WorldWideScience

Sample records for dynamic secondary ion

  1. Dynamics of secondary ion emission: Novel energy and angular spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Jalowy, T. E-mail: jalowy@hsb.uni-frankfurt.de; Neugebauer, R.; Hattass, M.; Fiol, J.; Afaneh, F.; Pereira, J.A.M.; Collado, V.; Silveira, E.F. da; Schmidt-Boecking, H.; Groeneveld, K.O

    2002-06-01

    A new spectrometer has been developed based on the combination of standard time-of-flight technique and position sensitive delay line detectors. The basic features of the spectrometer, particularly of the multi-hit capable detector, are described. To demonstrate the performance of this new system, the dynamic emission characteristics, i.e. the three-dimensional velocity distribution, of desorbed H{sub 2}{sup +} from Al target by Ar{sup 0} impact (570 keV) is presented. It is found that the desorption yield is maximum for radial and axial emission velocities at 1.2 and 12 km/s respectively, corresponding to 1.5 eV ions emitted at 57 deg. to normal (following the projectile radial direction). The initial energy distribution spreads out over 16 eV.

  2. Dynamics of secondary ion emission Novel energy and angular spectrometry

    CERN Document Server

    Jalowy, T; Hattass, M; Fiol, J; Afaneh, F; Pereira, J A M; Collado, V; Silveira, E F D; Schmidt-Böcking, H; Groeneveld, K O

    2002-01-01

    A new spectrometer has been developed based on the combination of standard time-of-flight technique and position sensitive delay line detectors. The basic features of the spectrometer, particularly of the multi-hit capable detector, are described. To demonstrate the performance of this new system, the dynamic emission characteristics, i.e. the three-dimensional velocity distribution, of desorbed H sub 2 sup + from Al target by Ar sup 0 impact (570 keV) is presented. It is found that the desorption yield is maximum for radial and axial emission velocities at 1.2 and 12 km/s respectively, corresponding to 1.5 eV ions emitted at 57 deg. to normal (following the projectile radial direction). The initial energy distribution spreads out over 16 eV.

  3. Copper diffusivity in boron-doped silicon wafer measured by dynamic secondary ion mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Songfoo [S.E.H (M) Sdn. Bhd., Lot 2, Lorong Enggang 35, Ulu Klang FTZ, 54200 Selangor (Malaysia); You, Ahheng [Faculty of Engineering and Technology, Multimedia University, Jalan Ayer Keroh Lama, Bukit Beruang, 75450 Melaka (Malaysia); Tou, Teckyong, E-mail: tytou@mmu.edu.my [Faculty of Engineering, Multimedia Univesity, Jalan Multimedia, 63100 Cyberjaya (Malaysia)

    2013-03-20

    Highlights: ► Effective copper diffusivity in boron-doped silicon wafer was measured. ► Dynamic secondary ion mass spectrometry was used. ► Interstitial copper ions were first drifted to surface region and allowed to back-diffuse. ► Boron concentration largely influenced the effect copper diffusivity. -- Abstract: The effective copper diffusivity (D{sub eff}) in boron-doped silicon wafer was measured using a Dynamic Secondary Ion Mass Spectrometry (D-SIMS) that was incorporated with an out-drift technique. By this technique, positive interstitial copper ions (Cu{sub I}{sup +}) migrated to the surface region when a continuous charge of electrons showered on the oxidized silicon wafer, which was also bombarded by primary O{sub 2}{sup +} ions. The Cu{sub I}{sup +} ions at the surface region diffused back to the bulk when the electron showering stopped. The D-SIMS recorded the real-time distribution of Cu{sub I}{sup +} ions, generating depth profiles for in-diffusion of copper for silicon-wafer samples with different boron concentrations. These were curve-fitted using the standard diffusion expressions to obtain different D{sub eff} values, and compared with other measurement techniques.

  4. Dynamics of fragments and associated phenomena in heavy-ion collisions using a modified secondary algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rohit [Department of Physics, Panjab University, Chandigarh-160014 (India)

    2016-05-06

    We discuss the stability of fragments identified by secondary algorithms used to construct fragments within quantum molecular dynamics model. For this purpose we employ three different algorithms for fragment identification. 1) The conventional minimum spanning tree (MST) method based on the spatial correlations, 2) an improved version of MST with additional binding energy constraints of cold nuclear matter, 3) and that of hot matter. We find significant role of thermal binding energies over cold matter binding energies. Significant role is observed for fragment multiplicities and stopping of fragments. Whereas insignificant effect is observed on fragment’s flow.

  5. Energy-resolved depth profiling of metal-polymer interfaces using dynamic quadrupole secondary ion mass spectrometry.

    Science.gov (United States)

    Téllez, Helena; Vadillo, José M; Laserna, J Javier

    2009-08-01

    Quadrupole secondary ion mass spectrometry (qSIMS) characterization of a metallized polypropylene film used in the manufacturing of capacitors has been performed. Ar(+) primary ions were used to preserve the oxidation state of the surface. The sample exhibits an incomplete metallization that made it difficult to determine the exact location of the metal-polymer interface due to the simultaneous contribution of ions with identical m/z values from the metallic and the polymer layers. Energy filtering by means of a 45 degrees electrostatic analyzer allowed resolution of the metal-polymer interface by selecting a suitable kinetic energy corresponding to the ions generated in the metallized layer but not from the polymer. Under these conditions, selective analyses of isobaric interferences such as (27)Al(+) and (27)C(2)H(3) (+) or (43)AlO(+) and (43)C(3)H(7) (+) have been successfully performed.

  6. Two-dimensional and three-dimensional dynamic imaging of live biofilms in a microchannel by time-of-flight secondary ion mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Xin; Marshall, Matthew J.; Xiong, Yijia; Ma, Xiang; Zhou, Yufan; Tucker, Abigail E.; Zhu, Zihua; Liu, Songqin; Yu, Xiao-Ying

    2015-05-01

    A vacuum compatible microfluidic reactor, SALVI (System for Analysis at the Liquid Vacuum Interface) was employed for in situ chemical imaging of live biofilms using time-of-flight secondary ion mass spectrometry (ToF-SIMS). Depth profiling by sputtering materials in sequential layers resulted in live biofilm spatial chemical mapping. 2D images were reconstructed to report the first 3D images of hydrated biofilm elucidating spatial and chemical heterogeneity. 2D image principal component analysis (PCA) was conducted among biofilms at different locations in the microchannel. Our approach directly visualized spatial and chemical heterogeneity within the living biofilm by dynamic liquid ToF-SIMS.

  7. Two-dimensional and three-dimensional dynamic imaging of live biofilms in a microchannel by time-of-flight secondary ion mass spectrometry.

    Science.gov (United States)

    Hua, Xin; Marshall, Matthew J; Xiong, Yijia; Ma, Xiang; Zhou, Yufan; Tucker, Abigail E; Zhu, Zihua; Liu, Songqin; Yu, Xiao-Ying

    2015-05-01

    A vacuum compatible microfluidic reactor, SALVI (System for Analysis at the Liquid Vacuum Interface), was employed for in situ chemical imaging of live biofilms using time-of-flight secondary ion mass spectrometry (ToF-SIMS). Depth profiling by sputtering materials in sequential layers resulted in live biofilm spatial chemical mapping. Two-dimensional (2D) images were reconstructed to report the first three-dimensional images of hydrated biofilm elucidating spatial and chemical heterogeneity. 2D image principal component analysis was conducted among biofilms at different locations in the microchannel. Our approach directly visualized spatial and chemical heterogeneity within the living biofilm by dynamic liquid ToF-SIMS.

  8. Chemical imaging of molecular changes in a hydrated single cell by dynamic secondary ion mass spectrometry and super-resolution microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Xin; Szymanski, Craig J.; Wang, Zhaoying; Zhou, Yufan; Ma, Xiang; Yu, Jiachao; Evans, James E.; Orr, Galya; Liu, Songqin; Zhu, Zihua; Yu, Xiao-Ying

    2016-05-15

    Chemical imaging of single cells is important in capturing biological dynamics. Single cell correlative imaging is realized between structured illumination microscopy (SIM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) using System for Analysis at the Liquid Vacuum Interface (SALVI), a multimodal microreactor. SIM characterized cells and guided subsequent ToF-SIMS analysis. Dynamic ToF-SIMS provided time- and space-resolved cell molecular mapping. Lipid fragments were identified in the hydrated cell membrane. Principal component analysis was used to elucidate chemical component differences among mouse lung cells that uptake zinc oxide nanoparticles. Our results provided submicron chemical spatial mapping for investigations of cell dynamics at the molecular level.

  9. Enhanced secondary ion emission with a bismuth cluster ion source

    Science.gov (United States)

    Nagy, G.; Walker, A. V.

    2007-04-01

    We have investigated the mechanism of secondary ion yield enhancement using Bin+ (n = 1-6) primary ions and three different samples - dl-phenylalanine, Irganox 1010 and polystyrene - adsorbed on Al, Si and Ag substrates. The largest changes in secondary ion yields are observed for Bi2+ and Bi3+ primary ions. Smaller increases in secondary ion yield are found using Bi4+, Bi5+ and Bi6+ projectiles. The secondary ion yield enhancements are generally larger on Si than on Al. Using Bin+ structures obtained from density functional theory (DFT) calculations we demonstrate that the yield enhancements cannot be explained by an increase in the deposited energy density (energy per area) into the substrate. These data show that the mechanism of Bin+ sputtering is very similar to that for Aun+ primary ion beams. When a polyatomic primary ion strikes the substrate, its constituent atoms are likely to remain near to each other, and so a substrate atom can be struck simultaneously by multiple atoms. The action of these multiple concerted impacts leads to efficient energy transfer in the near surface region and an increase in the number of secondary ions ejected from the surface. Such concerted impacts involve one, two or three projectile atoms, which explains well the nonlinear yield enhancements observed going from Bi+ to Bi2+ to Bi3+.

  10. Secondary Ion Mass Spectrometry SIMS XI

    Science.gov (United States)

    Gillen, G.; Lareau, R.; Bennett, J.; Stevie, F.

    2003-05-01

    This volume contains 252 contributions presented as plenary, invited and contributed poster and oral presentations at the 11th International Conference on Secondary Ion Mass Spectrometry (SIMS XI) held at the Hilton Hotel, Walt Disney World Village, Orlando, Florida, 7 12 September, 1997. The book covers a diverse range of research, reflecting the rapid growth in advanced semiconductor characterization, ultra shallow depth profiling, TOF-SIMS and the new areas in which SIMS techniques are being used, for example in biological sciences and organic surface characterization. Papers are presented under the following categories: Isotopic SIMS Biological SIMS Semiconductor Characterization Techniques and Applications Ultra Shallow Depth Profiling Depth Profiling Fundamental/Modelling and Diffusion Sputter-Induced Topography Fundamentals of Molecular Desorption Organic Materials Practical TOF-SIMS Polyatomic Primary Ions Materials/Surface Analysis Postionization Instrumentation Geological SIMS Imaging Fundamentals of Sputtering Ion Formation and Cluster Formation Quantitative Analysis Environmental/Particle Characterization Related Techniques These proceedings provide an invaluable source of reference for both newcomers to the field and experienced SIMS users.

  11. Invention of Lithium Ion Secondary Battery and Its Business Development

    OpenAIRE

    正本, 順三/米田,晴幸; 米田, 晴幸; MASAMOTO, Junzo; YONEDA, Haruyuki

    2010-01-01

    At present, mobile phones and laptop computers are essential items in our daily life. As a battery for such portable devices, the lithium ion secondary battery is used. The lithium ion secondary battery, which is used as a battery for such portable devices, was first invented by Dr. Yoshino at Asahi Kasei. In this paper, the authors describe how the lithium ion secondary battery was developed by the inventor. The authors also describe the battery separator, which is one of the key components ...

  12. Invention of Lithium Ion Secondary Battery and Its Business Development

    OpenAIRE

    正本, 順三/米田,晴幸; 米田, 晴幸; MASAMOTO, Junzo; YONEDA, Haruyuki

    2010-01-01

    At present, mobile phones and laptop computers are essential items in our daily life. As a battery for such portable devices, the lithium ion secondary battery is used. The lithium ion secondary battery, which is used as a battery for such portable devices, was first invented by Dr. Yoshino at Asahi Kasei. In this paper, the authors describe how the lithium ion secondary battery was developed by the inventor. The authors also describe the battery separator, which is one of the key components ...

  13. Effects of projectile track charging on the H - secondary ion velocity distribution

    Science.gov (United States)

    Iza, P.; Farenzena, L. S.; da Silveira, E. F.

    2007-03-01

    The bombardment of insulating targets by MeV projectiles produces a positive track delivering secondary electrons to the solid. These electrons are eventually captured by adsorbed hydrogen-containing molecules, inducing fragmentation and initiating the H- secondary ion emission. The dynamics of this process is very sensitive to the track electric field and depends on the emission site and on the H- initial velocity. In this work, a model, based on a time-depending track potential followed by secondary electron induced desorption - SEID, is employed to describe the production and dynamics of H- secondary ion emission. It is shown that depending on how fast the track neutralization occurs, the movement of H- ions may be accelerated, decelerated or even aborted. Trajectories, angular distributions and energy distributions are predicted and compared with experimental data obtained for water ice bombarded by 1.7 MeV nitrogen ions.

  14. Time-of-flight secondary neutral & ion mass spectrometry using swift heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Breuer, L.; Meinerzhagen, F. [Universität Duisburg-Essen, Fakultät für Physik, D-47048 Duisburg (Germany); Bender, M.; Severin, D. [Gesellschaft für Schwerionenforschung GSI, D-64291 Darmstadt (Germany); Wucher, A., E-mail: andreas.wucher@uni-due.de [Universität Duisburg-Essen, Fakultät für Physik, D-47048 Duisburg (Germany)

    2015-12-15

    We report on a new time-of-flight (TOF) spectrometer designed to investigate sputtering phenomena induced by swift heavy ions in the electronic stopping regime. In this experiment, particular emphasis is put on the detection of secondary ions along with their emitted neutral counterparts in order to examine the ionization efficiency of the sputtered material. For the detection of neutral species, the system is equipped with a pulsed VUV laser for post-ionization of sputtered neutral atoms and molecules via single photon ionization at a wavelength of 157 nm (corresponding to 7.9 eV photon energy). For alignment purposes and in order to facilitate comparison to nuclear sputtering conditions, the system also includes a 5 keV Ar{sup +} ion beam directed to the same sample area. The instrument has been added to the M1-branch beam line at the German accelerator facility in Darmstadt (GSI) and was tested with 4.8 MeV/u Au{sup 26+} ions impinging onto various samples including metals, salts and organic films. It is found that secondary ion and neutral spectra obtained under both bombardment conditions can be acquired in an interleaved manner throughout a single accelerator pulse cycle, thus making efficient use of valuable beam time. In addition, the keV ion beam can be intermittently switched to dc mode between subsequent data acquisition windows and accelerator pulses in order to ensure reproducible surface conditions. For the case of a dynamically sputter cleaned metal surface, comparison of secondary ion and neutral signals obtained under otherwise identical instrumental conditions reveals a nearly identical ionization probability of atoms emitted under electronic and nuclear sputtering conditions.

  15. High-resolution secondary ion mass spectrometry analysis of carbon dynamics in mycorrhizas formed by an obligately myco-heterotrophic orchid.

    Science.gov (United States)

    Bougoure, Jeremy; Ludwig, Martha; Brundrett, Mark; Cliff, John; Clode, Peta; Kilburn, Matt; Grierson, Pauline

    2014-05-01

    Mycorrhiza formation represents a significant carbon (C) acquisition alternative for orchid species, particularly those that remain achlorophyllous through all life stages. As it is known that orchid mycorrhizas facilitate nutrient transfer (most notably of C), it has not been resolved if C transfer occurs only after lysis of mycorrhizal structures (fungal pelotons) or also across the mycorrhizal interface of pre-lysed pelotons. We used high-resolution secondary ion mass spectrometry (nanoSIMS) and labelling with enriched (13) CO2 to trace C transfers, at subcellular scale, across mycorrhizal interfaces formed by Rhizanthella gardneri, an achlorphyllous orchid. Carbon was successfully traced in to the fungal portion of orchid mycorrhizas. However, we did not detect C movement across intact mycorrhizal interfaces up to 216 h post (13) CO2 labelling. Our findings provide support for the hypothesis that C transfer from the mycorrhizal fungus to orchid, at least for R. gardneri, likely occurs after lysis of the fungal peloton. © 2013 John Wiley & Sons Ltd.

  16. Transmission secondary ion mass spectrometry using 5 MeV C60+ ions

    Science.gov (United States)

    Nakajima, K.; Nagano, K.; Suzuki, M.; Narumi, K.; Saitoh, Y.; Hirata, K.; Kimura, K.

    2014-03-01

    In the secondary ion mass spectrometry (SIMS), use of cluster ions has an advantage of producing a high sensitivity of intact large molecular ions over monatomic ions. This paper presents further yield enhancement of the intact biomolecular ions by measuring the secondary ions emitted in the forward direction. Phenylalanine amino acid films deposited on self-supporting thin Si3N4 films were bombarded with 5 MeV C60 ions. Secondary ions emitted in the forward and backward directions were measured. The yield of intact phenylalanine molecular ions emitted in the forward direction is significantly enhanced compared to the backward direction while fragment ions are suppressed. This suggests a large potential of using transmission cluster ion SIMS for the analysis of biological materials.

  17. An investigation of enhanced secondary ion emission under Au(n)+ (n = 1-7) bombardment.

    Science.gov (United States)

    Nagy, G; Gelb, L D; Walker, A V

    2005-05-01

    We investigate the mechanism of the nonlinear secondary ion yield enhancement using Au(n)+ (n = 1, 2, 3, 5, 7) primary ions bombarding thin films of Irganox 1010, DL-phenylalanine and polystyrene on Si, Al, and Ag substrates. The largest differences in secondary ion yields are found using Au+, Au2+, and Au3+ primary ion beams. A smaller increase in secondary ion yield is observed using Au5+ and Au7+ primary ions. The yield enhancement is found to be larger on Si than on Al, while the ion yield is smaller using an Au+ beam on Si than on Al. Using Au(n)+ ion structures obtained from Density Functional Theory, we demonstrate that the secondary yield enhancement is not simply due to an increase in energy per area deposited into the surface (energy deposition density). Instead, based on simple mechanical arguments and molecular dynamics results from Medvedeva et al, we suggest a mechanism for nonlinear secondary ion yield enhancement wherein the action of multiple concerted Au impacts leads to efficient energy transfer to substrate atoms in the near surface region and an increase in the number of secondary ions ejected from the surface. Such concerted impacts involve one, two, or three Au atoms, which explains well the large nonlinear yield enhancements observed going from Au+ to Au2+ to Au3+ primary ions. This model is also able to explain the observed substrate effect. For an Au+ ion passing through the more open Si surface, it contacts fewer substrate atoms than in the more dense Al surface. Less energy is deposited in the Si surface region by the Au+ primary ion and the secondary ion yield will be lower for adsorbates on Si than on Al. In the case of Au(n)+ the greater density of Al leads to earlier break-up of the primary ion and a consequent reduction in energy transfer to the near-surface region when compared with Si. This results in higher secondary ion yields and yield enhancements on silicon than aluminum substrates.

  18. Protein Secondary Structure Prediction Using Dynamic Programming

    Institute of Scientific and Technical Information of China (English)

    Jing ZHAO; Pei-Ming SONG; Qing FANG; Jian-Hua LUO

    2005-01-01

    In the present paper, we describe how a directed graph was constructed and then searched for the optimum path using a dynamic programming approach, based on the secondary structure propensity of the protein short sequence derived from a training data set. The protein secondary structure was thus predicted in this way. The average three-state accuracy of the algorithm used was 76.70%.

  19. Simulation study of secondary electron images in scanning ion microscopy

    CERN Document Server

    Ohya, K

    2003-01-01

    The target atomic number, Z sub 2 , dependence of secondary electron yield is simulated by applying a Monte Carlo code for 17 species of metals bombarded by Ga ions and electrons in order to study the contrast difference between scanning ion microscopes (SIM) and scanning electron microscopes (SEM). In addition to the remarkable reversal of the Z sub 2 dependence between the Ga ion and electron bombardment, a fine structure, which is correlated to the density of the conduction band electrons in the metal, is calculated for both. The brightness changes of the secondary electron images in SIM and SEM are simulated using Au and Al surfaces adjacent to each other. The results indicate that the image contrast in SIM is much more sensitive to the material species and is clearer than that for SEM. The origin of the difference between SIM and SEM comes from the difference in the lateral distribution of secondary electrons excited within the escape depth.

  20. Dynamic Spectrum Leasing to Cooperating Secondary Networks

    CERN Document Server

    Li, Cuilian

    2008-01-01

    We propose and analyze a dynamic implementation of the property-rights model of cognitive radio, whereby a primary link has the possibility to lease the owned spectrum to a MAC network of secondary nodes in exchange for cooperation in the form of distributed space-time coding. On one hand, the primary link attempts to maximize its quality of service in terms of Signal-to-interference-plus-noise ratio (SINR), accounting for the possible contribution from cooperation. On the other hand, nodes in the secondary network compete among themselves for transmission within the leased time-slot following a distributed heterogeneous opportunistic power control mechanism. The cooperation and competition between the primary and secondary network are cast in the framework of sequential game. We give consider both a baseline model with complete information and a more practical version with incomplete information, Using the backward induction approach for the former and providing approximating algorithm for the latter. Analys...

  1. Reconnection dynamics with secondary tearing instability in compressible Hall plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Z. W., E-mail: zwma@zju.edu.cn; Wang, L. C.; Li, L. J. [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China)

    2015-06-15

    The dynamics of a secondary tearing instability is systematically investigated based on compressible Hall magnetohydrodynamic. It is found that in the early nonlinear phase of magnetic reconnection before onset of the secondary tearing instability, the geometry of the magnetic field in the reconnection region tends to form a Y-type structure in a weak Hall regime, instead of an X-type structure in a strong Hall regime. A new scaling law is found that the maximum reconnection rate in the early nonlinear stage is proportional to the square of the ion inertial length (γ∝d{sub i}{sup 2}) in the weak Hall regime. In the late nonlinear phase, the thin elongated current sheet associated with the Y-type geometry of the magnetic field breaks up to form a magnetic island due to a secondary tearing instability. After the onset of the secondary tearing mode, the reconnection rate is substantially boosted by the formation of the X-type geometries of magnetic field in the reconnection regions. With a strong Hall effect, the maximum reconnection rate linearly increases with the increase of the ion inertial length (γ∝d{sub i})

  2. Secondary Ion Mass Spectrometry Analysis of Renal Cell Carcinoma with Electrospray Droplet Ion Beams

    Science.gov (United States)

    Ninomiya, Satoshi; Yoshimura, Kentaro; Chen, Lee Chuin; Takeda, Sen; Hiraoka, Kenzo

    2017-01-01

    Tissue samples from renal cell carcinoma patients were analyzed by electrospray droplet ion beam-induced secondary ion mass spectrometry (EDI/SIMS). Positively- and negatively-charged secondary ions were measured for the cancerous and noncancerous regions of the tissue samples. Although specific cancerous species could not be found in both the positive and negative secondary ion spectra, the spectra of the cancerous and noncancerous tissues presented different trends. For instance, in the m/z range of 500–800 of the positive secondary ion spectra for the cancerous tissues, the intensities for several m/z values were lower than those of the m/z+2 peaks (indicating one double bond loss for the species), whereas, for the noncancerous tissues, the inverse trend was obtained. The tandem mass spectrometry (MS/MS) was also performed on the tissue samples using probe electrospray ionization (PESI), and some molecular ions produced by PESI were found to be fragmented into the ions observed in EDI/SIMS analysis. When the positive secondary ion spectra produced by EDI/SIMS were analyzed by principal component analysis, the results for cancerous and noncancerous tissues were separated. The EDI/SIMS method can be applied to distinguish between a cancerous and a noncancerous area with high probability. PMID:28149705

  3. Secondary batteries with multivalent ions for energy storage.

    Science.gov (United States)

    Xu, Chengjun; Chen, Yanyi; Shi, Shan; Li, Jia; Kang, Feiyu; Su, Dangsheng

    2015-09-14

    The use of electricity generated from clean and renewable sources, such as water, wind, or sunlight, requires efficiently distributed electrical energy storage by high-power and high-energy secondary batteries using abundant, low-cost materials in sustainable processes. American Science Policy Reports state that the next-generation "beyond-lithium" battery chemistry is one feasible solution for such goals. Here we discover new "multivalent ion" battery chemistry beyond lithium battery chemistry. Through theoretic calculation and experiment confirmation, stable thermodynamics and fast kinetics are presented during the storage of multivalent ions (Ni(2+), Zn(2+), Mg(2+), Ca(2+), Ba(2+), or La(3+) ions) in alpha type manganese dioxide. Apart from zinc ion battery, we further use multivalent Ni(2+) ion to invent another rechargeable battery, named as nickel ion battery for the first time. The nickel ion battery generally uses an alpha type manganese dioxide cathode, an electrolyte containing Ni(2+) ions, and Ni anode. The nickel ion battery delivers a high energy density (340 Wh kg(-1), close to lithium ion batteries), fast charge ability (1 minute), and long cycle life (over 2200 times).

  4. Secondary Ion Mass Spectrometry Imaging of Dictyostelium discoideum Aggregation Streams

    Energy Technology Data Exchange (ETDEWEB)

    Debord, J. Daniel; Smith, Donald F.; Anderton, Christopher R.; Heeren, Ronald M.; Pasa-Tolic, Ljiljana; Gomer, Richard H.; Fernandez-Lima, Francisco A.

    2014-06-09

    High resolution imaging mass spectrometry could become a valuable tool for cell and developmental biology, but both, high spatial and mass spectral resolution are needed to enable this. In this report, we employed Bi3 bombardment time-of-flight (Bi3 ToF-SIMS) and C60 bombardment Fourier transform ion cyclotron resonance secondary ion mass spectrometry (C60 FTICR-SIMS) to image Dictyostelium discoideum aggregation streams. Nearly 300 lipid species were identified from the aggregation streams. High resolution mass spectrometry imaging (FTICR-SIMS) enabled the generation of multiple molecular ion maps at the nominal mass level and provided good coverage for fatty acyls, prenol lipids, and sterol lipids. The comparison of Bi3 ToF-SIMS and C60 FTICR-SIMS suggested that while the first provides fast, high spatial resolution molecular ion images, the chemical complexity of biological samples warrants the use of high resolution analyzers for accurate ion identification.

  5. Cluster secondary ion mass spectrometry microscope mode mass spectrometry imaging

    NARCIS (Netherlands)

    Kiss, A.; Smith, D.F.; Jungmann, JH; Heeren, R.M.A.

    2013-01-01

    RATIONALE: Microscope mode imaging for secondary ion mass spectrometry is a technique with the promise of simultaneous high spatial resolution and high-speed imaging of biomolecules from complex surfaces. Technological developments such as new position-sensitive detectors, in combination with

  6. Transport of secondary electrons and reactive species in ion tracks

    CERN Document Server

    Surdutovich, Eugene

    2015-01-01

    The transport of reactive species brought about by ions traversing tissue-like medium is analysed analytically. Secondary electrons ejected by ions are capable of ionizing other molecules; the transport of these generations of electrons is studied using the random walk approximation until these electrons remain ballistic. Then, the distribution of solvated electrons produced as a result of interaction of low-energy electrons with water molecules is obtained. The radial distribution of energy loss by ions and secondary electrons to the medium yields the initial radial dose distribution, which can be used as initial conditions for the predicted shock waves. The formation, diffusion, and chemical evolution of hydroxyl radicals in liquid water are studied as well.

  7. Collisionless ion dynamics in the shock front

    Science.gov (United States)

    Gedalin, Michael

    2016-07-01

    In the vicinity of the shock front the dynamics of ions is governed by the macroscopic regular electric and magnetic field of the shock. Upon crossing the shock the thermal ions form a non-gyrotropic distribution. The pressure of these non-gyrotropic ions shapes the downstream magnetic field. High-energy ions behave in the shock front as test particles under the influence on the macroscopic fields. The reflection and transmission coefficients of high-energy ions at an oblique shock front is not sensitive to the shock structure and depends only on the global magnetic field change at the shock.

  8. Characterization of ion dynamics in structures for lossless ion manipulations.

    Science.gov (United States)

    Tolmachev, Aleksey V; Webb, Ian K; Ibrahim, Yehia M; Garimella, Sandilya V B; Zhang, Xinyu; Anderson, Gordon A; Smith, Richard D

    2014-09-16

    Structures for Lossless Ion Manipulation (SLIM) represent a novel class of ion optical devices based upon electrodes patterned on planar surfaces, and relying on a combined action of radiofrequency and DC electric fields and specific buffer gas density conditions. Initial experimental studies have demonstrated the feasibility of the SLIM concept. This report offers an in-depth consideration of key ion dynamics properties in such devices based upon ion optics theory and computational modeling. The SLIM devices investigated are formed by two surfaces, each having an array of radiofrequency (RF) "rung" electrodes, bordered by DC "guard" electrodes. Ion motion is confined by the RF effective potential in the direction orthogonal to the boards and limited or controlled in the transversal direction by the guard DC potentials. Ions can be efficiently trapped and stored in SLIM devices where the confinement of ions can be "soft" in regard to the extent of collisional activation, similarly to RF-only multipole ion guides and traps. The segmentation of the RF rung electrodes and guards along the axis makes it possible to apply static or transient electric field profiles to stimulate ion transfer within a SLIM. In the case of a linear DC gradient applied to RF rungs and guards, a virtually uniform electric field can be created along the axis of the device, enabling high quality ion mobility separations.

  9. Analysis of VX on soil particles using ion trap secondary ion mass spectrometry.

    Science.gov (United States)

    Groenewold, G S; Appelhans, A D; Gresham, G L; Olson, J E; Jeffery, M; Wright, J B

    1999-07-01

    The direct detection of the nerve agent VX (methylphosphonothioic acid, S-[2-[bis(1-methylethyl)amino]ethyl] O-ethyl ester) on milligram quantities of soil particles has been achieved using ion trap secondary ion mass spectrometry (IT-SIMS). VX is highly adsorptive toward a wide variety of surfaces; this attribute makes detection using gas-phase approaches difficult but renders the compound very amenable to surface detection. An ion trap mass spectrometer, modified to perform SIMS, was employed in the present study. A primary ion beam (ReO4-) was fired on axis through the ion trap, where it impacted the soil particle samples. [VX + H]+, [VX + H]+ fragment ions, and ions from the chemical background were sputtered into the gas-phase environment of the ion trap, where they were either scanned out or isolated and fragmented (MS2). At a surface concentration of 0.4 monolayer, intact [VX + H]+, and its fragment ions, were readily observable above background. However, at lower concentrations, the secondary ion signal from VX became obscured by ions derived from the chemical background on the surface of the soil particles. MS2 analysis using the ion trap was employed to improve detection of lower concentrations of VX: detection of the 34S isotopic ion of [VX + H]+, present at a surface concentration of approximately 0.002 monolayer, was accomplished. The study afforded the opportunity to investigate the fragmentation chemistry of VX. Semiempirical calculations suggest strongly that the molecule is protonated at the N atom. Deuterium labeling showed that formation of the base peak ion (C2H4)N(i-C3H7)2+ involves transfer of the amino proton to the phosphonothioate moiety prior to, or concurrent with, C-S bond cleavage. To manage the risk associated with working with the compound, the vacuum unit of the IT-SIMS was located in a hood, connected by cables to the externally located electronics and computer.

  10. Influence of primary ion bombardment conditions on the emission of molecular secondary ions

    Energy Technology Data Exchange (ETDEWEB)

    Kersting, R.; Hagenhoff, B.; Kollmer, F.; Moellers, R.; Niehuis, E

    2004-06-15

    In order to further our understanding of the secondary ion emission behavior from organic surfaces, we have performed a systematic study on the influence of the primary ion parameters. As model sample Irganox 1010 on low density polyethylene (LDPE) was used. Both monoatomic (Ga, Cs, Au) and polyatomic (Au{sub 2}, Au{sub 3}, SF{sub 5}, C{sub 60}) primary ions were used. Additionally, the primary ion energy was varied. The data were evaluated by calculating secondary ion yields, disappearance cross sections and ion formation efficiencies (yield/damage cross section). The results show that heavier monoatomic ions are more efficient than lighter ones and that polyatomic primary ions are more efficient than monoatomic ones. Highest efficiency values are found for C{sub 60} bombardment at 20 keV. Compared to Ga bombardment the efficiency gain in this case is more than 2000-fold. Additionally it can be shown that the higher efficiency is correlated with a softer ionization, i.e. less fragmentation. The results suggest a much more homogeneous energy distribution in the sample surface by polyatomic primary ions compared to monoatomic ones.

  11. Influence of primary ion bombardment conditions on the emission of molecular secondary ions

    Science.gov (United States)

    Kersting, R.; Hagenhoff, B.; Kollmer, F.; Möllers, R.; Niehuis, E.

    2004-06-01

    In order to further our understanding of the secondary ion emission behavior from organic surfaces, we have performed a systematic study on the influence of the primary ion parameters. As model sample Irganox 1010 on low density polyethylene (LDPE) was used. Both monoatomic (Ga, Cs, Au) and polyatomic (Au 2, Au 3, SF 5, C 60) primary ions were used. Additionally, the primary ion energy was varied. The data were evaluated by calculating secondary ion yields, disappearance cross sections and ion formation efficiencies (yield/damage cross section). The results show that heavier monoatomic ions are more efficient than lighter ones and that polyatomic primary ions are more efficient than monoatomic ones. Highest efficiency values are found for C 60 bombardment at 20 keV. Compared to Ga bombardment the efficiency gain in this case is more than 2000-fold. Additionally it can be shown that the higher efficiency is correlated with a softer ionization, i.e. less fragmentation. The results suggest a much more homogeneous energy distribution in the sample surface by polyatomic primary ions compared to monoatomic ones.

  12. An investigation of secondary ion yield enhancement using Bin2+ (n=1,3,5) primary ions.

    Science.gov (United States)

    Nagy, Gabriella; Lu, Peng; Walker, Amy V

    2008-01-01

    We have investigated secondary ion yield enhancement using Bin2+ (n=1, 3, 5) primary ions impacting phenylalanine, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), cholesterol, Irganox 1010, and polymer films adsorbed on silicon and aluminum. Secondary ion yields are increased using Bi2+and Bi3(2+) primary ions for the molecular layers and polymers that can undergo allyl cation rearrangements. For Irganox 1010, the deprotonated molecular ion yields (m/z 1175; [M-H]-) are one to two times larger for Bi2+ and Bi(3)2+ primary ions than for Bi+ and Bi3+ at the same primary ion velocities. In the positive ion mode, the largest fragment ion yield (m/z 899) is 1.5 times larger for Bi2+ ions than for Bi+. For Bi3(2+) the largest fragment ion yield is only 70% of the ion yield using Bi3+, but the secondary ion yields of the fragment ions at m/z 57 and 219 are enhanced. For polymers that can undergo allyl cation rearrangement reactions the secondary ion yield enhancements of the monomer ions range from 1.3 to 4.3. For Bi(5)2+ primary ions, secondary ion yields were the same or slightly larger than for Bi5+ in the negative ion mass spectra for Irganox 1010, but lower in the positive ion mode. No secondary ion yield enhancements were measured on polymer samples for Bi5(2+). For all polymer films studied, secondary ion intensities from the oligomer regions are substantially decreased using Bin2+ (n=1, 3, 5). We discuss differences in the ionization mechanisms for doubly and singly-charged Bi primary ion bombardment.

  13. Complex Ion Dynamics in Carbonate Lithium-Ion Battery Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ong, Mitchell T.; Bhatia, Harsh; Gyulassy, Attila G.; Draeger, Erik W.; Pascucci, Valerio; Bremer, Peer-Timo; Lordi, Vincenzo; Pask, John E.

    2017-03-16

    Li-ion battery performance is strongly influenced by ionic conductivity, which depends on the mobility of the Li ions in solution, and is related to their solvation structure. In this work, we have performed first-principles molecular dynamics (FPMD) simulations of a LiPF6 salt solvated in different Li-ion battery organic electrolytes. We employ an analytical method using relative angles from successive time intervals to characterize complex ionic motion in multiple dimensions from our FPMD simulations. We find different characteristics of ionic motion on different time scales. We find that the Li ion exhibits a strong caging effect due to its strong solvation structure, while the counterion, PF6– undergoes more Brownian-like motion. Our results show that ionic motion can be far from purely diffusive and provide a quantitative characterization of the microscopic motion of ions over different time scales.

  14. Monte Carlo modeling of ion beam induced secondary electrons

    Energy Technology Data Exchange (ETDEWEB)

    Huh, U., E-mail: uhuh@vols.utk.edu [Biochemistry & Cellular & Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840 (United States); Cho, W. [Electrical and Computer Engineering, University of Tennessee, Knoxville, TN 37996-2100 (United States); Joy, D.C. [Biochemistry & Cellular & Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840 (United States); Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2016-09-15

    Ion induced secondary electrons (iSE) can produce high-resolution images ranging from a few eV to 100 keV over a wide range of materials. The interpretation of such images requires knowledge of the secondary electron yields (iSE δ) for each of the elements and materials present and as a function of the incident beam energy. Experimental data for helium ions are currently limited to 40 elements and six compounds while other ions are not well represented. To overcome this limitation, we propose a simple procedure based on the comprehensive work of Berger et al. Here we show that between the energy range of 10–100 keV the Berger et al. data for elements and compounds can be accurately represented by a single universal curve. The agreement between the limited experimental data that is available and the predictive model is good, and has been found to provide reliable yield data for a wide range of elements and compounds. - Highlights: • The Universal ASTAR Yield Curve was derived from data recently published by NIST. • IONiSE incorporated with the Curve will predict iSE yield for elements and compounds. • This approach can also handle other ion beams by changing basic scattering profile.

  15. Study of coal structure using secondary ion mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Tingey, G.L.; Lytle, J.M.; Baer, D.R.; Thomas, M.T.

    1980-12-01

    Secondary-ion Mass Spectrometry (SIMS) is examined as a tool for studying the chemical structure of coal. SIMS has potential for analysis of coal because of the following characteristics: sensitivity to chemical structure; high sensitivity to all masses; application to solids; excellent depth resolution; and reasonable spatial resolution. SIMS spectra of solid coals show differences with respect to coal rank, the spectra of high rank coal being similar to that of graphite, and the spectra of low rank coal being similar to that of wood. Some functional group analysis is also possible using SIMS. Low rank coals show a larger peak at 15 amu indicating more methyl groups than found in the higher rank coals. Fragments with two and three carbon atoms have also been examined; much larger fragments are undoubtedly present but were not evaluated in this study. Examination of these groups, which are expected to contain valuable information on coal structure, is planned for future work. It has been observed that mineral atoms present in the coal have large secondary ion yields which complicate the interpretation of the spectra. Studies on mineral-free coals and model compounds are therefore recommended to facilitate determination of organic coal structure. In addition, mass spectrometry with much greater mass resolution will aid in distinguishing between various ion species.

  16. Study of coal structure using secondary ion mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Tingey, G.L.; Lytle, J.M.; Baer, D.R.; Thomas, M.T.

    1980-12-01

    Secondary-ion Mass Spectrometry (SIMS) is examined as a tool for studying the chemical structure of coal. SIMS has potential for analysis of coal because of the following characteristics: sensitivity to chemical structure; high sensitivity to all masses; application to solids; excellent depth resolution; and reasonable spatial resolution. SIMS spectra of solid coals show differences with respect to coal rank, the spectra of high rank coal being similar to that of graphite, and the spectra of low rank coal being similar to that of wood. Some functional group analysis is also possible using SIMS. Low rank coals show a larger peak at 15 amu indicating more methyl groups than found in the higher rank coals. Fragments with two and three carbon atoms have also been examined; much larger fragments are undoubtedly present but were not evaluated in this study. Examination of these groups, which are expected to contain valuable information on coal structure, is planned for future work. It has been observed that mineral atoms present in the coal have large secondary ion yields which complicate the interpretation of the spectra. Studies on mineral-free coals and model compounds are therefore recommended to facilitate determination of organic coal structure. In addition, mass spectrometry with much greater mass resolution will aid in distinguishing between various ion species.

  17. Three dimensional reconstruction of therapeutic carbon ion beams in phantoms using single secondary ion tracks

    CERN Document Server

    Reinhart, Anna Merle; Jakubek, Jan; Martisikova, Maria

    2016-01-01

    Carbon ion beam radiotherapy enables a very localised dose deposition. However, already small changes in the patient geometry or positioning errors can significantly distort the dose distribution. A live monitoring system of the beam delivery within the patient is therefore highly desirable and could improve patient treatment. We present a novel three-dimensional imaging method of the beam in the irradiated object, exploiting the measured tracks of single secondary ions emerging under irradiation. The secondary particle tracks are detected with a TimePix stack, a set of parallel pixelated semiconductor detectors. We developed a three-dimensional reconstruction algorithm based on maximum likelihood expectation maximisation. We demonstrate the applicability of the new method in an irradiation of a cylindrical PMMA phantom of human head size with a carbon ion pencil beam of 226MeV/u. The beam image in the phantom is reconstructed from a set of 9 discrete detector positions between -80 and 50 degrees from the bea...

  18. A Study of Secondary Ion Triple Bond Analogues.

    Science.gov (United States)

    1980-08-20

    into the formation of cluster ions have measured secondary energy spectra (35-42] and the effects of surface adsorbed gases on secondary yields [43,44...GeCI’ Cl:Ge 0.13 GaTe Te:GaP 0.1 SnAs a Sn:GaAs 0.08 SiBr+ Br:Si < 0.02 Sicl+ CI:Si < 0.01 SiSb- Sb:Si c GeAs As :Ge d Gap Ge: GaP e InSe - Se:InPh f... GaSe Se:GaAs f GeBr Br:Ge f GeSb Sb :Ge f SiAS Si: GaAs 9 a Not a triple bond analogue b ’to Ge detected, (signal < "cps) c Large SiSb- signal, implant

  19. Electron Flood Charge Compensation Device for Ion Trap Secondary Ion Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Appelhans, Anthony David; Ward, Michael Blair; Olson, John Eric

    2002-11-01

    During secondary ion mass spectrometry (SIMS) analyses of organophosphorous compounds adsorbed onto soils, the measured anion signals were lower than expected and it was hypothesized that the low signals could be due to sample charging. An electron flood gun was designed, constructed and used to investigate sample charging of these and other sample types. The flood gun was integrated into one end cap of an ion trap secondary ion mass spectrometer and the design maintained the geometry of the self-stabilizing extraction optics used in this instrument. The SIMION ion optics program was used to design the flood gun, and experimental results agreed with the predicted performance. Results showed the low anion signals from the soils were not due to sample charging. Other insulating and conducting samples were tested using both a ReO4- and a Cs+ primary ion beam. The proximity of the sample and electron source to the ion trap aperture resulted in generation of background ions in the ion trap via electron impact (EI) ionization during the period the electron gun was flooding the sample region. When using the electron gun with the ReO4- primary beam, the required electron current was low enough that the EI background was negligible; however, the high electron flood current required with the Cs+ beam produced background EI ions that degraded the quality of the mass spectra. The consequences of the EI produced cations will have to be evaluated on a sample-by-sample basis when using electron flood. It was shown that the electron flood gun could be intentionally operated to produce EI spectra in this instrument. This offers the opportunity to measure, nearly simultaneously, species evaporating from a sample, via EI, and species bound to the surface, via SIMS.

  20. Dynamic behavior of ion-selective electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Pungor, E.; Linder, E.; Toth, K.

    1988-01-01

    This book provides a survey of the different techniques employed to study time-dependent processes of ion-selective electrodes. The fundamentals, the impedance field, the polarization field, and the activity step methods are treated in depth with emphasis on the information content of the results provided by the different techniques relevant to the dynamic characteristics of ion-selective electrodes. Within the activity step methods the different theoretical models derived to describe the potential-time function of ion-selective electrodes are critically discussed.

  1. A C60 primary ion beam system for time of flight secondary ion mass spectrometry: its development and secondary ion yield characteristics.

    Science.gov (United States)

    Weibel, Daniel; Wong, Steve; Lockyer, Nicholas; Blenkinsopp, Paul; Hill, Rowland; Vickerman, John C

    2003-04-01

    A buckminsterfullerene (C60)-based primary ion beam system has been developed for routine application in TOF-SIMS analysis of organic materials. The ion beam system is described, and its performance is characterized. Nanoamp beam currents of C60+ are obtainable in continuous current mode. C60(2+) can be obtained in pulsed mode. At 10 keV, the beam can be focused to less than 3 microm with 0.1 nA currents. TOF-SIMS studies of a series of molecular solids and a number of polymer systems in monolayer and thick film forms are reported. Very significant enhancement of secondary ion yields, particularly at higher mass, were observed using 10-keV C60+ for all samples other than PTFE, as compared to those observed from 10 keV Ga+ primary ions. Three materials (PS2000, Irganox 1010, PET) were studied in detail to investigate primary ion-induced disappearance (damage) cross sections to determine the increase in secondary ion formation efficiency. The C60 disappearance cross sections observed from monolayer film PS2000 and self-supporting PET film are close to those observed from Ga+. The resulting C60 efficiencies are 30-100 times those observed from gallium. The cross sections observed from C60 bombardment of multilayer molecular solids are approximately 100 times less, such that essentially zero damage sputtering is possible. The resulting efficiencies are > 10(3) greater than from gallium. It is also shown that C60 primary ions do not generate any more low-mass fragments than any other ion beam system does. C60 is shown to be a very favorable ion beam system for TOF-SIMS, delivering high yield, close to 10% total yield, favoring high-mass ions, and on thick samples, offering the possibility of analysis well beyond the static limit.

  2. Dynamical processes in heavy ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Blann, M.; Remington, B.A.

    1988-07-25

    In this report I review the physical assumptions of the Boltzmann Master Equation (BME). Comparisons of the model with experimental neutron spectra gated on evaporation residues for a range of incident projectile energies and masses are presented; next, I compare n spectra gated on projectile-like fragments, followed by comparisons with ungated, inclusive proton spectra. I will then consider secondary effects from the nucleon-nucleon processes involved in the heavy ion relaxation processes, specifically the high energy ..gamma..-rays which have been observed at energies up to 140 MeV in collisions of heavy ions of 20/endash/84 MeV/..mu... Another secondary effect, subthreshold pion production, was covered in the XVII School and will not be repeated. 39 refs., 16 figs.

  3. Dynamic Electrochemical Measurement of Chloride Ions.

    Science.gov (United States)

    Abbas, Yawar; de Graaf, Derk B; Olthuis, Wouter; van den Berg, Albert

    2016-02-05

    This protocol describes the dynamic measurement of chloride ions using the transition time of a silver silver chloride (Ag/AgCl) electrode. Silver silver chloride electrode is used extensively for potentiometric measurement of chloride ions concentration in electrolyte. In this measurement, long-term and continuous monitoring is limited due to the inherent drift and the requirement of a stable reference electrode. We utilized the chronopotentiometric approach to minimize drift and avoid the use of a conventional reference electrode. A galvanostatic pulse is applied to an Ag/AgCl electrode which initiates a faradic reaction depleting the Cl- ions near the electrode surface. The transition time, which is the time to completely deplete the ions near the electrode surface, is a function of the ion concentration, given by the Nernst equation. The square root of the transition time is in linear relation to the chloride ion concentration. Drift of the response over two weeks is negligible (59 µM/day) when measuring 1 mM [Cl-]using a current pulse of 10 Am(-2). This is a dynamic measurement where the moment of transition time determines the response and thus is independent of the absolute potential. Any metal wire can be used as a pseudo-reference electrode, making this approach feasible for long-term measurement inside concrete structures.

  4. Characterisation of Swift Heavy Ion-induced Mixing using Secondary Ion Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    B. R. Chakraborty

    2009-07-01

    Full Text Available Swift heavy ions of Au at 120 MeV are irradiated at the interface of Si/Me/Si (Me=V,Fe,Co and the behaviour of mixing examined wrt to different ion doses. The fluences were varied from 1x1013 ions/cm2 to 1x1014 ions/cm2 on the multilayers of Si/Me/Se (Me=V,Fe,Co and the interface of Si/Me(Me=V,Fe,Co were characterised using Rutherford backscattering spectroscopy(RBS and secondary ion mass spectrometry (SIMS. The atomic mixing width was found to be increasing monotonically with ion fluence in all the three cases,. The mixing rate and efficiency calculations were made and the diffusivity values thus obtained suggested a transient melt phase at the interface according to thermal spike model. In case of Me=Co, it was further probed with XRD and Raman spectroscopy to confirm the formation of cobalt silicides even at room temperature.Defence Science Journal, 2009, 59(4, pp.356-362, DOI:http://dx.doi.org/10.14429/dsj.59.1534

  5. Innovation and its Management as Observed in the Lithium Ion Secondary Battery Business

    OpenAIRE

    正本, 順三

    2008-01-01

    At present, mobile phones and laptop computers are essential items in our daily life. As a battery for such portable devices, the lithium ion secondary battery is used. The lithium ion secondary battery, which is used as a battery for such portable devices, was first invented by Dr. Yoshino at Asahi Kasei, where the present author formerly worked. In this paper, the author describes how the lithium ion secondary battery was developed by the inventor, how the technology originated in Japan and...

  6. Innovation and its Management as Observed in the Lithium Ion Secondary Battery Business

    OpenAIRE

    正本, 順三

    2008-01-01

    At present, mobile phones and laptop computers are essential items in our daily life. As a battery for such portable devices, the lithium ion secondary battery is used. The lithium ion secondary battery, which is used as a battery for such portable devices, was first invented by Dr. Yoshino at Asahi Kasei, where the present author formerly worked. In this paper, the author describes how the lithium ion secondary battery was developed by the inventor, how the technology originated in Japan and...

  7. Metal-assisted secondary ion mass spectrometry using atomic (Ga+, In+) and fullerene projectiles.

    Science.gov (United States)

    Delcorte, A; Yunus, S; Wehbe, N; Nieuwjaer, N; Poleunis, C; Felten, A; Houssiau, L; Pireaux, J-J; Bertrand, P

    2007-05-15

    The advantages and drawbacks of using either monatomic or buckminsterfullerene primary ions for metal-assisted secondary ion mass spectrometry (MetA-SIMS) are investigated using a series of organic samples including additive molecules, polyolefins, and small peptides. Gold deposition is mostly performed by sputter-coating, and in some cases, the results are compared to those of thermal evaporation (already used in a previous article: Delcorte, A.; Médard, N.; Bertrand, P. Anal. Chem. 2002, 74, 4955). The microstructure of the gold-covered sample surfaces is assessed by scanning and transmission electron microscopies. The merits of the different sets of experimental conditions are established via the analysis of fragment and parent-like ion yields. For most of the analyzed samples, the highest yields of fragment and parent-like ions are already reached with the sole use of C60+ projectiles. Metallization of the sample does not lead to a significant additional enhancement. For polyethylene and polypropylene, however, gold metallization associated with Ga+/In+ projectiles appears to be the only way to observe large cationized, sample-specific chain segments (m/z approximately 1000-2000). A detailed study of the polypropylene mass spectra as a function of gold coverage shows that the dynamics of yield enhancement by metal nanoparticles is strongly dependent on the choice of the projectile, e.g., a pronounced increase with Ga+ and a slow decay with C60+. The cases of Irganox 1010, a polymer antioxidant, and leucine enkephalin, a small peptide, allow us to investigate the specific influence of the experimental conditions on the emission of parent(like) ions such as M+, (M + Na)+, and (M + Au)+. The results show a dependence on both the type of sample and the considered secondary ion. Using theoretical and experimental arguments, the discussion identifies some of the mechanisms underlying the general trends observed in the results. Guidelines concerning the choice of the

  8. Zinc--bromide secondary cell. [C anode, C or Zr cathode with ion exchange diaphragm between

    Energy Technology Data Exchange (ETDEWEB)

    Leddy, J.J.; Gritzner, G.

    1975-12-30

    A zinc-bromine secondary cell is divided into two compartments by an ion exchange diaphragm. The electrolyte system includes an essentially bromide-ion-free, aqueous solution containing a zinc ion as an anolyte and a bromide ion containing catholyte. A method of operating the cell is disclosed. 2 figures, 2 tables. (auth)

  9. Isotopic Composition of Boron Secondary Ions as a Function of Ion-Beam Fluence.

    Science.gov (United States)

    Baumel, Laurie Michelle

    The experiment performed in this work isolates and examines the effects of mass on the composition of the sputtered flux from a multi-component target. Chemical complexities are minimized by measuring sputtered ions from a target consisting only of two isotopes of one element. In this case, chemical effects as well as inter-atomic potentials are assumed to be identical for all constituents moving within the target, thus simplifying the target kinematics. Since any non-stoichiometry in the sputtered material should be caused only by the effects of mass on the kinetics in the target, measuring the sputtered material and comparing various analytical predictions with the experimental results leads to a better understanding of mass effects in these targets. 100-keV argon and neon were used to sputter an elemental target comprising the two naturally occurring isotopes of boron. The resulting secondary ions were examined with an electrostatic quadrupole mass analyzer. At low beam fluences (~1 times 20^{15} ions/cm ^2) a light-isotope secondary ion enhancement is observed relative to the steady-state secondary ion yields collected at higher beam fluences ( ~5 times 10 ^{17} ions/cm^2 ). The steady-state ion yields are representative of the bulk composition of the target. The enhancement (46.1perthous for Ne^+ irradiation and 51.8perthous for Ar^+ irradiation) is large compared to the predictions of analytical theories and is determined to be independent of variations in surface potential, chemical effects, and surface impurities. This effect is consistent with an explanation based on an energy and momentum asymmetry in the collision cascade. The asymmetry was caused by an extra collision mechanism which allowed light particles to backscatter 180^circ (towards the target surface) from underlying heavier target particles whereas the reverse process can not occur. When irradiated with projectiles heavier than the target constituents, the heavier target particles had a higher

  10. Organic secondary ion mass spectrometry: sensitivity enhancement by gold deposition.

    Science.gov (United States)

    Delcorte, A; Médard, N; Bertrand, P

    2002-10-01

    Hydrocarbon oligomers, high-molecular-weight polymers, and polymer additives have been covered with 2-60 nmol of gold/cm2 in order to enhance the ionization efficiency for static secondary ion mass spectrometry (s-SIMS) measurements. Au-cationized molecules (up to -3,000 Da) and fragments (up to the trimer) are observed in the positive mass spectra of metallized polystyrene (PS) oligomer films. Beyond 3,000 Da, the entanglement of polymer chains prevents the ejection of intact molecules from a "thick" organic film. This mass limit can be overcome by embedding the polymer chains in a low-molecular-weight matix. The diffusion of organic molecules over the metal surfaces is also demonstrated for short PS oligomers. In the case of high-molecular-weight polymers (polyethylene, polypropylene, PS) and polymer additives (Irganox 1010, Irgafos 168), the metallization procedure induces a dramatic increase of the fingerprint fragment ion yields as well as the formation of new Aucationized species that can be used for chemical diagnostics. In comparison with the deposition of submonolayers of organic molecules on metallic surfaces, metal evaporation onto organic samples provides a comparable sensitivity enhancement. The distinct advantage of the metal evaporation procedure is that it can be used for any kind of organic sample, irrespective of thickness, opening new perspectives for "real world" sample analysis and chemical imaging by s-SIMS.

  11. Secondary particle tracks generated by ion beam irradiation

    Science.gov (United States)

    García, Gustavo

    2015-05-01

    The Low Energy Particle Track Simulation (LEPTS) procedure is a powerful complementary tool to include the effect of low energy electrons and positrons in medical applications of radiation. In particular, for ion-beam cancer treatments provides a detailed description of the role of the secondary electrons abundantly generated around the Bragg peak as well as the possibility of using transmuted positron emitters (C11, O15) as a complement for ion-beam dosimetry. In this study we present interaction probability data derived from IAM-SCAR corrective factors for liquid environments. Using these data, single electron and positron tracks in liquid water and pyrimidine have been simulated providing information about energy deposition as well as the number and type of interactions taking place in any selected ``nanovolume'' of the irradiated area. In collaboration with Francisco Blanco, Universidad Complutense de Madrid; Antonio Mu noz, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Diogo Almeida, Filipe Ferreira da Silva, Paulo Lim ao-Vieira, Universidade Nova de Lisboa. Supported by the Spanish and Portuguese governments.

  12. Cluster secondary ion mass spectrometry and the temperature dependence of molecular depth profiles.

    Science.gov (United States)

    Mao, Dan; Wucher, Andreas; Brenes, Daniel A; Lu, Caiyan; Winograd, Nicholas

    2012-05-01

    The quality of molecular depth profiles created by erosion of organic materials by cluster ion beams exhibits a strong dependence upon temperature. To elucidate the fundamental nature of this dependence, we employ the Irganox 3114/1010 organic delta-layer reference material as a model system. This delta-layer system is interrogated using a 40 keV C(60)(+) primary ion beam. Parameters associated with the depth profile such as depth resolution, uniformity of sputtering yield, and topography are evaluated between 90 and 300 K using a unique wedge-crater beveling strategy that allows these parameters to be determined as a function of erosion depth from atomic force microscope (AFM) measurements. The results show that the erosion rate calibration performed using the known Δ-layer depth in connection with the fluence needed to reach the peak of the corresponding secondary ion mass spectrometry (SIMS) signal response is misleading. Moreover, we show that the degradation of depth resolution is linked to a decrease of the average erosion rate and the buildup of surface topography in a thermally activated manner. This underlying process starts to influence the depth profile above a threshold temperature between 210 and 250 K for the system studied here. Below that threshold, the process is inhibited and steady-state conditions are reached with constant erosion rate, depth resolution, and molecular secondary ion signals from both the matrix and the Δ-layers. In particular, the results indicate that further reduction of the temperature below 90 K does not lead to further improvement of the depth profile. Above the threshold, the process becomes stronger at higher temperature, leading to an immediate decrease of the molecular secondary ion signals. This signal decay is most pronounced for the highest m/z ions but is less for the smaller m/z ions, indicating a shift toward small fragments by accumulation of chemical damage. The erosion rate decay and surface roughness buildup

  13. The molecular mechanism of ion-dependent gating in secondary transporters.

    Directory of Open Access Journals (Sweden)

    Chunfeng Zhao

    2013-10-01

    Full Text Available LeuT-like fold Na-dependent secondary active transporters form a large family of integral membrane proteins that transport various substrates against their concentration gradient across lipid membranes, using the free energy stored in the downhill concentration gradient of sodium ions. These transporters play an active role in synaptic transmission, the delivery of key nutrients, and the maintenance of osmotic pressure inside the cell. It is generally believed that binding of an ion and/or a substrate drives the conformational dynamics of the transporter. However, the exact mechanism for converting ion binding into useful work has yet to be established. Using a multi-dimensional path sampling (string-method followed by all-atom free energy simulations, we established the principal thermodynamic and kinetic components governing the ion-dependent conformational dynamics of a LeuT-like fold transporter, the sodium/benzyl-hydantoin symporter Mhp1, for an entire conformational cycle. We found that inward-facing and outward-facing states of Mhp1 display nearly the same free energies with an ion absent from the Na2 site conserved across the LeuT-like fold transporters. The barrier separating an apo-state from inward-facing or outward-facing states of the transporter is very low, suggesting stochastic gating in the absence of ion/substrate bound. In contrast, the binding of a Na2 ion shifts the free energy stabilizing the outward-facing state and promoting substrate binding. Our results indicate that ion binding to the Na2 site may also play a key role in the intracellular thin gate dynamics modulation by altering its interactions with the transmembrane helix 5 (TM5. The Potential of Mean Force (PMF computations for a substrate entrance displays two energy minima that correspond to the locations of the main binding site S1 and proposed allosteric S2 binding site. However, it was found that substrate's binds to the site S1 ∼5 kcal/mol more favorable

  14. The molecular mechanism of ion-dependent gating in secondary transporters.

    Science.gov (United States)

    Zhao, Chunfeng; Noskov, Sergei Yu

    2013-10-01

    LeuT-like fold Na-dependent secondary active transporters form a large family of integral membrane proteins that transport various substrates against their concentration gradient across lipid membranes, using the free energy stored in the downhill concentration gradient of sodium ions. These transporters play an active role in synaptic transmission, the delivery of key nutrients, and the maintenance of osmotic pressure inside the cell. It is generally believed that binding of an ion and/or a substrate drives the conformational dynamics of the transporter. However, the exact mechanism for converting ion binding into useful work has yet to be established. Using a multi-dimensional path sampling (string-method) followed by all-atom free energy simulations, we established the principal thermodynamic and kinetic components governing the ion-dependent conformational dynamics of a LeuT-like fold transporter, the sodium/benzyl-hydantoin symporter Mhp1, for an entire conformational cycle. We found that inward-facing and outward-facing states of Mhp1 display nearly the same free energies with an ion absent from the Na2 site conserved across the LeuT-like fold transporters. The barrier separating an apo-state from inward-facing or outward-facing states of the transporter is very low, suggesting stochastic gating in the absence of ion/substrate bound. In contrast, the binding of a Na2 ion shifts the free energy stabilizing the outward-facing state and promoting substrate binding. Our results indicate that ion binding to the Na2 site may also play a key role in the intracellular thin gate dynamics modulation by altering its interactions with the transmembrane helix 5 (TM5). The Potential of Mean Force (PMF) computations for a substrate entrance displays two energy minima that correspond to the locations of the main binding site S1 and proposed allosteric S2 binding site. However, it was found that substrate's binds to the site S1 ∼5 kcal/mol more favorable than that to the

  15. Numerical simulations of blobs with ion dynamics

    Science.gov (United States)

    Nielsen, A. H.; Rasmussen, J. Juul; Madsen, J.; Xu, G. S.; Naulin, V.; Olsen, J. M. B.; Løiten, M.; Hansen, S. K.; Yan, N.; Tophøj, L.; Wan, B. N.

    2017-02-01

    The transport of particles and energy into the scrape-off layer (SOL) region at the outboard midplane of medium-sized tokamaks, operating in low confinement mode, is investigated by applying the first-principle HESEL (hot edge-sol-electrostatic) model. HESEL is a four-field drift-fluid model including finite electron and ion temperature effects, drift wave dynamics on closed field lines, and sheath dynamics on open field lines. Particles and energy are mainly transported by intermittent blobs. Therefore, blobs have a significant influence on the corresponding profiles. The formation of a ‘shoulder’ in the SOL density profile can be obtained by increasing the collisionality or connection length, thus decreasing the efficiency of the SOL’s ability to remove plasma. As the ion pressure has a larger perpendicular but smaller parallel dissipation rate compared to the electron pressure, ion energy is transported far into the SOL. This implies that the ion temperature in the SOL exceeds the electron temperature by a factor of 2-4 and significantly broadens the power deposition profile.

  16. Kinetic-energy-driven enhancement of secondary-electron yields of highly charged ions impinging on thin films of C-60 on Au

    NARCIS (Netherlands)

    Bodewits, E.; Hoekstra, R.; Dobes, K.; Aumayr, F.

    2012-01-01

    The secondary electron yields as a result of slow highly charged ions (Ar4+, Ar13+) impinging on clean Au(111), highly oriented pyrolitic graphite, and thin films of C-60 on Au are presented. In order to investigate the dynamics of the neutralization of the highly charged ions in front of the surfac

  17. Kinetic-energy-driven enhancement of secondary-electron yields of highly charged ions impinging on thin films of C-60 on Au

    NARCIS (Netherlands)

    Bodewits, E.; Hoekstra, R.; Dobes, K.; Aumayr, F.

    2012-01-01

    The secondary electron yields as a result of slow highly charged ions (Ar4+, Ar13+) impinging on clean Au(111), highly oriented pyrolitic graphite, and thin films of C-60 on Au are presented. In order to investigate the dynamics of the neutralization of the highly charged ions in front of the

  18. Dynamical Properties of Potassium Ion Channels with a Hierarchical Model

    Institute of Scientific and Technical Information of China (English)

    ZHAN Yong; AN Hai-Long; YU Hui; ZHANG Su-Hua; HAN Ying-Rong

    2006-01-01

    @@ It is well known that potassium ion channels have higher permeability than K ions, and the permeable rate of a single K ion channel is about 108 ions per second. We develop a hierarchical model of potassium ion channel permeation involving ab initio quantum calculations and Brownian dynamics simulations, which can consistently explain a range of channel dynamics. The results show that the average velocity of K ions, the mean permeable time of K ions and the permeable rate of single channel are about 0.92nm/ns, 4.35ns and 2.30×108 ions/s,respectively.

  19. The influence of primary ion bombardment conditions on the secondary ion emission behavior of polymer additives

    Energy Technology Data Exchange (ETDEWEB)

    Kersting, R.; Hagenhoff, B.; Pijpers, P.; Verlaek, R

    2003-01-15

    The secondary ion (SI) emission behavior of pure polymer systems is meanwhile well understood. However, common plastics not only consist of the polymer host material but also contain a variety of additives normally present in low concentrations only. In order to better understand the parameters governing the SI emission of these trace compounds we performed a systematic study on the influence of the analysis parameters (primary ion (PI) type, PI energy, electron bombardment for charge compensation, etc.) using model systems. Samples were prepared by spin coating (sub)monolayers of Irganox 1010 onto additive-free low density polyethylene (LDPE). The SI parameters yield, disappearance cross-section and efficiency (yield per damaged area) were determined for PI bombardment with Ga{sup +}, Cs{sup +}, and SF{sub 5}{sup +}. Furthermore the damaging influence of electron bombardment for charge compensation on the organic surface layers was investigated.

  20. The influence of primary ion bombardment conditions on the secondary ion emission behavior of polymer additives

    Science.gov (United States)

    Kersting, R.; Hagenhoff, B.; Pijpers, P.; Verlaek, R.

    2003-01-01

    The secondary ion (SI) emission behavior of pure polymer systems is meanwhile well understood. However, common plastics not only consist of the polymer host material but also contain a variety of additives normally present in low concentrations only. In order to better understand the parameters governing the SI emission of these trace compounds we performed a systematic study on the influence of the analysis parameters (primary ion (PI) type, PI energy, electron bombardment for charge compensation, etc.) using model systems. Samples were prepared by spin coating (sub)monolayers of Irganox 1010 onto additive-free low density polyethylene (LDPE). The SI parameters yield, disappearance cross-section and efficiency (yield per damaged area) were determined for PI bombardment with Ga +, Cs +, and SF 5+. Furthermore the damaging influence of electron bombardment for charge compensation on the organic surface layers was investigated.

  1. Simulation of decays and secondary ion losses in a betabeam decay ring

    CERN Document Server

    Jones, F.W.; 10.1109/PAC.2007.4440382

    Radioactive ions injected into the decay ring of aBetabeam neutrino facility will constitute a continuoussource of decay products distributed around the ring.Secondary ions from beta decays will differ in chargestate from the primary ions and will follow widely offmomentumorbits. In the racetrack configuration of thering, they will be mismatched in the long straights and mayacquire large amplitudes, but the great majority of losseswill be in the arcs. We describe here a comprehensivemodel of ion decay, secondary ion tracking, and loss detection,which has been implemented in the tracking andsimulation code Accsim. Methods have been developed toaccurately follow ion trajectories at large momentum deviationsas well as to detect their impact coordinates on vacuumchamber walls and possibly inside magnetic elements.Using secondary-ion data from Accsim and postprocessingwith Mathematica, we have implemented afollow-on simulation in FLUKA with a 3D geometry ofdecay ring components and physics models for ion interacti...

  2. Simulation methods of ion sheath dynamics in plasma source ion implantation

    Institute of Scientific and Technical Information of China (English)

    WANG Jiuli; ZHANG Guling; WANG Younian; LIU Yuanfu; LIU Chizi; YANG Size

    2004-01-01

    Progress of the theoretical studies on the ion sheath dynamics in plasma source ion implantation (PSII) is reviewed in this paper. Several models for simulating the ion sheath dynamics in PSII are provided. The main problem of nonuniform ion implantation on the target in PSII is discussed by analyzing some calculated results. In addition, based on the relative researches in our laboratory, some calculated results of the ion sheath dynamics in PSII for inner surface modification of a cylindrical bore are presented. Finally, new ideas and tendency for future researches on ion sheath dynamics in PSII are proposed.

  3. Essential Dynamics of Secondary Eyewall Formation

    Science.gov (United States)

    2013-10-01

    physics. The conceptual and empirical linkage between secondary eyewalls (SEs) to hurricane intensity change ( Willoughby et al. 1982, 1984; Kuo et al. 2008...articulated previously by many authors (e.g., Ooyama 1969; Carrier 1971a; Willoughby 1979; Shapiro and Willoughby 1982; Willoughby 1995). Using a non...replacement cycle as inferred from observations (e.g., Willoughby et al. 1982; Houze et al. 2007; Bell et al. 2012b; Sitkowski et al. 2012). The RAMS

  4. Ion dynamics and the unified tearing mode

    Energy Technology Data Exchange (ETDEWEB)

    Lee, X. S.

    1980-08-01

    The general theory based on the E-parallel variational principle provides the framework used for both the investigation of the ion dynamic effects and the study of the unification of tearing modes. Along with the brief review of the general theory, we have presented additional details and discussions. In particular, we have presented a new, simple derivation of the ion magneto-viscosity terms and displayed the ultimate cancellation of their effects with those of the convective term's. It has been noted before that ..cap alpha../sup 1/2/x/sub A/ = i can lead to the derivation of the m = 1 classical modes; however we clarify how this root is obtained.

  5. Molecular dynamic simulation of secondaryion ion emission from an Al sample bombarded with MeV heavy ions

    Institute of Scientific and Technical Information of China (English)

    薛建明; 今西信嗣

    2002-01-01

    Sputtering yields and kinetic energy distributions (KED) of Al atomic ions ejected from a pure aluminium sampleunder MeV silicon ion bombardment were simulated with the molecular dynamic method. Since the electronic energyloss Se is much higher than the nuclear energy loss Sn when the incident ion energy is as high as several MeV, the Seeffect was also taken into consideration in the simulation. It was found that the simulated sputtering yield fits well withthe experimental data and the electronic energy loss has a slight effect at incident ion energies higher than 4 MeV. Thesimulated secondary ion KED spectrum is a little lower in the peak energy and narrower in the peak width than thatin the experiment.

  6. Secondary Ion Mass Spectrometry of Small-Molecule Solids at Cryogenic Temperatures. 3. Nitrogen Oxides

    OpenAIRE

    Orth, Robert G.; Jonkman, Harry T.; Michl, Josef

    1982-01-01

    Secondary ion mass spectra of neat solids N2O, NO, N2O3, and N2O4 were measured as a function of the nature and energy of the primary ions (He+, Ne+, Ar+, Kr+, Xe+, 0.5-4.5 keV). All of the solids produced a rich variety of positive and negative secondary ions. Particularly striking is the abundance of cluster ions, observed above all for primary ions of large momentum. The elemental composition of the "elementary solvating units" generally does not agree with the molecular formula of the sol...

