWEB)
Rakha, Allah; Garland, Stephen; Ramisch, Mirko [Institut fuer Grenzflaechenverfahrenstechnik und Plasmatechnologie, Universitaet Stuttgart (Germany); Scott, Bruce [Max-Planck-Institut fuer Plasmaphysik, Euratom Association, D-85748 Garching (Germany)
2015-05-01
Radially propagating filaments elongated along magnetic field lines, known as blobs, are responsible for a major part of particle density and energy cross-field transport in the scrape-off layer (SOL) of fusion devices. Blobs, which are born in the vicinity of the last closed flux surface, are denser and hotter than the background SOL plasma, and can cause damage to plasma facing components. A good understanding of their trajectories is therefore important for the design of future fusion reactors. As the dynamics of blobs in the SOL is governed by nonlinear phenomena, and analytical models are insufficient for their detailed study, nonlinear simulations are necessary to gain a better understanding. First simulations of plasmas with TJ-K equivalent parameters have been carried out using the GEMR gyrofluid code (an energy conserving electromagnetic six field gyrofluid model with radially dependent geometry). The simulation results are compared with experimental data from the TJ-K Stellarator in order to improve the understanding of SOL transport.
Molecular dynamics simulations reveal disruptive self-assembly in dynamic peptide libraries.
Sasselli, I R; Moreira, I P; Ulijn, R V; Tuttle, T
2017-08-09
There is significant interest in the use of unmodified self-assembling peptides as building blocks for functional, supramolecular biomaterials. Recently, dynamic peptide libraries (DPLs) have been proposed to select self-assembling materials from dynamically exchanging mixtures of dipeptide inputs in the presence of a nonspecific protease enzyme, where peptide sequences are selected and amplified based on their self-assembling tendencies. It was shown that the results of the DPL of mixed sequences (e.g. starting from a mixture of dileucine, L 2 , and diphenylalanine, F 2 ) did not give the same outcome as the separate L 2 and F 2 libraries (which give rise to the formation of F 6 and L 6 ), implying that interactions between these sequences could disrupt the self-assembly. In this study, coarse grained molecular dynamics (CG-MD) simulations are used to understand the DPL results for F 2 , L 2 and mixed libraries. CG-MD simulations demonstrate that interactions between precursors can cause the low formation yield of hexapeptides in the mixtures of dipeptides and show that this ability to disrupt is influenced by the concentration of the different species in the DPL. The disrupting self-assembly effect between the species in the DPL is an important effect to take into account in dynamic combinatorial chemistry as it affects the possible discovery of new materials. This work shows that combined computational and experimental screening can be used complementarily and in combination providing a powerful means to discover new supramolecular peptide nanostructures.
Non-equilibrium dynamics in disordered materials: Ab initio molecular dynamics simulations
International Nuclear Information System (INIS)
Ohmura, Satoshi; Nagaya, Kiyonobu; Yao, Makoto; Shimojo, Fuyuki
2015-01-01
The dynamic properties of liquid B 2 O 3 under pressure and highly-charged bromophenol molecule are studied by using molecular dynamics (MD) simulations based on density functional theory (DFT). Diffusion properties of covalent liquids under high pressure are very interesting in the sense that they show unexpected pressure dependence. It is found from our simulation that the magnitude relation of diffusion coefficients for boron and oxygen in liquid B 2 O 3 shows the anomalous pressure dependence. The simulation clarified the microscopic origin of the anomalous diffusion properties. Our simulation also reveals the dissociation mechanism in the coulomb explosion of the highly-charged bromophenol molecule. When the charge state n is 6, hydrogen atom in the hydroxyl group dissociates at times shorter than 20 fs while all hydrogen atoms dissociate when n is 8. After the hydrogen dissociation, the carbon ring breaks at about 100 fs. There is also a difference on the mechanism of the ring breaking depending on charge states, in which the ring breaks with expanding (n = 6) or shrink (n = 8)
Programa De Educacion Interamericana.
Texas A and M Univ., College Station.
PROGRAMA DE EDUCACION INTERAMERICANA is a project of Texas A&M University in liaison with the Bryan Independent School District. The objectives of the program are to improve the knowledge and understanding of Texas teachers and students about other American cultures. Study teams of educators research and, in midsummer, travel to selected…
Studies of climate dynamics with innovative global-model simulations
Shi, Xiaoming
Climate simulations with different degrees of idealization are essential for the development of our understanding of the climate system. Studies in this dissertation employ carefully designed global-model simulations for the goal of gaining theoretical and conceptual insights into some problems of climate dynamics. Firstly, global warming-induced changes in extreme precipitation are investigated using a global climate model with idealized geography. The precipitation changes over an idealized north-south mid-latitude mountain barrier at the western margin of an otherwise flat continent are studied. The intensity of the 40 most intense events on the western slopes increases by about ~4°C of surface warming. In contrast, the intensity of the top 40 events on the eastern mountain slopes increases at about ~6°C. This higher sensitivity is due to enhanced ascent during the eastern-slope events, which can be explained in terms of linear mountain-wave theory relating to global warming-induced changes in the upper-tropospheric static stability and the tropopause level. Dominated by different dynamical factors, changes in the intensity of extreme precipitation events over plains and oceans might differ from changes over mountains. So the response of extreme precipitation over mountains and flat areas are further compared using larger data sets of simulated extreme events over the two types of surfaces. It is found that the sensitivity of extreme precipitation to increases in global mean surface temperature is 3% per °C lower over mountains than over the oceans or the plains. The difference in sensitivity among these regions is not due to thermodynamic effects, but rather to differences between the gravity-wave dynamics governing vertical velocities over the mountains and the cyclone dynamics governing vertical motions over the oceans and plains. The strengthening of latent heating in the storms over oceans and plains leads to stronger ascent in the warming climate
Molecular dynamics simulation of displacement cascades in iron-alpha
International Nuclear Information System (INIS)
Vascon, R.
1997-01-01
Radiation damage by neutrons or ions in bcc iron has been investigated by molecular dynamics simulations using an embedded atom type many-body potential (EAM). Displacement cascades with energies of 1 to 30 keV were generated in the microcanonical system where the number of atoms (up to 1.5 million) is chosen high enough to compensate the fact that the dissipation of energy is not taken into account in our model. The defect number at the end of cascade lifetime was found to be 60 percent of the NRT standard value. This tendency is in good agreement with experimental data. However, compared with other simulations in iron, we found significant differences in the defect production and distribution. The comparison with results obtained form simulations of cascades in other metals, leads on the one hand to a higher value of the defect number in bcc iron than in fcc metals like copper or nickel, and on the other hand to a ratio, between the number of replacements and the number of defects, lower in iron ( 100). We observed the transient melting of the core of the cascade during simulations. We showed that a higher value of the initial iron crystal temperature, as the mass difference between the components of an artificial binary alloy Fe-X(X=Al,Sb,Au,U) both produce a 'cascade effect': a decrease of the number of defects and an increase of the number of replacements. We also showed up the quasi-channeling of some atoms in high energy cascades. They are at the origin of sub-cascades formation; as a result they induce an opposite effect to the 'cascade effect'. (author)
A particle based simulation model for glacier dynamics
Directory of Open Access Journals (Sweden)
J. A. Åström
2013-10-01
Full Text Available A particle-based computer simulation model was developed for investigating the dynamics of glaciers. In the model, large ice bodies are made of discrete elastic particles which are bound together by massless elastic beams. These beams can break, which induces brittle behaviour. At loads below fracture, beams may also break and reform with small probabilities to incorporate slowly deforming viscous behaviour in the model. This model has the advantage that it can simulate important physical processes such as ice calving and fracturing in a more realistic way than traditional continuum models. For benchmarking purposes the deformation of an ice block on a slip-free surface was compared to that of a similar block simulated with a Finite Element full-Stokes continuum model. Two simulations were performed: (1 calving of an ice block partially supported in water, similar to a grounded marine glacier terminus, and (2 fracturing of an ice block on an inclined plane of varying basal friction, which could represent transition to fast flow or surging. Despite several approximations, including restriction to two-dimensions and simplified water-ice interaction, the model was able to reproduce the size distributions of the debris observed in calving, which may be approximated by universal scaling laws. On a moderate slope, a large ice block was stable and quiescent as long as there was enough of friction against the substrate. For a critical length of frictional contact, global sliding began, and the model block disintegrated in a manner suggestive of a surging glacier. In this case the fragment size distribution produced was typical of a grinding process.
Directory of Open Access Journals (Sweden)
Linshuang Liu
2012-01-01
Full Text Available To investigate sludge drying process, a numerical simulation based on Brownian dynamic for the floc with uncharged and charged particles was conducted. The Langevin equation is used as dynamical equation for tracking each particle in a floc. An initial condition and periodic boundary condition which well conformed to reality is used for calculating the floc growth process. Each cell consists of 1000 primary particles with diameter 0.1 ∼ 4 μm. Floc growth is related to the thermal force and the electrostatic force. The electrostatic force on a particle in the simulation cell is considered as the sum of electrostatic forces from other particles in the original cell and its replicate cells. It is assumed that flocs are charged with precharged primary particles in dispersion system by ionization. By the analysis of the simulation figures, on one hand, the effects of initial particle size and sludge density on floc smashing time, floc radius of gyration, and fractal dimension were discussed. On the other hand, the effects of ionization on floc smashing time and floc structure were presented. This study has important practical value in the high-turbidity water treatment, especially for sludge drying.
Shekhar, Adarsh
Nanotechnology is becoming increasingly important with the continuing advances in experimental techniques. As researchers around the world are trying to expand the current understanding of the behavior of materials at the atomistic scale, the limited resolution of equipment, both in terms of time and space, act as roadblocks to a comprehensive study. Numerical methods, in general and molecular dynamics, in particular act as able compliment to the experiments in our quest for understanding material behavior. In this research work, large scale molecular dynamics simulations to gain insight into the mechano-chemical behavior under extreme conditions of a variety of systems with many real world applications. The body of this work is divided into three parts, each covering a particular system: 1) Aggregates of aluminum nanoparticles are good solid fuel due to high flame propagation rates. Multi-million atom molecular dynamics simulations reveal the mechanism underlying higher reaction rate in a chain of aluminum nanoparticles as compared to an isolated nanoparticle. This is due to the penetration of hot atoms from reacting nanoparticles to an adjacent, unreacted nanoparticle, which brings in external heat and initiates exothermic oxidation reactions. 2) Cavitation bubbles readily occur in fluids subjected to rapid changes in pressure. We use billion-atom reactive molecular dynamics simulations on a 163,840-processor BlueGene/P supercomputer to investigate chemical and mechanical damages caused by shock-induced collapse of nanobubbles in water near amorphous silica. Collapse of an empty nanobubble generates high-speed nanojet, resulting in the formation of a pit on the surface. The pit contains a large number of silanol groups and its volume is found to be directly proportional to the volume of the nanobubble. The gas-filled bubbles undergo partial collapse and consequently the damage on the silica surface is mitigated. 3) The structure and dynamics of water confined in
Dynamic modeling and simulation of trailer with compliance steering system
Directory of Open Access Journals (Sweden)
Qingyun Wang
2017-01-01
Full Text Available Stability of a vehicle and tire wear is affected by the movement inference between the tractor and the trailer when the trailer is turning. Therefore, to solve the problem, Compliant Steering (CS system is used. The system makes the rear-wheel of the trailer steer. After establishing a dynamic model of the trailer and the CS system, the simulation result shows that the system has a smaller lateral force. This smaller force at the hinge point indicates movement inference is reduced and motion response is far better. Furthermore, this paper contains the analysis of the influence of the key parameters of CS system and the speed on the moving characteristics of the trailer.
Computational Fluid Dynamics Simulation of Fluidized Bed Polymerization Reactors
Energy Technology Data Exchange (ETDEWEB)
Fan, Rong [Iowa State Univ., Ames, IA (United States)
2006-01-01
, monovariate population balance, bivariate population balance, aggregation and breakage equation and DQMOM-Multi-Fluid model are described. In the last section of Chapter 3, numerical methods involved in the multi-fluid model and time-splitting method are presented. Chapter 4 is based on a paper about application of DQMOM to polydisperse gas-solid fluidized beds. Results for a constant aggregation and breakage kernel and a kernel developed from kinetic theory are shown. The effect of the aggregation success factor and the fragment distribution function are investigated. Chapter 5 shows the work on validation of mixing and segregation phenomena in gas-solid fluidized beds with a binary mixture or a continuous size distribution. The simulation results are compared with available experiment data and discrete-particle simulation. Chapter 6 presents the project with Univation Technologies on CFD simulation of a Polyethylene pilot-scale FB reactor, The fluid dynamics, mass/heat transfer and particle size distribution are investigated through CFD simulation and validated with available experimental data. The conclusions of this study and future work are discussed in Chapter 7.
Simulating Smoke Filling in Big Halls by Computational Fluid Dynamics
Directory of Open Access Journals (Sweden)
W. K. Chow
2011-01-01
Full Text Available Many tall halls of big space volume were built and, to be built in many construction projects in the Far East, particularly Mainland China, Hong Kong, and Taiwan. Smoke is identified to be the key hazard to handle. Consequently, smoke exhaust systems are specified in the fire code in those areas. An update on applying Computational Fluid Dynamics (CFD in smoke exhaust design will be presented in this paper. Key points to note in CFD simulations on smoke filling due to a fire in a big hall will be discussed. Mathematical aspects concerning of discretization of partial differential equations and algorithms for solving the velocity-pressure linked equations are briefly outlined. Results predicted by CFD with different free boundary conditions are compared with those on room fire tests. Standards on grid size, relaxation factors, convergence criteria, and false diffusion should be set up for numerical experiments with CFD.
Dynamic simulation of a direct carbonate fuel cell power plant
Energy Technology Data Exchange (ETDEWEB)
Ernest, J.B. [Fluor Daniel, Inc., Irvine, CA (United States); Ghezel-Ayagh, H.; Kush, A.K. [Fuel Cell Engineering, Danbury, CT (United States)
1996-12-31
Fuel Cell Engineering Corporation (FCE) is commercializing a 2.85 MW Direct carbonate Fuel Cell (DFC) power plant. The commercialization sequence has already progressed through construction and operation of the first commercial-scale DFC power plant on a U.S. electric utility, the 2 MW Santa Clara Demonstration Project (SCDP), and the completion of the early phases of a Commercial Plant design. A 400 kW fuel cell stack Test Facility is being built at Energy Research Corporation (ERC), FCE`s parent company, which will be capable of testing commercial-sized fuel cell stacks in an integrated plant configuration. Fluor Daniel, Inc. provided engineering, procurement, and construction services for SCDP and has jointly developed the Commercial Plant design with FCE, focusing on the balance-of-plant (BOP) equipment outside of the fuel cell modules. This paper provides a brief orientation to the dynamic simulation of a fuel cell power plant and the benefits offered.
Dynamic Modeling and Simulation of an Underactuated System
International Nuclear Information System (INIS)
Duarte Madrid, Juan Libardo; Querubín, E González; Henao, P A Ospina
2017-01-01
In this paper, is used the Lagrangian classical mechanics for modeling the dynamics of an underactuated system, specifically a rotary inverted pendulum that will have two equations of motion. A basic design of the system is proposed in SOLIDWORKS 3D CAD software, which based on the material and dimensions of the model provides some physical variables necessary for modeling. In order to verify the results obtained, a comparison the CAD model simulated in the environment SimMechanics of MATLAB software with the mathematical model who was consisting of Euler-Lagrange’s equations implemented in Simulink MATLAB, solved with the ODE23tb method, included in the MATLAB libraries for the solution of systems of equations of the type and order obtained. This article also has a topological analysis of pendulum trajectories through a phase space diagram, which allows the identification of stable and unstable regions of the system. (paper)
Molecular dynamics simulations on the melting of gold nanoparticles
Qiao, Zhiwei; Feng, Haijun; Zhou, Jian
2014-01-01
Molecular dynamics is employed to study the melting of bulk gold and gold nanoparticles. PCFF, Sutton-Chen and COMPASS force fields are adopted to study the melting point of bulk gold and we find out that the Sutton-Chen force field is the most accurate model in predicting the melting point of bulk gold. Consequently, the Sutton-Chen force field is applied to study the melting points of spherical gold nanoparticles with different diameters. Variations of diffusion coefficient, potential energy and translational order parameter with temperature are analyzed. The simulated melting points of gold nanoparticles are between 615∼1115 K, which are much lower than that of bulk gold (1336 K). As the diameter of gold nanoparticle drops, the melting point also descends. The melting mechanism is also analyzed for gold nanoparticles.
First principles centroid molecular dynamics simulation of high pressure ices
Ikeda, Takashi
2018-03-01
The nuclear quantum effects (NQEs) on the structural, elastic, electronic, and vibrational properties of high pressure ices (HPIs) VIII, VII, and X at 270 K were investigated via first principles centroid molecular dynamics (CMD). Our simulations clearly show that even at relatively high temperature of 270 K, the NQEs play a definite role in the pressure-induced proton order (ice VIII)-disorder (ice VII) transition occurring at ˜30 GPa in our H2O ice and the subsequent transition to the symmetric phase ice X suggested to occur at ˜80 GPa. The internal pressure computed at constant NVT conditions shows that the NQEs manifest themselves in the equation of state of HPIs. Our employed approach based on first principles CMD for computing vibrational spectra is proved to be able to reproduce well the overall features of the measured infrared and Raman spectra.
Aggregation of small peptides studied by molecular dynamics simulations.
Flöck, Dagmar; Rossetti, Giulia; Daidone, Isabella; Amadei, Andrea; Di Nola, Alfredo
2006-12-01
Peptides and proteins tend to aggregate under appropriate conditions. The amyloid fibrils that are ubiquitously found among these structures are associated with major human diseases like Alzheimer's disease, type II diabetes, and various prion diseases. Lately, it has been observed that even very short peptides like tetra and pentapeptides can form ordered amyloid structures. Here, we present aggregation studies of three such small polypeptide systems, namely, the two amyloidogenic peptides DFNKF and FF, and a control (nonamyloidogenic) one, the AGAIL. The respective aggregation process is studied by all-atom Molecular Dynamics simulations, which allow to shed light on the fine details of the association and aggregation process. Our analysis suggests that naturally aggregating systems exhibit significantly diverse overall cluster shape properties and specific intermolecular interactions. Additional analysis was also performed on the previously studied NFGAIL system. (c) 2006 Wiley-Liss, Inc.
Molecular dynamics simulation of annealed ZnO surfaces
Energy Technology Data Exchange (ETDEWEB)
Min, Tjun Kit; Yoon, Tiem Leong [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Lim, Thong Leng [Faculty of Engineering and Technology, Multimedia University, Melaka Campus, 75450 Melaka (Malaysia)
2015-04-24
The effect of thermally annealing a slab of wurtzite ZnO, terminated by two surfaces, (0001) (which is oxygen-terminated) and (0001{sup ¯}) (which is Zn-terminated), is investigated via molecular dynamics simulation by using reactive force field (ReaxFF). We found that upon heating beyond a threshold temperature of ∼700 K, surface oxygen atoms begin to sublimate from the (0001) surface. The ratio of oxygen leaving the surface at a given temperature increases as the heating temperature increases. A range of phenomena occurring at the atomic level on the (0001) surface has also been explored, such as formation of oxygen dimers on the surface and evolution of partial charge distribution in the slab during the annealing process. It was found that the partial charge distribution as a function of the depth from the surface undergoes a qualitative change when the annealing temperature is above the threshold temperature.