  7. Metal salts for molecular ion yield enhancement in organic secondary ion mass spectrometry: a critical assessment.

    Science.gov (United States)

    Delcorte, A; Bertrand, P

    2005-04-01

    In a search for molecular ion signal enhancement in organic SIMS, the efficiency of a series of organic and inorganic salts for molecular cationization has been tested using a panel of nonvolatile molecules with very different chemical characteristics (leucine enkephalin, Irganox 1010, tetraphenylnaphthalene, polystyrene). The compounds used for cationization include alkali bromide and group Ib metal salts (XBr with X = Li, Na, K; CF3CO2Ag; AgNO3; [CH3COCH=C(O-)CH3]2Cu; AuCl3). Alkali ions, very good for polar molecule cationization, prove to be of limited interest for nonpolar molecules such as polystyrene. Silver trifluoroacetate displays excellent results for all the considered molecules, except for leucine enkephalin (which might be due to the use of different solvents for the analyte and the salt). Instead, silver nitrate mixed with leucine enkephalin in an ethanol solution provides intense molecular signals. The influence of the respective concentrations of analyte and salt in solution, of the silver trifluoroacetate solution stability, and of the sample microstructure on the secondary ion intensities are also investigated. The results of other combinations of analyte and salts are reported. Finally, the use of salts is critically compared to other sample preparation procedures previously proposed for SIMS analysis of large organic molecules.

  8. Visualization of acetaminophen-induced liver injury by time-of-flight secondary ion mass spectrometry.

    Science.gov (United States)

    Murayama, Yohei; Satoh, Shuya; Hashiguchi, Akinori; Yamazaki, Ken; Hashimoto, Hiroyuki; Sakamoto, Michiie

    2015-11-01

    Time-of-flight secondary ion mass spectrometry (MS) provides secondary ion images that reflect distributions of substances with sub-micrometer spatial resolution. To evaluate the use of time-of-flight secondary ion MS to capture subcellular chemical changes in a tissue specimen, we visualized cellular damage showing a three-zone distribution in mouse liver tissue injured by acetaminophen overdose. First, we selected two types of ion peaks related to the hepatocyte nucleus and cytoplasm using control mouse liver. Acetaminophen-overdosed mouse liver was then classified into three areas using the time-of-flight secondary ion MS image of the two types of peaks, which roughly corresponded to established histopathological features. The ion peaks related to the cytoplasm decreased as the injury became more severe, and their origin was assumed to be mostly glycogen based on comparison with periodic acid-Schiff staining images and reference compound spectra. This indicated that the time-of-flight secondary ion MS image of the acetaminophen-overdosed mouse liver represented the chemical changes mainly corresponding to glycogen depletion on a subcellular scale. In addition, this technique also provided information on lipid species related to the injury. These results suggest that time-of-flight secondary ion MS has potential utility in histopathological applications.

  9. 2D fluid simulations of interchange turbulence with ion dynamics

    DEFF Research Database (Denmark)

    Nielsen, Anders Henry; Madsen, Jens; Xu, G. S.

    2013-01-01

    In this paper we present a first principle global two-dimensional fluid model. The HESEL (Hot Edge SOL Electrostatic) model is a 2D numerical fluid code, based on interchange dynamics and includes besides electron also the ion pressure dynamic. In the limit of cold ions the model almost reduces......B vorticity as well as the ion diamagnetic vorticity. The 2D domain includes both open and closed field lines and is located on the out-board midplane of a tokamak. On open field field lines the parallel dynamics are parametrized as sink terms depending on the dynamic quantities; density, electron and ion...

  10. Characterization of environmental samples using ion trap-secondary ion mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Groenewold, G.S.; Appelhans, A.D.; Ingram, J.C.

    1998-02-01

    The detection of chemical warfare agent residues on environmental surfaces is an important analytical activity because of the potential for proliferation of these weapons, and for environmental monitoring in areas where they are stored. Historically, one of the most widely used agents has been bis(2-chloroethyl) sulfide, also known as mustard gas and HD. It was initially used in combat in 1917; by the end of the First World War, more than 16% of all casualties were due to chemicals, in most cases mustard. Manufacture of mustard is continuing to this day; consequently, there are ongoing opportunities for exposure. 2-Chloroethyl ethyl sulfide (CEES) is used as a simulant for mustard (HD) in a study to develop secondary ion mass spectrometry (SIMS) for rapid, semi-quantitative detection of mustard on soil. Using SIMS with single stage mass spectrometry, a signature for CEES can be unequivocally observed only at the highest concentrations (0.1 monolayer and above). Selectivity and sensitivity are markedly improved employing multiple-stage mass spectrometry using an ion trap. C{sub 2}H{sub 5}SC{sub 2}H{sub 4}{sup +} from CEES eliminates C{sub 2}H{sub 4} and H{sub 2}S, which are highly diagnostic. CEES was detected at 0.0012 monolayer on soil. A single analysis could be conducted in under 5 minutes.

  11. Ionic liquid matrix-enhanced secondary ion mass spectrometry: the role of proton transfer.

    Science.gov (United States)

    Dertinger, Jennifer J; Walker, Amy V

    2013-03-01

    Room temperature ionic liquids (ILs) are effective matrices in secondary ion mass spectrometry (SIMS) and matrix assisted laser desorption ionization (MALDI). In this paper, we examine the role of proton transfer in the mechanism of secondary ion enhancement using IL matrices in SIMS. We employ hydrogenated and deuterated 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) as analytes to investigate the origin of proton transfer. The data indicate that protons from the IL anion transfer to the analyte in solution leading to an increase in the secondary ion intensity of the protonated molecular ion. The chemical identity of the matrix cation also affects analyte signal intensities. Using deuterated DPPC we observe that protons (deuterium) from the DPPC tail group react with the cation of the IL liquid leading to an increase in (cation + D)(+) ion intensities. Further, the data suggest that the transfer kinetics of deuterium (hydrogen) is correlated with the secondary ion enhancements observed. The highest secondary ion enhancements are observed for the least sterically hindered cation. Neither the proton affinity nor the pKa of the IL cation have a large effect on the analyte ion intensities, suggesting that steric factors are important in determining the efficacy of IL matrices for a given analyte.

  12. An extension of dynamic droplet deformation models to secondary atomization

    NARCIS (Netherlands)

    Bartz, F.O.; Schmehl, R.; Koch, R.; Bauer, H.J.

    2010-01-01

    A detailed model for secondary atomization of liquid droplets by aerodynamic forces is presented. As an empirical extension of dynamic droplet deformation models, it accounts for temporal variations of the relative velocity between droplet and gas phase during the deformation and breakup process and

  13. Roles of secondary electrons and sputtered atoms in ion-beam-induced deposition

    NARCIS (Netherlands)

    Chen, P.; Salemink, H.W.M.; Alkemade, P.F.A.

    2009-01-01

    The authors report the results of investigating two models for ion-beam-induced deposition (IBID). These models describe IBID in terms of the impact of secondary electrons and of sputtered atoms, respectively. The yields of deposition, sputtering, and secondary electron emission, as well as the ener

  14. 2D fluid simulations of interchange turbulence with ion dynamics

    DEFF Research Database (Denmark)

    Nielsen, Anders Henry; Madsen, Jens; Xu, G. S.

    2013-01-01

    In this paper we present a first principle global two-dimensional fluid model. The HESEL (Hot Edge SOL Electrostatic) model is a 2D numerical fluid code, based on interchange dynamics and includes besides electron also the ion pressure dynamic. In the limit of cold ions the model almost reduces...

  15. Control of secondary electrons from ion beam impact using a positive potential electrode

    Science.gov (United States)

    Crowley, T. P.; Demers, D. R.; Fimognari, P. J.

    2016-11-01

    Secondary electrons emitted when an ion beam impacts a detector can amplify the ion beam signal, but also introduce errors if electrons from one detector propagate to another. A potassium ion beam and a detector comprised of ten impact wires, four split-plates, and a pair of biased electrodes were used to demonstrate that a low-voltage, positive electrode can be used to maintain the beneficial amplification effect while greatly reducing the error introduced from the electrons traveling between detector elements.

  16. Dynamics in Sequence Space for RNA Secondary Structure Design.

    Science.gov (United States)

    Matthies, Marco C; Bienert, Stefan; Torda, Andrew E

    2012-10-01

    We have implemented a method for the design of RNA sequences that should fold to arbitrary secondary structures. A popular energy model allows one to take the derivative with respect to composition, which can then be interpreted as a force and used for Newtonian dynamics in sequence space. Combined with a negative design term, one can rapidly sample sequences which are compatible with a desired secondary structure via simulated annealing. Results for 360 structures were compared with those from another nucleic acid design program using measures such as the probability of the target structure and an ensemble-weighted distance to the target structure.

  17. Understanding ion association states and molecular dynamics using infrared spectroscopy

    Science.gov (United States)

    Masser, Hanqing

    A molecular level understanding of the ion transport mechanism within polymer electrolytes is crucial to the further development for advanced energy storage applications. This can be achieved by the identification and quantitative measurement of different ion species in the system and further relating them to the ion conductivity. In the first part of this thesis, research is presented towards understanding the ion association states (free ions, ion pairs and ion aggregates) in ionomer systems, and the correlation of ion association states, ion conduction, polymer dynamics, and morphology. Ion conductivity in ionomers can be improved by lowering glass transition temperature, increasing polymer ion solvation ability, and adjusting ionomer structural variables such as ion content, cation type and side chain structure. These effects are studied in three ionomer systems respectively, using a combination of characterization methods. Fourier Transform Infrared Spectroscopy (FTIR) identifies and quantifies the ion association states. Dielectric Spectroscopy (DRS) characterizes ion conductivity and polymer and ion dynamics. X-ray scattering reveals changes in morphology. The influence of a cation solvating plasticizer on a polyester ionomer is systematically investigated with respect to ion association states, ion and polymer dynamics and morphology. A decrease in the number ratio of ion aggregates with increased plasticizer content and a slight increase at elevated temperature are observed in FTIR. Similar results are also detected by X-ray scattering. As determined from dielectric spectroscopy, ion conductivity increases with plasticizer content, in accordance with the decrease in glass transition temperature. Research on copolymer of poly(ethylene oxide) (PEO) and poly(tetramethylene oxide) (PTMO) based ionomers further develops an understanding of the trade-off between ion solvation and segmental dynamics. Upon the incorporation of PTMO, the majority of the PTMO

  18. Proposal for secondary ion beams and update of data taking schedule for 2009-2013

    CERN Document Server

    Abgrall, N; Andrieu, B; Anticic, T; Antoniou, N; Argyriades, J; Asryan, A G; Baatar, B; Blondel, A; Blumer, J; Boldizsar, L; Bravar, A; Brzychczyk, J; Bunyatov, S A; Choi, K U; Christakoglou, P; Chung, P; Cleymans, J; Derkach, D A; Diakonos, F; Dominik, W; Dumarchez, J; Engel, R; Ereditato, A; Feofilov, G A; Ferrero, A; Fodor, Z; Gazdzicki, M; Golubeva, M; Grebieszkow, K; Guber, F; Hasegawa, T; Haungs, A; Hess, M; Igolkin, S; Ivanov, A S; Ivashkin, A; Kadija, K; Katrynska, N; Kielczewska, D; Kikola, D; Kim, J H; Kobayashi, T; Kolesnikov, V I; Kolev, D; Kolevatov, R S; Kondratiev, V P; Kurepin, A; Lacey, R; Laszlo, A; Lehmann, S; Lungwitz, B; Lyubushkin, V V; Maevskaya, A; Majka, Z; Malakhov, A I; Marchionni, A; Marcinek, A; Maris, I; Matveev, V; Melkumov, G L; Meregaglia, A; Messina, M; Meurer, C; Mijakowski, P; Mitrovski, M; Montaruli, T; Mrówczynski, St; Murphy, S; Nakadaira, T; Naumenko, P A; Nikolic, V; Nishikawa, K; Palczewski, T; Pálla, G; Panagiotou, A D; Peryt, W; Petridis, A; Planeta, R; Pluta, J; Popov, B A; Posiadala, M; Przewlocki, P; Rauch, W; Ravonel, M; Renfordt, R; Röhrich, D; Rondio, E; Rossi, B; Roth, M; Rubbia, A; Rybczynski, M; Sadovskii, A; Sakashita, K; Schuster, T; Sekiguchi, T; Seyboth, P; Shileev, K; Sissakian, A N; Skrzypczak, E; Slodkowski, M; Sorin, A S; Staszel, P; Stefanek, G; Stepaniak, J; Strabel, C; Ströbele, H; Susa, T; Szentpétery, I; Szuba, M; Taranenko, A; Tsenov, R; Ulrich, R; Unger, M; Vassiliou, M; Vechernin, V V; Vesztergombi, G; Wlodarczyk, Z; Wojtaszek, A; Yi, J G; Yoo, I K; CERN. Geneva. SPS and PS Experiments Committee; SPSC

    2009-01-01

    This document presents the proposal for secondary ion beams and the updated data taking schedule of the NA61 Collaboration. The modification of the original NA61 plans is necessary in order to reach compatibility between the current I-LHC and NA61 schedules. It assumes delivery of primary proton beam in 2009-2012 and of primary lead beam in 2011-2013. The primary lead beam will be fragmented into a secondary beam of lighter ions. The modified H2 beam line will serve as a fragment separator to produce the light ion species for NA61 data taking. The expected physics performance of the NA61 experiment with secondary ion beams will be sufficient to reach the primary NA61 physics goals.

  19. Low energy ion beam dynamics of NANOGAN ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sarvesh, E-mail: sarvesh@iuac.res.in; Mandal, A.

    2016-04-01

    A new low energy ion beam facility (LEIBF) has been developed for providing the mass analyzed highly charged intense ion beams of energy ranging from a few tens of keV to a few MeV for atomic, molecular and materials sciences research. The new facility consists of an all permanent magnet 10 GHz electron cyclotron resonance (ECR) ion source (NANOGAN) installed on a high voltage platform (400 kV) which provides large currents of multiply charged ion beams. Higher emittance at low energy of intense ion beam puts a tremendous challenge to the beam optical design of this facility. The beam line consists of mainly the electrostatic quadrupoles, an accelerating section, analyzing cum switching magnet and suitable beam diagnostics including vacuum components. The accelerated ion beam is analyzed for a particular mass to charge (m/q) ratio as well as guided to three different lines along 75°, 90° and 105° using a large acceptance analyzing cum switching magnet. The details of transverse beam optics to all the beam lines with TRANSPORT and GICOSY beam optics codes are being described. Field computation code, OPERA 3D has been utilized to design the magnets and electrostatic quadrupoles. A theoretical estimation of emittance for optimized geometry of ion source is given so as to form the basis of beam optics calculations. The method of quadrupole scan of the beam is used to characterize the emittance of the final beam on the target. The measured beam emittance increases with m/q ratios of various ion beams similar to the trend observed theoretically.

  20. Virus antibody dynamics in primary and secondary dengue infections.

    Science.gov (United States)

    Gujarati, Tanvi P; Ambika, G

    2014-12-01

    Dengue viral infections show unique infection patterns arising from its four serotypes, (DENV-1,2,3,4). Its effects range from simple fever in primary infections to potentially fatal secondary infections. We analytically and numerically analyse virus dynamics and humoral response in a host during primary and secondary dengue infection for long periods using micro-epidemic models. The models presented here incorporate time delays, antibody dependent enhancement, a dynamic switch and a correlation factor between different DENV serotypes. We find that the viral load goes down to undetectable levels within 7-14 days as is observed for dengue infection, in both cases. For primary infection, the stability analysis of steady states shows interesting dependence on the time delay involved in the production of antibodies from plasma cells. We demonstrate the existence of a critical value for the immune response parameter, beyond which the infection gets completely cured. For secondary infections with a different serotype, the homologous antibody production is enhanced due to the influence of heterologous antibodies. The antibody production is also controlled by the correlation factor, which is a measure of similarities between the different DENV serotypes involved. Our results agree with clinically observed humoral responses for primary and secondary infections.

  1. Nonlinear ion dynamics in Hall thruster plasma source by ion transit-time instability

    Science.gov (United States)

    Lim, Youbong; Choe, Wonho; Mazouffre, Stéphane; Park, Jae Sun; Kim, Holak; Seon, Jongho; Garrigues, L.

    2017-03-01

    High-energy tail formation in an ion energy distribution function (IEDF) is explained in a Hall thruster plasma with the stationary crossed electric and magnetic fields whose discharge current is oscillated at the ion transit-time scale with a frequency of 360 kHz. Among ions in different charge states, singly charged Xe ions (Xe+) have an IEDF that is significantly broadened and shifted toward the high-energy side, which contributes to tail formation in the entire IEDF. Analytical and numerical investigations confirm that the IEDF tail is due to nonlinear ion dynamics in the ion transit-time oscillation.

  2. Sheath structure in plasma with two species of positive ions and secondary electrons

    Science.gov (United States)

    Xiao-Yun, Zhao; Nong, Xiang; Jing, Ou; De-Hui, Li; Bin-Bin, Lin

    2016-02-01

    The properties of a collisionless plasma sheath are investigated by using a fluid model in which two species of positive ions and secondary electrons are taken into account. It is shown that the positive ion speeds at the sheath edge increase with secondary electron emission (SEE) coefficient, and the sheath structure is affected by the interplay between the two species of positive ions and secondary electrons. The critical SEE coefficients and the sheath widths depend strongly on the positive ion charge number, mass and concentration in the cases with and without SEE. In addition, ion kinetic energy flux to the wall and the impact of positive ion species on secondary electron density at the sheath edge are also discussed. Project supported by the National Natural Science Foundation of China (Grant Nos. 11475220 and 11405208), the Program of Fusion Reactor Physics and Digital Tokamak with the CAS “One-Three-Five” Strategic Planning, the National ITER Program of China (Grant No. 2015GB101003), and the Higher Education Natural Science Research Project of Anhui Province, China (Grant No. 2015KJ009).

  3. Atomistic Conversion Reaction Mechanism of WO 3 in Secondary Ion Batteries of Li, Na, and Ca

    Energy Technology Data Exchange (ETDEWEB)

    He, Yang [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh PA 15261 USA; Gu, Meng [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99352 USA; Xiao, Haiyan [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 China; Luo, Langli [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99352 USA; Shao, Yuyan [Energy and Environmental Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA; Gao, Fei [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor MI 48109 USA; Du, Yingge [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99352 USA; Mao, Scott X. [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh PA 15261 USA; Wang, Chongmin [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99352 USA

    2016-04-13

    Reversible insertion and extraction of ionic species into a host lattice governs the basic operating principle for both rechargeable battery (such as lithium batteries) and electrochromic devices (such as ANA Boeing 787-8 Dreamliner electrochromic window). Intercalation and/or conversion are two fundamental chemical processes for some materials in response to the ion insertion. The interplay between these two chemical processes has never been established. It is speculated that the conversion reaction is initiated by ion intercalation. However, experimental evidence of intercalation and subsequent conversion remains unexplored. Here, using in situ HRTEM and spectroscopy, we captured the atomistic conversion reaction processes during lithium, sodium and calcium ion insertion into tungsten trioxide (WO3) single crystal model electrodes. An intercalation step right prior to conversion is explicitly revealed at atomic scale for the first time for these three ion species. Combining nanoscale diffraction and ab initio molecular dynamics simulations, it is found that, beyond intercalation, the inserted ion-oxygen bonding formation destabilized the transition-metal framework which gradually shrunk, distorted and finally collapsed to a pseudo-amorphous structure. This study provides a full atomistic picture on the transition from intercalation to conversion, which is of essential for material applications in both secondary ion batteries and electrochromic devices.

  4. Thin, flexible secondary Li-ion paper batteries.

    Science.gov (United States)

    Hu, Liangbing; Wu, Hui; La Mantia, Fabio; Yang, Yuan; Cui, Yi

    2010-10-26

    There is a strong interest in thin, flexible energy storage devices to meet modern society needs for applications such as interactive packaging, radio frequency sensing, and consumer products. In this article, we report a new structure of thin, flexible Li-ion batteries using paper as separators and free-standing carbon nanotube thin films as both current collectors. The current collectors and Li-ion battery materials are integrated onto a single sheet of paper through a lamination process. The paper functions as both a mechanical substrate and separator membrane with lower impedance than commercial separators. The CNT film functions as a current collector for both the anode and the cathode with a low sheet resistance (∼5 Ohm/sq), lightweight (∼0.2 mg/cm(2)), and excellent flexibility. After packaging, the rechargeable Li-ion paper battery, despite being thin (∼300 μm), exhibits robust mechanical flexibility (capable of bending down to <6 mm) and a high energy density (108 mWh/g).

  5. Thin, Flexible Secondary Li-Ion Paper Batteries

    KAUST Repository

    Hu, Liangbing

    2010-10-26

    There is a strong interest in thin, flexible energy storage devices to meet modern society needs for applications such as interactive packaging, radio frequency sensing, and consumer products. In this article, we report a new structure of thin, flexible Li-ion batteries using paper as separators and free-standing carbon nanotube thin films as both current collectors. The current collectors and Li-ion battery materials are integrated onto a single sheet of paper through a lamination process. The paper functions as both a mechanical substrate and separator membrane with lower impedance than commercial separators. The CNT film functions as a current collector for both the anode and the cathode with a low sheet resistance (∼5 Ohm/sq), lightweight (∼0.2 mg/cm2), and excellent flexibility. After packaging, the rechargeable Li-ion paper battery, despite being thin (∼300 μm), exhibits robust mechanical flexibility (capable of bending down to <6 mm) and a high energy density (108 mWh/g). © 2010 American Chemical Society.

  6. Backward Secondary Electron Emission Yield of Thick Targets Induced by MeV Ions

    Institute of Scientific and Technical Information of China (English)

    JIANG Lei; ZHAO Guo-Qing; ZHOU Zhu-Ying

    2000-01-01

    The backward secondary electron emission yields of MeV ions (H+, He+, He++, Cl, Si, and Cu ) impinging on thick carbon and gold targets are studied. The measured results for H+ (1MeV ≤ E ≤ 5MeV) on carbon are proportional to the electronic stopping power. Our experimental data and fitting formula of yields for H+ (1 MeV≤ E≤ 4.5MeV) impacting Au are compared with the theoretical expectation. The influence of the collective field and the charge state of ions on the secondary electron emission yield is discussed.

  7. Evolution of Secondary Software Businesses: Understanding Industry Dynamics

    Science.gov (United States)

    Tyrväinen, Pasi; Warsta, Juhani; Seppänen, Veikko

    Primary software industry originates from IBM's decision to unbundle software-related computer system development activities to external partners. This kind of outsourcing from an enterprise internal software development activity is a common means to start a new software business serving a vertical software market. It combines knowledge of the vertical market process with competence in software development. In this research, we present and analyze the key figures of the Finnish secondary software industry, in order to quantify its interaction with the primary software industry during the period of 2000-2003. On the basis of the empirical data, we present a model for evolution of a secondary software business, which makes explicit the industry dynamics. It represents the shift from internal software developed for competitive advantage to development of products supporting standard business processes on top of standardized technologies. We also discuss the implications for software business strategies in each phase.

  8. Energy distribution of secondary particles in ion beam deposition process of Ag: experiment, calculation and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Bundesmann, C.; Feder, R.; Lautenschlaeger, T.; Neumann, H. [Leibniz-Institute of Surface Modification, Leipzig (Germany)

    2015-12-15

    Ion beam sputter deposition allows tailoring the properties of the film-forming, secondary particles (sputtered target particles and backscattered primary particles) and, hence, thin film properties by changing ion beam (ion energy, ion species) and geometrical parameters (ion incidence angle, polar emission angle). In particular, the energy distribution of secondary particles and their influence on the ion beam deposition process of Ag was studied in dependence on process parameters. Energy-selective mass spectrometry was used to measure the energy distribution of sputtered and backscattered ions. The energy distribution of the sputtered particles shows, in accordance with theory, a maximum at low energy and an E{sup -2} decay for energies above the maximum. If the sum of incidence angle and polar emission angle is larger than 90 , additional contributions due to direct sputtering events occur. The energy distribution of the backscattered primary particles can show contributions by scattering at target particles and at implanted primary particles. The occurrence of these contributions depends again strongly on the scattering geometry but also on the primary ion species. The energy of directly sputtered and backscattered particles was calculated using equations based on simple two-particle-interaction whereas the energy distribution was simulated using the well-known Monte Carlo code TRIM.SP. In principal, the calculation and simulation data agree well with the experimental findings. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Dynamics of caged ions in glassy ionic conductors.

    Science.gov (United States)

    Habasaki, J; Ngai, K L; Hiwatari, Y

    2004-05-01

    At sufficiently high frequency and low temperature, the dielectric responses of glassy, crystalline, and molten ionic conductors all invariably exhibit nearly constant loss. This ubiquitous characteristic occurs in the short-time regime when the ions are still caged, indicating that it could be a determining factor of the mobility of the ions in conduction at longer times. An improved understanding of its origin should benefit the research of ion conducting materials for portable energy source as well as the resolution of the fundamental problem of the dynamics of ions. We perform molecular dynamics simulations of glassy lithium metasilicate (Li2SiO3) and find that the length scales of the caged Li+ ions motions are distributed according to a Levy distribution that has a long tail. These results suggest that the nearly constant loss originates from "dynamic anharmonicity" experienced by the moving but caged Li+ ions and provided by the surrounding matrix atoms executing correlated movements. The results pave the way for rigorous treatments of caged ion dynamics by nonlinear Hamiltonian dynamics.

  10. From Brownian Dynamics to Markov Chain: An Ion Channel Example

    KAUST Repository

    Chen, Wan

    2014-02-27

    A discrete rate theory for multi-ion channels is presented, in which the continuous dynamics of ion diffusion is reduced to transitions between Markovian discrete states. In an open channel, the ion permeation process involves three types of events: an ion entering the channel, an ion escaping from the channel, or an ion hopping between different energy minima in the channel. The continuous dynamics leads to a hierarchy of Fokker-Planck equations, indexed by channel occupancy. From these the mean escape times and splitting probabilities (denoting from which side an ion has escaped) can be calculated. By equating these with the corresponding expressions from the Markov model, one can determine the Markovian transition rates. The theory is illustrated with a two-ion one-well channel. The stationary probability of states is compared with that from both Brownian dynamics simulation and the hierarchical Fokker-Planck equations. The conductivity of the channel is also studied, and the optimal geometry maximizing ion flux is computed. © 2014 Society for Industrial and Applied Mathematics.

  11. Secondary ion emission from CO2-H2O ice irradiated by energetic heavy ions: Part II: Analysis-search for organic ions

    Science.gov (United States)

    Ponciano, C. R.; Farenzena, L. S.; Collado, V. M.; da Silveira, E. F.; Wien, K.

    2005-06-01

    Secondary ion mass spectrometry is used to investigate ion emission from a frozen-gas mixture of CO2 and H2O (T = 80-90 K) bombarded by MeV nitrogen ions and by 252Cf fission fragments. The aim of the experiment is to detect organic molecules, produced in the highly excited material around the nuclear track, which appear as ions in the flux of sputtered particles. Part I of the present work [L.S. Farenzena, V.M. Collado, C.R Ponciano, E.F. da Silveira, K. Wien. Int. J. Mass Spectrom. 243 (2005) 85-93] described the method and presented the time-of-flight mass spectra; a list of the CO2 specific and H2O specific reaction products was provided. In Part II, the peaks of the TOF mass spectra are analyzed. Projectile-ice direct coulomb interaction leads to the production in the track of the H+, C+, O+, O2+, CO+ and CO2+ primarily ions, which react in the highly energized nuclear track plasma mainly with CO2 and H2O or H2CO3. The positive molecular hybrid ions formed are identified as organic species like COH+, COOH+, CHn = 1-3+, Hn = 1,2COOH+ and cluster ions. Similarly, the negative primarily ions O- and OH- formed by electron capture produce negative hybrid ions such as (CO2)nOH-, the four ions (CO4Hm = 0-3)- and the corresponding cluster ions. By far, most of the molecular ions have been formed by one-step reactions; exceptions are eventually the CO4Hm- ions created by a reaction between CO3- and water molecules. An intense mass line corresponding to HCO3+ has been observed, but not the one due to formaldehyde ion. Weak signals of ionic ketene, hydrogen peroxide and carbonic acid were seen.

  12. Secondary radiation measurements for particle therapy applications: Charged secondaries produced by 4He and 12C ion beams in a PMMA target at large angle

    CERN Document Server

    Rucinski, A; Battistoni, G; Collamati, F; Faccini, R; Frallicciardi, P M; Mancini-Terracciano, C; Marafini, M; Mattei, I; Muraro, S; Paramatti, R; Piersanti, L; Pinci, D; Russomando, A; Sarti, A; Sciubba, A; Camillocci, E Solfaroli; Toppi, M; Traini, G; Voena, C; Patera, V

    2016-01-01

    Measurements performed with the purpose of characterizing the charged secondary radiation for dose release monitoring in particle therapy are reported. Charged secondary yields, energy spectra and emission profiles produced in poly-methyl methacrylate (PMMA) target by 4He and 12C beams of different therapeutic energies were measured at 60 and 90 degree with respect to the primary beam direction. The secondary yields of protons produced along the primary beam path in PMMA target were obtained. The energy spectra of charged secondaries were obtained from time-of-flight information, whereas the emission profiles were reconstructed exploiting tracking detector information. The measured charged secondary yields and emission profiles are in agreement with the results reported in literature and confirm the feasibility of ion beam therapy range monitoring using 12C ion beam. The feasibility of range monitoring using charged secondary particles is also suggested for 4He ion beam.

  13. On cluster ions, ion transmission, and linear dynamic range limitations in electrospray (ionspray) mass spectrometry

    NARCIS (Netherlands)

    Zook, D.R; Bruins, A.P.

    1997-01-01

    The ion transmission in Electrospray (Ionspray) Mass Spectrometry (ESMS) was studied in order to examine the instrumental factors potentially contributing to observed ESMS linear dynamic range (LDR) limitations. A variety of means used for the investigation of ion transmission demonstrated that a su

  14. From Brownian Dynamics to Markov Chain: an Ion Channel Example

    CERN Document Server

    Chen, Wan; Chapman, S Jonathan

    2012-01-01

    A discrete rate theory for general multi-ion channels is presented, in which the continuous dynamics of ion diffusion is reduced to transitions between Markovian discrete states. In an open channel, the ion permeation process involves three types of events: an ion entering the channel, an ion escaping from the channel, or an ion hopping between different energy minima in the channel. The continuous dynamics leads to a hierarchy of Fokker-Planck equations, indexed by channel occupancy. From these the mean escape times and splitting probabilities (denoting from which side an ion has escaped) can be calculated. By equating these with the corresponding expressions from the Markov model the Markovian transition rates can be determined. The theory is illustrated with a two-ion one-well channel. The stationary probability of states is compared with that from both Brownian dynamics simulation and the hierarchical Fokker-Planck equations. The conductivity of the channel is also studied, and the optimal geometry maximi...

  15. Dynamics of ion cloud in a linear Paul trap

    CERN Document Server

    Mandal, P

    2013-01-01

    A linear ion trap setup has been developed for studying the dynamics of trapped ion cloud and thereby realizing possible systematics of a high precision measurement on a single ion within it. The dynamics of molecular nitrogen ion cloud has been investigated to extract the characteristics of the trap setup. The stability of trap operation has been studied with observation of narrow nonlinear resonances pointing out the region of instabilities within the broad stability region. The secular frequency has been measured and the motional spectra of trapped ion oscillation have been obtained by using electric dipole excitation. It is applied to study the space charge effect and the axial coupling in the radial plane.

  16. Phase Separation Dynamics in Isotropic Ion-Intercalation Particles

    CERN Document Server

    Zeng, Yi

    2013-01-01

    Lithium-ion batteries exhibit complex nonlinear dynamics, resulting from diffusion and phase transformations coupled to ion intercalation reactions. Using the recently developed Cahn-Hilliard reaction (CHR) theory, we investigate a simple mathematical model of ion intercalation in a spherical solid nanoparticle, which predicts transitions from solid-solution radial diffusion to two-phase shrinking-core dynamics. This general approach extends previous Li-ion battery models, which either neglect phase separation or postulate a spherical shrinking-core phase boundary, by predicting phase separation only under appropriate circumstances. The effect of the applied current is captured by generalized Butler-Volmer kinetics, formulated in terms of diffusional chemical potentials, and the model consistently links the evolving concentration profile to the battery voltage. We examine sources of charge/discharge asymmetry, such as asymmetric charge transfer and surface "wetting" by ions within the solid, which can lead to...

  17. Aqueous vanadium ion dynamics relevant to bioinorganic chemistry: A review.

    Science.gov (United States)

    Kustin, Kenneth

    2015-06-01

    Aqueous solutions of the four highest vanadium oxidation states exhibit four diverse colors, which only hint at the diverse reactions that these ions can undergo. Cationic vanadium ions form complexes with ligands; anionic vanadium ions form complexes with ligands and self-react to form isopolyanions. All vanadium species undergo oxidation-reduction reactions. With a few exceptions, elucidation of the dynamics of these reactions awaited the development of fast reaction techniques before the kinetics of elementary ligation, condensation, reduction, and oxidation of the aqueous vanadium ions could be investigated. As the biological roles played by endogenous and therapeutic vanadium expand, it is appropriate to bring the results of the diverse kinetics studies under one umbrella. To achieve this goal this review presents a systematic examination of elementary aqueous vanadium ion dynamics.

  18. Effects of metal nanoparticles on the secondary ion yields of a model alkane molecule upon atomic and polyatomic projectiles in secondary ion mass spectrometry.

    Science.gov (United States)

    Wehbe, Nimer; Heile, Andreas; Arlinghaus, Heinrich F; Bertrand, Patrick; Delcorte, Arnaud

    2008-08-15

    A model alkane molecule, triacontane, is used to assess the effects of condensed gold and silver nanoparticles on the molecular ion yields upon atomic (Ga(+) and In(+)) and polyatomic (C60(+) and Bi3(+)) ion bombardment in metal-assisted secondary ion mass spectrometry (MetA-SIMS). Molecular films spin-coated on silicon were metallized using a sputter-coater system, in order to deposit controlled quantities of gold and silver on the surface (from 0 to 15 nm equivalent thickness). The effects of gold and silver islets condensed on triacontane are also compared to the situation of thin triacontane overlayers on metallic substrates (gold and silver). The results focus primarily on the measured yields of quasi-molecular ions, such as (M - H)(+) and (2M - 2H)(+), and metal-cationized molecules, such as (M + Au)(+) and (M + Ag)(+), as a function of the quantity of metal on the surface. They confirm the absence of a simple rule to explain the secondary ion yield improvement in MetA-SIMS. The behavior is strongly dependent on the specific projectile/metal couple used for the experiment. Under atomic bombardment (Ga(+), In(+)), the characteristic ion yields an increase with the gold dose up to approximately 6 nm equivalent thickness. The yield enhancement factor between gold-metallized and pristine samples can be as large as approximately 70 (for (M - H)(+) under Ga(+) bombardment; 10 nm of Au). In contrast, with cluster projectiles such as Bi3(+) and C60(+), the presence of gold and silver leads to a dramatic molecular ion yield decrease. Cluster projectiles prove to be beneficial for triacontane overlayers spin-coated on silicon or metal substrates (Au, Ag) but not in the situation of MetA-SIMS. The fundamental difference of behavior between atomic and cluster primary ions is tentatively explained by arguments involving the different energy deposition mechanisms of these projectiles. Our results also show that Au and Ag nanoparticles do not induce the same behavior in Met

  19. Systematization of the mass spectra for speciation of inorganic salts with static secondary ion mass spectrometry.

    Science.gov (United States)

    Van Ham, Rita; Van Vaeck, Luc; Adams, Freddy C; Adriaens, Annemie

    2004-05-01

    The analytical use of mass spectra from static secondary ion mass spectrometry for the molecular identification of inorganic analytes in real life surface layers and microobjects requires an empirical insight in the signals to be expected from a given compound. A comprehensive database comprising over 50 salts has been assembled to complement prior data on oxides. The present study allows the systematic trends in the relationship between the detected signals and molecular composition of the analyte to be delineated. The mass spectra provide diagnostic information by means of atomic ions, structural fragments, molecular ions, and adduct ions of the analyte neutrals. The prediction of mass spectra from a given analyte must account for the charge state of the ions in the salt, the formation of oxide-type neutrals from oxy salts, and the occurrence of oxidation-reduction processes.

  20. Quench dynamics of two coupled zig-zag ion chains

    Science.gov (United States)

    Klumpp, Andrea; Liebchen, Benno; Schmelcher, Peter

    2016-08-01

    We explore the non-equilibrium dynamics of two coupled zig-zag chains of trapped ions in a double well potential. Following a quench of the potential barrier between both wells, the induced coupling between both chains due to the long-range interaction of the ions leads to the complete loss of order in the radial direction. The resulting dynamics is however not exclusively irregular but leads to phases of motion during which various ordered structures appear with ions arranged in arcs, lines and crosses. We quantify the emerging order by introducing a suitable measure and complement our analysis of the ion dynamics using a normal mode analysis showing a decisive population transfer between only a few distinguished modes.

  1. Low-Temperature Positive Secondary Ion Mass Spectrometry of Neat and Argon-Diluted Organic Solids

    NARCIS (Netherlands)

    Jonkman, Harry T.; Michl, Josef; King, Robert N.; Andrade, Joseph D.

    1978-01-01

    Secondary ion mass spectrometry of neat solid propane, n-pentane, benzene, toluene, and of propane imbedded in an argon matrix were observed at temperatures varying from 10 to 110 K and show fragmentation patterns similar to those known from ordinary electron impact mass spectrometry. The effects of

  2. Ultrasensitive probing of the protein resistance of PEG surfaces by secondary ion mass spectrometry

    DEFF Research Database (Denmark)

    Kingshott, P.; McArthur, S.; Thissen, H.

    2002-01-01

    The highly sensitive surface analytical techniques X-ray photoelectron spectroscopy (XPS) and time-of-flight static secondary ion mass spectrometry (ToF-SIMS) were used to test the resistance of poly(ethylene glycol) (PEG) coatings towards adsorption of lysozyme (LYS) and fibronectin (FN). PEG co...

  3. Low-Temperature Positive Secondary Ion Mass Spectrometry of Neat and Argon-Diluted Organic Solids

    NARCIS (Netherlands)

    Jonkman, Harry T.; Michl, Josef; King, Robert N.; Andrade, Joseph D.

    1978-01-01

    Secondary ion mass spectrometry of neat solid propane, n-pentane, benzene, toluene, and of propane imbedded in an argon matrix were observed at temperatures varying from 10 to 110 K and show fragmentation patterns similar to those known from ordinary electron impact mass spectrometry. The effects of

  4. Ion beam figuring of Φ520mm convex hyperbolic secondary mirror

    Science.gov (United States)

    Meng, Xiaohui; Wang, Yonggang; Li, Ang; Li, Wenqing

    2016-10-01

    The convex hyperbolic secondary mirror is a Φ520-mm Zerodur lightweight hyperbolic convex mirror. Typically conventional methods like CCOS, stressed-lap polishing are used to manufacture this secondary mirror. Nevertheless, the required surface accuracy cannot be achieved through the use of conventional polishing methods because of the unpredictable behavior of the polishing tools, which leads to an unstable removal rate. Ion beam figuring is an optical fabrication method that provides highly controlled error of previously polished surfaces using a directed, inert and neutralized ion beam to physically sputter material from the optic surface. Several iterations with different ion beam size are selected and optimized to fit different stages of surface figure error and spatial frequency components. Before ion beam figuring, surface figure error of the secondary mirror is 2.5λ p-v, 0.23λ rms, and is improved to 0.12λ p-v, 0.014λ rms in several process iterations. The demonstration clearly shows that ion beam figuring can not only be used to the final correction of aspheric, but also be suitable for polishing the coarse surface of large, complex mirror.

  5. Ion dynamics in plasma compensation scheme

    Energy Technology Data Exchange (ETDEWEB)

    Timofeev, I.V.; Lotov, K.V. E-mail: lotov@inp.nsk.su

    2002-06-11

    In this paper the ability of a plasma to compensate beam-induced fields at the interaction point of muon colliders is discussed. Among numerous factors that limit beam and plasma parameters for which a given compensation degree can be achieved, one of the most important limitations (the motion of plasma ions) is analyzed in details. It is found that this limitation is determined by an instability of the relative motion of plasma electrons and ions. It is shown that discussed parameters of ultimate muon colliders fall outside the applicability area of plasma compensation.

  6. Imaging ion and molecular transport at subcellular resolution by secondary ion mass spectrometry

    Science.gov (United States)

    Chandra, Subhash; Morrison, George H.

    1995-05-01

    The transport of K+, Na+, and Ca2+ were imaged in individual cells with a Cameca IMS-3f ion microscope. Strict cryogenic frozen freeze-dry sample preparations were employed. Ion redistribution artifacts in conventional chemical preparations are discussed. Cryogenically prepared freeze-fractured freeze-dried cultured cells allowed the three-dimensional ion microscopic imaging of elements. As smaller structures in calcium images can be resolved with the 0.5 [mu]m spatial resolution, correlative techniques are needed to confirm their identity. The potentials of reflected light microscopy, scanning electron microscopy and laser scanning confocal microscopy are discussed for microfeature recognition in freeze-fractured freeze-dried cells. The feasibility of using frozen freeze-dried cells for imaging molecular transport at subcellular resolution was tested. Ion microscopy successfully imaged the transport of the isotopically tagged (13C, 15N) amino acid, -arginine. The labeled amino acid was imaged at mass 28 with a Cs+ primary ion beam as the 28(13C15N)- species. After a 4 h exposure of LLC-PK1 kidney cells to 4 mM labeled arginine, the amino acid was localized throughout the cell with a preferential incorporation into the nucleus and nucleolus. An example is also shown of the ion microscopic imaging of sodium borocaptate, an experimental therapeutic drug for brain tumors, in cryogenically prepared frozen freeze-dried Swiss 3T3 cells.

  7. Ab Initio Molecular Dynamics Study on the Interactions between Carboxylate Ions and Metal Ions in Water.

    Science.gov (United States)

    Mehandzhiyski, Aleksandar Y; Riccardi, Enrico; van Erp, Titus S; Trinh, Thuat T; Grimes, Brian A

    2015-08-20

    The interaction between a carboxylate anion (deprotonated propanoic acid) and the divalent Mg(2+), Ca(2+), Sr(2+), Ba(2+) metal ions is studied via ab initio molecular dynamics. The main focus of the study is the selectivity of the carboxylate-metal ion interaction in aqueous solution. The interaction is modeled by explicitly accounting for the solvent molecules on a DFT level. The hydration energies of the metal ions along with their diffusion and mobility coefficients are determined and a trend correlated with their ionic radius is found. Subsequently, a series of 16 constrained molecular dynamics simulations for every ion is performed, and the interaction free energy is obtained from thermodynamic integration of the forces between the metal ion and the carboxylate ion. The results indicate that the magnesium ion interacts most strongly with the carboxylate, followed by calcium, strontium, and barium. Because the interaction free energy is not enough to explain the selectivity of the reaction observed experimentally, more detailed analysis is performed on the simulation trajectories to understand the steric changes in the reaction complex during dissociation. The solvent dynamics appear to play an important role during the dissociation of the complex and also in the observed selectivity behavior of the divalent ions.

  8. K* dynamics in heavy ion collisions

    Directory of Open Access Journals (Sweden)

    Ilner Andrej

    2015-01-01

    Full Text Available The dynamics of strange vector meson resonances (K* and K̄* is investigated within the Parton-Hadron-String Dynamics (PHSD transport approach. We present the time evolution of the production of K*− resonances from the QGP phase by quark fusion as well as from hadronic sources. We also give a brief overview of the modification of the K* through Kπ decay and K*N interaction in a hot and dense nuclear medium.

  9. Numerical modelling of dynamic sludge blanket behaviour in secondary clarifiers.

    Science.gov (United States)

    Armbruster, M; Krebs, P; Rodi, W

    2001-01-01

    New developments in numerical modelling of turbulent and density-affected flow in secondary clarifiers are reported. The sludge blanket is included in the computation domain which allows us to account for sedimentation and resuspension of sludge as well as the growth and diminution of the sludge blanket and at the same time respecting mass conservation. It is shown how strongly the prediction of the sludge-blanket height depends on the approaches to describe the settling behaviour of the sludge and the rheological properties within the sludge blanket. Further, an example of dynamic simulation is presented and discussed. This demonstrates how the sludge blanket behaves during load variation and that instabilities may occur at the interface of sludge blanket and supernatant, potentially resulting in sludge wash-off during transient phases, which is not only during load increase but also during load decrease.

  10. Fast cooling of trapped ions using the dynamical Stark shift

    Energy Technology Data Exchange (ETDEWEB)

    Retzker, A [Institute for Mathematical Sciences, Imperial College London, SW7 2PE (United Kingdom); Plenio, M B [Institute for Mathematical Sciences, Imperial College London, SW7 2PE (United Kingdom)

    2007-08-15

    A laser cooling scheme for trapped ions is presented which is based on the fast dynamical Stark shift gate, described in (Jonathan et al 2000 Phys. Rev. A 62 042307). Since this cooling method does not contain an off resonant carrier transition, low final temperatures are achieved even in a traveling wave light field. The proposed method may operate in either pulsed or continuous mode and is also suitable for ion traps using microwave addressing in strong magnetic field gradients.

  11. High Mass Accuracy and High Mass Resolving Power FT-ICR Secondary Ion Mass Spectrometry for Biological Tissue Imaging

    CERN Document Server

    Smith, Donald F; Leach, Franklin E; Robinson, Errol W; Paša-Tolić, Ljiljana; Heeren, Ron M A

    2013-01-01

    Biological tissue imaging by secondary ion mass spectrometry has seen rapid development with the commercial availability of polyatomic primary ion sources. Endogenous lipids and other small bio-molecules can now be routinely mapped on the sub-micrometer scale. Such experiments are typically performed on time-of-flight mass spectrometers for high sensitivity and high repetition rate imaging. However, such mass analyzers lack the mass resolving power to ensure separation of isobaric ions and the mass accuracy for elemental formula assignment based on exact mass measurement. We have recently reported a secondary ion mass spectrometer with the combination of a C60 primary ion gun with a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) for high mass resolving power, high mass measurement accuracy and tandem mass spectrometry capabilities. In this work, high specificity and high sensitivity secondary ion FT-ICR MS was applied to chemical imaging of biological tissue. An entire rat brain tissu...

  12. Multifragmentation and dynamics in heavy ion collisions

    Indian Academy of Sciences (India)

    R Roy

    2001-07-01

    A midrapidity zone formed in heavy-ion collisions has been investigated through special selections of light particles and intermediate mass fragments detected in the reaction 35Cl on 12C at 43 MeV/nucleon and the reactions 58Ni on 12C, 24Mg, and 197Au at 34.5 MeV/nucleon, and of neutron energy spectra measured in the reaction 35Cl on natTa. Properties of the observables have been examined to characterize the neck-like structure formed between the two reaction partners.

  13. PCI-SS: MISO dynamic nonlinear protein secondary structure prediction

    Directory of Open Access Journals (Sweden)

    Aboul-Magd Mohammed O

    2009-07-01

    Full Text Available Abstract Background Since the function of a protein is largely dictated by its three dimensional configuration, determining a protein's structure is of fundamental importance to biology. Here we report on a novel approach to determining the one dimensional secondary structure of proteins (distinguishing α-helices, β-strands, and non-regular structures from primary sequence data which makes use of Parallel Cascade Identification (PCI, a powerful technique from the field of nonlinear system identification. Results Using PSI-BLAST divergent evolutionary profiles as input data, dynamic nonlinear systems are built through a black-box approach to model the process of protein folding. Genetic algorithms (GAs are applied in order to optimize the architectural parameters of the PCI models. The three-state prediction problem is broken down into a combination of three binary sub-problems and protein structure classifiers are built using 2 layers of PCI classifiers. Careful construction of the optimization, training, and test datasets ensures that no homology exists between any training and testing data. A detailed comparison between PCI and 9 contemporary methods is provided over a set of 125 new protein chains guaranteed to be dissimilar to all training data. Unlike other secondary structure prediction methods, here a web service is developed to provide both human- and machine-readable interfaces to PCI-based protein secondary structure prediction. This server, called PCI-SS, is available at http://bioinf.sce.carleton.ca/PCISS. In addition to a dynamic PHP-generated web interface for humans, a Simple Object Access Protocol (SOAP interface is added to permit invocation of the PCI-SS service remotely. This machine-readable interface facilitates incorporation of PCI-SS into multi-faceted systems biology analysis pipelines requiring protein secondary structure information, and greatly simplifies high-throughput analyses. XML is used to represent the input

  14. Dynamics of the low altitude secondary proton radiation belt.

    Science.gov (United States)

    Gusev, A A; Kohno, T; Spjeldvik, W N; Martin, I M; Pugacheva, G I; Turtelli, A

    1998-01-01

    At the interface between the upper atmosphere and the radiation belt region, there exists a secondary radiation belt consisting mainly of energetic ions that have become neutralized in the ring current and the main radiation belt and then re-ionized by collisions in the inner exosphere. The time history of the proton fluxes in the 0.64-35 MeV energy range was traced in the equatorial region beneath the main radiation belts during the three year period from 21 February 1984 to 26 March 1987 using data obtained with the HEP experiment on board the Japanese OHZORA satellite. During most of this period a fairly small proton flux of -1.2 cm-2 S-1 sr-1 was detected on geomagnetic field lines in the range 1.05 < L < 1.15. We report a few surprisingly deep and rapid flux decreases (flux reduction by typically two orders of magnitude). These flux decreases were also long in duration (lasting up to three months). We also registered abrupt flux increases where the magnitude of the proton flux enhancements could reach three orders of magnitude with an enhancement duration of 1-3 days. Possible reasons for these unexpected phenomena are discussed.

  15. Relativistic fluid dynamics in heavy ion collisions

    CERN Document Server

    Pu, Shi

    2011-01-01

    This dissertation is about the study of three important issues in the theory of relativistic fluid dynamics: the stability of dissipative fluid dynamics, the shear viscosity, and fluid dynamics with triangle anomaly.(1)The second order theory of fluid dynamics is necessary for causality. However the causality cannot be guaranteed for all parameters. The constraints for parameters are then given. We also point out that the causality and the stability are inter-correlated. It is found that a causal system must be stable, but an acausal system in the boost frame at high speed must be unstable. (2)The transport coefficients can be determined in kinetic theory. We will firstly discuss about derivation of the shear viscosity via variational method in the Boltzmann equation. Secondly, we will compute the shear viscosity via AdS/CFT duality in a Bjorken boost invariant fluid with radial flow. It is found that the ratio of the shear viscosity to entropy density is consistent with the work of Policastro, Son and Starin...

  16. CO2 Cluster Ion Beam, an Alternative Projectile for Secondary Ion Mass Spectrometry

    Science.gov (United States)

    Tian, Hua; Maciążek, Dawid; Postawa, Zbigniew; Garrison, Barbara J.; Winograd, Nicholas

    2016-09-01

    The emergence of argon-based gas cluster ion beams for SIMS experiments opens new possibilities for molecular depth profiling and 3D chemical imaging. These beams generally leave less surface chemical damage and yield mass spectra with reduced fragmentation compared with smaller cluster projectiles. For nanoscale bioimaging applications, however, limited sensitivity due to low ionization probability and technical challenges of beam focusing remain problematic. The use of gas cluster ion beams based upon systems other than argon offer an opportunity to resolve these difficulties. Here we report on the prospects of employing CO2 as a simple alternative to argon. Ionization efficiency, chemical damage, sputter rate, and beam focus are investigated on model compounds using a series of CO2 and Ar cluster projectiles (cluster size 1000-5000) with the same mass. The results show that the two projectiles are very similar in each of these aspects. Computer simulations comparing the impact of Ar2000 and (CO2)2000 on an organic target also confirm that the CO2 molecules in the cluster projectile remain intact, acting as a single particle of m/z 44. The imaging resolution employing CO2 cluster projectiles is improved by more than a factor of two. The advantage of CO2 versus Ar is also related to the increased stability which, in addition, facilitates the operation of the gas cluster ion beams (GCIB) system at lower backing pressure.

  17. Advances in Charge-Compensation in Secondary Ion Mass Spectrometry (SIMS)

    Science.gov (United States)

    Hervig, R. L.; Chen, J.; Schauer, S.; Stanley, B. D.; Moore, G. M.; Roggensack, K.

    2012-12-01

    In secondary ion mass spectrometry (SIMS), a sample is bombarded by a charged particle beam (the primary ion) and sputtered positive or negative secondary ions are analyzed in a mass spectrometer. When the target is not conducting (like many geological materials), sample charging can result in variable deflection of secondary ions away from the mass spectrometer and a low, unstable, or absent signal. Applying a thin conducting coat (e.g., C, Au) to polished samples is required, and if the primary ion beam is negatively-charged, the build-up of negative charge can be alleviated by secondary electrons draining to the conducting coat at the edge of the crater (if a positive potential is applied to the sample for the collection of positive secondary ions) or accelerated away from the crater (if a negative potential is applied for negative ion study). Unless the sputtered crater in the conducting coat becomes too large, sample charging can be kept at a controllable level, and high-quality trace element analyses and isotope ratios have been obtained using this technique over the past 3+ decades. When a positive primary beam is used, the resulting build-up of positive charge in the sample requires an electron gun to deliver sufficient negative charge to the sputtered crater. While there are many examples of successful analyses using this approach, the purpose of this presentation is to describe a very simple technique for aligning the electron gun on Cameca nf and 1270/80 SIMS instruments. This method allows reproducible analyses of insulating phases with a Cs+ primary beam and detection of negative secondary ions. Normally, the filament voltage on the E-gun is the same as the sample voltage; thus electrons do not strike the sample except when a positive charge has built up (e.g., in the analysis crater!). In this method, we decrease the sample voltage by 3 or more kV, so that the impact energy of the electrons is sufficient to induce a cathodoluminescent (CL) image on an

  18. Shielding data for hadron-therapy ion accelerators: Attenuation of secondary radiation in concrete

    Science.gov (United States)

    Agosteo, S.; Mereghetti, A.; Sagia, E.; Silari, M.

    2014-01-01

    The secondary radiation field produced by seven different ion species (from hydrogen to nitrogen), impinging onto thick targets made of either iron or ICRU tissue, was simulated with the FLUKA Monte Carlo code, and transported through thick concrete shields: the ambient dose equivalent was estimated and shielding parameters evaluated. The energy for each ion beam was set in order to reach a maximum penetration in ICRU tissue of 290 mm (equivalent to the therapeutic range of 430 MeV/amu carbon ions). Source terms and attenuation lengths are given as a function of emission angle and ion species, along with fits to the Monte Carlo data, for shallow depth and deep penetration in the shield. Trends of source terms and attenuation lengths as a function of neutron emission angle and ion species impinging on target are discussed. A comparison of double differential distributions of neutrons with results from similar simulation works reported in the literature is also included. The aim of this work is to provide shielding data for the design of future light-ion radiation therapy facilities.

  19. Shielding data for hadron-therapy ion accelerators: Attenuation of secondary radiation in concrete

    Energy Technology Data Exchange (ETDEWEB)

    Agosteo, S. [Polytechnic of Milano, Department of Energy, Via Ponzio 34/3, 20133 Milano (Italy); Mereghetti, A. [CERN, 1211 Geneva 23 (Switzerland); University of Manchester, Physics and Astronomy Department, Brunswick Street, Manchester M13 9PL (United Kingdom); Sagia, E. [CERN, 1211 Geneva 23 (Switzerland); Physics Department, National Technical University of Athens, 9 Heroon Polytechniou, GR 157 80 Athens (Greece); Silari, M., E-mail: marco.silari@cern.ch [CERN, 1211 Geneva 23 (Switzerland)

    2014-01-15

    The secondary radiation field produced by seven different ion species (from hydrogen to nitrogen), impinging onto thick targets made of either iron or ICRU tissue, was simulated with the FLUKA Monte Carlo code, and transported through thick concrete shields: the ambient dose equivalent was estimated and shielding parameters evaluated. The energy for each ion beam was set in order to reach a maximum penetration in ICRU tissue of 290 mm (equivalent to the therapeutic range of 430 MeV/amu carbon ions). Source terms and attenuation lengths are given as a function of emission angle and ion species, along with fits to the Monte Carlo data, for shallow depth and deep penetration in the shield. Trends of source terms and attenuation lengths as a function of neutron emission angle and ion species impinging on target are discussed. A comparison of double differential distributions of neutrons with results from similar simulation works reported in the literature is also included. The aim of this work is to provide shielding data for the design of future light-ion radiation therapy facilities.

  20. Synthetic receptors for ammonium ions using dynamic combinatorial chemistry

    NARCIS (Netherlands)

    Hamieh, Saleh

    2015-01-01

    The general topic of this dissertation is the development of synthetic receptors for organic ammonium ions in near physiological conditions using disulfide dynamic combinatorial chemistry (DCC). Chapter 1 explains the importance of this development and the associated difficulties when using the conv

  1. Uranium passivation by C+ implantation: a photoemission and secondary ion mass spectrometry study

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, A J; Felter, T E; Wu, K J; Evans, C; Ferreira, J; Siekhaus, W; McLean, W

    2005-01-20

    Implantation of 33 keV C{sup +} ions into polycrystalline U{sup 238} with a dose of 4.3 x 10{sup 17} cm{sup -2} produces a physically and chemically modified surface layer that prevents further air oxidation and corrosion. X-ray photoelectron spectroscopy and secondary ion mass spectrometry were used to investigate the surface chemistry and electronic structure of this C{sup +} ion implanted polycrystalline uranium and a non-implanted region of the sample, both regions exposed to air for more than a year. In addition, scanning electron microscopy was used to examine and compare the surface morphology of the two regions. The U 4f, O 1s and C 1s core-level and valence band spectra clearly indicate carbide formation in the modified surface layer. The time-of-flight secondary ion mass spectrometry depth profiling results reveal an oxy-carbide surface layer over an approximately 200 nm thick UC layer with little or no residual oxidation at the carbide layer/U metal transitional interface.

  2. Dyeing regions of oxidative hair dyes in human hair investigated by nanoscale secondary ion mass spectrometry.

    Science.gov (United States)

    Kojima, Toru; Yamada, Hiromi; Yamamoto, Toshihiko; Matsushita, Yasuyuki; Fukushima, Kazuhiko

    2013-06-01

    To develop more effective oxidative hair coloring products, it is important to understand the localization of colored chromophores, which are formed from oxidative dyes, in the fine structure of hair. However, the dyeing regions of oxidative hair dyes in the fine structure of hair have not been extensively examined. In this study, we investigated the distribution and localization of colored chromophores formed by an oxidative hair coloring product in the fine structure of human hair by using a stable isotope-labeled oxidative dye with nanoscale secondary ion mass spectrometry (NanoSIMS). First, formation of the colored chromophore from a deuterium-labeled oxidative dye was examined by visible spectra similarly to a study of its formation using nonlabeled oxidative dye. Furthermore, the formation of binuclear indo dye containing deuterium in its chemical structure was confirmed using time-of-flight secondary ion mass spectrometry (TOF-SIMS) analysis. As a result of the NanoSIMS image on a cross-sectional dyed hair, although deuterium ions were detected in whole hair cross-section, quite a few of them were detected at particulate regions. These particulate regions of the dyed black hair in which deuterium ions were intensely detected were identified as melanin granules, by comparing the dyeing behaviors of black and white hair. NanoSIMS analysis revealed that melanin granules of black human hair are important dyeing regions in oxidative hair coloring. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Secondary electrospray ionization ion mobility spectrometry/mass spectrometry of illicit drugs.

    Science.gov (United States)

    Wu, C; Siems, W F; Hill, H H

    2000-01-15

    A secondary electrospray ionization (SESI) method was developed as a nonradioactive ionization source for ion mobility spectrometry (IMS). This SESI method relied on the gas-phase interaction between charged particles created by electrospray ionization (ESI) and neutral gaseous sample molecules. Mass spectrometry (MS) was used as the detection method after ion mobility separation for ion identification. Preliminary investigations focussed on understanding the ionization process of SESI. The performance of ESI-IMS and SESI-IMS for illicit drug detection was evaluated by determining the analytical figures of merit. In general, SESI had a higher ionization efficiency for small volatile molecules compared with the electrospray method. The potential of developing a universal interface for both GC- and LC-MS with an addition stage of mobility separation was demonstrated.

  4. Secondary ion emission from CO2-H2O ice irradiated by energetic heavy ions: Part I. Measurement of the mass spectra

    Science.gov (United States)

    Farenzena, L. S.; Collado, V. M.; Ponciano, C. R.; da Silveira, E. F.; Wien, K.

    2005-05-01

    Secondary ion mass spectrometry is used to investigate ion emission from a frozen-gas mixture (T = 80-90 K) of CO2 and H2O bombarded by MeV nitrogen ions and by 252Cf fission fragments (FF). The aim of the experiments is to produce organic molecules in the highly excited material around the nuclear track and to detect them in the flux of sputtered particles. Such sputter processes are known to occur at the icy surfaces of planetary or interstellar objects. Time-of-flight (TOF) mass spectrometry is employed to identify the desorbed ions. Mass spectra of positive and negative ions were taken for several molecular H2O/CO2 ratios. In special, positive ions induced by MeV nitrogen beam were analyzed for 9 and 18% H2O concentrations of the CO2-H2O ice and negative ions for ~5% H2O. The ion peaks are separated to generate exclusive the spectra of CO2 specific ions, H2O specific ions and hybrid molecular ions, the latter ones corresponding to ions that contain mostly H and C atoms. In the mass range from 10 to 320 u, the latter exhibits 35 positive and 58 negative ions. The total yield of the positive ions is 0.35 and 0.57 ions/impact, respectively, and of negative ions 0.066 ions/impact. Unexpected effects of secondary ion sputtering yields on H2O/CO2 ratio are attributed to the influence of water molecules concentration on the ionization process.

  5. A New Radio Frequency Plasma Oxygen Primary Ion Source on Nano Secondary Ion Mass Spectrometry for Improved Lateral Resolution and Detection of Electropositive Elements at Single Cell Level.

    Science.gov (United States)

    Malherbe, Julien; Penen, Florent; Isaure, Marie-Pierre; Frank, Julia; Hause, Gerd; Dobritzsch, Dirk; Gontier, Etienne; Horréard, François; Hillion, François; Schaumlöffel, Dirk

    2016-07-19

    An important application field of secondary ion mass spectrometry at the nanometer scale (NanoSIMS) is the detection of chemical elements and, in particular, metals at the subcellular level in biological samples. The detection of many trace metals requires an oxygen primary ion source to allow the generation of positive secondary ions with high yield in the NanoSIMS. The duoplasmatron oxygen source is commonly used in this ion microprobe but cannot achieve the same quality of images as the cesium primary ion source used to produce negative secondary ions (C(-), CN(-), S(-), P(-)) due to a larger primary ion beam size. In this paper, a new type of an oxygen ion source using a rf plasma is fitted and characterized on a NanoSIMS50L. The performances of this primary ion source in terms of current density and achievable lateral resolution have been characterized and compared to the conventional duoplasmatron and cesium sources. The new rf plasma oxygen source offered a net improvement in terms of primary beam current density compared to the commonly used duoplasmatron source, which resulted in higher ultimate lateral resolutions down to 37 nm and which provided a 5-45 times higher apparent sensitivity for electropositive elements. Other advantages include a better long-term stability and reduced maintenance. This new rf plasma oxygen primary ion source has been applied to the localization of essential macroelements and trace metals at basal levels in two biological models, cells of Chlamydomonas reinhardtii and Arabidopsis thaliana.

  6. Systematic Temperature Effects in the Argon Cluster Ion Sputter Depth Profiling of Organic Materials Using Secondary Ion Mass Spectrometry

    Science.gov (United States)

    Seah, Martin P.; Havelund, Rasmus; Gilmore, Ian S.

    2016-08-01

    A study is presented of the effects of sample temperature on the sputter depth profiling of two organic materials, NPB ( N,N'-Di(1-naphthyl)- N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine) and Irganox 1010, using a 5 keV Ar2000 + cluster ion beam and analysis by secondary ion mass spectrometry. It is shown that at low temperatures, the yields increase slowly with temperature in accordance with the Universal Sputtering Yield equation where the energy term is now modified by Trouton's rule. This occurs up to a transition temperature, T T, which is, in turn, approximately 0.8 T M, where T M is the sample melting temperature in Kelvin. For NPB and Irganox 1010, these transition temperatures are close to 15 °C and 0 °C, respectively. Above this temperature, the rate of increase of the sputtering yield rises by an order of magnitude. During sputtering, the depth resolution also changes with temperature with a very small change occurring below T T. At higher temperatures, the depth resolution improves but then rapidly degrades, possibly as a result first of local crater surface diffusion and then of bulk inter-diffusion. The secondary ion spectra also change with temperature with the intensities of the molecular entities increasing least. This agrees with a model in which the molecular entities arise near the crater rim. It is recommended that for consistent results, measurements for organic materials are always made at temperatures significantly below T T or 0.8 T M, and this is generally below room temperature.

  7. Dynamics of microvortices induced by ion concentration polarization

    CERN Document Server

    de Valenca, Joeri; Lammertink, Rob G H; Tsai, Peichun Amy

    2015-01-01

    We investigate the coupled dynamics of the local hydrodynamics and global electric response of an electrodialysis system, which consists of an electrolyte solution adjacent to a charge selective membrane under electric forcing. Under a DC electric current, counterions transport through the charged membrane while the passage of co-ions is restricted, thereby developing ion concentration polarization (ICP) or gradients. At sufficiently large currents, simultaneous measurements of voltage drop and flow field reveal several distinct dynamic regimes. Initially, the electrodialysis system displays a steady Ohmic voltage difference ($\\Delta V_{ohm}$), followed by a constant voltage jump ($\\Delta V_c$). Immediately after this voltage increase, micro-vortices set in and grow both in size and speed with time. After this growth, the resultant voltage levels off around a fixed value. The average vortex size and speed stabilize as well, while the individual vortices become unsteady and dynamic. These quantitative results ...

  8. Shielding data for hadron-therapy ion accelerators: Attenuation of secondary radiation in concrete

    CERN Document Server

    Agosteo, S; Sagia, E; Silari, M

    2014-01-01

    The secondary radiation field produced by seven different ion species (from hydrogen to nitrogen), impinging onto thick targets made of either iron or ICRU tissue, was simulated with the FLUKA Monte Carlo code, and transported through thick concrete shields: the ambient dose equivalent was estimated and shielding parameters evaluated. The energy for each ion beam was set in order to reach a maximum penetration in ICRU tissue of 290 mm (equivalent to the therapeutic range of 430 MeV/amu carbon ions). Source terms and attenuation lengths are given as a function of emission angle and ion species, along with fits to the Monte Carlo data, for shallow depth and deep penetration in the shield. Trends of source terms and attenuation lengths as a function of neutron emission angle and ion species impinging on tar- get are discussed. A comparison of double differential distributions of neutrons with results from similar simulation works reported in the literature is also included. The aim of this work is to provide shi...

  9. CONTRIBUTIONS OF INTRACELLULAR IONS TO Kv CHANNEL VOLTAGE SENSOR DYNAMICS.

    Directory of Open Access Journals (Sweden)

    Samuel eGoodchild

    2012-06-01

    Full Text Available Voltage sensing domains of Kv channels control ionic conductance through coupling of the movement of charged residues in the S4 segment to conformational changes at the cytoplasmic region of the pore domain, that allow K+ ions to flow. Conformational transitions within the voltage sensing domain caused by changes in the applied voltage across the membrane field are coupled to the conducting pore region and the gating of ionic conductance. However, several other factors not directly linked to the voltage dependent movement of charged residues within the voltage sensor impact the dynamics of the voltage sensor, such as inactivation, ionic conductance, intracellular ion identity and block of the channel by intracellular ligands. The effect of intracellular ions on voltage sensor dynamics is of importance in the interpretation of gating current measurements and the physiology of pore/voltage sensor coupling. There is a significant amount of variability in the reported kinetics of voltage sensor deactivation kinetics of Kv channels attributed to different mechanisms such as open state stabilization, immobilization and relaxation processes of the voltage sensor. Here we separate these factors and focus on the causal role that intracellular ions can play in allosterically modulating the dynamics of Kv voltage sensor deactivation kinetics. These considerations are of critical importance in understanding the molecular determinants of the complete channel gating cycle from activation to deactivation.

  10. Dynamics Explorer 1: Energetic Ion Composition Spectrometer (EICS)

    Science.gov (United States)

    Shelley, E. G.; Peterson, W. K.; Collin, H. L.

    1994-01-01

    The Energetic Ion Composition Spectrometer (EICS) experiment was selected as part of the Dynamics Explorer (DE) Program. One of the primary goals of the DE program was to investigate in detail the plasma physics processes responsible for energizing thermal (approximately 1 eV) ionospheric ions and transporting them to the earth's plasma sheet and distant polar cap. The results of the EICS data analysis (including support of other investigators) and of the archiving efforts supported by this contract are summarized in this document. Also reported are some aspects of our operational support activities.

  11. Bimolecular reaction dynamics from photoelectron spectroscopy of negative ions

    Energy Technology Data Exchange (ETDEWEB)

    Bradforth, S.E.

    1992-11-01

    The transition state region of a neutral bimolecular reaction may be experimentally investigated by photoelectron spectroscopy of an appropriate negative ion. The photoelectron spectrum provides information on the spectroscopy and dynamics of the short lived transition state and may be used to develop model potential energy surfaces that are semi-quantitative in this important region. The principles of bound [yields] bound negative ion photoelectron spectroscopy are illustrated by way of an example: a full analysis of the photoelectron bands of CN[sup [minus

  12. Molecular dynamics simulation of ion transport in a nanochannel

    Institute of Scientific and Technical Information of China (English)

    CHEN Min; CHEN YunFei; ZHONG Wu; YANG JueKuan

    2008-01-01

    A molecular dynamics (MD) model of the fluidic electrokinetic transport in a nano-scale channel with two bulk sinks was presented,and the process of ion transport in the nanochannel was simulated in this paper.The model consists of two water sinks at the two ends and a pump in the middle,which is different from a single pump model in previous MD simulations.Simulation results show that the charged surfaces of the nanochannel result in the depletion of co-ions and the en-richment of counterions in the nanochannel.A stable current is induced because of the motion of ions when an external electric field is applied across the nanochannel,and the current in the pump region is mainly induced by the motion of counterions.In addition,the ion number in the pump region rapidly decreases as the external electric field is applied.In the equilibrated system,the electrically neutral character in the pump region is destroyed and this region displays a certain electrical char-acter,which depends on the surface charge.The ion distribution is greatly different from the results predicted by the continuum theory,e.g.a smaller peak value of Na+ concentration appears near the wall.The transport efficiency of counterions (co-ions) can be effectively increased (decreased) by increasing the surface charge density.The simulation results demonstrate that the ion distribution in the electric double layer (EDL) of a nanochannel cannot be exactly described by the classical Gouy-Chapman-Stern (GCS) theory model.The mechanism of some special ex-perimental phenomena in a nanochannel and the effect of the surface charge den-sity on the ion-transport efficiency were also explored to provide some theoretical insights for the design and application of nano-scale fluidic pumps.

  13. Bistable dynamics underlying excitability of ion homeostasis in neuron models.

    Directory of Open Access Journals (Sweden)

    Niklas Hübel

    2014-05-01

    Full Text Available When neurons fire action potentials, dissipation of free energy is usually not directly considered, because the change in free energy is often negligible compared to the immense reservoir stored in neural transmembrane ion gradients and the long-term energy requirements are met through chemical energy, i.e., metabolism. However, these gradients can temporarily nearly vanish in neurological diseases, such as migraine and stroke, and in traumatic brain injury from concussions to severe injuries. We study biophysical neuron models based on the Hodgkin-Huxley (HH formalism extended to include time-dependent ion concentrations inside and outside the cell and metabolic energy-driven pumps. We reveal the basic mechanism of a state of free energy-starvation (FES with bifurcation analyses showing that ion dynamics is for a large range of pump rates bistable without contact to an ion bath. This is interpreted as a threshold reduction of a new fundamental mechanism of ionic excitability that causes a long-lasting but transient FES as observed in pathological states. We can in particular conclude that a coupling of extracellular ion concentrations to a large glial-vascular bath can take a role as an inhibitory mechanism crucial in ion homeostasis, while the Na⁺/K⁺ pumps alone are insufficient to recover from FES. Our results provide the missing link between the HH formalism and activator-inhibitor models that have been successfully used for modeling migraine phenotypes, and therefore will allow us to validate the hypothesis that migraine symptoms are explained by disturbed function in ion channel subunits, Na⁺/K⁺ pumps, and other proteins that regulate ion homeostasis.

  14. Molecular dynamics simulation of ion transport in a nanochannel

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A molecular dynamics (MD) model of the fluidic electrokinetic transport in a nano-scale channel with two bulk sinks was presented, and the process of ion transport in the nanochannel was simulated in this paper. The model consists of two water sinks at the two ends and a pump in the middle, which is different from a single pump model in previous MD simulations. Simulation results show that the charged surfaces of the nanochannel result in the depletion of co-ions and the enrichment of counterions in the nanochannel. A stable current is induced because of the motion of ions when an external electric field is applied across the nanochannel, and the current in the pump region is mainly induced by the motion of counterions. In addition, the ion number in the pump region rapidly decreases as the external electric field is applied. In the equilibrated system, the electrically neutral character in the pump region is destroyed and this region displays a certain electrical character, which depends on the surface charge. The ion distribution is greatly different from the results predicted by the continuum theory, e.g. a smaller peak value of Na+ concentration appears near the wall. The transport efficiency of counterions (co-ions) can be effectively increased (decreased) by increasing the surface charge density. The simulation results demonstrate that the ion distribution in the electric double layer (EDL) of a nanochannel cannot be exactly described by the classical Gouy-Chapman-Stern (GCS) theory model. The mechanism of some special experimental phenomena in a nanochannel and the effect of the surface charge density on the ion-transport efficiency were also explored to provide some theoretical insights for the design and application of nano-scale fluidic pumps.

  15. Investigation of ion-atom collision dynamics through imaging techniques

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The principle and technique details of recoil ion momentum imaging are discussed and summarized. The recoil ion momentum spectroscopy built at the Institute of Modern Physics (Lanzhou) is presented. The first results obtained at the setup are analyzed. For 30 keV He2+ on He collision, it is found that the capture of single electron occurs dominantly into the first excited states, and the related scattering angle results show that the ground state capture occurs at large impact parameters, while the capture into excited states occurs at small impact parameters. The results manifest the collision dynamics for the sub-femto-second process can be studied through the techniques uniquely. Finally, the future possibilities of applications of the recoil ion momentum spectroscopy in other fields are outlined.

  16. Quantum Dynamics of Radical-Ion-Pair Reactions

    CERN Document Server

    Kominis, I K

    2010-01-01

    Radical-ion-pair reactions were recently shown to represent a rich biophysical laboratory for the application of quantum measurement theory methods and concepts, casting doubt on the validity of the theoretical treatment of these reactions and the results thereof that has been at the core of spin chemistry for several decades now. The ensued scientific debate, although exciting, is plagued with several misconceptions. We will here provide a comprehensive treatment of the quantum dynamics of radical-ion-pair reactions, generalizing our recent work and elaborating on the analogy with the double-slit experiment having partial "which-path" information. This analogy directly leads to the general treatment of radical-ion pair reactions covering the whole range between the two extremes, that of perfect singlet-triplet coherence and that of complete incoherence.

  17. Fundamental studies on the Cs dynamics under ion source conditions

    Energy Technology Data Exchange (ETDEWEB)

    Friedl, R., E-mail: roland.friedl@physik.uni-augsburg.de; Fantz, U. [AG Experimentelle Plasmaphysik (EPP), Institute of Physics, University of Augsburg, 86135 Augsburg (Germany); Max-Planck-Institut für Plasmaphysik, EURATOM Association, Boltzmannstraße 2, 85748 Garching (Germany)

    2014-02-15

    The performance of surface conversion based negative hydrogen ion sources is mainly determined by the caesium dynamics. Therefore, fundamental investigations in vacuum and plasma are performed at a flexible laboratory setup with ion source parameters. Studies on the influence of Cs on the plasma parameters of H{sub 2} and D{sub 2} plasmas showed that n{sub e} and T{sub e} in the bulk plasma are not affected by relevant amounts of Cs and no isotopic differences could be observed. The coating of the vessel surfaces with Cs, however, leads to a considerable gettering of hydrogen atoms from the plasma volume and to the decrease of n{sub e} close to a sample surface due to the formation of negative ions.

  18. Towards Non-Equilibrium Dynamics with Trapped Ions

    Science.gov (United States)

    Silbert, Ariel; Jubin, Sierra; Doret, Charlie

    2016-05-01

    Atomic systems are superbly suited to the study of non-equilibrium dynamics. These systems' exquisite isolation from environmental perturbations leads to long relaxation times that enable exploration of far-from-equilibrium phenomena. One example of particular relevance to experiments in trapped ion quantum information processing, metrology, and precision spectroscopy is the approach to thermal equilibrium of sympathetically cooled linear ion chains. Suitable manipulation of experimental parameters permits exploration of the quantum-to-classical crossover between ballistic transport and diffusive, Fourier's Law conduction, a topic of interest not only to the trapped ion community but also for the development of microelectronic devices and other nanoscale structures. We present progress towards trapping chains of multiple co-trapped calcium isotopes geared towards measuring thermal equilibration and discuss plans for future experiments in non-equilibrium statistical mechanics. This work is supported by Cottrell College Science Award from the Research Corporation for Science Advancement and by Williams College.

  19. Accessing Defect Dynamics using Intense, Nanosecond Pulsed Ion Beams

    Science.gov (United States)

    Persaud, A.; Barnard, J. J.; Guo, H.; Hosemann, P.; Lidia, S.; Minor, A. M.; Seidl, P. A.; Schenkel, T.

    Gaining in-situ access to relaxation dynamics of radiation induced defects will lead to a better understanding of materials and is important for the verification of theoretical models and simulations. We show preliminary results from experiments at the new Neutralized Drift Compression Experiment (NDCX-II) at Lawrence Berkeley National Laboratory that will enable in-situ access to defect dynamics through pump-probe experiments. Here, the unique capabilities of the NDCX-II accelerator to generate intense, nanosecond pulsed ion beams are utilized. Preliminary data of channeling experiments using lithium and potassium ions and silicon membranes are shown. We compare these data to simulation results using Crystal Trim. Furthermore, we discuss the improvements to the accelerator to higher performance levels and the new diagnostics tools that are being incorporated.

  20. Photodissociation spectroscopy and dynamics of free radicals, clusters, and ions

    Energy Technology Data Exchange (ETDEWEB)

    Hyeon, Choi

    1999-12-16

    The photodissociation spectroscopy and dynamics of free radicals and ions is studied to characterize the dissociative electronic states in these species. To accomplish this, a special method of radical production, based on the photodetachment of the corresponding negative ion, has been combined with the technique of fast beam photofragment translational spectroscopy. The photofragment yield as a function of photon energy is obtained, mapping out the dissociative and predissociative electronic states. Branching ratios to various product channels, the translational energy distributions of the fragments, and bond dissociation energies are then determined at selected photon energies. The detailed picture of photodissociation dynamics is provided with the aid of ab initio calculations and a statistical model to interpret the observed data. Important reaction intermediates in combustion reactions have been studied: CCO, C{sub 2}H{sub 5}O, and linear C{sub n} (n = 4--6).

  1. Photodissociation spectroscopy and dynamics of free radicals, clusters, and ions

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyeon [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    The photodissociation spectroscopy and dynamics of free radicals and ions is studied to characterize the dissociative electronic states in these species. To accomplish this, a special method of radical production, based on the photodetachment of the corresponding negative ion, has been combined with the technique of fast beam photofragment translational spectroscopy. The photofragment yield as a function of photon energy is obtained, mapping out the dissociative and predissociative electronic states. Branching ratios to various product channels, the translational energy distributions of the fragments, and bond dissociation energies are then determined at selected photon energies. The detailed picture of photodissociation dynamics is provided with the aid of ab initio calculations and a statistical model to interpret the observed data. Important reaction intermediates in combustion reactions have been studied: CCO, C2H5O, and linear Cn (n = 4--6).

  2. Infrared spectroscopy and secondary ion mass spectrometry of luminescent, nonluminescent, and metal quenched porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Hilliard, J.; Andsager, D.; Abu Hassan, L.; Nayfeh, H.M.; Nayfeh, M.H. (Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green Street, Urbana, Illinois 61801 (United States))

    1994-08-15

    Porous silicon with varying optical properties (luminescent, nonluminescent, and metal quenched) is investigated by transmission infrared (IR) spectroscopy and secondary ion mass spectrometry (SIMS). SIMS and transmission IR data are presented which show a lack of correlation between the optical properties of similarly prepared luminescent and nonluminescent porous silicon samples and the concentrations of the chemical elements and bonds detected therein. Similar results are obtained for a comparison of IR spectra before and after dissolving the topmost layers ([similar to]2000 A) of a luminescent sample in a KOH solution, exposing the nonluminescent porous material below. Finally, IR and SIMS results for luminescent porous silicon quenched by metal ion solutions show a large increase in oxygen after quenching, but it is argued that the increased oxygen is unlikely to be directly responsible for the quenching of luminescence.

  3. Evaluation of C60 secondary ion mass spectrometry for the chemical analysis and imaging of fingerprints.

    Science.gov (United States)

    Sisco, Edward; Demoranville, Leonard T; Gillen, Greg

    2013-09-10

    The feasibility of using C60(+) cluster primary ion bombardment secondary ion mass spectrometry (C60(+) SIMS) for the analysis of the chemical composition of fingerprints is evaluated. It was found that C60(+) SIMS could be used to detect and image the spatial localization of a number of sebaceous and eccrine components in fingerprints. These analyses were also found to not be hindered by the use of common latent print powder development techniques. Finally, the ability to monitor the depth distribution of fingerprint constituents was found to be possible - a capability which has not been shown using other chemical imaging techniques. This paper illustrates a number of strengths and potential weaknesses of C60(+) SIMS as an additional or complimentary technique for the chemical analysis of fingerprints.

  4. Secondary electron emission from Au by medium energy atomic and molecular ions

    CERN Document Server

    Itoh, A; Obata, F; Hamamoto, Y; Yogo, A

    2002-01-01

    Number distributions of secondary electrons emitted from a Au metal surface have been measured for atomic and molecular ions of H sup + , He sup + , C sup + , N sup + , O sup + , H sup + sub 2 , H sup + sub 3 , HeH sup + , CO sup + and O sup + sub 2 in the energy range 0.3-2.0 MeV. The emission statistics obtained are described fairly well by a Polya function. The Polya parameter b, determining the distribution shape, is found to decrease monotonously with increasing emission yield gamma, revealing a surprising relationship of b gamma approx 1 over the different projectile species and impact energies. This finding supports certainly the electron cascading model. Also we find a strong negative molecular effect for heavier molecular ions, showing a significant reduction of gamma compared to the estimated values using constituent atomic projectile data.

  5. High precision measurements of arsenic and phosphorous implantation dose in silicon by secondary ion mass spectrometry

    CERN Document Server

    Chi, P H; McKinley, J M; Stevie, F A; Granger, C N

    2002-01-01

    The metrology section of the 1999 International Technology Roadmap for Semiconductors specifies in-line dopant profile concentration precision requirements ranging from a value of 5% in 1999 to a value of 2% in 2008. These values are to be accomplished with ''low systematic error.'' Secondary ion mass spectrometry (SIMS) has demonstrated the capability to meet these requirements for B, As, and P. However, the detailed analytical protocols required to achieve these goals have not been completely specified. This article reports the parameters that must be controlled to make highly repeatable dose measurements of As and P implants in Si with magnetic sector SIMS instruments. Instrument conditions that were investigated include analytical species, matrix ion species, energy bandpass, and sample holder design. With optimized settings, we demonstrate the ability to distinguish As or P implant doses differing by 5%.

  6. Intense ion-beam dynamics in the NICA collider

    Science.gov (United States)

    Kozlov, O. S.; Meshkov, I. N.; Sidorin, A. O.; Trubnikov, G. V.

    2016-12-01

    The problems of intense ion-beam dynamics in the developed and optimized optical structure of the NICA collider are considered. Conditions for beam collisions and obtaining the required parameters of luminosity in the operation energy range are discussed. The restriction on collider luminosity is related to effects of the domination of the space charge and intrabeam scattering. Applying methods of cooling, electron and stochastic ones, will permit one to suppress these effects and reach design luminosity. The work also deals with systems of magnetic field correction and problems of calculating the dynamic aperture of the collider.

  7. Dynamical dipole mode in heavy-ion fusion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Parascandolo, C., E-mail: concetta.parascandolo@na.infn.i [Universita degli Studi di Napoli ' Federico II' and INFN, Sezione di Napoli, via Cintia, I-80126 Napoli (Italy); Pierroutsakou, D. [INFN - Sezione di Napoli, via Cintia, I-80126 Napoli (Italy); Martin, B. [Universita degli Studi di Napoli ' Federico II' and INFN, Sezione di Napoli, via Cintia, I-80126 Napoli (Italy); Agodi, C.; Alba, R. [INFN - LNS, via Santa Sofia 62, I-95125 Catania (Italy); Boiano, A. [INFN - Sezione di Napoli, via Cintia, I-80126 Napoli (Italy); Coniglione, R. [INFN - LNS, via Santa Sofia 62, I-95125 Catania (Italy); De Filippo, E. [INFN - Sezione di Catania, 95123, Catania (Italy); Del Zoppo, A. [INFN - LNS, via Santa Sofia 62, I-95125 Catania (Italy); Emanuele, U. [INFN, Gruppo Collegato di Messina and Dip. di Fisica, Universita di Messina, Messina (Italy); Farinon, F. [GSI, Planckstrasse 1, D-64291, Darmstadt (Germany); Guglielmetti, A. [Universita degli Studi di Milano and INFN, Sezione di Milano, via Celoria 16, I-20133 Milano (Italy); Inglima, G.; La Commara, M. [Universita degli Studi di Napoli ' Federico II' and INFN, Sezione di Napoli, via Cintia, I-80126 Napoli (Italy); Maiolino, C. [INFN - LNS, via Santa Sofia 62, I-95125 Catania (Italy); Mazzocchi, C. [Universita degli Studi di Milano and INFN, Sezione di Milano, via Celoria 16, I-20133 Milano (Italy); Mazzocco, M. [Dip. di Fisica and INFN, Universita di Padova, via F. Marzolo 8, I-35131 Padova (Italy); Romoli, M. [INFN - Sezione di Napoli, via Cintia, I-80126 Napoli (Italy); Sandoli, M. [Universita degli Studi di Napoli ' Federico II' and INFN, Sezione di Napoli, via Cintia, I-80126 Napoli (Italy); Santonocito, D. [INFN - LNS, via Santa Sofia 62, I-95125 Catania (Italy)

    2010-03-01

    The dynamical dipole mode, excited in charge asymmetric heavy-ion collisions, was investigated in the mass region of the {sup 192}Pb compound nucleus, formed by using the {sup 40,48}Ca + {sup 152,144}Sm reactions at approx11 MeV/nucleon. Preliminary results of this measurement, concerning both fusion-evaporation and fission events are presented. As a fast cooling mechanism on the fusion path, the dynamical dipole mode could be useful for the synthesis of super heavy elements through 'hot' fusion reactions.

  8. Molecular depth profiling with cluster secondary ion mass spectrometry and wedges.

    Science.gov (United States)

    Mao, Dan; Wucher, Andreas; Winograd, Nicholas

    2010-01-01

    Secondary ion mass spectrometry and atomic force microscopy are employed to characterize a wedge-shaped crater eroded by 40 keV C(60)(+) bombardment of a 395 nm thin film of Irganox 1010 doped with four delta layers of Irganox 3114. The wedge structure creates a laterally magnified cross section of the film. From an examination of the resulting surface, information about depth resolution, topography, and erosion rate can be obtained as a function of crater depth in a single experiment. This protocol provides a straightforward way to determine the parameters necessary to characterize molecular depth profiles and to obtain an accurate depth scale for erosion experiments.

  9. LDEF (Prelaunch), AO187-02 : Chemical and Isotropic Measurements of Micrometeoroids by Secondary Ion

    Science.gov (United States)

    1984-01-01

    LDEF (Prelaunch), AO187-02 : Chemical and Isotropic Measurements of Micrometeoroids by Secondary Ion Mass Spectrometry, Tray E08 The prelaunch photograph shows one hundred twenty (120) experiment capture cells installed on six support panels that are mounted in LDEF provided experiment trays. A capture cell consist of four polished high purity germanium plates covered with a 2.5um thick Mylar foil coated with 1300 angstroms of tantalum vapor deposited on the backside and 100 angstroms of gold-palladium vapor deposited on the front side. The capture cells are mounted within an aluminum frame on each panel. The fasteners are nonmagnetic stainless steel.

  10. Brominated Tyrosine and Polyelectrolyte Multilayer Analysis by Laser Desorption VUV Postionization and Secondary Ion Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    University of Illinois at Chicago; Blaze, Melvin M. T.; Takahashi, Lynelle; Zhou, Jia; Ahmed, Musahid; Gasper, Gerald; Pleticha, F. Douglas; Hanley, Luke

    2011-03-14

    The small molecular analyte 3,5-dibromotyrosine (Br2Y) and chitosan-alginate polyelectrolyte multilayers (PEM) with and without adsorbed Br2Y were analyzed by laser desorption postionization mass spectrometry (LDPI-MS). LDPI-MS using 7.87 eV laser and tunable 8 ? 12.5 eV synchrotron vacuum ultraviolet (VUV) radiation found that desorption of clusters from Br2Y films allowed detection by≤8 eV single photon ionization. Thermal desorption and electronic structure calculations determined the ionization energy of Br2Y to be ~;;8.3?0.1 eV and further indicated that the lower ionization energies of clusters permitted their detection at≤8 eV photon energies. However, single photon ionization could only detect Br2Y adsorbed within PEMs when using either higher photon energies or matrix addition to the sample. All samples were also analyzed by 25 keV Bi3 + secondary ion mass spectrometry (SIMS), with the negative ion spectra showing strong parent ion signal which complemented that observed by LDPI-MS. The negative ion SIMS depended strongly on the high electron affinity of this specific analyte and the analyte?s condensed phase environment.

  11. Characterization of drug-eluting stent (DES) materials with cluster secondary ion mass spectrometry (SIMS)

    Science.gov (United States)

    Mahoney, Christine M.; Patwardhan, Dinesh V.; Ken McDermott, M.

    2006-07-01

    Secondary ion mass spectrometry (SIMS) employing an SF 5+ polyatomic primary ion source was utilized to analyze several materials commonly used in drug-eluting stents (DES). Poly(ethylene- co-vinyl acetate) (PEVA), poly(lactic- co-glycolic acid) (PLGA) and various poly(urethanes) were successfully depth profiled using SF 5+ bombardment. The resultant molecular depth profiles obtained from these polymeric films showed very little degradation in molecular signal as a function of increasing SF 5+ primary ion dose when experiments were performed at low temperatures (signal was maintained for doses up to ˜5 × 10 15 ions/cm 2). Temperature was determined to be an important parameter in both the success of the depth profiles and the mass spectral analysis of the polymers. In addition to the pristine polymer films, paclitaxel (drug released in Taxus™ stent) containing PLGA films were also characterized, where it was confirmed that both drug and polymer signals could be monitored as a function of depth at lower paclitaxel concentrations (10 wt%).

  12. Sputtering of sodium and potassium from nepheline: Secondary ion yields and velocity spectra

    Science.gov (United States)

    Martinez, R.; Langlinay, Th.; Ponciano, C. R.; da Silveira, E. F.; Palumbo, M. E.; Strazzulla, G.; Brucato, J. R.; Hijazi, H.; Agnihotri, A. N.; Boduch, P.; Cassimi, A.; Domaracka, A.; Ropars, F.; Rothard, H.

    2017-09-01

    Silicates are the dominant surface material of many Solar System objects, which are exposed to ion bombardment by solar wind ions and cosmic rays. Induced physico-chemical processes include sputtering which can contribute to the formation of an exosphere. We have measured sputtering yields and velocity spectra of secondary ions ejected from nepheline, an aluminosilicate thought to be a good analogue for Mercury's surface, as a laboratory approach to understand the evolution of silicate surfaces and the presence of Na and K vapor in the exosphere. Experiments were performed with highly charged ion beams (keV/u-MeV/u) delivered by GANIL using an imaging XY-TOF-SIMS device under UHV conditions. The fluence dependence of sputtering yields gives information about the evolution of surface stoichiometry during irradiation. From the energy distributions N(E) of sputtered particles, the fraction of particles which could escape from the gravitational field of Mercury, and of those falling back and possibly contributing to populate the exosphere can be roughly estimated.

  13. Quantum Dynamics of Radical-Ion-Pair Reactions

    OpenAIRE

    Kominis, I. K.

    2010-01-01

    Radical-ion-pair reactions were recently shown to represent a rich biophysical laboratory for the application of quantum measurement theory methods and concepts, casting doubt on the validity of the theoretical treatment of these reactions and the results thereof that has been at the core of spin chemistry for several decades now. The ensued scientific debate, although exciting, is plagued with several misconceptions. We will here provide a comprehensive treatment of the quantum dynamics of r...

  14. Hydrolysis of VX on Concrete: Rate of Degradation by Direct Surface Interrogation using an Ion Trap Secondary Ion Mass Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Groenewold, Gary Steven; Appelhans, Anthony David; Gresham, Garold Linn; Olson, John Eric; Rowland, B.; Williams, j.; Jeffery, M. T.

    2002-09-01

    The nerve agent VX (O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate) is lethal at very low levels of exposure, which can occur by dermal contact with contaminated surfaces. Hence, behavior of VX in contact with common urban or industrial surfaces is a subject of acute interest. In the present study, VX was found to undergo complete degradation when in contact with concrete surfaces. The degradation was directly interrogated at submonolayer concentrations by periodically performing secondary ion mass spectrometry (SIMS) analyses after exposure of the concrete to VX. The abundance of the [VX + H]+ ion in the SIMS spectra was observed to decrease in an exponential fashion, consistent with first-order or pseudo-first-order behavior. This phenomenon enabled the rate constant to be determined at 0.005 min-1 at 25 C, which corresponds to a half-life of about 3 h on the concrete surface. The decrease in [VX + H]+ was accompanied by an increase in the abundance of the principal degradation product diisopropylaminoethanethiol (DESH), which arises by cleavage of the P-S bond. Degradation to form DESH is accompanied by the formation of ethyl methylphosphonic acid, which is observable only in the negative ion spectrum. A second degradation product was also implicated, which corresponded to a diisopropylvinylamine isomer (perhaps N,N-diisopropyl aziridinium) that arose via cleavage of the S-C bond. No evidence was observed for the formation of the toxic S-2-diisopropylaminoethyl methylphosphonothioic acid. The degradation rate constants were measured at four different temperatures (24-50 C), which resulted in a linear Arrhenius relationship and an activation energy of 52 kJ mol-1. This value agrees with previous values observed for VX hydrolysis in alkaline solutions, which suggests that the degradation of submonolayer VX is dominated by alkaline hydrolysis within the adventitious water film on the concrete surface.

  15. Secondary Electron Emission from Solid Hydrogen and Deuterium Resulting from Incidence of keV Electrons and Hydrogen Ions

    DEFF Research Database (Denmark)

    Sørensen, H.

    1977-01-01

    are small, in contrast to what is expected for insulating materials. One explanation is that the secondary electrons lose energy inside the target material by exciting vibrational and rotational states of the molecules, so that the number of electrons that may escape as secondary electrons is rather small....... The losses to molecular states will be largest for hydrogen, so that the SEE coefficients are smallest for solid hydrogen, as was observed. For the incidence of ions, the values of δ for the different molecular ions agree when the number of secondary electrons per incident atom is plotted versus the velocity...

  16. Secondary electron emission from lunar soil by solar wind type ion impact: Laboratory measurements

    Science.gov (United States)

    Dukes, Catherine; Bu, Caixia; Baragiola, Raul A.

    2015-11-01

    Introduction: The lunar surface potential is determined by time-varying fluxes of electrons and ions from the solar wind, photoelectrons ejected by UV photons, cosmic rays, and micrometeorite impacts. Solar wind ions have a dual role in the charging process, adding positive charge to the lunar regolith upon impact and ejecting negative secondary electrons (SE). Electron emission occurs when the energy from the impacting ion is transferred to the solid, ionizing and damaging the material; electrons with kinetic energy greater than the ionization potential (band gap + electron affinity) are ejected from the solid[1].Experiment: We investigate the energy distribution of secondary electrons ejected from Apollo soils of varying maturity and lunar analogs by 4 keV He+. Soils are placed into a shallow Al cup and compressed. In-situ low-energy oxygen plasma is used to clean atmospheric contaminants from the soil before analysis[2]. X-ray photoelectron spectroscopy ascertains that the sample surface is clean. Experiments are conducted in a PHI 560 system (mirror electron energy analyzer (CMA) and μ-metal shield. The spectrometer is used to measure SE distributions, as well as for in situ surface characterization. A small negative bias (~5V) with respect to the grounded entrance grid of the CMA may be placed on the sample holder in order to expose the low energy cutoff.To measure SE energy distributions, primary ions rastered over a ~6 x 6 mm2 area are incident on the sample at ~40° relative to the surface normal, while SE emitted with an angle of 42.3°± 3.5° in a cone are analyzed.Results: The energy distribution of SE ejected from 4 keV He ion irradiation of albite with no bias applied shows positive charging of the surface. The general shape and distribution peak (~4 eV) are consistent with spectra for low energy ions on insulating material[1].Acknowledgements: We thank the NASA LASER program for support.References: [1]P. Riccardi, R. Baragiola et al. (2004); Surf

  17. The Adsorption of n-Octanohydroxamate Collector on Cu and Fe Oxide Minerals Investigated by Static Secondary Ion Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Alan N. Buckley

    2012-12-01

    Full Text Available The feasibility of investigating the adsorption of n-octanohydroxamate collector on copper and iron oxide minerals with static secondary ion mass spectrometry has been assessed. Secondary ion mass spectra were determined for abraded surfaces of air-exposed copper metal, malachite, pseudomalachite and magnetite that had been conditioned in aqueous potassium hydrogen n-octanohydroxamate solution, as well as for the corresponding bulk CuII and FeIII complexes. In each case, the chemical species present at the solid/vacuum interface of a similarly prepared surface were established by X-ray photoelectron spectroscopy. The most abundant positive and negative metal-containing fragment ions identified for the bulk complexes were also found to be diagnostic secondary ions for the collector adsorbed on the oxide surfaces. The relative abundances of those diagnostic ions varied with, and could be rationalised by, the monolayer or multilayer coverage of the adsorbed collector. However, the precise mass values for the diagnostic ions were not able to corroborate the different bonding in the copper and iron hydroxamate systems that had been deduced from photoelectron and vibrational spectra. Parent secondary ions were able to provide supporting information on the co-adsorption of hydroxamic acid at each conditioned surface.

  18. Fluid dynamics in airway bifurcations: II. Secondary currents.

    Science.gov (United States)

    Martonen, T B; Guan, X; Schreck, R M

    2001-04-01

    As the second component of a systematic investigation on flows in bifurcations reported in this journal, this work focused on secondary currents. The first article addressed primary flows and the third discusses localized conditions (both in this issue). Secondary flow patterns were studied in two lung bifurcation models (Schreck, 1972) using FIDAP with the Cray T90 supercomputer. The currents were examined at different prescribed distances distal to the carina. Effects of inlet conditions, Reynolds numbers, and diameter ratios and orientations of airways were addressed. The secondary currents caused by the presence of the carina and inclination of the daughter tubes exhibited symmetric, multivortex patterns. The intensities of the secondary currents became stronger for larger Reynolds numbers and larger angles of bifurcation.

  19. Development of Secondary Ion Mass Spectrometry%二次离子质谱进展

    Institute of Scientific and Technical Information of China (English)

    祝兆文; 侯杰; 郑涛; 马宏骥; 聂锐; 丁富荣

    2011-01-01

    Secondary ion mass spectrometry technique has been widely used in the material surface analysis.With the renovation of the detection method,this technique is developing rapidly.In the lab of 2×1.7MV tandem accelerator in Peking University,a facility of accelerator-based time-of-flight secondary ion mass spectrometry was built and upgraded.After analyzing the carbon-based material such as carbon nano tube and graphite,we found that carbon nano tube material could absorb hydrogen strongly.This result proved the capability of carbon nano tube material in hydrogen storage.%指出了二次离子质谱技术在材料表面分析方面有着广泛的应用,随着探测方法的改进,此技术也得到了迅速发展.在北京大学2×1.7MV串列静电加速器实验室,利用加速器飞行时间二次离子质谱装置对碳基材料进行了分析,通过实验观察到碳纳米管材料对氢具有很强的吸附能力,证实了理论上对此材料储氢能力的预言.

  20. Ambient low temperature plasma etching of polymer films for secondary ion mass spectrometry molecular depth profiling.

    Science.gov (United States)

    Muramoto, Shin; Staymates, Matthew E; Brewer, Tim M; Gillen, Greg

    2012-12-18

    The feasibility of a low temperature plasma (LTP) probe as a way to prepare polymer bevel cross sections for secondary ion mass spectrometry (SIMS) applications was investigated. Poly(lactic acid) and poly(methyl methacrylate) films were etched using He LTP, and the resulting crater walls were depth profiled using time-of-flight secondary ion mass spectrometry (ToF-SIMS) to examine changes in chemistry over the depth of the film. ToF-SIMS results showed that while exposure to even 1 s of plasma resulted in integration of atmospheric nitrogen and contaminants to the newly exposed surface, the actual chemical modification to the polymer backbone was found to be chemistry-dependent. For PLA, sample modification was confined to the top 15 nm of the PLA surface regardless of plasma exposure dose, while measurable change was not seen for PMMA. The confinement of chemical modification to 15 nm or less of the top surface suggests that LTP can be used as a simple method to prepare cross sections or bevels of polymer thin films for subsequent analysis by surface-sensitive molecular depth profiling techniques such as SIMS, X-ray photoelectron spectroscopy (XPS), and other spatially resolved mass spectrometric techniques.

  1. Secondary Structures of Ubiquitin Ions Soft-Landed onto Self-Assembled Monolayer Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qichi; Laskin, Julia

    2016-06-09

    The secondary structures of multiply charged ubiquitin ions soft-landed onto self-assembled monolayer (SAM) surfaces were studied using in situ infrared reflection-absorption spectroscopy (IRRAS). Two charge states of ubiquitin, 5+ and 13+, were mass selected separately from a mixture of different charge states produced by electrospray ionization (ESI). The low 5+ charge state represents a native-like folded state of ubiquitin, while the high 13+ charge state assumes an extended, almost linear conformation. Each of the two charge states was soft-landed onto a CH3- and COOH-terminated SAM of alkylthiols on gold (HSAM and COOH-SAM). HSAM is a hydrophobic surface known to stabilize helical conformations of soft-landed protonated peptides, whereas COOH-SAM is a hydrophilic surface that preferentially stabilizes β-sheet conformations. IRRAS spectra of the soft-landed ubiquitin ions were acquired as a function of time during and after ion soft-landing. Similar to smaller peptide ions, helical conformations of ubiquitin are found to be more abundant on HSAM, while the relative abundance of β-sheet conformations increases on COOH-SAM. The initial charge state of ubiquitin also has a pronounced effect on its conformation on the surface. Specifically, on both surfaces, a higher relative abundance of helical conformations and lower relative abundance of β-sheet conformations is observed for the 13+ charge state compared to the 5+ charge state. Time-resolved experiments indicate that the α-helical band in the spectrum of the 13+ charge state slowly increases with time on the HSAM surface and decreases in the spectrum of the 13+ charge state on COOH-SAM. These results further support the preference of the hydrophobic HSAM surface toward helical conformations and demonstrate that soft-landed protein ions may undergo slow conformational changes during and after deposition.

  2. Compositional changes of human hair melanin resulting from bleach treatment investigated by nanoscale secondary ion mass spectrometry.

    Science.gov (United States)

    Kojima, Toru; Yamada, Hiromi; Isobe, Mitsuru; Yamamoto, Toshihiko; Takeuchi, Miyuki; Aoki, Dan; Matsushita, Yasuyuki; Fukushima, Kazuhiko

    2014-11-01

    It is important to understand the influence of bleach treatment on human hair because it is one of the most important chemical treatments in hair cosmetic processes. A comparison of the elemental composition of melanin between virgin hair and bleached hair would provide important information about the structural changes of melanin. To investigate the elemental composition of melanin granules in virgin black hair and bleached hair, these hair cross-sections are analyzed by using a nanoscale secondary ion mass spectrometry (NanoSIMS). The virgin black hair and bleached hair samples were embedded in resin and smooth hair cross-sections were obtained using an ultramicrotome. NanoSIMS measurements were performed using a Cs(+) primary ion beam to detect negative secondary ions. More intensive (16) O(-) ions were detected from the melanin granules of bleached hair than from those of virgin black hair in NanoSIMS (16) O(-) ion image. In addition, it was indicated that (16) O(-) ion intensity and (16) O(-) /(12) C(14) N(-) ion intensity ratio of melanin granules in bleached hair were higher than those in virgin black hair. Nanoscale secondary ion mass spectrometry analysis of the cross-sections of virgin black hair and bleached hair indicated that the oxygen content in melanin granules was increased by bleach treatment. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Structure, dynamics, and ion conductance of the phospholamban pentamer.

    Science.gov (United States)

    Maffeo, Christopher; Aksimentiev, Aleksei

    2009-06-17

    A 52-residue membrane protein, phospholamban (PLN) is an inhibitor of an adenosine-5'-triphosphate-driven calcium pump, the Ca2+-ATPase. Although the inhibition of Ca2+-ATPase involves PLN monomers, in a lipid bilayer membrane, PLN monomers form stable pentamers of unknown biological function. The recent NMR structure of a PLN pentamer depicts cytoplasmic helices extending normal to the bilayer in what is known as the bellflower conformation. The structure shows transmembrane helices forming a hydrophobic pore 4 A in diameter, which is reminiscent of earlier reports of possible ion conductance through PLN pentamers. However, recent FRET measurements suggested an alternative structure for the PLN pentamer, known as the pinwheel model, which features a narrower transmembrane pore and cytoplasmic helices that lie against the bilayer. Here, we report on structural dynamics and conductance properties of the PLN pentamers from all-atom (AA) and coarse-grained (CG) molecular dynamics simulations. Our AA simulations of the bellflower model demonstrate that in a lipid bilayer membrane or a detergent micelle, the cytoplasmic helices undergo large structural fluctuations, whereas the transmembrane pore shrinks and becomes asymmetric. Similar asymmetry of the transmembrane region was observed in the AA simulations of the pinwheel model; the cytoplasmic helices remained in contact with the bilayer. Using the CG approach, structural dynamics of both models were investigated on a microsecond timescale. The cytoplasmic helices of the CG bellflower model were observed to fall against the bilayer, whereas in the CG pinwheel model the conformation of the cytoplasmic helices remained stable. Using steered molecular dynamics simulations, we investigated the feasibility of ion conductance through the pore of the bellflower model. The resulting approximate potentials of mean force indicate that the PLN pentamer is unlikely to function as an ion channel.

  4. Nano-Scale Secondary Ion Mass Spectrometry - A new analytical tool in biogeochemistry and soil ecology

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, A M; Ritz, K; Nunan, N; Clode, P L; Pett-Ridge, J; Kilburn, M R; Murphy, D V; O' Donnell, A G; Stockdale, E A

    2006-10-18

    Soils are structurally heterogeneous across a wide range of spatio-temporal scales. Consequently, external environmental conditions do not have a uniform effect throughout the soil, resulting in a large diversity of micro-habitats. It has been suggested that soil function can be studied without explicit consideration of such fine detail, but recent research has indicated that the micro-scale distribution of organisms may be of importance for a mechanistic understanding of many soil functions. Due to a lack of techniques with adequate sensitivity for data collection at appropriate scales, the question 'How important are various soil processes acting at different scales for ecological function?' is challenging to answer. The nano-scale secondary ion mass spectrometer (NanoSIMS) represents the latest generation of ion microprobes which link high-resolution microscopy with isotopic analysis. The main advantage of NanoSIMS over other secondary ion mass spectrometers is the ability to operate at high mass resolution, whilst maintaining both excellent signal transmission and spatial resolution ({approx}50 nm). NanoSIMS has been used previously in studies focusing on presolar materials from meteorites, in material science, biology, geology and mineralogy. Recently, the potential of NanoSIMS as a new tool in the study of biophysical interfaces in soils has been demonstrated. This paper describes the principles of NanoSIMS and discusses the potential of this tool to contribute to the field of biogeochemistry and soil ecology. Practical considerations (sample size and preparation, simultaneous collection of isotopes, mass resolution, isobaric interference and quantification of the isotopes of interest) are discussed. Adequate sample preparation avoiding biases in the interpretation of NanoSIMS data due to artifacts and identification of regions-of interest are of most concerns in using NanoSIMS as a new tool in biogeochemistry and soil ecology. Finally, we review

  5. Strategies for the chemical analysis of highly porous bone scaffolds using secondary ion mass spectrometry.

    Science.gov (United States)

    Wang, Daming; Poologasundarampillai, Gowsihan; van den Bergh, Wouter; Chater, Richard J; Kasuga, Toshihiro; Jones, Julian R; McPhail, David S

    2014-02-01

    Understanding the distribution of critical elements (e.g. silicon and calcium) within silica-based bone scaffolds synthesized by different methods is central to the optimization of these materials. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) has been used to determine this information due to its very high surface sensitivity and its ability to map all the elements and compounds in the periodic table with high spatial resolution. The SIMS image data can also be combined with depth profiles to construct three-dimensional chemical maps. However, the scaffolds have interconnected pore networks, which are very challenging structures for the SIMS technique. To overcome this problem two experimental methodologies have been developed. The first method involved the use of the focused ion beam technique to obtain clear images of the regions of interest and subsequently mark them by introducing fiducial marks; the samples were then analysed using the ToF-SIMS technique to yield the chemical analyses of the regions of interest. The second method involved impregnating the pores using a suitable reagent so that a flat surface could be achieved, and this was followed by secondary ion mapping and 3D chemical imaging with ToF-SIMS. The samples used in this work were sol-gel 70S30C foam and electrospun fibres and calcium-containing silica/gelatin hybrid scaffolds. The results demonstrate the feasibility of both these experimental methodologies and indicate that these methods can provide an opportunity to compare various artificial bone scaffolds, which will be of help in improving scaffold synthesis and processing routes. The techniques are also transferable to many other types of porous material.

  6. Secondary Ion Mass Spectrometry Imaging of Tissues, Cells, and Microbial Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gamble, Lara J.; Anderton, Christopher R.

    2016-03-18

    Mass spectrometry imaging (MSI) techniques are increasingly being utilized within many biological fields, including medicine, pathology, microbial ecology, and more. Of the MSI methods available, secondary ion mass spectrometry (SIMS) offers the highest lateral resolution of any technique. Moreover, SIMS versatility in the number of different operating modes and types of mass spectrometers available has made it an increasing popular method for bio-related measurements. Here, we discuss SIMS ability to image tissues, single cells, and microbes with a particular emphasis on the types chemical and spatial information that can be ascertained by the different types of SIMS instruments and methods. The recently developed Fourier transform ion cyclotron resonance (FTICR) SIMS located at PNNL is capable of generating molecular maps of tissues with an unprecedented mass resolving power and mass accuracy, with respect to SIMS measurements. ToF-SIMS can generate chemical maps, where detection of small molecules and fragments can be acquired with an order of magnitude better lateral resolution than the FTICR-SIMS. Furthermore, many of commercially available ToF-SIMS instruments are capable of depth profiling measurements, offering the ability to attain three-dimensional information of one’s sample. The NanoSIMS instrument offers the highest lateral resolution of any MSI method available. In practice, NanoSIMS regularly achieves sub-100 nm resolution of atomic and diatomic secondary ions within biological samples. The strengths of the different SIMS methods are more and more being leveraged in both multimodal-imaging endeavors that use complementary MSI techniques as well with optical, fluorescence, and force microscopy methods.

  7. Calculations of the dynamic dipole polarizabilities for the Li+ ion

    Science.gov (United States)

    Zhang, Yong-Hui; Tang, Li-Yan; Zhang, Xian-Zhou; Shi, Ting-Yun

    2016-10-01

    The B-spline configuration-interaction method is applied to the investigations of dynamic dipole polarizabilities for the four lowest triplet states (2 3S, 33S, 23P, and 33P) of the Li+ ion. The accurate energies for the triplet states of n 3S, n 3P, and n 3D, the dipole oscillator strengths for 23S(33S) → n 3P, 23P(33P) → n 3S, and 23P(33P) → n 3D transitions, with the main quantum number n up to 10 are tabulated for references. The dynamic dipole polarizabilities for the four triplet states under a wide range of photon energy are also listed, which provide input data for analyzing the Stark shift of the Li+ ion. Furthermore, the tune-out wavelengths in the range from 100 nm to 1.2 μm for the four triplet states, and the magic wavelengths in the range from 100 nm to 600 nm for the 23S → 33S, 23S → 23P, and 23S → 33P transitions are determined accurately for the experimental design of the Li+ ion. Project supported by the National Basic Research Program of China (Grant No. 2012CB821305) and the National Natural Science Foundation of China (Grant Nos. 11474319, 11274348, and 91536102).

  8. Wave packet study of the secondary emission of negatively charged, monoatomic ions from sputtered metals

    Energy Technology Data Exchange (ETDEWEB)

    Sindona, A. [Dipartimento di Fisica, Universita della Calabria, Via P. Bucci 31C, 87036 Rende (Italy) and Istituto Nazionale di Fisica Nucleare (INFN), Gruppo collegato di Cosenza, Via P. Bucci 31C, 87036 Rende (Italy)]. E-mail: sindona@fis.unical.it; Riccardi, P. [Dipartimento di Fisica, Universita della Calabria, Via P. Bucci 31C, 87036 Rende (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Gruppo collegato di Cosenza, Via P. Bucci 31C, 87036 Rende (Italy); Maletta, S. [Dipartimento di Fisica, Universita della Calabria, Via P. Bucci 31C, 87036 Rende (Italy); Rudi, S.A. [Dipartimento di Fisica, Universita della Calabria, Via P. Bucci 31C, 87036 Rende (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Gruppo collegato di Cosenza, Via P. Bucci 31C, 87036 Rende (Italy); Falcone, G. [Dipartimento di Fisica, Universita della Calabria, Via P. Bucci 31C, 87036 Rende (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Gruppo collegato di Cosenza, Via P. Bucci 31C, 87036 Rende (Italy)

    2007-05-15

    Secondary emission of Ag{sup -} and Au{sup -} particles, following the sputtering of clean Ag(1 0 0) and Au(1 0 0) targets, respectively, is studied with a Crank-Nicholson wave-packet propagation method. A one-electron pseudo-potential is used to describe the plane metal surface, with a projected band gap, the ejected ion, whose charge state is investigated, and its nearest-neighbor substrate ion, put in motion by the collision cascade generated by the primary ion beam. Time-dependent Schroedinger equation is solved backwards in time to determine the evolution of the affinity orbital of the negative particles from an instant when they are unperturbed, at distances of the order of {approx}10{sup 2} a.u. from the surface, to the instant of ejection. The probability that a band electron will be eventually detected in affinity state of the ejected particle is, thus, calculated and compared with the result of another method based on the spectral decomposition of the one-electron Hamiltonian.

  9. Utilizing ion-beam secondary radiation for experiments on space radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Hiroshi; Suzuki, Masao; Fujitaka, Kazunobu [National Inst. of Radiological Sciences, Chiba (Japan)

    1999-12-01

    For the purpose to make a space radiation field at the ground field, the Biology room of Heavy Ion Medical Accelerator in Chiba, National Institute of Radiological Sciences (NIRS-HIMAC) was used. Heavy ion species used in the room was mostly C and occasionally, He, Ne, Si, Ar and Fe. The secondary radiation including albed neutrons came from materials of profile monitor, Lucite filter, beam target and beam dumper of the heavy ion beam along the central line of the room to a CO{sub 2}-incubator placed at the corner of the room. Accumulated absorbed dose in the incubator was continuously measured for 223 days (5344 hr) with a Si-semiconductor detector (Siemens Plc.) set behind the plastic bottle containing the cell culture medium. The total dose was corrected by the thermoluminescent dosemeter of Mg{sub 2}SiO{sub 4} :Tb (TLD-MSO, Kasei Optonics), whose 4 chips were packed in a case of tissue equivalent resin Tough-water phantom (Kyoto Kagaku) and the package was also placed in the incubator. It was found that the field designed in NIRS-HIMAC could be used for the purpose. The dominant LET range in the incubator was assumed to be <10 keV/{mu}m and the quality factor, about 1. (K.H.)

  10. Dynamics of ion guiding through nanocapillaries in insulating polymers

    Science.gov (United States)

    Stolterfoht, N.; Bodewits, Erwin; Hellhammer, Rolf; Juhász, Zoltan; Sulik, Béla; Bayer, Veronika; Trautmann, Christine; Hoekstra, Ronnie

    2012-11-01

    We review recent studies of dynamic properties concerning the ion guiding through nanocapillaries etched in polyethylene terephthalate (PET) and polycarbonate (PC). Typical lengths of the capillaries were 10 μm with diameters ranging from ~100 - 400 nm. The temporal evolution of the intensity and the angular distribution of the transmitted ions were studied by measuring transmission profiles as a function of the charge inserted into the capillaries. Tilt angles of the capillaries axis with respect to the incident beam direction were 3° and 5°. The mean emission angle of the transmission profiles exhibit pronounced oscillatory structures both for PET and PC. However, for PC nearly an order of magnitude more charge is required to induce the oscillations. In contrast to PET, with capillaries in PC we observed a strong decrease of the profile intensities with irradiation time. This observation provides evidence for blocking effects on the ion transmission. The experimental results are interpreted by simulations of the ion trajectories guided in 3 dimensions by the electrostatic field within the capillaries. This field was determined from the charge deposited at the walls of the capillaries taking into account the removal of the charges by means of a non-linear conductivity law.

  11. Dynamic rayed aurora and enhanced ion-acoustic radar echoes

    Directory of Open Access Journals (Sweden)

    E. M. Blixt

    2005-01-01

    Full Text Available The generation mechanism for naturally enhanced ion-acoustic echoes is still debated. One important issue is how these enhancements are related to auroral activity. All events of enhanced ion-acoustic echoes observed simultaneously with the EISCAT Svalbard Radar (ESR and with high-resolution narrow field-of-view auroral imagers have been collected and studied. Characteristic of all the events is the appearance of very dynamic rayed aurora, and some of the intrinsic features of these auroral displays are identified. Several of these identified features are directly related to the presence of low energy (10-100eV precipitating electrons in addition to the higher energy population producing most of the associated light. The low energy contribution is vital for the formation of the enhanced ion-acoustic echoes. We argue that this type of aurora is sufficient for the generation of naturally enhanced ion-acoustic echoes. In one event two imagers were used to observe the auroral rays simultaneously, one from the radar site and one 7km away. The data from these imagers shows that the auroral rays and the strong backscattering filaments (where the enhanced echoes are produced are located on the same field line, which is in contrast to earlier statements in the litterature that they should be separated.

  12. Evaluation of secondary ion yield enhancement from polymer material by using TOF-SIMS equipped with a gold cluster ion source

    Energy Technology Data Exchange (ETDEWEB)

    Aimoto, K. [Department of Applied Physics, Faculty of Engineering, Seikei University, 3-3-1 Kichijioji-Kitamachi, Musashino-shi, Tokyo 180-8633 (Japan)]. E-mail: dm053502@cc.seikei.ac.jp; Aoyagi, S. [Department of Regional Development, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu-cho, Matsue-shi, Shimane 690-8504 (Japan); Kato, N. [Department of Applied Physics, Faculty of Engineering, Seikei University, 3-3-1 Kichijioji-Kitamachi, Musashino-shi, Tokyo 180-8633 (Japan); Iida, N. [ULVAC-PHI, Inc., 370 Enzo, Chigasaki, Kanagawa 253-0084 (Japan); Yamamoto, A. [ULVAC-PHI, Inc., 370 Enzo, Chigasaki, Kanagawa 253-0084 (Japan); Kudo, M. [Department of Applied Physics, Faculty of Engineering, Seikei University, 3-3-1 Kichijioji-Kitamachi, Musashino-shi, Tokyo 180-8633 (Japan)

    2006-07-30

    We investigated the enhancement of the secondary ion intensity in the TOF-SIMS spectra obtained by Au{sup +} and Au{sub 3} {sup +} bombardment in comparison with Ga{sup +} excitation using polymer samples with different molecular weight distributions. Since the polymer samples used in this experiment have a wide molecular weight distribution, the advantages of the gold cluster primary ion source over monoatomic ion could accurately be evaluated. It was observed that the degree of fragmentation decreased by the usage of cluster primary ion beam compared with monoatomic ion beam, which was observed as a shift of the intensity distribution in the spectra. It was also found out that the mass effect of Au{sup +} and Ga{sup +} as monoatomic primary ion, resulted in about 10-60 times of enhancement for both samples with different molecular distributions. On the other hand, the Au{sub 3} {sup +} bombardment caused intensity enhancement about 100-2600 compared with Ga{sup +} bombardment, depending on the mass range of the detected secondary ion species. The cluster primary ion effect of Au{sub 3} {sup +}, compared with Au{sup +}, therefore, was estimated to be about 10-45.

  13. K* vector meson resonance dynamics in heavy-ion collisions

    Science.gov (United States)

    Ilner, Andrej; Cabrera, Daniel; Markert, Christina; Bratkovskaya, Elena

    2017-01-01

    We study the strange vector meson (K*,K¯* ) dynamics in relativistic heavy-ion collisions based on the microscopic parton-hadron-string dynamics (PHSD) transport approach which incorporates partonic and hadronic degrees of freedom, a phase transition from hadronic to partonic matter—quark-gluon-plasma (QGP)—and a dynamical hadronization of quarks and antiquarks as well as final hadronic interactions. We investigate the role of in-medium effects on the K*,K¯* meson dynamics by employing Breit-Wigner spectral functions for the K* with self-energies obtained from a self-consistent coupled-channel G -matrix approach. Furthermore, we confront the PHSD calculations with experimental data for p +p , Cu+Cu , and Au+Au collisions at energies up to √{sN N}=200 GeV. Our analysis shows that, at relativistic energies, most of the final K* (observed experimentally) are produced during the late hadronic phase, dominantly by the K +π →K* channel, such that the fraction of the K* from the QGP is small and can hardly be reconstructed from the final observables. The influence of the in-medium effects on the K* dynamics at energies typical of the BNL Relativistic Heavy Ion Collider is rather modest due to their dominant production at low baryon densities (but high meson densities); however, it increases with decreasing beam energy. Moreover, we find that the additional cut on the invariant-mass region of the K* further influences the shape and the height of the final spectra. This imposes severe constraints on the interpretation of the experimental results.

  14. Unravelling the secrets of Cs controlled secondary ion formation: Evidence of the dominance of site specific surface chemistry, alloying and ionic bonding

    Science.gov (United States)

    Wittmaack, Klaus

    2013-03-01

    implantation can be evaluated as a function of Cs coverage. The summarised results imply that secondary ions are commonly not formed by charge transfer between an escaping atom and the electronic system of the sample but are already emitted as ions. The probability of ion formation appears to be controlled by the local ionic character of the alkali-target atom bonds, i.e., by the difference in electronegativity between the involved elements as well as by the electron affinity and the ionisation potential of the departing atom. This idea is supported by the finding that Si- yields exhibit the same very strong dependence on Cs coverage as Si+ and O- yields on the oxygen fraction in oxygen loaded Si. Most challenging to theoreticians is the finding that the ionisation probability is independent of the emission velocity of sputtered ions. This phenomenon cannot be rationalised along established routes of thinking. Different concepts need to be explored. An old, somewhat exotic idea takes account of the heavy perturbation created for a very short period of time at the site of ion emission (dynamic randomisation). Molecular dynamics simulations are desirable to clarify the issue. Ultimately it may be possible to describe all phenomena of enhanced or suppressed secondary ion formation, produced either by surface loading with alkali atoms or by enforced surface oxidation, on the basis of a single universal model. There is plenty of room for exciting new studies.

  15. Coupling all-atom molecular dynamics simulations of ions in water with Brownian dynamics

    CERN Document Server

    Erban, Radek

    2015-01-01

    Molecular dynamics (MD) simulations of ions (K$^+$, Na$^+$, Ca$^{2+}$ and Cl$^-$) in aqueous solutions are investigated. Water is described using the SPC/E model. A stochastic coarse-grained description for ion behaviour is presented and parameterized using MD simulations. It is given as a system of coupled stochastic and ordinary differential equations, describing the ion position, velocity and acceleration. The stochastic coarse-grained model provides an intermediate description between all-atom MD simulations and Brownian dynamics (BD) models. It is used to develop a multiscale method which uses all-atom MD simulations in parts of the computational domain and (less detailed) BD simulations in the remainder of the domain.

  16. Molecular dynamics simulations of water within models of ion channels.

    Science.gov (United States)

    Breed, J; Sankararamakrishnan, R; Kerr, I D; Sansom, M S

    1996-04-01

    The transbilayer pores formed by ion channel proteins contain extended columns of water molecules. The dynamic properties of such waters have been suggested to differ from those of water in its bulk state. Molecular dynamics simulations of ion channel models solvated within and at the mouths of their pores are used to investigate the dynamics and structure of intra-pore water. Three classes of channel model are investigated: a) parallel bundles of hydrophobic (Ala20) alpha-helices; b) eight-stranded hydrophobic (Ala10) antiparallel beta-barrels; and c) parallel bundles of amphipathic alpha-helices (namely, delta-toxin, alamethicin, and nicotinic acetylcholine receptor M2 helix). The self-diffusion coefficients of water molecules within the pores are reduced significantly relative to bulk water in all of the models. Water rotational reorientation rates are also reduced within the pores, particularly in those pores formed by alpha-helix bundles. In the narrowest pore (that of the Ala20 pentameric helix bundle) self-diffusion coefficients and reorientation rates of intra-pore waters are reduced by approximately an order of magnitude relative to bulk solvent. In Ala20 helix bundles the water dipoles orient antiparallel to the helix dipoles. Such dipole/dipole interaction between water and pore may explain how water-filled ion channels may be formed by hydrophobic helices. In the bundles of amphipathic helices the orientation of water dipoles is modulated by the presence of charged side chains. No preferential orientation of water dipoles relative to the pore axis is observed in the hydrophobic beta-barrel models.

  17. Towards 3000: The Dynamics of Future Post-Secondary Education.

    Science.gov (United States)

    Teng, Jaan

    This document presents a systems theory approach to post-secondary education. Terms such as entropy, energy, and "essergy" together with the laws of thermodynamics are applied to educational concepts. A philosophical approach with interspersed quotations from Hegel, Korzybski, and Adelman is used to design a new educational paradigm based upon…

  18. Analysis of bacterial spore permeability to water and ions using Nano-Secondary Ion Mass Spectrometry (NanoSIMS)

    Energy Technology Data Exchange (ETDEWEB)

    Ghosal, S; Fallon, S; Leighton, T; Wheeler, K; Hutcheon, I; Weber, P K

    2005-11-17

    Regulation of bacterial spore solvent and solute permeability is a fundamental feature of dormancy but is poorly understood. Here we present a new technique, nano-scale secondary ion mass spectrometry (NanoSIMS) that allows the direct visualization and quantification of chemical gradients within spores. Using NanoSIMS, we demonstrate the penetration of water and a simple ionic salt, LiF, into the core of Bacillus thuringiensis israelensis (Bti) spores. The results demonstrate chemical gradients spanning the outer coat to the inner spore core that are driven by concentration-dependent ionic fluxes. Using deuterated water (D{sub 2}O), we have shown that external water is either retained or exchanged with water contained within the spore. Hydration and exchange are rapid, on a timescale of < 1 minute. Our results suggest a permeation mechanism by which short-time scale diffusion into and out of the spore can occur along hydration pathways. Additional studies are in progress to define the flux rates and mechanisms controlling these processes.

  19. Ion Dynamics Study of Potato Starch + Sodium Salts Electrolyte System

    Directory of Open Access Journals (Sweden)

    Tuhina Tiwari

    2013-01-01

    Full Text Available The effect of different anions, namely, SCN−, I−, and ClO4−, on the electrical properties of starch-based polymer electrolytes has been studied. Anion size and conductivity are having an inverse trend indicating systems to be predominantly anionic conductor. Impact of anion size and multiplet forming tendency is reflected in number of charge carriers and mobility, respectively. Ion dynamics study reveals the presence of different mechanisms in different frequency ranges. Interestingly, superlinear power law (SLPL is found to be present at <5 MHz frequency, which is further confirmed by dielectric data.

  20. Modeling Crabbing Dynamics in an Electron-Ion Collider

    Energy Technology Data Exchange (ETDEWEB)

    Castilla, Alejandro [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Old Dominion Univ., Norfolk, VA (United States); Univ. de Guanajuato (DCI-UG), Leon (Mexico); Morozov, Vasiliy S. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Satogata, Todd J. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Old Dominion Univ., Norfolk, VA (United States); Delayen, Jean R. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Old Dominion Univ., Norfolk, VA (United States)

    2015-09-01

    A local crabbing scheme requires π/2 (mod π) horizontal betatron phase advances from an interaction point (IP) to the crab cavities on each side of it. However, realistic phase advances generated by sets of quadrupoles, or Final Focusing Blocks (FFB), between the crab cavities located in the expanded beam regions and the IP differ slightly from π/2. To understand the effect of crabbing on the beam dynamics in this case, a simple model of the optics of the Medium Energy Electron-Ion Collider (MEIC) including local crabbing was developed using linear matrices and then studied numerically over multiple turns (1000 passes) of both electron and proton bunches. The same model was applied to both local and global crabbing schemes to determine the linear-order dynamical effects of the synchro-betatron coupling induced by crabbing.

  1. The solid solubility of Fe in [alpha]-Zr: a secondary ion mass spectrometry study

    Energy Technology Data Exchange (ETDEWEB)

    Zou, H. (Reactor Materials Research Branch, Atomic Energy of Canada Ltd., Chalk River Laboratories, Chalk River, Ontario (Canada)); Hood, G.M. (Reactor Materials Research Branch, Atomic Energy of Canada Ltd., Chalk River Laboratories, Chalk River, Ontario (Canada)); Roy, J.A. (Reactor Materials Research Branch, Atomic Energy of Canada Ltd., Chalk River Laboratories, Chalk River, Ontario (Canada)); Schultz, R.J. (Reactor Materials Research Branch, Atomic Energy of Canada Ltd., Chalk River Laboratories, Chalk River, Ontario (Canada)); Jackman, J.A. (Metals Technology Laboratory, CANMET, Booth St., Ottawa, Ontario (Canada))

    1994-06-01

    Secondary ion mass spectrometry techniques have been used to determine the terminal solid solubility (TSS) of Fe in [alpha]-Zr. Single crystals of nominally pure and Fe-doped [alpha]-Zr were annealed in the temperature range 770-1100 K to promote equilibration of Fe between surface Zr[sub 3]Fe precipitates, or [beta]-Zr(Fe), and [alpha]-Zr. The results are fair in overall agreement with a recent investigation, based on thermoelectric power measurements, but they differ in detail. In particular this work indicates two regions of temperature dependence: above 930 K the TSS (ppma) is given by C[sub Fe]=1.56x10[sup 10] exp(-1.70[+-]0.05 eV/kT), at lower temperatures a weaker temperature dependence is associated with extrinsic effects. In addition, the eutectoid temperature is shown to lie between 1063 and 1068 K. ((orig.))

  2. Advances in obsidian hydration dating by secondary ion mass spectrometry: World examples

    Energy Technology Data Exchange (ETDEWEB)

    Liritzis, I. [University of the Aegean, Dept. of Mediterranean Studies, Laboratory of Archaeometry, 1 Demokratias Ave., Rhodes 85100 (Greece)], E-mail: liritzis@rhodes.aegean.gr; Laskaris, N. [University of the Aegean, Dept. of Mediterranean Studies, Laboratory of Archaeometry, 1 Demokratias Ave., Rhodes 85100 (Greece)

    2009-01-15

    Since 1960 the potential of obsidian as a chronometer in archaeology has been subjected to several drawbacks and studies. While economical, simple and fast, obsidian hydration dating today is generally unreliable. A novel approach towards obsidian hydration dating, named SIMS-SS, has recently been initiated based on modelling the hydrogen profile acquired by secondary ion mass spectrometry (SIMS), following Fick's diffusion law, and the rationale of surface saturation (SS) with water molecules. The new nuclear method is presented with significant refinement regarding numerical calculation of age parameters, the suitability criteria of the sampling area and the spectral shape of the concentration dependant H{sup +} profile. A reappraisal is applied to thirteen obsidian specimens from all over the world ranging some 100's to 30,000 years old. The results reinforce the precision and reliability of the SIMS-SS method, enhancing its wide applicability.

  3. Application of time-of-flight secondary ion mass spectrometry to automobile paint analysis.

    Science.gov (United States)

    Lee, Y; Han, S; Yoon, J H; Kim, Y M; Shon, S K; Park, S W

    2001-06-01

    Time-of-flight secondary ion mass spectrometry (TOF-SIMS) provides a method of elemental analysis that can distinguish among automotive paint samples of the same or nearly the same color. TOF-SIMS survey spectra were employed to determine the relative abundances of elements in the surface layers of the paint chips. The depth profile of paint samples permitted the analysis of small paint chips, the reproducible results for specific elements, and the identification of each car paint. Seventy-three samples of blue, red, white, and silver automobile paints from the major manufacturers in Korea were investigated using high resolution TOF-SIMS technique. It was found that paints of the same color produced by different manufacturers could be distinguished by this technique. TOF-SIMS is a reliable, nondestructive, and small area analyzing method for characterization of the elemental composition of automotive paint chips.

  4. Secondary Ion Mass Spectrometry: The Application in the Analysis of Atmospheric Particulate Matter

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Di; Hua, Xin; Xiu, Guangli; Zheng, Yongjie; Yu, Xiao-Ying; Long, Yi-Tao

    2017-07-24

    Currently, considerable attention has been paid to atmospheric particulate matter (PM) investigation due to its importance in human health and global climate change. Surface characterization of PM is important since the chemical heterogeneity between the surface and bulk may vary its impact on the environment and human being. Secondary ion mass spectrometry (SIMS) is a surface technique with high surface sensitivity, capable of high spatial chemical imaging and depth profiling. Recent research shows that SIMS holds great potential in analyzing both surface and bulk chemical information of PM. In this review, we presented the working principal of SIMS in PM characterization, summarized recent applications in PM analysis from different sources, discussed its advantages and limitations, and proposed the future development of this technique with a perspective in environmental sciences.

  5. Probing nanoparticles and nanoparticle-conjugated biomolecules using time-of-flight secondary ion mass spectrometry.

    Science.gov (United States)

    Kim, Young-Pil; Shon, Hyun Kyong; Shin, Seung Koo; Lee, Tae Geol

    2015-01-01

    Bio-conjugated nanoparticles have emerged as novel molecular probes in nano-biotechnology and nanomedicine and chemical analyses of their surfaces have become challenges. The time-of-flight (TOF) secondary ion mass spectrometry (SIMS) has been one of the most powerful surface characterization techniques for both nanoparticles and biomolecules. When combined with various nanoparticle-based signal enhancing strategies, TOF-SIMS can probe the functionalization of nanoparticles as well as their locations and interactions in biological systems. Especially, nanoparticle-based SIMS is an attractive approach for label-free drug screening because signal-enhancing nanoparticles can be designed to directly measure the enzyme activity. The chemical-specific imaging analysis using SIMS is also well suited to screen nanoparticles and nanoparticle-biomolecule conjugates in complex environments. This review presents some recent applications of nanoparticle-based TOF-SIMS to the chemical analysis of complex biological systems.

  6. Campaign 1.7 Pu Aging. Development of Time of Flight Secondary Ion Mass Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Venhaus, Thomas J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-09-09

    The first application of Time-of-Flight Secondary Ion Mass Spectroscopy (ToF-SIMS) to an aged plutonium surface has resulted in a rich set of surface chemistry data, as well as some unexpected results. FY15 was highlighted by not only the first mapping of hydrogen-containing features within the metal, but also a prove-in series of experiments using the system’s Sieverts Reaction Cell. These experiments involved successfully heating the sample to ~450 oC for nearly 24 hours while the sample was dosed several times with hydrogen, followed by an in situ ToF-SIMS analysis. During this year, the data allowed for better and more consistent identification of the myriad peaks that result from the SIMS sputter process. In collaboration with the AWE (U.K), the system was also fully aligned for sputter depth profiling for future experiments.

  7. Molecular Dynamics of XFEL-Induced Photo-Dissociation, Revealed by Ion-Ion Coincidence Measurements

    Directory of Open Access Journals (Sweden)

    Edwin Kukk

    2017-05-01

    Full Text Available X-ray free electron lasers (XFELs providing ultrashort intense pulses of X-rays have proven to be excellent tools to investigate the dynamics of radiation-induced dissociation and charge redistribution in molecules and nanoparticles. Coincidence techniques, in particular multi-ion time-of-flight (TOF coincident experiments, can provide detailed information on the photoabsorption, charge generation, and Coulomb explosion events. Here we review several such recent experiments performed at the SPring-8 Angstrom Compact free electron LAser (SACLA facility in Japan, with iodomethane, diiodomethane, and 5-iodouracil as targets. We demonstrate how to utilize the momentum-resolving capabilities of the ion TOF spectrometers to resolve and filter the coincidence data and extract various information essential in understanding the time evolution of the processes induced by the XFEL pulses.

  8. Time of flight-secondary ion mass spectrometry analysis of protein adsorption on a polyvinylidene difluoride surface modified by ion irradiation.

    Science.gov (United States)

    Okuji, Shigeto; Kitazawa, Hideaki; Takeda, Yoshihiko

    2016-12-01

    We investigated the effects of nanoscopic surface modification of polyvinylidene difluoride (PVDF) and low-density polyethylene (LDPE) by plasma-based ion implantation on protein adsorption with time of flight-secondary ion mass spectrometry (ToF-SIMS) analysis. The chemical composition of the LDPE and PVDF surfaces was changed by ion irradiation. In particular, irradiation substantially decreased the number of CH and CF bonds on the PVDF surface, but only slightly decreased that of CH bonds for LDPE. These decreases may reflect a higher hydrogen recombination rate of the LDPE than the PVDF surface. An increase in oxygen was observed on both the LDPE and PVDF surfaces following ion irradiation, but was saturated after irradiation of 1×10(15)cm(-2) on the PVDF surface. The hydrophilicity of the ion-irradiated LDPE surface was promoted with an increase of the total ion fluence. Ion irradiation also changed the surface properties of PVDF to become more hydrophilic, but the variation did not correlate with the total ion fluence presumably due to the presence of fluorine atoms and the saturation of oxidation. Both bovine serum albumin (BSA) and collagen adsorption were suppressed on the LDPE surface by ion irradiation, which may have resulted from a decrease of the hydrophobic interaction. By contrast, ion irradiation increased protein adsorption on the PVDF surface, and BSA was adsorbed more than collagen, whereas there was no difference in the adsorption between BSA and collagen on the ion-irradiated LDPE surface. Moreover, the adsorption of BSA decreased on the oxygen- and fluorine-rich PVDF surface. These results indicate that the nanoscopic composition changes on the PVDF surface affect the adsorption behavior of BSA. Specifically, ferroelectric property on the PVDF surface was changed by ion irradiation and the nanoscopic change in polarity presumably affected the protein adsorption. Our findings suggest that selective adsorption control of protein can be

  9. Departures from Axisymmetric Balance Dynamics during Secondary Eyewall Formation

    Science.gov (United States)

    2014-10-01

    arguments, based mostly on linearized Ekman theory, to propose a feedback mechanism for secondary eye- wall formation that involves a local enhancement of...the radial vorticity gradient, frictional updraft, and con- vection. The hypothesized feedback, based primarily on linear Ekman balance reasoning, has...largely to a vertical column within an annular region about 15 km wide, centered around 40 km and sloping outward. The mean heating rate maximum exhibits a

  10. $K^{*}$ vector meson resonances dynamics in heavy-ion collisions

    CERN Document Server

    Ilner, Andrej; Markert, Christina; Bratkovskaya, Elena

    2016-01-01

    We study the strange vector meson ($K^*, \\bar K^*$) dynamics in relativistic heavy-ion collisions based on the microscopic Parton-Hadron-String Dynamics (PHSD) transport approach which incorporates partonic and hadronic degrees-of-freedom, a phase transition from hadronic to partonic matter - Quark-Gluon-Plasma (QGP) - and a dynamical hadronization of quarks and antiquarks as well as final hadronic interactions. We investigate the role of in-medium effects on the $K^*, \\bar K^*$ meson dynamics by employing Breit-Wigner spectral functions for the $K^*$'s with self-energies obtained from a self-consistent coupled-channel G-matrix approach. Furthermore, we confront the PHSD calculations with experimental data for p+p, Cu+Cu and Au+Au collisions at energies up to $\\sqrt{{s}_{NN}} = 200$~GeV. Our analysis shows that at relativistic energies most of the final $K^*$s (observed experimentally) are produced during the late hadronic phase, dominantly by the $K+ \\pi \\to K^*$ channel, such that the fraction of the $K^*$s...

  11. Investigation of argon ion sputtering on the secondary electron emission from gold samples

    Science.gov (United States)

    Yang, Jing; Cui, Wanzhao; Li, Yun; Xie, Guibai; Zhang, Na; Wang, Rui; Hu, Tiancun; Zhang, Hongtai

    2016-09-01

    Secondary electron (SE) yield, δ, is a very sensitive surface property. The values of δ often are not consistent for even identical materials. The influence of surface changes on the SE yield was investigated experimentally in this article. Argon ion sputtering was used to remove the contamination from the surface. Surface composition was monitored by X-ray photoelectron spectroscopy (XPS) and surface topography was scanned by scanning electron microscope (SEM) and atomic force microscope (AFM) before and after every sputtering. It was found that argon sputtering can remove contamination and roughen the surface. An "equivalent work function" is presented in this thesis to establish the relationship between SE yield and surface properties. Argon ion sputtering of 1.5keV leads to a significant increase of so called "work function" (from 3.7 eV to 6.0 eV), and a decrease of SE yield (from 2.01 to 1.54). These results provided a new insight into the influence of surface changes on the SE emission.