Molecular Dynamics Simulation Study of Transport Properties of Diatomic Gases
International Nuclear Information System (INIS)
Lee, Song Hi; Kim, Ja Hun
2014-01-01
In this paper, we report thermodynamic and transport properties (diffusion coefficient, viscosity, and thermal conductivity) of diatomic gases (H 2 , N 2 , O 2 , and Cl 2 ) at 273.15 K and 1.00 atm by performing molecular dynamics simulations using Lennard-Jones intermolecular potential and modified Green-Kubo formulas. The results of self-diffusion coefficients of diatomic gases obtained from velocity auto-correlation functions by Green-Kubo relation are in good agreement with those obtained from mean square displacements by Einstein relation. While the results for viscosities of diatomic gases obtained from stress auto-correlation functions underestimate the experimental results, those for thermal conductivities obtained from heat flux autocorrelation functions overestimate the experimental data except H 2
Molecular dynamics simulation of hydrogen isotope injection into graphene
International Nuclear Information System (INIS)
Nakamura, Hiroaki; Takayama, Arimichi; Ito, Atsushi
2007-07-01
We reveal the hydrogen isotope effect of three chemical reactions, i.e., the reflection, the absorption and the penetration ratios, by classical molecular dynamics simulation with a modified Brenner's reactive empirical bond order (REBO) potential. We find that the reflection by π-electron does not depend on the mass of the incident isotope, but the peak of the reflection by nuclear moves to higher side of incident energy. In addition to the reflection, we also find that the absorption ratio in the positive z side of the graphene becomes larger, as the mass of the incident isotope becomes larger. On the other hand, the absorption ratio in the negative z side of the graphene becomes smaller. Last, it is found that the penetration ratio does not depend on the mass of the incident isotope because the graphene potential is not affected by the mass. (author)
Interactions in charged colloidal suspensions: A molecular dynamics simulation study
Padidela, Uday Kumar; Behera, Raghu Nath
2017-07-01
Colloidal suspensions are extensively used in everyday life and find several applications in the pharmaceutical, chemical, food industries, etc. We present the classical molecular dynamics simulation results of the structural and transport properties of charged colloidal suspensions as a function of its size, charge and concentration. The system is viewed as a two-component (colloids and counterions) primitive model consisting of spherical colloid particle (macroion) and the counterions (micro-particles), which are treated explicitly. The solvent is treated as dielectric continuum. A systematic trend in the radial distribution functions g(r), potential of mean force W(r), different thermodynamic properties and diffusion coefficients is obtained as a function of colloid charge, size and concentration. An attractive minimum in W(r) is obtained at short interparticle distance.
Dynamic Modeling and Simulation of an Underactuated System
Libardo Duarte Madrid, Juan; Ospina Henao, P. A.; González Querubín, E.
2017-06-01
In this paper, is used the Lagrangian classical mechanics for modeling the dynamics of an underactuated system, specifically a rotary inverted pendulum that will have two equations of motion. A basic design of the system is proposed in SOLIDWORKS 3D CAD software, which based on the material and dimensions of the model provides some physical variables necessary for modeling. In order to verify the results obtained, a comparison the CAD model simulated in the environment SimMechanics of MATLAB software with the mathematical model who was consisting of Euler-Lagrange’s equations implemented in Simulink MATLAB, solved with the ODE23tb method, included in the MATLAB libraries for the solution of systems of equations of the type and order obtained. This article also has a topological analysis of pendulum trajectories through a phase space diagram, which allows the identification of stable and unstable regions of the system.
Molecular dynamic simulations of the sputtering of multilayer organic systems
Postawa, Z; Piaskowy, J; Krantzman, K; Winograd, N; Garrison, B J
2003-01-01
Sputtering of organic overlayers has been modeled using molecular dynamics computer simulations. The investigated systems are composed of benzene molecules condensed into one, two and three layers on an Ag left brace 1 1 1 right brace surface. The formed organic overlayers were bombarded with 4 keV Ar projectiles at normal incidence. The development of the collision cascade in the organic overlayer was investigated. The sputtering yield, mass, internal and kinetic energy distributions of ejected particles have been analyzed as a function of the thickness of the organic layer. The results show that all emission characteristics are sensitive to the variation of layer thickness. Although most of the ejected intact benzene molecules originate from the topmost layer, the emission of particles located initially in second and third layers is significant. The analysis indicates that the metallic substrate plays a dominant role in the ejection of intact organic molecules.
Acidity constants from DFT-based molecular dynamics simulations
International Nuclear Information System (INIS)
Sulpizi, Marialore; Sprik, Michiel
2010-01-01
In this contribution we review our recently developed method for the calculation of acidity constants from density functional theory based molecular dynamics simulations. The method is based on a half reaction scheme in which protons are formally transferred from solution to the gas phase. The corresponding deprotonation free energies are computed from the vertical energy gaps for insertion or removal of protons. Combined to full proton transfer reactions, the deprotonation energies can be used to estimate relative acidity constants and also the Broensted pK a when the deprotonation free energy of a hydronium ion is used as a reference. We verified the method by investigating a series of organic and inorganic acids and bases spanning a wide range of pK a values (20 units). The thermochemical corrections for the biasing potentials assisting and directing the insertion are discussed in some detail.
Nath, S. K. Deb
2017-10-01
Using molecular dynamics simulation, tension and bending tests of a Fe nanopillar are carried out to obtain its Young's modulus and yield strength. Then the comparative study of Young's modulus and yield strength of a Fe nanopillar under bending and tension are carried out varying its diameter in the range of diameter 1-15nm. We find out the reasons why bending Young's modulus and yield strength of a Fe nanopillar are higher than those of tension Young's modulus and yield strength of a Fe nanopillar. Using the mobility parameters of bulk Fe from the experimental study [N. Urabe and J. Weertman, Materials Science and Engineering 18, 41 (1975)], its temperature dependent stress-strain relationship, yield strength and strain hardening modulus are obtained from the dislocation dynamics simulations. Strain rate dependent yield strength and strain hardening modulus of bulk Fe pillars under tension are studied. Temperature dependent creep behaviors of bulk Fe pillars under tension are also studied. To verify the soundness of the present dislocation dynamics studies of the mechanical properties of bulk Fe pillars under tension, the stress vs. strain relationship and dislocation density vs. strain of bulk Fe pillars obtained by us are compared with the published results obtained by S. Queyreau, G. Monnet, and B. Devincre, International Journal of Plasticity 25, 361 (2009).
Skarmoutsos, Ioannis; Samios, Jannis
2006-11-02
Molecular dynamics atomistic simulations in the canonical ensemble (NVT-MD) have been used to investigate the "Local Density Inhomogeneities and their Dynamics" in pure supercritical water. The simulations were carried out along a near-critical isotherm (Tr = T/Tc = 1.03) and for a wide range of densities below and above the critical one (0.2 rho(c) - 2.0 rho(c)). The results obtained reveal the existence of significant local density augmentation effects, which are found to be sufficiently larger in comparison to those reported for nonassociated fluids. The time evolution of the local density distribution around each molecule was studied in terms of the appropriate time correlation functions C(Delta)rhol(t). It is found that the shape of these functions changes significantly by increasing the density of the fluid. Finally, the local density reorganization times for the first and second coordination shell derived from these correlations exhibit a decreasing behavior by increasing the density of the system, signifying the density effect upon the dynamics of the local environment around each molecule.
Unified Series-Shunt Compensator for PQ Analysis using Dynamic Phasor Modeling and EMT Simulation
Hannan, M. A.; Mohamed, Azah; Hussain, Aini
2010-06-01
Modeling of unified series-shunt compensator (USSC) and its PQ analysis of a simple test system is simulated based on dynamic phasor model and EMT program. Its aim is to investigate the overall efficiency of USSC for power quality (PQ) analysis and results will be compared with EMTP like simulation. The dynamic phasor model is implemented in Matlab/Simulink toolbox where as the EMT model simulation of the USSC uses the PSCAD/EMTDC software. Credible solutions to the PQ problems on the distribution network have been analyzed using dynamic phasor model and EMT model simulation techniques. Simulation results of the USSC dynamic phasor model including the system makes a perfect agreement with the detailed time-domain EMTP like PSCAD/EMTDC simulation. It is found that the dynamic behavior of USSC phasor model have very good potential application in analyzing overall PQ issues, faster in speed and higher accuracy as compared with PSCAD/EMTDC simulation.
A hybrid computer simulation of reactor spatial dynamics
International Nuclear Information System (INIS)
Hinds, H.W.
1977-08-01
The partial differential equations describing the one-speed spatial dynamics of thermal neutron reactors were converted to a set of ordinary differential equations, using finite-difference approximations for the spatial derivatives. The variables were then normalized to a steady-state reference condition in a novel manner, to yield an equation set particularly suitable for implementation on a hybrid computer. One Applied Dynamics AD/FIVE analog-computer console is capable of solving, all in parallel, up to 30 simultaneous differential equations. This corresponds roughly to eight reactor nodes, each with two active delayed-neutron groups. To improve accuracy, an increase in the number of nodes is usually required. Using the Hsu-Howe multiplexing technique, an 8-node, one-dimensional module was switched back and forth between the left and right halves of the reactor, to simulate a 16-node model, also in one dimension. These two versions (8 or 16 nodes) of the model were tested on benchmark problems of the loss-of-coolant type, which were also solved using the digital code FORSIM, with two energy groups and 26 nodes. Good agreement was obtained between the two solution techniques. (author)
Kinetic distance and kinetic maps from molecular dynamics simulation.
Noé, Frank; Clementi, Cecilia
2015-10-13
Characterizing macromolecular kinetics from molecular dynamics (MD) simulations requires a distance metric that can distinguish slowly interconverting states. Here, we build upon diffusion map theory and define a kinetic distance metric for irreducible Markov processes that quantifies how slowly molecular conformations interconvert. The kinetic distance can be computed given a model that approximates the eigenvalues and eigenvectors (reaction coordinates) of the MD Markov operator. Here, we employ the time-lagged independent component analysis (TICA). The TICA components can be scaled to provide a kinetic map in which the Euclidean distance corresponds to the kinetic distance. As a result, the question of how many TICA dimensions should be kept in a dimensionality reduction approach becomes obsolete, and one parameter less needs to be specified in the kinetic model construction. We demonstrate the approach using TICA and Markov state model (MSM) analyses for illustrative models, protein conformation dynamics in bovine pancreatic trypsin inhibitor and protein-inhibitor association in trypsin and benzamidine. We find that the total kinetic variance (TKV) is an excellent indicator of model quality and can be used to rank different input feature sets.
Structuring and sampling complex conformation space: Weighted ensemble dynamics simulations.
Gong, Linchen; Zhou, Xin
2009-08-01
Based on multiple simulation trajectories, which started from dispersively selected initial conformations, the weighted ensemble dynamics method is designed to robustly and systematically explore the hierarchical structure of complex conformational space through the spectral analysis of the variance-covariance matrix of trajectory-mapped vectors. The nondegenerate ground state of the matrix directly predicts the ergodicity of simulation data. The ground state could be adopted as statistical weights of trajectories to correctly reconstruct the equilibrium properties, even though each trajectory only explores part of the conformational space. Otherwise, the degree of degeneracy simply gives the number of metastable states of the system under the time scale of individual trajectory. Manipulation on the eigenvectors leads to the classification of trajectories into nontransition ones within the states and transition ones between them. The transition states may also be predicted without a priori knowledge of the system. We demonstrate the application of the general method both to the system with a one-dimensional glassy potential and with the one of alanine dipeptide in explicit solvent.
Numerical Simulations for Large Deformation of Geomaterials Using Molecular Dynamics
Directory of Open Access Journals (Sweden)
Ziyang Zhao
2018-01-01
Full Text Available From the microperspective, this paper presents a model based on a new type of noncontinuous theoretical mechanical method, molecular dynamics (MD, to simulate the typical soil granular flow. The Hertzian friction formula and viscous damping force are introduced in the MD governing equations to model the granular flow. To show the validity of the proposed approach, a benchmark problem of 2D viscous material flow is simulated. The calculated final flow runout distance of the viscous material agrees well with the result of constrained interpolated profile (CIP method as reported in the literature. Numerical modeling of the propagation of the collapse of three-dimensional axisymmetric sand columns is performed by the application of MD models. Comparison of the MD computational runout distance and the obtained distance by experiment shows a high degree of similarity. This indicates that the proposed MD model can accurately represent the evolution of the granular flow. The model developed may thus find applications in various problems involving dense granular flow and large deformations, such as landslides and debris flow. It provides a means for predicting fluidization characteristics of soil large deformation flow disasters and for identification and design of appropriate protective measures.
Thermal Transport in Fullerene Derivatives Using Molecular Dynamics Simulations
Chen, Liang; Wang, Xiaojia; Kumar, Satish
2015-08-01
In order to study the effects of alkyl chain on the thermal properties of fullerene derivatives, we perform molecular dynamics (MD) simulations to predict the thermal conductivity of fullerene (C60) and its derivative phenyl-C61-butyric acid methyl ester (PCBM). The results of non-equilibrium MD simulations show a length-dependent thermal conductivity for C60 but not for PCBM. The thermal conductivity of C60, obtained from the linear extrapolation of inverse conductivity vs. inverse length curve, is 0.2 W m-1 K-1 at room temperature, while the thermal conductivity of PCBM saturates at ~0.075 W m-1 K-1 around 20 nm. The different length-dependence behavior of thermal conductivity indicates that the long-wavelength and low-frequency phonons have large contribution to the thermal conduction in C60. The decrease in thermal conductivity of fullerene derivatives can be attributed to the reduction in group velocities, the decrease of the frequency range of acoustic phonons, and the strong scattering of low-frequency phonons with the alkyl chains due to the significant mismatch of vibrational density of states in low frequency regime between buckyball and alkyl chains in PCBM.
Dynamic simulation model for anaerobic digestion of cellulose
Energy Technology Data Exchange (ETDEWEB)
Lee, D.D.; Donaldson, T.L.
1984-01-01
A simple yet useful dynamic simulator for the anaerobic digestion of cellulosic feedstock has been developed. The incentive for this simulator is a need for guidance in design and optimization of an anaerobic digestin process for volume reduction and stabilization of low-level radioactive wastes generated at Oak Ridge National Laboratory. These wastes are primarily blotter and other paper and cotton/polyester clothing. Anaerobic digestion will convert a substantial mass (and hence volume) of waste to gaseous products which can be flared or simply released. The remaining sludge will contain the radionuclides and is expected to have only 5 to 10% of the original waste volume. This stabilized sludge will be more suitable for disposal by shallow land burial than is the original untreated waste. The liquid effluent will go to existing treatment facilities for hot liquids at Oak Ridge National Laboratory (ORNL). An anaerobic digestion process can be scaled to handle small or modest quantities of waste and is expected to be vastly superior to incineration in this regard.
Simulation of barchan dynamics with inter-dune sand streams
International Nuclear Information System (INIS)
Katsuki, Atsunari; Kikuchi, Macoto
2011-01-01
A group of barchans, crescent sand dunes, exhibit a characteristic flying-geese pattern in deserts on Earth and Mars. This pattern implies that an indirect interaction between barchans, mediated by an inter-dune sand stream, which is released from one barchan's horns and caught by another barchan, plays an important role in the dynamics of barchan fields. We used numerical simulations of a recently proposed cell model to investigate the effects of inter-dune sand streams on barchan fields. We found that a sand stream from a point source moves a downstream barchan laterally until the head of the barchan is finally situated behind the stream. This final configuration was shown to be stable by a linear stability analysis. These results indicate that flying-geese patterns are formed by the lateral motion of barchans mediated by inter-dune sand streams. By using simulations we also found a barchan mono-corridor generation effect, which is another effect of sand streams from point sources.
Improved real-time dynamics from imaginary frequency lattice simulations
Pawlowski, Jan M.; Rothkopf, Alexander
2018-03-01
The computation of real-time properties, such as transport coefficients or bound state spectra of strongly interacting quantum fields in thermal equilibrium is a pressing matter. Since the sign problem prevents a direct evaluation of these quantities, lattice data needs to be analytically continued from the Euclidean domain of the simulation to Minkowski time, in general an ill-posed inverse problem. Here we report on a novel approach to improve the determination of real-time information in the form of spectral functions by setting up a simulation prescription in imaginary frequencies. By carefully distinguishing between initial conditions and quantum dynamics one obtains access to correlation functions also outside the conventional Matsubara frequencies. In particular the range between ω0 and ω1 = 2πT, which is most relevant for the inverse problem may be more highly resolved. In combination with the fact that in imaginary frequencies the kernel of the inverse problem is not an exponential but only a rational function we observe significant improvements in the reconstruction of spectral functions, demonstrated in a simple 0+1 dimensional scalar field theory toy model.
MDAnalysis: a toolkit for the analysis of molecular dynamics simulations.
Michaud-Agrawal, Naveen; Denning, Elizabeth J; Woolf, Thomas B; Beckstein, Oliver
2011-07-30
MDAnalysis is an object-oriented library for structural and temporal analysis of molecular dynamics (MD) simulation trajectories and individual protein structures. It is written in the Python language with some performance-critical code in C. It uses the powerful NumPy package to expose trajectory data as fast and efficient NumPy arrays. It has been tested on systems of millions of particles. Many common file formats of simulation packages including CHARMM, Gromacs, Amber, and NAMD and the Protein Data Bank format can be read and written. Atoms can be selected with a syntax similar to CHARMM's powerful selection commands. MDAnalysis enables both novice and experienced programmers to rapidly write their own analytical tools and access data stored in trajectories in an easily accessible manner that facilitates interactive explorative analysis. MDAnalysis has been tested on and works for most Unix-based platforms such as Linux and Mac OS X. It is freely available under the GNU General Public License from http://mdanalysis.googlecode.com. Copyright © 2011 Wiley Periodicals, Inc.
Simulation of Dynamics of a Flexible Miniature Airplane
Waszak, Martin R.
2005-01-01
A short report discusses selected aspects of the development of the University of Florida micro-aerial vehicle (UFMAV) basically, a miniature airplane that has a flexible wing and is representative of a new class of airplanes that would operate autonomously or under remote control and be used for surveillance and/or scientific observation. The flexibility of the wing is to be optimized such that passive deformation of the wing in the presence of aerodynamic disturbances would reduce the overall response of the airplane to disturbances, thereby rendering the airplane more stable as an observation platform. The aspect of the development emphasized in the report is that of computational simulation of dynamics of the UFMAV in flight, for the purpose of generating mathematical models for use in designing control systems for the airplane. The simulations are performed by use of data from a wind-tunnel test of the airplane in combination with commercial software, in which are codified a standard set of equations of motion of an airplane, and a set of mathematical routines to compute trim conditions and extract linear state space models.
Charmed tetraquarks Tcc and Tcs from dynamical lattice QCD simulations
Ikeda, Yoichi; Charron, Bruno; Aoki, Sinya; Doi, Takumi; Hatsuda, Tetsuo; Inoue, Takashi; Ishii, Noriyoshi; Murano, Keiko; Nemura, Hidekatsu; Sasaki, Kenji
2014-02-01
Charmed tetraquarks Tcc=(ccubardbar) and Tcs=(csubardbar) are studied through the S-wave meson-meson interactions, D-D, Kbar-D, D-D* and Kbar-D*, on the basis of the (2+1)-flavor lattice QCD simulations with the pion mass mπ≃410, 570 and 700 MeV. For the charm quark, the relativistic heavy quark action is employed to treat its dynamics on the lattice. Using the HAL QCD method, we extract the S-wave potentials in lattice QCD simulations, from which the meson-meson scattering phase shifts are calculated. The phase shifts in the isospin triplet (I=1) channels indicate repulsive interactions, while those in the I=0 channels suggest attraction, growing as mπ decreases. This is particularly prominent in the Tcc (JP=1+,I=0) channel, though neither bound state nor resonance are found in the range mπ=410-700 MeV. We make a qualitative comparison of our results with the phenomenological diquark picture.
Stochastic Rotation Dynamics simulations of wetting multi-phase flows
Hiller, Thomas; Sanchez de La Lama, Marta; Brinkmann, Martin
2016-06-01
Multi-color Stochastic Rotation Dynamics (SRDmc) has been introduced by Inoue et al. [1,2] as a particle based simulation method to study the flow of emulsion droplets in non-wetting microchannels. In this work, we extend the multi-color method to also account for different wetting conditions. This is achieved by assigning the color information not only to fluid particles but also to virtual wall particles that are required to enforce proper no-slip boundary conditions. To extend the scope of the original SRDmc algorithm to e.g. immiscible two-phase flow with viscosity contrast we implement an angular momentum conserving scheme (SRD+mc). We perform extensive benchmark simulations to show that a mono-phase SRDmc fluid exhibits bulk properties identical to a standard SRD fluid and that SRDmc fluids are applicable to a wide range of immiscible two-phase flows. To quantify the adhesion of a SRD+mc fluid in contact to the walls we measure the apparent contact angle from sessile droplets in mechanical equilibrium. For a further verification of our wettability implementation we compare the dewetting of a liquid film from a wetting stripe to experimental and numerical studies of interfacial morphologies on chemically structured surfaces.
Biomembrane modeling: molecular dynamics simulation of phospholipid monolayers
Energy Technology Data Exchange (ETDEWEB)
Thompson, T.R.