  12. Ion transport and structural dynamics in homologous ammonium and phosphonium-based room temperature ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, Philip J., E-mail: pgrif@seas.upenn.edu [Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Holt, Adam P. [Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996 (United States); Tsunashima, Katsuhiko [Department of Materials Science, National Institute of Technology, Wakayama College, 77 Noshima, Nada-cho, Gobo, Wakayama 644-0023 (Japan); Sangoro, Joshua R. [Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Kremer, Friedrich [Institute of Experimental Physics I, University of Leipzig, Linnestr. 5, 04103 Leipzig (Germany); Sokolov, Alexei P. [Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996 (United States); Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996 (United States); Chemical Sciences Division, Oak Ridge National Lab, Oak Ridge, Tennessee 37830 (United States)

    2015-02-28

    Charge transport and structural dynamics in a homologous pair of ammonium and phosphonium based room temperature ionic liquids (ILs) have been characterized over a wide temperature range using broadband dielectric spectroscopy and quasi-elastic light scattering spectroscopy. We have found that the ionic conductivity of the phosphonium based IL is significantly enhanced relative to the ammonium homolog, and this increase is primarily a result of a lower glass transition temperature and higher ion mobility. Additionally, these ILs exhibit pronounced secondary relaxations which are strongly influenced by the atomic identity of the cation charge center. While the secondary relaxation in the phosphonium IL has the expected Arrhenius temperature dependence characteristic of local beta relaxations, the corresponding relaxation process in the ammonium IL was found to exhibit a mildly non-Arrhenius temperature dependence in the measured temperature range—indicative of molecular cooperativity. These differences in both local and long-range molecular dynamics are a direct reflection of the subtly different inter-ionic interactions and mesoscale structures found in these homologous ILs.

  13. Combining combing and secondary ion mass spectrometry to study DNA on chips using 13C and 15N labeling [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Armelle Cabin-Flaman

    2016-06-01

    Full Text Available Dynamic secondary ion mass spectrometry (D-SIMS imaging of combed DNA – the combing, imaging by SIMS or CIS method – has been developed previously using a standard NanoSIMS 50 to reveal, on the 50 nm scale, individual DNA fibers labeled with different, non-radioactive isotopes in vivo and to quantify these isotopes. This makes CIS especially suitable for determining the times, places and rates of DNA synthesis as well as the detection of the fine-scale re-arrangements of DNA and of molecules associated with combed DNA fibers. Here, we show how CIS may be extended to 13C-labeling via the detection and quantification of the 13C14N- recombinant ion and the use of the 13C:12C ratio, we discuss how CIS might permit three successive labels, and we suggest ideas that might be explored using CIS.

  14. Metal ions and RNA folding: a highly charged topic with a dynamic future.

    Science.gov (United States)

    Woodson, Sarah A

    2005-04-01

    Metal ions are required to stabilize RNA tertiary structure and to begin the folding process. How different metal ions enable RNAs to fold depends on the electrostatic potential of the RNA and correlated fluctuations in the positions of the ions themselves. Theoretical models, fluorescence spectroscopy, small angle scattering and structural biology reveal that metal ions alter the RNA dynamics and folding transition states. Specifically coordinated divalent metal ions mediate conformational rearrangements within ribozyme active sites.

  15. Review of Recent Results in Heavy Ion Fluid Dynamics

    Directory of Open Access Journals (Sweden)

    Csernai Laszlo P.

    2014-03-01

    Full Text Available Fluid dynamical phenomena in high energy heavy ion reactions were predicted in the 1970s and still today these are the most dominant and basic observables. With increasing energy and the reach of QGP the low viscosity of the plasma became apparent and this brought a new revolution in the fluid dynamical studies. The high energy and low viscosity made it possible to observe fluctuations up to high multipolarity flow harmonics. This is an obvious, direct proof of the low viscosity of QGP. Many aspects of these fluctuations are under intensive study today. The low viscosity opened ways to observe special fluid dynamical turbulent phenomena. These may arise from random fluctuations, as well as from the global symmetries of peripheral collisions. At LHC energies the angular momentum of the participant matter can reach 106ħ, which leads to rotation and turbulent instabilities, like the Kelvin-Helmholtz instability. Low viscosity ensures that these remain observable at the final freeze-out stages of the collision. Thus new investigations in addition to the standard flow analysis methods became possible. Femtoscopy may also detect rotation and turbulence. Due to the high local thermal vorticity, particle polarization and orbital rotation may reach thermal and mechanical equilibrium. This leads to baryon polarization which, in given directions may be detectable.

  16. Dynamic Chemistry-Based Sensing: A Molecular System for Detection of Saccharide, Formaldehyde, and the Silver Ion.

    Science.gov (United States)

    Chang, Xingmao; Wang, Zhaolong; Qi, Yanyu; Kang, Rui; Cui, Xinwen; Shang, Congdi; Liu, Kaiqiang; Fang, Yu

    2017-09-05

    Development of artificial complex molecular systems is of great importance in understanding complexity in natural processes and for achieving new functionalities. One of the strategies is to create them via optimized utilization of noncovalent interactions and dynamic covalent bonds. We report here on a new complex molecular system, which was constructed by integrating the multiple interactions containing a dynamic covalent interaction between 1,2-diol and boronic acid, a coordination interaction between the silver ion and pyridyl, and an easy accessible reaction between secondary amine and formaldehyde. By employing the three dynamic interactions, a pyrene (Py) labeled fluorophore, PPB, was designed and synthesized. The compound reacts with fructose (F), a monosaccharide, in aqueous phase and produces a fluorescent adduct, PPB-F, which can be further used as a sensing platform for formaldehyde (FA) and the silver ion. The respective dynamic interactions are accompanied with color changes due to the reversible switching between Py-monomer emission and excimer emission. The respective experimental detection limits (DLs) for the three analytes are much lower than 0.2 mM, 0.1 mM, and 2.5 μM, respectively. The presence of relevant compounds or ions shows little effect upon the sensing. No doubt, the results as presented show that the integration of supramolecular interactions including dynamic covalent bonds can be employed as a general strategy to develop new functional molecular systems or materials.

  17. High Mass Accuracy and High Mass Resolving Power FT-ICR Secondary Ion Mass Spectrometry for Biological Tissue Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Donald F.; Kiss, Andras; Leach, Franklin E.; Robinson, Errol W.; Pasa-Tolic, Ljiljana; Heeren, Ronald M.

    2013-07-01

    Biological tissue imaging by secondary ion mass spectrometry has seen rapid development with the commercial availability of polyatomic primary ion sources. Endogenous lipids and other small bio-molecules can now be routinely mapped on the micrometer scale. Such experiments are typically performed on time-of-flight mass spectrometers for high sensitivity and high repetition rate imaging. However, such mass analyzers lack the mass resolving power to ensure separation of isobaric ions and the mass accuracy for exact mass elemental formula assignment. We have recently reported a secondary ion mass spectrometer with the combination of a C60 primary ion gun with a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) for high mass resolving power, high mass measurement accuracy and tandem mass spectrometry capabilities. In this work, high specificity and high sensitivity secondary ion FT-ICR MS was applied to chemical imaging of biological tissue. An entire rat brain tissue was measured with 150 μm spatial resolution (75 μm primary ion spot size) with mass resolving power (m/Δm50%) of 67,500 (at m/z 750) and root-mean-square measurement accuracy less than two parts-per-million for intact phospholipids, small molecules and fragments. For the first time, ultra-high mass resolving power SIMS has been demonstrated, with m/Δm50% > 3,000,000. Higher spatial resolution capabilities of the platform were tested at a spatial resolution of 20 μm. The results represent order of magnitude improvements in mass resolving power and mass measurement accuracy for SIMS imaging and the promise of the platform for ultra-high mass resolving power and high spatial resolution imaging.

  18. Temporal dynamics of glyoxalase 1 in secondary neuronal injury.

    Directory of Open Access Journals (Sweden)

    Philipp Pieroh

    Full Text Available BACKGROUND: Enhanced glycolysis leads to elevated levels of the toxic metabolite methylglyoxal which contributes to loss of protein-function, metabolic imbalance and cell death. Neurons were shown being highly susceptible to methylglyoxal toxicity. Glyoxalase 1 as an ubiquitous enzyme reflects the main detoxifying enzyme of methylglyoxal and underlies changes during aging and neurodegeneration. However, little is known about dynamics of Glyoxalase 1 following neuronal lesions so far. METHODS: To determine a possible involvement of Glyoxalase 1 in acute brain injury, we analysed the temporal dynamics of Glyoxalase 1 distribution and expression by immunohistochemistry and Western Blot analysis. Organotypic hippocampal slice cultures were excitotoxically (N-methyl-D-aspartate, 50 µM for 4 hours lesioned in vitro (5 minutes to 72 hours. Additionally, permanent middle cerebral artery occlusion was performed (75 minutes to 60 days. RESULTS: We found (i a predominant localisation of Glyoxalase 1 in endothelial cells in non-lesioned brains (ii a time-dependent up-regulation and re-distribution of Glyoxalase 1 in neurons and astrocytes and (iii a strong increase in Glyoxalase 1 dimers after neuronal injury (24 hours to 72 hours when compared to monomers of the protein. CONCLUSIONS: The high dynamics of Glyoxalase 1 expression and distribution following neuronal injury may indicate a novel role of Glyoxalase 1.

  19. Molecular dynamics simulation of graphene bombardment with Si ion

    Science.gov (United States)

    Qin, Xin-Mao; Gao, Ting-Hong; Yan, Wan-Jun; Guo, Xiao-Tian; Xie, Quan

    2014-03-01

    Molecular dynamics simulations with Tersoff-Ziegler-Biersack-Littmark (Tersoff-ZBL) potential and adaptive intermolecular reactive empirical bond order (AIREBO) potential are performed to study the effect of irradiated graphene with silicon ion at several positions and energy levels of 0.1-1000 eV. The simulations reveal four processes: absorption, replacement, transmission and damage. At energies below 110 eV, the dominant process is absorption. For atom in group (a), the process that takes place is replacement, in which the silicon ion removes one carbon atom and occupies the place of the eliminated atom at the incident energy of 72-370 eV. Transmission is present at energies above 100 eV for atom in group (d). Damage is a very important process in current bombardment, and there are four types of defects: single vacancy, replacement-single vacancy, double vacancy and nanopore. The simulations provide a fundamental understanding of the silicon bombardment of graphene, and the parameters required to develop graphene-based devices by controlling defect formation.

  20. Bimolecular reaction dynamics from photoelectron spectroscopy of negative ions

    Energy Technology Data Exchange (ETDEWEB)

    Bradforth, S.E.

    1992-11-01

    The transition state region of a neutral bimolecular reaction may be experimentally investigated by photoelectron spectroscopy of an appropriate negative ion. The photoelectron spectrum provides information on the spectroscopy and dynamics of the short lived transition state and may be used to develop model potential energy surfaces that are semi-quantitative in this important region. The principles of bound {yields} bound negative ion photoelectron spectroscopy are illustrated by way of an example: a full analysis of the photoelectron bands of CN{sup {minus}}, NCO{sup {minus}} and NCS{sup {minus}}. Transition state photoelectron spectra are presented for the following systems Br + HI, Cl + HI, F + HI, F + CH{sub 3}0H,F + C{sub 2}H{sub 5}OH,F + OH and F + H{sub 2}. A time dependent framework for the simulation and interpretation of the bound {yields} free transition state photoelectron spectra is subsequently developed and applied to the hydrogen transfer reactions Br + HI, F + OH {yields} O({sup 3}P, {sup 1}D) + HF and F + H{sub 2}. The theoretical approach for the simulations is a fully quantum-mechanical wave packet propagation on a collinear model reaction potential surface. The connection between the wavepacket time evolution and the photoelectron spectrum is given by the time autocorrelation function. For the benchmark F + H{sub 2} system, comparisons with three-dimensional quantum calculations are made.

  1. Interdependence of conformational and chemical reaction dynamics during ion assembly in polar solvents.

    Science.gov (United States)

    Ji, Minbiao; Hartsock, Robert W; Sun, Zheng; Gaffney, Kelly J

    2011-10-01

    We have utilized time-resolved vibrational spectroscopy to study the interdependence of the conformational and chemical reaction dynamics of ion assembly in solution. We investigated the chemical interconversion dynamics of the LiNCS ion pair and the (LiNCS)(2) ion-pair dimer, as well as the spectral diffusion dynamics of these ionic assemblies. For the strongly coordinating Lewis base solvents benzonitrile, dimethyl carbonate, and ethyl acetate, we observe Li(+) coordination by both solvent molecules and NCS(-) anions, while the weak Lewis base solvent nitromethane shows no evidence for solvent coordination of Li(+) ions. The strong interaction between the ion-pair dimer structure and the Lewis base solvents leads to ion-pair dimer solvation dynamics that proceed more slowly than the ion-pair dimer dissociation. We have attributed the slow spectral diffusion dynamics to electrostatic reorganization of the solvent molecules coordinated to the Li(+) cations present in the ion-pair dimer structure and concluded that the dissociation of ion-pair dimers depends more critically on longer length scale electrostatic reorganization. This unusual inversion of the conformational and chemical reaction rates does not occur for ion-pair dimer dissociation in nitromethane or for ion pair association in any of the solvents.

  2. Dynamics of fast ions during sawtooth oscillations in the TEXTOR tokamak measured by collective Thomson scattering

    NARCIS (Netherlands)

    Nielsen, S.K.; Salewski, M.; Bindslev, H.; Burger, A.; Furtula, V.; Kantor, M.; Korsholm, S. B.; Koslowski, H. R.; Kramer-Flecken, A.; Leipold, F.; Meo, F.; Michelsen, P. K.; Moseev, D.; Oosterbeek, J. W.; Stejner, M.; Westerhof, E.

    2011-01-01

    Experimental investigations of sawteeth interaction with fast ions measured by collective Thomson scattering on TEXTOR are presented. Time-resolved measurements of localized 1D fast-ion distribution functions allow us to study fast-ion dynamics during several sawtooth cycles. Sawtooth oscillations

  3. Dynamics of fast ions during sawtooth oscillations in the TEXTOR tokamak measured by collective Thomson scattering

    DEFF Research Database (Denmark)

    Nielsen, Stefan Kragh; Salewski, Mirko; Bindslev, Henrik

    2011-01-01

    Experimental investigations of sawteeth interaction with fast ions measured by collective Thomson scattering on TEXTOR are presented. Time-resolved measurements of localized 1D fast-ion distribution functions allow us to study fast-ion dynamics during several sawtooth cycles. Sawtooth oscillation...

  4. Oligomer formation within secondary organic aerosol: equilibrium and dynamic considerations

    Directory of Open Access Journals (Sweden)

    E. R. Trump

    2013-09-01

    Full Text Available We present a model based on the volatility basis set to consider the potential influence of oligomer content on volatility-driven SOA yields. The implications for aerosol evaporation studies, including dilution, chamber thermo-equilibration, and thermodenuder studies are also considered. A simplified description of oligomer formation reproduces essentially all of the broad classes of equilibrium and dynamical observations related to SOA formation and evaporation: significant oligomer content may be consistent with mass yields that increase with organic aerosol mass concentration; reversible oligomerization can explain the hysteresis between the rate of SOA formation and its evaporation rate upon dilution; and the model is consistent with both chamber thermo-equilibration studies and thermodenuder studies of SOA evaporation.

  5. Molecular dynamics simulations of the dynamic and energetic properties of alkali and halide ions using water-model-specific ion parameters.

    Science.gov (United States)

    Joung, In Suk; Cheatham, Thomas E

    2009-10-01

    The dynamic and energetic properties of the alkali and halide ions were calculated using molecular dynamics (MD) and free energy simulations with various different water and ion force fields including our recently developed water-model-specific ion parameters. The properties calculated were activity coefficients, diffusion coefficients, residence times of atomic pairs, association constants, and solubility. Through calculation of these properties, we can assess the validity and range of applicability of the simple pair potential models and better understand their limitations. Due to extreme computational demands, the activity coefficients were only calculated for a subset of the models. The results qualitatively agree with experiment. Calculated diffusion coefficients and residence times between cation-anion, water-cation, and water-anion showed differences depending on the choice of water and ion force field used. The calculated solubilities of the alkali-halide salts were generally lower than the true solubility of the salts. However, for both the TIP4P(EW) and SPC/E water-model-specific ion parameters, solubility was reasonably well-reproduced. Finally, the correlations among the various properties led to the following conclusions: (1) The reliability of the ion force fields is significantly affected by the specific choice of water model. (2) Ion-ion interactions are very important to accurately simulate the properties, especially solubility. (3) The SPC/E and TIP4P(EW) water-model-specific ion force fields are preferred for simulation in high salt environments compared to the other ion force fields.

  6. Contributions of secondary forest and nitrogen dynamics to terrestrial carbon uptake

    Directory of Open Access Journals (Sweden)

    X. Yang

    2010-04-01

    Full Text Available We use a terrestrial carbon-nitrogen cycle component of the Integrated Science Assessment Model (ISAM to investigate the impacts of nitrogen dynamics on regrowing secondary forests over the 20th century. We further examine what the impacts of nitrogen deposition and land use change history are on terrestrial carbon uptake since preindustrial time. Our results suggest that global total net land use emissions for the 1990s associated with changes in cropland, pastureland, and wood harvest are 1.22 GtC/yr. Without considering the secondary forest regrowth, the estimated net global total land use emissions are 1.58 GtC/yr or about 0.36 GtC/yr higher than if secondary forest regrowth is considered. Results also show that without considering the nitrogen dynamics and deposition, the estimated global total secondary forest sink for the 1990s is 0.90 GtC/yr or about 0.54 GtC/yr higher than estimates that include the impacts of nitrogen dynamics and deposition. Nitrogen deposition alone is responsible for about 0.13 GtC/yr of the total secondary forest sink. While nitrogen is not a limiting nutrient in the intact primary forests in tropical regions, our study suggests that nitrogen becomes a limiting nutrient for regrowing secondary forests of the tropical regions, in particular Latin America and Tropical Africa. This is because land use change activities, especially wood harvest, removes large amounts of nitrogen from the system when slash is burnt or wood is removed for harvest. However, our model results show that carbon uptake is enhanced in the tropical secondary forests of the Indian region. We argue that this may be due to enhanced nitrogen mineralization and increased nitrogen availability following land use change in the Indian tropical forest ecosystems. Results also demonstrate that there is a significant amount of carbon accumulating in the Northern Hemisphere where most land use changes and forest regrowth has occurred in recent decades

  7. The correlations of ions density with geomagnetic activity and solar dynamic pressure in cusp region

    Institute of Scientific and Technical Information of China (English)

    GUO JianGuang; SHI JianKui; ZHANG TieLong; LIU ZhenXing; A. FAZAKERLEY; H. R(E)ME; Ⅰ. DANDOURAS; E. LUCEK

    2007-01-01

    A statistical study of the properties of ions (O+, He+ and H+) measured by the Cluster-Ⅱ in cusp region as a function of the solar wind dynamic pressure and geomagnetic index Kp respectively was made during the summer and fall of 2001 -2003. The main results are that: (1) O+ ion density responds in a significant way to geomagnetic index Kp, and He+ ion density is not correlated with geomagnetic index Kp,both of them have a significant positive correlation with solar wind dynamic pressure; (2) H+ ion density is also observed to increase with solar wind dynamic pressure, and not correlated with geomagnetic index Kp.

  8. Dynamics of flexible counter-ions in conducting polyaniline a quasielastic neutron-scattering study

    CERN Document Server

    Bee, M; Djurado, D; Marque, D; Combet, J; Rannou, P; Dufour, B

    2002-01-01

    Conducting polyaniline protonated with sulphonic flexible counter-ions was investigated by quasielastic incoherent neutron scattering. In addition to their role in electrical properties, the flexible counter-ions also increase the elasticity of the samples. As in the case of more rigid counter-ions, polymer chains appear as very stiff objects whose dynamics is completely outside the investigated time scale. Conversely, the counter-ion dynamics was proved to be of major importance in charge transport since a dynamical transition is observed precisely in the temperature range where the electronic properties change from a metallic to a semiconducting regime. (orig.)

  9. Temperature dynamics and velocity scaling laws for interchange driven, warm ion plasma filaments

    Science.gov (United States)

    Olsen, Jeppe; Madsen, Jens; Nielsen, Anders Henry; Rasmussen, Jens Juul; Naulin, Volker

    2016-04-01

    The influence of electron and ion temperature dynamics on the radial convection of isolated structures in magnetically confined plasmas is investigated by means of numerical simulations. It is demonstrated that the maximum radial velocity of these plasma blobs roughly follows the inertial velocity scaling, which is proportional to the ion acoustic speed times the square root of the filament particle density times the sum of the electron and ion temperature perturbations. Only for small blobs the cross field convection does not follow this scaling. The influence of finite Larmor radius effects on the cross-field blob convection is shown not to depend strongly on the dynamical ion temperature field. The blob dynamics of constant finite and dynamical ion temperature blobs is similar. When the blob size is on the order of 10 times the ion Larmor radius the blobs stay coherent and decelerate slowly compared to larger blobs which dissipate faster due to fragmentation and turbulent mixing.

  10. Calibration of a basic secondary ion mass spectrometer, by means of elastic recoil detection, for hydrogen isotopes implanted into graphite

    Energy Technology Data Exchange (ETDEWEB)

    Paynter, R.W.; Turgeon, S.; Sabet-Sharghi, R.; Leblanc, L.; Pageau, J.F.; Ross, G.G. (INRS-Energie et Materiaux, Varennes, PQ (Canada))

    1992-07-01

    A secondary ion mass spectrometer (SIMS) equipped with a low-resolution argon ion source and a small quadrupole ion mass analyser was calibrated for moderate to high concentrations of hydrogen and deuterium in graphite. The polished graphite samples were implanted with hydrogen isotope ions of 1 or 2 keV energy. The depth profiles of the implanted hydrogen were determined by means of elastic recoil detection (ERD) and compared with those obtained by SIMS. Linear correlations were found between the peak D{sup +}/C{sup +} or CH{sup +}/C{sup +} ratio and the maximum D or H concentration determined by ERD, as well as between the integral of the SIMS profile curves and the total quantity of hydrogen isotope. (author).

  11. Note: Ion-induced secondary electron emission from oxidized metal surfaces measured in a particle beam reactor

    Science.gov (United States)

    Marcak, Adrian; Corbella, Carles; de los Arcos, Teresa; von Keudell, Achim

    2015-10-01

    The secondary electron emission of metals induced by slow ions is characterized in a beam chamber by means of two coaxial semi-cylindrical electrodes with different apertures. The voltages of the outer electrode (screening), inner electrode (collector), and sample holder (target) were set independently in order to measure the effective yield of potential and kinetic electron emissions during ion bombardment. Aluminum samples were exposed to quantified beams of argon ions up to 2000 eV and to oxygen atoms and molecules in order to mimic the plasma-surface interactions on metallic targets during reactive sputtering. The variation of electron emission yield was correlated to the ion energy and to the oxidation state of Al surfaces. This system provides reliable measurements of the electron yields in real time and is of great utility to explore the fundamental surface processes during target poisoning occurring in reactive magnetron sputtering applications.

  12. Note: Ion-induced secondary electron emission from oxidized metal surfaces measured in a particle beam reactor

    Energy Technology Data Exchange (ETDEWEB)

    Marcak, Adrian; Corbella, Carles, E-mail: carles.corbella@rub.de; Keudell, Achim von [Research Group Reactive Plasmas, Ruhr-University Bochum, 44801 Bochum (Germany); Arcos, Teresa de los [Technical and Macromolecular Chemistry, Paderborn University, 33098 Paderborn (Germany)

    2015-10-15

    The secondary electron emission of metals induced by slow ions is characterized in a beam chamber by means of two coaxial semi-cylindrical electrodes with different apertures. The voltages of the outer electrode (screening), inner electrode (collector), and sample holder (target) were set independently in order to measure the effective yield of potential and kinetic electron emissions during ion bombardment. Aluminum samples were exposed to quantified beams of argon ions up to 2000 eV and to oxygen atoms and molecules in order to mimic the plasma-surface interactions on metallic targets during reactive sputtering. The variation of electron emission yield was correlated to the ion energy and to the oxidation state of Al surfaces. This system provides reliable measurements of the electron yields in real time and is of great utility to explore the fundamental surface processes during target poisoning occurring in reactive magnetron sputtering applications.

  13. Quantum Entropic Dynamics of a Trapped Ion in a Standing Wave

    Institute of Scientific and Technical Information of China (English)

    FANG Mao-Fa; ZHOU Peng; S. Swain

    2000-01-01

    By performing a unitary transformation, we transform the Hamiltonian of the trapped ion in any position of standing wave to that of the normal Jaynes-Cummings model in ionic bare basis and we obtain a general evolution operator of the trapped ion system. We study the quantum entropic dynamics of the phonons and trapped ion.Our results show that, when the trapped ion is located at the node of standing wave, the quantum entropic dynamics of phonons and trapped ion are the same as the one of the field in the Jaynes-Cummings model.When the trapped ion deviatesfrom the node of standing wave, the entropies of the phonons and ion keep their maximum value except at the initial stage, and the phonons and trapped ion become extremely entangled.

  14. Primary, secondary and tertiary frequency control in dynamic security analyses of electric power interconnections

    Directory of Open Access Journals (Sweden)

    Ivanović Milan

    2012-01-01

    Full Text Available This paper presents the incorporation of primary, secondary and tertiary frequency control in the dynamic security analyses of electric power interconnections. This was done in accordance with the wider environment of the existing state of the Serbian power system. The improved software for dynamic security analysis has been tested on the regional transmission network, which includes power systems of Serbia, Montenegro, Bosnia and Herzegovina, Croatia, Hungary, Macedonia, Romania, Bulgaria, Greece and Albania.

  15. Superstatistical velocity distributions of cold trapped ions in molecular dynamics simulations

    CERN Document Server

    Rouse, I

    2015-01-01

    We present a realistic molecular-dynamics treatment of laser-cooled ions in radiofrequency ion traps which avoids previously made simplifications such as modeling laser cooling as a friction force and combining individual heating mechanisms into a single effective heating force. Based on this implementation, we show that infrequent energetic collisions of single ions with background gas molecules lead to pronounced heating of the entire ion ensemble and a time-varying secular ensemble temperature which manifests itself in a superstatistical time-averaged velocity distribution of the ions. The effect of this finding on the experimental determination of ion temperatures and rate constants for cold chemical reactions is discussed.

  16. Ranges, Reflection and Secondary Electron Emission for keV Hydrogen Ions Incident on Solid N2

    DEFF Research Database (Denmark)

    Børgesen, P.; Sørensen, H.; Hao-Ming, Chen

    1983-01-01

    Ranges were measured for 0.67–3.3 keV/amu hydrogen and deuterium ions in solid N2. Comparisons with similar results for N2-gas confirm the previously observed large phase effect in the stopping cross section. Measurements of the secondary electron emission coefficient for bulk solid N2 bombarded...... by 0.67–9 keV/amu ions also seem to support such a phase effect. It is argued that we may also extract information about the charge state of reflected projectiles....

  17. Reaction dynamics induced by the radioactive ion beam 7Be on medium-mass and heavy targets

    Science.gov (United States)

    Mazzocco, M.; Boiano, A.; Boiano, C.; La Commara, M.; Manea, C.; Parascandolo, C.; Pierroutsakou, D.; Stefanini, C.; Strano, E.; Torresi, D.; Acosta, L.; Di Meo, P.; Fernandez-Garcia, J. P.; Glodariu, T.; Grebosz, J.; Guglielmetti, A.; Keeley, N.; Lay, J. A.; Marquinez-Duran, G.; Martel, I.; Mazzocchi, C.; Molini, P.; Nicoletto, M.; Pakou, A.; Parkar, V. V.; Rusek, K.; Sánchez-Benítez, A. M.; Sandoli, M.; Sava, T.; Sgouros, O.; Signorini, C.; Silvestri, R.; Soramel, F.; Soukeras, V.; Stiliaris, E.; Stroe, L.; Toniolo, N.; Zerva, K.

    2015-10-01

    We studied the reaction dynamics induced at Coulomb barrier energies by the weakly-bound Radioactive Ion Beam 7Be (Sα = 1.586 MeV) on medium-mass (58Ni) and heavy (208Pb) targets. The experiments were performed at INFN-LNL (Italy), where a 2-3×105 pps 7Be secondary beam was produced with the RIB in-flight facility EXOTIC. Charged reaction products were detected by means of high-granularity silicon detectors in rather wide angular ranges. The contribution presents an up-to-date status of the data analysis and theoretical interpretation for both systems.

  18. Reduction of matrix effects in polystyrene/poly(methylene methacrylate) blends by metal-assisted secondary ion mass spectrometry.

    Science.gov (United States)

    Becker, Nora; Wirtz, Tom

    2012-07-17

    Secondary ion mass spectrometry (SIMS) is a very surface sensitive analysis technique with low detection limits. The main drawback of SIMS is its inherent incapability of providing quantitative information about sample compositions due to the frequent occurrence of ionization- and sputter-induced matrix effects. Metal-assisted SIMS (MetA-SIMS) is an experimental approach that consists in covering an organic sample with a minute amount of a noble metal prior to a static SIMS analysis, the main objective being an increase of the characteristic secondary ion intensities. We show in this article that MetA-SIMS is also a simple and efficient tool for reducing matrix effects in a set of polymer blend samples containing different relative concentrations polystyrene (PS) and poly(methylene methacrylate) (PMMA). These findings can be explained by diffusion processes leading to a sample surface configuration consisting of individual polymer chains embedded in a common Ag matrix.

  19. Non-equilibrium dynamics contribute to ion selectivity in the KcsA channel.

    Directory of Open Access Journals (Sweden)

    Van Ngo

    Full Text Available The ability of biological ion channels to conduct selected ions across cell membranes is critical for the survival of both animal and bacterial cells. Numerous investigations of ion selectivity have been conducted over more than 50 years, yet the mechanisms whereby the channels select certain ions and reject others are not well understood. Here we report a new application of Jarzynski's Equality to investigate the mechanism of ion selectivity using non-equilibrium molecular dynamics simulations of Na(+ and K(+ ions moving through the KcsA channel. The simulations show that the selectivity filter of KcsA adapts and responds to the presence of the ions with structural rearrangements that are different for Na(+ and K(+. These structural rearrangements facilitate entry of K(+ ions into the selectivity filter and permeation through the channel, and rejection of Na(+ ions. A mechanistic model of ion selectivity by this channel based on the results of the simulations relates the structural rearrangement of the selectivity filter to the differential dehydration of ions and multiple-ion occupancy and describes a mechanism to efficiently select and conduct K(+. Estimates of the K(+/Na(+ selectivity ratio and steady state ion conductance for KcsA from the simulations are in good quantitative agreement with experimental measurements. This model also accurately describes experimental observations of channel block by cytoplasmic Na(+ ions, the "punch through" relief of channel block by cytoplasmic positive voltages, and is consistent with the knock-on mechanism of ion permeation.

  20. Molecule-Specific Imaging Analysis of Carcinogens in Breast Cancer Cells Using Time-of-Flight Secondary Ion Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Quong, J N; Knize, M G; Kulp, K S; Wu, K J

    2003-08-19

    Imaging time-of-flight secondary ion mass spectrometry (TOF-SIMS) is used to study the localization of heterocyclic amines in MCF7 line of human breast cancer cells. The detection sensitivities of a model rodent mutagen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) were determined. Following an established criteria for the determination of status of freeze-fracture cells, the distribution of PhIP in the MCF7 cells are reported.

  1. Pre-equilibrium dynamics and heavy-ion observables

    CERN Document Server

    Heinz, Ulrich W

    2015-01-01

    To bracket the importance of the pre-equilibrium stage on relativistic heavy-ion collision observables, we compare simulations where it is modeled by either free-streaming partons or fluid dynamics. These cases implement the assumptions of extremely weak vs. extremely strong coupling in the initial collision stage. Accounting for flow generated in the pre-equilibrium stage, we study the sensitivity of radial, elliptic and triangular flow on the switching time when the hydrodynamic description becomes valid. Using the hybrid code iEBE-VISHNU we perform a multi-parameter search, constrained by particle ratios, integrated elliptic and triangular charged hadron flow, the mean transverse momenta of pions, kaons and protons, and the second moment $\\langle p_T^2\\rangle$ of the proton transverse momentum spectrum, to identify optimized values for the switching time $\\tau_s$ from pre-equilibrium to hydrodynamics, the specific shear viscosity $\\eta/s$, the normalization factor of the temperature-dependent specific bulk...

  2. Types and concentrations of metal ions affect local structure and dynamics of RNA

    Science.gov (United States)

    Wang, Jun; Xiao, Yi

    2016-10-01

    The roles that metal ions play in the structure and dynamics of RNA molecules are long-standing problems that have been studied extensively but are still not well understood. Here we show that metal ions have distributions around RNA molecules that strongly depend on the types and concentrations of the metal ions and also the electrostatic surface of the molecule. In particular, the ion distributions may not balance all the local electronegativity of the molecule. These ion distributions do not only greatly affect local structures but also lead to different local dynamics of RNA. We studied the effects of different ion solutions on the structure and dynamics of RNA by taking the pre Q1 riboswitch aptamer domain as an illustrative example and using molecular dynamics simulations. Since the local structures and dynamics of RNAs are important to their functions, our results also indicate that the selection of proper ion conditions is necessary to model them correctly, in contrast to the use of diverse ion solutions in current molecular dynamics simulations.

  3. Pre-Equilibrium Effects in the Secondary Particle Spectra in the Reactions with Heavy Ions

    Science.gov (United States)

    Fotina, O. V.; Eremenko, D. O.; Parfenova, Yu. L.; Platonov, S. Yu.; Yuminov, O. A.; Kravchuk, V. L.; Gramegna, F.; Barlini, S.; Casini, G.; Bruno, M.; D'Agostino, M.; Wieland, O.; Bracco, A.; Camera, F.

    Theoretical description of the experimentally obtained spectra for protons and α-particles and model calculations for the neutron spectra in the reactions with heavy ions has been presented. The hybrid model of non-equilibrium processes was used. Equilibrium evaporation process was analyzed in the framework of the statistical theory of nuclear reactions with Monte-Carlo simulation including certain dynamical and kinematical characteristics. This approach was included in PACE code, which permits to simulate Monte-Carlo de-excitation nuclear process. The Fermi-gas model and level-density phenomenological model for the variation of the nuclear level density parameters was used. In this approach data on 16O+116Sn reaction with Ebeam = 130, 250 MeV were analyzed. Double-differential light charged particle spectra for this reaction were measured using the GARFIELD apparatus in coincidence with evaporation residues. The experimental data were collected in four angular ranges from 29 to 41, 41 to 53, 53 to 67 and 67 to 82 degrees in the laboratory system. The results of the calculations are shown and discussed for these four angular ranges. The contributions from the evaporative and pre-equilibrium processes were analyzed in connection with different nucleus equilibration mechanisms.

  4. Semiempirical Rules To Determine Drug Sensitivity and Ionization Efficiency in Secondary Ion Mass Spectrometry Using a Model Tissue Sample.

    Science.gov (United States)

    Vorng, Jean-Luc; Kotowska, Anna M; Passarelli, Melissa K; West, Andrew; Marshall, Peter S; Havelund, Rasmus; Seah, Martin P; Dollery, Colin T; Rakowska, Paulina D; Gilmore, Ian S

    2016-11-15

    There is an increasing need in the pharmaceutical industry to reduce drug failure at late stage and thus reduce the cost of developing a new medicine. Since most drug targets are intracellular, this requires a better understanding of the drug disposition within a cell. Secondary ion mass spectrometry has been identified as a potentially important technique to do this, as it is label-free and allows imaging in 3D with subcellular resolution and recent studies have shown promise for amiodarone. An important analytical parameter is sensitivity, and we measure this in a bovine liver homogenate reference sample for 20 drugs representing important class types relevant to the pharmaceutical industry. We also measure the sensitivity for pure drug and show, for the first time, that the secondary ion mass spectrometry (SIMS) positive ionization efficiency for small molecules is a simple power-law relationship to the log P value. This discovery will be important for advancing the understanding of the SIMS ionization process in small molecules that has, until now, been elusive. This simple relationship is found to hold true for drug doped in the bovine liver homogenate reference sample, except for fluticasone, nicardipine, and sorafenib which suffer from severe matrix suppression. This relationship provides a simple semiempirical method to determine drug sensitivity for positive secondary ions. Furthermore, we show, on chosen models, how the use of different solvents during sample preparation can affect the ionization of analytes.

  5. Time-of-flight secondary-ion mass spectrometry on thiole self-assembly monolayers on gold; Flugzeit-Sekundaerionenmassenspektrometrie an Thiol self assembly Monolagen auf Gold

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, M.

    2006-07-01

    Aim of this thesis was to get a deeper understanding for the influence of different matrix effects on the emission of molecular secondary ions. For the estimation of the influence of the primary-ion surface interaction a series of different primary-ion species was applied, which differ by mass, kinetic energy, and composition (monoatomic or polyatomic). In the framework of the presented results different matrix effects were studied. For this systematically the influence of the substrate-thiolate, the thiolate-thiolate, and the primary-ion substrate interaction on the formation of characteristic secondary ions was quantified. For the corresponding considerations beside the thiolate secondary ions M{sup -} the gold-thiolate clusters of the type Au{sub x+1}M{sub x}{sup -} were referred to.

  6. Imaging with mass spectrometry: a secondary ion and VUV-photoionization study of ion-sputtered atoms and clusters from GaAs and Au.

    Science.gov (United States)

    Takahashi, Lynelle K; Zhou, Jia; Wilson, Kevin R; Leone, Stephen R; Ahmed, Musahid

    2009-04-23

    A new mass spectrometry surface imaging method is presented in which ion-sputtered neutrals are postionized by wavelength-tunable vacuum ultraviolet (VUV) light from a synchrotron source. Mass spectra and signal counts of the photoionized neutrals from GaAs (100) and Au are compared to those of the secondary ions. While clusters larger than dimers are more efficiently detected as secondary ions, certain species, such as As(2), Au, and Au(2), are more efficiently detected through the neutral channel. Continuously tuning the photon wavelength allows photoionization efficiency (PIE) curves to be obtained for sputtered As(m) (m = 1,2) and Au(n) (n = 1-4). From the observed ionization thresholds, sputtered neutral As and Au show no clear evidence of electronic excitation, while neutral clusters have photoionization onsets shifted to lower energies by approximately 0.3 eV. These shifts are attributed to unresolved vibrational and rotational excitations. High-spatial resolution chemical imaging with synchrotron VUV postionization is demonstrated at two different photon energies using a copper TEM grid embedded in indium. The resulting images are used to illustrate the use of tunable VUV light for verifying mass peak assignments by exploiting the unique wavelength-dependent PIE of each sputtered neutral species. This capability is valuable for identifying compounds when imaging chemically complex systems with mass spectrometry-based techniques.

  7. Mobility-resolved ion selection in uniform drift field ion mobility spectrometry/mass spectrometry: dynamic switching in structures for lossless ion manipulations.

    Science.gov (United States)

    Webb, Ian K; Garimella, Sandilya V B; Tolmachev, Aleksey V; Chen, Tsung-Chi; Zhang, Xinyu; Cox, Jonathan T; Norheim, Randolph V; Prost, Spencer A; LaMarche, Brian; Anderson, Gordon A; Ibrahim, Yehia M; Smith, Richard D

    2014-10-07

    A Structures for Lossless Ion Manipulations (SLIM) module that allows ion mobility separations and the switching of ions between alternative drift paths is described. The SLIM switch component has a "Tee" configuration and allows the efficient switching of ions between a linear path and a 90-degree bend. By controlling switching times, ions can be efficiently directed to an alternative channel as a function of their mobilities. In the initial evaluation the switch is used in a static mode and shown compatible with high performance ion mobility separations at 4 Torr. In the dynamic mode, we show that mobility-selected ions can be switched into the alternative channel, and that various ion species can be independently selected based on their mobilities for time-of-flight mass spectrometer (TOF MS) IMS detection and mass analysis. This development also provides the basis of, for example, the selection of specific mobilities for storage and accumulation, and the key component of modules for the assembly of SLIM devices enabling much more complex sequences of ion manipulations.

  8. Dynamics of ions in a water drop using the AMOEBA polarizable force field

    Science.gov (United States)

    Thaunay, Florian; Ohanessian, Gilles; Clavaguéra, Carine

    2017-03-01

    Various ions carrying a charge from -2 to +3 were confined in a drop of 100 water molecules as a way to model coordination properties inside the cluster and at the interface. The behavior of the ions has been followed by molecular dynamics with the AMOEBA polarizable force field. Multiply charged ions and small singly charged ions are found to lie inside the droplet, while bigger monovalent ions sit near the surface. The results provide a coherent picture of average structural properties as well as residence times for which a general trend is proposed, especially for the anions.

  9. Gelation of Na-alginate aqueous solution: A study of sodium ion dynamics via NMR relaxometry.

    Science.gov (United States)

    Zhao, Congxian; Zhang, Chao; Kang, Hongliang; Xia, Yanzhi; Sui, Kunyan; Liu, Ruigang

    2017-08-01

    Sodium alginate (SA) hydrogels have a wide range of applications including tissue engineering, drug delivery and formulations for preventing gastric reflux. The dynamics of sodium ions during the gelation process of SA solution is critical for clarification of the gelation procedure. In this work, nuclear magnetic resonance (NMR) relaxometry and pulsed-field-gradient (PFG) NMR diffusometry were used to investigate the dynamics of the sodium ions during the gelation of SA alginate. We find that sodium ions are in two different states with the addition of divalent calcium ions, corresponding to Ca(2+) crosslinked and un-crosslinked regions in the hydrogels. The sodium ions within the un-crosslinked regions are those released from the alginate chains without Ca(2+) crosslinking. The relative content of sodium ions within the Ca(2+) crosslinked regions decreased with the increase in the content of calcium ions in the system. The relaxation time T2 of sodium ions within the Ca(2+) crosslinked and un-crosslinked regions shift to shorter and longer relaxation time with the increase in concentration of calcium ion, which indicates the closer package of SA chains and the larger space for the diffusion of free sodium ions. This work clarifies the dynamics of (23)Na(+) in a calcium alginate gel at the equilibrium state. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Biological Membrane Ion Channels Dynamics, Structure, and Applications

    CERN Document Server

    Chung, Shin-Ho; Krishnamurthy, Vikram

    2007-01-01

    Ion channels are biological nanotubes that are formed by membrane proteins. Because ion channels regulate all electrical activities in living cells, understanding their mechanisms at a molecular level is a fundamental problem in biology. This book deals with recent breakthroughs in ion-channel research that have been brought about by the combined effort of experimental biophysicists and computational physicists, who together are beginning to unravel the story of these exquisitely designed biomolecules. With chapters by leading experts, the book is aimed at researchers in nanodevices and biosensors, as well as advanced undergraduate and graduate students in biology and the physical sciences. Key Features Presents the latest information on the molecular mechanisms of ion permeation through membrane ion channels Uses schematic diagrams to illustrate important concepts in biophysics Written by leading researchers in the area of ion channel investigations

  11. Dynamic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas with superthermal electrons and positrons

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Asit, E-mail: asit-saha123@rediffmail.com, E-mail: prasantachatterjee1@rediffmail.com [Department of Mathematics, Sikkim Manipal Institute of Technology, Majitar, Rangpo, East-Sikkim 737136 (India); Department of Mathematics, Siksha Bhavana, Visva Bharati University, Santiniketan-731235 (India); Pal, Nikhil; Chatterjee, Prasanta, E-mail: asit-saha123@rediffmail.com, E-mail: prasantachatterjee1@rediffmail.com [Department of Mathematics, Siksha Bhavana, Visva Bharati University, Santiniketan-731235 (India)

    2014-10-15

    The dynamic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas with superthermal electrons and positrons has been investigated in the framework of perturbed and non-perturbed Kadomtsev-Petviashili (KP) equations. Applying the reductive perturbation technique, we have derived the KP equation in electron-positron-ion magnetoplasma with kappa distributed electrons and positrons. Bifurcations of ion acoustic traveling waves of the KP equation are presented. Using the bifurcation theory of planar dynamical systems, the existence of the solitary wave solutions and the periodic traveling wave solutions has been established. Two exact solutions of these waves have been derived depending on the system parameters. Then, using the Hirota's direct method, we have obtained two-soliton and three-soliton solutions of the KP equation. The effect of the spectral index κ on propagations of the two-soliton and the three-soliton has been shown. Considering an external periodic perturbation, we have presented the quasi periodic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas.

  12. Oxygen isotope analysis of fossil organic matter by secondary ion mass spectrometry

    Science.gov (United States)

    Tartèse, Romain; Chaussidon, Marc; Gurenko, Andrey; Delarue, Frédéric; Robert, François

    2016-06-01

    We have developed an analytical procedure for the measurement of oxygen isotope composition of fossil organic matter by secondary ion mass spectrometry (SIMS) at the sub-per mill level, with a spatial resolution of 20-30 μm. The oxygen isotope composition of coal and kerogen samples determined by SIMS are on average consistent with the bulk oxygen isotope compositions determined by temperature conversion elemental analysis - isotope ratio mass spectrometry (TC/EA-IRMS), but display large spreads of δ18O of ∼5-10‰, attributed to mixing of remnants of organic compounds with distinct δ18O signatures. Most of the δ18O values obtained on two kerogen residues extracted from the Eocene Clarno and Early Devonian Rhynie continental chert samples and on two immature coal samples range between ∼10‰ and ∼25‰. Based on the average δ18O values of these samples, and on the O isotope composition of water processed by plants that now constitute the Eocene Clarno kerogen, we estimated δ18Owater values ranging between around -11‰ and -1‰, which overall correspond well within the range of O isotope compositions for present-day continental waters. SIMS analyses of cyanobacteria-derived organic matter from the Silurian Zdanow chert sample yielded δ18O values in the range 12-20‰. Based on the O isotope composition measured on recent cyanobacteria from the hypersaline Lake Natron (Tanzania), and on the O isotope composition of the lake waters in which they lived, we propose that δ18O values of cyanobacteria remnants are enriched by about ∼18 ± 2‰ to 22 ± 2‰ relative to coeval waters. This relationship suggests that deep ocean waters in which the Zdanow cyanobacteria lived during Early Silurian times were characterised by δ18O values of around -5 ± 4‰. This study, establishing the feasibility of micro-analysis of Phanerozoic fossil organic matter samples by SIMS, opens the way for future investigations of kerogens preserved in Archean cherts and of the

  13. Quantifying element incorporation in multispecies biofilms using nanoscale secondary ion mass spectrometry image analysis

    Energy Technology Data Exchange (ETDEWEB)

    Renslow, Ryan S. [Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354; Lindemann, Stephen R. [Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354; Cole, Jessica K. [Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354; Zhu, Zihua [Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354; Anderton, Christopher R. [Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354

    2016-02-12

    EElucidating nutrient exchange in microbial communities is an important step in understanding the relationships between microbial systems and global biogeochemical cycles, but these communities are complex and the interspecies interactions that occur within them are not well understood. Phototrophic consortia are useful and relevant experimental systems to investigate such interactions as they are not only prevalent in the environment, but some are cultivable in vivo and amenable to controlled scientific experimentation. High spatial resolution secondary ion mass spectrometry (NanoSIMS) is a powerful tool capable of visualizing the metabolic activities of single cells within a biofilm, but quantitative analysis of the resulting data has typically been a manual process, resulting in a task that is both laborious and susceptible to human error. Here, we describe the creation and application of a semi-automated image-processing pipeline that can analyze NanoSIMS-generated data of phototrophic biofilms. The tool employs an image analysis process, which includes both elemental and morphological segmentation, producing a final segmented image that allows for discrimination between autotrophic and heterotrophic biomass, the detection of individual cyanobacterial filaments and heterotrophic cells, the quantification of isotopic incorporation of individual heterotrophic cells, and calculation of relevant population statistics. We demonstrate the functionality of the tool by using it to analyze the uptake of 15N provided as either nitrate or ammonium through the unicyanobacterial consortium UCC-O and imaged via NanoSIMS. We found that the degree of 15N incorporation by individual cells was highly variable when labeled with 15NH4 +, but much more even when biofilms were labeled with 15NO3-. In the 15NH4 +-amended biofilms, the heterotrophic distribution of 15N incorporation was highly skewed, with a large population showing moderate 15N incorporation and a small number of

  14. Characterizing Ion Profiles in Dynamic Junction Light-Emitting Electrochemical Cells

    Energy Technology Data Exchange (ETDEWEB)

    Shoji, Tyko D.; Zhu, Zihua; Leger, Janelle M.

    2013-11-27

    Organic semiconductors have the unique ability to conduct both ionic and electronic charge carriers in thin films, an emerging advantage in applications such as light-emitting devices, transistors, and electrochromic devices, among others. Evidence suggests that the profiles of ions and electrochemical doping in the polymer film during operation significantly impact the performance and stability of the device. However, few studies have directly characterized ion profiles within LECs. Here, we present profiles of ion distributions in LECs following application of voltage, via time-of-flight secondary ion mass spectrometry. Ion distributions were characterized with regard to film thickness, salt concentration, applied voltage, and relaxation over time. Results provide insight into the correlation between ion profiles and device performance, as well as potential approaches to tuning electrochemical doping processes in LECs.

  15. Dynamics of plant secondary metabolites and consequences for food chains and community dynamics. Chapter Sixteen.

    NARCIS (Netherlands)

    Dicke, M.; Gols, R.; Poelman, E.H.

    2012-01-01

    Plant secondary metabolites (PSM) such as terpenes and phenolic compounds are known to have numerous ecological roles, notably in defence against herbivores, pathogens and abiotic stresses and in interactions with competitors and mutualists. This book reviews recent developments in the field to prov

  16. Dynamics of protein aggregation and oligomer formation governed by secondary nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Michaels, Thomas C. T., E-mail: tctm3@cam.ac.uk; Lazell, Hamish W.; Arosio, Paolo; Knowles, Tuomas P. J., E-mail: tpjk2@cam.ac.uk [Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (United Kingdom)

    2015-08-07

    The formation of aggregates in many protein systems can be significantly accelerated by secondary nucleation, a process where existing assemblies catalyse the nucleation of new species. In particular, secondary nucleation has emerged as a central process controlling the proliferation of many filamentous protein structures, including molecular species related to diseases such as sickle cell anemia and a range of neurodegenerative conditions. Increasing evidence suggests that the physical size of protein filaments plays a key role in determining their potential for deleterious interactions with living cells, with smaller aggregates of misfolded proteins, oligomers, being particularly toxic. It is thus crucial to progress towards an understanding of the factors that control the sizes of protein aggregates. However, the influence of secondary nucleation on the time evolution of aggregate size distributions has been challenging to quantify. This difficulty originates in large part from the fact that secondary nucleation couples the dynamics of species distant in size space. Here, we approach this problem by presenting an analytical treatment of the master equation describing the growth kinetics of linear protein structures proliferating through secondary nucleation and provide closed-form expressions for the temporal evolution of the resulting aggregate size distribution. We show how the availability of analytical solutions for the full filament distribution allows us to identify the key physical parameters that control the sizes of growing protein filaments. Furthermore, we use these results to probe the dynamics of the populations of small oligomeric species as they are formed through secondary nucleation and discuss the implications of our work for understanding the factors that promote or curtail the production of these species with a potentially high deleterious biological activity.

  17. Dynamic model of vertical vehicle-subgrade coupled system under secondary suspension

    Institute of Scientific and Technical Information of China (English)

    LIANG Bo; LUO Hong; MA Xue-ning

    2007-01-01

    As it is known, track transportation can be divided into track system above and track system below. While the train is moving, the parts above and below are interacted and influenced. Therefore, in fact, the problem of track transportation is the match between the vehicle and the railway line system. In this paper, on a basis of dynamic analysis of the vehicle-subgrade model of vertical coupled system under primary suspension,utilizing track maintenance standard and simulating track irregularity excitation, the dynamic interaction of vehicle-track-subgrade system is researched in theory and dynamic model of the vertical vehicle-track-subgrade coupled system under secondary suspension is established by compatibility condition of deformation. Even this model considers the actual structure of a vehicle, also considers vibration characteristic of the substructure of track including subgrade and foundation. All these work want to be benefit for understanding and design about the dynamic characters of subgrade in high speed railway.

  18. Further evidence for a dynamically generated secondary bow in $^{13}$C+$^{12}$C rainbow scattering

    CERN Document Server

    Ohkubo, S; Ogloblin, A A

    2015-01-01

    The existence of a secondary bow is confirmed for 13C+12C nuclear rainbow scattering in addition to the 16O+12C system. This is found by studying the experimental angular distribution of 13C+12C scattering at the incident 13C energy $E_L$=250 MeV with an extended double folding (EDF) model that describes all the diagonal and off-diagonal coupling potentials derived from the microscopic wave functions for 12C using a density-dependent nucleon-nucleon force. The Airy minimum at \\theta$ $\\approx$70$^\\circ$, which is not reproduced by a conventional folding potential, is revealed to be a secondary bow generated dynamically by a coupling to the excited state 2+ (4.44 MeV) of 12C. The essential importance of the quadruple {\\it Y2} term (reorientation term) of potential of the excited state 2+ of 12C for the emergence of a secondary bow is found. The mechanism of the secondary bow is intuitively explained by showing how the trajectories are refracted dynamically into the classically forbidden angular region beyond t...

  19. Influence of plasma density and plasma sheath dynamics on the ion implantation by plasma immersion technique

    OpenAIRE

    Ensinger, Wolfgang

    1996-01-01

    Influence of plasma density and plasma sheath dynamics on the ion implantation by plasma immersion technique / B. Rauschenbach ... - In: Nuclear instruments and methods in physics research. B. 113. 1996. S. 266-269

  20. The Research Dynamic: A Professional Development Model for Secondary School Science Teachers

    OpenAIRE

    Silverman, Philip M.

    2009-01-01

    This essay summarizes the author's 10 years of experience at the Oklahoma Medical Research Foundation mentoring secondary school science teachers during 8-wk Summer Research Institutes. The summary is presented as a learning model, which we call the research dynamic. This model consists of three interlocked components: specified ignorance, peer interactions, and gateway experiments. Specified ignorance is based on the work of the sociologist Robert K. Merton. It is essentially the art of high...

  1. Effect of secondary electrons from latent tracks created in YBCO by swift heavy ion irradiation

    NARCIS (Netherlands)

    Behera, D.; Mohanty, T.; Dash, S.K.; Banerjee, T.; Kanjilal, D.; Mishra, N.C.

    2003-01-01

    Swift heavy ions (SHI) with electronic energy loss exceeding a value of 14.4 keV nm−1 create amorphized latent tracks in YBCO type superconductors. In the low fluence regime of an ion beam where tracks do not overlap, a decrease of the superconducting transition temperature as probed through resisti

  2. Measurements of secondary neutrons producted from thick targets bombarded by heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Kurosawa, T.; Nakamura, T. [Tohoku Univ., Sendai (Japan). Cyclotron and Radioisotope Center; Nakao, N.; Shibata, T.; Uwamino, Y.; Nakanishi, N.; Fukumura, A.; Kumamoto, Y.

    1997-03-01

    We measured neutron angular and energy distributions from high energy heavy ions stopping in targets of carbon, aluminum, copper and lead at HIMAC. These spectra are much harder for the lighter target nucleus like carbon. This means that the momentum transfer in the forward direction from heavy ion beam to lighter nuclei is much higher than that to heavier nuclei. (author)

  3. Influence of second sideband excitation on the dynamics of trapped ions in a cavity

    Institute of Scientific and Technical Information of China (English)

    刘翔; 方卯发

    2003-01-01

    We study the dynamics of a trapped ion placed at an antinode of the standing wave inside a high finesse cavity with consideration of the second sideband excitation between the ionic internal levels and the light field. We investigate the entanglement of the three subsystems embodying the ionic internal levels, the vibrational mode of the ion and the cavity field.

  4. Influence of second sideband excitation on the dynamics of trapped ions in a cavity

    Institute of Scientific and Technical Information of China (English)

    刘翔; 方卯发

    2003-01-01

    We study the dynamics of a trapped ion placed at an antinode of the standing wave inside a high finesse cavitywith consideration of the second sideband excitation between the ionic internal levels and the light field. We investigatethe entanglement of the three subsystems embodying the ionic internal levels, the vibrational mode of the ion and thecavity field.

  5. Enhancing ion yields in time-of-flight-secondary ion mass spectrometry: a comparative study of argon and water cluster primary beams.

    Science.gov (United States)

    Sheraz née Rabbani, Sadia; Razo, Irma Berrueta; Kohn, Taylor; Lockyer, Nicholas P; Vickerman, John C

    2015-02-17

    Following from our previous Letter on this topic, this Article reports a detailed study of time-of-flight-secondary ion mass spectrometry (TOF-SIMS) positive ion spectra generated from a set of model biocompounds (arginine, trehalose, DPPC, and angiotensin II) by water cluster primary ion beams in comparison to argon cluster beams over a range of cluster sizes and energies. Sputter yield studies using argon and water beams on arginine and Irganox 1010 have confirmed that the sputter yields using water cluster beams lie on the same universal sputtering curve derived by Seah for argon cluster beams. Thus, increased ion yield using water cluster beams must arise from increased ionization. The spectra and positive ion signals observed using cluster beams in the size range from 1,000 to 10,000 and the energy range 5-20 keV are reported. It is confirmed that water cluster beams enhance proton related ionization over against argon beams to a significant degree such that enhanced detection sensitivities from 1 μm(2) in the region of 100 to 1,000 times relative to static SIMS analysis with Ar2000 cluster beams appear to be accessible. These new studies show that there is an unexpected complexity in the ionization enhancement phenomenon. Whereas optimum ion yields under argon cluster bombardment occur in the region of E/n ≥ 10 eV (where E is the beam energy and n the number of argon atoms in the cluster) and fall rapidly when E/n < 10 eV; for water cluster beams, ion yields increase significantly in this E/n regime (where n is the number of water molecules in the cluster) and peak for 20 keV beams at a cluster size of 7,000 or E/n ∼3 eV. This important result is explored further using D2O cluster beams that confirm that in this low E/n regime protonation does originate to a large extent from the water molecules. The results, encouraging in themselves, suggest that for both argon and water cluster beams, higher energy beams, e.g., 40 and 80 keV, would enable larger

  6. Extending the dynamic range of the ion trap by differential mobility filtration.

    Science.gov (United States)

    Hall, Adam B; Coy, Stephen L; Kafle, Amol; Glick, James; Nazarov, Erkinjon; Vouros, Paul

    2013-09-01

    A miniature, planar, differential ion mobility spectrometer (DMS) was interfaced to an LCQ classic ion trap to conduct selective ion filtration prior to mass analysis in order to extend the dynamic range of the trap. Space charge effects are known to limit the functional ion storage capacity of ion trap mass analyzers and this, in turn, can affect the quality of the mass spectral data generated. This problem is further exacerbated in the analysis of mixtures where the indiscriminate introduction of matrix ions results in premature trap saturation with non-targeted species, thereby reducing the number of parent ions that may be used to conduct MS/MS experiments for quantitation or other diagnostic studies. We show that conducting differential mobility-based separations prior to mass analysis allows the isolation of targeted analytes from electrosprayed mixtures preventing the indiscriminate introduction of matrix ions and premature trap saturation with analytically unrelated species. Coupling these two analytical techniques is shown to enhance the detection of a targeted drug metabolite from a biological matrix. In its capacity as a selective ion filter, the DMS can improve the analytical performance of analyzers such as quadrupole (3D or linear) and ion cyclotron resonance (FT-ICR) ion traps that depend on ion accumulation.

  7. Multidiagnostics analysis of ion dynamics in ultrafast laser ablation of metals over a large fluence range

    Energy Technology Data Exchange (ETDEWEB)

    Anoop, K. K.; Polek, M. P.; Bruzzese, R.; Amoruso, S.; Harilal, Sivanandan S.

    2015-02-28

    The ions dynamics in ultrafast laser ablation of metals is studied over a fluence range spanning from the ablation threshold up to ~75 J/cm2 by means of three established diagnostic techniques. Langmuir probe, Faraday cup and spectrally resolved ICCD imaging simultaneously monitor the laser-produced plasma ions produced during ultrafast laser ablation of a copper target. The fluence dependence of ion yield is analyzed observing the occurrence of three different regimes. Moreover, the specific ion yield shows a maximum at about 4-5 J/cm2, followed by a gradual reduction and a transition to a high-fluence regime above ~50 J/cm2. The fluence variation of the copper ions angular distribution is also analyzed, observing a gradual increase of forward peaking of Cu ions for fluences up to ~10 J/cm2. Then, a broader ion component is observed at larger angles for fluences larger than ~10 J/cm2. Finally, an experimental characterization of the ions angular distribution for several metallic targets (Mg, Al, Cr, Fe, Cu, and W) is carried out at a relatively high fluence of ~66 J/cm2. Interestingly, the ion emission from the volatile metals show a narrow forward peaked distribution and a high peak ion yield compared to the refractory metals. Moreover, the width of ion angular distributions presents a striking correlation with the peak ion yield.

  8. Extending the Dynamic Range of the Ion Trap by Differential Mobility Filtration

    Science.gov (United States)

    Hall, Adam B.; Coy, Stephen L.; Kafle, Amol; Glick, James; Nazarov, Erkinjon

    2013-01-01

    A miniature, planar, differential ion mobility spectrometer (DMS) was interfaced to an LCQ classic ion trap to conduct selective ion filtration prior to mass analysis in order to extend the dynamic range of the trap. Space charge effects are known to limit the functional ion storage capacity of ion trap mass analyzers and this, in turn, can affect the quality of the mass spectral data generated. This problem is further exacerbated in the analysis of mixtures where the indiscriminate introduction of matrix ions results in premature trap saturation with non-targeted species, thereby reducing the number of parent ions that may be used to conduct MS/MS experiments for quantitation or other diagnostic studies. We show that conducting differential mobility-based separations prior to mass analysis allows the isolation of targeted analytes from electrosprayed mixtures preventing the indiscriminate introduction of matrix ions and premature trap saturation with analytically unrelated species. Coupling these two analytical techniques is shown to enhance the detection of a targeted drug metabolite from a biological matrix. In its capacity as a selective ion filter, the DMS can improve the analytical performance of analyzers such as quadrupole (3-D or linear) and ion cyclotron resonance (FT-ICR) ion traps that depend on ion accumulation. PMID:23797861

  9. Ion optics and beam dynamics optimization at the HESR storage ring for the SPARC experiments with highly charged heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Kovalenko, Oleksandr

    2015-06-24

    The High-Energy Storage Ring (HESR) is a part of an upcoming International Facility for Antiproton and Ion Research (FAIR) at GSI in Darmstadt. A key part of a scientific program, along with antiproton physics, will be physics with highly-charged heavy ions. Phase-space cooled beams together with fixed internal target will provide an excellent environment for storage ring experiments at the HESR for the SPARC collaboration. Until recently, however, the existing ion optical lattice for the HESR was designed only for the experiments with antiproton beams. The thesis presents a new ion optical mode developed specifically for the operation of the HESR with highly charged heavy ions. The presence of the errors, such as beam momentum spread, magnetic field impurities or magnets misalignments, leads to disruption of beam dynamics: exciting of resonant motion and loss of beam stability. Within the paper, these effects are investigated with the help of numerical codes for particle accelerator design and simulation MAD-X and MIRKO. A number of correction techniques are applied to minimize the nonlinear impact on the beam dynamics and improve the experimental conditions. The application of the analytical and numerical tools is demonstrated in the experiment with uranium U{sup 90+} beam at the existing storage ring ESR, GSI.

  10. Membrane topology of the sodium ion-dependent citrate carrier of Klebsiella pneumoniae - Evidence for a new structural class of secondary transporters

    NARCIS (Netherlands)

    vanGeest, M; Lolkema, JS

    1996-01-01

    The predicted secondary structure model of the sodium ion-dependent citrate carrier of Klebsiella pneumoniae (CitS) presents the la-transmembrane helix motif observed for many secondary transporters, Biochemical evidence presented in this paper is not consistent with this model. N-terminal and C-ter

  11. Membrane Topology of the Sodium Ion-dependent Citrate Carrier of Klebsiella pneumoniae. Evidence for a New Structural Class of Secondary Transporters

    NARCIS (Netherlands)

    Geest, Marleen van; Lolkema, Juke S.

    1996-01-01

    The predicted secondary structure model of the sodium ion-dependent citrate carrier of Klebsiella pneumoniae (CitS) presents the 12-transmembrane helix motif observed for many secondary transporters. Biochemical evidence presented in this paper is not consistent with this model. N-terminal and C-ter

  12. Probing orientation of immobilized humanized anti-lysozyme variable fragment by time-of-flight secondary-ion mass spectrometry.

    Science.gov (United States)

    Baio, J E; Cheng, Fang; Ratner, Daniel M; Stayton, Patrick S; Castner, David G

    2011-04-01

    As methods to orient proteins are conceived, techniques must also be developed that provide an accurate characterization of immobilized protein orientation. In this study, X-ray photoelectron spectroscopy (XPS), surface plasmon resonance (SPR), and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were used to probe the orientation of a surface immobilized variant of the humanized anti-lysozyme variable fragment (HuLys Fv, 26 kDa). This protein contained both a hexahistidine tag and a cysteine residue, introduced at opposite ends of the HuLys Fv, for immobilization onto nitrilotriacetic acid (NTA) and maleimide oligo(ethylene glycol) (MEG)-terminated substrates, respectively. The thiol group on the cysteine residue selectively binds to the MEG groups, while the his-tag selectively binds to the Ni-loaded NTA groups. XPS was used to monitor protein coverage on both surfaces by following the change in the nitrogen atomic %. SPR results showed a 10-fold difference in lysozyme binding between the two different HuLys Fv orientations. The ToF-SIMS data provided a clear differentiation between the two samples due to the intensity differences of secondary ions originating from asymmetrically located amino acids in HuLys Fv (histidine: 81, 82, and 110 m/z; phenylalanine: 120 and 131 m/z). An intensity ratio of the secondary ion peaks from the histidine and phenylalanine residues at either end of the protein was then calculated directly from the ToF-SIMS data. The 45% change in this ratio, observed between the NTA and MEG substrates with similar HuLys Fv surface coverages, indicates that the HuLys Fv fragment has opposite orientations on two different surfaces.

  13. Ion-momentum imaging of dissociative electron attachment dynamics in acetylene

    CERN Document Server

    Fogle, M; Landers, A L; Orel, A E; Rescigno, T N

    2014-01-01

    We present experimental results for dissociative electron attachment to acetylene near the 3 eV $^2\\Pi_g$ resonance. In particular, we use an ion-momentum imaging technique to investigate the dissociation channel leading to C$_2$H$^-$ fragments. From our measured ion-momentum results we extract fragment kinetic energy and angular distributions. We directly observe a significant dissociation bending dynamic associated with the formation of the transitory negative ion. In modeling this bending dynamic with \\emph{ab initio} electronic structure and fixed-nuclei scattering calculations we obtain good agreement with the experiment.

  14. Lithium-ion battery dynamic model for wide range of operating conditions

    DEFF Research Database (Denmark)

    Stroe, Ana-Irina; Stroe, Daniel-Ioan; Swierczynski, Maciej Jozef

    2017-01-01

    In order to analyze the dynamic behavior of a Lithium-ion (Li-ion) battery and to determine their suitability for various applications, battery models are needed. An equivalent electrical circuit model is the most common way of representing the behavior of a Li-ion battery. There are different...... characterization tests performed for a wide range of operating conditions (temperature, load current and state-ofcharge) on a commercial available 13Ah high-power lithium titanate oxide battery cell. The obtained results were used to parametrize the proposed dynamic model of the battery cell. To assess...

  15. The use of secondary ion mass spectrometry in forensic analyses of ultra-small samples

    Science.gov (United States)

    Cliff, John

    2010-05-01

    It is becoming increasingly important in forensic science to perform chemical and isotopic analyses on very small sample sizes. Moreover, in some instances the signature of interest may be incorporated in a vast background making analyses impossible by bulk methods. Recent advances in instrumentation make secondary ion mass spectrometry (SIMS) a powerful tool to apply to these problems. As an introduction, we present three types of forensic analyses in which SIMS may be useful. The causal organism of anthrax (Bacillus anthracis) chelates Ca and other metals during spore formation. Thus, the spores contain a trace element signature related to the growth medium that produced the organisms. Although other techniques have been shown to be useful in analyzing these signatures, the sample size requirements are generally relatively large. We have shown that time of flight SIMS (TOF-SIMS) combined with multivariate analysis, can clearly separate Bacillus sp. cultures prepared in different growth media using analytical spot sizes containing approximately one nanogram of spores. An important emerging field in forensic analysis is that of provenance of fecal pollution. The strategy of choice for these analyses-developing host-specific nucleic acid probes-has met with considerable difficulty due to lack of specificity of the probes. One potentially fruitful strategy is to combine in situ nucleic acid probing with high precision isotopic analyses. Bulk analyses of human and bovine fecal bacteria, for example, indicate a relative difference in d13C content of about 4 per mil. We have shown that sample sizes of several nanograms can be analyzed with the IMS 1280 with precisions capable of separating two per mil differences in d13C. The NanoSIMS 50 is capable of much better spatial resolution than the IMS 1280, albeit at a cost of analytical precision. Nevertheless we have documented precision capable of separating five per mil differences in d13C using analytical spots containing

  16. WIMP detection and slow ion dynamics in carbon nanotube arrays

    OpenAIRE

    Cavoto, G.; Cirillo, E. N. M.; Cocina, F.; Ferretti, J.; Polosa, A. D.

    2016-01-01

    Large arrays of aligned carbon nanotubes (CNTs), open at one end, could be used as target material for the directional detection of weakly interacting dark matter particles (WIMPs). As a result of a WIMP elastic scattering on a CNT, a carbon ion might be injected in the body of the array and propagate through multiple collisions within the lattice. The ion may eventually emerge from the surface with open end CNTs, provided that its longitudinal momentum is large enough to compensate energy lo...

  17. Auger electron spectroscopy, secondary ion mass spectroscopy and optical characterization of a-C-H and BN films

    Science.gov (United States)

    Pouch, J. J.; Alterovitz, S. A.; Warner, J. D.

    1986-01-01

    The amorphous dielectrics a-C:H and BN were deposited on III-V semiconductors. Optical band gaps as high as 3 eV were measured for a-C:H generated by C4H10 plasmas; a comparison was made with bad gaps obtained from films prepared by CH4 glow discharges. The ion beam deposited BN films exhibited amorphous behavior with band gaps on the order of 5 eV. Film compositions were studied by Auger electron spectroscopy (AES), x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS). The optical properties were characterized by ellipsometry, UV/VIS absorption, and IR reflection and transmission. Etching rates of a-C:H subjected to O2 dicharges were determined.

  18. Importance of explicit salt ions for protein stability in molecular dynamics simulation.

    Science.gov (United States)

    Ibragimova, G T; Wade, R C

    1998-06-01

    The accurate and efficient treatment of electrostatic interactions is one of the challenging problems of molecular dynamics simulation. Truncation procedures such as switching or shifting energies or forces lead to artifacts and significantly reduced accuracy. The particle mesh Ewald (PME) method is one approach to overcome these problems by providing a computationally efficient means of calculating all long-range electrostatic interactions in a periodic simulation box by use of fast Fourier transformation techniques. For the application of the PME method to the simulation of a protein with a net charge in aqueous solution, counterions are added to neutralize the system. The usual procedure is to add charge-balancing counterions close to charged residues to neutralize the protein surface. In the present article, we show that for MD simulation of a small protein of marginal stability, the YAP-WW domain, explicit modeling of 0.2 M ionic strength (in addition to the charge-balancing counterions) is necessary to maintain a stable protein structure. Without explicit ions throughout the periodic simulation box, the charge-balancing counterions on the protein surface diffuse away from the protein, resulting in destruction of the beta-sheet secondary structure of the WW domain.

  19. Semiconductors Under Ion Radiation: Ultrafast Electron-Ion Dynamics in Perfect Crystals and the Effect of Defects

    Science.gov (United States)

    Lee, Cheng-Wei; Schleife, André

    Stability and safety issues have been challenging difficulties for materials and devices under radiation such as solar panels in outer space. On the other hand, radiation can be utilized to modify materials and increase their performance via focused-ion beam patterning at nano-scale. In order to grasp the underlying processes, further understanding of the radiation-material and radiation-defect interactions is required and inevitably involves the electron-ion dynamics that was traditionally hard to capture. By applying Ehrenfest dynamics based on time-dependent density functional theory, we have been able to perform real-time simulation of electron-ion dynamics in MgO and InP/GaP. By simulating a high-energy proton penetrating the material, the energy gain of electronic system can be interpreted as electronic stopping power and the result is compared to existing data. We also study electronic stopping in the vicinity of defects: for both oxygen vacancy in MgO and interface of InP/GaP superlattice, electronic stopping shows strong dependence on the velocity of the proton. To study the energy transfer from electronic system to lattice, simulations of about 100 femto-seconds are performed and we analyze the difference between Ehrenfest and Born-Oppenheimer molecular dynamics.

  20. Numerical simulation of thermal behavior of lithium-ion secondary batteries using the enhanced single particle model

    Science.gov (United States)

    Baba, Naoki; Yoshida, Hiroaki; Nagaoka, Makoto; Okuda, Chikaaki; Kawauchi, Shigehiro

    2014-04-01

    To understand the thermal behavior of lithium-ion secondary batteries, distributed information related to local heat generation across the entire electrode plane, which is caused by the electrochemical reaction that results from lithium-ion intercalation or deintercalation, is required. To accomplish this, we first developed an enhanced single particle (ESP) model for lithium-ion batteries that provides a cost effective, timely, and accurate method for estimating the local heat generation rates without excessive computation costs. This model accounts for all the physical processes, including the solution phase limitation. Next, a two-way electrochemical-thermal coupled simulation method was established. In this method, the three dimensional (3D) thermal solver is coupled with the quasi-3D porous electrode solver that is applied to the unrolled plane of spirally wound electrodes, which allows both thermal and electrochemical behaviors to be reproduced simultaneously at every computational time-step. The quasi-3D porous electrode solver implements the ESP model. This two-way coupled simulation method was applied to a thermal behavior analysis of 18650-type lithium-ion cells where it was found that temperature estimates of the electrode interior and on the cell can wall obtained via the ESP model were in good agreement with actual experimental measurements.

  1. Towards the Rational Design of Ionic Liquid Matrices for Secondary Ion Mass Spectrometry: Role of the Anion

    Science.gov (United States)

    Dertinger, Jennifer J.; Walker, Amy V.

    2013-08-01

    The role of the ionic liquid (IL) anion structure on analyte signal enhancements has been systematically investigated in secondary ion mass spectrometry (SIMS) using a variety of samples, including lipids, sterols, polymers, and peptides. Twenty-four ILs were synthesized. The 12 matrix acids were cinnamic acid derivatives. Two bases were employed: 1-methylimidazole and tripropylamine. Three matrices, methylimmidazolium o-coumarate, tripropylammonium o-coumarate, and tripropylammonium 3,4,5-trimethoxycinnamate, were "universal" matrices enhancing all analytes tested. The pKa of the matrix acid does not appear to have a strong effect on analyte ion intensities. Rather, it is observed that a single hydroxyl group on the anion aromatic ring leads to significantly increased molecular ion intensities. No analyte signal enhancements were observed for -CH3, -CF3 and -OCH3 groups present on the aromatic ring. The position of the -OH group on the aromatic ring also alters molecular ion intensity enhancements. As well as the chemical identity and position of substituents, the number of moieties on the aromatic ring may affect the analyte signal enhancements observed. These observations suggest that the activation of the IL anion aromatic ring is important for optimizing analyte signal intensities. The implications for SIMS imaging of complex structures, such as biological samples, are discussed.

  2. Interaction of monovalent ions with the water liquid-vapor interface - A molecular dynamics study

    Science.gov (United States)

    Wilson, Michael A.; Pohorille, Andrew

    1991-01-01

    Results of molecular dynamics calculations are presented for a series of ions at infinite dilution near the water liquid-vapor interface. The free energies of ion transfer from the bulk to the interface are discussed, as are the accompanying changes of water structure at the surface and ion mobilities as a function of their proximity to the interface. It is shown that simple dielectric models do not provide an accurate description of ions at the water surface. The results of the study should be useful in the development of better models incorporating the shape and molecular structure of the interface.

  3. Kinetic modeling of particle dynamics in H{sup −} negative ion sources (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Hatayama, A., E-mail: akh@ppl.appi.keio.ac.jp; Shibata, T.; Nishioka, S.; Ohta, M.; Yasumoto, M.; Nishida, K.; Yamamoto, T. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522 (Japan); Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Fukano, A. [Monozukuri Department, Tokyo Metropolitan College of Industrial Technology, Shinagawa, Tokyo 140-0011 (Japan); Mizuno, T. [Department of Management Science, College of Engineering, Tamagawa University, Machida, Tokyo 194-8610 (Japan)

    2014-02-15

    Progress in the kinetic modeling of particle dynamics in H{sup −} negative ion source plasmas and their comparisons with experiments are reviewed, and discussed with some new results. Main focus is placed on the following two topics, which are important for the research and development of large negative ion sources and high power H{sup −} ion beams: (i) Effects of non-equilibrium features of EEDF (electron energy distribution function) on H{sup −} production, and (ii) extraction physics of H{sup −} ions and beam optics.

  4. The dynamics of electron and ion holes in a collisionless plasma

    Directory of Open Access Journals (Sweden)

    B. Eliasson

    2005-01-01

    Full Text Available We present a review of recent analytical and numerical studies of the dynamics of electron and ion holes in a collisionless plasma. The new results are based on the class of analytic solutions which were found by Schamel more than three decades ago, and which here work as initial conditions to numerical simulations of the dynamics of ion and electron holes and their interaction with radiation and the background plasma. Our analytic and numerical studies reveal that ion holes in an electron-ion plasma can trap Langmuir waves, due the local electron density depletion associated with the negative ion hole potential. Since the scale-length of the ion holes are on a relatively small Debye scale, the trapped Langmuir waves are Landau damped. We also find that colliding ion holes accelerate electron streams by the negative ion hole potentials, and that these streams of electrons excite Langmuir waves due to a streaming instability. In our Vlasov simulation of two colliding ion holes, the holes survive the collision and after the collision, the electron distribution becomes flat-topped between the two ion holes due to the ion hole potentials which work as potential barriers for low-energy electrons. Our study of the dynamics between electron holes and the ion background reveals that standing electron holes can be accelerated by the self-created ion cavity owing to the positive electron hole potential. Vlasov simulations show that electron holes are repelled by ion density minima and attracted by ion density maxima. We also present an extension of Schamel's theory to relativistically hot plasmas, where the relativistic mass increase of the accelerated electrons have a dramatic effect on the electron hole, with an increase in the electron hole potential and in the width of the electron hole. A study of the interaction between electromagnetic waves with relativistic electron holes shows that electromagnetic waves can be both linearly and nonlinearly

  5. Interaction of monovalent ions with the water liquid-vapor interface - A molecular dynamics study

    Science.gov (United States)

    Wilson, Michael A.; Pohorille, Andrew

    1991-01-01

    Results of molecular dynamics calculations are presented for a series of ions at infinite dilution near the water liquid-vapor interface. The free energies of ion transfer from the bulk to the interface are discussed, as are the accompanying changes of water structure at the surface and ion mobilities as a function of their proximity to the interface. It is shown that simple dielectric models do not provide an accurate description of ions at the water surface. The results of the study should be useful in the development of better models incorporating the shape and molecular structure of the interface.

  6. Dynamics of planetary ions in the induced magnetospheres of Venus and Mars

    Science.gov (United States)

    Jarvinen, R.; Brain, D. A.; Luhmann, J. G.

    2016-08-01

    We compare dynamics of planetary ions in the induced magnetospheres of Venus and Mars in a global hybrid simulation to study factors controlling the ion escape at unmagnetized planets. In the simulation we find that the finite Larmor radius (FLR) effects of escaping heavy ions are stronger at Mars than Venus under nominal solar wind conditions. But, varying upstream conditions, especially the IMF, affects the strength of the FLR effects. We classify three basic types of planetary ion dynamics in an induced magnetosphere. First, light ions such as hydrogen follow the E×B drift, and escape in the wake in the hemisphere where the solar wind convection electric field is pointing towards the planet. Second, heavy ions like oxygen undergo FLR effects, and escape mainly outside of the wake in the hemisphere where the solar wind convection electric field is pointing away from the planet. Third, ion species between light and heavy ions can have both the E×B and FLR type dynamics in the same time.

  7. Secondary dynamical spectra of pulsars as indicators of inhomogeneities in the interstellar plasma

    Science.gov (United States)

    Safutdinov, E. R.; Popov, M. V.; Gupta, Ya.; Mitra, D.; Kumar, U.

    2017-05-01

    Observations of ten bright pulsars were obtained on the Giant Meter-wavelength Radio Telescope (GMRT, India) in order to study the effects of scattering of their radio waves by contructing and analyzing secondary dynamical spectra. The observations were conducted at 610 and 1420 MHz using a digital spectral analyzer operating in a real-time regime. The frequency resolution was 32.5 or 65.1 kHz, and the readout time was from 61.44 to 512 μs. Archival data for five pulsars at 327 MHz were also used. Procedures for normalizing the spectra and for constructing the secondary dynamical spectra were developed. Parabolic arcs were found in the secondary spectra of four pulsars (B1642-03, B1556-44, B2154+40, and B2021+51). The curvature of these arcs can be used to determine the distance to the effective scattering screen. In all cases, these screens are located relatively near the pulsars themselves.

  8. Dynamics of a Ground-State Cooled Ion Colliding with Ultracold Atoms

    Science.gov (United States)

    Meir, Ziv; Sikorsky, Tomas; Ben-shlomi, Ruti; Akerman, Nitzan; Dallal, Yehonatan; Ozeri, Roee

    2016-12-01

    Ultracold atom-ion mixtures are gaining increasing interest due to their potential applications in ultracold and state-controlled chemistry, quantum computing, and many-body physics. Here, we studied the dynamics of a single ground-state cooled ion during few, to many, Langevin (spiraling) collisions with ultracold atoms. We measured the ion's energy distribution and observed a clear deviation from the Maxwell-Boltzmann distribution, characterized by an exponential tail, to a power-law distribution best described by a Tsallis function. Unlike previous experiments, the energy scale of atom-ion interactions is not determined by either the atomic cloud temperature or the ion's trap residual excess-micromotion energy. Instead, it is determined by the force the atom exerts on the ion during a collision which is then amplified by the trap dynamics. This effect is intrinsic to ion Paul traps and sets the lower bound of atom-ion steady-state interaction energy in these systems. Despite the fact that our system is eventually driven out of the ultracold regime, we are capable of studying quantum effects by limiting the interaction to the first collision when the ion is initialized in the ground state of the trap.

  9. Recovery dynamics of secondary forests with different disturbance intensity in the Gutianshan National Nature Reserve

    Directory of Open Access Journals (Sweden)

    Yuanjie Xu

    2014-05-01

    Full Text Available Understanding the underlying processes of secondary forest recovery after disturbances such as logging is essential for biodiversity conservation and ecosystem rehabilitation. We surveyed 12 forest plots (1 ha in size with different extents of anthropogenic disturbances in the Gutianshan National Nature Reserve and explored the community dynamics of secondary forest recovery by applying multivariate statistical analysis. We found significant differences in community composition among various recovery phases, whereas high similarities of community composition were observed within the same recovery phase. No significant difference in species richness was observed among recovery stages, but species richness tended to increase during the recovery process. Species evenness in Chinese fir forests was relatively low whereas no significant difference occurred in other forests. The main differences in community composition and species diversity were found in the canopy layer. Respective indicator species were found in shrubs and regeneration layers during different recovery phases. The most representative indicator species were deciduous shrubs or heliophilous trees for plantation forests of Chinese fir, evergreen shrubs or small trees for young secondary forests, sub-canopy evergreen trees for old secondary forests, and canopy species for old-growth forests, respectively. Overall, species diversity recovered rigorously. Also the life-form composition of saplings in the same recovery phase presented consistent trends in spite of complex and unpredictable changes in species composition during the recovery process.

  10. Vibrational dynamics of the bifluoride ion. II. Adiabatic separation and proton dynamics

    Science.gov (United States)

    Epa, V. C.; Thorson, W. R.

    1990-01-01

    Vibrational dynamics of the bifluoride ion FHF-, which exhibits strongly anharmonic and nonseparable vibrations, is studied using the extended ab initio model potential surface described in the first paper of this series. Adiabatic separation of the proton motion from the F-F (ν1) motion forms a zero-order basis for description, although strong coupling of adiabatic states by the ν1 motion is important in higher vibrational levels and must be considered to understand the spectrum. The adiabatic protonic eigenstates at F-F separations R from 3.75 to 6.40 a.u. have been determined using the self-consistent field approximation in prolate spheroidal coordinates to provide a basis set for configuration interaction expansion of the exact eigenstates. 78 SCF eigenstates (21 σg, 21 σu, 21 πu, and 15 πg) were computed by ``exact'' numerical solution of the SCF equations. The adiabatic CI eigenstates are shown to be converged in energy to better than 1.0 cm-1 for the ground state of each symmetry type and usually better than 10 cm-1 for the lowest three to five states, and pass critical tests of accuracy such as the Hellmann-Feynman theorem. The resulting CI potential energy curves closely resemble corresponding SCF energy curves and justify the concept of mode separation even in this very anharmonic system. The adiabatic CI potential energy curves explain most aspects of the dynamics relevant to the IR and Raman spectra of FHF- (e.g., in KHF2), and calculations of ν1 dynamics within the adiabatic approximation suffice to assign most of the observed IR spectrum of KHF2(s) (to about 6000 cm-1). States corresponding qualitatively to modal overtone and combination levels such as 3ν2 and (ν2+2ν3) however exhibit avoided crossings in the neighborhood of the equilibrium configuration and ``Fermi resonance'' involving interactions of two or more such adiabatic states via the ν1 motion must be treated by close-coupling to predict both frequencies and intensities in the

  11. Sensor-actuator system for dynamic chloride ion determination.

    Science.gov (United States)

    de Graaf, Derk Balthazar; Abbas, Yawar; Gerrit Bomer, Johan; Olthuis, Wouter; van den Berg, Albert

    2015-08-12

    Chloride is a crucial anion for various analytical applications from biological to environmental applications. In order to measure the chloride ion concentration, a measurement system is needed which can detect this concentration for prolonged times reliably. Chronopotentiometry is a technique which does not need a long term stable reference electrode and is therefore very suitable for prolonged ion concentration measurements. As the used electrode might be fouled by reaction products, this work focuses on a chronopotentiometric approach with a separated sensing electrode (sensor) and actuating electrode (actuator). Both actuation and sensor electrode are made of Ag/AgCl. A constant current is applied to the actuator and will start the reaction between Ag and Cl-, while the resulting Cl- ion concentration change is observed through the sensor, which is placed close to the actuator. The time it takes to locally deplete the Cl- ions is called transition time. Experiments were performed to verify the feasibility of this approach. The performed experiments show that the sensor detects the local concentration changes resulting from the current applied to the actuator. A linear relation between the Cl- ion concentration and the square root of the transition time was observed, just as was predicted by theory. The calibration curves for different chips showed that both a larger sensor and a larger distance between sensor and actuator resulted in a larger time delay between the transition time detected at the actuator and the sensor. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Measuring radiation damage dynamics by pulsed ion beam irradiation: 2016 project annual report

    Energy Technology Data Exchange (ETDEWEB)

    Kucheyev, Sergei O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-01-04

    The major goal of this project is to develop and demonstrate a novel experimental approach to access the dynamic regime of radiation damage formation in nuclear materials. In particular, the project exploits a pulsed-ion-beam method in order to gain insight into defect interaction dynamics by measuring effective defect interaction time constants and defect diffusion lengths. For Year 3, this project had the following two major milestones: (i) the demonstration of the measurement of thermally activated defect-interaction processes by pulsed ion beam techniques and (ii) the demonstration of alternative characterization techniques to study defect dynamics. As we describe below, both of these milestones have been met.

  13. Dynamic multiplexed analysis method using ion mobility spectrometer

    Science.gov (United States)

    Belov, Mikhail E [Richland, WA

    2010-05-18

    A method for multiplexed analysis using ion mobility spectrometer in which the effectiveness and efficiency of the multiplexed method is optimized by automatically adjusting rates of passage of analyte materials through an IMS drift tube during operation of the system. This automatic adjustment is performed by the IMS instrument itself after determining the appropriate levels of adjustment according to the method of the present invention. In one example, the adjustment of the rates of passage for these materials is determined by quantifying the total number of analyte molecules delivered to the ion trap in a preselected period of time, comparing this number to the charge capacity of the ion trap, selecting a gate opening sequence; and implementing the selected gate opening sequence to obtain a preselected rate of analytes within said IMS drift tube.

  14. Fragmentation dynamics of ammonia cluster ions after single photon ionisation

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, E.; Vries, J. de; Steger, H.; Menzel, C.; Kamke, W.; Hertel, I.V. (Freiburg Univ. (Germany, F.R.). Fakultaet fuer Physik Freiburg Univ. (Germany, F.R.). Freiburger Materialforschungszentrum)

    1991-01-01

    A reflecting time of flight mass spectrometer (RETOF) is used to study unimolecular and collision induced fragmentation of ammonia cluster ions. Synchrotron radiation from the BESSY electron storage ring is used in a range of photon energies from 9.08 up to 17.7 eV for single photon ionisation of neutral clusters in a supersonic beam. The threshold photoelectron photoion coincidence technique (TPEPICO) is used to define the energy initially deposited into the cluster ions. Metastable unimolecular decay ({mu}s range) is studied using the RETOF's capacity for energy analysis. Under collision free conditions the by far most prominent metastable process is the evaporation of one neutral NH{sub 3} monomer from protonated clusters (NH{sub 3}){sub x}NH{sub 4}{sup +}. Abundance of homogeneous vs. protonated cluster ions and of metastable fragments are reported as a function of photon energy and cluster size up to n=10. (orig.).

  15. Longitudinal dynamics of laser-cooled fast ion beams

    DEFF Research Database (Denmark)

    Weidemüller, M.; Eike, B.; Eisenbarth, U.

    1999-01-01

    We present recent results of our experiments on laser cooling of fast stored ion beams at the Heidelberg Test Storage Ring. The longitudinal motion of the ions is directly cooled by the light pressure force, whereas efficient transverse cooling is obtained indirectly by longitudinal......-transverse coupling mechanisms. Laser cooling in novel bunch forms consisting of square-well buckets leads to longitudinally space-charge dominated beams. The observed longitudinal ion density distributions can be well described by a self-consistent mean-field model based on a thermodynamic Debye-Huckel approach....... When applying laser cooling in square-well buckets over long time intervals, hard Coulomb collisions suddenly disappear and the longitudinal temperature drops by about a factor of three. The observed longitudinal behaviour of the beam shows strong resemblance with the transition to an Coulomb...

  16. Dynamic and static adsorption and desorption of Hg(II) ions on chitosan membranes and spheres.

    Science.gov (United States)

    Vieira, Rodrigo S; Beppu, Marisa M

    2006-05-01

    The adsorption and desorption of Hg(II) ions was studied using static and dynamic methods, employing membranes and spheres of chitosan as the adsorbent. The quantity of adsorption was influenced by chitosan crosslinking and by the adsorbent shape. The Langmuir model was applied to fit the experimental equilibrium data. Glutaraldehyde-crosslinked membranes presented a lower desorption capacity, when compared to natural membranes, but could be regenerated for use in successive cycles. Dynamic adsorption experiments suggested that the adsorption capacity depended mainly on adsorbent geometry, due to differences between surface area to mass ratio and initial concentration of Hg(II) ions. The adsorption capacity determined by the dynamic method was 65% and 77% for membranes and spheres, respectively of the value obtained static method results. A process combining dynamic adsorption and static desorption can be used to concentrate the Hg(II) ions by a factor of nearly seven (7x), when compared to the initially treated volume.

  17. Dual enzymatic dynamic kinetic resolution by Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase and Candida antarctica lipase B

    KAUST Repository

    Karume, Ibrahim

    2016-10-04

    The immobilization of Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase (TeSADH) using sol–gel method enables its use to racemize enantiopure alcohols in organic media. Here, we report the racemization of enantiopure phenyl-ring-containing secondary alcohols using xerogel-immobilized W110A TeSADH in hexane rather than the aqueous medium required by the enzyme. We further showed that this racemization approach in organic solvent was compatible with Candida antarctica lipase B (CALB)-catalyzed kinetic resolution. This compatibility, therefore, allowed a dual enzymatic dynamic kinetic resolution of racemic alcohols using CALB-catalyzed kinetic resolution and W110A TeSADH-catalyzed racemization of phenyl-ring-containing alcohols.

  18. Dynamic modeling of sludge compaction and consolidation processes in wastewater secondary settling tanks.

    Science.gov (United States)

    Abusam, A; Keesman, K J

    2009-01-01

    The double exponential settling model is the widely accepted model for wastewater secondary settling tanks. However, this model does not estimate accurately solids concentrations in the settler underflow stream, mainly because sludge compression and consolidation processes are not considered. In activated sludge systems, accurate estimation of the solids in the underflow stream will facilitate the calibration process and can lead to correct estimates of particularly kinetic parameters related to biomass growth. Using principles of compaction and consolidation, as in soil mechanics, a dynamic model of the sludge consolidation processes taking place in the secondary settling tanks is developed and incorporated to the commonly used double exponential settling model. The modified double exponential model is calibrated and validated using data obtained from a full-scale wastewater treatment plant. Good agreement between predicted and measured data confirmed the validity of the modified model.

  19. Primary and secondary rewards differentially modulate neural activity dynamics during working memory.

    Directory of Open Access Journals (Sweden)

    Stefanie M Beck

    Full Text Available BACKGROUND: Cognitive control and working memory processes have been found to be influenced by changes in motivational state. Nevertheless, the impact of different motivational variables on behavior and brain activity remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: The current study examined the impact of incentive category by varying on a within-subjects basis whether performance during a working memory task was reinforced with either secondary (monetary or primary (liquid rewards. The temporal dynamics of motivation-cognition interactions were investigated by employing an experimental design that enabled isolation of sustained and transient effects. Performance was dramatically and equivalently enhanced in each incentive condition, whereas neural activity dynamics differed between incentive categories. The monetary reward condition was associated with a tonic activation increase in primarily right-lateralized cognitive control regions including anterior prefrontal cortex (PFC, dorsolateral PFC, and parietal cortex. In the liquid condition, the identical regions instead showed a shift in transient activation from a reactive control pattern (primary probe-based activation during no-incentive trials to proactive control (primary cue-based activation during rewarded trials. Additionally, liquid-specific tonic activation increases were found in subcortical regions (amygdala, dorsal striatum, nucleus accumbens, indicating an anatomical double dissociation in the locus of sustained activation. CONCLUSIONS/SIGNIFICANCE: These different activation patterns suggest that primary and secondary rewards may produce similar behavioral changes through distinct neural mechanisms of reinforcement. Further, our results provide new evidence for the flexibility of cognitive control, in terms of the temporal dynamics of activation.

  20. Dynamic changes in plant secondary metabolites during UV acclimation in Arabidopsis thaliana.

    Science.gov (United States)

    Hectors, Kathleen; Van Oevelen, Sandra; Geuns, Jan; Guisez, Yves; Jansen, Marcel A K; Prinsen, Els

    2014-10-01

    Plants respond to environmental stress by synthesizing a range of secondary metabolites for defense purposes. Here we report on the effect of chronic ultraviolet (UV) radiation on the accumulation of plant secondary metabolites in Arabidopsis thaliana leaves. In the natural environment, UV is a highly dynamic environmental parameter and therefore we hypothesized that plants are continuously readjusting levels of secondary metabolites. Our data show distinct kinetic profiles for accumulation of tocopherols, polyamines and flavonoids upon UV acclimation. The lipid-soluble antioxidant α-tocopherol accumulated fast and remained elevated. Polyamines accumulated fast and transiently. This fast response implies a role for α-tocopherol and polyamines in short-term UV response. In contrast, an additional sustained accumulation of flavonols took place. The distinct accumulation patterns of these secondary metabolites confirm that the UV acclimation process is a dynamic process, and indicates that commonly used single time-point analyses do not reveal the full extent of UV acclimation. We demonstrate that UV stimulates the accumulation of specific flavonol glycosides, i.e. kaempferol and (to a lesser extent) quercetin di- and triglycosides, all specifically rhamnosylated at position seven. All metabolites were identified by Ultra Performance Liquid Chromatography (UPLC)-coupled tandem mass spectrometry. Some of these flavonol glycosides reached steady-state levels in 3-4 days, while concentrations of others are still increasing after 12  days of UV exposure. A biochemical pathway for these glycosides is postulated involving 7-O-rhamnosylation for the synthesis of all eight metabolites identified. We postulate that this 7-O-rhamnosylation has an important function in UV acclimation.

  1. Determination of secondary ion mass spectrometry relative sensitivity factors for polar and non-polar ZnO

    Science.gov (United States)

    Laufer, Andreas; Volbers, Niklas; Eisermann, Sebastian; Potzger, Kay; Geburt, Sebastian; Ronning, Carsten; Meyer, Bruno K.

    2011-11-01

    Zinc oxide (ZnO) is regarded as a promising material for optoelectronic devices, due to its electronic properties. Solely, the difficulty in obtaining p-type ZnO impedes further progress. In this connection, the identification and quantification of impurities is a major demand. For quantitative information using secondary ion mass spectrometry (SIMS), so-called relative sensitivity factors (RSF) are mandatory. Such conversion factors did not yet exist for ZnO. In this work, we present the determined RSF values for ZnO using primary (ion implanted) as well as secondary (bulk doped) standards. These RSFs have been applied to commercially available ZnO substrates of different surface termination (a-plane, Zn-face, and O-face) to quantify the contained impurities. Although these ZnO substrates originate from the same single-crystal, we observe discrepancies in the impurity concentrations. These results cannot be attributed to surface termination dependent RSF values for ZnO.

  2. Electron dynamics at surfaces induced by highly charged ions

    NARCIS (Netherlands)

    Morgenstern, R

    1998-01-01

    Energy spectra of electrons resulting from hydrogen-like multiply charged N6+ and Q(7+) ions on various surfaces are presented and discussed. Por metal target surfaces thr formation and decay of hollow atoms during the approach towards the surface is rather well understood in terms of the classical

  3. WIMP detection and slow ion dynamics in carbon nanotube arrays

    CERN Document Server

    Cavoto, G; Cocina, F; Ferretti, J; Polosa, A D

    2016-01-01

    Large arrays of aligned carbon nanotubes (CNTs), open at one end, could be used as target material for the directional detection of weakly interacting dark matter particles (WIMPs). As a result of a WIMP elastic scattering on a CNT, a carbon ion might be injected in the body of the array and propagate through multiple collisions within the lattice. The ion may eventually emerge from the surface with open end CNTs, provided that its longitudinal momentum is large enough to compensate energy losses and its transverse momentum approaches the channeling conditions in a single CNT. Therefore, the angle formed between the WIMP wind apparent orientation and the direction of parallel carbon nanotube axes must be properly chosen. We focus on very low ion recoil kinetic energies, related to low mass WIMPs (~ 10 GeV) where most of the existing experiments have low sensitivity. Relying on some exact results on two-dimensional lattices of circular obstacles, we study the low energy ion motion in the transverse plane with ...

  4. Electron dynamics at surfaces induced by highly charged ions

    NARCIS (Netherlands)

    Morgenstern, R

    Energy spectra of electrons resulting from hydrogen-like multiply charged N6+ and Q(7+) ions on various surfaces are presented and discussed. Por metal target surfaces thr formation and decay of hollow atoms during the approach towards the surface is rather well understood in terms of the classical

  5. WIMP detection and slow ion dynamics in carbon nanotube arrays.

    Science.gov (United States)

    Cavoto, G; Cirillo, E N M; Cocina, F; Ferretti, J; Polosa, A D

    2016-01-01

    Large arrays of aligned carbon nanotubes (CNTs), open at one end, could be used as target material for the directional detection of weakly interacting dark matter particles (WIMPs). As a result of a WIMP elastic scattering on a CNT, a carbon ion might be injected in the body of the array and propagate through multiple collisions within the lattice. The ion may eventually emerge from the surface with open end CNTs, provided that its longitudinal momentum is large enough to compensate energy losses and its transverse momentum approaches the channeling conditions in a single CNT. Therefore, the angle formed between the WIMP wind apparent orientation and the direction of parallel carbon nanotube axes must be properly chosen. We focus on very low ion recoil kinetic energies, related to low mass WIMPs ([Formula: see text] GeV) where most of the existing experiments have low sensitivity. Relying on some exact results on two-dimensional lattices of circular obstacles, we study the low energy ion motion in the transverse plane with respect to CNT directions. New constraints are obtained on how to devise the CNT arrays to maximize the target channeling efficiency.

  6. WIMP detection and slow ion dynamics in carbon nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Cavoto, G. [INFN Sezione di Roma, Rome (Italy); Cirillo, E.N.M. [Sapienza Universita di Roma, Dipartimento SBAI, Rome (Italy); Cocina, F. [Sapienza Universita di Roma, Dipartimento di Fisica, Rome (Italy); Ferretti, J. [Sapienza Universita di Roma, Dipartimento di Fisica (Italy); INFN Sezione di Roma, Rome (Italy); Polosa, A.D. [Sapienza Universita di Roma, Dipartimento di Fisica (Italy); CERN, Theory Division, Geneva (Switzerland); INFN Sezione di Roma, Rome (Italy)

    2016-06-15

    Large arrays of aligned carbon nanotubes (CNTs), open at one end, could be used as target material for the directional detection of weakly interacting dark matter particles (WIMPs). As a result of a WIMP elastic scattering on a CNT, a carbon ion might be injected in the body of the array and propagate through multiple collisions within the lattice. The ion may eventually emerge from the surface with open end CNTs, provided that its longitudinal momentum is large enough to compensate energy losses and its transverse momentum approaches the channeling conditions in a single CNT. Therefore, the angle formed between the WIMP wind apparent orientation and the direction of parallel carbon nanotube axes must be properly chosen. We focus on very low ion recoil kinetic energies, related to low mass WIMPs (∼ 11 GeV) where most of the existing experiments have low sensitivity. Relying on some exact results on two-dimensional lattices of circular obstacles, we study the low energy ion motion in the transverse plane with respect to CNT directions. New constraints are obtained on how to devise the CNT arrays to maximize the target channeling efficiency. (orig.)

  7. Critical Review of Commercial Secondary Lithium-Ion Battery Safety Standards

    Science.gov (United States)

    Jones, Harry P.; Chapin, Thomas, J.; Tabaddor, Mahmod

    2010-09-01

    The development of Li-ion cells with greater energy density has lead to safety concerns that must be carefully assessed as Li-ion cells power a wide range of products from consumer electronics to electric vehicles to space applications. Documented field failures and product recalls for Li-ion cells, mostly for consumer electronic products, highlight the risk of fire, smoke, and even explosion. These failures have been attributed to the occurrence of internal short circuits and the subsequent thermal runaway that can lead to fire and explosion. As packaging for some applications include a large number of cells, the risk of failure is likely to be magnified. To address concerns about the safety of battery powered products, safety standards have been developed. This paper provides a review of various international safety standards specific to lithium-ion cells. This paper shows that though the standards are harmonized on a host of abuse conditions, most lack a test simulating internal short circuits. This paper describes some efforts to introduce internal short circuit tests into safety standards.

  8. Role of secondary emission on discharge dynamics in an atmospheric pressure dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Tay, W. H.; Kausik, S. S.; Yap, S. L.; Wong, C. S., E-mail: cswong@um.edu.my [Plasma Technology Research Centre, Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-04-15

    The discharge dynamics in an atmospheric pressure dielectric barrier discharge (DBD) is studied in a DBD reactor consisting of a pair of stainless steel parallel plate electrodes. The DBD discharge has been generated by a 50 Hz ac high voltage power source. The high-speed intensified charge coupled device camera is used to capture the images of filaments occurring in the discharge gap. It is observed that frequent synchronous breakdown of micro discharges occurs across the discharge gap in the case of negative current pulse. The experimental results reveal that secondary emissions from the dielectric surface play a key role in the synchronous breakdown of plasma filaments.

  9. Secondary Ion Mass Spectrometry Imaging of Molecular Distributions in Cultured Neurons and Their Processes: Comparative Analysis of Sample Preparation

    Science.gov (United States)

    Tucker, Kevin R.; Li, Zhen; Rubakhin, Stanislav S.; Sweedler, Jonathan V.

    2012-11-01

    Neurons often exhibit a complex chemical distribution and topography; therefore, sample preparation protocols that preserve structures ranging from relatively large cell somata to small neurites and growth cones are important factors in secondary ion mass spectrometry (SIMS) imaging studies. Here, SIMS was used to investigate the subcellular localization of lipids and lipophilic species in neurons from Aplysia californica. Using individual neurons cultured on silicon wafers, we compared and optimized several SIMS sampling approaches. After an initial step to remove the high salt culturing media, formaldehyde, paraformaldehyde, and glycerol, and various combinations thereof, were tested for their ability to achieve cell stabilization during and after the removal of extracellular media. These treatments improved the preservation of cellular morphology as visualized with SIMS imaging. For analytes >250 Da, coating the cell surface with a 3.2 nm-thick gold layer increased the ion intensity; multiple analytes previously not observed or observed at low abundance were detected, including intact cholesterol and vitamin E molecular ions. However, once a sample was coated, many of the lower molecular mass (cell stabilization with glycerol and 4 % paraformaldehyde. The sample preparation methods described here enhance SIMS imaging of processes of individual cultured neurons over a broad mass range with enhanced image contrast.

  10. Quantification of grafted poly(ethylene glycol)-silanes on silicon by time-of-flight secondary ion mass spectrometry.

    Science.gov (United States)

    Norrman, K; Papra, A; Kamounah, F S; Gadegaard, N; Larsen, N B

    2002-07-01

    Silicon grafted monodisperse poly(ethylene glycol) (PEG) silanes with various PEG chain lengths and mixtures of these were systematically analyzed with static time-of-flight secondary ion mass spectrometry (TOF-SIMS). The mass spectra show differences in the various relative signal intensities, an observation that was used to elucidate important aspects of the grafting process. The relationship between PEG-silane fragment ion abundances and Si(+) ion abundances were used to (i) qualitatively describe layer thicknesses of grafted mixtures of PEG-silanes on silicon, (ii) construct a calibration curve from which PEG chain length (or molecular mass) can be determined and (iii) quantitatively determine surface mixture compositions of grafted monodisperse PEG-silanes of different chain lengths (3, 7 and 11 PEG units). The results suggest that discrimination does take place in the adsorption process. The PEG-silane with the shorter PEG chain is discriminated for mixtures containing PEG3-silane, whereas the PEG-silane with the longer PEG chain is discriminated in PEG7/PEG11-silane mixtures. The origin of this difference in adsorption behavior is not well understood. Aspects of the grafting process and the TOF-SIMS analyses are discussed.

  11. Palmitic acid, verified by lipid profiling using secondary ion mass spectrometry, demonstrates anti-multiple myeloma activity.

    Science.gov (United States)

    Nagata, Yasuyuki; Ishizaki, Itsuko; Waki, Michihiko; Ide, Yoshimi; Hossen, Md Amir; Ohnishi, Kazunori; Miyayama, Takuya; Setou, Mitsutoshi

    2015-06-01

    Recent studies indicate that lipid metabolic changes affect the survival of multiple myeloma (MM) cells. Time-of-flight secondary ion mass spectrometry (TOF-SIMS), an imaging mass spectrometry technique, is used to visualize the subcellular distribution of biomolecules including lipids. We therefore applied this method to human clinical specimens to analyze the membrane fatty acid composition and determine candidate molecules for MM therapies. We isolated MM cells and normal plasma cells (PCs) from bone marrow aspirates of MM patients and healthy volunteers, respectively, and these separated cells were analyzed by TOF-SIMS. Multiple ions including fatty acids were detected and their ion counts were estimated. In MM cells, the mean intensity of palmitic acid was significantly lower than the mean intensity in PCs. In a cell death assay, palmitic acid reduced U266 cell viability dose-dependently at doses between 50 and 1000 μM. The percentage of apoptotic cells increased from 24h after palmitic acid administration. In contrast, palmitic acid had no effect on the viability of normal peripheral blood mononuclear cells (PBMCs). The results of this study indicated that palmitic acid is a potential candidate for novel therapeutic agents that specifically attack MM cells.

  12. Li ion diffusion mechanisms in LiFePO4: an ab initio molecular dynamics study.

    Science.gov (United States)

    Yang, Jianjun; Tse, John S

    2011-11-17

    The mechanisms for thermal (self) diffusion of Li ions in fully lithiated LiFePO(4) have been investigated with spin polarized ab initio molecular dynamics calculations. The effect of electron correlation is taken into account with the GGA+U formalism. It was found that Li ion diffusion is not a continuous process but through a series of jumps from one site to another. A dominant process is the hopping between neighboring Li sites around the PO(4) groups, which results in a zigzag pathway along the crystallographic b-axis. This observation is in agreement with a recent neutron diffraction experiment. A second process involves the collaborative movements of the Fe ions leading to the formation of antisite defects and promotes Li diffusion across the Li ion channels. The finding of the second mechanism demonstrates the benefit of ab initio molecular dynamics simulation in sampling diffusion pathways that may not be anticipated.

  13. Parton-hadron dynamics in heavy-ion collisions

    CERN Document Server

    Bratkovskaya, E L; Cassing, W; Konchakovski, V P; Linnyk, O; Marty, R; Berrehrah, H

    2013-01-01

    The dynamics of partons and hadrons in relativistic nucleus-nucleus collisions is analyzed within the novel Parton-Hadron-String Dynamics (PHSD) transport approach, which is based on a dynamical quasiparticle model for the partonic phase (DQPM) including a dynamical hadronization scheme. The PHSD approach is applied to nucleus-nucleus collisions from low SPS to LHC energies. The traces of partonic interactions are found in particular in the elliptic flow of hadrons and in their transverse mass spectra. We investigate also the equilibrium properties of strongly-interacting infinite parton-hadron matter characterized by transport coefficients such as shear and bulk viscosities and the electric conductivity in comparison to lattice QCD results.

  14. Ion dynamics in cationic lipid bilayer systems in saline solutions

    DEFF Research Database (Denmark)

    Miettinen, Markus S; Gurtovenko, Andrey A; Vattulainen, Ilpo

    2009-01-01

    mixture of cationic dimyristoyltrimethylammoniumpropane (DMTAP) and zwitterionic (neutral) dimyristoylphosphatidylcholine (DMPC) lipids. Using atomistic molecular dynamics simulations, we address the effects of bilayer composition (cationic to zwitterionic lipid fraction) and of NaCl electrolyte...

  15. Effect of initial ion positions on the interactions of monovalent and divalent ions with a DNA duplex as revealed with atomistic molecular dynamics simulations.

    Science.gov (United States)

    Robbins, Timothy J; Wang, Yongmei

    2013-01-01

    Monovalent (Na(+)) and divalent (Mg(2+)) ion distributions around the Dickerson-Drew dodecamer were studied by atomistic molecular dynamics (MD) simulations with AMBER molecular modeling software. Different initial placements of ions were tried and the resulting effects on the ion distributions around DNA were investigated. For monovalent ions, results were found to be nearly independent of initial cation coordinates. However, Mg(2+) ions demonstrated a strong initial coordinate dependent behavior. While some divalent ions initially placed near the DNA formed essentially permanent direct coordination complexes with electronegative DNA atoms, Mg(2+) ions initially placed further away from the duplex formed a full, nonexchanging, octahedral first solvation shell. These fully solvated cations were still capable of binding with DNA with events lasting up to 20 ns, and in comparison were bound much longer than Na(+) ions. Force field parameters were also investigated with modest and little differences arising from ion (ions94 and ions08) and nucleic acid description (ff99, ff99bsc0, and ff10), respectively. Based on known Mg(2+) ion solvation structure, we conclude that in most cases Mg(2+) ions retain their first solvation shell, making only solvent-mediated contacts with DNA duplex. The proper way to simulate Mg(2+) ions around DNA duplex, therefore, should begin with ions placed in the bulk water.

  16. Dynamics of K* mesons in heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Ilner, Andrej; Cabrera, Daniel; Bratkovskaya, Elena [Institut fuer Theoretische Physik, Johann Wolfgang-Goethe Universitaet, Frankfurt am Main (Germany); Frankfurt Institute for Advanced Studies, Frankfurt am Main (Germany)

    2015-07-01

    We investigate the dynamics of strange vector resonances (the K{sup *} and the anti-K{sup *}) in the Parton-Hardon-String Dynamics (PHSD) transport approach. The time evolution of the production of the (anti-)K{sup *} resonances in the QGP phase by quark fusion as well as from hadronic sources is presented. We also investigate the effect of final state hadronic interaction (absorption and rescattering) on experimental observables.

  17. Modelling non-equilibrium secondary organic aerosol formation and evaporation with the aerosol dynamics, gas- and particle-phase chemistry kinetic multilayer model ADCHAM

    Energy Technology Data Exchange (ETDEWEB)

    Roldin, P.; Eriksson, A. C.; Nordin, E. Z.; Hermansson, E.; Mogensen, Ditte; Rusanen, A.; Boy, Michael; Swietlicki, E.; Svenningsson, Birgitta; Zelenyuk, Alla; Pagels, J.

    2014-08-11

    We have developed the novel Aerosol Dynamics, gas- and particle- phase chemistry model for laboratory CHAMber studies (ADCHAM). The model combines the detailed gas phase Master Chemical Mechanism version 3.2, an aerosol dynamics and particle phase chemistry module (which considers acid catalysed oligomerization, heterogeneous oxidation reactions in the particle phase and non-ideal interactions between organic compounds, water and inorganic ions) and a kinetic multilayer module for diffusion limited transport of compounds between the gas phase, particle surface and particle bulk phase. In this article we describe and use ADCHAM to study: 1) the mass transfer limited uptake of ammonia (NH3) and formation of organic salts between ammonium (NH4+) and carboxylic acids (RCOOH), 2) the slow and almost particle size independent evaporation of α-pinene secondary organic aerosol (SOA) particles, and 3) the influence of chamber wall effects on the observed SOA formation in smog chambers.

  18. Effects of trace metal ions on secondary metabolism and the morphological development of streptomycetes.

    Science.gov (United States)

    Locatelli, Fabricio M; Goo, Kian-Sim; Ulanova, Dana

    2016-05-01

    Bacteria belonging to the Streptomyces genus are characterized by a complex life cycle and the production of many bioactive secondary metabolites. Trace metals play an important role in streptomycete metabolism and development, however, their mechanism of action is not fully understood. In this review, we summarize the present knowledge on metallosensing regulators and trace metal action, as well as discuss the possible application in natural product discovery.

  19. Secondary Structure Analysis of Native Cellulose by Molecular Dynamics Simulations with Coarse-Grained Model

    Institute of Scientific and Technical Information of China (English)

    Shuai Wu; Hai-yi Zhan; Hong-ming Wang; Yan Ju

    2012-01-01

    The secondary structure of different Ⅰβ cellulose was analyzed by a molecular dynamics simulation with MARTINI coarse-grained force field,where each chain of the cellulose includes 40 D-glucoses units.Calculation gives a satisfied description about the secondary structure of the cellulose.As the chain number increasing,the cellulose becomes the form of a helix,with the diameter of screw growing and spiral rising.Interestingly,the celluloses with chain number N of 4,6,24 and 36 do show right-hand twisting.On the contrast,the celluloses with N of 8,12,16 chains are left-hand twisting.These simulations indicate that the cellulose with chain number larger than 36 will break down to two parts.Besides,the result indicates that 36-chains cellulose model is the most stable among all models.Furthermore,the Lennard-Jones potential determines the secondary structure.In addition,an equation was set up to analyze the twisting structure.

  20. High pressure studies on structural and secondary relaxation dynamics in silyl derivative of D-glucose

    Science.gov (United States)

    Minecka, Aldona; Kamińska, Ewa; Tarnacka, Magdalena; Dzienia, Andrzej; Madejczyk, Olga; Waliłko, Patrycja; Kasprzycka, Anna; Kamiński, Kamil; Paluch, Marian

    2017-08-01

    In this paper, broadband dielectric spectroscopy was applied to investigate molecular dynamics of 1,2,3,4,6-penta-O-(trimethylsilyl)-D-glucopyranose (S-GLU) at ambient and elevated pressures. Our studies showed that apart from the structural relaxation, one well resolved asymmetric secondary process (initially labeled as β) is observed in the spectra measured at p = 0.1 MPa. Analysis with the use of the coupling model and criterion proposed by Ngai and Capaccioli indicated that the β-process in S-GLU is probably a Johari-Goldstein relaxation of intermolecular origin. Further high pressure experiments demonstrated that there are in fact two secondary processes contributing to the β-relaxation. Therefore, one can postulate that the coupling model is a necessary, but not sufficient criterion to identify the true nature of the given secondary relaxation process. The role of pressure experiments in better understanding of the molecular origin of local mobility seems to be much more important. Interestingly, our research also revealed that the structural relaxation in S-GLU is very sensitive to compression. It was reflected in an extremely high pressure coefficient of the glass transition temperature (dTg/dp = 412 K/GPa). According to the literature data, such a high value of dTg/dp has not been obtained so far for any H-bonded, van der Waals, or polymeric glass-formers.

  1. Uptake of hydrogen from some carbon fibres examined by Secondary Ion Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Madronero, A., E-mail: inmac09@cenim.csic.es [CENIM (CSIC), Avda Gregorio del Amo 8, 28040 Madrid (Spain); Aguado, J. [Department of Inorganic Chemistry, Universidad Nacional de Educacion a Distancia, Madrid (Spain); Blanco, J.M. [Department of Electronic Technology, Telecommunications Engineering Faculty, Polytechnic University of Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Lopez, A. [CIEMAT, 04200 Tabernas, Almeria (Spain)

    2011-01-01

    The use of carbonaceous materials for hydrogen storage is not as simple as it may seem. Hydrogen atoms have different bonding energies and are incorporated into different types of these materials. Therefore, it is particularly important to distinguish between the surfacial atoms and those that are embedded in the bulk of the sample. SIMS spectrograph with periodical interruptions of the ion beam enables us to appreciate that at room temperature and in high vacuum, some outgassing of the surfacial hydrogen takes place.

  2. Fast cooling of trapped ions using the dynamical Stark shift gate

    OpenAIRE

    Retzker, A.; Plenio, M. B.

    2006-01-01

    A laser cooling scheme for trapped ions is presented which is based on the fast dynamical Stark shift gate, described in [Jonathan etal, PRA 62, 042307]. Since this cooling method does not contain an off resonant carrier transition, low final temperatures are achieved even in traveling wave light field. The proposed method may operate in either pulsed or continuous mode and is also suitable for ion traps using microwave addressing in strong magnetic field gradients.

  3. Dynamic instability at the origin of oxygen ion conduction in solid oxides at ambient temperature

    Indian Academy of Sciences (India)

    Helmut Schober; Werner Paulus; Tanguy Berthier; Olivier Hernandez; Monica Ceretti; Stefan Eibl; Mark Johnson; Marie Plazanet; Carlo Lamberti

    2008-11-01

    The conduction of ions in solids is of paramount importance for many technological devices like solid oxide fuel cells. It is inherent to solids that ions are trapped within potential wells. Their transport thus has to be activated at the price of elevated temperatures, a condition that is often incompatible with technological applications. While atomic vibrations have the potential of assisting the diffusion process, little is known about the exact conditions that have to be reunited to trigger such a process. Here we show that dynamic instability is responsible for the large ion conduction in SrFeO2.5 with brownmillerite-type structure. Using ab-initio molecular dynamics calculations we observe the migration of oxygen ions away from the original lattice positions into the vacancy channels of the brownmillerite structure. The escape of the oxygen ion is rendered possible by the destabilization of a shallow potential well due to low-lying vibrational modes, the existence of which is confirmed by neutron spectroscopy. Analysing the lattice dynamics as a function of structural parameters it is possible to identify the structural subtleties responsible for the instability. It is found that in the isostructural compound CaFeO2.5, fast oxygen ion diffusion is absent at low temperatures. The origin of this behaviour lies with the slightly different iron–oxygen distances rendering the potentials better defined and less amenable to dynamical destabilization. The here-introduced concept of dynamical instability is not restricted to the discussed class of materials but may be applied to any system that features ion conduction at low temperatures.

  4. Potentials for Spatial Geometry Curriculum Development with Three-Dimensional Dynamic Geometry Software in Lower Secondary Mathematics

    Science.gov (United States)

    Miyazaki, Mikio; Kimiho, Chino; Katoh, Ryuhei; Arai, Hitoshi; Ogihara, Fumihiro; Oguchi, Yuichi; Morozumi, Tatsuo; Kon, Mayuko; Komatsu, Kotaro

    2012-01-01

    Three-dimensional dynamic geometry software has the power to enhance students' learning of spatial geometry. The purpose of this research is to clarify what potential using three-dimensional dynamic geometry software can offer us in terms of how to develop the spatial geometry curriculum in lower secondary schools. By focusing on the impacts the…

  5. Potentials for Spatial Geometry Curriculum Development with Three-Dimensional Dynamic Geometry Software in Lower Secondary Mathematics

    Science.gov (United States)

    Miyazaki, Mikio; Kimiho, Chino; Katoh, Ryuhei; Arai, Hitoshi; Ogihara, Fumihiro; Oguchi, Yuichi; Morozumi, Tatsuo; Kon, Mayuko; Komatsu, Kotaro

    2012-01-01

    Three-dimensional dynamic geometry software has the power to enhance students' learning of spatial geometry. The purpose of this research is to clarify what potential using three-dimensional dynamic geometry software can offer us in terms of how to develop the spatial geometry curriculum in lower secondary schools. By focusing on the impacts the…

  6. [Dynamic changes of soil ecological factors in Ziwuling secondary forest area under human disturbance].

    Science.gov (United States)

    Zhou, Zhengchao; Shangguan, Zhouping

    2005-09-01

    As a widespread natural phenomenon, disturbance is considered as a discrete event occurred in natural ecosystems at various spatial and temporal scales. The occurrence of disturbance directly affects the structure, function and dynamics of ecosystems. Forest logging and forestland assart, the common human disturbances in forest area, have caused the dynamic changes of forest soil ecological factors in a relatively consistent environment. A study on the dynamics of soil bulk density, soil organic matter, soil microbes and other soil ecological factors under different human disturbance (logging and assart, logging but without assart, control) were conducted in the Ziwuling secondary forest area. The results indicated that human disturbance had a deep impact on the soil ecological factors, with soil physical and chemical properties become bad, soil organic matter decreased from 2.2% to 0.8%, and soil stable aggregates dropped more than 30%. The quantity of soil microbes decreased sharply with enhanced human disturbance. Soil organic matter and soil microbes decreased more than 50% and 90%, respectively, and soil bulk density increased from 0.9 to 1.21 g x cm(-3) with increasing soil depth. Ditch edge level also affected the dynamics of soil factors under the same disturbance, with a better soil ecological condition at low-than at high ditch edge level.

  7. The research dynamic: a professional development model for secondary school science teachers.

    Science.gov (United States)

    Silverman, Philip M

    2009-01-01

    This essay summarizes the author's 10 years of experience at the Oklahoma Medical Research Foundation mentoring secondary school science teachers during 8-wk Summer Research Institutes. The summary is presented as a learning model, which we call the research dynamic. This model consists of three interlocked components: specified ignorance, peer interactions, and gateway experiments. Specified ignorance is based on the work of the sociologist Robert K. Merton. It is essentially the art of highlighting what is not known about a phenomenon but must become known for further progress. In practice, specified ignorance is framed as a hypothesis, a prediction, or a question. It is commonly the outcome of peer interactions, which are the second essential component of the research dynamic. Peer interactions are the inevitable outcome of having teachers work together in the same laboratory on related research topics. These topics are introduced as gateway experiments, the third component. The most important attribute of gateway experiments is their authenticity. These experiments, when first carried out, opened new scientific vistas. They are also technically, conceptually, and logically simple. We illustrate the research dynamic with a line of seminal experiments in biochemical genetics. We provide evidence that the research dynamic produced significantly positive effects on teachers' confidence in their professional preparedness.

  8. Molecular dynamics simulations of ion irradiation of a surface under an electric field

    Energy Technology Data Exchange (ETDEWEB)

    Parviainen, S., E-mail: stefan.parviainen@iki.fi; Djurabekova, F.

    2014-11-15

    The presence of high electric fields may affect significantly the process of sputtering of metal surfaces by energetic ions, especially in the vicinity of rough surface features. The effect can be significant if the energy of ions is fairly low. Moreover, the nanosized rough surface features – invisible to a naked eye, both intrinsic ones due to technological processing of surfaces and those forming because of sputtering – may affect the topology of surface erosion under ion bombardment. In this work we study by means of concurrent electrodynamics–molecular dynamics the sputtering yield of Cu{sup +} ions hitting a flat Cu surface or a nanosized Cu protrusion as a function of both ion energy and electric field strength. The results show that the sputtering yield is significantly enhanced in the presence of an electric field in both cases.

  9. Reaction dynamics induced by the radioactive ion beam {sup 7}Be on medium-mass and heavy targets

    Energy Technology Data Exchange (ETDEWEB)

    Mazzocco, M., E-mail: marco.mazzocco@pd.infn.it; Stefanini, C.; Strano, E.; Torresi, D.; Lay, J. A.; Molini, P.; Soramel, F. [Dipartimento di Fisica e Astronomia, Università di Padova, via F. Marzolo 8, I-35131 Padova (Italy); INFN-Sezione di Padova, via F. Marzolo 8, I-35131 Padova (Italy); Boiano, A.; Parascandolo, C.; Pierroutsakou, D.; Di Meo, P. [INFN-Sezione di Napoli, via Cintia, I-80126, Napoli (Italy); Boiano, C. [INFN-Sezione di Milano, via Celoria 16, I-20133, Napoli (Italy); La Commara, M.; Sandoli, M.; Silvestri, R. [INFN-Sezione di Napoli, via Cintia, I-80126, Napoli (Italy); Dipartimento di Fisica, Università di Napoli “Federico II”, via Cintia, I-80126, Napoli (Italy); Manea, C.; Nicoletto, M. [INFN-Sezione di Padova, via F. Marzolo 8, I-35131 Padova (Italy); Acosta, L. [Departamento de Fìsica Aplicada, Universidad de Huelva, Campus de El Carmen, E-21071 Huelva (Spain); INFN-Sezione di Catania, via Santa Sofia 64, I-95123, Catania (Italy); Fernandez-Garcia, J. P. [INFN-Sezione di Catania, via Santa Sofia 64, I-95123, Catania (Italy); Glodariu, T. [National Institute for Physics and Nuclear Engineering (NIPNE), 30 Reactorului St., 077125 Magurele (Romania); and others

    2015-10-15

    We studied the reaction dynamics induced at Coulomb barrier energies by the weakly-bound Radioactive Ion Beam {sup 7}Be (S{sub α} = 1.586 MeV) on medium-mass ({sup 58}Ni) and heavy ({sup 208}Pb) targets. The experiments were performed at INFN-LNL (Italy), where a 2-3×10{sup 5} pps {sup 7}Be secondary beam was produced with the RIB in-flight facility EXOTIC. Charged reaction products were detected by means of high-granularity silicon detectors in rather wide angular ranges. The contribution presents an up-to-date status of the data analysis and theoretical interpretation for both systems.

  10. Determination of metal ions by fluorescence anisotropy exhibits a broad dynamic range

    Science.gov (United States)

    Thompson, Richard B.; Maliwal, Badri P.; Fierke, Carol A.

    1998-05-01

    Recently, we have shown that metal ions free in solution may be determined at low levels by fluorescence anisotropy (polarization) measurements. Anisotropy measurements enjoy the advantages of wavelength ratiometric techniques for determining metal ions such as calcium, because anisotropy measurements are ratiometric as well. Furthermore, fluorescence anisotropy may be imaged in the microscope. An advantage of anisotropy not demonstrated for wavelength ratiometric approaches using indicators such as Fura-2 and Indo-1 is that under favorable circumstances anisotropy-based determinations exhibit a much broader dynamic range in metal ion concentration. Determinations of free Zn(II) in the picomolar range are demonstrated.

  11. Molecular Dynamics Simulation of Multivalent-Ion Mediated Attraction between DNA Molecules

    Science.gov (United States)

    Dai, Liang; Mu, Yuguang; Nordenskiöld, Lars; van der Maarel, Johan R. C.

    2008-03-01

    All atom molecular dynamics simulations with explicit water were done to study the interaction between two parallel double-stranded DNA molecules in the presence of the multivalent counterions putrescine (2+), spermidine (3+), spermine (4+) and cobalt hexamine (3+). The inter-DNA interaction potential is obtained with the umbrella sampling technique. The attractive force is rationalized in terms of the formation of ion bridges, i.e., multivalent ions which are simultaneously bound to the two opposing DNA molecules. The lifetime of the ion bridges is short on the order of a few nanoseconds.

  12. Dynamics of low- and high-Z metal ions emitted during nanosecond laser-produced plasmas

    Science.gov (United States)

    Elsied, Ahmed M.; Diwakar, Prasoon K.; Polek, Mathew; Hassanein, Ahmed

    2016-11-01

    Dynamics of metal ions during laser-produced plasmas was studied. A 1064 nm, Nd: YAG laser pulse was used to ablate pure Al, Fe, Co, Mo, and Sn samples. Ion flux and velocity were measured using Faraday cup ion collector. Time-of-flight measurements showed decreasing ion flux and ion velocity with increasing atomic weight, and heavy metal ion flux profile exhibited multiple peaks that was not observed in lighter metals. Slow peak was found to follow shifted Maxwell Boltzmann distribution, while the fast peak was found to follow Gaussian distribution. Ion flux angular distribution that was carried out on Mo and Al using fixed laser intensity 2.5 × 1010 W/cm2 revealed that the slow ion flux peaks at small angles, that is, close to normal to the target ˜0° independent of target's atomic weight, and fast ion flux for Mo peaks at large angles ˜40° measured from the target normal, while it completely absents for Al. This difference in spatial and temporal distribution reveals that the emission mechanism of the fast and slow ions is different. From the slow ion flux angular distribution, the measured plume expansion ratio (plume forward peaking) was 1.90 and 2.10 for Al and Mo, respectively. Moreover, the effect of incident laser intensity on the ion flux emission as well as the emitted ion velocity were investigated using laser intensities varying from 2.5 × 1010 W/cm2 to 1.0 × 1011 W/cm2. Linear increase of fast ion flux and velocity, and quadratic increase of slow ion flux and velocity were observed. For further understanding of plume dynamics, laser optical emission spectroscopy was used to characterize Sn plasma by measuring the temporal and spatial evolution of plasma electron density Ne and electron temperature Te. At 3.5 mm away from the target, plasma density showed slow decrease with time, however electron temperature was observed to decrease dramatically. The maximum plasma density and temperature occurred at 0.5 mm away from target and were measured to

  13. Molecular Dynamics Simulations of Ion Transport and Mechanisms in Polymer Nanocomposites

    Science.gov (United States)

    Mogurampelly, Santosh; Ganesan, Venkat

    2015-03-01

    Using all atom molecular dynamics and trajectory-extending kinetic Monte Carlo simulations, we study the influence of Al2O3 nanoparticles on the transport properties of Li+ ions in polymer electrolytes consisting of polyethylene oxide (PEO) melt solvated with LiBF4 salt. We observe that the nanoparticles have a strong influence on polymer segmental dynamics which in turn correlates with the mobility of Li+ ions. Explicitly, polymer segmental relaxation times and Li+ ion residence times around polymer were found to increase with the addition of nanoparticles. We also observe that increasing short range repulsive interactions between nanoparticles and polymer membrane leads to increasing polymer dynamics and ion mobility. Overall, our simulation results suggest that nanoparticle induced changes in conformational and dynamic properties of the polymer influences the ion mobilities in polymer electrolytes and suggests possible directions for using such findings to improve the polymer matrix conductivity. The authors acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing computing resources that have contributed to the research.

  14. Study of Effect of Ion Source Energy Spread on RFQ Beam Dynamics at REX-ISOLDE

    CERN Document Server

    Fraser, M A

    2013-01-01

    With an upgrade to the Electron Beam Ion Source (EBIS) at REX under consideration a study was launched in order to understand the effect of an increased energy spread from the ion source on the beam dynamics of the RFQ. Due to the increased electron beam potential needed to achieve the upgrade’s charge breeding specification it is expected that the energy spread of the beam will increase from today’s estimated value of approximately +-0.1%. It is shown through beam dynamics simulations that the energy spread can be increased to +-1% without significant degradation of the beam quality output by the RFQ.

  15. Femtosecond photodissociation dynamics of I studied by ion imaging

    DEFF Research Database (Denmark)

    Larsen, J.J.; Bjerre, N.; Mørkbak, N.J.

    1998-01-01

    on imaging is employed to analyze the fragments from timed Coulomb explosion studies of femtosecond (fs) molecular dynamics. The technique provides high detection efficiency and direct recording of the two-dimensional velocity of all ionized fragments. We illustrate the approach by studying photo...... agreement with quantum mechanical wave packet simulations. We discuss the perspectives for extending the studies to photochemical reactions of small polyatomic molecules......on imaging is employed to analyze the fragments from timed Coulomb explosion studies of femtosecond (fs) molecular dynamics. The technique provides high detection efficiency and direct recording of the two-dimensional velocity of all ionized fragments. We illustrate the approach by studying...

  16. Probing Li-ion Dynamics and Reactivity on the Nanoscale

    Energy Technology Data Exchange (ETDEWEB)

    Kalinin, Sergei V [ORNL; Balke, Nina [ORNL; Jesse, Stephen [ORNL; Tselev, Alexander [ORNL; Kumar, Amit [ORNL; Arruda, Thomas M [ORNL; Guo, Senli [ORNL; Proksch, Roger [Asylum Research, Santa Barbara, CA

    2011-01-01

    Progress in development and optimization of energy storage and conversion materials necessitates understanding their ionic and electrochemical functionality on the nanometer scale level of single grain cluster, grain, or extended defect. Classical electrochemical strategies based on Faradaic current detection are fundamentally limited on the nanoscale. Here, we review principles and recent applications of Electrochemical Strain Microscopy (ESM), a scanning probe microscopy (SPM) technique utilizing intrinsic coupling between ionic pehnomena and molar volumes. ESM imaging, as well as time and voltage spectroscopies, are illustrated for several Li-ion cathode and anode materials. Perspectives for future ESM development and applications to other ionic systems are discussed.

  17. Dynamically compacted all-ceramic lithium-ion batteries

    Science.gov (United States)

    Jak, Michiel J. G.; Ooms, Frans G. B.; Kelder, Erik M.; Legerstee, Waiter J.; Schoonman, Joop; Weisenburger, Alfons

    This paper deals with a cell design and a unique manufacturing process for all solid-state lithium-ion batteries. Detailed analyses of the manufacturing of the components for such a battery and the compaction of the green battery are presented. The electrodes were made of coatings of LiMn 2O 4 on metal foils. The electrolyte was a free-standing foil of the ceramic electrolyte Li-doped BPO 4 in a polymer matrix. The different layers were wound and compacted by using magnetic pulse compaction. Several characteristics of the compacted batteries are presented.

  18. Mapping of magnesium and of different protein fragments in sea urchin teeth via secondary ion mass spectroscopy.

    Science.gov (United States)

    Robach, J S; Stock, S R; Veis, A

    2006-07-01

    Mature portions of sea urchin are comprised of a complex array of reinforcing elements yet are single crystals of high and very high Mg calcite. How a relatively poor structural material (calcite) can produce mechanically competent structures is of great interest. In teeth of the sea urchin Lytechinus variegatus, we recorded high-resolution secondary ion mass spectrometry (SIMS) maps of Mg, Ca ,and specific amino acid fragments of mineral-related proteins including aspartic acid (Asp). SIMS revealed strong colocalization of Asp residues with very high Mg. Demineralized specimens showed serine localization on membranes between crystal elements and reduced Mg and aspartic acid signals, further emphasizing colocalization of very high Mg with ready soluble Asp-rich protein(s). The association of Asp with nonequilibrium, very high magnesium calcite provides insight to the makeup of the macromolecules involved in the growth of two different composition calcites and the fundamental process of biomineralization.

  19. Time-of-flight secondary ion mass spectrometry-based molecular distribution distinguishing healthy and osteoarthritic human cartilage

    CERN Document Server

    Cillero-Pastor, Berta; Kiss, Andras; Blanco, Francisco J; Heeren, Ron M A

    2013-01-01

    Osteoarthritis (OA) is a pathology that ultimately causes joint destruction. The cartilage is one of the principal affected tissues. Alterations in the lipid mediators and an imbalance in the metabolism of cells that form the cartilage (chondrocytes) have been described as contributors to the OA development. In this study, we have studied the distribution of lipids and chemical elements in healthy and OA human cartilage. Time of flight-secondary ion mass spectrometry (TOF-SIMS) allows us to study the spatial distribution of molecules at a high resolution on a tissue section. TOF-SIMS revealed a specific peak profile that distinguishes healthy from OA cartilages. The spatial distribution of cholesterol-related peaks exhibited a remarkable difference between healthy and OA cartilages. A distinctive colocalization of cholesterol and other lipids in the superficial area of the cartilage was found. A higher intensity of oleic acid and other fatty acids in the OA cartilages exhibited a similar localization. On the ...

  20. Empirical evaluation of metal deposition for the analysis of organic compounds with static secondary ion mass spectrometry (S-SIMS)

    Science.gov (United States)

    De Mondt, R.; Adriaensen, L.; Vangaever, F.; Lenaerts, J.; Van Vaeck, L.; Gijbels, R.

    2006-07-01

    Metal-assisted (MetA) SIMS using the deposition of a thin Au or Ag layer on non-conducting samples prior to analysis has been advocated as a means to improve the secondary ion (S.I.) yields of organic analytes. This study focuses on the influence of time and temperature on the yield enhancement in MetA-SIMS using thick layers of poly(vinylbutyral- co-vinylalcohol- co-vinylacetate) (PVB) containing dihydroxybenzophenone (DHBPh) or a cationic carbocyanine dye (CBC) and spin-coated layers of the cationic dye on Si. Pristine samples as well as Au- and Ag-coated ones were kept between -8 °C and 80 °C and analysed with S-SIMS at intervals of a few days over a period of 1 month. The yield enhancement was found to depend strongly on the kind of evaporated metal, the storage temperature and time between coating and analysis.

  1. Secondary Neutron-Production Cross Sections from Heavy-IonInteractions between 230 and 600 MeV/nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Heilbronn, L.H.; Zeitlin, C.J.; Iwata, Y.; Murakami, T.; Iwase,H.; Nakamura, T.; Nunomiya, T.; Sato, H.; Yashima, H.; Ronningen, R.M.; Ieki, K.

    2006-10-04

    Secondary neutron-production cross-sections have beenmeasured from interactions of 230 MeV/nucleon He, 400 MeV/nucleon N, 400MeV/nucleon Kr, 400 MeV/nucleon Xe, 500 MeV/nucleon Fe, and 600MeV/nucleon Ne interacting in a variety of elemental and compositetargets. We report the double-differential production cross sections,angular distributions, energy spectra, and total cross sections from allsystems. Neutron energies were measured using the time-of-flighttechnique, and were measured at laboratory angles between 5 deg and 80deg. The spectra exhibit behavior previously reported in otherheavy-ion-induced neutron production experiments; namely, a peak atforward angles near the energy corresponding to the beam velocity, withthe remaining spectra generated by preequilibrium and equilibriumprocesses. The double-differential spectra are fitted with amoving-source parameterization. Observations on the dependence of thetotal cross sections on target and projectile mass arediscussed.

  2. G-SIMS-FPM: Molecular structure at surfaces—a combined positive and negative secondary ion study

    Science.gov (United States)

    Gilmore, I. S.; Green, F. M.; Seah, M. P.

    2006-07-01

    G-SIMS is an easy to use method that considerably simplifies complex static SIMS spectra. The G-SIMS peaks relate directly to the parent molecular structure and so provide a library independent method for direct interpretation and identification. For larger molecules (>100 u) the mass alone may be insufficient to identify the molecule unambiguously. A development of G-SIMS, G-SIMS-fragmentation pathway mapping (FPM), solves this problem. G-SIMS-FPM allows the molecular structure to be re-assembled by following fragmentation pathways as the G-SIMS surface plasma temperature is varied. In this study, we develop the inclusion of negative secondary ion fragmentation data to provide a more complete analysis. This approach is exampled with data for complex molecules of Irganox 1010 and folic acid.

  3. Combined use of atomic force microscopy, X-ray photoelectron spectroscopy, and secondary ion mass spectrometry for cell surface analysis.

    Science.gov (United States)

    Dague, Etienne; Delcorte, Arnaud; Latgé, Jean-Paul; Dufrêne, Yves F

    2008-04-01

    Understanding the surface properties of microbial cells is a major challenge of current microbiological research and a key to efficiently exploit them in biotechnology. Here, we used three advanced surface analysis techniques with different sensitivity, probing depth, and lateral resolution, that is, in situ atomic force microscopy, X-ray photoelectron spectroscopy, and secondary ion mass spectrometry, to gain insight into the surface properties of the conidia of the human fungal pathogen Aspergillus fumigatus. We show that the native ultrastructure, surface protein and polysaccharide concentrations, and amino acid composition of three mutants affected in hydrophobin production are markedly different from those of the wild-type, thereby providing novel insight into the cell wall architecture of A. fumigatus. The results demonstrate the power of using multiple complementary techniques for probing microbial cell surfaces.