1979-01-01
As a first step toward a computer model of a biomembrane-like bilayer, a dynamic, deterministric model of a phospholipid monolayer has been constructed. The model moves phospholipid-like centers of force according to an integrated law of motion in finite difference form. Forces on each phospholipid analogue are derived from the gradient of the local potential, itself the sum of Coulombic and short-range terms. The Coulombic term is approximated by use of a finite-difference form of Poisson's equation, while the short-range term results from finite-radius, pairwise summation of a Lennard-Jones potential. Boundary potentials are treated in such a way that the model is effectively infinite in extent in the plane of the monolayer. The two-dimensional virial theorem is used to find the surface pressure of the monolayer as a function of molecular area. Pressure-versus-area curves for simulated monolayers are compared to those of real monolayers. Dependence of the simulator's behavior on Lennard-Jones parameters and the specific geometry of the molecular analogue is discussed. Implications for the physical theory of phospholipid monolayers and bilayers are developed.
Enhanced molecular dynamics for simulating porous interphase layers in batteries.
Energy Technology Data Exchange (ETDEWEB)
Zimmerman, Jonathan A.; Wong, Bryan Matthew; Jones, Reese E.; Templeton, Jeremy Alan; Lee, Jonathan (Rice University, Houston, TX)
2009-10-01
Understanding charge transport processes at a molecular level using computational techniques is currently hindered by a lack of appropriate models for incorporating anistropic electric fields in molecular dynamics (MD) simulations. An important technological example is ion transport through solid-electrolyte interphase (SEI) layers that form in many common types of batteries. These layers regulate the rate at which electro-chemical reactions occur, affecting power, safety, and reliability. In this work, we develop a model for incorporating electric fields in MD using an atomistic-to-continuum framework. This framework provides the mathematical and algorithmic infrastructure to couple finite element (FE) representations of continuous data with atomic data. In this application, the electric potential is represented on a FE mesh and is calculated from a Poisson equation with source terms determined by the distribution of the atomic charges. Boundary conditions can be imposed naturally using the FE description of the potential, which then propagates to each atom through modified forces. The method is verified using simulations where analytical or theoretical solutions are known. Calculations of salt water solutions in complex domains are performed to understand how ions are attracted to charged surfaces in the presence of electric fields and interfering media.
Simulation of barchan dynamics with inter-dune sand streams
Energy Technology Data Exchange (ETDEWEB)
Katsuki, Atsunari [College of Science and Technology, Nihon University, Funabashi 274-8501 (Japan); Kikuchi, Macoto, E-mail: katsuki@phys.ge.cst.niho-u.ac.jp [Cybermedia Center, Osaka University, Toyonaka 560-0043 (Japan)
2011-06-15
A group of barchans, crescent sand dunes, exhibit a characteristic flying-geese pattern in deserts on Earth and Mars. This pattern implies that an indirect interaction between barchans, mediated by an inter-dune sand stream, which is released from one barchan's horns and caught by another barchan, plays an important role in the dynamics of barchan fields. We used numerical simulations of a recently proposed cell model to investigate the effects of inter-dune sand streams on barchan fields. We found that a sand stream from a point source moves a downstream barchan laterally until the head of the barchan is finally situated behind the stream. This final configuration was shown to be stable by a linear stability analysis. These results indicate that flying-geese patterns are formed by the lateral motion of barchans mediated by inter-dune sand streams. By using simulations we also found a barchan mono-corridor generation effect, which is another effect of sand streams from point sources.
Dynamic Response of Linear Mechanical Systems Modeling, Analysis and Simulation
Angeles, Jorge
2012-01-01
Dynamic Response of Linear Mechanical Systems: Modeling, Analysis and Simulation can be utilized for a variety of courses, including junior and senior-level vibration and linear mechanical analysis courses. The author connects, by means of a rigorous, yet intuitive approach, the theory of vibration with the more general theory of systems. The book features: A seven-step modeling technique that helps structure the rather unstructured process of mechanical-system modeling A system-theoretic approach to deriving the time response of the linear mathematical models of mechanical systems The modal analysis and the time response of two-degree-of-freedom systems—the first step on the long way to the more elaborate study of multi-degree-of-freedom systems—using the Mohr circle Simple, yet powerful simulation algorithms that exploit the linearity of the system for both single- and multi-degree-of-freedom systems Examples and exercises that rely on modern computational toolboxes for both numerical and symbolic compu...
Dynamic simulation model for anaerobic digestion of cellulose
International Nuclear Information System (INIS)
Lee, D.D.; Donaldson, T.L.
1984-01-01
A simple yet useful dynamic simulator for the anaerobic digestion of cellulosic feedstock has been developed. The incentive for this simulator is a need for guidance in design and optimization of an anaerobic digestin process for volume reduction and stabilization of low-level radioactive wastes generated at Oak Ridge National Laboratory. These wastes are primarily blotter and other paper and cotton/polyester clothing. Anaerobic digestion will convert a substantial mass (and hence volume) of waste to gaseous products which can be flared or simply released. The remaining sludge will contain the radionuclides and is expected to have only 5 to 10% of the original waste volume. This stabilized sludge will be more suitable for disposal by shallow land burial than is the original untreated waste. The liquid effluent will go to existing treatment facilities for hot liquids at Oak Ridge National Laboratory (ORNL). An anaerobic digestion process can be scaled to handle small or modest quantities of waste and is expected to be vastly superior to incineration in this regard
Improved real-time dynamics from imaginary frequency lattice simulations
Directory of Open Access Journals (Sweden)
Pawlowski Jan M.
2018-01-01
Full Text Available The computation of real-time properties, such as transport coefficients or bound state spectra of strongly interacting quantum fields in thermal equilibrium is a pressing matter. Since the sign problem prevents a direct evaluation of these quantities, lattice data needs to be analytically continued from the Euclidean domain of the simulation to Minkowski time, in general an ill-posed inverse problem. Here we report on a novel approach to improve the determination of real-time information in the form of spectral functions by setting up a simulation prescription in imaginary frequencies. By carefully distinguishing between initial conditions and quantum dynamics one obtains access to correlation functions also outside the conventional Matsubara frequencies. In particular the range between ω0 and ω1 = 2πT, which is most relevant for the inverse problem may be more highly resolved. In combination with the fact that in imaginary frequencies the kernel of the inverse problem is not an exponential but only a rational function we observe significant improvements in the reconstruction of spectral functions, demonstrated in a simple 0+1 dimensional scalar field theory toy model.
Beam dynamics simulation of the S-DALINAC injector section
Energy Technology Data Exchange (ETDEWEB)
Franke, Sylvain; Ackermann, Wolfgang; Weiland, Thomas [Institut fuer Theorie Elektromagnetischer Felder, Technische Universitaet Darmstadt, Darmstadt (Germany)
2013-07-01
In order to extend the experimental possibilities at the superconducting electron linear accelerator S-DALINAC a new polarized gun has recently been installed in addition to the well-established thermionic electron source. Beside the two electron sources the injector section consists of several short quadrupole triplets, an alpha magnet, a Wien filter and a chopper/prebuncher system. The setup of these components differs depending on whether bunched polarized electrons with kinetic energy in the 100 keV range are supplied by the polarized source or whether a continuous unpolarized 250 keV electron beam is extracted from the thermionic gun. The electrons pass through the injector at a relatively low energy and therefore are very sensitive to the beam forming elements in this section. Thus, a proper knowledge of the particle distribution at the exit of the injector section is essential for the quality of any simulation of the subsequent accelerator parts. In this contribution first numerical beam dynamics simulation results of the S-DALINAC injector setup are discussed.
Molecular dynamics simulation of defect formation during energetic Cu deposition
International Nuclear Information System (INIS)
Gilmore, Charles M.; Sprague, James A.
2002-01-01
The deposition of energetic Cu atoms from 5 to 80 eV onto (0 0 1) Cu was simulated with molecular dynamics. The Cu-Cu interaction potential was a spline of the embedded atom potential developed from equilibrium data, and the universal scattering potential. Incident Cu atoms substituted for first layer substrate atoms by an exchange process at energies as low as 5 eV. Incident Cu atoms of 20 eV penetrated to the second substrate layer, and 20 eV was sufficient energy to produce interstitial defects. Incident atoms of 80 eV penetrated to the third atomic layer, produced interstitials 12 atomic layers into the substrate by focused replacement collision sequences, and produced sputtered atoms with a 16% yield. Interstitial clusters of up to 7 atoms were observed. The observed mechanisms of film growth included: the direct deposition of atoms into film equilibrium atom positions, the exchange of substrate atoms to equilibrium film atoms positions, and the migration of interstitials to equilibrium film atom positions. The relative frequency of each process was a function of incident energy. Since all observed growth mechanisms resulted in film atoms in equilibrium atomic positions, these simulations suggest that stresses in homoepitaxial Cu thin films are due to point defects. Vacancies would produce tensile strain and interstitial atoms would produce compressive strain in the films. It is proposed that immobile interstitial clusters could be responsible for retaining interstitial atoms and clusters in growing metal thin films
Development of radiation risk assessment simulator using system dynamics methodology
International Nuclear Information System (INIS)
Kang, Kyung Min; Jae, Moosung
2008-01-01
The potential magnitudes of radionuclide releases under severe accident loadings and offsite consequences as well as the overall risk (the product of accident frequencies and consequences) are analyzed and evaluated quantitatively in this study. The system dynamics methodology has been applied to predict the time-dependent behaviors such as feedback and dependency as well as to model uncertain behavior of complex physical system. It is used to construct the transfer mechanisms of time dependent radioactivity concentration and to evaluate them. Dynamic variations of radio activities are simulated by considering several effects such as deposition, weathering, washout, re-suspension, root uptake, translocation, leaching, senescence, intake, and excretion of soil. The time-dependent radio-ecological model applicable to Korean specific environment has been developed in order to assess the radiological consequences following the short-term deposition of radio-nuclides during severe accidents nuclear power plant. An ingestion food chain model can estimate time dependent radioactivity concentrations in foodstuffs. And it is also shown that the system dynamics approach is useful for analyzing the phenomenon of the complex system as well as the behavior of structure values with respect to time. The output of this model (Bq ingested per Bq m - 2 deposited) may be multiplied by the deposition and a dose conversion factor (Gy Bq -1 ) to yield organ-specific doses. The model may be run deterministically to yield a single estimate or stochastic distributions by 'Monte-Carlo' calculation that reflects uncertainty of parameter and model uncertainties. The results of this study may contribute to identifying the relative importance of various parameters occurred in consequence analysis, as well as to assessing risk reduction effects in accident management. (author)
2016-04-01
ARL-TR-7660 ● APR 2016 US Army Research Laboratory Computational Fluid Dynamics (CFD) Simulations of a Finned Projectile with... Computational Fluid Dynamics (CFD) Simulations of a Finned Projectile with Microflaps for Flow Control by Jubaraj Sahu Weapons and Materials Research...TITLE AND SUBTITLE Computational Fluid Dynamics (CFD) Simulations of a Finned Projectile with Microflaps for Flow Control 5a. CONTRACT NUMBER 5b
Dynamic Flight Simulation Utilizing High Fidelity CFD-Based Nonlinear Reduced Order Model, Phase II
National Aeronautics and Space Administration — The Nonlinear Dynamic Flight Simulation (NL-DFS) system will be developed in the Phase II project by combining the classical nonlinear rigid-body flight dynamics...
High performance computer code for molecular dynamics simulations
International Nuclear Information System (INIS)
Levay, I.; Toekesi, K.
2007-01-01
Complete text of publication follows. Molecular Dynamics (MD) simulation is a widely used technique for modeling complicated physical phenomena. Since 2005 we are developing a MD simulations code for PC computers. The computer code is written in C++ object oriented programming language. The aim of our work is twofold: a) to develop a fast computer code for the study of random walk of guest atoms in Be crystal, b) 3 dimensional (3D) visualization of the particles motion. In this case we mimic the motion of the guest atoms in the crystal (diffusion-type motion), and the motion of atoms in the crystallattice (crystal deformation). Nowadays, it is common to use Graphics Devices in intensive computational problems. There are several ways to use this extreme processing performance, but never before was so easy to programming these devices as now. The CUDA (Compute Unified Device) Architecture introduced by nVidia Corporation in 2007 is a very useful for every processor hungry application. A Unified-architecture GPU include 96-128, or more stream processors, so the raw calculation performance is 576(!) GFLOPS. It is ten times faster, than the fastest dual Core CPU [Fig.1]. Our improved MD simulation software uses this new technology, which speed up our software and the code run 10 times faster in the critical calculation code segment. Although the GPU is a very powerful tool, it has a strongly paralleled structure. It means, that we have to create an algorithm, which works on several processors without deadlock. Our code currently uses 256 threads, shared and constant on-chip memory, instead of global memory, which is 100 times slower than others. It is possible to implement the total algorithm on GPU, therefore we do not need to download and upload the data in every iteration. On behalf of maximal throughput, every thread run with the same instructions
Molecular dynamics simulations of bubble nucleation in dark matter detectors.
Denzel, Philipp; Diemand, Jürg; Angélil, Raymond
2016-01-01
Bubble chambers and droplet detectors used in dosimetry and dark matter particle search experiments use a superheated metastable liquid in which nuclear recoils trigger bubble nucleation. This process is described by the classical heat spike model of F. Seitz [Phys. Fluids (1958-1988) 1, 2 (1958)PFLDAS0031-917110.1063/1.1724333], which uses classical nucleation theory to estimate the amount and the localization of the deposited energy required for bubble formation. Here we report on direct molecular dynamics simulations of heat-spike-induced bubble formation. They allow us to test the nanoscale process described in the classical heat spike model. 40 simulations were performed, each containing about 20 million atoms, which interact by a truncated force-shifted Lennard-Jones potential. We find that the energy per length unit needed for bubble nucleation agrees quite well with theoretical predictions, but the allowed spike length and the required total energy are about twice as large as predicted. This could be explained by the rapid energy diffusion measured in the simulation: contrary to the assumption in the classical model, we observe significantly faster heat diffusion than the bubble formation time scale. Finally we examine α-particle tracks, which are much longer than those of neutrons and potential dark matter particles. Empirically, α events were recently found to result in louder acoustic signals than neutron events. This distinction is crucial for the background rejection in dark matter searches. We show that a large number of individual bubbles can form along an α track, which explains the observed larger acoustic amplitudes.
On-line Uncertainty Quantification for Aerosol Dynamics Simulation
McGraw, R. L.; Fierce, L.
2016-12-01
The Quadrature Method of Moments (QMOM) is an efficient method for evolving aerosol size distributions and tracking aerosol mixing state. An extension of the QMOM is presented here that uses fundamental primal-dual relationships from linear programming (LP) to provide online uncertainty quantification for aerosol dynamics simulation. The primal problem works with a matrix of measurement and/or model constraints, e.g. moments, to generate a sparse set of quadrature abscissas and weights, thought of here as a sparse or reduced set of weighted particles, that is determined to be consistent with the constraints. These quadrature abscissas and weights are tracked over time using the QMOM. The primal LP is also shown to yield nested pairs of upper and lower bounds to unconstrained aerosol physical and optical properties from the given constraint set; the greater the number of constraints, and the greater their information content, the tighter the bounds. This is one form of uncertainty estimation provided by LP. Another is provided by the adjoint solution, obtained concurrently with the primal solution through the dual LP, hence the designation "on-line". The dual problem works with the adjoint of the constraint matrix to generate a set of dual variables, the Lagrange multipliers or sensitivities, equal in number to the number of constraints. Operationally, these dual variables, which are also tracked over the time of a simulation, determine the sensitivity of an aerosol physical or optical property, extinction for example, to changes in or uncertainty in the measurement or model constraints. The new methods are demonstrated through the simulation of several aerosol particle and cloud droplet populations evolving over time.
An efficient non hydrostatic dynamical care far high-resolution simulations down to the urban scale
International Nuclear Information System (INIS)
Bonaventura, L.; Cesari, D.
2005-01-01
Numerical simulations of idealized stratified flows aver obstacles at different spatial scales demonstrate the very general applicability and the parallel efficiency of a new non hydrostatic dynamical care far simulation of mesoscale flows aver complex terrain
Exploring travelers' behavior in response to dynamic message signs (DMS) using a driving simulator.
2013-10-01
This research studies the effectiveness of a dynamic message sign (DMS) using a driving : simulator. Over 100 subjects from different socio-economic and age groups were recruited to : drive the simulator under different traffic and driving conditions...
2013-10-01
This research studies the effectiveness of a dynamic message sign (DMS) using a driving : simulator. Over 100 subjects from different socio-economic and age groups were recruited to : drive the simulator under different traffic and driving conditions...
National Aeronautics and Space Administration — ZONA Technology, Inc. (ZONA) proposes to develop an integrated flight dynamics simulation capability with nonlinear aeroelastic interactions by combining a flight...
National Research Council Canada - National Science Library
Robinson, Christopher
1997-01-01
...) source code formatted specifically for numerical integration. The compiled source code can be accessed and numerically integrated by the dynamic simulation software SIMULINK(registered). SIMULINK(registered...
National Research Council Canada - National Science Library
Behrman, Robert; Carley, Kathleen
2003-01-01
This paper describes the Dynamic Information Flow Simulation (DIFS), an abstract model for analyzing the structure and function of intelligence support organizations and the activities of entities within...
Malo de Molina, Paula; Alvarez, Fernando; Frick, Bernhard; Wildes, Andrew; Arbe, Arantxa; Colmenero, Juan
2017-10-18
We applied quasielastic neutron scattering (QENS) techniques to samples with two different contrasts (deuterated solute/hydrogenated solvent and the opposite label) to selectively study the component dynamics of proline/water solutions. Results on diluted and concentrated solutions (31 and 6 water molecules/proline molecule, respectively) were analyzed in terms of the susceptibility and considering a recently proposed model for water dynamics [Arbe et al., Phys. Rev. Lett., 2016, 117, 185501] which includes vibrations and the convolution of localized motions and diffusion. We found that proline molecules not only reduce the average diffusion coefficient of water but also extend the time/frequency range of the crossover region ('cage') between the vibrations and purely diffusive behavior. For the high proline concentration we also found experimental evidence of water heterogeneous dynamics and a distribution of diffusion coefficients. Complementary molecular dynamics simulations show that water molecules start to perform rotational diffusion when they escape the cage regime but before the purely diffusive behavior is established. The rotational diffusion regime is also retarded by the presence of proline molecules. On the other hand, a strong coupling between proline and water diffusive dynamics which persists with decreasing temperature is directly observed using QENS. Not only are the temperature dependences of the diffusion coefficients of both components the same, but their absolute values also approach each other with increasing proline concentration. We compared our results with those reported using other techniques, in particular using dielectric spectroscopy (DS). A simple approach based on molecular hydrodynamics and a molecular treatment of DS allows rationalizing the a priori puzzling inconsistency between QENS and dielectric results regarding the dynamic coupling of the two components. The interpretation proposed is based on general grounds and therefore
A mesoscopic simulation of static and dynamic wetting using many-body dissipative particle dynamics
Ghorbani, Najmeh; Pishevar, Ahmadreza
2018-01-01
A many-body dissipative particle dynamics simulation is applied here to pave the way for investigating the behavior of mesoscale droplets after impact on horizontal solid substrates. First, hydrophobic and hydrophilic substrates are simulated through tuning the solid-liquid interfacial interaction parameters of an innovative conservative force model. The static contact angles are calculated on homogeneous and several patterned surfaces and compared with the predicted values by the Cassie's law in order to verify the model. The results properly evaluate the amount of increase in surface superhydrophobicity as a result of surface patterning. Then drop impact phenomenon is studied by calculating the spreading factor and dimensionless height versus dimensionless time and the comparisons made between the results and the experimental values for three different static contact angles. The results show the capability of the procedure in calculating the amount of maximum spreading factor, which is a significant concept in ink-jet printing and coating process.
Classical molecular dynamics simulation on the dynamical properties of H2 on silicene layer
Directory of Open Access Journals (Sweden)
Casuyac Miqueas
2016-01-01
Full Text Available This study investigates the diffusion of hydrogen molecule physisorbed on the surface of silicene nanoribbon (SiNRusing the classical molecular dynamic (MD simulation in LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator. The interactions between silicon atoms are modeled using the modified Tersoff potential, the Adaptive Intermolecular Reactive Empirical Bond Order (AIREBO potential for hydrogen – hydrogen interaction and the Lennard – Jones potential for the physisorbed H2 on SiNR. By varying the temperatures (60 K Δ 130 K, we observed that the Δxdisplacement of H2 on the surface SiNR shows a Brownian motion on a Lennard-Jones potential and a Gaussian probability distribution can be plotted describing the diffusion of H2. The calculated mean square displacement (MSD was approximately increasing in time and the activation energy barrier for diffusion has been found to be 43.23meV.