  4. Identification of rat faecal metabolites of ebastine by B/E linked scanning liquid secondary ion mass spectrometry.

    Science.gov (United States)

    Yoshida, K; Hatoyama, T; Fujii, T; Kagemoto, A; Miyazaki, H; Naruto, S

    1994-07-01

    The identification of rat faecal metabolites of a new antihistaminic agent, ebastine, 4'-tert-butyl-4-[4-(diphenylmethoxy)piperidino]butyrophenone, is presented. After oral administration of (14C)ebastine (20 mg kg-1) to rats, 84% of the radioactive dose was excreted in the 24 h faeces. Unchanged drug and five metabolites were isolated from the faeces by thin-layer chromatography and solid-phase extraction, and their structures were identified by liquid secondary ion mass spectrometry using the B/E linked scanning technique. The main metabolic pathways were oxidation of a terminal methyl group to give the hydroxymethyl and carboxyl derivatives, and hydroxylation of a phenyl ring in the diphenylmethoxy moiety. In addition to the oxidative mechanism, metabolism of ebastine involved sulphate conjugation. It is noteworthy that M-4, having both phenolic and alcoholic hydroxyl groups, was sulphated selectively in the latter position.

  5. Acceleration of oxygen ions in the dynamic magnetotail

    Directory of Open Access Journals (Sweden)

    J. Birn

    2004-04-01

    Full Text Available The substorm-related acceleration and flux increases of energetic oxygen ions are studied on the basis of test particle orbits in the fields obtained from an MHD simulation of plasmoid formation and ejection and the collapse (dipolarization of the inner tail. The simulated fluxes show large anisotropies and nongyrotropic effects, phase bunching, and spatially and temporally localized beams. The energy distribution of O+ in the region of an earthward beam in the near tail becomes significantly harder, more pronounced than for protons, in qualitative agreement with observations. The simulation also shows tailward beams of energetic O+ions closely associated with the passage of a plasmoid, both inside the plasma sheet boundary and inside the central plasma sheet, consistent with observations in the far tail. The acceleration at the near-Earth x-type neutral line produces a narrow duskward beam of energetic O+ in the duskward extension of the x-line, which was not found to be as pronounced in proton test particle simulations.

    Key words. Magnetospheric physics (energetic particles, trapped; magnetotail; storms and substorms

  6. PHOTOEMISSION AND SECONDARY ION MASS SPECTROMETRY STUDY OF URANIUM PASSIVATION BY C+ IMPLANTATION

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, A J; Felter, T E; Wu, K J; Evans, C; Ferreira, J L; Siekhaus, W J; McLean, W

    2005-04-21

    Preventing the corrosion and oxidation of uranium is important to the continued development of advanced nuclear fuel technologies. Knowledge of the surface reactions of uranium metal with various environmental and atmospheric agents, and the subsequent degradation processes, are vitally important in 21st century nuclear technology. A review of the oxidation of actinide elements and their use in catalysis summarizes the present understanding of the kinetics and mechanisms of the reaction in dry and humid air. Researchers have recently used N{sub 2}{sup +} and C{sup +} ion implantation to modify the near surface region chemistry and structure of U to affect the nucleation and growth kinetics of corrosion and to passivate the surface. These researchers used Auger electron spectroscopy (AES) in conjunction with sputter depth profiling to show that the implanted surfaces had compositional gradients containing nitrides and carbides. In addition to chemical modification, ion implantation can create special reactive surface species that include defect structures that affect the initial absorption and dissociation of molecules on the surface, thus providing mechanical stability and protection against further air corrosion.

  7. Nano-Scale Secondary Ion Mass Spectrometry: Potential And Pitfalls Of This Technique For Soil Organic Matter Stabilization

    Science.gov (United States)

    Herrmann, A. M.

    2007-12-01

    The mechanisms by which organic matter is stabilized in soils are still poorly understood, and it is notable that some postulated mechanisms are currently only weakly supported by data. A major obstacle to progress is the lack of techniques of adequate sensitivity and resolution for data collection needed to further our understanding of soil organic matter stabilization at relevant scales. Nano-Secondary Ion Mass Spectrometry (NanoSIMS) is a cutting edge technology linking high resolution microscopy with isotopic analysis, which allows precise, spatially-explicit, elemental and isotopic analysis at micro-and nanoscale. The power of NanoSIMS lies in the ability of the instrument to distinguish stable isotopes of elements with a high sensitivity, i.e. concentrations in parts per million can be detected. The level of spatial resolution achievable is better than 50 nm (133Cs+ primary beam) with NanoSIMS, a significant improvement on other SIMS instruments and on X-ray micro-analytical techniques. These instruments have been applied to studies of presolar materials from meteorites, in material science, geology and mineralogy as well as biology. Recently, the potential of NanoSIMS has been demonstrated to explore in situ the biophysical interface in soils (Herrmann et al., 2007). I will present recent findings illustrating the capacity of NanoSIMS to improve our fundamental understanding of soil processes at the nano- and micro-scale, along with my experiences in the methodological approaches that need consideration with respect to experimental design and sample preparation. Herrmann, AM, Clode, PL, Fletcher, IR, Nunan N, Stockdale, EA, O'Donnell, AG, Murphy, DV, 2007. A novel method for the study of the biophysical interface in soils using nano-scale secondary ion mass spectrometry. Rapid Communications in Mass Spectrometry 21, 29-34.

  8. Mode-by-mode fluid dynamics for relativistic heavy ion collisions

    CERN Document Server

    Floerchinger, Stefan

    2014-01-01

    We propose to study the fluid dynamic propagation of fluctuations in relativistic heavy ion collisions differentially with respect to their azimuthal, radial and longitudinal wavelength. To this end, we introduce a background-fluctuation splitting and a Bessel-Fourier decomposition of the fluctuating modes. We demonstrate how the fluid dynamic evolution of realistic events can be build up from the propagation of individual modes. We describe the main elements of this mode-by-mode fluid dynamics, and we discuss its use in the fluid dynamic analysis of heavy ion collisions. As a first illustration, we quantify to what extent only fluctuations of sufficiently large radial wave length contribute to harmonic flow coefficients. We find that fluctuations of short wave length are suppressed not only due to larger dissipative effects, but also due to a geometrical averaging over the freeze-out hyper surface. In this way, our study further substantiates the picture that harmonic flow coefficients give access to a coars...

  9. Three-stage classical molecular dynamics model for simulation of heavy-ion fusion

    Directory of Open Access Journals (Sweden)

    Godre Subodh S.

    2015-01-01

    Full Text Available A three-stage Classical Molecular Dynamics (3S-CMD approach for heavy-ion fusion is developed. In this approach the Classical Rigid-Body Dynamics simulation for heavy-ion collision involving light deformed nucleus is initiated on their Rutherford trajectories at very large initial separation. Collision simulation is then followed by relaxation of the rigid-body constrains for one or both the colliding nuclei at distances close to the barrier when the trajectories of all the nucleons are obtained in a Classical Molecular Dynamics approach. This 3S-CMD approach explicitly takes into account not only the long range Coulomb reorientation of the deformed collision partner but also the internal vibrational excitations of one or both the nuclei at distances close to the barrier. The results of the dynamical simulation for 24Mg+208Pb collision show significant modification of the fusion barrier and calculated fusion cross sections due to internal excitations.

  10. A molecular dynamics analysis of ion irradiation of ultrathin amorphous carbon films

    Science.gov (United States)

    Qi, J.; Komvopoulos, K.

    2016-09-01

    Molecular dynamics (MD) simulations provide insight into nanoscale problems where continuum description breaks down, such as the modeling of ultrathin films. Amorphous carbon (a-C) films are commonly used as protective overcoats in various contemporary technologies, including microelectromechanical systems, bio-implantable devices, optical lenses, and hard-disk drives. In all of these technologies, the protective a-C film must be continuous and very thin. For example, to achieve high storage densities (e.g., on the order of 1 Tb/in.2) in magnetic recording, the thickness of the a-C film used to protect the magnetic media and the recording head against mechanical wear and corrosion must be 2-3 nm. Inert ion irradiation is an effective post-deposition method for reducing the film thickness, while preserving the mechanical and chemical characteristics. In this study, MD simulations of Ar+ ion irradiated a-C films were performed to elucidate the effects of the ion incidence angle and ion kinetic energy on the film thickness and structure. The MD results reveal that the film etching rate exhibits a strong dependence on the ion kinetic energy and ion incidence angle, with a maximum etching rate corresponding to an ion incidence angle of ˜20°. It is also shown that Ar+ ion irradiation mainly affects the structure of the upper half of the ultrathin a-C film and that carbon atom hybridization is a strong function of the ion kinetic energy and ion incidence angle. The results of this study elucidate the effects of important ion irradiation parameters on the structure and thickness of ultrathin films and provide fundamental insight into the physics of dry etching.

  11. Proceedings of the Workshop on open problems in heavy ion reaction dynamics at VIVITRON energies

    Energy Technology Data Exchange (ETDEWEB)

    Beck, F.A.

    1993-07-01

    Some problems of heavy ion reaction dynamics at the VIVITRON tandem accelerator and the experimental facilities are discussed at the meeting. Topics include light dinuclear systems, collision dynamics at low energies, fission evaporation and fusion of heavy nuclei and others. Most documents consist of transparencies presented at the workshop, texts of papers are missing. All items are indexed and abstracted for the INIS database. (K.A.).

  12. Probing the early-time dynamics of relativistic heavy-ion collisions with electromagnetic radiation

    CERN Document Server

    Vujanovic, Gojko; Denicol, Gabriel S; Luzum, Matthew; Schenke, Bjoern; Jeon, Sangyong; Gale, Charles

    2014-01-01

    Using 3+1D viscous relativistic fluid dynamics, we show that electromagnetic probes are sensitive to the initial conditions and to the out-of-equilibrium features of relativistic heavy-ion collisions. Within the same approach, we find that hadronic observables show a much lesser sensitivity to these aspects. We conclude that electromagnetic observables allow access to dynamical regions that are beyond the reach of soft hadronic probes.

  13. Transport channel of secondary ion beam of experimental setup for selective laser ionization with gas cell GALS

    Science.gov (United States)

    Gulbekyan, G. G.; Zemlyanoy, S. G.; Bashevoy, V. V.; Ivanenko, I. A.; Kazarinov, N. Yu; Kazacha, V. I.; Osipov, N. F.

    2017-07-01

    GALS is the experimental setup intended for production and research of isobaric and isotopically pure heavy neutron-rich nuclei. The beam line consists of two parts. The initial part is used for transport of the primary 136Xe ion beam with the energy of 4.5-9.0 MeV/amu from the FLNR cyclotron U-400M to the Pb target for production of the studying ion beams. These beams have the following design parameters: the charge Z = +1, the mass A = 180-270 and the kinetic energy W = 40 keV. The second part placed after the target consists of the SPIG (QPIG) system, the accelerating gap, the electrostatic Einzel lens, 90-degree spectrometric magnet (calculated value of the mass-resolution is equal to 1400) and the beam line for the transportation of the ions from the magnet focal plane to a particle detector. The results of simulation of the particle dynamics and the basic parameters of all elements of the beam line are presented.

  14. Dynamic modeling of primary and secondary systems of IRIS reactor for transient analysis using SIMULINK

    Energy Technology Data Exchange (ETDEWEB)

    Magalhaes, Mardson Alencar de Sa; Lira, Carlos Alberto Brayner de Oliveira; Silva, Mario Augusto Bezerra da, E-mail: cabol@ufpe.b [Universidade Federal de Pernambuco (DEN/UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear; Lima, Fernando Roberto de Andrade, E-mail: falima@cnen.gov.b [Centro Regional de Ciencias Nucleares (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2011-07-01

    The IRIS project has significantly advanced in the last few years in response to a demand for a new generation reactor, that could fulfill the essential requirements for a future nuclear power plant: better economics, safety-by-design, low proliferation risk and environmental sustainability. IRIS reactor is a integral type PWR in which all primary components are arranged inside the pressure vessel. This configuration involves important changes in relation to a conventional PWR. These changes require several studies to comply with the safe operational limits for the reactor. In this paper, a study has been conducted to develop a dynamic model (named MODIRIS) for transient analysis, implemented in the MATLAB'S software SIMULINK, allowing the analysis of IRIS behavior by considering the neutron point kinetics for power production. The methodology is based on generating a set of differential equations of neutronic and thermal-hydraulic balances which describes the dynamics of the primary circuit, as well as a set of differential equations describing the dynamics of secondary circuit. The equations and initialization parameters at full power were into the SIMULINK and the code was validated by the confrontation with RELAP simulations for a transient of feedwater reduction in the steam generators. (author)

  15. Ionic liquid electrolytes with high sodium ion fraction for high-rate and long-life sodium secondary batteries

    Science.gov (United States)

    Chen, Chih-Yao; Kiko, Tomohiro; Hosokawa, Takafumi; Matsumoto, Kazuhiko; Nohira, Toshiyuki; Hagiwara, Rika

    2016-11-01

    Sodium secondary batteries are attracting considerably renewed interest as new battery systems owing to the high and uniform abundance and cost advantages of Na. However, their performance is still far from optimal as compared to the well-developed Li-ion technology. Herein, Na secondary batteries with unprecedented rate capability and a long life has been achieved by using a highly concentrated bis(fluorosulfonyl)amide anion (FSA-)-based ionic liquid electrolyte (3.3 mol dm-3 Na[FSA]) and a Na2FeP2O7 positive electrode, in a targeted operating temperature range from room to intermediate. Nearly full discharge capacity is obtained at 4000 mA g-1, and 79% of the capacity is retained at a discharge rate as high as 20000 mA g-1 at 363 K. Stable cycling (>300 cycles) with satisfactory coulombic efficiency (>99.5%) is found at an intermediate rate (100 mA g-1) over 298-363 K. A high-rate cycling test (1000 mA g-1) at 363 K reveals that the cell could retain 93% of its initial capacity after 1500 cycles.

  16. Longitudinal fluid dynamics for ultrarelativistic heavy-ion collisions

    Science.gov (United States)

    Satarov, L. M.; Mishustin, I. N.; Merdeev, A. V.; Stöcker, H.

    2007-02-01

    We developed a 1+1 dimensional hydrodynamical model for central heavy-ion collisions at ultrarelativistic energies. Deviations from Bjorken's scaling are taken into account by implementing finite-size profiles for the initial energy density. The calculated rapidity distributions of pions, kaons, and antiprotons in central Au+Au collisions at sNN=200 GeV are compared with experimental data of the BRAHMS Collaboration. The sensitivity of the results to the choice of the equation of state, the parameters of the initial state, and the freeze-out conditions were investigated. Experimental constraints on the total energy of produced particles were used to reduce the number of model parameters. The best fits of experimental data were obtained for soft equations of state and Gaussian-like initial profiles of the energy density. It was found that initial energy densities required for fitting the experimental data decrease with the increasing critical temperature of the phase transition.

  17. Localization of iron in rice grain using synchrotron X-ray fluorescence microscopy and high resolution secondary ion mass spectrometry

    KAUST Repository

    Kyriacou, Bianca

    2014-03-01

    Cereal crops accumulate low levels of iron (Fe) of which only a small fraction (5-10%) is bioavailable in human diets. Extensive co-localization of Fe in outer grain tissues with phytic acid, a strong chelator of metal ions, results in the formation of insoluble complexes that cannot be digested by humans. Here we describe the use of synchrotron X-ray fluorescence microscopy (XFM) and high resolution secondary ion mass spectrometry (NanoSIMS) to map the distribution of Fe, zinc (Zn), phosphorus (P) and other elements in the aleurone and subaleurone layers of mature grain from wild-type and an Fe-enriched line of rice (Oryza sativa L.). The results obtained from both XFM and NanoSIMS indicated that most Fe was co-localized with P (indicative of phytic acid) in the aleurone layer but that a small amount of Fe, often present as "hotspots", extended further into the subaleurone and outer endosperm in a pattern that was not co-localized with P. We hypothesize that Fe in subaleurone and outer endosperm layers of rice grain could be bound to low molecular weight chelators such as nicotianamine and/or deoxymugineic acid. © 2014.

  18. Dynamics of Ion Beam Charge Neutralization by Ferroelectric Plasma Sources

    Science.gov (United States)

    Stepanov, Anton D.; Gilson, Erik P.; Grisham, Larry R.; Kaganovich, Igor D.; Davidson, Ronald C.; Ji, Qing; Persaud, Arun; Seidl, Peter A.; Schenkel, Thomas

    2016-10-01

    Ferroelectric Plasma Sources (FEPSs) can generate plasma that provides effective space-charge neutralization of intense high-perveance ion beams. Here we present experimental results on charge neutralization of a high-perveance 38 keV Ar+ beam by a FEPS plasma. By comparing the measured beam radius with the envelope model for space-charge expansion, it is shown that a charge neutralization fraction of 98% is attainable. The transverse electrostatic potential of the ion beam is reduced from 15 V before neutralization to 0.3 V, implying that the energy of the neutralizing electrons is below 0.3 eV. Near-complete charge neutralization is established 5 μs after the driving pulse is applied to the FEPS, and can last for 35 μs. It is argued that the duration of neutralization is much longer than a reasonable lifetime of the plasma produced in the sub- μs surface discharge. Measurements of current flow in the driving circuit of the FEPS suggest that plasma can be generated for tens of μs after the high voltage pulse is applied. This is confirmed by fast photography of the plasma in the 1-meter long FEPS on NDCX-II, where effective charge neutralization of the beam was achieved with the optimized FEPS timing. This work was supported by the Office of Science of the US Department of Energy under contracts DE-AC0209CH11466 (PPPL) and DE-AC0205CH11231 (LBNL).

  19. Dynamic motions of ion acoustic waves in plasmas with superthermal electrons

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Asit, E-mail: asit_saha123@rediffmail.com [Department of Mathematics, Sikkim Manipal Institute of Technology (India); Chatterjee, Prasanta [Department of Mathematics, Siksha Bhavana, Visva Bharati University (India); Wong, C.S. [Plasma Technology Research Centre, Department of Physics, University of Malaya, Kuala Lampur (Malaysia)

    2015-12-15

    The dynamic motions of ion acoustic waves an unmagnetized plasma with superthermal (q-non extensive) electrons are investigated employing the bifurcation theory of planar dynamical systems through direct approach. Using traveling wave transformation and initial conditions, basic equations are transformed to a planar dynamical system. Using numerical computations, all possible phase portraits of the dynamical system are presented. Corresponding to homoclinic and periodic orbits of the phase portraits, two new analytical forms of solitary and periodic wave solutions are derived depending on the non extensive parameter q and speed v of the traveling wave. Considering an external periodic perturbation, the quasiperiodic and chaotic motions of ion acoustic waves are presented. Depending upon different ranges of non extensive parameter q, the effect of q is shown on quasiperiodic and chaotic motions of ion acoustic waves with fixed value of v. It is seen that the unperturbed dynamical system has the solitary and periodic wave solutions, but the perturbed dynamical system has the quasiperiodic and chaotic motions with same values of parameters q and v. (author)

  20. Secondary emission monitor for keV ion and antiproton beams

    CERN Document Server

    Sosa, Alejandro; Bravin, Enrico; Harasimowciz, Janusz; Welsch, C P

    2013-01-01

    Beam profile monitoring of low intensity keV ion and antiproton beams remains a challenging task. A Sec- ondary electron Emission Monitor (SEM) has been de- signed to measure profiles of beams with intensities below 107 and energies as low as 20 keV. The monitor is based on a two stage microchannel plate (MCP) and a phosphor screen facing a CCD camera. Its modular design allows two different operational setups. In this contribution we present the design of a prototype and discuss results from measurements with antiprotons at the AEgIS experiment at CERN. This is then used for a characterization of the monitor with regard to its possible future use at different facilities.

  1. Radiation defect dynamics in Si at room temperature studied by pulsed ion beams

    Science.gov (United States)

    Wallace, J. B.; Charnvanichborikarn, S.; Bayu Aji, L. B.; Myers, M. T.; Shao, L.; Kucheyev, S. O.

    2015-10-01

    The evolution of radiation defects after the thermalization of collision cascades often plays the dominant role in the formation of stable radiation disorder in crystalline solids of interest to electronics and nuclear materials applications. Here, we explore a pulsed-ion-beam method to study defect interaction dynamics in Si crystals bombarded at room temperature with 500 keV Ne, Ar, Kr, and Xe ions. The effective time constant of defect interaction is measured directly by studying the dependence of lattice disorder, monitored by ion channeling, on the passive part of the beam duty cycle. The effective defect diffusion length is revealed by the dependence of damage on the active part of the beam duty cycle. Results show that the defect relaxation behavior obeys a second order kinetic process for all the cases studied, with a time constant in the range of ˜4-13 ms and a diffusion length of ˜15-50 nm. Both radiation dynamics parameters (the time constant and diffusion length) are essentially independent of the maximum instantaneous dose rate, total ion dose, and dopant concentration within the ranges studied. However, both the time constant and diffusion length increase with increasing ion mass. This demonstrates that the density of collision cascades influences not only defect production and annealing efficiencies but also the defect interaction dynamics.

  2. Time of flight secondary ion mass spectrometry of bone-Impact of sample preparation and measurement conditions.

    Science.gov (United States)

    Henss, Anja; Hild, Anne; Rohnke, Marcus; Wenisch, Sabine; Janek, Juergen

    2015-06-07

    Time of flight secondary ion mass spectrometry (ToF-SIMS) enables the simultaneous detection of organic and inorganic ions and fragments with high mass and spatial resolution. Due to recent technical developments, ToF-SIMS has been increasingly applied in the life sciences where sample preparation plays an eminent role for the quality of the analytical results. This paper focusses on sample preparation of bone tissue and its impact on ToF-SIMS analysis. The analysis of bone is important for the understanding of bone diseases and the development of replacement materials and new drugs for the cure of diseased bone. The main purpose of this paper is to find out which preparation process is best suited for ToF-SIMS analysis of bone tissue in order to obtain reliable and reproducible analytical results. The influence of the embedding process on the different components of bone is evaluated using principal component analysis. It is shown that epoxy resin as well as methacrylate based plastics (Epon and Technovit) as embedding materials do not infiltrate the mineralized tissue and that cut sections are better suited for the ToF-SIMS analysis than ground sections. In case of ground samples, a resin layer is smeared over the sample surface due to the polishing step and overlap of peaks is found. Beside some signals of fatty acids in the negative ion mode, the analysis of native, not embedded samples does not provide any advantage. The influence of bismuth bombardment and O2 flooding on the signal intensity of organic and inorganic fragments due to the variation of the ionization probability is additionally discussed. As C60 sputtering has to be applied to remove the smeared resin layer, its effect especially on the organic fragments of the bone is analyzed and described herein.

  3. Ultrafast fluxional exchange dynamics in electrolyte solvation sheath of lithium ion battery

    Science.gov (United States)

    Lee, Kyung-Koo; Park, Kwanghee; Lee, Hochan; Noh, Yohan; Kossowska, Dorota; Kwak, Kyungwon; Cho, Minhaeng

    2017-01-01

    Lithium cation is the charge carrier in lithium-ion battery. Electrolyte solution in lithium-ion battery is usually based on mixed solvents consisting of polar carbonates with different aliphatic chains. Despite various experimental evidences indicating that lithium ion forms a rigid and stable solvation sheath through electrostatic interactions with polar carbonates, both the lithium solvation structure and more importantly fluctuation dynamics and functional role of carbonate solvent molecules have not been fully elucidated yet with femtosecond vibrational spectroscopic methods. Here we investigate the ultrafast carbonate solvent exchange dynamics around lithium ions in electrolyte solutions with coherent two-dimensional infrared spectroscopy and find that the time constants of the formation and dissociation of lithium-ion···carbonate complex in solvation sheaths are on a picosecond timescale. We anticipate that such ultrafast microscopic fluxional processes in lithium-solvent complexes could provide an important clue to understanding macroscopic mobility of lithium cation in lithium-ion battery on a molecular level. PMID:28272396

  4. Ion-neutral chemistry at ultralow energies: Dynamics of reactive collisions between laser-cooled Ca^+ ions and Rb atoms in an ion-atom hybrid trap

    CERN Document Server

    Hall, Felix H J; Hegi, Gregor; Raoult, Maurice; Aymar, Mireille; Dulieu, Olivier; Willitsch, Stefan

    2013-01-01

    Cold chemical reactions between laser-cooled Ca^+ ions and Rb atoms were studied in an ion-atom hybrid trap. Reaction rate constants were determined in the range of collision energies /k_B = 20 mK-20 K. The lowest energies were achieved in experiments using single localized Ca^+ ions. Product branching ratios were studied using resonant-excitation mass spectrometry. The dynamics of the reactive processes in this system (non-radiative and radiative charge transfer as well as radiative association leading to the formation of CaRb^+ molecular ions) have been analyzed using high-level quantum-chemical calculations of the potential energy curves of CaRb^+ and quantum-scattering calculations for the radiative channels. For the present low-energy scattering experiments, it is shown that the energy dependence of the reaction rate constants is governed by long-range interactions in line with the classical Langevin model, but their magnitude is determined by short-range non-adiabatic and radiative couplings which only ...

  5. Dynamic fluorescence quenching of quinine sulfate dication by chloride ion in ionic and neutral micellar environments

    Science.gov (United States)

    Joshi, Sunita; Varma Y, Tej Varma; Pant, Debi D.

    2014-04-01

    Fluorescence quenching of Quinine sulfate dication (QSD) by chloride-ion (Cl-) in micellar environments of anionic, sodium dodecyl sulfate (SDS), cationic, cetyltrimethylammonium bromide (CTAB) and neutral, triton X-100 (TX-100) in aqueous phase has been investigated by time-resolved and steady- state fluorescence measurements. The quenching follows linear Stern-Volmer relation in micellar solutions and is dynamic in nature.

  6. Temperature dynamics and velocity scaling laws for interchange driven, warm ion plasma filaments

    DEFF Research Database (Denmark)

    Olsen, Jeppe Miki Busk; Madsen, Jens; Nielsen, Anders Henry

    2016-01-01

    The influence of electron and ion temperature dynamics on the radial convection of isolated structures in magnetically confined plasmas is investigated by means of numerical simulations. It is demonstrated that the maximum radial velocity of these plasma blobs roughly follows the inertial velocit...

  7. Photodissociation and charge transfer dynamics of negative ions studied with femtosecond photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zanni, Martin Thomas [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    This dissertation presents studies aimed at understanding the potential energy surfaces and dynamics of isolated negative ions, and the effects of solvent on each. Although negative ions play important roles in atmospheric and solution phase chemistry, to a large extent the ground and excited state potential energy surfaces of gas phase negative ions are poorly characterized, and solvent effects even less well understood. In an effort to fill this gap, the author's coworkers and the author have developed a new technique, anion femtosecond photoelectron spectroscopy, and applied it to gas phase photodissociation and charge transfer processes. Studies are presented that (1) characterize the ground and excited states of isolated and clustered anions, (2) monitor the photodissociation dynamics of isolated and clustered anions, and (3) explore the charge-transfer-to-solvent states of atomic iodide clustered with polar and non-polar solvents.

  8. Photodissociation and charge transfer dynamics of negative ions studied with femtosecond photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zanni, Martin T.

    1999-12-17

    This dissertation presents studies aimed at understanding the potential energy surfaces and dynamics of isolated negative ions, and the effects of solvent on each. Although negative ions play important roles in atmospheric and solution phase chemistry, to a large extent the ground and excited state potential energy surfaces of gas phase negative ions are poorly characterized, and solvent effects even less well understood. In an effort to fill this gap, the author's coworkers and the author have developed a new technique, anion femtosecond photoelectron spectroscopy, and applied it to gas phase photodissociation and charge transfer processes. Studies are presented that (1) characterize the ground and excited states of isolated and clustered anions, (2) monitor the photodissociation dynamics of isolated and clustered anions, and (3) explore the charge-transfer-to-solvent states of atomic iodide clustered with polar and non-polar solvents.

  9. The Role of Neutralizing Ion Type on the Dynamics of Sulfonated Polystyrene Ionomers

    Science.gov (United States)

    Castagna, Alicia; Wang, Wenqin; Winey, Karen I.; Runt, James

    2011-03-01

    Sulfonated polystyrene (SPS) ionomers neutralized with Na, Cs, and Zn were investigated using scanning transmission electron microscopy (STEM), X-ray scattering, and dielectric relaxation spectroscopy. The role of the neutralizing ion on the structure and molecular dynamics will be discussed as a function of sulfonation level. STEM and X-ray scattering revealed the presence of spherical aggregates 2 nm in diameter. Successful fitting of the scattering data to the Kinning-Thomas modified hardsphere model provides additional information on aggregate size, number density and radius of closest approach. The dynamics of these materials, as revealed by DRS, are highly sensitive to the neutralizing ion, in particular, the character of the segmental relaxation, i.e. relaxation time, breadth and number of relaxations. Additionally, the relaxation time of the Maxwell-Wagner-Sillars interfacial polarization process at high temperatures is also highly dependent on neutralization and ion character.

  10. Balancing Control Strategy for Li-Ion Batteries String Based on Dynamic Balanced Point

    Directory of Open Access Journals (Sweden)

    Dong-Hua Zhang

    2015-03-01

    Full Text Available The Li-ion battery is becoming the optimal choice for the Electric Vehicle’s (EV power supply. In order to protect the Li-ion battery from charging damage and to prolong the battery’s life, a special control strategy based on the dynamic balanced point along with a non-dissipative equalizer is presented. The main focus of the proposed control strategy is to insure that the individual cell of a battery pack will be rapidly, efficiently and simultaneously balanced, by adjusting equalizing current of each cell dynamically. In this paper, a model of a four series connected Li-ion batteries pack has been established to evaluate the proposed control strategy. Superior performance is demonstrated by the simulation and experiment.

  11. A CRITICAL ANALYSIS OF THE IMPACT OF CLASSROOM DYNAMICS ON STUDENTS' SOCIAL INTERACTION IN SECONDARY SCHOOLS IN KENYA

    OpenAIRE

    Mercy Ngugi; Ruth W. Thinguri

    2017-01-01

    The purpose of the study was a critical analysis of the impact of classroom dynamics on students’ social interaction in secondary schools in Kenya. Most of the Kenyan secondary schools are faced with the challenge of overcrowding in the classrooms thus unsuited to providing a positive classroom atmosphere hence limited leaner-teacher contact. The critical analysis was to establish and address issues and strategies that must be implemented to create a positive classroom atmosphere where learne...

  12. Basic Characteristics of Bonds and their Dynamics on the Croatian Secondary Market

    Directory of Open Access Journals (Sweden)

    Andrijana Sesar

    2016-03-01

    Full Text Available In light of recent announcements of the Ministry of Finance about the emission of the so-called national bonds, this paper deals with the problems related to bonds as the most widely accepted financial instrument on the Croatian secondary market. Although the meaning of the bond as a debt security financial instrument is probably clear to everyone, trading and utilization of all the advantage this financial instrument offers is still insufficiently developed. Moreover, since bonds appear to be a possible alternative to bank deposits, it is necessary to determine the basic concepts of the difference in the calculation of yield between these two potential investments. Considering these facts, the contribution of this paper is aimed at taking a closer look and simplifying the overall understanding of this significant financial instrument. On top of that, the purpose of this paper is to raise the awareness of the broader public with respect to understanding of the basic characteristics of bonds, their advantages and disadvantages and ultimately to elaborate in detail the investment possibilities offered by bonds, as one of the most popular debt security financial instrument in Croatia. The first chapter describes the general problems related to bonds, their basic characteristics and current divisions. The paper then elaborates current dynamics of bonds in the secondary capital market in the Republic of Croatia, providing a comparative presentation of purchase and sale trade channels in the secondary market. The final chapter shows a practical example of price and yield calculation until maturity of the bond issued by the Ministry of Finance of RoC, being traded on Zagreb Stock Exchange.

  13. Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure

    Science.gov (United States)

    Mathews, David H.; Disney, Matthew D.; Childs, Jessica L.; Schroeder, Susan J.; Zuker, Michael; Turner, Douglas H.

    2004-01-01

    A dynamic programming algorithm for prediction of RNA secondary structure has been revised to accommodate folding constraints determined by chemical modification and to include free energy increments for coaxial stacking of helices when they are either adjacent or separated by a single mismatch. Furthermore, free energy parameters are revised to account for recent experimental results for terminal mismatches and hairpin, bulge, internal, and multibranch loops. To demonstrate the applicability of this method, in vivo modification was performed on 5S rRNA in both Escherichia coli and Candida albicans with 1-cyclohexyl-3-(2-morpholinoethyl) carbodiimide metho-p-toluene sulfonate, dimethyl sulfate, and kethoxal. The percentage of known base pairs in the predicted structure increased from 26.3% to 86.8% for the E. coli sequence by using modification constraints. For C. albicans, the accuracy remained 87.5% both with and without modification data. On average, for these sequences and a set of 14 sequences with known secondary structure and chemical modification data taken from the literature, accuracy improves from 67% to 76%. This enhancement primarily reflects improvement for three sequences that are predicted with <40% accuracy on the basis of energetics alone. For these sequences, inclusion of chemical modification constraints improves the average accuracy from 28% to 78%. For the 11 sequences with <6% pseudoknotted base pairs, structures predicted with constraints from chemical modification contain on average 84% of known canonical base pairs. PMID:15123812

  14. Generation of multi-charged high current ion beams using the SMIS 37 gas-dynamic electron cyclotron resonance (ECR) ion source

    Energy Technology Data Exchange (ETDEWEB)

    Dorf, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zorin, V. G. [Russian Academy of Sciences (RAS), Nizhny Novgorod (Russian Federation). Inst. of Applied Physics; Sidorov, A. V. [Russian Academy of Sciences (RAS), Nizhny Novgorod (Russian Federation). Inst. of Applied Physics; Bokhanov, A. F. [Russian Academy of Sciences (RAS), Nizhny Novgorod (Russian Federation). Inst. of Applied Physics; Izotov, I. V. [Russian Academy of Sciences (RAS), Nizhny Novgorod (Russian Federation). Inst. of Applied Physics; Razin, S. V. [Russian Academy of Sciences (RAS), Nizhny Novgorod (Russian Federation). Inst. of Applied Physics; Skalyga, V. A. [Russian Academy of Sciences (RAS), Nizhny Novgorod (Russian Federation). Inst. of Applied Physics

    2013-06-02

    A gas-dynamic ECR ion source (GaDIS) is distinguished by its ability to produce high current and high brightness beams of moderately charged ions. Contrary to a classical ECR ion source where the plasma confinement is determined by the slow electron scattering into an empty loss-cone, the higher density and lower electron temperature in a GaDIS plasma lead to an isotropic electron distribution with the confinement time determined by the prompt gas-dynamic flow losses. As a result, much higher ion fluxes are available, however a decrease in the confinement time of the GaDIS plasma lowers the ion charge state. The gas-dynamic ECR ion source concept has been successfully realized in the SMIS 37 experimental facility operated at the Institute of Applied Physics, Russia. The use of high-power (~100 kW) microwave (37.5 GHz) radiation provides a dense plasma (~1013 cm-3) with a relatively low electron temperature (~50- 100 eV) and allows for the generation of high current (~1 A/cm2) beams of multi-charged ions. In this work we report on the present status of the SMIS 37 ion source and discuss the advanced numerical modeling of ion beam extraction using the particle-in-cell code WARP

  15. Generation of multi-charged high current ion beams using the SMIS 37 gas-dynamic electron cyclotron resonance (ECR) ion source

    Energy Technology Data Exchange (ETDEWEB)

    Dorf, M.A., E-mail: dorf1@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Zorin, V.G.; Sidorov, A.V.; Bokhanov, A.F.; Izotov, I.V.; Razin, S.V.; Skalyga, V.A. [Institute of Applied Physics RAS, 46 Ulyanov Street, 603950 Nizhny Novgorod (Russian Federation)

    2014-01-01

    A gas-dynamic ECR ion source (GaDIS) is distinguished by its ability to produce high current and high brightness beams of moderately charged ions. Contrary to a classical ECR ion source where the plasma confinement is determined by the slow electron scattering into an empty loss-cone, the higher density and lower electron temperature in a GaDIS plasma lead to an isotropic electron distribution with the confinement time determined by the prompt gas-dynamic flow losses. As a result, much higher ion fluxes are available; however a decrease in the confinement time of the GaDIS plasma lowers the ion charge state. The gas-dynamic ECR ion source concept has been successfully realized in the SMIS 37 experimental facility operated at the Institute of Applied Physics, Russia. The use of high-power (∼100 kW) microwave (37.5 GHz) radiation provides a dense plasma (∼10{sup 13} cm{sup −3}) with a relatively low electron temperature (∼50–100 eV) and allows for the generation of high current (∼1 A/cm{sup 2}) beams of multi-charged ions. In this work we report on the present status of the SMIS 37 ion source and discuss the advanced numerical modeling of ion beam extraction using the particle-in-cell code WARP.

  16. A Dynamic Programming Algorithm for Finding the Optimal Placement of a Secondary Structure Topology in Cryo-EM Data.

    Science.gov (United States)

    Biswas, Abhishek; Ranjan, Desh; Zubair, Mohammad; He, Jing

    2015-09-01

    The determination of secondary structure topology is a critical step in deriving the atomic structures from the protein density maps obtained from electron cryomicroscopy technique. This step often relies on matching the secondary structure traces detected from the protein density map to the secondary structure sequence segments predicted from the amino acid sequence. Due to inaccuracies in both sources of information, a pool of possible secondary structure positions needs to be sampled. One way to approach the problem is to first derive a small number of possible topologies using existing matching algorithms, and then find the optimal placement for each possible topology. We present a dynamic programming method of Θ(Nq(2)h) to find the optimal placement for a secondary structure topology. We show that our algorithm requires significantly less computational time than the brute force method that is in the order of Θ(q(N) h).

  17. Multidiagnostic analysis of ion dynamics in ultrafast laser ablation of metals over a large fluence range

    Energy Technology Data Exchange (ETDEWEB)

    Anoop, K. K., E-mail: anoop.kiliyanamkandy@unina.it; Bruzzese, R.; Amoruso, S. [CNR-SPIN and Dipartimento di Fisica, Universita degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, Napoli 80126 (Italy); Polek, M. P. [Center for Materials Under Extreme Environment, School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Harilal, S. S. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352 (United States)

    2015-02-28

    The dynamics of ions in ultrafast laser ablation of metals is studied over fluences ranging from the ablation threshold up to ≈75 J/cm{sup 2} by means of three well-established diagnostic techniques. Langmuir probe, Faraday cup, and spectrally resolved intensified charge coupled device imaging simultaneously monitored the ions produced during ultrafast laser ablation of a pure copper target with 800 nm, ≈50 fs, Ti: Sapphire laser pulses. The fluence dependence of ion yield is analyzed, resulting in the observance of three different regimes. The specific ion yield shows a maximum at about 4–5 J/cm{sup 2}, followed by a gradual reduction and a transition to a high-fluence regime above ≈50 J/cm{sup 2}. The fluence dependence of the copper ions angular distribution is also analyzed, observing a gradual increase in forward-peaking of Cu ions for fluences up to ≈10 J/cm{sup 2}. A broader ion component is observed at larger angles for fluences larger than ≈10 J/cm{sup 2}. Finally, an experimental characterization of the ionic angular distribution for several metallic targets (Mg, Al, Cr, Fe, Cu, and W) is carried out at a relatively high fluence of ≈66 J/cm{sup 2}. Interestingly, the ion emission from the volatile metals shows a narrow, forward-peaked distribution, and a high peak ion yield compared to the refractory metals. Moreover, the width of ionic angular distributions presents a striking correlation with the peak ion yield.

  18. Quantum spin dynamics and entanglement generation with hundreds of trapped ions

    Science.gov (United States)

    Bohnet, Justin G.; Sawyer, Brian C.; Britton, Joseph W.; Wall, Michael L.; Rey, Ana Maria; Foss-Feig, Michael; Bollinger, John J.

    2016-06-01

    Quantum simulation of spin models can provide insight into problems that are difficult or impossible to study with classical computers. Trapped ions are an established platform for quantum simulation, but only systems with fewer than 20 ions have demonstrated quantum correlations. We studied quantum spin dynamics arising from an engineered, homogeneous Ising interaction in a two-dimensional array of 9Be+ ions in a Penning trap. We verified entanglement in spin-squeezed states of up to 219 ions, directly observing 4.0 ± 0.9 decibels of spectroscopic enhancement, and observed states with non-Gaussian statistics consistent with oversqueezed states. The good agreement with ab initio theory that includes interactions and decoherence lays the groundwork for simulations of the transverse-field Ising model with variable-range interactions, which are generally intractable with classical methods.

  19. Molecular dynamics study on ion diffusion in LiFePO4 olivine materials.

    Science.gov (United States)

    Zhang, Peixin; Wu, Yanpeng; Zhang, Dongyun; Xu, Qiming; Liu, Jianhong; Ren, Xiangzhong; Luo, Zhongkuan; Wang, Mingliang; Hong, Weiliang

    2008-06-19

    Molecular dynamics (MD) simulations have been employed to investigate the ionic diffusion and the structure of LiFePO 4 cathode material. The results correspond well with the published experimental observations. The simulation results indicated that the diffusion of lithium ions was thermally activated and more significant than those of other ions. Compared with other cathode materials, the shifts of ions were less significant in LiFePO 4. This suggested that LiFePO 4 was more thermally stable. The snapshots of the positions of lithium atoms over a range of the steps provided a microscopic picture and the picture showed the lithium ions migrated through one-dimension channels.

  20. Theoretical study of charge transfer dynamics in collisions of C6+ carbon ions with pyrimidine nucleobases

    Science.gov (United States)

    Bacchus-Montabonel, M. C.

    2012-07-01

    A theoretical approach of the charge transfer dynamics induced by collision of C6+ ions with biological targets has been performed in a wide collision energy range by means of ab-initio quantum chemistry molecular methods. The process has been investigated for the target series thymine, uracil and 5-halouracil corresponding to similar molecules with different substituent on carbon C5. Such a study may be related to hadrontherapy treatments by C6+carbon ions and may provide, in particular, information on the radio-sensitivity of the different bases with regard to ion-induced radiation damage. The results have been compared to a previous analysis concerning the collision of C4+ carbon ions with the same biomolecular targets and significant charge effects have been pointed out.

  1. Quantum spin dynamics and entanglement generation with hundreds of trapped ions

    CERN Document Server

    Bohnet, Justin G; Britton, Joseph W; Wall, Michael L; Rey, Ana Maria; Foss-Feig, Michael; Bollinger, John J

    2015-01-01

    Quantum simulation of spin models can provide insight into complex problems that are difficult or impossible to study with classical computers. Trapped ions are an established platform for quantum simulation, but only systems with fewer than 20 ions have demonstrated quantum correlations. Here we study non-equilibrium, quantum spin dynamics arising from an engineered, homogeneous Ising interaction in a two-dimensional array of $^9$Be$^+$ ions in a Penning trap. We verify entanglement in the form of spin-squeezed states for up to 219 ions, directly observing 4.0$\\pm$0.9 dB of spectroscopic enhancement. We also observe evidence of non-Gaussian, over-squeezed states in the full counting statistics. We find good agreement with ab-initio theory that includes competition between entanglement and decoherence, laying the groundwork for simulations of the transverse-field Ising model with variable-range interactions, for which numerical solutions are, in general, classically intractable.

  2. Stopping dynamics of ions passing through correlated honeycomb clusters

    Science.gov (United States)

    Balzer, Karsten; Schlünzen, Niclas; Bonitz, Michael

    2016-12-01

    A combined nonequilibrium Green functions-Ehrenfest dynamics approach is developed that allows for a time-dependent study of the energy loss of a charged particle penetrating a strongly correlated system at zero and finite temperatures. Numerical results are presented for finite inhomogeneous two-dimensional Fermi-Hubbard models, where the many-electron dynamics in the target are treated fully quantum mechanically and the motion of the projectile is treated classically. The simulations are based on the solution of the two-time Dyson (Keldysh-Kadanoff-Baym) equations using the second-order Born, third-order, and T -matrix approximations of the self-energy. As application, we consider protons and helium nuclei with a kinetic energy between 1 and 500 keV/u passing through planar fragments of the two-dimensional honeycomb lattice and, in particular, examine the influence of electron-electron correlations on the energy exchange between projectile and electron system. We investigate the time dependence of the projectile's kinetic energy (stopping power), the electron density, the double occupancy, and the photoemission spectrum. Finally, we show that, for a suitable choice of the Hubbard model parameters, the results for the stopping power are in fair agreement with ab initio simulations for particle irradiation of single-layer graphene.

  3. Cold ion UV photofragmentation spectroscopy and dynamics (Invited)

    Energy Technology Data Exchange (ETDEWEB)

    Feraud, Geraldine; Dedonder, Claude; Jouvet, Christophe [CNRS, Aix Marseille Université, laboratoire de Physique des Interactions Ioniques et Moléculaires (PIIM) UMR 7345, 13397 Marseille cedex 20 (France); Broquier, Michel [Université Paris Sud, CLUPS (Centre Laser de l' Université Paris Sud) LUMAT FR 2764, 91405 Orsay Cedex, France and CNRS, Université Paris Sud, Institut des Sciences Moléculaires d' Orsay (ISMO) UMR 8624, 91405 Orsay Cedex (France); Gregoire, Gilles [CNRS, Université Paris 13, Sorbonne Paris Cité, Laboratoire de Physique des Lasers, UMR 7538, 93430 Villetaneuse (France); Soorkia, Satchin [CNRS, Université Paris Sud, Institut des Sciences Moléculaires d' Orsay (ISMO) UMR 8624, 91405 Orsay Cedex (France)

    2014-12-09

    Up to ten years ago, very little was known about the excited states of protonated amino acids isolated in the gas phase. From the experimental point of view, the study was hampered by the lack of ease of production of such species in sufficient density to apply photon-based techniques. With the development and widespread use of electrospray ionization sources coupled with modified or homebuilt mass spectrometers, there has been significant research into the spectroscopy of biomimetic and biologically relevant molecules. Besides, these species are floppy such that an efficient cooling is required to record clear spectroscopy. Warm protonated species display congested spectra. To extract precise spectroscopic information and avoid spectral congestion, the species need to be cooled down to less than 50 K. We present our latest results on the electronic spectroscopy of protonated phenylalanine and tyrosine on a large spectral domain (225-290 nm). These species are studied in a new simplified apparatus combining an electrospray ionization source, a cryogenically cooled quadrupole ion trap (∼10 K) and time-of-flight mass spectrometry. The role of proton transfer from the NH{sub 3}{sup +} moiety to the p-ring or to CO of the carboxylic acid group is evidenced by UV photofragment spectroscopy. This first step controls the fragmentation pathways, which strongly depend on the nature of the electronic excited states, i.e. ππ*, ππ*{sub CO} and πσ{sub NH3}.

  4. Cold ion UV photofragmentation spectroscopy and dynamics (Invited)

    Science.gov (United States)

    Feraud, Geraldine; Broquier, Michel; Dedonder, Claude; Jouvet, Christophe; Gregoire, Gilles; Soorkia, Satchin

    2014-12-01

    Up to ten years ago, very little was known about the excited states of protonated amino acids isolated in the gas phase. From the experimental point of view, the study was hampered by the lack of ease of production of such species in sufficient density to apply photon-based techniques. With the development and widespread use of electrospray ionization sources coupled with modified or homebuilt mass spectrometers, there has been significant research into the spectroscopy of biomimetic and biologically relevant molecules. Besides, these species are floppy such that an efficient cooling is required to record clear spectroscopy. Warm protonated species display congested spectra. To extract precise spectroscopic information and avoid spectral congestion, the species need to be cooled down to less than 50 K. We present our latest results on the electronic spectroscopy of protonated phenylalanine and tyrosine on a large spectral domain (225-290 nm). These species are studied in a new simplified apparatus combining an electrospray ionization source, a cryogenically cooled quadrupole ion trap (˜10 K) and time-of-flight mass spectrometry. The role of proton transfer from the NH3+ moiety to the p-ring or to CO of the carboxylic acid group is evidenced by UV photofragment spectroscopy. This first step controls the fragmentation pathways, which strongly depend on the nature of the electronic excited states, i.e. ππ*, ππ*CO and πσNH 3.

  5. Dynamics of a single trapped ion immersed in a buffer gas

    CERN Document Server

    Höltkemeier, Bastian; López-Carrera, Henry; Weidemüller, Matthias

    2016-01-01

    We provide a comprehensive theoretical framework for describing the dynamics of a single trapped ion interacting with a neutral buffer gas, thus extending our previous studies on buffer-gas cooling of ions beyond the critical mass ratio [B. H\\"oltkemeier et al., Phys. Rev. Lett. 116, 233003 (2016)]. By transforming the collisional processes into a frame, where the ion's micromotion is assigned to the buffer gas atoms, our model allows one to investigate the influence of non-homogeneous buffer gas configurations as well as higher multipole orders of the radio-frequency trap in great detail. Depending on the neutral-to-ion mass ratio, three regimes of sympathetic cooling are identified which are characterized by the form of the ion's energy distribution in equilibrium. We provide analytic expressions and numerical simulations of the ion's energy distribution, spatial profile and cooling rates for these different regimes. Based on these findings, a method for actively decreasing the ion's energy by reducing the ...

  6. Molecular dynamics simulation analysis of ion irradiation effects on plasma-liquid interface

    Science.gov (United States)

    Minagawa, Yudai; Shirai, Naoki; Uchida, Satoshi; Tochikubo, Fumiyoshi

    2013-09-01

    Nonthermal atmospheric plasmas are used in a wide range of fields because the high-density plasma can be easily irradiated to various substances such as solid, liquid, biological object and so on. On the other hand, the mechanisms of physical and chemical phenomena at the plasma-liquid interface are not well understood yet. To investigate the effects of ion impact from plasma on water surface, we analyzed behavior of liquid water by classical molecular dynamics simulation. Simulation system consists of an irradiation particle in gas phase and 2000 water molecules in liquid phase. O+ ion with 10 eV or 100 eV was impinged on the water surface. Ion impact induced increasing water temperature and ejection of water molecules. The averaged number of evaporated water molecules by ion impact is 0.6 molecules at 10 eV and 7.0 molecules at 100 eV. The maximum ion penetration depth was 1.14 nm at 10 eV and 2.75 nm at 100 eV. Ion entering into water disturbs the stable hydrogen bonding configurations between water molecules and gives energy to water molecules. Some water molecules rotated and moved by ion interaction impact on other water molecules one after another. When the water molecule near the surface received strongly repulsive force, it released into gas phase. This work was supported financially in part by a Grant-in-Aid for Scientific Research on Innovation Areas (No21110007) from MEXT, Japan.

  7. Beam dynamics analysis in pulse compression using electron beam compact simulator for Heavy Ion Fusion

    Directory of Open Access Journals (Sweden)

    Kikuchi Takashi

    2013-11-01

    Full Text Available In a final stage of an accelerator system for heavy ion inertial fusion (HIF, pulse shaping and beam current increase by bunch compression are required for effective pellet implosion. A compact simulator with an electron beam was constructed to understand the beam dynamics. In this study, we investigate theoretically and numerically the beam dynamics for the extreme bunch compression in the final stage of HIF accelerator complex. The theoretical and numerical results implied that the compact experimental device simulates the beam dynamics around the stagnation point for initial low temperature condition.

  8. Electrode and solid electrolyte thin films for secondary lithium-ion batteries

    Science.gov (United States)

    Chen, C. H.; Kelder, E. M.; Schoonman, J.

    Electrostatic spray deposition (ESD) was employed to prepare thin layers of Li 1.2Mn 2O 4 (nominal composition) and BPO 4:0.035Li 2O for all-solid-state thin film lithium-ion batteries. The relationships between layer morphologies and deposition conditions such as solvent composition of the precursor solutions and substrate temperature were investigated. It was found that a low substrate temperature and/or high boiling point of the solvent may lead to a relatively dense structure. Reticular porous structures are formed, if films were deposited at 250°C and a mixture of 85 vol.% butyl carbitol and 15 vol.% ethanol was used as the solvent. The Li 1.2Mn 2O 4 layers, formed in the 250-400°C temperature range, were amorphous or micro-crystalline. After annealing beyond 600 °C, they could be crystallized into a spinel-structured material. Glassy BPO 4:0.035Li 2O layers could fill the pores of porous Li 1.2Mn 2O 4 layers to form a dense intermediate electrolyte layer. Thin-film rocking-chair batteries, Li 1.2Mn 2O 4|BPO 4:0.035Li 2O|Li 1.2Mn 2O 4|Al, were prepared and revealed an open-circuit voltage of about 1.2 V after charging.

  9. Characteristics and dynamics of the boundary layer in RF-driven sources for negative hydrogen ions

    Energy Technology Data Exchange (ETDEWEB)

    Wimmer, Christian

    2014-10-16

    The design of the neutral beam injection system of the upcoming ITER fusion device is based on the IPP (Max-Planck-Institut fuer Plasmaphysik, Garching) prototype source for negative hydrogen ions. The latter consists of a driver, in which hydrogen (or deuterium) molecules are dissociated in a large degree in a hydrogen plasma; the plasma expands then towards the plasma grid, on which negative hydrogen ions are formed by conversion of atoms or positive ions by the surface process and are extracted in the following accompanied by the co-extraction of electrons via a three grid system. Electrons are removed out of the extracted beam prior full acceleration using deflection magnets, bending them onto the second grid. The thermal load limits the tolerable amount of co-extracted electrons. A magnetic filter field in the expansion chamber reduces the electron temperature and density, on the one hand in order to minimize the destruction process of negative hydrogen ions by electron collisions and on the other hand in order to reduce the co-extracted electron current density. Caesium is evaporated into the source for an effective production of negative hydrogen ions, lowering the work function of the plasma grid. Due to the high chemical reactivity of caesium, the high vacuum condition in the source and the plasma-wall interaction, complex redistribution processes of Cs take place in the ion source. The boundary layer is the plasma volume between the magnetic filter field and the plasma grid, in which the most important physics of the negative ion source takes place: the production of negative hydrogen ions at the plasma grid, their transport through the plasma and the following extraction. A deeper understanding of the plasma and Cs dynamics in the boundary layer is desirable in order to achieve a stable long-pulse operation as well as to identify possible future improvements. For this reason, the boundary layer of the prototype source has been characterized in this work

  10. Dynamics of light, intermediate, heavy and superheavy nuclear systems formed in heavy-ion collisions

    Indian Academy of Sciences (India)

    Manoj K Sharma; Gurvinder Kaur

    2014-05-01

    The dynamical description of light, intermediate, heavy and superheavy nuclei formed in heavy-ion collisions is worked out using the dynamical cluster decay model (DCM), with reference to various effects such as deformation and orientation, temperature, angular momentum etc. Based on the quantum mechanical fragmentation theory (QMFT), DCM has been applied to understand the decay mechanism of a large number of nuclei formed in low-energy heavy-ion reactions. Various features related to the dynamics of competing decay modes of nuclear systems are explored by addressing the experimental data of a number of reactions in light, intermediate, heavy and superheavy mass regions. The DCM, being a non-statistical description for the decay of a compound nucleus, treats light particles (LPs) or equivalently evaporation residues (ERs), intermediate mass fragments (IMFs) and fission fragments on equal footing and hence, provides an alternative to the available statistical model approaches to address fusion–fission and related phenomena.

  11. In situ observation of the ultrafast lattice dynamics of graphite under ion irradiation

    Science.gov (United States)

    Ishioka, Kunie; Hase, Muneaki; Kitajima, Masahiro

    2004-05-01

    We develop a pump-probe experiment system, in which vibrational dynamics of a solid sample under ion irradiation can be measured in real time. In situ observation enables us to monitor small changes induced by ion irradiation, without being influenced by the irreproducibility of the sample quality or the experimental configuration. We apply the experimental system to investigate the femtosecond dynamics of the coherent E2 g1 phonon of graphite under 5 keV He + irradiation. A slight decrease in the dephasing rate of the phonon at the initial stage, as well as a downshift followed by an upshift of the phonon frequency, are clearly demonstrated, all of which were ambiguous in the ex situ experiment due to the poor reproducibility of the surface quality. This technique could also be applied to study femtosecond vibrational dynamics in real time during thermal annealing, film deposition with e.g. ablation and sputter, and molecular adsorption on substrates.

  12. Solution NMR refinement of a metal ion bound protein using metal ion inclusive restrained molecular dynamics methods

    Energy Technology Data Exchange (ETDEWEB)

    Chakravorty, Dhruva K.; Wang Bing [University of Florida, Department of Chemistry and the Quantum Theory Project (United States); Lee, Chul Won [Chonnam National University, Department of Chemistry (Korea, Republic of); Guerra, Alfredo J.; Giedroc, David P., E-mail: giedroc@indiana.edu [Indiana University, Department of Chemistry (United States); Merz, Kenneth M., E-mail: kmerz1@gmail.com [University of Florida, Department of Chemistry and the Quantum Theory Project (United States)

    2013-06-15

    Correctly calculating the structure of metal coordination sites in a protein during the process of nuclear magnetic resonance (NMR) structure determination and refinement continues to be a challenging task. In this study, we present an accurate and convenient means by which to include metal ions in the NMR structure determination process using molecular dynamics (MD) simulations constrained by NMR-derived data to obtain a realistic and physically viable description of the metal binding site(s). This method provides the framework to accurately portray the metal ions and its binding residues in a pseudo-bond or dummy-cation like approach, and is validated by quantum mechanical/molecular mechanical (QM/MM) MD calculations constrained by NMR-derived data. To illustrate this approach, we refine the zinc coordination complex structure of the zinc sensing transcriptional repressor protein Staphylococcus aureus CzrA, generating over 130 ns of MD and QM/MM MD NMR-data compliant sampling. In addition to refining the first coordination shell structure of the Zn(II) ion, this protocol benefits from being performed in a periodically replicated solvation environment including long-range electrostatics. We determine that unrestrained (not based on NMR data) MD simulations correlated to the NMR data in a time-averaged ensemble. The accurate solution structure ensemble of the metal-bound protein accurately describes the role of conformational sampling in allosteric regulation of DNA binding by zinc and serves to validate our previous unrestrained MD simulations of CzrA. This methodology has potentially broad applicability in the structure determination of metal ion bound proteins, protein folding and metal template protein-design studies.

  13. An ion gating mechanism of gastric H,K-ATPase based on molecular dynamics simulations.

    Science.gov (United States)

    Law, Richard J; Munson, Keith; Sachs, George; Lightstone, Felice C

    2008-09-15

    Gastric H,K-ATPase is an electroneutral transmembrane pump that moves protons from the cytoplasm of the parietal cell into the gastric lumen in exchange for potassium ions. The mechanism of transport against the established electrochemical gradients includes intermediate conformations in which the transferred ions are trapped (occluded) within the membrane domain of the pump. The pump cycle involves switching between the E1 and E2P states. Molecular dynamics simulations on homology models of the E2P and E1 states were performed to investigate the mechanism of K(+) movement in this enzyme. We performed separate E2P simulations with one K(+) in the luminal channel, one K(+) ion in the occlusion site, two K(+) ions in the occlusion site, and targeted molecular dynamics from E2P to E1 with two K(+) ions in the occlusion site. The models were inserted into a lipid bilayer system and were stable over the time course of the simulations, and K(+) ions in the channel moved to a consistent location near the center of the membrane domain, thus defining the occlusion site. The backbone carbonyl oxygen from residues 337 through 342 on the nonhelical turn of M4, as well as side-chain oxygen from E343, E795, and E820, participated in the ion occlusion. A single water molecule was stably bound between the two K(+) ions in the occlusion site, providing an additional ligand and partial shielding the positive charges from one another. Targeted molecular dynamics was used to transform the protein from the E2P to the E1 state (two K(+) ions to the cytoplasm). This simulation identified the separation of the water column in the entry channel as the likely gating mechanism on the luminal side. A hydrated exit channel also formed on the cytoplasmic side of the occlusion site during this simulation. Hence, water molecules became available to hydrate the ions. The movement of the M1M2 transmembrane segments, and the displacement of residues Q159, E160, Q110, and T152 during the

  14. Nonequilibrium response of a voltage gated sodium ion channel and biophysical characterization of dynamic hysteresis.

    Science.gov (United States)

    Pal, Krishnendu; Das, Biswajit; Gangopadhyay, Gautam

    2017-02-21

    Here we have studied the dynamic as well as the non-equilibrium thermodynamic response properties of voltage-gated Na-ion channel. Using sinusoidally oscillating external voltage protocol we have both kinetically and energetically studied the non-equilibrium steady state properties of dynamic hysteresis in details. We have introduced a method of estimating the work done associated with the dynamic memory due to a cycle of oscillating voltage. We have quantitatively characterised the loop area of ionic current which gives information about the work done to sustain the dynamic memory only for ion conduction, while the loop area of total entropy production rate gives the estimate of work done for overall gating dynamics. The maximum dynamic memory of Na-channel not only depends on the frequency and amplitude but it also depends sensitively on the mean of the oscillating voltage and here we have shown how the system optimize the dynamic memory itself in the biophysical range of field parameters. The relation between the average ionic current with increasing frequency corresponds to the nature of the average dissipative work done at steady state. It is also important to understand that the utilization of the energy from the external field can not be directly obtained only from the measurement of ionic current but also requires nonequilibrium thermodynamic study.

  15. Electrochemical study of nanometric Si on carbon for lithium ion secondary batteries

    Energy Technology Data Exchange (ETDEWEB)

    Doh, Chil-Hoon; Lee, Jung-Hoon; Lee, Duck-Jun; Kim, Ju-Seok; Jin, Bong-Soo; Moon, Seong-In [Korea Electrotechnology Research Institute, Changwon 641-120 (Korea, Republic of); Hwang, Young-Ki [Kyungnam University, Masan 631-701 (Korea, Republic of); Park, Cheol-Wan, E-mail: chdoh@keri.re.k [Sodiff Advanced Materials Co. Ltd, Youngju 750-080 (Korea, Republic of)

    2010-05-01

    The electrochemical and thermochemical properties of a silicon-graphite composite anode for lithium ion batteries were evaluated. The electrochemical properties were varied by the condition of pretreatment. The electrochemical pretreatment of constant current (C/10) and constant potential for 24 h showed specific discharge and charge capacities of 941 and 781 mA h g{sup -1} to give a specific irreversible capacity of 161 mA h g{sup -1} and a coulombic efficiency of 83%. The initial cycle as the next cycle of pretreatment showed a specific charge capacity (Li desertion) of 698 mA h g{sup -1} and a coulombic efficiency of 95%. Coulombic efficiency at the fifth cycle was 97% to clear up almost all of the irreversible capacity. During the pretreatment cycle to the fourth cycle, the average specific charge capacity was 683 mA h g{sup -1} and the cumulative irreversible capacity was 264 mA h g{sup -1}. Exothermic heat values based on the specific capacity of the discharged (Li insertion) electrode of silicon-graphite composite for the temperature range of 50-300 {sup 0}C were 2.09 and 2.21 J mA{sup -1}h{sup -1} for 0 and 2 h as time of pretreatment in the case of just disassembled wet electrodes and 1.43 and 1.01 J mA{sup -1}h{sup -1} for 12 and 24 h as time of pretreatment in the case of dried electrodes, respectively.

  16. Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries

    Science.gov (United States)

    Li, Wangda; Dolocan, Andrei; Oh, Pilgun; Celio, Hugo; Park, Suhyeon; Cho, Jaephil; Manthiram, Arumugam

    2017-01-01

    Undesired electrode–electrolyte interactions prevent the use of many high-energy-density cathode materials in practical lithium-ion batteries. Efforts to address their limited service life have predominantly focused on the active electrode materials and electrolytes. Here an advanced three-dimensional chemical and imaging analysis on a model material, the nickel-rich layered lithium transition-metal oxide, reveals the dynamic behaviour of cathode interphases driven by conductive carbon additives (carbon black) in a common nonaqueous electrolyte. Region-of-interest sensitive secondary-ion mass spectrometry shows that a cathode-electrolyte interphase, initially formed on carbon black with no electrochemical bias applied, readily passivates the cathode particles through mutual exchange of surface species. By tuning the interphase thickness, we demonstrate its robustness in suppressing the deterioration of the electrode/electrolyte interface during high-voltage cell operation. Our results provide insights on the formation and evolution of cathode interphases, facilitating development of in situ surface protection on high-energy-density cathode materials in lithium-based batteries. PMID:28443608

  17. Improvement performance of secondary clarifiers by a computational fluid dynamics model

    Science.gov (United States)

    Ghawi, Ali G.; Kriš, J.

    2011-12-01

    Secondary clarifier is one of the most commonly used unit operations in wastewater treatment plants. It is customarily designed to achieve the separation of solids from biologically treated effluents through the clarification of biological solids and the thickening of sludge. As treatment plants receive increasingly high wastewater flows, conventional sedimentation tanks suffer from overloading problems, which result in poor performance. Modification of inlet baffles through the use of an energy dissipating inlet (EDI) was proposed to enhance the performance in the circular clarifiers at the Al-Dewanyia wastewater treatment plant. A 3-dimensional fully mass conservative clarifier model, based on modern computational fluid dynamics theory, was applied to evaluate the proposed tank modification and to estimate the maximum capacity of the existing and modified clarifiers. A Computational Fluid Dynamics (CFD) model was formulated to describe the tank is performance, and design parameters were obtained based on the experimental results. The study revealed that velocity and (suspended solids) SS is a better parameter than TS (total solids), (Biochemical Oxygen Demand) BOD, (Chemical Oxygen Demand) COD to evaluate the performance of sedimentation tanks and that the removal efficiencies of the suspended solids, biochemical oxygen demand, and chemical oxygen demand were higher in the baffle.

  18. Method of Automated Dynamic Assessment of reading literacy for Secondary Education (EdilLEC)/'Metodo de evaluacion dinamica automatizado' de competencias lectoras para educacion secundaria (EdiLEC)

    National Research Council Canada - National Science Library

    Perez, Ramiro Gilabert; Lloria, Amelia Mana; Pelluch, Laura Gil; Tatay, Ana C. Llorens; Clemente, Vicenta Avila; Gamez, Eduardo Vidal-Abarca

    2016-01-01

    .... Keywords reading literacy; PISA; dynamic assessment; Secondary Education Se presenta un nuevo metodo de evaluacion dinamica de la competencia lectora automatizado para educacion secundaria (EdiLEC...

  19. Heterogeneous behavior of metalloproteins toward metal ion binding and selectivity: insights from molecular dynamics studies.

    Science.gov (United States)

    Gogoi, Prerana; Chandravanshi, Monika; Mandal, Suraj Kumar; Srivastava, Ambuj; Kanaujia, Shankar Prasad

    2016-07-01

    About one-third of the existing proteins require metal ions as cofactors for their catalytic activities and structural complexities. While many of them bind only to a specific metal, others bind to multiple (different) metal ions. However, the exact mechanism of their metal preference has not been deduced to clarity. In this study, we used molecular dynamics (MD) simulations to investigate whether a cognate metal (bound to the structure) can be replaced with other similar metal ions. We have chosen seven different proteins (phospholipase A2, sucrose phosphatase, pyrazinamidase, cysteine dioxygenase (CDO), plastocyanin, monoclonal anti-CD4 antibody Q425, and synaptotagmin 1 C2B domain) bound to seven different divalent metal ions (Ca(2+), Mg(2+), Zn(2+), Fe(2+), Cu(2+), Ba(2+), and Sr(2+), respectively). In total, 49 MD simulations each of 50 ns were performed and each trajectory was analyzed independently. Results demonstrate that in some cases, cognate metal ions can be exchanged with similar metal ions. On the contrary, some proteins show binding affinity specifically to their cognate metal ions. Surprisingly, two proteins CDO and plastocyanin which are known to bind Fe(2+) and Cu(2+), respectively, do not exhibit binding affinity to any metal ion. Furthermore, the study reveals that in some cases, the active site topology remains rigid even without cognate metals, whereas, some require them for their active site stability. Thus, it will be interesting to experimentally verify the accuracy of these observations obtained computationally. Moreover, the study can help in designing novel active sites for proteins to sequester metal ions particularly of toxic nature.

  20. Doppler coherence imaging of ion dynamics in VINETA.II and ASDEX-upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Gradic, Dorothea; Ford, Oliver; Wolf, Robert [Max-Planck-Institut fuer Plasmaphysik, Greifswald (Germany); Lunt, Tilmann [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    2016-07-01

    In magnetically confining plasma experiments, diagnosis of ion flows is of great importance to measure the plasma response to the magnetic field or the exhaust particle flows in the divertor areas. Doppler coherence imaging spectroscopy (CIS) is a relatively new technique for the observation of plasma bulk ion dynamics. It is a passive optical diagnostic enabling line-integrated measurements to obtain 2D images of the ion flow and ion temperature. The general principle is similar to traditional Doppler spectroscopy, however CIS uses an imaging interferometer to perform narrow-bandwidth Fourier spectroscopy. A major advantage of the coherence imaging technique is the large amount of spatial information recovered. This allows tomographic inversion of the line-integrated measurements. With existing CIS setups, scrape-off-layer and high field side edge impurity flows could be observed in the MAST, core and edge poloidal He II flows in the WEGA stellarator and divertor impurity flows in DIII-D. The main objective of this study is the research of ion dynamics in the small linear plasma experiment VINETA.II and ASDEX-Upgrade. First Doppler CIS measurements from Ar-II plasma discharges in VINETA.II and He-II, C-III divertor flows in ASDEX-Upgrade and their preliminary interpretation will be presented.

  1. A component-based FPGA design framework for neuronal ion channel dynamics simulations.

    Science.gov (United States)

    Mak, Terrence S T; Rachmuth, Guy; Lam, Kai-Pui; Poon, Chi-Sang

    2006-12-01

    Neuron-machine interfaces such as dynamic clamp and brain-implantable neuroprosthetic devices require real-time simulations of neuronal ion channel dynamics. Field-programmable gate array (FPGA) has emerged as a high-speed digital platform ideal for such application-specific computations. We propose an efficient and flexible component-based FPGA design framework for neuronal ion channel dynamics simulations, which overcomes certain limitations of the recently proposed memory-based approach. A parallel processing strategy is used to minimize computational delay, and a hardware-efficient factoring approach for calculating exponential and division functions in neuronal ion channel models is used to conserve resource consumption. Performances of the various FPGA design approaches are compared theoretically and experimentally in corresponding implementations of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) and N-methyl-D-aspartate (NMDA) synaptic ion channel models. Our results suggest that the component-based design framework provides a more memory economic solution, as well as more efficient logic utilization for large word lengths, whereas the memory-based approach may be suitable for time-critical applications where a higher throughput rate is desired.

  2. Chaotic behavior of collective ion dynamics in the presence of an external static magnetic field

    Science.gov (United States)

    Poria, Swarup; Ghosh, Samiran

    2016-06-01

    The two-dimensional nonlinear collective ion dynamics in the presence of external magnetic field in an electron-ion plasma is investigated. The analysis is performed for traveling plane waves to elucidate the various aspects of the phase-space dynamics. The presence of magnetic field makes the dynamics of the nonlinear wave complex with a complicated phase-space behavior. Thus, the nonlinear wave supports a wide class of nonlinear structures viz., single soliton, multi-soliton, periodic, and quasi-periodic oscillations depending on the values of M (Mach number) and Ω (the ratio of ion gyro-frequency to the ion plasma frequency). The computational results predict the chaotic behavior of the nonlinear wave and the transition to chaos takes place when Ω ≳ 0.35 depending on the direction of propagation and the value of M. The amplitude of the wave depends on the obliqueness of the propagation and Mach number, whereas the magnetic field changes the dispersion properties of the wave.