Energy Technology Data Exchange (ETDEWEB)
Demontis, Pierfranco; Suffritti, Giuseppe B. [Dipartimento di Chimica e Farmacia, Università degli studi di Sassari, Sassari (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Unità di ricerca di Sassari, Via Vienna, 2, I-07100 Sassari (Italy); Gulín-González, Jorge [Grupo de Matemática y Física Computacionales, Universidad de las Ciencias Informáticas (UCI), Carretera a San Antonio de los Baños, Km 21/2, La Lisa, La Habana (Cuba); Masia, Marco [Dipartimento di Chimica e Farmacia, Università degli studi di Sassari, Sassari (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Unità di ricerca di Sassari, Via Vienna, 2, I-07100 Sassari (Italy); Istituto Officina dei Materiali del CNR, UOS SLACS, Via Vienna 2, 07100 Sassari (Italy); Sant, Marco [Dipartimento di Chimica e Farmacia, Università degli studi di Sassari, Sassari (Italy)
2015-06-28
In order to study the interplay between dynamical heterogeneities and structural properties of bulk liquid water in the temperature range 130–350 K, thus including the supercooled regime, we use the explicit trend of the distribution functions of some molecular properties, namely, the rotational relaxation constants, the atomic mean-square displacements, the relaxation of the cross correlation functions between the linear and squared displacements of H and O atoms of each molecule, the tetrahedral order parameter q and, finally, the number of nearest neighbors (NNs) and of hydrogen bonds (HBs) per molecule. Two different potentials are considered: TIP4P-Ew and a model developed in this laboratory for the study of nanoconfined water. The results are similar for the dynamical properties, but are markedly different for the structural characteristics. In particular, for temperatures higher than that of the dynamic crossover between “fragile” (at higher temperatures) and “strong” (at lower temperatures) liquid behaviors detected around 207 K, the rotational relaxation of supercooled water appears to be remarkably homogeneous. However, the structural parameters (number of NNs and of HBs, as well as q) do not show homogeneous distributions, and these distributions are different for the two water models. Another dynamic crossover between “fragile” (at lower temperatures) and “strong” (at higher temperatures) liquid behaviors, corresponding to the one found experimentally at T{sup ∗} ∼ 315 ± 5 K, was spotted at T{sup ∗} ∼ 283 K and T{sup ∗} ∼ 276 K for the TIP4P-Ew and the model developed in this laboratory, respectively. It was detected from the trend of Arrhenius plots of dynamic quantities and from the onset of a further heterogeneity in the rotational relaxation. To our best knowledge, it is the first time that this dynamical crossover is detected in computer simulations of bulk water. On the basis of the simulation results, the possible
International Nuclear Information System (INIS)
Onodera, T; Tsuboi, H; Hatakeyama, N; Endou, A; Miyamoto, A; Miura, R; Takaba, H; Suzuki, A; Kubo, M
2010-01-01
Tribology at the atomistic and molecular levels has been theoretically studied by a classical molecular dynamics (MD) method. However, this method inherently cannot simulate the tribochemical reaction dynamics because it does not consider the electrons in nature. Although the first-principles based MD method has recently been used for understanding the chemical reaction dynamics of several molecules in the tribology field, the method cannot simulate the tribochemical reaction dynamics of a large complex system including solid surfaces and interfaces due to its huge computation costs. On the other hand, we have developed a quantum chemical MD tribochemical simulator on the basis of a hybrid tight-binding quantum chemical/classical MD method. In the simulator, the central part of the chemical reaction dynamics is calculated by the tight-binding quantum chemical MD method, and the remaining part is calculated by the classical MD method. Therefore, the developed tribochemical simulator realizes the study on tribochemical reaction dynamics of a large complex system, which cannot be treated by using the conventional classical MD or the first-principles MD methods. In this paper, we review our developed quantum chemical MD tribochemical simulator and its application to the tribochemical reaction dynamics of a few lubricant additives
Fluid Dynamics Appearing during Simulated Microgravity Using Random Positioning Machines.
Wuest, Simon L; Stern, Philip; Casartelli, Ernesto; Egli, Marcel
2017-01-01
Random Positioning Machines (RPMs) are widely used as tools to simulate microgravity on ground. They consist of two gimbal mounted frames, which constantly rotate biological samples around two perpendicular axes and thus distribute the Earth's gravity vector in all directions over time. In recent years, the RPM is increasingly becoming appreciated as a laboratory instrument also in non-space-related research. For instance, it can be applied for the formation of scaffold-free spheroid cell clusters. The kinematic rotation of the RPM, however, does not only distribute the gravity vector in such a way that it averages to zero, but it also introduces local forces to the cell culture. These forces can be described by rigid body analysis. Although RPMs are commonly used in laboratories, the fluid motion in the cell culture flasks on the RPM and the possible effects of such on cells have not been examined until today; thus, such aspects have been widely neglected. In this study, we used a numerical approach to describe the fluid dynamic characteristic occurring inside a cell culture flask turning on an operating RPM. The simulations showed that the fluid motion within the cell culture flask never reached a steady state or neared a steady state condition. The fluid velocity depends on the rotational velocity of the RPM and is in the order of a few centimeters per second. The highest shear stresses are found along the flask walls; depending of the rotational velocity, they can reach up to a few 100 mPa. The shear stresses in the "bulk volume," however, are always smaller, and their magnitude is in the order of 10 mPa. In conclusion, RPMs are highly appreciated as reliable tools in microgravity research. They have even started to become useful instruments in new research fields of mechanobiology. Depending on the experiment, the fluid dynamic on the RPM cannot be neglected and needs to be taken into consideration. The results presented in this study elucidate the fluid
Molecular Dynamics Simulations of the Human Glucose Transporter GLUT1.
Directory of Open Access Journals (Sweden)
Min-Sun Park
Full Text Available Glucose transporters (GLUTs provide a pathway for glucose transport across membranes. Human GLUTs are implicated in devastating diseases such as heart disease, hyper- and hypo-glycemia, type 2 diabetes and cancer. The human GLUT1 has been recently crystalized in the inward-facing open conformation. However, there is no other structural information for other conformations. The X-ray structures of E. coli Xylose permease (XylE, a glucose transporter homolog, are available in multiple conformations with and without the substrates D-xylose and D-glucose. XylE has high sequence homology to human GLUT1 and key residues in the sugar-binding pocket are conserved. Here we construct a homology model for human GLUT1 based on the available XylE crystal structure in the partially occluded outward-facing conformation. A long unbiased all atom molecular dynamics simulation starting from the model can capture a new fully opened outward-facing conformation. Our investigation of molecular interactions at the interface between the transmembrane (TM domains and the intracellular helices (ICH domain in the outward- and inward-facing conformation supports that the ICH domain likely stabilizes the outward-facing conformation in GLUT1. Furthermore, inducing a conformational transition, our simulations manifest a global asymmetric rocker switch motion and detailed molecular interactions between the substrate and residues through the water-filled selective pore along a pathway from the extracellular to the intracellular side. The results presented here are consistent with previously published biochemical, mutagenesis and functional studies. Together, this study shed light on the structure and functional relationships of GLUT1 in multiple conformational states.
International Nuclear Information System (INIS)
Bizzarri, Anna Rita
2004-01-01
The neutron scattering technique is a relevant tool for studying the dynamical properties of electron transfer proteins. Macromolecular motions ranging in wide temporal and spatial windows can be investigated by separately analysing elastic, inelastic and quasielastic incoherent neutron scattering. The dynamical behaviour of the solvent surrounding a macromolecule can also be analysed. Neutron scattering is particularly rewarding when used in combination with molecular dynamics simulations. From the simulated atomic trajectories, physical quantities directly related to the neutron scattering technique can be calculated and compared with the corresponding experimental data. This article briefly introduces both the neutron scattering and molecular dynamics simulation methods applied to proteins, and reviews the biophysical studies of some electron transfer proteins. Both experimental and molecular dynamics results for these proteins and the surrounding solvent are also discussed in connection with their electron transfer properties. Possible developments are briefly outlined. (topical review)
Energy Technology Data Exchange (ETDEWEB)
NONE
2005-02-15
In connection with the ERP project 'Dynamic modelling of staged gasification processes' a gasification simulator has been constructed. The simulator consists of: a mathematical model of the gasification process developed at Technical University of Denmark, a user interface programme, IGSS, and a communication interface between the two programmes. (BA)
Characterizing dynamic behavior of carbon dioxide nano-jets using molecular dynamics simulation
Huang, Pei-Hsing; Chou, Chuen-Shii; Hung, Shang-Chao; Jhan, Jhih-Wei
2017-12-01
This paper reports on the use of molecular dynamics (MD) simulations to elucidate the dynamic behavior of CO2 through a Graphene/Au(111) nano-injector. We investigated the effects of jet diameter ( d), system temperature ( T), and the extrusion velocity ( v) of a graphite piston plate on the jet pattern, system pressure ( P), and the number of molecules ( N m) in the outflow. Simulation results show that the combined effects of high v and small d induced a larger jet angle, resulting in an increase in the number of CO2 molecules attached to the surface of the outlet. Increasing d enhanced the formation of the T-junction molecular geometry of CO2 molecules, due to the effects of electrostatic attraction between C (0.5888 e) and O (- 0.2944 e) of CO2, which caused the formation of larger agglomerations of CO2 molecules in the vicinity of the nano-injector orifice in the final extrusion stage. The increase in P within the cylinder of the nano-injector was more pronounced during middle and final stages of extrusion, compared with the effects observed during the initial stages. Despite the fact that N m increased noticeably with an increase in T, the value of N m at d = 1.5 nm and T ≥ 300 K greatly exceeded that at d = 1.0 nm and T = 500 K, regardless of the value of v. The numerical simulations presented in this study could be helpful in the design of nano-injectors for a diversity of applications associated with engineering systems and biomedicine at the nano-scale.
Phillips, Carolyn L.; Anderson, Joshua A.; Glotzer, Sharon C.
2011-08-01
Brownian Dynamics (BD), also known as Langevin Dynamics, and Dissipative Particle Dynamics (DPD) are implicit solvent methods commonly used in models of soft matter and biomolecular systems. The interaction of the numerous solvent particles with larger particles is coarse-grained as a Langevin thermostat is applied to individual particles or to particle pairs. The Langevin thermostat requires a pseudo-random number generator (PRNG) to generate the stochastic force applied to each particle or pair of neighboring particles during each time step in the integration of Newton's equations of motion. In a Single-Instruction-Multiple-Thread (SIMT) GPU parallel computing environment, small batches of random numbers must be generated over thousands of threads and millions of kernel calls. In this communication we introduce a one-PRNG-per-kernel-call-per-thread scheme, in which a micro-stream of pseudorandom numbers is generated in each thread and kernel call. These high quality, statistically robust micro-streams require no global memory for state storage, are more computationally efficient than other PRNG schemes in memory-bound kernels, and uniquely enable the DPD simulation method without requiring communication between threads.
Application of the maximum entropy method to dynamical fermion simulations
Clowser, Jonathan
This thesis presents results for spectral functions extracted from imaginary-time correlation functions obtained from Monte Carlo simulations using the Maximum Entropy Method (MEM). The advantages this method are (i) no a priori assumptions or parametrisations of the spectral function are needed, (ii) a unique solution exists and (iii) the statistical significance of the resulting image can be quantitatively analysed. The Gross Neveu model in d = 3 spacetime dimensions (GNM3) is a particularly interesting model to study with the MEM because at T = 0 it has a broken phase with a rich spectrum of mesonic bound states and a symmetric phase where there are resonances. Results for the elementary fermion, the Goldstone boson (pion), the sigma, the massive pseudoscalar meson and the symmetric phase resonances are presented. UKQCD Nf = 2 dynamical QCD data is also studied with MEM. Results are compared to those found from the quenched approximation, where the effects of quark loops in the QCD vacuum are neglected, to search for sea-quark effects in the extracted spectral functions. Information has been extract from the difficult axial spatial and scalar as well as the pseudoscalar, vector and axial temporal channels. An estimate for the non-singlet scalar mass in the chiral limit is given which is in agreement with the experimental value of Mao = 985 MeV.
Fluorine environment in bioactive glasses: ab initio molecular dynamics simulations.
Christie, Jamieson K; Pedone, Alfonso; Menziani, Maria Cristina; Tilocca, Antonio
2011-03-10
Fluorinated bioactive glasses (FBGs) combine the antibacterial properties of fluorine with the biological activity of phosphosilicate glasses. Because their biomedical application depends on the release of fluorine, the detailed characterization of the fluorine environment in FBGs is the key to understand their properties. Car-Parrinello molecular dynamics (CPMD) simulations have been performed on a 45S5 Bioglass composition in which 10 mol % of the CaO has been replaced with CaF(2), and have allowed us to resolve some longstanding issues about the atomic structure of fluorinated bioglasses, with particular regard to the structural role of fluorine. F is coordinated almost entirely to the modifier ions Na and Ca, with a very small amount of residual Si-F bonds, whose fraction only becomes significant in the melt precursor. High temperature leads to Si-F bonds in both tetra- (SiO(3)F) and, less frequently, penta-coordinated (SiO(4)F and SiO(3)F(2)) complexes, showing that formation of these bonds through the expansion of the SiO(4) coordination shell is generally less favored. There is no evidence for preferential bonding of F to either modifier ion: almost all F atoms are coordinated to both calcium and sodium in a "mixed state", rather than exclusively to either, as had been conjectured. We discuss the consequences of these findings on the properties of fluorine-containing bioglasses. © 2011 American Chemical Society
Simulating sub-Milankovitch climate variations associated with vegetation dynamics
Directory of Open Access Journals (Sweden)
E. Tuenter
2007-01-01
Full Text Available Climate variability at sub-Milankovitch periods (between 2 and 15 kyr is studied in a set of transient simulations with a coupled atmosphere/ocean/vegetation model of intermediate complexity (CLIMBER-2. Focus is on the region influenced by the African and Asian summer monsoon. Pronounced variations at periods of about 10 kyr (Asia and Africa and about 5 kyr (Asia are found in the monsoonal runoff in response to the precessional forcing. In the model this is due to the following mechanism. For low summer insolation (precession maximum precipitation is low and desert expands at the expense of grass, while for high insolation (precession minimum precipitation is high and the tree fraction increases also reducing the grass fraction. This induces sub-Milankovitch variations in the grass fraction and associated variations in the water holding capacity of the soil. The runoff does not exhibit sub-Milankovitch variability when vegetation is kept fixed. High-latitude vegetation also exhibits sub-Milankovitch variability under both obliquity and precessional forcing. We thus hypothesize that sub-Milankovitch variability can occur due to the dynamic response of the vegetation. However, this mechanism should be further tested with more sophisticated climate/vegetation models.
In Silico Dynamics: computer simulation in a Virtual Embryo ...
Abstract: Utilizing cell biological information to predict higher order biological processes is a significant challenge in predictive toxicology. This is especially true for highly dynamical systems such as the embryo where morphogenesis, growth and differentiation require precisely orchestrated interactions between diverse cell populations. In patterning the embryo, genetic signals setup spatial information that cells then translate into a coordinated biological response. This can be modeled as ‘biowiring diagrams’ representing genetic signals and responses. Because the hallmark of multicellular organization resides in the ability of cells to interact with one another via well-conserved signaling pathways, multiscale computational (in silico) models that enable these interactions provide a platform to translate cellular-molecular lesions perturbations into higher order predictions. Just as ‘the Cell’ is the fundamental unit of biology so too should it be the computational unit (‘Agent’) for modeling embryogenesis. As such, we constructed multicellular agent-based models (ABM) with ‘CompuCell3D’ (www.compucell3d.org) to simulate kinematics of complex cell signaling networks and enable critical tissue events for use in predictive toxicology. Seeding the ABMs with HTS/HCS data from ToxCast demonstrated the potential to predict, quantitatively, the higher order impacts of chemical disruption at the cellular or biochemical level. This is demonstrate
Model and simulation of Krause model in dynamic open network
Zhu, Meixia; Xie, Guangqiang
2017-08-01
The construction of the concept of evolution is an effective way to reveal the formation of group consensus. This study is based on the modeling paradigm of the HK model (Hegsekmann-Krause). This paper analyzes the evolution of multi - agent opinion in dynamic open networks with member mobility. The results of the simulation show that when the number of agents is constant, the interval distribution of the initial distribution will affect the number of the final view, The greater the distribution of opinions, the more the number of views formed eventually; The trust threshold has a decisive effect on the number of views, and there is a negative correlation between the trust threshold and the number of opinions clusters. The higher the connectivity of the initial activity group, the more easily the subjective opinion in the evolution of opinion to achieve rapid convergence. The more open the network is more conducive to the unity of view, increase and reduce the number of agents will not affect the consistency of the group effect, but not conducive to stability.
Polarization as a field variable from molecular dynamics simulations
Mandadapu, Kranthi K.; Templeton, Jeremy; Lee, Jonathan
2012-11-01
In this talk, we show that polarization density, an important quantity in electromagnetism, can be obtained from molecular dynamics simulations. We show that the Irving and Kirkwood procedure used for obtaining stresses and heat fluxes in terms of the microscopic quantities can be extended to the case of electrostatics where the macroscopic electrostatic equation can be derived starting with the microscopic electrostatic equation, microscopic density of charges and using a phase-space distribution function and a suitable localization function. As a result, we obtain an expression for polarization density as a field variable in terms of the microscopic dipole moments and quadrupole moments and higher order terms depending upon the degree of the polynomial used for the localization function. Finally, we apply this method to obtain the dielectric constant of bulk water and to study the polarization effects in electric double layer calculations. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Treadmilling of actin filaments via Brownian dynamics simulations
Guo, Kunkun; Shillcock, Julian; Lipowsky, Reinhard
2010-10-01
Actin polymerization is coupled to the hydrolysis of adenosine triphosphate (ATP) into adenosine diphosphate (ADP) and inorganic phosphate (Pi). Therefore, each protomer within an actin filament can attain three different nucleotide states corresponding to bound ATP, ADP/Pi, and ADP. These protomer states form spatial patterns on the growing (or shrinking) filaments. Using Brownian dynamics simulations, the growth behavior of long filaments is studied, together with the associated protomer patterns, as a function of ATP-actin monomer concentration, CT, within the surrounding solution. For concentrations close to the critical concentration CT=CT,cr, the filaments undergo treadmilling, i.e., they grow at the barbed and shrink at the pointed end, which leads to directed translational motion of the whole filament. The corresponding nonequilibrium states are characterized by several global fluxes and by spatial density and flux profiles along the filaments. We focus on a certain set of transition rates as deduced from in vitro experiments and find that the associated treadmilling (or turnover) rate is about 0.08 monomers per second.
Dynamic Load Balancing Strategies for Parallel Reacting Flow Simulations
Pisciuneri, Patrick; Meneses, Esteban; Givi, Peyman
2014-11-01
Load balancing in parallel computing aims at distributing the work as evenly as possible among the processors. This is a critical issue in the performance of parallel, time accurate, flow simulators. The constraint of time accuracy requires that all processes must be finished with their calculation for a given time step before any process can begin calculation of the next time step. Thus, an irregularly balanced compute load will result in idle time for many processes for each iteration and thus increased walltimes for calculations. Two existing, dynamic load balancing approaches are applied to the simplified case of a partially stirred reactor for methane combustion. The first is Zoltan, a parallel partitioning, load balancing, and data management library developed at the Sandia National Laboratories. The second is Charm++, which is its own machine independent parallel programming system developed at the University of Illinois at Urbana-Champaign. The performance of these two approaches is compared, and the prospects for their application to full 3D, reacting flow solvers is assessed.
Nucleation of Salt Crystals in Clay Minerals: Molecular Dynamics Simulation.
Dashtian, Hassan; Wang, Haimeng; Sahimi, Muhammad
2017-07-20
Nucleation of salt crystals in confined media occurs in many processes of high importance, such as injection of CO 2 in geological formations for its sequestration. In particular, salt precipitation in clays, a main component of sedimentary rock, is an important phenomenon. The crystals precipitate on the pores' surface, modify the pore space morphology, and reduce its flow and transport properties. Despite numerous efforts to understand the mechanisms of nucleation of salt crystals in confined media, the effect of the clay's chemistry on the growth, distribution, and properties of the crystals is not well understood. We report the results of extensive molecular dynamics simulation of nucleation and growth of NaCl crystals in a clay pore using molecular models of two types of clay minerals, Na-montmorillonite and kaolinite. Clear evidence is presented for the nucleation of the salt crystals that indicates that the molecular structure of clay minerals affects their spatial distribution, although the nucleation mechanism is the same in both types of clays.
Plasmoid Chain Dynamics in Three-Dimensional Kinetic Simulations
Markidis, S.; Henri, P.; Lapenta, G.; Divin, A.; Goldman, M.; Newman, D.; Laure, E.
2013-10-01
We study the dynamics of a plasmoid chain with three dimensional Particle-in-Cell simulations. The evolution of the system with and without a uniform guide field, whose strength is 1/3 the asymptotic magnetic field, is investigated. The plasmoid chain forms by spontaneous magnetic reconnection: the tearing instability rapidly disrupts the initial current sheet generating several small-scale plasmoids, that rapidly grow in size coalescing and kinking. The plasmoid kink is mainly driven by the coalescence process. The presence of guide field strongly influences the evolution of the plasmoid chain. Without a guide field, a main reconnection site dominates and smaller reconnection regions are included in larger ones, leading to an hierarchical structure of the plasmoid-dominated current sheet. On the contrary in presence of a guide field, plasmoids have approximately the same size and the hierarchical structure does not emerge, a strong core magnetic field develops in the center of the plasmoid in the direction of the existing guide field, and bump-on-tail instability, leading to the formation of electron holes, is detected in proximity of the plasmoids. The present work is supported by NASA MMS Grant NNX08AO84G. Additional support rom the European Commission's Seventh Framework Programme under the grant agreement no. 287703 (CRESTA, cresta-project.eu).
Thermal transport in semicrystalline polyethylene by molecular dynamics simulation
Lu, Tingyu; Kim, Kyunghoon; Li, Xiaobo; Zhou, Jun; Chen, Gang; Liu, Jun
2018-01-01
Recent research has highlighted the potential to achieve high-thermal-conductivity polymers by aligning their molecular chains. Combined with other merits, such as low-cost, corrosion resistance, and light weight, such polymers are attractive for heat transfer applications. Due to their quasi-one-dimensional structural nature, the understanding on the thermal transport in those ultra-drawn semicrystalline polymer fibers or films is still lacking. In this paper, we built the ideal repeating units of semicrystalline polyethylene and studied their dependence of thermal conductivity on different crystallinity and interlamellar topology using the molecular dynamics simulations. We found that the conventional models, such as the Choy-Young's model, the series model, and Takayanagi's model, cannot accurately predict the thermal conductivity of the quasi-one-dimensional semicrystalline polyethylene. A modified Takayanagi's model was proposed to explain the dependence of thermal conductivity on the bridge number at intermediate and high crystallinity. We also analyzed the heat transfer pathways and demonstrated the substantial role of interlamellar bridges in the thermal transport in the semicrystalline polyethylene. Our work could contribute to the understanding of the structure-property relationship in semicrystalline polymers and shed some light on the development of plastic heat sinks and thermal management in flexible electronics.
Molecular dynamics simulations of radon accumulation in water and oil
Energy Technology Data Exchange (ETDEWEB)
Pafong, Elvira; Drossel, Barbara [Institut fuer Festkoerperphysik, Technische Universitaet Darmstadt (Germany)
2016-07-01
Radon is a radioactive gas that can enter the human body from air or from ground water. Radon can accumulate to levels that considerably rise the risk of lung cancer while it is also known as a a treatment of various ailments, most notably rheumatoid arthritis. The accumulation of radon differs between tissues, with particularly high concentrations in fatty cells. In order to understand the mechanisms responsible for the different solubility of radon in water and fat, we perform molecular dynamics simulations of radon gas at ambient conditions in contact with a bulk material consisting either of water or oil. We evaluate the diffusion coefficient of radon in both media as well as the equilibrium concentration. The crucial point here is to understand the hydrophobic interaction between water and radon as compared to the dispersive interaction between radon and oil. Therefore, we artificially vary the water charges (i.e., the hydrophobicity) as well as the parameters of the van-der-Waals interaction.
Observations of Crew Dynamics During Mars Analog Simulations
Cusack, Stacy L.
2009-01-01
Crewmembers on Mars missions will face new and unique challenges compared to those in close communications proximity to Mission Control centers. Crews on Mars will likely become more autonomous and responsible for their day-to-day planning. These explorers will need to make frequent real time decisions without the assistance of large ground support teams. Ground-centric control will no longer be an option due to the communications delays. As a result of the new decision making model, crew dynamics and leadership styles of future astronauts may become significantly different from the demands of today. As a volunteer for the Mars Society on two Mars analog missions, this presenter will discuss observations made during isolated, surface exploration simulations. The need for careful crew selections, not just based on individual skill sets, but on overall team interactions becomes apparent very quickly when the crew is planning their own days and deciding their own priorities. Even more important is the selection of a Mission Commander who can lead a team of highly skilled individuals with strong and varied opinions in a way that promotes crew consensus, maintains fairness, and prevents unnecessary crew fatigue.
Atomistic Molecular Dynamics Simulations of the Electrical Double
Li, Zifeng; Milner, Scott; Fichthorn, Kristen
2015-03-01
The electrical double layer (EDL) near the polymer/water interface plays a key role in the colloidal stability of latex paint. To elucidate the structure of the EDL at the molecular level, we conducted an all-atom molecular dynamics simulations. We studied two representative surface charge groups in latex, the ionic surfactant sodium dodecyl sulfate (SDS) and the grafted short polyelectrolyte charged by dissociated methyl methacrylic acid (MAA) monomers. Our results confirm that the Poisson-Boltzmann theory works well outside the Stern layer. Our calculated electrostatic potential at the Outer Helmholtz Plane (OHP) is close to the zeta potential measured experimentally, which suggests that the potential at the OHP is a good estimate of the zeta potential. We found that the position of the OHP for the MAA polyelectrolyte system extends much further into the aqueous phase than that in the SDS system, resulting in a Stern layer that is twice as thick. This model will allow for future investigations of the interactions of the surface with different surfactants and rheology modifiers, which may serve as a guide to tune the rheology of latex formulations. We thank Dow Chemical Company for financial support.
Parallel conjugate gradient algorithms for manipulator dynamic simulation
Fijany, Amir; Scheld, Robert E.
1989-01-01
Parallel conjugate gradient algorithms for the computation of multibody dynamics are developed for the specialized case of a robot manipulator. For an n-dimensional positive-definite linear system, the Classical Conjugate Gradient (CCG) algorithms are guaranteed to converge in n iterations, each with a computation cost of O(n); this leads to a total computational cost of O(n sq) on a serial processor. A conjugate gradient algorithms is presented that provide greater efficiency using a preconditioner, which reduces the number of iterations required, and by exploiting parallelism, which reduces the cost of each iteration. Two Preconditioned Conjugate Gradient (PCG) algorithms are proposed which respectively use a diagonal and a tridiagonal matrix, composed of the diagonal and tridiagonal elements of the mass matrix, as preconditioners. Parallel algorithms are developed to compute the preconditioners and their inversions in O(log sub 2 n) steps using n processors. A parallel algorithm is also presented which, on the same architecture, achieves the computational time of O(log sub 2 n) for each iteration. Simulation results for a seven degree-of-freedom manipulator are presented. Variants of the proposed algorithms are also developed which can be efficiently implemented on the Robot Mathematics Processor (RMP).
On theoretical issues of computer simulations sequential dynamical systems
Energy Technology Data Exchange (ETDEWEB)
Barrett, C.L.; Mortveit, H.S.; Reidys, C.M.
1998-12-01
The authors study a class of discrete dynamical systems that is motivated by the generic structure of simulations. The systems consist of the following data: (a) a finite graph Y with vertex set {l_brace}1,...,n{r_brace} where each vertex has a binary state, (b) functions F{sub i}:F{sub 2}{sup n} {r_arrow} F{sub 2}{sup n} and (c) an update ordering {pi}. The functions F{sub i} update the binary state of vertex i as a function of the state of vertex i and its Y-neighbors and leave the states of all other vertices fixed. The update ordering is a permutation of the Y-vertices. They derive a decomposition result, characterize invertible SDS and study fixed points. In particular they analyze how many different SDS that can be obtained by reordering a given multiset of update functions and give a criterion for when one can derive concentration results on this number. Finally, some specific SDS are investigated.
Wave packet molecular dynamics simulations of warm dense hydrogen
Knaup, M; Toepffer, C; Zwicknagel, G
2003-01-01
Recent shock-wave experiments with deuterium in a regime where a plasma phase-transition has been predicted and their theoretical interpretation are the matter of a controversial discussion. In this paper, we apply 'wave packet molecular dynamics' (WPMD) simulations to investigate warm dense hydrogen. The WPMD method was originally used by Heller for a description of the scattering of composite particles such as simple atoms and molecules; later it was applied to Coulomb systems by Klakow et al. In the present version of our model the protons are treated as classical point-particles, whereas the electrons are represented by a completely anti-symmetrized Slater sum of periodic Gaussian wave packets. We present recent results for the equation of state of hydrogen at constant temperature T = 300 K and of deuterium at constant Hugoniot E - E sub 0 + 1/2(1/n - 1/n sub 0)(p + p sub 0) = 0, and compare them with the experiments and several theoretical approaches.
Particle beam dynamics simulations using the POOMA framework
International Nuclear Information System (INIS)
Humphrey, W.; Ryne, R.; Cleland, T.; Cummings, J.; Habib, S.; Mark, G.; Ji Qiang
1998-01-01
A program for simulation of the dynamics of high intensity charged particle beams in linear particle accelerators has been developed in C++ using the POOMA Framework, for use on serial and parallel architectures. The code models the trajectories of charged particles through a sequence of different accelerator beamline elements such as drift chambers, quadrupole magnets, or RF cavities. An FFT-based particle-in-cell algorithm is used to solve the Poisson equation that models the Coulomb interactions of the particles. The code employs an object-oriented design with software abstractions for the particle beam, accelerator beamline, and beamline elements, using C++ templates to efficiently support both 2D and 3D capabilities in the same code base. The POOMA Framework, which encapsulates much of the effort required for parallel execution, provides particle and field classes, particle-field interaction capabilities, and parallel FFT algorithms. The performance of this application running serially and in parallel is compared to an existing HPF implementation, with the POOMA version seen to run four times faster than the HPF code
Experimentally-based optimization of contact parameters in dynamics simulation of humanoid robots
Vivian, Michele; Reggiani, Monica; Sartori, Massimo
2013-01-01
With this work we introduce a novel methodology for the simulation of walking of a humanoid robot. Motion capture technology is used to calibrate the dynamics engine internal parameters and validate the simulated motor task. Results showed the calibrated contact model allows predicting dynamically
Energy Technology Data Exchange (ETDEWEB)
Foellinger, T.
1989-01-01
Periodic asorption heat pumps with water as working fluid and two types of zeolites as adsorption agents were studied theoretically by a dynamic simulation analysis in order to find out whether they are suited as high-temperature heat pumps for heat recovery. Variants with one and two pairs of containers were investigated. Internal heat transfer is possible between the containers of each pair, and shifting temperature and load profiles (zoned sorption) are generated inside the containers in order to raise the heat ratio (efficience). The heat ratios are clearly higher than in ammonia/water heat pumps of the same size. The external heat transfer is kept constant by means of control elements and buffer systems, so that the periodic heat pump can be integrated in a continuous process. A pilot plant was developed on the basis of the results, with particular interest taken in the design of the liquid/solid heat transfer media. (orig.) With 47 figs., 3 tabs.
Hydrostatic Simulation of Earth's Atmospheric Gas Using Multi-particle Collision Dynamics
Pattisahusiwa, Asis; Purqon, Acep; Virid, Sparisoma
2015-01-01
Multi-particle collision dynamics (MPCD) is a mesoscopic simulation method to simulate fluid particle-like flows. MPCD has been widely used to simulate various problems in condensed matter. In this study, hydrostatic behavior of gas in the Earth's atmospheric layer is simulated by using MPCD method. The simulation is carried out by assuming the system under ideal state and is affected only by gravitational force. Gas particles are homogeneous and placed in 2D box. Interaction of the particles...
Simulation of dynamic mathematical modeling for PWR nuclear power plant core based on PSASP
International Nuclear Information System (INIS)
Shi Xi; Liu Dichen; Wu Ping; Zhao Jie; Xiong Li; Zhang Yuanyuan; Zhao Zunlian
2009-01-01
Neutron dynamic model and fuel/coolant thermal output dynamic model were implemented in PSASP through a user-defined program. Based on the mathematical models of different orders, the dynamic behaviors of the NPP core under the input of step disturbance of reactivity and cool-line temperature were simulated in PSASP respectively. The simulation results demonstrate the self-stability of NPP core with temperature effect and poisoning effect, which is consistent with the real-world data. Moreover, the simulation validated the proposed core model, and it can be further used in dynamic calculation of the power system. (authors)
Design of Precise Control and Dynamic Simulation of Manipulator for Die-casting Mould
Mei, Yi; Liu, Chuang; Zhu, Chunlan; Sun, Quanlong
2018-03-01
To meet the demand of the enterprise for the die-casting machine, he overall structure of the manipulator and the controller of each joint were designed. Firstly, The solid model of the manipulator is established; and then, the simplified manipulator model was for dynamics simulation; Finally, through a combination of structural dynamics and dynamics control, established the cooperative control system of the manipulator, designed parameters of each joint motion controller and applied to cooperative control system simulation, joint simulation of manipulator is realized. The simulation results show that the manipulator system has good fast response characteristics and trajectory tracking characteristics, and the overall force results are in accordance with the theory.
IMPROVING MEDICAL EDUCATION: SIMULATING CHANGES IN PATIENT ANATOMY USING DYNAMIC HAPTIC FEEDBACK.
Yovanoff, Mary; Pepley, David; Mirkin, Katelin; Moore, Jason; Han, David; Miller, Scarlett
2016-09-01
Virtual simulation is an emerging field in medical education. Research suggests that simulation reduces complication rates and improves learning gains for medical residents. One benefit of simulators is their allowance for more realistic and dynamic patient anatomies. While potentially useful throughout medical education, few studies have explored the impact of dynamic haptic simulators on medical training. In light of this research void, this study was developed to examine how a Dynamic-Haptic Robotic Trainer (DHRT) impacts medical student self-efficacy and skill gains compared to traditional simulators developed to train students in Internal Jugular Central Venous Catheter (IJ CVC) placement. The study was conducted with 18 third year medical students with no prior CVC insertion experience who underwent a pre-test, simulator training (manikin, robotic, or mixed) and post-test. The results revealed the DHRT as a useful method for training CVC skills and supports further research on dynamic haptic trainers in medical education.
Implementation of Parallel Dynamic Simulation on Shared-Memory vs. Distributed-Memory Environments
Energy Technology Data Exchange (ETDEWEB)
Jin, Shuangshuang; Chen, Yousu; Wu, Di; Diao, Ruisheng; Huang, Zhenyu
2015-12-09
Power system dynamic simulation computes the system response to a sequence of large disturbance, such as sudden changes in generation or load, or a network short circuit followed by protective branch switching operation. It consists of a large set of differential and algebraic equations, which is computational intensive and challenging to solve using single-processor based dynamic simulation solution. High-performance computing (HPC) based parallel computing is a very promising technology to speed up the computation and facilitate the simulation process. This paper presents two different parallel implementations of power grid dynamic simulation using Open Multi-processing (OpenMP) on shared-memory platform, and Message Passing Interface (MPI) on distributed-memory clusters, respectively. The difference of the parallel simulation algorithms and architectures of the two HPC technologies are illustrated, and their performances for running parallel dynamic simulation are compared and demonstrated.
Non-Equilibrium Molecular Dynamics Simulation of Poiseuille Flow in a Carbon Nanochannel
Ni, Guo Liang; He, Ming Li; Hua, Yao Zu; Abareshi, Bagher
2017-01-01
International audience; The numerical simulation of a Poiseuille flow in a narrow channel using the molecular dynamics simulation (MDS) is performed. Poiseuille flow of liquid Argon in a carbon nanochannel is simulated by embedding the fluid particles in a uniform force field. Density, velocity and Temperature profiles across the channel are investigated. When particles will be inserted into the flow, it is expected that the dynamics of flow will depend on the thermostat chosen. To obtain a m...
Bresme, F; Armstrong, J
2014-01-07
We report non-equilibrium molecular dynamics simulations of heat transport in models of molecular fluids. We show that the "local" thermal conductivities obtained from non-equilibrium molecular dynamics simulations agree within numerical accuracy with equilibrium Green-Kubo computations. Our results support the local equilibrium hypothesis for transport properties. We show how to use the local dependence of the thermal gradients to quantify the thermal conductivity of molecular fluids for a wide range of thermodynamic states using a single simulation.
Dynamic Rupture Simulations with Plastic Yielding in Fault Damage Zone
Day, S. M.; Roten, D.; Olsen, K. B.; Cui, Y.
2016-12-01
Observations of fault-zone trapped waves indicate that faults are surrounded by damage zones with reduced seismic velocities. We investigate how plastic effects around the fault, enhanced by the reduced strength of pre-fractured rocks inside the low-velocity zone (LVZ), affect ground motions at various distances from the fault. 3-D dynamic rupture simulations are performed with the AWP-ODC finite difference code, using a slip-weakening fault friction law, a Drucker-Prager (DP) yield criterion and depth-dependent stress. We simulate M 7.5 earthquakes with a LVZ embedded in a horizontally layered model, as well as M 7.7 earthquakes on the southern San Andreas fault with a LVZ added to the 3D heterogeneous mesh (SCEC CVM 3c). Within a 500 m wide and 4 km deep inner fault zone, we assume a 30% reduction in shear-wave velocity with respect to wallrock, and a reduced Geological Strength Index (GSI) of 30, 50 or 75, representative of a fractured rock mass of poor, moderate and good quality, respectively. The Hoek-Brown criterion is then used to derive equivalent friction angles and cohesions, consistent with these GSI values, for the DP criterion. In the linear case, the presence of a LVZ increases mean near-surface peak slip rates by 50%, from 2 to 3 m/s. These amplifications are compensated by fault zone plasticity in poor and moderate quality rock masses, where near-surface peak slip rates average to 0.5 m/s and 1.5 m/s, respectively; no significant reduction is obtained in good quality (almost unfractured) fault zones. Trapping of seismic waves inside the LVZ results in reduced peak ground velocities (PGVs) outside of the fault zone even in the linear case; these reductions are more pronounced if plasticity is taken into account. Plasticity acts by truncating frequency-distribution curves of PGVs obtained near the fault. In the horizontally layered medium, the highest PGVs are reduced from 2.6 m/s to 2.2 for moderate, and to 1.7 m/s for poor quality fault zones. In
Computational Fluid Dynamics Simulation of Dual Bell Nozzle Film Cooling
Braman, Kalen; Garcia, Christian; Ruf, Joseph; Bui, Trong
2015-01-01
Marshall Space Flight Center (MSFC) and Armstrong Flight Research Center (AFRC) are working together to advance the technology readiness level (TRL) of the dual bell nozzle concept. Dual bell nozzles are a form of altitude compensating nozzle that consists of two connecting bell contours. At low altitude the nozzle flows fully in the first, relatively lower area ratio, nozzle. The nozzle flow separates from the wall at the inflection point which joins the two bell contours. This relatively low expansion results in higher nozzle efficiency during the low altitude portion of the launch. As ambient pressure decreases with increasing altitude, the nozzle flow will expand to fill the relatively large area ratio second nozzle. The larger area ratio of the second bell enables higher Isp during the high altitude and vacuum portions of the launch. Despite a long history of theoretical consideration and promise towards improving rocket performance, dual bell nozzles have yet to be developed for practical use and have seen only limited testing. One barrier to use of dual bell nozzles is the lack of control over the nozzle flow transition from the first bell to the second bell during operation. A method that this team is pursuing to enhance the controllability of the nozzle flow transition is manipulation of the film coolant that is injected near the inflection between the two bell contours. Computational fluid dynamics (CFD) analysis is being run to assess the degree of control over nozzle flow transition generated via manipulation of the film injection. A cold flow dual bell nozzle, without film coolant, was tested over a range of simulated altitudes in 2004 in MSFC's nozzle test facility. Both NASA centers have performed a series of simulations of that dual bell to validate their computational models. Those CFD results are compared to the experimental results within this paper. MSFC then proceeded to add film injection to the CFD grid of the dual bell nozzle. A series of
A Numerical Approach for Hybrid Simulation of Power System Dynamics Considering Extreme Icing Events
DEFF Research Database (Denmark)
Chen, Lizheng; Zhang, Hengxu; Wu, Qiuwei
2017-01-01
The global climate change leads to more extreme meteorological conditions such as icing weather, which have caused great losses to power systems. Comprehensive simulation tools are required to enhance the capability of power system risk assessment under extreme weather conditions. A hybrid....../E enabling hybrid simulation of icing event and power system disturbance is developed, based on which a hybrid simulation platform is established. Numerical studies show that the functionality of power system simulation is greatly extended by taking into account the icing weather events....... numerical simulation scheme integrating icing weather events with power system dynamics is proposed to extend power system numerical simulation. A technique is developed to efficiently simulate the interaction of slow dynamics of weather events and fast dynamics of power systems. An extended package for PSS...