  3. Study of the dynamical potential barriers in heavy ion collisions

    Science.gov (United States)

    Zhu, Long; Su, Jun; Xie, Wen-Jie; Zhang, Feng-Shou

    2013-10-01

    The nucleus-nucleus interaction potentials for the fusion reactions 16O + 208Pb, 64Ni + 64Ni, 58Ni + 58Ni and 16O + 154Sm are extracted from the improved isospin-dependent quantum molecular dynamics model. The shell correction effects are discussed. The negative shell correction energies lower potential barriers of a certain reaction. The incident energy dependence of the potential barrier is investigated for each system. A complex phenomenon of energy dependence is observed. It is also found that incident energy dependence of the barrier radius and barrier height shows opposite behaviors. The Coulomb potential shows weak energy dependence when distance of two colliding nuclei is lower than the touching distance. The isospin effects of the potential barrier are investigated. The orientation effects of the potential barrier is also discussed for the system 16O + 154Sm. The fusion cross sections that correspond to the equatorial orientation of 154Sm are very low in sub-barrier region because of the high fusion barriers and the shallow potential pockets.

  4. Dynamics of lithium ions in borotellurite mixed former glasses: Correlation between the characteristic length scales of mobile ions and glass network structural units

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, A.; Ghosh, A., E-mail: sspag@iacs.res.in [Department of Solid State Physics, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2014-10-28

    We have studied the mixed network former effect on the dynamics of lithium ions in borotellurite glasses in wide composition and temperature ranges. The length scales of ion dynamics, such as characteristic mean square displacement and spatial extent of sub-diffusive motion of lithium ions have been determined from the ac conductivity and dielectric spectra, respectively, in the framework of linear response theory. The relative concentrations of different network structural units have been determined from the deconvolution of the FTIR spectra. A direct correlation between the ion dynamics and the characteristic length scales and the relative concentration of BO{sub 4} units has been established for different compositions of the borotellurite glasses.

  5. Seasonal variation and secondary formation of size-segregated aerosol water-soluble inorganic ions during pollution episodes in Beijing

    Science.gov (United States)

    Huang, Xiaojuan; Liu, Zirui; Zhang, Junke; Wen, Tianxue; Ji, Dongsheng; Wang, Yuesi

    2016-02-01

    Particulate matter (PM) pollution is a serious issue that has aroused great public attention in Beijing. To examine the seasonal characteristics of aerosols in typical pollution episodes, water-soluble inorganic ions (SO42 -, NO3-, NH4+, Cl-, K+, Na+, Ca2 + and Mg2 +) in size-segregated PM collected by an Anderson sampler (equipped with 50% effective cut-off diameters of 9.0, 5.8, 4.7, 3.3, 2.1, 1.1, 0.65, 0.43 μm and an after filter) were investigated in four intensive campaigns from June 2013 to May 2014 in the Beijing urban area. Pronounced seasonal variation of TWSIs in fine particles (aerodynamic diameter less than 2.1 μm) was observed, with the highest concentration in summer (71.5 ± 36.3 μg/m3) and the lowest in spring (28.1 ± 15.2 μg/m3). Different ion species presented different seasonal characteristics of mass concentration and size distribution, reflecting their different dominant sources. As the dominant component, SO42 -, NO3- and NH4+ (SNA) in fine particles appeared to play an important role in the formation of high PM pollution since its contribution to the TWSIs and PM2.1 mass increased significantly during pollution episodes. Due to the hygroscopic growth and enhanced secondary formation in the droplet mode (0.65-2.1 μm) from clean days to polluted days, the size distribution peak of SNA in the fine mode tended to shift from 0.43-0.65 μm to 0.65-2.1 μm. Relative humidity (RH) and temperature contributed to influence the secondary formation and regulate the size distributions of sulfates and nitrates. Partial correlation analysis found that high RH would promote the sulfur and nitrogen oxidation rates in the fine mode, while high temperature favored the sulfur oxidation rate in the condensation mode (0.43-0.65 μm) and reduced the nitrogen oxidation rate in the droplet mode (0.65-2.1 μm). The NO3-/SO42 - mass ratio in PM2.1 (73% of the samples) exceeded 1.0, suggesting that vehicle exhaust currently makes a greater contribution to aerosol

  6. Ion dynamics in laser ablation plumes from selected metals at 355 nm

    DEFF Research Database (Denmark)

    Thestrup Nielsen, Birgitte; Christensen, Bo Toftmann; Schou, Jørgen

    2002-01-01

    The dynamics of ions in a laser ablation plume from a number of metals irradiated by a ns-second pulse at 355 nm has been studied. The time-of-flight signals peak at flight times corresponding to velocities between 30 and 10 km/s with decreasing values for increasing atomic masses. The angular...... distributions of the integrated ion signals are strongly peaked in forward direction, and the values for the volatile Bi are somewhat higher than those for the other metals. The distributions have been analyzed on the basis of Anisimov's expansion model. The fraction of ionized atoms can be estimated from...

  7. Position-dependent dynamics of a trapped ion in a standing wave laser

    Institute of Scientific and Technical Information of China (English)

    方卯发

    2002-01-01

    We have investigated the position-dependent dynamics of a trapped ion in a standing wave laser by transforming it to the Jaynes-Cummings-type system under the Lamb-Dicke limit. A variety of novel phenomena are exhibited,e.g. periodic collapse and revival features and long-time scaled revivals of the ionic inversion, depending on its position in the standing wave. Our result provides a way of producing a system equivalent to the two-photon Jaynes-Cummings model in the trapped ion system, with its exact periodicities.

  8. Exploring the surface sensitivity of TOF-secondary ion mass spectrometry by measuring the implantation and sampling depths of Bi(n) and C60 ions in organic films.

    Science.gov (United States)

    Muramoto, Shin; Brison, Jeremy; Castner, David G

    2012-01-01

    The surface sensitivity of Bi(n)(q+) (n = 1, 3, 5, q = 1, 2) and C(60)(q+) (q = 1, 2) primary ions in static time-of-flight secondary ion mass spectrometry (TOF-SIMS) experiments were investigated for molecular trehalose and polymeric tetraglyme organic films. Parameters related to surface sensitivity (impact crater depth, implantation depth, and molecular escape depths) were measured. Under static TOF-SIMS conditions (primary ion doses of 1 × 10(12) ions/cm(2)), the 25 keV Bi(1)(+) primary ions were the most surface sensitive with a molecular escape depth of 1.8 nm for protein films with tetraglyme overlayers, but they had the deepest implantation depth (~18 and 26 nm in trehalose and tetraglyme films, respectively). The 20 keV C(60)(+2) primary ions were the second most surface sensitive with a slightly larger molecular escape depth of 2.3 nm. The most important factor that determined the surface sensitivity of the primary ion was its impact crater depth or the amount of surface erosion. The most surface sensitive primary ions, Bi(1)(+) and C(60)(+2), created impact craters with depths of 0.3 and 1.0 nm, respectively, in tetraglyme films. In contrast, Bi(5)(+2) primary ions created impact craters with a depth of 1.8 nm in tetraglyme films and were the least surface sensitive with a molecular escape depth of 4.7 nm.

  9. Dynamics of a ground-state cooled ion colliding with ultra-cold atoms

    CERN Document Server

    Meir, Ziv; Ben-shlomi, Ruti; Akerman, Nitzan; Dallal, Yehonatan; Ozeri, Roee

    2016-01-01

    Ultra-cold atom-ion mixtures are gaining increasing interest due to their potential applications in quantum chemistry, quantum computing and many-body physics. The polarization potential between atoms and ions scales as 1/r^4 and extends to 100's of nm. This long length-scale interaction can form macroscopic objects while exhibiting quantum features such as Feshbach and shape resonances at sufficiently low temperatures. So far, reaching the quantum regime of atom-ion interaction has been impeded by the ion's excess micromotion (EMM) which sets a scale for the steady-state energy. In this work, we studied the dynamics of a ground-state cooled ion with negligible EMM during few, to many, Langevin (spiraling) collisions with ultra-cold atoms. We measured the energy distribution of the ion using both coherent (Rabi) and non-coherent (photon scattering) spectroscopy. We observed a clear deviation from a Maxwell-Boltzmann thermal distribution to a Tsallis energy distribution characterized by a power-law tail of hig...

  10. Measurement of Uranium Isotopes in Particles of U3O8 by Secondary Ion Mass Spectrometry-Single-Stage Accelerator Mass Spectrometry (SIMS-SSAMS).

    Science.gov (United States)

    Fahey, Albert J; Groopman, Evan E; Grabowski, Kenneth S; Fazel, Kamron C

    2016-07-19

    A commercial secondary ion mass spectrometer (SIMS) was coupled to a ± 300 kV single-stage accelerator mass spectrometer (SSAMS). Positive secondary ions generated with the SIMS were injected into the SSAMS for analysis. This combined instrument was used to measure the uranium isotopic ratios in particles of three certified reference materials (CRM) of uranium, CRM U030a, CRM U500, and CRM U850. The ability to inject positive ions into the SSAMS is unique for AMS systems and allows for simple analysis of nearly the entire periodic table because most elements will readily produce positive ions. Isotopic ratios were measured on samples of a few picograms to nanograms of total U. Destruction of UH(+) ions in the stripper tube of the SSAMS reduced hydride levels by a factor of ∼3 × 10(4) giving the UH(+)/U(+) ratio at the SSAMS detector of ∼1.4 × 10(-8). These hydride ion levels would allow the measurement of (239)Pu at the 10 ppb level in the presence of U and the equivalent of ∼10(-10 236)U concentration in natural uranium. SIMS-SSAMS analysis of solid nuclear materials, such as these, with signals nearly free of molecular interferences, could have a significant future impact on the way some measurements are made for nuclear nonproliferation.

  11. Mode-by-mode fluid dynamics for relativistic heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Floerchinger, Stefan, E-mail: stefan.floerchinger@cern.ch; Wiedemann, Urs Achim, E-mail: urs.wiedemann@cern.ch

    2014-01-20

    We propose to study the fluid dynamic propagation of fluctuations in relativistic heavy ion collisions differentially with respect to their azimuthal, radial and longitudinal wavelength. To this end, we introduce a background-fluctuation splitting and a Bessel–Fourier decomposition of the fluctuating modes. We demonstrate how the fluid dynamic evolution of realistic events can be built up from the propagation of individual modes. We describe the main elements of this mode-by-mode fluid dynamics, and we discuss its use in the fluid dynamic analysis of heavy ion collisions. As a first illustration, we quantify to what extent only fluctuations of sufficiently large radial wave length contribute to harmonic flow coefficients. We find that fluctuations of short wave length are suppressed not only due to larger dissipative effects, but also due to a geometrical averaging over the freeze-out hyper-surface. In this way, our study further substantiates the picture that harmonic flow coefficients give access to a coarse-grained version of the initial conditions for heavy ion collisions, only.

  12. Mode-by-mode fluid dynamics for relativistic heavy ion collisions

    Science.gov (United States)

    Floerchinger, Stefan; Wiedemann, Urs Achim

    2014-01-01

    We propose to study the fluid dynamic propagation of fluctuations in relativistic heavy ion collisions differentially with respect to their azimuthal, radial and longitudinal wavelength. To this end, we introduce a background-fluctuation splitting and a Bessel-Fourier decomposition of the fluctuating modes. We demonstrate how the fluid dynamic evolution of realistic events can be built up from the propagation of individual modes. We describe the main elements of this mode-by-mode fluid dynamics, and we discuss its use in the fluid dynamic analysis of heavy ion collisions. As a first illustration, we quantify to what extent only fluctuations of sufficiently large radial wave length contribute to harmonic flow coefficients. We find that fluctuations of short wave length are suppressed not only due to larger dissipative effects, but also due to a geometrical averaging over the freeze-out hyper-surface. In this way, our study further substantiates the picture that harmonic flow coefficients give access to a coarse-grained version of the initial conditions for heavy ion collisions, only.

  13. Dynamics of micro-vortices induced by ion concentration polarization in electrodialysis

    Science.gov (United States)

    de Valenca, Joeri; Wagterveld, R. M.; Lammertink, Rob; Tsai, Peichun Amy; Soft Matter, Fluidics; Interfaces Group, University of Twente Team; Wetsus Team

    2014-11-01

    We experimentally investigate the coupled dynamics of global ion transport and local electroconvective flow of an electrolyte solution close to a charge selective membrane under an electric forcing. At small dc electric currents, due to the membrane permselectivity counterions (cations) transport diffusively through the cation exchange membrane (CEM) whereas the passage of co-ions (anions) is inhibited, thereby forming ion concentration polarization or gradients. At large currents, our simultaneous measurements of voltage drop and flow filed reveal several distinct dynamical regimes. Initially, the electrodialysis system exhibits a linear Ohmic electric resistance and then a rate-limiting regime with a voltage jump. Subsequently, electro-osmotic micro-vortices set in and grow linearly both in size and speed with time. After this linearly growing electroconvective regime, the measured voltage drop levels off around a fixed value. The average vortex size and speed saturate as well, however the individual vortices are unsteady and dynamical. Furthermore, the influence of micro-patterned CEM on the couple dynamics will be presented and discussed.

  14. Dynamical Stability of an Ion in a Linear Trap as a Solid-State Problem of Electron Localization

    CERN Document Server

    Berman, G P; James, D F V; Hughes, R J; Kamenev, D I

    2000-01-01

    When an ion confined in a linear ion trap interacts with a coherent laser field, the internal degrees of freedom, related to the electron transitions, couple to the vibrational degree of freedom of the ion. As a result of this interaction, quantum dynamics of the vibrational degree of freedom becomes complicated, and in some ranges of parameters even chaotic. We analyze the vibrational ion dynamics using a formal analogy with the solid-state problem of electron localization. In particular, we show how the resonant approximation used in analysis of the ion dynamics, leads to a transition from a two-dimensional (2D) to a one-dimensional problem (1D) of electron localization. The localization length in the solid-state problem is estimated in cases of weak and strong interaction between the cites of the 2D cell by using the methods of resonance perturbation theory, common in analysis of 1D time-dependent dynamical systems.

  15. Dynamical aspects of intermediate-energy heavy-ion collisons

    Science.gov (United States)

    Dempsey, James Francis

    1997-10-01

    The production of neutrons, light charged particles (LCPs), and intermediate-mass fragments (IMFs), from the four reactions 55 MeV/A [124,136Xe] + [112,124Sn], is studied with an experimental apparatus which is highly efficient for the detection of both charged particles and neutrons. The IMFs are found more localized in the mid-velocity region (parallel velocity close to center of mass) than are the LPCs, and the detected multiplicity of IMFs depends linearly on the charge lost from the projectile. IMF multiplicity is found to be largely independent of the neutron excess of the system, aside from a slight increase with increasing neutron excess that is expected from statistical-model simulations. Remnants of the projectile, with very little velocity reduction, are found for most of the reaction cross section. Isotopic and isobaric fragment yields in the projectile-velocity region indicate that charge-to- mass ratio neutralization is generally not achieved but is approached when little remains of the projectile. For all systems, the fragments found in the mid-velocity region are substantially more neutron rich than those found in the velocity region dominated by the emission from the projectile. This observation can be qualitatively accounted for if the mid-velocity source (or sources) is either more neutron rich or smaller, with the same neutron-to-proton ratio, than the source with the velocity of the projectile. The observations of this work suggest that the intermediate mass fragments are, to a large extent, formed dynamically by a multiple neck rupture or a proximity-fission type mechanism. Though it remains unexplained, this process enhances the neutron- to-proton ratio of the emitted fragments. This scenario is reminiscent of low-energy ternary fission and one predicted by Boltzmann-Uehling-Uhlenbeck (BUU) calculations. However, these calculations predict too much velocity damping of the projectile remnant and do not produce a mid-velocity neutron

  16. A ten liter stacked microbial desalination cell packed with mixed ion-exchange resins for secondary effluent desalination.

    Science.gov (United States)

    Zuo, Kuichang; Cai, Jiaxiang; Liang, Shuai; Wu, Shijia; Zhang, Changyong; Liang, Peng; Huang, Xia

    2014-08-19

    The architecture and performance of microbial desalination cell (MDC) have been significantly improved in the past few years. However, the application of MDC is still limited in a scope of small-scale (milliliter) reactors and high-salinity-water desalination. In this study, a large-scale (>10 L) stacked MDC packed with mixed ion-exchange resins was fabricated and operated in the batch mode with a salt concentration of 0.5 g/L NaCl, a typical level of domestic wastewater. With circulation flow rate of 80 mL/min, the stacked resin-packed MDC (SR-MDC) achieved a desalination efficiency of 95.8% and a final effluent concentration of 0.02 g/L in 12 h, which is comparable with the effluent quality of reverse osmosis in terms of salinity. Moreover, the SR-MDC kept a stable desalination performance (>93%) when concentrate volume decreased from 2.4 to 0.1 L (diluate/concentrate volume ratio increased from 1:1 to 1:0.04), where only 0.875 L of nonfresh water was consumed to desalinate 1 L of saline water. In addition, the SR-MDC achieved a considerable desalination rate (95.4 mg/h), suggesting a promising application for secondary effluent desalination through deriving biochemical electricity from wastewater.

  17. Localization of fatty acids with selective chain length by imaging time-of-flight secondary ion mass spectrometry.

    Science.gov (United States)

    Richter, Katrin; Nygren, Håkan; Malmberg, Per; Hagenhoff, Birgit

    2007-07-01

    Localization of fatty acids in biological tissues was made by using TOF-SIMS (time-of-flight secondary ion mass spectrometry). Two cell-types with a specific fatty acid distribution are shown. In rat cerebellum, different distribution patterns of stearic acid (C18:0), palmitic acid (C16:0), and oleic acid (C18:1) were found. Stearic acid signals were observed accumulated in Purkinje cells with high intensities inside the cell, but not in the nucleus region. The signals colocalized with high intensity signals of the phosphocholine head group, indicating origin from phosphatidylcholine or sphingomyelin. In mouse intestine, high palmitic acid signals were found in the secretory crypt cells together with high levels of phosphorylinositol colocalized in the crypt region. Palmitic acid was also seen in the intestinal lumen that contains high amounts of mucine, which is known to be produced in the crypt cells. Linoleic acid signals (C18:2) were low in the crypt region and high in the villus region. Oleic acid signals were seen in the villi and stearic acid signals were ubiquitous with no specific localization in the intestine. We conclude that the results obtained by using imaging TOF-SIMS are consistent with known brain and intestine biochemistry and that the localization of fatty acids is specific in differentiated cells.

  18. Direct surface analysis of pesticides on soil, leaves, grass, and stainless steel by static secondary ion mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ingram, J.C.; Groenewold, G.S.; Appelhans, A.D.; Delmore, J.E.; Olson, J.E.; Miller, D.L. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1997-02-01

    Direct surface analyses by static secondary ion mass spectrometry (SIMS) were performed for the following pesticides adsorbed on dandelion leaves, grass, soil, and stainless steel samples: alachlor, atrazine, captan, carbofuran, chlorpyrifos, chlorosulfuron, chlorthal-dimethyl, cypermethrin, 2,4-D, diuron, glyphosate, malathion, methomyl, methyl arsonic acid, mocap, norflurazon, oxyfluorfen, paraquat, temik, and trifluralin. The purpose of this study was to evaluate static SIMS as a tool for pesticide analysis, principally for use in screening samples for pesticides. The advantage of direct surface analysis compared with conventional pesticide analysis methods is the elimination of sample pretreatment including extraction, which streamlines the analysis substantially; total analysis time for SIMS analysis was ca. 10 min/sample. Detection of 16 of the 20 pesticides on all four substrates was achieved. Of the remaining four pesticides, only one (trifluralin) was not detected on any of the samples. The minimum detectable quantity was determined for paraquat on soil in order to evaluate the efficacy of using SIMS as a screening tool. Paraquat was detected at 3 pg/mm{sup 2} (c.a. 0.005 monolayers). The results of these studies suggest that SIMS is capable of direct surface detection of a range of pesticides, with low volatility, polar pesticides being the most easily detected. 25 refs., 2 figs., 2 tabs.

  19. Consequences of Decontamination Procedures in Forensic Hair Analysis Using Metal-Assisted Secondary Ion Mass Spectrometry Analysis.

    Science.gov (United States)

    Cuypers, Eva; Flinders, Bryn; Boone, Carolien M; Bosman, Ingrid J; Lusthof, Klaas J; Van Asten, Arian C; Tytgat, Jan; Heeren, Ron M A

    2016-03-15

    Today, hair testing is considered to be the standard method for the detection of chronic drug abuse. Nevertheless, the differentiation between systemic exposure and external contamination remains a major challenge in the forensic interpretation of hair analysis. Nowadays, it is still impossible to directly show the difference between external contamination and use-related incorporation. Although the effects of washing procedures on the distribution of (incorporated) drugs in hair remain unknown, these decontamination procedures prior to hair analysis are considered to be indispensable in order to exclude external contamination. However, insights into the effect of decontamination protocols on levels and distribution of drugs incorporated in hair are essential to draw the correct forensic conclusions from hair analysis; we studied the consequences of these procedures on the spatial distribution of cocaine in hair using imaging mass spectrometry. Additionally, using metal-assisted secondary ion mass spectrometry, we are the first to directly show the difference between cocaine-contaminated and user hair without any prior washing procedure.

  20. Charge generation by heavy ions in power MOSFETs, burnout space predictions, and dynamic SEB sensitivity

    Science.gov (United States)

    Stassinopoulos, E. G.; Brucker, G. J.; Calvel, P.; Baiget, A.; Peyrotte, C.; Gaillard, R.

    1992-01-01

    The transport, energy loss, and charge production of heavy ions in the sensitive regions of IRF 150 power MOSFETs are described. The dependence and variation of transport parameters with ion type and energy relative to the requirements for single event burnout in this part type are discussed. Test data taken with this power MOSFET are used together with analyses by means of a computer code of the ion energy loss and charge production in the device to establish criteria for burnout and parameters for space predictions. These parameters are then used in an application to predict burnout rates in a geostationary orbit for power converters operating in a dynamic mode. Comparisons of rates for different geometries in simulating SEU (single event upset) sensitive volumes are presented.

  1. Differential kinetic dynamics and heating of ions in the turbulent solar wind

    CERN Document Server

    Valentini, F; Stabile, S; Pezzi, O; Servidio, S; De Marco, R; Marcucci, F; Bruno, R; Lavraud, B; De Keyser, J; Consolini, G; Brienza, D; Sorriso-Valvo, L; Retinò, A; Vaivads, A; Salatti, M; Veltri, P

    2016-01-01

    The solar wind plasma is a fully ionized and turbulent gas ejected by the outer layers of the solar corona at very high speed, mainly composed by protons and electrons, with a small percentage of helium nuclei and a significantly lower abundance of heavier ions. Since particle collisions are practically negligible, the solar wind is typically not in a state of thermodynamic equilibrium. Such a complex system must be described through self-consistent and fully nonlinear models, taking into account its multi-species composition and turbulence. We use a kinetic hybrid Vlasov-Maxwell numerical code to reproduce the turbulent energy cascade down to ion kinetic scales, in typical conditions of the uncontaminated solar wind plasma, with the aim of exploring the differential kinetic dynamics of the dominant ion species, namely protons and alpha particles. We show that the response of different species to the fluctuating electromagnetic fields is different. In particular, a significant differential heating of alphas w...

  2. Dynamics of the ions in Liquid Argon Detectors and electron signal quenching

    CERN Document Server

    Romero, L; Montes, B

    2016-01-01

    A study of the dynamics of the positive charges in liquid argon has been carried out in the context of the future massive time projection chambers proposed for dark matter and neutrino physics. The ions spend considerably longer times in the active volume with respect to the electrons given their small mobility coefficient in liquid. The space charge can be additionally increased by the injection in the target volume of the ions produced by electron multiplying devices located in a gas phase above the liquid. The impact of the positive current on the uniformity of the field has been evaluated as well as the probability of the charge signal quenching due to the electron-ion recombination along the drift. The results show a potential concern for the operation of massive detectors with drift of many meters when located on surface.

  3. Membrane Anchoring and Ion-Entry Dynamics in P-type ATPase Copper Transport

    DEFF Research Database (Denmark)

    Grønberg, Christina; Sitsel, Oleg; Lindahl, Erik

    2016-01-01

    Cu(+)-specific P-type ATPase membrane protein transporters regulate cellular copper levels. The lack of crystal structures in Cu(+)-binding states has limited our understanding of how ion entry and binding are achieved. Here, we characterize the molecular basis of Cu(+) entry using molecular......-dynamics simulations, structural modeling, and in vitro and in vivo functional assays. Protein structural rearrangements resulting in the exposure of positive charges to bulk solvent rather than to lipid phosphates indicate a direct molecular role of the putative docking platform in Cu(+) delivery. Mutational analyses...... and simulations in the presence and absence of Cu(+) predict that the ion-entry path involves two ion-binding sites: one transient Met148-Cys382 site and one intramembranous site formed by trigonal coordination to Cys384, Asn689, and Met717. The results reconcile earlier biochemical and x-ray absorption data...

  4. Field-enhanced ion transport in solids: Reexamination with molecular dynamics simulations

    Science.gov (United States)

    Genreith-Schriever, A. R.; De Souza, R. A.

    2016-12-01

    Classical molecular-dynamics simulations were used to examine the effect of an electric field on the mobility of oxygen ions in the model crystalline oxide CeO2. Simulation cells containing oxygen vacancies were subjected at temperatures 1000 ≤T /K ≤1600 to electric field strengths 0.1 ≤E /MV cm-1≤40 to obtain the oxygen-ion mobility ui(E ,T ) . In addition, static nudged-elastic-band calculations were performed to obtain directly the forward/reverse barriers for oxygen-ion migration, Δ Hmigf /r . Qualitatively, ui behaves as expected: independent of E at low values of E and exponentially dependent on E at high values. The quantitative (standard) Mott-Gurney treatment, however, underestimates Δ Hmigf at high E and thus overestimates ui. A new, superior analytical expression for ui(E ,T ) is consequently derived.

  5. High Spatial Resolution Time-of-Flight Secondary Ion Mass Spectrometry for the Masses: A Novel Orthogonal ToF FIB-SIMS Instrument with In Situ AFM

    Directory of Open Access Journals (Sweden)

    James A. Whitby

    2012-01-01

    Full Text Available We describe the design and performance of an orthogonal time-of-flight (TOF secondary ion mass spectrometer that can be retrofitted to existing focused ion beam (FIB instruments. In particular, a simple interface has been developed for FIB/SEM instruments from the manufacturer Tescan. Orthogonal extraction to the mass analyser obviates the need to pulse the primary ion beam and does not require the use of monoisotopic gallium to preserve mass resolution. The high-duty cycle and reasonable collection efficiency of the new instrument combined with the high spatial resolution of a gallium liquid metal ion source allow chemical observation of features smaller than 50 nm. We have also demonstrated the integration of a scanning probe microscope (SPM operated as an atomic force microscope (AFM within the FIB/SEM-SIMS chamber. This provides roughness information, and will also allow true three dimensional chemical images to be reconstructed from SIMS measurements.

  6. Mobile Ion Induced Slow Carrier Dynamics in Organic-Inorganic Perovskite CH₃NH₃PbBr₃.

    Science.gov (United States)

    Chen, Sheng; Wen, Xiaoming; Sheng, Rui; Huang, Shujuan; Deng, Xiaofan; Green, Martin A; Ho-Baillie, Anita

    2016-03-02

    Here, we investigate photoluminescence (PL) and time-resolved photoluminescence (TRPL) in CH3NH3PbBr3 perovskite under continuous illumination, using optical and electro-optical techniques. Under continuous excitation at constant intensity, PL intensity and PL decay (carrier recombination) exhibit excitation intensity dependent reductions in the time scale of seconds to minutes. The enhanced nonradiative recombination is ascribed to light activated negative ions and their accumulation which exhibit a slow dynamics in a time scale of seconds to minutes. The observed result suggests that the organic-inorganic hybrid perovskite is a mixed electronic-ionic semiconductor. The key findings in this work suggest that ions are photoactivated or electro-activated and their accumulation at localized sites can result in a change of carrier dynamics. The findings are therefore useful for the understanding of instability of perovskite solar cells and shed light on the necessary strategies for performance improvement.

  7. Stochastic Dynamics of Electrical Membrane with Voltage-Dependent Ion Channel Fluctuations

    CERN Document Server

    Qian, Hong; Qian, Min

    2014-01-01

    Brownian ratchet like stochastic theory for the electrochemical membrane system of Hodgkin-Huxley (HH) is developed. The system is characterized by a continuous variable $Q_m(t)$, representing mobile membrane charge density, and a discrete variable $K_t$ representing ion channel conformational dynamics. A Nernst-Planck-Nyquist-Johnson type equilibrium is obtained when multiple conducting ions have a common reversal potential. Detailed balance yields a previously unknown relation between the channel switching rates and membrane capacitance, bypassing Eyring-type explicit treatment of gating charge kinetics. From a molecular structural standpoint, membrane charge $Q_m$ is a more natural dynamic variable than potential $V_m$; our formalism treats $Q_m$-dependent conformational transition rates $\\lambda_{ij}$ as intrinsic parameters. Therefore in principle, $\\lambda_{ij}$ vs. $V_m$ is experimental protocol dependent,e.g., different from voltage or charge clamping measurements. For constant membrane capacitance pe...

  8. Structure changes and succession dynamic of the natural secondary forest after severe fire interference

    Institute of Scientific and Technical Information of China (English)

    LIU Bin-fan; LIU Guang-ju; WANG Zhi-cheng

    2009-01-01

    The structure and dynamic succession law of natural secondary forest after severe fire interference in recent 20 years were studied by adopting the method of deducing time series from the spatial sequence of vegetation in Heihe region, Heilongjiang, China. Two typical and widely distributed forest types in the study area, namely forest type A and forest type B, were selected as study subjects. Forest type A is pure broadleaf forest or broadleaf mixed forest mainly composing of superior Betula platyphylla and Populus davidiana in the area with gradient 25°. Species richness, vegetation coverage, important value, and similarity index of community in different layers (Herb, shrub, small tree, and arbor layers) were investigated and analyzed for the two typical forests. The results show that after fire interference, the species richness and coverage in each layer in forest type A were higher than that in forest type B. Both for forest type A and B, with elapse of post-fire years, the species richness and coverage of herbs and shrubs showed a decline tendency, while those of arbor layer present a rising tendency. Through comparison of the important values of species in each layer and analysis of community structure changes, the dynamic process of post-fire vegetation succession for forest type A and B was separately determined. Post-fire 80 years' succession tendency of forest type A is B. platyphylla and Larix gmelinii mixed forest. Its shrub layer is mainly composed of Corylus heterophylla and Vaccinium uliginosum, and herb layer is dominated by Carex tristachya, Athyrium multidentatum, and Pyrola incarnate; whereas, the post-fire 80 years' succession of forest type B is Q. mongolica and B. davurica mixed forest. Its shrub layer is mainly composed of lespedeza bicolar and corylus heterophylla and herb layer is dominated by Carex tristachya, Asparagus densiflorus, and Hemerocallis minor.

  9. Experimental Trapped-ion Quantum Simulation of the Kibble-Zurek dynamics in momentum space

    Science.gov (United States)

    Cui, Jin-Ming; Huang, Yun-Feng; Wang, Zhao; Cao, Dong-Yang; Wang, Jian; Lv, Wei-Min; Luo, Le; del Campo, Adolfo; Han, Yong-Jian; Li, Chuan-Feng; Guo, Guang-Can

    2016-01-01

    The Kibble-Zurek mechanism is the paradigm to account for the nonadiabatic dynamics of a system across a continuous phase transition. Its study in the quantum regime is hindered by the requisite of ground state cooling. We report the experimental quantum simulation of critical dynamics in the transverse-field Ising model by a set of Landau-Zener crossings in pseudo-momentum space, that can be probed with high accuracy using a single trapped ion. We test the Kibble-Zurek mechanism in the quantum regime in the momentum space and find the measured scaling of excitations is in accordance with the theoretical prediction. PMID:27633087

  10. Experimental Trapped-ion Quantum Simulation of the Kibble-Zurek dynamics in momentum space

    Science.gov (United States)

    Cui, Jin-Ming; Huang, Yun-Feng; Wang, Zhao; Cao, Dong-Yang; Wang, Jian; Lv, Wei-Min; Luo, Le; Del Campo, Adolfo; Han, Yong-Jian; Li, Chuan-Feng; Guo, Guang-Can

    2016-09-01

    The Kibble-Zurek mechanism is the paradigm to account for the nonadiabatic dynamics of a system across a continuous phase transition. Its study in the quantum regime is hindered by the requisite of ground state cooling. We report the experimental quantum simulation of critical dynamics in the transverse-field Ising model by a set of Landau-Zener crossings in pseudo-momentum space, that can be probed with high accuracy using a single trapped ion. We test the Kibble-Zurek mechanism in the quantum regime in the momentum space and find the measured scaling of excitations is in accordance with the theoretical prediction.

  11. Dynamics of Two-Level Trapped Ion in a Standing Wave Laser in Noncommutative Space

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao-Xue; WU Ying

    2007-01-01

    We study the dynamics of a two-level trapped ion in a standing wave electromagnetic field in two-dimensional (2D) noncommutative spaces in the Lamb-Dicke regime under the rotating wave approximation. We obtain the explicit analytical expressions for the energy spectra, energy eigenstates, unitary time evolution operator, atomic inversion, and phonon number operators. The Rabi oscillations, the collapse, and revivals in the average atomic inversion and the average phonon number are explicitly shown to contain the information of the parameter of the space noncommutativity,which sheds light on proposing new schemes based on the dynamics of trappedion to test the noncommutativity.

  12. Capture dynamics in collisions between fullerene ions and rare gas atoms

    Science.gov (United States)

    Campbell, E. E. B.; Ehlich, R.; Heusler, G.; Knospe, O.; Sprang, H.

    1998-12-01

    The collision energy dependence of capture in collisions between C 60+ ions and small rare gas atoms (He, Ne) is studied in detail and compared with the results of classical molecular dynamics simulations. Additional insight is obtained on the dynamics of the collisions by also studying the kinetic energy loss of the projectile ions. Two capture mechanisms are found for He collisions: penetration of a six-membered ring with no significant cage distortion and scattering from a C 2 unit followed by deflection inside the cage. Good agreement is found with the simulations. Ne capture appears to be mainly the product of collisions with ring-structures on the cage followed by bond-breaking and insertion via a window mechanism. The very low threshold energy for Ne capture by fullerene ions (10 eV), reported previously, is attributed to the presence of highly excited, deformed fullerene ions in the beam. A second, higher threshold is found which is in better agreement with other experiments reported in the literature. The simulations of the Ne collisions do not give such good agreement as the He simulations. We attribute this to a too low value of the screening parameter used in the Ne-C potential.

  13. Molecular Dynamics Simulation of the Antiamoebin Ion Channel: Linking Structure and Conductance

    Science.gov (United States)

    Wilson, Michael A.; Wei, Chenyu; Bjelkmar, Paer; Wallace, B. A.; Pohorille, Andrew

    2011-01-01

    Molecular dynamics simulations were carried out in order to ascertain which of the potential multimeric forms of the transmembrane peptaibol channel, antiamoebin, is consistant with its measured conductance. Estimates of the conductance obtained through counting ions that cross the channel and by solving the Nernst-Planck equation yield consistent results, indicating that the motion of ions inside the channel can be satisfactorily described as diffusive.The calculated conductance of octameric channels is markedly higher than the conductance measured in single channel recordings, whereas the tetramer appears to be non-conducting. The conductance of the hexamer was estimated to be 115+/-34 pS and 74+/-20 pS, at 150 mV and 75 mV, respectively, in satisfactory agreement with the value of 90 pS measured at 75 mV. On this basis we propose that the antiamoebin channel consists of six monomers. Its pore is large enough to accommodate K(+) and Cl(-) with their first solvation shells intact. The free energy barrier encountered by K(+) is only 2.2 kcal/mol whereas Cl(-) encounters a substantially higher barrier of nearly 5 kcal/mol. This difference makes the channel selective for cations. Ion crossing events are shown to be uncorrelated and follow Poisson statistics. keywords: ion channels, peptaibols, channel conductance, molecular dynamics

  14. The role of Frenkel defect diffusion in dynamic annealing in ion-irradiated Si

    Science.gov (United States)

    Wallace, J. B.; Aji, L. B. Bayu; Martin, A. A.; Shin, S. J.; Shao, L.; Kucheyev, S. O.

    2017-01-01

    The formation of stable radiation damage in crystalline solids often proceeds via complex dynamic annealing processes, involving migration and interaction of ballistically-generated point defects. The dominant dynamic annealing processes, however, remain unknown even for crystalline Si. Here, we use a pulsed ion beam method to study defect dynamics in Si bombarded in the temperature range from -20 to 140 °C with 500 keV Ar ions. Results reveal a defect relaxation time constant of ~10-0.2 ms, which decreases monotonically with increasing temperature. The dynamic annealing rate shows an Arrhenius dependence with two well-defined activation energies of 73 ± 5 meV and 420 ± 10 meV, below and above 60 °C, respectively. Rate theory modeling, bench-marked against this data, suggests a crucial role of both vacancy and interstitial diffusion, with the dynamic annealing rate limited by the migration and interaction of vacancies.

  15. The role of Frenkel defect diffusion in dynamic annealing in ion-irradiated Si

    Science.gov (United States)

    Wallace, J. B.; Aji, L. B. Bayu; Martin, A. A.; Shin, S. J.; Shao, L.; Kucheyev, S. O.

    2017-01-01

    The formation of stable radiation damage in crystalline solids often proceeds via complex dynamic annealing processes, involving migration and interaction of ballistically-generated point defects. The dominant dynamic annealing processes, however, remain unknown even for crystalline Si. Here, we use a pulsed ion beam method to study defect dynamics in Si bombarded in the temperature range from −20 to 140 °C with 500 keV Ar ions. Results reveal a defect relaxation time constant of ~10–0.2 ms, which decreases monotonically with increasing temperature. The dynamic annealing rate shows an Arrhenius dependence with two well-defined activation energies of 73 ± 5 meV and 420 ± 10 meV, below and above 60 °C, respectively. Rate theory modeling, bench-marked against this data, suggests a crucial role of both vacancy and interstitial diffusion, with the dynamic annealing rate limited by the migration and interaction of vacancies. PMID:28059109

  16. Results of the Dynamic Cohort Study of Parathyroid Gland Function in Patients with Secondary Hyperparathyroidism

    Directory of Open Access Journals (Sweden)

    N.V. Karlovich

    2014-03-01

    Full Text Available In 92 patients with end-stage chronic kidney disease we have evaluated serum levels of parathyroid hormone (PTH, vitamin D3, indicators of phosphorus and calcium metabolism and markers of bone metabolism: at baseline and at the end of dynamic follow-up period lasting from 6 to 24 months. In the whole group the mean PTH level and incidence of secondary hyperparathyroidism (SHPT have not changed significantly. Phosphorus levels decreased significantly, but did not reach the target level, indicating the lack of patients’ adherence to medical recommendations on hyperphosphatemia correction. It was found that the persistence of high levels of PTH during follow-up is determined by high baseline levels of PTH, alkaline phosphatase, osteocalcin and beta-cross-laps, as well as the young age of the patients. Persistence of hypercalcemia and hyperphosphatemia has the greatest impact on SHPT aggravation. The findings allow us to conclude that in patients with stable parameters of phosphorus and calcium metabolism, with the absence of correction for calcium and phosphorus metabolism or use of diet in combination with calcium and vitamin D3 preparations, the measurement of PTH once a year in most cases is enough to control its levels.

  17. Secondary sympatry caused by range expansion informs on the dynamics of microendemism in a biodiversity hotspot.

    Directory of Open Access Journals (Sweden)

    Romain Nattier

    Full Text Available Islands are bounded areas where high endemism is explained either by allopatric speciation through the fragmentation of the limited amount of space available, or by sympatric speciation and accumulation of daughter species. Most empirical evidence point out the dominant action of allopatric speciation. We evaluate this general view by looking at a case study where sympatric speciation is suspected. We analyse the mode, tempo and geography of speciation in Agnotecous, a cricket genus endemic to New Caledonia showing a generalized pattern of sympatry between species making sympatric speciation plausible. We obtained five mitochondrial and five nuclear markers (6.8 kb from 37 taxa corresponding to 17 of the 21 known extant species of Agnotecous, and including several localities per species, and we conducted phylogenetic and dating analyses. Our results suggest that the diversification of Agnotecous occurred mostly through allopatric speciation in the last 10 Myr. Highly microendemic species are the most recent ones (<2 Myr and current sympatry is due to secondary range expansion after allopatric speciation. Species distribution should then be viewed as a highly dynamic process and extreme microendemism only as a temporary situation. We discuss these results considering the influence of climatic changes combined with intricate soil diversity and mountain topography. A complex interplay between these factors could have permitted repeated speciation events and range expansion.

  18. Numerical simulation of ion dynamics in the magnetotail magnetic turbulence: On collisionless conductivity

    Directory of Open Access Journals (Sweden)

    A. Greco

    2000-01-01

    Full Text Available The ion dynamics in the distant Earth's magnetotail is studied in the case that a cross tail electric field and reconnection parity magnetic turbulence are present in the neutral sheet. A test particle simulation is performed for the ions, and moments of the ion distribution function are obtained as a function of the magnetic fluctuation level, δB/B0, and of the value of the cross tail electric field, Ey. It is found that magnetic turbulence can split the current carrying region into a double current sheet, in agreement with inferences from observations in the distant magnetotail. The problem of ion conductivity is addressed by varying the value of the cross tail electric field from zero to the observed one: we find that Ohm's law is not enforced, and that a non local, system dependent conductivity is necessary to describe the ion response to the electric field. Also, it appears that the relation between current and electric field may be nonlinear.

  19. The characterization of secondary lithium-ion battery degradation when operating complex, ultra-high power pulsed loads

    Science.gov (United States)

    Wong, Derek N.

    or pulsed loading has on the degradation mechanisms of secondary lithium-ion cells. Prior to performing this work, it was unclear if the implementation of lithium-ion batteries in highly transient load conditions at high rate would accelerate cell degradation mechanisms that have been previously considered as minor issues. This work has focused on answering these previously unanswered questions. In early experiments performed here, COTS lithium-iron-phosphate (LFP) cells were studied under high-rate, transient load conditions and it was found that their capacity fade deviated from the traditional linear behavior and exponentially declined until no charge could be accepted when recharge was attempted at high rate. These findings indicated that subjecting LFP chemistries to transient, high rate charge/discharge profiles induced rapid changes in the electrode/electrolyte interface that rendered the cells useless when high rate recharge was required. These findings suggested there was more phenomena to learn about how these cells degraded under high rate pulsed conditions before they are fielded in Naval applications. Therefore, the research presented here has been focused on understanding the degradation mechanisms that are unique to LFP cells when they are cycled under pulsed load profiles at high charge and discharge rates. In particular, the work has been focused on identifying major degradation reactions that occur by studying the surface chemistry of cycled electrode materials. Efforts have been performed to map the impedance evolution of both cathode and anode half cells, respectively, using a novel three electrode technique that was developed for this research. Using this technique, the progression of degradation has been mapped using analysis of differential capacitance spectrums. In both the three electrode EIS mapping and differential capacitance analysis that has been performed, electrical component models have been developed. The results presented will show

  20. Quantificaion of ion diffusion in gallium arsenide-based spintronic Light-Emitting Diode devices using time-of-flight secondary ion mass spectrometry

    Science.gov (United States)

    Cogswell, Jeffrey Ryan

    Depth profiling using Secondary Ion Mass Spectrometry (SIMS) is a direct method to measure diffusion of atomic or molecular species that have migrated distances of nanometers/micrometers in a specific material. For this research, the diffusion of Mn, sequentially Ga ions, in Gallium Arsenide (GaAs)-based spin Light Emitting Diode (LED) devices is studied by quantitative Time-of-Flight (ToF) SIMS. The goal is to prove conclusively the driving force and mechanism behind Mn diffusion in GaAs by quantifying the diffusion of these ions in each device. Previous work has identified two competing processes for the movement of Mn in GaAs: diffusion and phase separation. The process is dependent on the temperature the sample is exposed to, either by post-annealing, or during the molecular beam epitaxy (MBE) growth process. The hypothesis is that Manganese Arsenide (MnAs) is thermodynamically more stable than randomly distributed Mn ions in GaAs, and that by annealing at a certain temperature, a pure MnAs layer can be produced from a GaMnAs layer in a working spin LED device. Secondly, the spin efficiencies will be measured and the difference will be related to the formation of a pure MnAs layer. The first chapter of this dissertation discusses the history of spintronic devices, including details on the established methods for characterization, the importance for potential application to the semiconductor industry, and the requirements for the full implementation of spintronic devices in modern-day computers. MnAs and GaMnAs devices are studied, their preparation and properties are described, and the study's experimental design is covered in the latter part of Chapter 1. Chapter 2 includes a review of diffusion in semiconductors, including the types of diffusion, mechanisms they follow, and the different established experimental methods for studying diffusion. The later sections include summaries of Mn diffusion and previous studies investigating Mn diffusion in different

  1. Initial binding of ions to the interhelical loops of divalent ion transporter CorA: replica exchange molecular dynamics simulation study.

    Directory of Open Access Journals (Sweden)

    Tong Zhang

    Full Text Available Crystal structures of Thermotoga maritima magnesium transporter CorA, reported in 2006, revealed its homo-pentameric constructions. However, the structure of the highly conserved extracellular interhelical loops remains unsolved, due to its high flexibility. We have explored the configurations of the loops through extensive replica exchange molecular dynamics simulations in explicit solvent model with the presence of either Co(III Hexamine ions or Mg(2+ ions. We found that there are multiple binding sites available on the interhelical loops in which the negatively charged residues, E316 and E320, are located notably close to the positively charged ions during the simulations. Our simulations resolved the distinct binding patterns of the two kinds of ions: Co(III Hexamine ions were found to bind stronger with the loop than Mg(2+ ions with binding free energy -7.3 kJ/mol lower, which is nicely consistent with the previous data. Our study provides an atomic basis description of the initial binding process of Mg(2+ ions on the extracellular interhelical loops of CorA and the detailed inhibition mechanism of Co(III Hexamine ions on CorA ions transportation.

  2. Initial binding of ions to the interhelical loops of divalent ion transporter CorA: replica exchange molecular dynamics simulation study.

    Science.gov (United States)

    Zhang, Tong; Mu, Yuguang

    2012-01-01

    Crystal structures of Thermotoga maritima magnesium transporter CorA, reported in 2006, revealed its homo-pentameric constructions. However, the structure of the highly conserved extracellular interhelical loops remains unsolved, due to its high flexibility. We have explored the configurations of the loops through extensive replica exchange molecular dynamics simulations in explicit solvent model with the presence of either Co(III) Hexamine ions or Mg(2+) ions. We found that there are multiple binding sites available on the interhelical loops in which the negatively charged residues, E316 and E320, are located notably close to the positively charged ions during the simulations. Our simulations resolved the distinct binding patterns of the two kinds of ions: Co(III) Hexamine ions were found to bind stronger with the loop than Mg(2+) ions with binding free energy -7.3 kJ/mol lower, which is nicely consistent with the previous data. Our study provides an atomic basis description of the initial binding process of Mg(2+) ions on the extracellular interhelical loops of CorA and the detailed inhibition mechanism of Co(III) Hexamine ions on CorA ions transportation.

  3. Dynamics of ions in the selectivity filter of the KcsA channel: Towards a coupled Brownian particle description

    CERN Document Server

    Cosseddu, Salvatore M; Allen, Michael P; Rodger, P M; Luchinsky, Dmitry G; McClintock, Peter V E

    2013-01-01

    The statistical and dynamical properties of ions in the selectivity filter of the KcsA ion channel are considered on the basis of molecular dynamics (MD) simulations of the KcsA protein embedded in a lipid membrane surrounded by an ionic solution. A new approach to the derivation of a Brownian dynamics (BD) model of ion permeation through the filter is discussed, based on unbiased MD simulations. It is shown that depending on additional assumptions, ion's dynamics can be described either by under-damped Langevin equation with constant damping and white noise or by Langevin equation with a fractional memory kernel. A comparison of the potential of the mean force derived from unbiased MD simulations with the potential produced by the umbrella sampling method demonstrates significant differences in these potentials. The origin of these differences is an open question that requires further clarifications.

  4. Molecular dynamics simulations of triflic acid and triflate ion/water mixtures: a proton conducting electrolytic component in fuel cells.

    Science.gov (United States)

    Sunda, Anurag Prakash; Venkatnathan, Arun

    2011-11-30

    Triflic acid is a functional group of perflourosulfonated polymer electrolyte membranes where the sulfonate group is responsible for proton conduction. However, even at extremely low hydration, triflic acid exists as a triflate ion. In this work, we have developed a force-field for triflic acid and triflate ion by deriving force-field parameters using ab initio calculations and incorporated these parameters with the Optimized Potentials for Liquid Simulations - All Atom (OPLS-AA) force-field. We have employed classical molecular dynamics (MD) simulations with the developed force field to characterize structural and dynamical properties of triflic acid (270-450 K) and triflate ion/water mixtures (300 K). The radial distribution functions (RDFs) show the hydrophobic nature of CF(3) group and presence of strong hydrogen bonding in triflic acid and temperature has an insignificant effect. Results from our MD simulations show that the diffusion of triflic acid increases with temperature. The RDFs from triflate ion/water mixtures shows that increasing hydration causes water molecules to orient around the SO(3)(-) group of triflate ions, solvate the hydronium ions, and other water molecules. The diffusion of triflate ions, hydronium ion, and water molecules shows an increase with hydration. At λ = 1, the diffusion of triflate ion is 30 times lower than the diffusion of triflic acid due to the formation of stable triflate ion-hydronium ion complex. With increasing hydration, water molecules break the stability of triflate ion-hydronium ion complex leading to enhanced diffusion. The RDFs and diffusion coefficients of triflate ions, hydronium ions and water molecules resemble qualitatively the previous findings using per-fluorosulfonated membranes.

  5. Multiscale Dynamics in Soft-Matter Systems: Enzyme Catalysis, Sec-Facilitated Protein Translocation, and Ion-Conduction in Polymers

    Science.gov (United States)

    Miller, Thomas

    Nature exhibits dynamics that span extraordinary ranges of space and time. In some cases, these dynamical hierarchies are well separated, simplifying their understanding and description. But chemistry and biology are replete with examples of dynamically coupled scales. In this talk, we will discuss the use of high-performance computing and new simulation methods that enable the inclusion of nuclear quantum effects, such as zero point energy and tunneling, in the reaction dynamics of enzymes, as well as coarse-graining strategies to enable minute-timescale simulations of protein targeting to cell membranes and ion-conduction in polymer electrolytes for lithium-ion battery applications.

  6. Uptake of Ra during the recrystallization of barite: a microscopic and time of flight-secondary ion mass spectrometry study.

    Science.gov (United States)

    Klinkenberg, Martina; Brandt, Felix; Breuer, Uwe; Bosbach, Dirk

    2014-06-17

    A combined macroscopic and microanalytical approach was applied on two distinct barite samples from Ra uptake batch experiments using time of flight-secondary ion mass spectrometry (ToF-SIMS) and detailed scanning electron microscopy (SEM) investigations. The experiments were set up at near to equilibrium conditions to distinguish between two possible scenarios for the uptake of Ra by already existent barite: (1) formation of a Ba1-xRaxSO4 solid solution surface layer on the barite or (2) a complete recrystallization, leading to homogeneous Ba1-xRaxSO4 crystals. It could be clearly shown that Ra uptake in all barite particles analyzed within this study is not limited to the surface but extends to the entire solid. For most grains a homogeneous distribution of Ra could be determined, indicating a complete recrystallization of barite into a Ba1-xRaxSO4 solid solution. The maxima of the Ra/Ba intensity ratio distribution histograms calculated from ToF-SIMS are identical with the expected Ra/Ba ratios calculated from mass balance assuming a complete recrystallization. In addition, the role of Ra during the recrystallization of barite was examined via detailed SEM investigations. Depending on the type of barite used, an additional coarsening effect or a strong formation of oriented aggregates was observed compared to blank samples without Ra. In conclusion, the addition of Ra to a barite at close to equilibrium conditions has a major impact on the system leading to a fast re-equilibration of the solid to a Ba1-xRaxSO4 solid solution and visible effects on the particle size distribution, even at room temperature.

  7. Synergistic coagulation of GO and secondary adsorption of heavy metal ions on Ca/Al layered double hydroxides.

    Science.gov (United States)

    Yao, Wen; Wang, Jian; Wang, Pengyi; Wang, Xiangxue; Yu, Shujun; Zou, Yidong; Hou, Jing; Hayat, Tasawar; Alsaedi, Ahmed; Wang, Xiangke

    2017-10-01

    With the extensive application of graphene oxide (GO), it is noticeable that part of GO is directly/indirectly released into the environment and widespread research indicated that it had adverse influences on human health and ecological balance. In this work, a novel nanobelt-like Ca/Al layered double hydroxides (CA-LDH) was synthesized and applied as efficient coagulant for the removal of GO from aqueous solutions. The results indicated that neutral pH, co-existing cations and higher temperature were beneficial to the coagulation of GO. The sequence of cation effect for promoting of GO coagulation was Ca(2+) > Mg(2+) > K(+) > Na(+), whereas the effect of anions on GO coagulation was PO4(3-) > CO3(2-) > SO4(2-) > Cl(-). Comparing with anions, the cations showed more dominate effect for GO coagulation than anions. Hydrogen bonds and electrostatic interaction were the main coagulation mechanisms for GO coagulation, which were evidenced by FT-IR and XPS analysis. Specifically, for the first time, the reclaimed product of CA-LDH after GO coagulation (CA-LDH + GO) was applied as adsorbents for the secondary application in the removal of heavy metal ions from aqueous solutions. Interestingly, the CA-LDH + GO still had high adsorption capacities, i.e., the maximum adsorption capacities (qmax) for Cu(II), Pb(II), and Cr(VI) were 122.7 mg/g, 221.2 mg/g and 64.4 mg/g, respectively, higher than other similar materials. This paper highlighted the LDH-based nanomaterials are promising materials for the elimination of environmental pollutants and the migration and transformation of carbon nanomaterials in the natural environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Explosive-Emission Plasma Dynamics in Ion Diode in Double-Pulse Mode%Explosive-Emission Plasma Dynamics in Ion Diode in Double-Pulse Mode

    Institute of Scientific and Technical Information of China (English)

    Alexander I. PUSHKAREV; Yulia I. ISAKOVA

    2011-01-01

    The results of an experimental investigation of explosive-emission plasma dynamics in an ion diode with self-magnetic insulation are presented. The investigations were accomplished at the TEMP-4M accelerator set in a mode of double pulse formation. Plasma behaviour in the anode-cathode gap was analyzed according to both the current-voltage characteristics of the diode (time resolution of 0.5 ns) and thermal imprints on a target (spatial resolution of 0.8 mm). It was shown that when plasma formation at the potential electrode was complete, and up until the second (positive) pulse, the explosive-emission plasma expanded across the anode-cathode gap with a speed of 1.3±0.2 cm/μs. After the voltage polarity at the potential electrode was reversed (second pulse), the plasma erosion in the anode-cathode gap (similar to the effect of a plasma opening switch) occurred. During the generation of an ion beam the size of the anode-cathode gap spacing was determined by the thickness of the plasma layer on the potential electrode and the layer thickness of the electrons drifting along the grounded electrode.

  9. Ion-cage interpretation for the structural and dynamic changes of ionic liquids under an external electric field.

    Science.gov (United States)

    Shi, Rui; Wang, Yanting

    2013-05-01

    In many applications, ionic liquids (ILs) work in a nonequilibrium steady state driven by an external electric field. However, how the electric field changes the structure and dynamics of ILs and its underlying mechanism still remain poorly understood. In this paper, coarse-grained molecular dynamics simulations were performed to investigate the structure and dynamics of 1-ethyl-3-methylimidazolium nitrate ([EMIm][NO3]) under a static electric field. The ion cage structure was found to play an essential role in determining the structural and dynamic properties of the IL system. With a weak or moderate electric field (0-10(7) V/m), the external electric field is too weak to modify the ion cage structure in an influential way and thus the changes of structural and dynamic properties are negligible. With a strong electric field (10(7)-10(9) V/m) applied, ion cages expand and deform apparently, leading to the increase of ion mobility and self-diffusion coefficient with electric field, and the self-diffusion of ions along the electric field becomes faster than the other two directions due to the anisotropic deformation of ion cages. In addition, the Einstein relation connecting diffusion and mobility breaks down at strong electric fields, and it also breaks down for a single ion species even at moderate electric fields (linear-response region).

  10. Static secondary ion mass spectrometry investigation of corrosion inhibitor Irgamet®39 on copper surfaces treated in power transformer insulating oil

    OpenAIRE

    Facciotti, Marco; Amaro, Pedro S.; Brown, Richard C. D.; Paul L. Lewin; Pilgrim, James A.; Wilson, Gordon; Jarman, Paul N.; Fletcher, Ian W.

    2015-01-01

    Static secondary ion mass spectrometry was used to study the corrosion inhibitor Irgamet®39 on the surface of copper treated in insulating oils and the effect of temperature changes, by means of temperature programmed desorption experiments under vacuum, on metal coverage. Four commercial oils, both corrosive and non-corrosive, showed no significant influence on the stability of the tolyltriazole layer and the energy of its main desorption event from copper was calculated around 100 kJ mol?1....

  11. A hydrated ion model of [UO2] 2 + in water: Structure, dynamics, and spectroscopy from classical molecular dynamics

    Science.gov (United States)

    Pérez-Conesa, Sergio; Torrico, Francisco; Martínez, José M.; Pappalardo, Rafael R.; Sánchez Marcos, Enrique

    2016-12-01

    A new ab initio interaction potential based on the hydrated ion concept has been developed to obtain the structure, energetics, and dynamics of the hydration of uranyl in aqueous solution. It is the first force field that explicitly parameterizes the interaction of the uranyl hydrate with bulk water molecules to accurately define the second-shell behavior. The [UO2(H2O)5 ] 2 + presents a first hydration shell U-O average distance of 2.46 Å and a second hydration shell peak at 4.61 Å corresponding to 22 molecules using a coordination number definition based on a multisite solute cavity. The second shell solvent molecules have longer mean residence times than those corresponding to the divalent monatomic cations. The axial regions are relatively de-populated, lacking direct hydrogen bonding to apical oxygens. Angle-solved radial distribution functions as well as the spatial distribution functions show a strong anisotropy in the ion hydration. The [UO2(H2O)5 ] 2 + solvent structure may be regarded as a combination of a conventional second hydration shell in the equatorial and bridge regions, and a clathrate-like low density region in the axial region. Translational diffusion coefficient, hydration enthalpy, power spectra of the main vibrational modes, and the EXAFS spectrum simulated from molecular dynamics trajectories agree fairly well with the experiment.

  12. Pulsed ion sheath dynamics in a cylindrical bore for inner surface grid-enhanced plasma source ion implantation

    CERN Document Server

    Wang Jiu Li; Fan Song Hua; Yang Wu Bao; Yang Size

    2002-01-01

    Based on authors' recently proposed grid-enhanced plasma source ion implantation (GEPSII) technique for inner surface modification of materials with cylindrical geometry, the authors present the corresponding theoretical studies of the temporal evolution of the plasma ion sheath between the grid electrode and the target in a cylindrical bore. Typical results such as the ion sheath evolution, time-dependent ion density and time-integrated ion energy distribution at the target are calculated by solving Poisson's equation coupled with fluid equations for collisionless ions and Boltzmann assumption for electrons using finite difference methods. The calculated results can further verify the feasibility and superiority of this new technique

  13. Dynamic model evaluation for secondary inorganic aerosol and its precursors over Europe between 1990 and 2009

    Directory of Open Access Journals (Sweden)

    S. Banzhaf

    2014-07-01

    Full Text Available In this study we present a dynamic model evaluation of the chemistry transport model LOTOS-EUROS to analyse the ability of the model to reproduce observed non-linear responses to emission changes and interannual variability of secondary inorganic aerosol (SIA and its precursors over Europe from 1990 to 2009. The 20 year simulation was performed using a consistent set of meteorological data provided by the regional climate model RACMO2. Observations at European rural background sites have been used as reference for the model evaluation. To ensure the consistency of the used observational data stringent selection criteria were applied including a comprehensive visual screening to remove suspicious data from the analysis. The LOTOS-EUROS model was able to capture a large part of the day-to-day, seasonal and interannual variability of SIA and its precursors' concentrations. The dynamic evaluation has shown that the model is able to simulate the declining trends observed for all considered sulphur and nitrogen components following the implementation of emission abatement strategies for SIA precursors over Europe. Both, the observations and the model show the largest part of the decline in the 1990's while smaller concentration changes and an increasing number of non-significant trends are observed and modelled between 2000–2009. Furthermore, the results confirm former studies showing that the observed trends in sulphate and total nitrate concentrations from 1990 to 2009 are significantly lower than the trends in precursor emissions and precursor concentrations. The model captured these non-linear responses to the emission changes well. Using the LOTOS-EUROS source apportionment module trends in formation efficiency of SIA have been quantified for four European regions. The exercise has revealed a 20–50% more efficient sulphate formation in 2009 compared to 1990 and an up to 20% more efficient nitrate formation per unit nitrogen oxide emission

  14. Laboratory study of ion and electron dynamics during asymmetric magnetic reconnection

    Science.gov (United States)

    Yoo, J.; Jara-Almonte, J.; Yamada, M.; Ji, H.; Fox, W. R., II; Chen, L. J.; Roytershteyn, V.; Na, B.

    2015-12-01

    Magnetic reconnection at the dayside magnetopause has a large density asymmetry across the current sheet. To study effects of the density asymmetry on the ion and electron dynamics, plasmas with a significant (~10) density asymmetry are created in the Magnetic Reconnection Experiment (MRX) [1]. The density asymmetry affects the ion flow pattern by changing the in-plane electrostatic field such that the potential decrease on the high-density side becomes much smaller than that on the low-density side [2]. The ion inflow stagnation point is shifted toward the low-density side and the maximum ion outflow velocity is observed on the low-density side. The density asymmetry also makes the electron temperature profile asymmetric, which has a higher temperature near the low-density-side separatrices. The bulk electron heating is proportional to the total incoming magnetic energy per particle. The electron energization process during asymmetric reconnection is studied via numerical simulations. By comparing 2D simulations with corresponding 3D simulations, we find that the overall energization process does not depend on variations along the third dimension. Where and how electrons are energized during asymmetric reconnection will be discussed by using data from 2D numerical simulations. Finally, the scaling of the reconnection rate and the ion outflow speed given by the Cassak and Shay 2007 [3] is tested by systematically varying the density ratio. The measured ion outflow speed is about 40% of the theoretical values and the measured reconnection rate agrees with the scaling only with the measured density in the exhaust region. [1] M. Yamada et al., Phys. Plasmas 4, 1936 (1997). [2] J. Yoo et al., Phys. Rev. Lett. 113, 095002 (2014). [3] P. Cassak and M. Shay, Phys. Plasmas 14, 102114 (2007).

  15. Differential kinetic dynamics and heating of ions in the turbulent solar wind

    Science.gov (United States)

    Valentini, F.; Perrone, D.; Stabile, S.; Pezzi, O.; Servidio, S.; De Marco, R.; Marcucci, F.; Bruno, R.; Lavraud, B.; De Keyser, J.; Consolini, G.; Brienza, D.; Sorriso-Valvo, L.; Retinò, A.; Vaivads, A.; Salatti, M.; Veltri, P.

    2016-12-01

    The solar wind plasma is a fully ionized and turbulent gas ejected by the outer layers of the solar corona at very high speed, mainly composed by protons and electrons, with a small percentage of helium nuclei and a significantly lower abundance of heavier ions. Since particle collisions are practically negligible, the solar wind is typically not in a state of thermodynamic equilibrium. Such a complex system must be described through self-consistent and fully nonlinear models, taking into account its multi-species composition and turbulence. We use a kinetic hybrid Vlasov-Maxwell numerical code to reproduce the turbulent energy cascade down to ion kinetic scales, in typical conditions of the uncontaminated solar wind plasma, with the aim of exploring the differential kinetic dynamics of the dominant ion species, namely protons and alpha particles. We show that the response of different species to the fluctuating electromagnetic fields is different. In particular, a significant differential heating of alphas with respect to protons is observed. Interestingly, the preferential heating process occurs in spatial regions nearby the peaks of ion vorticity and where strong deviations from thermodynamic equilibrium are recovered. Moreover, by feeding a simulator of a top-hat ion spectrometer with the output of the kinetic simulations, we show that measurements by such spectrometer planned on board the Turbulence Heating ObserveR (THOR mission), a candidate for the next M4 space mission of the European Space Agency, can provide detailed three-dimensional ion velocity distributions, highlighting important non-Maxwellian features. These results support the idea that future space missions will allow a deeper understanding of the physics of the interplanetary medium.

  16. First measurements of Dα spectrum produced by anisotropic fast ions in the gas dynamic trap

    Science.gov (United States)

    Lizunov, A.; Anikeev, A.

    2014-11-01

    Angled injection of eight deuterium beams in gas dynamic trap (GDT) plasmas builds up the population of fast ions with the distribution function, which conserves a high degree of initial anisotropy in space, energy, and pitch angle. Unlike the Maxwellian distribution case, the fast ion plasma component in GDT cannot be exhaustively characterized by the temperature and density. The instrumentation complex to study of fast ions is comprised of motional Stark effect diagnostic, analyzers of charge exchange atoms, and others. The set of numerical codes using for equilibrium modeling is also an important tool of analysis. In the recent campaign of summer 2014, we recorded first signals from the new fast ion D-alpha diagnostic on GDT. This paper presents the diagnostic description and results of pilot measurements. The diagnostic has four lines of sight, distributed across the radius of an axially symmetric plasma column in GDT. In the present setup, a line-integrated optical signal is measured in each channel. In the transverse direction, the spatial resolution is 18 mm. Collected light comes to the grating spectrometer with the low-noise detector based on a charge-coupled device matrix. In the regime of four spectra stacked vertically on the sensor, the effective spectral resolution of measurements is approximately 0.015 nm. Exposure timing is provided by the fast optical ferroelectric crystal shutter, allowing frames of duration down to 70 μs. This number represents the time resolution of measurements. A large dynamic range of the camera permits for a measurement of relatively small light signals produced by fast ions on top of the bright background emission from the bulk plasma. The fast ion emission has a non-Gaussian spectrum featuring the characteristic width of approximately 4 nm, which can be separated from relatively narrow Gaussian lines of D-alpha and H-alpha coming from the plasma periphery, and diagnostic beam emission. The signal to noise ratio varies

  17. Towards pump-probe experiments of defect dynamics with short ion beam pulses

    Science.gov (United States)

    Schenkel, T.; Lidia, S. M.; Weis, C. D.; Waldron, W. L.; Schwartz, J.; Minor, A. M.; Hosemann, P.; Kwan, J. W.

    2013-11-01

    A novel, induction type linear accelerator, the Neutralized Drift Compression eXperiment (NDCX-II), is currently being commissioned at Berkeley Lab. This accelerator is designed to deliver intense (up to 3 × 1011 ions/pulse), 0.6 to ∼600 ns duration pulses of 0.05-1.2 MeV lithium ions at a rate of about 2 pulses per minute onto 1-10 mm scale target areas. When focused to mm-diameter spots, the beam is predicted to volumetrically heat micrometer thick foils to temperatures of ∼30,000 °K. At lower beam power densities, the short excitation pulse with tunable intensity and time profile enables pump-probe type studies of defect dynamics in a broad range of materials. We briefly describe the accelerator concept and design, present results from beam pulse shaping experiments and discuss examples of pump-probe type studies of defect dynamics following irradiation of materials with intense, short ion beam pulses from NDCX-II.

  18. Towards pump probe experiments of defect dynamics with short ion beam pulses

    Energy Technology Data Exchange (ETDEWEB)

    Schenkel, T. [Lawrence Berkeley National Laboratory (LBNL); Lidia, S. [Lawrence Berkeley National Laboratory (LBNL); Weis, C. D. [Lawrence Berkeley National Laboratory (LBNL); Waldron, W. L. [Lawrence Berkeley National Laboratory (LBNL); Schwartz, J. [Lawrence Berkeley National Laboratory (LBNL); Minor, Andrew [Lawrence Berkeley National Laboratory (LBNL); Hosemann, P [University of California, Berkeley; Kwan, J. W. [Lawrence Berkeley National Laboratory (LBNL)

    2013-01-01

    A novel, induction type linear accelerator, the Neutralized Drift Compression eXperiment (NDCX-II), is currently being commissioned at Berkeley Lab. This accelerator is designed to deliver intense (up to 3 1011 ions/pulse), 0.6 to 600 ns duration pulses of 0.05 1.2 MeV lithium ions at a rate of about 2 pulses per minute onto 1 10 mm scale target areas. When focused to mm-diameter spots, the beam is predicted to volumetrically heat micrometer thick foils to temperatures of 30,000 K. At lower beam power densities, the short excitation pulse with tunable intensity and time profile enables pump probe type studies of defect dynamics in a broad range of materials. We briefly describe the accelerator concept and design, present results from beam pulse shaping experiments and discuss examples of pump probe type studies of defect dynamics following irradiation of materials with intense, short ion beam pulses from NDCX-II.

  19. Towards pump–probe experiments of defect dynamics with short ion beam pulses

    Energy Technology Data Exchange (ETDEWEB)

    Schenkel, T., E-mail: t_schenkel@lbl.gov [Accelerator and Fusion Research Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, 5R121, Berkeley, CA 94720 (United States); Lidia, S.M.; Weis, C.D.; Waldron, W.L.; Schwartz, J. [Accelerator and Fusion Research Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, 5R121, Berkeley, CA 94720 (United States); Minor, A.M. [Materials Science Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Department of Materials Science and Engineering, University of California, Berkeley, CA 94720 (United States); Hosemann, P. [Materials Science Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Nuclear Engineering Department, University of California, Berkeley, CA 94720 (United States); Kwan, J.W. [Accelerator and Fusion Research Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, 5R121, Berkeley, CA 94720 (United States)

    2013-11-15

    A novel, induction type linear accelerator, the Neutralized Drift Compression eXperiment (NDCX-II), is currently being commissioned at Berkeley Lab. This accelerator is designed to deliver intense (up to 3 × 10{sup 11} ions/pulse), 0.6 to ∼600 ns duration pulses of 0.05–1.2 MeV lithium ions at a rate of about 2 pulses per minute onto 1–10 mm scale target areas. When focused to mm-diameter spots, the beam is predicted to volumetrically heat micrometer thick foils to temperatures of ∼30,000 °K. At lower beam power densities, the short excitation pulse with tunable intensity and time profile enables pump–probe type studies of defect dynamics in a broad range of materials. We briefly describe the accelerator concept and design, present results from beam pulse shaping experiments and discuss examples of pump–probe type studies of defect dynamics following irradiation of materials with intense, short ion beam pulses from NDCX-II.