Mehrnejad, Faramarz; Chaparzadeh, Nader
2008-10-01
The structural and dynamical properties of Humanin, a small peptide with neuroprotective activity against the insults of the Alzheimer's disease-related genes and the neurotoxic amyloid peptide, are studied in two different environments by molecular dynamics simulation. In this study, we have performed comparative molecular dynamics simulations in the absence and in the presence of TFE. The resulting trajectories were analyzed in terms of structural and dynamical properties of peptide and compared to the available NMR data. In water humanin is observed to partly unfold. The peptide is readily stabilized in an ordered helical conformation in the TFE/water mixture. Our simulations show that the peptide is flexible with definite turn point in its structure in water environment. It is free to interact with receptors that mediate its action in polar environment. Humanin may also find an alpha helix structure necessary for passage through biomembranes and/or specific interactions.
Dynamic simulations of the cryogenic system of a tokamak
International Nuclear Information System (INIS)
Cirillo, R.; Hoa, C.; Michel, F.; Rousset, B.; Poncet, J.M.
2015-01-01
In a tokamak plasma confinement is achieved through high magnetic fields generated by superconductive coils that need to be cooled down to 4.4 K with a forced flow of supercritical Helium. Tokamak's coil system works cyclically and so it is subject to pulsed heat loads which have to be handled by the refrigerator. This latter has to be sized on the average power value and not according to the peak to limit investment and operation costs and hence the heat load needs to be smoothed. CEA Grenoble is in charge of providing the cryogenic system for the Japanese tokamak JT60-SA, currently under construction in Naka (Japan). Hence, in order to model and study the smoothing strategies, an experimental set up: HELIOS (Helium Loop for high load smoothing) has been built. This is a scaled down model (1:20) of the helium distribution system whose main components are a saturated helium bath and a supercritical helium loop. This large installation can reproduce conditions of pressure, temperature and transport times, similar to those expected in the cooling circuits of the central solenoid superconducting magnets of JT-60SA. The peak loads representative of the tokamak operation have been reproduced and smoothed before they arrive in the refrigerator, by means of a saturated helium bath (thermal reservoir). A dynamic modelling of the cryogenic system is presented, with results on the pulsed load scenarios. All the simulations have been performed with EcosimPro software developed and the cryogenic library: CRYOLIB. This document is made up of an abstract and the slides of the presentation
Tyrosine aminotransferase: biochemical and structural properties and molecular dynamics simulations
Energy Technology Data Exchange (ETDEWEB)
Mehere, P.; Robinson, H.; Han, Q.; Lemkul, J. A.; Vavricka, C. J.; Bevan, D. R.; Li, J.
2010-11-01
Tyrosine aminotransferase (TAT) catalyzes the transamination of tyrosine and other aromatic amino acids. The enzyme is thought to play a role in tyrosinemia type II, hepatitis and hepatic carcinoma recovery. The objective of this study is to investigate its biochemical and structural characteristics and substrate specificity in order to provide insight regarding its involvement in these diseases. Mouse TAT (mTAT) was cloned from a mouse cDNA library, and its recombinant protein was produced using Escherichia coli cells and purified using various chromatographic techniques. The recombinant mTAT is able to catalyze the transamination of tyrosine using {alpha}-ketoglutaric acid as an amino group acceptor at neutral pH. The enzyme also can use glutamate and phenylalanine as amino group donors and p-hydroxy-phenylpyruvate, phenylpyruvate and alpha-ketocaproic acid as amino group acceptors. Through macromolecular crystallography we have determined the mTAT crystal structure at 2.9 {angstrom} resolution. The crystal structure revealed the interaction between the pyridoxal-5'-phosphate cofactor and the enzyme, as well as the formation of a disulphide bond. The detection of disulphide bond provides some rational explanation regarding previously observed TAT inactivation under oxidative conditions and reactivation of the inactive TAT in the presence of a reducing agent. Molecular dynamics simulations using the crystal structures of Trypanosoma cruzi TAT and human TAT provided further insight regarding the substrate-enzyme interactions and substrate specificity. The biochemical and structural properties of TAT and the binding of its cofactor and the substrate may help in elucidation of the mechanism of TAT inhibition and activation.
Tyrosine Aminotransferase: Biochemical and Structural Properties and Molecular Dynamics Simulations
Energy Technology Data Exchange (ETDEWEB)
P Mehere; Q Han; J Lemkul; C Vavricka; H Robinson; D Bevan; J Li
2011-12-31
Tyrosine aminotransferase (TAT) catalyzes the transamination of tyrosine and other aromatic amino acids. The enzyme is thought to play a role in tyrosinemia type II, hepatitis and hepatic carcinoma recovery. The objective of this study is to investigate its biochemical and structural characteristics and substrate specificity in order to provide insight regarding its involvement in these diseases. Mouse TAT (mTAT) was cloned from a mouse cDNA library, and its recombinant protein was produced using Escherichia coli cells and purified using various chromatographic techniques. The recombinant mTAT is able to catalyze the transamination of tyrosine using {alpha}-ketoglutaric acid as an amino group acceptor at neutral pH. The enzyme also can use glutamate and phenylalanine as amino group donors and p-hydroxy-phenylpyruvate, phenylpyruvate and alpha-ketocaproic acid as amino group acceptors. Through macromolecular crystallography we have determined the mTAT crystal structure at 2.9 {angstrom} resolution. The crystal structure revealed the interaction between the pyridoxal-5'-phosphate cofactor and the enzyme, as well as the formation of a disulphide bond. The detection of disulphide bond provides some rational explanation regarding previously observed TAT inactivation under oxidative conditions and reactivation of the inactive TAT in the presence of a reducing agent. Molecular dynamics simulations using the crystal structures of Trypanosoma cruzi TAT and human TAT provided further insight regarding the substrate-enzyme interactions and substrate specificity. The biochemical and structural properties of TAT and the binding of its cofactor and the substrate may help in elucidation of the mechanism of TAT inhibition and activation.
Analyzing machupo virus-receptor binding by molecular dynamics simulations
Directory of Open Access Journals (Sweden)
Austin G. Meyer
2014-02-01
Full Text Available In many biological applications, we would like to be able to computationally predict mutational effects on affinity in protein–protein interactions. However, many commonly used methods to predict these effects perform poorly in important test cases. In particular, the effects of multiple mutations, non alanine substitutions, and flexible loops are difficult to predict with available tools and protocols. We present here an existing method applied in a novel way to a new test case; we interrogate affinity differences resulting from mutations in a host–virus protein–protein interface. We use steered molecular dynamics (SMD to computationally pull the machupo virus (MACV spike glycoprotein (GP1 away from the human transferrin receptor (hTfR1. We then approximate affinity using the maximum applied force of separation and the area under the force-versus-distance curve. We find, even without the rigor and planning required for free energy calculations, that these quantities can provide novel biophysical insight into the GP1/hTfR1 interaction. First, with no prior knowledge of the system we can differentiate among wild type and mutant complexes. Moreover, we show that this simple SMD scheme correlates well with relative free energy differences computed via free energy perturbation. Second, although the static co-crystal structure shows two large hydrogen-bonding networks in the GP1/hTfR1 interface, our simulations indicate that one of them may not be important for tight binding. Third, one viral site known to be critical for infection may mark an important evolutionary suppressor site for infection-resistant hTfR1 mutants. Finally, our approach provides a framework to compare the effects of multiple mutations, individually and jointly, on protein–protein interactions.
Analyzing machupo virus-receptor binding by molecular dynamics simulations
Sawyer, Sara L.; Ellington, Andrew D.; Wilke, Claus O.
2014-01-01
In many biological applications, we would like to be able to computationally predict mutational effects on affinity in protein–protein interactions. However, many commonly used methods to predict these effects perform poorly in important test cases. In particular, the effects of multiple mutations, non alanine substitutions, and flexible loops are difficult to predict with available tools and protocols. We present here an existing method applied in a novel way to a new test case; we interrogate affinity differences resulting from mutations in a host–virus protein–protein interface. We use steered molecular dynamics (SMD) to computationally pull the machupo virus (MACV) spike glycoprotein (GP1) away from the human transferrin receptor (hTfR1). We then approximate affinity using the maximum applied force of separation and the area under the force-versus-distance curve. We find, even without the rigor and planning required for free energy calculations, that these quantities can provide novel biophysical insight into the GP1/hTfR1 interaction. First, with no prior knowledge of the system we can differentiate among wild type and mutant complexes. Moreover, we show that this simple SMD scheme correlates well with relative free energy differences computed via free energy perturbation. Second, although the static co-crystal structure shows two large hydrogen-bonding networks in the GP1/hTfR1 interface, our simulations indicate that one of them may not be important for tight binding. Third, one viral site known to be critical for infection may mark an important evolutionary suppressor site for infection-resistant hTfR1 mutants. Finally, our approach provides a framework to compare the effects of multiple mutations, individually and jointly, on protein–protein interactions. PMID:24624315
Simulation Development for Dynamic Situation Awareness and Prediction II
National Research Council Canada - National Science Library
Trott, Kevin C
2006-01-01
... within the simulation environment. These simulations provide feedback to prototype C4ISR systems in the form of mission status reports, sensor tracks, and other ISR mission results reports, which can be used to maintain situation...
Molecular Dynamics Simulations of Chemical Reactions for Use in Education
Qian Xie; Tinker, Robert
2006-01-01
One of the simulation engines of an open-source program called the Molecular Workbench, which can simulate thermodynamics of chemical reactions, is described. This type of real-time, interactive simulation and visualization of chemical reactions at the atomic scale could help students understand the connections between chemical reaction equations…
Energy Technology Data Exchange (ETDEWEB)
Zamora, L. I.; Forastero, C.; Guirado, D.; Lallena, A. M.
2011-07-01
The breast cancer screening programs are an essential tool in the fight against breast cancer. Currently, many questions concerning the setup of these programs are open, namely: age range of women who undergo the same, frequency of mammography, ... The effectiveness of a program should be evaluated in terms of mortality reduction is its systematic implementation in the population. In this sense, we performed Monte Carlo simulations to assess that these reductions.
Simulation Study of AC Contactor Dynamic Contacts Contact Pressure Based on ADAMS
Directory of Open Access Journals (Sweden)
Gu Yungao
2015-01-01
Full Text Available A multi-body dynamics simulation model of CJ20-25 AC contactor was established with Pro/E（Pro/Engineerin this paper. A coupling simulation with machine, electric, magnetic on the contactor has been achieved in this model. Dynamic parameters which were called use the secondary development technology of ADAMS. The dynamic contact pressure signal of an AC contactor was obtained with ADAMS’s own simultaneous solution such as electromagnetic suction, kinematics and dynamics equations. The simulation results and actual measurement of contactor contact pressure signals are very similar. However, the complexity of the measured contacts vibration is greater than the simulation results because the actual working condition is more complex. This result provides a theoretical foundation to the dynamic contacts contact pressure test.
Knoch, Fabian; Schäfer, Ken; Diezemann, Gregor; Speck, Thomas
2018-01-01
We present a dynamic coarse-graining technique that allows one to simulate the mechanical unfolding of biomolecules or molecular complexes on experimentally relevant time scales. It is based on Markov state models (MSMs), which we construct from molecular dynamics simulations using the pulling coordinate as an order parameter. We obtain a sequence of MSMs as a function of the discretized pulling coordinate, and the pulling process is modeled by switching among the MSMs according to the protocol applied to unfold the complex. This way we cover seven orders of magnitude in pulling speed. In the region of rapid pulling, we additionally perform steered molecular dynamics simulations and find excellent agreement between the results of the fully atomistic and the dynamically coarse-grained simulations. Our technique allows the determination of the rates of mechanical unfolding in a dynamical range from approximately 10-8/ns to 1/ns thus reaching experimentally accessible time regimes without abandoning atomistic resolution.
Real-Time Simulation of Coaxial Rotor Configurations with Combined Finite State Dynamic Wake and VPM
Zhao, Jinggen; He, Chengjian
2017-01-01
This paper describes a first-principle based finite state dynamic rotor wake model that addresses the complex aerodynamic interference inherent to coaxial rotor configurations in support of advanced vertical lift aircraft simulation, design, and analysis. The high fidelity rotor dynamic wake solution combines an enhanced real-time finite state dynamic wake model (DYW) with a first-principle based viscous Vortex Particle Method (VPM). The finite state dynamic wake model provides a state-spa...
Directory of Open Access Journals (Sweden)
G.M. Bhuiyan
2012-10-01
Full Text Available Several static and dynamic properties of liquid Cu, Ag and Au at thermodynamic states near their respective melting points, have been evaluated by means of the orbital free ab-initio molecular dynamics simulation method. The calculated static structure shows good agreement with the available X-ray and neutron diffraction data. As for the dynamic properties, the calculated dynamic structure factors point to the existence of collective density excitations along with a positive dispersion for l-Cu and l-Ag. Several transport coefficients have been obtained which show a reasonable agreement with the available experimental data.
Non-periodic molecular dynamics simulations of coarse grained lipid bilayer in water
DEFF Research Database (Denmark)
Kotsalis, E. M.; Hanasaki, I.; Walther, Jens Honore
2010-01-01
of the material properties of the system represented by CGMD. In this paper we extend a control algorithm originally developed for atomistic simulations [3], to conduct simulations involving coarse grained water molecules without periodic boundary conditions. We demonstrate the applicability of our method...... in simulating more complex systems by performing a non-periodic Molecular Dynamics simulation of a DPPC lipid in liquid coarse grained water....
Conformation analysis of trehalose. Molecular dynamics simulation and molecular mechanics
International Nuclear Information System (INIS)
Donnamaira, M.C.; Howard, E.I.; Grigera, J.R.
1992-09-01
Conformational analysis of the disaccharide trehalose is done by molecular dynamics and molecular mechanics. In spite of the different force fields used in each case, comparison between the molecular dynamics trajectories of the torsional angles of glycosidic linkage and energy conformational map shows a good agreement between both methods. By molecular dynamics it is observed a moderate mobility of the glycosidic linkage. The demands of computer time is comparable in both cases. (author). 6 refs, 4 figs
Molecular dynamics simulations of collision-induced absorption: Implementation in LAMMPS
Fakhardji, W.; Gustafsson, M.
2017-02-01
We pursue simulations of collision-induced absorption in a mixture of argon and xenon gas at room temperature by means of classical molecular dynamics. The established theoretical approach (Hartmann et al. 2011 J. Chem. Phys. 134 094316) is implemented with the molecular dynamics package LAMMPS. The bound state features in the absorption spectrum are well reproduced with the molecular dynamics simulation in comparison with a laboratory measurement. The magnitude of the computed absorption, however, is underestimated in a large part of the spectrum. We suggest some aspects of the simulation that could be improved.
Applications of granular-dynamics numerical simulations to asteroid surfaces
Richardson, D. C.; Michel, P.; Schwartz, S. R.; Yu, Y.; Ballouz, R.-L.; Matsumura, S.
2014-07-01
Spacecraft images and indirect observations including thermal inertia measurements indicate most small bodies have surface regolith. Evidence of granular flow is also apparent in the images. This material motion occurs in very low gravity, therefore in a totally different gravitational environment than on the Earth. Upcoming sample-return missions to small bodies, and possible future manned missions, will involve interaction with the surface regolith, so it is important to develop tools to predict the surface response. We have added new capabilities to the N-body gravity tree code pkdgrav [1,2] that permit the simulation of granular dynamics, including multi-contact physics and friction forces, using the soft-sphere discrete-element method [3]. The numerical approach has been validated through comparison with laboratory experiments (e.g., [3,4]). (1) We carried out impacts into granular materials using different projectile shapes under Earth's gravity [5] and compared the results to laboratory experiments [6] in support of JAXA's Hayabusa 2 asteroid sample-return mission. We tested different projectile shapes and confirmed that the 90-degree cone was the most efficient at excavating mass when impacting 5-mm-diameter glass beads. Results are sensitive to the normal coefficient of restitution and the coefficient of static friction. Preliminary experiments in micro-gravity for similar impact conditions show both the amount of ejected mass and the timescale of the impact process increase, as expected. (2) It has been found (e.g., [7,8]) that ''fresh'' (unreddened) Q-class asteroids have a high probability of recent planetary encounters (˜1 Myr; also see [9]), suggesting that surface refreshening may have occurred due to tidal effects. As an application of the potential effect of tidal interactions, we carried out simulations of Apophis' predicted 2029 encounter with the Earth to see whether regolith motion might occur, using a range of plausible material parameters
Experimental characterization of energetic material dynamics for multiphase blast simulation.
Energy Technology Data Exchange (ETDEWEB)
Beresh, Steven Jay; Wagner, Justin L.; Kearney, Sean Patrick; Wright, Elton K.; Baer, Melvin R.; Pruett, Brian Owen Matthew
2011-09-01
Currently there is a substantial lack of data for interactions of shock waves with particle fields having volume fractions residing between the dilute and granular regimes, which creates one of the largest sources of uncertainty in the simulation of energetic material detonation. To close this gap, a novel Multiphase Shock Tube has been constructed to drive a planar shock wave into a dense gas-solid field of particles. A nearly spatially isotropic field of particles is generated in the test section by a gravity-fed method that results in a spanwise curtain of spherical 100-micron particles having a volume fraction of about 19%. Interactions with incident shock Mach numbers of 1.66, 1.92, and 2.02 were achieved. High-speed schlieren imaging simultaneous with high-frequency wall pressure measurements are used to reveal the complex wave structure associated with the interaction. Following incident shock impingement, transmitted and reflected shocks are observed, which lead to differences in particle drag across the streamwise dimension of the curtain. Shortly thereafter, the particle field begins to propagate downstream and spread. For all three Mach numbers tested, the energy and momentum fluxes in the induced flow far downstream are reduced about 30-40% by the presence of the particle field. X-Ray diagnostics have been developed to penetrate the opacity of the flow, revealing the concentrations throughout the particle field as it expands and spreads downstream with time. Furthermore, an X-Ray particle tracking velocimetry diagnostic has been demonstrated to be feasible for this flow, which can be used to follow the trajectory of tracer particles seeded into the curtain. Additional experiments on single spherical particles accelerated behind an incident shock wave have shown that elevated particle drag coefficients can be attributed to increased compressibility rather than flow unsteadiness, clarifying confusing results from the historical database of shock tube
Marshall, Deborah A; Burgos-Liz, Lina; IJzerman, Maarten J; Crown, William; Padula, William V; Wong, Peter K; Pasupathy, Kalyan S; Higashi, Mitchell K; Osgood, Nathaniel D
2015-03-01
In a previous report, the ISPOR Task Force on Dynamic Simulation Modeling Applications in Health Care Delivery Research Emerging Good Practices introduced the fundamentals of dynamic simulation modeling and identified the types of health care delivery problems for which dynamic simulation modeling can be used more effectively than other modeling methods. The hierarchical relationship between the health care delivery system, providers, patients, and other stakeholders exhibits a level of complexity that ought to be captured using dynamic simulation modeling methods. As a tool to help researchers decide whether dynamic simulation modeling is an appropriate method for modeling the effects of an intervention on a health care system, we presented the System, Interactions, Multilevel, Understanding, Loops, Agents, Time, Emergence (SIMULATE) checklist consisting of eight elements. This report builds on the previous work, systematically comparing each of the three most commonly used dynamic simulation modeling methods-system dynamics, discrete-event simulation, and agent-based modeling. We review criteria for selecting the most suitable method depending on 1) the purpose-type of problem and research questions being investigated, 2) the object-scope of the model, and 3) the method to model the object to achieve the purpose. Finally, we provide guidance for emerging good practices for dynamic simulation modeling in the health sector, covering all aspects, from the engagement of decision makers in the model design through model maintenance and upkeep. We conclude by providing some recommendations about the application of these methods to add value to informed decision making, with an emphasis on stakeholder engagement, starting with the problem definition. Finally, we identify areas in which further methodological development will likely occur given the growing "volume, velocity and variety" and availability of "big data" to provide empirical evidence and techniques
An Iterative Algorithm to Determine the Dynamic User Equilibrium in a Traffic Simulation Model
Gawron, C.
An iterative algorithm to determine the dynamic user equilibrium with respect to link costs defined by a traffic simulation model is presented. Each driver's route choice is modeled by a discrete probability distribution which is used to select a route in the simulation. After each simulation run, the probability distribution is adapted to minimize the travel costs. Although the algorithm does not depend on the simulation model, a queuing model is used for performance reasons. The stability of the algorithm is analyzed for a simple example network. As an application example, a dynamic version of Braess's paradox is studied.
Snow, L. S.; Kuhn, A. E.
1975-01-01
Previous error analyses conducted by the Guidance and Dynamics Branch of NASA have used the Guidance Analysis Program (GAP) as the trajectory simulation tool. Plans are made to conduct all future error analyses using the Space Vehicle Dynamics Simulation (SVDS) program. A study was conducted to compare the inertial measurement unit (IMU) error simulations of the two programs. Results of the GAP/SVDS comparison are presented and problem areas encountered while attempting to simulate IMU errors, vehicle performance uncertainties and environmental uncertainties using SVDS are defined. An evaluation of the SVDS linear error analysis capability is also included.
Analysis of Twisting of Cellulose Nanofibrils in Atomistic Molecular Dynamics Simulations
DEFF Research Database (Denmark)
Paavilainen, S.; Rog, T.; Vattulainen, I.
2011-01-01
We use atomistic molecular dynamics simulations to study the crystal structure of cellulose nanofibrils, whose sizes are comparable with the crystalline parts in commercial nanocellulose. The simulations show twisting, whose rate of relaxation is strongly temperature dependent. Meanwhile, no sign......We use atomistic molecular dynamics simulations to study the crystal structure of cellulose nanofibrils, whose sizes are comparable with the crystalline parts in commercial nanocellulose. The simulations show twisting, whose rate of relaxation is strongly temperature dependent. Meanwhile......, no significant bending or stretching of nanocellulose is discovered. Considerations of atomic-scale interaction patterns bring about that the twisting arises from hydrogen bonding within and between the chains in a fibril....
Investigation of the Dynamic Contact Angle Using a Direct Numerical Simulation Method.
Zhu, Guangpu; Yao, Jun; Zhang, Lei; Sun, Hai; Li, Aifen; Shams, Bilal
2016-11-15
A large amount of residual oil, which exists as isolated oil slugs, remains trapped in reservoirs after water flooding. Numerous numerical studies are performed to investigate the fundamental flow mechanism of oil slugs to improve flooding efficiency. Dynamic contact angle models are usually introduced to simulate an accurate contact angle and meniscus displacement of oil slugs under a high capillary number. Nevertheless, in the oil slug flow simulation process, it is unnecessary to introduce the dynamic contact angle model because of a negligible change in the meniscus displacement after using the dynamic contact angle model when the capillary number is small. Therefore, a critical capillary number should be introduced to judge whether the dynamic contact model should be incorporated into simulations. In this study, a direct numerical simulation method is employed to simulate the oil slug flow in a capillary tube at the pore scale. The position of the interface between water and the oil slug is determined using the phase-field method. The capacity and accuracy of the model are validated using a classical benchmark: a dynamic capillary filling process. Then, different dynamic contact angle models and the factors that affect the dynamic contact angle are analyzed. The meniscus displacements of oil slugs with a dynamic contact angle and a static contact angle (SCA) are obtained during simulations, and the relative error between them is calculated automatically. The relative error limit has been defined to be 5%, beyond which the dynamic contact angle model needs to be incorporated into the simulation to approach the realistic displacement. Thus, the desired critical capillary number can be determined. A three-dimensional universal chart of critical capillary number, which functions as static contact angle and viscosity ratio, is given to provide a guideline for oil slug simulation. Also, a fitting formula is presented for ease of use.
Mota, J.P.B.; Esteves, I.A.A.C.; Rostam-Abadi, M.
2004-01-01
A computational fluid dynamics (CFD) software package has been coupled with the dynamic process simulator of an adsorption storage tank for methane fuelled vehicles. The two solvers run as independent processes and handle non-overlapping portions of the computational domain. The codes exchange data on the boundary interface of the two domains to ensure continuity of the solution and of its gradient. A software interface was developed to dynamically suspend and activate each process as necessary, and be responsible for data exchange and process synchronization. This hybrid computational tool has been successfully employed to accurately simulate the discharge of a new tank design and evaluate its performance. The case study presented here shows that CFD and process simulation are highly complementary computational tools, and that there are clear benefits to be gained from a close integration of the two. ?? 2004 Elsevier Ltd. All rights reserved.
Posokhov, Yevgen O; Kyrychenko, Alexander
2013-10-01
The modulation of the properties and function of cell membranes by small volatile substances is important for many biomedical applications. Despite available experimental results, molecular mechanisms of action of inhalants and organic solvents, such as acetone, on lipid membranes remain not well understood. To gain a better understanding of how acetone interacts with membranes, we have performed a series of molecular dynamics (MD) simulations of a POPC bilayer in aqueous solution in the presence of acetone, whose concentration was varied from 2.8 to 11.2 mol%. The MD simulations of passive distribution of acetone between a bulk water phase and a lipid bilayer show that acetone favors partitioning into the water-free region of the bilayer, located near the carbonyl groups of the phospholipids and at the beginning of the hydrocarbon core of the lipid membrane. Using MD umbrella sampling, we found that the permeability barrier of ~0.5 kcal/mol exists for acetone partitioning into the membrane. In addition, a Gibbs free energy profile of the acetone penetration across a bilayer demonstrates a favorable potential energy well of -3.6 kcal/mol, located at 15-16Å from the bilayer center. The analysis of the structural and dynamics properties of the model membrane revealed that the POPC bilayer can tolerate the presence of acetone in the concentration range of 2.8-5.6 mol%. The accumulation of the higher acetone concentration of 11.2 mol% results, however, in drastic disordering of phospholipid packing and the increase in the membrane fluidity. The acetone molecules push the lipid heads apart and, hence, act as spacers in the headgroup region. This effect leads to the increase in the average headgroup area per molecule. In addition, the acyl tail region of the membrane also becomes less dense. We suggest, therefore, that the molecular mechanism of acetone action on the phospholipid bilayer has many common features with the effects of short chain alcohols, DMSO, and
Raman, Abhinav S.; Li, Huiyong; Chiew, Y. C.
2018-01-01
Supercritical oxygen, a cryogenic fluid, is widely used as an oxidizer in jet propulsion systems and is therefore of paramount importance in gaining physical insights into processes such as transcritical and supercritical vaporization. It is well established in the scientific literature that the supercritical state is not homogeneous but, in fact, can be demarcated into regions with liquid-like and vapor-like properties, separated by the "Widom line." In this study, we identified the Widom line for oxygen, constituted by the loci of the extrema of thermodynamic response functions (heat capacity, volumetric thermal expansion coefficient, and isothermal compressibility) in the supercritical region, via atomistic molecular dynamics simulations. We found that the Widom lines derived from these response functions all coincide near the critical point until about 25 bars and 15-20 K, beyond which the isothermal compressibility line begins to deviate. We also obtained the crossover from liquid-like to vapor-like behavior of the translational diffusion coefficient, shear viscosity, and rotational relaxation time of supercritical oxygen. While the crossover of the translational diffusion coefficient and shear viscosity coincided with the Widom lines, the rotational relaxation time showed a crossover that was largely independent of the Widom line. Further, we characterized the clustering behavior and percolation transition of supercritical oxygen molecules, identified the percolation threshold based on the fractal dimension of the largest cluster and the probability of finding a cluster that spans the system in all three dimensions, and found that the locus of the percolation threshold also coincided with the isothermal compressibility Widom line. It is therefore clear that supercritical oxygen is far more complex than originally perceived and that the Widom line, dynamical crossovers, and percolation transitions serve as useful routes to better our understanding of the
Extended-Term Dynamic Simulations with High Penetrations of Photovoltaic Generation.
Energy Technology Data Exchange (ETDEWEB)
Concepcion, Ricky James [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Elliott, Ryan Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Donnelly, Matt [Montana Tech., Butte, MT (United States); Sanchez-Gasca, Juan [GE Energy, Schenectady, NY (United States)
2016-01-01
The uncontrolled intermittent availability of renewable energy sources makes integration of such devices into today's grid a challenge. Thus, it is imperative that dynamic simulation tools used to analyze power system performance are able to support systems with high amounts of photovoltaic (PV) generation. Additionally, simulation durations expanding beyond minutes into hours must be supported. This report aims to identify the path forward for dynamic simulation tools to accom- modate these needs by characterizing the properties of power systems (with high PV penetration), analyzing how these properties affect dynamic simulation software, and offering solutions for po- tential problems. We present a study of fixed time step, explicit numerical integration schemes that may be more suitable for these goals, based on identified requirements for simulating high PV penetration systems. We also present the alternative of variable time step integration. To help determine the characteristics of systems with high PV generation, we performed small signal sta- bility studies and time domain simulations of two representative systems. Along with feedback from stakeholders and vendors, we identify the current gaps in power system modeling including fast and slow dynamics and propose a new simulation framework to improve our ability to model and simulate longer-term dynamics.
COOL: A code for Dynamic Monte Carlo Simulation of molecular dynamics
Barletta, Paolo
2012-02-01
Cool is a program to simulate evaporative and sympathetic cooling for a mixture of two gases co-trapped in an harmonic potential. The collisions involved are assumed to be exclusively elastic, and losses are due to evaporation from the trap. Each particle is followed individually in its trajectory, consequently properties such as spatial densities or energy distributions can be readily evaluated. The code can be used sequentially, by employing one output as input for another run. The code can be easily generalised to describe more complicated processes, such as the inclusion of inelastic collisions, or the possible presence of more than two species in the trap. New version program summaryProgram title: COOL Catalogue identifier: AEHJ_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHJ_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1 097 733 No. of bytes in distributed program, including test data, etc.: 18 425 722 Distribution format: tar.gz Programming language: C++ Computer: Desktop Operating system: Linux RAM: 500 Mbytes Classification: 16.7, 23 Catalogue identifier of previous version: AEHJ_v1_0 Journal reference of previous version: Comput. Phys. Comm. 182 (2011) 388 Does the new version supersede the previous version?: Yes Nature of problem: Simulation of the sympathetic process occurring for two molecular gases co-trapped in a deep optical trap. Solution method: The Direct Simulation Monte Carlo method exploits the decoupling, over a short time period, of the inter-particle interaction from the trapping potential. The particle dynamics is thus exclusively driven by the external optical field. The rare inter-particle collisions are considered with an acceptance/rejection mechanism, that is, by comparing a random number to the collisional probability
Computational fluid dynamics simulations and validations of results
CSIR Research Space (South Africa)
Sitek, MA
2013-09-01
Full Text Available Wind flow influence on a high-rise building is analyzed. The research covers full-scale tests, wind-tunnel experiments and numerical simulations. In the present paper computational model used in simulations is described and the results, which were...
Object Oriented Toolbox for Modelling and Simulation of Dynamic Systems
DEFF Research Database (Denmark)
Thomsen, Per Grove; Poulsen, Mikael Zebbelin; Wagner, Falko Jens
1999-01-01
Design and Implementation of a simulation toolbox based on Object Oriented modelling Techniques.Experimental implementation in C++ using the Godess ODE-solution platform.......Design and Implementation of a simulation toolbox based on Object Oriented modelling Techniques.Experimental implementation in C++ using the Godess ODE-solution platform....
Classical dynamics simulations of interstellar glycine formation via ...
Indian Academy of Sciences (India)
YOGESHWARAN KRISHNAN
2017-09-20
Sep 20, 2017 ... present article, we report ab initio classical trajectory simulations for the interstellar formation of glycine for the above mentioned reaction with n ... Our simulations indicate that the above proposed catalytic effect by the additional ..... Advances in Chemical Physics: Monte Carlo Methods in Chemical Physics I ...
Directory of Open Access Journals (Sweden)
Ching-Sung Wang
2016-08-01
Full Text Available A novel dynamic co-simulation methodology of overall wind turbine systems is presented. This methodology combines aerodynamics, mechanism dynamics, control system dynamics, and subsystems dynamics. Aerodynamics and turbine properties were modeled in FAST (Fatigue, Aerodynamic, Structures, and Turbulence, and ADAMS (Automatic Dynamic Analysis of Mechanical Systems performed the mechanism dynamics; control system dynamics and subsystem dynamics such as generator, pitch control system, and yaw control system were modeled and built in MATLAB/SIMULINK. Thus, this comprehensive integration of methodology expands both the flexibility and controllability of wind turbines. The dynamic variations of blades, rotor dynamic response, and tower vibration can be performed under different inputs of wind profile, and the control strategies can be verified in the different closed loop simulation. Besides, the dynamic simulation results are compared with the measuring results of SCADA (Supervisory Control and Data Acquisition of a 2 MW wind turbine for ensuring the novel dynamic co-simulation methodology.
Nonequilibrium and generalized-ensemble molecular dynamics simulations for amyloid fibril
Energy Technology Data Exchange (ETDEWEB)
Okumura, Hisashi [Research Center for Computational Science, Institute for Molecular Science, Okazaki, Aichi 444-8585 (Japan); Department of Structural Molecular Science, The Graduate University for Advanced Studies, Okazaki, Aichi 444-8585 (Japan)
2015-12-31
Amyloids are insoluble and misfolded fibrous protein aggregates and associated with more than 20 serious human diseases. We perform all-atom molecular dynamics simulations of amyloid fibril assembly and disassembly.
2002-07-01
The purpose of the work is to validate the safety assessment methodology previously developed for passenger rail vehicle dynamics, which requires the application of simulation tools as well as testing of vehicles under different track scenarios. This...
Dynamics of partial anaerobiosis denitrification, and water in soil : experiments and simulation
Leffelaar, P.A.
1987-01-01
Dynamic interactions between biological respiration and denitrification, and physical transport processes that modify the abiotic soil environment in which bacteria live, were studied through the development of a new type of experimental respirometer system and an explanatory simulation
Determining the shear viscosity of model liquids from molecular dynamics simulations
Hess, B
2002-01-01
Several methods are available for calculating shear viscosities of liquids from molecular dynamics simulations. There are equilibrium methods based on pressure or momentum fluctuations and several nonequilibrium methods. For the nonequilibrium method using a periodic shear flow, all relevant
Solhjoo, Soheil; Vakis, Antonis I.
Abstract Using classical molecular dynamics, atomic scale simulations of normal contact between a nominally flat substrate and different atomistic and non-atomistic spherical particles were performed to investigate the applicability of classical contact theories at the nanoscale, and further
National Aeronautics and Space Administration — The key innovation in this effort is the development of a simulation testbed for identifying dynamic air corridors that can increase aircraft throughput in and...
A Dynamic Remote Sensing Data-Driven Approach for Oil Spill Simulation in the Sea
Directory of Open Access Journals (Sweden)
Jining Yan
2015-05-01
Full Text Available In view of the fact that oil spill remote sensing could only generate the oil slick information at a specific time and that traditional oil spill simulation models were not designed to deal with dynamic conditions, a dynamic data-driven application system (DDDAS was introduced. The DDDAS entails both the ability to incorporate additional data into an executing application and, in reverse, the ability of applications to dynamically steer the measurement process. Based on the DDDAS, combing a remote sensor system that detects oil spills with a numerical simulation, an integrated data processing, analysis, forecasting and emergency response system was established. Once an oil spill accident occurs, the DDDAS-based oil spill model receives information about the oil slick extracted from the dynamic remote sensor data in the simulation. Through comparison, information fusion and feedback updates, continuous and more precise oil spill simulation results can be obtained. Then, the simulation results can provide help for disaster control and clean-up. The Penglai, Xingang and Suizhong oil spill results showed our simulation model could increase the prediction accuracy and reduce the error caused by empirical parameters in existing simulation systems. Therefore, the DDDAS-based detection and simulation system can effectively improve oil spill simulation and diffusion forecasting, as well as provide decision-making information and technical support for emergency responses to oil spills.
Matching-pursuit/split-operator Fourier-transform simulations of nonadiabatic quantum dynamics
Wu, Yinghua; Herman, Michael F.; Batista, Victor S.
2005-03-01
A rigorous and practical approach for simulations of nonadiabatic quantum dynamics is introduced. The algorithm involves a natural extension of the matching-pursuit/split-operator Fourier-transform (MP/SOFT) method [Y. Wu and V. S. Batista, J. Chem. Phys. 121, 1676 (2004)] recently developed for simulations of adiabatic quantum dynamics in multidimensional systems. The MP/SOFT propagation scheme, extended to nonadiabatic dynamics, recursively applies the time-evolution operator as defined by the standard perturbation expansion to first-, or second-order, accuracy. The expansion is implemented in dynamically adaptive coherent-state representations, generated by an approach that combines the matching-pursuit algorithm with a gradient-based optimization method. The accuracy and efficiency of the resulting propagation method are demonstrated as applied to the canonical model systems introduced by Tully for testing simulations of dual curve-crossing nonadiabatic dynamics.
Nonlinear dynamic simulation of optimal depletion of crude oil in the lower 48 United States
International Nuclear Information System (INIS)
Ruth, M.; Cleveland, C.J.
1993-01-01
This study combines the economic theory of optimal resource use with econometric estimates of demand and supply parameters to develop a nonlinear dynamic model of crude oil exploration, development, and production in the lower 48 United States. The model is simulated with the graphical programming language STELLA, for the years 1985 to 2020. The procedure encourages use of economic theory and econometrics in combination with nonlinear dynamic simulation to enhance our understanding of complex interactions present in models of optimal resource use. (author)
Object-oriented simulator of the dynamics of Embalse nuclear power plant
International Nuclear Information System (INIS)
Boroni, Gustavo A.; Cuadrado, M.; Clausse, Alejandro
2000-01-01
LUDWIG is an object-oriented simulator of the dynamics of the CANDU Nuclear power plant Embalse Rio Tercero. The tool consists in a numerical plant analyzer by means of a model of the plant dynamics during normal operation, and a graphic environment for configuration and visualization of results. The simulator was validated against plant transients occurred in the plant and recorded in the past. (author)
A simple dynamic model and transient simulation of the nuclear power reactor on microcomputers
Energy Technology Data Exchange (ETDEWEB)
Han, Yang Gee; Park, Cheol [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1997-12-31
A simple dynamic model is developed for the transient simulation of the nuclear power reactor. The dynamic model includes the normalized neutron kinetics model with reactivity feedback effects and the core thermal-hydraulics model. The main objective of this paper demonstrates the capability of the developed dynamic model to simulate various important variables of interest for a nuclear power reactor transient. Some representative results of transient simulations show the expected trends in all cases, even though no available data for comparison. In this work transient simulations are performed on a microcomputer using the DESIRE/N96T continuous system simulation language which is applicable to nuclear power reactor transient analysis. 3 refs., 9 figs. (Author)
In Silico Dynamics: computer simulation in a Virtual Embryo (SOT)
Abstract: Utilizing cell biological information to predict higher order biological processes is a significant challenge in predictive toxicology. This is especially true for highly dynamical systems such as the embryo where morphogenesis, growth and differentiation require preci...
Molecular Dynamics Simulations of Poly(dimethylsiloxane) Properties
Czech Academy of Sciences Publication Activity Database
Fojtíková, J.; Kalvoda, L.; Sedlák, Petr
2015-01-01
Roč. 128, č. 4 (2015), s. 637-639 ISSN 0587-4246 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61388998 Keywords : molecular dynamics * poly(dimethylsiloxane) * dissipative particle dynamics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.525, year: 2015 http://przyrbwn.icm.edu.pl/APP/PDF/128/a128z4p40.pdf
Directory of Open Access Journals (Sweden)
Rubén Ledesma
2002-12-01
Full Text Available En este trabajo se presenta una herramienta informática original que permite realizar análisis de consistencia interna (modelo Alfa de Cronbach utilizando métodos gráficos dinámicos. Se trata de un módulo basado en la filosofía del Análisis Exploratorio de Datos y en métodos de visualización estadística, diseñado para asistir al analista en el proceso de construcción de pruebas psicológicas. La herramienta permite analizar la consistencia interna de la prueba, las propiedades de los ítems que la componen, los patrones de respuesta de los sujetos a los ítems, y el efecto de la eliminación de los ítems y del incremento en la longitud de la prueba sobre su fiabilidad. En comparación con otros programas existentes, el beneficio del módulo es la incorporación de gráficos estadísticos dinámicos como complemento a la presentación de resultados convencionales en formato texto.This paper describes a computer software that provides dynamic graphics to perform internal consistence analysis by means of Cronbach’s Alpha. This software, based on Exploratory Data Analysis philosophy and statistical visualization methods, is designed to assist the process of psychological test and scale construction. It allows carry out internal consistency analysis, as well as exploring statistical properties of items, subject responses patterns, and the effect of item deletion and test length increase on reliability coefficient. Comparing with other statistical software, the benefit of this program is to use dynamic graphics complementing statistical output.