  20. Interrelationships among biological activity, disulfide bonds, secondary structure, and metal ion binding for a chemically synthesized 34-amino-acid peptide derived from alpha-fetoprotein.

    Science.gov (United States)

    MacColl, R; Eisele, L E; Stack, R F; Hauer, C; Vakharia, D D; Benno, A; Kelly, W C; Mizejewski, G J

    2001-10-01

    A 34-amino-acid peptide has been chemically synthesized based on a sequence from human alpha-fetoprotein. The purified peptide is active in anti-growth assays when freshly prepared in pH 7.4 buffer at 0.20 g/l, but this peptide slowly becomes inactive. This functional change is proven by mass spectrometry to be triggered by the formation of an intrapeptide disulfide bond between the two cysteine residues on the peptide. Interpeptide cross-linking does not occur. The active and inactive forms of the peptide have almost identical secondary structures as shown by circular dichroism (CD). Zinc ions bind to the active peptide and completely prevents formation of the inactive form. Cobalt(II) ions also bind to the peptide, and the UV-Vis absorption spectrum of the cobalt-peptide complex shows that: (1) a near-UV sulfur-to-metal-ion charge-transfer band had a molar extinction coefficient consistent with two thiolate bonds to Co(II); (2) the lowest-energy visible d-d transition maximum at 659 nm, also, demonstrated that the two cysteine residues are ligands for the metal ion; (3) the d-d molar extinction coefficient showed that the metal ion-ligand complex was in a distorted tetrahedral symmetry. The peptide has two cysteines, and it is speculated that the other two metal ion ligands might be the two histidines. The Zn(II)- and Co(II)-peptide complexes had similar peptide conformations as indicated by their ultraviolet CD spectra, which differed very slightly from that of the free peptide. Surprisingly, the cobalt ions acted in the reverse of the zinc ions in that, instead of stabilizing anti-growth form of the peptide, they catalyzed its loss. Metal ion control of peptide function is a saliently interesting concept. Calcium ions, in the conditions studied, apparently do not bind to the peptide. Trifluoroethanol and temperature (60 degrees C) affected the secondary structure of the peptide, and the peptide was found capable of assuming various conformations in solution

  1. Pick-up ion pressure gradients modulating the solar wind dynamics

    Science.gov (United States)

    Fahr, Hans J.; Fichtner, Horst

    1995-01-01

    Neutral interstellar atoms penetrate deeply into the inner heliosphere before they become ionized by various processes. As ions they are picked-up by the frozen-in magnetic fields and are convected outwards with the solar wind plasma. Thereby the primary plasma flow is mass, momentum, and energy-loaded. The dynamics of the distant multi-constituent solar wind is, however, not solely determined by these loading processes, but is also affected by the wave-mediated pick-up ion pressure gradients derivable from the pick-up ion distribution function. The action of the radial components of these pressures essentially counter balances the decelerating effect of the solar wind momentum loading, diminishing strongly the deceleration of the distant solar wind. Furthermore the latitudinal components of the pick-up ion pressures induce latitudinal forces acting on the multiconstituent solar plasma outflow and inducing nonradial bulk flow components. The enforced nonradial outflow geometry on the upwind hemisphere may partly be responsible for the magnetic flux deficit which was claimed since several years in the PIONEER-10 magnetic flux data.

  2. Optimization of caesium dynamics in large and powerful RF sources for negative hydrogen ions

    Energy Technology Data Exchange (ETDEWEB)

    Mimo, Alessandro; Wimmer, Christian; Wuenderlich, Dirk; Fantz, Ursel [Max-Planck-Institut fuer Plasmaphysik, 85748 Garching (Germany)

    2015-05-01

    The development of large and powerful RF sources for negative hydrogen and deuterium ions is mandatory for the realization of the Neutral Beam Injection system at ITER. Caesium seeding into negative ion sources is necessary to obtain the required ion current with a tolerable level of co-extracted electrons. The caesium dynamics, during both plasma and vacuum phases, was investigated by means of the Monte Carlo transport code CsFlow3D, which is used to simulate the time evolution of the distribution of neutral and ionic caesium in the IPP prototype RF ion source. Simulations were performed for different durations of plasma-on and plasma-off phases, with the purpose of understanding how the duty cycle influences the caesium distribution and hence the source performance. In order to investigate asymmetry effects in the caesium distribution, caused by the positioning of caesium evaporator, the caesium coverage on the top and on the bottom part of the plasma grid was simulated and data were compared to the caesium density measured by laser absorption in the prototype source. The next step will be to introduce in the code the simulation of diagnostics such as laser absorption spectroscopy and optical emission spectroscopy, in order to achieve a direct benchmark of the code with experimental data.

  3. Ion Transport and Structural Properties of Polymeric Electrolytes and Ionic Liquids from Molecular Dynamics Simulations

    Science.gov (United States)

    Borodin, Oleg

    2010-03-01

    Molecular dynamics simulations are well suited for exploring electrolyte structure and ion transport mechanisms on the nanometer length scale and the nanosecond time scales. In this presentation we will describe how MD simulations assist in answering fundamental questions about the lithium transport mechanisms in polymeric electrolytes and ionic liquids. In particular, in the first part of the presentation the extent of ion aggregation, the structure of ion aggregates and the lithium cation diffusion in binary polymeric electrolytes will be compared with that of single-ion conducting polymers. In the second part of the talk, the lithium transport in polymeric electrolytes will be compared with that of three ionic liquids ( [emim][FSI] doped with LiFSI , [pyr13][FSI] doped with LiFSI, [emim][BF4] doped with LiBF4). The relation between ionic liquid self-diffusion, conductivity and thermodynamic properties will be discussed in details. A number of correlations between heat of vaporization Hvap, cation-anion binding energy (E+/-), molar volume (Vm), self-diffusion coefficient (D) and ionic conductivity for 29 ionic liquids have been investigated using MD simulations. A significant correlation between D and Hvap has been found, while best correlation was found for -log((D Vm)) vs. Hvap+0.28E+/-. A combination of enthalpy of vaporization and a fraction of the cation-anion binding energy was suggested as a measure of the effective cohesive energy for ionic liquids.

  4. Single discharge of the matrix source of negative hydrogen ions: Influence of the neutral particle dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Paunska, Ts.; Todorov, D., E-mail: dimitar-tdrv@phys.uni-sofia.bg; Shivarova, A. [Faculty of Physics, Sofia University, BG-1164 Sofia (Bulgaria); Tarnev, Kh. [Department of Applied Physics, Technical University–Sofia, BG-1000 Sofia (Bulgaria)

    2015-04-08

    The study presents two-dimensional (2D) fluid-plasma-model description of a planar-coil inductively-driven discharge, considered as a single element of a matrix source of volume-produced negative hydrogen ions. Whereas the models developed up to now have been directed towards description of the charged particle behavior in the discharge, including that of the negative ions, this model stresses on the role of the neutral particle dynamics and of the surface processes in the formation of the discharge structure. The latter is discussed based on comparison of results obtained for discharges in a flowing gas and at a constant gas pressure as well as for different values of the coefficient of atom recombination on the walls. The conclusions are that the main plasma parameters – electron density and temperature and plasma potential – determining the gas discharge regime stay stable, regardless of changes in the redistribution of the densities of the neutral particles and of the positive ions. With regards to the volume production of the ions, which requires high density of (vibrationally excited) molecules, the impact on the degree of dissociation of the coefficient of atom recombination on the wall is discussed.

  5. How ion properties determine the stability of a lipase enzyme in ionic liquids: a molecular dynamics study.

    Science.gov (United States)

    Klähn, Marco; Lim, Geraldine S; Wu, Ping

    2011-11-07

    The influence of eight different ionic liquid (IL) solvents on the stability of the lipase Candida antarctica lipase B (CAL-B) is investigated with molecular dynamics (MD) simulations. Considered ILs contain cations that are based either on imidazolium or guanidinium as well as nitrate, tetrafluoroborate or hexafluorophosphate anions. Partial unfolding of CAL-B is observed during high-temperature MD simulations and related changes of CAL-B regarding its radius of gyration, surface area, secondary structure, amount of solvent close to the backbone and interaction strength with the ILs are evaluated. CAL-B stability is influenced primarily by anions in the order NO(3)(-)≪ BF(4)(-) helices and an increase of surface area, radius of gyration and protein-IL total interaction strength of CAL-B, all of which describe a destabilization of the folded protein state. On the other hand, a destabilization of the protein core is facilitated when direct core-IL interactions are feasible. This is the case when long alkyl chains are involved or when particularly hydrophobic ILs induce major conformational changes that enable ILs direct access to the protein core. This core instability is characterized by a disintegration of β-sheets, diffusion of ions into CAL-B and increasing protein-IL van der Waals interactions. This process describes a stabilization of the unfolded protein state. Both of these processes reduce the folding free energy and thus destabilize CAL-B. The results of this work clarify the impact of ions on CAL-B stabilization. An extrapolation of the observed trends enables proposing novel ILs in which protein stability could be enhanced further.

  6. Gendered Perceptions of Schooling: Classroom Dynamics and Inequalities within Four Caribbean Secondary Schools

    Science.gov (United States)

    Younger, Mike; Cobbett, Mary

    2014-01-01

    This paper sets out to interrogate the reality of secondary schooling in one part of the Caribbean, through a case study exploration of the "gender regimes" of four secondary schools in the small Eastern Caribbean nation state of Antigua and Barbuda. In Antigua, as in the Caribbean region more broadly, the focus of attention has been on…

  7. Quantitative depth profiling of Si{sub 1–x}Ge{sub x} structures by time-of-flight secondary ion mass spectrometry and secondary neutral mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Drozdov, M.N.; Drozdov, Y.N. [Institute for Physics of Microstructures of the Russian Academy of Sciences (IPM RAS), 603950 Nizhniy Novgorod (Russian Federation); Lobachevski Nizhniy Novgorod State University, 603950 Nizhniy Novgorod (Russian Federation); Csik, A. [Institute for Nuclear Research (INR), Hungarian Academy of Science, Bem tér 18/C, 4026 Debrecen (Hungary); Novikov, A.V. [Institute for Physics of Microstructures of the Russian Academy of Sciences (IPM RAS), 603950 Nizhniy Novgorod (Russian Federation); Lobachevski Nizhniy Novgorod State University, 603950 Nizhniy Novgorod (Russian Federation); Vad, K. [Institute for Nuclear Research (INR), Hungarian Academy of Science, Bem tér 18/C, 4026 Debrecen (Hungary); Yunin, P.A.; Yurasov, D.V. [Institute for Physics of Microstructures of the Russian Academy of Sciences (IPM RAS), 603950 Nizhniy Novgorod (Russian Federation); Lobachevski Nizhniy Novgorod State University, 603950 Nizhniy Novgorod (Russian Federation); Belykh, S.F. [MATI Russian State Technological University, Orshanskaya Str. 3, 121552 Moscow (Russian Federation); Gololobov, G.P.; Suvorov, D.V. [Ryazan State Radio Engineering University, Gagarin Str. 59/1, 390005 Ryazan (Russian Federation); Tolstogouzov, A., E-mail: a.tolstoguzov@fct.unl.pt [Ryazan State Radio Engineering University, Gagarin Str. 59/1, 390005 Ryazan (Russian Federation); Centre for Physics and Technological Research (CeFITec), Dept. de Física da Faculdade de Ciências e Tecnologia (FCT), Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)

    2016-05-31

    Quantification of Ge in Si{sub 1–x}Ge{sub x} structures (0.092 ≤ x ≤ 0.78) was carried out by time-of-flight secondary ion mass spectrometry (TOF-SIMS) and electron-gas secondary neutral mass spectrometry (SNMS). A good linear correlation (R{sup 2} > 0.9997) of the intensity ratios of secondary ions GeCs{sub 2}{sup +}/SiCs{sub 2}{sup +} and {sup 74}Ge{sup −}/{sup 30}Si{sup −} and post-ionized sputtered neutrals {sup 70}Ge{sup +}/{sup 28}Si{sup +} with Ge concentration was obtained. The calibration data were used for quantitative depth profiling of [10 × (12.3 nm Si{sub 0.63}Ge{sub 0.37}/34 nm Si)] structures on Si. Satisfactory compliance of the quantified Ge concentration in SiGe layers with the values obtained by high-resolution X-ray diffraction was revealed for both techniques. SIMS and SNMS experimental profiles were fitted using Hofmann's mixing-roughness-information depth (MRI) model. In the case of TOF-SIMS, the quality of the reconstruction was better than for SNMS since not only the progressing roughening, but also the crater effect and other processes unaccounted in the MRI simulation could have a significant impact on plasma sputter depth profiling.

  8. Investigations into the role of oxacarbenium ions in glycosylation reactions by ab initio molecular dynamics.

    Science.gov (United States)

    Ionescu, Andrei R; Whitfield, Dennis M; Zgierski, Marek Z; Nukada, Tomoo

    2006-12-29

    We present a constrained ab initio molecular dynamics method that allows the modeling of the conformational interconversions of glycopyranosyl oxacarbenium ions. The model was successfully tested by estimating the barriers to ring inversion for two 4-substituted tetrahydropyranosyl oxacarbenium ions. The model was further extended to predict the pathways that connect the (4)H(3) half-chair conformation of 2,3,4,6-tetra-O-methyl-d-glucopyranosyl cation to its inverted (5)S(1) conformation and the (4)H(3) half-chair conformation of 2,3,4,6-tetra-O-methyl-d-mannopyranosyl cation to its inverted (3)E conformation. The modeled interconversion pathways reconcile a large body of experimental work on the acid-catalyzed hydrolysis of glycosides and the mechanisms of a number of glucosidases and mannosidases.

  9. Femtosecond study of the effects of ions on the reorientation dynamics of water

    CERN Document Server

    van der Post, Sietse T; Bakker, Huib J

    2013-01-01

    We study the effects of ions on the reorientation dynamics of liquid water with polarization-resolved femtosecond mid-infared spectroscopy. We probe the anisotropy of the excitation of the O-D stretch vibration of HDO molecules in solutions of NaCl, NaI and tetra-alkylammonium bromide salts in 8 percent HDO:H2O. We find that the reorientation O-D groups of HDO molecules hydrating the Cl- and I- anions occurs on two different time scales with time constants of 2pm0.3 ps and 9pm2 ps. The fast component is due to a wobbling motion of the O-D group that keeps the hydrogen bond with the halogenic anion intact. For solutions of tetra-alkylammonium bromide salts we observe a very strong slowing down of the reorientation of water that is associated with the hydration of the hydrophobic alkyl groups of the tetra-alkylammonium ions.

  10. Interaction of the model alkyltrimethylammonium ions with alkali halide salts: an explicit water molecular dynamics study

    Directory of Open Access Journals (Sweden)

    M. Druchok

    2013-01-01

    Full Text Available We present an explicit water molecular dynamics simulation of dilute solutions of model alkyltrimethylammonium surfactant ions (number of methylene groups in the tail is 3, 5, 8, 10, and 12 in mixture with NaF, NaCl, NaBr, and NaI salts, respectively. The SPC/E model is used to describe water molecules. Results of the simulation at 298 K are presented in form of the radial distribution functions between nitrogen and carbon atoms of CH2 groups on the alkyltrimethylammonium ion, and the counterion species in the solution. The running coordination numbers between carbon atoms of surfactants and counterions are also calculated. We show that I- counterion exhibits the highest, and F- the lowest affinity to "bind" to the model surfactants. The results are discussed in view of the available experimental and simulation data for this and similar solutions.

  11. Geometric isotope effects on small chloride ion water clusters with path integral molecular dynamics simulations

    Science.gov (United States)

    Wang, Qi; Suzuki, Kimichi; Nagashima, Umpei; Tachikawa, Masanori; Yan, Shiwei

    2013-11-01

    The geometric isotope effects on the structures of hydrated chloride ionic hydrogen bonded clusters are explored by carrying out path integral molecular dynamics simulations. First, an outer shell coordinate is selected to display the rearrangement of single and multi hydration shell cluster structures. Next, to show the competition of intramolecular and intermolecular nuclear quantum effects, the intramolecular OH∗ stretching and intermolecular ion-water wagging motions are studied for single and multi shell structures, respectively. The results indicate that the intermolecular nuclear quantum effects stabilize the ionic hydrogen bonds in single shell structures, while they are destabilized through the competition with intramolecular nuclear quantum effects in multi shell structures. In addition, the correlations between ion-water stretching motion and other cluster vibrational coordinates are discussed. The results indicate that the intermolecular nuclear quantum effects on the cluster structures are strongly related to the cooperation of the water-water hydrogen bond interactions.

  12. Molecular dynamics study of accelerated ion-induced shock waves in biological media

    CERN Document Server

    de Vera, Pablo; Currell, Fred J; Solov'yov, Andrey V

    2016-01-01

    We present a molecular dynamics study of the effects of carbon- and iron-ion induced shock waves in DNA duplexes in liquid water. We use the CHARMM force field implemented within the MBN Explorer simulation package to optimize and equilibrate DNA duplexes in liquid water boxes of different sizes and shapes. The translational and vibrational degrees of freedom of water molecules are excited according to the energy deposited by the ions and the subsequent shock waves in liquid water are simulated. The pressure waves generated are studied and compared with an analytical hydrodynamics model which serves as a benchmark for evaluating the suitability of the simulation boxes. The energy deposition in the DNA backbone bonds is also monitored as an estimation of biological damage, something which lies beyond the possibilities of the analytical model.

  13. Off-momentum dynamic aperture for lattices in the RHIC heavy ion runs

    Energy Technology Data Exchange (ETDEWEB)

    Luo Y.; Bai, M.; Blaskiewicz, M.; Gu, X.; Fischer, W.; Marusic, A.; Roser, T.; Tepikian, S.; Zhang, S.

    2012-05-20

    To reduce transverse emittance growth rates from intrabeam scattering in the RHIC heavy ion runs, a lattice with an increased phase advance in the arc FODO cells was adopted in 2008-2011. During these runs, a large beam loss due to limited off-momentum dynamic aperture was observed during longitudinal RF re-bucketing and with transverse cooling. Based on the beam loss observations in the previous ion runs and the calculated off-momentum apertures, we decided to adopt the lattice used before 2008 for the 2012 U-U and Cu-Au runs. The observed beam decay and the measured momentum aperture in the 2012 U-U run are presented.

  14. Oxygenation mechanism of ions in dynamic reaction cell ICP-MS.

    Science.gov (United States)

    Narukawa, Tomohiro; Chiba, Koichi

    2013-01-01

    A dynamic reaction cell (DRC) is one of the most effective tools for eliminating spectral interferences caused by polyatomic molecules in inductively coupled plasma mass spectrometry (ICP-MS). Oxygen gas (O2), by producing oxygenated ions, is very effective in reducing some specific spectral interferences. In this study, the oxygenation of elemental ions (M(+)) in the DRC was investigated experimentally, and a new explanation for oxygenation based on the enthalpy changes in the oxygenating reactions is proposed. The enthalpy changes of each M(+) were calculated and the possibility of each reaction occurring was evaluated. The calculations were in good agreement with experimental observations. Theoretical and experimental results supported the hypothesis that the enthalpy changes (ΔH) of M(+)+ O2 → MO(+) + O and M(+) + O → MO(+) and the thermodynamic stability of M(+)-O are key factors controlling oxygenation of M(+) in the DRC.

  15. Beam dynamics design studies of a superconducting radioactive ion beam postaccelerator

    CERN Document Server

    Fraser, M A; Jones, R M

    2011-01-01

    The HIE-ISOLDE project at CERN proposes a superconducting upgrade to increase the energy range and quality of the radioactive ion beams produced at ISOLDE, which are currently postaccelerated by the normal conducting radioactive ion beam experiment linac. The specification and design choices for the HIE-ISOLDE linac are outlined along with a comprehensive beam dynamics study undertaken to understand and mitigate the sources of beam emittance dilution. The dominant cause of transverse emittance growth was attributed to the coupling between the transverse and longitudinal motions through the phase dependence of the rf defocusing force in the accelerating cavities. A parametric resonance induced by the coupling was observed and its excitation surveyed as a function of transverse phase advance using numerical simulations and analytic models to understand and avoid the regions of transverse beam instability. Other sources of emittance growth were studied and where necessary ameliorated, including the beam steering...

  16. A strong diffusive ion mode in dense ionized matter predicted by Langevin dynamics.

    Science.gov (United States)

    Mabey, P; Richardson, S; White, T G; Fletcher, L B; Glenzer, S H; Hartley, N J; Vorberger, J; Gericke, D O; Gregori, G

    2017-01-30

    The state and evolution of planets, brown dwarfs and neutron star crusts is determined by the properties of dense and compressed matter. Due to the inherent difficulties in modelling strongly coupled plasmas, however, current predictions of transport coefficients differ by orders of magnitude. Collective modes are a prominent feature, whose spectra may serve as an important tool to validate theoretical predictions for dense matter. With recent advances in free electron laser technology, X-rays with small enough bandwidth have become available, allowing the investigation of the low-frequency ion modes in dense matter. Here, we present numerical predictions for these ion modes and demonstrate significant changes to their strength and dispersion if dissipative processes are included by Langevin dynamics. Notably, a strong diffusive mode around zero frequency arises, which is not present, or much weaker, in standard simulations. Our results have profound consequences in the interpretation of transport coefficients in dense plasmas.

  17. Exact Solution of Quantum Dynamics of a Cantilever Coupling to a Single Trapped Ultracold Ion

    Institute of Scientific and Technical Information of China (English)

    LIU Tao; FENG Mang; WANG Ke-Lin

    2007-01-01

    The quantum behavior of a precooled cantilever can be probed highly efficiently by electrostatically coupling to a trapped ultracold ion, in which a fast cooling of the cantilever down to the ground vibrational state is possible.Within a simple model with an ultracold ion coupled to a cantilever with only few vibrational quanta, we solve the dynamics of the coupling system by a squeezed-state expansion technique, and can in principle obtain the exact solution of the time-evolution of the coupling system in the absence of the rotating-wave approximation. Comparing to the treatment under the rotating-wave approximation, we present a more accurate description of the quantum behavior of the cantilever.

  18. Probing the Dynamics of a Superradiant Quantum Phase Transition with a Single Trapped Ion.

    Science.gov (United States)

    Puebla, Ricardo; Hwang, Myung-Joong; Casanova, Jorge; Plenio, Martin B

    2017-02-17

    We demonstrate that the quantum phase transition (QPT) of the Rabi model and critical dynamics near the QPT can be probed in the setup of a single trapped ion. We first demonstrate that there exists equilibrium and nonequilibrium scaling functions of the Rabi model by finding a proper rescaling of the system parameters and observables, and show that those scaling functions are representative of the universality class to which the Rabi model belongs. We then propose a scheme that can faithfully realize the Rabi model in the limit of a large ratio of the effective atomic transition frequency to the oscillator frequency using a single trapped ion and, therefore, the QPT. It is demonstrated that the predicted universal functions can indeed be observed based on our scheme. Finally, the effects of realistic noise sources on probing the universal functions in experiments are examined.

  19. Probing the Dynamics of a Superradiant Quantum Phase Transition with a Single Trapped Ion

    Science.gov (United States)

    Puebla, Ricardo; Hwang, Myung-Joong; Casanova, Jorge; Plenio, Martin B.

    2017-02-01

    We demonstrate that the quantum phase transition (QPT) of the Rabi model and critical dynamics near the QPT can be probed in the setup of a single trapped ion. We first demonstrate that there exists equilibrium and nonequilibrium scaling functions of the Rabi model by finding a proper rescaling of the system parameters and observables, and show that those scaling functions are representative of the universality class to which the Rabi model belongs. We then propose a scheme that can faithfully realize the Rabi model in the limit of a large ratio of the effective atomic transition frequency to the oscillator frequency using a single trapped ion and, therefore, the QPT. It is demonstrated that the predicted universal functions can indeed be observed based on our scheme. Finally, the effects of realistic noise sources on probing the universal functions in experiments are examined.

  20. Dynamics of Ion Temperature Gradient Turbulence and Transport with a Static Magnetic Island

    CERN Document Server

    Izacard, Olivier; James, Spencer D; Brennan, Dylan P

    2015-01-01

    The quantification of the interaction mechanism between large-scale magnetohydrodynamics instabilities and small-scale drift-wave microturbulence is essential for predicting and optimizing the performance of magnetic confinement based fusion energy experiments. We report progress on understanding these interactions using both analytic theory and numerical simulation, with BOUT++ [B. Dudson et al., Comput. Phys. Comm. 180, 1467 (2009)] used to evolve simple five-field fluid models in a sheared slab geometry. This work focuses upon understanding the dynamics of the ion temperature gradient instability in the presence of a background static magnetic island in a weakly electromagnetic two-dimensional five-field model as key parameters such as ion temperature gradient, magnetic gradients and static magnetic island size are varied. The simulation results are then used to calculate the effective turbulent transport coefficient (i.e. resistivity) that is compared against classical coefficient. As part of this work, t...

  1. Molecular Dynamics Study of the Foam Stability of a Mixed Surfactant System with and without Calcium Ions

    Science.gov (United States)

    Yang, Xiaozhen; Yang, Wenhong; Institute of Chemistry, CAS Team

    2011-03-01

    Foam stability performance of a mixture surfactant system with and without calcium ions, including linear alkylbenzene sulfonate (LAS) and sodium dodecyl sulfate (SDS), has been studied by molecular dynamics. Microscopic interaction analysis reveals that the fraction of free calcium ions, Xf , in film system indicates the extent of the foam stabilities when Xf is in different calcium ion zones. In the system without ions, we found the variable of the surfactant tail mass out of water film, W , is indicator of foam stability. Performance of the mixture system predicted here was supported by experiments.

  2. Structural and dynamical properties of ionic liquids: the influence of ion size disparity.

    Science.gov (United States)

    Spohr, H V; Patey, G N

    2008-08-14

    The influence of ion size disparity on structural and dynamical properties of ionic liquids is systematically investigated employing molecular dynamics simulations. Ion size ratios are varied over a realistic range (from 1:1 to 5:1) while holding other important molecular and system parameters fixed. In this way we isolate and identify effects that stem from size disparity alone. In strongly size disparate systems the larger species (cations in our model) tend to dominate the structure; the anion-anion distribution is largely determined by anion-cation correlations. The diffusion coefficients of both species increase, and the shear viscosity decreases with increasing size disparity. The influence of size disparity is strongest up to a size ratio of 3:1, then decreases, and by 5:1 both the diffusion coefficients and viscosity appear to be approaching limiting values. The conventional Stokes-Einstein expression for diffusion coefficients holds reasonably well for the cations but fails for the smaller anions as size disparity increases likely due to the neglect of strong anion-cation correlations. The electrical conductivity is not a simple monotonic function of size disparity; it first increases up to size ratios of 2:1, remains nearly constant until 3:1, then decreases such that the conductivities of the 1:1 and 5:1 systems are similar. This behavior is traced to the competing influences of ion diffusion (enhancing) and ion densities (reducing) on conductivities at constant packing fraction. The temperature dependence of the transport properties is examined for the 1:1 and 3:1 systems. In accord with experiment, the temperature dependence of all transport properties is well represented by the Vogel-Fulcher-Tammann equation. The dependence of the diffusion coefficients on the temperature/viscosity ratio is well described by the fractional Stokes-Einstein relation D proportional to (T/eta)(beta) with beta approximately = 0.8, consistent with the exponent observed for

  3. Heavy Solar Wind Ion Dynamics at and Downstream from the Bow Shock

    Science.gov (United States)

    Dougherty, Virginia M.

    1997-01-01

    This is a contract under the NASA Supporting Research and Technology Program for the analysis and interpretation of the scientific data from the Plasma Composition Experiment on the International Sun Earth Explorer 1 (ISEE-1) spacecraft and the Fast Plasma Experiment on the ISEE-1 and -2 spacecraft. These combined data sets will be used in a comprehensive study of the heavy solar wind ion dynamics at and downstream from the Earth's bow shock. The report summarizes activities during the above period and outlines expected activities during the forthcoming quarter.

  4. Mobility of O$_2^-$ ions in supercritical Ar: Experiment and Molecular Dynamics Simulations

    CERN Document Server

    Borghesani, A F

    2008-01-01

    A new analysis and new Molecular Dynamics (MD) simulations of the measurements of the mobility $\\mu_{i}$ of O$_{2}^{-} $ ions in dense supercritical Ar gas are reported. $\\mu_{i}$ shows a marked dependence on the distance from the critical temperature $T_{c}.$ A mobility defect appears as a function of the gas density and its maximum value occurs below the critical density. The locus of points of maximum mobility defect in the $P-T$ plane appears on the extrapolation of the coexistence curve into the single-phase region. MD simulations quantitatively reproduce the mobility defect near $T_{c}.$

  5. Influence of coupling on thermal forces and dynamic friction in plasmas with multiple ion species

    CERN Document Server

    Kagan, Grigory; Daligault, Jerome

    2016-01-01

    The recently proposed effective potential theory [Phys. Rev. Lett. 110, 235001 (2013)] is used to investigate the influence of coupling on inter-ion-species diffusion and momentum exchange in multi-component plasmas. Thermo-diffusion and the thermal force are found to diminish rapidly as strong coupling onsets. For the same coupling parameters, the dynamic friction coefficient is found to tend to unity. These results provide an impetus for addressing the role of coupling on diffusive processes in inertial confinement fusion experiments.

  6. Molecular dynamics simulation of ion-beam-amorphization of Si, Ge and GaAs

    CERN Document Server

    Nord, J D; Keinonen, J

    2002-01-01

    We use molecular dynamics simulations to study ion-irradiation-induced amorphization in Si, Ge and GaAs using several different interatomic force models. We find that the coordination number is higher, and the average bond length longer, for the irradiated amorphous structures than for the molten ones in Si and Ge. For amorphous GaAs, we suggest that longer Ga-Ga bonds, also present in pure Ga, are produced during the irradiation. In Si the amorphization is found to proceed via growth of amorphous regions, and low energy recoils are found to induce athermal recrystallization during irradiation.

  7. Molecular dynamics studies of electron-ion temperature equilibration in the coupled-mode regime

    Science.gov (United States)

    Benedict, Lorin X.; Surh, Michael P.; Scullard, Christian R.; Stanton, Liam G.; Correa, Alfredo A.; Castor, John I.; Graziani, Frank R.; Collins, Lee A.; Kress, Joel D.; Cimarron Collaboration; T-1 Collaboration

    2016-10-01

    We use classical molecular dynamics (MD) to study electron-ion temperature equilibration in two-component plasmas in regimes in which the presence of coupled collective modes substantively impacts the equilibration rate. Guided by previous kinetic theory work in which predictions were made of both the regimes and the sizes of this effect, we examine hydrogen plasmas at a density of n =102 6 1/cm3, Ti =105 K, and 107 K Contract DE-AC52-07NA27344 and by Los Alamos National Laboratory under Contract DE-AC52-06NA25396.

  8. Parallel helix bundles and ion channels: molecular modeling via simulated annealing and restrained molecular dynamics.

    OpenAIRE

    Kerr, I. D.; Sankararamakrishnan, R; Smart, O.S.; Sansom, M S

    1994-01-01

    A parallel bundle of transmembrane (TM) alpha-helices surrounding a central pore is present in several classes of ion channel, including the nicotinic acetylcholine receptor (nAChR). We have modeled bundles of hydrophobic and of amphipathic helices using simulated annealing via restrained molecular dynamics. Bundles of Ala20 helices, with N = 4, 5, or 6 helices/bundle were generated. For all three N values the helices formed left-handed coiled coils, with pitches ranging from 160 A (N = 4) to...

  9. The Effects of Metal Ions and Secondary Ligands on the Formation of Structures Resulted from Flexible Building Blocks

    Institute of Scientific and Technical Information of China (English)

    LI Feng; LI Tao-Hai; CAO Rong

    2005-01-01

    Two coordination polymers have been synthesized from cpg/4,4'-bipy/metal ions reaction system, [Zn(cpg)(4,4'-bipy)0.5(H2O)]·H2O 1 and [Cd(cpg)(4,4'-bipy)0.5(H2O)2]·H2O 2. X- ray analyses show that different coordination geometries of zinc and cadmium ions lead to similar ladder structures (tetra- for zinc ion and hexa- for cadmium ion), in which all the flexible cpg mole- cules exist as single conformations of anti-form.

  10. Mass Spectra and Yields of Intact Charged Biomolecules Ejected by Massive Cluster Impact for Bioimaging in a Time-of-Flight Secondary Ion Microscope.

    Science.gov (United States)

    Zhang, Jitao; Franzreb, Klaus; Aksyonov, Sergei A; Williams, Peter

    2015-11-03

    Impacts of massive, highly charged glycerol clusters (≳10(6) Da, ≳ ± 100 charges) have been used to eject intact charged molecules of peptides, lipids, and small proteins from pure solid samples, enabling imaging using these ion species in a time-of-flight secondary ion microscope with few-micrometer spatial resolution. Here, we report mass spectra and useful ion yields (ratio of intact charged molecules detected to molecules sputtered) for several molecular species-two peptides, bradykinin and angiotensin II; two lipids, phosphatidylcholine and sphingomyelin; Irganox 1010 (a detergent); insulin; and rhodamine B-and show that useful ion yields are high enough to enable bioimaging of peptides and lipids in biological samples with few-micrometer resolution and acceptable signals. For example, several hundred molecular ion counts should be detectable from a 3 × 3 μm(2) area of a pure lipid bilayer given appropriate instrumentation or tens of counts from a minor constituent of such a layer.

  11. Simulation of longitudinal dynamics of laser-cooled and RF-bunched C3+ ion beams at heavy ion storage ring CSRe

    Science.gov (United States)

    Li, Xiao-Ni; Wen, Wei-Qiang; Du, Heng; Li, Peng; Zhang, Xiao-Hu; Hu, Xue-Jing; Qu, Guo-Feng; Li, Zhong-Shan; Ge, Wen-Wen; Li, Jie; Wang, Han-Bing; Xia, Jia-Wen; Yang, Jian-Cheng; Ma, Xin-Wen; Yuan, You-Jin

    2017-07-01

    Laser cooling of Li-like C3+ and O4+ relativistic heavy ion beams is planned at the experimental Cooler Storage Ring (CSRe). Recently, a preparatory experiment to test important prerequisites for laser cooling of relativistic 12C3+ ion beams using a pulsed laser system has been performed at the CSRe. Unfortunately, the interaction between the ions and the pulsed laser cannot be detected. In order to study the laser cooling process and find the optimized parameters for future laser cooling experiments, a multi-particle tracking method has been developed to simulate the detailed longitudinal dynamics of laser-cooled ion beams at the CSRe. Simulations of laser cooling of the 12C3+ion beams by scanning the frequency of the RF-buncher or continuous wave (CW) laser wavelength have been performed. The simulation results indicate that ion beams with a large momentum spread could be laser-cooled by the combination of only one CW laser and the RF-buncher, and show the requirements of a successful laser cooling experiment. The optimized parameters for scanning the RF-buncher frequency or laser frequency have been obtained. Furthermore, the heating effects have been estimated for laser cooling at the CSRe. The Schottky noise spectra of longitudinally modulated and laser-cooled ion beams have been simulated to fully explain and anticipate the experimental results. The combination of Schottky spectra from the highly sensitive resonant Schottky pick-up and the simulation methods developed in this paper will be helpful to investigate the longitudinal dynamics of RF-bunched and ultra-cold ion beams in the upcoming laser cooling experiments at the CSRe. Supported by National Natural Science Foundation of China (11405237, 11504388)

  12. Ionization and bound-state relativistic quantum dynamics in laser-driven multiply charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Hetzheim, Henrik

    2009-01-14

    The interaction of ultra-strong laser fields with multiply charged hydrogen-like ions can be distinguished in an ionization and a bound dynamics regime. Both are investigated by means of numerically solving the Dirac equation in two dimensions and by a classical relativistic Monte-Carlo simulation. For a better understanding of highly nonlinear physical processes the development of a well characterized ultra-intense relativistic laser field strength has been driven forward, capable of studying e.g. the magnetic field effects of the laser resulting in an additional electron motion in the laser propagation direction. A novel method to sensitively measure these ultra-strong laser intensities is developed and employed from the optical via the UV towards the XUV frequency regime. In the bound dynamics field, the determination of multiphoton transition matrixelements has been investigated between different bound states via Rabi oscillations. (orig.)

  13. Modeling of the transient behaviors of a lithium-ion battery during dynamic cycling

    Science.gov (United States)

    Yi, Jaeshin; Lee, Jeongbin; Shin, Chee Burm; Han, Taeyoung; Park, Seongyong

    2015-03-01

    In this paper, we report a modeling methodology on the transient behaviors of a lithium-ion battery (LIB) during dynamic cycling. To account for the short time effects of current pulses and rest periods, the nonfaradaic component of the current density transferred through the separator between the positive and negative electrodes is included based on the lumped double-layer capacitance. Two-dimensional modeling is performed to predict the transient behaviors of an LIB cell during dynamic cycling. To validate the modeling approach presented in this work, modeling results for the variations in cell voltage and two-dimensional temperature distribution of the LIB cell as a function of time are compared with the experimental data for constant-current discharge and charge cycles and the Heavy Duty Urban Dynamometer Driving Schedule cycles. The transient behaviors obtained from the modeling agree well with the experimental measurements.

  14. Isospin dynamics on the production of pions and preequilibrium particles in heavy-ion collisions

    CERN Document Server

    Feng, Zhao-Qing

    2016-01-01

    Within the framework of the Lanzhou quantum molecular dynamics (LQMD) transport model, pion dynamics in heavy-ion collisions near threshold energies and the emission of preequilibrium particles (nucleons and light clusters) have been investigated. A density, momentum and isospin dependent pion-nucleon potential based on the $\\Delta$-hole model is implemented in the transport approach, which slightly increases the $\\pi^{-}/\\pi^{+}$ ratio, but reduces the total pion yields. A bump structure of the $\\pi^{-}/\\pi^{+}$ ratio in the kinetic energy spectra appears at the pion energy close to the $\\Delta$(1232) resonance region. The yield ratios of neutrons to protons from the squeeze-out particles perpendicular to the reaction plane are sensitive to the stiffness of nuclear symmetry energy, in particular at the high-momentum (kinetic energy) tails.

  15. Fine-tuning the etch depth profile via dynamic shielding of ion beam

    CERN Document Server

    Wu, Lixiang; Fu, Shaojun

    2016-01-01

    We introduce a method for finely adjusting the etch depth profile by dynamic shielding in the course of ion beam etching (IBE), which is crucial for the ultra-precision fabrication of large optics. We study the physical process of dynamic shielding and propose a parametric modeling method to quantitatively analyze the shielding effect on etch depths, or rather the shielding rate, where a piecewise Gaussian model is adopted to fit the shielding rate profile. We have conducted two experiments. In the experiment on parametric modeling of shielding rate profiles, its result shows that the shielding rate profile is significantly influenced by the rotary angle of the leaf. And the experimental result of fine-tuning the etch depth profile shows good agreement with the simulated result, which preliminarily verifies the feasibility of our method.

  16. Formulation of relativistic dissipative fluid dynamics and its applications in heavy-ion collisions

    CERN Document Server

    Jaiswal, Amaresh

    2014-01-01

    Relativistic fluid dynamics finds application in astrophysics, cosmology and the physics of high-energy heavy-ion collisions. In this thesis, we present our work on the formulation of relativistic dissipative fluid dynamics within the framework of relativistic kinetic theory. We employ the second law of thermodynamics as well as the relativistic Boltzmann equation to obtain the dissipative evolution equations. We present a new derivation of the dissipative hydrodynamic equations using the second law of thermodynamics wherein all the second-order transport coefficients get determined uniquely within a single theoretical framework. An alternate derivation of the dissipative equations which does not make use of the two major approximations/assumptions namely, Grad's 14-moment approximation and second moment of Boltzmann equation, inherent in the Israel-Stewart theory, is also presented. Moreover, by solving the Boltzmann equation iteratively in a Chapman-Enskog like expansion, we have derived the form of second-...

  17. Demographic Drivers of Aboveground Biomass Dynamics During Secondary Succession in Neotropical Dry and Wet Forests

    NARCIS (Netherlands)

    Rozendaal, Danaë M.A.; Chazdon, Robin L.; Arreola-Villa, Felipe; Balvanera, Patricia; Bentos, Tony V.; Dupuy, Juan M.; Hernández-Stefanoni, J.L.; Jakovac, Catarina C.; Lebrija-Trejos, Edwin E.; Lohbeck, Madelon; Martínez-Ramos, Miguel; Massoca, Paulo E.S.; Meave, Jorge A.; Mesquita, Rita C.G.; Mora, Francisco; Pérez-García, Eduardo A.; Romero-Pérez, I.E.; Saenz-Pedroza, Irving; Breugel, van Michiel; Williamson, G.B.; Bongers, Frans

    2016-01-01

    The magnitude of the carbon sink in second-growth forests is expected to vary with successional biomass dynamics resulting from tree growth, recruitment, and mortality, and with the effects of climate on these dynamics. We compare aboveground biomass dynamics of dry and wet Neotropical forests, b

  18. Structure, hydrolysis and diffusion of aqueous vanadium ions from Car-Parrinello molecular dynamics

    CERN Document Server

    Jiang, Zhen; Alexandrov, Vitaly

    2016-01-01

    A molecular level understanding of the properties of electroactive vanadium species in aqueous solution is crucial for enhancing the performance of vanadium redox flow batteries (RFB). Here, we employ Car-Parrinello molecular dynamics (CPMD) simulations based on density functional theory to investigate the hydration structures, first hydrolysis reaction and diffusion of aqueous V$^{2+}$, V$^{3+}$, VO$^{2+}$, and VO$_2^+$ ions at 300 K. The results indicate that the first hydration shell of both V$^{2+}$ and V$^{3+}$ contains six water molecules, while VO$^{2+}$ is coordinated to five and VO$_2^+$ to three water ligands. The first acidity constants (p$K_\\mathrm{a}$) estimated using metadynamics simulations are 2.47, 3.06 and 5.38 for aqueous V$^{3+}$, VO$_2^+$ and VO$^{2+}$, respectively, while V$^{2+}$ is predicted to be a fairly weak acid in aqueous solution with a p$K_\\mathrm{a}$ value of 6.22. We also show that the presence of chloride ions in the first coordination sphere of the aqueous VO$_2^+$ ion has a...

  19. Counter-ion dynamics in crosslinked poly(styrene sulfonate) systems studied by NMR.

    Science.gov (United States)

    Tromp, R H; van der Maarel, J R; de Bleijser, J; Leyte, J C

    1991-10-01

    The field dependence of the longitudinal and transverse nuclear magnetic relaxation rates of 23Na+ in aqueous crosslinked Na-poly(styrene sulfonate) (PSS) systems (ion exchange resins) has been obtained as a function of the degree of crosslinking. The relaxation is considerably enhanced relative to solutions of non-crosslinked NaPSS at equal ionizable group concentration. This is due to the dynamic constraints of the polymer chains, which render the averaging of the counter-ion chain interaction less efficient. The field dependence of the relaxation rates in the crosslinked NaPSS systems reveals two processes that are out of the extreme narrowing limit. This is in contrast to the relaxation behavior found in non-crosslinked NaPSS systems. To characterize these processes their correlation times were combined with constants of selfdiffusion to estimate the distances diffused by an ion in order to average the electric field gradient at its nucleus. These two distances are interpreted as characteristic length scales in the network. At all degrees of crosslinking it was found that the smallest of these length scales is roughly equal to the distance between two neighbouring crosslinks. The largest characteristic distance extends over several crosslinks and reflects inhomogeneities in the crosslink concentration. These conclusions were also reached from similar experiments on 7Li+ in LiPSS systems.

  20. Direct observation of the dynamics of single metal ions at the interface with solids in aqueous solutions

    Science.gov (United States)

    Ricci, Maria; Trewby, William; Cafolla, Clodomiro; Voïtchovsky, Kislon

    2017-02-01

    The dynamics of ions adsorbed at the surface of immersed charged solids plays a central role in countless natural and industrial processes such as crystal growth, heterogeneous catalysis, electrochemistry, or biological function. Electrokinetic measurements typically distinguish between a so-called Stern layer of ions and water molecules directly adsorbed on to the solid’s surface, and a diffuse layer of ions further away from the surface. Dynamics within the Stern layer remain poorly understood, largely owing to a lack of in-situ atomic-level insights. Here we follow the dynamics of single Rb+ and H3O+ ions at the surface of mica in water using high-resolution atomic force microscopy with 25 ms resolution. Our results suggest that single hydrated Rb+ions reside τ1 = 104 ± 5 ms at a given location, but this is dependent on the hydration state of the surface which evolves on a slower timescale of τ2 = 610 ± 30 ms depending on H3O+ adsorption. Increasing the liquid’s temperature from 5 °C to 65 °C predictably decreases the apparent glassiness of the interfacial water, but no clear effect on the ions’ dynamics was observed, indicating a diffusion-dominated process. These timescales are remarkably slow for individual monovalent ions and could have important implications for interfacial processes in electrolytes.

  1. Mechanistic investigation of the interaction between bisquaternary antimicrobial agents and phospholipids by liquid secondary ion mass spectrometry and differential scanning calorimetry.

    Science.gov (United States)

    Pashynskaya, V A; Kosevich, M V; Gömöry, A; Vashchenko, O V; Lisetski, L N

    2002-01-01

    Mechanisms of interaction between the antimicrobial drugs decamethoxinum and aethonium, which are based on bisquaternary ammonium compounds, and a phospholipid component of biological membranes, dipalmitoylphosphatidylcholine, were studied by means of liquid secondary ion mass spectrometry (LSIMS) and differential scanning calorimetry (DSC). Supramolecular complexes of the drugs with this phospholipid were recorded under secondary ion mass spectrometric conditions. The dependence of the structures of these complexes on structural parameters of the dications of the bisquaternary ammonium compounds was demonstrated. Tandem mass spectrometric investigations of the metastable decay of doubly charged ions of decamethoxinum and aethonium complexes with dipalmitoylphosphatidylcholine allowed estimation of structural parameters of these complexes in the gas phase. Interactions of decamethoxinum and aethonium with model membrane assemblies built from hydrated dipalmitoylphosphatidylcholine were studied using DSC. It was shown that while both drugs can interact with model membranes, the mechanisms of such interactions for decamethoxinum and aethonium differ. The correlation between the nature of these interactions and structural and electronic parameters of the dications of the two bisquaternary agents is discussed. Interpretation of combined mass spectrometric and calorimetric experimental data led to proposals that the molecular mechanisms of antimicrobial action of bisquaternary ammonium compounds are related to their effect on the membrane phospholipid components of microbial cells.

  2. Neotropical dry forests of the Caribbean: Secondary forest dynamics and restoration in St. Croix, US Virgin Islands

    Science.gov (United States)

    Daley, Brian F.

    Neotropical dry forests exist today mainly as secondary forests heavily influenced by exotic plants. This project analyzes land-cover change and secondary dry forest dynamics in three distinct phases (land cover change, secondary forest succession and forest rehabilitation), using St. Croix, US Virgin Islands as an example. Using Landsat satellite images and other data layers, I created classified land cover maps of St. Croix for 1992 and 2002. Forest was the dominant (56%) cover type on both dates, followed by development, grassland/pastures and water. A land cover change analysis comparing the two images revealed that 15% of the study area experienced a change either to (8%) or from (7%) forest. Grassland was the cover most likely to change and decreased from 16% to 11%, converted primarily to development. The overall result is a landscape trending toward younger forests, and increased forest fragmentation and development. In a second study, vegetation data from a chronosequence of secondary forests was analyzed for changes to forest structure, species composition and presence of exotic species. The leguminous exotic tree Leucaena leucocephala was by far the most frequently observed tree and dominated all stands, except those over 50 years old. Species diversity was significantly ( p50 years after abandonment. In a third experiment, a 'gap planting' method for establishing four rare native tree species was tested on a site experiencing arrested succession. All four species successfully established at >69% survival in 3m diameter gaps artificially created in exotic tree stands. A mulch treatment significantly (p<0.01) increased survival, but not growth. This study demonstrates on St. Croix forest is the primary land cover type and secondary forests are predominant forest type. The species composition of these forests is dynamic, but they tend to be dominated by exotic tree species and over 50 years of natural succession is insufficient time for secondary forest

  3. Dynamics of Protonated Peptide Ion Collisions with Organic Surfaces: Consonance of Simulation and Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Pratihar, Subha; Barnes, George L.; Laskin, Julia; Hase, William L.

    2016-08-18

    In this Perspective mass spectrometry experiments and chemical dynamics simulations are described which have explored the atomistic dynamics of protonated peptide ions, peptide-H+, colliding with organic surfaces. These studies have investigated surface-induced dissociation (SID) for which peptide-H+ fragments upon collision with the surface, peptide-H+ physisorption on the surface, soft landing (SL), and peptide-H+ reaction with the surface, reactive landing (RL). The simulations include QM+MM and QM/MM direct dynamics. For collisions with self-assembled monolayer (SAM) surfaces there is quite good agreement between experiment and simulation in the efficiency of energy transfer to the peptide-H+ ion’s internal degrees of freedom. Both the experiments and simulations show two mechanisms for peptide-H+ fragmentation, i.e. shattering and statistical, RRKM dynamics. Mechanisms for SL are probed in simulations of collisions of protonated dialanine with a perfluorinated SAM surface. RL has been studied experimentally for a number of peptide-H+ + surface systems, and qualitative agreement between simulation and experiment is found for two similar systems.

  4. A general potential for molecular dynamics of ion-sputtered surfaces

    CERN Document Server

    Akande, Raphael O

    2015-01-01

    Erosion of surface atoms of solid materials by ion bombardment (surface-sputtering) causes nano-ripples and quantum dots to self-organise on the surfaces. The self-organisation had been shown, in some sputtering experiments, to be influenced by unexpected contaminants (ions) from vacuum walls. Existing inter-atomic-interaction potentials of Molecular Dynamics (MD) simulations for studying this are unsuitable because they assume two-particle collisions at a time instead of many (including contaminants)-particle collisions (Wider-area Perturbations, (WP)). We designed this study to develop a suitable potential that incorporates WP of the MD. We developed the general potential to account for the possibility of WP due to contaminants (both foreign and local to the material) consequently shifting the eqiulibrium points of the MD the material. For instance, dynamics of Au and Fe were studied with O bombardments/contamination (oxygenated environments), and those of CSiGe were studied with W, Ti, and O. It was found ...

  5. Microscopic dynamics simulations of heavy-ion fusion reactions induced by neutron-rich nuclei

    CERN Document Server

    Wang, Ning; Zhang, Yingxun; Li, Zhuxia

    2014-01-01

    The heavy-ion fusion reactions induced by neutron-rich nuclei are investigated with the improved quantum molecular dynamics (ImQMD) model. With a subtle consideration of the neutron skin thickness of nuclei and the symmetry potential, the stability of nuclei and the fusion excitation functions of heavy-ion fusion reactions $^{16}$O+$^{76}$Ge, $^{16}$O+$^{154}$Sm, $^{40}$Ca+$^{96}$Zr and $^{132}$Sn+$^{40}$Ca are systematically studied. The fusion cross sections of these reactions at energies around the Coulomb barrier can be well reproduced by using the ImQMD model. The corresponding slope parameter of the symmetry energy adopted in the calculations is $L \\approx 78$ MeV and the surface energy coefficient is $g_{\\rm sur}=18\\pm 1.5$ MeVfm$^2$. In addition, it is found that the surface-symmetry term significantly influences the fusion cross sections of neutron-rich fusion systems. For sub-barrier fusion, the dynamical fluctuations in the densities of the reaction partners and the enhanced surface diffuseness at ...

  6. Hydration of the cyanide ion: an ab initio quantum mechanical charge field molecular dynamics study.

    Science.gov (United States)

    Moin, Syed Tarique; Hofer, Thomas S

    2014-12-21

    This paper presents an ab initio quantum mechanical charge field molecular dynamics simulation study of the cyanide anion (CN(-)) in aqueous solution where hydrogen bond formation plays a dominant role in the hydration process. Preferential orientation of water hydrogens compared to oxygen atoms was quantified in terms of radial, angular as well as coordination number distributions. All structural results indicate that the water hydrogens are attracted towards CN(-) atoms, thus contributing to the formation of the hydration layer. Moreover, a clear picture of the local arrangement of water molecules around the ellipsoidal CN(-) ion is provided via angular-radial distribution and spatial distribution functions. Apart from the structural analysis, the evaluation of water dynamics in terms of ligand mean residence times and H-bond correlation functions indicates the weak structure making capacity of the CN(-) ion. The similar values of H-bond lifetimes obtained for the NHwat and CHwat bonds indicate an isokinetic behaviour of these H-bonds, since there is a very small difference in the magnitude of the lifetimes. On the other hand, the H-bond lifetimes between water molecules of the hydration shell, and between solute and solvent evidence the slightly stable hydration of the CN(-). Overall, the H-bonding dominates in the hydration process of the cyanide anion enabling it to become soluble in the aqueous environment associated to chemical and biological processes.

  7. Dynamics of ion temperature gradient turbulence and transport with a static magnetic island

    Science.gov (United States)

    Izacard, Olivier; Holland, Christopher; James, Spencer D.; Brennan, Dylan P.

    2016-02-01

    Understanding the interaction mechanisms between large-scale magnetohydrodynamic instabilities and small-scale drift-wave microturbulence is essential for predicting and optimizing the performance of magnetic confinement based fusion energy experiments. We report progress on understanding these interactions using both analytic theory and numerical simulations performed with the BOUT++ [Dudson et al., Comput. Phys. Commun. 180, 1467 (2009)] framework. This work focuses upon the dynamics of the ion temperature gradient instability in the presence of a background static magnetic island, using a weakly electromagnetic two-dimensional five-field fluid model. It is found that the island width must exceed a threshold size (comparable with the turbulent correlation length in the no-island limit) to significantly impact the turbulence dynamics, with the primary impact being an increase in turbulent fluctuation and heat flux amplitudes. The turbulent radial ion energy flux is shown to localize near the X-point, but does so asymmetrically in the poloidal dimension. An effective turbulent resistivity which acts upon the island outer layer is also calculated and shown to always be significantly (10×-100×) greater than the collisional resistivity used in the simulations.

  8. Molecular dynamics simulation of ion selectivity traits of nickel hexacyanoferrate thin films

    Institute of Scientific and Technical Information of China (English)

    HAO Xiao-gang; YU Qiu-ming; JIANG Shao-yi; D. T. SCHWARTZ

    2006-01-01

    The ion selectivity of nickel hexacyanoferrate thin film to alkali cations in ESIX (electrochemically switched ion exchange) processes was investigated using molecular dynamics(MD) techniques; water and cation (Na+ and Cs+) intercalation, configuration,and dynamics in reduced nickel hexacyanoferrate structures with different cation combinations were studied and compared with the experimental results. In the simulations, water was represented by an extended simple point-charge(SPC/E) model, and all other atomic interactions were represented by a universal force field(UFF). The potential energies of various cations combination (Cs+ and Na+) in reduced i-NiHCF and 1 mol/L Cs/NaCl mixed solution were obtained. In most cases, the total potential energy of the solid is reduced when water is intercalated into the various reduced NiHCF structures. Combining the solid and the solution simulation results, it is shown that the solid composition of 3Cs+/1Na+ is the stablest structure form (NaCs3Ni4[Fe(CN)6]3) over a range of solution compositions.

  9. Ionization of molecular hydrogen and stripping of oxygen atoms and ions in collisions of Oq++H2 (q = 0- 8): Data for secondary electron production from ion precipitation at Jupiter

    Science.gov (United States)

    Schultz, D. R.; Ozak, N.; Cravens, T. E.; Gharibnejad, H.

    2017-01-01

    Energetic oxygen and sulfur ion precipitation into the atmosphere of Jupiter is thought to produce an X-ray aurora as well as to contribute to ionization, heating, and dissociation of the molecules of the atmosphere. At high energy, stripping of electrons from these ions by atmospheric gas molecules results in the production of high charge states throughout a portion of this passage through the atmosphere. Therefore, to enable modeling of the effects of secondary electrons produced by this ion precipitation, from either the solar wind or magnetospheric sources such as the Galilean moons, a large range of ionization and stripping data is calculated and tabulated here that otherwise is not available. The present data are for the abundant precipitating species, oxygen, colliding with the dominant upper atmosphere gas, molecular hydrogen, and cover the principal reaction channels leading to secondary electron production (single and double ionization, transfer ionization, and double capture followed by autoionization, and single and double stripping of electrons from the projectile). Since the ions possess initial energies at the upper atmosphere in the keV to MeV range, and are then slowed as they pass through the atmosphere, results are calculated for 1-2000 keV/u Oq++H2 (q =0-8). In addition to the total cross sections for ionization and stripping processes, models require the distribution in energy and angle of the ejected electrons, so cross sections differential in these parameters are also calculated. The data may be used to model the energy deposited by ion precipitation in Jupiter's atmosphere and thereby contribute to the elucidation of the ionosphere-atmosphere coupling.

  10. Structure and dynamics of a protein-surfactant assembly studied by ion-mobility mass spectrometry and molecular dynamics simulations.

    Science.gov (United States)

    Borysik, Antoni J

    2015-09-01

    The structure and dynamics of a protein-surfactant assembly studied by ion-mobility mass spectrometry (IMS) and vacuum molecular dynamics (MD) simulations is reported. Direct evidence is provided for the ability of the surfactant dodecyl-β-D-maltoside (DDM) to prevent charge-induced unfolding of the membrane protein (PagP) in the gas-phase. Restraints obtained by IMS are used to map the surfactant positions onto the protein surface. Surfactants occupying more exposed positions at the apexes of the β-barrel structure are most in-line with the experimental observations. MD simulations provide additional evidence for this assembly organization through surfactant inversion and migration on the protein structure in the absence of solvent. Surfactant migration entails a net shift from apolar membrane spanning regions to more polar regions of the protein structure with the DDM molecule remaining attached to the protein via headgroup interactions. These data provide evidence for the role of protein-DDM headgroup interactions in stabilizing membrane protein structure from gas-phase unfolding.

  11. An Improved Distributed Secondary Control Method for DC Microgrids With Enhanced Dynamic Current Sharing Performance

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Panbao; Lu, Xiaonan; Yang, Xu; Wang, Wei; Xu, Dianguo

    2016-09-01

    This paper proposes an improved distributed secondary control scheme for dc microgrids (MGs), aiming at overcoming the drawbacks of conventional droop control method. The proposed secondary control scheme can remove the dc voltage deviation and improve the current sharing accuracy by using voltage-shifting and slope-adjusting approaches simultaneously. Meanwhile, the average value of droop coefficients is calculated, and then it is controlled by an additional controller included in the distributed secondary control layer to ensure that each droop coefficient converges at a reasonable value. Hence, by adjusting the droop coefficient, each participating converter has equal output impedance, and the accurate proportional load current sharing can be achieved with different line resistances. Furthermore, the current sharing performance in steady and transient states can be enhanced by using the proposed method. The effectiveness of the proposed method is verified by detailed experimental tests based on a 3 × 1 kW prototype with three interface converters.

  12. Probing the orientation of electrostatically immobilized cytochrome C by time of flight secondary ion mass spectrometry and sum frequency generation spectroscopy.

    Science.gov (United States)

    Baio, Joe E; Weidner, Tobias; Ramey, Dennis; Pruzinsky, Leah; Castner, David G

    2013-12-01

    By taking advantage of the electron pathway through the heme group in cytochrome c (CytoC) electrochemists have built sensors based upon CytoC immobilized onto metal electrodes. Previous studies have shown that the electron transfer rate through the protein is a function of the position of this heme group with respect to the electrode surface. In this study a detailed examination of CytoC orientation when electrostatically immobilized onto both amine (NH3(+)) and carboxyl (COO(-)) functionalized gold is presented. Protein coverage, on both surfaces, was monitored by the change in the atomic % N, as determined by x-ray photoelectron spectroscopy. Spectral features within the in situ sum frequency generation vibrational spectra, acquired for the protein interacting with positively and negatively charged surfaces, indicates that these electrostatic interactions do induce the protein into a well ordered film. Time of flight secondary ion mass spectrometry data demonstrated a clear separation between the two samples based on the intensity differences of secondary ions stemming from amino acids located asymmetrically within CytoC (cysteine: C2H6NS(+); glutamic acid: C4H6NO(+) and C4H8NO2 (+); leucine: C5H12N(+)). For a more quantitative examination of orientation, we developed a ratio comparing the sum of the intensities of secondary-ions stemming from the amino acid residues at either end of the protein. The 50 % increase in this ratio, observed between the protein covered NH3 (+) and COO(-) substrates, indicates opposite orientations of the CytoC on the two different surfaces.

  13. Imaging of Crystalline and Amorphous Surface Regions Using Time-of-Flight Secondary-Ion Mass Spectrometry (ToF-SIMS): Application to Pharmaceutical Materials.

    Science.gov (United States)

    Iuraş, Andreea; Scurr, David J; Boissier, Catherine; Nicholas, Mark L; Roberts, Clive J; Alexander, Morgan R

    2016-04-01

    The structure of a material, in particular the extremes of crystalline and amorphous forms, significantly impacts material performance in numerous sectors such as semiconductors, energy storage, and pharmaceutical products, which are investigated in this paper. To characterize the spatial distribution for crystalline-amorphous forms at the uppermost molecular surface layer, we performed time-of-flight secondary-ion mass spectroscopy (ToF-SIMS) measurements for quench-cooled amorphous and recrystallized samples of the drugs indomethacin, felodipine, and acetaminophen. Polarized light microscopy was used to localize crystallinity induced in the samples under controlled conditions. Principal component analysis was used to identify the subtle changes in the ToF-SIMS spectra indicative of the amorphous and crystalline forms for each drug. The indicators of amorphous and crystalline surfaces were common in type across the three drugs, and could be explained in general terms of crystal packing and intermolecular bonding, leading to intramolecular bond scission in the formation of secondary ions. Less intramolecular scission occurred in the amorphous form, resulting in a greater intensity of molecular and dimer secondary ions. To test the generality of amorphous-crystalline differentiation using ToF-SIMS, a different recrystallization method was investigated where acetaminophen single crystals were recrystallized from supersaturated solutions. The findings indicated that the ability to assign the crystalline/amorphous state of the sample using ToF-SIMS was insensitive to the recrystallization method. This demonstrates that ToF-SIMS is capable of detecting and mapping ordered crystalline and disordered amorphous molecular materials forms at micron spatial resolution in the uppermost surface of a material.

  14. Soft-x-ray-induced ionization and fragmentation dynamics of Sc3N @C80 investigated using an ion-ion-coincidence momentum-imaging technique

    Science.gov (United States)

    Xiong, Hui; Obaid, Razib; Fang, Li; Bomme, Cédric; Kling, Nora G.; Ablikim, Utuq; Petrovic, Vladimir; Liekhus-Schmaltz, Chelsea E.; Li, Heng; Bilodeau, Rene C.; Wolf, Thomas; Osipov, Timur; Rolles, Daniel; Berrah, Nora

    2017-09-01

    The fragmentation dynamics of an endohedral fullerene, S c3N @C80 , after absorption of a soft-x-ray photon, has been studied with an ion-ion-coincidence momentum-imaging technique. Molecular inner-shell ionization at 406.5 eV, targeting the Sc (2 p ) shell of the encapsulated S c3N moiety and the C (1 s ) shell of the C80 cage, leads to the cage fragmentation through evaporation of C2, emission of small molecular carbon ions (Cn+ , n ≤24 ), and release of Sc and Sc-containing ions associated with the carbon cage opening or fragmentation. The predominant charge states of Sc and Sc-containing ionic fragments are +1 despite an effective Sc valence of 2.4, indicating that charge transfer or redistribution plays an important role in the fragmentation of the encaged S c3N . Sequential emission of two out of the three Sc atoms of the encaged moiety, via Coulomb explosion in the form of S c+ or Sc-containing ions, is significant. We also find that the resonant excitation of the Sc (2 p ) shell electrons significantly increased the yield of the parent S c3N @C80 and its fragment ions, partially attributed to the collision of the energetic Auger electrons from the Sc site with the carbon cage.

  15. A CARBON-COATED GRAPHITE ANODE FOR LITHIUM ION SECONDARY BATTERIES%锂离子二次电池用涂炭石墨阳极

    Institute of Scientific and Technical Information of China (English)

    N.Ohta; M.Inagaki; 等

    2002-01-01

    A novel carbon-coated natural graphite was developed which showed excellent electrochemical performance as an anode material for lithium ion secondary batteries. Efficiency in propylene carbonate (PC) based electrolytes was improved by applying our carbon coating technique.%开发了一种新型涂炭天然石墨,由这种材料制备的锂离子电池阳极材料显示了卓越的电化学性能.通过应用该涂炭技术,使得PC基电解液的电池效率得到了明显改善.

  16. Combinatorial computational chemistry approach for materials design: applications in deNOx catalysis, Fischer-Tropsch synthesis, lanthanoid complex, and lithium ion secondary battery.

    Science.gov (United States)

    Koyama, Michihisa; Tsuboi, Hideyuki; Endou, Akira; Takaba, Hiromitsu; Kubo, Momoji; Del Carpio, Carlos A; Miyamoto, Akira

    2007-02-01

    Computational chemistry can provide fundamental knowledge regarding various aspects of materials. While its impact in scientific research is greatly increasing, its contributions to industrially important issues are far from satisfactory. In order to realize industrial innovation by computational chemistry, a new concept "combinatorial computational chemistry" has been proposed by introducing the concept of combinatorial chemistry to computational chemistry. This combinatorial computational chemistry approach enables theoretical high-throughput screening for materials design. In this manuscript, we review the successful applications of combinatorial computational chemistry to deNO(x) catalysts, Fischer-Tropsch catalysts, lanthanoid complex catalysts, and cathodes of the lithium ion secondary battery.

  17. Characterization of the secondary neutron field produced during treatment of an anthropomorphic phantom with x-rays, protons and carbon ions.

    Science.gov (United States)

    Tessa, C La; Berger, T; Kaderka, R; Schardt, D; Burmeister, S; Labrenz, J; Reitz, G; Durante, M

    2014-04-21

    Short- and long-term side effects following the treatment of cancer with radiation are strongly related to the amount of dose deposited to the healthy tissue surrounding the tumor. The characterization of the radiation field outside the planned target volume is the first step for estimating health risks, such as developing a secondary radioinduced malignancy. In ion and high-energy photon treatments, the major contribution to the dose deposited in the far-out-of-field region is given by neutrons, which are produced by nuclear interaction of the primary radiation with the beam line components and the patient's body. Measurements of the secondary neutron field and its contribution to the absorbed dose and equivalent dose for different radiotherapy technologies are presented in this work. An anthropomorphic RANDO phantom was irradiated with a treatment plan designed for a simulated 5 × 2 × 5 cm³ cancer volume located in the center of the head. The experiment was repeated with 25 MV IMRT (intensity modulated radiation therapy) photons and charged particles (protons and carbon ions) delivered with both passive modulation and spot scanning in different facilities. The measurements were performed with active (silicon-scintillation) and passive (bubble, thermoluminescence ⁶LiF:Mg, Ti (TLD-600) and ⁷LiF:Mg, Ti (TLD-700)) detectors to investigate the production of neutral particles both inside and outside the phantom. These techniques provided the whole energy spectrum (E ≤ 20 MeV) and corresponding absorbed dose and dose equivalent of photo neutrons produced by x-rays, the fluence of thermal neutrons for all irradiation types and the absorbed dose deposited by neutrons with 0.8 thermal neutrons is observed for photons and, among ions, for passively modulated beams. For the treatment with high-energy x-rays, the contribution of secondary neutrons to the dose equivalent is of the same order of magnitude as the primary radiation. In carbon therapy delivered with

  18. Nonlinear dynamics of cold magnetized non-relativistic plasma in the presence of electron-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Biswajit, E-mail: biswajit-sahu@yahoo.co.in [Department of Mathematics, West Bengal State University, Barasat, Kolkata 700126 (India); Sinha, Anjana, E-mail: sinha.anjana@gmail.com [Department of Instrumentation Science, Jadavpur University, Kolkata 700 032 (India); Roychoudhury, Rajkumar, E-mail: rroychoudhury123@gmail.com [Department of Mathematics, Visva-Bharati, Santiniketan - 731 204, India and Advanced Centre for Nonlinear and Complex Phenomena, 1175 Survey Park, Kolkata 700 075 (India)

    2015-09-15

    A numerical study is presented of the nonlinear dynamics of a magnetized, cold, non-relativistic plasma, in the presence of electron-ion collisions. The ions are considered to be immobile while the electrons move with non-relativistic velocities. The primary interest is to study the effects of the collision parameter, external magnetic field strength, and the initial electromagnetic polarization on the evolution of the plasma system.

  19. The analysis of diagnostic markers of genetic disorders in human blood and urine using tandem mass spectrometry with liquid secondary ion mass spectrometry

    Science.gov (United States)

    Millington, David S.; Kodo, Naoki; Terada, Naoto; Roe, Diane; Chace, Donald H.

    1991-12-01

    A method has been developed for the rapid diagnosis of metabolic diseases based on the analysis of characteristic metabolites in body fluids by fast atom bombardment or liquid secondary ion tandem mass spectrometry (FAB-MS--MS or LSIMS--MS). Acylcarnitine profiles were obtained from 100 [mu]l urine. 200 [mu]l plasma or 25 [mu]l whole blood spotted onto filter paper by simple solvent extraction, esterification and analysis using a precursor ion scan function on a triple quadrupole mass spectrometer. Specificity and sensitivity were improved by adding a small percentage of sodium octyl sulfate to the liquid matrix, which forms ion pairs with acylcarnitine esters. Acylglycines in urine were specifically detected as a group using a different precursor ion scan function. By forming methyl esters, metabolic profiles of both acylcarnitines and acylglycines were achieved in the same sample loading by application of alternating scan functions. Quantitative analysis of selected metabolites was achieved by use of stable isotope-labeled internal standards. Amino acid profiles were obtained from 100 [mu]l plasma and 25 [mu]l whole blood spots using butyl esters and a neutral loss scan function. The quantitative analysis of phenylalanine and tyrosine was achieved in these samples using stable isotope dilution. This capability will facilitate the diagnosis of phenylketonuria and other amino acidemias. These new methods have the requirements of speed, accuracy and capability for automation necessary for large-scale neonatal screening of inborn errors of matabolism.

  20. The Effects of Space-Charge on the Dynamics of the Ion Booster in the Jefferson Lab EIC (JLEIC)

    Energy Technology Data Exchange (ETDEWEB)

    Bogacz, Alex [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Nissen, Edward [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2017-05-01

    Optimization of the booster synchrotron design to operate in the extreme space-charge dominated regime is proposed. This study is motivated by the ultra-high luminosity promised by the JLEIC accelerator complex, which poses several beam dynamics and lattice design challenges for its individual components. We examine the effects of space charge on the dynamics of the booster synchrotron for the proposed JLEIC electron ion collider. This booster will inject and accumulate protons and heavy ions at an energy of 280 MeV and then engage in a process of acceleration and electron cooling to bring it to its extraction energy of 8 GeV. This would then be sent into the ion collider ring part of JLEIC. In order to examine the effects of space charge on the dynamics of this process we use the software SYNERGIA.