A dynamic styrofoam-ball model for simulating molecular motion
Mak, Se-yuen; Cheung, Derek
2001-01-01
In this paper we introduce a simple styrofoam-ball model that can be used for simulating molecular motion in all three states. As the foam balls are driven by a vibrator that is in turn driven by a signal generator, the frequency and the amplitude of vibration can be adjusted independently. Thus, the model is appropriate for simulating molecular motion in the liquid state, which is a combination of vibration and meandering motion.
Jiang, Zhou; Xia, Zhenhua; Shi, Yipeng; Chen, Shiyi
2018-04-01
A fully developed spanwise rotating turbulent channel flow has been numerically investigated utilizing large-eddy simulation. Our focus is to assess the performances of the dynamic variants of eddy viscosity models, including dynamic Vreman's model (DVM), dynamic wall adapting local eddy viscosity (DWALE) model, dynamic σ (Dσ ) model, and the dynamic volumetric strain-stretching (DVSS) model, in this canonical flow. The results with dynamic Smagorinsky model (DSM) and direct numerical simulations (DNS) are used as references. Our results show that the DVM has a wrong asymptotic behavior in the near wall region, while the other three models can correctly predict it. In the high rotation case, the DWALE can get reliable mean velocity profile, but the turbulence intensities in the wall-normal and spanwise directions show clear deviations from DNS data. DVSS exhibits poor predictions on both the mean velocity profile and turbulence intensities. In all three cases, Dσ performs the best.
Co-simulation and Dynamic Model Exchange with Consideration for Wind Projects
Cvetkovic, M.; López Torres, C.D.; Bhandia, R.; Rueda Torres, José L.; Palensky, P.; Betancourt, Uta; Ackermann, Thomas
2017-01-01
This paper discusses and compares two approaches to address technical challenges in performing collaborative studies of power system dynamics. On one side, we consider the model migration approach which is an essential piece of dynamic model exchange. On the other side, we look at the co-simulation
Molecular Dynamics Simulation of Spinodal Decomposition in Three-Dimensional Binary Fluids
DEFF Research Database (Denmark)
Laradji, Mohamed; Toxvaerd, Søren; Mouritsen, Ole G.
1996-01-01
Using large-scale molecular dynamics simulations of a two-component Lennard-Jones model in three dimensions, we show that the late-time dynamics of spinodal decomposition in concentrated binary fluids reaches a viscous scaling regime with a growth exponent n = 1, in agreement with experiments...
Simulating forest fuel and fire risk dynamics across landscapes--LANDIS fuel module design
Hong S. He; Bo Z. Shang; Thomas R. Crow; Eric J. Gustafson; Stephen R. Shifley
2004-01-01
Understanding fuel dynamics over large spatial (103-106 ha) and temporal scales (101-103 years) is important in comprehensive wildfire management. We present a modeling approach to simulate fuel and fire risk dynamics as well as impacts of alternative fuel treatments. The...
A new algorithm for extended nonequilibrium molecular dynamics simulations of mixed flow
Hunt, T.A.; Hunt, Thomas A.; Bernardi, Stefano; Todd, B.D.
2010-01-01
In this work, we develop a new algorithm for nonequilibrium molecular dynamics of fluids under planar mixed flow, a linear combination of planar elongational flow and planar Couette flow. To date, the only way of simulating mixed flow using nonequilibrium molecular dynamics techniques was to impose
A Grid-Based Cyber Infrastructure for High Performance Chemical Dynamics Simulations
Directory of Open Access Journals (Sweden)
Khadka Prashant
2008-10-01
Full Text Available Chemical dynamics simulation is an effective means to study atomic level motions of molecules, collections of molecules, liquids, surfaces, interfaces of materials, and chemical reactions. To make chemical dynamics simulations globally accessible to a broad range of users, recently a cyber infrastructure was developed that provides an online portal to VENUS, a popular chemical dynamics simulation program package, to allow people to submit simulation jobs that will be executed on the web server machine. In this paper, we report new developments of the cyber infrastructure for the improvement of its quality of service by dispatching the submitted simulations jobs from the web server machine onto a cluster of workstations for execution, and by adding an animation tool, which is optimized for animating the simulation results. The separation of the server machine from the simulation-running machine improves the service quality by increasing the capacity to serve more requests simultaneously with even reduced web response time, and allows the execution of large scale, time-consuming simulation jobs on the powerful workstation cluster. With the addition of an animation tool, the cyber infrastructure automatically converts, upon the selection of the user, some simulation results into an animation file that can be viewed on usual web browsers without requiring installation of any special software on the user computer. Since animation is essential for understanding the results of chemical dynamics simulations, this animation capacity provides a better way for understanding simulation details of the chemical dynamics. By combining computing resources at locations under different administrative controls, this cyber infrastructure constitutes a grid environment providing physically and administratively distributed functionalities through a single easy-to-use online portal
International Nuclear Information System (INIS)
Choudhury, Niharendu
2013-01-01
Highlights: • We present atomistic MD simulation of water confined between two paraffin-like plates. • Effect of plate hydrophobicity on the confined water dynamics is investigated. • Diffusivity of confined water is calculated from mean squared displacements. • Rotational dynamics of the confined water has bimodal nature of relaxation. • Monotonic dependence of translational and rotational dynamics on hydrophobicity. - Abstract: We present detailed molecular dynamics simulations of water in and around a pair of plates immersed in water to investigate the effect of degree of hydrophobicity or hydrophilicity of the plates on dynamics of water confined between the two plates. The nature of the plate has been tuned from hydrophobic to hydrophilic and vice versa by varying plate-water dispersion interaction. Analyses of the translational dynamics as performed by calculating mean squared displacements of the confined water reveal a monotonically decreasing trend of the diffusivity with increasing hydrophilicity of the plates. Orientational dynamics of the confined water also follows the same monotonic trend. Although orientational time constant almost does not change with the increase of plate-water dispersion interaction in the hydrophobic regime corresponding to the smaller plate-water attraction, it changes considerably in the hydrophilic regime corresponding to larger plate-water dispersion interactions
Pressure-area isotherm of a lipid monolayer from molecular dynamics simulations
Baoukina, Svetlana; Monticelli, Luca; Marrink, Siewert J.; Tieleman, D. Peter
2007-01-01
We calculated the pressure-area isotherm of a dipalmitoyl-phosphatidylcholine (DPPC) lipid monolayer from molecular dynamics simulations using a coarse-grained molecular model. We characterized the monolayer structure, geometry, and phases directly from the simulations and compared the calculated
Transport diffusion of argon in AIPO4-5 from equilibrium molecular dynamics simulations
Hoogenboom, Jacob; Tepper, H.L.; van der Vegt, N.F.A.; Briels, Willem J.
2000-01-01
Transport diffusion of argon in the unidirectional channels of the molecular sieve AlPO4-5 has been studied using molecular dynamics simulations. Using the Green–Kubo formalism, this nonequilibrium property is, for the first time, extracted from just one equilibrium simulation. Apart from the
Formal Analysis of Dynamics Within Philosophy of Mind by Computer Simulation
Bosse, T.; Schut, M.C.; Treur, J.
2009-01-01
Computer simulations can be useful tools to support philosophers in validating their theories, especially when these theories concern phenomena showing nontrivial dynamics. Such theories are usually informal, whilst for computer simulation a formally described model is needed. In this paper, a
Substrate temperature effect on F+ etching of SiC: Molecular dynamics simulation
Lu, X.; Ning, J.; Qin, Y.; Qian, Q.; Chuanwu, Z.; Ying, Y.; Ming, J.; Gou, F.
2009-01-01
In this study, we performed molecular dynamics simulations to investigate F+ continuously bombarding SiC surfaces at temperatures of 100, 400, 600 and 800 K with the energy of 150 eV. The simulation results show that the etch rate of Si atoms is more than that of C atoms. With increasing
Czech Academy of Sciences Publication Activity Database
Kara, M.; Dršata, Tomáš; Lankaš, Filip; Zacharias, M.
2015-01-01
Roč. 103, č. 1 (2015), s. 23-32 ISSN 0006-3525 R&D Projects: GA ČR(CZ) GA14-21893S Institutional support: RVO:61388963 Keywords : DNA damage * DNA alkylation * DNA repair * molecular simulation * molecular dynamics simulation Subject RIV: BO - Biophysics Impact factor: 2.248, year: 2015
Bringing Hollywood to the Driving School: Dynamic Scenario Generation in Simulations and Games
Wassink, I.; van Dijk, Elisabeth M.A.G.; Zwiers, Jakob; Nijholt, Antinus; Maybury, M.; Stock, O.; Wahlster, W.
2005-01-01
In this paper we discuss a framework for simulation software called the movie metaphor. It is applied to the Dutch Driving Simulator for dynamic control of traffic scenarios. This framework resolves software complexity by the use of agent protocols inspired by the way of working on a movie set. It
Dynamic simulation of color blindness for studying color vision requirements in practice
Lucassen, M.P.; Alferdinck, J.W.A.M.
2006-01-01
We report on a dynamic simulation of defective color vision. Using an RGB video camera connected to a PC or laptop, the captured and displayed RGB colors are translated by our software into modified RGB values that simulate the color appearance of a person with a color deficiency. Usually, the
C++ Toolbox for Object-Oriented Modeling and Dynamic Simulation of Physical Systems
DEFF Research Database (Denmark)
Wagner, Falko Jens; Poulsen, Mikael Zebbelin
1999-01-01
This paper presents the efforts made in an ongoing project that exploits the advantages of using object-oriented methodologies for describing and simulating dynamical systems. The background for this work is a search for new and better ways to simulate physical systems....
Molecular dynamics simulations of N-terminal peptides from a nucleotide binding protein
van der Spoel, D.; Vogel, H.J.; Berendsen, H.J.C.
Molecular dynamics (MD) simulations of N-terminal peptides from lactate dehydrogenase (LDH) with increasing length and individual secondary structure elements were used to study their stability in relation to folding, Ten simulations of 1-2 ns of different peptides in water starting from the
The ABCs of molecular dynamics simulations on B-DNA, circa 2012
Indian Academy of Sciences (India)
2016-08-26
Aug 26, 2016 ... This article provides a retrospective on the ABC initiative in the area of all-atom molecular dynamics (MD) simulations including explicit solvent on all tetranucleotide steps of duplex B-form DNA duplex, ca. 2012. The ABC consortium has completed two phases of simulations, the most current being a set of ...
Molecular dynamics simulations of large integral membrane proteins with an implicit membrane model.
Tanizaki, Seiichiro; Feig, Michael
2006-01-12
The heterogeneous dielectric generalized Born (HDGB) methodology is an the extension of the GBMV model for the simulation of integral membrane proteins with an implicit membrane environment. Three large integral membrane proteins, the bacteriorhodopsin monomer and trimer and the BtuCD protein, were simulated with the HDGB model in order to evaluate how well thermodynamic and dynamic properties are reproduced. Effects of the truncation of electrostatic interactions were examined. For all proteins, the HDGB model was able to generate stable trajectories that remained close to the starting experimental structures, in excellent agreement with explicit membrane simulations. Dynamic properties evaluated through a comparison of B-factors are also in good agreement with experiment and explicit membrane simulations. However, overall flexibility was slightly underestimated with the HDGB model unless a very large electrostatic cutoff is employed. Results with the HDGB model are further compared with equivalent simulations in implicit aqueous solvent, demonstrating that the membrane environment leads to more realistic simulations.
Directory of Open Access Journals (Sweden)
Gláucio Marcelino Marques
2005-10-01
Full Text Available Este trabalho teve como objetivo desenvolver um modelo de programação dinâmica, para determinar o momento ótimo de substituição de equipamentos, incorporando-se as receitas geradas pelo uso e descarte da máquina. Tal modelo deverá procurar maximizar os lucros através de uma relação de recorrência referente às receitas e aos custos ao longo dos anos. Desse modo, comparou-se o modelo proposto com um tradicional de substituição, que inclui apenas custos, utilizado por Filgueiras (1997. O modelo proposto foi satisfatório, de acordo com o objetivo do trabalho, pois com o seu desenvolvimento foi possível oferecer decisões ótimas de substituir ou reter o equipamento. Tal modelo se apresentou mais flexível, podendo ser utilizado em situações em que o equipamento gera receitas diretas (como no caso de aluguel ou receitas de fretes ou não. Quando não se utilizam receitas, os resultados são idênticos aos do modelo tradicional. Constatou-se, também, que o modelo proposto é mais suscetível a aumentos no valor de aquisição do equipamento, enquanto o modelo sem receita é mais sensível a variações na taxa de juros. Observou-se que a aplicação da Programação Dinâmica oferece ao planejador uma gama de alternativas bem maior para auxiliar a tomada de decisão.The objective of this work was to develop a dynamic programming model to determine the optimal time to replace equipment, including the incomes generated by the use and removal of the machine, aiming at the maximization of profits through a recurrence relation related to the incomes and costs along the years. Thus, the proposed model was compared to the traditional replacement model using the dynamic programming that does not include the income generated by the equipment, used by Filgueiras (1997. The model proposed was satisfactory according to the objective of the work, as its development made it possible to offer optimal decisions to replace or maintain the equipment
Energy Technology Data Exchange (ETDEWEB)
Sanz Freire, C. J.; Vazquez Galinanes, A.; Collado Chamorro, P. M.; Diaz Pascual, V.; Gomez Amez, J.; Sanchez Martinez, S.; Ossola Lentati, G. A
2011-07-01
The precision in the correct beam irradiation in the treatment of highly modulated Intensity Modulated Radiation Therapy (IMRT) depends largely on the characteristics and behavior of the multi leaf collimator (MLC). Quality control (QC) of this element is essential to ensure proper delivery of the beams calculated. It is important to know the absolute position of each sheet, the motion characteristics of each behavior and stability. Among the numerous methods for carrying out the QC MLC, the use of portal imaging is a practical and high resolution. This paper describes the development of a quality control program based dynamic MLC portal image, self-developed software that enables analysis and the results of two years experience following the implementation of IMRT treatments at our center. (Author)
Flight dynamics analysis and simulation of heavy lift airships. Volume 1: Executive summary
Ringland, R. F.; Tischler, M. B.; Jex, H. R.; Emmen, R. D.; Ashkenas, I. L.
1982-01-01
A generic, yet comprehensive mathematical model and computer simulation of the HLA flight dynamics over its entire flight envelope was developed. Implicit in this simulation development are the data reviews and analyses which support the equations of motion and the calculation of forces and moments acting on the vehicle. The simulation, HYBRDS, is addressed to the broad requirements and is intended for use as a synthesis and analysis tool for the evaluation of competing HLA design concepts.
Numerical simulations of slagging dynamics using a meshmeshless strategy
Energy Technology Data Exchange (ETDEWEB)
Losurdo, M.; Spliethoff, H. [Technische Universitaet Muenchen (Germany). Lehrstuhl fuer Energiesysteme
2009-07-01
In pulverized co-firing and gasification facilities such as coal and biomass power plants, ash deposition, fouling and slagging, may significantly affect heat exchange and gasification per-formance Deposit growth dramatically increases production loss and may lead to the shut-down of the facility. Computational Fluid Dynamics (CFD) calculations can be used as a valid 'non-intrusive' investigation tool in an efficient problem solving strategy. At TU Munich, an ongoing project aims to develop a dedicated numerical tool to monitor and predict deposition, deposit growth and slagging dynamics in pulverized solid fuel furnaces and gasifiers. A novel in-house code was developed to track solid particles and predict deposit growth and slag dynamics. The adopted numerical strategy uses a Mesh-Meshless approach combined with a Lagrangian particle tracking. Ash particles are tracked in a Lagrangian frame post-processing CFD gas phase results (RANS or LES). Growth and thermo-mechanical proper-ties of the deposit are simultaneously evaluated. Slag dynamics is computed by using a meshless approach: deposit mesh nodes are considered point-mass particles interacting only with mesh connected node-particle neighbours. Forces are modelled applying a visco-elastic model and calculated by means of a Galerking weight (kernel) function. The final goal is to mathematically describe both particle adhesion and slag dynamics applying visco-elastic models using a mesh-meshless approach aiming to investigate slag/slurry dynamics. Pre-liminary numerical results on one layer encourage further development on this subject. (orig.)
Mos, B.; Verkerk, P.; Pouget, S.; Van Zon, A.; Bel, G.J.; De Leeuw, S.W.; Eisenbach, C.D.
2000-01-01
We determined the self part of the intermediate scattering function in liquid polyethyleneoxide (PEO) and PEO–alkali iodide complexes by means of neutron spin-echo spectroscopy and molecular dynamics (MD) computer simulations. We present the first accurate quantitative results on the segmental
2D fluid simulations of interchange turbulence with ion dynamics
DEFF Research Database (Denmark)
Nielsen, Anders Henry; Madsen, Jens; Xu, G. S.
2013-01-01
In this paper we present a first principle global two-dimensional fluid model. The HESEL (Hot Edge SOL Electrostatic) model is a 2D numerical fluid code, based on interchange dynamics and includes besides electron also the ion pressure dynamic. In the limit of cold ions the model almost reduces...... to the so-called ESEL model, which has successfully modeled profiles in JET [1], and profiles and fluctuations in MAST [2], EAST [3] and TCV [4]. It is a four-field Braginskii model including generalized vorticity, density, electron and ion pressure equations. The generalized vorticity consist of an Ex...
Dynamic simulation of a sodium-cooled fast reactor power plant
International Nuclear Information System (INIS)
Shinaishin, M.A.M.
1976-01-01
Simulation of the dynamic behavior of the Clinch River Breeder Reactor Plant (CRBRP) is dealt with. The range of transients under consideration extends from a moderate transient, of the type referred to as Anticipated Transient Without Scram (ATWS), to a transient initiated by an unexpected accident followed by reactor scram. The moderate range of transients can be simulated by a digital simulator referred to as the CRBRP ATWS simulator. Two versions of this simulator were prepared; in one, the plant controllers were not included, whereas, in the other, the controllers were incorporated. In addition to the usual assumption of lumped parameters, uniform heat transfer and point kinetics (prompt jump) have been the main approximations in this and other simulators (see below). Two different transport-delay models have also been installed in all simulators. The simulators were constructed using the DARE-P System, developed by the Electrical Engineering Department at the University of Arizona
Simulations of Operation Dynamics of Different Type GaN Particle Sensors
Gaubas, Eugenijus; Ceponis, Tomas; Kalesinskas, Vidas; Pavlov, Jevgenij; Vysniauskas, Juozas
2015-01-01
The operation dynamics of the capacitor-type and PIN diode type detectors based on GaN have been simulated using the dynamic and drift-diffusion models. The drift-diffusion current simulations have been implemented by employing the software package Synopsys TCAD Sentaurus. The monopolar and bipolar drift regimes have been analyzed by using dynamic models based on the Shockley-Ramo theorem. The carrier multiplication processes determined by impact ionization have been considered in order to compensate carrier lifetime reduction due to introduction of radiation defects into GaN detector material. PMID:25751080
Dynamics of cell aggregates fusion: Experiments and simulations
Thomas, Gilberto L.; Mironov, Vladimir; Nagy-Mehez, Agnes; Mombach, José C. M.
2014-02-01
Fusion of cell tissues is an ubiquitous phenomenon and has important technological applications including tissue biofabrication. In this work we present experimental results of aggregates fusion using adipose derived stem cells (ADSC) and a three dimensional computer simulation of the process using the cellular Potts model with aggregates reaching 10,000 cells. We consider fusion of round aggregates and monitor the dimensionless neck area of contact between the two aggregates to characterize the process, as done for the coalescence of liquid droplets and polymers. Both experiments and simulations show that the evolution of this quantity obeys a power law in time. We also study quantitatively individual cell motion with the simulation and it corresponds to an anomalous diffusion.
Numerical simulation of particle dynamics in storage rings using BETACOOL program
International Nuclear Information System (INIS)
Meshkov, I.N.; Pivin, R.V.; Sidorin, A.O.; Smirnov, A.V.; Trubnikov, G.V.
2006-01-01
BETACOOL program developed by JINR electron cooling group is a kit of algorithms based on common format of input and output files. The program is oriented to simulation of the ion beam dynamics in a storage ring in the presence of cooling and heating effects. The version presented in this report includes three basic algorithms: simulation of rms parameters of the ion distribution function evolution in time, simulation of the distribution function evolution using Monte-Carlo method and tracking algorithm based on molecular dynamics technique. General processes to be investigated with the program are intrabeam scattering in the ion beam, electron cooling, interaction with residual gas and internal target